
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

12-8-2014 12:00 AM 

Morphological And Structural Mapping Of The Oudemans Impact Morphological And Structural Mapping Of The Oudemans Impact 

Crater Layered Central Uplift, Mars Crater Layered Central Uplift, Mars 

Bahareh Kasmai 
The University of Western Ontario 

Supervisor 

Dr. Gordon osinski 

The University of Western Ontario Joint Supervisor 

Dr. Livio Tornabene 

The University of Western Ontario Joint Supervisor 

Dr. Dazhi Jiang 

The University of Western Ontario 

Graduate Program in Planetary Science 

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science 

© Bahareh Kasmai 2014 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Geology Commons, Geomorphology Commons, Other Earth Sciences Commons, and the 

Tectonics and Structure Commons 

Recommended Citation Recommended Citation 
Kasmai, Bahareh, "Morphological And Structural Mapping Of The Oudemans Impact Crater Layered 
Central Uplift, Mars" (2014). Electronic Thesis and Dissertation Repository. 2628. 
https://ir.lib.uwo.ca/etd/2628 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F2628&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/156?utm_source=ir.lib.uwo.ca%2Fetd%2F2628&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1053?utm_source=ir.lib.uwo.ca%2Fetd%2F2628&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/166?utm_source=ir.lib.uwo.ca%2Fetd%2F2628&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/164?utm_source=ir.lib.uwo.ca%2Fetd%2F2628&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/2628?utm_source=ir.lib.uwo.ca%2Fetd%2F2628&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


 

i 

 

 

 

MORPHOLOGICAL AND STRUCTURAL MAPPING OF THE OUDEMANS 

IMPACT CRATER LAYERED CENTRAL UPLIFT, MARS 

 

(Thesis format: Monograph) 

 

by 

 

Bahareh Kasmai 

 

Graduate Program in Geology (Planetary Science) 

 

A thesis submitted in partial fulfillment 

of the requirements for the degree of 

Master of Science – Geology (Planetary Science) 

 

The School of Graduate and Postdoctoral Studies 

The University of Western Ontario 

London, Ontario, Canada 

 

©Bahareh Kasmai 2014 

 



 

 

 

ii 

 

 

Abstract 

 

Central uplifts in large meteorite impact craters provide valuable information about the 

subsurface geology of planetary bodies. Compared to impact craters on Earth, Martian 

central uplifts can be well exposed and can be mapped in detail by using satellite 

imagery. Central uplifts preserve morphological and structural features formed as result 

of the combination of emplacement during the impact process, post impact modification, 

and erosion over time. In this study, the Oudemans Crater central uplift (the largest 

central uplift with layers on Mars) was investigated. Oudemans (9.89 S, 268.1 E) is 124 

km in diameter and is located in the Sinai Planum at the western end of Valles Marineris 

canyon system; it also is part of the Tharsis province, which is major volcanic region on 

Mars. The central uplift was structurally and geomorphologically mapped and analyzed 

using High Resolution Imaging Science Experiment (HiRISE) imagery combined with 

other data sets tied to topographic data as a base map in Arc-GIS. The Oudemans Crater 

central uplift was divided into five main geomorphologic units: 1) exposed bedrock; 2) 

megabreccia; 3) clast-rich impact melt rock; 4) clast-poor and pitted impact melt; and 5) 

erosional deposits (mass wasting unit and aeolian deposit) units. Faults, folds, dykes, and 

deformed bedding were also mapped. Through structural mapping, deformed, folded, and 

fractured layers were mapped as they provide a frame of reference with respect to the 

structural deformation of the uplift. The preferred orientation of faults appears to be 

perpendicular to the impact trajectory (oblique trend to the central uplift) and to be thrust 

faults. Four obvious folds were mapped towards the centre of the uplift consistent with 

increased deformation towards the Crater centre. Dykes are typically perpendicular to the 

bedrock and can be seen mostly in the centre of the central uplift. 
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1. Introduction  

 

Impact cratering is a complex geological process that has affected the surfaces of all solid 

planets and moons in our solar system (Melosh, 1989). Impact craters can be classified into 

two main morphologic types: simple and complex. Simple craters are bowl-shaped 

depressions with smooth walls lacking terraces filled with impact melt deposits, while 

complex craters contain terraced walls, flat floors, and central uplifts (Pike, 1980). Remote 

sensing studies of complex impact craters on planetary bodies provide information relating 

to the original morphology and morphometry of craters (Osinski and Grieve, 2013). 

Furthermore impact craters reveal uplifted deep-seated bedrock exposures within their 

central uplift, but also in the ejecta deposits and walls. Central uplifts of complex craters 

provide an excellent opportunity to study the deepest portions of the Martian crust globally 

(Caudill et al., 2012b; Quantin et al., 2012; Tornabene et al., 2012a; Tornabene et al., 

2012b). 

The exposed uplifted bedrock in the central uplifts of Martian craters provides us with 

insights into regional geologic history through the exposure of lithologies and the recorded 

pre-impact target structure and stratigraphy therein e.g., (Tornabene et al., 2012a). 

Studying the exposed bedrock in the central uplifts of complex craters also provides unique 

opportunities to investigate the early climate history and habitability through the older 

underlying bedrock they expose and the impact-generated hydrothermal systems these 

craters can generate in the presence of water (Osinski and Pierazzo, 2013). Recent detailed 

investigations of central uplifts show that they are not only comprised of uplifted bedrock, 

but also various deposits of impact melt rocks, impact breccias, and post-impact deposits 

e.g., dust, mass-wasting deposits, etc (Ding et al., 2014; Marzo et al., 2010; Nuhn, 2014; 

Osinski et al., 2011; Tornabene et al., 2010; Tornabene et al., 2014). It is now clear that 

central uplifts preserve morphological and structural features that are the result of a 

combination of emplacement during the impact process, post impact modification, and 

erosion over time (Osinski and Pierazzo, 2013; Tornabene et al., 2012a; Tornabene et al., 

2013). As such, they are often difficult to study, but provide important clues regarding the 

impact process, the formation of central uplifts and the processes that modify them. 
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Morphological, structural and spectral mapping of impact craters on Mars are, therefore, 

useful to interpret the geological processes that have shaped and modified the surface (e.g., 

volcanism, aeolian processes, erosion and deposition, etc.) (Barnhart, 2010; Bleacher et al., 

2003; Craddock et al., 1997; Ding et al., 2014; Forsberg‐Taylor et al., 2004; Grant et al., 

2008b; Melosh, 1989; Platz et al., 2013). 

Studies of impact craters on Earth (i.e., terrestrial impact structures) provide many insights 

into the impact process. However, because of obscuration by vegetation, water or deposits 

(i.e., Earth’s active geologic surface), the original morphology and structures in the 

majority of terrestrial impact structures are eroded (Kenkmann et al., 2005; Kenkmann et 

al., 2014). In contrast, many Martian craters are minimally obscured and are well -

preserved and, thus, can be geologically mapped in detail by using high-resolution 

spacecraft imagery (Tornabene et al., 2010; Tornabene et al., 2014). Many researchers 

tried to understand the formation of central uplifts; such as Kenkmann et al., (2014) who 

summarized that the weakening mechanism is required to form central uplifts, but the 

nature of this process remains poorly constrained and understood.  

Oudemans Crater, with a 124 km in diameter, was selected here because it has central 

uplift with well exposed LB and represents the largest layered central uplift on Mars 

identified to date. Importantly, layers provide a frame of reference with respect to the 

structural deformation of the uplift, such as folding, and movement-offset along faults 

(Bridges, 2006; Caudill et al., 2012a; Nuhn, 2014; Wulf et al., 2012).  

The goal of this study is to produce a morphological and structural map of the central uplift 

of the Oudemans Crater on Mars in order to investigate and inform on regional 

stratigraphy, the relation between morphological units, and structural deformation during 

the modification stage of crater formation. We attempt to constrain the origin and 

deformation history of the morphologic units of the central peak of the Oudemans Crater 

utilizing High Resolution Imaging Science Experiment (HiRISE) (resolution up to 25 cm/ 

pixel), Context Camera (CTX) (~5 m/pixel), and other data to map metre scale features. 

The research encompasses the morphological and structural analysis of the central uplift. 

Geological mapping was performed to aid the analysis and to provide a geological 

framework.  
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2. Background  

2.1. The surface of Mars 

2.1.1. Overview 

Mars, the fourth terrestrial planet from the Sun and has one of the most complex geologic 

histories in our solar system (Fig. 1). Mars has a surface temperature between  140 and 

300 K. The average percentage of carbon dioxide (CO2) in the atmosphere is 95%, and the 

mean atmosphere pressure at the surface is ~ 6.5 mbar. Mars has a diameter of ~ 6,800 km, 

which corresponds to approximately half the size of Earth. Mars possess two small moons: 

Phobos, and Deimos, which are heavily-cratered planetary bodies, having crater 

distributions similar to the Moon (Veverka and Thomas, 1979).  No active plate tectonics 

has been observed on Mars as there is no evidence of active ridge and trench systems.  

However, Mars was once volcanically and tectonically active.  

2.1.2. Global Structures and Topography on Mars 

Mars is thought to be a one-plate planet (stagnant lid) with a thick crust. Heat is 

transported to the surface lying on top of mantle convection, then cooling the outer layers 

of Mars’s surface through lithosphere growth occurred due to stagnant lid mantle 

convection throughout the evolution, so it can reconcile early crust formation and magnetic 

field generation (Zuber et al., 2000).  

The surface of Mars is characterized by a global- scale dichotomy. The highlands are in the 

northern Martian hemisphere, and the heavily-crated lowlands located in the southern 

hemisphere (Wilson, 2009). In other words, the northern and southern hemispheres of 

Mars have different topographies, elevation, crustal thicknesses, and impact crater 

densities. 
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The smooth northern lowlands are characterized by vast volcanic plains, while the southern 

highlands are heavily cratered, and partially covered with extensive lava flows. This 

dichotomy boundary (the transition between the highlands and lowlands) is one of the 

earliest global geologic features on Mars that separates the older, heavily-cratered southern 

hemisphere highlands from the smooth, younger northern hemisphere lowlands (Carr, 

2006). This feature is marked by a dramatic elevation change and steep scarp by using 

topography and gravity, and the root of this separation is a change in crustal thickness 

along a boundary (Andrews-Hanna et al., 2008). 

One observation was about the bimodal crustal thickness distribution between the lowlands 

and highlands which generated by the excavation of crust during a gigantic impact 

(Neumann et al., 2004). Another observation was about the dichotomy boundary that now 

looks like an elliptical shape around Mars. The low- angel massive impacts are generated 

elliptical basins, such as Hellas basin on Mars. The basin is simulated to be buried by the 

melt generated by the impact and contained within the basin but much less than earlier 

(Neumann et al., 2004). So this massive impact source for the crustal dichotomy would 

leave the largest regions (northern lowlands) in the solar system (Andrews-Hanna et al., 

2008) (The thickness of northern part of the crust is 32 km while in Southern part is 58 km 

Figure 1. Mars Orbiter Laser Altimetre (MOLA) maps clearly show a distinction 

between lowlands and highlands. The northern lowlands have overall elevations 

about five kilometers lower than the cratered uplands of the southern hemisphere. 

http:// www.psrd.hawaii.edu. 

http://www.psrd.hawaii.edu/PSRDglossary.html#mola
http://www.psrd.hawaii.edu/July03/MartianSea.html
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(Carr, 1981; Watters et al., 2007; Zuber et al., 2000). Deposition and erosion by aeolian, 

fluvial and glacial processes shaped the present-day dichotomy boundary.   

The majority of the Martian crust formed in the Noachian (Head et al., 2001; McEwen et 

al., 1999; Zuber, 2001) with widespread tectonic activity, then the crust formed in the 

Hesperian (Head et al., 2002) and was followed by the Amazonian. (Carr, 1979) assumed 

that the Martian crust is made up brecciated lava flows. 

Thermal history models of the lithosphere of Mars, based on a factor of mantle heat 

transfer by stagnant-lid convection, have been explored by (Reese et al., 1998). These 

models show a global melt zone underneath the lithosphere that is present for a significant 

part of the Martian evolution, in some models even at present (Reese et al., 1999). 

Based on some calculations in these models, Breuer and Spohn (2003) assumed that an 

early plate tectonics epoch was likely and followed by stagnant lid convection. The models 

include the effects of mantle differentiation by crust formation after the end of the plate 

tectonics epoch. The stagnant lid model requires some early superheating of the core to 

explain an early magnetic field (Breuer and Spohn, 2003; Gerald Schubert, 2001). 

Convection models indicate that on a time scale of a few hundred million years the mantle 

convective engine slowed, as interior heat was lost and as radioactive heat production was 

concentrated into the shallow crust. Rapid interior cooling led to a globally thick 

lithosphere. The last 3.5 Gyr of Martian history was marked by slow cooling and by the 

concentration of volcanic and tectonic activity in ever more limited regions (Gerald 

Schubert, 2001; Hauck and Phillips, 2002; Weizman et al., 2001). 

