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Purpose: Single-photon-counting (SPC) x-ray imaging has the potential to improve image quality
and enable novel energy-dependent imaging methods. Similar to conventional detectors, optimizing
image SPC quality will require systems that produce the highest possible detective quantum effi-
ciency (DQE). This paper builds on the cascaded-systems analysis (CSA) framework to develop a
comprehensive description of the DQE of SPC detectors that implement adaptive binning.
Methods: The DQE of SPC systems can be described using the CSA approach by propagating
the probability density function (PDF) of the number of image-forming quanta through simple
quantum processes. New relationships are developed to describe PDF transfer through serial and
parallel cascades to accommodate scatter reabsorption. Results are applied to hypothetical silicon and
selenium-based flat-panel SPC detectors including the effects of reabsorption of characteristic/scatter
photons from photoelectric and Compton interactions, stochastic conversion of x-ray energy to
secondary quanta, depth-dependent charge collection, and electronic noise. Results are compared
with a Monte Carlo study.
Results: Depth-dependent collection efficiency can result in substantial broadening of photopeaks
that in turn may result in reduced DQE at lower x-ray energies (20–45 keV). Double-counting
interaction events caused by reabsorption of characteristic/scatter photons may result in falsely
inflated image signal-to-noise ratio and potential overestimation of the DQE.
Conclusions: The CSA approach is extended to describe signal and noise propagation through
photoelectric and Compton interactions in SPC detectors, including the effects of escape and re-
absorption of emission/scatter photons. High-performance SPC systems can be achieved but only for
certain combinations of secondary conversion gain, depth-dependent collection efficiency, electronic
noise, and reabsorption characteristics. C 2015 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4903503]

Key words: photon counting, x-ray imaging, cascaded systems analysis, spectral imaging, detective
quantum efficiency

1. INTRODUCTION

Advances in x-ray detector technology have enabled single-
photon-counting (SPC) x-ray detectors with the ability to
identify individual photon interactions. When equipped with
multithresholding circuits, these systems enable energy-
resolving photon-counting (EPC) imaging where the depos-
ited energy from each interacting x-ray photon is estimated.1–7

It is anticipated that the resulting spectral distribution of
energy-depositing events will lead to advanced spectroscopic
procedures8–14 and improve image quality by reducing image

noise from random physical processes including Swank and
electronic readout noise.7,15

While photon-counting methods are receiving a great deal
of interest, there remain many challenges to overcome. State-
of-the-art systems are capable of count rates that may be
adequate for some applications including mammography16–20

and breast computed tomography,21–24 but remain restric-
tive.25,26 In addition, charge sharing between neighboring
detector elements can cause a degradation of image qual-
ity27,28 and loss of spectral information.4,27–30 This effect is
mitigated with techniques that sum charges in neighboring
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elements surrounding an interaction and assigns them to a
single element, such as that implemented in the MEDIPIX3
prototype.4 In the MEDIPIX approach, elements are clustered
into larger binned elements, the total charge generated in
binned elements is determined, and a count is attributed to the
element (within each cluster) with the largest signal. We call
these methods “adaptive binning” and some form of adaptive
binning will almost certainly be required to achieve high-
quality images.

It is also true that these systems will produce the best
possible images when they are optimized to achieve the best
possible detective quantum efficiency (DQE).31 Cascaded-
systems analysis32–41 (CSA) has been successful in the
development of theoretical models of the DQE, important in
the development of conventional energy-integrating systems,
and was recently extended to describe the zero-frequency
DQE of SPC detectors that implement adaptive binning.42,43

In particular, it was shown that DQE(0) can be expressed
in terms of the mean photon-counting signal and associated
Wiener noise power spectrum (NPS) and that both can be
obtained from the probability density function (PDF) of
detector signals. For SPC systems, this leads to43

DQE(0)= αISPC, (1)

where α represents the detector quantum efficiency and ISPC
is a noise factor (ISPC ≤ 1) equal to the probability that a true
photon count is recorded given an interaction event (true-
positive fraction). This latter term has a pleasing symmetry
with the Swank-noise factor38,44–46 for conventional energy-
integrating systems with ISPC becoming the “SPC Swank fac-
tor” accounting for degradation in image signal-to-noise ratio
(SNR) due to stochastic energy deposition, conversion, and
charge-collection processes. Equation (1) is a good descrip-
tion of SPC detector performance when there is minimal noise
aliasing at zero spatial frequency, effective adaptive binning
approaches are implemented, and a threshold is chosen such
that false counts due to electronic noise are suppressed.

Tanguay et al.43 described a method of determining ISPC
from the PDF of the total number of detected secondary
quanta per x-ray interaction and showed this PDF can be
determined by propagating the PDF of the number of image-
forming quanta at each stage through a serial cascade of
quantum processes. While this established the importance
and utility of the cascaded-systems approach for describing
the DQE of SPC systems, it was restricted to the simplistic
case where all photon energy is deposited at the primary-
interaction site, ignoring photoelectric and Compton emis-
sion/scatter photons that escape the detector or are reabsorbed
at a remote-interaction site. In the case of reabsorption, photon
energy is converted to secondary quanta at both primary-
interaction and reabsorption sites, resulting in a complicated
energy response function.47 In addition, liberation of second-
ary quanta (e.g., charges in a photoconductor or optical pho-
tons in a scintillator) is a stochastic process and the PDF when
energy is deposited at one site differs to that when the same
energy is deposited at multiple sites.

The purpose of this paper is to extend the cascaded-systems
approach to describe the zero-frequency DQE of SPC systems

including the effects of x-ray reabsorption, imperfect charge
collection, and additive readout noise. This is accomplished
by describing PDF transfer through parallel cascades of quan-
tum processes and developing a relatively simple closed-form
expression for the PDF under conditions of importance for
SPC imaging. The utility of this approach is demonstrated in
an analysis of the zero-frequency DQE of hypothetical silicon-
and selenium-based flat-panel SPC detectors.

2. THEORY
2.A. ISPC and energy-response function R

The SPC noise factor ISPC is equal to the true-positive
fraction of counting interaction events.42,43 The detector signal
d̃ after adaptive binning and prior to thresholding is equivalent
to the signal from a large detector element in which the x-ray
photon always interacts near the center and readout noise
is equal to the quadrature sum of noise from each element
in the binned cluster. For an interacting photon of energy
E, d̃ is used to estimate deposited photon energy ε̃ where,
for a linear x-ray detector, ε̃ = κd̃ for some constant κ. It is
convenient to characterize the system response in terms of
the energy response function R(ε,E) which is equal to the
probability density of ε̃ given interacting energy E. Letting
pd(d |E) represent the PDF of d̃ given an interaction yields

R(ε,E)= 1
κ

pd(d |E)|d=ε/κ (2)

and the SPC noise factor is then given by43

ISPC=

 ∞

κt

R(ε,E)dε =
 ∞

t

pd(d |E)dd, (3)

where t is a threshold used to separate x-ray interaction events
from electronic noise. This result shows that ISPC can be
determined from a knowledge of the PDF of (binned) detector
signals. Multiple thresholds can be used to determine the
spectral distribution of ε̃.

2.B. Mean number of photon counts

The number of counts reported by a SPC system is given
by the RV c̃. For fast readouts and detectors that implement
adaptive binning to sum charges in neighboring elements
surrounding an interaction and assign them to a single element,
the mean c̄ is given by43

c̄= q̄0aαISPC


1+

ζ

λαISPC


, (4)

where q̄o [mm−2] describes the mean number of incident
quanta, λ = ¯̇qoata(λ≪ 1) describes the number incident dur-
ing integration time at, ISPC is given by Eq. (3), and ζ repre-
sents the probability of observing a false count due to elec-
tronic readout noise. Unlike conventional energy-integrating
detectors, it is seen readout noise may result in an increase in
the mean SPC image signal. Suppression of false noise counts
requires a threshold high enough to keep the false-positive
fraction low and the second term in square brackets small.
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2.C. Determining R from the PDF of image quanta

Equations (3) and (4) show that ISPC and c̄ are determined
by the energy response function R and in turn by the PDF of d̃.
Yun et al.47 described R for selected x-ray convertor materials,
including the effects of random x-ray energy-depositing pro-
cesses, for deterministic conversion of x-ray energy to second-
ary quanta with negligible pulse pileup.48–50 Here, we describe
a method of obtaining R from the PDF of d̃ that includes the
effects of x-ray reabsorption and stochastic conversion and
collection processes. We start by summarizing simpler PDF-
transfer relationships and then extend to include a description
of x-ray reabsorption.

2.C.1. Elementary processes

We refer to five simple processes that are used frequently
as “elementary” processes, consisting of (1) quantum gain,
(2) quantum selection, (3) quantum scatter, (4) general gain,
(5) general filter, and (6) sampling. Quantum gain32,33 is the
process of replacing the jth point in a distribution of points
with g̃j (a random variable with integer-only sample values)
points at the same location, such as liberation of secondary
quanta (optical photons or e–h pairs). Quantum selection33

is a special case where a random selection of input points is
passed to the output (quantum gain by factor 1 or 0), such
as the selection of interacting quanta from a distribution of
incident quanta. Quantum scatter32,33 is the random relocation
of individual points in the image plane according to a specified
PDF, such as charge carrier diffusion in a semiconductor.
General gain is the scaling of an input signal by a gain RV
that may have a continuum of values (e.g., amplifier gain) and
general filter corresponds to any deterministic image-blurring
process that can be described as a convolution operation.34

Sampling describes the process of evaluating the detector
signal at discrete locations corresponding to the center of
detector elements and can be represented by multiplication
with a series of Dirac delta functions.51 Temporal lag effects
can be incorporated52 and these processes combined in serial
and parallel cascades53,54 to create comprehensive models of
signal and noise (and thereby DQE) of complex quantum-
based imaging systems.

