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A B S T R A C T   

Various mineral prospectivity modelling (MPM) approaches are available for targeting mineral deposits, each 
method capable of predicting areas of high prospectivity. Given the diversity of MPM approaches, the modelled 
areas of high prospectivity can differ across different MPMs. However, rather than a negative, different MPM 
outputs can benefit mineral exploration targeting because each method has its advantages. Rather, the problem 
lies in the lack of consensus over how to best select and delimit mineral exploration targets from different MPM 
results. Here we aim to address the challenges outlined above whilst quantifying and mitigating the effects of 
inherent uncertainties. We first generate eleven different prospectivity models utilising deep learning, machine 
learning, fuzzy logic, and geometric average integration methods. Then, we adopt a majority voting ensemble 
technique to incorporate and combine the predictions of each prospectivity model. Next, we propose a confi-
dence index designed to mitigate uncertainty associated with our multi-technique approach to MPM. The con-
fidence index quantifies variation in prospectivity values for each cell of the MPM target area. The conjunction of 
a confidence index and majority voting model facilitates consistent and robust algorithm-driven extraction of 
exploration targets based on an ensemble of prospectivity models.   

1. Introduction 

Over the past few decades, various mineral prospectivity modelling 
(MPM) methods have been developed, each capable of identifying areas 
that are highly prospective for a chosen mineral deposit type and, thus, 
aiding mineral exploration targeting (e.g., Yousefi et al., 2021). The 
diversity in weighting methods and integration approaches can result in 
a variety of MPM outputs that not only make the selection of exploration 
targets a more challenging task but also serve to propagate uncertainty 
into target selection (e.g., Burkin et al., 2019; Yousefi et al., 2021). To 
mitigate this issue, generating sound targeting models, validating them 
against the locations of the known targeted mineral deposits, and 
selecting targets from the ‘best performing’ model is common practice 
(e.g., Bonham-Carter, 1994; Kreuzer et al., 2020; Yousefi et al., 2021). 
Whilst the various approaches to MPM are being continuously improved 

(Nykänen, 2008; Nykänen et al., 2008; McCuaig et al., 2010; Hagemann 
et al., 2016a, 2016b; Yousefi et al., 2019, 2021; Yousefi and Hronsky, 
2023; Yousefi et al., 2023a; Mostafaei et al., 2024), significant uncer-
tainty remains concerning how to best select mineral exploration targets 
from the models generated. For instance, exploration data can be 
weighted using statistics, expert knowledge, user-defined functions, and 
logistic functions (e.g., Bonham-Carter, 1994; Pan and Harris, 2000; 
Harris et al., 2015; Yousefi et al., 2021). Weighted predictor maps can be 
integrated using a variety of methods such as statistical functions, fuzzy 
operators, supervised machine learning, supervised deep learning, un-
supervised deep learning, and geometric average function (e.g., Bon-
ham-Carter, 1994; Carranza, 2008; Yousefi and Carranza, 2015b; Zuo 
and Wang, 2020; Rahimi et al., 2021; Yousefi et al., 2021, 2023a, b; 
Bahri et al., 2023; Ghasemzadeh et al., 2023). However, choosing the 
most appropriate method(s) remains challenging. The holistic nature of 
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the currently available MPM techniques confers an advantage that all 
can be used for most targeting exercises. However, choosing an appro-
priate MPM method often relies on the practitioner’s prior experience 
rather than the types and quality of the available input data or the tar-
geted deposit type. Whilst most methods are statistically adequate, the 
resulting prospectivity values differ, causing problems with bench-
marking a reliable and proven methodology for mineral exploration 
targeting that is appropriate for real-world decision-making. 

Generally, uncertainty in the natural sciences can be considered 
either aleatory or epistemic (Quigley et al., 2019). Aleatory uncertainty 
(also known as stochastic or statistical uncertainty) derives from the 
natural variation of inputs and parameters (e.g., minor imprecisions of 
geochemical assays or GPS coordinates). Aleatory uncertainty cannot be 
reduced even as more data are gathered. In contrast, epistemic (or sys-
tematic) uncertainty, which stems from an incomplete knowledge, can 
(at least theoretically) be reduced by obtaining additional information 
about the object or system in question. In mineral exploration targeting, 
incomplete knowledge manifests itself in many forms. Pertinent exam-
ples are (i) geological processes, which cannot be observed directly and, 
as such, have to be modelled or inferred, or (ii) prospective bedrock 
under thick post-mineral cover, where exploration targeting requires 
interpolation and/or extrapolating of sparse geological, geochemical 
and geophysical data. In MPM, epistemic uncertainty is addressed by 
interpolation using, for example, kriging, natural neighbour algorithms 
or other statistical techniques to substitute for spatial knowledge gaps. 