On Mars, the lack of plate tectonics and lower weathering rates preserve the oldest portions 

of the Martian crust. Mars displays a wide range of terrains and has significant topographic 

relief. The highest elevation from zero elevation datum on Mars marked by the summit of 

Olympus Mons at ~ 27 km while the lowest elevation is about ~  7 km belonging the floor 

of the Hellas basin. Heavily cratered terrain occurs mostly in the southern hemisphere. 

Most of the Martian plains within the cratered terrain are volcanic with a complex 

interplay of fluvial, aeolian and volcanic processes (Greeley and Spudis, 1978).  
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These plains are subdivided by both type and age to three categories; moderately cratered 

plains, ridged plateau plains, and volcanic plains. Martian volcanoes occur as shield 

volcanoes, dome volcanoes and highland patera. Shield volcanoes in the Tharsis and 

Elysium regions include multiple flows, sometimes emplaced through lava tubes and 

channels, typical of shield-forming flows on Earth. Carr (1979) concluded that flow could 

be carried for long periods by evaluating the pore pressures on Mars. Presence of small 

ancient channels and valleys networks on Mars show that climatic conditions in the past 

were variable.  

A vast network of canyon system occurs on the surface of Mars for 4,000 km along the 

equatorial zone located eastward from the Tharsis Montes and comprising of grabens, 

canyons, pit craters and channels. The region containing the main canyon system, named 

Valles Marineris (largest and deepest exposures of layered volcanic rock on Mars) with 

layered walls is part of the Tharsis region (Beyer and McEwen, 2005; Caudill et al., 

2012a). The canyon is subdivided into three sections; Noctis Labyrinthus in the west, the 

main section of canyons in the centre and a complex eastern part. The study area is located 

in the western part of this region (between Sinai Planum and Noctis Labyrinthus) (Fig. 2). 

 

 

Figure 2. Part of global topographic map of Mars on MOLA shaded-relief indicating the total 

studied area (Oudemans Crater). Zuber@tharsis.gsfc.NASA.GOV. 
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Conditions on early Mars may have been similar to those on early Earth. However, 

landforms developed through different processes and conditions. The surface of Mars has 

many geological features and a complex evolutionary history that have distinguishable 

equivalents on Earth, including tectonics, impacts, canyons, volcanism, etc. Mars was the 

most active in the Noachian, although episodes of volcanic activity continued until a few 

Ma ago (Head et al., 2001; Neukum and Jaumann, 2004; Solomon, 2005; Tanaka et al., 

1992). 

Mars has a thin atmosphere with presence of volatiles and some geological processes to 

reshape craters (Carr, 2006). Two large volcanic provinces contain most of the erupted 

volcanic materials: Tharsis and Elysium. In these areas, large shield volcanoes can be 

observed, including the highest mountain in the solar system: Olympus Mons with 27 km 

elevation from zero elevation datum (Parfitt and Wilson, 2009). These large shields are the 

result of basaltic flows and can be compared to intra-plate volcanoes on Earth. Martian 

craters may be weathered by water, wind (aeolian activity) deposition, ice, and mass 

wasting. Gradation involves above-mentioned factors. Gravity is the driving force of 

gradation and the material moved by mass wasting, by running water, by icy water, or by 

wind. Mass wasting is a downslope movement of rock under the influence of gravity. 

Water in both solid and liquid form exists at depth in some regions of Mars. There are a 

wide range of landforms on Mars formed by running water, ice, lava, wind and mud. 

Volcanic activity and impacts may have disrupted ground ice and the water table resulting 

in release of water on Mars (Tornabene et al., 2008); (Greeley, 1994); (Harrison et al., 

2010; Jones and Lineweaver, 2010). Wind is a factor for the movement of particles on 

Mars. So by measuring winds and observing dust storms show that the aeolian processes 

could be a substantial role in present-day modification of the surface (Greeley, 1994). 
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2.1.3. Martian Geological crater chronology  

Tanaka (1986) proposed a chronology system for Mars. This system divides the geological 

history of Mars into three main time-stratigraphic units. The oldest period is called the 

Noachian (>3.9 Ga), followed by the Hesperian period (3.9-3.0 Ga), and by the Amazonian 

(3.0 Ga-present) (Fig. 3). 

From ~4 Ga to ~3.9 Ga, Mars and Earth suffered extra-terrestrial events such as the Late 

Heavy Bombardment (LHB) (Strom et al., 2005). Some researchers have suggested most 

tectonic activity occurred during the Noachian such as heavy bombardment, forming the 

majority of Martian impact craters, valley networks and presence of surface water (Carr, 

2006; Head et al., 2001; Nimmo and Tanaka, 2005; Tanaka et al., 1992). During the early 

Noachian, the high impact cratering, and erosion rates, had a substantial impact on the 

atmosphere, which decreased by a ~ 50 to 90% loss of the atmosphere (Jakosky and 

Phillips, 2001). Local volcanism, especially in the Tharsis region, was occurred in the 

Noachian period. Tanaka (1986) also indicated that high rates of volcanic and tectonic 

activity, erosion and weathering, fluvial, and periglacial resurfacing processes occurred in 

this period.   

Numerical modeling showed that plate tectonics or flood volcanism have occurred during 

an early episode of rapid cooling (> 200 K×Gyr), after which cooling mainly occurred 

conductively through Martian lithosphere (Van Thienen et al., 2005).  

The Hesperian period is a transition between the high cratering and volcanic activity in the 

Noachian and the lower cratering and volcanic activity of the Amazonian (Head et al., 

2001). This period is characterized by regional volcanism, glacial activity, and lava flows. 

During the last period (Amazonian period), volcanism, meteorite impacts, tectonics and 

water flow were active on a limited scale (Carr, 2006; Tanaka, 1986) (Fig. 4). However, 

the formation of the largest volcanic edifice, Olympus Mons, probably began during this 

period (Fuller and Head, 2002). 

 

http://en.wikipedia.org/wiki/Olympus_Mons
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In the stagnant lid regime, there is no crustal recycling and there is no two-stage 

differentiation (a process of primary and secondary crust formation on terrestrial planets). 

Instead, melt is formed underneath the lithosphere at greater depth than with plate 

tectonics. Crust growth is limited by the increasing thickness of the lithosphere as the Mars 

cools because melt buoyancy decreases with increasing depth to the source region. 

Oudemans Crater is estimated to be Late Hesperian to Early Amazonian in age based on 

the interpretation of the relationship of the crater with local and regional geologic units 

(Mest et al., 2011; Witbeck et al., 1991). Oudemans Crater has been identified as one 

whose formation may has caused some of the landslide deposits in Valles Marineris. 

Valles Marineris canyon system, a large tectonic crack affected by the rising crust in the 

Tharsis Bulge. The Valles Marineris canyon system’s formation is tied with the Tarsis 

Bulge formation (Noachian to Late Hesperian period).  

 

Figure 3. Mars chronology timescale system and occurred events from Tanaka et al., (1986). 
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2.2. Impact crater formation 

Mars is one of the best options in the planetary context to study impact craters compare to 

Earth with high rates of erosion, volcanic activity, and plate tectonics. Impact craters are 

ubiquitous landforms on the ancient surface of Mars (Melosh and Ivanov, 1999). 

Compared to the lunar craters, they are shallower because of erosion of rims and partial 

filling by windblown deposits (Greeley, 1994).  

The present challenge in impact cratering studies is to use the observed morphology of 

extraterrestrial craters and the structure of terrestrial craters to infer the course of events 

during transient crater collapse. Many models have been suggested for understanding the 

impact crater formation (Melosh and Ivanov, 1999).  

Like impact craters on Earth, many Martian craters may be difficult to identify because of 

erosional factors, which have modified the surface. Martian impact craters are unique 

Figure 4. Global scale geological map of Mars, using mollweide projection (with east 

longitude and centred on 260ºE) and MOLA shaded relief as background. N=Noachian, 

H=Hesperian, A=Amazonian, E=Early, L=Late. Map from Nimmo and Tanaka (2005). 
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windows into the subsurface composition on Mars. (Wood et al., 1978) noted that the Mars 

has less basin-like craters than the Moon.  

Hellas basin is the largest impact basin on Mars and in the solar system which was 

recognized by (Wood et al., 1978). It measures 1600 by 2000 km with a 50 to 400 km wide 

rim. The large Martian craters are separated by complex inter-crater plains. Most of the 

Martian plains are volcanic within the cratered terrain (Greeley and Spudis, 1978). The 

interior morphologies within basins are often modified from the effects of volcanic 

activity, and erosion due to continual impact bombardment on the Mars. 

Three main stages lead to the formation of an impact crater deforming the surface include 

contact and compression, excavation and formation of transient cavity, and crater 

modification (Gault et al., 1968; Melosh, 1989) (Fig. 5). The following sections describe 

each of the impact cratering stages in more detail. 

2.2.1. Contact and compression stage 

During the contact and compression stage, the projectile contacts the planet’s surface and 

transfers its kinetic energy to the target rocks. Then shock waves penetrate into the target 

and compress it downward and outward. The projectile penetrates one to two times its 

diameter based on models of the impact process e.g., (Kieffer and Simonds, 1980; O'Keefe 

and Ahrens, 1982). High-pressure waves (shock waves) propagate both into the target and 

back into the projectile between the boundary of the compressed and the uncompressed 

target material. At this boundary, target rocks are shock vaporized and melted when they 

are unloaded or decompressed by rarefaction waves at high pressures (>100 GPa) (Ahrens 

and O'Keefe, 1972; Melosh, 1989; Osinski and Pierazzo, 2013) .  

The projectile may also vaporize, melt, and undergo shock metamorphism during 

decompression stage because of high pressure of the shocked material and passage of the 

rarefaction wave thought the projectile (Ahrens and O'Keefe, 1972; Gault et al., 1968; 

Grieve et al., 1977; Melosh, 1989). Correspondingly, a zone of rock melt follows the 

vaporized zone, and when shock energy is dropped, rocks are damaged (fractured, 

brecciated) related to decreasing intensity.  
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Figure 5. Series of schematic cross-sections depicting the three main  stages in the 

formation of impact craters. This multi-stage model accounts for melt emplacement in 

both simple (left panel) and complex craters (right panel). For the modification stage 

section, the arrows represent different time steps, labelled ‘a’ to ‘c’.  Initially the 

gravitational collapse of crater walls and central uplift (a) results inward movement of 

material. Later, melt and clasts flow off the central uplift (b). Then, there is continued 

movement of melt and clasts outwards once crater wall collapse has largely ceased (c). 

After from Osinski et al. 2011. Figure and caption from Osinski et al. 2012. 
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The duration of the contact and compression stage depend on the duration of passage of 

rarefaction and shock waves through the projectile. When the projectile is completely 

unloaded contact compression transition into the excavation stage, the shock wave moving 

downward into the target signifies the start of the excavation stage of impact cratering 

formation (Melosh, 1989). 

2.2.2. Excavation 

This stage is followed by contact and compression stage. Formation process of the transient 

cavity is caused by the interactions between the outward-directed shock waves and the 

downward-directed rarefaction waves. Both shock waves and reflected rarefaction waves 

spread out from the impact crater along excavation flow lines through the target (Grieve 

and Cintala, 1992; Melosh, 1989). Target materials move outward radially along these 

excavation flow lines (Melosh, 1989). The movement of rocks in the upward and outward 

direction results in excavation, and the formation of transient cavity (Dence, 1968). Target 

materials that once occupied the transient cavity are excavated and displaced.. Materials 

within the “excavated zone” are close to the surface as an upper zone and form the upper 

one-third the depth of the depth of the transient cavity (Stöffler, 1971). They are ejected 

beyond the crater rim, forming the ejecta blanket (Oberbeck, 1975). The ejecta consist of 

material from multiple shock levels because excavation flow lines intersect the pressure 

contours. In addition, ejecta in complex craters occur in the crater rim and interior to the 

final crater rim. On the other hand, highly shocked and melted allochthonous materials are 

driven down into the transient cavity (Grieve et al., 1977; Melosh, 1989). The velocity of 

the cratering flow-field can no longer excavate or displace target rock and melt. For large 

hypervelocity impacts on Earth, the gravity factor controls when inadequate energy 

remains to lift the overlying material against the force of its own weight (Anderson et al., 

2004). 

The transient cavity stops once the shock and rarefaction waves are no longer able to 

excavate or displace the target rocks (Melosh, 1989). Finally, a mixture of melt and rock 

debris forms a lining to the transient cavity. 
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2.2.3. Modification  

During the modification stage, the transient cavity`s shape has changed to form a final 

crater, and the most intense deformation usually occurs in the central uplift in complex 

craters. Modification flow is reverse of excavation flow; causes transient cavity closing. 