2.C.2. PDF following a cascade
of elementary processes

Letting Ñi represent the total number of image quanta
(points) after the ith stage in a serial cascade of quantum
processes gives the PDF of Ñi as43

pNi
(Ni)=


pNi

(Ni |Ni−1)pNi−1(Ni−1)dNi−1, (5)

where pNi
(Ni |Ni−1) represents the conditional PDF of Ñi given

Ñi−1. Recursive application yields the PDF after n processes

pNn(Nn)=


pNn(Nn |Nn−1)


pNn−1(Nn−1|Nn−2). . .

. . .


pN1(N1|N0)pN0(N0)dN0. . .dNn−1, (6)

F. 1. Schematic representation of PDF transfer in quantum processes. Each
PDF consists of scaled Dirac δ-functions describing probabilities of integer
numbers of quanta.

where pN0(N0) is the PDF of the number of incident (x-ray)
quanta, as illustrated in Fig. 1, with each process characterized
by a conditional PDF. Since the number of quanta must be
an integer, both pNi

(Ni) and pNi
(Ni |Ni−1) are generalized

functions consisting of a sequence of scaled δ-functions at
integer values of N .

Gain stages are characterized by an integer gain RV g̃
having PDF pg and the total number of quanta in the output
comes from replacing each quantum in the input with g̃ quanta.
Since pg is assumed identical for input quanta having the
same energy, for monoenergetic photon fluence, the condi-
tional PDF is expressed as pg convolved with itself Ni−1−1
times,43,55

pNi
(Ni |Ni−1)= (pg∗Ni−1−1pg)(Ni−1) (7)

expressed as a function of Ni−1, where

pg (g)=

k

prg (k)δ(g− k) (8)

and prg represents the probability mass function (PMF) of g̃
with the summation over all possible values of g̃. Extension
to polyenergetic fluence would require additional averaging
over the incident photon spectrum. For quantum scatter, the
number of quanta is unchanged and the conditional PDF is a
unity operator.

Three special cases of quantum gain are illustrated. For
each, prg must be normalized over the domain of integer
values.

2.C.2.a. Poisson gain. For Poisson gain with mean ḡ,

prg (k)= ḡke−ḡ

k!
(9)

for integer k. Combining with Eqs. (7) and (8) yields a Poisson
distribution with mean ḡNi−1,42,55

pNi
(Ni |Ni−1)=


j

ḡ jN j
i−1e−ḡNi−1

j!
δ(Ni− j). (10)

2.C.2.b. Deterministic gain. For the case of deterministic
gain,

prg (k)= δk ḡ , (11)

where δk ḡ represents the Kronecker delta and is equal to 1
when k = ḡ and 0 otherwise. The translation property of the
Dirac δ-function yields

pNi
(Ni |Ni−1) = δ(Ni− ḡNi−1). (12)

2.C.2.c. Selection. Quantum selection is a special case of
quantum gain where g̃ is a Bernoulli RV assuming values of
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1 or 0 only with probabilities α and 1−α, respectively, and
prg is given by a Bernoulli distribution

prg (k)= αk(1−α)1−k, (13)

resulting in a Binomial distribution42,55

pNi
(Ni |Ni−1)

=

j

*
,

Ni−1

j
+
-
α j(1−α)Ni−1− jδ(Ni− j). (14)

These results and others, summarized in Appendix B, may
be used in combination with Eq. (6) to provide a complete
description of the PDF for a single serial cascade of energy-
depositing events. This result is generalized to include scatter-
reabsorption events using a parallel-cascades approach in
Sec. 2.C.3. A list of selected variables is included in Ap-
pendix A.

2.C.3. PDF following parallel cascades

For the case of multiple energy-depositing paths (Fig. 2),
such as energy deposition at primary-interaction and scatter-
reabsorption sites, the total number of secondary quanta is the
sum from all paths.53 For the case of two paths, the PDF of
the sum ÑA+B= ÑA+ ÑB is given by55

pNA+B(NA+B)=
 +∞

−∞
pNA,B(NA+B−NB,NB)dNB, (15)

where pNA,B is the joint PDF describing the probability of
observing ÑA and ÑB quanta from paths A and B, respectively.
When ÑA and ÑB are independent RVs, pNA,B= pNApNB, giv-
ing

pNA+B(NA+B)= pNA(NA+B)∗ pNB(NA+B). (16)

Equations (15) and (16) give the PDF of a sum of quanta from
correlated and uncorrelated paths, respectively.

Of particular importance in this application is when the
input to each path is a subset of a common input distribution
as illustrated in Fig. 2. The process of selecting quanta for
each path is a branching process in the cascade model.

2.C.3.a. Joint PDF and branch points. The branching
process represents a sequence of trials where the jth trial
is a random selection of the jth point to follow paths A
and/or B with probabilities ξ̄A and ξ̄B, respectively.53 This

F. 2. Illustration of PDF transfer where Ñ0 is separated into parallel
cascades A and B and then recombined.

could represent selection of incident photons that undergo
photoelectric or Compton interactions. Each trial is described
by Bernoulli RVs ξ̃ j,A and ξ̃ j,B having sample values 1 or 0
corresponding to being selected, or not, for each path. Each
trial is independent but correlations may exist between ξ̃ j,A
and ξ̃ j,B as described by the joint PDF55

pξ j,A,ξ j,B

�
ξ j,A,ξ j,B

�
=

1
k=0

1
l=0

P
�
ξ j,A= k and ξ j,B= l

�

× δ
�
ξ j,A− k

�
δ
�
ξ j,B− l

�
, (17)

where P(ξ j,A = k and ξ j,B = l) gives the probability that ξ̃ j,A
= k and ξ̃ j,B= l. We use Eq. (17) to derive an expression for
pNA+B(NA+B) in Eq. (15) by first considering the simpler case
of one input quantum to the branch point and then generalize
to a random number.

One input quantum, N0= 1. This case represents the situ-
ation of a single photon interaction in an adaptively binned
element during one integration period, where there can be
only one (ξ̃1,A= 1) or zero (ξ̃1,A= 0) quanta following path A
in Fig. 2, and similarly for path B,

ÑA= ξ̃1,A, ÑB= ξ̃1,B. (18)

Therefore,

pNA,B(NA,NB|N0= 1)= pξ1,A,ξ1,B(NA,NB), (19)

where pξ j,A,ξ j,B(NA,NB) represents the joint PDF of ξ̃1,A and
ξ̃1,B evaluated at NA and NB.

Random number of input quanta, Ñ0. A more general case
is to accommodate a random number of quanta interacting
in an adaptively binned element during a single integration
period, including multiple counts, giving

ÑA=

Ñ0
j=1

ξ̃ j,A, ÑB=

Ñ0
j=1

ξ̃ j,B. (20)

Assuming the joint PDF for ξ̃ j,A and ξ̃ j,B is the same for all j,
ÑA and ÑB are sums of Ñ0 identically distributed independent
RVs. We show in Appendix C that pNA,B given Ñ0 input quanta
is then given by

pNA,B

�
NA,NB| Ñ0

�
=
(
pξA,ξB∗

Ñ0−1pξA,ξB

) (NA,NB), (21)

where the right-hand side denotes the 2D convolution of
pξA,ξB(ξA,ξB)with itself Ñ0−1 times. Averaging over Ñ0 yields

pNA,B(NA,NB)
=

 (
pξA,ξB∗

Ñ0−1pξA,ξB

) (NA,NB)pN0(N0)dN0, (22)

showing that the joint PDF of the number of quanta in
two random subsets of a common input distribution is fully
described by the joint PDF of selection variables ξ̃ j,A and ξ̃ j,B,
and the PDF of Ñ0.

2.C.3.b. Joint PDF following cascades of elementary pro-
cesses. A more general case involves the joint statistics of
the number of quanta in two paths after undergoing serial
cascades of elementary processes as illustrated in Fig. 3. The
RVs ÑA, i and ÑB, i represent the number of quanta after the ith

Medical Physics, Vol. 42, No. 1, January 2015
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F. 3. Illustration of PDF transfer through parallel cascades of elementary
quantum processes.

elementary process of each path. Similar to Sec. 2.C.3.a, we
derive an expression for pNA,B by first considering the simple
case of one input quantum.

One input quantum, N0 = 1. In the parallel cascades of
elementary processes in Fig. 3, ÑA, i = Ñj,A, i represents the
number of secondary quanta for the jth input quantum after
the ith process of path A (and similarly for path B). For one
input quantum, we have

ÑA= Ñ1,A,nA, ÑB= Ñ1,B,nB, (23)

where nA identifies the last process in path A, and similarly
for path B. Assuming processes in path A is independent of
those in path B yields

pNA,B

�
NA,NB| ξ̃1,A,ξ̃1,B,N0= 1

�

= pN1,A

�
N1,A

�
ξ̃1,A

�
pN1,B

�
N1,B

�
ξ̃1,B

�
, (24)

where pN1,A(N1,A|ξ̃1,A) represents the PDF of Ñ1,A,nA given
ξ̃1,A, and similarly for path B, where we have dropped explicit
dependence on nA and nB. Averaging over ξ̃1,A and ξ̃1,B yields

pNA,B(NA,NB|N0= 1)= ⟨p⟩ξAξB
, (25)

where ⟨⟩ξA,ξB
represents averaging over ξ̃ j,A and ξ̃ j,B, and

⟨p⟩ξA,ξB
=


pNA(NA|ξA)pNB(NB|ξB)�ξA,ξB

=


pNA(NA|ξA)pNB(NB|ξB)

×pξA,ξB(ξA,ξB)dξAdξB, (26)

where pNA(NA|ξA) represents the PDF of ÑA given ξ̃ j,A for
one trial and is obtained from Eq. (6)

pNA(NA|ξA)=


pNA,n

�
NA,n

�
NA,n−1

�

×


pNA,n−1

�
NA,n−1

�
NA,n−2

�

. . .


pNA,0(NA,0|ξA)dNA,0. . .dNA,n−1 (27)

and similarly for pNB(NB|ξB).
Random number of input quanta, Ñ0. Similar to Eq. (20),

the numbers of quanta from paths A and B are

ÑA=

Ñ0
j=1

Ñj,A,nA, ÑB=

Ñ0
j=1

Ñj,B,nB. (28)

In Appendix C, we show that because each process in path A
is independent of those in B and ξ̃ j,A is independent of ξ̃i,A

for i , j (and similarly for ξ̃ j,B), the joint PDF of ÑA and ÑB
given Ñ0 is

pNA,B

�
NA,NB| Ñ0

�
= ⟨p⟩ξA,ξB

∗Ñ0−1⟨p⟩ξA,ξB
, (29)

where ⟨p⟩ξA,ξB
is the joint PDF given one input quantum in

Eq. (25). Averaging over all possible values of Ñ0 yields

pNA,B(NA,NB)=
 ⟨p⟩ξA,ξB

∗Ñ0−1⟨p⟩ξA,ξB


pN0(N0)dN0. (30)

This is a general PDF-transfer relationship between pNA,B

and pN0 and shows that the joint statistics of ÑA and ÑB are
determined by the joint statistics of ξ̃A and ξ̃B, the elementary
processes in paths A and B, and the input PDF pN0.