Whilst aleatory uncertainty has been demonstrated to significantly 
impact geoscientific models (e.g., in 3D geomodelling: Wellmann et al., 

2010; Lindsay et al., 2012, 2020), epistemic uncertainty arguably has 
greater impact on regional-scale MPM. Aleatory errors, as pertaining to 
MPM, are typically minor (e.g., GPS: ± 5 m) and commonly have a lesser 
impact on the results, especially when multiple modelling approaches 
are utilised. As such, our focus is on epistemic uncertainty. 

In this paper, we adopt a majority voting ensemble technique (e.g., 
Lam and Suen, 1997; Sun and Li, 2008; Usman et al., 2016) to optimise 
and aggregate the positive aspects of different prospectivity models, 
each constrained by the same input data, into a single output. We 
introduce a confidence index designed to mitigate the problem of 
divergence in the modelled prospectivity values, which differ from 
model to model for any given area unit of the study area. The proposed 
procedure not only enhances decision-making in MPM but also lends 
itself for use in and to augment an exploration information system (EIS) 
(Yousefi et al., 2019, 2021), an exploration targeting support tool 
designed to better integrate the conceptual mineral deposit model (i.e., 
the critical and constituent processes of the targeted mineral system) 
with data available to support exploration targeting. 

2. Deposit model, study area and input dataset 

Porphyry-Cu deposits form in subduction-related magmatic arcs 
along convergent plate margins and are associated with intrusive com-
plexes (Sillitoe, 2010). These ore deposits contain copper-bearing min-
erals in trap sites within host rocks or as open-space fill as veins or in 
breccias. Fractures in the spaces around porphyry-Cu deposits provide 
channels for the entry of external ore-bearing fluids into the outer parts 

Fig. 1. Simplified geology map of the study area superimposed by point symbol representing the location of stream sediment samples.  
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of the hydrothermal system (e.g., Yousefi and Hronsky, 2023), causing 
alteration (e.g., Sillitoe, 2010). Therefore, different wall rock alteration 
types are common geological features within and around porphyry-Cu 
mineralization systems. 

The study area measures ~ 1620 km2 and covers parts of a 1:100,000 
scale geological map of Nagisan (provided by the Geological Survey of 
Iran; GSI) in the southern part of the Urumieh–Dokhtar Volcanic Belt, 
Iran. Geological details of the Urumieh–Dokhtar Volcanic Belt can be 
found in Alavi (1980) and Berberian et al. (1982). Fig. 1 shows the 
simplified geological map of the study area with 22 known porphyry Cu 
deposits and occurrences. We used these deposits as a set of positive 
samples to train the artificial intelligence algorithms and test the per-
formance of the generated models. 

We used stream sediment geochemical data comprising 545 samples 
of − 80 mesh fraction, collected and analysed by GSI, in our porphyry Cu 
deposits analysis. The samples were analysed by the inductively coupled 
plasma optical emission spectrometry method. In this study, according 
to data availability and quality, we only utilized Cu stream sediment 
data to generate geochemical evidence layer as an important indicator of 
the targeted deposits. As illustrated in Fig. 1, the known porphyry Cu 
deposits are hosted by mainly Oligo-Miocene intrusive rocks. Faults 
deform these rocks. The intrusive systems are surrounded by sedimen-
tary Neogene and Quaternary units. The Quaternary units, covering a 
small part of the eastern study area, were not sampled. 

3. Methods and results 

3.1. Mineral prospectivity modelling (MPM) 

3.1.1. Predictor maps 
We generated five maps of exploration evidence features and proxies 

according to the mineral system model and the ensuing district-scale 
exploration criteria of porphyry-Cu ore formation applied for targeting 
these types of mineral deposits. Data availability was considered with 
the history of exploration programs in the Urumieh–Dokhtar Volcanic 
Belt. The exploration features are: (i) fault density (FD), (ii) Cu element 
content in stream sediments, interpolated using inverse distance 
weighting; (iii) distance to argillic alteration, (iv) distance to iron oxide 
alteration and (v) distance to intrusive contacts. The alteration features 
were mapped using ASTER (Advanced Spaceborne Thermal Emission 
and Reflection Radiometer) imagery supplied by the National Iranian 
Copper Industries Company. The values in the maps were then weighted 
using logistic functions (Fig. 2), a well-known continuous weighting 
approach (Yousefi and Carranza, 2015a; Yousefi and Nykänen, 2016; 
Almasi et al., 2017; Yousefi and Hronsky, 2023). It has been demon-
strated in multiple studies that the application of continuous weighting 
methods using logistic functions improves the reliability of exploration 
targeting models when compared with classified weighted exploration 
evidence data (e.g., Yousefi and Carranza, 2015b, 2017; Yousefi and 
Nykänen, 2016; Mao et al., 2019). The weights in these maps have been 
obtained through a transformation using logistic fuzzification functions 
and lie within 0 and 1. Thus, the weighted maps are ready to be com-
bined using our variety of integration approaches and functions. Given 
that this paper proposes to benefit from the advantages of different 
prospectivity modelling approaches, we combined the generated 
weighted layers using three machine learning approaches, two deep- 
learning methods, five fuzzy operators, and the geometric average 
function. 

