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Abstract

This thesis is mainly focused on (i) modeling of dc distribution systems for power

system integration of plug-in electric vehicles (PEVs), (ii) proposing a method to enhance

the stability of the dc distribution systems, and (iii) proposing an energy management

strategy to control the power flow in the dc distribution system. The dc distribution

system is expected to be more efficient and economical than a system of ac-dc battery

chargers directly interfaced with an ac grid.

In the first part, a systematic method for developing a model for a dc distribution

system, based on the configuration of the system is proposed. The developed model is of

the matrix form and, therefore, can readily be expanded to represent a dc distribution

system of any desired number of dc-dc converters. The model captures both the steady-

state and dynamic characteristics of the system, and includes the port capacitors of the

converters, as well as the interconnection cables. Thus, it can be used for identifying the

condition for the existence of a steady state, as well as for stability analysis.

In the second part, the thesis proposes a method for enhancing the stability of the

dc distribution system. Using a nonlinear control strategy, the proposed stability en-

hancement method mitigates the issue of instability by altering the power setpoints of

the battery chargers, bidirectional dc-dc converters, without a need for changing sys-

tem parameters or hardware. The thesis presents mathematical models for the original

and modified systems and demonstrates that the proposed technique expands the stable

operating region of the dc distribution system.

The thesis further proposes an energy management strategy (EMS) for the dc distri-

bution system. Using an on-line constrained optimization algorithm, the proposed EMS

offers two energy exchange options to the PEV owners: (1) The fast energy exchange

option for the owners wishing to minimize the energy exchange time and (2) The optimal

energy exchange option for the owners intend to either minimize their costs of charg-

ing or maximize their revenues through selling their stored energy. The proposed EMS

seamlessly handles all charging/discharging requests from the PEV owners with different

options.

Keywords: Constant-power property, dc distribution system, dc-voltage control,

plug-in electric vehicle, energy management strategy, load management, modeling, opti-

mal charging, smart grid, stability, voltage-sourced converter.
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Chapter 1

Introduction

1.1 Statement of Problem and Thesis Objectives

The power system integration of Plug-in Electric Vehicles (PEVs) and the possibility of

bidirectional power exchange between them and the host grid have attracted attentions

recently [1,2]. In addition to providing traction power, batteries in a PEV can potentially

be used for bulk energy storage in such applications as peak shaving, reactive power

compensation [3], and the integration of renewable energy resources. Public parking

areas within hospitals, department stores, and residential and commercial premises are

examples of locations where a large number of PEVs can be integrated with the power

system. Thus, PEV owners can charge their batteries (or buy energy from the rest of the

system) or discharge them (or sell energy to the rest of the system) based on their trip

plans, cost of electricity, and the State of Charge (SOC) of the batteries; electric energy

can be stored at night when the cost of electricity is low, and then sold at a higher price

if there is a high demand for electricity or if the host grid is in need of ancillary services.

This can be achieved through bidirectional power-electronic converters [4, 5].

The increasing number of PEVs is, however, expected to adversely impact the power

system [6]. Charging a large number of PEVs at the same time in the evening, when the

owners come back home from work and connect their vehicles to the battery chargers,

could significantly stress the power grid; causing voltage fluctuations, suboptimal gener-

ation dispatch, degraded system efficiency, and increasing the likelihood of blackouts due

to network overloads [7]. Therefore, suitable infrastructure and smart charging strategies

are required to circumvent or mitigate these potentially negative impacts.

This thesis concentrates on bidirectional power exchange between a large number of

1



2 Chapter 1. Introduction

plug-in electric vehicles and the ac power grid. Hereinafter, Plug-in Electric Vehicles

(PEVs) and Plug-in Hybrid Electric Vehicles (PHEVs) will be used interchangeably to

represent all electric vehicles.

The objectives of the thesis are:

• To introduce a dc distribution system for the integration of a large number of

electric vehicles, including PEVs and PHEVs, into the ac power grid, in public

parking areas.

• To develop a mathematical model for the dc distribution system to capture both

the steady-state and dynamic characteristics of the system, to analyze the stability

of the system, and to check for the existence of the steady-state operating point of

the system.

• To develop a control strategy to mitigate the instability problem of the dc distribu-

tion system and expand the stable operation region of the system, without a need

for changing system parameters or hardware.

• To develop an energy management strategy for the dc distribution system to enable

an optimal energy exchange among the PEV battery chargers in the dc system and

the ac power grid.

1.2 Background

1.2.1 Electric Vehicle

Electric vehicles can be generally categorized in three different groups:

• Plug-in Electric Vehicle (PEV)

In this category, the electric vehicles are only powered by the on-board battery

and there are no internal combustion engines in the vehicles. The batteries can be

charged from a power source outside of the electric vehicles, through a connector.

In the literature, battery electric vehicles (BEVs) are also used to refer to these

electric vehicles.

• Plug-in Hybrid Electric Vehicle (PHEV)

Electric vehicles in this category have both electric motors and internal combustion

engines (ICEs). The batteries can be charged from a power source outside of the
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Table 1.1: Battery capacity and specifications of some electric vehicles on the market

Model Type
Battery

Technology
Battery
Capacity

All-Electric
Range

Chevrolet
Volt

PHEV Li-Ion 17.1 kWh 61 km

Mitsubishi
i-MiEV

PEV Li-Ion 16 kWh 96 km

Ford
Fusion SE Energi

PHEV Li-Ion 7.6 kWh 30 km

Nissan
Leaf

PEV Li-Ion 24 kWh 159 km

Toyota
Prius

PHEV Li-Ion 4.4 kWh 22 km

Tesla
Model S

PEV Li-Ion 85 kWh 480 km

electric vehicles. Therefore, these electric vehicles can exchange power with the

host power grid. PHEVs typically operate in a “blended” mode, using the ICE

and electric motor together, to substantially reduce gasoline consumption when

operating in battery charge depletion mode.

• Hybrid Electric Vehicle (HEV)

In this category, the vehicles have both electric motors and internal combustion

engines. However, the batteries cannot be charged from a power source outside of

the vehicle.

In this thesis, only the first two categories, i.e., PEV and PHEV, are considered for

study, as the electric vehicles in the third category do not exchange power with the host

power grid. Table 1.1 lists the type and battery capacity of some electric vehicles on the

market [8–13].

1.2.2 Battery Chargers for Electric Vehicles

Battery chargers for electric vehicles have been classified in three different levels by the

Society of Automotive Engineers (SAE). Table 1.2 summarizes the charging levels for

PEVs based on SAE J-1772 standard [14, 15]. Level 1 is the slow charging level where

the electric vehicles can be plugged in to a convenience ac power outlet and the maximum

charging power level is 1.92 kW. At this level, the battery charger is usually inside the

vehicle. For Level 2 charging, the maximum power is 19.2 kW and it uses 240 Vac

power outlet. Level 3 offers commercially fast battery charging for electric vehicles and it

typically operates with 480 V or higher three phase circuit, requiring an off-board charger.
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Table 1.2: Electric Vehicles Charging Levels

Power Level Charger Typical Energy Supply Expected Charging Vehicle
Types Location Use Interface Power Level Time Technology
Level 1

120 Vac (US)
230 Vac (EU)

On-board
1-phase

Charging at
home or office

Convenience
outlet

1.4kW (12A)
1.9kW (20A)

4-11 hours
11-36 hours

PHEVs (5-15kWh)
EVs (16-50kWh)

Level 2
240 Vac (US)
400 Vac (EU)

On-board
1- or 3-
phase

Charging at
private or

public outlets

Dedicated
EVSE

4kW (17A)
8kW (32A)

19.2kW (80A)

1-4 hours
2-6 hours
2-3 hours

PHEVs (5-15kWh)
EVs (16-30kWh)
EVs (3-50kWh)

Level 3
208-600

Vac or Vdc

Off-board
3-phase

Commercial,
analogous to a
filling station

Dedicated
EVSE

50kW
100kW

0.4-1 hour
0.2-0.5 hour

EVs (20-50kWh)

Figure 1.1: The structure of a typical PEV.

Fig. 1.1 shows the internal structure of a typical electric vehicle and the battery chargers

at different levels [15]. The SAE J1772 standard prescribes that Level 1 and Level 2

battery chargers should be located on the electric vehicle. For Level 3, the standard

considers off-board battery charger. In this case, the battery charger can be directly

connected to the battery of the electric vehicle. This enables Level 3 battery chargers to

perform fast charging in public places such as parking lots on commercial premises.

1.2.3 Power System Integration of Electric Vehicles

In most proposed strategies for power system integration of electric vehicles, ac-dc power-

electronic converters act as the battery chargers and are directly interfaced with the

power grid [15, 16], as is shown in Fig. 1.2. Alternatively, dc distribution networks

embedding dc-dc converters (as the battery chargers) have been proposed for power

system integration of electric vehicles in public parking areas, where a sizeable number
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Figure 1.2: ac-dc converters for power system integration of electric vehicles.

of PEVs are interfaced with the power grid [17–20], as shown in Fig. 1.3.

Using a dc distribution system and dc-dc battery chargers has the following advan-

tages over ac-dc battery chargers that are directly connected to the ac power grid:

• In the dc distribution system, power factor correction is sufficient to be done only

at a central point where the whole system connects to the ac power grid and this

reduces the cost of power factor correction modules for individual battery chargers

[19, 20];

• Integration of renewable energy resources such as photo-voltaic (PV) modules will

be easier in a dc infrastructure due to the omission of the intermediate dc-ac con-

verters needed in grid-connected PV systems [17, 19, 21] ;

• A large number of PEV batteries can contribute more efficiently in providing ancil-

lary services for the ac power grid than an individual PEV battery with a smaller

energy capacity.

• The energy exchange can be done inside the dc distribution system, between PEVs

themselves and also with the PV modules, without intervention of the ac power

grid and this reduces the ac power grid load;
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Figure 1.3: A dc distribution system for power system integration of electric vehicles.

• The host ac power grid needs to communicate only with one entity that is the

intelligence of the management unit of the dc distribution system, rather than

with multiple PEV battery chargers; the coordination between the PEVs is under-

taken by the internal intelligence of the dc distribution system and its associated

communications network. Thus, the power system operator can more quickly and

efficiently invoke ancillary services.

The dc distribution systems can be installed in parking lots of commercial and residen-

tial areas, where a large number of electric vehicles can be connected to the system [22].

From the economic perspective, there are three parties that are financially interacting

with each others in this system:

1. the PEV owners;

2. the parking lot operator; and

3. the ac power grid operator.
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In a dc distribution system, the PEV owners can use the wholesale energy price to

charge their vehicles. The wholesale energy price is usually much cheaper than the retail

energy price, even considering the administration fee from the parking lot operator, and

therefore, the PEV owners will financially gain when they use the dc distribution system

to connect their vehicles to the ac power grid. Moreover, by using a smart charging

strategy, the charging activities can be shifted to the time frames when the energy price

is even cheaper, hence further reduce the cost of the battery charging.

The parking lot operator can make revenue by:

• charging the PEV owners an adminstration fee for charging or discharging energy

(per kWh) [23, 24]; and

• charging the ac power grid for providing the ancillary services.

The ac power grid benefits from the dc system by using the ancillary services which

are provided. Using the battery capacity of a large number of PEVs, the dc distribution

system has the capacity to provide a variety of services to the ac power grid such as peak

shaving, load shaping, frequency regulation, ac voltage support, and power regulation

service [25]. By using peak shaving service, for example, the ac power grid avoids the

installation of capacity only to supply the peaks of a highly variable loads. To provide

this service, the dc distribution system supply energy to the high-demand customers of

the ac power grid at the peak-time.

One of the problems with dc distribution systems is the possibility of instability in

the system. Due to the constant-power property of dc-dc converters, the dc system

becomes unstable if the powers absorbed by the converters exceed certain values [20].

This phenomenon inflicts a limit on the maximum power that can be imported to charge

the batteries and, consequently, precludes full utilization of the installed capacities and

prolongs the charging times. Therefore, it is imperative to devise a stability enhancement

technique in order to push the limits and expand the stable operating region of the dc

distribution system.

1.3 Thesis Contributions

The main contributions of this thesis can be listed as follows:

• The thesis proposes a dc distribution system for power system integration of plug-

in electric vehicles. The proposed system is expected to be more efficient and
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economical than an equivalent aggregate of ac-dc battery charges connected to the

ac grid, since it relieves the battery chargers from the need for a bidirectional,

front-end, power-factor correction (PFC) stage. Further, due to its DC nature, the

proposed system is amenable to integration of Photovoltaic (PV) modules. The

thesis also proposes a systematic method for developing a model of a dc distribution

system, based on the configuration of the system. The developed model is of the

matrix form and, therefore, can readily be expanded to represent a system of any

desired number of dc-dc converters. The model captures both the steady-state and

dynamic characteristics of the system, and includes port capacitors of the converters

and the interconnection cables. Thus, it can be used for identifying the condition

for existence of a steady state, as well as for stability analysis.

• The thesis further proposes a method for enhancing the stability of a dc distribution

system that integrates plug-in electric vehicles with the ac power grid. Using a

nonlinear control strategy, the proposed stability enhancement method mitigates

the issue of instability by altering the power setpoints of the battery chargers,

bidirectional dc-dc converters, without a need for changing system parameters or

hardware. The thesis further presents mathematical models for the original and

modified systems and demonstrates that the proposed technique expands the stable

operating region of the dc distribution system.

• Finally, the thesis proposes an energy management strategy (EMS) for the dc dis-

tribution system for power system integration of plug-in electric vehicles (PEVs).

Using an on-line constrained optimization algorithm, the proposed EMS manages

the power flow within the dc system. Thus, the PEV owners can charge or dis-

charge their batteries, based on the state-of-charge (SOC) of the batteries and

their upcoming trip plans. The EMS offers two energy exchange options to the

PEV owners: (i) The fast energy exchange option for the owners wishing to min-

imize the energy exchange time and (ii) The optimal energy exchange option for

the owners intend to either minimize their costs of charging or maximize their rev-

enues through selling their stored energy. The proposed EMS seamlessly handles

all charging/discharging requests from the PEV owners with different options and,

at the same time, it takes into account the power demand and power generation

limits of the ac grid, to preclude under-voltage, over-voltage, and reverse power

flow issues.
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1.4 Literature Survey Pertinent to Thesis Contribu-

tions

Chapter 2 of this thesis focuses on the mathematical model for the dc distribution sys-

tem. A dc distribution system is expected to offer a higher efficiency and to enable an

easier integration of renewable energy sources such as photovoltaic (PV) and fuel-cell sys-

tems [26,27], as compared with a system of ac-dc battery chargers. However, it is prone

to instabilities due to constant-power property of the hosted dc-dc converters, if powers

drawn by the dc-dc converters (to charge the batteries) exceed certain limits [20,28,29].

Thus, one needs a model of the system to characterize the steady-state and dynamic be-

haviors of the system. Such a model should be tractable, while adequately accurate, and

it should also represent both the steady-state and dynamic characteristics of the system.

One should also be able to systematically expand it to represent a system of any desired,

and most likely large, number of dc-dc converters. To the author’s best of knowledge, the

published technical literature does not present a model with the aforementioned features.

Several prior studies have reported system-level models for dc distribution systems

[30–33]. The main issue associated with the aforementioned studies is that they consider

a limited number of dc-dc converters on the dc distribution system and develop the

model for the system based on that assumption. Reference [30], proposes a model for a dc

distribution system, but the model only describes the steady-state behavior of the system.

Reference [31] develops a model, and proposes a method for stabilizing a dc distribution

system. However, the presented model is limited to three converters and, consequently,

cannot be adopted for a dc distribution system with a large number of converters. In [27]

a model is proposed for a dc distribution system with multiple loads and sources, but

it does not consider the interconnection cables of the system. Reference [34] proposes a

reduced-order model for a generic dc microgrid. The presented model, however, does not

account for the terminal capacitors of the dc-dc converters; the interconnection cables

and the terminal capacitors both play important roles in the steady-state and dynamic

behaviors of a dc distribution system and, therefore, cannot be ignored. To address

the foregoing shortcomings, this thesis proposes a systematic approach to develop a

mathematical model for a dc distribution system. The proposed mathematical model

is of the matrix form and can be used to analyze small-signal dynamic behavior of the

dc distribution system with an arbitrarily large number of dc-dc converters. The thesis

also derives a set of computationally efficient equations for calculating the dc distribution
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system eigenvalues to facilitate online stability assessment of the system on an embedded

signal-processing platform.

Chapter 3 of this thesis concentrates on mitigating the instability issue of the dc

distribution system. Due to the constant-power property of dc-dc converters [28,35], the

dc distribution systems, that include dc-dc converters, become unstable if the powers

absorbed by the converters exceed certain values [20]. This phenomenon inflicts a limit

on the maximum power that can be imported to charge the batteries and, consequently,

precludes full utilization of the installed capacities and prolongs the charging times.

Therefore, it is imperative to systematically characterize the phenomenon and identify

the prevailing constraints, and devise a stability enhancement technique, in order to push

the limits and expand the stable operating region of the dc system.

