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Abstract 
Tail biting presents a significant challenge in 

conventional pig farming, impacting animal welfare 
and farmers' economic viability. This paper introduces 
a novel approach for image-based tail posture 
monitoring, a potential early indicator of tail biting 
outbreaks. Our two-step tail posture detection 
approach, consisting of an initial pig detection and a 
subsequent tail posture detection step, shows 
significant improvements compared to previous 
methods. To mitigate ambiguity, our pipeline 
incorporates an EfficientNetV2 image classification 
model, filtering out lying pigs in the tail posture 
monitoring process. When applied to video sequences 
containing tail biting incidents, our method effectively 
captures the shift in tail posture from predominantly 
upright to hanging preceding outbreaks. Our findings 
offer a promising foundation for an early warning 
system to aid undocked pig husbandry, improve 
animal welfare, and provide targeted insights for 
farmers. The proposed approach demonstrates the 
potential for real-world applications, fostering 
proactive interventions to mitigate tail biting.  

Keywords: pig, precision livestock farming, tail 
posture detection, deep learning, computer vision 

1. Introduction

Tail biting is one of the biggest problems in
conventional pig livestock farming (Schukat & Heise, 
2019). It describes an abnormal behavior characterized 
by manipulating one pig's tail by chewing or biting 
another pig, which can result in injuries of varying 
degrees (Schrøder-Petersen & Simonsen, 2001). Not 
only does this compromise animal welfare, but it also 
poses substantial economic burdens on farmers. Due 
to the increased stress levels and occurring injuries, the 
risk of infection and disease outbreaks is elevated 
(Larsen et al., 2016), which, in addition to causing 

economic losses due to reduced daily weight gain of 
the pigs (Wallgren & Gunnarsson, 2021), can also lead 
to significant labor and veterinary costs for the farmer 
(D'Eath et al., 2018).  

Tail biting is a multifactorial issue, influenced by 
both internal factors such as genes, sex, age, weight, 
health status, and external elements such as housing 
environment, pen climate, inadequate enrichment 
material, and high stock density (Schrøder-Petersen & 
Simonsen, 2001). Given the numerous possible causes 
and its sporadic occurrence, tail biting is a complex 
and multidimensional problem that is difficult to 
detect and is considered to be almost unpredictable 
(Paoli et al., 2016; Scollo et al., 2016; Valros, 2018).  

The most effective preventative measure against 
tail biting is tail docking (Schukat & Heise, 2019), a 
surgical procedure involving the removal of a portion 
of the tail to mitigate the risk of tail biting or related 
injuries (Valros, 2018). Various studies have shown 
the effectiveness of this approach (Larsen et al., 
2018b; Li et al., 2017); however, this procedure has 
been criticized because it negatively impacts animal 
welfare and does not solve the problem but merely 
suppresses it (Li et al., 2017). According to the EU 
Directive on the minimum standards for protecting 
pigs 2008/120EG, tail docking is prohibited and may 
only be practiced in particular cases (Briyne et al., 
2018). Therefore, such practices do not represent a 
viable long-term option for tail biting prevention. 

While tail biting is considered to be unpredictable 
due to the multitude of possible risk factors and its 
sporadic appearance, certain studies indicate potential 
predictors of tail biting, observed consistently before 
an outbreak. In addition to an increase in general 
activity inside the pen (Larsen et al., 2016; Statham et 
al., 2009), studies show that a steady change in tail 
posture could be observed days before an outbreak, 
with more pigs having a  hanging tail posture and 
fewer pigs having an upright tail posture  (Lahrmann 
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et al., 2018; Wallgren et al., 2019; Zonderland et al., 
2009). This makes the tail posture a potentially 
valuable indicator to not only assess the wellbeing of 
the pigs but also to assess the risk of a potential tail 
biting outbreak effectively. 

