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DNA sequencing in particular has
become a central component of the
modern diagnostic toolbox. DNA
barcoding – a subset of sequencing
technologies – involves comparing the
genetic code of a part of the animal
genome that appears in the same
place in every species but, owing to a
universally occurring mutation rate,
differs very slightly between species
[8]. Owing to the ability to compare a
single unknown specimen against
many potential species in a single
assay, and standardised protocols
that allow transparent and objective

Global insect declines are
putting ecosystem services at
risk [1]. As any conservationist
would doubtless concur,
without a system in place to
accurately measure and
contextualise losses, geographic
trends and species migrations, a
comprehensive understanding of the
extent of such apparent declines can
be misleading [2,3]. One critical issue
is that our ability to monitor and
record these declines is highly
dependent on taxonomic expertise
[4]. Consequently, there is a growing
acknowledgement of the breadth and
depth of data needed, and the
decreasing number of entomological
taxonomists [5–7]. Of course, these
trends are not occurring in isolation;
there has been a growing trend in
taxonomic research employing
molecular methods – eschewing
morphological identification in
preference for those that determine
species based on DNA. 

Figure 1. Sequencing approaches take DNA samples extracted from insects, make millions of copies of
(a) random fragments, which are then paired together based on overlapping sections for genome
sequencing or (b) copies of targeted parts of the genome (a barcode) that are compared based on
dissimilarity between fragments, then compared to databases to describe the community composition.

DNA sequencing, meta-barcoding
and applications in
entomology and taxonomy
– a beginner’s guide
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comparison of specimen
identifications between laboratories,
barcoding is becoming more and
more popular [9]. Despite these
advantages, the time-consuming
processes of extracting DNA and
conducting sequencing reactions on
individual specimens have mostly
limited DNA barcoding for specimen
identification to life stages where a
taxonomic key may not be available or
important diagnostic structures are
degraded or missing [10].

Large numbers of samples are part
and parcel of ecological monitoring,
the reality of which has so far limited
the use of DNA-based approaches;
that is, until the recent advent of high-
throughput sequencing (HTS)
technologies. HTS has allowed DNA
barcode-based identification to be
conducted relatively cheaply and on a
huge number of samples [11].
Thousands of reactions can be done
at the same time to produce a huge
number of barcode sequences [12],
which can in turn be used for genome
sequencing (Figure 1a) or
“metabarcoding” (simultaneous
comparison of different insect species
in a mixed sample; Figure 1b). 

Due to downstream computer
analyses of these sequences, many
thousands of individuals can thus be
identified rapidly based on
comparison to publicly available
databases like NCBI Genbank
(https://www.ncbi.nlm.nih.gov/genba
nk/statistics/) and the Barcode of Life
Database (https://ibol.org/resources/
natural-history-collections/). The
speed and breadth of biodiversity
surveying possible through
metabarcoding means it has
increasingly been employed across
numerous fields of applied ecology
[13,14]. The number of papers

“individual” animal in the sample pool,
and there is some argument over their
statistical significance as
“pseudoreplicates” [19,20].
Consequently, inadequate sampling
and hence insufficient sample
replication within a population cannot
be “fixed” by intensive sequencing of a
small gene pool.

Following sample collection in the
field, bulk samples are typically
homogenised back in the lab into a
“paste” from which DNA can be
extracted. Before this stage, various
options are open, e.g., preliminary
subsampling of trap samples to a
taxon of interest (e.g., bees), or
“bulking up” sample replicates from
sites to reduce sequencing costs. After
DNA extraction, the next decision is
which barcode to use.

Despite current widespread usage
for assessing intra- and interspecific
genetic variation, there is actually a
wide choice of different barcodes.
Each barcode is limited, with
advantages and disadvantages in
terms of the level of variation
detectable. Barcoding regions
represent highly conserved regions,
most often found within the
mitochondrial genome. The most
popularly employed barcode regions
are the Cytochrome Oxidase I (COI)
and Cytochrome Oxidase II (COII)
genes. Similarly, there are structural
mitochondrial genes like 12S, 16S, 18S
and 28S as well as various inter-gene
spacer regions (e.g., ITS2), which are
commonly employed in
metabarcoding studies of insects
[9,15,21,22]. In terms of selecting these
genes or genetic regions, different
studies may involve selection of
different sections of the gene
concerned (e.g., COI has at least three
regions commonly used in
metabarcoding; Figure 3). Importantly,
results from a survey that uses one
barcode (e.g., COI) will be subtly
different from another study in the
same region using a different barcode
(e.g., ITS2), meaning they cannot be
accurately compared.  

