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ABSTRACT 

The objective of this research was to develop polymeric nanoparticles (NPs) having 

improved drug release properties for drug delivery. Poly(ester amide)s (PEAs) are promising 

biodegradable polymers. PEA NPs were prepared via emulsification-evaporation and salting-

out methods and optimized through by varying different processing parameters.  Polymer-

model drug conjugates based on PEAs containing L-aspartic acid and rhodamine B were 

synthesized and used for NP preparation. Release behavior was studied and compared to a 

control system with physically encapsulated rhodamine B. It was shown that the release of 

rhodamine B from the covalent system did not show the burst effect and exhibited a slower 

and more sustained profile. A novel PEA-floxuridine conjugate was also prepared and used 

to synthesize NPs. These NPs exhibited a small burst effect followed by slow drug release. 

To provide a new stimulus-responsive release mechanism, NPs based on a UV triggerable 

self-immolative poly(ethyl glyoxylate) PEtG were prepared. PEtG/poly(lactic acid) (PLA) 

blend NPs were prepared for site-specific and time-controlled drug delivery. PLA NPs were 

first synthesized by the emulsion-evaporation method and optimized through different 

experimental conditions. PEtG/PLA NPs were then prepared using the optimized conditions. 

In this study, letrazole was used as a model drug. These letrazole loaded NPs had a low Z-

average diameter of less than 100 nm and high encapsulation efficiency. Increasing burst 

release was observed with increasing PLA content. Thermal characterization of PEtG/PLA 

NPs showed phase separation of the two polymers in the NPs. Although the UV irradiated 

PEtG NPs showed depolymerization upon UV irradiation, letrazole release was not 

accelerated. The reasons for this lack of triggered release require more investigation and 

optimization.  

 

Keywords 

poly(ester amide)s, nanoparticles, drug delivery, polymer drug conjugates, floxuridine, 

poly(ethyl glyoxylate), stimuli responsive polymers, self-immolative, blend NPs, Letrazole. 
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Chapter 1 : Introduction   

1.1 Introduction 
Conventional therapeutics often have undesirable physicochemical and pharmacological 

properties. Their random distribution leads to side effects and the need for higher doses of the 

drug to achieve a satisfactory pharmacological response. Additionally, rapid renal clearance 

as a result of the low molecular weight of some compounds along with other factors such as 

protein binding, and lipophilicity, result in a requirement for frequent administration and/or a 

high dose to have a therapeutic effect. To address these intrinsic drawbacks, a widely used 

approach is to modify the existing therapeutic agents using drug delivery technologies. 

Drug delivery systems are designed to improve the pharmacological activity of drugs by 

enhancing pharmacokinetics such as absorption, distribution, metabolism and excretion. 

Moreover, these systems offer advantages including their capability to encapsulate poorly 

soluble drugs and to offer more patient-friendly administration methods. Drug delivery 

systems are usually high molecular weight carriers and can be processed as nano-and 

microparticles, micelles, and dendrimers, in which the drug is embedded or covalently 

bound. Polymer-based systems, especially those composed of biodegradable polymers are 

amongst most extensively explored in nanosystems for drug delivery. 

Nanosystems based on biodegradable polymers seek to improve the drug release profile in a 

predetermined and controlled manner. Since the degradation rate and the consequent drug 

release rate can be modulated depending on their chemical compositions, rational design of 

their chemical structure such as type of covalent bonds between monomers, degree of 

hydrophilicity, etc. is important to consider. Additionally, these controlled release systems 

modify the capacity to cross biological carriers, biodistribution, clearance, and stability of the 

drug by precise control of nanosystems formulation and evaluation of physico-chemical 

properties e.g. size, surface property, and shape. 

1.2 Problem Statement  
Many drug delivery systems (DDS) based on physical drug encapsulation have strong 

limitations including: 1) the poor encapsulation efficiency of hydrophilic drugs which may 

require the usage of high percentages of the polymeric carrier that might cause toxicity; 2) 
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the burst effect which results from precipitation of the drug on the outer surface of the 

particles and a subsequent rapid release after administration and also may cause toxicity; 3) 

crystallization of poorly soluble drug during preparation of the nanocarriers.  

Additionally, DDS based on biodegradable polymeric nanoparticles exhibit a general 

temporal control over the release process, but typically lack secure encapsulation of the drug 

before reaching the target site as well as the ability to release the drug rapidly and 

specifically at the target site. Furthermore, some polymers have been shown to exhibit slow 

degradation rate and the difficulty to eliminate these polymers from the body after depletion 

of the drug resulting in several problematic side effects. 

1.3 Objectives  
The goal of my thesis is to overcome the above limitations and permit polymeric NPs to be 

used as effective drug delivery systems. Poly(ester amide)s (PEAs) were investigated for NP 

based DDS since theses polymers are considered as a promising family of biodegradable 

materials having ester and amide bonds in their backbones. The effects of several 

experimental valuables were investigated in order to optimize the nanoparticles in terms of 

their size. PEA-drug conjugates were synthesized by coupling PEAs having pendant 

carboxylic acid groups first to a dye molecule as a model drug and then to a hydrophilic anti 

cancer drug floxuridine. NPs based on PEA-floxuridine conjugates were prepared using the 

optimized conditions. The efficiency of these nanoparticles was investigated in terms of their 

coupling efficiency with the hydrophilic drug, controlled release profile, and their burst 

effect.  

In addition, initial work was performed towards offering an appropriate NP tool for site-

specific and time-controlled drug delivery. The goal of this chapter was to provide a secure 

encapsulation of the drug before reaching the target site and then use sensitivity towards an 

external stimulus to increase the release of drug after approaching the target cells or tissues. 

UV-responsive NPs based on poly(ethyl glyoxylate) (PEtG) and poly(lactic acid) (PLA) 

blends were synthesized. PEtG is UV-triggerable self-immolative polymer that undergoes 

end-to-end depolymerization upon UV light exposure. Several experimental parameters were 

optimized to obtain NP diameters of less than 100 nm. The efficiency of these nanoparticles 

was investigated in terms of encapsulation efficiency of the hydrophobic anti cancer drug 
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letrazole. Letrazole release performance was studied in the absence and presence of UV 

stimulus, and the degradation properties of PEtG NPs upon exposure to UV irradiation was 

investigated.  

1.4 Thesis Organization  
This thesis encompasses five chapters and conforms to the “integrated-article” format as 

outlined in the Thesis Regulation Guide by the School of the Graduate and Postdoctoral 

Studies (SGPS) of the Western University. After an introduction in the first Chapter, a 

comprehensive literature review including the background and a thorough assessment of the 

information on polymeric nanosystems for drug delivery is presented in Chapter 2. Chapter 3 

investigates the covalent drug immobilization in poly(ester amide) nanoparticles for 

controlled drug release. In Chapter 4, nanoparticles based on poly(ethyl glyoxylate) were 

synthesized with the aim of providing a triggered release mechanism for drug delivery 

systems. Finally, Chapter 5 summarizes the major findings of this study with 

recommendations for continuous improvements in nanotechnology and biodegradable 

polymers for drug delivery.  

1.5 Thesis Contributions   
This research presents important contributions in the field of biodegradable polymeric NPs 

used as drug delivery systems to improve the pharmacokinetic and pharmacodynamic profile 

of therapeutics. PEAs have been investigated as potential candidates for drug delivery 

system. PEAs containing pedant carboxylic acid functional groups were used to prepare drug 

delivery NPs. By running a series of optimization scenarios, it was possible to prepare 

particles having Z-average diameters of less than 200 nm and reasonable polydispersities by 

emulsification-evaporation and salting-out methods. To investigate the potential use of these 

functional handles for the drug immobilization of drug molecules, the carboxylic groups in 

PEA backbone were conjugated to an alcohol functionalized rhodamine B derivative as a 

model drug via an ester linkage with a coupling efficiency of ~40% prior to nanoparticle 

preparation. The optimized NPs from the PEA-rhodamine B conjugate and from control NPs 

in which rhodamine B was physically encapsulated were prepared. Additionally, their release 

behaviour were compared and the results showed that the covalent conjugate afforded a 

much slower release than the noncovalent control suggesting that this approach is valuable 
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for the elimination of the burst release effect. The approach was also extended to covalent 

immobilization of the hydrophilic anti cancer drug floxuridine in NPs. This system also 

exhibited a high coupling efficiency of 60% for the hydrophilic drug, a small burst release 

effect of 5%, and small Z-average diameters of less than 200 nm. This small initial release 

was followed by a slower and sustained release.  

Overall this work suggests the promise of using the optimized PEA NPs for drug delivery 

applications especially for passive targeting to solid tumors due to the physiological and 

anatomical modifications of such tissues.  Additionally, PEAs provide a better tailor to 

synthesis polymer-drug conjugates by incorporating α-amino acids with pendant reactive 

handles. Covalent immobilization of the drug with PEAs achieved a satisfactory drug loading 

of small and hydrophilic dugs. PEA-drug conjugates were based primarily on hydrolytically 

unstable ester bonds between the drug and the polymer that ensure control release in a slow 

and sustained rate with no significant burst effect, which may lead to releasing the drug at the 

site of action to reduce the drug toxicity. 

In order to overcome the problem of nonspecific release of drug throughout the body, which 

can be expected for most NP systems; in the second part of this study; stimuli responsive NPs 

were investigated. Drug delivery NPs based on stimuli responsive polymers were prepared 

using PEtG. PEtG is a new and versatile class of self-immolative linear polymer backbones. 

A UV cleavable end-cap provides a control and triggerable PEtG that undergoes end-to-end 

depolymerization upon UV exposure.  This study investigated the use of PEtG/PLA blend 

NPs with PEtG designed to impart stimuli responsive properties to the NPs, for the release of 

drug to be triggered. It was possible to prepare PEtG/PLA blend NPs having Z-average 

diameters of less than 100 nm and reasonable polydispersities. These NPs showed good 

efficiencies to encapsulate the hydrophobic drug letrazole. The results suggested that the 

burst effect from the NPs depended on the ratio of PLA:PEtG, with more PLA leading to 

more burst release. NPs based on PEtG might be an appropriate tool for site-specific and 

time-controlled drug delivery.  
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Chapter 2 : Literature Review 

2.1 Nanotechnology for drug delivery 
Nanotechnology has been extensively used in drug delivery. The application of 

nanotechnology is expected to significantly influence the landscape of biotechnology and 

pharmaceutical industries. This term is applied to a particle within the range of 1-100 nm in 

at least one dimension (Farokhzad and Langer, 2009). This interest in nanomedicine is driven 

by the emerging success of nanoparticle (NP)-based DDS (Davis et al., 2008). Numerous 

nanocarrier DDS have been developed from various materials, including polymers (micelles, 

solid nanoparticles, or dendrimers), lipids (dispersion of solid lipids, liposomes), viruses 

(viral NPs), and conjugated materials (nanotubes) as illustrated in Figure 2-1 (Cho et al., 

2008). 

 
Figure 2-1: Possible nanocarriers for drug delivery. A) Solid polymeric NPs: the drug can be 

encapsulated or conjugated to the polymeric matrix. B) Polymeric micelles: formed from self-assembly of 
amphiphilic copolymers forming core shell NPs. C) Dendrimers: highly branched polymers at the 

nanosized range. D) Liposomes: lipid bilayer nanostructure. E) Viral based NPs: multivalent and self-
assembled structures. F) Carbon nanotubes: carbon cylinders from fused benzene rings. (Reprinted with 

permission from Cho et al., 2008)  

Nanoparticle DDS display several advantages over conventional free drugs. For example, the 

solubility can be a limiting factor for hydrophobic drugs; however, NPs were proven to 

enhance the dispersibility of different hydrophobic drugs (Torchilin et al., 2003). Also, 

micelles 
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depending on the type and composition of NPs, they may be able to considerably decrease 

the toxicity as compared to free drug (Kim et al., 2006). NPs can provide controlled and/or 

responsive drug release profiles. The drug can release in a controlled manner over a specific 

period of time, generally by diffusion (Zhang et al., 2006), which can be exploited in 

chemotherapy that requires sustained levels of the drug in the cancerous tissue in order to kill 

the uncontrolled growth of cells. Additionally, several systems have been developed to 

trigger the drug release upon exposure to specific stimuli such as pH change, temperature, 

redox potential, and the presence of enzymes (Ahmed et al., 2006; Tirelli, 2006; Ganta et al., 

2008; Xu et al., 2008). This can control the release in the target tissue and reduce the toxic 

side effects in the healthy tissue. NPs have been reported to challenge multidrug resistance 

mechanisms in cancerous tissue by following a different cellular internalization pathway 

(Davis eta l., 2008; Dongin et al., 2008). NPs provide protection for the loaded protein and 

other enzyme-labile molecules from proteolysis and rapid clearance (Simone et al., 2007). 

Furthermore, owing to their high surface to volume ratio, NPs have the ability to penetrate 

deeper into tissues and to cross membrane barriers. They are therefore a promising platform 

for applications such as drug delivery and targeted cancer therapy (Bae et al., 2011; Chanana 

2013). 

A drug delivery system is a system used to deliver the therapeutic agent to a specific site at 

an appropriate concentration, and to maintain therapeutic levels for a sufficient period of 

time. The delivery system is as important as the therapeutic moiety itself. Efforts have been 

invested to create an integrated system that combines nanotechnology with targeting systems, 

providing prophylaxis or treatment for numerous diseases. NPs are considered to be one of 

the most relevant technologies in terms of targeted delivery of many therapeutic agents, 

including small drug molecules and macromolecules, in attempt to maximize the efficiency 

of the drug in the target tissue and minimize the toxic side effects. Drug delivery systems, 

which are composed primarily of lipids and/or polymers, are designed to change and improve 

the pharmacological properties, such as pharmacokinetics and biodistribution, of the 

associated drugs. 

Two targeting approaches (i.e. passive and active) have been widely applied in drug delivery 

systems. Passive targeting is the first and most commonly applied approach. It is based on 

the enhancement permeability and retention (EPR) phenomenon (Iyer et al., 2006; Seki et al.; 
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2009; Fang et al., 2011).  In particular, cancerous tissues are characterized by irregular, leaky 

vascular structure, and large inter-endothelial junctions that allow nanosized systems to 

selectively reach these tissues.  In addition, the poorly developed lymphatic system leads to 

increased retention of the particles in these tissues. Accordingly, NPs have the potential for 

significant accumulation in cancerous tissue in comparison with conventional drugs, which 

can diffuse easily to all tissues. Additionally, similar characteristics have been found in 

inflammation sites, which provide another application of NPs for diseases such as arthritis 

(Wang et al., 2007; Liu et al., 2008; Ishihara et al., 2009).  Passive targeting is based on the 

size of the carrier. Many researchers have shown that the pore size of the tumor vasculature 

ranges from 200 nm - 1.2 um. (Hobbs et al., 1998). Theses pores vary depending on the type 

and location of the tumor. Thus, a generally recommended size of the NPs designed for 

passive delivery is less than 200 nm. However, larger particles with hydrophobic surfaces are 

prone to be recognized by plasma proteins and glycoproteins through process called 

opsonization. Afterwards, the opsonized particles are attacked by the mononuclear 

phagocytic system, the reticuloendothelial system. The macrophage cells in the liver (kupffer 

cells), spleen, and circulating macrophages are responsible for removing these particles and 

breaking them down (Davis, 1997).  

Active targeting is the second approach used in drug delivery. It is based on the fact that the 

receptors are upregulated on the tumor cells and endothelial cells associated with tumor 

tissues, which can be chosen for the target system. Thus, specific ligands incorporated on the 

surfaces of NPs can bind to specific receptors in the target organs. Because the tumor 

receptors are generally inaccessible in blood vessels, the EPR effect also plays a significant 

role in receptor targeting. However, targeting groups can also facilitate cell uptake and higher 

intracellular drug concentrations through receptor-mediated endocytosis of nanoparticle 

afterwards (Oyewumi et al., 2004). Additionally, vascular targeting can also be employed for 

therapeutic targeting systems (Schnitzer, 1998).  

2.2 Biodegradable polymers for nanoparticle systems 
Drug carriers are designed to act as delivery vehicles for drugs through various routes of 

administration and to overcome deficiencies of treatment with free drugs that lead to poor or 

failed therapies (Merisko-Liversidge et al., 2003).  Since the 1970s, polymers have been 
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widely developed and recognized for their potential in drug delivery applications, especially 

after it was demonstrated in 1976 that the release of macromolecules from biodegradable 

polymers in a sustained manner was possible (Langer and Kolkman, 1976). Polymers offer a 

long-term and progressive delivery of therapeutic agents (Sanchez et al., 2003). The 

polymeric dosage forms offer important advantages of delivering the drugs in a sustained 

manner, thereby avoiding repeated drug administration. Additionally, they allow protection 

of encapsulated macromolecules, such as proteins and peptides, as these molecules are very 

sensitive to changes in pH and to enzymes (Jiao et al., 2002). Polymers have emerged as a 

major and important class of controlled release biomedical systems owing to their ability to 

regulate the release profile in a predetermined, tunable, and/or responsive manner by 

manipulating synthesis, physico-chemical, and degradation properties using different 

techniques (York et al., 2008; Bae and Kataoka, 2009; Dhal et al., 2009). Over the past 4 

decades, the technology using controlled release polymers has engaged every field in 

medicine including cardiology, ophthalmology, neurology, dentistry, immunology, and other 

fields (Farokhzad and Langer, 2006).  