Recent advancements in Deep Learning (DL) and 
Computer Vision (CV) for image analysis present an 
opportunity to develop systems capable of effectively 
monitoring these tail biting indicators based on camera 
data. These systems can enable farmers to 
comprehensively record these tail-biting indicators, 
moving away from manual, random sample 
evaluations that often result in additional labor during 
day-to-day operations. The availability of these 
comprehensive records could enhance risk assessment 
for potential tail biting outbreaks, which would not 
only help in the husbandry of undocked pigs by 
potentially mitigating the need for tail docking but also 
enable prompt, timely and cost-effective early 
intervention, leading to improved animal welfare and 
reduced economic burden for farmers. 

This paper presents a first step in developing such 
a system by introducing a novel pipeline for the image-
based monitoring of the tail posture indicator based on 
DL. This work contributes a potentially valuable tool
for providing early warnings of tail biting episodes of
pigs, enabling proactive interventions that could
significantly improve animal welfare and reduce
economic losses in pig farming.

2. Related work

Compared to other applications within pig
precision livestock farming, research on the image-
based tail posture detection of pigs using DL is 
relatively sparse.  

While not directly applying DL methods, D'Eath 
et al. (2018) used 3D cameras in combination with 
Linear Mixed Models to detect and measure the tail 
posture of pigs, resulting in “[…] an accuracy of 
73.9% at detecting low vs not low tails […]”. The 
authors noted that the proposed algorithm performed 
best when detecting the tucked tail posture.  

In a different study, Ocepek et al. (2022) utilized 
Mask R-CNN for image-based pig, head, and tail 
detection. The authors curated a dataset of 583 images, 
utilizing 533 for training and the remaining 50 for 
evaluation. The dataset consisted of 7,742 individual 
tail annotations for the classes tail-curled-good-
visibility, tail-straight, and tail-uncertain. The trained 
model achieved a precision of 0.77 and a recall of 0.60 
in detecting straight vs curled tails, indicating that the 
model has issues detecting all the actual positive 
samples. The authors also trained a YOLOv4 model 

based on a dataset of 30 images with an average of six 
pigs with visual tails, achieving a precision of 90%. 
However, the authors did not provide additional 
evaluation metrics, such as the mAP at different 
Intersection over Union (IoU) thresholds or individual 
evaluation metrics for both the straight and curled tail 
posture class, making further interpretation of the 
results difficult.  

Witte et al. (2022) built on the approach of 
Ocepek et al. (2022) and trained a YOLOv5 model for 
upright and hanging tail posture detection using a 
dataset consisting of 1000 images with 6391 upright 
and 6412 hanging tail annotations. They conducted an 
evaluation using the YOLOv5 's', 'm', and 'l' models, 
employing image sizes of 640 × 640 and 1280 × 1280 
for each variant. Their findings suggested that larger 
image sizes for training could enhance detection 
performance. However, the results are still 
insufficient, as the top-performing model variant 
YOLOv5-l using a 1280 image size, only achieved 
precision, recall, mAPIoU=0.5, and mAPIoU=0.5-0.95 values 
of 0.885, 0.884, 0.879, and 0.511, respectively. 
Furthermore, the evaluation pointed to limitations of 
simply using larger model sizes: the performance gain 
when moving from the 'm' variant to the 'l' was smaller 
across all measured metrics compared to the leap from 
's' to 'm', despite the 'l' variant having over twice the 
parameter size compared to the 'm' variant. Witte et al. 
(2022) concluded that performance may not be 
increased using larger model and image sizes.  

Despite these advancements in the field, there are 
several remaining challenges and limitations, which 
this study aims to address. 

3. Research Contributions

In addition to the insufficient performance of
existing approaches for image-based tail posture 
detection, there is also the prevailing challenge to 
properly process the tail posture of pigs in a lying 
position when applying existing approaches. Most 
prior studies relating to the investigation of the tail 
posture as an early indicator for tail biting have 
confined their observations to the tail posture of 
standing pigs during data collection (Larsen et al., 
2018a; Wallgren et al., 2019). This is partly due to the 
ambiguity associated with the tail posture of lying 
pigs. because lying pigs often let their tails hang loose, 
which could lead to misinterpretations when 
monitoring tail posture as an early indicator for tail-
biting However, when conducting tail posture 
detection directly on the input image, as by Ocepek et 
al. (2022) and Witte et al. (2022), lying pigs cannot be 
directly filtered out, as the model is solely trained to 
predict bounding boxes (BB) for the predefined 
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upright and hanging tail posture classes and cannot 
make associations between the predicted tail posture 
and the corresponding pig.  