We further consider two important branch points: (i) each
input quantum is selected for either path A or B (Bernoulli
branch), and (ii) each input quantum is selected for both paths
A and B (cascade fork).53

2.C.3.c. Bernoulli branch. A Bernoulli branch may, for
example, describe separation of photoelectric interactions
that produce a characteristic emission from those that do
not.37,38,41,53 The joint PDF of ξ̃ j,A and ξ̃ j,B is

pξA,ξB(ξA,ξB)= ξ̄Aδ(ξA−1)δ(ξB)+ ξ̄Bδ(ξA)δ(ξB−1) (31)

from Eq. (17). Combining this with Eq. (25) yields

⟨p⟩ξA,ξB
= ξ̄ApNA(NA|ξA= 1)pNB(NB|ξB= 0)
+ ξ̄BpNA(NA|ξA= 0)pNB(NB|ξB= 1), (32)

where pNA(NA|ξA = 0) = δ(NA) and pNB(NB|ξB = 0) = δ(NB).
Combining the above expression with Eq. (30) yields pNA,B
after multiple elementary processes.

One input quantum, N0= 1. Combining Eqs. (15) and (32)
yields

pNA+B(NA+B|N0= 1)= ξ̄A pNA(NA+B|ξA= 1)
+ ξ̄B pNB(NA+B|ξB= 1). (33)

This describes the expected result that when an input quantum
is selected for only one path, the PDF of the total number of
output quanta is equal to the weighted combination of each.

2.C.3.d. Cascade fork. A cascade fork may, for example,
describe the situation where a photon that has interacted
through the Compton effect deposits energy at the site of
primary interaction and at a remote site following reabsorption
of a Compton-scatter photon. The joint PDF of selection
variables is then given by

pξA,ξB(ξA,ξB)= δ(ξA−1)δ(ξB−1) (34)

and therefore

⟨p⟩ξA,ξB
= pNA(NA|ξA= 1)pNB(NB|ξB= 1). (35)

Combining the above expression with Eq. (30) yields pNA,B
after multiple elementary processes.

One input quantum, N0= 1. Combining Eqs. (15) and (35)
yields

pNA+B(NA+B|N0= 1)
= pNA(NA+B|ξA= 1)∗ pNB(NA+B|ξB= 1). (36)
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F. 4. Schematic illustration of the parallel CSA model describing PDF
transfer of the total number of secondary quanta through photoelectric inter-
actions, incoherent interactions, and additive electronic noise using parallel
cascades. The RV Ñ0 is the total number of incident x-ray quanta in one
readout and is set to unity.

Equations (33) and (36) are important results of this work.
They are special cases of a branch point where the signal
from an interacting photon passes through either only one
[Eq. (33)] or both [Eq. (36)] of two paths and allow us to use
the complex models of Figs. 4 and 5 to describe PDF transfer
through photoelectric and Compton interactions. In Sec. 2.D,
we use these results to determine the energy response function
and in turn the zero-frequency DQE of hypothetical selenium-
based and silicon-based SPC detectors.

2.D. Liberation of secondary quanta
in x-ray convertor

Figure 4 illustrates the parallel-cascade model we use to
describe energy deposition in an x-ray convertor including the
effects of stochastic energy deposition through photoelectric
or incoherent scattering, conversion to secondary quanta, and
collection of secondary quanta, similar to that described by
Yun et al.41 Figure 4 does not illustrate subsequent threshold-
ing and sampling stages discussed in detail by Tanguay et al.43

In all cases, we assume flat-panel SPC systems. Our goal is to
describe the PDF of the total number of secondary quanta Ñtot
collected by detector elements per interacting x-ray photon.
We therefore let pN0(N0)= δ(N0−1) and assume large adap-
tively binned pixels such that the probability of reabsorption
of characteristic or Compton-scatter x-rays in neighboring
elements is negligible. This may be a good approximation
for systems that use adaptive binning to sum signals from
neighboring pixels to get the total energy deposited for every
interacting x-ray photon.

The output from each path is the total number of quanta
collected from either photoelectric or incoherent interactions.
From Eq. (15), the total number of collected secondaries
Ñtot= Ñpe+ Ñinc is given by

pNtot(Ntot)=
 +∞

−∞
pNpe, inc

�
Ntot−Npe,Npe

�
dNpe, (37)

where pNpe, inc(Npe,Ninc) is the joint PDF of Ñpe and Ñinc. The
Bernoulli branch in Fig. 4 and Eq. (32) gives

pNtot(Ntot)= ξ̄pe pNpe

�
Ntot|ξpe= 1

�

+ ξ̄inc pNinc(Ntot|ξinc= 1), (38)

where ξ̄pe and ξ̄inc represent the relative probabilities of photo-
electric absorption and incoherent scattering.41,47

F. 5. Schematic illustration of the generalized interaction model. (a) Inci-
dent x-ray photon interacts in x-ray convertor at depth z1 with subsequent
production of a scatter photon at polar angle θ and azimuthal angle φ.
(b) CSA model describing events that liberate secondary quanta from (path
A) primary-interaction site when no scatter/emission photon is generated;
(path B) primary-interaction site when a scatter/emission photon is generated;
and (path C) remote reabsorption of scatter/emission photon.

Equation (38) shows that a description of pNtot(Ntot) re-
quires the PDFs of the number of collected secondaries re-
sulting from photoelectric and incoherent interactions. These
processes are similar in that each may result in emission and
reabsorption of a fluorescent/scatter photon. It is therefore
convenient to describe photoelectric and incoherent inter-
actions as two special cases of a “generalized” interaction
process.

2.E. Generalized x-ray interaction process

Each shaded box in Fig. 4 is a special case of the gener-
alized interaction process in Fig. 5. When used, subscript
t represents the interaction type, photoelectric (pe) or inco-
herent (inc). As illustrated, an incident photon interacts at
depth z̃1 in the x-ray convertor material and may generate
a scatter photon with probability S at scatter angle θ̃ and
azimuthal angle φ̃ that may be reabsorbed at depth z̃2 with
probability f . Secondary quanta (electron–hole pairs in a
photoconductor) are liberated at both primary-interaction and
reabsorption sites unless the scatter photon escapes the detec-
tor. This model is based on that described by Yun et al.41 with
the extension to depth-dependent collection efficiency.

The collection efficiencies β for each path in Fig. 5 are
functions of interaction depths z̃1 and z̃2, which are themselves
RVs. The concept of using gain and/or selection variables
that are functions of random variables was introduced by
Van Metter and Rabbani56 who called these input-labeled
random processes. We adopt this idea to describe the depth-
dependent collection efficiency in the top shaded path of
Fig. 5(b). However, in the lower shaded box, all processes
are functions of z̃1 and/or θ̃. In addition, these processes are
coupled because they are dependent on the same z̃1 and θ̃
sample values for each interacting photon. In Appendix C
we generalize the previous derivation of the PDF of the total
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number of image quanta from parallel cascades to include
these input-labeled parallel processes. The result is used to
calculate the PDF of the number of quanta for the generic
interaction model illustrated in Fig. 5.

We let ÑA, ÑB, and ÑC represent the number of secondary
quanta from top, middle, and bottom paths of Fig. 5(b), respec-
tively, and Ñt = ÑA+ ÑB+ ÑC represents the total number
of secondary quanta for interaction type t. The first branch
point in Fig. 5(b) represents separation (Bernoulli branch) of
interacting photons that produce a fluorescent/scatter photon
(paths B and C) from those that do not (path A), and Eq. (33)
gives the PDF of Ñt,

pNt (Nt)= (1−St)pNA

�
Nt |S̃t = 0

�

+ St pNB+C

�
Nt |S̃t = 1

�
, (39)

where St represents the probability that a scatter/emission
photon is generated, pNA(NA|S̃t = 0) represents the PDF of
ÑA given no scatter/emission photon, ÑB+C = ÑB+ ÑC, and
pNB+C(NB+C |S̃t = 1) represents the PDF of ÑB+C given a scat-
ter/emission photon. In Secs. 2.E.1–2.E.6, we describe how to
calculate pNt(Nt) using the PDF-transfer approach.