A number of different polymers, both natural and synthetic, have been used in the synthesis 

of NPs (Marty et al., 1978; Moghimi et al., 2001; Gradishar et al., 2005). However, synthetic 

polymers have shown the advantage of sustained drug release over a period of days to weeks, 

compared to natural polymers, which often release drugs very rapidly (Nair and Laurencin, 

2007; Sionkowska, 2011). There is a growing interest in controlling the consistency, shape, 

composition, and size of the NPs to achieve optimal therapeutic effects and to ensure the 

compliance of nanotechnology with future applications. Consequently, novel production 

methods and manufacturing techniques have been continuously developed and refined. Drug 

delivery systems based on polymeric NPs have to undergo development, testing, and 

evaluation processes in order to meet the requirements of regulatory bodies such as the US 

Food and Drug Administration (FDA), which is a major hurdle for NP commercialization. A 

suitable selection of the polymer matrix is necessary to develop a successful delivery system.  

The polymers used in biomedical applications can be degradable or non-degradable. The 

major disadvantage of non-degradable polymers is the difficulty to eliminate these polymers 

from the body after depletion of the drug. However, degradable polymers undergo 

degradation in physiological conditions into absorbable building blocks. With these 
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polymers, it is crucial to ensure that the degradation products are not toxic. The most 

commonly used synthetic degradable polymers for controlled drug release applications are 

polyesters, polyanhydrides, polyethers, polyamides, polyorthoesters and polyurethanes. 

Depending on the method of preparation, the NPs may have the structure of capsules, 

amphiphilic core/shell (polymeric micelles), solid NPs, or hyperbranched macro-molecules 

(dendrimers). The following section focuses on PLA as an example aliphatic polyester, and 

poly(ester amide)s as another synthetic biodegradable polymer used for drug delivery. 

2.2.1 Poly(lactic acid) (PLA) 

PLA is one of the most widely used biodegradable polymers in drug delivery because it 

undergoes hydrolysis of the ester backbone in biological fluids into the biodegradable 

metabolite lactic acid, which is ultimately metabolized into CO2 and water (Hayashi, 1994; 

Yang et al., 2004). Protocols have been optimized to synthesize PLA NPs and to incorporate 

different anti-cancer drugs (Xing et al., 2007), proteins (Gao et al., 2005), hormones 

(Matsumoto et al., 1999), and anti-restenosis drugs  (Fishbein et al., 2000). There are 

different factors affecting the effective response and release behavior of the PLA 

nanomedicines including molecular weight of the drug, the drug encapsulation method, 

particle size, additives to the formulation, and surface modification ((Matsumoto et al., 1999; 

Storma et al., 1995; Torchilin et al., 1995; Cho et al., 1997; Owens 3rd and Peppas, 2006; 

Lee et al., 2007). There was a sharp increase in the number of patents in this field from about 

90 in the early 1990s to more than 600 in last decade. This increase started with the clinical 

success and commercialization of Lupron Depot, the first parenteral sustained-release 

formulation using PLA, which was approved in 1989 (Chaubal, 2002). PLA is a hydrophobic 

polymer prepared by two distinctive mechanisms: (i) the step-growth polymerization or 

polycondensation, and (ii) the ring-opening polyaddition (ROP) (chain growth 

polymerization). The step-growth polymerization mechanism depends on the condensation of 

lactic acid (Figure 2-2). However, there are drawbacks including the use of high 

temperatures, long reaction times, difficult control of the stereoregularity, and the generation 

of water as a byproduct that decrease the conversion and the molecular weight (Enomoto et 

al., 1994; Ren, 2010). 
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Figure 2-2: The synthesis of PLA from lactic acid monomers through the step growth polymerization. 

The polymerization of lactones and lactides by the ring-opening polyaddition mechanism is 

more favorable and free of these limitations. In this mechanism, tailor-made properties and 

narrow molecular weight distributions can be easily prepared under mild conditions (Lou et 

al., 2003; William, 2007). A variety of cationic, anionic, and coordination catalysts can be 

used in ring opening polymerization (Lecimte and Jérôme, 2005; Penczek et al., 2007). 

The ROP proceeds through two major mechanisms depending on the catalyst. In the first 

mechanism, the metal acts as the catalyst to activate the monomer by complexation with the 

carbonyl group (Figure 2-3). Polymerization is then initiated by any nucleophile such as 

water or an alcohol present in the polymerization media, by using a catalyst as Lewis acidic 

metal fragment (Piedra-Arroni et al., 2011). The second mechanism is a coordination-

insertion mechanism. Tin octoate (Sn(Oct)2), tin(II) bis-(2-ethylhexanoate), is the most 

widely used organometallic initiator for the ring-opening polymerization of aliphatic 

polyesters, even more than metal free catalytic systems (Stjerndahl et al., 2007). It is 

accepted as a food additive by the US FDA. Therefore, there are applications that do not need 

polymer purification, such as packaging. In the second mechanism, tin octoate is converted 

into tin alkoxide by reaction with alcohols.  Reacting tin alkoxide with a second alcohol 

equivalent produces tin dialkoxide, which acts as the actual initiator (Figure 2-4). 

Afterwards, tin dialkoxide coordinates with the carbonyl group of the monomer, followed by 

cleavage of the bond of acyl-oxygen bond. Simultaneous insertion of monomers into the 

metal alkoxide then takes place. Consequently, the addition of a predetermined amount of 

alcohol is an effective way to control the molecular weight.  
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Figure 2-3: Mechanism of PLA synthesis through ring opening polymerization using organometallic 

catalyst species (M) in presence of nucleophiles (Nu).  

PLA can exist in different stereochemical forms, which have different properties. Poly(D-

lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) are semicrystalline materials, exhibiting 

glass transition temperatures (Tg) of 55-65° C, and melting temperatures (Tm) of 150-175 °C 

(Rathi et al., 2012; Shao et al., 2012).
 
Racemic (D,L)-lactic acid is amorphous due to the 

random distribution of D- and L-lactic acid and therefore does not exhibit a Tm. It has a Tg 
of approximately 55-60°C. Variations in thermal properties impact their chemical and 

physical properties, providing insight toward relative applicability in different biomedical 

applications. PDLLA has been shown to exhibit increased degradation rates. It typically 

starts to show mass loss and fully degrades within 12-16 months, whereas PLLA can take 2-

5.6 years. This can be attributed to the crystallinity of PLLA (Chu, 1981; Grijipma et al., 

1990; Fukushima et al., 2013). 
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Figure 2-4: Mechanism of PLA synthesis through the ring opening polymerization via coordination 

insertion mechanism using tin octoate as a catalyst 

Due to the slow degradation rate and good tensile strength of the PLLA, it can be used in 

load bearing applications, including orthopedic fixation devices. The Phantom Soft Thread 

Soft Tissue Fixation Screw® and Phantom Suture Anchor® (DePuy) are a couple of 

examples. Additionally, PLLA fibers have been investigated as scaffolding materials for 

developing ligament replacements to replace non-degradable fibers, such as Dacron (Lu et 

al., 2005; Cooper et al., 2005). On the other hand, the lower strength and faster degradation 

rate of PDLLA renders it a preferred candidate for drug delivery vehicles and as low strength 

scaffolding material for soft tissue regeneration (Nair and Laurencin, 2007). 

Extensive research has also focused on the development of copolymers such as poly(lactide-

co-glycolide) (PLGA) in order to improve the degradation rate. The characteristics of the 

PLGA are dependent on the composition of the copolymers. For example, poly(D,L-lactide-
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co-glycolide) with a 50/50 ratio of monomers degrades within 1–2 months, 75/25 

lactide:glycolide in 4–5 months and 85/15 in 5–6 months. Additionally, PLGA of 25/75 

forms amorphous polymers (Miller et al., 1977).  

Polycaprolactone (PCL) is hydrophobic polyester that has also been extensively explored. It 

is semicrystalline and exhibits a low Tm of 55–60 °C and a Tg of -60 oC. It is synthesized by 

the ring opening polymerization of carpolactone. Due to the presence of ester linkages in the 

backbone, PCL also undergoes hydrolytic degradation, albeit with a slow rate requiring up to 

3-4 years to reach completion (Woodruff and Hutmacher, 2010). Thus, it has been 

investigated in long-term drug delivery devices. Polymeric devices consisting of 

carpolactone and glycolide are currently used as slowly degrading suture materials 

(MONACRYL®) (Nair and Laurencin, 2007). 

2.2.2 Poly(ester amide)s (PEAs) 

Although polyesters such as PLGA, PLA, and PCL constitute the main family of synthetic 

biodegradable polymers used in a wide range of biomedical applications, some limitations of 

these polyesters have been reported. For example, PLA and PLGA can undergo bulk 

degradation, which prevents the degraded chains from escaping to the outer environment, 

ultimately leading to excessive accumulation of the acidic byproducts and consequently 

resulting in some cell toxicity and tissue inflammation (Bergsma et al., 1995; Estey et al., 

2006; Nair and Laurencin, 2007). Additionally, poor mechanical properties due to weak 

intermolecular forces and lack of side chain functionalities required for coupling of bioactive 

molecules have restricted the use of these polymers in medical applications.  

Poly(ester amide)s (PEAs) have emerged as promising biodegradable polymers for a wide 

range of biomedical applications as they have the advantages resulting from both ester and 

amide bonds in their chemical backbone that promote biodegradability, as well as good 

thermal and mechanical properties. Additionally, they have so far exhibited good 

biocompatibility and cell-material interactions (Horwitz et al., 2010; Knight et al., 2011). 

The hydrolyzable bonds in their chemical structures are responsible for hydrolytic and 

enzymatic degradation in a wide range of biological environments, resulting in the release of 

non-toxic building blocks including amino acids, diols, and dicarboxylic acids  (Guo and 

Chu, 2007; Knigh et al., 2011; Rodriguez-Galan et al, 2011; Sun et al., 2011). 
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The structure-property relationships of PEAs have been explored, and it has been shown that 

by rational design of the backbone, the polymer’s chemical functionality, degree of 

crystallinity and degradability, solubility, thermal, and mechanical properties can be readily 

tailored. PEAs synthesized from a-amino acids, diols, and diacids as shown in Figure 2-5 are 

of particular interest for our group. 

 
Figure 2-5: General structure of PEA 

Soleimani et al., (2014) have prepared various structures of PEAs based on amino acids 

including L-alanine, and L-phenylalanine with diols of different structures along with 

aliphatic and aromatic diacids. It was found that all of the resulting PEAs exhibited high 

decomposition temperatures (Tds) that exceeded 300 °C, indicating that these polymers can 

be processed in the melt without degradation. The thermal properties could be tuned by the 

incorporation of different chemical structures into the PEA backbone. For example, the 

incorporation of flexible ether bonds in the backbones decreased the Tg compared to the 

similar PEAs of the same amino acids, diacids, and spacer length of the diol. Increasing the 

number of methylenes in the diol moiety was another way to lower the Tg in the PEAs of the 

same structures. Additionally, the chemical structures of amino acids can affect the flexibility 

of PEAs. For example, the incorporation of L-phenylalanine increased the Tg, in comparison 

with the PEAs with L-alanine, due to presence of the rigid phenyl group. PEAs containing 

stiff units such as terephthalic acid and cyclohexanediol exhibited higher Tgs. In addition to 

studying structure-property relationships, during the last decade great efforts have been 

focused to introduce functionalities into the polymer backbone by the incorporation of α-

amino acids with carboxyl, hydroxyl, and amine pendant groups. Atkins et al., (2009) has 

successfully synthesized functionalized PEAs using L-aspartic acid and L-lysine based 

monomers. PEAs containing different monomers have been synthesized via two major 

routes: ring opening polymerization of functionalized lactones and polycondensation of 

monomers with reactive amine, ester, and hydroxyl end groups. Ring opening 

polymerizations of morpholine-2,5-diones were usually carried out using tin octoate 
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[Sn(Oct)2] as a catalyst and adding water or alcohol molecules as initiators. It was 

hypothesized that the ring opening reaction is initiated by a tin (II) hydroxyl or alkoxide 

group as shown in Figure 2-6.  

ROP, however, has shown some imitations. The morpholine-2,5-diones can coordinate to a 

metal complex in a non-productive manner  as a result of attack of the more nucleophilic 

oxygen of the amide group. Additionally, the amido N–H group may be involved in a 

reaction after attack at the ester group, leading to stable chelating ligands. Therefore, 

polymerization through ROP is terminated by the formation of kinetically inert products 

(Chisholm et al., 2006). Polycondensation methods are usually utilized to react diamide-diol 

(I, II), diester-diamine (III) monomers with dicarboxylic acid derivatives, as shown in Figure 

2-7. The PEA is prepared via polycondensation methods through two main approaches: 

interfacial and solution polymerization. 

 
Figure 2-6: Scheme of synthesis of PEA through ring opening mechanism of morpholine-2,5-dione using 

tin octoate as a catalyst 
 

Interfacial Polymerization. PEAs can be prepared from di-p-toluenesulfonic acid salts of 

bis-(R-amino acid) diesters and diacid chlorides through interfacial polymerization where the 

polymerization occurs at the interface of Na2CO3 aqueous solutions and water immiscible 

organic solvents. The method produces high molecular weight polymers, in which the 

impurities from the monomers remain in the aqueous phase, allowing polymer chain 

propagation (Knight et al., 2011). Although this method can be performed at low 
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temperatures with limited side reactions (Paredes et al, 1998), this method has reported 

several drawbacks of chain-termination and unit-heterogeneity.  

Solution Polymerization. The solution polymerization depends mainly on activation of the 

carboxylic acid by reacting it with a good leaving group to form an activated ester. It is 

carried out by reacting di-p-toluenesulfonic acid salts of bis-(R-amino acid) diesters  with di-

p-nitrophenyl esters of diacids at moderate temperatures of 70 °C in nonprotic solvents. This 

approach is used in the synthesis of PEAs of different structures by rational selection of 

diacids or diols, in which either aliphatic or aromatic and saturated or unsaturated backbones 

with varying lengths of alkylene units can be prepared. Additionally, the solution 

polymerization method can be carried out without the use of toxic catalysts, which makes it a 

highly attractive synthetic approach for degradable polymers; however, the resulting 

polymers require extensive purification to remove the large amounts of side products, such as 

p-nitrophenol.  

 
Figure 2-7: Synthesis of PEAs through polycondensation approaches.  

G = leaving group 
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PEAs have many advantages for their use in biomedical applications. They are 

multifunctional biomaterials that are not only biocompatible and biodegradable but are also 

biomimicking materials since they can be synthesized from natural amino acids. L-amino 

acid containing biodegradable PEAs have been explored for drug delivery, gene delivery, 

tissue engineering, and medical imaging. For example, Lee et al., (2002) have evaluated PEA 

coated stents for reducing the neointimal hyperplasia.  In this study, a PEA based on L-amino 

acids (L-leucine and L-lysine), 1,6-hexanediol, and sebacic acid was used. The results 

suggested that the PEAs have many potential advantages as stent coatings since a positive 

effect on the vascular healing response was obtained. In addition, PEA coated stents loaded 

with 50% (wt%) of Tempamine decreased the arterial injury and neointimal hyperplasia in an 

in vivo study (Huang et al., 2006). 

PEA microparticles were prepared and optimized via an emulsification evaporation technique 

based on L-phenylalanine-butane-1,4-diester with adipic acid and sebacic acid. The 

degradation behavior was significantly affected by the enzyme concentration. Paclitaxel 

loaded microparticles exhibited high encapsulation efficiency (> 95%), showing promise as a 

carrier for hydrophobic anti cancer drug delivery (Guo and Chu, 2009). 

Knight et al. 2011 synthesized biodegradable PEAs based on α-amino acids L-alanine, L-

phenylalanine, and L-lysine to study human coronary artery smooth muscle cell (HCASMCs) 

interactions. All of the prepared PEAs exhibited good HCASMC attachment, spreading and 

proliferation. These results suggested that PEAs could potentially be applicable in vascular 

tissue engineering applications. 

2.3 Polymer-drug conjugates for nanocarriers 
Drug loading into polymeric NPs can be achieved through three strategies: (1) covalent 

attachment of the drug to the polymers through polymer-drug conjugates; (2) adsorption of 

the drug on the polymeric surface; (3) entrapment of the drug in the polymeric matrix of NPs 

(Dreis et al., 2007). Accordingly, the drug release profile can be affected by many factors 

including polymeric matrix degradation, diffusion through the matrix, and erosion of the 

polymeric surfaces (Peer et al., 2007). Promising results have been reported in the literature 

regarding the synthesis of nanocarriers and the physical encapsulation of drugs (Elsabahy and 

Wooley, 2012; Kamaly et al., 2012; Nicolas et al., 2013). However, many delivery systems 
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based on physical drug encapsulation have strong limitations including: (1) the poor 

encapsulation efficiency of hydrophilic drugs which may require the usage of high 

percentages of the polymeric carrier that may cause toxicity; (2) the burst effect which results 

from precipitation of the drug on the outer surface of the particles and a subsequent rapid 

release after administration and also may cause toxicity; (3) crystallization of poorly soluble 

drug during preparation of the nanocarrier. Many attempts have been undertaken in order to 

solve these problems. For example, the drug can be covalently coupled to the polymer, 

forming prodrugs that are inactive, but upon cleavage can be converted to the active form. 

