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RESEARCH ARTICLE
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Mouse Validates Its Suitability as a Murine
Model of Duchenne Muscular Dystrophy
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Abstract

Various therapeutic approaches have been studied for the treatment of Duchenne muscular
dystrophy (DMD), but none of these approaches have led to significant long-term effects in
patients. One reason for this observed inefficacy may be the use of inappropriate animal
models for the testing of therapeutic agents. The mdx mouse is the most widely used murine
model of DMD, yet it does not model the fibrotic progression observed in patients. Other mu-
rine models of DMD are available that lack one or both alleles of utrophin, a functional ana-
log of dystrophin. The aim of this study was to compare fibrosis and myofiber damage in the
mdx, mdx/utrn+/- and double knockout (dko) mouse models. We used Masson’s trichrome
stain and percentage of centrally-nucleated myofibers as indicators of fibrosis and myofiber
regeneration, respectively, to assess disease progression in diaphragm and gastrocnemius
muscles harvested from young and aged wild-type, mdx, mdx/utrn+/- and dko mice. Our re-
sults indicated that eight week-old gastrocnemius muscles of both mdx/utrn+/- and dko

hind limb developed fibrosis whereas age-matched mdx gastrocnemius muscle did not
(p=0.002). The amount of collagen found in the mdx/utrn+/- diaphragm was significantly
higher than that found in the corresponding diaphragm muscles of wild-type animals, but
not of mdx animals (p = 0.0003). Aged mdx/utrn+/- mice developed fibrosis in both dia-
phragm and gastrocnemius muscles compared to wild-type controls (p = 0.003). Mdx dia-
phragm was fibrotic in aged mice as well (p = 0.0235), whereas the gastrocnemius muscle
in these animals was not fibrotic. We did not measure a significant difference in collagen
staining between wild-type and mdx gastrocnemius muscles. The results of this study sup-
port previous reports that the moderately-affected mdx/utrn+/- mouse is a better model of
DMD, and we show here that this difference is apparent by 2 months of age.
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Introduction

Treatment strategies for Duchenne muscular dystrophy (DMD), a severe neuromuscular de-
generative disorder, have been ongoing for decades with little significant long-term efficacy re-
ported [1]. While scientific and technological advancements have enhanced patient quality of
life, the disease remains invariably fatal. The majority of current research into treating DMD
involves the restoration of the protein dystrophin, which is absent or non-functional in these
patients. Of these, a number of studies in DMD patients have used cell therapy to replace dys-
trophin, reporting an increase in dystrophin-positive myofibers [2-8]. While these studies
have successfully reintroduced the protein to dystrophic skeletal muscle, improvements in
function have been limited. A recent study by Hogrel et al reported a potential long-term effect
of a myoblast transplant into an affected female carrier of the dystrophin mutation. Although
long-term functional effects could not be definitively concluded from this study, the results
suggest beneficial effects of cell therapy [9]. To date, the most commonly used murine model
to test cell replacement and other strategies in a pre-clinical setting has been the mdx mouse,
which lacks dystrophin due to an X-linked mutation in its gene [10, 11]. Although the mdx
mouse is a genetic homolog of the human disease, it has been shown that this model does not
mimic the pathology observed in patients because up-regulation of utrophin, a dystrophin ana-
logue, partially compensates for the absence of the cytoplasmic protein [12]. Additionally, the
longer telomere length present in inbred laboratory mice confer a greater regenerative capacity
of muscle progenitor cells in these animals compared to human skeletal muscle [13]. As a result
of these differences, the disease does not manifest severely in mdx mice. Specifically, fibrosis, a
hallmark feature of DMD in patients, is not observed in mdx mice [14]. A lack of dystrophin in
skeletal muscle leads to decreased sarcolemmal integrity, which causes an increase in cell mem-
brane permeability. As a result, an influx of calcium ions causes increased protein degradation
that eventually leads to muscle cell death. Inflammatory cells that infiltrate the site of necrosis
are a rich source of transforming growth factor beta (TGFp). TGFp then exerts its profibrotic
effect on fibroblasts, which then increase production of extracellular matrix (ECM) proteins.
An excessive amount of ECM production leads to the eventual onset of fibrosis [15]. The fact
that DMD patients develop severe fibrosis whereas mdx mice do not may, in part, explain why
treatments performed in murine studies have been ineffective in human trials. Fibrosis limits
the amount of available muscle tissue to target with stem cell, gene or drug therapy [16]. Thus,
use of an appropriate model that more accurately reflects the histopathology of DMD fibrosis
may better direct current research. Recent advances in exon-skipping have highlighted the im-
portance of a suitable murine model in pre-clinical studies. In 2010, Goyenvalle demonstrated
an increase in dystrophin expression in severely-affected mice lacking both utrophin and dys-
trophin following multiple injections with a morpholino oligomer targeted to exon 23 of the
dystrophin gene [17]. Two years later, the same group modified their protocol to use an adeno-
associated virus vector containing a small nuclear RNA specific to exon 23. A single treatment
was sufficient to restore dystrophin in all muscles examined, including heart tissue, and dra-
matically increased life expectancy from 10 to 50 weeks of age [18]. These studies have been
crucial in highlighting the need for inclusion of a more accurate DMD mouse model with
which to assess the efficacy of therapeutic strategies.