The duration of this stage depends on energy and strength of the target material. Central 

uplift formation is a highest degree deformation and complex process that occurs during 

the end of the excavation stage into the crater modification stage (Kenkmann et al., 2014; 

Melosh and Ivanov, 1999), where two processes occur; an inward and upward movement 

of large fault-bounded blocks) and a downward-directed gravitational collapse of the inner 

rim along concentric faults (Melosh and Ivanov, 1999; Melosh, 1989). The flow field 

collapses the transient cavity, and still active in some part of the crater cavity in the 

modification stage. The final crater expression at the end of this stage depends on the 

magnitude of the event. During the last part of the modification stage, bedrock of the sub-

crater floor is uplifted from depth (Grieve and Therriault, 2004; Pilkington and Grieve, 

1992).  

The deformation formed during the modification stage, such as shear displacements occur 

with movements in large impact craters. Central uplifts are structurally complex and 

include features such as folds, which result from convergent flow, faults, fracture zones, 

exposure of deep bedrock, and blocks which depends the strain rate and fracture stress in 

size in the core of the central uplifts during the modification stage (Garvin and Frawley, 

1998; Kenkmann et al., 2005; Komor et al., 1988; Larsen et al., 2009; Pike, 1980). 

Central uplifts preserve morphological and structural features and provide the present-day 

distribution resulted by the combination of emplacement during the impact process, post 

impact modification, and erosion over time (Osinski and Grieve, 2013; Tornabene et al., 

2012a; Tornabene et al., 2012b). As such, they are often difficult to study. Kenkmann et al, 

(2014) outlined the dominant mechanisms controlling the collapse of large impact craters. 

One model of central uplift formation (thermal weakening model) predicts that the strength 

of rock drops, as its temperature goes toward the melting point. Heating is an important 

weakening mechanism which remains in the rocks after decompression in large impacts 

(O'Keefe and Ahrens, 1999; Stesky et al., 1974). The other model is the block oscillation 
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model that impact applied a pressure in the target to oscillate as deformed blocks of rock. 

The last model is acoustic fluidization that explains weakening mechanism of central uplift 

caused by the pressure of impact within rock fragments that decrease it, allowing 

fluidization.  

Central uplifts on Mars include floor pits and peak pits. Floor pits suggest that the target 

material has a significant role in affecting in central uplift morphology; however, Peak pits 

are depression above the central topographic rise (Barlow, 2010; Whitehead et al., 2010).   

The gravity, size and target lithology of the impacted planetary body play a key role in 

influencing the final impact crater shape such as the crater wall collapsing (Melosh and 

Ivanov, 1999). Gravity also affects the driving force, size of central uplifts and the degree 

of slumping (Greeley, 1994). On the geologically inactive lunar surface, this complex 

crater form will be preserved until subsequent impact events alter it. The modification 

processes of uplift and collapse merge gradually into the normal processes of geological 

mass movement, isostatic uplift, and erosion.  

An additional stage is the post-impact hydrothermal stage, in cases where water or ice may 

be abundant in the subsurface where these materials are heated and circulating in the 

structure  (Kieffer and Simonds, 1980) often leading to alteration of the rocks in contact 

with the circulating fluids (Barnhart, 2010). Distinguishing these impact-associated 

hydrothermal deposits is important for understanding the climatic and geologic processes 

permit water on the surface. There are six locations in impact craters where hydrothermal 

deposits can form (Fig.6).  

In summary, central uplifts allow us to investigate the early climate history and habitability 

of Mars (Tornabene et al., 2012b).  They record structural and morphological events 

relating to modification and central uplift formation (Osinski and Pierazzo, 2013; 

Tornabene et al., 2012a). The central uplift of the complex crater is formed as the initial 

(transient) deep crater floor rebounds from the compressional shock of impact. Slumping 

of the rim further modifies and enlarges the final crater. The best locations on Mars for 

exposing bedrock and layered material is in central uplift (Caudill et al., 2012a; Poelchau 

et al., 2009). 
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2.3. Impact crater morphology and morphometry 

 

Due to the Earth’s geologically active surface impact structures are often not well 

preserved, including their uplifts (Kenkmann et al., 2005). Weathering and erosion of the 

target rocks quickly alter the surface expression of impact structures; despite the crater's 

initial morphology, crater rims and ejecta blankets are quickly eroded and concentric ring 

structures can be produced or enhanced as weaker rocks of the crater floor are removed. 

More resistant rocks of the melt sheet may be left as plateaus overlooking the surrounding 

structure (Sharpton and Ward, 1990). The most complex craters on Earth are eroded to 

some degree, whereas they are well preserved on other planets (Turtle et al., 2005). 

Martian central uplifts may be well-exposed and may be readily mapped structurally and 

geologically in detail by using data images (Caudill et al., 2012a; Kenkmann et al., 2014; 

Nuhn, 2014; Quantin et al., 2012; Tornabene et al., 2012a; Tornabene et al., 2010; Wulf et 

al., 2012). 

The morphology of craters provides useful information about the environment that the 

craters were formed at the time. Impact craters can be grouped into two main classes based 

on morphology: simple or complex (Fig. 7). Depending on the size of the transient cavity, 

Figure 6. Distribution of hydrothermal deposits within and around a typical complex impact 

crater. Modified from Osinski et al. (2012). Figure and caption from Osinski et al 2012. 

http://www.lpi.usra.edu/publications/slidesets/craters/glossary.shtml#ejecta
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and the properties of the target rock, the impact crater feature can result in variable 

morphologies, formation of simple bowl shape cavity (simple crater) and a cavity with an 

interior uplift and terraced walls (complex crater) (Dence, 1968; Melosh, 1989) The 

transition between simple and complex craters on Mars is 5 to 10 km (Carr and Head III, 

2010). Simple craters are also approximately the same size as the transient cavity, with a 

range of 2 to 4 km in diameter on Earth depending on target rock properties, 3 to 10 km in 

diameter on Mars and 15 to 20 km on the Moon (at 1/6 Earth’s gravity). They are filled 

with breccia and impact melt deposits (Pike, 1980). They form by slumping of the transient 

cavity walls. The depth of the simple crater is generally 1:5 to 1:7 its diameter (Melosh, 

1989; Pike, 1977). Simple craters are usually deeper than complex craters. Simple craters 

consist of a sharp rim with ejecta deposits and impact melts and breccias on its floor 

(Shoemaker, 1960). With increasing diameter, transitional craters form. They consist of 

shallower profile and terraced crater rim. These kinds of craters are between simple and 

complex craters. Transition from simple to complex craters managed by different size and 

gravity (Melosh, 1989; Pike, 1980). Complex craters generally have complicated structures 

such as uplifted rim, central uplift, flat floor, and central peak ring and continuous wall 

terraces (Melosh, 1989; Pike, 1980). Gravity causes the initially steep crater walls to 

collapse downward and inward, forming a shallower depth compared to diameter (1:10 to 

1:20). The diameter depends on the surface gravity of the planet. On the other hand, 

complex structure produced by greater gravity and smaller diameter and brought materials 

from depth to the surface as a result of complex craters (Melosh, 1989; Sharpton and 

Ward, 1990) . 
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2.4. Crater impactites 

Impactites are produced during formation of impact structures, which  include shock 

metamorphosed target rocks, impact breccias and impact melt deposits (Stöffler and 

Grieve, 2007). They are classified by observations of rocks associated with impact craters 

on Earth based on their physical, chemical properties and their stratigraphic setting within 

an impact crater (Grieve and Therriault, 2004). They are also grouped based on the extent 

to which they have been moved from their original pre-impact location by the cratering 

flow-field and the collapse of the transient cavity to create the final crater. As such, they 

are subdivided into two categories: 1) Parautochthonous (transported slightly out of place), 

and 2) Allochthonous (formed elsewhere and moved to their current location). 

Allochthonous impactites can be subdivided into proximal (those around the final crater) 

and distal (those with distance from the final crater) (Osinski and Grieve, 2013). 

Figure 7. HiRISE image of an unnamed simple crater on Mars (38.7 ° N/316.1 ° E) displaying an 

elevated crater rim and steeply dipping upper cavity walls. The mid and lower parts of the wall are 

covered by talus deposits. Image: NASA/JPL/University of Arizona. (b) Kaguya/SELENE image 

(S0000001616_1906) of the complex impact crater Aristarchus on the Moon, showing a central 

peak, a flat crater floor with isolated hummocks and an extensive slump terrace zone. Figure and 

caption from Kenkmann et al (2013). 
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2.4.1. Impact ejecta deposits  

One of the important characteristics of impact craters is the formation of ejecta deposits. 

The configuration of ejecta on Martian crater is the most distinguishable among all the 

planets. For example lunar craters are surrounded by a continuous blanket of ejecta. The 

ejecta patterns around complex Martian craters are more complicated (French, 1998). With 

increasing the distance from the crater rim, ejecta deposits get thicker and also they 

become thinner with discontinuity at the outer edge (Oberbeck, 1975). 

Two kinds of ejecta deposits can be observed: “Proximal” ejecta which are near the crater 

are continuous ejecta deposits that extend less than 5 crater radii from the rim (Stöffler and 

Grieve, 2007). They are made of rocks affected by different degrees of shock 

metamorphism and include the mixing of breccias and melt deposits (Melosh, 1989); 

(French, 1998). “Distal” ejecta are deposited beyond 5 crater radii from the rim. Ejecta 

deposits consist of shocked rock and mineral fragments, and unusual glassy object (French, 

1998; Melosh, 1989).  

Martian impact craters are typically surrounded by fluidized ejecta blankets. This ejecta 

blanket is comprised of materials ejected from the excavation that shows lobate or 

fluidized appearance (Barlow et al., 2000). This region (non-brecciated, melt-free) is near 

the rim with low shock pressures (Kieffer and Simonds, 1980). Compared with the Moon 

and Mercury, ejecta blankets and fields of secondary craters are less prominent on Mars. 

Carr (1977) proposed that material ejected from Martian craters continued to flow outward 

as a thin flow (continuous ejecta), while on the Moon and Earth forming hummocky ejecta 

close to the crater rim.   

Schultz and Gault, 1979) suggested that the Martian ejecta patterns have been created by 

interaction of ejecta with the Martian atmosphere resulted in sorting of the ejecta. Many 

Martian craters, however, have ejecta deposits that appear to have flowed over the 

surrounding surface like mudflows. These craters are known as rampart craters, fluidized 

craters, or splosh craters. The final stages of ejecta emplacement involve ground-hugging 

flow rather than ballistic emplacement. The occurrence of rampart craters is also possible 

evidence for present or past subsurface ice on Mars. Rampart craters have an ejecta blanket 
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with a flow morphology suggesting the impact occurred onto a water or ice-rich surface 

(Zuber, 2001).   

2.4.2. Impact melt deposits  

Impact melts are one of the most characteristic features of impact events formed by the 

passage of shock waves and rarefaction waves through the target body at shock pressures 

of 50- 100 GPa (Grieve et al., 1977),  causing melting of target rocks (Fig. 8). These melt 

deposits form a dominant part of an impact crater (Dence et al., 1977; Grieve and Cintala, 

1992). During the 1960’s and 1970’s, many analytical and investigative studies provided 

observational information about impact-melted material in terrestrial impact structures 

(Dence, 1971; Grieve, 1975, 1978; Palme et al., 1979).  
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Figure 8. Schematic diagram of a typical complex impact structure showing the main settings in 

which impact melt-bearing materials are typically found. Figure and caption from Osinski et al 

2013. 
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Depending on the cooling history of the melt rock, melt deposits can range from small 

glassy or crystalline fragments to large kilometre-thick coherent sheets (in large complex 

craters). They can be subdivided to clast-rich, clast-poor, and clast-free rocks according to 

their clast content (Osinski and Pierazzo, 2013). The amount of impact melt produced 

during an impact event depends largely on the planetary gravity, size of impact, velocity, 

impact angle, and rock porosities and composition of the target (Cintala and Grieve, 1998; 

Osinski et al., 2011). Once the magnitude of the crater event increases, the volume of melt 

generated also starts growing (Cintala and Grieve, 1998). Impact melt rocks derived from 

crystalline targets in large impact craters have a homogeneous composition compared with 

their original target materials (Dressler and Reimold, 2001).  

Factors including the size of impactor, the angle of impact, volume of melt produced 

during the transient cavity, and topography can affect the locations of impact melt deposits 

overlying continuous ejecta.   

Impact melt deposits form large ponds on crater floors (Morris et al., 2010). They are 

similar to morphological characteristics on Moon. Pitted materials that form based on the 

interaction of hot impact melt-bearing impactites with volatiles cover the surface of both 

Mars and Moon (Tornabene et al., 2007).  

2.4.3. Impact breccia  

Impact breccias can be found in many different settings within impact structures; for 

example, in the central uplift, in crater-fill deposits, and in the ejecta blanket. They occur 

around, inside and below impact craters. They resulted from the zone of crater excavation 

and maybe highly shocked event. They fill the crater during and immediately after crater 

formation. The breccias fragments are typically sharp to angular. Impact breccias can be 

classified into two groups by the degree of mixing of different lithology (lithic breccias, 

and suevites) (Osinski and Grieve, 2013).  
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2.6. Geologic setting of Oudemans Crater  

Oudemans Crater is a 124-km diameter crater located within the Sinai Planum region near 

the western end of Valles Marineris and just east of Noctis Labyrinthus (9.89 S, 

268.1 E). This well-preserved crater lies within the Tharsis Province, a characteristic 

topographic “bulge", which is a major volcanic centre on Mars. This region is comprised 

of extensive volcanic flood lavas, formed by hot spot volcanism (Mars; McFadden et al., 

2006; Quantin et al., 2012; Wilson and Head, 2007). Furthermore, it contains the largest 

and most prominent volcano in the solar system, Olympus Mons (Tanaka, 1986) (Fig. 9). 