3.1.2. Machine learning integration 
We integrated the layers shown in Fig. 2 using support vector ma-

chine, random forest, and extreme learning neural network to utilize the 
positive sides of supervised machine learning methods and training 
point sets. These supervised methods were trained using 22 Cu occur-
rences as positive samples and 22 non-deposit locations as negative 
samples, where mineral deposits are predicted as unlikely to be present 

(e.g., Abedi et al., 2012; Zuo and Carranza, 2011; Zhang et al., 2016; Zuo 
and Wang, 2020; Rahimi et al., 2021). The negative point samples were 
randomly selected out of polygon and line features, which were applied 
as exploration evidence in this study. The generated prospectivity 
models have been shown in Fig. 3. Machine learning methods attempt to 
find locations similar to positive and negative samples, i.e., deposit and 
non-deposit sites, and return the locations, respectively, as prospective 
and non-prospective areas and the range of prospectivity between them. 
This means the outcomes of prospectivity modelling using this category 
of techniques are strongly affected by the spatial position of the positive 
and negative training sites (e.g., Prado et al., 2020; Rahimi et al., 2021). 
Dispersion of deposit sites and their number depends on the number of 
previous exploration programs, and there needs to be a consensus on a 
sufficient number of deposit sites to be used in the integration process 
while respecting the expansion of the area under study. 

Furthermore, the selection of negative sites has been a challenging 
task and gives uncertainty. Despite the dependency of supervised ma-
chine learning methods on training set, a considerable disadvantage, 
supervised methods are also very effective at finding locations similar to 
the positive samples, which is a significant advantage. If there are un-
discovered mineral deposits in a study, including exploration evidence 
and signals dissimilar to those positive examples in and around the 
discovered deposit sites, it will be challenging to recognize them as 
exploration targets. 

3.1.3. Supervised and unsupervised deep learning integrations 
Deep learning approaches help to reveal patterns in spatial explo-

ration data (e.g., Xiong et al., 2018; Yousefi et al., 2021; Agha Seyyed 
Mirzabozorg and Abedi, 2023). The abnormal patterns can represent 
natural phenomena, e.g. mineralization, which is a positive side of deep 
learning integration approaches. Given that unsupervised deep learning 
methods identify patterns without using known deposit sites as training 
points, they have the ability of discovering new mineral deposits that 
may show exploration evidence not completely similar to those in the 
known deposit locations. Lack of dependency to training samples is also 
a positive point where we don’t have many known sites, which is the 
usual case for prospectivity modelling practices. In contrast, the nega-
tive side of unsupervised deep learning method is not using training 
samples and losing the advantages they bring. Supervised deep learning 
methods benefit the advantages of both training data and pattern 
recognition, and so, suffer from the same disadvantages of machine 
learning and unsupervised deep learning. In this paper, we benefited 
from two deep learning integration approaches: an auto encoder 
network (Fig. 4a, an unsupervised approach) and a convolutional neural 
network (Fig. 4b, a supervised deep learning method). 

3.1.4. Fuzzy operators 
Fuzzy operators (An et al., 1991) for instance “AND”, “OR”, “sum”, 

“product”, and “gamma” have been widely applied to combine layers of 
fuzzified exploration data, ranging between 0 and 1, in the prospectivity 
analysis procedure (e.g., Bonham-Carter, 1994; Carranza, 2008; Abedi 
et al., 2017; Yousefi and Carranza, 2015a; Ghasemzadeh et al., 2019, 
2022a). Their advantages and disadvantages have been also reported by 
Yousefi (2017a). In this study, we combined the same evidence maps in 
Fig. 2 using the five fuzzy operators to generate the ensuing five pro-
spectivity models in Fig. 5. 