Although utrophin-dystrophin-deficient (dko) mice were generated in 1997 [19-21], they
are scarcely used in current studies. While a select number of research groups have used this se-
verely-affected mouse model, the predominant model used in today’s research lab is still the
mdx mouse. A few studies have suggested that haploinsufficiency of the utrophin gene (mdx/
utrn+/-) may provide a more appropriate murine model of DMD [22, 23]. For example, it has
been shown that the diaphragm and quadriceps muscles of mdx/utrn+/- mice become fibrotic
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as early as 3 and 6 months of age, respectively [23]. Many studies involving murine models of
DMD have used mice younger than 6 months of age, thus the purpose of this study was to in-
vestigate extent of fibrosis in the mdx/utrn+/- mouse at an earlier age to determine its suitabili-
ty as a more accurate representation of the human pathology. Additionally, since quadriceps
and diaphragm muscles were the only groups examined in the aforementioned study, we fo-
cused our study on the gastrocnemius muscle as it has often been used as a site of cell implant
[24]. In the present study, we examine extent of fibrosis and muscle regeneration in 8 week-old
mice as well as aged 10 month-old mice and provide a comprehensive analysis of these parame-
ters in various skeletal muscles that are used in DMD research.

Materials and Methods
Animal care and ethics statement

Experiments were performed at The Lawson Health Research Institute at St. Joseph’s Health
Care (SJHC) in London, Ontario. Female C57Bl/6 mice (5-7 weeks old upon arrival) were pur-
chased from Charles Rivers and mdx/utrn+/- mice, originally generated by Dr.’s Mark Grady
and Josh Sanes (Washington University, St. Louis) [12], were generously provided to us by Dr.
Robert Grange (Virginia Polytechnic and State University) and maintained in the Animal Care
Facility at STHC. Colonies were maintained under controlled conditions (19-23°C, 12 hour
light/dark cycles) and allowed water and food ad libitum. 7 to 8 week-old and 10 month-old
male and female C57Bl/6, mdx and mdx/utrn+/- mice were used in this study. Only 7-8 week-
old dko mice were used since these mice do not tend to live past 20 weeks of age (n = 3 for all
groups). For comparison of various skeletal muscles, twelve week-old mdx/utrn+/- male and
female mice were used. All procedures involving animal experiments were carried out in strict
accordance with the Canadian Council on Animal Care (CCAC) and were approved by the An-
imal Use Subcommittee at Western University.

Genotyping mdx, mdx/utrn+/- and dko mice

Genomic DNA from tail snips or ear notch tissue was used for genotyping. Presence of the
utrophin gene was detected using the following set of primers (Sigma): 5’-TGCAGTGTCTC-
CAATAAGGTATGAAC-3,5-TGCCAAGTTCTAATTCCATCAGAAGCTG -3’ (forward
primers) and 5’-CTGAGTCAAACAGCTTGGAAGCCTCC-3’ (reverse primer).

