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Abstract 

Pin1 is a human protein classified as a peptidyl-prolyl cis/trans isomerase.  The protein 

regulates the conformation of phosphorylated protein substrates by rotating the peptide bond 

between phosphorylated serine/threonine residues that precede proline residues. Structurally, 

Pin1 consists of an N-terminal WW domain and a C-terminal PPIase domain.  The PPIase 

domain catalyzes cis/trans isomerization of peptide bonds in substrate proteins that contain the 

aforementioned consensus motif.  We hypothesize that Pin1 binding is positively impacted when 

two phospho-acceptor sites on peptides derived from mitotic phosphatase CDC25C, a known 

Pin1-interacting protein, are phosphorylated. Using nuclear magnetic resonance and fluorescence 

polarization, binding affinities of CDC25C peptides to Pin1 were calculated. The results indicate 

that doubly-phosphorylated peptides bound to Pin1 have lower dissociation constants and 

consequently greater binding affinities, than complexes containing non- or singly-phosphorylated 

peptides, at the equivalent residues. This suggests that Pin1 has two independent phospho-

binding sites that when bound, increase substrate binding affinity.  
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1. Introduction 

Cell homeostasis is a key feature involved in the maintenance of healthy cells; 

therefore signalling pathways that respond to external stimuli in the changing 

environment are tightly regulated. An extensive network of cellular proteins is implicated 

in these signal transduction cascades, including protein kinases that phosphorylate 

substrate proteins, and other proteins that elicit responses through modifications of 

substrate proteins pre- or post-phosphorylation
1
. One such modification is the 

isomerization of peptide bonds
2-5

. 

Peptide bonds have been shown to exhibit partial double bond characteristics and 

can therefore exist in one of two conformations: cis or trans
6
. Isomerases are enzymes 

that catalyze the interconversion of peptide bond isoforms; further, isomerization is a 

mechanism for higher-order regulation
7-10

. The majority of peptide bonds occur in trans 

in proteins, as trans isomers tend to be more stable due to the separation of large 

functional groups in space, which disables steric hindrance
11

. In contrast, the bonds 

preceding a proline (Pro) residue often appear in the cis conformation as a result of the 

restrictive cyclic structure of Pro and the symmetry of the carbon atoms within the ring
12

. 

The phenomenon of cis bond isomers occurs in approximately 30% of peptides and 10% 

of proteins, compared to their corresponding trans isomers
13

. The interconversion 

between the two peptide bond isoforms is a slow process if un-catalyzed, hence the utility 

of peptidyl-prolyl isomerases (PPIase), a specific class of isomerase, that increases the 

rate of bond interconversion for peptide bond conformations proximal to Pro residues. 
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1.1 Peptidyl-prolyl isomerases 

There are three families of PPIases: cyclophilins (CyPs), FK506-binding proteins 

(FKBPs) and parvulins. Several members of these protein families have been identified 

as targets for the development of immunosuppressive drugs including CyPs and FKBPs, 

which have been identified as the targets of cyclosporin and rapamycin respectively.  

Similar to parvulins, both the CyPs and the FKBPs are able to catalyze peptidyl-prolyl 

isomerization; however their sequences and structures show no noticeable similarities. 

Each of the three enzyme families has a different recognition motif for residues preceding 

a proline
14-18

. The parvulin family, so named because of the small size of the proteins, has 

two protein sub-classes: the non-Pin1 parvulins and the Pin1-like parvulins. The non-Pin1 

sub-class can isomerize the peptide bond between a non-phosphorylated residue 

preceding a Pro, while the Pin1-like parvulins isomerize the peptide bond between a 

phosphorylated residue preceding a Pro
17

 (Figure 1). Mechanistically, Pin1 has a proline-

directed function that acts on phosphorylated serine/threonine (pSer/Thr) substrates
19

 and 

its phosphorylation-dependence is what makes Pin1 unique amongst its class of 

enzymes
20

. 
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Figure 1 The cis-trans isomerization reaction catalyzed by Pin1. 

Cis-trans isomerization is a slow process if uncatalyzed. Peptidyl-prolyl isomerases 

accelerate this process. Pin1 is a phosphorylation-dependent PPIase with a proline-

directed function that acts on phosphorylated Ser/Thr substrates preceding a Pro residue. 

The other PPIases, Cyps, FKBPs and non Pin1-like parvulins, isomerize the peptide bond 

between a non-phosphorylated residue preceding a Pro. 

Figure 1 
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1.2 Introduction to Pin1 

Pin1 is a peptidyl-prolyl isomerase that catalyzes the interconversion between cis 

and trans isomers of a peptide bond.  It specifically binds to phosphorylated substrates 

preceding a Pro residue and regulates their isomeric conformation. The enzymatic 

isomerization function of Pin1 was originally discovered after the protein was observed 

to interact with the protein encoded by Never in Mitosis gene A (NIMA), a protein kinase 

involved in the regulation of mitosis. The protein interaction was identified using a yeast 

two hybrid screen and many similar proteins have since been identified in other 

eukaryotic organisms and some prokaryotes
21

. The Pin1 homolog in yeast, ESS1, was 

discovered in 1989
22

 before the discovery of Pin1 in humans, by the Hunter lab in 1996
21

. 

Human Pin1 is an essential protein
23

 and contains 45% sequence identity to its yeast 

homolog, which is known to be an essential protein for growth in yeast
22

. A role for Pin1 

was first identified in mitotic regulation, but it is now known that Pin1 catalyzes the 

isomerization of proteins involved in many different cellular processes, including 

apoptosis, cell cycle progression, cell survival and proliferation, DNA repair, stress 

responses and transcription
8,24-30

.  

1.3 Pin1 in the cell 

The activity of Pin1 can be regulated post-translationally, through 

phosphorylation by protein kinases, and by oxidation.  The reduction and oxidation of 

Pin1 has been studied in relation to its role in Alzheimer’s disease
31

. Ser residues 16 and 

65 can both be phosphorylated, to decrease substrate binding or to increase protein 

stability by reducing the occurrence of further modifications on the site19,32. Pin1 is 
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localized in vitro to the nucleus and the cytoplasm, with the former being its predominant 

location
21,33

.  

To date, Pin1 is the only known peptidyl-prolyl cis/trans isomerase that functions 

as a phosphorylation-directed enzyme
34

.  It regulates conformational changes for many 

substrate proteins involved in signalling pathways that mediate cancers and 

neurodegenerative diseases
26,35-39

.  For example, Pin1 interacts with Cyclin D1, a protein 

that forms a complex with cyclin-dependent kinases and functions as a regulatory subunit 

in the G1 to S phase transition of the cell cycle
40

. Once bound, Cyclin D1 transcription is 

increased because Pin1 can promote upstream signalling factors. This includes Jun N-

terminal kinases, which generate phosphorylated c-Jun to stimulate further transcription 

of Cyclin D1. Cyclin D1 is also unable to exit the nucleus and therefore unable to be 

targeted to the proteasome for degradation
41

. Other Pin1 interacting proteins that regulate 

Cyclin D1 transcription are β-catenin and NFκB
42,43

.  Pin1 disables the re-generation of 

β-catenin and targets it to the nucleus where it can promote the transcription of other 

genes.  The p65/RelA binding site located on NFκB undergoes isomerization by Pin1 and 

the conformational change detaches NFκB from an inhibitor enabling nuclear targeting. 

Once in the nucleus, NFκB aids in promoting Cyclin D1 transcription. E2F transcription 

as well as cell cycle progression is regulated by Cyclin D1 and is positively controlled by 

Pin1. This feedback mechanism is used in cancerous tumours from mouse models by the 

proteins Her2/Neu and Ras to stimulate continuous cell growth in mammary epithelial 

cells
44

. For this purpose, the inhibition or down regulation of Pin1 could effectively target 

cancers evading multiple pathways. In addition to the above-mentioned example, 
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previous studies have also identified a variety of other cellular proteins that interact with 

Pin1 including: Akt
45

, Bcl-2
46

, Cdc25
47

, P53
48

 and Tau
49

. 

1.4 Role of Pin1 in pathogenesis 

Pin1 is implicated in two well-studied, yet diverse diseases: Alzheimer’s disease 

(AD) and cancer. This is not surprising due to the known proteins and pathways in which 

Pin1 has been associated. The protein induces opposing effects in AD and cancer, based 

on its expression and amount of enzymatic activity.  

1.4.1 Decrease of Pin1 in neurodegeneration 

Various studies have implicated Pin1 in neurogenesis
50

.  Pin1 knockout mice have 

shown prognostic AD markers
51

 and decreases in cellular Pin1 protein levels contribute 

to AD through effects on the Tau protein and the amyloid precursor protein (APP)
52

. 

Tau is implicated in AD because when the protein is inactivated, microtubule 

stabilization is affected. Pin1 interacts with Tau after Tau is phosphorylated on residues 

Thr212 and Thr231
49,53

. Following this, pThr231 becomes dephosphorylated by PP2A, a 

phosphatase that acts to specifically dephosphorylate trans conformational bonds, and 

Tau can begin to stabilize microtubules. In the neurons, when Tau becomes hyper-

phosphorylated through a lack of Pin1 and PP2A function, neurofibrillary tangles can 

form
53

.  These tangles are common occurrences in the process of neurodegeneration. 

A second common occurrence in neurodegenerative disorders is the formation of 

senile plaques in the brain. These plaques are composed of insoluble amyloid-β (Aβ) 

peptides, which are generated from APP
54

.   Pin1 interactions with the binding motif 

pThr668-Pro of APP help to regulate the amount of Aβ peptides generated. Once Pin1 is 
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bound to APP, the peptidyl-prolyl isomerization is increased by over 1000-fold
54

. The cis 

isoform of APP is responsible for the increase of insoluble Aβ peptides which can 

accumulate into plaques in the brain
55

. Pin1 is accountable for the cis to trans conversion 

of APP and if Pin1 is down-regulated, the pathogenic cis isoform of APP becomes 

dominant
54

. 

1.4.2 Pin1 overexpression in cancer 

The effects of Pin1 in cancer are contrasting to those of AD.  For one, Pin1 is 

down-regulated in AD and its depletion leads to cell death
56

, while the protein is up-

regulated in cancer and postulated to promote tumour growth
19

. Pin1 has a role in many 

forms of cancer including breast
57

, cervical
58

, colon
59

, liver
60

, lung
61

, oral squamous
62

, 

head and neck cancers
63

 and prostate cancer
64

 (see 
65

 for a general overview). Upon 

further characterization, Pin1 overexpression has been implicated as a marker for poor 

prognosis and a higher likelihood of recurrence in prostate cancer
64

. Cancerous tumours 

displayed overexpression of Pin1 at the mRNA as well as the protein level
41

.  

Pin1 has been well studied in tumours generated through the dysregulation of 

Her2/ Neu or Ras protein-implicated pathways
44,66,67

. Using mouse models, studies have 

shown that Pin1 overexpression increases the oncogenic effects of Neu and Ras, whereas 

mice lacking Pin1 do not exhibit such effects. These proteins affect E2F, a transcription 

factor, which leads to as increase in Cyclin D1 and Pin1 in cells
44,68

.  

Overall, in the context of cancer Pin1 inhibits tumour suppressors by changing the 

conformation of a substrate so that its activator cannot bind
69

. In addition, Pin1 stabilizes 

the extensively studied tumour suppressor p53, a key protein that stimulates apoptosis 
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under cell stress conditions
70

.  Pin1 has therefore been recognized as a potential 

therapeutic target because of its diverse implications in disease. 

1.5 Pin1 as a therapeutic target 

Pin1 was originally revealed to regulate key players in mitosis, but through 

further characterization Pin1 has been presented in many other complex processes
26,71,72

.  

The phosphorylation-specific nature of Pin1 adds an increased level of regulation in 

relation to Pro-directed enzymes, such as kinases, needed for cellular processes
73

. Of note 

is the association of Pin1 with proteins involved in cancer, and Alzheimer’s disease. As a 

result, Pin1 is a potential candidate for the development of targeted therapeutics. The 

other PPIase protein families, cyclophilins and FKBPs, both have drugs associations that 

act in an inhibitory manner to decrease protein activity
74,75

. The compound juglone, a 

naturally occurring compound, was isolated as a parvulin family inhibitor. This molecule 

was able to inhibit Pin1 and other parvulins, through an interaction with Cys113. 

Unfortunately, the lack of specificity towards Pin1 and the potential for off-target effects 

on cellular proteins (including RNA polymerases) disabled juglone from becoming a 

therapeutic agent for cancer treatment
76

. Therefore, targeted therapeutics towards Pin1 

have been focused on the active site Cys residue, the hydrophobic pocket or the 

phosphate binding loop
72,77,78

. Structure-based inhibitor design is a commonly used 

method, but many of the isolated compounds contained phosphate moieties to increase 

their binding affinity, which in turn decreased their cell membrane permeability. To 

circumvent this setback, work in the Litchfield lab used phage display to identify peptide 

sequences that inhibit Pin1. The screen was directed towards identifying cyclic peptides 

that would inhibit the PPIase domain of the protein, to decrease its function and 
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potentially act as a cancer therapeutic. The cyclic peptides were shown to bind with a 

high affinity to Pin1, potentially due to their rigidity, and the cyclic peptides may also 

have the ability to evade proteolysis
79

. In order to generate potent inhibitors, it is 

important to understand the mechanism by which Pin1 binds to its substrates and the 

corresponding affinities.  With Pin1 having two domains for binding, and knowing that 

Pin1 substrates may themselves have multiple binding sites increases complexity within 

the in vitro system.   

1.6 Structural features of Pin1 

Pin1 is a small 18.4 kDa protein, consisting of 163 amino acids in length
21

. It has 

two diverse structural domains, as determined by X-ray crystallography
45

: an N-terminal 

type IV WW domain, so named for its conserved tryptophan residues located at amino 

acid positions 11 and 34, and a C-terminal PPIase enzymatic domain
74,80

. The domains 

are separated by a flexible linker of ten residues in length, between residues 1-39 of the 

WW domain and residues 50-163 of the isomerase domain (Figure 2)
81

. Both domains 

recognize similar motifs containing phospho-Ser/Thr-Pro
82

. Proline-directed binding and 

isomerization are both well-known mechanisms for post-phosphorylation regulation and 

have been extensively studied
73,83,84

.  

The secondary structure of Pin1 consists of three anti-parallel β-sheets in the WW 

domain, which contains a hydrophobic area on its surface. The PPIase domain has four α-

helices and three anti-parallel β-sheets in its secondary structure. Two characterized 

regions are also located in the PPIase domain: a proline binding pocket and a phosphate 

binding loop
85

. These known structural areas are located on opposing sides of the active 

site of the protein, which is centered on Cys residue 113 (Figure 2 - bottom panel). Other 
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active site amino acids include His 59, His 157 and Ser 154
86

. These residues arrange into 

a pocket in which a substrate peptide bond can enter (1PIN structure and Figure 2)
45

. The 

proline binding pocket is a hydrophobic groove with conserved leucine (Leu), methionine 

(Met) and phenylalanine (Phe) residues (Leu122, Met130 and Phe134). The phosphate 

binding loop contains positively charged residues that can interact with a negatively 

charged phosphate moiety. Lys63, Arg68 and Arg69 are the central amino acids 

coordinating this binding
87

. 
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Figure 2 

 

 

 

 

 

 

Figure 2 Surface covered ribbon representation of the x-ray crystallography 

reference structure of Pin1. 

Pymol-generated image of the surface and ribbon structure of Pin1, using the R14A Pin1 

crystal structure (Protein Data Bank Code 1PIN). The WW domain, residues 1-39, is 

visible in red with the characteristic Trp11 (left panel) and Trp34 (right panel) coloured 

in cyan. This domain has three anti-parallel β-sheets. The PPIase domain, residues 50-

163, is coloured in blue and is comprised of four α-helices and three anti-parallel β-

sheets. The left panel image is rotated along the vertical axis by 180ᴼ to show the right 

panel. The bottom surface view is shown by rotating the left panel image along the 

horizontal axis by 90ᴼ.  The protein active site, located in the isomerase domain, is 

coloured in green and is composed of amino acid residues (H59, L60, L61, V62, K63, 

R68, R69, A85, I89, C113, L122, S154, I156 and H157) centered on the catalytic 

Cys113. 
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 In binding, the WW domain of Pin1 is known to bind to substrates with a higher 

affinity than the PPIase domain. The residues from this domain involved in substrate 

binding are: Arg17, Tyr23 and Trp34. This domain enhances substrate specificity when a 

binding motif is located on a peptide
88

. The WW domain of Pin1 has been shown to have 

a ten-fold higher binding affinity for a known Pin1 substrate, Pintide (WFYpSPR-NH2) 

compared to the PPIase protein domain
88

.  The WW domain has a high affinity for most 

substrates and  it is therefore thought to be responsible for substrate targeting and 

recognition whereas, the PPIase domain alone is usually unable to bind known substrates, 

but takes on the role of catalyzing imide bond isomerization
89

.  

Many of the Pin1-interacting proteins have one binding site identified, whereas 

some may contain multiple binding sites. In the latter case, these sites are separated by 

approximately 19 amino acid residues within the protein sequence
29,52

.  This separation is 

intriguing and may be related to the spacing between the two domains in Pin1. The 

downstream binding site could bind to the WW domain and the upstream site could bind 

and/ or undergo isomerization by the PPIase domain. One such example of the multiple 

binding sites occurs in the protein Tau, a protein found in neural tissues, and another is 

CDC25C, a mitotic initiator protein. In the aforementioned proteins, there are two Pin1 

binding sites separated by 19 amino acids
24,52

.  

Studies conducted by Smet et al.
90

 used peptides derived from the protein Tau. 

One of the peptides contained two phosphorylation sites separated by two amino acids. 

Another contained three phosphorylation sites, the two previously mentioned and the 

third separated by 16 residues. The first and third phosphorylated residues are each part 

of a Pin1 binding motif. Results show that two Pin1 binding motifs on a peptide increase 
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the protein-peptide binding affinity but decrease the peptide isomerization rate
90

. From 

this work, two unresolved questions arose: does cooperativity occur between peptide 

binding motifs interacting with Pin1, and do the two Pin1 domains cooperate during 

substrate binding? 