3.1.5. Geometric average integration 
‘Geometric average’ is an integration function that combines a set of 

uncertain variables, e.g., exploration evidence layers (Yousefi and Car-
ranza, 2015b). The geometric average is calculated by taking the nth 
root of the product of n variables. The main advantage of this integration 
function comes from the nature of the function itself, which treats un-
certainty where there are vaguely known variables (Yousefi and Carra-
nza, 2015b). The geometric average has been widely applied in multi- 
criteria decision-making problems of other fields, in which the values 
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Fig. 2. Fuzzified (weighted) layer of (a) fault density, (b) intrusive contacts, (c) geochemical indicators, (d) iron oxide, and (e) argillic alteration.  
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of decision criteria take the form of weights representing incompletely 
known information to model uncertainty (e.g., Yoshimura et al., 2009; 
Liu, 2013). Yousefi and Carranza (2015b) applied this function for 
mineral exploration targeting. They stated that the geometric average is 
the statistically correct average of heterogeneous sources, i.e., different 
mineral exploration evidence layers, with geometrical support. This 
integration method doesn’t apply training samples is not an artificial 
intelligence technique, and is not subject to the advantages and disad-
vantages of supervised machine learning techniques described above. 
For the present study, there are five (n = 5) evidence layers (Fig. 2). 
Fig. 6 shows the geometric average prospectivity model generated by 
integrating the fuzzified evidence data. 

3.2. Majority voting 

Majority voting is an ensemble machine learning technique 

combining several model predictions (e.g., Lam and Suen, 1997; Sun and 
Li, 2008; Usman et al., 2016). It is used to improve predictive perfor-
mance by exploiting the benefits from an ensemble of models rather 
than relying on any single model from the ensemble. In the case of 
classification using hard voting, the predictions for each class label are 
summed, and the class label with the majority vote is returned as output 
so that the predictions are the majority vote of contributing models. In 
mineral exploration, targeting using different prospectivity modelling 
methods is the purpose of this paper. A voting ensemble can be applied 
when two or more prospectivity models perform a predictive modelling 
task. For instance, Fig. 7 shows an example using three classified pro-
spectivity models. According to the majority voting approach, for a 
given cell of a study area, if two models predict the cell as a second class 
of prospectivity and one model predicts the cell as first class, the cell is 
assigned a second class of prospectivity in the ensemble model (Fig. 7). 
For the classification of the generated prospectivity methods to be used 

Fig. 3. Prospectivity models generated using extreme learning (a), random forest (b), and support vector machine (c).  

Fig. 4. Prospectivity models generated using deep auto encoder (a) and convolution neural network (b).  
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Fig. 5. Prospectivity models generated using fuzzy “AND” (a), “OR” (b), Sum (c), Product (d), and Gamma (e) operators.  
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for majority voting (Fig. 8), we applied the geometrical interval method 
(Frye, 2007) in that the prospectivity value falls between natural breaks, 
equal interval, and quantiles approaches. Many classification methods 

can be used for majority voting. However, all models must be catego-
rized into the same number of classes. Fig. 9 illustrates the application of 
the majority voting ensemble technique for the study area of this paper, 
which was generated using the classified maps in Fig. 8. While majority 
voting reduces the prediction variability of the models in the ensemble, 
the combined model cannot outperform all individual predictive 
models. For example, if most predictive models perform poorly and only 
a few perform well, the combined model will also perform poorly. 
Therefore, in the following sections, we explain how prediction results 
of various models can together outperform all individual predictive 
models, and how majority voting helps delineate a boundary for 
delimiting exploration targets. 

3.3. Confidence index to measure uncertainty 

In studies with various prospectivity models, we expect variation in 
the prospectivity values of a given cell of a study area as well. Some 
examples use the mean (M) and standard deviation (Std) statistical 
moments over rows of cells, but on individual modelling techniques/ 
maps, to model uncertainty of mineral prospectivity and other geo-
science models (Pakyuz-Charrier et al., 2018; Daviran et al., 2022; 
Huang et al., 2022; Lindsay et al., 2022; Wang and Zuo, 2022). Yousefi 
and Gholami (2010) describe Monte Carlo simulation and the effec-
tiveness of using M and Std when risk analysis is carried out on a set of 
uncertain variables. Bonham-Carter (1994), proposed a ratio of contrast 
(C) to Std and named it studentized contrast (Stud C). This incorporates 
the variation of C as a form of uncertainty and was initially applied to 
weights-of-evidence prospectivity mapping procedures. C is a parameter 
calculated for classes of exploration data to quantify the degree of as-
sociation between deposit locations and the classes (Bonham-Carter, 
1994; Carranza, 2008). Furthermore, the coefficient of variation (CV) is 
the ratio of Std and M to model precision and experimental repeatability. 
The ratio is used to moderate the amount of variation in uncertain 

Fig. 6. The geometric average prospectivity model.  