These materials embay the Noachian-aged plateau materials. There is a large gap in the 

northern section of the crater wall because of intersection of displaced zone with deep 

portions of Valley system to the north. Parts of the central uplift of the crater are mantled 

by Aeolian deposits. On the northwestern section of the crater flow-like structures mantle 

other units (Mest et al., 2011). 

                       

 

 

 

 

 

 

Figure 9. Location of the Oudemans crater (Purple circle) between Siani and Solis 

Planum on part of global topographic map (MOLA colorized shaded-relief) of Mars. 

http://wrgiswr.usgs.gov/open-file/of02.282/of02.282.pdf. Zuber@tharsis.gsfc.NASA.GOV. 

 

http://wrgiswr.usgs.gov/open-file/of02.282/of02.282.pdf
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2.7 Previous work on Oudemans Crater and other Martian layered uplifts  

Layered Central uplifts are useful to analyze structural mapping as the layers are as a 

frame of reference from deformation (Caudill et al., 2012a; Wulf et al., 2012). Layered 

bedrock has been described by Tornabene et al, (2010, 2012a, 2014) as flat-lying bedrock 

that was reached to the surface and tilted and fractured during impact process. The 

concentration of layered bedrock central uplifts observed in the southwestern of Tharsis 

first by Tornabene et al, (2010; 2012a). Caudill et al, (2012) explained the Tharsis bulge 

is a volcanic layered region and almost unbroken before the excavation of an uplift by 

more than 20 large craters then revised to 34 craters by Tornabene et al, (2012). 

In 2004, the central uplift of the Oudemans Crater was noted to contain exposed layered 

bedrock that is observed to be deformed and steeply-dipping in Mars Orbiter Camera 

(MOC) images (see http://www.msss.com/mars_images/moc/2004/05/23/). In 2006, 

Bridges investigated the exposed tilted layers in Oudemans Crater using HiRISE images 

(e.g., Fig. 10) and CRISM observations and proposed the crater as a possible landing site 

for the Curiosity rover. (Mest et al., 2011) later analyzed the nature of deposits within 

Oudemans Crater and the deposits in Noctis Labyrinthus, which they proposed are related 

to the Oudemans impact. The crater possesses extended ejecta, and sharp 

morphologically features such as a crater rim, wall terraces, central uplift, and is 

interpreted to be generally well-preserved (Mest et al., 2011). He also investigated the 

origins of the crater, which includes Oudemans Craters’ asymmetric hummocky ejecta, 

rim, traced walls, impact breccia, and impact melt deposits. Mest et al (2011) mentioned 

a large gap in the crater rim of the northwestern side. They also determined a 

stratigraphic uplift of ~ 7 to 11 km for the layered bedrock exposed by the central peak of 

the Oudemans Crater. 

Tornabene et al (2010) first determined that the layers within uplifts concentrated in the 

Tharsis province are most consistent with pyroclastics, ash and lavas deposited during a 

period of voluminous volcanism and less frequent impacts. This was later studied in detail 

by Caudill et al (2012) and Quantin et al (2012) whom provided additional corroborative 

evidence for the volcanogenic origin of the layers. Tornabene et al (2010) and (Caudill et 

http://www.msss.com/mars_images/moc/2004/05/23/
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al., 2012a) observed alternating relatively thicker light (likely representing pyroclastics) 

and relatively thinner dark strata (likely representing basaltic lavas). 

 

 

 

 

 

 

 

 

Figure 10. Location of 11 HiRISE images used for mapping the central uplift of the Oudemans 

Crater overlain on the MOLA DEM based on the MOLA MEGDR data. Image: 

NASA/JPL/University of Arizona. Zuber@tharsis.gsfc.NASA.GOV. 
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3. Data and Methods  

This section will describe the different methods used to map and analyze the central uplift 

of Oudemans Crater. The scale used in this study was 1:250,000. The data includes: 10 

non-orthorectified High Resolution Imaging Science Experiment (HiRISE) images and 1 

orthorectified HiRISE image (with pixel resolution as high as ~ 25 cm/pixel) (McEwen et 

al., 2010; McEwen et al., 2007) supplemented by 3 Context Camera (CTX) images (~5 

m/pixel) (Malin et al., 2007) (Fig. 11); 1 High Resolution Stereo Colour Imager (HRSC) 

image (Fig. 12) with resolution of ~ 150 - 175 mm /pixel (Neukum and Jaumann, 2004) 

and 2 visible (~ 18m/pixel) and thermal infrared (~ 100m/pixel) Thermal Emission 

Imaging System (THEMIS IR day/night) global mosaic images (Christensen et al., 2004) 

(Fig. 13). These available imageries are collected from different spacecrafts and cameras; 

The MOLA Mission Experiment Gridded Data Record (MEGDR) (~ 462 m/pixel) (Smith 

et al., 2001) was examined from Mars Global Surveyor (MGS). THEMIS IR day/night 

achieved from Mars Odyssey spacecraft. HiRISE and CTX images come from the Mars 

Reconnaissance Orbiter (MRO) and the Mars Orbital Data Explorer (ODE). HRSC 

achieved by Planetary Data System (PDS) and (ODE) (Table 1). 

The data was imported into a Geographical Information System (GIS) created using the 

software ESRI ArcMap v.10.1. This software is useful to execute the mapping and 

analysis. All images were tied to the MOLA MEGDR as a base map (Smith et al., 2001). 

All the images datasets were ordered descending (HiRISE, CTX, HRSC, THEMIS, and 

MOLA MEGDR) according to their resolution. We use these datasets to identify and 

classify morphologic units based on their occurrence, general morphology, texture, tonality 

and stratigraphic relationships to one another.  

HiRISE is the most useful imagery to determine texture and the tonality of the 

morphologic units and impact-related morphology and structures. Utilizing the high 

resolution of HiRISE images, we were able to provide morphologic and structural mapping 

in detail, identify and analyze the fine grain morphologic and geologic units and also 

outline small-scale surface features, such as polygonal textures, smooth materials, and 

lithic clasts. The morphological and structural map created by visual interpretation of the 
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available images. HiRISE is also the most useful for characterizing impact-related linear 

features. Measuring the orientation of these linear features such as fractures, faults and 

dykes, but also including fold axes and the strike of bedding, provide us information 

regarding the deformation and structural and geological history of the central uplift of the 

crater. Structural data was plotted using the program Stereonet (Allmendinger et al., 2011). 

The CTX provides us units’ relation analysis. CTX at ~ 5 meter/pixel can sometimes “fill-

in” gaps in HiRISE coverage. HRSC shows location of different rock types in detail as 

small as 2 m) and also provide us some information related to metre-scale morphologies 

and textures, and THEMIS infrared (Day/night time) determine variations in physical 

characteristics (e.g., bedrock vs. fine-grained unconsolidated materials) based on thermal 

differences.   

Figure 11. Three CTX images cover central uplift of the Oudemans crater. Blue dashed circle shows the 

rim, and red dashed smaller circle shows the Central Uplift of the Crater. 

   P05_003079_1714_XN_08S091W,  P06_003501_1713_XN_08S092W,   

   G20_026194_1690_XN_11S091W. Image: NASA/JPL/University of Arizona. 
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Figure 12. Oudemans crater on HRSC image (h0442_0008_nd, h2728_0001_nd3), Blue dashed circle 

shows the rim, and red dashed line shows the topographic bounds of the central uplift. Freie 

Universitaet Berlin and DLR Berlin, http://hrscview.fu-berlin.de. 

 

Figure 13. Oudemans Crater on THEMIS image. Blue circle shows the crater rim and red circle shows 

the central uplift of the crater, and yellow polygons show the uplifted central uplift in the core, and a 

gap in the northwestern part of the rim . THEMIS_IRday_256ppd_West_v2_equirect_clon0_ly80. 

Image: NASA/JPL-Caltech/Arizona State University.  
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In this work, all morphological features and linear structural features were mapped in 

ArcGIS as polygons and polylines, respectively. The extent of the central uplift was 

mapped based on an observable change in slope from the crater floor to the uplift that was 

based off of MOLA. 

Orientation (i.e., azmuth) and distances of the lineaments were exported to Excel using the 

option of “open the attributes” for the COGO tool in ArcView. Rose diagrams were 

created using data collected with the COGO tool in Arc Map to extract all the features 

orientation measurements and then plotted in Stereonet program.  Rose diagrams are a 

special type of histogram for which the orientation axis is transformed into a circle to give 

a true angular plot. The use of the true angle conveys the orientation distribution. This 

projection is most often encountered in structural geology and tectonics. The rose diagram 

highlights the existence of orientation intervals with maximum values. The intervals with 

maximum values from the rose diagram can be interpreted as a major structural trend. 
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4. Results  

4.1. Morphologic Mapping 

HRSC and MOLA DTMs indicate that the topographic uplift reaches a maximum of ~ 2.4 

km of zero-elevation level (estimated from difference of highest elevation: 4730 m and 

lowest area: 2120 m). The central uplift of Oudemans Crater is, on average, ~ 63 km 

across. It is apparent that the uplift elongated moderately in the ENE and WSW direction, 

and is slightly asymmetric. Importantly, the central uplift is not centreed at the centre of 

the crater based on drawing a best-fit circle, so we can observe an asymmetry of the uplift 

as well. In the other words, there is a lack of uplift on the north -side of the crater. Based 

on MOLA and HRSC, the central uplift was divided into 4 regions based on the main 

topographic expressions in the uplift region with the central region then being divided into 

two regions based on the different textures of the materials (Fig. 14). 

The central uplift of the Oudemans Crater was divided into five general morphologic units: 

1) Bedrock; 2) Megabreccia; 3) Clast-rich dark-toned unit; 4) Smooth and Pitted unit; and 

5) Erosional deposits (which can be further subdivided into a Mass wasting unit and 

Aeolian deposits unit) (Fig. 15). 

Figure 14. Exposed bedrock unit named region 1, and undivided outcrops named regions 2, 3, 

and 4 on HRSC on h2728_0001_nd3. img. The centre of the crater marked by a yellow circle 

and central uplift is limit by a red dashed line. Image: Freie Universitaet Berlin and DLR 

Berlin, http://HRSCview.fu-berlin.de. 
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Figure 15. Geomorphological and structural map of the Oudemans Crater central uplift.  
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4.1.1. Unit 1: Bedrock 

The exposed bedrock unit of the mapped area was subdivided into two subtypes; 1a- 

Layered Bedrock, 1b- Undivided Bedrock. The transition from layered to undivided units 

is gradational in some parts of the area and sharp in some others, and is easy to 

characterize by a distinct change in surface morphology. The undivided bedrock occurs in 

the eastern, northern, and southwestern portions of the central uplift (See green polygons 

No 2, 3, and 4 in Fig. 14) and will be further discussed below. 

 

4.1.1.1. Unit 1a) Well-bedded Layered Bedrock  

 

Based on HiRISE and CTX, the layered bedrock consists of light and dark-toned layers 

covering by erosional deposits in some part of the central uplift. In this region of the crater, 

the layered bedrock is present as a relatively extensive curved-shape zone that comprises ~ 

15% of the topographic expression of the central uplift (Fig. 17). The layered bedrock 

consists of packets of alternating light-and dark-toned layers (possibly megablocks) within 

the central uplift and is consistent with previous observations (Bridges, 2006; Caudill et 

al., 2012a; Nuhn, 2014; Tornabene et al., 2012a; Tornabene et al., 2010; Wulf et al., 2012) 

(Fig. 16). The majority of exposed layered bedrock is observed in section 1 of the central 

uplift (Fig. 14). This unit occurs in the outer to central region of the central uplift (between 

~11 km and 26 km).  



 

 

 

33 

 

 

 

 

 

 

Figure 17. This image shows layered bedrock outlined by the red polygon in the centre. Bedding is 

shown by the purple lines. Image: NASA/JPL/University of Arizona. 

 

Figure 16. Area A in unit 1a shows layered bedrock in the western part of the central uplift (DTM 

sdx on ESP_028449_1700_RED_A_01_ORTHO), and area B mapped HiRISE image 

(ESP_011676_1700_RED). Image: NASA/JPL/University of Arizona. Layered bedrock surrounded 

by some units such as dark-toned clast-rich showed by red and smooth and pitted materials by 

green, and covered in some part by Aeolian deposits in light grey. 
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4.1.1.2. (Unit 1b) Undivided Bedrock  

 

This unit covers the northern, eastern, and southwestern parts of the central uplift (sub-

regions 2, 3, 4) (Fig. 14). This unit shows coated and obscured bedrock and fractured 

outcrops with no obvious layering. This unit forms high slopes and ridges. This unit 

comprises less than 10% of the uplift (Fig. 18).  