For sure, appropriate selection of a
barcode or taxonomic marker is a
critical step, since all downstream
species detection and identification will
necessarily rely on how conserved this
marker is across taxa, and hence the
discriminatory power of the nucleotide
variation contained within it [18].

In terms of a broad survey of the
insect genome and its variance,
difficulties arise due to a lack of
universal cover across insects by any
one barcode region, either across
different taxa (Figure 3) or different

published that use a metabarcoding
approach has been growing nearly
exponentially since 2012 (Figure 2),
whilst the cost of sequencing has
plummeted in that time [15]. 

Uptake of molecular tools is about
more than just cost; it also
encompasses important aspects such
as the ease of use, accuracy,
reproducibility, up-front investment of
training and equipment and
compatibility within existing policy
frameworks, some or all of which may
have hindered widespread
collaboration between so-called
‘classic’ and molecular taxonomists
[9]. Fortunately, many excellent
resources like the following published
papers [12,14–17] and training
workshops (e.g., Edinburgh Genomics;
https://genomics.ed.ac.uk/services/int
roduction-metagenomic-data-
analysis, or The Earlham Institute;
https://www.earlham.ac.uk/microbial-
analysis) already exist for bridging this
gap, but sometimes they miss out on
the basics in terms of molecular
technological theory and  practice. 

As for the practical aspects of
conducting an ecological survey using
metabarcoding approaches, when
designing such a survey, the same
constraints related to sampling
method and collection scheduling
that determine the explanatory power
of a classic sampling programme
apply [18]. Appropriate sampling tool
choice is of course crucial, for
example: pan trap, blue-vein trap,
Malaise trap for flying insects; pitfall
trap, suction sampler or soil cores for
ground or subterranean insects; and
various combinations for aquatic
invertebrates, etc.  Despite the high
number of sequences that
metabarcoding can generate, these
sequences do not represent an

Figure 2. Metabarcoding in the literature. Published articles obtained from Scopus, Crossref, and PubMed
databases on 09 Nov. 2021 for all metabarcoding studies.
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regions (Figure 4). Although COI is
arguably fast becoming the barcode
of choice for animals, it has been
shown to have limited applicability
with certain taxa, such as the
Tephritidae, due to its lack of
interspecific variation [23]. Multi-locus
barcoding, where multiple barcoding
regions are sequenced from the same
sample, have the advantage of
broader and more accurate species
identification, but will also double the
financial cost of any sequencing
endeavour, and make comparison
between studies ultimately even more
complicated [24]. 

Even after considering the cost of
sequencing, various manufacturers
offer different prices, ways of doing
the reactions and the types of
experiment they are best adapted to.
The diversity of sequencing
equipment has grown substantially
over the past decade; the market is
mostly dominated by two companies:
Illumina (https://www.illumina.com/)
and PacBio (https://www.pacb.com/).
The former employs technology
focused on reducing “price per base”
sequencing costs and number of
reads per sequencing reaction
(typically making them the machine
of choice for metabarcoding). The
latter offers the longest continuous
reads of any machine available
currently, the company boasting the
ability to read an organism’s entire
genome in one go, hence eliminating
the need for post-sequencing
assembly, thereby making these
machines more suited to de novo
genome sequencing. Other small
companies produce similar
equipment, although most notable of

simple “put in raw data, get out results”
system, the pipelines perform a series
of different operations using the results
from the previous part of the pipeline.
They have many additional functions,
including eliminating messy or poor-
quality reads from the database,
producing scores for the “goodness of
fit” onto metabarcoding databases, as
well as translating sequencing
machine data files into formats that
can be analysed on statistical
software, like R. The diversity of
programs is fortunately small, and
most of the commonly-used pipelines
(e.g., QIIME2; https://qiime2.org/) come
with extensive instructional aids. The
degree of computer literacy required
however, often makes hiring a
specialist bioinformatics technician a
necessity. 