1.7 Pin1 catalytic mechanism 

Based on structural studies, Ranganathan et al.
45

 proposed that the catalytic 

mechanism of Pin1 involves covalent binding, where Pin1 binds to a ligand and adopts a 

tetrahedral intermediate conformation
45

. The phosphorylated residue on the substrate fits 

into the binding pocket for isomerization and the peptide bond is shifted by 90 degrees to 

move the carbonyl oxygen away from the active site of Pin1.  With this movement, the 

side chain of residue Cys113 of Pin1 can enter the protein active site. His59, another 

residue located in proximity to the active site, deprotonates Cys113 priming it for a 

nucleophilic attack on the carbonyl carbon atom of the substrate. The carbonyl oxygen of 

the substrate is negatively charged and can be modulated by His157. The intermediate 

species is then abolished allowing for the discharge of the substrate
45

.  

In 2000, this mode of substrate catalysis was questioned when the structure of a 

Pin1 homologue in Arabidopsis thaliana was determined by solution-state NMR
91

.  The 

Cys113 equivalent residue in the plant organism exhibited minimal motion when bound 

to a ligand. This finding contradicted previous reports of covalent binding
92

.  Using an 

approach comprising mutagenesis and peptidyl-prolyl isomerization activity assays, the 

Litchfield lab displayed that a non-covalent mechanism was likely the mode of binding 

used for Pin1-substrate interactions
77

. A unigenic evolution study conducted by Behrsin 

et al. invalidated the nucleophilic tendencies of Cys113
77

.   In this paper, the Cys residue 
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was mutated to a Ser in order to retain nucleophilic tendencies; however, this mutation 

disabled Pin1 catalytic activity. On the other hand, when the residue was mutated to an 

Asp catalytic activity was only reduced. The enzymatic activity of Pin1 is therefore 

mediated by factors such as charge
77

.  

Continued efforts to elucidate the catalytic mechanism of Pin showed that the two 

His residues located near the binding pocket, His59 and His157, are needed to increase 

protein stability
86

. These residues, previously thought to engage in hydrogen bonding, 

were mutated into Leu residues. This revealed that proton donors were not required for 

binding. The His59Leu mutation caused the protein to become inactive, but when 

His157Leu was introduced in conjunction with His59Leu, protein catalytic activity was 

restored. Further, a different isomerization mechanism was suggested in 2008 because of 

the negative charge surrounding the Pin1 active site Cys
86

.  

Most PPIases use the bond-distortion mechanism for substrate catalysis, which is 

similar to that hypothesized for Pin1. The active site environment results in a low pKa for 

Cys113.  Consequently, at neutral pH the partial negative charge on cysteine enables the 

stabilization of the carbonyl group on the substrate. The substrate carbonyl group exhibits 

double-bond rigidity and if a resonance structure were to form, the peptide bond to be 

isomerized would become rigid and impact cis/trans changes
93

.   

1.8 Binding models 

Pin1 is able to bind to phosphorylated motifs through both of its structural 

domains. The domains can bind concurrently or separately to specific protein substrates 

that contain the sequence motif pSer/Thr-Pro.  For this reason, the mode of binding for 
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Pin1 to substrates remains unknown. To date, there are four potential binding 

mechanisms modeled for Pin1 binding and peptidyl-prolyl isomerization (Figure 3). The 

catalysis-first binding model begins with the PPIase domain binding to a cis isomer to 

isomerize the bond and convert it into trans. From there the WW domain, known to bind 

preferentially to trans isoforms, can favourably bind to the substrate
94

 (Figure 3A). A 

second model is the multimeric model in which Pin1 is part of a complex of proteins. 

Since the WW domain binds preferentially to most substrates, it is likely that the domain 

binds a protein as part of the complex. This leaves the enzymatic domain free to 

isomerize a ligand
36

 (Figure 3B).  The sequential model for Pin1 binding suggests that 

the WW domain binds to its target sequence first. Then, the PPIase domain is able to 

bind, at the same site or an adjacent site, for isomerization (Figure 3C). This model 

seems preferential in the case of Pin1 interactors containing multiple binding motifs. 

Some examples of proteins with greater than one Pin1 target sequence include: CDC25C, 

CK2 and Tau
35

. The simultaneous binding model is the fourth method recently proposed 

in the literature. This method involves multi-phosphorylated substrates that can be bound 

by both Pin1 domains independently yet synchronously to increase substrate affinity
95

 

(Figure 3D).  
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Figure 3 (A-D) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Illustrative representation of Pin1 binding models. 

A) The catalysis-first binding model: The PPIase domain of Pin1 binds to a 

pSer/Thr-Pro motif in the cis isoform to isomerize the peptide bond. The WW 

domain can then preferentially bind to the trans substrate. 

B) The multimeric binding model: Pin1 is involved in a protein complex 

through WW domain interactions. The PPIase domain is able to isomerize a 

substrate in close proximity.  

C) The sequencial binding model: The WW domain of Pin1 can first bind to a 

pSer/Thr-Pro motif and then the PPIase domain is able to bind to the substrate, 

at the same site or an adjacent site, for isomerization.  

D) The simultaneous binding model: Both Pin1 domains can bind to a substrate 

containing multiple pSer/Thr-Pro binding motifs. Each domain may have a low 

affinity for the site, but together this binding can increase the affinity.  
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Pin1 itself is phosphorylated which can act to inhibit its isomerization 

capabilities
96

. In other cases, Pin1 phosphorylation has no effect on its interaction with 

proteins involved in key regulatory processes
45-48,61,97

. One such example of a Pin1-

interacting protein is human CDC25C. Through the interaction between Pin1 and 

CDC25C, Pin1 is associated with eukaryotic entry into mitosis. Once Pin1 isomerization 

occurs on its substrate CDC25C, the substrate then dephosphorylates CDC2 which can 

form an active complex with Cyclin B. The activated protein complex stimulates a 

decrease in mitotic entry
98

.  

1.9 CDC25C and Pin1 as a system for this study 

In order to elucidate the roles of Pin1 with respects to function and pathogenesis, 

researchers began to look at protein interactions. Many proteins known to be implicated 

in diverse cellular processes were found to associate directly or indirectly with 

Pin1
24,44,67,69,99-103

 and a few undergo conformational changes upon interaction
8,23,24,35

. 

The association between  human CDC25C and Pin1, discovered in 1998
23

,  was later 

shown to affect the conformation of the Pin1 substrate
24

. CDC25C is a phosphatase with 

considerable sequence similarity between the human and Xenopus forms and is required 

for mitotic initiation. Many post-translational modifications affect this protein to regulate 

its function in the triggering of mitotic events. In order to initiate mitosis, CDC25C is 

activated by hyper-phosphorylation
103

. In contrast to CDC25C, most phosphatases act to 

reverse the process of phosphorylation and generate opposing effects. In the case of 

CDC25C, Pin1 binding to the phosphorylated residues Thr48 and Thr67, in the regulatory 

N-terminus of the protein, affects the conformation of CDC25C and enables subsequent 

dephosphorylation
24

. This two-step process is initiated by the phosphorylation of specific 
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Ser/Thr residues preceding a Pro and concluded with substrate catalysis by Pin1. 

Phosphorylation followed by Pin1 isomerization depicts one of many tightly regulated 

mechanisms for the well-known and controlled cellular process of mitosis
24

.  

To date, the literature describes studies that have used peptides containing one 

phosphorylation site to monitor Pin1 binding
8,23,49,56,94,95

. Using peptides containing two 

phosphorylation sites has been presented by Smet et al.
90

 to increase the binding affinity 

of Pin1 towards the peptide, but there is a decrease in isomerization activity
90

. In the 

present work, peptides comprising two different pThr-Pro motifs seem to interact with 

both domains of Pin1 because each domain has an affinity for a phosphate group. The 

peptides chosen are derived from human CDC25C protein, because it is a Pin1-

interacting protein that is naturally phosphorylated at multiple sites.  

This work utilizes peptides derived from the sequence of human CDC25C to 

investigate binding interactions with Pin1. Previous studies have shown that the binding 

of CDC25C to Pin1 requires the full length isomerase, as the individual protein domains 

decrease binding affinities. Some peptides have also shown no detectable binding to the 

PPIase domain of Pin
88,95,104,105

.  

1.10 Objectives and hypothesis 

The use of doubly-phosphorylated peptides to elucidate binding mechanisms by 

the protein Pin1 is a novel application. This study tests the hypothesis that doubly-

phosphorylated substrates bind more strongly to Pin1, if the phosphorylation sites are 

located on Thr residues preceding a Pro and when the recognition motifs are spaced apart 

in the peptide sequence. Many studies examined the substrate specificity of Pin1 using 
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singly phosphorylated peptides as well as peptides composed of shorter sequence 

lengths
90,104,106,107

. This approach will give insights into the binding of Pin1 to a specific 

and known interacting protein, human CDC25C. It also highlights binding affinities of 

the protein-peptide complexes, based on the number of peptide phosphorylation sites. 

This work was conducted to assess the overall global changes induced by 

phosphorylated-peptide binding to Pin1. The changes can give insights into binding 

locations of the peptides onto Pin1 and substrate affinities when bound. The goal of this 

project is to investigate the relationship between the peptidyl-prolyl isomerase Pin1 and 

how it binds to phosphorylated substrates and aims to determine whether a singly- 

phosphorylated substrate or a doubly-phosphorylated substrate has a lower dissociation 

constant and therefore a stronger binding affinity to the protein. This knowledge can lead 

to the generation or improvement of Pin1 inhibitors to decrease protein overexpression 

and its subsequent effects in cancer. Using peptides derived from the human protein 

CDC25C, known to promote the initiation of mitosis, changes to Pin1 have been assessed 

through the use of analytical ultracentrifugation (AUC) experiments, circular dichroism 

(CD) spectropolarimetry, nuclear magnetic resonance (NMR) and fluorescence 

polarization (FP) experiments. To further explore the binding interactions of Pin1, X-ray 

crystallography experiments were conducted however this was not chosen as one of the 

methods to pursue (See Appendix).  

Analytical ultracentrifugation is a technique that determines native state 

stoichiometries of proteins and protein subunits in solution. Conformational changes in 

macromolecules can also be identified by an optical detection system that measures the 

concentration gradient of the sample within a cell
108

. Protein sedimentation analysis 
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occurs in real-time. The experiments were conducted using sedimentation velocity to 

detect molecules tumbling together in solution and to determine molecular mass and 

shape
109

. These experiments addressed global changes in Pin1 upon phospho-peptide 

binding.  

The next technique used was circular dichroism spectropolarimetry.  This method 

observes peptide backbone amide bonds and aromatic side chains by measuring the 

differences between left and right handed circularly polarized light. Only chiral 

molecules will display differences in the directionality of polarized light passing through. 

The chromophores associated with protein amides can align into arrays and when 

aligned, the optical transitions produced are split into many transitions of different 

wavelengths and intensities
110

. Secondary structural elements have distinct CD spectra as 

a result of these transitions. Αlpha-helical secondary structures show a strong positive 

peak at 193 nm whereas β-sheets have a weaker positive peak at 195 nm. Both structural 

elements exhibit large negative curves between 208 and 250 nm in a CD spectrum
111

. The 

CD experiments conducted assessed changes in the secondary structure of Pin1 with the 

addition of peptides.  Protein and protein-peptide complexes were then tested by thermal 

melting, as secondary structural features can be denatured by high temperatures
112

. The 

stability of Pin1 and Pin1-peptide complexes was tested before moving onto binding 

studies. 

Following CD, nuclear magnetic resonance using 
1
H-

15
N heteronuclear single 

quantum coherence (HSQC) was used for peptide titration experiments. NMR affects 

atomic nuclei because they exhibit magnetism when subjected to a magnetic field
113,114

. 

A separate magnetic field that is orthogonal to the force applied by the magnet must be 
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applied to the atoms, with both fields having the same frequency
115

. This enables a 

magnetization when atomic nuclei are in thermal equilibrium
116

. Short pulses from a 

transversely oscillating magnetic field are applied to a sample to obtain free induction 

decay (FID) information. The FID is generated from the voltage induced by the 

absorption of energy
116

. 

Atomic nuclei generate resonant frequencies that are dependent on the location of 

each nucleus within a magnetic field.  The chemical environment surrounding a nucleus 

will affect which frequencies are absorbed
115

. The location of a nucleus, and therefore the 

corresponding resonant frequency, is critical information for the analysis of protein 

structure
116

. NMR gives insights into the Pin1 protein residues affected upon peptide 

addition. 

HSQC experiments relate nitrogen atoms and amide protons, characteristic of 19 

amino acid peptide bonds excluding proline. Each amide in the backbone of a protein, 

and side chains containing protons bound to nitrogen atoms, generate a peak in an HSQC 

spectrum
117

. Hydrogen nuclei have the largest gyromagnetic ratios and are the most 

sensitive atoms to use for NMR
118

.  The relaxation time associated with an experimental 

series is increased to obtain the most information from one experiment
115

. The Pin1 

backbone amino acids are located in an HSQC spectrum and changes in Pin1 can be seen 

in the spectra of Pin1 with increasing amounts of peptide.  

Fluorescence polarization is a technique that uses a fluorophore to detect potential 

interactions in solution. A ligand is labeled with a fluorescent marker and once the ligand 

is excited it will emit light at a given wavelength. This light can be easily detected if 
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mobile in solution, but when the ligand is bound by another molecule its mobility will 

decrease. An increased amount of emitted light will be polarized upon binding, compared 

to that of the free ligand, indicative of a protein interaction
119

. The polarization of 

fluorescent light can be measured quantitatively to determine dissociation constants for 

Pin1-peptide complexes.  
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2. Materials and Methods 

2.1 Expression and purification of recombinant Pin1 proteins 

2.1.1 Hexa-histidine tagged proteins 

To generate recombinant proteins, histidine-tagged wild type Pin1 (His-Pin1), 

Arg14Ala Pin1 (R14A Pin1) and Arg14Ala Cys113Asp Pin1 (R14A C113D Pin1) 

constructs (Figure 4) were cloned into pProEX-HTA plasmids and expressed in BL21 

DE3 Escherichia coli (E.coli) cells. These plasmids were a generous gift from Dr. Brian 

Shilton. Colonies were picked and grown to an optical density (OD)600 of ~ 0.6 in Luria-

Bertani medium supplemented with 100 μg/mL ampicillin (Roche) at 37 ºC with shaking 

at 200 rpm.  Once the desired OD600 was reached, protein expression was induced with 

0.6 mM isopropylthio-α-ᴅ-β-galactoside (IPTG) (Roche) for three hours at 37 ºC. 

Bacteria were pelleted by centrifugation at 4420 x g for 15 minutes (mins) and 

resuspended in a 4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic acid (HEPES) buffer 

comprising 10 mM HEPES, 100 mM NaCl and 5 mM NaN3, pH 7.4 with protease 

inhibitors (1 mM phenylmethylsulfonyl fluoride (PMSF), 10 μg/mL pepstatin A and 10 

μg/mL leupeptin) (Sigma). The cells were lysed using an EmulsiFlex-C3 pressure 

homogenizer (Avestin) at 15,000 psi and the cell debris was pelleted by centrifugation at 

23 300 x g for 20 mins. The soluble fraction of lysate was loaded onto a 5 mL HisTrap 

HP nickel sepharose affinity column (GE Healthcare Life Sciences). The column was 

washed with 20 column volumes of HEPES buffer with an additional 10 mM imidazole, 

followed by 10 column volumes of HEPES buffer with 50 mM imidazole and all washes 

were collected.  Histidine6-tagged Pin1 (His-Pin1) constructs were eluted using HEPES 

buffer with 500 mM imidazole in 15 1.5 mL fractions. Eluted fractions were monitored at 
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an absorbance (A) wavelength of 280 nm, using an ÄKTA FPLC system (GE Healthcare 

Life Sciences). 

The protein concentration of the eluted fractions was determined by A280, after 

pooling the fractions containing His-Pin1 protein, and analyzed by 15% SDS-PAGE gels 

using SDS-PAGE buffer (192 mM glycine (Bioshop), 25 mM Tris-base (Bioshop), 0.1% 

SDS (Bioshop) at a constant voltage of 150 V for 75 mins. A prestained BLUEye 

molecular weight marker (FroggaBio) was used for reference. Protein purity was assessed 

by staining with Coomassie R-250 Brilliant Blue (Bio-Rad). Tobacco Etch Virus (TEV) 

protease was added to the protein at a molar ratio of 1:25, along with 5 mM DTT and 1 

mM EDTA. This solution was rotated at room temperature for 5 hours, followed by the 

addition of a second aliquot of TEV, DTT and EDTA.  After rotation at room 

temperature overnight, the solution was spun down at 3724 x g to remove any precipitant 

and then dialyzed against 1 L of HEPES buffer for at least 6 hours at 4 ºC. The solution 

was then loaded onto a 5 mL HisTrap column using HEPES buffer containing 10 mM 

imidazole, where the His-TEV would remain bound to the column while the un-tagged 

Pin1 protein would come off in the flow through. The flow through was then collected 

and purified wild type His-Pin1 was concentrated and dialyzed into 2x HEPES buffered 

saline (HBS) (280 mM NaCl, 50 mM HEPES, 12 mM Dextrose, 10 mM KCl, 1.5 mM 

Na2HPO4,  pH 7.0) at 4 °C for 16 hours to remove imidazole. Purified R14A Pin1 and 

R14A C113D Pin1 were concentrated to greater than 18 mg/mL using an Amicon Ultra 

centrifugal filter tube (Millipore) and dialyzed into crystallization buffer (10 mM HEPES, 

100 mM NaCl, 5  mM NaN3, 5 mM DTT and 1 mM EDTA), containing 20% glycerol 

(Caledon), at 4 °C for 16 hours to remove imidazole.  Where proteins were required for 
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different experimental procedures, the proteins were dialyzed against their respective 

buffers as indicated elsewhere. All protein concentrations were determined using the 

Bradford Protein Assay (Bio-Rad), before being flash frozen and stored at -80 °C.  