To mitigate the aforementioned issue of instabilities caused by constant-power ele-

ments in a dc distribution system, various methods have been proposed in the litera-

ture, [31, 36–41]. The method proposed in [36] stabilizes a dc-link electric propulsion

system where a dc-ac converter drives an induction motor, by altering the torque set-

point of the motor. The proposed technique, therefore, is applied to a dc system with

one constant-power element; there is no analysis for multiple constant-power elements.

In reference [37], a method has been proposed to increase the stability margin of a dc

system with two constant-power elements, and therefore, the method cannot be applied

to a dc distribution system with multiple dc-dc converters. The stabilizing methods that

have been proposed in [31, 38, 39] are also suitable for the dc systems with a limited

number of constant-power elements. The techniques proposed in [40] and [41] deal with

a system in which a dc-dc converter is assumed to be supplying another constant-power

element. However, both techniques require information about the internal state variables

and access to the PWM signal of the dc-dc converter. Moreover, the studied systems

include only one dc-dc converter and one constant-load element. To address the fore-

going shortcomings, this thesis proposes a stability enhancement technique to improve

the dynamic behavior, and expand the stable operating region of the dc distribution sys-

tem. The proposed technique is easy to implement and does not need any information

internal to the dc-dc converters of the system. Therefore, the technique can be used for

of-the-shelf dc-dc converters which is financially beneficial.

Chapter 4 of the thesis deals with the energy management strategy (EMS) for the dc

distribution system. The EMS controls the power flow among the battery chargers and

the ac power grid. The increasing number of PEVs is expected to adversely impact the
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power system and, therefore, suitable infrastructure and smart charging strategies are

required to circumvent or mitigate those impacts [6, 42].

Several recent reported studies have proposed charging strategies for PEVs [7,24,43–

49]. Reference [24] proposes algorithms for optimizing the PEV charging schedule from

the owner’s perspective. A real-time smart load management control strategy is proposed

in [7] to coordinate the charging of PEV, to minimize the power loss and the charging

cost, and to mitigate the voltage fluctuations at the host ac grid. A strategy is proposed

in [43] to mitigate the adverse impacts that uncontrolled charging of the PEVs impose

on the host power system. Using empirical driving profiles, reference [44] shows the

economic benefits of a smart charging strategy against a uncontrolled charging strategy

for charging the PEVs. In [45], it is assumed that there is a limited future knowledge of

the mobility of the PEVs and it is shown that by using this information, the negative

impacts of the PEV charging can be reduced. Reference [46] proposes charging control

strategies for a battery swapping station, where the PEV owners can quickly swap their

depleted batteries with previously charged batteries. In [47], optimal scheduling has been

proposed for both charging and discharging of the PEVs. The references cited above do

not necessarily concern dc systems. However, they all assume an integral entity, an

aggregator, that negotiates with the PEVs, in one hand, and with the host power system

in the other hand. Hence, the host ac grid deals with only one entity, the aggregator,

rather than a large number of PEVs.

In the majority of the reported studies, the proposed strategies aim to only optimize

the charging costs for the PEV owners, or minimize the power loss within the system,

but do not offer to the owners an option for fast battery charging (by which the charging

time is minimized rather than the charging cost). Further, the reported studies commonly

assume that the PEV owners fully comply with the (proposed) charging strategies, i.e.,

they connect their vehicles to the chargers, for the entire specified period, and do not

depart early. In practice, however, an owner may decide to leave before the planned period

has elapsed. Most of the reported studies also assume a unidirectional power flow, that is,

into the PEVs, whereas there is a possibility for bidirectional power exchange among the

PEVs and the host ac grid. To address the foregoing shortcomings, this thesis proposes an

energy management strategy that offers both fast and optimized energy exchange options

to the PEV owners. The proposed strategy limits the power consumption and power

generation of the dc distribution system to prevent the negative impacts of simultaneous

charging or discharging of a large number of electric vehicles on the ac power grid. The



12 Chapter 1. Introduction

proposed strategy seamlessly handles requests for charging or discharging of the electric

vehicles and also takes into account the likelihood of early departure of the PEV owners.



Chapter 2

Modeling of the DC Distribution

System

2.1 Introduction

A dc distribution system is expected to offer a higher efficiency and to enable an easier

integration of renewable energy sources such as photovoltaic (PV) and fuel-cell systems

[20, 26, 27], as compared with a system of ac-dc battery chargers. However, it is prone

to instabilities due to constant-power property of the hosted dc-dc converters, if powers

drawn by the dc-dc converters (to charge the batteries) exceed certain limits [20,28,29,35].

Thus, one needs a model of the system to characterize the steady-state and dynamic

behaviors of the system. Such a model should be tractable, while adequately accurate,

and it should also represent both the steady-state and dynamic characteristics of the

system. One should also be able to systematically expand it to represent a system of any

desired, and most likely large, number of dc-dc converters.

This chapter proposes a systematic method for developing a model of a dc distribu-

tion system, based on the configuration of the system. The developed model is of the

matrix form and, therefore, can readily be expanded to represent a system of any desired

number of dc-dc converters. The model captures both the steady-state and dynamic

characteristics of the system, and includes port capacitors of the converters and the in-

terconnection cables. Thus, it can be used for identifying the condition for existence of

a steady state, as well as for stability analysis. This chapter further proposes an alter-

native set of characteristic equations that are less computationally intensive than the

original matrix representation, for example, for on-line stability assessment tasks. The

13
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adequacy of the proposed model has been demonstrated through a number of case studies

conducted and compared in PSCAD/EMTDC [50] and MATLAB software environments.

2.2 System Configuration and Components

Fig. 2.1 illustrates a conceptual diagram of a dc distribution system for the integration

of electric vehicles and PV modules with a host ac power grid. The dc distribution

system consists of a network of interconnection cables, a central voltage-sourced converter

(VSC), a management unit, and a multitude of dc-dc converters acting as battery chargers

that interface the EVs with the dc distribution system. Similarly, the PV modules are

interfaced with the dc distribution system via corresponding dc-dc converters. It should

be noted that in this thesis, the PV modules are considered as an redauxiliary source of

energy due to the limitation of their energy capacity and therefore, the main source of

energy for charging the electric vehicles is the ac power grid. The network interconnects

the dc port of the central VSC and network-side ports of the dc-dc converters, in a so-

called bus configuration. In the widely used bus configuration, each converter, including

the central VSC, is connected to a node common to all of the converter, through a

corresponding interconnection cable, while there is no other connection between any

two converters [26], [51, 52]. Therefore, all the electrical power exchange inside the dc

distribution system is done via the common node.

From its ac side, the central VSC is interfaced with the host ac grid, operated as a

controlled dc-voltage power port [53], and regulates the dc voltage of the network. Thus,

the central VSC enables a bidirectional exchange of energy between the dc distribution

system and the ac grid. It is assumed that the operation is supervised by a management

unit, which determines power limits for the battery chargers, and communicates them

via a communication network [54]. The communication network also collects metering

information, for the management unit, from the central VSC and the dc-dc converters.

Fig. 2.2 shows a schematic diagram of the dc distribution system of Fig. 2.1. As

the diagram indicates, the central VSC is interfaced with the host ac power grid via

a three-phase tie reactor, Ls; the resistance Rs represents the aggregate effect of the

on-state power loss of the switches of the VSC and ohmic power loss of the tie reactor.

Each distribution wire/cable is represented by a corresponding series R−L branch. The

power leaving the network-side port of a dc-dc converter is denoted by Pdc, which can be

positive or negative for a battery charger, and only positive for a converter that interfaces
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Figure 2.1: A dc distribution system for power integration of electric vehicles and PV
modules.

PV modules.

2.2.1 Central VSC

The central VSC and its control scheme act as a controlled dc-voltage power port and

regulate the dc voltage of the network (Fig. 2.3 illustrates the concept). The VSC is

current-controlled, such that its output real power, Ps, rapidly tracks the real-power

setpoint, P ∗
s , issued by a dc-voltage regulation loop. Pdc denotes the power that the

rest of the dc system delivers to the VSC. As Fig. 2.3 indicates, a measure of Pdc

is incorporated in the control loop, as a feed-forward signal, to mitigate the dynamic

coupling between the dc-voltage regulation loop and the rest of the dc system.

Current-Controlled Scheme

The function of the current-control scheme is to regulate the ac-side current of the VSC,

by means of the pulse-width modulation (PWM) switching strategy. Fig. 2.4 illustrates

a block diagram of the current-control scheme. As Fig. 2.4 indicates, the control is
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performed in a dq reference frame whose d-axis makes angle ρ against the horizontal axis

of the stationary frame [53]. The angle ρ is determined by a PLL (not shown here) which

also calculates ω, i.e., the frequency of the ac-side terminal of the VSC. The setpoints of
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idref and iqref are determined based on the power setpoints of P ∗
s and Q∗

s, respectively; in

this thesis, Q∗
s is set to zero as there is no reactive power exchange between the VSC and

the ac power grid. The samples of id and iq are first compared to their respective setpoints

and the errors signals are processed by two corresponding compensators, Kd(s) andKq(s).

The compensators outputs are then augmented with feed-forward and decoupling signals

(to mitigate the impact of the ac-side voltage variations on the regulation of id and iq),

and the resulting signals are normalized to the VSC gain, Vdc

2
, and produce md and mq

for the PWM gating pulse generator.

If the compensators are chosen as

kd(s) = kq(s) =
Ls

τc
+

Rs

τcs
(2.1)

then the closed-loop transfer functions of P ∗
s to Ps, and Q∗

s to Qs become equivalent to

two first-order transfer functions as

Gp(s) =
Ps(s)

P ∗
s (s)

=
Qs(s)

Q∗
s(s)

=
1

τcs+ 1
, (2.2)

where time constant τc is a design choice [53]. In fact, the combination of the feed-

forward blocks in Fig. 2.4 and the compensators of equation (2.1) provides a pole-zero

cancellation to simplify the transfer function of the closed-loop system. This is a stable

pole-zero cancellation and therefore, an imperfect cancellation does not have any effect on

the stability of the system. Also, if the location of the poles and zeroes are close to each
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other, the imperfect stable pole-zero cancellation creates a very short trace in the root-

locus diagram of the system that have little impact on the behavior of the closed-loop

system.

Controlled dc-Voltage Power Port

As discussed in [53], dynamics of ṽ2dc in Fig. 2.3 can be described by

dṽ2dc
dt

=
2

C
P̃dc −

2

C

[

P̃s +

(

2LsPdc0

3V 2
s

)

dP̃s

dt

]

, (2.3)

where “ ˜ ” denotes small-signal perturbation of a variable, Vs denotes the peak value of

the grid line-to-neutral voltage and Pdc0 is the steady-state value of Pdc.

Based on (2.3), Fig. 2.5 shows a simplified block diagram of the dc-bus voltage

controller for the dc-voltage power port of Fig. 2.3. It is noted that Gp(s) is defined in

(2.2), and the transfer function from P̃s to ṽ2dc is

ṽ2dc(s)

P̃s(s)
= −

(

2

C

)

τdcs+ 1

s
= −Gv(s), (2.4)

where τdc is a function of Pdc0:

τdc =
2LsPdc0

3V 2
s

. (2.5)

The value of τdc is negative (corresponding to a non-minimum phase plant) if the power

flows from the ac grid towards the dc system. i.e., if Pdc0 is negative. In Fig. 2.5, Kv(s)
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is multiplied by −1 to compensate for the negative sign of Gv(s).

Fig. 2.5 also indicates that a measure of P̃dc is incorporated in the control process

through a feed-forward filter, Gf (s), to weaken the dynamic linkage between the the

dc-voltage control loop and the rest of the dc system. The transfer function from P̃dc,

which is considered as a disturbance, to ṽ2dc is

ṽ2dc(s)

P̃dc

=
Ge(s)−Gf(s)Gp(s)Gv(s)

1 +Kv(s)Gp(s)Gv(s)
. (2.6)

To have a perfect cancelation of the dynamic linkage between the the dc-voltage

control loop and the rest of the dc system, one should choose Gf (s) as

Gf(s) =
Ge(s)

Gp(s)Gv(s)
=

1

Gp(s) (τdcs+ 1)
. (2.7)

However, as mentioned in this section, the value of τdc will be negative if the power flows

from the ac grid towards the dc system, which in turn, leads to a right-half pole (RHP)

for the transfer function (2.7), and the system will lose the internal stability. In [53],

Gf(s) was chosen as an unity. Thus, to have a good disturbance rejection performance,

i.e., to minimize the dynamic coupling between P̃dc and ṽ2dc, one needs an adequately

large controller gain for Kv(s) [55].

Fig. 2.6 shows the general form of the dc-voltage controller, Kv(s), which can be

written as

Kv(s) =
k0
s
H1(s)H2(s) (2.8)

where H1(s), andH2(s) are lead filters to increase phase margin of the closed-loop system.

The reason for using two lead filters is that by increasing the controller gain, k0, to have

a better disturbance rejection performance, the required phase shift to ensure the stable

operation of the system also will be increased. Each lead filter, as described in [53], can

provide a maximum of 90◦ of phase shift. Therefore, for a total phase shift of more than

90◦, two lead filters will be needed.

2.2.2 dc-dc Converters

Fig. 2.7 shows a simplified schematic diagram of a full-bridge dc-dc converter which, with

no loss of generality, is assumed to represent a battery charger. The battery current, iBi,

is regulated at its setpoint, i∗Bi, by a feedback control loop in which a compensator,

Ki(s), processes the error (i∗Bi − iBi) and generates the control signal ui. A measure of
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Figure 2.6: General form of the dc-voltage controller.

+

−

Rest

of DC

Network
Battery

+
−

( ) ÷−÷ *

PWM and 

Gate Drive

**
1

Figure 2.7: The schematic diagram of ith bidirectional dc-dc converter.

the battery voltage, Vbati, is then added to ui, and the resulting signal is divided by a

measure of the network-side port voltage of the converter, vi, to generate the pulse-width

modulating (PWM) signal of the converter. In turn, i∗Bi is calculated by dividing the

battery power setpoint, P ∗
Bi, by Vbati.

Assuming a fast and accurate current-control loop, the battery power PBi equals

P ∗
Bi. On the other hand, PBi is almost equal to the power that leaves the network-side

port of the converter, Pti; the approximation is plausible in view of the typically small

battery-side filter resistance RBi and inductance LBi (due to the typically large switching

frequency of the converter), as well as negligible power losses of the converter. Therefore,

Pti ≃ P ∗
Bi. Then, in a steady state, the network-side port capacitor Ci is effectively open
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Rest
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Figure 2.8: The simplified model of ith bidirectional dc-dc converter.

and the power that the battery charger delivers to the rest of the dc system, Pdci, is

equals Pti and, therefore, P
∗
Bi.

Hence, P ∗
Bi should be determined based on value of power one desires the battery

charger to deliver to the rest of the dc system, i.e, the setpoint Pdci, Fig. 2.7. The

desirable fast current control can be ensured by proper design of Ki(s). A proportional-

integral (PI) compensator in generic form of

Ki(s) = kpi +
kii
s

(2.9)

guarantees that iBi tracks i
∗
Bi, with zero steady-state error. Choosing kii/kpi = RBi/LBi

and Kpi/LBi = 1/τBi, one obtains the first-order closed-loop transfer function of the form

IBi(s)

I∗Bi(s)
=

1

τBis+ 1
, (2.10)

for which the time constant τBi is a design choice.

2.3 Mathematical Model

Fig. 2.9 shows the equivalent circuit of the dc system of Fig. 2.2. In the circuit of Fig.

2.9, the central VSC is represented by a constant dc voltage source, and, as detailed

in Section 2.2.2, each dc-dc converter is represented by a dependent current source in

parallel with a capacitor, as depicted in Fig. 2.8. The capacitor, in turn, represents

the network-side terminal capacitor of a typical dc-dc power converter, (see Fig. 2.7).

The current source, however, is a representation of the fact that, in a power-electronic
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Figure 2.9: Equivalent circuit of the dc system of Fig. 2.2.

converter with regulated output (battery current, PV array voltage, etc.), the network-

side port power does not depend on the network-side port voltage. Thus, the value of

the current for the ith, (i = 1, 2, ..., n), converter is

iti =
1

vi
P ∗
dci (2.11)

where P ∗
dci and vi are the power setpoint and network-side terminal voltage of the con-

verter, respectively. For a converter serving as a battery charger, P ∗
dci is the setpoint

for the power delivered by (i.e., discharging) the battery; a negative value for P ∗
dci, thus,

corresponds to a charging power. For a converter interfacing PV modules, P ∗
dci can only

be positive and is determined by a so-called maximum power-point tracking (MPPT)

algorithm, to equal the maximum power that the PV modules can deliver at the pre-

vailing sunlight and temperature conditions. Thus, the assumption is that the control of

the dc-dc converter is fast and, therefore, the power exchanged with the battery, or that

delivered by the PV modules, equals P ∗
dci. For a dc-dc converter with a voltage-droop

mechanism, the modeling process has been presented in In Appendix A.