2.E.1. PDF of ÑA

The PDF of quanta from path A, pNA(NA|S̃t = 0), is ob-
tained from Eq. (27),

pNA

�
NA|S̃t = 0

�
=


pNA,0

�
NA,0|S̃t = 0

�
pNA,1(NA,1|NA,0)

× pNA,2(NA|NA,1)dNA,0dNA,1, (40)

where pNA,0(NA,0|S̃t = 0)= δ(NA,0−1) (the PDF of the number
of quanta selected for path A given that one quantum is
selected), and therefore,

pNA

�
NA|S̃t = 0

�

=


pNA,1(NA,1|NA,0= 1)pNA,2(NA|NA,1)dNA,1. (41)

2.E.1.a. Conversion to secondary quanta. Conversion to
electron–hole (e–h) pairs at the primary-interaction site (path
A) is described using the PDF-transfer relationship for a
quantum gain stage43

pNA

�
NA|S̃ = 0

�
=


pgA(NA,1)pNA,2(NA|NA,1)dNA,1, (42)

where pgA(NA,1)= pgA(gA)|gA=NA,1 is the PDF describing the
random number of liberated e–h pairs g̃A. We assume Poisson
gain with mean ḡA = E/w, where E is the incident photon
energy, w is the effective energy required to liberate one e–h
pair, and PDF given by Eq. (10).

2.E.1.b. Depth-dependent collection of secondary quanta.
Application of an electric field across the photoconductor
causes liberated e–h pairs to drift in opposite directions, gener-
ating a current that charges or discharges a capacitor. In
flat-panel configurations, the collected charge may be depth
dependent as e–h pairs may recombine or be trapped in the
x-ray convertor.57,58

We model depth-dependent charge collection as a binomial
selection process (second process in path A) characterized by
a Bernoulli RV having sample values 1 or 0 with probabilities
that depend on interaction depth z̃1. We assume the average
fraction of collected charges (collection efficiency) β has a
depth dependence given by the Hecht relationship59–61

β(z)= λe

L

(
1−e−

L−z
λe

)
+
λh

L

(
1−e−

z
λh

)
, (43)

where L (cm) is the convertor thickness, λe and λh (cm) are
mean-free drift lengths for electrons and holes, respectively,
and we have assumed electrons travel toward the entrance sur-
face and holes toward the exit surface. If charges are collected
in the opposite direction, it may be necessary to exchange z
and L− z on the right-hand side. Low values of λe and/or λh

result in fewer collected charges and potentially a secondary
quantum sink.

Transfer of the PDF through depth-dependent collection
processes (summarized in Table III) has recently been de-
scribed,42 giving

pNA,2(NA|NA,1)=

B (NA;NA,1, β(z1))pz1(z1)dz1, (44)

where B (NA;NA,1, β(z1)) represents the binomial distribution
for NA,1 trials and probability of success β(z1), and pz1(z1)
represents the exponential PDF of z̃1. Combining the previ-
ous two results yields

pNA

�
NA|S̃ = 0

�
= ⟨BA(NA; β)⟩z1

, (45)

where

BA(Nt; β) =

B (Nt;gA, β(z1))pgA(gA)dgA. (46)

The previous two results show that pNA(NA|S̃ = 0) is equal
to the binomial distribution with g̃A trials and probability of
success β(z̃1), averaged over all possible values of g̃A and z̃1.

2.E.2. PDF of ÑB+ ÑC

In the case that a characteristic/scatter photon is gener-
ated, energy may be deposited at primary and secondary
absorption sites (paths B and C) as illustrated in Fig. 5. All
subsequent processes may be functions of interaction depth
and/or emission/scatter angle, and therefore, from Eqs. (35)
and (C15), pNB+C(NB+C|S̃t = 1) is given by

pNB+C

�
NB+C|S̃t = 1

�

=


pNB

�
NB+C|S̃t = 1,b

�
∗ pNC

�
NB+C|S̃t = 1,b

��
b, (47)

where b̃ = [z̃1,θ̃] and ⟨⟩b̃ represents an average over all b̃. In
Secs. 2.E.2.a–2.E.2.c, we calculate pNB and pNC for fixed b̃
and then average over all possible values of b̃ to get pNB+C.
Averaging over b̃ requires the joint PDF of z̃1 and θ̃, pz1,θ(z1,θ), described in Appendix C.

2.E.2.a. PDF of ÑB for fixed z̃1 and θ̃. There are two pro-
cesses following the cascade fork in path B of Fig. 5. The first
represents conversion to e–h pairs at the primary-interaction
site and the second depth-dependent charge collection. For
incoherent interactions, energy deposited by the primary inter-
action is a function of scatter angle θ̃. Therefore, from Eq. (27)
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with pNB,0(NB,0|S̃ = 1)= δ(NB,0−1), pNB is given by

pNB

�
NB|S̃t = 1,z̃1,θ̃

�
=


pNB,1

�
NB,1|NB,0= 1,θ̃

�

× pNB,2(NB|NB,1,z̃1)dNB,1. (48)

Conversion to secondary quanta at primary-interaction
site. The first process following the cascade fork in path B
represents conversion to e–h pairs at the primary-interaction
site. Therefore, similar to Eq. (42),

pNB

�
NB|S̃t = 1,z̃1,θ̃

�

=


pgB

�
NB,1; θ̃

�
pNB,2(NB|NB,1,z̃1)dNB,1, (49)

where pgB(gB; θ̃) represents the PDF of g̃B for scatter angle
θ̃. Similar to g̃A, we assume g̃B is Poisson distributed with
mean ḡB= (E−E ′(θ))/w, where E ′(θ) is the scatter/emission
photon energy for angle θ.

Depth-dependent collection of secondary quanta. For
fixed z̃1, pNB,1(NB|NB,1,z̃1) is given by the binomial distri-
bution,42,43,62 giving

pNB

�
NB|S̃t = 1,z̃1,θ̃

�

=


pgB

�
NB,1; θ̃

�
B (NB;NB,1, β(z̃1))dNB,1. (50)

2.E.2.b. PDF of ÑC for fixed z̃1 and θ̃. There are three
processes following the cascade fork in path C of Fig. 3.
From Eq. (27) with pNC,0(NC,0|S̃t = 1)= δ(NC,0−1),

pNC

�
NC|S̃t = 1,z̃1,θ̃

�
=


pNC,1

�
NC,1|NC,0= 1,θ̃,z̃1

�

×


pNC,2

�
NC,2|NC,1,θ̃

�

× pNC,3

�
NC|NC,2,z̃1,θ̃

�
dNC,2dNC,1. (51)

Reabsorption of fluorescent/scatter photon. The first pro-
cess following the cascade fork in path C represents selection
of fluorescent/scatter photons that are reabsorbed in the x-
ray convertor material. Therefore, pNC,1(NC,1|NC,0= 1,θ̃,z̃1) is
equal to the Binomial distribution with one trial and prob-
ability of success equal to the reabsorption probability f
which is a function of θ̃ and z̃1,

pNC,1

�
NC,1

�
NC,0= 1,θ̃,z̃1

�

=
�
1− f

�
θ̃,z̃1

��
δ(NC,1)+ f

�
θ̃,z̃1

�
δ(NC,1−1), (52)

where

f
�
z̃1,θ̃

�
=




 (L−z̃1)/|cos(θ̃)|
0

pl (l)dl 0 ≤ θ ≤ π/2 z̃1/|cos(θ̃)|
0

pl (l)dl π/2 < θ ≤ π
, (53)

where pl (l) = µ(Es)exp[−µ(Es)l], where Es represents fluo-
rescent/scatter photon energy. Combining these expressions
yields

pNC

�
NC|S̃ = 1,z̃1,θ̃

�
=
�
1− f

�
θ̃,z̃1

��
pNC,2

�
NC,2|NC,1= 0,θ̃

�

× pNC,3(NC|NC,2,z̃1)dNC,2

+ f
�
θ̃,z̃1

�
pNC,2

�
NC,2|NC,1= 1,θ̃

�

× pNC,3

�
NC|NC,2,z̃1,θ̃

�
dNC,2, (54)

where


pNC,2(NC,2|NC,1 = 0)pNC,3(NC|NC,2)dNC,2 = δ(NC).
Therefore,

pNC

�
NC|S̃ = 1,z̃1,θ̃

�
=
�
1− f

�
θ̃,z̃1

��
δ(NC)

+ f
�
θ̃,z̃1

�
pNC,2

�
NC,2|NC,1= 1,θ̃

�

× pNC,3

�
NC|NC,2,z̃1,θ̃

�
dNC,2. (55)

Conversion to secondary quanta at reabsorption site.
Similar to Eqs. (42) and (49),

pNC

�
NC|S̃ = 1,z̃1,θ̃

�
=
�
1− f

�
θ̃,z̃1

��
δ(NC)+ f t

�
θ̃,z̃1

�

×


pgC

�
NC,2; θ̃

�

× pNC,3

�
NC|NC,2,z̃1,θ̃

�
dNC,2, (56)

where pgC(gC; θ̃) represents the PDF of g̃C for fluorescent/
scatter angle θ̃, where ḡC= E ′(θ)/w. Similar to g̃A and g̃B, we
assume that g̃C is Poisson distributed.

Depth-dependent collection of secondary quanta at reab-
sorption site. Letting pz2(z2| z̃1,θ̃) represent the PDF of reab-
sorption depth z̃2 given z̃1 and θ̃ yields42

pNC,3

�
NC|NC,2,z̃1,θ̃

�
=


B (NC;gC, β(z2))

× pz2

�
z2| z̃1,θ̃

�
dz2. (57)

Therefore,

pNC

�
NC|S̃ = 1,z̃1,θ̃

�
=
�
1− f

�
θ̃,z̃1

��
δ(NC)

+ f
�
θ̃,z̃1

�
pgC

�
NC,2; θ̃

�

×

B (NC;gC, β(z2))

× pz2

�
z2| z̃1,θ̃

�
dz2dNC,2. (58)

The first term in the previous expression is a delta function at
NC= 0 corresponding to the event that the fluorescent/scatter
photon is not reabsorbed. The second term corresponds to the
event that fluorescent/scatter photon is reabsorbed.