This strategy can overcome the aforementioned limitations. Three main strategies have been 

followed in order to synthesize polymer-drug conjugates: (i) conjugation of a drug to a 

monomer before polymerization; (ii) coupling a drug to a synthesized polymer; (iii) use of 

the drug as an initiator for polymerization.  

2.3.1 Conjugation to monomer prior to polymerization 

Polymer-drug conjugates were synthesized through a procedure involving grafting a drug on 

a monomer prior to its polymerization. This technique requires coupling of a drug to a 

functional group on the monomer. Bertin et al., (2005) reported high-density doxorubicin 

(Dox)-conjugated polymeric NPs prepared from the coupling of Dox to norbornene 

monomers through carbamate linkers, and then copolymerizing the functionalized monomer 

with a water soluble hexa(ethylene oxide)-substituted norbornene monomer using an 

initiator.  The resulting amphiphilic copolymers were then used to prepare core–shell 

polymeric NPs through the self-assembly, by the addition of water into a DMSO solution 

containing 0.01% wt% copolymer. The NPs were purified through dialysis against deionized 

water. The recovered NPs were used for in vitro Dox release at two different pH values of 7 

and 4. The release profile showed no release for Dox in the neural environment, however, 

three distinct domains characterized the Dox release in the acidic pH: initial, slow, and 

plateau, to reach 50% in the first 24 hour as shown in Figure 2-8.  
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Figure 2-8: A) High-density Dox-conjugated polymeric NPs prepared through coupling the drug to the 

monomer before polymerization and then performing nanoprecipitation. B) The in vitro release profile of 
Dox in pH=4. (Reprinted with permission from Bertin et al., 2005) 

2.3.2 The drug initiated method 

The drug initiated method depends on using the drug as an initiator for polymerization of the 

required monomer. Tong and Cheng, (2008) demonstrated this concept. They used a 

hydrophobic anti cancer drug paclitaxel (Ptxl) as an initiator for the polymerization since Ptxl 

has multiple hydroxyl groups. By reacting Ptxl with 1 equiv [(BDI)MgN-(TMS)2] (BDI =2-

((2,6-diisopropyl-phenyl)amino)-4-((2,6-diisopropylphenyl)imino)-2-pentene, TMS=trimeth-

ylsilyl), the resulting complex initiated and completed the polymerization of L-lactide within 

hours at room temperature. [(BDI)MgN-(TMS)2] is an active catalyst developed by Coates 

and co-workers for the polymerization of LA. Polymers with good drug loading (6-28 wt%) 

were obtained. The ratio between Ptxl and lactide monomers was the controlling factor for 

drug loading. The nanoconjugates (NC) were prepared through nanoprecipitation of PLA-

Ptxl conjugates, resulting in small NPs less than 100 nm which exhibited controlled release 
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and the absence of a burst release effect. The Ptxl release kinetics was determined by 

diffusion as well as the hydrolysis of the ester linkers. The results of MTT assays on PC-3 

cancer cells demonstrated that the cytotoxicity was correlated with the drug loading: the 

higher the drug loading, the lower the IC50. Perfect colloidal stability was obtained after 

surface modification of NPs with noncovalent addition of PLGA-mPEG to the NC surface 

instead of covalently conjugating PEG to the NCs as shown in Figure 2-9.  

 

 
Figure 2-9: Preparation of Ptxl-PLA NCs though Ptxl initiation of PLA polymerization, followed by 

nanoprecipitation and noncovalent surface modification with PLGA-mPEG. (Reprinted with permission 
from Tong and Cheng, 2008) 

2.3.3 Conjugation to polymers 

In this approach, the drug is conjugated to a polymer scaffold and the nanosystem can be 
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formulated from the functionalized polymer through different techniques. Notably, Xiong 

and Lavasanifar, (2012) grafted siRNA and Dox onto RGD-functionalized PEO-b-PCL 

copolymers in order to synthesize integrated multifunctional micellar nanocarriers for 

targeted drug delivery. The attachment of Dox through a hydrazone linkage provides pH-

triggered drug release.  

Micellar systems based on acetal-poly(ethylene oxide)-b-PCL (acetal-PEO-b-PCL) 

copolymers with Dox (acetal-PEO-b-P(CL-hyd-Dox)) and spermine (SP) (acetal-PEO-b-

P(CL-g-SP)) conjugated to the PCL block were prepared. These micellar systems were 

prepared by incubation of siRNA with acetal-PEO-b-P(CL-g-SP) in a buffer solution in order 

to form a complex. Secondly, TAT and RGD targeting ligands TAT-PEO-b-P(CL-g-SP), 

RGD4C-PEO-b-P(CL-Hyd-Dox), or both of them were added to the polymer/siRNA 

complex to prepare TAT and RGD shell-functionalized micelles containing siRNA and  Dox 

in the core of the micellar system as shown in Figure 2-10. 

 

 
Figure 2-10: A) Schematic composition of acetal-and TAT-PEO-b-(CL-g-SP) for I and II, acetal and 

RGD4C-PEO-b-P(CL-Hyd-DOX) for III and IV. Permission(Reprinted with permission from Xiong and 
Lavasanifar, 2012) 

 

This sequence was followed in order to avoid binding of siRNA to the positive charges of 

TAT and RGD in the micelle surface. The Dox loading was ∼6.0 % of the weight of the 

polymer. The prepared micelles were of an average size of 100 nm. Also, these micelles 
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demonstrated improvement in cellular uptake, Dox penetration into nuclei, and efficiency of 

Dox and siRNA against overexpression of P-glycoprotein (P-gp) transporter protein on the 

cancer cells, which is responsible for multidrug resistance. 

2.4 Stimuli-responsive polymers for nanosystems 
The ultimate aim of a drug delivery system is to provide a secure environment to encapsulate 

the drugs without leakage before reaching the target organ, but to release the drugs after 

entering the target tissues. To achieve these requirements, stimuli-responsive materials have 

captured the attention of many researchers. The release characteristics are programmed by 

incorporating a means to build sensitivity to internal or external, chemical or physical 

stimuli, particularly in the area of polymers. These materials can undergo significant changes 

in their chemical and physical properties in response to variations in the environment.  

There are two major classes that can be distinguished in terms of stimuli-responsive 

nanomaterials: endogenous and exogenous. Some endogenous stimuli include pH and 

enzymes, while exogenous stimuli could be light, temperature, magnetic fields, or even 

mechanical stress. However, endogenous triggers such as pH may vary from person to 

person, which makes systems based on these stimuli challenging in terms of applicability. 

Exogenous stimuli are thus more promising in this regard. There are many examples 

involving the use of stimuli-responsive nanocarriers in drug delivery (Cabane et al., 2012; 

Alvarez-Lorenzo and Concheiro, 2014; Cheng et al., 2014). 

2.4.1 Endogenous stimuli-responsive polymers 

a) pH-responsive nanosystems 

Variation in the pH of different tissues and cells has been exploited for developing pH-

responsive polymers. Cancerous tissues are characterized by low pH as a result of 

accumulation of lactic acid, the byproduct of glycolysis metabolism, leading to lowering of 

the pH of the extracellular matrix (Cairns et al., 2011). Additionally, the lower pHs of 

endosomes (5–6) and lysosomes (4–5) have been used for developing pH-responsive DDS 

which are designed to only release the payloads after endocytosis (Ulbrich and Subr, 2004)   

Polymers with amine groups are one category of pH-responsive polymers, based on the 

protonation-induced change in polymer hydrophobicity. Yao et al., (2011) synthesized a core 
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shell corona (C-S-C) system using triblock copolymers of PEO-block-poly(dimethylaminoe-

thyl methacrylate)-block-PCL (PEG-PDMA-PCL) as a pH sensitive nanocarrier for 

intracellular delivery. PCL is hydrophobic and formed the core to accommodate hydrophobic 

drugs. PDMA moieties formed the shell and served to impart pH-responsive release. PEO 

moieties form the corona and stabilize the nanostructure to provide long circulation times in 

vivo as shown in Figure 2-11. The release behavior, hydrodynamic diameter, and the TEM 

images were assessed to determine pH-responsive micellization behavior at three different 

pH levels of 3.0, 5.5, and 7.4. The results revealed that the release rate and micelle size 

increased with a decrease in pH from 7.5 to 3.0. It was also observed that an increase in 

electrostatic repulsion between protonated amine groups on PDMA blocks was accompanied 

by an increase in hydrodynamic diameter of the micelles upon a decrease in pH from 7.4 to 

5.0 of the media.  A higher degrees of ionization of amine groups, increases in electrostatic 

repulsion among the polymer chains led to a higher solubility in aqueous solution and faster 

release rate due to good contact of the PCL core with the buffer solution. Suppression of the 

growth of SKOV-3 cells was observed after incubation of Dox-loaded PEG-PDMA-PCL 

micelles in an MTT cytotoxicity assay, showing that this pH-responsive carrier is a good 

candidate for intracellular delivery. 
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Figure 2-11: A) Structure of Dox-loaded PEO-PDMA-PCL micelles and pH-responsive drug release. B) 

TEM images of the micellar system at different magnification in neutral aqueous media. C) In vitro 
release behavior of Dox at pH 3.0, 5.5, and 7.4 in buffer solution. (Reprinted with permission from Yao et 

al., 2011) 

b) Redox-responsive nanosystems 

The presence of glutathione (GSH), along with glutathione disulfide (GSSG) plays a major 

role in redox homeostasis. Additionally, intracellular compartments of cells are much more 

reductive than the extracellular matrix due to the fact that the concentration of GSH in 

intracellular compartments is 100 – 1000 times higher than in the extracellular matrixes 

(Cheng et al., 2011). GSH has significant effects on many cellular functions including 

protein function, gene expression, and programmed cell death (Kroemer et al., 1998; 

Cadenas and Davies, 2000; Schafer and Buettner, 2001; Estrela et al., 2006). Moreover, the 

high GSH level is related to many human diseases like cancer, liver disease, 

neurodegenerative disease, and diabetes (Estrela et al., 2006); Djuric et al., 1990; Balendiran 

et al., 2004; Franco et al., 2007; Valko et al., 2007). High levels of GSH also play an 

important role in multi-drug and radiation resistance (Estrela et al., 2006; Balendiran et al., 

2004; Stavrovskaya et al., 2000). These significant differences in the redox environment 

have been exploited for developing redox-responsive drug delivery systems. One important 

approach is to incorporate disulfide bonds within the systems via different methods. 
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Ryn et al., (2010) synthesized redox-sensitive micelles from amphiphilic polymers obtained 

by grafting of different alkyl chains (hydrophobic) to hydrophilic chains of triethylene glycol 

monomers through disulfide bonds, and then encapsulated rile red as a hydrophobic dye. The 

release of the dye from the NPs resulted from the conversion of macromolecular 

nanoassemblies to hydrophilic and hydrophobic components by cleavage of the disulfide 

bonds upon treatment with GSH. The disassembly and release rate of the dye were dependent 

on the time and GSH concentrations as illustrated in Figure 2-12. Moreover, Dox-

encapsulated micelles were prepared and used for an MTT assay. It was found that the cell 

viability was dependent on the concentration of GSH and that this affected the cytotoxicity to 

MCF-7 cells. Figure 2-12(Figure 2-12). Therefore, drug delivery based on GSH responsive 

nanocarriers can facilitate the controlled release of the drug interacellularly and 

chemotherapeutic agents after cleavage of disulfide bonds.   

 
Figure 2-12: a) Nile red release profile at different GSH concentrations. b) MCF-7 cell viability after 72 h 

glutathione monoethyl ester (GSH-OEt) concentrations. (Reprinted with permission from Ryn et al., 
2010) 

2.4.2 Exogenous stimuli-responsive polymers 

a) Thermo-responsive nanosystems 

Thermo-responsive polymers can undergo phase transitions upon a change in temperature. 

Different techniques have been used to generate the change in temperature, including 

applying magnetic fields to iron oxide systems, direct heat treatment, and applying light on 

gold particle-containing systems. Poly(N-isopropyl acrylamide (PNIPAAM) is an example of 

the thermoresponsive polymers that has a lower critical solution temperature (LCST) of 

around 31–32 °C (Meyer et al. 2001; Curcio et al. 2010; Zhang et al. 2012), where it 
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becomes water soluble when the temperature is below LCST and water insoluble above the 

LCST (Fujishige et al. 1989). Stover et al., (2008) utilized this criterion to improve the 

solubility of ceramide through the preparation of ceramide loaded thermo-responsive NPs 

composed of PNIPAAM, PLA, and poly(L-lysine) (PLL) dendrons as demonstrated in the 

Figure 2-13. Ceramide is a bioactive sphingolipid that has shown potential to induce cell 

growth arrest and/or apoptosis in various cancer cells, but which has an extremely 

hydrophobic character (Radian, 2001). Incorporation of PLLA provides the NPs with the 

hydrophobic part that is responsible for drug encapsulation, in addition to sustained release of 

the encapsulated drug upon gradual degradation. The integration of the PLL as a cationic and 

hydrophilic moiety is to enhance the drug delivery through the electrostatic interaction with 

polyanionic phospholipids in the cell membrane.  

 
Figure 2-13: A) Composition of linear-dendritic polymer composed of thermoresponsive and 

biodegradable polymers. B) Accumulated release of ceramide from linear-dendritic NPs at different 
temperatures of 25 °C (w), 37 °C (n), and 45 °C.  C) The accumulated release of ceramide at different 

SDS concentrations of 0.5%, 0.3%(n), and 0.1%(w) (w/v). (Reprinted with permission from Stover et al., 
2008) 
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The incorporation of hydrophobic ceramide into the NPs decreased the LCST from 30 to 

28 °C. The release kinetics were strongly dependent on the temperature, with the ceramide 

release being faster at 25 °C (below LCST) than at 37 and 45°C (above the LCST). That can 

be explained by that the NPs would be more hydrophilic at 25°C and more hydrophobic at 37 

and 40 °C. Additionally, the in vitro release pattern depended on the sodium dodecyl sulfate 

(SDS) concentration. SDS was expected to form micelles to solubilize the released ceramide 

as shown in Figure 2-13. These PNIPAAM based NPs have shown great potential for 

improvement of ceramide uptake while protecting it from degradation until reaching the 

target solid tumor tissue. 

b) Photo-responsive nanosystems 

Of the exogenous stimuli-responsive nanosystems, those triggered by light have attracted 

enormous interest. Light represents a non-invasive trigger used in drug delivery systems, that 

allows controlled release over space and time. Several achievements of light-triggered 

nanomaterials were reported in recent review papers (Sortino, 2012; Bansal and Zhang, 

2014). Many strategies have been applied to the synthesis photo-responsive nanomedicines. 

These strategies include light induced breaking of nanocarriers, which was reported by Jiang 

et al., (2005). Pyrenylmethyl esters, a hydrophobic photolabile chromophore, were used to 

synthesize nile red-encapsulating micelles from the block copolymer of PEO-co-

polymethacrylate bearing pyrene moiety) (PEO-b-PPy). Upon UV light exposure, the 

micellar system underwent photosolvolysis as a result of the detachment of pyrene moieties 

(the hydrophobic block) from the polymer, leading to changes in hydrophilic/hydrophobic 

balance. The previous result was confirmed by investigation of the release behavior of nile 

red, a hydrophobic dye. Figure 2-14 shows the drastic changes in the fluorescence emission 

of the dye before and after UV irradiation, where nile red became insoluble in water after 

irradiation. This nanosystem therefore provides a possible approach for triggering and 

controlling the release a drug at specific target. 
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Figure 2-14: a) Nile red loaded PEO-b-PPy micellar solution before (left) and after (right) UV 

irradiation. b) The fluorescence emission spectra of irradiated and non-irradiated Nile red loaded 
micellar solution and non-loaded micellar solution as a control experiment. (Reprinted with permission 

from Jiang et al., 2005) 
 

2.4.3 Self-immolative polymers for nanocarriers 

Self-immolative polymers represent an area of tremendous growth and promise in the area of 

stimuli-responsive materials. These polymers are designed to undergo a head-to-tail 

depolymerization through a cascade of intramolecular reactions upon removal of the 

triggering end group. (Sagi et al., 2008; Esser-Kahn et al., 2010; Wong et al., 2012). 

Poly(ethyl glyoxylate) (PEtG) is an example of a polymer that undergoes a cascade of 

reactions leading to complete disintegration of the polymer.(Fan et al., 2014) Ethyl 

glyoxylate hydrate (EtGH), followed by ethanol and glyoxylic acid hydrate (GAH) are the 

degradation products of PEtG and are acceptable in medical, pharmaceutical and 

environmental applications (Belloncle et al., 2012). 

PEtG has been synthesized by anionic polymerization of ethyl glyoxylate (EtG) (Burel et al., 

2003). Since EtG readily oligomerizes in contact with moisture, a distillation step is 

necessary prior to any polymerization to obtain high molecular weight polymers. PEtG, like 

other polyacetals, exhibits a low ceiling temperature at which the rate of polymerization and 

depolymerization are equal. Therefore, the polymerization process is carried out at low 

temperature. Most importantly, end capping is necessary to obtain thermally stable polymers. 