4.1.2. Unit 2: Megabreccia  

In a limited part of the central uplift, there are several regions that display some large (>50 

m) light-toned angular and sub angular clasts set within a dark-toned fine-grained matrix. 

The best expression of Megabreccia unit is in the eastern part of the uplift, but is also 

found in the southwestern section. We can observe relatively large clasts (i.e., megaclasts) 

within this unit (Fig. 19), which is one of its defining characteristics distinguishing it from 

Unit 3 (described below). This unit covers less than 5% of the total area.  This unit shows 

different size and colour of clasts on HiRISE and CTX. The size of the megaclasts ranges 

from ~50 to 500 m.  
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Figure 18. Light brown polygons outline coated bedrock with a lack of layering (Undivided bedrock). 

The base image comprises part of four HiRISE images, PSP_002446_1700_RED, 

ESP_026194_1700_RED, ESP_027117_1700_RED, ESP_026273_1700_RED. Image: 

NASA/JPL/University of Arizona. 
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Figure 19. Impact megabreccia showing layered megabreccia with different size of clasts, all 

clasts outlined with orange polygones. Part of HiRISE image ESP_036176_1700_RED. 

Image: NASA/JPL/University of Arizona. 
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4.1.3. Unit 3: Fine-grained clast-rich and poor unit  

This unit comprises a dark, fine-grained material with generally smooth texture and is 

divided into two sub-types; clast-rich and clast-poor. This unit occupies 10% of the total 

area and is mostly located in the western outer part of the central uplift, and surrounding by 

outcrops units and continuing toward the western sector of the rim (Fig. 20).  

This unit forms coatings and flows on low slopes. This unit contains variable amounts of 

light-toned clasts which are smaller than those on Megabreccia. Melting might cause 

lessen strength of block contacts during the modification stage (Dence et al., 1977). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 20. Dark-toned clast-rich impact dark-toned unit in the western portion of the 

Oudemans Crater on HiRISE and CTX images ESP_011676_1700_RED. Larger clasts are 

showed by light purple polygons in this unit. Image: NASA/JPL/University of Arizona. 
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4.1.4. Unit 4: Smooth and pitted material 

In HiRISE and CTX images, large contiguous smooth and pitted dark and light-toned areas 

can be seen in grey color. This unit appears to coat, embay and surround the majority of 

the central uplift, and covers more than 40% of the mapped area (Fig. 21). The floor of 

Oudemans Crater is covered by a mottled deposit that extends across the whole area of the 

crater (Mest et al., 2011). These areas show distinct surface morphologies and cover much 

of the floor of Oudemans Crater. This dark-toned portion consists of a relatively high 

density of shallow pits, while the lighter areas show generally smoother surfaces. Around 

the central uplift of the crater, large plains composed of dark materials can be seen.  

 

 

Figure 21. Dark-toned and light-toned pit unit seen in grey colour in most part of the area in the 

central uplift on CTX imagery. P05_003079_1714_XN_08S091W_final.tif, 

P06_003501_1713_XN_08S092W_final.tif, G20_026194_1690_XN_11S091W_final.tif. Image: 

NASA/JPL/University of Arizona. 
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4.1.5. Unit 5: Mass wasting 

This unit represents a contiguous and relatively uniform-toned unit grading from smooth to 

granular (i.e., containing sporadic meter-sized boulders). It is observed on  low slopes 

associated with the highest slopes within the northern core of the central uplift. It is also 

associated with alcove and valleys situated in this region. This unit appears to superimpose 

some of the bedrock with northern core of the central uplift (Fig. 22). This unit has 10% 

Coverage of the uplift. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Mass wasting unit observed in the northern and central part of the central 

uplift.HiRISE image PSP_002446_1700_RED and ESP_026194_1700_RED. Image: 

NASA/JPL/University of Arizona. 
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4.1.6. Unit 6: Aeolian deposits 

This unit is comprised  predominately of linear deposits (trending NE-SW), which shows 

aeolian bedforms. We observed with THEMIS IR that orientations (45- 75) seem to 

related to the wind direction streaks at the time of their last migration. This unit is found 

throughout all the mapping area (Fig. 23).  It is found within depressions and other low-

lying areas throughout the structure, and can be readily observed partially covering the 

bedrock, smooth and pitted materials, megabreccias and both the clast-rich and clast poor 

dark-toned units. These units show low elevation related to other surrounding units. This 

unit has 10% Coverage of the uplift. 

 

 

 

 

 

 

 

 

 

 

Figure 23. Aeolian deposits seen mostly in the northern of the Crater, HiRISE image 

ESP_026194_1700. Image: NASA/JPL/University of Arizona. 
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4.2. Structural Mapping   

Using HiRISE four structural features were observed within the layered bedrock unit of the 

central uplift: fractures, faults, dykes and folds. Any linear discontinuities within a layer of 

rocks lacking offset and an observable thickness (i.e., infilled materials) are defined as 

fractures. Faults are defined as any observable displacement or offset that shift layers, 

dykes, folds, and megablocks (Fig. 24). Normal faults demonstrate crustal extension of 

large spatial extent with observe displacement. Thrust faults occur as spatially extensive 

sets; both as surface breaking faults and as blind thrust faults topped by forced fault 

propagation folds (wrinkle ridges) at the planetary surface. Strike-slip faults define 

localized arrays of distributed horizontal shear strain. Dykes are filled fractures by some 

applied stress and pressure to the bedding of a layers rock cut across the other types of 

layered rock bedding with different angle (Marshak, 2009). The thickness of the dykes 

ranges from several metres to 100m. Rose diagrams were created to determine the 

possible presence of preferred orientations. The angle between the lineament and a line 

through the lineament mid-point is zero so the lineament seems to be radial to the location. 

For analyzing the dykes, faults, and fractures, we divided our region to 6 different parts 

named A to F (based on the areas with the most abundant and well-exposed linear features 

to least) to measure their orientation, and interpret them by plotting them in a rose diagram 

plot. 

 

 

 

 

 

 

Figure 24. Mapped HiRISE image ESP_027882_1700_RED,  

showing tilted layers in blue colour. Image: NASA/JPL/University of Arizona. 
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4.2.1 Fractures 

We found the highest density of fractures in the central regions of the central uplift 

especially where the layered bedrock is the best-exposed (Fig. 25). We measured the 

orientations of 61 fractures in six categorized parts in our mapped area, and then plotted in 

a rose diagram (Fig. 26). They are distributed radially about the centre of the central uplift. 

Fractures in the layered bedrock in the west are typically oriented NE- SW, with a SSE- 

NNW trend in the eastern - part of the central uplift.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. Close up of fractures in bedrock. Portion of HiRISE image, 

ESP_027882_1700_RED. Image: NASA/JPL/University of Arizona 
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Figure 26. Rose diagram of fracture trend. Image: NASA/JPL/University of Arizona. 
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4.2.2. Faults  

Within the exposures of layered bedrock, there are very apparent offsets (“Observed”) and 

some areas where faulting is inferred (“Inferred”) (Fig. 27). The orientation of the 133 

main faults was measured. The faults are also mostly distributed and oriented radially and 

sometimes concentrically around the centre of the crater. Area A shows a preferred SW -

NE trend in the western part of the uplift, while the eastern part (areas C and D) show 

opposite direction (SE -NW, S -N). In addition, centre of the uplift (Area B) shows E - W 

trend (Fig. 28).   

  

Figure 27. This image shows displacements across faults with high distribution toward centre 

 of the Central uplift, faults seen by green lines, PSP_002446_1700_RED.  

Image: NASA/JPL/University of Arizona. 
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Figure 28. This image shows rose diagram of faults in six divided sections. Image: 

NASA/JPL/University of Arizona. 
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4.2.3. Folds  

Folds are curved and bent as a result of permanent deformation. They are commonly 

formed by shortening of existing layers, but may be formed as a result of displacement on 

a fault in both extensional and thrust faulting (fault bend fold). Within the exposed layered 

bedrock we observed four large (~ 600m – 2 km) concentric folds (A, B, C, D) located 

toward the centre of the uplift (showing increased deformation); three (A, C, and D) open 

(~ 70-120 from the limb) and one (B) close (~70 from the limb). They appear to be 

displaced, offset and bounded by faults (Fig. 29). Folds A, B, and C are located in layered 

bedrock unit, while Fold D is located in the fractured unit. Fold B that looks a fault bend 

fold, occurred in extensional and thrust faulting, seems to be asymmetrical and other ones 

(A, C, and D) are symmetrical. Figure 30 displays a close up of a fold B (~ 2.5 km). It is 

located toward the centre of the central uplift and is asymmetrical and a close fold (~70 

inter limb angle). This fold is apparently bounded by a fault on the right limb. The right 

limb appears to be detached into blocks. Fold formation is accommodated by fracturing. 

The western part of the central uplift is dominated by two km-scale folds with NNE –SSW 

trending axial planes and the eastern part is contained two folds with NW -SE trending 

axial planes.   
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Figure 29. Few clear folds observed in the layered section of the Crater on HiRISE images; 

PSP_002446_1700_RED, ESP_027882_1700_RED. Purple lines show the bedrock, white lines show 

the limbs and red lines show the fold axis. Image: NASA/JPL/University of Arizona. 
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4.2.3. Dykes 

These structures are oriented slightly perpendicular to oblique to the bedrock with trends of 

NE-SW and NW-SE. The higher concentration of these features can be found in the central 

region of the central uplift (Fig. 31). We observed 139 dykes ranging from ~ 2 to ~ 80 m in 

width and ~ 1 m up to 1.3 km in length in our mapped area. We showed two obvious 

random dykes with thickness of 4-6 m with a close up of one of them in Figure 32. They 

can be recognized easily during mapping, because of their thickness, dark-toned materials 

(Ding et al., 2014; Marzo et al., 2010; Tornabene et al., 2010). 

 

Figure 30. Image of fold B in HiRISE PSP_002446_1700_RED, fold axis displayed by red arrow, 

bedding seen by purple lines, faults by green lines, dykes by orange lines, and fractures by pink 

lines. Image: NASA/JPL/University of Arizona. 
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At the southeastern end of the breccia dyke in Figure 33, an obvious offset can be seen, so 

this kind of dyke might be categorized as an offset dyke with 40 m offset. The breccia 

dyke cuts pretty perpendicularly through the bedding. The major trend of preferred 

orientation of the dykes sections in our area is NE-SW (Fig. 34). 

  

Figure 31. This image shows higher concentration of dykes in orange colour in the centre, outlined by 

the red circle. Image: NASA/JPL/University of Arizona. 
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Figure 32. This image shows offsets caused by dykes which shown by orange arrows observed in 

HiRISE PSP_008195_1700_RED, red digits (4 km, and 6 km) showed a thickness of the dykes. This 

image is a close up one of the dykes showed by white arrow in the previous photo. Image: 

NASA/JPL/University of Arizona. 
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Figure 33. Impact breccia dyke is cutting sharply through layers. Dykes shown by orange 

polylines and layers shown by purple ones. HiRISE imagery; PSP_008195_1700_RED. Image: 

NASA/JPL/University of Arizona. 
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Figure 34. Rose diagrams of dyke trend. Image: NASA/JPL/University of Arizona. 
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5. Interpretations and Discussion  

The major result of this work has been the production of a geological and structural map of 

the central uplift of the 124 km diameter Oudemans Crater. This represents the most 

detailed geological map produced to date of the largest central uplift exposing extensive 

layered bedrock on Mars. The results of this geological mapping and associated 

geomorphological and structural investigations are discussed below. 

5.1. Exposed layered bedrock and undivided bedrock 

Layered bedrock are useful for structural mapping as the layers provide a frame of 

reference from deformation (Caudill et al., 2012a; Wulf et al., 2012). Layered bedrock has 

been defined as “large megablocks of flat-lying layered bedrock excavating from deep 

depth then tilted and fractured during the impact process” (Caudill et al., 2012a; Nuhn, 

2014; Tornabene et al., 2012a; Tornabene et al., 2010; Tornabene et al., 2014; Wulf et al., 

2012). The exposed layered megablocks are uplifted, tilted, and deformed during the 

modification stage of crater formation and are consistent with observations of layered 

bedrock from other studies. The exposed layered bedrock unit is similar to descriptions in 

previous studies of exposed layered bedrock within the central uplifts of other Martian 

impact craters (Caudill et al., 2012a; Marzo et al., 2010; Nuhn, 2014; Quantin et al., 2012; 

Tornabene et al., 2012a; Tornabene et al., 2010; Wulf et al., 2012). As at many other 

localities throughout the Tharsis region, these exposures of layered bedrock within the 

Oudemans central uplift contain both dark-toned and light-toned fractured bedrock. 