2.E.2.c. PDF of ÑB+ ÑC. Combining Eqs. (47), (50), and
(58) yields

pNB+C

�
NB+C|S̃ = 1

�
= ⟨(1− f )BB(NB+C; β)⟩z1,θ

+ ⟨ f BB

× (NB+C; β)∗ ⟨BC(NB+C; β)⟩z2


z1,θ

, (59)

where BB(NB; β) and BC(NC; β) are given by

BB(Nt; β) =

B (Nt;gB, β(z1))pgB(gB;θ)dgB, (60)

BC(Nt; β) =

B (Nt;gC, β(z2))pgC(gC;θ)dgC, (61)

where B (Nt;gB, β(z1)) represents the binomial distribution
with gB trials and probability of success β(z1), and similarly
for B (Nt;gC, β(z2)).
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2.E.3. PDF of Ñt = ÑA+ ÑB+ ÑC

Combining Eqs. (39), (45), and (59) yields the PDF of the
total number of quanta for interaction type t using the generic
x-ray interaction model illustrated in Fig. 5,

pNt (Nt)= (1−St)⟨BA(Nt; β)⟩z1

+ St⟨(1− f t)BB(Nt; β)⟩z1,θ

+ St


f t BB(Nt; β)∗ ⟨BC(Nt; β)⟩z2


z1,θ

. (62)

The average over z̃2 in the above expression requires the
PDF of z̃2 given z̃1 and θ̃ which is derived in Appendix D.
Averages over z̃1 and θ̃ require the joint PDF of z̃1 and θ̃,
pt
z1,θ

, which for a given incident photon energy is given by55

pt
z1,θ

(z1,θ)= pz1(z1)pt
θ(θ), (63)

where pt
θ depends on the interaction type and has been de-

scribed in detail by Hajdok et al.63 and Yun et al.41,47 for
both photoelectric and incoherent interactions, and pz1(z1) is
given by the exponential PDF µ(E)exp(−µ(E)z1) normalized
to unity over the convertor thickness.

The three terms in Eq. (62) describe the PDF of im-
age quanta for (i) events that do not result in production of
fluorescent/scatter x-rays, (ii) events that result in produc-
tion of a fluorescent/scatter photon that escapes the detec-
tor, and (iii) events that result in production of a fluores-
cent/scatter photon that is reabsorbed within the detector. In
Secs. 2.E.4–2.E.6, we use this result to describe the PDFs of
the total number of quanta for photoelectric and incoherent
interactions. Table I gives mean values and PDFs used for
selection and gain variables for each interaction type, where
ρK, ωK, EK, E ′, w, and f t represent the K-shell participation
fraction, K-fluorescent yield, K-fluorescent photon energy,
incoherent-scatter energy, average effective energy required
to liberate one electron–hole pair, and scatter/emission reab-
sorption probability, respectively.

2.E.4. Photoelectric interactions

In a photoelectric interaction, path A of Fig. 5 corresponds
to events that do not produce a fluorescent photon, and inci-
dent energy E is assumed to be absorbed at the primary-
interaction site, liberating g̃A secondaries (see Table I). Paths
B and C describe events that produce a fluorescent photon,

T I. Random variables and PDFs defining the type of x-ray interaction
used in the generic model shown in Fig. 5.

Photoelectric Incoherent

RV Mean PDF Mean PDF

S̃t ωKρK Bernoulli 1 δ-function
g̃A E/w Poisson
g̃B (E−EK)/w Poisson (E − E′)/w Poisson
g̃C EK/w Poisson E′/w Poisson
β̃A β (z1) Bernoulli β (z1) Bernoulli
β̃B β (z1) Bernoulli β (z1) Bernoulli
β̃C β (z2) Bernoulli β (z2) Bernoulli

resulting in g̃B secondaries emitted locally and g̃C liberated
remotely with probability fpe given by Eq. (53) with Es = EK.
From Eq. (62), the PDF of Ñpe is given by

pNpe

�
Npe

�
= (1− ρKωK)
Bpe

A

�
Npe; β

��
z1

+ ρKωK

�

1− fpe
�
Bpe

B

�
Npe; β

��
θ,z1

+ ρKωK


fpeBpe

B

�
Npe; β

�
∗


Bpe

C

�
Npe; β

��
z2


θ,z1

,

(64)

where ppe
z1,θ

is obtained from Eq. (63) with ppe
θ (θ) = sin(θ)/

2.38,41 The first and third terms in Eq. (64) contribute to the
photopeak and the second term contributes to the K-escape
peak.

2.E.5. Incoherent interactions

In an incoherent event, an incident photon interacts with
a loosely bound (free) electron producing a Compton-scatter
photon and recoil electron. The energy of the scatter photon
E ′ is a function of both incident photon energy and scatter
polar angle θ, E ′= E/(1+α(1−cos(θ))), where α = E/moc2

represents the incident photon energy in units of electron
rest-mass energy (moc2= 511 keV).64 The recoil electron de-
posits its energy at the primary-interaction site with mean
conversion gain ḡB= (E−E ′)/w. The scatter photon is reab-
sorbed with probability f inc given by Eq. (53). From Eq. (62),
the PDF of Ñinc is given by

pNinc(Ninc)= 
(1− f inc)Binc
B (Ninc; β)�θ,z1

+


f incBinc
B (Ninc; β)∗
Binc

C (Ninc; β)�z2


θ,z1

, (65)

where pinc
z1,θ

is given by Eq. (63) with pinc
θ (θ) described in

detail by Hajdok et al.63 and Yun et al.41,47 The first term in
Eq. (65) represents the distribution of secondaries collected
from energy deposition by the recoil electron and the second
term contributes to the photopeak.

2.E.6. PDF of detector element signal d̃

Combining Eqs. (38), (64), and (65) yields the PDF of
Ñtot= Ñpe+ Ñinc,

pNtot(Ntot) = ξ̄pe(1− ρKωK)
Bpe
A (Ntot; β)�z1

+ ξ̄peρKωK

�

1− fpe
�
Bpe

B (Ntot; β)�θ,z1

+ ξ̄peρKωK


fpeBpe

B (Ntot; β)∗
Bpe
C (Ntot; β)�z2


θ,z1

+ ξ̄inc

(1− f inc)Binc

B (Ntot; β)�θ,z1

+ ξ̄inc


f incBinc

B (Ntot; β)∗
Binc
C (Ntot; β)�z2


θ,z1

.

(66)

The PDF of d̃ given interacting photon energy E including
electronic readout noise is obtained by convolving Eq. (37)
with the electronic noise PDF,42,43

pd(d |E)= 1
k

pNtot(d/k)∗ pe(d), (67)

where pNtot(d/k)= pNtot(Ntot)|Ñtot=d/k and pe(d) describes the
zero-mean distribution of (postbinning) detector readout
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noise and k is a constant of proportionality converting a
number of quanta to the detector-element signal.

Equations (66) and (67) describe the PDF of element sig-
nals after adaptive binning prior to thresholding for single-
Z detector materials. A description of multi-Z SPC detector
materials, such as CdTe and CdZnTe, requires the evaluation
of Eq. (66) for each atom type and potentially terms that
account for emission of characteristic photons from the lower
Z atoms (e.g., Cd) following reabsorption of characteristic
photons emitted from the higher Z atoms (e.g., Te).47

The response function R, which represents the proba-
bility density of estimated photon energy ε given interacting
photon energy E, is given by

R(ε|E) = 1
κ

pd(d |E)|d=ε/κ (68)

=
1
kκ

pNtot(ε/kκ)∗ pe(ε/κ), (69)

where κ is a constant of proportionality converting a detector-
element signal to estimated photon energy.

To illustrate the utility of this theoretical formalism, we
use the previous three expressions with Eqs. (1) and (3) to
calculate the zero-frequency DQE of Si-based SPC detectors,
such as the MEDIPIX prototypes,1,4,29,65,66 and a hypothet-
ical Se-based SPC detector that implements adaptive element
binning. While Se is not currently used in photon-counting
x-ray imaging, applying the developed formalism to Se is
useful in illustrating the potentially degrading effects that
escape of characteristic x-rays may have on photon-counting
image quality.

2.F. Frequency-dependent DQE

A simple estimate of the DQE frequency dependence
comes from recognizing that, assuming ideal adaptive binn-
ing, the primary interaction location is known to be some-
where within the detector element of width a at the center of
the binned region, resulting in a sinc-shaped MTF. In addi-
tion, due to noise aliasing caused by sampling at locations
corresponding to the center of detector elements, the Wiener
NPS will be uniform36 with frequency up to the sampling
cutoff frequency, resulting in a DQE given by

DQE(u)=DQE(0) sinc2(πau). (70)

Charge sharing in the detector might enable the primary inter-
action to be located with subelement resolution, resulting in
even better MTF and DQE performance. While these results
may be achieved at energies below the detector K-edge energy
(e.g., mammography energies), they may not be achieved if
the primary-interaction site cannot be identified correctly, such
as when more energy is deposited by reabsorption of a scatter
photon than by the primary interaction.

3. MONTE CARLO (MC) COMPARISON

Predictions of this CSA approach were compared with a
MC study of the DQE of Si- and Se-based SPC detectors that
implement adaptive binning. Simulations were performed

T II. Material properties for a-Se and Si.

Symbol Se Si

Mass density (g cm−3) ρ 4.3 2.3
K-fluorescent energy (Ref. 64) (keV) EK 11.2 1.7
K-shell participation fraction (Ref. 64) ρK 0.864 0.904
K-fluorescence yield (Ref. 64) ωK 0.589 0.054
Average ionization energy (Ref. 67) (eV) w 45 3.62

in three stages: (1) energy deposition, (2) charge liberation
and collection, and (3) adaptive binning, electronic noise,
and thresholding. Table II summarizes physical parameters
used in combination with the physical models described in
Sec. 2.E.