Tissue preparation and Histology

For tissue collection, mice were sacrificed via gas euthanasia. Diaphragm and gastrocnemius
(GM) muscles from 8 week-old and 10 month-old mice were dissected and immediately fixed
in formalin for 24-48h and embedded in paraffin. For a more comprehensive analysis of dis-
ease manifestation in mdx/utrn+/- mice, diaphragm, quadriceps, soleus, tibialis anterior (TA)
and gastrocnemius (GM) muscles were similarly isolated from 12 week-old mdx/utrn+/- mice.
Extreme care was taken to ensure muscles were embedded in the same orientation across each
muscle group. Tissue blocks were sectioned at 5um thickness and dried in an oven at 37°C
overnight. To achieve representative sections from the whole muscle tissue, serial sections were
taken every 20 slices, except for the diaphragm muscle where serial section were taken every

3 slices. Tissue sections were then deparaffinised and rehydrated in a series of xylene and etha-
nol washes to prepare them for subsequent Masson’s trichrome staining for collagen content,
or haematoxylin and eosin staining to visualize regenerating myofibers. Serial sections were
used for the two staining methods to ensure that analysis of both collagen content and muscle
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regeneration referred to the same samples. Following the staining step, slides were dehydrated,
washed in xylene and mounted with Permount mounting medium.

Microscopy and Image Analysis

Histological images were acquired on a Zeiss Axioscope microscope under a 20x objective
using Northern Eclipse software. Non-overlapping fields of view of the entire tissue were taken
for each section. Five sections were imaged per tissue. For assessment of myofiber damage, per-
centage of centrally-located nuclei was used as an indication of regeneration. All fields of view
containing cross-sectional myofibers were imaged and manually analysed. Collagen content
was assessed across the entire tissue slice and automatically quantified using an in-house colour
thresholding algorithm written in MATLAB 2010a (Mathworks, Natick, MA, USA). Briefly, all
images were transformed into Lab colour space allowing the isolation of the colour and light-
ness components of each pixel. A k-means clustering algorithm was then applied to the colour
components of each individual image to partition the pixels into groups of relatively ‘red” or
‘blue’ colour values. A uniform threshold was applied to all images to mask regions with high
lightness (appearing as white). Finally, morphological closing operations were performed on
the ‘red’ and ‘blue’ regions to fill any gaps less than 3 pixels in radius. The percent of collagen
present in each image was calculated as the area of the remaining ‘blue’ region divided by the
area of the entire image. Automatic thresholds were manually verified with labelled colour
overlays on the original histology images to ensure that collagen presence was

accurately identified.

Statistical Analysis

For quantified images, a one-way ANOVA was performed followed by Tukey’s post-hoc test to
determine difference between groups using GraphPad Prism. Differences between groups were
considered significant at a p-value less than 0.05 (n = 3 for wild-type and dko miceandn =5
for mdx and mdx/utrn+/- mice).

Results

Fibrosis is present at ten months of age in mdx/utrn+/-, but not madx,
gastrocnemius muscle

At ten months of age, mdx gastrocnemius (GM) muscle did not differ in collagen content com-
pared to GM muscle of wild-type mice (Fig. 1A-C). In contrast, haploinsufficiency of utrophin
led to significant collagen deposition in GM tissue of aged mdx/utrn+/- mice (mean+SD:
12.76%+3.06, p = 0.0033). There was no significant difference in collagen deposition between
mdx and mdx/utrn+/- GM muscle. Although GM muscles of aged mdx mice did not show sig-
nificant fibrosis compared to healthy wild-type controls, there was a large proportion of cen-
trally-located nuclei in the myofibers indicative of muscle regeneration in both mdx (70.06%
17.6) and mdx/utrn+/- (58.86%=6.7) mice, respectively (p<0.0001, Fig. 1D-F).