Based on the identified research gaps in the 
image-based tail posture detection of pigs, our paper 
introduces several key contributions: 

 Firstly, to overcome the limitations of previous 
methods, we introduce a new two-step tail posture 
classification approach. This method includes an 
initial pig detection step using a YOLOv8 object 
detection model, followed by a tail posture detection 
step conducted on the cropped results from the pig 
detection phase, also employing a YOLOv8 model. 
Compared to the previous one-step object detection 
approaches, where the tail posture is directly predicted 
on the main input image, this method improved 
performance significantly, resulting in an 
approximately 68% increase in mean average 
precision (mAP) when comparing the evaluation 
results for both models at the same image size.  

Secondly, we address the issue of filtering out 
lying pigs. Unlike other approaches for pig posture 
classification like Nasirahmadi et al. (2019) or Luo et 
al. (2021), we do not detect pig posture directly on the 
main input image but separate the pig posture 
classification task into an object detection and an 
image classification task, as it can increase the 
accuracy of pig posture classification (Witte & Marx 
Gómez, 2022). To achieve this, we have integrated an 
EfficientNetV2 image classification model into the tail 

posture monitoring pipeline to categorize the results of 
the pig detection model into lying and not lying pigs, 
allowing us to apply the tail posture detection model 
strictly to pigs with a not lying body posture.  

Lastly, we combine the presented models for pig 
detection, pig posture classification and tail posture 
detection into a coherent tail posture monitoring 
pipeline, which we applied to video data spanning up 
to six days before a recorded tail biting incident. Our 
method effectively documents the shift in tail posture 
from predominantly upright to increasingly hanging, 
with hanging tail postures peaking just prior to an 
outbreak. The technique proposed in this paper has the 
potential to provide early warnings and facilitate 
timely and preventative measures against tail biting, 
thus enhancing animal welfare and reducing economic 
losses in pig livestock farming. 

4. Materials and methods

The data for this study was gathered as part of the
DigiSchwein project, which took place at the Chamber 
of Agriculture Lower Saxony's pig farming research 
facility in Wehnen, Germany. The project involved 
capturing and storing video recordings from piglet 
rearing and fattening stages for analysis. For piglet-
rearing pens housing 24 pigs, we used an AXIS 
M3206-LVE network camera for video capture. 
Conversely, an AXIS M3116-LVE network camera 
was utilized for the fattening pens containing 15 pigs. 

(b) pig posture annotation on crop image (not lying) (a) pig annotations on full image 

(c) tail posture annotations on full image (left) and crop image (right) with upright (green) and hanging (red)
annotations 

Figure 1. Dataset examples. 
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In both scenarios, cameras were installed beneath the 
ceiling to ensure a comprehensive top-down view of 
the entire pen. For the piglet rearing phase, initial 
recordings were made at 20 frames per second (FPS) 
with a resolution of 2304 × 1728. However, the FPS 
was later reduced to 20 to decrease the data volume, 
and the resolution was adjusted to 1920 × 1080. For 
the fattening pens, videos were recorded at 30 FPS 
with a resolution of 2688 × 1512. 

4.1 Model selection 

Our model selection was based on several key 
criteria outlined in domain-related research. Norton et 
al. (2019) emphasized the importance of prediction 
accuracy, Lee et al. (2019) underscored the need for 
prediction speed, and Banhazi et al. (2012) pointed out 
the significance of cost-efficiency in the methods 
employed. We also considered the prevalence of each 
method's application in similar research domains, 
evaluating their empirical validation in prior studies.  

We chose the YOLO architecture, specifically its 
latest version, YOLOv8 (Jocher et al., 2023), for its 
balanced combination of speed and accuracy. YOLO 
is able to perform real-time object detection by 
processing images in a single forward pass, thereby 
meeting the criteria of prediction speed, accuracy, and 
efficiency. This architecture has also been extensively 
applied in related pig precision livestock farming 
research (Luo et al., 2021; Nasirahmadi et al., 2019; 
Witte & Marx Gómez, 2022) further validating its 
suitability for this study.  