Fig. 7. Majority voting procedure for a given cell of an area using three prospectivity models.  
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Fig. 8. Classified map of prospectivity models generated using extreme learning (a), random forest (b), support vector machine (c), deep auto encoder (d), 
convolution neural network (e), geometric average (f), “AND” (g), “OR” (h), Sum (i), Product (j), and fuzzy Gamma (k) operators. It should be noted for fuzzy 
operators, the geometric average function, and deep auto encoder models, training samples (negative and positive examples) have not been applied during the 
modelling processes. ELM: extreme learning machine, RF: random forest, SVM: support vector machine, DAE: deep autoencoder, CNN: convolution neural network, 
GA: geometric average, FA: fuzzy “AND”, FO: fuzzy “OR”, FS: fuzzy Sum, FP; fuzzy Product, FG: fuzzy Gamma. 
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variables. Here, following the discussion in this section, we invert CV 
and use a ratio of M prospectivity values obtained by a variety of pro-
spectivity modelling methods and the Std of prospectivity values to find 
the ‘confidence index’, CI. 

CI =
M
Std

(1) 

A single raster of CI supports the interpretation of the ensemble. Cells 

with higher CI values delineate more reliable targets in that such cells 
comprise high prospectivity values with less variation, and thus, greater 
confidence in finding relevant mineralization. For the dataset used in 
this study, maps of M, Std, and CI, are shown by Fig. 10a, 10b, and 11, 
respectively. The high CI values in Fig. 11 represent areas of greater 
prediction confidence and are selected for further exploration 
investment. 

Fig. 9. A model of majority voting ensemble using 11 prospectivity models generated in this study.  

Fig. 10. Mean (a) and standard deviation (b) of the 11 prospectivity models generated in this study.  
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3.4. Extracting exploration targets from prospectivity models 

While areas with high CI values can be delineated as exploration 
targets, delimiting targets is always a challenge as two questions arise: 1) 
what are the appropriate thresholds to discriminate the targets with 
different confidence levels? and 2) how is the target boundary delimi-
ted? To address the first question, we applied statistical techniques, 
including histogram, percentile, quantile, and box plot, to obtain the 
thresholds (Fig. 12a), similar to how the geochemical populations were 
classified (Bonham-Carter, 1994; Carranza, 2008). Thresholds can be 
explicitly extracted from the quantile box plot, which are the same ob-
tained from the percentile-based classification. Therefore, we generated 
a classified CI prospectivity model (Fig. 12b) using the thresholds cor-
responding to the percentiles calculated in Fig. 12a. Subsequently, we 
returned the uppermost four classes of CI > percentile 90 as exploration 
targets (Fig. 12c). To delimit targets, we define a boundary condition 
using the outline of the first class of prospectivity obtained through a 
majority voting ensemble approach shown by Fig. 9. The final result is 
determining that about 10 % of the study area are exploration targets. 

3.5. Information entropy analysis 

Shannon or information entropy (Eq. (2) is a measure of uncertainty 
that quantifies the level of information revealed from datasets and 
models (Shannon and Weaver, 1949; Cover and Thomas, 2006) and in 

our case, prospectivity models. 

E(X) =
∑

P(x)*Log2P(x) (2) 

Based on Shannon’s information theory, E(X) is entropy, a measure 
of uncertainty associated with variable X, and P(x) is the probability of 
outcome x of variable X. The higher the information entropy value, the 
more uncertain the variable. In addition to the CI that provides an extra 
dimension to the prospectivity assessment, we produce an entropy 
model (Fig. 13) for the 11 prospectivity models in this study to compare 
our approach with an established uncertainty quantification method. 

CI (Fig. 11) and entropy (Fig. 13) mostly show lower uncertainty in 
the same locations. In the northwest corner, there is low entropy in the 
regions outlined by majority voting, but the CI shows these as more 
uncertain. The region just below this (the west of the study area) shows 
more extensive low uncertainty areas than CI, which agrees with the 
majority voting results more closely than entropy. Similar examples 
exist elsewhere and demonstrate that each measure shows slightly 
different things. Majority voting reveals regions of high prospectivity 
that are verified by most of the models, and CI recognizes regions of 
consistently high prospectivity with low uncertainty. Entropy may 
reveal additional targets in regions of low uncertainty, which are not as 
spatially consistent as those between CI and majority voting. The main 
difference is that CI generates exploration targets that are within the first 
class of majority voting, while entropy introduces some targets out of the 

Fig. 11. CI model of the 11 prospectivity models generated in this study.  
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Fig. 12. (a) Statistical parameters and graphical tools including histogram, percentile, quantile, and box plot of the values in CI model, (b) a classified CI prospectvity 
model, and (c) delimited exploration targets using the boundary condition that outlines the first class of majority voting ensemble. 
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first class of majority voting. Thus, in this context, we consider the 
pairing of majority voting and CI to offer lower risk. 