DMD-associated fibrosis is present in both aged mdx and mdx/utrn+/-
diaphragm muscle

Both mdx and mdx/utrn+/- diaphragm muscles were significantly fibrotic in ten month-old
mice compared to age-matched wild-type controls (Fig. 2A-C, p = 0.026), indicated by an ap-
proximate 2.5 fold increase in collagen content. Both mdx and mdx/utrn+/- diaphragm muscle
revealed a significantly higher percent of centrally-located nuclei (34.65%+4.4 and 32.45%5.6,
respectively) compared to the age-matched wild-type mice (p<0.0001). There was no significant
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Figure 1. Muscle pathology in 10 month-old GM muscle of wild-type, mdx and mdx/utrn+/- mice. Extent of total collagen staining (blue) in 10 month-old
wild-type (A), mdx (B) and mdx/utrn+/- (C) GM muscle was used as a marker of fibrosis. Proportion of centrally nucleated fibers in the same tissues (D, E, and
F) were measured to assess extent of regeneration. Quantification of total collagen staining (G) and proportion of centrally-nucleated myofibers (H) is
represented as the mean +SD. * represents p<0.05 and ** represents p<0.01 (scale bar = 100um).

doi:10.1371/journal.pone.0117306.9001

difference in number of centrally-nucleated myofibers between mdx and mdx/utrn+/- mice
(Fig. 2D-F).

Young mdx/utrn+/- and dko, but not mdx, gastrocnemius muscle mimics
DMD histopathology

Fibrosis was assessed in 8 week-old GM muscle of wild-type, mdx, mdx/utrn+/- and dko mice
(Fig. 3A-D). There was no observed fibrosis in mdx GM (3.38%:+0.9) compared to wild-type

PLOS ONE | DOI:10.1371/journal.pone.0117306 January 21,2015 5/13



e »
@ ' PLOS | ONE Fibrosis in Murine Models of DMD

.
8 501
S
T 20 £ 40-
S 2 I
2 154 30
Py 2
o
;': 104 E 20-
= )
O 51 © 104
5
0' T o 0' T
s* N R © + N
o ¢ & o S
\\ ¢° .\6 %
a () & S
< ¢

Figure 2. Muscle pathology in 10 month-old diaphragm muscle of wild-type, mdx and mdx/utrn+/- mice. Extent of total collagen staining (blue) in
10 month-old wild-type (A), mdx (B) and mdx/utrn+/- (C) diaphragms was used as a marker of fibrosis. Proportion of centrally nucleated fibers in the same
tissues (D, E, and F) were measured to assess extent of regeneration. Quantification of total collagen staining (G) and proportion of centrally-nucleated
myofibers (H) is represented as the mean +SD. * represents p<0.05 and *** represents p<0.001 (scale bar = 100um).

doi:10.1371/journal.pone.0117306.g002

GM (3.40 £0.2). There was a significantly higher amount of collagen deposition in mdx/utrn+/-
GM (7.28%%2.2) compared to healthy wild-type and mdx tissue; however this difference was
not significant between GM muscles of dko mice (9.49%=1.5). Overall, quantification of collagen
content indicates that fibrosis is absent in wild-type and mdx GM muscle, but present in mdx/
utrn+/- and dko GM muscle at a young age (p = 0.0003). Muscle regeneration was significantly
higher in all three murine models of DMD compared to the wild-type controls (Fig. 3E-H). The
proportion of centrally-located nuclei did not differ, however, between mdx (50.41%+18.2),
mdx/utrn+/- (49.78%+12.0) and dko GM muscle (45.44%+4.7, p = 0.0007).

PLOS ONE | DOI:10.1371/journal.pone.0117306 January 21,2015 6/13
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Figure 3. Muscle pathology in 8 week-old GM muscle of wild-type, mdx, mdx/utrn+/- and dko mice. Extent of total collagen staining (blue) in 8 week-old
wild-type (A), mdx (B), mdx/utrn+/- (C) and dko (D) GM muscles was used as a marker of fibrosis. Proportion of centrally nucleated fibers in the same tissues
(E, F, G, and H) were measured to assess extent of regeneration. Quantification of total collagen staining (I) and proportion of centrally-nucleated myofibers
(J) is represented as the mean +SD. * represents p<0.05, ** represents p<0.01, and *** represents p<0.001 (scale bar = 100pm).

doi:10.1371/journal.pone.0117306.g003

Fibrosis is present in diaphragm muscle at a young age in all three
murine models of DMD