The EfficientNetV2 model (Tan & Le V, 2021) 
was selected for its ability to provide high prediction 
accuracy while maintaining computational efficiency, 
also aligning with our defined selection criteria. 

4.2. Dataset creation 

Three distinct datasets were constructed for pig 
detection, pig posture classification, and tail posture 
detection tasks. These datasets were created using 
randomly selected frames from video sequences 
obtained during data collection from piglet rearing and 
fattening. Additionally, we incorporated images from 
publicly accessible datasets and those provided by 
other projects to enhance our dataset diversity. When 
curating the dataset, we aimed to represent a wide 
range of variables, such as diverse backgrounds, 
camera angles, lens types, and lighting conditions. 
Additionally, we included images portraying specific 
challenges relevant to pig livestock farming, like pig 
pileups, occlusions, and overlapping pigs. The 
resulting datasets feature a variety of locations, 
backgrounds, camera angles, fluctuating numbers of 

pigs per image, and a mix of day and night images. 
Figure 1 presents an example for each dataset, which 
will be referenced when describing the respective 
dataset. Further details are discussed in the subsequent 
sections. 

Pig detection dataset: The training of the pig 
detection model utilized a dataset comprising 9,218 
manually annotated images with a cumulative total of 
146,359 bounding box (BB) annotations. The dataset 
was sourced from various contributors, some of which 
are publicly accessible, while other external projects 
supplied others. We included 2,000 images from the 
dataset shared by Psota et al. (2019), which featured 
17 unique backgrounds and locations. Since this 
dataset only held keypoint annotations, each of the 
2,000 images was manually annotated with bounding 
boxes. Furthermore, 720 images from the KoVeSch 
(GN 2819109817) project, run by the Chamber of 
Agriculture Lower Saxony, were included, divided 
evenly between piglet rearing and pig fattening. An 
additional contribution came from the InnoPig (GN 
2817205413) project, providing 1,268 images for 
piglet rearing and 418 images for pig fattening, all of 
which were manually annotated. We also utilized 600 
images from the publicly accessible dataset offered by 
Alameer et al. (2020) and another 305 images from the 
dataset released by Riekert et al. (2020). The 
remaining 3,907 images were obtained from video 
footage recorded as part of the DigiSchwein 
(GN28DE109B18) project, which covered both piglet 
rearing and pig fattening. Figure 1 (a) shows an 
example image for the pig detection dataset. 

Pig posture classification dataset: The dataset 
used for posture classification was derived from the 
pig detection dataset. Each annotated bounding box 
within the dataset was cropped from its corresponding 
image according to the individual annotations 
provided within the annotation file. In Figure 1 (b), an 
example of this is shown. These cropped segments 
were subsequently saved as separate files. The result 
was an extraction of 146,359 images in total. Of these, 
90,048 images were annotated to indicate either lying 
or not lying body posture. The annotation process 
resulted in a dataset comprised of 52,177 images 
classified under the lying category and 37,871 images 
classified as not lying. 

Tail posture detection dataset: We created two 
separate datasets for tail posture detection, as 
illustrated in Figure 1 (c). For the first dataset, 1,856 
images were extracted from the pig detection dataset 
and subsequently annotated with upright and hanging 
tail postures. We used the dataset of Witte et al. (2022) 
consisting of 1,000 images as a baseline and added 
another 856 new samples. These 1,856 images with 
upright and hanging tail annotations represent the final 
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dataset for the one-step tail posture detection approach 
directly on the input image. The tail posture dataset for 
both the one-step and two-step approach does not 
contain night images. 

To compare the performance of the one-step tail 
posture detection approach with the two-step tail 
posture detection approach, the pig annotations of the 
1,856 images from the pig detection dataset were 
cropped and stored as separate files, resulting in 
18,289 images. These cropped images were also 
annotated with upright and hanging tail postures, 
forming the final dataset for the two-step tail posture 
detection approach, which will be compared with the 
one-step approach.  