2.1.2 GST tagged proteins  

For NMR experiments, wild type Pin1 protein was expressed with a GST-tag 

(Figure 4) from a pGEX-KG vector in BL21 DE3 E. coli cells, courtesy of Dr. Melanie 

Bailey. Colonies were picked and grown to an optical density (OD)600 of ~ 0.9 in M9 

media supplemented with 1.0 g/L of 99% 
15

NH4Cl (Cambridge Isotope Laboratories)  

and 100 μg/mL ampicillin (Roche) at 37 ºC, shaking at 250 rpm.  Once the desired OD600 

was reached, protein expression was induced with 0.6 mM IPTG (Roche) overnight at 16 

ºC. Bacteria were pelleted by centrifugation at 4420 x g for 15 mins and resuspended in 

cold phosphate buffered saline (PBS), pH 7.5, containing protease inhibitors (1 mM 

PMSF, 10 μg/mL pepstatin A and 10 μg/mL leupeptin) (Sigma). The cells were lysed 

using a pressure homogenizer (Avestin) at 15, 000 psi. Triton X-100 (Sigma) was added 

to 1% of the total volume and the solution was rotated for 15 min at 4°C. The cell debris 

was pelleted by centrifugation at 23 300 x g for 20 mins and the supernatant was 

incubated with glutathione cross-linked agarose beads (Sigma) while rotating for one 

hour at 4 °C. The beads were washed with two column volumes of cold PBS and then the 

protein was eluted in 12 fractions of 1.5 mL each, with 10 mM reduced glutathione 

(Sigma) in PBS, pH 7.5. Aliquots of washes and eluates were analyzed by visualization 

on a 15% SDS-PAG.   
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Figure 4   

Figure 4 Purified recombinant Pin1 protein construct sequences. 

His-Pin1 constructs contain an N-terminal hexa-histidine tag and a tobacco etch virus 

(TEV) cleavage recognition sequence for ease of purification and then to remove the His-

tag. Three His-Pin1 proteins were purified: wild type full length Pin1 (His-Pin1), His-

Arg14Ala Pin1 (R14A Pin1) and His-Arg14Ala Cys113Asp Pin1 (R14A C113D Pin1). 

R14A Pin1 is the full length Pin1 protein, with a deletion of the five N-terminal amino 

acids and a single residue substitution at residue 14 in the WW domain, to increase 

protein stability for crystallization. R14A C113D Pin1 is the R14A Pin1 sequence with an 

additional single residue substitution at residue 113 in the PPIase domain. A GST-Pin1 

fusion protein was also generated. This construct contains an N-terminal GST protein 

sequence attached to a TEV cleavage recognition sequence and wild type full length 

Pin1.  
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TEV protease was added to proteins in a 1:20 ratio of TEV to protein, to remove 

the GST-fusion tag. This incubation was conducted twice, for 5 hours and then overnight, 

at room temperature with constant rotation. An overnight dialysis into TEV cleavage 

buffer (50 mM Tris-HCl, 10 mM EDTA, 5 mM NaN3, 20 mM β-mercaptoethanol, pH 

8.0) at 4 °C was performed, preceding a TEV cleavage reaction where TEV and protein 

were mixed with 5 mM DTT and 1 mM EDTA.  Next the sample was spun down at 3724 

x g to remove any precipitation and followed by a buffer exchange, using a 10 mL stirred 

cell (Millipore) connected to a Nitrogen gas pressure supply, into a phosphate buffer 

containing 10 mM monobasic sodium phosphate, 5 mM NaN3, 20 mM β-

mercaptoethanol, 300 mM NaCl and 15% glycerol (pH 6.5).  The protein was loaded 

onto a 120 mL HiPrep 16/60 Sephacryl S-100 High Resolution gel filtration column (GE 

Healthcare) equilibrated with the final NMR phosphate buffer (50 mM phosphate buffer, 

100 mM Na2SO4, 1 mM DTT, 5 mM EDTA, 5 mM NaN3,  pH 6.6). Proteins were eluted 

from the column and collected into a total of 95 0.5 mL fractions. Aliquots of fractions 

were analyzed on 15% SDS-PAGE gels and stained with Coomassie R-250 Brilliant Blue 

(Bio-Rad) to assess purity. Fractions containing the appropriate pure protein were pooled 

and concentrated using a 15 mL Amicon centrifuge filter (3000 MWCO) (Millipore). 

Protein concentrations were determined using the Bradford Protein Assay (Bio-Rad). 

Protein purity and integrity was assessed by SDS-PAGE and matrix-assisted laser 

desorption/ionization (MALDI) mass spectrometry, while protein concentration was 

confirmed through amino acid analysis (SickKids Proteomics, Analytics, Robotics & 

Chemical Biology Centre (SPARC), Toronto). The final volume and concentration of the 

15
N-labeled Pin1 NMR samples were 650 μL and 322 μM respectively, following the 
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addition of 10% D2O to provide the field frequency lock, 100 μM 2,2-dimethyl-2-

silapentane-5-sulfonic acid (DSS) as an internal standard and 1.5 mM imidazole (pH 8.0)  

to act as an internal pH monitor throughout the experiments.  

2.2 Human CDC25C peptides 

All peptides derived from human CDC25C were synthesized by EZBiolab 

(Carmel, Indiana). Peptides were prepared to 95.1 – 96.6% purity, as determined by 

HPLC analysis conducted by EZBiolab. Peptide sequences contained 32 amino acids and 

were as follows: CPDVPRTPVGKFLGDSANLSILSGGTPKRSLD, 

CPDVPRpTPVGKFLGDSANLSILSGGTPKRSLD, 

CPDVPRTPVGKFLGDSANLSILSGGpTPKRSLD and 

CPDVPRpTPVGKFLGDSANLSILSGGpTPKRSLD (referred to as 0xP, 1xP #1, 1xP #2 

and 2xP respectively). Peptides were resuspended in the buffers mentioned for each 

experiment. Any peptide modifications were confirmed by MALDI Mass Spectrometry 

(MALDI Mass Spectrometry Facility, one of the facilities within the London Regional 

Proteomics Centre, Ontario). 

2.3 Peptidyl-prolyl isomerization activity assays 

Peptidyl-prolyl isomerase activity for each of the purified Pin1 proteins was 

determined with a spectrophotometric assay using a Cary-100 spectrophotometer at 0 °C.  

Enzymatic assays were performed in Assay buffer (50 mM HEPES, 100 mM NaCl, 

5 mM NaN3, pH 7.4), as described in Behrsin, et al. 2007 and Duncan, et al. 2011
77,79

. 

The protein substrate Succinyl-AEPF-pNitroaniline (Suc-AEPF-pNA) (Bachem) was 

dissolved in trifluoroethanol with 0.3 M LiCl, to maximize the amount cis-proline, 
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producing a stock concentration of 20 mM. The chymotrypsin (Type II, Sigma) had a 

concentration of 50 mg/mL, dissolved in 1 mM HCl.  Reactions were performed with 

increasing concentrations of substrate, added to assay buffer, to a total sample volume of 

2 mL. This was incubated for at least 30 seconds before adding a final concentration of 

1.25 mg/mL chymotrypsin to enable the depletion of trans-proline peptide. The rate of 

chemical isomerization was measured as an absorbance over time until the slope became 

linear. 0.5 µM from a 20 µM stock of Pin1 was then added to the sample and the rate of 

both the Pin1-catalyzed as well as the un-catalyzed isomerization was measured. The run 

continued until all of the protein substrate was consumed and the absorbance plot 

displayed a slope of zero.   

Absorbance measurements were made at different wavelengths, depending on the 

increasing substrate concentration, with an extinction coefficient (ε) for pNA of 6026 cm
-

1
 M

-1 
at 405 nm, 3680 cm

−1 
M

−1
 at 430 nm and 1380 cm

−1 
M

−1
 at 445 nm, to stay within 

the responsive range of the spectrophotometer. For each assay, the rate of un-catalyzed 

chemical isomerization was subtracted from the total isomerization rate, of the catalyzed 

and un-catalyzed reactions, to determine the Pin1-catalyzed cis-trans isomerization. The 

rate against the substrate concentration was plotted to determine a kcat / Km value, by 

fitting the values to a modified Michaelis-Menten equation for competitive inhibition, 

where only the linear region of the curve is used due to low substrate concentrations. The 

equation used is:   

Rate = (kcat / Km) * [S] [E]T  
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where [S] is the substrate concentration, [E]T is the enzyme concentration, the 

slope of the line gives the kcat / Km * [E]T, and the kcat / Km is determined by dividing the 

slope by the final Pin1 protein concentration in the assay.  

2.4 Amino acid analysis 

Samples of soluble Pin1 protein, obtained from the GST-Pin1 construct, and 0xP 

and 2xP peptides were sent for quantitative amino acid analysis to the Peter Gilgan 

Centre for Research & Learning at the Hospital for Sick Children (SPARC Biocenter, 

Toronto). The protein samples were quantified by Bradford and Guanidine-hydrochloride 

assays, comparing the protein to BSA standards or measuring an absorbance reading at 

280 nm, respectively. The protein and peptide samples were all to be used for NMR 

experiments. 

2.5 Analytical ultracentrifugation 

A Beckman Optima XL-A analytical ultracentrifuge (Biomolecular Interactions 

and Conformations Facility, University of Western Ontario) was used to perform these 

experiments, with an An60Ti rotor. All protein and peptide samples used were dialyzed 

into 2x HBS buffer and spun down at 13,000 rpm to remove aggregates before AUC data 

collection. The solvent densities used were calculated from published tables. The protein 

sample partial specific volumes were calculated based on their amino acid sequences
120

. 

2.5.1 Sedimentation velocity 

Two sector cells with quartz windows were used to complete the sedimentation 

velocity experiments. Data were collected for the wild type Pin1 protein at a 
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concentration of 15 µM and a speed of 45,000 rpm. Scans of all cells were taken every 

ten minutes, and averaged over three readings.  

Data analysis was performed using the Origin 6.1 software (Microcal) and 

SVEDBERG
121

. Sedimentation coefficients (sw) were calculated using the method of 

sedimentation time derivative. Values were averaged from three separate sedimentation 

velocity runs and were then corrected to standard values for experiments conducted at 20 

ᴼC and in pure water (sw20,w). The frictional coefficient (ƒ) of 1.399153 used in the 

experiments was calculated from the measured sw20,w according to the following 

equation: 

 ƒ = [M * [(1- ṽρ)] / (N * sw20,w) 

where M is the molecular mass of the protein, ṽ is the partial specific volume of 

the protein, ρ is the density of the buffer and N is Avogadro’s number. 

2.6 Circular dichroism spectropolarimetry 

Circular dichroism experiments were conducted using a Jasco J-810 

spectropolarimeter with a Peltier temperature controlled system (Biomolecular 

Interactions and Conformations Facility, University of Western Ontario). A cell with a 

path length of 1 mm was used after Pin1 protein, obtained from the GST-Pin1 construct, 

and protein-peptide solutions were dialyzed into a 10 mM sodium phosphate buffer (100 

mM Na2SO4, 5 mM NaN3, 5 mM EDTA and 1 mM DTT, pH 6.6) and spun down to 

remove precipitants.  
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CD spectra were collected for recombinant Pin1 proteins used for NMR 

experiments. The protein concentration was 48 µM and the CD experiments were 

conducted at 25 ᴼC, scanning from 180 - 250 nm in 1 nm steps, and at a scanning speed 

of 50 nm/min. When a protein-peptide sample was measured, either 0xP or 2xP peptide 

was added at two equivalents of the protein. The ellipticity values were generated from 

averaging readings taken between one and four seconds at each wavelength and then 

averaged over ten separate scans of each sample.  The software supplied by Jasco was 

used for data collection, and then plotted using Excel (Microsoft). The observed 

ellipticity values, given in millidegrees, were converted to mean residue ellipticity (MRE) 

values in degree*cm
2
*dmol

-1
 as the units. This conversion is achieved using the equation: 

 ϴmre = (ϴobs * MRW) / (10 *l * c)  

where ϴmre is the mean residue ellipticity, ϴobs is the observed ellipticity value in 

millidegrees, MRW is the mean residue weight which is calculated based on the 

molecular weight of the protein divided by the number of residues within the protein, l is 

the path length of the CD cuvette in centimeters and c is the protein concentration in 

g*mL
-1

. 

Recombinant Pin1 was also analyzed with melting curves. The protein, at a 

concentration of 48 µM, was melted by increasing the temperature at a rate of 

1ᴼC/minute using the Peltier system. The curve ranged from 20 to 90 ᴼC. When a protein-

peptide sample was measured, either 0xP or 2xP peptide was added at two equivalents of 

the protein.  Ellipticity values were obtained by averaging the readings taken over an 

eight second time frame at 228 nm. The observed ellipticity values, given in millidegrees, 
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were converted to mean residue ellipticity values in degree*cm
2
*dmol

-1
 as the units. The 

resulting curves were plotted in Excel (Microsoft). 

2.7 Pin1-peptide NMR titrations 

All 
1
H-

15
N HSQC NMR experiments were conducted on a Varian Inova 600 MHz 

spectrometer with pulse field gradient triple resonance probes, at 25 ᴼC. 0xP and 2xP 

peptides were unlabeled and prepared as 2 mM stock solutions in NMR buffer. The 

peptides underwent an overnight dialysis at 4 ᴼC to ensure buffer compatibility with the 

protein solutions. The concentration of the peptide solutions were determined by amino 

acid analysis (SPARC Biocentre, Toronto).  The peptides were titrated separately into 

solutions of uniformly labeled 
15

N- Pin1 (322 μM) in increments of 0.25 molar 

equivalents, until a final peptide concentration of 2 molar equivalents was reached. The 

sample was mixed at each addition and equilibrated in the magnet for a minimum of 10 

mins prior to data acquisition. 
1
H and 

15
N chemical shift assignments for Pin1 were 

transferred from Jacobs et al., BMRB 5305
122

. Chemical shift perturbations observed in 

the 
1
H-

15
N HSQC spectra between the free and complexed states of the protein were 

quantified using the equation: 

ΣΔδ = 0.5(|Δδ(
1
H)|) + 0.125 (|Δδ(

15
N)|) 

where Δδ is the chemical shift change. 

The combined chemical shift changes were calculated for the entire Pin1 protein, based 

on the above equation from Duncan et al., 2011
79

. The chemical shift changes observed, 

were mapped to Pin1 using the coordinates from the 1PIN crystal structure.  
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2.8 Fluorescence polarization experiments 

All peptides were fluorescently labeled with NHS-Fluorescein (Pierce 

Biotechnology, Inc.) following the manufacturer’s protocol. Peptides were dissolved at 

150 µM in 50 mM borate buffer, pH 8.5.  Briefly, NHS-Fluorescein (1 mg in 100 µL 

DMSO) was added in a 15-fold molar excess to the peptide. The reaction was incubated 

at room temperature for one hour and excess label was consumed with a 30-fold molar 

excess of ethanolamine, pH 8.5. Peptides were dialyzed into 2x HBS (280 mM NaCl, 50 

mM HEPES, 12 mM Dextrose, 10 mM KCl, 1.5 mM Na2HPO4,  pH 7.0) and labeling 

was confirmed using MALDI Mass Spectrometry (MALDI Mass Spectrometry Facility, 

part of the London Regional Proteomics Centre, Ontario). Peptides were stored in the 

dark during all of the labeling and subsequent steps.  

Fluorescence polarization assays were read using an Envision 2103 multi-plate 

reader (PerkinElmer). Optimal dilutions for each peptide were determined with the use of 

a reference peptide to give off a fluorescent signal within range of the detector. These 

dilutions were confirmed and used in all future experimentation. Individual reactions 

were conducted in duplicate, in a 35 μL volume, using a 384-well black plate (Corning). 

The protein was serially diluted from a concentration of 800 μM and 30 μL of protein 

was added to each well. Finally, 5 μL of 150 μM peptide was added to each well before a 

1 min incubation time with agitation (500 rpm) at room temperature. Before reading the 

assay, the plate was spun for 1 min at 100 x g and incubated for an additional 10 mins at 

room temperature. Analysis was performed using Prism 5 (GraphPad Software, Inc.) by 

subtracting the buffer sample polarization and the polarization associated with non-

specific binding between the protein and the fluorescent tag. The data was then fit to a 
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non-linear regression for one-site, specific binding as a function of protein concentration. 

The equation used for data fitting was as follows:  

y = Bmax * x / (Kd + x) 

where Bmax is the maximum specific binding value in fluorescence polarization 

units and Kd is the dissociation constant (µM). 

2.9 Pin1 crystallization 

Arg14Ala Pin1 and Arg14Ala Cys113Asp Pin1 constructs were crystallized by 

hanging drop vapour diffusion over three days in 2.3 and 2.4 M ammonium sulphate, 1% 

(v/v) polyethylene glycol 400 (PEG400) and 100 mM HEPES at 5 °C, pH 7.8.   

2.10 X-ray crystallography data collection and structure 

refinement 

Electron diffraction data was collected using a laboratory source in the 

Macromolecular Crystallography Facility (part of the London Regional Proteomics 

Centre, Ontario). The data was processed using IMOSFLM
123

 and Scala
124

. Structure 

solution and refinement was done by molecular replacement in PHENIX
125

 using the 

PDB file 2ITK
107

, after ligand removal, as the starting model for the Arg14Ala 

Cys113Asp Pin1 structure, and the PDB file 4QIB
126

 as the model for the refinement.  
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3. Results 

3.1 Protein purification and activity 

Recombinant Pin1 proteins were purified in order to examine binding interactions 

between Pin1 and CDC25C-derived peptides. Various His-Pin1 recombinant protein 

constructs were purified by affinity purification using nickel columns where His-tagged 

proteins were eluted with imidazole. To remove the His-tags, eluted proteins were 

incubated with TEV using a reducing agent to stabilize protease activity.  Since the TEV 

also contains a His-tag, the cleaved Pin1 was separated from His-TEV and any un-

cleaved His-Pin1 by passing the reaction mixture over another nickel column (Figure 

5A). Following the removal of the tags using TEV protease, the proteins were dialyzed 

into their final storage buffers. A wild type Pin1 construct was also fused to a GST-tag 

(GST-Pin1) and purified first using affinity chromatography, then TEV cleavage and a 

gel filtration step (not shown). None of the proteins used in the experiments described in 

the following sections contained tags.  