Oudemans Crater layers are consistent with this interpretation with the lighter and thicker 

lower-standing layers being thought to be pyroclastics, while the thinner higher-standing 

darker layers are likely intervening basaltic lava flows (Caudill et al., 2012a; Quantin et al., 

2012; Tornabene et al., 2012a; Tornabene et al., 2010; Wulf et al., 2012). Spectral analyses 

of the Oudemans layered bedrock central uplift (Quantin et al., 2012) indicate that these 

materials are dominated by mafic components (interpreted to be basalts), which is 

consistent with the previous volcanic interpretation by Tornabene et al ( 2010). 

The layered bedrock within the Oudemans central uplift is best exposed in sections A, B 

and C as a curved-shaped unit. Conversely, the layered bedrock in a few parts of the 

central uplift (sections F and D) is least exposed when compared to sections A, B and C. 
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Sections F and D were mapped predominately as the Undivided Bedrock unit, which has a 

topographic expression indicative of bedrock, but appears to be extensively coated by 

some sort of smooth and indistinct materials (discussed below) (Fig. 35). 

Section E, representing the core of the uplift (Fig. 18), displays the least abundant and 

layered bedrock exposure due to coverage by smooth units. Fracturing and massive texture 

of the bedrock is the visible rock type of this; however this unit is coated by other deposits 

(e.g., aeolian deposits, mass wasting and lava flows). High resolution images have shown 

that there are three basic types of uplifted bedrock in complex crater central uplifts on 

Mars based on a global database produced by (Tornabene et al., 2010; Tornabene et al., 

2014).These include: 1) Layered Bedrock (LB), 2) Massive and Fractured Bedrock (MFB), 

3) Megabrecciated Bedrock (MMB). This section is massive in appearance (Fig. 18), and 

thus may represent the massive, fractured bedrock unit observed within several central 

uplifts across Mars and is also consistent with observations of (Tornabene et al., 2012a). 

The high slope-forming aspect and the higher elevation of the bedrock within the core of 

the central uplift may suggest that it is a different lithology and topography from the 

layered bedrock. If the core of the Oudemans uplift (Section E) truly lacks layered 

bedrock, then the Oudemans uplift may expose and sample a contact between the oldest 

and deepest lavas in the region and the underlying ancient basement rock (heavily- cratered 

Noachian basement). However, it should be noted that the highest amount of deformation 

occurs in the centre of central uplifts, which is consistent with observations of terrestrial 

craters (Kenkmann et al., 2005). 

The thickness of layered bedrock is thought to represent the culmination of the extensive 

volcanic history of the Tharsis region and, exposed by and below Oudemans Crater is high. 

Mest et al (2011) estimated 7-11 km of uplift within the uplift of Oudemans Crater, while 

Caudill et al (2012) and Quantin et al (2012) estimated a pre-impact thickness of the 

layered deposits as ~ 14 km and 18 km  respectively.  

However, these previous authors did not take into consideration the fact that the core does 

not expose extensive layers, and over thrusting of stratigraphic units in central uplifts 

e.g.,(Kenkmann et al., 2014) and thus the thickness of the Tharsis lavas, based on the 
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mapping results herein, may suggest a thickness of substantially less than 18 km. This has 

implications for estimate and models that attempt to understand the volcanic history of 

Tharsis, as well as climate models that try to account for the input of volcanogenic gases 

into the atmosphere of Mars. These estimateds are based on stratigraphic section uplift 

(SU) equation (the uplift is not completely layered) (Caudill et al., 2012). 

The orientation of 238 bedding planes is plotted in Figure 35. The major trends of the 

bedding shows a NW-SE direction for areas A, B,  and a NE-SW trend for area C, and D 

located in the eastern part of the central uplift. Areas E and F show slight trends (NW-SE 

and NNW-SSE, respectively), but generally show multiple orientations. It should be noted 

that layered bedrock is the most poorly exposed in these regions.  

 

5.2. Crater-fill deposits  

5.2.1 Impact melt rocks 

Impact melt rocks form by the passage of shock waves and rarefaction waves through the 

target body (Grieve et al., 1977). They can be subdivided into categories based on the 

amount of the clasts: clast-rich, clast-poor, or clast-free (Osinski and Pierazzo, 2013). They 

are found in multiple locations within complex craters, including as coating on uplifted 

bedrock (Osinski et al., 2011; Tornabene et al., 2012b), but they are generally recognized 

as part of the most extensive deposits on the floor of the best-preserved craters, including 

Mars e.g (Osinski et al., 2011; Tornabene et al., 2012b). They can also have variable clast 

contents and different textures as a result of their emplacement and cooling history within 

the impact structure (Osinski et al., 2008). The clast-rich dark-toned unit and the smooth 

and pitted units are interpreted to be impact melt-bearing units and are similar to units 

described in other Martian impact craters (Marzo et al., 2010; Nuhn, 2014; Tornabene et 

al., 2012a; Tornabene et al., 2010). Whereas, the Megabreccia unit in Oudemans (although 

previously described in multiple occurrences and localities (Grant et al., 2008a; Marzo et 

al., 2010; Tornabene et al., 2012a; Tornabene et al., 2010; Tornabene et al., 2014) may 

represent one of the best examples of crater-fill observed megabreccias to date.  
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Figure 35.  Rose diagrams of bedding trends. Image: NASA/JPL/University of Arizona. 
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The dark-toned unit has a fine-grained matrix that surrounds light-toned clasts that is 

observed to overlie the bedrock units and megablocks units. It is located mostly in the 

northwestern part of the central uplift and overlies all other units except mass wasting and 

aeolian deposits. Melt drapes the surrounding area and demonstrates flow features that 

show that it flowed into and accumulated in the topographic low of the central uplift. It 

covers  10% of the area (Fig. 21). This unit embays and flows along topographic lows 

between high-standing structurally uplifted megablocks in the central uplift. During an 

oblique impact, impact melt would be favorably deposited along the direction of the 

inward projectile. The clasts consist of angular, sub-rounded, and rounded fragments of 

rocks. Based on the properties described here, and their consistency with previous work 

(Marzo et al., 2010; Nuhn, 2014; Tornabene et al., 2012a), this clast-rich dark-toned unit is 

interpreted to be impact melt-bearing unit, which forms the crater-fill deposits surrounding 

the uplift. The properties and stratigraphic location in the impact crater is consistent with 

observations of impact melt rocks in terrestrial impact structures (Grieve et al., 1977).  

The amount of the impact melt produced in a crater depends on velocity, size of impact, 

and rock porosities, e.g., (Cintala and Grieve, 1998; Osinski et al., 2011). These melt 

deposits form a considerable part of an impact crater. Impact melt maintains a high 

temperature and low viscosity post-emplacement, allowing movement of melt-rich after 

the cessation of the modification. This would generally give the appearance of multiple 

melt-bearing flow events. Distribution of flow units interpreted here to be impact melt. The 

observations made here for Oudemans Crater compare well to observations of impact melt 

deposits at large impact craters on the Moon (Hawke and Head, 1977), on the Earth 

(Grieve and Cintala, 1992; Grieve et al., 1977) and Mars (Marzo et al., 2010; Osinski et al., 

2011; Tornabene et al., 2010; Tornabene et al., 2014). These studies show that central 

uplifts are draped by considerable amounts of impact melt rocks. This is critically 

important for remote sensing studies where compositional data of central uplifts is 

typically interpreted to represent the signature of uplifted bedrock. These results from 

Oudemans show that care is needed in the interpretation of such datasets as considerable 

amounts of impact melt may cover bedrock and, thus, the compositional data from orbit 

may not be indicative of the bedrock. 
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5.2.2 Martian crater-related pitted material (volatile-rich impact melt 

deposits) 

This unit is considered as a dark-toned unit; consist of quasi-circular collection of eroded 

form of crater-related pitted materials varying in preservation within the central uplift 

floor. This unit also has a distinct surface morphology with dark-toned shallow material 

and high density of pits (Fig. 22). This unit is located in low-lying topographic areas and is 

the most extensive deposits of the crater-fill. Smooth and Pitted materials cover much of 

the floor of Oudemans Crater. Crater-related smooth and pitted materials are wide-spread 

in many well-preserved and fresh craters ranging from 1 to 150 km in size (Tornabene et 

al., 2012b). The smooth and pitted materials are shallow circular or polygonal shaped 

features with no sign of ejecta blankets or significant rim uplift. Smooth and Pitted 

materials are thought to form through the interaction of hot deposits and volatiles during 

impact process and pre-existing water-ice contained in the Martian subsurface (Tornabene 

et al., 2012b) (Fig. 36). Tornabene et al, 2012a) investigated smooth and pitted materials 

and suggested that it represents the topmost and highest stratigraphic crater-related portion 

of crater-fill units within Martian impact craters. These smooth and pitted materials 

represent the best-preserved syn-impact morphological units. Compared to previous 

observations of over 200 impact craters (Tornabene et al., 2012a) smooth and pitted 

materials in our studied area appear to be more eroded especially in the western part of the 

central uplift. The erosion and deposition rates depend on exposures. There are higher 

depositions for a negative exposure and less erosion for areas of positive exposure. This is 

consistent with the large size of Oudemans, which can be broadly used to indicate age 

because of less erosion in the eastern part of our crater, the smooth and pitted material can 

be seen more clearly. In the western part of the central uplift, aeolian deposits cover the 

smooth and pitted materials and pit rims/walls have been more extensively eroded making 

them more difficult to recognize. They are interpreted to form on a higher elevation part of 

the crater floor and be almost non-existent within the floor pit boundary. This unit 

stratigraphically represents the highest unit of the crater-fill deposits.  
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5.2.3 Megabreccia 

The megabreccia unit described first to comprises large angular, irregularly rounded, and 

poorly sorted clasts of rock set within a finer grained matrix (Grant et al., 2008a) (Fig. 19). 

The only logical interpretation, based on the occurrence and stratigraphic relations of this 

unit, is that it is an impact-generated crater-fill deposit formed during the modification 

stage. The fine-grained dark matrix may alternately be melt coating. This unit of is 

inconsistent with the units observed in the central uplift of Toro Crater (Marzo et al., 

2010), while is consistent with other central uplifts of complex craters with Noachian units 

(Tornabene et al., 2012a) and megabreccia unit in the unnamed Crater E (Quantin et al., 

2012). Megabreccia units in the Richy Crater draped over the central uplift and are 

interpreted as a clast-rich and perhaps melt-rich impactite produces by impact event (Ding 

et al., 2014). There are two relatively well-exposed and extensive megabrecciated units in 

the east part of the Oudemans central uplift, which show larger clasts compared to the fine 

clast units and some smaller breccia units exist (Fig. 20). Megabreccia in our area is in the 

crater-fill deposits. They are most likely erosional windows. Megabreccia stands in relief 

Figure 36. Crater-related pitted materials observed on the floor (i.e., the Crater fill) of Zumba 

Crater in Daedalia Planum from Tornabene et al (2012b). Pitted material shows less erosion 

compared to the smooth and pitted material in our Crater. 
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suggesting that they are more resistant to erosion than the matrix materials. The large clasts 

within the mega breccia contain clear layers, similar to the layering seen in the uplifted 

megablocks of the uplift. 

5.3. Mass wasting and aeolian deposits 

Light-toned eroded outcrops are found in Oudemans Crater. These units are surrounded by 

smooth and pitted material. These units are interpreted as mass wasting produced after 

impact crater process (Fig. 23). Aeolian deposit also formed after impact crater (post 

impact crater) by saltation of fine grains (Fergason et al., 2006). They cover all of the other 

morphologic units, therefore we can interpret this unit as the youngest unit (Amazonian 

age). These subsequent geologic processes which are as a regional overprint or erosion, 

show the post- impact history as well (Kenkmann et al., 2014). Mass wasting units are the 

unconsolidated materials resulting by erosion of bedrock on steep slopes. These are clearly 

post-impact so are younger than other units in age and can overlie some units in most part 

of our area (Fig. 24). Dune deposits limit the exposure, especially in the northern and 

northeastern part of the central uplift.  

5.4. Nature of the central uplift at Oudemans Crater 

Impact craters are not immediately obvious on the surface of Earth because our planet is 

geologically active. The surface is in a constant state of change from erosion, infilling, 

volcanism, and tectonic activity. These processes have led to the rapid removal or burial of 

Earth's impact structures. As such, studies of central uplifts such as Oudemans offer 

important potential insights into crater formation. 

The crater rim and ejecta blanket of Oudemans are noticeably asymmetric and the crater 

rim has a gap in the northwestern portion (Fig. 13). In this respect, Oudemans Crater is 

similar to King Crater on the Moon, which has a Y-shaped central uplift and a gap in the 

north part of its rim because of pre-existing topography (Fig. 37). Similar to the King 

Crater rim, the northwestern rim of the Oudemans Crater is not as well defined as most of 

the rest of the rim. We interpret the asymmetry of the central uplift as a result of lacking of 

the wall terraces into the northwestern part of the rim toward the canyon system. We also 

interpret it would be result of the collapse of the uplift due to the collapse of the crater rim 
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northwards into the canyon system. Melt pond which composed of impact-related melt lies 

to the northwest of both Oudemans and King, has a relatively flat, smooth surface in the 

northwestern part of the central uplift. Oudemans was up against Valles marineris, but 

King Crater cut through an older crater, so rim is lower on the north because of pre-

existing void. 