It should be noted that pigs often pile or overlap 
under commercial conditions. Consequently, a single 
pig detection crop may contain more than one visible 
pig. This scenario poses a challenge, as some crops of 
the pig detection outputs may include more than one 
visible tail posture, resulting in multiple tail posture 
annotations for respective crop images. An example of 
this is illustrated in Figure 1 (c). To ensure accurate 
results, managing these cases separately during 
inference is essential, as failing to do so could result in 
duplicate detections of tail postures. This procedure 
will be discussed in later sections.  

4.3. Training and test environment 

The models were trained on a workstation desktop 
equipped with two Nvidia RTX 3090 graphics cards, 
each offering 24 GB VRAM. The YOLOv8 
implementation from Jocher et al. (2023) was used for 
the pig detection and tail posture detection models, 
following the default parameter settings throughout 
the training phase. Various data augmentation 
techniques were incorporated, such as image mosaic 
and mix-up, random image flip, image rotation, image 
scaling, and HSV-hue and -saturation modifications. 
The training process was executed over 300 epochs, 
using a batch size of 128 for 640 × 640 image size and 
16 for 1280 × 1280 image size. YOLOv8s, the smallest 
checkpoint, was chosen for training. 

 We deployed the official PyTorch version of 
EfficientNetV2 in the pig posture classification task. 
As with the YOLOv8 model, the smallest 
EfficientNetV2 model, B0, was utilized as the base 
model. Data augmentation included techniques like 
random horizontal flipping, random auto contrast, 
random rotation, random color jitter, and random 
sharpness enhancement. Images were adjusted to a 
224 × 224 size while preserving the original aspect 
ratio by appending black borders to the crop. This 

Pig Detection 
Model Image size Class Precision Recall mAP0.5 mAP0.5-0.95 

YOLOv8s 640 × 640 pig 0.990 0.986 0.994 0.957 
Pig Posture Classification 

Model Image size Class Precision Recall F1-Score 

EfficientNetV2B0 224 × 244 
lying 0.96 0.99 0.97 

not lying 0.98 0.96 0.97 
Pig Tail Posture Detection 

Full Image 
Model Image size Class Precision Recall mAP0.5 mAP0.5-0.95 

YOLOv8s 

640 × 640 
all 0.781 0.687 0.740 0.357 

upright 0.800 0.750 0.802 0.397 
hanging 0.761 0.623 0.679 0.317 

1280  × 1280 
all 0.849 0.815 0.845 0.462 

upright 0.881 0.847 0.882 0.503 
hanging 0.816 0.783 0.808 0.422 

Crop Image 
Model Image size Class Precision Recall mAP0.5 mAP0.5-0.95 

YOLOv8s 

640 ×640 
all 0.894   0.884 0.917 0.601 

upright 0.920 0.905 0.948 0.636 
hanging 0.867 0.863 0.887 0.567 

1280 × 1280 
all 0.886   0.890 0.917 0.598 

upright 0.913 0.912 0.95 0.631 
hanging 0.858 0.869 0.885 0.565 

Table 1. Model results. 
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strategy enhanced performance compared to scenarios 
where the aspect ratio was not maintained. The 
training was conducted over ten epochs, with the 
PyTorch implementation of the cross-entropy loss 
function being utilized as the loss function and Adam 
serving as the optimizer.  

The datasets were split in an 80/20 proportion for 
training and testing purposes. Annotations were done 
using the open-source tool labelme (Wada, 2016). 

5. Results

Table 1 outlines the results of different models
utilized for pig detection, pig posture classification, 
and tail posture detection.  

The pig detection was conducted utilizing the 
YOLOv8s model with an image size of 640 × 640 for 
training. The evaluation on the test set resulted in a 
precision of 0.990, a recall of 0.986, a mAPIoU=0.5 of 
0.994 and a mAPIoU=0.5-0.95 of 0.957, showing 
impressive results for the pig detection task. 

For pig posture classification, the EfficientNetV2 
B0 model was applied using a 224 × 224 image size, 
yielding high precision and recall values for both the 
lying (0.96 and 0.99 respectively), and not lying (0.98 
and 0.96 respectively) classes, with an F1-Score of 
0.97 in both cases. 