To determine the isomerization activity of the purified proteins, a peptidyl-prolyl 

isomerization activity assay was performed using Suc-AEPF-pNA as a substrate, 

containing a para-Nitroaniline (pNA) on the C-terminus. The substrate peptide is added 

to the assay buffer to determine a baseline absorbance at 405 nm. Chymotrypsin is then 

added to remove all of the trans isomers of the substrate, releasing pNA which can be 

detected spectrophotometrically.  Following the trans-peptide cleavage, the absorbance 

curve flattens and generates a positive slope, representing the un-catalyzed chemical 

isomerization rate of the substrate. From there, recombinant Pin1 is added to the reaction 

mixture and the absorbance curve shows a linear slope while the peptide is still in excess. 
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This slope depicts the catalyzed isomerization rate generated by Pin1 in addition to the 

un-catalyzed chemical isomerization rate. The substrate continues to be depleted by Pin1 

as well as chymotrypsin, until it has all been utilized. The absorbance value at the point 

of Pin1 addition is subtracted from the absorbance value at the end of the curve to 

calculate the concentration of peptide within the system when protein is added. The slope 

of the un-catalyzed isomerization is subtracted from the slope of both the catalyzed and 

un-catalyzed isomerizations, to determine the enzymatic peptidyl-prolyl isomerization 

rate of Pin1 (Figure 6). This process is repeated to calculate the isomerization rate of 

Pin1 using increasing substrate concentrations and the data is graphed as the Pin1 

isomerization rate, in mM/s units, as a function of cis-peptide concentration. The linear 

slope from this plot, in s
-1

 units, is divided by the concentration of protein in the assay to 

obtain a specificity constant  or kcat /Km value in mM
-1 

* s
-1 

units (Figure 5B).  
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Figure 5 (A-B) 

  

Figure 5 Purified recombinant Pin1 protein and peptidyl-prolyl isomerase activity.  

(A) SDS-PAGE of purified wild type His-Pin1 protein. Pin1 is approximately 18 kDa and the His-

TEV protein runs at a higher molecular weight on a polyacrylamide gel, depicted by the band 

labeled TEV in the figure. Other His-Pin1 constructs were purified using a similar affinity 

purification protocol (gels not shown). 

(B) Peptidyl-prolyl isomerase assay analysis of a wild type Pin1 construct. The assay is conducted 

with increasing amounts of substrate to determine an isomerization rate. The kcat / Km value is 

representative of the activity of the Pin1 enzyme. 
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Figure 6 

  

Figure 6 Pin1 peptidyl-prolyl isomerization assay sample curve. 

The peptidyl-prolyl isomerization activity of purified Pin1 proteins is determined 

spectrophotometrically. The peptide Succinyl-AEPF-pNitroaniline (Suc-AEPF-pNA) is used as a Pin1 

substrate in the assay, and when released the pNA, located on the C-terminus of the peptide, can be 

detected spectrophotometrically.  The substrate peptide is added to the assay buffer to determine a 

baseline absorbance at 405 nm (Abs start). Chymotrypsin is then added, seen by the rapid absorbance 

increase, to remove all of the trans isomers of the substrate. Following the trans-peptide cleavage, the 

absorbance curve flattens and generates a positive slope, representing the un-catalyzed chemical 

isomerization rate of the substrate (Abs isom).  Recombinant Pin1 is added to the reaction and the 

initial rate of the absorbance curve is measured by fitting a line to the curve, immediately after the point 

at which Pin1 is added (Abs total isom). This slope represents the catalyzed isomerization rate 

generated by Pin1 in addition to the un-catalyzed chemical isomerization rate. The absorbance value 

upon Pin1 addition is subtracted from the final absorbance value of the curve to calculate the 

concentration of peptide when protein is added. The inset shows an expanded portion of the assay 

curve. Abs isom, the slope of the purple region of the curve, is subtracted from Abs total isom, the 

slope of the blue region of the curve, to determine the peptidyl-prolyl isomerization rate of Pin1. This 

process is repeated to calculate the isomerization rate of Pin1 using increasing substrate concentrations. 

The data is graphed as the Pin1 isomerization rate (s
-1

) when divided by the Pin1 concentration, as a 

function of cis-peptide concentration (mM).   
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3.2 Peptide addition to Pin1 does not cause global 

conformational changes 

Peptides for this study were synthesized with sequences designed from a known 

Pin1 substrate, CDC25C (Table 1). The peptides depict a portion of the CDC25C protein 

where there are two phospho-threonine sites in the sequence, 19 amino acids apart, at 

residues 48 and 67
127

. The non-phosphorylated (0xP), both of the singly-phosphorylated 

(1xP #1 and 1xP #2) and the doubly-phosphorylated (2xP) CDC25C-derived peptides 

were used for these experiments (Figure 7). Results were generated through the use of 

analytical ultracentrifugation, a technique that can determine native state stoichiometries 

of protein subunits and detect conformational changes in macromolecules. The 

ultracentrifuge contains an optical detection system that can measure the concentration 

gradient of the enclosed sample within a centrifuge cell
108

. Sedimentation analysis is 

completed in solution while observing real-time changes, minimizing the risk of protein 

interactions with resins or other surfaces. The experiments were conducted using 

sedimentation velocity to detect molecules tumbling together in solution. This technique 

is used to determine molecular mass and shape in solution when applying a centrifugal 

force. At given time intervals, scans at various radial distances measure the concentration 

of a solution based on an absorbance at 280 nm. The rate at which molecules move and 

sedimentation occurs is measured over time
108,109

. 
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Table 1 

Table 1 Cdc25 derived peptides synthesized to test binding affinities to Pin1 protein 

in vitro.  

The phosphorylation sites all occur on Thr residues and are depicted in red. 

 

Human Cdc25 peptide sequence Phosphorylation 
Site 

Shorthand 
Title 

CPDVPRTPVGKFLGDSANLSILSGGTPKRSLD None  0xP 

CPDVPRpTPVGKFLGDSANLSILSGGTPKRSLD Site #1 1xP #1 

CPDVPRTPVGKFLGDSANLSILSGGpTPKRSLD Site #2 1xP #2 

CPDVPRpTPVGKFLGDSANLSILSGGpTPKRSLD Sites  #1 and #2 2xP 
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Data was collected using wild type Pin1 and each of the CDC25C-derived 

peptides, in triplicate, at a rotor speed of 45,000 rpm. After each experiment, the values 

of sedimentation coefficients observed (sw) were calculated, averaged and corrected for 

temperature effects as well as buffer effects (sw20,w) . A frictional ratio of f/fo= 1.399153 

was used for each experiment. Pin1 was mixed with each peptide at molar ratios of 1:1 

and 1:2 equivalents of protein to peptide.  The experiments resulted in a consistent 

molecular weight and sedimentation coefficient for the control reaction of Pin1 alone, 

within error (Figure 7, first plot in each panel).  Each graph shows the sedimentation 

coefficient distribution (c(s)), in 1/Svedbergs (1/S), of each protein or complex as a 

function of sedimentation coefficient, in Svedbergs (S). When mixed with the non-

phosphorylated peptide, the Pin1-peptide complex gives a narrowed peak and a slight 

decrease in sedimentation coefficient at a ratio of 1:1, but this value increases back to 

original levels at a ratio of 1:2, whereas the peak stays narrow (Figure 7A). The Pin1-

1xP #1 complex displays an increasing sedimentation coefficient as the amount of 

peptide in the sample is increased (Figure 7B). The peaks however exhibit the same 

trend as that observed for 0xP, a narrowing when peptide is added. The singly-

phosphorylated site #2 peptide set of experiments generated the largest sedimentation 

coefficients. The coefficient decreases when peptide is added to Pin1 and then increases 

when more peptide is added. The peaks observed for Pin1 and the 1:1 ratio of protein to 

peptide are similar in width, but the peak narrows with an increase in peptide (Figure 

7C). The sedimentation coefficients and narrow peaks for the 2xP peptide set of 

experiments display no change when peptide is added to the protein (Figure 7D). This is 

indicative of a folded, homogeneous sample in solution. The sedimentation coefficients 
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of all the protein-peptide complexes fall within range of the control protein alone 

samples, where the sw20,w values are 2.05 – 2.25 S. It is important to note that the 

molecular weights (M) are calculated based on sedimentation coefficients, where sw is 

approximately M
2/3

, indicating that the masses are subjected to a larger standard error
109

. 

Taken together, the changes occurring when the CDC25C-derived peptides are mixed 

with wild type Pin1 are minimal and there are therefore no large global conformational 

changes seen with peptide addition. 
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Figure 7 

sw (20,w) = 2.186S 

MW = 23.138 kDa  

 
sw (20,w) = 2.224S 
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sw (20,w) = 2.200S 
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MW = 23.186 kDa  
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Figure 7 Caption 

  

Figure 7 Sedimentation velocity experiments of Pin1 with CDC25C-derived 

peptides. 

The non-phosphorylated 0xP peptide (A), singly-phosphorylated peptides at site #1 

(B) and site #2 (C) and the doubly-phosphorylated 2xP peptide (D) were each mixed 

with Pin1 (15 µM) in either a 1:1 or 1:2 ratio of protein to peptide. The sedimentation 

velocity experiments were conducted at a speed of 45,000 rpm and scans of all cells 

were taken every ten minutes, and averaged over three readings. Sedimentation 

coefficients (sw) were calculated using the method of sedimentation time derivative. 

Values were averaged from three separate sedimentation velocity runs and were then 

corrected to standard values for experiments conducted at 20 ᴼC and in pure water (sw 

(20,w)). The frictional coefficient (ƒ) used in the analysis was 1.399153. Protein alone 

was used as a control in each experiment and is shown in the first graph of each panel.  
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3.3 Pin1 stability does not change with peptide addition 

Pin1 protein alone, as well as protein with either 0xP or 2xP peptide were 

examined using circular dichroism. CD spectropolarimetry is a technique used to observe 

peptide backbone amide bonds and aromatic side chains by measuring the differences 

between left and right handed circularly polarized light in chiral molecules
110

. Protein 

amides have chromophores that can align into arrays, and when aligned, the optical 

transitions produced can be split into many transitions with different wavelengths and 

intensities associated to each. Secondary structural elements have distinct CD spectra as a 

result of these transitions
111

. The protein and protein-peptide complexes in the present 

study show similar α-helical and β-sheet secondary structures, defined by the large 

negative curves between 212 and 250 nm (Figure 8A). The positive trends occurring 

from 180 to 208 nm which depict α-helices with a strong peak at 193 nm and β-sheets 

with a weaker peak at 195 nm
111

, indicate that there may be some variation in secondary 

structure between the samples, because none of the plots have the same mean residue 

ellipticity values at each wavelength (not shown).  

The stability of each complex was then tested by thermal melting, as secondary 

structural features can be denatured by high temperatures
112

. CD can be used to follow 

protein and protein-peptide stability by examining a specific wavelength and the spectral 

changes occurring in response to temperature. The melting temperatures for Pin1 and the 

protein-peptide complexes remain the same, starting to melt at 50 ᴼC and unfolding until 

60 ᴼC when the protein is denatured (Figure 8B).  There are visible transitions in the 

thermal denaturation profiles due to the loss of secondary structural elements. Observing 

the same thermal melting profiles for each of the samples is indicative of a constant 
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stability. The CDC25C-derived peptides therefore do not seem to have any major effect 

on Pin1 protein stability in solution. 
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Figure 8 Secondary structure and thermal stability analysis of Pin1 and Pin1-peptide 

complexes. 

(A) Circular dichroism spectropolarimetry analysis of Pin1 and Pin1 with either 0xP or 2xP 

peptide. The spectra were collected from 260 to 180 nm in a 10 mM sodium phosphate buffer (pH 

6.6) with 100 mM Na2SO4, 5 mM NaN3, 5 mM EDTA and 1 mM DTT at 25 ᴼC, at a rate of 50 

nm/min. The depicted spectra are the average of 10 accumulations, corrected for buffer effects 

based on protein concentration and path length. All spectra were collected in a 1.0 mm cuvette. 

The x-axis of the plot shows the wavelength while the y-axis of the plot shows mean residue 

ellipticity (MRE). (B) Thermal denaturation curves were constructed by monitoring changes in 

ellipticity at 228 nm from 20 to 90 ᴼC in the above sodium phosphate buffer, at a rate of 1 ᴼC/min. 

The overlaid spectra are corrected for buffer effects and take protein concentration and path length 

into account. The x-axis of the plot shows temperature while the y-axis of the plot shows mean 

residue ellipticity (MRE). 

 Figure 8 
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3.4 Pin1 interacts with a phosphorylated CDC25C peptide 

Pin1 protein as well as the Pin1-0xP and the Pin1-2xP complexes were tested for 

(not shown), binding interactions through the use of 
1
H-

15
N HSQC NMR titration 

experiments. NMR has been used as a tool to investigate protein structures
128

 and is 

based on the premise that atomic nuclei exhibit magnetism when subjected to a magnetic 

field
113,114

. Resonance occurs when nuclei are re-oriented from their natural equilibrium 

states by the magnetic field applied. For NMR, a torque or separate magnetic field that is 

orthogonal to the torque applied by the magnet must be applied to the atoms with both 

fields having the same frequency
115

. The strength of the second magnetic field is 

proportional to the resonant frequency of a sample, and determines the amount of 

magnetization when atomic nuclei are in thermal equilibrium
116

. Short pulses of a 

transversely oscillating field are applied to a sample in order to obtain free induction 

decay information, based on the voltage induced by the absorption of energy. The 

oscillations are visible in the time domain of the FID, and when a Fourier transform is 

performed on the data, a spectrum is generated in the frequency domain
116

.  

The resonant frequencies of the atomic nuclei within a sample are dependent on 

the location of each nucleus within the magnetic field. The location of a nucleus, and 

therefore the corresponding resonant frequency, is the critical information gathered when 

a sample is subjected to a torque within a field
116

. The chemical environment, as well as 

other nuclei surrounding a particular nucleus, will affect which frequencies are 

absorbed
115

. Distance measurements between the nuclei in a sample are useful for the 

determination of a protein structure.  



51 

` 

HSQC experiments relate nitrogen atoms and amide protons, which are 

characteristic of all amino acid peptide bonds excluding proline. Each amide in the 

backbone of a protein, and side chains containing protons bound to nitrogen atoms, 

generate a peak in an HSQC spectrum
117

. Hydrogen nuclei have the largest gyromagnetic 

ratios and are therefore the most sensitive atoms to use for NMR
118

.  In an HSQC 

experiment, the hydrogen atom signal is detected in the first dimension, which is directly 

measured, and the chemical shift of 
15

N is indirectly measured throughout the series of 

one experiment. The relaxation time associated with an experimental series is increased 

to obtain the most information out of a single experiment
115

. 

NMR spectroscopy studies were conducted at 25 ᴼC and the buffers and 

experimental conditions were modeled based on the paper by Duncan et al.
79

. The 

doubly-phosphorylated 2xP peptide was titrated into solutions of uniformly, isotopically 

labeled 
15

N- wild type Pin1, until a final peptide concentration of 2 molar equivalents was 

reached. 
1
H and 

15
N chemical shift assignments for Pin1 were transferred from Jacobs et 

al., BMRB 5305
122

. 

Chemical shift changes are observed when Pin1 and 2xP are mixed in solution, at 

different ratios of protein to peptide, up to a ratio of 1:2. Figure 9A shows the HSQC 

spectrum of Pin1 protein depicted by black peaks (Figure 9A – left panel) and the final 

titration spectrum of Pin1 with 2xP peptide depicted by green peaks (Figure 9A – right 

panel). The spectra are overlaid (Figure 9A – bottom panel) and residues that display 

visible peak shifts are labeled. The unassigned side chain peaks visible in the spectra are 

circled and indicated. When comparing the 
1
H-

15
N HSQC spectra for 

15
N-labeled Pin1, 

with and without 2xP peptide, 91 total peaks corresponding to backbone amide bonds 
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were revealed (Figure 9B). There are eleven peaks that shifted significantly in their 

position, indicative of a chemical shift greater than a 1ζ change, all of which are located 

in the WW domain of Pin1. Six of the aforementioned peaks show shifts greater than a 

2ζ change. These peaks underwent fast exchange and could therefore be tracked 

throughout the titration experiments. 

To appropriately define the main region of interaction between Pin1 and the 

doubly phosphorylated peptide, the chemical shift changes observed when 2xP peptide 

was bound to Pin1 were mapped to the three-dimensional (3D) structure of Pin1 

according to their magnitudes (Figure 9C). Residues are coloured using a gradient from 

cyan, representing little or no chemical shift change, to white to magenta, representing 

the largest chemical shift change. This result confirms that the WW domain of Pin1 is in 

fact the dominant binding domain in the protein.  

Notably, residue Arg14 exhibits the largest peak shift, through NMR experiments 

using wild type Pin1 protein, with a change greater than 4ζ, while the amino acids 

surrounding the arginine (Lys13, Met15 and Ser16) also show large changes. All peak 

shifts occurring after residue 35, which corresponds to the protein linker as well as the 

isomerase domain, exhibited less than a 1ζ chemical shift change (Figure 9B).  The 

residues with the largest peak shifts are predominantly mapped to the WW domain.  
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Figure 9 (A
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Figure 9 (B-C)  
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Figure 9 Caption 

 

  

Figure 9 
1
H- 

15
N HSQC NMR spectra of Pin1 and Pin1-2xP complex with the changing 

residues plotted and mapped to the 3D structure of Pin1. 

NMR spectroscopy titration experiments were conducted using wild type Pin1 and the 

doubly- phosphorylated 2xP peptide on a Varian Inova 600 MHz spectrometer with pulse 

field gradient triple resonance probes, at 25 ᴼC. A spectrum of protein alone (322 µM) was 

taken before adding in peptide, at 0.25 molar equivalents, to a final concentration of 2 molar 

equivalents of protein. (A) The plots depict protein sample peaks in black (left panel) with the 

Pin1-2xP at a ratio of 1:2 in green (right panel). The two spectra are overlaid in the bottom 

panel and residues that display visible peak shifts are labeled by amino acid and number. The 

peak assignment was done previously and deposited into the BMRB as file 5305
122

.The 

unassigned side chains peaks are circled and indicated.  (B) The graph presents the residues 

that exhibited chemical shift changes in Pin1 when 2xP peptide was added to the sample. The 

amount of peak shifting in both the 
1
H and 

15
N dimensions is depicted on the y-axis and the 

respective residue number on the x-axis. Dashed lines indicate standard deviations of 1 or 2. 

The WW domain residues are shaded grey and the chemical shift changes greater than 1ζ 

were limited to this domain. (C) Residues seen to have chemical shift changes, above 1 

standard deviation, upon 2xP peptide addition to Pin1 were mapped to the surface of the full 

length protein. The residues are coloured according to the magnitude of chemical shift change 

with cyan depicting no change or little change, white showing some change and the darkest 

purple showing the largest changes.  
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Peak intensity changes were also observed in the 
1
H-

15
N HSQC spectra. In total, 

36 peaks displayed intensity changes greater than a 1ζ change, with 14 of those peaks 

having a heightened intensity with increasing amounts of peptide (Figure 10A).  All 

peaks exhibiting intensity changes are described to undergo slow or intermediate 

chemical exchange. These peaks were mapped to the structure of Pin1 (Figure 10B) and 

are visible on both faces of the protein.  Many residues from Ser16 to Glu51, located in 

the WW domain as well as the linker between both Pin1 protein domains, showed peak 

intensity changes; with clusters of changes occurring from Ser16 to Arg21, Asn26 to 

Glu36 (both in the WW domain) and Gly39 to Glu51 (in the linker region of the protein). 