Let us regard the dc bus of the system of Fig. 2.9 as a node, i.e., the per-unit-length

inductance and resistance of the bus are ignored (the model without this assumption is

presented in Section 2.5). Thus, the following family of differential equations describe

dynamics of the dc system of Fig. 2.9:

−vi +Riii + Li

dii
dt

+ L0

n
∑

k=1

dik
dt

+R0

n
∑

k=1

ik + vdc = 0, (2.12)

Ci

dvi
dt

=
P ∗
dci

vi
− ii, (2.13)
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where i = 1, 2, ..., n.

Rewriting (2.12) in the matrix form, one finds

−v +Rbi+ Lb

di

dt
+ L0

di

dt
+R0i + vdc = 0 (2.14)

where

v =















v1

v2
...

vn















, i =















i1

i2
...

in















, vdc = vdc















1

1
...

1















n×1

, (2.15)

and

Lb =















L1 0 · · · 0

0 L2 · · · 0
...

...
. . .

...

0 0 · · · Ln















, Rb =















R1 0 · · · 0

0 R2 · · · 0
...

...
. . .

...

0 0 · · · Rn















, (2.16)

L0 =















L0 L0 · · · L0

L0 L0 · · · L0

...
...

. . .
...

L0 L0 · · · L0















n×n

, R0 =















R0 R0 · · · R0

R0 R0 · · · R0

...
...

. . .
...

R0 R0 · · · R0















n×n

. (2.17)

2.3.1 Existence of a steady state

With the derivatives set to zero for the steady state, the equation set (2.14) assumes the

form

V = RI+Vdc (2.18)

where

V =















V1

V2

...

Vn















, I =















I1

I2
...

In















, Vdc = Vdc















1

1
...

1















n×1

, R = R0 +Rb, (2.19)

with the upper-case symbols denoting the steady-state values of variables.
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Pre-multiplication of (2.18) by IT , the transpose of I, yields

ITV = ITRI+ ITVdc (2.20)

and

PT = ITV

=

n
∑

i=1

ViIi

=
n
∑

i=1

P ∗
dci

= ITRI+ ITVdc, (2.21)

where PT is the sum of the powers leaving the network-side ports of all dc-dc converters.

Equation (2.21) describes the steady-state power flow in the dc system. The term

ITRI is the total power dissipated in the network cables, and ITVdc is the power that

enters the dc port of the central VSC and flows to the ac grid. The extreme value of PT

can be found by setting the derivative of (2.21) with respect to I to zero:

∂PT

∂I

∣

∣

∣

∣

I=Iext

= 2RIext +Vdc = 0 (2.22)

which implies

Iext = −
1

2
R−1Vdc. (2.23)

It can then be shown that the second derivative of (2.21) is 2R. If Ri 6= 0 (i =

1, 2, ..., n), then R is symmetric and positive-definite (see Appendix B for proof) and,

therefore, also nonsingular. Hence, 2R is also a positive-definite matrix and, thus, PT is

minimum for the current given by (2.23), Iext. Substituting for Iext from (2.23) in (2.21),

one finds

PT,min = −
1

4
VT

dc
R−1Vdc, (2.24)

where PT,min is the minimum of PT and is always negative.

Equation (2.24) gives the minimum of PT for a real-valued set of currents. In other

words, if PT is smaller than PT,min, i.e., if the power collectively absorbed by the dc-dc

converters exceeds the absolute value of PT,min, then the power loss of the dc network

becomes excessive and (2.21) fails to yield a real-valued solution. Thus, if a steady state
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exists, the following inequality holds:

PT ≥ PT,min. (2.25)

Inequality (2.25) represents a necessary condition for the existence of a steady state

for the dc system. Thus, a steady state does not exist if the aggregate power absorbed by

the dc-dc converters is greater than the absolute value of PT,min. However, if inequality

(2.25) holds, one cannot guarantee the existence of a steady state for the system. It is

also interesting to note that for a single-source/single-load resistive circuit, the absolute

value of the right-hand side of (2.25) is the maximum power that can be transferred to

the load, corresponding to the case of the source Thevenin resistance being equal to the

load resistance.

2.3.2 State-space model

Linearizing the equation set (2.13), one finds

Ci

dṽi
dt

= −
P ∗
dci

V 2
i

ṽi − ĩi (2.26)

where “ ˜ ” denotes small-signal perturbation of a variable, and Vi is the steady-state

value of vi.

Rewriting equation sets (2.12) and (2.26) in the matrix form, one obtains

L
d̃i

dt
= −Rĩ+ ṽ (2.27)

C
dṽ

dt
= −̃i−Pṽ (2.28)

where

L = L0 + Lb, (2.29)

and

C =















C1 0 · · · 0

0 C2 · · · 0
...

...
. . .

...

0 0 · · · Cn















, P =















P ∗

dc1

V 2

1

0 · · · 0

0
P ∗

dc2

V 2

2

· · · 0
...

...
. . .

...

0 0 · · ·
P ∗

dcn

V 2
n















. (2.30)
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If Ci 6= 0 and Li 6= 0 (i = 1, 2, ..., n), then C and L are symmetric, positive-definite

(see Appendix B), and, therefore, nonsingular matrices.

Equations (2.27) and (2.28) can be combined into a classical state-space form as

ẋ = Ax (2.31)

where

x =

[

ĩ

ṽ

]

2n×1

, A =

[

−L−1R L−1

−C−1 −C−1P

]

2n×2n

. (2.32)

Matrix A can be expressed as

A =

[

−L−1 0n×n

0n×n −C−1

][

R −In×n

In×n P

]

= N−1M (2.33)

where

N =

[

−L 0n×n

0n×n −C

]

, M =

[

R −In×n

In×n P

]

, (2.34)

and N is a symmetric, negative-definite (and, therefore, non-singular) matrix.

For stability analysis, one must evaluate the eigenvalues of A in (2.31). Let λ be an

eigenvalue of A. Then one can write

Aw = λw, w 6= 0, (2.35)

where w is an eigenvector of A, associated with λ. Substituting for A in (2.35) from

(2.33), one finds

N−1Mw = λw. (2.36)

Pre-multiplying (2.35) by N, one obtains

Mw = λNw, (2.37)

Calculating the conjugate transpose of (2.37), one finds

w̄MT = λ̄w̄N, (2.38)

where λ̄ is the complex conjugate of λ, w̄ is the adjoint of w, and MT is the transpose
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of M.

Pre-multiplying both sides of (2.37) by w̄, and post-multiplying both sides of (2.38) by

w, one finds

w̄Mw = λw̄Nw (2.39)

w̄MTw = λ̄w̄Nw. (2.40)

Adding the corresponding sides of (2.39) and (2.40), one concludes

w̄
(

M+MT
)

w = 2Re(λ)w̄Nw. (2.41)

In (2.41), N is a real, symmetric, negative-definite matrix. Therefore, the real part

of λ is negative if
(

M+MT
)

is a positive-definite matrix.

w̄
(

M+MT
)

w =
[

w̄1 w̄2

]

[

2R 0n×n

0n×n 2P

][

w1

w2

]

(2.42)

= 2w̄1Rw1 + 2w̄2Pw2 (2.43)

where

w =

[

w1

w2

]

. (2.44)

As mentioned earlier, R is a positive-definite matrix and, based on (2.35) and (2.44),

w1 andw2 cannot both be zero. Therefore,
(

M+MT
)

is positive-definite if P is positive-

definite. Hence, the dc system is stable if P is positive-definite:

P > 0 ⇒ Re(λ) < 0. (2.45)

Since P is a diagonal matrix, it is positive-definite if its diagonal elements are all

positive, i.e., if the dc-dc converters all deliver power to the dc system. However, it

should be pointed out that the inequality (2.45) is a sufficient condition for stability

of the dc system. Thus, one cannot comment on the stability of the dc system if P is

positive-semidefinite, negative-definite, or indefinite, i.e., if some converters absorb power.

Therefore, to evaluate the stability of the dc system, one must evaluate the eigenvalues

of A, as explained next.
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Equation (2.37) can be rewritten as

(M− λN)w = 0, w 6= 0. (2.46)

Substituting for M andN from (2.34) in (2.46), one can arrive at the following expression

for the determinant of M− λN, which, in turn, is the characteristic equation associated

with (2.31):
∣

∣

∣

∣

∣

R+ λL −In×n

In×n P+ λC

∣

∣

∣

∣

∣

= 0, (2.47)

which can be rewritten as [56]

∣

∣

∣(R+ λL)(P+ λC) + In×n

∣

∣

∣
= 0. (2.48)

Let us now express (2.48) in the form

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α1 + β1 α2 · · · αn

α1 α2 + β2 · · · αn

...
...

. . .
...

α1 α2 · · · αn + βn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (2.49)

where

αi = λ2L0Ci + λ

(

R0Ci +
P ∗
dci

V 2
i

L0

)

+
P ∗
dci

V 2
i

R0 (2.50)

and

βi = λ2LiCi + λ

(

RiCi +
P ∗
dci

V 2
i

Li

)

+

(

1 +
P ∗
dci

V 2
i

Ri

)

. (2.51)

It can then be shown (see Appendix C) that (2.49) is equivalent to the 2nth-order poly-

nomial equation
n
∏

i=1

βi +
n
∑

i=1

(αi

n
∏

k = 1

k 6= i

βk) = 0 , (2.52)

which is remarkably easier to solve, from a computational burden standpoint, relative to

a direct calculation of the eigenvalues of A (i.e., using matrix operations); this facilitates

physical implementation of the method on an embedded signal-processing platform.

A special case deserves some inspection: let R0 and L0 be zero. Then, matrices R
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and L are diagonal and, therefore, R+ λL takes the form

R+ λL =















R1 + λL1 0 · · · 0

0 R2 + λL2 · · · 0
...

...
. . .

...

0 0 · · · Rn + λLn















. (2.53)

Since C and P are diagonal matrices, (2.48) can be rewritten as

∣

∣

∣

∣

∣

∣

∣

∣

∣

(R1 + λL1)
(

P ∗

dc1

V 2

1

+ λC1

)

+ 1 · · · 0
...

. . .
...

0 · · · (Rn + λLn)
(

P ∗

dcn

V 2
n

+ λCn

)

+ 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (2.54)

and
n
∏

k=1

[

(Rk + λLk)

(

P ∗
dck

V 2
k

+ λCk

)

+ 1

]

= 0. (2.55)

Equation (2.55) implies that the dc system is stable if the power setpoint of each dc-dc

converter satisfies the corresponding following two constraints:

P ∗
dck > −

V 2
k

Rk

, (2.56)

and

P ∗
dck > −

RkCkV
2
k

Lk

, (k = 1, 2, ..., n). (2.57)

It should be pointed out that, typically, (2.57) is the ruling constraint.

The foregoing conclusion is expected in view of the fact that the special case corre-

sponds to a dc system that consists of n independently energized dc-dc converters, and

it is important as it enables one to gain insights into the impact of parameters on the

stability, in general. For example, one can expect the stability to improve as larger ca-

pacitances are chosen for the dc-dc converters, whereas larger network inductances are

detrimental to the stability. Further, (2.57) indicates that larger line resistances improve

the stability. However, an increase in resistances is not a remedial option as the power

loss in the system will also increase. Therefore, to overcome this problem, an active

damping method has been proposed in [40] to virtually increase the resistance while

avoiding physical resistances. An increase in the dc voltage level of the system also im-

proves the stability, as (2.57) indicates. However, a higher dc voltage level has safety and
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Figure 2.10: Realistic battery model.

operational implications and, naturally, translates into a higher cost.

2.4 Simulation Results

To demonstrate the accuracy of the developed model, the equation set (2.31)-(2.32),

hereafter referred to as the “linear model”, is numerically solved in the MATLAB software

environment, and the response predicted by it is compared with the response obtained

from a detailed switched model of the dc system, Fig. 2.2, in the PSCAD/EMTDC

software environment. The parameters used for simulation studies and model validation

are given in Appendix D, unless otherwise is mentioned.

The study dc system includes six dc-dc converters, one for a PV system and the

remainder for five vehicles. The network-side current of the PV system converter is

represented by i1, whereas i2 through i6 signify the network-side currents of the vehicle

converters (battery chargers).

2.4.1 Realistic Battery Model

The battery in Fig. 2.7 has been modeled by an ideal voltage source. Figure 2.10 shows

a more realistic model of a Li-ion battery [57]. The model consists of a dc voltage source,

Voc to represent the open-circuit voltage of the battery, a series resistor, Rser, and two

RC parallel network, (Rtrs, Ctrs) and (Rtrl, Ctrl) to model the transient behavior of the

battery. It can be assumed that the value of the resistors and capacitors in the model

are constant over the SOC range of 20% to 100% [57].

To build a battery module with high voltage and capacity, multiple low-voltage, low-

capacity battery cells should be connected in series and parallel. In this thesis, the voltage

of the battery module in the PEVs is considered to be 320 V. Therefore, using a 4.1 V,

0.85 Ah battery cell, 78 battery cells must be connected in series to form a branch and
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build the voltage (Ncell ser = 78). To increase the battery capacity, multiple branches

are needed to be connected in parallel. Thus, for a typical 40 kWh battery module, 147

branches are needed (Nbranch par = 147). To find the parameters of the realistic model

for the battery module, one can use the following equations [58]

Voc(module) = Ncell serVoc(cell), Rser(module) =
Ncell ser

Nbranch par

Rser(cell),

Rtrs(module) =
Ncell ser

Nbranch par

Rtrs(cell), Ctrs(module) =
Nbranch par

Ncell ser

Ctrs(cell),

Rtrl(module) =
Ncell ser

Nbranch par

Rtrl(cell), Ctrl(module) =
Nbranch par

Ncell ser

Ctrl(cell).

Table 2.1 lists the parameters of a 4.1 V, 850-mAh TCL PL-383562 Li-ion battery

cell which is the building block of a 320 V, 40 kWh battery module [57]. As Table 2.1

indicates, the time constants RtrsCtrs and RtrlCtrl for the battery module are 31.8 s and

219.2 s, respectively. These time constant values are very large comparing to the time

scale of the network-side dynamics of the dc-dc converter, and therefore, their impact on

the transient behavior of the dc-dc converter is negligible. Fig. 2.11 shows the responses of

a battery charger to a step change in the power setpoint from 0 to -10 kW. The responses

have been illustrated for two cases: (i) when the battery has been modeled by an ideal

voltage source of 320 V, and (ii) when the battery has been modeled by a realistic battery

model of Fig. 2.10 with parameters of Table 2.1. In this test, at t = 0.8 s, the power

setpoint of the battery charger is changed from 0 to -10 kW, meaning that the battery is

started to being charged. As Fig. 2.11 shows, although there are some discrepancies in

battery voltage, Vbat1, between realistic model and the ideal voltage source, the battery

current, iB1, and the power between the battery charger and the rest of dc system, Pdc2,

are almost identical for two cases. In fact, due to constant-power property of the dc-dc

converter, the battery voltage fluctuations don’t have any impact on the network-side

dynamics of the converter as depicted in Fig. 2.11, and therefore, hereafter in this thesis,

the ideal voltage source will be used to model the batteries. It should also be noted that

in commercially-available standard chargers on the market, the maximum charging or

discharging power of the battery is a function of the battery voltage which is a function

of length of charging or discharging. However, as the power setpoint of the battery

charger is updated infrequently, this is not a source of instability in this thesis. A more

sophisticated treatment would still result in a monotonically changing value and hence
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Table 2.1: Parameters of a typical battery cell and battery module
Parameter Battery cell Battery module

Nominal Voltage (V) Voc 4.1 320
Capacity (Ah) Bcap 0.85 125
Internal resistance (mΩ) Rser 74 39
Transient Rtrs 46 24
resistances (mΩ) Rtrl 49 26
Transient Ctrs 703 1326
capacitances (F) Ctrl 4475 8433
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Figure 2.11: Response of a battery charger for two models for the battery: ideal voltage
source and realistic battery model.

would still not affect stability.

2.4.2 Case 1: Stable Pre- and Post-Disturbance Operation

Initially, the dc system is in a steady state, while the PV system delivers 50 kW (through

Converter #1), the first vehicle absorbs 10 kW (via Converter #2), the second and third

electric vehicles deliver 20 kW each, and the remaining two vehicles absorb 20 kW each.

Then at t = 1.3 s, the power setpoint of Converter #2 is changed stepwise from −10

kW to −20 kW. Fig. 2.12 depicts the responses of the variables i1, i2, i3, and Pdc2, and

demonstrating a close agreement between the linear and detailed models. Fig. 2.12 also

shows that, as assumed, vdc remains tightly regulated about its pre-disturbed steady-state
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Figure 2.12: Response of the dc-system to a change in Pdc2 from −10 kW to −20 kW
when Pdc1 is 50 kW and Pdc3 to Pdc6 are −20 kW.

value.

Fig. 2.13 shows the results of another test, one in which Converter #3 (corresponding

to the second vehicle) delivers power to the rest of the dc system. In this case, the dc

system is initially in a steady state, while the PV system produces 50 kW, Converter #2

absorbs 50 kW, Converter #3 delivers 20 kW, and every other converter absorbs 20 kW.

Then, the power setpoint of Converter #3 is changed stepwise from 20 kW to 30 kW, at

t = 1.3 s. Fig. 2.13 illustrates a close agreement between the linear and detailed models

in predicting the responses of i1, i2, i3, and Pdc3.