The end capping of polyglyoxylates by etherification or esterification in diluted media or at 

room temperature cannot prevent the spontaneous depolymerization (Brachais at al., 1998), 

however, end capping with isocyanates improved the stability of the final polymers (Brachais 
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et al., 1997). Burel et al., (2003) synthesized PEtG with phenyl isocyanate end caps that 

exhibited enhanced thermal stability (>200°C), compared to uncapped PEtG. In vitro PEtG 

degradation was studied and the results showed that PEtG is stable and the degradation 

started after ~7 days. Afterwards, the fast depolymerization (unzipping) occured as a result of 

hydrolysis of the side ester groups and formation of free carboxylic acids that in turn were 

responsible for chain scission and hydrolysis of side ester groups (Belloncle et al., 2008). 

Kim et al., (2010) synthesized and characterized pH-sensitive PEtG based block copolymers 

for controlled drug delivery. Hexamethylene diisocyanate (HMDI) was used to react with 

PEtG through carbamate bonds to form stable end-capped PEtG. The remaining isocyanate 

groups were activated to couple with PEO to achieve biodegradable triblock copolymers. 

These amphiphilic copolymers were used to synthesize Ptxl loaded micelles to investigate 

pH-dependent polymer degradation and in vitro drug release. PTX release from the 

polymeric micelles was different at pH values of 5.0, 6.5, and 7.4 as a result of pH dependent 

polymer degradation; higher release was obtained from more acidic environment.  

Recently our group has developed polyglyoxylates as a potentially versatile new class of self-

immolative linear polymers, which have ability to degrade selectively through an end-to-end 

depolymerization mechanism (Figure 2-15). Fan et al., (2014) successfully incorporated a 6-

nitroveratryl carbonate (NVOC) end-cap onto PEtG. NVOC is a photolabile organic 

molecule that undergoes photolysis upon exposure to UV irradiation of low energy under 

normal conditions, allowing triggered depolymerization of PEtG. 

 

Figure 2-15: Scheme of depolymerization of polyglyoxylates after end cap cleavage.  

The degradation behavior of stimuli-responsive PEtG was investigated at different time 
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points using NMR spectroscopy. It was found that 40 minute UV exposure was enough for 

complete cleavage of the NVOC group. As a result of cleavage of the end cap, 50% of the 

PEtG had depolymerized into EtGH within 3 h, then up to 70% within 24 h. Meanwhile, the 

non-irradiated end capped PEtG did not show any degradation in solution after 7 days.  In a 

study of the mass loss of a film of end capped PEtG, the results suggested that the 

degradation over the first 12 days happened via a surface erosion mechanism that was 

associated with a gradual decrease in the mass of the PEtG film. A variety of homopolymers 

and copolymers with EtG were developed through simple synthetic processed and 

characterized, providing materials with a range of characteristics. Additionally, using a 

multifunctional end cap, polyglyoxylate block copolymers were synthesized. These 

copolymers self-assembled into micelles in aqueous solution. Rapid degradation of 90% of 

the PEtG block copolymers was observed just after irradiation with UV light. This work 

suggests that UV-responsive polyglyoxylates can be promising drug carriers.  
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Chapter 3 Covalent Drug Immobilization in Poly(Ester 
Amide) Nanoparticles for Controlled Drug Release  

3.1 Introduction  
In recent years, there has been an increasing interest in using nanotechnology for the delivery 

of small molecule drugs as well as macromolecular drugs such as peptides, proteins, and 

nucleic acids (Moghimi et al., 2001). Therapeutic NPs offer many potential advantages 

including enhanced therapeutic efficacy of the drug by increasing its concentration at the site 

of action, improved transport across biological barriers such as cell membranes, the ability to 

deliver a drug and imaging agent simultaneously, and improved pharmacological and 

pharmaceutical characteristics relative to the free drug (Farokhzad and Langer, 2009; 

Burgess et al., 2010). NPs based on biodegradable polymers have been demonstrated to be an 

important class of controlled release systems because of their physiochemical properties, 

degradation, and biocompatibility (York et al., 2008; Bae and Kataoka, 2009; Dhal et al., 

2009). In addition, they are able to overcome the limitations associated with liposomes, 

including low drug loadings, problematic phospholipid oxidation and low shelf stability 

(Drummond et al., 1999; Davis, 2009; Shai et al., 2011). Polymeric NPs can provide high 

drug loading capacities and can also employ controlled and triggered release profiles 

(Caldorera-Moore et al., 2011). Polymeric NPs have been investigated in many different 

fields of medicine including pulmonary disease, pain, neurology, and cardiology (Farokhzad 

and Langer, 2006). The most commonly used polymers for controlled release applications are 

the family of linear aliphatic polyesters including PLGA, PLA, and PGA (Acharya and 

Sahoo, 2011) due to their favourable characteristics of biodegradability and biocompatibility 

(Anderson and Shive, 1997).  

In addition to aliphatic polyesters, PEAs have emerged as a promising family of 

biodegradable materials (Guo and Chu, 2007). The ester linkages throughout the backbone 

can be degraded through enzymatic or non-enzymatic hydrolysis, while the amide bonds can 

be degraded enzymatically (Jokhadze et al., 2007). In addition, the amides impart good 

thermal and mechanical properties. There are several different backbone structures for PEAs, 

but PEAs containing α-amino acids are of particular interest because of their biomimetic 

nature, as α-amino acids are the main constituents of proteins. In addition, the ability to 
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incorporate amino acids such as L-lysine and L-aspartic acid, which have pendant functional 

groups, was recently demonstrated through the use of protecting group strategies (Atkins et 

al., 2009), and offers the possibility to functionalize these pendant groups on the polymer 

after protecting group removal. PEAs containing α-amino acids have recently been 

investigated in vascular tissue engineering (Knight et al., 2011) and in vascular grafts 

(Horwitz et al., 2010). In these applications, they have been shown to be well tolerated by 

cells, non-immunogenic and to support cell growth. Guo and Chu, (2009) successfully 

fabricated PEA microspheres in good yield and with narrow size distribution and used them 

to encapsulate the anti cancer drug Pxtl. However, these microparticles, with diameters of 

slightly less than 1 µm, would be too large to circulate in the vasculature as they would be 

rapidly taken up by the reticuloendothelial system. This would limit their use to localized 

administration.  

With the aim of addressing the limitations of the micrometer-sized PEA particles described 

above, this chapter describes the development of procedures to prepare PEA particles with 

diameters less than 200 nm. Such particles have the potential to deliver drugs intravascularly, 

providing targeting of diseased sites such as tumours through the EPR effect. It has also been 

demonstrated in some cases that only submicrometer-sized particles were taken up as in 

Hepa 1-6, HepG2, and KLN 205 (Zauner et al., 2001). Additionally, some studies have 

demonstrated that the range of 100 nm nanoparticle showed 6 times greater uptake than 10 

µm particles and 2.5 times greater uptake than 1 µm particles (Desai et al., 1996). In 

addition, to address the burst release problem associated with many nanoparticle-based 

delivery systems, where a large fraction of the drug is rapidly released upon immersion of the 

nanoparticle in a buffer system, we utilize the group’s PEAs having pendant carboxylic acid 

groups to covalently conjugate first a dye molecule as a model drug, and then the anti cancer 

drug molecule floxuridine. The effect of this covalent conjugation on the drug’s release rate 

is investigated.  

3.2 Materials and Methods 
All materials were purchased from commercial suppliers and used as received unless 

otherwise noted. Poly(vinyl alcohol) (PVA) with a molar mass of 31 kg/mol and a hydrolysis 

degree of 86.7-88.7 mol% (PVA 4-88), was purchased from Sigma-Aldrich. Floxuridine (5-
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fluoro-2’-deoxyuridine) was purchased from Alfa Aesar. Solvents were purchased from 

Caledon. CH2Cl2, triethylamine (NEt3), and N,N-diisopropylethylamine (DIPEA) were 

distilled from CaH2 immediately before use. Anhydrous N,N-dimethylformamide (DMF) was 

obtained from solvent purification system using aluminium hydroxide columns. Dialyses 

were performed using Spectra/Por regenerated cellulose membranes with 1, 3.5 and 50 

kg/mol molecular weight cutoffs (MWCO). 1H NMR spectra were obtained on a Varian 

Inova 400 spectrometer (Varian Canada Inc., Mississaga, ON.). Chemical shifts were 

reported in parts per million, and calibrated against residual solvent signals of (CD3)2SO 

(Chemical shifts (δ) 2.0 and 39.52 ppm) or CDCl3 (δ 7.27). All coupling constants (J) were 

reported in Hz. Fourier transform infrared (FTIR) spectra were attained on KBr disks using a 

Bruker Tensor 27 instrument. UV-visible absorption spectroscopy was performed using a 

Varian Cary 300 Bio spectrophotometer. Size exclusion chromatography (SEC) was 

performed at 85 ºC in DMF with 0.1 M LiBr and 1% (v/v) NEt3. The calibration was 

prepared using polystyrene standards. Deionized water was obtained from a Millipore 

purification system.  

3.2.1 Physiochemical Characterization of the NPs 

a) Particle diameter 

Nanoparticle diameter was determined by dynamic light scattering (DLS) using a Zetasizer 

Nano ZS instrument (Malvern Instruments) at a concentration of 0.05 mg/mL in deionized 

water. The analysis was performed at 25 ºC. Values reported are the mean diameter and Z-

average with the standard deviation, along with polydispersity. Each measurement was 

performed in triplicate and measured after filtration (using 0.2 µm syringe filter). 

b) Zeta potential 

The zeta potentials of the particles were determined by using a Zetasizer Nano ZS instrument 

(Malvern Instruments). Measurements were performed in deionized water at neutral pH. 

Each measurement was performed in triplicate.  

c) Transmission electron microscopy 

A suspension of NPs (0.01 mL, 0.05 mg/mL) was deposited onto a Formvar/carbon grid and 

left for 2 minutes, then the excess liquid was blotted off using a piece of filter paper. TEM 
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images were obtained using a Philips CM10 microscope operating at 80 KV with a 40 µm 

aperture. 

d) Scanning electron microscopy 

Morphological evaluation of the NPs was performed using scanning electron microscopy 

(SEM) (SmartSEM microscope, supra 55vp, Carl Zeiss SMT LTD). The freeze-dried NPs 

were dispersed in water and mounted over metallic studs, then coated with osmium oxide 

using a sputter coater. Images were taken at various magnification ranges in order to study 

nanoparticle morphology. 

3.2.2 Optimization of nanoparticle preparation 

a) Synthesis of PEA 1 without pendant functional groups 

PEA 1 was prepared via a solution polycondensation method as previously reported by our 

group (Atkins et al., 2009). The molar mass characteristics for this batch as determined from 

SEC are as follows: Mn = 20 kg/mol; Mw = 25 kg/ mol; PDI= 1.3. 

b) Preparation of PEA NPs 

PVA was selected as the emulsifying agent. The influence of other parameters such as 

organic solvent:water ratio, concentration of PEA in the organic phase, concentration of PVA 

in aqueous phase, and the use of concentrated salt on particle diameter were evaluated and 

these parameters are summarized in Table 3-1, Table 3-2, Table 3-3, and Table 3-4. The 

following different nanoparticle preparation methods were used, followed by a common 

purification procedure described below. Each preparation was performed in triplicate. 

Emulsification-evaporation: 5 mg of PEA was dissolved in 1 mL of chloroform, and then 

poured into 5 mL of water containing PVA at concentrations of 2, 10, 14, 18, or 40 mg/mL). 

The two-phase solution was subjected to sonication for 2 minutes: 30 seconds on and 10 

seconds off (Branson 450 digital sonifier using an amplitude of 25%,). The resulting 

emulsion was stirred for 3 hours to evaporate the organic solvent. 

Emulsification-evaporation using MgCl2 Salt (Salting-out): 3 mL of water containing 

PVA at concentrations of 2, 10, 14, 18, and 40 mg/mL and 2 mL of 30 wt. % MgCl2 were 
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poured into 1 mL of CHCl3 containing 5 mg of PEA. The two-phase solution was subjected 

to the same sonication and evaporation procedure described above. 

Nanoparticle Purification: Following the evaporation procedure, the nanoparticle 

suspension was transferred to a 50 kg/mol MWCO dialysis membrane and dialyzed against 

water for 24 hours with 3-4 changes of the water. The purified NPs were then lyophilized at 

0.060 mBar and -80º C for 24 hours (Labconco Lyophilizer)). 

3.2.3 Synthesis of a PEA with pendant functional moiety (2)  

PEA 2 containing 10 mol% of aspartic acid monomer was prepared via a solution 

polycondensation method as previously reported by our group (Atkins et al., 2009). The 

molar mass characteristics for this batch (in its protected form) as determined from SEC are 

as follows:. Mn = 9.2 kg/mol; Mw = 14 kg/mol; PDI= 1.5. 

3.2.4 Preparation and study of rhodamine-containing NPs – a 
comparison of the noncovalent and covalent system 

a) Synthesis of NPs with noncovalently incorporated rhodamine  B 

These NPs were prepared by the emulsification-evaporation method described above using 

18 mg/mL PVA except that 2.5 mg of rhodamine B was added to the CHCl3 phase..The 

particles were purified as described above. 

b) Synthesis of a rhodamine-PEA conjugate 4 

PEA 2 (0.056 g, 0.024 mmol of COOH groups, 1.0 equiv.) and rhodamine B 4-(3-

hydroxypropyl) piperazine amide 3 (0.034 g, 0.061 mmol, 2.5 equiv. relative to the number 

of pendant carboxylic acids) (Nguyen and Francis, 2003) were dissolved in 1 mL of 

anhydrous CH2Cl2. N,N'-Dicyclohexylcarbodiimide (DCC) (0.013 g, 0.061 mmol, 2.5 equiv. 

relative to the number of pendant carboxylic acids), DMAP (0.0006 g, 0.005 mmol, 0.2 

equiv. relative to the number of pendant carboxylic acids), and DPTS (0.0014 g, 0.005mmol, 

0.2 equiv. relative to the number of pendant carboxylic acid) were added under nitrogen and 

the reaction mixture was covered by aluminum foil to prevent photo-bleaching and stirred for 

24 hours. The unreacted rhodamine and byproducts were removed by dialysis against DMF 

for 24 hours using a 3.5 kg/mol MWCO dialysis membrane with 3 changes of the dialysate 
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during this time period. The solvent was removed in vacuo to provide 0.064 g (71 % yield) of 

the conjugate 4 as a deep pink solid. The coupling efficiency was measured by UV-visible 

spectroscopy in DMF (relative to a calibration curve of rhodamine piperazine amide) to be 

~40%, corresponding to 10 wt% of rhodamine in the polymer. FTIR (KBr pellet, cm-1): 3313 

(N-H stretch, amide), 3070 (C-H stretch, aromatic), 3026 (C-H stretch, aromatic), 2962 (C-H 

stretch, aliphatic), 2891 (C-H stretch, aliphatic), 1741 (C=O stretch, ester), 1652 (C=O 

stretch, amide), 1635(C=O stretch, tertiary amide in Rhodamine derivative), 1542 (N-H bend, 

C-H stretch, amide), 1498 (C=C stretch, aromatic), 1446 (CH2 stretch, aliphatic), 1184 (C-O 

stretch, ester).  

c) Preparation of NPs from the PEA conjugate 

These NPs were prepared by the emulsification-evaporation method described above using 

18 mg/mL PVA. The particles were purified as described above.  

d) Release experiment for NPs containing noncovalently 
encapsulated and covalently-conjugated rhodamine 

Lyophilized NPs were suspended in 3 mL deionized water and injected into a Slide-A-Lyzer 

dialysis cassette with a MWCO of 3.5 kg/mol. The dialysis cassette was suspended in 150  

mL of 7.4 phosphate-buffered saline (PBS) and stirred at 37 ºC. Aluminum foil was used to 

protect the system from light. The amount of released rhodamine in the dialysate was 

measured by UV-vis spectroscopy at 565 nm. For the NPs with noncovalent rhodamine, the 

150 mL of PBS was replaced with the same amount of fresh PBS every 24 hours for 9 days 

and UV-vis measurements were performed at each of these time points. For the nanoparticle 

with covalently incorporated rhodamine, measurements were taken and the PBS was replaced 

every 24 hours for the first 7 days and then every 48 hours for the next 23 days.  

3.2.5 Preparation and study of PEA NPs containing covalently 
immobilized floxuridine 

a) Synthesis of a PEA-floxuridine conjugate 6 

PEA 2 (0.28 g, 0.122 mmol of COOH groups, 1 equiv.), floxuridine 5 (0.06 g, 0.24 mmol, 2 

equiv. relative to the number of pendant carboxylic acids), DIPEA (0.024 g, 0.18 mmol, 1.5 

equiv. relative to the number of pendant carboxylic acids), EDC⋅HCl (0.08 g, 0.49 mmol, 4 
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equiv. relative to the number of pendant carboxylic acids), and DMAP (0.008 g, 0.006 mmol, 

0.05 equiv. relative to the number of pendant carboxylic acids) were dissolved in 1 mL of 

anhydrous DMF. The reaction mixture was stirred for 24 hours at room temperature, and then 

purified using a 3.5 kg/mol MWCO dialysis membrane against DMF for 24 hours with 

multiple dialysate changes to remove unreacted floxuridine, reagents, and byproducts. The 

solvent was removed in vacuo to provide the conjugate 6 as a white solid (0.18 g, 41% yield). 