In the PPIase domain, from residue Lys95 to Ser126, there were also a large amount of 

peak intensity changes; with clusters of changes displayed from Glu100 to Ser105, 

Ala107 to Cys113 and Arg119 to Gly123. On the C-terminus of the protein, there is a 

cluster of peak intensity changes from residue Ile156 to Leu160. Of note are the intensity 

changes on the catalytic Cys113, involved in peptide bond isomerization by Pin1, and 

Lys122 which is one of the amino acids that binds to the side chain of a substrate Pro. 
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Figure 10 (A-B) 

Figure 10 Pin1-2xP complex intensity changes seen by NMR and their locations 

mapped to the surface of Pin1. 

(A) The plot displays residues that underwent changes in intensity when the 2xP peptide 

was titrated into a solution of wild type full length Pin1. The dashed lines represent a 1ζ 

change from the mean, based on the standard deviation of the data. (B) Residues with 

intensity changes of ± 1ζ, upon 2xP peptide addition to Pin1, were mapped to the surface 

of the protein (grey). The residues are coloured in blue and are clustered throughout the 

protein.  Both sides of Pin1 are shown.  

  



58 

` 

In summary, binding of the doubly-phosphorylated 2xP peptide derived from 

human CDC25C brought about critical changes in the WW domain of Pin1, as well as 

many slow or intermediate exchanges occurring through intensity changes in both the 

WW and PPIase protein domains. Amino acid residues Gly20, Arg21 and Asn26 in the 

WW domain were further analyzed in the hopes of determining a binding constant. The 

plot shows binding curves for the selected residues with corresponding Kd values 

(Appendix Figure A3).   

3.5 Pin1 does not bind to a non-phosphorylated peptide with 

high affinity 

Pin1 was also combined with the non-phosphorylated peptide (0xP) and 
1
H- 

15
N 

HSQC NMR spectra were collected following each peptide addition. The HSQC 

spectrum of Pin1 protein is shown as black peaks (Figure 11A - left panel), while the 

final titration point of Pin1 with 2 molar equivalents of 0xP peptide is shown as red peaks 

(Figure 11A - right panel). The spectra are overlaid for comparison of 
15

N-labeled Pin1, 

with and without 0xP peptide (Figure 11A – bottom panel). Although little change can 

be seen, 17 peaks that shifted in position were revealed (Figure 11B). Five of the 17 

peaks shifted less than a 1ζ change. Seven peaks shifted greater than a 2ζ change with 

residue Gln49 exhibiting the largest chemical shift change, a value greater than 4ζ. 

Residue Ser154, known to be involved in peptide bond isomerization, has a chemical 

shift perturbation of greater than 1.25ζ. The residues exhibiting chemical shift changes 

with the addition of 0xP were mapped to the 3D structure of Pin1 (Figure 11C), where 

the  residues are coloured using a gradient from cyan, representing little or no chemical 

shift change, to white to magenta, representing the largest chemical shift change. 
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Figure 11 (A) 
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Figure 11 (B-C) 
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Figure 11 Caption  

 

Figure 11 
1
H- 

15
N HSQC NMR spectra and chemical shift data for Pin1 and the Pin1-

0xP complex.  

NMR spectroscopy titration experiments were conducted using wild type Pin1 and the non-

phosphorylated 0xP peptide on a Varian Inova 600 MHz spectrometer with pulse field 

gradient triple resonance probes, at 25 ᴼC. A spectrum of protein alone (322 µM) was taken 

before adding in peptide, at 0.25 molar equivalents, to a final concentration of 2 molar 

equivalents of protein. (A) The plots depict protein sample peaks in black (left panel) with 

the Pin1-0xP at a ratio of 1:2 in red (right panel). The two spectra are overlaid in the bottom 

panel, showing virtually no peak shifts. The peak assignment was done previously and 

deposited into the BMRB as file 5305
122

. (B) The graph presents the residues that exhibited 

chemical shift changes in Pin1 when 0xP peptide was added to the sample. The amount of 

peak shifting in both the 
1
H and 

15
N dimensions is depicted on the y-axis and the residue 

number is on the x-axis. Dashed lines indicate standard deviations of 1 or 2. The WW 

domain residues are shaded grey. Both domains have residues with chemical shift changes 

larger than 1ζ. (C) Residues seen to have chemical shift changes above 1 standard 

deviation, upon 0xP peptide addition to Pin1, were mapped to the surface of the full length 

protein. The residues are coloured according to the magnitude of chemical shift change 

with cyan depicting no change or little change, white showing some change and the darkest 

purple showing the largest changes.  
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An additional 24 peaks exhibited intensity changes larger than a 1ζ change, when 

0xP peptide was mixed with the protein (Figure 12A). Notably, several of these residues 

are located in the linker between the WW and PPIase domains. These residues have been 

mapped to the structure of Pin1 (Figure 12B).  The results indicate that the affinity of 

Pin1 to a non-phosphorylated substrate is weak, because few protein residues are heavily 

impacted by the addition of the 0xP peptide. The linker domain residues exhibit the 

largest peak intensity changes overall, but neither of the protein domains are affected. In 

summary, these results indicate that NMR, a commonly used method to detect protein 

interactions, cannot identify a change in any particular region of Pin1 upon 0xP binding.  
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Figure 12 

 
 

 

Figure 12 Pin1-0xP complex intensity changes observed by 
1
H- 

15
N HSQC NMR and 

their locations mapped to the surface of Pin1. 

(A) The plot displays residues that underwent changes in intensity when the 0xP peptide 

was titrated into a solution of wild type full length Pin1. The dashed lines represent a 1ζ 

change from the mean, based on the standard deviation of the data. (B) Residues shown 

to have intensity changes ± 1ζ, upon 0xP peptide addition to Pin1, were mapped to the 

surface of the protein (grey). The residues are coloured in blue and are mostly clustered 

to the linker region of the protein, between the WW and PPIase domains.  Both sides of 

Pin1 are shown.  
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3.6 The number of phosphorylation sites affects Pin1-CDC25C 

peptide interactions 

Dissociation constants from Pin1 binding to CDC25C-derived peptides were 

calculated through in vitro fluorescence polarization assays, using fluorescein-labeled 

peptides. Fluorescence polarization is a biophysical method used to study protein-protein 

interactions. FP provides information regarding the binding of a tracer or dye to a protein, 

in solution. The light emitted by a fluorophore gives off a different intensity compared to 

excitation light
119

. The former light can be measured and quantified to determine binding 

of the labeled construct to a protein. 

The affinities of labeled 0xP and 2xP are substantially different and can be seen 

visually as well as determined quantitatively using a curve for specific binding (Figure 

13).  The affinities calculated for both of the singly-phosphorylated 1xP peptides are 

similar. However, 1xP #2 does have a lower binding constant and therefore Pin1 has a 

higher binding affinity towards this peptide.  The FP experiments for all of the peptides 

display specific one-site binding curves with the Kd values depicted in Table 2. The data 

illustrates that an increased number of phosphorylation sites, as well as the location of the 

site, does impact the interaction between full length Pin1 and the CDC25C-derived 

peptides.  

  



65 

` 

Figure 13 (A-B) 
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Figure 13 (C-D) 

 

Figure 13 Fluorescence polarization experiments of Pin1-peptide complexes. 

NHS-fluorescein-labeled 0xP (A), 1xP #1 (B), 1xP #2 (C) and 2xP (D) CDC25C-derived 

peptides were combined with increasing amounts of wild type Pin1 protein to determine a 

binding constant. Wild type Pin1 was increased by a factor of two per titration point. Each curve 

is the average of three experiments, completed in duplicate, with error bars representing the 

standard deviation. Each graph was analyzed using a curve for specific one-site binding, as a 

function of protein concentration. Table 2 shows the binding constants determined from analysis 

of the assays. 
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Table 2 Fluorescence polarization experimental results of the human CDC25C- 

derived peptides synthesized to test binding affinities to Pin1 protein in vitro. 

The binding constant (Kd) value for each of the Pin1-peptide interactions was tested with 

NHS-fluorescein labeled peptides, in duplicate for three separate reactions. Each data set 

was analyzed using a non-linear regression for single-site specific binding, based on the 

protein concentration. 

 

 

  Shorthand Peptide Notation Kd (M) 

0xP 2253  

1xP #1      391.6  

1xP #2      272.8  

2xP          85.21 



68 

` 

4. Discussion 

Pin1 is characterized as a dual-domain isomerase, as it is composed of a WW 

binding domain and a peptidyl-prolyl isomerization domain. Both domains bind to 

similar pSer/Thr-Pro motifs, which increase the complexity of the system
45,88

. How Pin1 

is capable of using this multi-site binding and substrate isomerization to regulate key 

signal transduction pathways is of utmost importance to aid in targeting diseases such as 

cancer.  

Studies in the field of human Pin1 as a mitotic regulator began with the 

interaction of NIMA
21

, followed by interactions with CDC25
23,24

. Phosphorylation and 

Pin1 affect CDC25C, as the phosphatase is subjected to both positive and negative effects 

of phosphorylation
24,98,129

. Pin1 catalyzes the isomerization of CDC25C which promotes 

its dephosphorylation. CDC25C then becomes inhibited without the phosphate moiety 

and early entry into mitosis is stalled
127

. It has been demonstrated that full length Pin1 is 

necessary for the interaction with CDC25C
95

. Thus, in order to bind both phosphorylation 

motifs on the substrate at the same time, two sites on Pin1 would be required, potentially 

one on each domain.  

Mitotic regulation by Pin1 can be explained in a two-step mechanism. First, a 

Ser/Thr-Pro motif becomes phosphorylated by the mitosis-specific activation of a protein 

kinase. Pin1 is next able to bind to the phosphorylation site and conduct isomerization, to 

promote a conformational change in the substrate
24

. This change in a phospho-protein can 

alter binding capabilities, enzymatic activity or function as observed for CDC25
23,24

. Not 
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only is Pin1 implicated in mitosis, but it has a role in cell proliferation and cancer as well 

as a role in the reversal of neurodegenerative disorders
38

.  

4.1 Pin1-CDC25C interactions 

The Pin1-CDC25C interaction has been well characterized in the 

literature
23,88,94,97,104,127

. This association is important in the initiation of mitosis and if 

unregulated, the overexpression of both proteins separately can result in cancerous 

phenotypes
8,38,130,131

. The cellular concentrations of both proteins do not fluctuate during 

cell cycle progression
23,132,133

, in contrast with many proteins involved in the identical 

processes 
134-136

. Preceding mitosis, the interaction is maximal and is mediated by the 

phosphorylation of CDC25, which activates the pathway.  Following activation, the 

activity of CDC25 is inhibited to similar levels as observed for the phosphatase during 

interphase
24

. The aforementioned results implicate Pin1 as a regulatory protein in mitosis. 

Pin1 is suggested to disable the early entry into mitosis, induced by the NIMA kinase. In 

addition, overexpression of Pin1 generates a mitotic G2 phase arrest phenotype
21

. Not 

only does Pin1 negatively regulate mitosis, but it positively affects this process as well 

since it is required for progression through mitosis
23

.  

The relationship between Pin1 and CDC25C was first identified through a study 

of Pin1 interactions with mitotic phospho-proteins
23

. The CDC25C-Pin1 interaction 

occurs in the presence of both Pin1 protein domains, with each domain in its entirety 

containing key residues for binding and catalysis.  The CDC25C protein is 

phosphorylated at three Thr sites in vivo, Thr48, Thr67 and Thr130
137

, with the former 

two residues involved in Pin1 binding when phosphorylated
88,127

.  A pThr peptide 

mimicking the human CDC25C sequence surrounding residue Thr48 specifically binds to 



70 

` 

the WW domain of Pin1
88

. The peptides generated for the present study were derived 

using the known Pin1 binding motifs, taken from the protein sequence of human 

CDC25C surrounding Thr48 and Thr67 which are both pThr-Pro sites
88,127

.  

4.2 Effects of peptides on Pin1 global conformation 

As an initial step towards understanding the binding between Pin1 and CDC25C, 

the CDC25C-derived peptides were mixed with protein and the complexes were used to 

detect global changes within the protein. The overall conformation of Pin1 in solution did 

not change with the addition of peptide, measured based on the derived sedimentation 

coefficients for samples of protein alone and protein-peptide complexes, at molar ratios 

of 1:1 and 1:2 protein to peptide.  

4.3 Protein stability did not change when peptides were added  

The stability of Pin1 was neither increased nor decreased upon addition of the 

CDC25C-derived peptides, based on the secondary structural elements of the protein and 

its melting temperature. Of mention from the CD experiments was the noise visible in the 

spectra ranging from 180 to 210 nm. This noise is caused by a large high tension voltage 

on the spectropolarimeter, a value that increases as the wavelength being scanned 

decreases into the far ultra-violet range
138

. When the high tension voltage rapidly 

increases and the photo-multiplier tube reaches a saturation voltage, artifacts may be 

perceived in the sample
139

.  These observations may impact the conclusion drawn from 

CD experiments, because the 180-200 nm spectral range shows differences between the 

examined samples. This may affect the secondary structure of Pin1, although the protein 

stability between samples remained the same. The hypothesis of two phosphorylated 
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binding sites increasing the binding affinity of Pin1 towards CDC25C-derived peptides 

remains plausible because the 2xP peptide does not decrease protein stability.  

4.4 Pin1 has a higher affinity for phosphorylated peptides 

The phosphorylation of Ser/Thr–Pro motifs impairs catalytic isomerization by 

cyclophilins and FKBPs. In contrast, Tyr-Pro sequences are susceptible to this 

isomerization
8
. The novel parvulin-family PPIase Pin1 preferentially isomerizes Pro 

residues preceded by phosphorylated Ser or Thr with up to a 300-fold increase in kcat / 

Km, compared to its non-phosphorylated counterpart. Pin1 is therefore both a sequence-

specific and phosphorylation-dependent enzyme
8
. For this reason, parvulins and Pin1 in 

particular, with specificity towards phosphorylated substrates, play important roles in 

cellular processes including the regulation of mitosis
8
. The results obtained by NMR 

using the doubly-phosphorylated CDC25C-derived peptide showed visible chemical shift 

changes indicative of peptide binding to Pin1. Residue Arg14 exhibited the largest peak 

shift when the 2xP peptide was bound. The amino acids Lys13, Met15 and Ser16 that 

surround the Arg also exhibited large peak shift changes (Figure 9). This is 

representative of the WW domain binding to the peptide with high affinity, consistent 

with a previous study where the WW domain was shown to have approximately a ten-

fold stronger affinity for a substrate than the PPIase domain
88

.   

Intensity changes are caused by slow or intermediate chemical exchange
115

 when 

a substrate is added to Pin1. Peak intensity changes were displayed in each region of the 

protein with the addition of 2xP. This finding may relate to the binding of both 

phosphorylated motifs in the peptide, one to each of the Pin1 domains, as peak intensity 

reflects the speed at which molecules tumble in solution
116

. The central peptide residues 
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between the two binding motifs likely interact non-specifically with the protein linker. 

Through the use of both chemical shift and peak intensity data, local changes in Pin1 that 

occur on different time scales can be resolved
115

, as each residue in the protein will 

behave differently. 

Experiments examining the binding of peptides to Pin1 were able to detect 

interactions, when protein concentrations of up to 800 µM were used. Each peptide was 

labeled with NHS-fluorescein, to display a fluorescein tag on the N-terminus that could 

be visualized at the appropriate wavelength. This tag is unlikely to interfere with the 

protein-peptide interaction due to its location on the N-terminus of the peptide, which is 

seven residues away from the first binding site, and the cyclic nature of the label has little 

mobility.  

Singly-phosphorylated peptides, containing the same CDC25C-derived sequence 

as the 2xP peptide, were designed to test the binding affinities of full length Pin1. 

Literature on the topic of Pin1 describes other singly-phosphorylated CDC25C peptides 

which yield diverse affinities towards the protein. The altering affinities are likely a result 

of amino acids surrounding the phosphorylated residue
104

. The peptide sequence 

VPRpTPV (CDC25C-Thr48)
104

 has a binding affinity of 80-fold higher than that of the 

1xP #1 peptide, also surrounding the Thr48 site. Both peptide-protein affinities are 

comparable due to being measured by fluorescence polarization. The VPRpTPV peptide 

is six residues in length, shorter than the 32 residue 1xP #1 peptide. The shorter peptide 

and one Pin1 protein domain are likely to bind, as the WW domain recognizes up to five 

amino acids
104

 and the PPIase domain binds strongly to five residue peptides
106

. Due to 

the small size of the VPRpTPV peptide, it can remain inflexible and tightly bound to 



73 

` 

Pin1, increasing the polarization of light in a fluorescence polarization experiment. 

Conversely, the binding of either Pin1 domain to the pThr site on either the 1xP #1 or 

1xP #2 peptide may not be able to stabilize the extra 25 unbound peptide residues to 

polarize light sufficiently. For this reason, the binding affinities for the 1xP-Pin1 

interactions would appear to decrease in comparison to the previously reported values by 

Verdecia et al. for the VPRpTPV peptide
104

. 

The studies presented here analyzing the binding curves, and therefore binding 

affinities, of Pin1 towards a common CDC25C-derived peptide with varying amounts of 

phosphorylation indicated that an increase in the number of phosphorylation sites 

correlates with a decrease in Kd values. An increase in peptide phosphorylation from zero 

to one correlates with an increase in binding affinity, based on a decrease in Kd values 

from 2253 µM to approximately 330 µM (averaged from both singly-phosphorylated 

peptides). This is indicative of phosphorylation-dependent binding between Pin1 and the 

peptides. A study using mutations of CDC25C residues Thr48 and Thr67 to Val, an 

amino acid that cannot be phosphorylated, has shown that binding to full length Pin1 is 

abolished
127

. 