As also shown by Witte et al. (2022), the 
performance of the YOLOv8s model for the one-step 
tail posture detection directly on the input image 
varied with image resolution. For the smaller image 
size (640), precision, recall, mAPIoU=0.5, and 
mAPIoU=0.5-0.95 values for all classes were 0.781, 0.687, 
0.740, and 0.357, respectively. For the larger image 
size (1280), these values improved to 0.849, 0.815, 
0.845, and 0.462, respectively. The results indicate 
that the larger the image size, the better the model 
performance for tail posture detection in full images. 

The model showed notably superior results when 
detecting tail posture on cropped images. For the 
smaller image size (640), the precision, recall, 
mAPIoU=0.5, and mAPIoU=0.5-0.95 values for all classes 
were 0.894, 0.884, 0.917, and 0.601 respectively, 
increasing the mAPIoU=0.5-0.95 by approximate 68% 
comparing to the full image tail posture detection 
approach. In contrast to the full image tail posture 

detection, increasing the image size for tail posture 
detection on crop images results in nearly identical 
performance with precision, recall, mAPIoU=0.5 and 
mAPIoU=0.5-0.95 values of 0.886, 0.890, 0.917, and 
0.598, respectively.  

 Especially for the 640 × 640 image size, the 
performance in both the upright and hanging classes 
in the cropped images showed a noticeable 
enhancement in every measured metric compared to 
the full image scenario. The superior detection 
performance on cropped images can be attributed to 
several potential reasons:  

Firstly, cropped images focus directly on the area 
of interest (i.e., the pig tail), thereby reducing the 
scene's complexity and minimizing extraneous detail 
that could interfere with the detection task.  

Secondly, in the cropped images, the tail 
constitutes a more significant portion of the image 
compared to full images. This allows the model to 
capture more details of the tail, improving its ability to 
detect the tail posture accurately.  

Lastly, the cropped approach may reduce the 
issues related to object scale invariance, as the tails in 
cropped images would have less variation in size 
compared to tails in full images, which could appear 
larger or smaller depending on the pig's distance from 
the camera. 

In the following, the combination of the presented 
models into the pipeline for image-based tail posture 
monitoring will be presented and described in more 
detail.  

5.1. Pipeline 

The monitoring process for tail posture 
encompasses integrating the pig detection model, the 
pig posture classification model, and the tail posture 
detection model into a unified pipeline. This process is 
illustrated in Figure 1.  

Initially, a given video sequence is divided into 
individual frames. Each frame is independently 
processed, commencing with the pig detection model 
to identify and localize pigs within the frame. 
Subsequently, the pig detection model outputs are 
cropped from the input image and passed to the pig 
posture classification model for categorizing each 

Figure 2. Tail posture monitoring pipeline. 



detected pig as lying or not lying. Since the utilized 
EfficientNetV2 model expects a fixed image size of 
224 × 224, the cropped images of the pig detection 
need to be resized first. During resizing, the aspect 
ratio of the crop is retained, and the remaining portions 
of the image are filled with black color. This strategy 
enhanced the robustness of posture classification 
during the training and testing stages. The results of 
the pig posture classification are used to determine 
which crops are passed to the tail posture detection 
stage and which are discarded, enabling the exclusive 
application of tail posture detection to pigs with a not 
lying body posture, thus mitigating potential 
ambiguity in the tail posture monitoring process.  

During the post-processing phase, we address the 
issue of overlapping pigs within individual pig crops, 
as previously discussed in Figure 1. Overlapping pigs 
in crops can result in multiple tail posture detections 
per crop, potentially leading to double counting 
detected tail postures. To circumvent this, we filter out 
these duplicate detections by firstly scaling back the 
bounding box coordinates of the tail posture detections 
on the cropped image to the original input image size 
and secondly, eliminating duplicate tail detections 
based on the Intersection over Union (IoU) of their 
respective bounding boxes. Upon the final processing 
of tail posture detections, the numbers of lying and not 
lying pigs and the counts of upright and hanging tails 
postures are logged. This process is then repeated for 
each frame in the sequence. 