The coupling efficiency was 60% as determined by NMR spectroscopy, corresponding to 3.3 

wt% of floxuridine on the polymer. 1H NMR (400 MHz, DMSO-d6,): δ 11.81-11.76 (m, 0.13 

H), 9.85 (m, 0.05), 8.29-8.27 (m, 2.26 H), 8.16 (m, 0.1 H), 7.20-7.14 (m, 11.84 H), 6.08-6.07 

(m, 0.15 H), 4.40-4.34 (m, 2.13 H), 3.97-3.87 (m, 5.01 H), 2.92-2.83 (m, 4.96 H), 2.21 (m, 

4.49 H), 2.07-2.04 (m, 0.26 H), 1.33 (m, 4.32 H). FTIR (KBR pellet, cm-1): 3334 (N-H 

stretch, amide), 3072 (C-H stretch, aromatic), 3038 (C-H stretch, aromatic), 2964 (C-H 

stretch, aliphatic), 2894 (C-H stretch, aliphatic), 1741 (C=O stretch, ester), 1658 (C=O 

stretch, amide), 1542 (N-H bend, C-H stretch, amide), 1508 (C=C stretch, aromatic), 1452 

(CH2 stretch, aliphatic), 1199 (C-O stretch, ester). SEC: Mn= 13 kg/ mol; Mw = 22 kg/mol; 

PDI= 1.7. 

b) Preparation of NPs from the PEA-floxuridine conjugate 

These NPs were prepared by the emulsification-evaporation method described above using 

18 mg/mL PVA. The particles were purified as described above. 

c) Release experiment for NPs from the PEA-floxuridine conjugate 

40 mg of lyophilized NPs containing 1.29 mg of floxuridine were dissolved in deionized 

water (5 mL) and then the suspension was transferred to a 1 kg/mol MWCO dialysis 

membrane. The dialysis membrane was placed in 100 mL of PBS at 37 ºC and stirred. 

Samples of the dialysate were collected every 6 hours for the first 24 hours and then every 24 

hours for the next 13 days. At each time point the complete volume of PBS dialysate was 

replaced. The amount of released floxuridine was detected by HPLC. The experiment was 

performed in triplicate. The HPLC instrument comprised a Waters 2695 Separations Module, 

a Photodiode Array Detector (Waters 2998) and a Jupiter C18 5 µm (4.6 x 250mm) column 

connected to a C18 guard column. The PDA detector was used to monitor floxuridine at 

265nm. Floxuridine separation was obtained using a gradient method with Solvent A being 
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water and Solvent B being acetonitrile with 1% TFA flowing at 1 mL/min.  The gradient 

method involved Solvent A 100% decreasing to 44% over 25 minutes and then increasing 

back to 100% over the next 5 minutes. The column was then equilibrated for 5 minutes 

before the next run. The retention time of floxuridine was 6.97 min. 

3.3 Result and Discussion 

3.3.1 Optimization of nanoparticle preparation                       

While micrometer-sized PEA NPs were previously prepared (Guo and Chu, 2009), it was 

necessary to optimize conditions for the preparation of nanometer-sized particles. It was 

anticipated to be more difficult to prepare NPs in comparison to microparticles due to their 

larger surface:volume ratio. For the optimization of this protocol, PEA 1 (Figure 3-1), 

composed of phenylalanine, butanediol, and succinic acid, was selected as it would form the 

backbone for the desired drug conjugates and is easy and inexpensive to prepare. It was 

prepared by the previously reported procedure (Atkins et al., 2009). An emulsification-

evaporation method was selected because it uses water as the nonsolvent which simplifies 

and improves process economics, consequently facilitating the washing step and minimizing 

particle agglomeration (Aftabrouchard and Dorlker, 1992). Chloroform was chosen as the 

organic phase as it is a water immiscible solvent in which the PEA is soluble. This method 

involves two steps. The first step is the emulsification of the polymer solution into the 

aqueous layer, forming suspended nanodroplets. The second is evaporation of the organic 

solvent, inducing the formation of suspended solid NPs. A survey of different surfactants was 

performed in preliminary work, and PVA was chosen as the emulsifier since it has been 

commonly used in pharmaceutical preparations and has previously been shown to provide 

small, uniform, and dispersable particles in aqueous medium (Julienne et al., 1992). It is 

noteworthy to mention that Tween 20 was also explored but led to coagulation and 

significantly larger particles.  At this stage, there were four other parameters to study in order 

to optimize the particle diameter: organic:water ratio, concentration of PEA in the organic 

layer, amount of surfactant used in aqueous layer, and the effect of high concentrations of 

salts in the salting-out method.  
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Figure 3-1: Chemical structure of PEA 1.  

a) Effect of organic:aqueous ratio        

First, the ratio between the organic and aqueous layer was studied. Fixing the amount of PEA 

constant, 5 mg of PEA 1 was dissolved in 0.5, 1, 2, or 3 mL of CHCl3 and this organic phase 

was added to 5 mL of 18 mg/mL PVA in water solution. As shown in Table 3-1, the results 

showed that the ratio of 1:5 CHCl3:water was the best in terms of providing the smallest 

particle diameter, with a Z-average diameter of 147 ± 5 nm. Larger diameters were obtained 

with other ratios. The polydispersity index (PDI) is acceptable at 0.15. Thus, this ratio was 

used to further optimization of NPs.  

Table 3-1: Influence of different ratios between the organic and aqueous layer on diameter and diameter 
distribution of NPs prepared by emulsification-evaporation method using the same concentration of PVA 
of 18 mg/mL. This data resulted from three determinations from three different batches after filtration 

(using 0.2 µm syringe filter). 
Ratio of 

CHCl3:H2O 
(mL:mL) 

Z-average 
diameter* 

(nm) 
PDI*  Mean diameter*  

(nm) 

0.5: 5 235± 5 0.14±0.02 275±9 
1: 5 147±5 0.15±0.01 173±6 
2: 5 185±7 0.16±0.01 222±11 

3:5 238±24 0.11±0.02 268±8 
   *Average ± SD 

b) Effect of the concentration of PEA in organic layer 

The effect of PEA concentration in CHCl3 was investigated using concentrations ranging 

from 5 to 10 mg/mL. In general, an increase in the concentration of PEA led to an increase in 

the Z-average and mean diameter. As illustrated in Table 3-2, increasing the concentrations 

from 5 to 10 mg/mL increased the Z-average from 147 ± 5 to 275± 18 nm. This increase can 

be explained by the fact that at higher concentration a single droplet of organic phase would 

contain more polymer chains.  
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Table 3-2: Influence of different concentrations of PEA in the organic layer on the diameter and diameter 
distribution of NPs prepared by an emulsification-evaporation method using the concentration of PVA of 

18 mg/mL. This data resulted from three determinations from three different batches after filtration 
(using 0.2µm syringe filter). 

Concentration of 
PEA mg/mL 

Z-average 
diameter* 

(nm) 
PDI* Mean diameter* (nm) 

5 147±5 0.15±0.01 173±6 

7 264±5 0.11±0.09 301±21 

9 268±24 0.05±0.05 307±30 

10 275±18 0.11±0.02 318±40 
  *Average ± SD 
 

c) Effect of PVA concentration in the aqueous layer 

Using a fixed concentration of 5 mg/mL of PEA in 1 mL of CHCl3 and 5 mL of water 

optimized above, the influence of PVA concentration on nanoparticle diameter was also 

investigated. As illustrated in Table 3-3, as the concentration of PVA in the aqueous phase 

increased from 2 mg/mL to 18 mg/mL, the particle diameter decreased from 351 to 160 nm. 

At higher concentrations, no further decrease in diameter was observed. That can be 

explained by the fact that at 2 mg/mL, there was insufficient PVA to stabilize small droplets 

due to their high surface:volume ratio. However, at concentrations of 14 to 18 mg/mL of 

PVA, there was sufficient PVA to stabilize the small droplet and the NPs diameter decreased 

to 160 and to 177 nm, respectively. After using a 0.2 µm syringe filter, the particle diameter 

could be further reduced to 147 nm, without significant loss of material, as measured by DLS 

(Figure 3-2 and Figure 3-3). At higher PVA concentrations of 40 mg/mL, the Z-average 

diameters increased significantly again. This could be explained by a higher PVA 

concentration leading to increased PVA density at emulsion droplets, which in turn increased 

the thickness of PVA layer around the droplets. It was explained that the hydrophobic part of 

PVA is anchored into the polymeric droplets while the hydrophilic part is oriented into 

external aqueous phase. There it resists shear and imparts mechanical stability to the 

emulsion droplets, in addition to inducing steric effects that contributes to repulsion between 

droplets (Galindo-Rodriguez et al, 2004). 
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Table 3-3: Influence of PVA concentration nanoparticle diameter and diameter distribution prepared by 
emulsification-evaporation method. This data resulted from three determinations from three different 

batches. 
 Without filtration With filtration 

PVA 
mg/mL 

Z-average 
diameter* 

(nm) 
PDI* 

Mean 
diameter* 

(nm) 

Z-average* 
(nm) PDI* 

Mean 
diameter* 

(nm) 
2 351±33 0.27±0.04 327±37 175±24 0.05±0.04 188±7 

10 251±12 0.06±0.03 262±11 183±10 0.12±0.06 180±18 
14 177±2 0.13±0.03 204±10 163±3 0.1±0.02 180±3 

18 160±5 0.14±0.02 187±4 148±5 0.1±0.01 167±3 

40 314±10 0.07±0.01 338±11 180±12 0.08±0.01 198±9 
       *Average ± SD 
 

 

Figure 3-2: Particle diameter distribution of PEA NPs formed using 5 mL 14 mg/mL PVA in water and 1 
mL of CHCl3 containing 5 mg of PEA 1 via an emulsification-evaporation technique: (a) with filtration 

(using 0.2µm syringe filter). Z-average: 163±3 nm, and (b) Without filtration. Z-average: 177±2 nm. 
 

 

Figure 3-3: Particle diameter distribution of PEA nanoparticle formed from 5  mL aqueous solution of 18 
g/L PVA (equals 90 mg PVA in 5  mL water) with 1  mL CHCl3 containing 5 mg of base polymer via 

emulsification-evaporation technique, (a) with filtration (using 0.2µm syringe filter). Z-average: 148±5 
nm, and (b) without filtration. Z-average: 160±5 nm.   
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d) Effect of using concentrated salt in the preparation  

The influence of using of concentrated MgCl2 in a technique called “salting-out” (Allémann 

et al., 1993) with different concentrations of PVA was also studied and the results were 

compared with the above results using the standard emulsion-evaporation technique. As 

shown in Table 3-4, as the concentration of PVA increased from 2 to 18 mg/mL, the Z-

average diameter decreased from 303±5 to 147±5 nm and the mean diameter decreased from 

379±12 to 173±6 nm. Afterwards, by increasing the concentration to 40 mg/mL of PVA, the 

Z-average and mean diameter rose up to 379±10 and 414±48 nm respectively. Thus, overall 

the Z-average and the mean diameter values were smaller in presence of MgCl2 solution at 

the range of 2 to 18 mg/mL of PVA. This suggests that this technique, used with 14-18 

mg/mL PVA is the optimal procedure for nanoparticle preparation as shown in Figure 3-4 

and Figure 3-5. However, at 40 mg/mL PVA solution, the Z-average and mean diameters 

were higher than the results from absence of the salt. These differences could be explained by 

the fact that the presence of concentrated MgCl2 in the aqueous phase resulted in a decrease 

in solubility of PVA in this phase. This would induce more PVA to be present in or at the 

interface of the organic phase. In this study, a ratio of 1:5 CHCl3:H2O, concentration of 5 mg/ 

mL of PEA in CHCL3, concentration of 14-18 mg/ mL of PVA, and sonication of 2 minutes 

were the optimized conditions to synthesis PEA NPs of less than 200 nm particle diameter 

via emulsification-evaporation and salting-out methods. Theses experimental conditions were 

used for all of the experiment.  

 

Table 3-4: Influence of different concentration of PVA on diameter and diameter distribution of NPs 
prepared by salting-out method. This data resulted from three determinations from three different 

batches.  
                   Without filtration                           With filtration 

PVAL g/L 
Z-average 
diameter* 

(nm) 
PDI* 

Mean 
diameter* 

(nm) 

Z-average* 
(nm) PDI* 

Mean 
diameter* 

(nm) 
2 303±5 0.206±0.02 379±12 176±5 0.175±0.01 217±3.2 

10 160±8 0.123±0.04 178±10 147±2 0.09±0.01 164±4 

14 155±7 0.125±0.01 179±9 145±7 0.15±0.05 175±23 

18 147±5 0.15±0.01 173±6 133±3 0.11±0.03 151±8 

40 379±10 0.1±0.1 414±48 223±47 0.14±0.002 259±54 
*Average ± SD 
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Figure 3-4: Particle diameter distribution of PEA nanoparticle formed from 3  mL aqueous solution of 14 

g/L PVA (equals 70mg PVA in 5  mL water) with 1  mL CHCl3 containing 5 mg of base polymer via 
salting-out technique, (a) with filtration (using 0.2µm syringe filter). Z-average: 145±7 nm, and (b) 

without filtration. Z-average: 155±7 nm.  

 

 
Figure 3-5: Particle diameter distribution of PEA nanoparticle formed from 3  mL aqueous solution of 18 

g/L PVA (equals 90 mg PVA in 5  mL water) with 1  mL CHCl3 containing 5 mg of base polymer via 
salting-out technique, (a) with filtration (using 0.2µm syringe filter). Z-average: 133±3 nm, and (b) 

without filtration. Z-average: 147±5 nm.  

e) Zeta potential 

Another important characteristic of the NPs is the zeta potential. The zeta potential value 

indicates the total charge on the surface of the particles. Moreover, the nanoparticle 

containing suspension is stabilized by electrostatic repulsion between particles, which is 

important to prevent aggregation. As shown in Table 3-5, when PVA was used in the 

synthesis of the NPs, the zeta potential was always slightly negative regardless of whether 

the standard emulsion-evaporation or salting-out procedure was used. This can be attributed 

to the presence of a large number of surface hydroxyl groups from the PVA on the NPs. Even 

if a very small fraction of these hydroxyls is deprotonated, the particles would exhibit a 

negative zeta potential. Within the experimental errors on the measurements, there are no 

trends in zeta potential with the amount of PVA used in the preparation and no differences in 
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the procedures with and without salt, suggesting that all NPs were likely coated fully with 

PVA.  
Table 3-5: Influence of PVA concentrations on zeta potential using both emulsification-evaporation and 
using salting-out methods. This data resulted from three determinations from three different batches. 

Concentration of PVA 
(mg/mL) 

Emulsification-evaporation Using MgCl2 
Zeta potential* 

(mV) 
Zeta potential* 

(mV) 
2 -4±5 -3.5±5 

10 -6±4 -8±5.7 
14 -5±4 -7±5 
18 -5± 4 -6.5±3 

40 -2.5±4 -2±4 
              *sd ds 

*Average ± SD 

f) Nanoparticle imaging 

 Both SEM and TEM imaging were performed to further characterize selected 

particles. As shown in Figure 3-6, Figure 3-7, Figure 3-8, and Figure 3-9, these images 

confirmed that the particles were indeed spherical and that the sizes were in approximate 

agreement with those measured by DLS. The images show some dispersity in sizes, but most 

diameters were below 200 nm. 

               

Figure 3-6: NPs prepared by emulsification-evaporation method technique using 14 g/L PVA, A) SEM 
images, and B) TEM image. 
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Figure 3-7: NPs prepared by emulsification-evaporation method technique using 18 g/L PVA, A) SEM 

images, and B) TEM image. 
 

               
Figure 3-8: NPs prepared by salting-out technique using 14 g/L PVA, A) SEM images, and B) TEM 

image. 
 

               
Figure 3-9: NPs prepared by salting-out technique using 18 mg/mL PVA, A) SEM image, and B) TEM 

image. 
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3.3.2 Preparation of PEA NPs Containing Rhodamine  

PEA 2 (Figure 3-10) was synthesized as previously reported by our group. Its pendant 

carboxylic acid groups allow for the conjugation of drug molecules or other moieties by ester 

or amide linkages. For initial work, rhodamine B 4-(3-hydroxypropyl) piperazine amide (3), 

as a model drug was coupled as shown in Figure 3-11. It was selected due to its high 

extinction coefficient of 76500 M-1cm-1, which allows its release from the polymer NPs to be 

easily measured by UV-vis spectroscopy. In addition, it is soluble in CHCl3, which allows it 

to be noncovalently encapsulated in the PEA NPs to provide a control system for comparison 

with the covalent system. However, it is also soluble in water, which enables its release from 

the NPs without the use of additional surfactant or other materials. To conjugate rhodamine 3 

to PEA 2, the polymer was first activated using DCC in the presence of DMAP and DPTS in 

dry dichloromethane, and then rhodamine 3 was added to the reaction mixture. The reaction 

was stirred for 24 h at room temperature, then the excess unreacted rhodamine and other 

reagents were removed by dialysis, affording the PEA-rhodamine conjugate 4. UV-vis 

spectroscopy was used to determined the amount of coupled rhodamine, and it was 

determined that the coupling had proceeded in 71 % yield, resulting in a PEA conjugate 

containing 10 wt% of rhodamine. 

 
Figure 3-10: Chemical structure of PEA 2.  