Collagen content in the diaphragm muscle was not determined to be significantly different be-
tween mdx mice (11.04%+2.3) and the two more severely-affected animal models or between
healthy wild-type and mdx mice (Fig. 4A-D). Collagen deposition was significantly higher in
the diaphragm of both dko (14.17%+4.4) and mdx/utrn+/- (13.32%+2.5) mice at 8 weeks of
age compared to age-matched wild-type diaphragm muscle (7.1%+0.3, p = 0.0235). Myofiber
regeneration was significantly higher in the diaphragm muscles of mdx (41.48%6.6) mdx/
utrn+/- (39.39%+10.18) and dko (30.95%+6.4) mice compared to diaphragm muscle in wild-
type mice (Fig. 4E-H, p<0.0001).
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Figure 4. Muscle pathology in 8 week-old diaphragm muscle of wild-type, mdx, mdx/utrn+/- and dko mice. Extent of total collagen staining (blue) in
8 week-old wild-type (A), mdx (B), mdx/utrn+/- (C) and dko (D) diaphragms was used as a marker of fibrosis. Proportion of centrally nucleated fibers in the
same tissues (E, F, G, and H) were measured to assess extent of regeneration. Quantification of total collagen staining (1) and proportion of centrally-
nucleated myofibers (J) is represented as the mean +SD. * represents p<0.05, ** represents p<0.01, and *** represents p<0.001 (scale bar = 100um)

doi:10.1371/journal.pone.0117306.g004

Extent of fibrosis differs between muscle groups in the mdx/utrn+/-
mouse

Diaphragm, quadriceps, soleus, tibialis anterior (TA) and gastrocnemius (GM) muscles were
analyzed from 12 week-old mdx/utrn+/- mice (Fig. 5). Collagen content in diaphragm muscle
was significantly higher than all other muscles assessed (p<0.0001). Both the quadriceps
(8.31%+0.1) and GM muscles (9.89%=2.4) were higher in collagen content than the soleus
muscle (2.80%=1.0) at this age. Extent of fibrosis was not significantly different in the TA mus-
cle (5.85%+1.1) compared to the quadriceps, GM or soleus muscles. Myofiber regeneration, in-
dicated by centrally-located nuclei, was significantly higher in all four lower limb muscles
compared to myofibers in the diaphragm, which only had 35.1% of myofibers in a regenerative
state (p<0.0001).
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Figure 5. Comparison of histopathology of 12 week-old mdx/utrn+/- diaphragm, quadriceps, soleus, tibialis anterior and gastrocnemius muscles.
Extent of collagen staining (A,C,E,G,l) and muscle regeneration (B,D,F,H,J) in 12 week-old mdx/utrn+/- mice. Quantification of total collagen staining (K) and
centrally-nucleated myofibers (CNF, L) is represented as the mean +SD. * represents p<0.05, ** represents p<0.01, and *** represents p<0.001 (scale
bar = 100um). TA = tibialis anterior, GM = gastrocnemius.

doi:10.1371/journal.pone.0117306.g005

Discussion

Fibrosis is a hallmark feature of Duchenne muscular dystrophy (DMD), yet the most widely-
used murine model for the disease, the mdx mouse, does not model this aspect of DMD until
and advanced age [25]. Consistent with previous reports [26], this study demonstrates that
while the diaphragm muscle becomes fibrotic in aged mdx mice hind limb muscle does not.

PLOS ONE | DOI:10.1371/journal.pone.0117306 January 21,2015 9/13
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Many studies that investigate the potential use of stem cell or gene therapy for DMD use hind
limb muscles, such as the gastrocnemius muscle (GM), for sites of injection [27]. Here, we
demonstrate that neither young nor aged mdx mice develop a significant amount of fibrosis in
the GM muscle compared to healthy wild-type controls of the same age. The fact that mdx
mice lack this excessive deposition of extracellular matrix proteins may lead researchers to
overestimate treatment efficacy in this murine model since there is a lack of environmental
hostility when testing their therapeutic agents. Alternatively, the mdx/utrn+/- mouse exhibits
hind limb fibrosis at 10 months of age. Interestingly, a large proportion of regenerating myofi-
bers, indicative of damage, was measured in both aged animal models. Centrally-located nuclei
are a hallmark of muscle regeneration, and are often used as an indicator of muscle pathogene-
sis [28]. However, as we have clearly demonstrated in this study, the presence of centric nuclei
alone does not provide an accurate measure of the degree of muscle degeneration. Indeed,
while centric nuclei are prominent in the mdx mouse model of DMD, other aspects of the dis-
ease in humans, particularly fibrosis, are not phenocopied. This may be due, at least in part, to
the upregulation of utrophin in the mdx mouse. As a result, overall muscle damage is signifi-
cantly less in mdx mice than in utrophin heterozygotes and double knockout animals. Interest-
ingly, we have further shown that in muscle tissues exhibiting higher levels of collagen