In our research, we focused on mapping the main structures. The layers in the uplift 

experienced a complex structural history including fracturing, dyke formation, faulting and 

folding during crater formation. It is clear from this study that deformation of the bedrock 

increases towards the centre of the central uplift. In other words, there is a trend for blocks 

to become more highly deformed, situated proximal to the centre of the central uplift. We 

identified several types of dykes, fractures and faults within the mapping area. 

 We mapped 139 crosscutting structures which we interpret as dykes in the uplifted blocks 

of the central uplift. We define a dyke as a fracture that has been infilled by impact melt 

and/or lithic breccia and they formed along fractures. The material in dykes are younger 

than the rocks that contain them (Marshak, 2009). Dykes within Oudemans Crater show 

multistage deformation during the impact process as shown by the evidence of multiple 

displacements or fault offsets especially in the centre. This strongly suggests that the dykes 

formed early on in the cratering process before the major structural movements during the 

modification stage. Dyke stands in relief just like the dark layers in the bedrock. This may 

suggest they have a similar composition. 

During the modification stage, faults occur under high strain rate. We infer that faults in 

this region are concentric thrust faults bounding the large blocks located towards the centre 

of the central uplift showing higher deformation. The distribution and geometry of faults 

exposed in the crater floor of complex craters provide the key to reconstruct the kinematic 

history of a collapsing crater. The preferred orientation of faults seems to be perpendicular 

to the bedding (oblique to the central uplift) and be possibly thrust faults. The motion 

along strain-rate faults is the leading mechanism controlling the collapse of complex 

craters. 
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Within the uplift, we observed few folds (named A to D) located towards the centre of the 

central uplift. Some of them appear to be bounded by faults such as Fold B (see Fig.  30). 

These folds are consistent with high strain rates during an impact event. For example limb 

of fold B was detached as a result of a fault then offset one of the fold limbs from the 

other. Our observations would be consistent with (Kenkmann et al., 2005) who noted that 

the highest amount of deformation is predicted to occur centreward. Moreover, we 

considered lack of folding in our area would be possibly related to less strain due to the 

lack of collapse from the wall/terraces to the northwestern part of the rim.  

The structural complexity of the central uplift increases towards the centre because the 

amount of folds, thrust faults and dykes (the intensity of deformation) increase by the 

motion of rock towards the centre. These structures that formed in layered bedrocks show a 

preferred orientation of bedding, fault planes, and dykes during the crater modification 

process.  

 

 

 

 

 

 

 

Figure 37. This image shows King Crater on Moon. Y-shaped central uplift and collapsed rim 

displayed by yellow and orange lines respectively.  
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5.5. Stratigraphic history  

According to the structural and morphological mapping together with knowledge about the 

geological setting and formation of impact craters, a generalized stratigraphic column for 

Oudemans Crater has been produced. Cross- cutting relationships of rocks were used to 

determine the relative ages of the different units.  

 Pre-existing:  

o Layered Bedrock 

o Possible fractured and massive bedrock 

 Syn-impact (Excavation and Modification): 

o Faults, Dykes and Fractures 

o Clast- rich Breccias (Mega breccia) Crater fills in the crater floor 

o Clast-poor and Clast-rich Impact melt 

o Smooth and Pitted materials 

 Post-impact: 

o Mass wasting 

o Aeolian deposits 

By creating the central uplift stratigraphy profile model, age of central uplift units can be 

estimated; from top to bottom (outer portions of the uplift, moving toward centre), 

deepest/oldest layer exposure in the centre of central uplift, the unit’s age becomes older or 

lower in the pre-impact stratigraphy. From centre to outward the units becomes younger or 

higher in the pre-impact stratigraphy: Exposed mega-blocks (layered and undivided 

bedrocks), megabreccia, smooth and pitted material, impact melt rock mass wasting and 

Aeolian deposits (Fig. 38).  
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Figure 38. Stratigraphic column ordered units by age, composition and formation 

time from older to younger.                                                                                                                                                                                   
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6. Summary and Conclusion  

 

This section will describe the implications and conclusions of this research. The goals of 

this research have mostly been achieved: 

1. General a morphological map by using all available image (HiRISE, CTX, 

THEMIS, HRSC), and elevation (MOLA, and HRSC DTM’s) data in ARC GIS of the 

central uplift of the crater; 

2. Determine relative bedding orientations and a structural map; 

3. Perform a geological and structural (lineament) of the area using Arc GIS; 

4. Interpret and analyze the stratigraphy  and structural deformation history of units 

of the uplift; 

In order to map the morphological and geological structures of the study area, Oudemans 

Crater central uplift divided into 5 units (layered bedrock and undivided bedrock, 

megabreccias, impact melt, smooth and pitted material, mass wasting, and aeolian 

bedforms), then ordered from oldest to youngest age by stratigraphy and lithology aspects. 

I propose the central uplift affected by the processes of erosion, deposition and regional 

deformation. In the main, our survey shows an obvious increase in deformation toward the 

center of the uplift (See Section A, B and C in Fig.). Structural deformation most likely 

occurred during the formation of the central uplift (Excavation and Modification stages) 

which most likely related to the active volcanic Tharsis region. The central uplift shows a 

collapse and slump in the core from impact melts and flows outward over the northwestern 

part of the rim. Widespread overturning of strata in the central uplift periphery enables the 

outward collapse. 

 

Most of the layered bedrock unit stands curved-shape in the centre extended to the east and 

west of the central uplift as undivided outcrops; most of this unit influenced by erosion 

factors especially undivided outcrops with no clear layering. The clast-rich Megabreccia 

units appear close to the outer part of the central uplift and are considered to be draped 

over the central uplift. Infilled impact melt unit mostly covers western part of the central 

uplift, surrounding all the units with higher elevation to the boundary between units and 
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filling deposits. Smooth and Pitted material observed most part of the central uplift and 

surround most outcrops except aeolian and mass wasting deposits. This unit was 

considered to be more obvious in the eastern part than western part. The western part of the 

crater is interpreted to be less resistant to weathering compared to the eastern section of the 

area. Mass wasting unit formed northern part towards centre of the crater in the high 

elevation topography (located in the E section). Finally, the crater central uplift was 

affected by aeolian deposits and erosion. 

Layered bedrock, undivided bedrock, (complex network of linear features such as fault, 

fractures and dykes) were interpreted prior to Oudemans Crater formation. Megabreccia, 

impact melt and smooth and pitted materials were formed as impact-induced (at the same 

time with crater formation), and mass wasting and aeolian bedforms were considered to be 

formed after the impact process.  

Structural data analyses show the orientation and preferential of linear features (layered 

bedrock, fault, fracture, and dyke) signify a preferred transport direction during the central 

uplift of the Oudemans Crater formation process. The concentricity lineament analysis 

technique used in this study is an approach to quantify lineament localizations.  

The orientation of structural elements show that the majority of dykes with the same 

preferred orientation trend (NE_SW) to the impact trajectory. Also observed faults have a 

large thrust component in a high strain zone toward center of the uplift. Moreover, along 

folds axes in our area, materials were uplifted. Folds could have been formed as 

deformation zones above faults in this study. The propagation of observed fold is toward 

the core of the central uplift.  

According to our more detailed investigation of the structural study, central uplift of the 

Oudemans Crater could have been highly deformed by many structural features especially 

through centre of the central uplift. These results provide further information regarding the 

effects and styles of modifying process on the central uplift of the Oudemans Crater. 

Finally, relation of mapped morphologic and stratigraphic units showed us the trend of the 

uplifted units from depth to surface and formation age (See section 5.5. Stratigraphic 

history). 
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Rock beddings Faults Dikes Fractures 

FID  Dir. Dist. FID Dir. Dist. FID  Dir. Dist. FID  Dir. Dist. 

250 142.01 193.63 273 52.34 21.96 404 40.14 81.26 90 90.25 11.91 

3305 143.10 72.26 510 48.76 221.24 401 42.11 103.15 421 44.63 68.76 

4090 142.68 478.54 295 55.91 49.86 402 23.72 74.19 424 42.80 41.48 

3349 142.02 453.68 512 25.01 66.83 402 44.96 62.61 424 35.08 24.15 

243 130.50 459.47 20 90.71 39.79 405 35.75 228.94 424 55.16 50.48 

2253 132.57 186.90 489 3.63 113.68 437 43.57 117.00 117 34.22 23.71 

3407 119.24 71.50 486 44.60 49.51 438 50.56 41.95 117 34.98 53.75 

3407 117.75 159.25 486 21.63 69.32 411 54.19 142.52 73 97.50 62.03 

5518 132.21 50.41 513 36.59 41.79 412 33.48 128.34 72 88.16 49.23 

3995 167.98 21.82 513 68.75 34.59 414 34.46 65.46 70 31.23 117.91 

5953 142.42 126.16 513 52.47 46.04 25 169.35 135.45 431 45.12 134.61 

1427 130.61 283.71 48 67.48 37.55 110 9.17 60.57 432 48.60 88.89 

5569 117.96 122.39 48 50.19 42.86 95 17.87 165.83 153 16.73 143.39 

1437 139.65 173.18 324 26.20 151.02 443 44.23 295.78 176 169.08 41.90 

151 128.70 381.65 86 40.24 108.14 440 31.85 175.22 144 119.15 78.77 

150 135.45 283.79 47 41.79 178.58 444 68.68 122.82 189 88.90 110.09 

268 118.68 741.47 45 94.35 196.32 445 82.73 102.10 135 155.80 104.07 

4022 120.25 690.28 305 99.68 174.73 445 52.63 200.11 315 61.07 99.01 

4564 127.88 806.58 509 85.98 90.61 94 159.14 79.05 371 44.85 78.38 

4530 98.73 356.46 511 113.90 83.09 422 50.23 154.44 

   4563 127.40 818.17 59 33.39 173.68 37 21.03 147.04 

   4271 77.42 316.60 121 79.07 84.39 37 32.23 64.74 

   5958 79.25 325.96 
   

37 27.49 99.82 

   4285 37.99 96.51 
         6003 148.73 125.20 
         6001 0.40 22.62 
         6001 17.49 35.49 
         6001 6.86 28.36 
         6001 37.94 63.34 
         6001 27.50 63.72 
         1582 4.89 991.51 
         313 144.79 488.21 
         198 68.53 634.79 
          

  

Appendix A.  Results from orientation measurement of linear features of area A. 
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Rock beddings Faults Dikes Fractures 

FID Dir. Dist. FID Dir. Dist. FID Dir. Dist. FID Dir. Dist. 

39 152.62 1265.47 17 95.41 971.34 333 104.26 661.74 355 25.93 1786.18 

167 148.61 1176.42 370 36.08 189.48 23 9.55 338.74 202 68.10 345.77 

217 145.26 722.94 25 97.30 846.89 79 141.65 549.17 21 72.00 92.98 

7196 150.08 2209.07 272 54.69 246.93 419 59.28 362.56 58 90.30 300.37 

7194 159.77 1677.28 515 117.92 397.18 160 31.50 354.41 215 18.28 310.57 

2976 147.53 1186.13 571 36.47 812.58 85 81.79 309.27 279 27.50 161.96 

7199 153.48 638.68 106 149.30 393.87 142 30.18 311.82 205 51.48 155.52 

6191 128.10 541.99 14 95.93 994.15 231 16.82 252.57 216 36.92 172.07 

1729 134.84 549.30 419 41.01 322.58 478 30.96 138.85 349 68.17 187.38 

3779 146.23 917.99 12 120.47 417.47 481 30.62 503.81 355 65.22 113.65 

3781 169.69 438.39 20 97.75 830.92 49 110.75 1120.40 5 57.03 350.06 

4550 141.91 439.27 339 90.82 185.28 641 35.17 427.23 192 68.01 292.66 

6183 171.30 309.47 535 94.88 272.19 673 40.11 1318.15 19 72.00 92.98 

3779 147.33 879.69 329 98.94 133.83 637 105.26 543.01 352 90.00 107.95 

1209 145.84 564.45 93 55.11 289.97 234 33.46 508.27 434 38.30 68.98 

3585 172.41 320.31 341 24.34 158.21 644 38.56 317.92 190 2.24 62.18 

7217 2.03 413.09 16 27.15 119.76 501 55.05 576.56 195 36.64 77.77 

4894 161.88 612.46 334 91.39 182.37 216 21.95 445.13 196 95.16 64.69 

166 57.59 610.91 17 58.34 69.55 506 85.13 781.86 216 38.05 154.55 

7201 20.34 1057.09 397 63.16 479.15 508 50.81 556.03 221 92.92 96.25 

6135 20.56 895.29 395 38.69 170.81 493 102.42 250.58 281 85.62 107.03 

5034 6.08 465.50 
   

409 62.91 661.40 229 26.89 88.47 

1177 172.61 288.14 
   

487 44.36 464.10 280 101.65 104.82 

4894 122.33 883.04 
   

288 37.21 430.54 432 69.36 112.06 

41 89.86 326.23 
   

492 102.99 254.16 223 87.70 139.13 

41 75.12 302.29 
   

39 163.67 389.65 291 64.20 70.53 

3554 117.60 630.54 
   

545 45.87 202.91 256 39.04 75.62 

6183 173.54 368.56 
         

6187 46.85 742.76 
         

4490 128.75 829.81 
         

6198 128.09 1094.71 
         

114 148.27 236.43 
         

114 123.30 216.85 
         

114 80.30 49.74 
         

112 116.24 403.37 
         

118 146.69 182.35 
         

3692 22.71 402.73 
         

1464 166.68 459.50 
         

2955 144.01 668.94 
         

2955 157.67 640.71 
         

2955 166.69 356.18 
         

6309 168.91 537.88 
         

1974 16.48 805.70 
         

1974 0.46 1052.02 
         

151 44.76 538.82 
         

151 18.79 571.80 
         

151 0.93 132.82 
         

151 23.75 130.08 
         

6274 154.56 162.61 
         

Appendix B. Results from orientation measurement of linear features of area B. 
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  Rock beddings Faults Dikes Fractures 

FID  Dir. Dist. FID  Dir. Dist. FID Dir. Dist. FID  Dir. Dist. 