 
Figure 3-11: Synthesis of a PEA-rhodamine B conjugate 4. 
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NPs were prepared from PEA-rhodamine conjugate 4 using the optimized procedure 

described above via the emulsification-evaporation method using a ratio of 1:5 CHCl3:H2O, 

concentration of 5 mg/mL of PEA in CHCl3, concentration of 18 mg/mL of PVA, and a 

sonication time of 2 minutes. Characterization of the NPs by DLS indicated that the particles 

had a Z-average diameter of 177 nm and polydispersity of 0.12. It is well known from the 

literature that hydrophobic drugs can be easily encapsulated during the emulsification-

evaporation technique if they are soluble in the organic phase (Wischke and Schwendeman, 

2008). Therefore, particles containing non-covalently encapsulated rhodamine B were 

prepared using the same procedure except that 2.5 mg of rhodamine was dissolved in the 

CHCl3 layer along with the PEA. The loading efficiency was calculated by UV-visible 

spectroscopy in DMF (relative to a calibration curve of rhodamine piperazine amide) and 

was determined to be 91%, corresponding to 24 wt% rhodamine in the NPs.  

3.3.3 Release of Rhodamine from PEA NPs 

To study the release of rhodamine from the covalent and noncovalent PEA NPs, the NPs 

were placed inside a dialysis membrane with a 3.5 kg/mol MWCO and the membrane was 

placed in pH 7.4 phosphate buffer at 37º C with stirring. Rhodamine released from the NPs 

would be expected to diffuse easily across the membrane into the dialysate. Thus, the UV-vis 

absorbance of the dialysate at 565 nm was measured for each system at varying time points 

and the result was compared to a calibration curve of rhodamine in the same buffer in order 

to calculate the rhodamine concentration in the dialysate. The dialysate was replaced with 

fresh buffer at each time point. As shown in Figure 3-12, in the case of noncovalently 

encapsulated rhodamine, the release was rapid with about 30% of rhodamine released in first 

hour and about 50% after 2 hours.  Almost 96% of the rhodamine was released in 8 hours. 

This rapid release can likely be attributed to the hydrophilicity of rhodamine, which favours 

its release into the buffer under sink conditions.  
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Figure 3-12: % Rhodamine release versus time for PEA NPs containing noncovalently encapsulated 
rhodamine (pH 7.4 phosphate buffer solution, 37º C).  

As shown in Figure 3-13, release of the covalently conjugated rhodamine was much slower, 

with only 0.63% released in first 24 hours, 5.5% after 163 hours, and 20.7% after 715 hours. 

This can be attributed to the requirement for ester hydrolysis to occur in the hydrophobic 

core of the nanoparticle prior to release of the rhodamine. This may therefore be limited to 

the degradation rate of the PEA, as water penetration for hydrolysis would be slow or 

impossible in the intact particle. It should also be noted that while ester hydrolysis would be 

expected to be a pseudo-first-order process the appearance of the release curve in Figure 3-13 

appears more zero order.  

 

Figure 3-13: The release profile of rhodamine piperazine amide from the NPs prepared from PEA-
rhodamine B conjugate 4 in pH 7.4 phosphate buffer solution as the release media. 
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This pseudo-zero order release is indeed desirable, as it implies that steady-state drug 

concentrations might be obtainable with this type of system in vivo. However, it should also 

be noted that as this study was only performed to ~20% rhodamine release, we cannot 

speculate on the release profile after this point. 

3.3.4 Preparation of PEA NPs Containing Floxuridine 

In this study, floxuridine was chosen as the drug molecule for covalent immobilization for 

several reasons. Floxuridine is an antimetabolite derivative of 5-fluorouracil that has been 

used in patients with metastatic colorectal and primary liver cancer. Floxuridine inhibits 

thymidylate synthase and consequently interferes with DNA replication (Andrea et al., 

2014). Its incorporation into a nanoparticle may reduce its toxicity and increase its 

chemotherapeutic effectiveness for the treatment by local, systemic, or oral administration. It 

has multiple hydroxyl groups that can be used for covalent attachment. In addition, 

floxuridine is highly hydrophilic. This means that it would be very challenging or impossible 

to encapsulate in NPs by a conventional emulsification-evaporation procedure. Its covalent 

immobilization addresses this issue. At the same time, its hydrophilicity will enable it to be 

released well from the NPs following cleavage of the ester linkage to the PEA.  

Floxuridine (5) was coupled to PEA 2 using a similar procedure that used for the coupling of 

rhodamine, except that DMF was used as the solvent to dissolve the drug and (1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide) (EDC⋅HCl) was used as the coupling agent as it is more 

compatible with DMF (Figure 3-14). The product PEA-floxuridine conjugate 6 was again 

purified by dialysis. 1H NMR spectra obtained confirmed the successful coupling of the drug. 

As shown in Figure 3-15, the spectrum contains peaks corresponding to floxuridine at δ = 

11.81, 8.18, 6.08, and 2.07 ppm in DMSO-d6. Based on integration of the peaks, ~60% of the 

pendant carboxylic acid groups were functionalized with drug.  
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Figure 3-14: Synthesis of a PEA-floxuridine conjugate 6.  

 
Figure 3-15: 1H NMR spectrum of the floxuridine-PEA conjugate (DMSO-d6, 400 MHz) 

NPs were prepared from the PEA-floxuridine conjugate using the optimized emulsification-

evaporation and salting-out procedures involving 14 mg/mL PVA. The resulting lyophilized 
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particles were then characterized by DLS, SEM, and TEM. DLS results showed that the NPs 

obtained via the emulsification-evaporation method had a Z-average diameter of 191±7 nm 

while those prepared using the salting-out procedure had a Z-average diameter of 180 nm 

(Figure 3-16). SEM and TEM confirmed the size and spherical morphology of the particles 

(Figure 3-17). 

 

 

Figure 3-16: DLS traces for NPs prepared from the PEA-floxuridine conjugate using a) the 
emulsification-evaporation method and b) the salting-out procedure. The suspension was passed through 

a 0.2 µm syringe filter prior to measurement.  
 

               
Figure 3-17: NPs prepared from a PEA-floxuridine conjugate using the emulsification-evaporation and 

imaged by a) SEM, and B) TEM images at different magnifications. 

a) Release of floxuridine from the NPs  

The release of floxuridine was studied by the dialysis method described above for rhodamine, 

except that the floxuridine concentration in the dialysate was monitored by HPLC. As shown 

in Figure 3-18, there was a small burst release of ~5% the drug over the first 6 h. The reason 

for this burst release is unclear as this effect was not observed for the rhodamine conjugate. 

However, this is still much less burst release than is observed in many non-covalent 
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nanoparticle systems (Yang et al., 2010). This can likely be attributed to the hydrolysis of 

ester bonds at the nanoparticle surface and subsequent release of this drug. Following this, 

the release occurred in a slower, sustained manner, reaching about 9% of the total drug 

released over 11 days. This confirms the significant slowing of drug release that is achievable 

using the covalent conjugation strategy and is consistent with the results of the rhodamine 

release study.  

 
Figure 3-18: % Release of floxuridine over time for NPs prepared from the PEA-floxuridine conjugates 

6. 

3.4 Conclusion 
This study investigated the use of emulsification-evaporation and salting-out methods for the 

preparation of NPs from biodegradable PEAs. By optimizing parameters such as the 

surfactant concentration, PEA concentration, and the ratio of organic to water phases, it was 

possible to prepare particles having Z-average diameters of less than 200 nm and reasonable 

polydispersities by both techniques. All of the prepared particles had negative zeta potentials 

and spherical morphologies as observed by SEM and TEM. It was also demonstrated that the 

pendant functional groups on a PEA could be used to conjugate a rhodamine B derivative. 

The optimized nanoparticle preparation conditions were used to prepare NPs from the 

rhodamine B conjugate and also to from control NPs in which rhodamine was physically 

encapsulated. The covalent conjugate afforded a much slower release than the noncovalent 

control suggesting that this approach is valuable for the elimination of the burst release 

effect. The approach was also extended to covalent immobilization of the anti cancer drug 
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floxuridine in NPs. This system also exhibited a small burst release of 5% of the drug, but 

this was followed by a slower, sustained release. Overall this work suggests the promise of 

using PEA NPs for drug delivery applications and in particular the use of PEAs with pendant 

functional groups for covalent conjugation of drugs. This affords NPs exhibiting slow and 

sustained drug release for applications where this is required.  
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Chapter 4 Poly(ethyl glyoxylate) Nanoparticles 

4.1 Introduction  
In recent years, there has been a growing interest in using polymeric NPs for drug delivery 

(Dadwal, 2014; Maheshwara Rao et al., 2014; Suresh and Sah, 2014). In particular, 

polyesters such as poly(lactic acid) (PLA), polycaprolactone (PCL), poly(3-hydroxybutyrate) 

(PHB), and poly(glycolic acid) (PGA) have been extensively investigated due to their 

biodegradability and biocompatibility (Matsumoto et al., 1999; Venkatraman et al., 2005; He 

et al., 2007; Lassalle and Ferreira, 2007; Xie et al., 2007). Nevertheless, these polyesters 

have some drawbacks. The non-enzymatic degradation rate in water and in the human body 

is not sufficiently fast for many applications as degradation can require months. Additionally, 

the build-up of acidic byproducts within the degrading polymer device can result in poor 

stability of encapsulated acid-labile molecules such as proteins. (Fu et al., 2000; Zhu et al., 

2000; Zhou et al., 2003).  

Controlling the degradability of polyesters is of great interest. The degradability significantly 

changes upon synthesis of a copolymer. For example, the copolymerization of lactic acid 

(LA) and glycolic acid (GA) forms PLGA, which hydrolyzes much faster than PLA (Fu et 

al., 2000, Zhu et al., 2000). Decreasing the hydrophobicity and crystallinity of the polymers 

can also enhance the degradation rate. Additionally, the degradation rate of PLA can be 

altered by varying the relative stereochemistry of the LA monomers (Park et al., 1992, Ibim 

et al., 1997). Moreover, the synthesis of branched structures was found to increase the rate of 

degradation due to the lower the degree of crystallinity of the branched polymer (Pitt et al., 

1992). 

An alternative approach to control the degradability of aliphatic polyesters is to blend them 

with other polymers that can effectively modify their properties. For example, in a past study, 

PLA was blended with non-degradable polymers such as poly(ethylene oxide) (PEO), 

poly(propylene oxide), (PPO) and poly(ethylene-vinyl acetate) in an effort to modify 

degradation and drug-release behaviors of PLA-based polymeric drug-delivery systems (Park 

et al., 1992). Also, the degradability, miscibility and drug-release behavior of 

PLGA/polyphosphazene and PLGA/PVA blends were also studied (Pitt et al., 1992; Ibim et 
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al., 1997).  Mi et al., (2002) used blends of PLGA and chitin, a natural biodegradable 

polymer, to synthesize microspheres for anti-cancer drug delivery. The characterization of 

the microparticles showed the occurrence of phase separation of the blend due to their 

incompatibility. Overall, the hydration, degradation, and morphological modifications of the 

microparticle system affect significantly the drug release profile.  

Although numerous studies and promising results involving biodegradable polymers as drug 

carriers have been reported, new research has also focused on the use of stimuli-responsive 

polymers. These polymers have the ability to undergo significant changes in their chemical 

and physical properties upon exposure to variations in the environment such as light (Bansal 

and Zhang, 2014), heat (Strover et al., 2008), and pH change (Yao et al, 2011). By using 

these materials, timing, dose and site of the release can be managed. Among the stimuli 

capable to trigger the release of therapeutics, light is a finely tunable external stimulus that is 

non-invasive and not affected by physiological parameters such as temperature, pH and ionic 

strength. Our group has successfully synthesized UV-triggerable self-immolative 

polyglyoxylates by the incorporation of a UV-responsive end-cap (nitroveratryl carbonate 

(NVOC)) onto the polymer terminus (Fan et al., 2014). Upon UV light exposure, NVOC 

undergoes photolysis, allowing the polymer to undergo end-to-end depolymerization. The 

results showed that a 40 minute UV exposure was enough for complete cleavage of the 

NVOC group. After cleavage of the end cap, 50% of poly(ethyl glyoxylate) (PEtG) had 

depolymerized into ethyl glyoxylate hydrate (EtGH) within 3 h, then up to 70% within 24 h. 

In contrast, the non-irradiated end-capped PEtG was stable for 7 days.  In addition, the 

degradation results of PEtG films upon UV light exposure illustrated that the degradation 

over the first 12 days likely occurred through a surface erosion mechanism characterized by a 

gradual decrease in the mass of the PEtG films. Micellar self-assemblies of PEO-PEtG-PEO 

triblock copolymers were synthesized and characterized before and after UV irradiation. 

Rapid degradation of 90% of PEtG block copolymers was observed just after irradiation and 

about 45% of EtGH underwent hydrolysis to glyoxylic acid hydrate and ethanol over 24 h at 

37 °C. 

This chapter describes a study to investigate the applicability of UV-responsive PEtG to 

formulate solid NPs. The objective of this study is to manipulate the degradation rate of the 

NPs and the release profile of a drug. In order to achieve this goal, PEtG/PLA blend NPs 
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were designed for triggered and controlled drug delivery, based on UV-triggered self-

immolative PEtG and biodegradable PLA polymer. Letrazole was used in this study as a 

model hydrophobic drug. The effects of organic:aqueous ratio, sonication time, concentration 

and type of the surfactant on the size of PLA NPs were investigated. PEtG/PLA blend NPs 

were synthesized using the optimized conditions and characterized. Letrazole release 

performance from PEtG/PLA blend NPs of different ratios was studied with and without UV 

irradiation. 

4.2 Materials and Methods  
PEtG with an NVOC end-cap was prepared as previously reported (Bo et al., 2014). It had an 

Mn of 53 kg/mol with dispersity of 1.7 based on size exclusion chromatography (SEC) 

relative to polystyrene standards. Poly(D,L-lactic acid) (PDLLA)  was purchased from Sigma 

Aldrich with a molecular weight range of 18-28 kg/mol and with Tg 46-50 °C. PVA of Mw = 

31,000, 88% hydrolyzed. All chemicals were purchased from Sigma Aldrich and used 

without further purification unless otherwise specified. Letrazole was purchased from 

Ontario Chemicals. 1H NMR spectra were record at 400 or 600 MHz and chemical shifts (δ) 

are reported in parts per million (ppm). The residual solvent peaks of acetonitrile (δ 1.94 

ppm), deuterium oxide (δ 4.7 ppm), dimethyl sulfoxide (δ 2.5 ppm.  

4.2.1 Optimization of nanoparticle preparation 

The influence of organic solvent:aqueous ratio, sonication time, concentration and type of the 

surfactant on the diameters of the PLA NPs were evaluated and these parameters are 

summarized in Table 4-1, Table 4-2, Table 4-3, and Table 4-4. The emulsification-

evaporation method described in below was used in each case, followed by a common 

purification procedure described below. Each preparation was performed in triplicate. 

4.2.2 Fabrication of PEtG/PLA blend NPs  

Sodium cholate was selected as the emulsifying agent. Solution blending was used in this 

study. Blends of PEtG /PDLLA were prepared by mixing different ratios of 100/0, 75/25, 

50/50, 25/75, and 0/100, respectively) in CH2Cl2. The NPs were prepared using the polymer 

blend solution via the emulsification-evaporation technique. Briefly, 5 mL of CH2Cl2 

containing 1 mg/mL of the blended polymers was added to 5 mL of an aqueous solution of 6 
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mg/mL sodium cholate. The two-phase solution was sonicated using a probe sonicator for 6 

minutes: 30 seconds on and 10 seconds off (Branson 450 digital sonifier using an amplitude 

of 70%). Then, the organic solvent was evaporated using moderate stirring for 3 hours. The 

NPs were washed three times with distilled water to remove the excess surfactant using an 

Amicon® ultrafiltration cell using a Millipore® regenerated cellulose membrane of with a 

molecular weight cut-off (MWCO) of 50,000 g/mol.   

4.2.3 Characterization of the NPs  

a) Particle diameter 

Nanoparticle diameter was measured by DLS using a Zetasizer Nano ZS instrument 

(Malvern Instruments). Values reported are the Z-average with the standard deviation, along 

with polydispersity.  The analysis was performed at 25 ºC. Aliquot samples were prepared in 

deionized water (Millipore purification system) at a concentration of 0.1 mg/ mL in a glass 

cuvette. Each measurement was performed in triplicate. 

b) Zeta potential 

The zeta potentials of the particles were determined by using a Zetasizer Nano ZS instrument 

(Malvern Instruments). Measurements were performed in deionized water at neutral pH at a 

concentration of 0.5 mg/mL. Each measurement was performed in triplicate.  

c) Transmission electron microscopy (TEM) 

A drop (10 µL) of the nanoparticle suspension (0.01 mg/mL) was transferred onto a 

Formvar/carbon grid and left to completely dry. TEM images were obtained using a Philips 

CM10 microscope operating at 80 KV with a 40 µm aperture. 

4.2.4 Thermal characterization of PEtG/PLA blends and polymer 
blend NPs 

Thermal properties of freeze-dried PEtG/PLA blend NPs of different ratios of 100/0, 75/25, 

50/50, 25/75, 0/100 PEtG/PLA were measured by thermogravimetry (TGA, on a Q600 SDT 

TA Instrument) and differential scanning calorimetry (DSC), on a Q20 DSC TA instrument). 

Thermogravimetric analyses were performed under a nitrogen atmosphere at a heating rate of 

10 oC/min. DSC was performed under a nitrogen atmosphere at a heating/cooling rate of 10 
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°C/min from -100 to 100 oC. The Tg was obtained from the second heating cycle.  