Interestingly, the singly-phosphorylated CDC25C-derived peptides used in the 

present study exhibited different binding affinities based on the location of their 

phosphorylation site (see Table 1 for the peptide sequences). With the phosphate moiety 

located at site #2 on the peptide, the Kd value was decreased by more than 100 µM, 

indicative of a higher affinity. This result is likely due to the chemical environment 

surrounding the phosphate. Two small Gly residues are preceding the pThr, which could 

enable binding due to a lack of steric clashes, compared to the Arg residue preceding the 
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site #1 phosphate. The residues that appear after the pThr-Pro motif also differ at site #1 

and site #2, as they are a Val and a Lys, respectively. This difference in hydrophobicity 

as well as charge may impact binding. 

There is weak binding of full length Pin1 to the non-phosphorylated CDC25C-

derived peptide, depicted by a dissociation constant of 2253 µM measured by 

fluorescence polarization. This binding may be attributed to the promiscuity of the WW 

domain of Pin1, as this domain is the main binding domain of the protein and may be 

responsible for nonspecific interactions
140

.  

Residues impacted by the addition of peptides to Pin1 are seen to localize to 

different regions of the protein based on the number of phosphorylation motifs available 

(Figures 9 and 11). Upon binding of the non-phosphorylated peptide, the linker region of 

the protein showed several peak intensity changes. This observation is feasible because 

the linker of Pin1 is flexible
36

 and may enable nonspecific binding, while both of the 

protein domains are phosphorylation specific.  

4.5 Two phosphorylation sites further increase Pin1-peptide 

binding affinities 

Overall, the increase of phosphorylation sites on the CDC25C-derived peptides 

from zero to one and one to two increases the binding affinity towards Pin1. The 

dissociation constant measured in the present study for the Pin1-2xP interaction was 

85.21 µM, a smaller Kd value than those determined for the 0xP and 1xP peptides. This 

incremental increase in binding affinities is similar to the results observed in the literature 

from other known Pin1-interacting proteins. With the addition of a phosphate moiety to a 
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singly-phosphorylated sequence, peptides derived from the C-terminus of RNA 

polymerase II and from Tau exhibit an increased binding affinity
90,104

. An example of 

increased binding affinities towards doubly-phosphorylated substrates from the literature 

was shown using Tau-based peptides
49

.  

The present study has determined dissociation constants for full length Pin1 with 

the CDC25C-derived peptides, but it would be beneficial to investigate the binding of 

each Pin1 domain to the peptides. The WW domain alone would likely bind to the 

peptides, because of its hydrophobic pocket that coordinates substrate binding
88

. It is 

difficult to conclude whether the PPIase domain alone would bind to the peptides, as 

there would be approximately 25 residues of free peptide tumbling in solution.   

4.6 Peptide binding to individual Pin1 domains 

The PPIase domain of Pin1 is known for its catalytic function rather than 

substrate binding efficiency. In vitro studies have shown that this domain is usually 

unable to bind phospho-proteins
88,95

, although substrate specificity is required to bind a 

sequence for isomerization. Substrates may only have temporary interactions with the 

PPIase domain, upon bond catalysis. This is a probable option, as the Pin1 active site has 

been shown to be prepared for catalysis and amino acid exchange processes, even in the 

absence of a substrate
141

. 

In contrast to the PPIase domain, the WW domain binds to peptides derived from 

substrates with dissociation constants in the low micromolar range, from approximately 1 

to 150 µM
88,104,142

. The large ranges of dissociation constants observed for interactions of 

peptides with full length Pin1 and each of the Pin1 domains suggests that binding 
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affinities are variable and depend on factors such as peptide length, sequence and 

phosphorylation states. In some cases, individual protein domains may be incapable of 

binding to a given peptide. Many Pin1 interacting proteins have been shown to require 

both the WW and PPIase domains to associate with Pin1 and successively perform their 

enzymatic or regulatory functions. Proteins that fall into this category include:  protein 

kinases CK2
143

 and PLK1
32

, the transcription factor c-Jun
41

 and tumour suppressor 

p53
144

. 

4.7 The WW domain of Pin1 acts as the main binding domain  

Residues Ser16, Arg17, Tyr23 and Trp34 on the surface of Pin1 form the 

hydrophobic binding pocket observed to enable the characteristic binding properties of 

the WW domain
88

. Through NMR experimentation using the changes in peak chemical 

shifts by 
1
H-

15
N HSQC, the present study demonstrates that the doubly-phosphorylated 

peptide binding to Pin1 affects the WW domain only. However, the PPIase domain may 

exhibit much weaker affinities for the peptides which could be overlooked as the changes 

in peak chemical shifts are not the sole method to determine interactions by NMR. 

Studies from the literature have pointed out that the WW domain shows binding affinities 

of approximately ten-fold stronger than those of the PPIase domain, in vitro
88,90

.  For this 

reason, the WW domain is thought to augment substrate specificity and function as the 

protein-targeting domain.   

It is likely that binding of the second phosphorylation site in the CDC25C-derived 

peptide 2xP is too weak to detect through NMR, based on the protein and peptide 

concentrations used in the present work. Once the peak intensity changes from the NMR 

data have been taken into account, both domains display changes likely attributed to a 
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single phosphorylation site located in each of the two protein domains. Taken together, 

both the chemical shift changes and peak intensity data display the overall effects of 

Pin1-peptide binding. 

4.8 Kd values compared to literature values 

Dissociation constants for full length Pin1 binding to a variety of substrate 

peptides were measured previously, using fluorescence polarization, and the values 

ranged from 5 to approximately 80 µM. These peptides were presented by Verdecia et 

al., derived from known Pin1 interacting proteins of physiological relevance, were 

between six and eight amino acids in length and contained from zero to two 

phosphorylation sites
104

. One specific example was the examination of the binding 

affinity between Pin1 and an RNA polymerase II, C-terminal domain peptide, when the 

peptide contained two distinct phosphorylation sites separated by two amino acids (Table 

3). The small separation between phospho-sites and the short total peptide length seem to 

impact binding, considering the Kd measured for this interaction was 10 μM
104

. Of note 

are the examined pSer residues, as pSer-Pro motifs bind to Pin1 with lower affinity than 

pThr-Pro motifs
145

.  However, the isomerase activity of Pin1 for pSer-Pro motifs is 

higher
8
.  This may be a result of the conformations adopted by each of the 

phosphorylated residues
146

.   

Another study looked at a 40 residue peptide, derived from the Pin1-interacting 

protein Tau, which contained three phosphorylation sites (Table 3). When tested for 

binding to Pin1, a dissociation constant of 70 μM was measured for this  interaction
90

.  

Two of the phosphorylated residues in this peptide sequence were spaced apart by 16 
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amino acids, suggesting that phosphorylated motifs are separated for a reason, potentially 

to improve substrate binding to Pin1.  

An additional study looking into the binding of bivalent peptides to Pin1 was 

conducted in 2007, by Daum et al. These peptides were generated to target the Pin1 

domains specifically (Table 3) and would only bind in a single orientation
147

.  Using 

isothermal titration calorimetry, the dissociation constants determined for these peptides 

were all between 400 and 800 nM. These peptides contained a single Pin1 binding motif 

and a Pro-rich linker, with the latter not found in natural Pin1-binding proteins
147

. The 

optimally-designed peptides were generated for the purpose of specific domain binding. 

It is understandable why these peptides would bind to Pin1 with a higher affinity than 

other peptides, including those used in the present work.  

In comparison to the aforementioned data by Daum et al. and Verdecia et al., the 

Kd values obtained from the CDC25C-derived peptides in the present study were:  2253 

µM for the non-phosphorylated peptide, 391.6 µM for 1xP #1, 272.8 µM for 1xP #2 and 

85.21 µM for the doubly-phosphorylated peptide.  These binding affinities are all lower 

than those observed in the literature, potentially due to the length of the peptide 

sequences. Table 3 shows a peptide from each study, for direct comparison, and 

highlights the features of each. All the peptides, excluding the synthetic peptide, were 

derived from physiologically relevant Pin1-interacting proteins and contain multiple Pin1 

binding motifs. The binding affinities measured for the three protein-derived peptides are 

all of the same order of magnitude. The CDC25C-derived peptide spans both Pin1 

domains, similarly to the Tau peptide.  

  



79 

` 

Table 3 

 

Table 3 Peptides used in the literature compared to the 2xP peptide used in the 

present study.  

The peptide sequences are listed, with the phosphorylated residues in bold and red. The 

binding constant (Kd) value for each of the full length Pin1-peptide interactions is also 

shown. 

 

Peptide sequence Number of 
Residues in 

Peptide 

Peptide Source Kd (µM) Citation 

YpSPTpSPS 7 RNA Pol II 
(CTD-S2/S5) 

10 Verdecia, 
2000104 

GSPGTPGSRSRpTPpSLPTPPTREPK
KVAVVRpTPPKSPSSAK 

40 Tau 
(T212/S214/T231) 

70 Smet, 
200590 

Ac-FE-Pip-Nal-Q(P)6A-Bth-pTP-
Cha-Q-NH2 

17 Synthetic 0.804 Daum, 
2007147 

CPDVPRpTPVGKFLGDSANLSILSGG
pTPKRSLD 

32 CDC25C 
(T48/T67) 

85 Present 
study 
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4.9 The distance between phosphorylated residues impacts 

binding 

Studies observing the effects of phosphorylated peptide binding to Pin1 have been 

described in the literature, containing shorter sequences as well as different spacing 

between phosphorylation sites
49,90,104

. The distance between the phosphorylation sites in a 

peptide seems to impact binding and substrate affinities towards Pin1.  The peptides used 

in this study have a 19 amino acid separation between phosphorylation sites.  

A protein containing 19 residues between Pin1 interaction sites, similarly to 

CDC25C, is the Tau protein involved in microtubule stabilization in neurons
49

. Tau and 

its interactions with Pin1 have been well studied in the literature for their involvement in 

Alzheimer’s disease
49,56,90,127

. Residues Thr212 and Thr231 are both followed by a Pro 

residue and can be phosphorylated to be targeted by Pin1. As Tau-derived peptides have 

already been studied
56

, a logical next step would be to confirm the results in vitro using 

full length proteins and subsequently in vivo. It would be interesting to see whether the 

requirements for Tau binding to Pin1 are similar to those of CDC25C.  

In 2007, Daum et al. used a bivalent peptide to study Pin1-substrate interactions. 

This peptide was shown to have up to a 350-fold increase in affinity towards Pin1, 

compared to a monovalent peptide
147

. Another key finding from this paper was the 

determination of an optimal linker length. Five Pro residues between the two Pin1 

domains presented the highest affinity. Changing the linker length between the two 

binding motifs of a doubly-phosphorylated peptide, to obtain an increased affinity, could 

be elaborated as future work of the present study. In contrast to the present study, the 

peptides generated by Daum et al. only contained a single phosphorylation site. The use 
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of a doubly-phosphorylated human CDC25C-derived peptide is therefore unique and has 

given insight into a different form of bivalency.  

Enhanced binding to Pin1 has been proposed as a result of cooperativity between 

phosphorylation sites, commonly spaced between 18 and 22 amino acids apart from one 

another in a sequence
148

. The peptides used in the present study have a spacing of 19 

residues between binding motifs, which ideally promotes cooperative binding. In short, it 

seems improved Pin1 binding is determined by the number and positioning of 

phosphorylated residues.  

4.10 Pin1 binding to phosphate moieties 

Phosphate buffers were used in certain present study experiments in order to 

directly compare the results to previous studies
79

. The buffers used for NMR experiments 

were the same as those used in the Duncan et al., 2011 paper, as the protein amide HSQC 

peaks had been previously assigned
122

. The phosphate concentration in the buffer was 

diluted for CD experiments to avoid background noise from excess phosphate, while the 

CD experiments were conducted to ensure the Pin1 protein was folded for the NMR 

experiments. As Pin1 is phosphorylation-dependent, the phosphate molecules in the 

buffer could have affected binding to the peptides. The peptide titration results do show 

Pin1-peptide interactions with affinities in the micromolar range, which indicates that 

binding still occurs in the presence of excess phosphate. This is likely due to the absence 

of the proper Pin1 binding motif in the buffer. With this in mind, the fluorescence 

polarization experiments were conducted in a HEPES buffer to avoid the potential for 

excess phosphate binding to Pin1 and misrepresentations in the data.  
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4.11 Effects of molecular crowding on Pin1 binding 

A recent study conducted by Luh et al. discussed the effects of molecular 

crowding on substrate binding by the WW domain of Pin1. The study examined Pin1 in 

Xenopus laevis oocytes and in oocyte extracts crowded with proteins, through in-cell 

NMR experiments. The substrate recognition motif on the surface of the N-terminal Pin1 

domain is able to form weak, nonspecific interactions with endogenous cellular 

proteins
140

.  The researchers used a Pin1 intracellular concentration of 150 μM, which is 

higher than that of specific Pin1 substrates. NMR signal loss, resulting from a longer 

rotational correlation time, was seen when only the WW domain was inserted into the 

oocytes. This observation implicates the WW domain in non-specific interactions that 

push Pin1 into large in vivo complexes. The NMR line broadening results obtained were 

therefore concluded to be due to nonspecific interactions
140

. Additional proteins added 

into the oocyte samples, to act as crowding agents, revealed further weak and nonspecific 

interactions with Pin1, implicating permanent interplay between endogenous proteins
140

. 

Consequently, it is crucial to explore Pin1 binding to CDC25C and CDC25C-derived 

peptides in vivo as a method to understand the binding affinities when competing 

molecules are available. 

4.12 Pin1 binding model 

The interactions observed in the present study between the doubly-phosphorylated 

peptide and Pin1 require both protein domains to bind two separate motifs. This was 

suggested by NMR studies that revealed peak intensity changes in both Pin1 domains 

upon 2xP peptide titrations (Figure 10).  Neither the catalysis-first binding model nor the 

multimeric binding model seem to fit this data (Figure 3A-B), because there is no 
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indication of the PPIase domain binding to the peptide first and these experiments were 

performed using purified components without excess cellular proteins with which to form 

complexes. The sequential binding model (Figure 3C), which accounts for differential 

binding affinities between both Pin1 domains, is plausible for Pin1 interactions with the 

singly-phosphorylated peptides, due to a single available site for binding by the WW 

domain and then once released, isomerization can occur at the same site. This same 

method also accounts for Pin1 substrates with multiple binding motifs, where the WW 

domain binds to a target sequence first and the PPIase domain is free to catalyze the 

isomerization of other sites in the same molecule
19

.  However, the Pin1 domains 

individually were shown to be incapable of binding full length CDC25C
95

. This provides 

evidence against the sequential binding model, as CDC25C would need to be initially 

targeted by the Pin1 WW domain alone. The results of the present study promote the 

simultaneous model (Figure 3D) for binding of Pin1 to CDC25C-derived peptides, as 

was previously suggested by Innes et al. This model states that the binding of each 

pSer/Thr-Pro motif may be weak individually, but the binding of both sites at the same 

time can increase the overall affinity
95

.  

In comparison with the CDC25C-derived peptides, the Tau peptides may interact 

with Pin1 using a different binding model.  It would be of interest to compare the binding 

models of the peptides through binding studies using the individual Pin1 domains. To 

further advance the aforementioned study, one could characterize the binding of Pin1 to 

other known substrates. Determining the differences between protein substrate sequences 

and their corresponding protein domain interactions could give insights into Pin1-ligand 

binding modes, as this was described in previous work to affect binding
36

. 
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4.13 Future directions for the present work 

Testing the binding of the CDC25C-derived peptides with each individual Pin1 

domain would be a logical next step to understand how Pin1 interacts with a substrate. 

This can be accomplished by applying the same FP experiments as discussed in section 

2.8, using the WW and PPIase domains individually instead of wild type full length Pin1. 

Studies from the literature have presented the idea of Pin1 domain-specific peptide 

binding where both domains can bind a peptide but exhibit differing affinities
104

.  Several 

peptides had no detectable binding to the PPIase domain, while the peptides that did bind 

to this domain had dissociation constant values ranging from approximately 85 to greater 

than 500 µM
104

. Some X-ray crystallographic data has also presented structures with 

peptides bound to the PPIase protein domain of Pin1
45,107

.  

Not only could the individual domains of Pin1 be tested for binding to the 

peptides, but domains containing mutations that render them binding-deficient could also 

be examined. A Tyr23Ala mutation affects the hydrophobic patch on the WW domain 

that impacts binding
88

, while mutations Arg68/69Ala affect the basic cluster of the 

PPIase domain, also shown to impact binding
23

. These mutations could be generated on a 

full length Pin1 construct to test binding of the CDC25C peptide set used in the present 

study. It is reasonable to hypothesize that the domain mutants would each bind to a 

singly-phosphorylated peptide with a similar affinity to that exhibited by wild type 

protein, because only one domain of the wild type would be involved in the interaction.  

The doubly-phosphorylated peptide would expectantly bind to the mutant protein at a 

single site, leaving a large portion of the peptide mobile in solution. Through 

fluorescence polarization, the polarization of light could remain minimal and this may 
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affect assay results. With two functional domains, the protein will have a better chance of 

binding the 2xP peptide and increasing its binding affinity.  

Another future study should look into a preferential sequence of substrate residues 

to increase binding to Pin1. In 1997, Yaffe et al. discovered that peptides with an Arg 

residue at the Pro + 1 position were more efficient, as their kcat / Km values increased up 

to 1300 times those of their non-phosphorylated equivalents
8
. A thorough analysis of 

amino acid residues located between the Pin1 binding motifs should therefore be 

performed, using a peptide walking series, to determine optimal residues at each position.  

Binding affinities could also be determined using isothermal titration calorimetry 

(ITC). This technique was explored in the early stages of the present study, but the 

protein and peptide concentrations used did not generate a saturated binding curve. ITC 

requires high protein and ligand concentrations as well as a large volume of sample in the 

syringe if binding is in the high micromolar range. For the aforementioned reasons, this 

technique was not a feasible option. 

As previously mentioned, one interesting future direction for the present work 

would be to generate peptides of different linker lengths between the two binding sites. 

Although, in a few known Pin1 substrates the distance between the two phosphorylated 

motifs is 19 amino acids, the linear peptide may not have the ability to generate any 

structural folds to aid in binding. Using a Pro linker was seen to optimize bivalent peptide 

binding, as proline residues are known to impact structure
147

.  Varying the linker length 

of peptides may be useful to increase the protein-peptide binding affinity
147

. 
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Using shorter peptides to study Pin1 interactions may be useful, because a short 

peptide length could decrease flexibility upon Pin1 binding and could provide a different 

affinity for the binding outcome. The total peptide length and the length of the peptide 

sequence between Pin1 binding motifs are both important factors when generating 

peptides that bind optimally to the protein. Peptides of varying sizes could be generated 

and tested for binding to Pin1.  