3.6. Comparing and contrasting the models 

There are a variety of tools developed for the evaluation of mineral 
prospectivity models, namely success-rate and prediction-rate curves (e. 
g., Fabbri and Chung, 2008; Agterberg and Bonham-Carter, 2005; Harris 
et al., 2015), prediction-area (P-A) plot (Yousefi and Carranza, 2015c), 
receiver operating characteristics (ROC) curves (Chauhan et al., 2010; 
Nykänen et al., 2015), normalized density (Nd; Mihalasky and Bonham- 
Carter, 2001; Yousefi and Carranza, 2015c), and posterior probability 
values sampled at training point locations (Nykänen and Salmirinne, 
2007), which were reviewed by Yousefi et al. (2019). Associating the 
known mineral deposits with the modelled targets is a key aspect of all 
evaluation tools. Reducing the search space is one of the critical goals for 
any mineral exploration exercise. Thus, most of the evaluation tools 
consider the spatial extent occupied by exploration targets as the 
probability of finding undiscovered mineral deposits within smaller 
target areas is higher than that for larger areas (Bonham-Carter, 1994; 
Mihalasky and Bonham-Carter, 2001; Yousefi and Carranza, 2015c). 

There is a general agreement that the uppermost classes of pro-
spectivity values (e.g., Fig. 8), irrespective of the method, have higher 
priority for follow-up exploration programs. However, the main issue is 
that the application of different prospectivity modelling approaches on 

the same data set produces exploration targets that vary in terms of the 
number of targets introduced and their spatial patterns over the study 
area. Nonetheless, there are usually targets found in the uppermost 
classes of prospectivity that are predicted by most, if not all, pro-
spectivity modelling methods. The targets located in the uppermost 
prospectivity classes are often areas where all or most of the exploration 
evidence features are simultaneously present and indicate high pro-
spectivity with lower uncertainty. Low uncertainty in these areas results 
from consistently high prospectivity predictions from most of the 
methods utilised. Conversely, there are areas, mainly lowermost classes 
of prospectivity, that are recognised by most, if not all, of the pro-
spectivity modelling methods as unfavourable areas. These areas are 
where there is no or less exploration evidence features and show low 
prospectivity with low uncertainty. Low uncertainty in these areas re-
sults from consistently low prospectivity predictions from most methods 
utilised. Thus, uncertainty is low, and agreement between methods is 
high in the lowermost and uppermost classes of prospectivity modelling 
approaches. Further, the lowermost classes of prospectivity values can 
be confidently excluded from further exploration programs. 

In this study, the main challenge is selecting mineral exploration 
targets from ensemble prospectivity models to minimise the search 
space and maximise the number of potential undiscovered mineral de-
posits. Discrimination of exploration targets within the areas of high 
prospectivity is challenging. Prospectivity analyses are typically per-
formed at a spatial scale appropriate for prediction (regional scale) but 

Fig. 13. Entropy model calculated from the 11 prospectivity models generated in this study.  
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not detection via drilling (prospect scale) (McCuaig and Hronsky, 2000; 
Hronsky and Groves, 2008; McCuaig, Beresford and Hronsky, 2010). 
Thus, prospectivity analysis is an area-reduction exercise for a smaller- 
scale investigation that leads to ground sampling and drill planning 
but does not provide drill targets themselves. Ultimately, MPM aims to 
target undiscovered deposits and not to ‘rediscover’ those that have 
already been found. In this paper, we have followed Bonham-Carter, 
(1994), Mihalasky and Bonham-Carter, (2001), Yousefi and Carranza, 
(2015b), and Ghasemzadeh et al., (2022b), who explicitly describe and 
demonstrate that occupied area of exploration targets is an essential 
criterion for validation purposes and for generating layers of exploration 
criteria and associated weights (for some MPM methods). With this 
philosophy in mind, we calculated Nd (percentage of known predicted 
mineral deposits divided by the percentage of the study area occupied by 
the targets) for all of the 11 prospectivity models as well as the CI model 
generated in this study (Fig. 14). 

The CI model is a combination of all the eleven prospectivity models 
generated in this study with the purpose of demonstrating how it can 
facilitate discrimination and selection of targets. The CI model, like all of 
the eleven models, was first classified using the same geometric interval 
method shown in Fig. 8. Then, the threshold corresponding to the 50 % 
percentile (in Fig. 12a) was used as a reference. For all models, Nd was 
calculated for the upper threshold classes (Fig. 14). The reason for this is 
that the uppermost and lowermost classes of prospectivity values 
represent areas with low uncertainty and, respectively, areas with high 
priority and where mineralization is less likely present. Consequently 
models that introduce more than 50 % of a study area as prospective 
should be excluded from the procedure of target generation (Bonham- 
Carter, 1994; Mihalasky and Bonham-Carter, 2001; Yousefi and Carra-
nza, 2015b; Ghasemzadeh et al., 2022b). Subsequently, the pro-
spectivity values corresponding to the 50 % percentile can be used as a 
threshold to discriminate high and low prospective areas. Comparing Nd 
values with the CI model (Fig. 14) demonstrates that discrimination of 
exploration targets and their selectivity are easier than that of other 
models. The CI model shows a larger number of mineral deposits within 
smaller areas. Discrimination of targets is straightforward when using 
the CI map (Fig. 11 and Fig. 12). 