2.4.3 Case 2: Sensitivity to Cable Length

To evaluate the sensitivity to the length of the interconnection cables, an eigenvalue anal-

ysis has been conducted using the linear model, and Fig. 2.14 illustrates the dependence

of the dominant eigenvalues of the dc system on the network cable length. In this case,

the PV system generates a power of 10 kW, Converter #2 absorbs 70 kW, and every

other converter absorbs 60 kW. Thus, the length of the cables, connecting the dc bus

to the central VSC and the dc-dc converters, are increased from 100 m to 500 m. As

illustrated in Fig. 2.14, the eigenvalues move toward the imaginary axis if the length of
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Figure 2.13: Response of the dc-system to a change in Pdc3 from 20 kW to 30 kW when
Pdc1 is 50 kW and Pdc2 is −50 kW and Pdc4 to Pdc6 are −20 kW.
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Figure 2.14: Eigenvalue migration plot as a function of the length of the interconnection
cables.

the interconnection cables increase.

2.4.4 Case 3: Sensitivity to Network-Side Capacitances

Fig. 2.15 illustrates the dependance of the stability of the dc system on the network-side

capacitances of the converters. For this case, it is assumed that the PV system delivers 10

kW, Converter #2 absorbs 80 kW, and any other converter absorbs 70 kW. Thus, three



2.4. Simulation Results 35

−60 −50 −40 −30 −20 −10 0
−2500

−2000

−1500

−1000

−500

0

500

1000

1500

2000

2500

j
w

σ

Increase in capacitance

Increase in capacitance

Figure 2.15: Eigenvalue migration plot as a function of network-side capacitance.

dominant pairs of eigenvalues have been marked on the complex plane for the network-

side capacitances equally ranging from 2000 µF to 5000 µF . As Fig. 2.15 shows, the

eigenvalues move away from the imaginary axis as the network-side capacitances increase,

indicating the stabilizing effect of the network-side capacitances.

2.4.5 Case 4: Sensitivity to Power Absorption

Fig. 2.16 illustrates the migration of the dominant pair of eigenvalues (i.e., the pair

with the real part smallest in absolute value), as the power absorbed by Converter #2

is increased, for three different values of network-side capacitances of the converters. It

is assumed for this case that the PV system generates 10 kW, while, except Converter

#2, each converter absorbs 70 kW. Thus, the eigenvalue loci are mapped on the complex

plane for the power of Converter #2 ranging from −20 kW to −80 kW. As Fig. 2.16 indi-

cates, irrespective of the value of the network-side capacitances, the eigenvalues approach

the imaginary axis as the power absorbed by Converter #2 increases. This study case

illustrates what is well known as the destabilizing effect of the so-called constant-power

loads [20], [28], [59], [40]- [60].

Fig. 2.16 also indicates that the maximum amount of power that Converter #2 can

absorb before the system becomes unstable decrease as the network-side capacitances are

made smaller. This is consistent with the findings of Fig. 2.15.
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2.4.6 Case 5: Unstable Post-Disturbance Operation

In the last study case, the dc system is assumed to initially be in a steady state, with the

PV system generating 10 kW, Converter #2 absorbing 60 kW, and every other converter

absorbing 70 kW. Moreover, each converter has a network-side capacitance of 2000 µF .

Then, the power setpoint of Converter#2 is changed stepwise from −60 kW to −80 kW,

at t = 1.3 s. As previously illustrated by Figs. 2.15 and 2.16, the new set of powers results

in a pair of imaginary eigenvalues, about ± 2100j rad/s, and, consequently, destabilizes

the system, as Fig. 2.17 indicates. It is observed that the period of oscillations is about

3 ms (≃ 2π/2100 s), confirming that the linear and detailed models closely agree.

2.5 dc System with Multiple Nodes of Coupling

Fig 2.18 illustrates a configuration where no common node of coupling exists, but the

converters are connected to the network at different corresponding nodes of coupling;

the impedance between two adjacent nodes is represented by the series connection of an

inductance, Lbi, and a resistance, Rbi.

The dynamics of the system of Fig. 2.18 are governed by the following differential



2.5. dc System with Multiple Nodes of Coupling 37

−220

−200

−180

−160

−140

−120

i 2
(A

)

 

 

linear model
switched model

−100

−90

−80

−70

−60

−50

P
d
c
2

(k
W

)

 

 

linear model
switched model

1.3 1.302 1.304 1.306 1.308 1.31 1.312 1.314 1.316 1.318 1.32

472

474

476

478

480

482

484

v
d
c

(V
)

time (s)

 

 

switched model

Figure 2.17: Response of the dc-system to a change in Pdc2 from −60 kW to −80 kW
when Pdc1 is 10 kW, and Pdc3 to Pdc6 are −70 kW.

equations:

− vi +Riii + Li

dii
dt

+Rb1

n
∑

k=1

ik + Lb1

n
∑

k=1

dik
dt

(2.58)

+ ...+Rbi

n
∑

k=i

ik + Lbi

n
∑

k=i

dik
dt

+ vdc = 0,

for i = 1, 2, ..., n− 1, and

− vn +Rnin + Ln

din
dt

+Rb1

n
∑

k=1

ik + Lb1

n
∑

k=1

dik
dt

+ ...+Rb(n−1)

n
∑

k=n−1

ik + Lb(i−1)

n
∑

k=n−1

dik
dt

dt+ vdc = 0,

Ci

dvi
dt

=
P ∗
dci

vi
− ii, i = 1, 2, ..., n. (2.59)
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Linearizing (2.58) and (2.59), and expressing the resulting equations in the matrix

form, one finds

Lm

d̃i

dt
= −Rmĩ+ ṽ (2.60)

C
dṽ

dt
= −̃i−Pṽ (2.61)

where

Lm = Ln + Lb, (2.62)

Rm = Rn +Rb, (2.63)

Ln =

























Lb1 Lb1 Lb1 · · · Lb1

Lb1 Lb1 + Lb2 Lb1 + Lb2 · · · Lb1 + Lb2

Lb1 Lb1 + Lb2

∑3
i=1 Lbi · · ·

∑3
i=1 Lbi

...
...

...
. . .

...

Lb1 Lb1 + Lb2

∑3
i=1 Lbi · · ·

∑n−1
i=1 Lbi

Lb1 Lb1 + Lb2

∑3
i=1 Lbi · · ·

∑n−1
i=1 Lbi
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Rn =




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

Rb1 Rb1 Rb1 · · · Rb1

Rb1 Rb1 +Rb2 Rb1 +Rb2 · · · Rb1 +Rb2
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and Lb, Rb, C, and P have been defined by (2.16) and (2.30), respectively.

It can be shown that Rm and Lm are positive-definite matrices. Therefore, one can

employ the same approach as the one presented in Sections 2.3.1 and 2.3.2 to find a

state-space model for the system.

2.6 Conclusion

A systematic method was presented for developing a model of a dc distribution system,

based on the configuration of the system. The dc distribution system is assumed to host

electric vehicles and photovoltaic (PV) modules, using dc-dc converters, and integrates

them with an ac power grid. The developed model is of the matrix form and, therefore,

can readily be expanded to represent a dc distribution system of any desired number of dc-

dc converters. The model captures both the steady-state and dynamic characteristics of

the system, and includes port capacitors of the converters, as well as the interconnection

cables. Thus, it can be used for identifying the condition for existence of a steady

state, as well as for stability analysis. Furthermore, an alternative set of characteristic

equations was proposed that are less computationally intensive than the original matrix

representation, for example, for on-line stability assessment tasks. The adequacy of

the proposed model was demonstrated through a number of case studies conducted and

compared in PSCAD/EMTDC and MATLAB software environments.



Chapter 3

Stability Enhancement of the DC

Distribution System

3.1 Introduction

The dc distribution systems embedding dc-dc converters are prone to instability due to

constant-power property of the dc-dc converters [28], [35]; the system becomes unstable if

the powers absorbed by the battery chargers exceed certain values [20]. This phenomenon

inflicts a limit on the maximum power that can be imported to charge the batteries

and, consequently, precludes full utilization of the installed capacities and prolongs the

charging times. Therefore, it is imperative to

1. systematically characterize the phenomenon and identify the prevailing constraints,

and

2. devise a stability enhancement technique, in order to push the limits and expand

the stable operating region of the dc system.

Expanding upon the idea proposed in [36], this chapter proposes a control technique

for expanding the stable operating region of a dc distribution system integrating PHEVs

via bidirectional dc-dc converters (battery chargers), such that the dc system and its

PHEVs can import larger powers from the host ac grid. The proposed technique is sim-

ple, does not require information internal to the system or its embedded converters, and

does not need hardware modifications. Rather, it only employs local measurements and

individual power setpoints and, therefore, can be exercised in a decentralized fashion.

40
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These, in turn, permit the use of commercially available dc-dc converters (battery charg-

ers), expected to further reduce the overall cost of the system. The proposed technique

is also applicable to other dc distribution systems, e.g., shipboard power systems, that

have multiple power-electronic converters.

3.2 System Configuration

Fig. 3.1 illustrates a dc distribution system, for example, in a parking lot, that hosts

PHEVs and photovoltaic (PV) modules. In this system, dc-dc converters are utilized as

battery chargers for the PHEVs and also for interfacing the PV modules. Moreover, a

central voltage-sourced converter (VSC) interfaces the dc distribution system to the host

ac grid. A communication network [61] is used to enable the exchange of metering and

control information for a management unit, to and from the dc-dc converters and the

central VSC. The management unit calculates the limits of the power exchange setpoints

and sends them to the dc-dc converters, to ensure that the dc system operates in its

stable operation region. The PHEV owners, on the other hand, can set state-of charge

(SOC) limits for their vehicles, to permit power exchanges only if the SOC resides within

a certain range. For example, if the SOC is above 70%, then energy can be sold to the rest

of the system, whereas if the SOC is below 40%, then the vehicle should buy energy from

the rest of the system. The aforementioned limits (determined based on the trip plans,

electricity price, and other factors) translate into power setpoints for the corresponding

dc-dc converters. For example, for a PHEV with 20 kWh of battery capacity, if the SOC

limit for energy export is 70% and the present SOC is 85%, then 3 kWh (that is, 15% of

the battery capacity) can be sold by the PHEV to the rest of the system, meaning that

the power setpoint of this particular PHEV can be set to export 9 kW of power in 20

minutes, or 3 kW of power in one hour, and so on [20].

Fig. 3.2 shows a simplified schematic diagram of the dc system. As the diagram

indicates, the dc system consists of a central VSC, a network of RL branches representing

the dc distribution network, and a multitude (3, here) of dc-dc power electronic converters

that represent either the battery chargers of the PHEVs or the power-electronic interface

of the PV system. The central VSC is interfaced with the host ac power grid via a

three-phase tie reactor with a per-phase inductance of Ls; the resistance Rs represents

the aggregate effect of the ohmic power losses of the tie reactor and conduction power

losses of the VSC. The central VSC regulates the dc voltage of the network. The PHEV
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Figure 3.1: A dc bus for distribution of power in a parking lot for PHEVs.

battery chargers can draw or deliver power, the PV system delivers power, and the host

ac grid compensates for any generation-consumption power mismatch, via the central

VSC. A study system, whose parameters is reported in Appendix E, is used for stability

analysis and performance evaluation in this chapter.

3.3 Mathematical Model

3.3.1 Central VSC

The central VSC and its control scheme act as a controlled dc-voltage power port, [53],

and regulate the dc voltage of the network (Fig. 3.3 illustrates the concept). The VSC

is current-controlled, such that its output real power, Ps, rapidly tracks the real-power

setpoint, P ∗
s , issued by a dc-voltage regulation loop (in this chapter, variables with su-

perscript * signifies the setpoints). Pdc denotes the power that the rest of the dc system

delivers to the VSC. As Fig. 3.3 indicates, a measure of Pdc is incorporated in the control

loop, as a feed-forward signal, to mitigate the dynamic coupling between the dc-voltage

regulation loop and the rest of the dc system.

As discussed in [53] and also in Chapter 2 of this thesis, the transfer function from
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P̃s to ṽdc is

Gv(s) =
ṽ2dc(s)

P̃s(s)
= −

(

2

C

)

τs + 1

s
, (3.1)
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where the time constant τ is a function of the steady-state value of Pdc, i.e., Pdc0:

τ =
2LsPdc0

3V 2
s

, (3.2)

where Vs is the peak value of vs, the line-to-neutral voltage of ac grid at the point of

common coupling (PCC). As discussed in [53], τ is negative (corresponding to a non-

minimum phase plant) if Pdc0 is negative. Therefore, the dc-voltage regulation loop

should be tuned for a case where the maximum amount of power flows from the ac grid

towards the dc system to ensure stability also in other operating conditions.

In the remainder of this chapter, it is assumed that the controlled dc-voltage power

port of Fig. 3 rapidly and tightly regulates vdc at its setpoint v∗dc, irrespective of the

steady-state value or transient excursions of Pdc; it is assumed that the dynamics of vdc

decay to zero rapidly.

3.3.2 dc-dc converters

The PHEV batteries exchange energy with the dc system through corresponding bidirec-

tional dc-dc power-electronic converters which are referred, hereafter, to as the battery

chargers. Fig. 3.4 shows a simplified schematic diagram of a full-bridge dc-dc converter

which, with no loss of generality, is assumed to represent a battery charger (e.g., for the

ith PHEV of the dc system). The battery current, iBi, is regulated at its setpoint, i∗Bi, by

a feedback control loop in which a compensator, Ki(s), processes the error (i
∗
Bi− iBi) and

generates the control signal ui. A measure of the battery voltage, Vbati, is then added to

ui, and the resulting signal is divided by a measure of the network-side terminal voltage

of the converter, vi, to generate the pulse-width modulating (PWM) signal of the con-

verter. In turn, i∗Bi is calculated by dividing the battery power setpoint, P ∗
Bi, by Vbati.

Assuming a fast and accurate current-control loop, the battery power PBi equals

P ∗
Bi. On the other hand, PBi is almost equal to the power that leaves the network-side

port of the converter, Pti; the approximation is plausible in view of the typically small

battery-side filter resistance RBi and inductance LBi (due to the typically large switching

frequency of the converter), as well as negligible power losses of the converter. Therefore,

Pti ≃ P ∗
Bi. Then, in a steady state, the terminal capacitance Ci is effectively open and

the power that the battery charger delivers to the rest of the dc system, PPHEV i, is equals

Pti and, therefore, P
∗
Bi.
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Figure 3.4: Schematic diagram of the bidirectional dc-dc converter as a battery charger
for ith PHEV.

Hence, P ∗
Bi should be determined based on value of power one desires the battery

charger to deliver to the rest of the dc system, i.e, the setpoint PPHEV i, Fig. 3.4. The

desirable fast current control can be ensured by proper design of Ki(s). For example, as

discussed in Chapter 2, if Ki(s) is of the proportional-integral (PI) type, then its gains

can be determined for a first-order closed-loop transfer function of the form

IBi(s)

I∗Bi(s)
=

1

τBis+ 1
, (3.3)

for which the time constant τBi is a design choice.

The current that leaves the positive network-side terminal of the converter is iti =

Pti/vi, which based on the conclusion that Pti ≃ P ∗
Bi = P ∗

PHEV i, can be written as

iti =
1

vi
P ∗
PHEV i. (3.4)

Hence, from its network-side port, the converter can be represented by a dependent

current source whose value is iti = P ∗
PHEV i/vi, as shown in Fig. 3.5. If P ∗

PHEV i is an

exogenous signal, i.e., if it does not depend on any other variable of the dc system, then Pti

is constant (from the viewpoint of dynamics) and, therefore, the converter presents itself

as a constant-power element to the external world; any change in vi is counteracted by

a corresponding change in iti, such that Pti remains constant at P ∗
PHEV i. This constant-
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Figure 3.5: Simplified model of the dc-dc converter.
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Figure 3.6: Equivalent circuit for the analysis of the dc system of Fig. 3.2.

power property of regulated power-electronic converters is known for giving rise to system

instabilities, [29], as also demonstrated in Section 3.4.

In a PV system, the power-electronic interface is internally regulated so as to maintain

the dc voltage of its host modules at a value that corresponds to the maximum- power

point (MPP) under the prevailing sunlight and temperature conditions. Therefore, the

model of Fig. 3.5 can be used also for a PV system, except that P ∗
PHEV i is replaced with

PPV,mpp. Based on aforementioned discussions, Fig. 3.6 represents the equivalent circuit

of the dc system of Fig. 3.2; P ∗
PHEV i represents the power exchange setpoint of the ith

battery charger, and PPV,mpp signifies the maximum power of a PV array as imposed by

the corresponding maximum powerpoint tracking (MPPT) scheme.