67 47.03 235.33 44 78.26 156.06 465 14.65 231.03 435 168.79 212.01 

67 21.18 514.44 518 0.56 107.05 464 114.00 121.97 436 161.96 90.99 

67 42.43 245.90 478 119.69 519.13 466 45.26 113.07 429 153.62 136.49 

48 132.18 372.34 126 157.78 434.85 267 42.08 491.42 417 138.59 185.91 

48 115.76 590.94 9 121.46 817.04 264 45.20 351.50 224 102.30 864.89 

153 57.28 435.33 464 817.04 827.48 248 84.99 264.24 388 132.73 103.28 

5632 65.24 255.24 116 172.06 459.49 654 1.07 394.83 402 139.58 208.82 

171 40.89 1628.90 443 96.95 254.45 653 133.49 303.61 460 150.12 286.83 

5052 46.43 718.65 130 104.83 372.23 439 167.05 405.34 458 154.82 212.35 

5257 44.88 772.63 131 156.80 322.40 34 41.40 531.66 456 166.39 467.08 

6088 18.51 1174.79 513 164.25 428.85 436 38.30 275.60 457 177.43 402.49 

6119 23.21 419.59 595 151.92 232.80 291 170.32 405.83 461 122.91 214.30 

5251 47.99 1247.71 509 85.22 372.22 652 9.86 362.27 424 147.80 168.84 

5643 39.73 407.70 591 134.76 346.25 273 52.13 120.67 427 143.82 143.82 

7111 72.35 610.84 600 176.84 272.79 405 170.32 163.46 405 144.43 70.10 

7104 56.79 631.37 87 129.61 398.39 
      

6100 58.25 718.56 603 169.25 254.33 
      

7131 23.16 347.07 8 180.00 169.33 
      

66 31.69 1036.31 598 117.98 383.49 
      

6094 54.71 1546.14 160 91.90 285.91 
      

7160 52.35 584.78 599 130.24 180.23 
      

170 40.98 1734.84 
         

6084 24.48 3096.25 
         

97 26.71 2354.69 
         

108 57.62 1574.16 
         

7165 44.49 1057.09 
         

5306 22.61 1084.99 
         

5312 22.59 319.36 
         

7149 56.04 468.92 
         

7151 83.66 503.14 
         

26 42.81 1471.59 
         

7151 74.65 839.58 
         

900 50.34 1357.61 
         

5157 38.06 638.45 
         

7139 61.369 721.44 
         

Appendix C. Results from orientation measurement of linear features of area C. 



 

 

 

70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Rock beddings Faults Dikes 

FID  Dir. Dist. FID  Dir. Dist. FID Dir. Dist. 

7543 63.33 456.85 550 125.10 1435.79 605 25.34 331.39 

7546 10.10 192.09 549 119.22 1073.18 610 9.96 140.76 

7548 10.10 192.09 552 164.41 205.34 606 165.10 135.80 

7544 47.95 726.87 564 133.51 76.01 609 22.95 139.39 

2345 48.34 109.13 567 165.45 100.51 587 14.57 170.86 

6672 57.53 206.99 568 100.51 58.82 591 37.59 580.15 

6675 53.13 238.13 569 2.60 34.96 583 26.52 220.68 

6804 137.74 109.65 554 33.69 26.71 618 17.85 410.00 

6828 54.09 102.94 548 6.01 60.66 178 26.23 484.59 

6808 70.64 166.38 563 151.69 31.64 175 159.59 69.43 

6835 113.43 207.62 546 42.88 161.76 612 45.00 215.15 

6805 92.78 171.08 545 161.93 156.97 590 95.44 139.54 

6829 52.63 280.06 559 104.85 255.31 611 155.77 139.27 

6850 63.48 99.27 560 133.87 144.54 613 21.25 122.64 

6812 53.43 81.71 561 98.13 52.39 616 14.53 59.04 

6816 62.00 123.55 
      6816 155.71 58.98 
      7580 132.05 272.58 
      7580 50.69 184.63 
      7582 29.53 161.33 
      7585 82.94 105.88 
      7558 51.28 353.67 
      7552 47.00 736.19 
      7555 133.78 131.93 
      7554 82.30 319.49 
      6860 62.18 161.55 
      6886 108.44 160.52 
      7561 52.24 356.44 
      7567 44.48 311.52 
      7574 61.01 335.75 
      7563 85.86 274.56 
      7563 145.34 182.01 
      7570 125.84 176.24 
      7561 50.03 352.15 
      

Appendix D. Results from orientation measurement of linear features of area D. 
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Rock beddings Faults Dikes Fractures 

FID  Dir. Dist. FID  Dir. Dist. FID Dir. Dist. FID  Dir. Dist. 

8302 110.08 1282.33 676 172.23 99.75 724 17.43 335.56 455 67.22 224.09 

365 125.03 881.42 672 152.61 99.42 570 5.91 231.42 453 108.86 68.24 

381 138.76 1541.19 675 173.42 69.25 708 175.11 279.54 412 54.05 71.73 

6865 53.96 573.33 681 1.77 82.00 631 110.51 224.93 501 112.34 36.59 

6851 55.90 526.18 110 165.96 109.09 762 44.24 106.18 500 118.88 40.59 

8316 105.81 576.69 570 177.84 350.82 763 25.95 96.00 439 110.72 27.30 

174 49.34 852.77 679 146.31 314.81 640 9.92 184.16 504 157.62 116.74 

6861 157.73 450.31 678 163.71 200.95 820 30.05 924.65 381 116.93 149.57 

7795 157.83 570.46 104 113.96 195.44 818 168.23 282.89 382 124.62 108.03 

6447 114.78 284.12 625 173.45 243.68 815 4.54 418.03 377 135.00 145.93 

6447 130.59 510.87 626 180.00 202.41 852 3.49 543.40 507 142.37 80.18 

7878 54.42 566.09 677 178.78 155.33 723 17.74 347.25 506 148.24 65.35 

8288 120.03 953.17 629 118.81 90.59 561 22.57 551.56 508 3.67 31.02 

8281 80.45 406.48 530 155.56 191.82 650 22.96 423.85 
   8281 108.45 446.44 371 98.75 104.40 707 173.80 306.06 
   8286 128.55 649.57 370 39.81 103.32 866 110.16 251.55 
   7864 81.52 1452.59 111 107.65 122.17 819 170.13 377.27 
   7994 139.10 637.02 372 120.92 131.94 576 54.46 284.51 
   7874 100.59 494.03 109 46.44 222.71 719 8.91 341.47 
   273 176.30 574.34 112 137.39 179.76 717 34.31 358.73 
   7394 48.81 775.20 373 26.03 126.61 636 36.81 473.66 
   406 74.05 404.50 115 124.48 51.23 630 113.39 266.64 
   4709 66.32 614.75 113 121.61 40.39 631 34.22 399.95 
   7395 118.04 827.37 644 165.41 199.58 827 58.05 295.17 
   7409 178.85 657.07 636 126.91 244.19 855 180.00 317.50 
   7402 41.10 495.06 638 130.68 198.88 734 34.06 537.60 
   7925 113.77 945.36 267 159.27 104.67 652 2.12 428.92 
   3835 19.37 765.67 375 67.85 124.40 727 357.71 198.60 
   7399 9.83 604.19 376 97.13 85.33 736 167.20 179.08 
   7399 79.38 258.43 637 113.77 242.86 726 1.82 195.05 
   7413 44.36 1268.87 637 95.53 126.45 862 180.00 107.95 
   426 65.74 618.16 642 152.02 95.87 865 4.95 165.72 
   4489 168.79 144.89 641 129.75 64.31 

      4489 133.59 205.29 643 140.71 75.21 
      4489 106.70 138.12 

         8322 102.67 330.81 
         8322 127.75 259.32 
          

  

Appendix E. Results from orientation measurement of linear features of area E. 
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Rock beddings Faults Dikes 

FID  Dir. Dist. FID  Dir. Dist. FID Dir. Dist. 

4746 154.02 649.88 609 90.65 252.81 698 57.69 88.95 

5752 145.53 413.35 624 94.03 119.19 698 87.92 29.12 

5752 165.92 201.59 622 100.59 147.88 699 54.27 37.16 

5752 33.69 103.70 610 85.53 130.34 661 0.92 400.10 

7866 158.44 133.39 631 34.66 80.85 681 66.50 167.92 

7868 4.73 37.89 633 5.82 71.81 680 47.23 216.25 

7868 166.51 95.24 590 12.90 74.80 683 48.96 170.06 

7882 21.04 29.48 589 158.59 72.23 589 23.07 459.26 

7882 180.00 31.75 585 132.91 70.44 694 133.01 120.78 

2213 168.64 115.51 586 111.18 39.37 696 55.39 74.83 

2194 15.75 41.83 588 19.50 107.01 693 32.11 127.44 

2194 162.62 81.51 587 108.43 65.89 685 33.45 142.07 

7943 38.07 55.79 533 37.76 142.58 686 176.42 135.73 

7944 168.90 57.70 626 166.57 109.35 688 172.61 144.07 

7944 144.32 38.66 625 106.93 38.17 687 161.84 139.50 

7957 16.59 116.78 628 50.53 87.10 689 179.09 83.35 

7965 18.08 81.83 627 46.22 52.77 690 177.31 112.57 

7967 16.84 63.23 629 10.04 45.54 647 16.56 408.52 

7967 160.58 44.67 630 172.68 45.57 530 42.38 184.48 

7234 172.27 467.27 
   

646 36.96 495.04 

7587 144.26 321.28 
   

697 23.77 157.56 

7606 166.50 489.78 
   

648 17.58 140.16 

7609 129.26 311.41 
   

213 129.37 33.37 

7218 112.65 216.68 
   

211 32.17 25.79 

7186 146.31 228.95 
   

210 88.18 22.55 

7660 136.24 184.17 
   

210 64.39 10.65 

7652 120.07 278.82 
   

215 32.96 69.60 

7682 139.76 324.41 
      7676 120.66 158.79 
      7822 142.43 130.19 
      7785 110.64 108.56 
      2887 14.46 249.45 
      7750 99.05 181.65 
      7749 85.96 114.25 
      7810 79.38 129.21 
      2878 61.19 108.71 
      7764 19.65 70.80 
      7765 82.88 63.99 
      7765 69.86 50.73 
      6402 130.71 146.33 
      6397 139.74 37.14 
      6397 28.50 63.22 
      7859 63.81 107.92 
      7049 52.39 106.86 
      7049 4.95 59.69 
      7856 168.69 56.66 
      

           

Appendix F. Results from orientation measurement of linear features of area F. 
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Table 1. The data images of Oudemans Crater with their scale and ID. 

 

Cameras Product Number (IDs) Pixel scale 

HiRISE 

ESP_025983_1700_RED 

≤ 25cm/pixel 

ESP_011966_1700_RED 

PSP_002446_1700_RED 

PSP_007048_1695_RED 

ESP_027882_1700_RED 

ESP_026194_1700_RED 

ESP_027117_1700_RED 

PSP_008195_1700_RED 

ESP_026273_1700_RED 

ESP_011676_1700_RED 

ESP_036176_1700_RED 

CTX 

P05_003079_1714_XN_08S091W 

~6 m/pixel P06_003501_1713_XN_08S092W 

G20_026194_1690_XN_11S091W 

HRSC 
h0442_0008_nd3 

150-170 m/pixel 
h2728_0001_nd3 

THEMIS 
THEMIS_IRnight_256ppd_60NS_West_v1_equirect_clon0_ly80.jp2 

~100 m/pixel 
THEMIS_IRday_256ppd_West_v2_equirect_clon0_ly80.jp2 

MOLA SHADED RELIEF MOL MEGDR_NE_Oudemans_128ppd_geotiff.tif ~462 m/pixel 
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