The end result of metabarcoding,
ideally, is a complete account of all
species in the sampled ecosystem,
including ones either difficult to
identify accurately under a
microscope or extremely locally rare
species. Yet, despite the advances
and hope of greater things to come in
terms of better elucidating functional
ecology, the methodology and
general approach are far from
perfect. New species will always need
to be identified initially using
microscopy, ensuring the need for
maintenance of type specimens and
the role of natural history museums
[27,28]. Despite ever shrinking costs of
sequencing, limited science funding in
regions critically understudied for
biodiversity will limit the impact of the
metabarcoding approach in those
regions [29]. Furthermore, because of
the relative infancy of the technology

all, Oxford Nanopore has produced a
“portable sequencing machine” called
the MinION (https://nanoporetech.
com/products/minion). 

Most sequencing machines use a
combination of thermal cycling, DNA
polymerase enzymes, spectroscopic
lasers and photoreactive DNA markers
to replicate the target genome or DNA
sequence. From the colour of light
given off by the DNA as it replicates the
DNA fragment, we can tell what bases
are being used, and therefore what the
DNA sequence of this new copy of DNA
is. The MinION on the other hand uses a
passive sequencing approach, rather
than a biochemical reaction. This
means that it does not replicate the
DNA fragments but instead it passes
the DNA through a partially-
permeable membrane, recording
what nucleotides are passing through
the membrane in real time.

These machines can work under
field conditions, with limited power
supply and minimal sample
preparation. To date, the MinION has
been employed in published studies of
microbial ecology using a 16S
metabarcoding approach [25], whilst
for metabarcoding studies of
invertebrates, those involving the COI
barcode are just now appearing as
preprint manuscripts [26].

In terms of analysing the results
obtained from metabarcoding
approaches, bioinformatics, the
computerised process of converting
the sequences into useful information
(usually an assembled genome or an
ecological community framework) is,
despite its complexity, now widely
used.  These approaches are called
pipelines, because rather than being a

Figure 3. Cytochrome oxidase I gene has three different barcode sections. Longer sections offer greater differentiation between species, but produce fewer reads
making them less effective on bigger samples. Data from Meusnier et al. [30] (Creative Commons CC BY 2.0).
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in the eyes of policy makers,
standards and guidelines around its
use are still evolving and validated
protocols do not yet exist. For example,
metabarcoding data cannot yet be
used for Water Framework Directive
(WFD) monitoring of benthic
macroinvertebrates. This piece of
legislation instead only accepts
microscope-based community
identification as a record of site
biodiversity. Finally, as mentioned
earlier, comparison between two
studies using different barcoding
regions is potentially flawed, meaning
that, although there is a huge number
of studies already in existence, we are
still far away from an accurate global
account of insect biodiversity. 

Across Europe, several excellent
invertebrate monitoring schemes
combine classic microscope-based
identification with metabarcoding
approaches to supplement the
breadth and depth of their data. These
include the UK Pollinator Monitoring
Scheme (PoMS; https://ukpoms.
org.uk/) and Diversity of Insects in
Nature protected Areas (DINA;
https://www.dina-insektenforschung.

de/insekten-monitoring-
evk?lang=en) in Germany. The
affordability of metabarcoding
approaches has substantially
improved over the past decade, as
has the robustness of reference
databases and data-processing
pipelines. Consequently, we appear to
be on the cusp of a revolution in both
the technology and its application, in
effect a fortunate paradigm shift in
insect monitoring towards
metabarcoding approaches. Having
said that, the basic science
underpinning molecular-based
approaches is still ultimately reliant on
classic taxonomy – in other words, you
can’t assign a barcode to a species
without the physical type sample!
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Figure 4. (a) Global distribution of DNA barcodes in public reference databases. (b) Distribution of records and unique species within major public databases for the
10 barcode markers with the most reference information for Insecta. Data from Piper et al. [9] (Creative Commons CC BY).
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