Based on Fig. 3.6, the following nonlinear differential equations describe the dynamic
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behavior of the dc system of Fig. 3.2:

L
d(i1 + i2 + i3)

dt
+ L1

di1
dt

= v1 − vdc

−R(i1 + i2 + i3)− R1i1,

(3.5)

L1
di1
dt

− L2
di2
dt

= v1 − v2 −R1i1 +R2i2, (3.6)

L2
di2
dt

− L3
di3
dt

= v2 − v3 −R2i2 +R3i3, (3.7)

C1
dv1
dt

=
P ∗
PHEV 1

v1
− i1, (3.8)

C2
dv2
dt

=
P ∗
PHEV 2

v2
− i2, (3.9)

C3
dv3
dt

=
PPV,mpp

v3
− i3. (3.10)

The steady-state values of the variables of the system can be calculated by setting the

derivatives to zero in (3.5) through (3.10), and solving the nonlinear equations for every

given set of power exchange setpoints P ∗
PHEV 1, P

∗
PHEV 2, and PPV,mpp.

The linearized state-space representation of (3.5) through (3.10) can be expressed by

ẋ = Ax, (3.11)

where x = [̃i1 ĩ2 ĩ3 ṽ1 ṽ2 ṽ3]
T is the vector of state variables, and ˜ denotes small-

signal perturbation around steady-state operating points, and components of A can be

determined based on resistance and inductance of the cables, the capacitance of the

converters, and steady-state operating point of the converters. The state-space model of

(3.11) can be used for stability analysis of the dc system and in section 3.4, it will be

shown that the dc system is prone to instability when the battery chargers are drawing

energy from the ac power grid.

3.4 Stability Enhancement

Constant-power elements have been shown to have detrimental effects on the stability of

their host dc distribution systems, if the direction of flow from the distribution system

towards the constant-power elements [20], [28], [29]. Thus, to identify the boundary be-
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Figure 3.7: Stable and unstable regions in the charging mode.

tween the stable and unstable regions associated with the study system, an algorithm

has been executed in Matlab software environment, such that for any given set of power

exchange setpoints PPHEV 1 and PPHEV 2, the linearized state-space model has been ex-

amined in terms of stability, and the boundary between the stable and unstable operating

regions has been depicted in Fig. 7, when the PV system generates an aggregate power

of 10 kW.

It is observed that the system becomes unstable if the power absorbed by the bat-

tery chargers exceed the levels marked by the boundary curve. The instability, in turn,

prevents the battery chargers from operating at their full capacities and, consequently,

results in under-utilization of the investment and prolongs the charging times.

To mitigate the aforementioned instability issue, a filtered version of the network-

side voltage of each dc-dc converter is used to alter the power exchange setpoint of the

converter, as illustrated in Fig. 3.8. Thus, the power exchange setpoint of the ith dc-dc

converter, P ∗
Bi, is determined by the following nonlinear equations:

P ∗
Bi =

(

vi
wi

)

P ∗
PHEV i, (3.12)
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Figure 3.8: Modification of the power exchange setpoints of the dc-dc converters.
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Figure 3.9: Simplified model of the modified dc-dc converter.

dwi

dt
=

vi − wi

τi
, (3.13)

where τi and wi are the time constant and the filtered measure of the network-side dc

voltage, vi, respectively.

Fig. 3.9 shows a simplified model of the modified dc-dc converter.

The current that flows to the dc system, iti, can be found as

iti =
1

wi

P ∗
PHEV i. (3.14)

As illustrated in Section 3.6, if τi is large compared to time scale of dynamics of

interconnection cables in the dc network then the instability of the dc system can be

avoided in all operating points of the system. The steady-state gain of the filter that

converts vi to wi is unit, therefore, the modification of (3.12) will not change the steady-

state operating point of the dc-dc converter. It should be pointed out that, as Fig. 3.10

shows, the proposed technique modifies the power exchange setpoints of the converters,
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Figure 3.10: Connection block diagram for the proposed technique.

using local measurements. Thus, it does not require access to any variables internal to

the converters, does not need hardware or software modifications, and can be exercised in

a decentralized fashion. Therefore, it can be implemented using commercially available

battery chargers.

By applying the proposed modification in Fig. 3.8 to the dc-dc converters of the

system of Fig. 3.2, equations (3.8) through (3.10) are replaced by the following differential

equations.

C1
dv1
dt

=
P ∗
PHEV 1

w1
− i1, (3.15)

dw1

dt
=

v1 − w1

τ1
, (3.16)

C2
dv2
dt

=
P ∗
PHEV 2

w2
− i2, (3.17)

dw2

dt
=

v2 − w2

τ2
, (3.18)

C2
dv3
dt

=
PPV,mpp

w3
− i3, (3.19)

dw3

dt
=

v3 − w3

τ3
. (3.20)

The linearized versions of (3.5) through (3.7), and (3.15) through (3.20) can be expressed

in the state-space form as

ẋmod = Amodxmod, (3.21)

where xmod = [̃i1 ĩ2 ĩ3 ṽ1 w̃1 ṽ2 w̃2 ṽ3 w̃3]
T is the new vector of state variables, and the
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matrix Amod is introduced by (3.22) and (3.23); the uppercase letters denote the steady-

state values of the state variables, which can be calculated by setting the derivatives to

zero in equations (3.5) through (3.7), and (3.15) through (3.20).

Amod =







































RL2L3+R1(LL2+LL3+L2L3)
−den

RL2L3−R2LL3

−den
RL2L3−R3LL2

−den

RL1L3−R1LL3

−den

RL1L3+R2(LL1+LL3+L1L3)
−den

RL1L3−R3LL1

−den

RL1L2−R1LL2

−den
RL1L2−R2LL1

−den

RL1L2+R3(LL1+LL2+L1L2)
−den

− 1
C1

0 0

0 0 0

0 − 1
C2

0

0 0 0

0 0 − 1
C3

0 0 0

L(L2+L3)+L2L3

den
0 LL3

−den
0 LL2

−den
0

LL3

−den
0 L(L1+L3)+L1L3

den
0 LL1

−den
0

LL2

−den
0 LL1

−den
0 L(L1+L2)+L1L2

den
0

0 −
P ∗

PHEV 1

V 2

1
C1

0 0 0 0

1
τ1

− 1
τ1

0 0 0 0

0 0 0 −
P ∗

PHEV 2

V 2

2
C2

0 0

0 0 1
τ2

− 1
τ2

0 0

0 0 0 0 0 −
PPV,mpp

V 2

3
C3

0 0 0 0 1
τ3

− 1
τ3











































(3.22)

den = LL1L2 + LL1L3 + LL2L3 + L1L2L3. (3.23)

Stability of the modified system has been checked for the study system in Matlab

software environment. Fig. 3.11 shows the boundaries between the stable and unstable

operating regions for different values of τi. In this case, the PV system is generating a

power of 10 kW and power consumption of PHEVs are variable. Fig. 3.11 depicts that if

the values of τi increase then the stable operating region of the dc system expands. This

agrees with the analysis presented in Section 3.6.
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Figure 3.11: Boundaries between stable and unstable regions for unmodified and modified
systems with different values of τi.

It should be noted that an increase in the PV power generation slightly expands

the stable region, as Fig. 3.12 indicates. However, the improving effect of an increased

PV power generation is insignificant compared to the effect of the time constant in

the proposed modification. Moreover, PV power generation is not deterministic and,

therefore, one cannot rely on it to enhance the stability.

3.5 Simulation Results

The study system was simulated in the PSCAD/EMTDC software environment. Fig.

3.13 and Fig. 3.14 demonstrate the performance of the dc system in the normal conditions

when the steady-state operating point lies inside the stable region.

Initially, the system is in a steady state and, as Fig. 3.13 shows, the controlled dc-

voltage power port regulates vdc at 480 V. At t = 0.5 s, the PV system starts to generate

a power of 20 kW. At t = 0.6 s, the batteries in PHEV2 start to absorb a power of 20

kW, as indicated by P ∗
PHEV 2, and at t = 0.7 s, the batteries in PHEV1 start to charge

with a power of 30 kW, as indicated by P ∗
PHEV 1. Therefore, in a steady state, a power of
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Figure 3.12: Boundaries between stable and unstable regions for different values of power
generation of PV modules.

about 30 kW flows from the ac power grid to the dc system. As Fig. 3.13 illustrates, the

dc system remains stable under the aforementioned sequence of events and the central

VSC regulates the vdc at 480 V.

Fig. 3.14 shows the system performance for a case where the power flow is from the

dc system towards the ac power grid. The PV system starts to generate a power of 20

kW at t = 0.5 s, as Fig. 3.14 shows. At t = 0.6 s, the batteries in PHEV2 start to

consume a power of 20 kW that compensates the PV system generation so no power

flows to the ac power grid. At t = 0.7 s, the batteries in PHEV1 start to generate 30

kW, as indicated by P ∗
PHEV 1 in Fig. 3.14. Consequently, in a steady state, a power of

around 30 kW flows from the dc system to the ac power grid. The dc system remains

stable and vdc is regulated at 480 V for all of the aforementioned disturbances.

Fig. 3.15 and Fig. 3.16 demonstrate the effectiveness of the proposed modification to

enhance the stability of the dc distribution system. Performance of the system has been

has been analyzed in two working scenarios. In the first scenario, as Fig. 3.15 shows,

the system is working at an operating point where the power consumptions of PHEV1

and PHEV2 are 60 kW and 50 kW, respectively, and the PV system generates a power
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Figure 3.13: The dc system response when the power flows from the ac power grid to the
dc system.
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Figure 3.14: The dc system response when the power flows from the dc system to the ac
power grid.

of 10 kW. Based on Fig. 3.11, this operating point situates at the verge of instability

for the unmodified dc system. Thus, a change in the power consumption of PHEV1, at
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t = 1.3 s, from 60 kW to 77 kW, leads to instability for the unmodified dc system while

for the modified dc systems with both τi = 0.1 ms, τi = 0.2 ms, and τi = 2 ms, the

systems remain stable and converge to the new setpoints. The instability first occurs to

P1, P2, and P3, while the dc-dc converters try to keep the power levels of PHEV1 and

PHEV2 constant at their setpinots. The central VSC keeps the dc voltage, vdc, constant.

In the second scenario, as Fig. 3.16 shows, the system works at another operating

point where the power consumptions of PHEV1 and PHEV2 are 60 kW and 50 kW,

respectively, and the PV system generates 10 kW. A change in the power consumption

of PHEV1, at t = 1.3 s, from 60 kW to 85 kw, moves the operating point outside

of the stable region for the unmodified dc system and the modified dc system with

τi = 0.3 ms, as predicted in Fig 3.11. Fig. 3.16 shows that this transition destabilizes

both the unmodified dc system and the modified dc system with τi = 0.1 ms, whereas the

modified dc-dc converters with τi = 0.2 ms and τi = 2 ms remains stable and converge

to the new setpoints. The instabilities in this case also first occur to P1, P2, and P3.

Figs. 3.15 and 3.16 show that, the response settles more rapidly at its post-disturbance

value as the the time constant τi is increased.

Fig. 3.15(a) and Fig. 3.16(a)(b) might give the impression that the instability does

not have any impact on the dc voltage. However, this is not the reality and is due to

the fact that the simulation results in Fig. 3.15 and Fig. 3.16 have been shown for a

relatively short period of time, for the sake of clarity of the waveforms; the growth of

oscillations becomes more obvious if one shows the waveforms over a longer time slot.

Fig. 3.17 presents long-run simulations for both scenarios. As depicted in the figure,

in both scenarios the dc voltage starts to oscillate and eventually crashes due to the

instability of the dc system. However, in the first scenario, the oscillations start after a

longer time, compared to the second scenario, due to the larger distance of its operating

point relative to the borderline between the stable and unstable regions.

3.6 Stability Enhancement for a dc System with Sin-

gle dc-dc Converter

Fig. 3.18 illustrates the application of the proposed modification to a circuit consisting

of a dc voltage source, an interconnection line, and a constant-power element. In the

circuit of Fig. 3.18, E represents the source voltage, L and R respectively signify the

line inductance and resistance, and C denotes the line-side terminal capacitance of the
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Figure 3.15: Responses of the dc system in the first scenario; (a) the unmodified dc
system (b) the modified dc system with τi = 0.1 ms, (c) the modified dc system with
τi = 0.2 ms, (d) the modified dc system with τi = 2 ms.

constant-power element.

The dynamics of the circuit of Fig. 3.18 are governed by the following differential

equations

L
di

dt
= −Ri+ v − E, (3.24)

τ
dw

dt
= v − w, (3.25)

C
dv

dt
= −i+

P ∗

w
. (3.26)

It can be shown that the existence condition for steady-state operating point of the

system is

P ∗ ≥ −
E2

4R
. (3.27)

It also can be shown that the steady-state voltage of the constant-power element, V , is
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Figure 3.16: Responses of the dc system in the second scenario; (a) the unmodified dc
system (b) the modified dc system with τi = 0.1 ms, (c) the modified dc system with
τi = 0.2 ms, (d) the modified dc system with τi = 2 ms.

always greater than half of dc voltage source, E, for all operating points

V ≥
E

2
. (3.28)

The linearized form of (3.26) is

C
dṽ

dt
= −ĩ−

P ∗

V 2
w̃. (3.29)

The eigenvalues of the linearized system can be found by solving the following char-

acteristic equation

LCτλ3 + (LC +RCτ) λ2 +

(

P ∗

V 2
L+RC + τ

)

λ+
P ∗

V 2
R + 1 = 0. (3.30)

Based on Routh-Horwitz stability test, the system is stable if and only if

P ∗ > −
V 2

R
, (3.31)
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Figure 3.17: Long-run simulations for vdc; the first unstable scenario for instability (top),
the second unstable scenario for instability (bottom).
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Figure 3.18: Proposed modification on a single constant-power element.

and

P ∗ > −
RCV 2

L
−

τV 2

L
, (3.32)
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and

(LC +RCτ)

(

P ∗

V 2
L+RC + τ

)

> LCτ

(

1 +
P ∗

V 2
R

)

. (3.33)

Considering (3.27) and (3.28), inequality (3.31) is always true for all operating points

of the system. If τ is chosen as

τ >
L

R
− RC, (3.34)

then one can write

−
1

R
> −

RC

L
−

τ

L
. (3.35)

Multiplying both sides of (3.35) by V 2, one obtains

−
V 2

R
> −

RCV 2

L
−

τV 2

L
. (3.36)

Comparing (3.31) and (3.36), one can conclude that by choosing τ as (3.34), the inequality

(3.32) is true for all operating points of the system.

Inequality (3.33) can be rewritten as

LC

(

P ∗

V 2
L+RC + τ

)

+RCτ

(

P ∗

V 2
L+RC + τ

)

> LCτ

(

1 +
P ∗

V 2
R

)

. (3.37)

First, let focus on the second term of the left hand side of (3.37) and its relation to the

right hand side of (3.37). Choosing τ as (3.34) one can write

RC + τ >
L

R
. (3.38)

Adding P ∗

V 2L to both side of (3.38), one obtains

RC + τ +
P ∗

V 2
L >

L

R
+

P ∗

V 2
L. (3.39)

Inequality (3.39) can be rewritten as

R

(

RC + τ +
P ∗

V 2
L

)

> L

(

1 +
P ∗

V 2
R

)

(3.40)

or

RCτ

(

RC + τ +
P ∗

V 2
L

)

> LCτ

(

1 +
P ∗

V 2
R

)

. (3.41)

Inequality (3.41) indicates that if τ is chosen as (3.34) then the second term of left hand
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side of (3.37) is always greater than the left hand side of (3.37).

On the other hand, we already know that if τ is chosen as (3.34) then (3.32) is true.

Therefore, one can write

LC

(

P ∗

V 2
L+RC + τ

)

> 0. (3.42)

Combining (3.41) and (3.42), one can conclude that (3.37) always holds, and therefore,

the system is always stable in its operating point range. This means that by choosing

a proper value for τ , based on parameters of the dc line, the proposed modification

stabilizes the dc system with the constant-power element.

As inequality (3.34) indicates, a dc system with larger network-side dc-dc converter

capacitances and/or smaller interconnection cable L/R ratios requires smaller values

for the time constant τi to ensure stability. In the other words, larger network-side

capacitances and smaller cable L/R ratios have stabilizing effects on the dc system.

3.7 Stability Enhancement for a dc System with n

dc-dc Converters

Fig. 3.19 illustrates the application of the proposed modification to a dc system with n

dc-dc converters for n PHEVs. Applying the same approach as of Section 2.3.2, one can

develop a state-space model for the modified system of Fig. 3.19 as the following:

ẋnew = Anewxnew, (3.43)

where

xnew =









ĩ

ṽ

w̃









3n×1

, ĩ =









ĩ1
...

ĩn









, ṽ =









ṽ1
...

ṽn









, w̃ =









w̃1

...

w̃n









. (3.44)

Matrix A can be expressed as

Anew =









−L−1R L−1 0n×n

−C−1 0n×n −C−1P

0n×n τ
−1 −τ

−1









3n×3n

(3.45)
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Figure 3.19: Proposed modification on a dc system with n dc-dc converters.

where

τ =















τ1 0 · · · 0

0 τ2 · · · 0
...

...
. . .

...

0 0 · · · τn















, (3.46)

and

L =















L0 + L1 L0 · · · L0

L0 L0 + L2 · · · L0

...
...

. . .
...