4. Discussion 

The method described in this contribution balances the benefits and 
drawbacks of unsupervised and supervised machine learning methods 
and other data integration techniques by exploiting statistical methods 
to extract new information from prospectivity model ensembles. 

Unsupervised methods (Xiong et al., 2018; Zuo et al. 2019; Rahimi et al., 
2021) reveal patterns among multiple exploration data, yet may not 
produce results consistent with known deposit locations and knowledge. 
Supervised machine learning approaches are usually consistent with 
known deposit locations and exploration knowledge as they use positive 
and negative training point sets to constrain spatial predictions (e.g., 
Abedi and Norouzi, 2012; Abedi et al., 2012; Zuo and Carranza, 2011; 
Carranza, and Laborte, 2016; Zhang et al., 2016; Sun et al., 2019; Xiong 
and Zuo, 2021). The geometric average integration approach (Yousefi 
and Carranza, 2015b) introduces exploration targets in a way that re-
spects uncertainty in the input prospectivity values among an explora-
tion dataset. Statistical integration benefits the positive aspects of 
statistics in target generation. Consequently, every weighting and inte-
gration method has inherent advantages and disadvantages in the 
context of MPM and EIS. 

The uppermost classes of prospectivity values from each model in the 
ensemble represent areas of greater prospectivity and higher exploration 
priority. In contrast, the lowermost classes of prospectivity values 
resulting from each model in the ensemble portray areas where miner-
alization is less likely to be present and, thus, should be regarded as low 
priority. In this regard, given that the majority voting technique favours 
predictive ability by selecting the uppermost classes of prospectivity 
values, it utilizes the advantageous aspects of these approaches, while CI 
avoids their disadvantages by excluding areas showing low prospectivity 
values in the generated models. This is why there are parts of the first 
class of majority voting that are not robust enough to be in the 90th 
percentile (Fig. 12). Thus, the conjunction of majority voting with CI 
results in new and more reliable exploration targets that superimpose 
with other mineralization evidence as well. As discussed by Yousefi and 
Hronsky (2023), such methods have the potential to identify exploration 
targets that, one day, could yield the next generation of mineral de-
posits, including those deeper examples with weaker surface minerali-
zation signals due to a previous reliance on surficial datasets. 

In some cases, surficial datasets may contain subtle evidence of 
hidden mineralization such as faint or patchy hydrothermal alteration or 
locally anomalous geochemical pathfinder elements. Such expressions, 
even if very subtle, can guide exploration geologists to deeper miner-
alized sites. However, as stated by Yousefi and Hronsky (2023) future 
work should be designed to take the learnings from this study into areas 
that are poorly known and characterised. There are cases where critical 
data such as surface geochemical and remote sensing data are not 
available or in which these types of surficial datasets are not sufficient to 
represent concealed bedrock. 

Whilst here we used only the first class from the majority voting 

Fig. 14. Normalized density of the prospectivity models; ELM: extreme learning machine, RF: random forest, SVM: support vector machine, DAE: deep auto encoder, 
CNN: convolution neural network, GA: geometric average, FA: fuzzy “AND”, FO: fuzzy “OR”, FS: fuzzy Sum, FP; fuzzy Product, FG: fuzzy Gamma. 
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model (Fig. 9) as a condition to select exploration targets (Fig. 12c), it 
would be possible to use the second class of majority voting results to 
delimit targets of lower priority, depending on the exploration budget, 
targeted mineral deposit type, exploration evidence and risk tolerance 
after field checking of the delineated targets. 