In the following, we present the monitoring 
results of the pipeline when applied to different video 
sequences.  

5.2. Tail posture monitoring results 

We evaluated the proposed tail posture 
monitoring pipeline by applying it to three distinct 
video sequences from different piglet rearing pens 
where tail-biting incidents had occurred. The selection 
of time periods to be examined based on the tail 
posture monitoring pipeline was guided by existing 
research. Lahrmann et al. (2018) found that a shift in 
tail posture towards a hanging position could be 
detected as early as three days before an outbreak. 
Similarly, Zonderland et al. (2009) observed that 
piglets with hanging or retracted tail postures were 
more likely to suffer a tail injury 2-3 days later. 
Considering these research findings, we decided to 
analyze video footage up to five days before the tail 
biting incidents, focusing daily on the periods from 
08:00 to 16:30. All video sequences used for analysis 
originated from the DigiSchwein project and were, in 
addition to daily in-barn tail posture evaluations, 
examined by experts for tail-biting incidents. All video 
sequences were analyzed with one frame per second.  

The results can be seen in Figure 3, which is 
divided into two separate sections: Figure 3(a) 
displays the results of the tail posture monitoring 
pipeline for a single day, spanning from 08:00 to 

(a) Tail and pig posture monitoring over one day

(b) Tail posture monitoring spanning over six days before a tail biting incident
Figure 3. Results tail posture monitoring. 
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16:30. The left subplot of (a) illustrates the logged tail 
postures for the upright and hanging classes. In 
contrast, the right subplot reveals the counts of lying 
and not lying pigs. In order to smooth the data, we 
applied a moving average with a window size of 15 
minutes to the recorded results. In this example, the 
ratio of upright to hanging tails is positive, with a 
significantly higher number of upright tail postures 
than hanging tail postures throughout the entire period. 
The marked decrease in logged tail postures between 
approximately 11:00 and 12:00 can be attributed to a 
high proportion of lying pigs during this period, 
resulting in many pig detections being discarded in the 
tail posture detection process.  

On the other hand, Figure 3(b) displays the 
pipeline results across several days leading up to the 
actual tail biting incident for each of the three 
experiments. We initially took the naïve approach of 
taking the average of the recorded upright and hanging 
tail posture counts over the considered timespan. This 
approach already proved to be sufficient as in each of 
the three experiments, the results show that the 
presented pipeline can document the shift in tail 
posture leading up to the actual tail-biting incident. In 
all three experiments, it is apparent how the ratio of 
upright to hanging tail postures decreases steadily, 
eventually leading to a transition where the hanging 
class becomes the prevalent tail posture. 

 Looking into the results in more detail shows that 
the period in which this transition occurs varies for 
each video sequence. In experiment 1, the shift in tail 
postures occurs more gradually, with the upright tail 
posture slowly decreasing as the hanging tail posture 
incrementally increases. This transition extends over 
approximately five days. Conversely, in experiment 3, 
the transition occurs more abruptly, characterized by a 
sudden drop in upright tail postures and a more rapid 
rise in hanging tail postures. Experiment 2, on the 
other hand, presents a mix of both, with the dominant 
tail posture transitioning over roughly four days. 

Based on the results, the presented pipeline for tail 
posture monitoring can be used to detect the change in 
predominant tail postures. In the future, this could 
open up the possibility of developing camera-based 
systems in combination with the presented pipeline 
that would provide warnings to farmers based on 
defined thresholds if the system detected a gradual or 
current change in the recorded tail posture. However, 
the results of this paper present a first proof of concept. 
To transfer this approach into agricultural practice, 
many remaining challenges and limitations need to be 
addressed. These will be discussed in the following 
section. 

6. Discussion and outlook

While this paper's results are promising, several 
limitations need to be considered when interpreting the 
results. 