L0 L0 · · · L0 + Ln















, R =















R0 +R1 R0 · · · R0

R0 R0 +R2 · · · R0

...
...

. . .
...

R0 R0 · · · R0 +Rn















(3.47)

C =















C1 0 · · · 0

0 C2 · · · 0
...

...
. . .

...

0 0 · · · Cn















, P =















P ∗

PHEV 1

V 2

1

0 · · · 0

0
P ∗

PHEV 2

V 2

2

· · · 0
...

...
. . .

...

0 0 · · ·
P ∗

PHEVn

V 2
n















. (3.48)

Similar to (2.33), Anew can be rewritten as

Anew =









−L−1 0n×n 0n×n

0n×n −C−1 0n×n

0n×n 0n×n −τ
−1

















R −In×n 0n×n

In×n 0n×n P

0n×n −In×n In×n









= N−1
new

Mnew (3.49)
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where

Nnew =









−L 0n×n 0n×n

0n×n −C 0n×n

0n×n 0n×n −τ









, Mnew =









R −In×n 0n×n

In×n 0n×n P

0n×n −In×n In×n









. (3.50)

Assuming {τi > 0, i = 1, 2, · · ·n}, Nnew is a symmetric, negative-definite (and, there-

fore, non-singular) matrix.

For stability analysis, one must evaluate the eigenvalues of Anew in (3.43). Let λ be

an eigenvalue of Anew. Then one can write

Au = λu, u 6= 0, (3.51)

where u is an eigenvector of Anew, associated with λ. Substituting for Anew in (3.51)

from (3.49), one finds

Nnew
−1Mnewu = λu. (3.52)

Pre-multiplying (3.52) by Nnew, one obtains

Mnewu = λNnewu, (3.53)

Equation (3.53) can be rewritten as

(Mnew − λNnew)u = 0, u 6= 0. (3.54)

Substituting for Mnew and Nnew from (3.50) in (3.54), one can arrive at the following

expression for the determinant of Mnew − λNnew, which, in turn, is the characteristic

equation associated with (3.43):

∣

∣

∣

∣

∣

∣

∣

∣

R+ λL −In×n 0n×n

In×n λC P

0n×n −In×n In×n + λτ

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (3.55)

which can be rewritten as

∣

∣

∣In×n + λτ
∣

∣

∣
det

([

R+ λL −In×n

In×n λC

]

−

[

0n×n

P

]

Γn×n

[

0n×n −In×n

]

)

= 0 (3.56)
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or
∣

∣

∣In×n + λτ
∣

∣

∣

∣

∣

∣

∣

∣

R+ λL −In×n

In×n λC+PΓ

∣

∣

∣

∣

∣

= 0 (3.57)

where

Γn×n =(In×n + λτ)−1 (3.58)

=















1
1+λτ1

0 · · · 0

0 1
1+λτ2

· · · 0
...

...
. . .

...

0 0 · · · 1
1+λτn















.

It can be shown that (3.57) is equivalent to

∣

∣

∣In×n + λτ
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

αnew1
+ βnew1

αnew2
· · · αnewn

αnew1
αnew2

+ βnew2
· · · αnewn

...
...

. . .
...

αnew1
αnew2

· · · αnewn
+ βnewn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
1+λτ1

0 · · · 0

0 1
1+λτ2

· · · 0
...

...
. . .

...

0 0 · · · 1
1+λτn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

(3.59)

where

αnewi
= L0Ciτiλ

3 + (L0Ci +R0Ciτi)λ
2 +

(

R0Ci + L0
PPHEV i

V 2
i

)

λ+R0
PPHEV i

V 2
i

(3.60)

and

βnewi
= LiCiτiλ

3 + (LiCi +RiCiτi) λ
2 +

(

RiCi + Li

PPHEV i

V 2
i

+ τi

)

λ+Ri

PPHEV i

V 2
i

+ 1.

(3.61)

Equation (3.59) can be rewritten as

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

αnew1
+ βnew1

αnew2
· · · αnewn

αnew1
αnew2

+ βnew2
· · · αnewn

...
...

. . .
...

αnew1
αnew2

· · · αnewn
+ βnewn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (3.62)

It can then be shown (see Appendix C) that (3.62) is equivalent to the 3nth-order poly-
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nomial equation
n
∏

i=1

βnewi
+

n
∑

i=1

(αnewi

n
∏

k = 1

k 6= i

βnewk
) = 0 , (3.63)

which is remarkably easier to solve, from a computational burden standpoint, relative to a

direct calculation of the eigenvalues ofAnew (i.e., using matrix operations); this facilitates

physical implementation of the method on an embedded signal-processing platform.

In a special case, let R0 and L0 be zero. Then αnewi
, (i = 1, 2, · · · n) are zero and,

therefore, (3.63) takes the form
n
∏

i=1

βnewi
= 0 (3.64)

or

n
∏

i=1

[

LiCiτiλ
3 + (LiCi +RiCiτi)λ

2 +

(

RiCi + Li

PPHEV i

V 2
i

+ τi

)

λ+Ri

PPHEV i

V 2
i

+ 1

]

= 0.

(3.65)

Equation (3.65) implies that the special case corresponds to a dc system that consists

of n independently energized dc-dc converters and the characteristic equation of the

system is similar to (3.30), and, therefore, with a similar analysis that is presented in

Section 3.6, one can conclude that the system is stable, in its operating range, if

τi >
Li

Ri

− RiCi (i = 1, 2, · · · n). (3.66)

3.8 Conclusion

A method was proposed for enhancing the stability of a dc distribution system intended

to integrate PHEVs with an ac power grid. The dc distribution system is interfaced with

the host ac grid via a VSC and can also embed PV modules. Thus, bidirectional dc-dc

power-electronic converters act as battery chargers and interface the PHEVs with the dc

distribution system, while PV modules are interfaced with the dc distribution system via

unidirectional dc-dc converters. It was demonstrated the proposed stability enhancement

method mitigates the issue of instability by altering the power setpoints of the battery

chargers, without a need for changing system parameters or hardware. The chapter pre-

sented mathematical models for the original and modified systems and demonstrated that

the proposed technique expands the stable operating region of the dc distribution sys-
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tem. Simulation studies were conducted to demonstrate the effectiveness of the proposed

method for a study system in the PSCAD/EMTDC software environment.



Chapter 4

Energy Management Strategy

4.1 Introduction

Charging strategies of the plug-in electric vehicles (PEVs) have attracted much research

recently [7,24,43,46–49]. The increasing number of PEVs is expected to adversely impact

the power system and, therefore, suitable infrastructure and smart charging strategies

are required to circumvent or mitigate those impacts [6]. The dc distribution systems

have recently been perceived as the potential infrastructure for power system integration

of PEVs [17–20, 26, 62], and they are expected to be beneficial both economically and

technically [20]. A management unit in the dc distribution system dictates a battery

charging (and discharging) strategy via a dedicated communications network.

Several recent reported studies have proposed charging strategies for PEVs. Reference

[24] proposes algorithms for optimizing the PEV charging schedule from the owner’s

perspective. A real-time smart load management control strategy is proposed in [7] to

coordinate the charging of PEV, to minimize the power loss and the charging cost, and

to mitigate the voltage fluctuations at the host ac grid. A strategy is proposed in [43]

to mitigate the adverse impacts that uncontrolled charging of the PEVs impose on the

host power system. Reference [46] proposes charging control strategies for a battery

swapping station, where the PEV owners can quickly swap their depleted batteries with

previously charged batteries. In [47], optimal scheduling has been proposed for both

charging and discharging of the PEVs. The references cited above do not necessarily

concern dc systems. However, they all assume an integral entity, an aggregator, that

negotiates with the PEVs, in one hand, and with the host power system in the other

hand. Hence, the host ac grid, deals with only one entity, the aggregator, rather than a

66
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large number of PEVs.

In the of majority of the reported studies, the proposed strategies aim to only optimize

the charging costs for the PEV owners, or minimize the power loss within the system,

but do not offer to the owners an option for fast battery charging (by which the charging

time is minimized rather than the charging cost). Further, the reported studies commonly

assume that the PEV owners fully comply with the (proposed) charging strategies, i.e.,

they connect their vehicles to the chargers, for the entire specified period, and do not

depart early. In practice, however, an owner may decide to leave before the planned

period has elapsed. Most of the reported studies also assume a unidirectional power flow,

that is, into the PEVs, whereas there is a possibility for bidirectional power exchange

among the PEVs and the host ac grid.

To address the aforementioned shortcomings, this chapter proposes an energy man-

agement strategy (EMS) that

• offers both fast and optimal energy exchange options to the PEV owners;

• operates seamlessly for both charging and discharging modes of operation;

• takes into account the likelihood of early departure of the PEVs;

• runs online and, therefore, can be readily implemented in an embedded processing

platform;

• allows for variable-length energy exchange intervals to enhance the flexibility of the

energy exchange transactions;

• and regulates both power consumption and generation of the PEVs within the dc

system to circumvent adverse impacts on the host ac grid.

The proposed EMS is implemented in the management unit of a dc distribution system

for power system integration of PEVs. The dc distribution system is assumed to be used

in the parking lots to integrate electric vehicles with a host ac grid.

4.2 DC distribution System

Fig. 4.1 illustrates a conceptual diagram of a dc distribution system for integration of

plug-in electric vehicles with an ac grid. The dc distribution system, referred hereafter
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Figure 4.1: A dc distribution system (the dc system) for power system integration of
electric vehicles.

to as the dc system, consists of a network of interconnection cables, a central voltage-

sourced converter (VSC), a management unit, and a multitude of bidirectional dc-dc

converters that interface the PEVs with the dc system and act as bidirectional battery

chargers; hence, hereafter, a dc-dc converter is referred to as a battery charger.

From its ac side, the central VSC is interfaced with the host ac grid, is operated as a

controlled dc-voltage power port [53], and regulates the dc voltage of the network. Thus,

the central VSC enables a bidirectional exchange of energy between the dc system and

the ac grid. The management unit supervises the operation of the dc system. Thus,

it is assumed that a communication network [54] receives the power setpoints from the

management unit and delivers them to the battery chargers. The communication network

also collects metering information, for the management unit, from the central VSC and

the battery chargers.

Upon his/her arrival, a PEV owner enters the following information, via a user inter-

face, to the corresponding battery charger:

1. The energy exchange option (fast or optimal);
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2. The charging mode (buying energy or selling energy);

3. The desired final value of SOC; and

4. The intended parking duration.

It is also assumed that the battery charger communicates with an onboard battery man-

agement system [63]. Thus, the value of the SOC at the arrival instant of the PEV

is communicated to the battery charger and, from there, to the management unit. The

power setpoints for the battery chargers are calculated by an energy management strategy

(EMS), embedded in the management unit, through a constrained optimization process

and based on the information received from the PEV owners and the ac grid.

Fig. 4.2 shows a schematic diagram of the dc system of Fig. 4.1. As the diagram

indicates, the central VSC is interfaced with the host ac grid via a three-phase tie reactor,

Ls; the resistance Rs represents the aggregate effect of the on-state power loss of the semi-

conductor switches of the VSC and ohmic power loss of the tie reactor. Each distribution

cable is represented by a corresponding series R-L branch. The convention in this chapter

is that the first vehicle, PEV1, has arrived first, the second vehicle, PEV2, has arrived

next, and so on. Also, in this chapter the battery chargers are not identified by fixed

indices. Rather, a battery charger is associated with the vehicle to which it is connected.

Thus, the power that enters the network-side port of the battery charger associated with

the ith PEV, in the kth energy exchange interval (to be detailed in Section 4.5) of the

parking period, is denoted by Pi,k. Since the battery chargers are bidirectional, Pi,k can

assume both positive and negative values. A positive value for Pi,k corresponds to the

charging of batteries of the ith PEV, whereas a negative Pi,k indicates the discharging of

the batteries.

Due to the constant-power property of the battery chargers (dc-dc converters), [20,

28, 40, 59, 60, 64], the dc system is nonlinear in nature. Consequently, for a set of power

setpoints, {P1,k, P2,k, · · · , Pi,k, · · · , PN,k}, the dc system does not reach a steady state if

the following inequality is not satisfied [65]:

N
∑

i=1

Pi,k ≤ Pdcmax
, ∀k (4.1)

where

Pdcmax
=

1

4
vT

dc
R−1vdc, (4.2)
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Figure 4.2: Schematic diagram of the dc system.
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

R0 +R1 R0 · · · R0

R0 R0 + R2 · · · R0

...
...
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...

R0 R0 · · · R0 +RN















N×N

, (4.3)

and

vT

dc
= vdc[1, 1, · · · 1]1×N , (4.4)

where N is the number of PEVs.

The EMS must issue the battery charger power setpoints in such a way that inequality

(4.1) is not violated. It should be noted that Pdcmax is a positive value (since the matrix

R is positive-definite, assuming Ri 6= 0, for i = 1, 2, · · · , N) and, therefore, as inequality

(4.1) implies, the dc system does not arrive at a steady state if the aggregate power

absorbed by the dc-dc converters exceeds a certain value, Pdcmax.

4.3 Constrained Optimization Problem

As mentioned in Section 4.2, to issue the power setpoints for the battery chargers, the

EMS solves a constrained optimization problem. The optimization problem is formulated

as:

min
Pi,k

(

Mi
∑

k=1

Pi,krkµi,k

)

(4.5)
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subject to

|Pi,k| ≤ Prati ∀i, k (4.6)

Pi,k ≤ DLk
−

i−1
∑

j=1

Pj,k ∀i, k (4.7)

−Pi,k ≥ GLk
+

i−1
∑

j=1

Pj,k ∀i, k (4.8)

i
∑

j=1

Pj,k ≤ Pdcmax
∀k (4.9)

Mi
∑

k=1

Pi,kµi,k = Ei ∀i (4.10)

where
Mi
∑

k=1

µi,k = TPi
∀i (4.11)

0 < µi,k ≤ Ts ∀i, k (4.12)

Ei =















(SOCi,f−SOCi,i)Ecapi
ηi

if
(

SOCi,f − SOCi,i

)

≥ 0

(

SOCi,f − SOCi,i

)

ηiEcapi if
(

SOCi,f − SOCi,i

)

< 0

. (4.13)

In the forgoing formulation, subscript i (= 1, 2, · · · , N) corresponds to the order

of the vehicle’s arrival, as also indicated in Section 4.2. Variables rk and µi,k denote,

respectively, the wholesale energy price and the duration of the kth energy exchange

interval. Variable Mi signifies the number of energy exchange intervals for the ith PEV,

i.e., k = 1, 2, · · · ,Mi. Parameter Prati denotes the rated power of the (bidirectional)

battery charger associated with the ith PEV and is assumed to apply to both the charging

and discharging modes. Variable DLk
denotes the difference between the base load and

the maximum permissable power demand in the ac distribution network with which the

dc system has been integrated, in the kth energy exchange interval. In other words, DLk

is the maximum of the power that the battery chargers are collectively permitted to draw

to charge the batteries. On the other hand, GLk
is the difference between the base load

and the maximum permissable power generation in the area; it is defined to preclude

reverse power flow and over-voltage within the ac grid. Thus, GLk
is the maximum
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of the power that the battery chargers are permitted to generate collectively. Variable

Ei denotes the total energy exchanged with the batteries of the ith PEV. Thus, Ei is

positive if the batteries are charged, and it is negative if the batteries are discharged.

Variable TPi
denotes the intended parking duration of the ith PEV, and Ts is the largest

duration of an energy exchange interval, which is assumed to be one hour in this study.

Variables SOCii and SOCif are the initial and final values of SOC for the ith PEV,

respectively. Parameter Ecapi denotes the energy storage capacity of the ith PEV, and ηi

is the efficiency of the battery charger associated with the ith PEV, which is assumed to

be the same for both charging and discharging modes.

4.4 Operation of EMS

Whenever a new PEV arrives the EMS first determines the energy exchange intervals

for the PEV, through a process which will be detailed in Section 4.5. It then calculates

and stores the values that the power setpoint of the associated battery charger must

assume in the energy exchange intervals for the vehicle. Then, based on the calculated

power setpoint values, the EMS updates the constraints (4.7) through (4.9) for the next

upcoming vehicle.

A PEV owner has two options when he/she arrives at a charging station in the dc

system: 1) the optimal energy exchange option and 2) the fast energy exchange option. In

the optimal energy exchange option, the owner intends to minimize the charging cost or to

maximize the discharging revenue. Thus, the EMS exercises the constrained optimization

process of Section 4.3 to find the power setpoints for the associated battery charger. The

EMS uses the overall intended parking duration of the PEV for the optimization process.

In the fast energy exchange option, however, the owner intends to charge (or discharge)

the batteries in the shortest possible time. The EMS, therefore, does not perform the

optimization process, but it only applies the constraints (4.6) through (4.10). Thus,

the associated battery charger is operated at its rated power, subject to the constraints

associated with the existence of a steady-state operating point for the dc system and the

limitations of the ac grid. In this option, the EMS does not reduce (the absolute value

of) the power setpoint of the battery charger when it runs the optimization process for a

vehicle that arrives subsequently. However, an extra service fee can be levied as a penalty

on the owners who choose the fast energy exchange option, to encourage them to opt for

the optimal option.
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Figure 4.3: Flowchart of the proposed energy management strategy.