4.2.5 Drug loading and encapsulation efficiency for PEtG/PLA 
blend NPs 

Letrazole loaded NPs were prepared by the above described method except that letrazole (20-

60% w/w relative to the polymer) was dissolved in the 5 mL of CH2Cl2 solution containing 1 

mg/mL of PEtG/PLA blends. During washing of the NPs using the ultrafiltration technique, 

the washed solution was collected to determine the amount of the non-encapsulated drug 

using UV-visible (UV-vis) spectroscopy based on the absorption at 238 nm and a calibration 

curve for the free drug in water (Varian Cary 300 Bio UV-Visible Spectrophotometer). The 

amount of encapsulated drug was assumed to be the amount that was not detected in the 

wash. Non-encapsulated drug was subtracted from the initial amount to determine the mass 

of the drug in the NPs. In order to calculate the mass of recovered NPs, the washed NPs were 

lyophilized at 0.060 mBar and -80º C for 48 hours (LABCONCO Lyophilizer) and then 

weighed. The calculations of actual loading% and encapsulation efficiency% were done in 

triplicate from three different batches as illustrated in Equations 4.1 and 4.2, respectively. 

Actual loading% (w/w)= !"##  !"  !"#  !"#$  !"  !"#  
!"##  !"  !"#$%"!"&  !"#  

 ×100  Equation (4.1) 

Encapsulation Efficiency % = !"##  !"  !"#  !"#$  !"  !"#  
!"##  !"  !"#  !"#$  !"#$  !"  !"#  !"#$%&'()"*  

 ×100 Equation (4.2) 

4.2.6 Degradation of PEtG NPs studied by NMR spectroscopy 

Letrazole loaded PEtG NPs were prepared by the method described above using 3:5 

drug:polymer ratio in deuterated water (D2O) without the washing step. The NP suspension 

was then transferred into two sets of NMR tubes. One set of tubes was exposed to different 

times of 20, 40, 60, and 80 minutes of UV light irradiation (wavelength: 300−350 nm, 5.3 

mW cm-2) to initiate the cleavage of the end-cap and thus depolymerization. The other set of 

NMR tubes was stored in a light-impermeable box over this time and used as controls. 1H 

NMR spectra were then recorded at different time intervals to determine the required time for 

complete end-cap removal.  
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4.2.7 In vitro release study for letrazole 

Letrazole loaded PEtG NPs were exposed to UV light in a quartz cuvette for 20 minutes and 

then put in a dialysis tube with MWCO of 6000-8000 g/mol, which was stirred in phosphate 

buffer (100 mM) solution of pH 7.4 at 37 oC. At different time intervals, the dialysate was 

replaced with fresh phosphate buffer. The amount of released letrazole was assessed at 

various time points by UV-vis spectroscopy based on the absorbance at 238 nm versus a 

calibration curve prepared in the same buffer. The release profile for the irradiated NPs was 

compared with non-irradiated NPs.  

4.2.8 Nile red encapsulation and release  

0.1 mg of nile red was dissolved in 5 mL of CH2Cl2 containing PEtG (1 g/L). An aqueous 

solution of 6 g/L SC was then added to the organic solution and the resulting emulsion was 

sonicated for 6 minutes (30 seconds on and 10 seconds off) as described above. The organic 

solvent was then evaporated. The fluorescence intensity was obtained on a Varian CARY 

Eclipse Fluorescence spectrophotometer equipped with double excitation and emission 

monochromators. An excitation wavelength of 350 nm was used for nile red and the emission 

spectra were recorded from 400 to 700 nm. The fluorescence intensity was measured for non-

irradiated PEtG NPs, and 20,40, and 60 minute irradiated PEtG NPs. The intensity 

measurements were taken for the same samples over 4 days. 

4.3 Results and discussion 
In the current work, we investigated the influence of different preparation variables on basic 

characteristics of letrazole loaded NPs prepared by the emulsification-evaporation method. 

Letrazole, an oral non-steroidal aromatase inhibitor intended for treatment of hormonally 

responsive local and metastatic breast cancer was selected as the drug (Cohen et al., 2002; 

Long et al., 2004). Its hydrophobic-hydrophilic balance was expected to allow it to be 

incorporated into the NPs by the emulsification-evaporation method while its modest 

solubility in water would allow its loading and release to be readily detected by UV-vis 

spectroscopy. Letrazole-loaded NPs and microparticles have been shown to provide 

controlled release, significantly higher tumor uptake, and enhanced therapeutic efficacy 

(Mondal et al., 2008; Dey et al., 2009; Mondal et al., 2010). However, the stimulus-induced 

release of letrazole has not previously been investigated and may lead to more selective 
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delivery of the drug, further enhancing its efficacy and decreasing its toxicity. 

4.3.1 Optimization of PLA nanoparticle preparation  

Particle size must be controlled, particularly for intravascular delivery. Because the estimated 

diameter of the smallest blood capillaries in the human body is 4 – 7 mm (Kreuter, 1996; 

Gorner et al., 1999), the particle size should ideally be less than 100 nm to prevent capillary 

occlusion. Additionally, it was reported that the size of a NP is a major factor in the fate of a 

particle inside the body (Harashima et al., 1994). There is a strong correlation between the 

size of the particles and opsonization and consequent macrophage recognition through 

phagocytosis (Fang et al., 2006; Vonarbourg et al., 2006; Alexis et al., 2008). Thus, the 

diameter of drug carriers is a crucial parameter affecting on the circulation and their 

biodistribution profile (Moghimi et al., 1993, 2001). Therefore, finely tunable particle size is 

important to achieve of an effective drug delivery carrier. In this study, the NPs were 

prepared by the emulsification-evaporation method that was also used in Chapter 3. Using 

this method, the size can be controlled by adjusting parameters such as type and amount of 

the surfactant, the concentrations and viscosity of organic and aqueous phase, as well as other 

parameters (Tice and Gilley, 1985). CH2Cl2 was chosen as the organic phase in this study 

because it is a good solvent for PEtG, PLA, and letrazole. The results of this study showed 

that the size of non-loaded PLA NPs is influenced by several formulation variables including 

the organic:aqueous ratio, sonication time, and the concentration and type of the surfactant.  

a) Effect of organic:aqueous ratio        

To determine the effect of the organic:aqueous ratio on the particle size, fixing the amount of 

PLA at 5 mg, the PLA was dissolved in 1, 2.5, or 5 mL of CH2Cl2 and the organic phase was 

added to 5 mL of 18 mg/mL PVA in water solution. The resulting emulsion was subjected to 

2 minutes of sonication (30 seconds on and 10 seconds off). As shown in Table 4-1, The 

results demonstrated that the smallest particle diameter was obtained by using the ratio of 1:1 

CH2Cl2:water, with a Z-average diameter of 236±5. Additionally, the polydispersity index 

(PDI) was a relatively low value of 0.12±0.03. Thus, this ratio was used to further 

optimization of NPs. This result might be attributed to the viscosity of the organic phase. At a 

fixed amount of the polymer, a small volume of the organic phase leads to an increase in 

polymer concentration and a more viscous organic phase that provides a high mass transfer 



 

 

73 

resistance (Galindo-Rodriguez et al., 2004) and low stirring efficiency (Guo and Chu, 2009). 

Consequently, the diffusion of the organic phase into the aqueous phase is reduced resulting 

in larger particle size. In contrast, a decrease in the viscosity of the organic phase by 

increasing the volume of the organic phase at fixed polymer amount leads to an increase in 

the distribution efficiency of the polymeric phase into external aqueous phase, forming 

smaller droplet size.  
Table 4-1: Influence of different ratios of CH2Cl2:water on the Z-average diameter and diameter 

polydispersity of NPs prepared by the emulsification-evaporation method using 5 mg PLA, concentration 
of 18 mg/ mL of PVA, and sonication time of 2 minutes.  

CH2Cl2:water ratio (mL/mL) Z-average diameter*(nm) PDI* 

1:5 327±10 0.24±0.02 

1:2 274±5 0.21±0.4 

1:1 236±5 0.12±0.03 

       *Average ± SD 

b) Effect of the sonication time 

The effect of different sonication times of 2, 4, or 6 minutes on the nanoparticle diameter was 

investigated, using a fixed concentration of 1 mg/mL of PLA in 5 mL of CH2Cl2 and 5 mL of 

18 mg/mL of PVA aqueous solution optimized above. In general, an increase in sonication 

time from 2 to 6 minutes led to a decrease in particle diameter from 236± 5 to 207± 4 nm as 

illustrated in Table 4-2. This reduction can be explained by a reduction in the adhesion 

between the polymeric droplets, which is induced by sonication. Thus, a 6-minute sonication 

time was used for further optimization of the NPs. 

 

Table 4-2: Influence of the sonication time on the Z-average diameter and polydispersity of NPs prepared 
by the emulsification-evaporation method using 5mg of PLA, concentration of 18 mg/ mL of PVA, and 

1:1 CH2Cl2:water layer. 

Sonication time (minutes) Z-average diameter* (nm) PDI* 

2 236±5 0.12±0.03 

4 218±4 0.15±0.02 

6 207±4 0.17±0.02 

       *Average ± SD 
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c) Effect of PVA concentration in the aqueous layer 

Using the optimized conditions consisting of a sonication time of 6 minutes, 1:1 

CH2Cl2:water ratio, and a fixed concentration of 1 mg/mL of PLA in 5  mL of CH2Cl2, the 

effect of PVA concentration in aqueous layer on the nanoparticle diameter was studied. As 

demonstrated in Table 4-3, an increase in the concentration of PVA in the aqueous phase 

from 10 to 18 mg/mL led to a decrease in the diameter and PDI from 288± 62 to 204± 4 and 

from 0.53± 0.15 to 0.17± 0.02, respectively, while a further increase in the concentration up 

to 40 mg/mL resulted in an increase in the diameter and PDI to 419± 50 and 0.51± 0.02, 

respectively. These results show that 10 g/L PVA solution was not sufficient to cover the 

polymeric droplets during the formulation, leading to coalescence of the small droplets to 

form large ones, while 40 mg/mL was more than enough and may lead to an increase in the 

viscosity of the aqueous layer, resulting in a lowering of the efficiency of the sonication 

process. 

 

Table 4-3: Influence of PVA concentration in the aqueous layer on Z-average diameter and diameter 
polydispersity for NPs prepared by an emulsification-evaporation method using 5 mg PLA, 1:1 

CH2Cl2:aqueous layer, and sonication time of 6 minutes.  

Amount of PVA (mg/mL) 
Z-average 
diameter*  

(nm) 
PDI* 

10 288±62 0.53±0.15 

18 207±4 0.17±0.02 

40 419±50 0.51±0.02 

       *Average ± SD 
 

d) Effect of sodium cholate as a surfactant 

The influence of using of sodium cholate (SC) as a surfactant instead of PVA on the particle 

diameter was also investigated by using the optimized conditions of 1 mg/mL of PLA in 5 

mL of CH2Cl2, 5 mL of water, and sonication for 6 minutes. SC is an ionic surfactant and 

suitable for particle preparation (Sahli et al., 1997) owing to its natural origin, its 

biocompatibility, and its interfacial properties. The stability of the particle suspension is due 

to formation of a strong negative charge on the surface of the particles. 

As shown in Table 4-4, SC provided a substantial decrease in the particle diameter when the 



 

 

75 

other variables were held constant at 1:1 CH2Cl2:aqueous ratio and 6 minutes of sonication 

time.  Moreover, the size of PLA NPs decreased slightly when SC concentrations increased. 

The particle diameter dropped from 107± 5 to 88± 0.4 upon increasing the SC concentration 

from 3 mg/mL to 6 mg/mL. The significant reduction in the particle diameter upon using SC 

compared to PVA is attributed to the difference in molecular structures of the two surfactants 

where SC molecules are much smaller than the PVA chains, resulting in an increase in the 

viscosity of the aqueous phase in case of PVA, which leads to reduction of the shear stress 

during the homogenization process. Additionally, it was found that PVA has a high affinity 

for the aqueous phase and the PVA chains are favorably directed towards the aqueous phase 

(Murakami et al., 1999). Based on these optimization experiments, 1:1 CH2Cl2:water, 

sonication for 6 minutes, and 6 mg/ mL SC aqueous solution were the optimized conditions 

used for PLA NPs of particle diameter of less than 100 nm and would be used for subsequent 

experiments. 

 

Table 4-4: Influence of SC concentration in the aqueous layer on Z-average diameter and diameter 
polydispersity of NPs prepared by an emulsification-evaporation method using 5 mg PLA, 1:1 

CH2Cl2:aqueous layer, and sonication time of 6 minutes. 

Concentration of SC (mg/mL) Z-average diameter* 
(nm) PDI*  

3 107±5 0.16±0.01 

6 88±0.4 0.16±0.02 

       *Average ± SD 
 

4.3.2 The size and zeta potential of PEtG/PLA blend NPs 

Using the previously optimized conditions, NPs were prepared using PEtG/PLA blend 

solutions of different ratios of 100:0, 75:25, 50:50, 25:75, and 0:100 using the SC surfactant. 

Table 4-5 shows the results of particle size and zeta potential measurements on the particles. 

The results showed that all particle diameters were in the range of 85± 1.1 nm to 92± 1.1nm. 

The zeta potentials of all NPs prepared by SC ranged from – 28.7 mV to -39.9 mV indicating 

that the negatively charged SC surfactant was incorporated in the surface of polymeric 

droplets during the preparation (Lamprecht et al., 2001). Also, the TEM results confirmed 

the DLS results as shown in Figure 4-1, Figure 4-2, Figure 4-3, Figure 4-4, and Figure 4-5.  
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Table 4-5: Z-average diameters and zeta potentials for PEtG/PLA blend NPs. 
NPs 

PEtG:PLA 
Z-average*  

(nm) Zeta potential (mV) 

100:0 NPs 86±1.4 -35 
75:25 NPs 86±2.3 -28.7 
50:50 NPs 85±1.1 -38.9 
25:75 NPs 92±1.1 -29.4 
0:100 NPs 88±0.4 -39.9 

              *Average ± SD 

 

Figure 4-1: A) TEM image and B) DLS traces of 100 PEtG NPs from different batches. 
 

 

Figure 4-2: A) TEM image and B) DLS traces of 75 PEtG: 25PLA NPs from different batches. 
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500 nm 

A B 
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Figure 4-3: A) TEM image and B) DLS traces of 50PEtG: 50PLA NPs from different batches. 
  

 
Figure 4-4: A) TEM image and B) DLS traces of 25PEtG: 75PLA NPs from different batches. 

 

 
Figure 4-5: TEM image and DLS trace of 100PLA NPs. 
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NPs  
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which degrades between 200-250 °C, and the SC coating which is stable up to 350 °C. The 

physical compatibilities between the two polymers were determined by DSC in the 

temperature range of -100 - 100 °C. The results from Table 4-6 and Appendix A show that 

PEtG and PLA are both amorphous polymers with Tgs of  -12 °C and 44 °C respectively. 

Blending of these polymers at the molecular level would lead to a single new Tg, which 

would be expected to be intermediate between the Tgs of these two polymers. However, at all 

blend ratios two Tgs with values similar to those of the two polymers were observed. In each 

case, the Tg of PEtG was slightly increased through incorporation into the NPs, while that of 

PLA was slightly decreased, which is likely due to a very small degree of mixing between 

the two polymers. However, the results suggest that the NPs existed in a primarily phase-

separated form, at least at the nanoscale. It should also be noted that DSC did not reveal any 

thermal transitions for SC. In its crystalline form, it is known to have a Tm= 198 °C but this 

exceeds the temperature range of our experiment, which was limited by the poor stability of 

the PEtG at higher temperatures. 

 

Table 4-6: Glass transition temperatures of pure polymers, PEtG/PLA blend, and PEtG/PLA blend NPs 
of different ratios. 

Sample PLA PLA 
NPs 

25/75 
NPs 

50/50 
NPs 

75/25 
NPs 

PEtG 
NPs PEtG 

Tg (°C) 44 40 2, 39 3, 47 2, 39 2 -12 

 

4.3.4 Loading % and encapsulation efficiency of PEtG and PLA 
NPs: 

The effects of different ratios of letrazole:polymer on loading % and encapsulation efficiency 

of PEtG and PLA NPs were investigated. As illustrated in Table 4-7, in the case of PEtG 

NPs, the results showed that the encapsulation and the loading increased gradually with an 

increasing ratio of letrazole:PEtG. By using different letrazole:polymer ratios of 1:5, 2:5, and 

3:5 (w/w), the drug loading in PEtG NPs were 9.8± 1.1%, 17.8±6.8%, and 29.8± 5.1%, and 

the encapsulation efficiencies were 62.2± 9.1, 73.2± 14.6, and 86.5± 8.0 respectively. 

Additionally, in case of PLA, the encapsulation efficiency and loading % increased by 

increasing the ratio of letrazole:PLA.  

The loading % increased from 11.1±5.5 to 28.4±1.6% and encapsulation efficiency increased 

from 66.9±3.2 to 75.7±7.7 upon increasing the letrazole to polymer ratio from 1:5 to 3:5. 
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This might be due to the low solubility of the drug in the aqueous phase (0.078 g/L) and the 

high partition coefficient of the drug to the polymeric matrix relative to the aqueous phase. 

Overall, the results showed good encapsulation and loading efficiencies of letrazole in PEtG 

and PLA NPs. Also, DLS results of the PEtG and PLA NPs using different ratios of 

letrazole:polymer indicated that there was no significant increase in the particle diameter as 

shown in Table 4-8. 