(eg diaphragm), proportions of centric nuclei are lower. In contrast, the GM muscle in mdx
mouse exhibits a significantly higher number of centric nuclei, but little deposition of collagen.
These findings are consistent with earlier reports hypothesizing that cenrally-nucleated myofi-
bers are more resistant to mechanical stress, which may in part explain for the differences in
the pathology observed in diaphragm versus hind limb skeletal muscles [29]

Since DMD manifests at a young age in humans and because most DMD research is per-
formed in younger animals, we also investigated extent of fibrosis in eight week-old mice. Al-
though the GM muscles in young mdx mice are in a regenerative state as evidenced by the
presence of centrally-located nuclei, we did not measure a significant degree of fibrosis in
them. In comparison, there was a higher level of collagen measured in both moderately-
affected mdx/utrn+/- and severely-affected dko mice relative to their healthy counterparts, sug-
gesting fibrotic progression in these animals. Given the discrepancy between these findings and
those of Zhou et al. (2008) who reported that collagen deposition was comparable in the quad-
riceps muscle of both mdx and mdx:utrn+/- mice at three months of age, we also characterized
the extent of fibrosis in a number of skeletal muscles isolated from the utrophin heterozygote
mouse at this age. As expected, the diaphragm muscle was highly fibrotic compared to the
quadriceps, soleus, tibialis anterior and GM muscles. In comparison, there was no detectable
difference in collagen deposition between the quadriceps, TA or GM muscles; this is an impor-
tant finding considering that all three muscles are used in current research and therefore
should display signs of fibrosis [30, 31]. Interestingly, we measured a lower amount of collagen
content in the slow-twitch soleus muscle than the fast-twitch quadriceps and GM muscles. The
fact that fibrotic progression is not equal between individual skeletal muscles is an important
factor to consider in future studies.

Taken together, this study supports previous literature that argues for the replacement of
the mdx mouse with more severely-affected models of DMD, such as the mdx/utrn+/- or dko
mouse [19, 20]. Although dko mice develop debilitating fibrosis at a young age, these animals
do not tend to live past twenty weeks and thus are not generally used in studies examining the
long term efficacy of a therapeutic intervention. Similarly, although the diaphragm muscle in
all three murine models develops fibrosis at some point, a more accurate model of DMD
should reflect disease manifestation in axial limbs as well. Nevertheless, it would be optimal for
any therapeutic drug under investigation to show efficacy in the diaphragm muscle since fail-
ure of this respiratory organ is a common cause of death in DMD patients [32, 33]. Since the

PLOS ONE | DOI:10.1371/journal.pone.0117306 January 21,2015 10/13



@' PLOS ‘ ONE

Fibrosis in Murine Models of DMD

mdx/utrn+/- mouse develops fibrosis in both hind limb and respiratory skeletal muscles at a
young age while not being so affected such that it dies prematurely, we provide further evidence
here that it may be an appropriate and useful model of DMD. Furthermore, we report here that
this increased disease severity in the mdx/utrn+/- mouse compared to its mdx counterpart is
apparent by two months of age. The mdx/utrn+/- mouse is also a suitable precursor model for
scaling studies to large animal models of DMD such as the golden retriever model (GRMD),
which exhibits signs of increased endomysial fibrosis as early as 15 days after birth, with severe
fibrosis by 9 months of age [34-36].

Conclusion

In addition to the degeneration of muscle in DMD patients, fibrosis is a prominent and debili-
tating aspect of the disease. Use of an animal model that accurately reflects both of these fea-
tures will be absolutely integral to the development of treatment strategies to not only increase
quality of life but also slow the progression of the disease and ultimately increase

life expectancy.
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