Fig. 4.3 shows the flowchart of the EMS. As Fig. 4.3 illustrates, the EMS constantly

checks for a new event, which is either the arrival of a PEV or unscheduled departure of a

PEV (scheduled departure of a PEV is not considered as an event, since the EMS already

knows about the scheduled departure times). On the arrival of a new PEV, the EMS

receives the initial SOC of the batteries, from the vehicle’s battery management system.

It also receives the desired final SOC, the intended parking duration, and the energy

exchange option from the PEV. Based on this information, the EMS determines the

energy exchange intervals for the PEV and, then, based on the selected energy exchange

option, it calculates and issues the power setpoints for the associated battery charger.

In the event of an unscheduled departure of a PEV, the power capacity that was

assigned to that PEV is released and can be used by the other PEVs (which are still

connected to their associated battery chargers). Therefore, the EMS updates the energy
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Figure 4.4: Energy price and power demand in Toronto, on July 10, 2013 and July 11,
2013.

exchange intervals and the constraints (4.7) through (4.9), and, based on the updated

constraints, it recalculates the power setpoints of all remaining PEVs.

To run the optimization algorithm, the EMS needs to know the electricity price,

the base load profile, and the generation and consumption limitations of the ac grid.

For example, Fig. 4.4 depicts the hourly Ontario energy price (HOEP), the time-of-use

(TOU) energy price, and the power demand, in the Toronto region, on July 10, 2013 and

July 11, 2013 [66]. The HOEP is a wholesale energy price, which applies to any business

that consumes more than 250,000 kWh of electricity per year [66]. Thus, a dc system

with a large number of battery chargers is potentially subject to the HOEP for buying

electricity from the ac grid, whereas ordinary homeowners have to pay the TOU energy

price (which is normally higher than the HOEP). In a smart grid environment, the EMS

can receive the base load profile for the next 24 hours, from the ac grid. Alternatively,
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the EMS can forecast the base load profile based on the power demand information of

the previous days [47].

4.5 Determination of Energy Exchange Intervals

As mentioned in Section 4.4, subsequent to the arrival of a vehicle, say the ith PEV, the

EMS determines the energy exchange intervals, i.e., the set {µi,1, µi,2, · · · , µi,Mi
}, for

that PEV, based on the following set of rules and assumptions:

1. The first energy exchange interval starts with the arrival of the PEV.

2. If the PEV owner chooses the optimal energy exchange option, the end of the last

energy exchange interval coincides with the intended departure time of the PEV.

However, if the PEV owner chooses the fast energy exchange option, the EMS

calculates the completion time for the energy exchange of the PEV, based on the

power capacity available, and considers the completion time as the end of the last

energy exchange interval for the vehicle.

3. The energy exchange intervals are continuous, i.e., the start of an energy exchange

interval marks the end of the previous energy exchange interval (except for the first

energy exchange interval).

4. Since the energy price and power demand information are changed hourly, the exact

hours (for example, 8:00am, 9:00am, etc.) within the period between the first and

last energy exchange intervals mark the starts of the energy exchange intervals.

Thus, a charging period can last a maximum of one hour.

5. If the departure time, or the completion time, of a previously arrived PEV is earlier

than the departure time, or the completion time, of a subsequently arrived PEV,

then the departure time, or completion time, of the previously arrived PEV is

considered as the start of an energy exchange interval for the subsequently arrived

PEV.

Fig. 4.5 illustrates the implementation of the aforementioned set of rules for a four-

vehicle case where the vehicles have all chosen the optimal energy exchange option. As

Fig. 4.5 shows, for PEV1, the start of the first energy exchange interval, and the end of

the last energy exchange interval, are determined only by the arrival and departure times
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Figure 4.5: An example of determination of the energy exchange intervals for four PEVs
with optimal energy exchange option.

of the vehicle itself. However, for vehicles PEV2 and PEV3, the departure of PEV1 ends

energy exchange intervals, and starts new energy exchange intervals. The reason is that

the departure of PEV1 releases some power capacity in the dc system and, therefore, the

constraints (4.7) through (4.9) change. Hence, the EMS can modify the power setpoints

of PEV2 and PEV3, for higher optimality. Similarly, as the figure shows, the departure

of PEV2 ends an energy exchange interval and starts a new energy exchange interval,

for PEV3. The arrival and departure of PEV4, however, do not affect those of any other

vehicle, since PEV4 has arrived the latest. More importantly, the departure times of the

other vehicles do not affect the energy exchange intervals of PEV4 since the vehicle is

supposed to leave earlier than all the previously arrived vehicles.

Fig. 4.6 shows another example of determination of the energy exchange intervals.

In this example, PEV1 has opted for the fast energy exchange option, whereas the other

two vehicles have elected the optimal energy exchange option. Thus, it is the completion

time, rather than the departure time, of PEV1 that results in the start of new energy

exchange intervals for PEV2 and PEV3. Similar to the previous example, the departure

of PEV2 only affect the energy exchange intervals of the vehicles that have arrived later,

that is, PEV3 in this example.
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Figure 4.6: An example of determination of the energy exchange intervals for three PEVs;
The first PEV with the fast energy exchange option and the other two PEVs with the
optimal energy exchange option.

The two above examples indicate how the proposed EMS can seamlessly handle both

the fast and the optimal energy exchange requests.

4.6 Simulation Results

Two study cases have been considered with respect to the location of the dc system.

The first case investigates the operation of the dc system and proposed EMS, for a

residential parking lot where the owners park overnight and charge their vehicles for the

morning commute. The second case, however, assumes a commercial parking lot where

the vehicles are parked during the day and exchange energy (in either direction) with

the dc system. For the simulations, the power consumption of 200 households has been

assumed as the base load profile. To that end, the base load profile of Fig. 4.4 has been

scaled down to feature a peak value of 400 kW, based on the assumption that the peak

load of a typical household is about 2 kW [7] [48]. Also, it is assumed that 50 vehicles are

involved in energy exchange activities in the residential area, representing a penetration

rate of 25% in view of the existence of 200 households. It is supposed that a parking lot

operator controls the operation of the dc distribution system. The operator, therefore,

can charge the PEV owners and the ac grid for the services that are providing to them

through the dc distribution system. The simulations have been conducted in MATLAB
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Figure 4.7: Case I, Scenario 1: total load under uncoordinated charging of PEVs using
4-kW ac-dc battery chargers.

software environment, and Appendix F reports the parameters assumed, unless otherwise

is mentioned.

4.6.1 Case I: residential parking lot; evening and night time

In the first case, the arrival times of the PEVs are assumed to be normally distributed,

with a mean value of 5:00pm and a variance of one hour. The departure times also are

assumed to be normally distributed with a mean value of 8:00am (i.e., on the next day

when the owners typically leave for work) and a variance of one hour. The initial and

final SOC values of the batteries are assumed to be uniformly distributed between 20%

to 50%, and between 80% to 90%, respectively.

Scenario I-1

This scenario assumes that there is no dc system and that the owners all start to charge

their vehicles once they arrive home, using 4-kW conventional ac-dc battery chargers.

Fig. 4.7 shows the power demand limit for the ac grid, the base load profile of the

residential area, and the profile of the total load which is referred to as the base load

plus the aggregate power absorbed by the PEVs. Thus, the total load becomes smaller

if the PEVs predominantly discharge their batteries. As Fig. 4.7 indicates, the total

load exceeds the power demand limit of the grid and may, therefore, result in prohibitive

voltage drops throughout the network.

Scenario I-2

It is assumed in this scenario that the PEVs are interfaced with the dc system, through

40-kW dc-dc battery charges, but their energy exchange activities are not supervised by
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Figure 4.8: Case I, Scenario 2: total load if the PEVs are charged through the dc system
without the supervision of the EMS.

the proposed EMS, i.e., the owners start to charge their PEVs at the rated power, as

soon as they arrive. Fig. 4.8 illustrates the outcome and indicates that, as compared

with Scenario 1, the PEVs in this scenario are charged faster, due to the higher power

rating of the battery chargers. However, the total is considerably larger than the power

demand limit for the grid and may, consequently, adversely affect the voltage profile in

the network. It should be noted that a dc system can host 40-kW battery chargers,

whereas a household cannot.

Scenario I-3

This scenario assumes that the vehicles are interfaced with a dc system and their energy

exchange activities are supervised by the proposed EMS. It also assumes that the owners

have all chosen the optimal energy exchange option. Fig. 4.9 illustrates the outcome

and indicates that the EMS in this scenario attempts to charge the vehicles in the hours

when the wholesale energy price is low, e.g., from 3:00am to 7:00am of the next day, July

11. The EMS also manages to keep the total load below the power demand limit, by

imposing the constraints in its optimization exercise.

Scenario I-4

This scenario is the same as Scenario 3 except that the owners have all chosen the

fast energy exchange option in this scenario. Thus, the EMS permits the largest possible

power import for each PEV, while it minds the power demand limit of the grid. Therefore,

as Fig. 4.10 indicates, the total load remains below the power demand limit for the grid.



80 Chapter 4. Energy Management Strategy

0.01

0.02

0.03

0.04

0.05

E
n
er
g
y
p
ri
ce

($
/
k
W

h
)

(a)

16:00 18:00 20:00 22:00 Jul. 11 2:00 4:00 6:00 8:00 10:00 12:00 14:00
200

250

300

350

400

450

time (h)

P
ow

er
(k
W

)

 

 

(b)

power demand limit
base load
total load

Figure 4.9: Case I, Scenario 3: total load if the PEVs are charged through the dc system,
under the supervision of the EMS, based on the optimal energy exchange option.
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Figure 4.10: Case I, Scenario 4: total load if the PEVs are charged through the dc system,
under the supervision of the EMS, based on the fast energy exchange option.

Scenario I-5

In this scenario, it is assumed that the charging activities of the PEVs are supervised by

the proposed EMS in the dc system, and five PEVs, i.e., 10% of the owners, have chosen

the fast energy exchange option, whereas the remainder of owners have opted for the

optimal energy exchange option. Fig. 4.11 indicates that the EMS seamlessly responds

to the requests for both energy exchange options.

As Fig. 4.11 illustrates, the EMS assigns the largest possible power setpoints to the

vehicles that have opted for the fast energy exchange option, while maintains the total

load below the power demand limit of the grid. At the same time, the EMS optimally
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Figure 4.11: Case I, Scenario 5: total load if the PEVs are charged through the dc
system, under the supervision of the EMS, based on a combination of both fast and
optimal energy exchange options.
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Figure 4.12: Case I: charging cost in different scenarios.

assigns the power setpoints to the vehicles that have elected the optimal energy exchange

option, to minimize their charging costs.

Fig. 4.12 plots the charging cost for each of the aforementioned scenarios. As Fig.

4.12 shows, the charging cost in Scenario 1, about $99, is remarkably higher than the

charging cost in the other scenarios, since in Scenario 1 the owners purchase energy

based on the TOU price, which, typically, is higher than the HOEP wholesale price.

A comparison between the charging costs of Scenario 2 (unsupervised charging) and

Scenario 3 (optimal charging) indicates that the unsupervised charging costs about 100%

more than the optimal charging. Fig. 4.12 also indicates that the charging cost in the

scenario where the owners all choose the optimal energy exchange option (Scenario 3)

is about 66% of the charging cost in the scenario where the vehicles all opt for the fast

energy exchange option (Scenario 4). In the scenario where both fast and optimal energy

exchange options have been elected (Scenario 5), the charging cost is proportional to the

number of vehicles charged through the fast energy exchange option.

The parking lot operator can charge the PEV owners by an administration fee to

compensate the operation costs and to make the revenue. This adminstration fee can
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Figure 4.13: Total charging cost for different scenarios in Case I; (a) with degradation
costs of 0.04$/kWh (b) with degradation costs of 0.01$/kWh.

be as much as 10% of the average wholesale electricity price [23]. In this thesis, the ad-

ministration fee of $0.005/kWh has been considered for the PEV owners who use the dc

distribution system to charge or discharge their vehicles. Battery depreciation or degra-

dation cost is another factor that contributes in the overall charging cost of the PEVs.

In [67], based on the lowest price of the batteries for an electric vehicle, and a typical

life time of 2200 cycles for charging and discharging of the batteries, the degradation

cost of around 0.04$/kWh has been calculated. This means that for every 1 kWh of

energy exchange, charging or discharging, the value of the batteries decreases by 0.04$

in average. However, with current research efforts to improve the battery technologies,

it is expected to have the batteries with much longer life time, 10000 cycles for example,

in the future [68]. Therefore, in this thesis, two degradation costs of 0.04$/kWh and

0.01$/kWh have been considered for the depreciation of the batteries.

Fig. 4.13 plots the total charging cost for all the scenarios in Case I, considering

the administration and the degradation costs. Two degradation rate of 0.04$/kWh and

0.01$/kWh have been considered to calculate the total costs. It should be noted that for

Scenario 1, there is no administration fee as the PEV owners don’t use the dc distribution

system to charge their vehicles. Table 4.1 summarizes the charging costs for Case I.
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Table 4.1: Total charging cost for different scenarios in Case I

Cost
Scenario

1 2 3 4 5

Degradation cost
Charging cost ($) 99.27 35.18 16.41 27.30 19.42
Degradation cost ($) 44.62 44.62 44.62 44.62 44.62

cost of 0.04 $
Administration cost ($) 0 5.57 5.57 5.57 5.57
Total cost ($) 143.90 85.39 66.62 77.51 69.62

Degradation
Charging cost ($) 99.27 35.18 16.41 27.30 19.42
Degradation cost ($) 11.15 11.15 11.15 11.15 11.15

cost of 0.01 $
Administration cost($) 0 5.57 5.57 5.57 5.57
Total cost ($) 110.43 51.91 33.15 44.04 36.15

4.6.2 Case II: business area parking lot; day time

In the second case, the arrival time of PEVs are considered to be normally distributed,

with a mean value of 9:00am and a variance of one hour. As a typical working day lasts

8 hours, the departure times are also assumed to be normally distributed, with a mean

value of 5:00pm and a variance of one hour. Further, the initial and final SOC values of

the PEV batteries are assumed to be uniformly distributed from 70% to 80%, and from

30% to 40%, respectively. It is assumed that the PEV owners intend to discharge their

batteries (or sell energy), unless otherwise is mentioned.

Scenario II-1

This scenario assumes that the PEV owners have all chosen the optimal energy exchange

option, in order to discharge their batteries to their desired final SOC values. Fig. 4.14

illustrates the outcome and that the EMS schedules the discharging activities mostly

when the energy price is high, e.g., between 2:00pm and 4:00pm. It should be noted

that, the sign of the power setpoint is negative for a charger working in the discharging

mode. Therefore, a higher energy price results in a lower value for the cost function

(4.5) and, thus, a higher revenue for the PEV owner. The EMS also limits the power

generation of the PEVs, to preclude reverse power flow and over-voltages in the ac grid.

As Fig. 4.14 shows, the total load never becomes negative, i.e., the ac grid does not

experience a reverse power flow.
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Figure 4.14: Case II, Scenario 1: total load with batteries discharging if the owners all
choose the optimal energy exchange option.
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Figure 4.15: Case II, Scenario 2: total load with batteries discharging if the owners all
choose the fast energy exchange option.

Scenario II-2

In this scenario, it is assumed that the PEV owners have all chosen the fast energy

exchange option for discharging their batteries. Thus, the EMS commands the maximum

permissible power export to the battery chargers, while it minds the power generation

limit of the ac grid, to preclude reverse power flow and over-voltages. Fig. 4.15 illustrates

the outcome and indicates that, as compared with Scenario 1, the energy export is

completed considerably faster, at about 12:00pm. Fig. 4.15 also shows that the total

load does not become negative, i.e., the ac grid does not experience a reverse power flow.
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Figure 4.16: Case II, Scenario 3: total load with batteries discharging if 10% of the
owners choose the fast energy exchange option.

Scenario II-3

This scenario assumes that 10% of the owners have chosen the fast energy exchange

option, whereas the remainder of the owners have opted for the optimal energy exchange

option, for selling power, and Fig. 4.16 illustrates the outcome. Thus, for the owners who

have elected the fast energy exchange option, the export of energy starts immediately

after their arrivals, from about 7:00am to 10:00am, as Fig. 4.16 indicates. For this

group of owners, the EMS commands the largest (in absolute value) permissible values

for the power setpoints. For the owners who have opted for the optimal energy exchange

option, on the other hand, the EMS exercises the optimization algorithm, to maximize

their discharging revenues. Therefore, as Fig. 4.16 shows, for this group of owners the

discharging process takes place during the hours in which the energy price is high, i.e.,

from 2:00pm to 4:00pm. The EMS also ensures that the power generation limit of the ac

grid is not violated, in order to circumvent reverse power flow and over-voltages.