Firstly, our pipeline analysis and evaluation were 
conducted on a limited data set consisting of three 
video sequences from different pens but the same 
compartment, spanning five days before a tail-biting 
outbreak. To make more profound assertions about the 
effectiveness of the presented tail posture monitoring 
pipeline, further analysis should be conducted on more 
video sequences from different pig livestock 
compartments. This would not only solidify the 
reliability of the findings but also aid in defining 
potential thresholds for issuing alerts about alarming 
changes in tail posture, which is essential when 
transferring these systems into agricultural practice. 
Furthermore, a more extended timespan of analysis, 
e.g., a complete growing phase from rearing to
fattening, should be considered to gain a more
comprehensive view of tail posture changes over time.
In addition, analyzing pens without tail biting
incidents would provide valuable reference data for
understanding tail posture trends in the absence of tail
biting. These reference data could be integrated into
the definition of the tail posture monitoring thresholds.

Secondly, the methodology applied in this study 
involved a relatively straightforward analysis, using 
only the daily average of upright and hanging tail 
postures. Future research could benefit from 
incorporating more sophisticated analysis strategies. 
For instance, considering only values where the ratio 
of not lying pigs surpasses a predetermined threshold 
could provide more nuanced insights. Moreover, it 
would be worth investigating the optimal period for 
analysis and what time spans to consider. Adjusting 
the observation window could allow for quicker alerts 
when the ratio of tail postures changes. This aspect is 
of particular interest as it could influence the system's 
response time and effectiveness in alerting farmers to 
imminent tail biting incidents, thereby enhancing the 
overall utility of the proposed methodology in 
practice. 

There is the potential for enhancing the training 
dataset for tail posture detection. Including more data, 
specifically video clips featuring high levels of pen 
activity, could boost the model's performance in terms 
of precision, recall and mAP, and robustness when 
handling more complex scenarios.  

A current constraint of the pipeline is its ability to 
analyze tail posture only during daylight hours, given 
the difficulties in detecting tail posture in low-light 
conditions. Future research will focus on incorporating 
night images to evaluate whether tail posture detection 
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is also reliable using night images based on this 
approach. This would furthermore allow permanent 
monitoring of the tail posture indicator for tail biting, 
giving future systems even more profound information 
to issue potential alerts.  

Furthermore, this study narrowly focuses on tail 
posture as the primary early indicator of tail biting. 
Existing literature, however, suggests increased 
activity levels as another valid indicator for tail biting 
outbreaks. Combining the presented image-based tail 
posture monitoring pipeline with an image-based 
method to measure activity insight, the pen could 
enhance the data basis, on which future early warning 
systems could issue alerts for the farmer. 

To emphasize the transfer of the presented 
pipeline into agricultural practice, future research 
should also focus on developing initial prototypes to 
conduct field tests under real-world conditions. 
Furthermore, preparations could be made to adapt the 
pipeline for real-time analysis and automated 
evaluation. This adaptation would allow for the 
seamless implementation of the system in practical 
settings, ensuring immediate assessment and response 
to changes in tail posture. 

7. Conclusion

Tail biting is one of the biggest challenges in
conventional pig livestock farming. This paper 
introduced a novel approach for image-based tail 
posture monitoring, an important indicator for 
assessing the risk of a potential tail biting outbreak. 
We present a new two-step tail posture detection 
approach, which improved the mAP by approximately 
68% compared to previous approaches based on object 
detection. Additionally, we have addressed the 
challenge of filtering out lying pigs during tail posture 
monitoring by including an EfficientNetV2 image 
classification model in the pipeline, avoiding 
ambiguous results during tail posture monitoring.  

We applied the final pipeline consisting of a pig 
detection, pig posture classification and tail posture 
detection model to three different video sequences that 
contained tail biting incidents. In analyzing the five 
days leading up to an outbreak from 08:00 to 16:30, 
the results showed an evident change in recorded tail 
posture in all three cases. Initially, the tail posture was 
predominantly upright, but as the tail biting incident 
approached, the number of hanging tails increased 
while the number of upright ones decreased. 

The findings presented here could serve as the 
foundation for an image-based early warning system 
that can be deployed to better capture and assess the 
risk of a tail biting outbreak. This would not only aid 
in the husbandry of undocked pigs, thereby improving 

animal welfare but also support farmers in conducting 
more targeted sampling within their stock. 
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