Exploration targeting models and target prioritisation are subject to 
a diverse set of uncertainties (e.g., Partington and Sale, 2004; McCuaig 
et al., 2007a, McCuaig, 2007b; Hronsky and Groves, 2008; Kreuzer 
et al., 2008, 2015; Kreuzer and Etheridge, 2010; Partington, 2010; 
Lindsay et al., 2012, 2014, 2016, 2022; Yousefi and Carranza, 2015a, 
Yousefi, 2017a). Hence, uncertainty analysis is an important and 
ongoing topic of research. For example, uncertainty associated with 
interpolation techniques (e.g., Yousefi, 2017b) is a concern that should 
be modulated as well. In all MPM methods, it is a common practice to 
rasterize layers of polygon, line, and point features, representing min-
eral deposits, to generate weighted predictor maps for integration pur-
poses. Consequently, errors can arise when using a cell size 
inappropriate for data distribution (cell size too small), or the spatial 
extent of the mineralising signal (cell size too large) with subsequent 
uncertainty and ambiguity. While further work is needed to mitigate 
these types of error and uncertainties during the implementation of 
mineral exploration targeting approaches, the combination of pro-
spectivity and uncertainty representations provokes a discussion on 
what data should be sampled and from where. It is noteworthy here that, 
as can be seen in Fig. 1 and Fig. 2, there is no evidence for the eastern 
part of our study area to be mineralised as this part of the study area is 
covered by post-mineral Quaternary units. The eastern area could be 
investigated using geophysical surveys, which may reveal hidden 
structures and the possible shallow bodies that may warrant follow-up 
drilling. In the present study, this small part has obtained the lower 
most weights close to 0 in all of the evidence layers in Fig. 2, and is 
classified as an unfavourable zone by all methods. Lack of visible 
exploration evidence and a lack of data from this small area do not affect 
results from the rest of the study area that have sufficient exploration 
features and data. However, in the case of gathering geophysical data 
and conducting prospectivity analysis, the estimation error and uncer-
tainty associated with interpolation techniques must be considered for 
this small part of the study area. 

In this study, we used a single indicator, Cu content, as the main 
indicator of Porphyry-Cu deposits, which was enforced by data avail-
ability (specifically, the lack of it). However, where available it is 
strongly recommended to use multi-element compositional data analysis 
to identify broader and robust geochemical signatures of mineral de-
posits that may be present in the study area. 

There are limitations to using ROC for prospectivity model evalua-
tion. The ROC prospectivity model evaluation process uses deposit sites 
and non-deposit sites. Recognized exploration targets that do not have 
points belonging to the deposit training sets therefore do not contribute 
to the ROC analysis. Ignoring the areas recognized as targets is in 
contradiction with the purpose of mineral exploration targeting and 
reducing the search space. Furthermore, collation of non-deposit sites, i. 
e., negative samples, is a well-known challenge (e.g., Rahimi et al., 
2021) and is a source of uncertainty. The reason for this is that known 
deposit sites are proven locations, but non-deposit locations are not 
confirmed sites and their selection is based on analyst’s decision even 
though some of these sites may be prospective, but have not been 
adequately verified to be barren of mineralization. There may be min-
eral deposits deeper than the drilling depth. In addition, selection and 
distribution of non-deposit sites are subject to the analysts judgment and 
bias, with no consensus on how the true non-deposit sites can be 
recognized and then selected. Thus, selection is essentially a subjective 
process and analysts may change their locations depending on prior 
experience, economic factors, or levels risk tolerance. The aforemen-
tioned issues are not just relevant for ROC method, but for every eval-
uation tool and any MPM approach that uses non-deposit locations to 
form negative training point sets. 

Known deposit locations help to evaluate the prediction ability of 
prospectivity models in terms of finding the same deposit model type, or 
the same pattern that have been used in training the models. However, 
to find mineral deposits of the future, which may show features not yet 
recognised by exploration knowledge, or characterised by relevant data 
(Yousefi, 2022), we may be ignoring the discovered deposit locations for 
evaluation purposes. 

5. Concluding remarks  

- Majority voting utilises the intrinsic advantages of different mineral 
prospectivity modelling (MPM) methods by incorporating an 
ensemble of spatial prospectivity predictions informed by all MPM 
methods utilised. 

- The confidence index minimises problems caused by the disadvan-
tages of the different techniques allowing uncertainty to be mitigated 
to a certain degree.  

- Using majority voting in combination with a confidence index and 
appropriate boundary conditions facilitates more objective and 
repeatable delineation and delimitation of exploration targets. 

- Combining a framework as proposed in this study with an Explora-
tion Information System (EIS) will serve to increase objectivity in the 
selection of exploration targets. More objective mineral exploration 
targeting is one of the important step changes required for the EIS to 
become a more effective exploration tool. Incorporation of mineral 
systems uncertainty assessment combined with model comparison 
offers a step-change needed for development of an effective EIS. 

- Given that the purpose of an EIS is to generate a variety of pro-
spectivity models to select exploration targets, we recommended the 
procedure of implementing majority voting and confidence index 
proposed in this paper be included in the EIS to boost its ability to 
utilize the positive aspects of a variety of prospectivity models, and 
minimise their negative aspects. 
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