CDC25C is one of many Pin1-interacting proteins that contain multiple Pin1 

binding motifs. Finally, it would be valuable to take a subset of such proteins and 

examine their sequences between binding sites, lengths and potential modes of binding. 

These key features will be useful in the generation of optimal Pin1-binding peptides that 

could act as specific protein inhibitors. 

4.14 Summary 

The present study aimed to determine any changes within the protein Pin1 when 

interacting with peptides derived from the phosphatase CDC25C, as well as the binding 

affinities associated with each Pin1-peptide complex. Pin1 did not exhibit global 

conformational changes when bound to any of the CDC25C-derived peptides, nor did the 

stability of the protein alter upon binding of the non-phosphorylated or doubly-

phosphorylated peptides. An increased affinity was observed, by two separate 

biochemical techniques, when the peptides contained a phosphorylation site. This result 

is consistent with findings from the literature stating that Pin1 is phosphorylation-

dependent
8,149,150

. To further this conclusion, Pin1 was seen to bind to a doubly-

phosphorylated substrate with a higher affinity than either of the 1xP peptides. The 

binding of the 2xP peptide was presented as bound to the WW domain predominantly, 
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through NMR peak chemical shifts changes, yet peak intensity data implicated the WW 

domain, linker region and PPIase domain of Pin1 in binding. It is therefore likely that the 

doubly-phosphorylated peptide bound simultaneously to the two Pin1 domains, as the 

binding affinity was increased with two pThr-Pro motifs on a single peptide.  

Multiple binding models for Pin1 interactions with substrates have been 

previously proposed
94,95

. This work has promoted the simultaneous model for Pin1 

binding with CDC25C-derived peptides, although other models may still apply. 

Considering the dual-domain binding nature of Pin1, it is reasonable to assume that 

substrate proteins comprised of varying numbers of binding sites would bind to Pin1 

differently, potentially through diverse binding models. The use of binding models could 

lead to an additional mode of classification for known Pin1-interacting proteins.  

  



88 

` 

References 

1. Karve TM, Cheema AK. Small changes huge impact: the role of protein 

posttranslational modifications in cellular homeostasis and disease. J Amino 

Acids. 2011;2011:207691. 

2. Schmid FX, Baldwin RL. Acid catalysis of the formation of the slow-folding 

species of RNase A: evidence that the reaction is proline isomerization. Proc Natl 

Acad Sci U S A. 1978;75(10):4764-4768. 

3. Odefey C, Mayr LM, Schmid FX. Non-prolyl cis-trans peptide bond 

isomerization as a rate-determining step in protein unfolding and refolding. J Mol 

Biol. 1995;245(1):69-78. 

4. Weiss MS, Jabs A, Hilgenfeld R. Peptide bonds revisited. Nat Struct Biol. 

1998;5(8):676. 

5. Tchaicheeyan O. Is peptide bond cis/trans isomerization a key stage in the chemo-

mechanical cycle of motor proteins? FASEB J. 2004;18(7):783-789. 

6. Schmid FX. Prolyl isomerases. Adv Protein Chem. 2001;59:243-282. 

7. Schmid FX. Prolyl isomerase: enzymatic catalysis of slow protein-folding 

reactions. Annu Rev Biophys Biomol Struct. 1993;22:123-142. 

8. Yaffe MB, Schutkowski M, Shen M, et al. Sequence-specific and 

phosphorylation-dependent proline isomerization: a potential mitotic regulatory 

mechanism. Science. 1997;278(5345):1957-1960. 

9. Latham JA, Dent SY. Cross-regulation of histone modifications. Nat Struct Mol 

Biol. 2007;14(11):1017-1024. 

10. Lu KP, Finn G, Lee TH, Nicholson LK. Prolyl cis-trans isomerization as a 

molecular timer. Nat Chem Biol. 2007;3(10):619-629. 

11. Zimmerman SS, Scheraga HA. Stability of cis, trans, and nonplanar peptide 

groups. Macromolecules. 1976;9(3):408-416. 

12. Brandts JF, Halvorson HR, Brennan M. Consideration of the Possibility that the 

slow step in protein denaturation reactions is due to cis-trans isomerism of proline 

residues. Biochemistry. 1975;14(22):4953-4963. 

13. Stewart DE, Sarkar A, Wampler JE. Occurrence and role of cis peptide bonds in 

protein structures. J Mol Biol. 1990;214(1):253-260. 



89 

` 

14. Fischer G, Wittmann-Liebold B, Lang K, Kiefhaber T, Schmid FX. Cyclophilin 

and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature. 

1989;337(6206):476-478. 

15. Van Duyne GD, Standaert RF, Karplus PA, Schreiber SL, Clardy J. Atomic 

structure of FKBP-FK506, an immunophilin-immunosuppressant complex. 

Science. 1991;252(5007):839-842. 

16. Trandinh CC, Pao GM, Saier MH. Structural and evolutionary relationships 

among the immunophilins: two ubiquitous families of peptidyl-prolyl cis-trans 

isomerases. FASEB J. 1992;6(15):3410-3420. 

17. Rahfeld JU, Rücknagel KP, Schelbert B, et al. Confirmation of the existence of a 

third family among peptidyl-prolyl cis/trans isomerases. Amino acid sequence and 

recombinant production of parvulin. FEBS Lett. 1994;352(2):180-184. 

18. Piotukh K, Gu W, Kofler M, Labudde D, Helms V, Freund C. Cyclophilin A 

binds to linear peptide motifs containing a consensus that is present in many 

human proteins. J Biol Chem. 2005;280(25):23668-23674. 

19. Lu KP, Liou YC, Zhou XZ. Pinning down proline-directed phosphorylation 

signaling. Trends Cell Biol. 2002;12(4):164-172. 

20. Velazquez HA, Hamelberg D. Conformation-directed catalysis and coupled 

enzyme-substrate dynamics in Pin1 phosphorylation-dependent cis-trans 

isomerase. J Phys Chem B. 2013;117(39):11509-11517. 

21. Lu KP, Hanes SD, Hunter T. A human peptidyl-prolyl isomerase essential for 

regulation of mitosis. Nature. 1996;380(6574):544-547. 

22. Hanes SD, Shank PR, Bostian KA. Sequence and mutational analysis of ESS1, a 

gene essential for growth in Saccharomyces cerevisiae. Yeast. 1989;5(1):55-72. 

23. Shen M, Stukenberg PT, Kirschner MW, Lu KP. The essential mitotic peptidyl-

prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins. 

Genes Dev. 1998;12(5):706-720. 

24. Stukenberg PT, Kirschner MW. Pin1 acts catalytically to promote a 

conformational change in Cdc25. Mol Cell. 2001;7(5):1071-1083. 

25. Mantovani F, Gostissa M, Collavin L, Del Sal G. KeePin' the p53 family in good 

shape. Cell Cycle. 2004;3(7):905-911. 

26. Lu KP, Zhou XZ. The prolyl isomerase PIN1: a pivotal new twist in 

phosphorylation signalling and disease. Nat Rev Mol Cell Biol. 2007;8(11):904-

916. 



90 

` 

27. Shaw PE. Peptidyl-prolyl cis/trans isomerases and transcription: is there a twist in 

the tail? EMBO Rep. 2007;8(1):40-45. 

28. Behrens MI, Lendon C, Roe CM. A common biological mechanism in cancer and 

Alzheimer's disease? Curr Alzheimer Res. 2009;6(3):196-204. 

29. Xu GG, Etzkorn FA. Pin1 as an anticancer drug target. Drug News Perspect. 

2009;22(7):399-407. 

30. Lu Z, Hunter T. Prolyl isomerase Pin1 in cancer. Cell Res. 2014;24(9):1033-1049. 

31. Butterfield DA, Abdul HM, Opii W, et al. Pin1 in Alzheimer's disease. J 

Neurochem. 2006;98(6):1697-1706. 

32. Eckerdt F, Yuan J, Saxena K, et al. Polo-like kinase 1-mediated phosphorylation 

stabilizes Pin1 by inhibiting its ubiquitination in human cells. J Biol Chem. 

2005;280(44):36575-36583. 

33. Ryo A, Nakamura M, Wulf G, Liou YC, Lu KP. Pin1 regulates turnover and 

subcellular localization of beta-catenin by inhibiting its interaction with APC. Nat 

Cell Biol. 2001;3(9):793-801. 

34. Finn G, Lu KP. Phosphorylation-specific prolyl isomerase Pin1 as a new 

diagnostic and therapeutic target for cancer. Curr Cancer Drug Targets. 

2008;8(3):223-229. 

35. Zhou XZ, Lu PJ, Wulf G, Lu KP. Phosphorylation-dependent prolyl 

isomerization: a novel signaling regulatory mechanism. Cell Mol Life Sci. 

1999;56(9-10):788-806. 

36. Jacobs DM, Saxena K, Vogtherr M, Bernado P, Pons M, Fiebig KM. Peptide 

binding induces large scale changes in inter-domain mobility in human Pin1. J 

Biol Chem. 2003;278(28):26174-26182. 

37. Joseph JD, Yeh ES, Swenson KI, Means AR, Winkler. The peptidyl-prolyl 

isomerase Pin1. Prog Cell Cycle Res. 2003;5:477-487. 

38. Lee TH, Pastorino L, Lu KP. Peptidyl-prolyl cis-trans isomerase Pin1 in ageing, 

cancer and Alzheimer disease. Expert Rev Mol Med. 2011;13:e21. 

39. Theuerkorn M, Fischer G, Schiene-Fischer C. Prolyl cis/trans isomerase 

signalling pathways in cancer. Curr Opin Pharmacol. 2011;11(4):281-287. 

40. Alao JP. The regulation of cyclin D1 degradation: roles in cancer development 

and the potential for therapeutic invention. Mol Cancer. 2007;6:24. 



91 

` 

41. Wulf GM, Ryo A, Wulf GG, et al. Pin1 is overexpressed in breast cancer and 

cooperates with Ras signaling in increasing the transcriptional activity of c-Jun 

towards cyclin D1. EMBO J. 2001;20(13):3459-3472. 

42. Saegusa M, Hashimura M, Kuwata T. Pin1 acts as a modulator of cell 

proliferation through alteration in NF-κB but not β-catenin/TCF4 signalling in a 

subset of endometrial carcinoma cells. J Pathol. 2010;222(4):410-420. 

43. Ao R, Zhang DR, Du YQ, Wang Y. Expression and significance of Pin1, β-

catenin and cyclin D1 in hepatocellular carcinoma. Mol Med Rep. 

2014;10(4):1893-1898. 

44. Ryo A, Liou YC, Wulf G, Nakamura M, Lee SW, Lu KP. PIN1 is an E2F target 

gene essential for Neu/Ras-induced transformation of mammary epithelial cells. 

Mol Cell Biol. 2002;22(15):5281-5295. 

45. Ranganathan R, Lu KP, Hunter T, Noel JP. Structural and functional analysis of 

the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation 

dependent. Cell. 1997;89(6):875-886. 

46. Liao Y, Wei Y, Zhou X, et al. Peptidyl-prolyl cis/trans isomerase Pin1 is critical 

for the regulation of PKB/Akt stability and activation phosphorylation. Oncogene. 

2009;28(26):2436-2445. 

47. Kang C, Bharatham N, Chia J, Mu Y, Baek K, Yoon HS. The natively disordered 

loop of Bcl-2 undergoes phosphorylation-dependent conformational change and 

interacts with Pin1. PLoS One. 2012;7(12):e52047. 

48. Ryo A, Liou YC, Lu KP, Wulf G. Prolyl isomerase Pin1: a catalyst for 

oncogenesis and a potential therapeutic target in cancer. J Cell Sci. 2003;116(Pt 

5):773-783. 

49. Smet C, Sambo AV, Wieruszeski JM, et al. The peptidyl prolyl cis/trans-

isomerase Pin1 recognizes the phospho-Thr212-Pro213 site on Tau. Biochemistry. 

2004;43(7):2032-2040. 

50. Nakamura K, Kosugi I, Lee DY, et al. Prolyl isomerase Pin1 regulates neuronal 

differentiation via β-catenin. Mol Cell Biol. 2012;32(15):2966-2978. 

51. Huang GL, Qiu JH, Li BB, et al. Prolyl isomerase Pin1 regulated signaling 

pathway revealed by Pin1 +/+ and Pin1 -/- mouse embryonic fibroblast cells. 

Pathol Oncol Res. 2013;19(4):667-675. 

52. Driver JA, Zhou XZ, Lu KP. Regulation of protein conformation by Pin1 offers 

novel disease mechanisms and therapeutic approaches in Alzheimer's disease. 

Discov Med. 2014;17(92):93-99. 



92 

` 

53. Landrieu I, Smet-Nocca C, Amniai L, et al. Molecular implication of PP2A and 

Pin1 in the Alzheimer's disease specific hyperphosphorylation of Tau. PLoS One. 

2011;6(6):e21521. 

54. Pastorino L, Sun A, Lu PJ, et al. The prolyl isomerase Pin1 regulates amyloid 

precursor protein processing and amyloid-beta production. Nature. 

2006;440(7083):528-534. 

55. Akiyama H, Shin RW, Uchida C, Kitamoto T, Uchida T. Pin1 promotes 

production of Alzheimer's amyloid beta from beta-cleaved amyloid precursor 

protein. Biochem Biophys Res Commun. 2005;336(2):521-529. 

56. Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP. The prolyl isomerase Pin1 restores 

the function of Alzheimer-associated phosphorylated tau protein. Nature. 

1999;399(6738):784-788. 

57. Girardini JE, Napoli M, Piazza S, et al. A Pin1/mutant p53 axis promotes 

aggressiveness in breast cancer. Cancer Cell. 2011;20(1):79-91. 

58. Li H, Wang S, Zhu T, et al. Pin1 contributes to cervical tumorigenesis by 

regulating cyclin D1 expression. Oncol Rep. 2006;16(3):491-496. 

59. Kim CJ, Cho YG, Park YG, et al. Pin1 overexpression in colorectal cancer and its 

correlation with aberrant beta-catenin expression. World J Gastroenterol. 

2005;11(32):5006-5009. 

60. Yang JW, Hien TT, Lim SC, et al. Pin1 induction in the fibrotic liver and its roles 

in TGF-β1 expression and Smad2/3 phosphorylation. J Hepatol. 

2014;60(6):1235-1241. 

61. Tan X, Zhou F, Wan J, et al. Pin1 expression contributes to lung cancer: 

Prognosis and carcinogenesis. Cancer Biol Ther. 2010;9(2):111-119. 

62. Miyashita H, Mori S, Motegi K, Fukumoto M, Uchida T. Pin1 is overexpressed in 

oral squamous cell carcinoma and its levels correlate with cyclin D1 

overexpression. Oncol Rep. 2003;10(2):455-461. 

63. Wiegand S, Dakic B, Rath AF, et al. The rotamase Pin1 is up-regulated, 

hypophosphorylated and required for cell cycle progression in head and neck 

squamous cell carcinomas. Oral Oncol. 2009;45(10):e140-149. 

64. Ayala G, Wang D, Wulf G, et al. The prolyl isomerase Pin1 is a novel prognostic 

marker in human prostate cancer. Cancer Res. 2003;63(19):6244-6251. 

65. Bao L, Kimzey A, Sauter G, Sowadski JM, Lu KP, Wang DG. Prevalent 

overexpression of prolyl isomerase Pin1 in human cancers. Am J Pathol. 

2004;164(5):1727-1737. 



93 

` 

66. Lam PB, Burga LN, Wu BP, Hofstatter EW, Lu KP, Wulf GM. Prolyl isomerase 

Pin1 is highly expressed in Her2-positive breast cancer and regulates erbB2 

protein stability. Mol Cancer. 2008;7:91. 

67. Khanal P, Namgoong GM, Kang BS, Woo ER, Choi HS. The prolyl isomerase 

Pin1 enhances HER-2 expression and cellular transformation via its interaction 

with mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 

1. Mol Cancer Ther. 2010;9(3):606-616. 

68. Lee RJ, Albanese C, Fu M, et al. Cyclin D1 is required for transformation by 

activated Neu and is induced through an E2F-dependent signaling pathway. Mol 

Cell Biol. 2000;20(2):672-683. 

69. Li C, Chang DL, Yang Z, et al. Pin1 modulates p63α protein stability in 

regulation of cell survival, proliferation and tumor formation. Cell Death Dis. 

2013;4:e943. 

70. Krishnan N, Titus MA, Thapar R. The prolyl isomerase pin1 regulates mRNA 

levels of genes with short half-lives by targeting specific RNA binding proteins. 

PLoS One. 2014;9(1):e85427. 

71. Takahashi K, Uchida C, Shin RW, Shimazaki K, Uchida T. Prolyl isomerase, 

Pin1: new findings of post-translational modifications and physiological 

substrates in cancer, asthma and Alzheimer's disease. Cell Mol Life Sci. 

2008;65(3):359-375. 

72. Marsolier J, Weitzman JB. [Pin1: a multi-talented peptidyl prolyl cis-trans 

isomerase and a promising therapeutic target for human cancers]. Med Sci (Paris). 

2014;30(8-9):772-778. 

73. Rudrabhatla P, Pant HC. Phosphorylation-specific peptidyl-prolyl isomerization 

of neuronal cytoskeletal proteins by Pin1: implications for therapeutics in 

neurodegeneration. J Alzheimers Dis. 2010;19(2):389-403. 

74. Takahashi N, Hayano T, Suzuki M. Peptidyl-prolyl cis-trans isomerase is the 

cyclosporin A-binding protein cyclophilin. Nature. 1989;337(6206):473-475. 

75. März AM, Fabian AK, Kozany C, Bracher A, Hausch F. Large FK506-binding 

proteins shape the pharmacology of rapamycin. Mol Cell Biol. 2013;33(7):1357-

1367. 

76. Wang XJ, Etzkorn FA. Peptidyl-prolyl isomerase inhibitors. Biopolymers. 

2006;84(2):125-146. 

77. Behrsin CD, Bailey ML, Bateman KS, et al. Functionally important residues in 

the peptidyl-prolyl isomerase Pin1 revealed by unigenic evolution. J Mol Biol. 

2007;365(4):1143-1162. 