3.A. Energy deposition

Energy deposition was simulated using the particle track-
ing (pTrac) function of the MC user code 5 TM. Energy-
deposition data were collected in list mode, giving three-
dimensional (3D) positions and energies of energy-deposition
events following each primary photon interaction. Simula-
tions were performed for uniformly distributed photon flu-
ences and 2000×2000 10×10 µm2 scoring bins. In all cases,
ranges of photoelectrons and Compton recoil electrons were
not considered (i.e., site of charge liberation is the same as
x-ray interaction). Double (or triple) counting of incident
photons caused by the finite range of photoelectrons and
Compton recoil electrons was therefore not considered in this
analysis. In addition, we assumed count rates low enough that
pulse pileup effects could be ignored. A similar MC tech-
nique was implemented by Yun et al.41 for the description
of conventional energy-integrating detectors and the reader is
referred there for more details.

3.B. Charge liberation and collection

In all cases, we assume that the site of charge collec-
tion is the same as charge liberation, i.e., no charge diffu-
sion. This may be a reasonable assumption for larger adap-
tively binned elements and higher threshold levels where
the number of double-counting events caused by partial en-
ergy absorption in neighboring elements is reduced, as dis-
cussed by Xu et al.68 and Lundqvist et al.,16 respectively, but
represents an optimistic estimate of detector performance for
smaller element sizes.

Charge liberation. Liberation of e–h pairs was simulated
by sampling a Poisson distribution with mean value Edep/w
for each photon interaction, where Edep represents deposited
photon energy (obtained from the previous stage). The output
of this stage was the 3D position and number of liberated e–h
pairs for each energy-deposition event.

Charge collection. We simulated collection of liberated
charges by sampling a binomial distribution with number of
trials equal to the number of liberated e–h pairs and depth-
dependent probability of success β(z) given by the Hecht
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relation [Eq. (43)]. We consider two extreme cases of charge
collection: asymmetric and symmetric collection of charge
carriers. In the case of Se, we consider an asymmetric case
and assume the mean-free drift length for electrons (λe) is
two orders of magnitude lower than that for holes.61 In the
case of Si, consider a symmetric case and assume mean-
free drift lengths of holes and electrons are of the same
order of magnitude. Calculations were performed for each
energy-depositing event, giving the 2D position and number
of collected e–h pairs for each primary and secondary photon
interaction.

3.C. Adaptive binning, electronic noise,
and thresholding

We simulated two types of adaptive binning. For the first
type, which represents an ideal situation, we summed e–h
pairs collected from primary- and secondary-reabsorption
sites and then added a sample from a zero-mean Gaussian
distribution to simulate electronic noise. When the resulting
signal was above the threshold level, a count was attributed to
the element with the highest detected charge.

For the second type of adaptive binning, which is similar
to that implemented in MEDIPIX Si-based detectors,4 we
added electronic noise (σpb

e ) to each prebinning detector ele-
ment, clustered elements into larger n×n elements, and then
summed charges collected from all interactions within each
cluster. When the signal from a cluster was above the thresh-
old level, a count was attributed to the element (within the
cluster) with the highest detected charge.

Each adaptive-binning approach was performed for pre-
binning element areas of 100×100 µm2 and a threshold equal
to three times the electronic noise level (σe) of adaptively
binned signals. This resulted in a 2×2 cm2 SPC image from
which DQE(0) was determined.

3.D. DQE calculation

We calculated DQE(0) from MC images using the follow-
ing relationship:

DQE(0)= αSNR2
meas

SNR2
ideal

=
SNR2

meas

q̄oa
, (71)

where SNRmeas and SNRideal (= αq̄oa) represent the measured
and ideal SPC signal-to-noise ratio, respectively, and α repre-
sents the quantum efficiency.

4. RESULTS
4.A. PDF of detector element signals, pd(d |E )

Figure 6 illustrates pNtot(Ntot) for Se and Si convertor
materials for the model illustrated in Fig. 4 calculated for
selected photon energies, convertor thicknesses, and mean-
free drift lengths for holes. For systems that implement adap-
tive element binning, pNtot is related to pd through Eq. (67).
Figure 6 shows good agreement between theoretical and MC
simulations for all conditions considered.

In general, for both Se and Si, low mean-free drift lengths
(∼0.1 cm) result in broad and asymmetric photopeaks that
are shifted toward lower energies due to depth-dependent
collection efficiencies. This effect is more severe for thicker
convertor materials, where the collection efficiency has a
stronger depth dependence,59–61 and for higher energy pho-
tons, where the distribution of interaction depths is more
uniform. Although not shown in Fig. 6, electronic noise
results in further photopeak broadening. For systems with
sufficiently low electronic noise levels and high mean-free
drift lengths (i.e., λh≫ L), stochastic energy deposition and
conversion processes are primary causes of spectral distor-
tion, resulting in finite-width photopeaks, K-escape peaks,

F. 6. PDFs of the total number of quanta collected by detector elements for selected photon energies for (left) Se- and (right) Si-based convertor materials
for selected mean-free drift lengths for holes (λh). Calculations for Se assumed asymmetric charge collection (i.e., λe ≪ λh). Calculations for Si assumed
symmetric charge collection (i.e., λe ∼ λh). Curves and symbols represent theoretical and Monte Carlo data, respectively.
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F. 7. Normalized SPC pixel value c̄o (counts per incident photon) as a function of threshold t for selected Se and Si convertor thicknesses with σe = 200 e–h
pairs and λ = 1/10. Vertical gray lines indicate mean conversion gains for the indicated energies. Calculations for Se assumed asymmetric charge collection
(i.e., λe ≪ λh). Calculations for Si assumed symmetric charge collection (i.e., λe ∼ λh).

and a distribution of low-energy deposition events with area
determined by the Compton cross section.

4.B. Optimal SPC threshold

Figure 7 illustrates the dependence of normalized SPC
pixel value (c̄/q̄0a) on threshold level for selected Se and Si
convertor thicknesses, photon energies, and mean-free drift
lengths. All curves in Fig. 7 were calculated assuming σe =

200 e–h pairs and small λ (=1/10) such that pulse pileup
could be ignored.

For both Se and Si, as expected, threshold values lower
than approximately 3σe result in an inflated image signal due
to false electronic noise counts. For threshold values greater
than 3σe, a plateau is reached with height approximately
equal to the quantum efficiency. Width of the plateau depends
on the number of secondaries collected per interacting x-ray
photon and, in general, is narrower for lower energy photons
than for higher energy photons and for materials with higher
w values (such as Se). Decreasing the mean-free drift length

of holes and electrons results in fewer collected secondaries
which results in a secondary quantum sink and narrowing of
the range of acceptable threshold values.

4.C. Zero-frequency DQE of SPC detectors

Figure 8 illustrates the dependence of DQE(0) on incident
photon energy for selected Se and Si convertor thicknesses
and mean-free drift lengths. In all cases, we have assumed
t = 3σe, λ≪ 1, and ideal adaptive binning described in Sec.
3.C. Good agreement between theoretical and MC results is
observed for all conditions considered.

At fluoroscopic and radiographic energies (>40 keV),
DQE(0) for Se is approximately equal to the quantum effi-
ciency for all convertor thicknesses, mean-free drift lengths,
and electronic noise levels considered. However, for higher
levels of electronic noise and mammographic photon ener-
gies (<40 keV), DQE(0) for Se is degraded substantially
due to loss of energy-deposition events below the electronic
noise floor (3σe). This effect is caused by a combination of

F. 8. DQE(0) as a function of incident photon energy for selected (left) Se and (right) Si convertor thicknesses, mean-free drift lengths, and electronic noise
levels. Lines and symbols represent theoretical and Monte Carlo data, respectively. The gray curve indicates the quantum efficiency.
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low gain at lower energies, poor collection efficiency, and
thresholding.

In the case of Si for E ≤ 20 keV, DQE(0) is degraded
by high electronic noise and poor collection efficiency. For
higher (30–60 keV) energies and thicker convertor materials,
there is a slight DQE reduction that is likely due to the
combination of lower charge collection and an increase in the
number of Compton interactions that together result in more
events below the electronic noise floor.

4.D. Effect of adaptive binning on image SNR

Figure 9 illustrates the dependence of SNR2/αq̄0a on pre-
binning additive noise level (σpb

e ) for Se- and Si-based sys-
tems. Monte Carlo results were calculated assuming 2×2 and
10×10 binned elements. Theoretical results were calculated
assuming ideal adaptive binning described in Sec. 3.C with
additive noise levels equal to 2σpb

e and 10σpb
e for 2×2 and

10×10 cases, respectively. In all cases, a threshold of t ≥ 3
×nσpb

e (n = 2, 10) was implemented. A value of SNR2/αq̄0a
= 1 represents the ideal situation where image SNR is not
degraded by stochastic deposition, liberation, or collection
processes, or electronic noise.

Figure 9 illustrates the expected result that as the num-
ber of binned elements is increased, image SNR decreases
due to an increase in additive noise. In the case of Se, with
the exception of the 2× 2 case for σ

pb
e . 60, there is good

agreement between MC and theory. Disagreement for 2×2

F. 9. SNR2/αq̄oa as a function of additive noise for selected photon
energies incident on Se and Si detectors that implement adaptive binning.
Theoretical curves are calculated assuming “ideal” adaptive binning with
additive noise σe equal to n (= 2, 10) times the prebinning electronic noise.

elements and σ
pb
e . 60 is likely the result of a character-

istic photon escaping from the binned element surrounding
the primary interaction and causing an additional count in a
neighboring binned element. This “double counting” results
in an inflated image signal and a misleading increase in SNR
that is not accounted for in the theoretical model. This effect
disappears for σpb

e & 60 because thresholds t (≥360 e–h pairs)
are higher than the signal (≈250 e–h pairs) generated by
reabsorbed fluorescent photons.