 

Table 4-7: Drug loading and encapsulation efficiency of PEtG and PLA NPs using different 
letrazole:polymer ratios. 

Letrazole: polymer Drug Loading* % 
(w/w) 

Encapsulation 
Efficiency* % 

PEtG NPs  

1:5 9.8±1.1 62.2±9.1 

2:5 17.8±5.8 73.2±14.6 

3:5 29.8±5.1 86.5±8.0 

PLA NPs 

1:5 11.1±5.5 66.9±3.2 

2:5 22.3±4.9 78.2±2.2 

3:5 28.4±1.6 75.7±7.7 

          *Average ± SD 
 

Table 4-8: Influence of different ratios of letrazole:polymer on Z-average diameter and diameter 
distribution of NPs prepared by an emulsification-evaporation method.  

Letrazole: polymer  Z-Average 
diameter* (nm) PDI 

PEtG NPs  

1:5 86.2±1.4 0.06±0.04 

2:5 92.4±5.8 0.09±0.03 

3:5 91.3±3.3 0.09±0.04 

PLA NPs 

1:5 84.4±2.8 0.16±0.02 

2:5 100.2±6.1 0.19±0.04 

3:5 89.9±3.2 0.12±0.03 

          *Average ± SD 
 

4.3.5 UV-responsive degradation of PEtG NPs. 

Letrazole loaded PEtG NPs were prepared using 3:5 letrazole:polymer ratio (~30 wt% drug) 

in order to study UV-responsive degradation of PEtG in form of NPs. First, a UV stability 

test for letrazole was performed to ensure that the drug was not degraded upon UV 
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irradiation. This assessment was done using 1H NMR spectroscopy by dissolving letrazole in 

CD3CN, acquiring an initial spectrum of the drug, irradiating the drug for 1 hour with a UV 

light source and then acquiring another spectrum of the drug. The results showed that 

letrazole was stable upon UV irradiation as demonstrated in Figure 4-6 as no changes in the 

NMR spectrum of the drug were observed. 

 
Figure 4-6: 1H NMR spectra showing UV Stability of letrazole in CD3CN: A) before UV irradiation and 

B) after UV irradiation. 

The PEtG-letrazole NPs (~30 wt% drug) were prepared in D2O and exposed to different 

irradiation times of 20, 40, 60, and 80 minutes to determine the required irradiation time for 

NVOC cleavage. It was found that 20 minutes was sufficient to complete removal of the 

NVOC end-cap. Because PEtG is insoluble in water, only the surfactant and water-soluble 

degradation byproducts were detected in the 1H NMR spectra. After irradiation, sharp peaks 
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at 1.16, 4.13, and 5.2 ppm corresponding to the expected degradation product of EtGH 

emerged as EtG in water forms immediately its hydrate form. No significant difference in the 

intensities of these peaks was observed with different irradiation times as illustrated in Figure 

4-7. Moreover, because letrazole has a low limit solubility in water (0.078 mg/mL), it peaks 

did not show up in the 1H NMR spectra. 

 
Figure 4-7: 1HNMR spectra of loaded NPs a) before irradiation, b) after 20, c) after 40, d) 60, and e) 80 

minute UV irradiation but with incubation at 25°C in D2O. 
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4.3.6 In vitro release study 

a) Letrazole release performance with different drug loading 
values without UV irradiation 

Letrazole loaded PEtG and PLA NPs prepared with 1:5, 2:5, and 3:5 letrazole:polymer ratios 

were placed in a dialysis membrane with a 6000 to 8000 g/mol MWCO and these were 

stirred in pH 7.4 phosphate buffer at 37 °C in order to study the release profiles of the NPs 

without UV irradiation.  As shown in Figure 4-8 and Figure 4-9, the release pattern of 

letrazole from PEtG and PLA NPs was biphasic, involving first a burst effect, followed by a 

slower release. The burst effect for the drug likely resulted from the release of the drug near 

the surface of the particles. However, the drug at the centers of the NPs took longer to diffuse 

out of the polymer matrix, or to be released upon polymer degradation. 

The results revealed that the NPs with high loading content (3:5 letrazole:polymer) showed 

the lowest burst effect in both PEtG and PLA NPs. In contrast, the NPs with the lowest 

letrazole content showed a pronounced burst effect as shown in Figure 4-8 and Figure 4-9. 

This might be explained by the fact that at low drug content, the drug was concentrated on 

the surfaces of the particles, while by increasing drug amount during preparation, letrazole 

became more distributed though the polymer matrix, resulting in a decrease in the burst 

effect. 

It is also noteworthy that the burst effect from PLA NPs was more pronounced than from 

PEtG NPs, which might be attributed to more compact nanostructure of PEtG than PLA due 

to the difference in molecular weight (Ravivarapu et al.; 2000; Duvvuri et al., 2006). 

Moreover, the short chains of PLA means more carboxylate free ending that leads to more 

water penetration and more release thereafter (Zambaux et al., 1999). Because the NPs from 

PEtG and PLA were in the same size range, the drug release kinetics cannot be attributed to 

differences in size. 
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Figure 4-8: Letrazole release profile from PEtG NPs using different loadings of 1, 2, and 3 mg of letrazole 
per 5mg of PEtG in pH 7.4 PBS at 37 °C. 

 

 

Figure 4-9: Letrazole release profile from PLA NPs using different loadings of 1, 2, and 3 mg of letrazole 
per 5 mg of PLA in pH 7.4 PBS at 37 °C. 
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different polymer ratios on the release profile in PBS of 7.4 pH at 37 °C. The results were 

consistent with the previous results using 100% PLA and 100% PEtG NPs. Increasing the 

PLA content in the NP formulation led to increasing burst release as shown in Figure 4-10 

and Table 4-9.  
Table 4-9: Drug loading, encapsulation efficiency, and initial burst effect of PEtG/PLA blend NPs of 

different ratios using 3:5 letrazole:polymer ratio.  
NPs 

PEtG:PLA 
Drug Loading* % 

(w/w) 
Encapsulation Efficiency* 

% 
Initial burst release* 

% 
100:0  29.8±5.1 86.5±8.0 12.3±1.6 

75:25  26.4±2.3 72.6±3.0 20.3±1.2 

50:50  20.8±6.0 76.4±0.1 26.6±2.3 

25:75  24.2±1.8 71.9±4.7 30.0±3.7 

0:100  28.4±1.6 75.7±7.7 40.4±3.4 

       *Average ± SD 

 

 
Figure 4-10: Letrazole release profile from 75PEtG:25PLA, 50PEtG:50PLA, and 25PEtG:75PLA NPs 

using 3:5 letrazole:polymer ratio in pH 7.4 PBS at 37 °C. 
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rapid release of letrazole upon UV induced depolymerization of PEtG. However, the release 

of the drug from irradiated NPs was only slightly higher than the non-irradiated NPs as 

shown in Figure 4-11. This experiment was repeated several times to confirm this unexpected 

result. 

 
Figure 4-11: Letrazole release profile from UV-irradiated and non-irradiated PEtG NPs using 3:5 

letrazole to polymer ratio in pH 7.4 PBS at 37 °C. 

As shown in Figure 4-12, 1H NMR spectra illustrated that non-degraded PEtG remained 

within the dialysis tube in the case of the non-irradiated NPs, explaining the expected slow 

release of letrazole in this case. However, in the case of the irradiated PEtG NPs, no 

undegraded PEtG or PEtG degradation products were detected, confirming that the polymer 

was successfully degraded and released into the release media through the dialysis 

membrane. At this stage, it was hypothesized that the slow release resulted in the poor 

solubility of letrazole.  
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Figure 4-12: 1HNMR spectra of the dialysate after 1 day dialysis a) non-irradiated and b) UV-irradiated. 
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Several experimental designs were investigated in order to determine the reason for the slow 

release from irradiated NPs. Tween 20 was used in 0.1% v/v in the release media as a 

solubilizing agent with irradiated and non-irradiated PEtG NPs in order to compare the 

release performance. The results showed again that the release from the irradiated NPs was 

only slightly higher than the non-irradiated NPs. Another attempt was performed was to 

prepare rhodamine B loaded PEtG NPs (more water soluble dye) and apply sonication after 

UV irradiation, and then the results were compared with a control test of non-irradiated NPs. 

The results showed that the rhodamine release from non-irradiated NPs was slightly higher 

than the irradiated NPs, likely due to photobleaching in the case of the irradiated particles. 

The results also showed that the sonication after UV irradiation decreased the rhodamine 

release in case of the irradiated NPs and, while the sonication increased the rhodamine 

release from the non-irradiated NPs as illustrated in Figure 4-13. It is important to mention 

that these trials were done once, but none of them showed the expected triggered release. At 

this stage, it was proposed that the slow release might be attributed to the remaining cholic 

acid that traps the probe/drug within a nanoaggregate even after PEtG depolymerization. 

 
Figure 4-13: The profile of Rhodamine release from (green) non-irradiated and sonicated PEtG NPs; 
(purple) non-irradiated and non-sonicated PEtG NPs; (blue) irradiated and non-sonicated PEtG NPs, 

and (red) irradiated and sonicated PEtG NPs. 

d) Nile red encapsulation 

To further probe the NP degradation and potential drug release, Nile red was encapsulated in 

the PEtG NPs. Nile red exhibits high fluorescence when it is encapsulated into the 

hydrophobic core of a NP, but low solubility and extensive aggregation in an aqueous 
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solution where it displays negligible fluorescence. Therefore, it is a useful direct probe of its 

environment because it does not need to be released through a dialysis membrane to be 

probed. For non-irradiated NPs, the fluorescence intensity was high; however, the intensity 

decreased by 50% upon irradiation for 20, 40, 60, and 80 minutes (all of the same intensity), 

confirming the 1H NMR results that PEtG depolymerized, leaving the nile red in a more polar 

environment (Figure 4-14). No further decrease in fluorescence was observed for any of 

these samples over the next 4 days, suggesting that depolymerization had already reached 

completion at the first measurement. However, approximately 50% of the initial fluorescence 

still remained, even at the long time points. This is consistent with some or all of the nile red 

remaining encapsulated within SC aggregates (Figure 4-14 and Figure 4-15). 
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Figure 4-14: A) Change of fluorescence intensity of Nile red encapsulated on PEtG NPs before and 
after irradiation for 20,40, and 60 minutes; B) change in the fluorescence intensity of 20 minute, C) 

40 minute, D) 60 minutes irradiated, and E) non irradiated PEtG NPs over 4 days.  
	  

 

Figure 4-15: Percent initial fluorescence of nile red intensity over 4 days. 

4.4 Conclusions 
This study investigated the use of an emulsification-evaporation method for the preparation 

of PEtG/PLA blend NPs with PEtG designed to impart stimuli responsive properties to the 

NPs, for the release of drug to be triggered. The influence of several experimental parameters 

such as the organic to aqueous ratio, sonication time, and type and concentration of the 

surfactant on the particle diameter of PLA NPs were investigated. By using the optimized 

PLA nanoparticle preparation conditions, it was possible to prepare PEtG/PLA blend NPs 

having Z-average diameters of less than 100 nm and reasonable polydispersities. All of the 

prepared particles had negative zeta potentials due to remaining cholic acid on the surface of 

the NPs. The thermal characterization of the polymer blend NPs demonstrated that the two 

polymers exhibited phase separation as the amorphous regions maintained their original 
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properties, and thus two Tgs were observed. It was possible to encapsulate the drug letrazole 

into the NPs with good efficiencies, leading to high drug content. The extent of burst release 

from the NPs depended on the ratio of PLA:PEtG, with more PLA leading to more burst 

release. Unfortunately, the UV light irradiated NPs exhibited unexpectedly slow release, 

which occurred at the same rate as release from the non-irradiated NPs. Investigations were 

performed and the results suggested that even though the PEtG breaks down rapidly under 

the conditions of the experiment, the drug may remain encapsulated in aggregates formed by 

the surfactant SC. Additional research will be required to address this issue. 
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Chapter 5 : Conclusions and Recommendations 

5.1 Conclusions 
The following findings summarize the major outcomes of this research: 

• The use of poly(ester amide)s (PEA)s containing pendant functional groups for 

preparation of drug delivery NPs was investigated. By using emulsification-

evaporation and salting-out methods and running a series of optimization experiments 

to investigate the effects of varying the surfactant concentration, PEA concentration 

and the ratio of organic to water phases, it was possible to prepare particles having Z-

average diameters of less than 200 nm and reasonable polydispersities by both 

techniques. 

• The pendant functional groups on a PEA could be used for the covalent 

immobilization of drug molecules. First an alcohol functionalized rhodamine B 

derivative as a model drug was conjugated via an ester linkage with a coupling 

efficiency of ~40% prior to nanoparticle preparation. The optimized NP preparation 

conditions were used to prepare NPs from the PEA-rhodamine B conjugate and also 

from control NPs in which rhodamine B was physically encapsulated. The covalent 

conjugate afforded a much slower release than the noncovalent control suggesting 

that this approach is valuable for the elimination of the burst release effect. The 

approach was also extended to covalent immobilization of the hydrophilic anti cancer 

drug floxuridine in NPs. This system also exhibited a high coupling efficiency of 60% 

for the hydrophilic drug, a small burst release effect of 5%, and small Z-average 

diameters of less than 200 nm. This initial burst was followed by a slower, sustained 

release. Overall this work suggests the promise of using PEA NPs for drug delivery 

applications and in particular the use of PEAs with pendant functional groups for 

covalent conjugation of drugs. This affords NPs exhibiting slow and sustained drug 

release for applications where this is required. 

• In order to overcome the problem of nonspecific release of drug throughout the body, 

which can be expected for most NP systems, stimuli responsive NPs were 

investigated. Drug delivery NPs based on stimuli responsive polymers were prepared 

using PEtG. PEtG is UV responsive self-immolative polymer that undergoes end-to-
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end depolymerization upon UV irradiation. This study investigated the use of an 

emulsification-evaporation method for the preparation of PEtG/PLA blend NPs with 

PEtG designed to impart stimuli responsive properties to the NPs, for the release of 

drug to be triggered.  

• The effect of several optimization experiments such as the organic to aqueous ratio, 

sonication time, and type and concentration of the surfactant on the particle diameter 

of PLA NPs were investigated. By using the optimized preparation conditions, it was 

possible to prepare PEtG/PLA blend NPs having Z-average diameters of less than 100 

nm and reasonable polydispersities. All of the prepared particles had negative zeta 

potentials due to remaining cholic acid on the surface of the NPs. The thermal 

characterization of the polymer blend NPs demonstrated that the two polymers 

exhibited phase separation as the amorphous regions maintained their original 

properties, and thus two Tgs were observed. These NPs showed good efficiencies to 

encapsulate the hydrophobic drug letrazole. The results showed that the burst effect 

from the NPs depended on the ratio of PLA:PEtG, with more PLA leading to more 

burst release. Unfortunately, the UV light irradiated NPs exhibited unexpectedly slow 

release, which occurred at the same rate as release from the non-irradiated NPs. 

Investigations were performed and the results suggested that even though the PEtG 

breaks down rapidly under the conditions of the experiment, the drug may remain 

encapsulated in aggregates formed by the surfactant SC. Additional research will be 

required to address this issue. NPs based on  PEtG might be an appropriate tool for 

site-specific and time-controlled drug delivery.  

5.2 Recommendations 
In order to further improve some of the aforementioned shortcomings, the following 

recommendations are proposed: 

• For NPs prepared from PEA-floxuridine conjugates, cell toxicity and cell uptake 

study should be investigated, followed by detailed in vivo studies in animal models.  

• Letrazole PEtG interaction requires more investigation using DSC technique that may 

describe the physical state of the drug and internal structure of the NPs in order to 

explain the decrease in the burst effect with increase the loading of the dug.  
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• Using another drug with different solubility may solve the problem of slow release. 

• Assuming that the surfactant is forming micelles and that the drug may remain 

trapped inside these assemblies after degradation of the PEtG, new approaches 

require investigation. Formulation of nano-micelles through copolymer self-assembly 

may solve this problem. The hydrophilicity/hydrophobicity can be managed using 

copolymer self-assembly where the hydrophilic polymers only attach the two ends of 

the hydrophobic polymer, and the molecular weight can be selected.  
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Appendixes  

A Appendix A 

A.1. DSC thermograms  

 

Figure A-1: DSC of PEtG polymer. 
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Figure A-2: DSC of PEtG NPs. 

 

Figure A-3: DSC of 50:50 PEtG:PLA blend NPs. 

 

Figure A-4: DSC of 25:75 PEtG:PLA blend NPs. 
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Figure A-5: DSC of PLA NPs. 

Figure A-6: DSC of PLA polymer. 
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Figure A-7: DSC of PEtG/PLA blend. 

 

Figure A-8: DSC of sodium cholate. 
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A.2. TGA curves 

 
Figure A-9: TGA curve for PEtG NPs. 

 
Figure A-10: TGA curve for 75:25 PEtG:PLA blend NPs. 
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Figure A-11: TGA curve for 50:50 PEtG:PLA blend NPs. 

 
Figure A-12: TGA curve for 25:75 PEtG:PLA blend NPs. 
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Figure A-13: TGA curve for PLA NPs. 

 
Figure A-14: TGA curve for sodium cholate. 
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A.3. NMR spectra 

  
Figure A-15: Representative 1HNMR spectrum of Sodium cholate in DMSO-d6. 
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