94 

` 

78. Guo C, Hou X, Dong L, et al. Structure-based design of novel human Pin1 

inhibitors (III): optimizing affinity beyond the phosphate recognition pocket. 

Bioorg Med Chem Lett. 2014;24(17):4187-4191. 

79. Duncan KE, Dempsey BR, Killip LE, et al. Discovery and characterization of a 

nonphosphorylated cyclic peptide inhibitor of the peptidylprolyl isomerase, Pin1. 

J Med Chem. 2011;54(11):3854-3865. 

80. Macias MJ, Wiesner S, Sudol M. WW and SH3 domains, two different scaffolds 

to recognize proline-rich ligands. FEBS Lett. 2002;513(1):30-37. 

81. Bayer E, Goettsch S, Mueller JW, et al. Structural analysis of the mitotic regulator 

hPin1 in solution: insights into domain architecture and substrate binding. J Biol 

Chem. 2003;278(28):26183-26193. 

82. Lippens G, Landrieu I, Smet C. Molecular mechanisms of the phospho-dependent 

prolyl cis/trans isomerase Pin1. FEBS J. 2007;274(20):5211-5222. 

83. Lu KP. Phosphorylation-dependent prolyl isomerization: a novel cell cycle 

regulatory mechanism. Prog Cell Cycle Res. 2000;4:83-96. 

84. Landrieu I, Smet C, Wieruszeski JM, et al. Exploring the molecular function of 

PIN1 by nuclear magnetic resonance. Curr Protein Pept Sci. 2006;7(3):179-194. 

85. Fischer G, Tradler T, Zarnt T. The mode of action of peptidyl prolyl cis/trans 

isomerases in vivo: binding vs. catalysis. FEBS Lett. 1998;426(1):17-20. 

86. Bailey ML, Shilton BH, Brandl CJ, Litchfield DW. The dual histidine motif in the 

active site of Pin1 has a structural rather than catalytic role. Biochemistry. 

2008;47(44):11481-11489. 

87. Xu N, Tochio N, Wang J, et al. The C113D mutation in human Pin1 causes 

allosteric structural changes in the phosphate binding pocket of the PPIase domain 

through the tug of war in the dual-histidine motif. Biochemistry. 

2014;53(34):5568-5578. 

88. Lu PJ, Zhou XZ, Shen M, Lu KP. Function of WW domains as phosphoserine- or 

phosphothreonine-binding modules. Science. 1999;283(5406):1325-1328. 

89. Zarnt T, Lang K, Burtscher H, Fischer G. Time-dependent inhibition of 

peptidylprolyl cis-trans-isomerases by FK506 is probably due to cis-trans 

isomerization of the inhibitor's imide bond. Biochem J. 1995;305 ( Pt 1):159-164. 

90. Smet C, Wieruszeski JM, Buée L, Landrieu I, Lippens G. Regulation of Pin1 

peptidyl-prolyl cis/trans isomerase activity by its WW binding module on a multi-

phosphorylated peptide of Tau protein. FEBS Lett. 2005;579(19):4159-4164. 



95 

` 

91. Landrieu I, De Veylder L, Fruchart JS, et al. The Arabidopsis thaliana PIN1At 

gene encodes a single-domain phosphorylation-dependent peptidyl prolyl cis/trans 

isomerase. J Biol Chem. 2000;275(14):10577-10581. 

92. Fanghänel J, Fischer G. Insights into the catalytic mechanism of peptidyl prolyl 

cis/trans isomerases. Front Biosci. 2004;9:3453-3478. 

93. Park ST, Aldape RA, Futer O, DeCenzo MT, Livingston DJ. PPIase catalysis by 

human FK506-binding protein proceeds through a conformational twist 

mechanism. J Biol Chem. 1992;267(5):3316-3324. 

94. Wintjens R, Wieruszeski JM, Drobecq H, et al. 1H NMR study on the binding of 

Pin1 Trp-Trp domain with phosphothreonine peptides. J Biol Chem. 

2001;276(27):25150-25156. 

95. Innes BT, Bailey ML, Brandl CJ, Shilton BH, Litchfield DW. Non-catalytic 

participation of the Pin1 peptidyl-prolyl isomerase domain in target binding. 

Front Physiol. 2013;4:18. 

96. Lee TH, Chen CH, Suizu F, et al. Death-associated protein kinase 1 

phosphorylates Pin1 and inhibits its prolyl isomerase activity and cellular 

function. Mol Cell. 2011;42(2):147-159. 

97. Crenshaw DG, Yang J, Means AR, Kornbluth S. The mitotic peptidyl-prolyl 

isomerase, Pin1, interacts with Cdc25 and Plx1. EMBO J. 1998;17(5):1315-1327. 

98. Hoffmann I, Clarke PR, Marcote MJ, Karsenti E, Draetta G. Phosphorylation and 

activation of human cdc25-C by cdc2--cyclin B and its involvement in the self-

amplification of MPF at mitosis. EMBO J. 1993;12(1):53-63. 

99. Nakamura K, Zhou XZ, Lu KP. Distinct functions of cis and trans phosphorylated 

tau in Alzheimer's disease and their therapeutic implications. Curr Mol Med. 

2013;13(7):1098-1109. 

100. Fukuchi M, Fukai Y, Kimura H, et al. Prolyl isomerase Pin1 expression predicts 

prognosis in patients with esophageal squamous cell carcinoma and correlates 

with cyclinD1 expression. Int J Oncol. 2006;29(2):329-334. 

101. Wang JZ, Zhu WD, Xu ZX, et al. Pin1, endothelial nitric oxide synthase, and 

amyloid-β form a feedback signaling loop involved in the pathogenesis of 

Alzheimer's disease, hypertension, and cerebral amyloid angiopathy. Med 

Hypotheses. 2014;82(2):145-150. 

102. Ryo A, Suizu F, Yoshida Y, et al. Regulation of NF-kappaB signaling by Pin1-

dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. 

Mol Cell. 2003;12(6):1413-1426. 



96 

` 

103. Thanasoula M, Escandell JM, Suwaki N, Tarsounas M. ATM/ATR checkpoint 

activation downregulates CDC25C to prevent mitotic entry with uncapped 

telomeres. EMBO J. 2012;31(16):3398-3410. 

104. Verdecia MA, Bowman ME, Lu KP, Hunter T, Noel JP. Structural basis for 

phosphoserine-proline recognition by group IV WW domains. Nat Struct Biol. 

2000;7(8):639-643. 

105. Onica D. Characterizing the domain- and phosphorylation-requirements of the 

interaction between peptidyl prolyl isomerase pin1 and mitotic phosphatase 

cdc25c, University of Western Ontario; 2014. 

106. Zhang Y, Füssel S, Reimer U, Schutkowski M, Fischer G. Substrate-based design 

of reversible Pin1 inhibitors. Biochemistry. 2002;41(39):11868-11877. 

107. Zhang Y, Daum S, Wildemann D, et al. Structural basis for high-affinity peptide 

inhibition of human Pin1. ACS Chem Biol. 2007;2(5):320-328. 

108. Lebowitz J, Lewis MS, Schuck P. Modern analytical ultracentrifugation in protein 

science: a tutorial review. Protein Sci. 2002;11(9):2067-2079. 

109. Brown PH, Schuck P. Macromolecular size-and-shape distributions by 

sedimentation velocity analytical ultracentrifugation. Biophys J. 

2006;90(12):4651-4661. 

110. Beychok S. Circular dichroism of biological macromolecules. Science. 

1966;154(3754):1288-1299. 

111. Greenfield NJ. Using circular dichroism spectra to estimate protein secondary 

structure. Nat Protoc. 2006;1(6):2876-2890. 

112. Sreerama N, Venyaminov SY, Woody RW. Estimation of protein secondary 

structure from circular dichroism spectra: inclusion of denatured proteins with 

native proteins in the analysis. Anal Biochem. 2000;287(2):243-251. 

113. Doty F. Magnetism in high-resolution NMR probe design. I: General methods. 

Concepts in Magnetic Resonance. 1998;10(3):133--156. 

114. Malz F, Jancke H. Validation of quantitative NMR. J Pharm Biomed Anal. 

2005;38(5):813-823. 

115. Edwards JC. Principles of NMR. 87 A Sand Pit Rd, Danbury CT 06810: Process 

NMR Associates LLC; 1998. 

116. James TL. Fundamentals of NMR. Nuclear Magnetic Resonance. San Francisco, 

CA: Department of Pharmaceutical Chemistry, University of California; 1998. 



97 

` 

117. Wu PS, Ozawa K, Jergic S, Su XC, Dixon NE, Otting G. Amino-acid type 

identification in 15N-HSQC spectra by combinatorial selective 15N-labelling. J 

Biomol NMR. 2006;34(1):13-21. 

118. Freude D. Spectroscopy for Physicists: Nuclear Magnetic Resonance. 2006. 

119. Halfman CJ, Schneider AS. Direct measurement of fluorescence polarization or 

anisotropy. Analytical Chemistry. 1982;54(12):2009-2011. 

120. Tanford C. 'Cohn and Edsall': physical chemistry conclusively supports a protein 

model. Biophys Chem. 2003;100(1-3):81-90. 

121. Philo JS. An improved function for fitting sedimentation velocity data for low-

molecular-weight solutes. Biophys J. 1997;72(1):435-444. 

122. Jacobs DM, Saxena K, Grimme S, et al. 1H, 13C and 15N backbone resonance 

assignment of the peptidyl-prolyl cis-trans isomerase Pin1. J Biomol NMR. 

2002;23(2):163-164. 

123. Leslie AG. The integration of macromolecular diffraction data. Acta Crystallogr 

D Biol Crystallogr. 2006;62(Pt 1):48-57. 

124. Evans P. Scaling and assessment of data quality. Acta Crystallogr D Biol 

Crystallogr. 2006;62(Pt 1):72-82. 

125. Adams PD, Afonine PV, Bunkóczi G, et al. PHENIX: a comprehensive Python-

based system for macromolecular structure solution. Acta Crystallogr D Biol 

Crystallogr. 2010;66(Pt 2):213-221. 

126. Innes BT, Sowole MA, Konermann L, Litchfield DW, Brandl CJ, Shilton BH. 

Oxidation-Mediated Inhibition of the Peptidyl-Prolyl Isomerase Pin12014. 

127. Zhou XZ, Kops O, Werner A, et al. Pin1-dependent prolyl isomerization regulates 

dephosphorylation of Cdc25C and tau proteins. Mol Cell. 2000;6(4):873-883. 

128. Wüthrich K. The way to NMR structures of proteins. Nat Struct Biol. 

2001;8(11):923-925. 

129. Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H. Mitotic 

and G2 checkpoint control: regulation of 14-3-3 protein binding by 

phosphorylation of Cdc25C on serine-216. Science. 1997;277(5331):1501-1505. 

130. Kristjánsdóttir K, Rudolph J. Cdc25 phosphatases and cancer. Chem Biol. 

2004;11(8):1043-1051. 

131. Boutros R, Lobjois V, Ducommun B. CDC25 phosphatases in cancer cells: key 

players? Good targets? Nat Rev Cancer. 2007;7(7):495-507. 



98 

` 

132. Kumagai A, Dunphy WG. Regulation of the cdc25 protein during the cell cycle in 

Xenopus extracts. Cell. 1992;70(1):139-151. 

133. Hoffmann I, Karsenti E. The role of cdc25 in checkpoints and feedback controls 

in the eukaryotic cell cycle. J Cell Sci Suppl. 1994;18:75-79. 

134. Hunt T. Maturation promoting factor, cyclin and the control of M-phase. Curr 

Opin Cell Biol. 1989;1(2):268-274. 

135. Dorée M. Control of M-phase by maturation-promoting factor. Curr Opin Cell 

Biol. 1990;2(2):269-273. 

136. Bürger C, Wick M, Müller R. Lineage-specific regulation of cell cycle gene 

expression in differentiating myeloid cells. J Cell Sci. 1994;107 ( Pt 7):2047-

2054. 

137. Franckhauser C, Mamaeva D, Heron-Milhavet L, Fernandez A, Lamb NJ. 

Distinct pools of cdc25C are phosphorylated on specific TP sites and 

differentially localized in human mitotic cells. PLoS One. 2010;5(7):e11798. 

138. DiNitto JM, Kenney JM. Noise characterization in circular dichroism 

spectroscopy. Appl Spectrosc. 2012;66(2):180-187. 

139. Kelly SM, Jess TJ, Price NC. How to study proteins by circular dichroism. 

Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 

2005;1751(2):119-139. 

140. Luh LM, Hänsel R, Löhr F, et al. Molecular crowding drives active Pin1 into 

nonspecific complexes with endogenous proteins prior to substrate recognition. J 

Am Chem Soc. 2013;135(37):13796-13803. 

141. Labeikovsky W, Eisenmesser EZ, Bosco DA, Kern D. Structure and dynamics of 

pin1 during catalysis by NMR. J Mol Biol. 2007;367(5):1370-1381. 

142. Mercedes-Camacho AY, Etzkorn FA. Enzyme-linked enzyme-binding assay for 

Pin1 WW domain ligands. Anal Biochem. 2010;402(1):77-82. 

143. Messenger MM, Saulnier RB, Gilchrist AD, Diamond P, Gorbsky GJ, Litchfield 

DW. Interactions between protein kinase CK2 and Pin1. Evidence for 

phosphorylation-dependent interactions. J Biol Chem. 2002;277(25):23054-

23064. 

144. Zheng H, You H, Zhou XZ, et al. The prolyl isomerase Pin1 is a regulator of p53 

in genotoxic response. Nature. 2002;419(6909):849-853. 

145. Zhou W, Yang Q, Low CB, et al. Pin1 catalyzes conformational changes of Thr-

187 in p27Kip1 and mediates its stability through a polyubiquitination process. J 

Biol Chem. 2009;284(36):23980-23988. 



99 

` 

146. Velazquez HA, Hamelberg D. Conformational selection in the recognition of 

phosphorylated substrates by the catalytic domain of human Pin1. Biochemistry. 

2011;50(44):9605-9615. 

147. Daum S, Lücke C, Wildemann D, Schiene-Fischer C. On the benefit of bivalency 

in peptide ligand/pin1 interactions. J Mol Biol. 2007;374(1):147-161. 

148. Nishi H, Shaytan A, Panchenko AR. Physicochemical mechanisms of protein 

regulation by phosphorylation. Front Genet. 2014;5:270. 

149. Rippmann JF, Hobbie S, Daiber C, et al. Phosphorylation-dependent proline 

isomerization catalyzed by Pin1 is essential for tumor cell survival and entry into 

mitosis. Cell Growth Differ. 2000;11(7):409-416. 

150. Wulf G, Finn G, Suizu F, Lu KP. Phosphorylation-specific prolyl isomerization: 

is there an underlying theme? Nat Cell Biol. 2005;7(5):435-441. 

 

  



100 

` 

Appendices 

Appendix A: Crystal structure of Cys113Asp Pin1 construct shows 

a residue change in the active site 

Crystals of purified Pin1 protein were generated using the R14A C113D construct 

(courtesy of Dr. Brian Shilton), which has the six N-terminal residues deleted to decrease 

protein flexibility as well as the characteristic Arg to Ala mutation at residue 14.  Residue 

Cys113 is located within the active site of the protein and has been reported to impact the 

catalysis of substrate isomerization
77

. Crystals were made by sitting drop method using 1 

µl of 18 mg protein mixed with 1 µl of the mother liquor precipitant solution from the 

well below, comprised of 2.4 M ammonium sulphate in 100 mM HEPES buffer pH 7.8 

and 1% polyethylene glycol 400 (Figure A2 ). R14A construct crystals have been 

previously described in the literature under similar conditions
45

, but the Cys113Asp 

mutation has yet to be presented in a high resolution 3D structure. The crystallographic 

data collection and refinement information is listed in Table A1. Figure A2-A shows the 

electron density contour maps of 2Fo-Fc (blue) and Fo-Fc (green and red representing 

positive and negative densities, respectively) surrounding the Cys113 residue, before 

changing the residue in the software to an Asp. The two green electron density blobs are 

associated with the Asp side chain and  fit into the contour map once the structure has 

been refined with Asp113 (Figure A2-B). 
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Table A1 Pin1 R14A C113D crystallographic data collection and refinement 

parameters. 

Table A1 

  

R14A C113D Pin1 
Number of atoms 1497 

  macromolecules 1228 

Resolution Range (Å) 
27.791 - 1.865 

(1.8901 - 1.8645)   ligands 49 

Space group P3121   water 220 

unit cell 
68.530 68.530 79.270 

90.00 90.00 120.00 Protein residues 145 

Total reflections 34415 RMS (bonds) 0.006 

Total reflections  
(non-anomalous) 

18281 
RMS (angles) 1.055 

Multiplicity 5.8 (5.4) Ramachandran favored 98.58 % 

Completeness (%) 98.5 (89.9) Ramachandran allowed 1.42 % 

Mean I / sigma (I) 24.3 (8.6) Ramachandran outliers 0.00 % 

Wilson B-factor 20.412 Clash score 5.10 % 

R-merge 0.045 (0.179) Average B-factor 22.3833 

R-meas 0.050   macromolecules 20.4619 

R-work 0.1829 (0.2674)   ligands 31.2879 

R-free 0.2179 (0.3076)   solvent 31.6173 
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Figure A2 

  

Figure A2 Pin1 C113D refined crystal structure. 

Zoomed in portion of R14A C113D Pin1 crystal structure showing residue C113 

with additional positive electron density (shown in green)  (A) and D113 with no 

additional electron density  (B) at 1.865 Å, illustrating difference maps with a 

2|Fo|-|Fc| contour map (blue) at 1.0 ζ and a |Fo|-|Fc| contour map (green/red) at 3.0 

ζ. (C) Three dimensional structure of R14A Pin1 C113D showing the WW 

domain (red), the PPIase domain (blue), the sulphate, PEG molecule and glycerol 

atoms (orange) and the catalytic Cys residue mutated to an Asp (green). 
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Figure A3 

 
 

Figure A3 Plot of select WW domain residues displaying peak chemical shift 

changes. 

Select residues in the WW domain were further analyzed in the hopes of determining a 

binding constant. Only the 
1
H dimensional chemical shift changes were used for this 

analysis. The plots show binding curves for the selected residues: Gly20, Arg21 and 

Asn26, with corresponding Kd values listed in the legend to the right. WW domain 

residues were plotted based on their changes in chemical shift as a function of peptide 

concentration. 
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