A similar discrepancy between theory and MC is observed
for Si. In the case of Si, this discrepancy may be due to re-
absorption of Compton-scatter x-rays. Since Compton-scatter
x-rays can retain a large fraction of incident photon energy,
increasing the threshold does not reduce the number of dou-
ble counts.

5. DISCUSSION

A theoretical framework is presented for obtaining the
energy-response function of photon-counting x-ray detectors.
This was made possible by introducing new relationships that
describe propagation of the PDF of the total number of image-
forming quanta through complicated parallel cascades of
image-forming processes for photon-counting x-ray detectors.
This is required when there is more than one image-forming
process that contributes to an image signal, such as in the case
of reabsorption of fluorescent and Compton-scatter photons.
Using this approach, the zero-frequency DQE and average
count rate of hypothetical silicon- and selenium-based SPC
detectors were determined including the effects of escape and
reabsorption of fluorescent and Compton-scatter photons,
stochastic conversion to secondary quanta, depth-dependent
charge collection, and electronic noise.

For photon-counting systems that implement adaptive ele-
ment binning, the zero-frequency DQE is equal to the quan-
tum efficiency multiplied by a new SPC noise factor, ISPC.
This term is equal to the probability of counting a photon
given an interaction event, i.e., the true-positive fraction of
photon counts, and has the appearance of a “photon-counting”
Swank-noise factor.

The CSA model of ISPC based on a generalized depth-
dependent interaction model incorporating the statistics of
liberation and collection of secondary quanta showed that the
DQE is degraded by escape of fluorescent and Compton-scatter
photons, depth-dependent collection efficiency, and electronic
noise. It was demonstrated that for Si- and Se-based SPC sys-
tems, there is a narrow range of acceptable thresholds that
depends on photon energy, collection efficiency, and electronic
noise level. Thresholds that adequately suppress electronic
noise without thresholding out interaction events will provide a
DQE that is approximately equal to the quantum efficiency. In
this case, as expected, the DQE is not compromised by Swank
noise or electronic noise. However, in some cases, this condi-
tion may not be satisfied, such as at lower mammographic
energies, higher levels of electronic noise, or poor collection
efficiencies. Under these conditions, our results suggest that
Si detectors that liberate more charges per interacting x-ray
photon will achieve superior DQE performance.
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In all cases, our theoretical models assumed an adaptive
binning approach where all interacting photon energy was
assumed to be collected in a single large element. Comparison
with MC simulations showed that this can be good approxima-
tion to systems that cluster elements into n×n larger elements,
then sum charge collected from all interactions within each
cluster and attribute a count to the element (within a cluster)
with the largest detected charge. For example, our theoretical
model agreed very well with MC predictions of the DQE of
Se-based systems that cluster elements into 200× 200 µm2

binned elements and applies a threshold that eliminates dou-
ble counts caused by reabsorption of fluorescent photons. For
sufficiently low electronic noise levels, loss of signal generated
by thresholding out reabsorbed fluorescent photons has negli-
gible effect on the DQE. Similar trends and agreement were
observed for Si-based systems, although our results suggest
that larger (>200×200 µm2) binned elements may be required
to adequately suppress double counting reabsorbed Compton-
scattered x-rays.

Furthermore, our Monte Carlo analysis illustrates that
uncorrected double (or triple) counting of interacting photons
may result in a misleading increase in image SNR (and
therefore DQE) of SPC systems. This effect will be more
severe when charge sharing caused by charge diffusion and
electron transport, which were not modeled in either theoret-
ical or MC analyses, is considered. We suspect this apparent
increase may be due to nonlinear relationships between re-
absorption, thresholding, and image noise, although such a
relationship was not considered in detail in this study. In the
future, it will be essential to quantify such relationships to
avoid potentially over estimating the DQE of SPC systems.

In this paper, results have been compared with Monte
Carlo simulations only for single-Z detector materials. Multi-
Z detector materials have the potential to differ slightly from
single-Z models when the characteristic emission from a
high-Z atom interacts with a lower Z atom to create a new
lower energy characteristic emission. The impact of this is
known to be minimal with conventional energy-integrating
CsI detectors where the two atoms have very similar atomic
numbers, but is less clear with some SPC detectors such as
CdZnTe.

6. CONCLUSIONS

A method of describing the zero-frequency DQE of
photon-counting x-ray imaging detectors, including the ef-
fects of reabsorption of characteristic and Compton-scatter
photons in a convertor material, is described. This approach
uses the concepts of cascaded-systems analysis to determine
the PDF of the total number of image-forming quanta result-
ing from parallel image-forming processes, such as energy
deposition at primary-interaction and reabsorption sites. The
model demonstrated good agreement with a Monte Carlo
simulation of Si- and Se-based detectors under a realistic
range of parameters. Application of this PDF-transfer
approach shows that low conversion gain, depth-dependent
collection efficiency, high electronic noise, and escape of

characteristic/scatter photons can result in degradation of the
photon-counting DQE under some conditions and provides a
framework for the development of high-performance photon-
counting and energy-resolving x-ray systems.

APPENDIX A: LIST OF VARIABLES

In the following, overhead ˜ indicates a random variable,
px represents the PDF of the variable x̃, and px, y represents
the joint PDF of x̃ and ỹ .

Symbol Definition
c̄ Mean SPC image signal.
ε Estimated photon energy.
R(ε,E) Response function of SPC detectors.
ζ Probability of observing a false count

due to electronic noise.
λ Mean number of photons incident on

one adaptively binned element during a
single integration period.

g̃, pg(g) Conversion gain (and associated PDF).
prg(g) PMF of discrete conversion gain vari-

able g̃.
Ñi, pNi

(Ni) Total number of secondary quanta (and
associated PDF) after the ith stage of a
serial cascade of quantum processes.

pNi
(Ni |Ni−1) PDF of the total number of secondary

quanta after the ith stage of a serial cas-
cade of quantum processes given Ni−1
quanta after the (i−1)th stage.

ÑA+B, pNA+B(NA+B) Total number of quanta (and associated
PDF) from parallel paths A and B.

pNANB(NA,NB) Joint PDF of the total number of quanta
from parallel paths A and B.

pNA,B(NA,NB|Ñ0) Joint PDF of the total number of quanta
from parallel paths A and B given Ñ0
input quanta.

ξ̃ j,A Bernoulli RV describing selection of the
ith quanta to follow path A of a parallel
cascade.

pξ j,Aξ j,B(ξ j,Aξ j,B) Joint PDF of Bernoulli RVs ξ̃ j,A and
ξ̃ j,B.

pNA(NA|ξ̃A) PDF of ÑA given ξ̃A.
ÑA, i Total number of quanta after the ith ele-

mentary process of path A .
pNA, i(ÑA, i |ÑA, i−1) PDF of ÑA, i given ÑA, i−1.
Ñtot, pNtot(Ntot) Total number of collected secondaries

per x-ray interaction and associated
PDF.

pPPU
Ntot

(Ntot) PDF of the total number of secondary
quanta collected per integration period
including the effects of pulse pileup.

d̃, pd(d |E) PDF of adaptively binned element signal
d̃ given photon energy E.

Ñt, pNt(Nt) Total number of quanta (and associated
PDF) for interaction of type t.

B (Nt;g,β) Binomial distribution for g trials and
probability of success β, evaluated at Nt.
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BX (Nt; β) Binomial distribution for probability of
success β averaged over all possible gain
values (g̃X) of path X , evaluated at Nt.

APPENDIX B: PDF TRANSFER THROUGH
ELEMENTARY QUANTUM PROCESSES

A summary of PDF-transfer relationships describing how
the PDF of the total number of image quanta is passed
through elementary gain stages including both input-labeled
and noninput-labeled stages, derived previously,42,43 is sum-
marized in Table III. Combining Eqs. (B1) and (B2), (B3) or
(B4) yields the transfer relationship for a quantum selection
process. Combining Eqs. (B1) and (B5), (B6), or (B7) yields
the transfer relationship for a quantum selection process.

APPENDIX C: JOINT PDF OF PARALLEL
PROCESSES
1. Joint PDF and branch points

Random selection of quanta from an input distribution
(Fig. 2) is characterized by Bernoulli RVs ξ̃ j,A and ξ̃ j,B with
sample values of 1 and 0 corresponding to selection, or not,
of the jth quantum. We let ξ̃A= [ξ̃A,1. . . ξ̃A, Ñ0

] (and similarly
for path B). From Eq. (20), the joint PDF of ÑA and ÑB given
Ñ0, ξ̃A, and ξ̃B is given by

pNA,B

�
NA,NB|Ñ0,ξ̃A,ξ̃B

�

= δ
*.
,

NA−
Ñ0
j=1

ξ̃ j,A,NB−
Ñ0
j=1

ξ̃ j,B
+/
-
, (C1)

T III. Summary of PDF transfer relationships through elementary gain and selection processes (Refs. 42 and 43).