Scenario II-4

This scenario assumes that 20% of the owners (i.e., 10 vehicles) have elected to charge

their batteries from a SOC level of 40% to a SOC level of 80%, while the remainder of

the owners intend to discharge their batteries (sell energy). Thus, the EMS exercises its

optimization algorithm to minimize the charging costs, and to maximize the discharging

revenues. Fig. 4.17 illustrates the base load profile, the total load profile, and the power

demand limit for the ac grid. It is observed that the total load does not exceed the limit,

nor does it become negative (corresponding to a reverse power flow).

Fig. 4.18 plots the discharging revenue for each aforementioned scenario in Case II.

It should be noted that for Scenario 4, the total revenue is calculated only for the owners
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Figure 4.17: Case II, Scenario 4: total load if 20% of the owners intend to charge their
batteries, while the rest plan to discharge their batteries.
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Figure 4.18: Case II: total discharging revenue in different scenarios.

who sell the energy, i.e., 80% of the total owners. As Fig. 4.18 shows, if the owners

all elect the optimal energy exchange option, i.e., Scenario 1, the discharging revenue is

about 75% higher as compared to the scenario in which the owners all opt for the fast

energy exchange option, i.e., Scenario 2. In scenarios with a combination of both fast

and optimal energy exchange options, the revenue decreases with the number of owners

who have elected the fast energy exchange option.

Fig. 4.19 and Table 4.2 summarize the net revenue/cost for all the scenarios in Case

II, considering the administration and the degradation costs. Two degradation rates

of 0.04$/kWh and 0.01$/kWh have been considered to calculate the net revenue/cost.

Table 4.2 shows that for degradation rate of 0.04$/kWh, the fast energy exchange option

for the discharging operation is not financially feasible for the PEV owners. However, it

should be noted that the revenue calculation in Case II is done solely based on selling

the energy with the wholesale price, while for V2G operation, the parking lot operator

can charge the ac power grid for providing the ancillary services with higher price rate

than the wholesale energy price. Therefore, the total revenue will be increased and the

PEV owners can receive a portion of the increased revenue [25, 44].
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Figure 4.19: Revenue and cost for different scenarios in Case II; (a) with degradation
costs of 0.04$/kWh (b) with degradation costs of 0.01$/kWh.

4.7 Conclusion

An energy management strategy (EMS) was proposed for power system integration of

plug-in electric vehicles (PEVs). The proposed EMS is embedded in the intelligence of

a dc distribution system intended for integrating PEVs in a parking lot through bidi-

rectional dc-dc electronic power converters (battery chargers). In turn, the dc distribu-

tion system is interfaced, and exchanges energy, with a host ac grid through a central

three-phase voltage-sourced converter (VSC). The proposed EMS exercises an on-line

constrained optimization algorithm, to manage the power flow within the dc system and

the power exchange with the host grid. The proposed EMS offers two energy exchange

options to the PEV owners: (1) The fast energy exchange option for the owners who

desire to minimize their energy exchange time and (2) The optimal energy exchange

option for the owners who intend either to minimize their cost of charging batteries or

to maximize their revenue of selling the stored energy. The proposed EMS takes into

account the constraints of the ac grid, in terms of power demand and power generation,

to circumvent under-voltage, over-voltage, and reverse power flow issues. Various oper-

ational scenarios were simulated in the chapter to demonstrate the effectiveness of the

proposed EMS.
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Table 4.2: Net cost/revenue for different scenarios in Case II

Cost/Revenue
Scenario

1 2 3 4

Degradation cost
Discharging revenue ($) -33.81 -19.75 -32.50 -26.73
Degradation cost ($) 28.59 28.59 28.59 28.59

cost of 0.04 $
Administration cost ($) 3.57 3.57 3.57 3.57
Net cost/revenue ($) -1.64 12.41 -0.34 5.43

Degradation
Discharging revenue ($) -33.81 -19.75 -32.50 -26.73
Degradation cost ($) 7.14 7.14 7.14 7.14

cost of 0.01 $
Administration cost($) 3.57 3.57 3.57 3.57
Net cost/revenue ($) -23.09 -9.03 -21.78 -16.01



Chapter 5

Summary, Conclusions, and Future

Work

5.1 Summary

The outlook of growing number of electric vehicles and their impacts on the power grid

have motivated extensive research efforts toward resolving the technical challenges of the

power system integration of the large number of electric vehicles. The main objective of

this research is to address some concerns related to power system integration of electric

vehicles.

In Chapter 1 of this thesis, the research objectives and the contributions of the thesis

are presented. Chapter 1 also includes background information on electric vehicles and

an introduction to the charging strategies of electric vehicles and their advantages and

challenges.

Chapter 2 investigates a dc distribution system for power system integration of the

electric vehicles. In this chapter, basic control strategies for the main components of the

dc distribution system, i.e., central voltage-sourced converter (VSC) and bidirectional

dc-dc converters, have been discussed. Chapter 2 also focuses on the modeling of the

dc distribution system for a large number of electric vehicles; a mathematical model has

been proposed to analyze the behavior of the dc system. The proposed model captures

both the steady-state and dynamic characteristics of the system, and therefore it can be

used for identifying the condition for existence of a steady state, as well as for stability

analysis. The possibility of instability of the dc distribution system, due to the constant-

power property of the dc-dc converters, is discussed in Chapter 3. A simple and effective
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method is proposed in the chapter to enhance the stability of the system.

Finally, Chapter 4 of the thesis presents an energy management strategy to control

the power flow between the dc distribution system and the power grid. The proposed

strategy offers both fast and optimized charging options to the owners of the electric

vehicles to charge or discharge their vehicles. Several energy exchange scenarios also have

been simulated in this chapter to show the benefits of implementation of the proposed

strategy.

5.2 Conclusions

The conclusions of this thesis are as follows:

• It was discussed that for power system integration of plug-in electric vehicles, a dc

distribution system has more benefits as compared with a system of ac-dc battery

chargers; the dc distribution system offers a higher efficiency and enables an easier

integration of renewable energy sources such as photovoltaic (PV) and fuel-cell

systems. Furthermore, by using a dc distribution system, the power grid needs to

communicate only with one entity, i.e., the intelligence of the management unit of

the dc system, rather than with multiple ac-dc battery chargers. Thus, the thesis

presented an accurate mathematical model to analyze the dynamic and steady-

state behavior of a dc distribution system. Using the presented model, the thesis

further explained that the dc distribution system is prone to instabilities due to

the constant-power property of the dc-dc converters.

• It is essential to protect a dc distribution system against instability. The thesis

demonstrated that a stability enhancement method based on local measurement

for dc-voltage of the dc-dc converters can be devised to increase the stability mar-

gin of the dc distribution system. The salient feature of the developed stability

enhancement method is that it is simple and does not require information inter-

nal to the system or its embedded dc-dc converters, and does not need hardware

modifications. Rather, it only employs local measurements and individual power

setpoints and, therefore, can be exercised in a decentralized fashion. These, in

turn, permit the use of commercially available dc-dc converters (battery chargers),

which is expected to further reduce the overall cost of the system. The mathemat-

ical model of the dc system, after applying the proposed method, is also presented

in the thesis to demonstrate the effectiveness of the proposed method.
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• Finally, the thesis proposed an energy management strategy (EMS) to control the

power flow in the dc distribution system. The proposed EMS is embedded in the

intelligence of the management unit of the dc distribution system and exercises an

on-line constrained optimization algorithm, to manage the power flow within the dc

system and the power exchange with the host grid. The proposed EMS offers two

energy exchange options to the PEV owners: (1) The fast energy exchange option

for the owners who desire to minimize their energy exchange time and (2) The

optimal energy exchange option for the owners who intend either to minimize their

cost of charging batteries or to maximize their revenue of selling the stored energy.

The proposed EMS takes into account the constraints of the ac grid, in terms of

power demand and power generation, to circumvent under-voltage, over-voltage,

and reverse power flow issues. Various operational scenarios were simulated in the

thesis to demonstrate the effectiveness of the proposed EMS.

5.3 Future Work

The following topics are suggested for a future work:

• An investigation into the impacts of the communication network parameters on

the performance of the dc distribution system: The communication network pa-

rameters, such as network delay and error rate may influence the performance of

the dc distribution system [69]. Therefore, this can be a potential area for further

research.

• Extending the modeling process of the dc system to include linear loads: The

systematic method for developing a model for the dc distribution system in Chapter

2 can be used to find mathematical models for dc distribution systems with different

applications that involve linear loads. Fig. 5.1 shows the equivalent circuit of

a dc system with mixed dc-dc converters and linear loads; the linear loads are

represented by a parallel confection of a resistor, an inductor, and a capacitor.

• Extending the modeling process for dc systems with different topologies and con-

figurations: In this thesis a method has been proposed for developing a model for

the dc systems with widely used bus configuration. Based on the presented method

a new approach can be used for developing mathematical models for dc systems

with topologies. The mesh topology, for example, is used in the multi-terminal
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Figure 5.1: Equivalent circuit of a dc system with mixed dc-dc converter and linear loads.

dc (MTDC) systems [70]. In this case, an interconnection matrix can be used to

develop a general model for the dc system.



Appendix A

Modeling of a droop-based dc-dc

converter in a dc system

Fig. A.1 shows the block diagram of a full-bridge dc-dc converter with a voltage-droop

mechanism in a dc system. The voltage-droop mechanism has been used to determine

the power exchange setpoint between a dc power source and the rest of the dc system.

In this figure, P ∗
nomi and v∗nomi represent the nominal values for the power setpoint and

dc voltage, respectively. The amount of power, Pdci, that is exchanging between the dc

power source #i and the rest of the dc system has a proportional relation with the dc

voltage value, vi [71]. Fig. A.2 shows the relation between the dc voltage and the power

setpoint of the dc-dc converter. The slope of the droop in Fig. A.2 is determined based

on the value of the droop gain, Di. Fig. A.3 shows a simplified model of the dc-dc

converter of Fig. A.1. Thus, the following family of equations describes the dynamics of

the droop-based dc-dc converter of Fig. A.3:

P ∗
si = P ∗

nomi −Di(vi − vnomi) (A.1)

Ci

dvi
dt

=
P ∗
si

vi
− ii. (A.2)

Substituting (A.1) in (A.2), one obtains

Ci

dvi
dt

=
P ∗
nomi

vi
−Di +

Divnomi

vi
− ii. (A.3)
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+

−

Rest

of DC

Network
dc power 

source #i

+
−

( ) ÷−÷ *

PWM and 

Gate Drive

**

−

−

Figure A.1: The schematic diagram of a full bride bidirectional dc-dc converter with a
voltage-droop mechanism.

*

*

Figure A.2: Relation between P ∗
si and vi in a droop-based dc-dc converter.

Linearizing (A.3), one finds

Ci

dṽi
dt

= −
P ∗
xi

V 2
i

ṽi − ĩi (A.4)

where

P ∗
xi = Divnomi + P ∗

nomi. (A.5)

Comparing (A.4) to (2.26), one can follow the same approach of Section 2.3.2 to

develop a state-space model for the dc system that includes droop-based dc-dc converters.
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Figure A.3: The simplified model of the droop-based dc-dc converter of Fig. A.1.



Appendix B

Positive-Definiteness of R and L

matrices

Lemma B.0.1 If Ri 6= 0 (i = 1, 2, ..., n), then R in equation (2.19) is a positive-

definite matrix.

Proof Based on (2.19), R is given by

R = R0 +Rb (B.1)

where R0 and Rb have been defined in (2.16) and (2.17).

Let consider w = [w1 w2 · · · wn]
T as a nonzero vector. Multiplying R0 by wT from

left and by w from right, gives

wTR0w = [w1 w2 · · · wn]















R0 R0 · · · R0

R0 R0 · · · R0

...
...

. . .
...

R0 R0 · · · R0
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









n×n






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


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w2

...

wn















(B.2)

= R0

[

n
∑

i=1

wi

n
∑

i=1

wi · · ·

n
∑

i=1

wi

]















w1

w2

...

wn















(B.3)

= R0

(

w1

n
∑

i=1

wi + w2

n
∑

i=1

wi · · · + wn

n
∑

i=1

wi

)

, (B.4)
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wTR0w = R0

(

n
∑

i=1

wi

)(

n
∑

i=1

wi

)

≥ 0. (B.5)

Equation (B.5) shows that R0 is a positive-semi-definite matrix. On the other hand, Rb

is a diagonal matrix with positive elements, and therefore is a positive definite matrix.

Thus, one can write

wTRw =wT (R0 +Rb)w (B.6)

=wTR0w +wTRbw > 0. �

Lemma B.0.2 If Li 6= 0 (i = 1, 2, ..., n), then L in equation (2.29) is a positive-definite

matrix.

Proof The proof is the same as the proof of Lemma B.0.1. �
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Proof of Equation (2.52)

Lemma C.0.3 The equation (2.49) is equivalent to

n
∏

i=1

βi +
n
∑

i=1

(αi

n
∏

k = 1

k 6= i

βk) = 0 . (C.1)

Proof Rewriting the equation (2.49) gives

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α1 + β1 α2 α3 · · · αn
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α1 α2 α3 + β3 · · · αn

...
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. . .
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (C.2)

Subtracting all the rows of the left-side of (C.2) (except for the last row) from their below

rows, one obtains
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Expanding the determinant of (C.3), one can writes

(α1 + β1)
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Calculating the determinants of (C.4), one obtains

(α1 + β1)

n
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n
∏
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n
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Rewriting (C.5), one concludes

n
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n
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Appendix D

Study System Parameters for

Chapter 2

Table D.1 reports the parameters of the dc system for simulation studies and model

validation in Chapter 2. The parameters of the battery chargers for the simulations are

given in Table D.2.
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Table D.1: Study dc System Parameters

Quantity Value Comment

Cable resistance 99.1 mΩ/km Conductor area:

[72] 185 mm2

Cable inductance 547.5 µH/km Conductor area:

[72] 185 mm2

Ri (i = 0, 1, ..., 6) 19.8 mΩ 200-m cable segments

Li (i = 0, 1, ..., 6) 109.5 µH 200-m cable segments

Ci (i = 1, 2, ..., 6) 2000 µF

Rs 2.38 mΩ per-phase tie

reactor resistance

Ls 57 µH per-phase tie

reactor inductance

C 9625 µF dc-side capacitor

of the central VSC

Switching frequency 3420 Hz

Nominal dc-bus voltage 480 V

Kd(s), Kq(s)
0.5725s+32.6

s
Current controllers

KV (s)
−32139.6(s+70)(s+657)
s(s+9144)(s+974.1)

dc voltage

Ω−1 compensator

Table D.2: Battery Chargers Parameters

Quantity Value Comment

Nominal power rating 90 kW

of the battery chargers

RBi (i = 1, 2, ..., 5) 5 mΩ

LBi (i = 1, 2, ..., 5) 690 µH

Vbati (i = 1, 2, ..., 5) 320 V Battery voltage

Ki(s) (i = 1, 2, ..., 5) 1.38s+11.76
s

battery charger

compensator

τBi (i = 1, 2, ..., 5) 0.5 ms battery charger

time constant



Appendix E

Study System Parameters for

Chapter 3

Table E.1 reports the parameters of the dc system for simulation studies and model

validation in Chapter 3. The parameters of the battery chargers for the simulations are

given in Table E.2.

Table E.1: Study dc System Parameters
Quantity Value Comment

Cable resistance 99.1 mΩ/km Conductor area:
185 mm2

Cable inductance 547.5 µH/km Conductor area:
185 mm2

R,R1, R2, R3 19.8 mΩ 200-m cable segments
L, L1, L2, L3 109.5 µH 200-m cable segments
C1, C2, C3 1500 µF

Rs 2.38 mΩ per-phase tie
reactor resistance

Ls 86 µH per-phase tie
reactor inductance

C 9625 µF
ac grid voltage 227 V line-to-line, rms

Vs 185 V
ac grid frequency 60 Hz

Switching frequency 3420 Hz
Nominal dc-bus voltage 480 V

Gp(s)
10000

s+10000

KV (s)
−32139.6(s+70)(s+657)
s(s+9144)(s+974.1)

dc voltage

Ω−1 compensator
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Table E.2: Battery Chargers Parameters

Quantity Value Comment

Nominal battery charger 90 kW

power rating

RB1, RB2 5 mΩ

LB1, LB2 690 µH

Vbat1, Vbat2 320 V Battery voltage

K1(s), K2(s)
1.38s+11.76

s
Ω battery charger

compensator

τB1, τB2 0.5 ms battery charger

time constant



Appendix F

Study System Parameters for

Chapter 4

Table F.1 reports the parameters of the dc system for simulation studies in Chapter 4.

Table F.1: Parameters of the Study System in Chapter 4

Quantity Value Comment

N 50 The maximum number of PEVs

Base load peak 400 kW equivalent to power

consumption of 200 household

Power 440 kW 10% more than the

demand limit base load peak

Power generation limit 0 kW

Prati (i = 1, ..., N) 40 kW Battery chargers’ power rating

Ecapi (i = 1, ..., N) 40 kWh PEVs’ battery capacity

ηi (i=1, ..., N) 0.9 Battery chargers’ efficiency

vdc 480 V dc bus nominal voltage

Cable resistance 99.1 mΩ/km Conductor area:

185 mm2

Ri (i = 0, 1, ..., N) 19.8 mΩ 200m cable section

Pdcmax
2.85 MW
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