PDF-transfer relationships
Process PDF transfer

General gain or selection

pNi (Ni) =


pNi−1 (Ni | Ni−1) pNi−1 (Ni−1) dNi−1 (B1)

Conditional PDF for quantum processes
Process Conditional PDF

Quantum selection (Ref. 43)

pNi (Ni |Ni−1) =

j

*.
,

Ni−1

j

+/
-
α j(1 − α)Ni−1− jδ (Ni − j) (B2)

Input-labeled quantum selection I: one set of
parameters b for all input quanta (Ref. 42)

pNi (Ni | Ni−1) =

j

*.
,

Ni−1

j

+/
-


α j(1 − α)Ni−1− j


b
δ (Ni − j) (B3)

Input-labeled quantum selection II: one set of
parameters b j for each input quantum
(Ref. 42)

pNi (Ni |Ni−1) =

j

*.
,

Ni−1

j

+/
-
⟨α⟩ jb (1 − ⟨α⟩b)Ni−1− jδ (Ni − j) (B4)

Quantum gain (Ref. 43)

pNi (Ni |Ni−1) =

j

(
prg∗(Ni−1−1)prg

) ���g= j δ (Ni − j) (B5)

Input-labeled quantum gain I: one set of
parameters b for all input quanta (Ref. 42)

pNi (Ni |Ni−1) =

j


prg∗(Ni−1−1)prg


b
���g= j δ (Ni − j) (B6)

Input-labeled quantum gain II: one set input
parameters b j for each input quantum
(Ref. 42) pNi (Ni |Ni−1) =


j

(
prg


b
∗(Ni−1−1)prg


b

) ���g= j δ (Ni − j) (B7)
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where δ denotes the 2D Dirac δ function. Using the δ-
function translation property gives

pNA,B

�
NA,NB|Ñ0,ξ̃A,ξ̃B

�

=


δ
�
NA− ξ̃A,1,NB− ξ̃B,1

�
∗ ··· ∗δ

(
NA− ξ̃A, Ñ0

,NB− ξ̃B, Ñ0

)
,



(C2)

where ∗ represents the convolution operator, and

pNA,B(NA,NB|Ñ0)
=


...


pNA,B

�
NA,NB|Ñ0,ξ̃A,ξ̃B

�

× pξA,ξB(ξA,ξB)dÑ0ξAdÑ0ξB, (C3)

where pξA,ξB represents the joint PDF of {ξ̃ j,A,ξ̃ j,B, j = 1..Ñ0},
and


dÑ0ξ represents an Ñ0-dimensional integral with respect

to ξ . Each trial is independent of all others,55 giving

pNA,B(NA,NB|Ñ0) =


δ
�
NA− ξ̃A,1,NB− ξ̃B,1

�
pξA,ξB(ξA,1,ξA,1)dξA,1dξB,1


∗ ···

··· ∗


δ
(
NA− ξ̃A, Ñ0

,NB− ξ̃B, Ñ0

)
pξA,ξB

(
ξA, Ñ0

,ξB, Ñ0

)
dξA, Ñ0

dξB, Ñ0


(C4)

and the δ-function sifting property results in Eq. (21).

2. Joint PDF following parallel cascades

Assuming that processes in path A are independent of
those in path B, the joint PDF of Ñj,A (=Ñj,A,nA) and Ñj,B
(=Ñj,B,nB) in Eq. (28) is given by

pNj,A,B

�
Nj,A,Nj,B

�
ξ̃ j,A,ξ̃ j,B

�

= pNj,A

�
Nj,A

�
ξ̃ j,A

�
pNj,B

�
Nj,B

�
ξ̃ j,B

�
. (C5)

Each trial is independent, giving

p{N j,A,N j,B}
� �

Nj,A,Nj,B
	�

Ñ0,ξ̃A,ξ̃B
�

=

Ñ0
j=1

Ñ0
j′=1

pNj,A

�
Nj,A

�
ξ̃ j,A

�
pNj′B

�
Nj′,B

�
ξ̃B, j′

�
(C6)

and the joint PDF of ÑA and ÑB is therefore given by

pNA,B

�
NA,NB|Ñ0,ξ̃A,ξ̃B

�

= pNA

�
NA|Ñ0,ξ̃A

�
pNB

�
NB|Ñ0,ξ̃B

�
, (C7)

where

pNA

�
NA|Ñ0,ξ̃A

�

= pN1,A

�
NA|ξ̃1,A

�
∗ ··· ∗ pNN0,A

(
NA|ξ̃Ñ0,A

)
(C8)

and similarly for path B. Combining these results yields

pNA,B

�
NA,NB|Ñ0,ξ̃A,ξ̃B

�

=

pN1,A

�
NA|ξ̃1,A

�
pN1,B

�
NB|ξ̃1,B

�
∗ ···

··· ∗

pNN0,A

(
NA|ξ̃Ñ0,A

)
pNN0,B

(
NB|ξ̃Ñ0,B

)
. (C9)

Since {Ñj,A, j = 1..Ñ0} are identically distributed RVs,

pNA,B

�
NA,NB|Ñ0,ξ̃A,ξ̃B

�

=

pNA,1

�
NA|ξ̃A

�
pNB,1

�
NB|ξ̃B

�

∗Ñ0−1

pNA,1

�
NA|ξ̃A

�
pNB,1

�
NB|ξ̃B

�
, (C10)

where pNA,1 represents the PDF of ÑA for any one quantum
input to the parallel cascade, with a similar result for path
B, and is equal to the 2D convolution of the first square
brackets with itself Ñ0−1 times. Averaging over ξ̃A and ξ̃B
yields Eq. (29).

3. Joint PDF of coupled input-labeled parallel
cascades

In many situations, parameters describing individual pro-
cesses (gain or selection in Fig. 3) are themselves functions
of some RV associated with each quantum input to that
process, called input-labeled random processes.56 Here, we
generalize the previous result for input-labeled random
processes in each parallel cascade, and in particular when
labels on individual input quanta may affect several
processes.

We let b̃ j = [b̃j,1 b̃j,1,. . .,b̃j,m] be a 1×m random vec-
tor with components representing input parameters associ-
ated with the jth input quantum. For example, in the case
of photoelectric interactions, the characteristic-reabsorption
probability depends on both θ̃ and z̃1 and therefore m = 2.
We represent the joint PDF of b̃j,1 b̃j,1,. . .,b̃j,m as pb(b j)
= pb(bj,1,bj,2,. . .,bj,m). It is also true that for a fixed set of
parameters (ξ̃ and b̃ j), each process in path A is independent
of those in path B. For example, in Compton scattering, for
fixed θ, conversion to secondaries at the primary-interaction
site is independent of conversion at the reabsorption site. As a
result, even though ÑA and ÑB are not normally independent,
the PDF of ÑA and ÑB given Ñ0, ξ̃A, ξ̃B, and {b̃ j, j = 1,. . .,Ñ0}
is given by

pNA,B

�
NA,NB|Ñ0,ξ̃A,ξ̃B,

�
b̃ j, j = 1,. . .,Ñ0

	�

= pNA

�
NA|Ñ0,ξ̃A,ξ̃B,

�
b̃ j, j = 1,. . .,Ñ0

	�

× pNB

�
NB|Ñ0,ξ̃A,ξ̃B,

�
b̃ j, j = 1,. . .,Ñ0

	�
, (C11)

where
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pNA

�
NA|Ñ0,ξ̃A,ξ̃B,

�
b̃ j, j = 1,. . .,Ñ0

	�

= pN1,A

�
NA|ξ̃1,A,b̃1

�
∗ ...∗ pNN0,A

(
NA|ξ̃Ñ0,A,b̃Ñ0

)
. (C12)

Combining with the similar pNB and averaging over all possi-
ble values of ξ̃A, ξ̃B, and {b̃ j, j = 1,. . .,Ñ0} yields

pNA,B

�
NA,NB|Ñ0

�

=


p(1)
NA

(NA|ξA,b)pNB,1(NB|ξB,b)


b


ξA,ξB

∗N0−1


p(1)
NA

(NA|ξA,b)pNB,1(NB|ξB,b)


b


ξA,ξB

, (C13)

where p(1)NA
(NA|ξA,b) represents the PDF of ÑA given ξ j,A

and b j for one quantum input to the parallel cascade with a
similar result for path B, and

p(1)
NA

(NA|ξA,b)pNB,1(NB|ξB,b)


b

=


p(1)
NA

(NA|ξA,b)pNB,1(NB|ξB,b)pb(b)dmb, (C14)

where pb(b j) = pb(b) independent of j. Averaging over all
possible values of Ñ0 yields

pNA,B(NA,NB) =
 

p(1)
NA

(NA|ξA,b)pNB,1(NB|ξB,b)


b


ξA,ξB

∗N0−1


p(1)NA
(NA|ξA,b)pNB,1

× (NB|ξB,b)⟩b
�
ξA,ξB


pN0(N0)dN0. (C15)

This result is a new contribution and describes the joint
PDF of quanta from two parallel paths when parameters of
elementary processes in each path are functions of random
variables b̃ associated with each input quantum (depth of
interaction and scatter-photon angle in this work).

APPENDIX D: PDF OF REABSORPTION DEPTH z̃2

Calculation of the total number of quanta for the generic
interaction model [Eq. (62)] requires the PDF of reabsorp-
tion depth z̃2 given z̃1 and θ̃. Using a cylindrical coordinate
system with origin at z̃1, pz2(z2|z1,θ) is given by

pz2

�
z2| z̃1,θ̃

�
=


pz2

�
z2,r,φ| z̃1,θ̃

�
rdrdφ, (D1)

where pz2(z2,r,φ|z1,θ) represents the joint PDF of z̃2, r̃ , and
azimuthal angle φ̃ (Fig. 5) given z̃1 and θ̃,

pz2

�
z2,r,φ| z̃1,θ̃

�
=C

�
z̃1,θ̃

�
µ(Es)e−µ(Es)

√
r2+(z̃1−z2)2, (D2)

where C is a normalization constant. Assuming the scatter
photon is reabsorbed, C is determined by requiring the inte-
gral of pz2 over a semi-infinite slab of thickness L to be unity
for all z̃1 and θ̃,

C
�
z̃1,θ̃

�−1
= 2π




 L

z̃1

 (L−z̃1)|tanθ |

0
µ(Es)e−µ(Es)

√
r2+(z̃1−z2)2rdrdz2 0 ≤ θ < π/2 z̃1

0

 z̃1|tanθ |

0
µ(Es)e−µ(Es)

√
r2+(z̃1−z2)2rdrdz2 π/2 ≤ θ < π

. (D3)
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