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ABSTRACT 

Patients with end stage renal disease (ESRD) often require hemodialysis treatments in 

which blood’s water and dissolved solutes undergo diffusion and convection by exposure 

to an extracorporeal membrane. The leading cause of death in this population is 

cardiovascular, and how hemodialysis is prescribed alters total sodium balance, a critical 

determinant of cardiovascular health. We performed retrospective and prospective 

analysis of data from patients in the Southwestern Ontario Regional Hemodialysis 

Program. An increased Dialysate sodium (Dial-Na+) to Pre-dialysis plasma sodium (Pre-

Na+) concentration difference (DPNa+) leads to adverse clinical outcomes in 

hemodialysis patients. The post- to pre-dialysis plasma sodium difference (PPNa+) 

predicts clinical outcomes equally well as DPNa+ so long as Dial-Na+ is within 3 

mmol/L of Pre-Na+. Calculation of DPNa+ requires determination of the Pre-Na+, 

historically thought to be stable in hemodialysis patients and thus termed “setpoint” (SP). 

However, we determined that SP is modifiable by hemodialysis prescription. Finally, an 

equation to predict interdialytic weight gain was created, confirming Dial-Na+, dialysis 

frequency and duration to be modifiable factors affecting IDWG. Further research is 

required to validate this equation prospectively, and to determine the impact of changes of 

SP on cardiovascular morbidity and mortality.  

 

KEYWORDS 

Hemodialysis, end stage renal disease, end stage kidney disease, interdialytic weight gain, 

cardiovascular mortality, sudden cardiac death, dialysate sodium, sodium setpoint, 

diffusive sodium balance, ultrafiltration, osmotic sodium balance, quotidian hemodialysis, 

nocturnal hemodialysis, home hemodialysis. 
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1.0 General Introduction 

Prevalence of kidney disease in the United States (U.S.) has increased by over 60 times 

from 1973 to 2011.1,2 Now approximately 15% of the population is affected by kidney 

disease,3-5 translating to over 4 million Canadians6 and 40 million Americans.7 

Prevalence estimates have been difficult without a uniform definition of kidney disease; 

fortunately, this was formalized in 2002 (Table 1.1).8  

Stage Glomerular Filtration Rate* 
Kidney 

Damage** 
Prevalence 

(%) 
1 > 90 mL/min/1.73 m2 + 1.8 
2 60-89 mL/min/1.73 m2 +/- 3.2 
3 30-59 mL/min/1.73 m2 +/- 7.7 
4 15-29 mL/min/1.73 m2 +/- 0.4 
5             

“End Stage” 
<15 mL/min/1.73 m2     OR             

renal replacement therapy *** +/- 2.4 

    Table 1.1: Kidney Disease Outcomes Initiative Definition of Kidney Disease 

* Glomerular Filtration Rate defined by a Serum Creatinine, as per Cockcroft-
Gault,9 Modification of Diet in Renal Disease (MDRD)10 or Chronic Kidney 
Disease Epidemiology Collaboration (CKD-EPI)11 equations 
** Kidney Damage may include urinary abnormality (eg. Microalbuminuria, 
hematuria) or structural abnormality of the kidney 
*** Renal replacement therapy may include peritoneal dialysis, hemodialysis, or 
renal transplantation 

   
Critical in the formal definition is the recognition that kidney disease exists on a 

continuum, and that patients can progress from one stage to the next. Though 15% of the 

population suffers from kidney disease, 2.4% (Table 1.1) have the most advanced “end 

stage” 5, and many of these patients require renal replacement therapy. There are three 

types of renal replacement therapy, being peritoneal dialysis (PD), hemodialysis (HD), 

and renal transplantation (RTx). Hemodialysis is a process in which a patient’s blood is 

exposed to a man-made dialyzer membrane to remove waste products, to restore the 

proper balance of electrolytes such as potassium and phosphate, and to eliminate extra 

fluid from the body. Most recent estimates suggest there are 23,188 Canadians12 and 

398,861 Americans13 with Stage 5 kidney disease so severe that they require renal 

replacement with hemodialysis treatments.  



!

!

3!

 Patients with all stages of kidney disease are at higher risk of cardiovascular death 

than the general population.14-16 The most common cause of death in patients with end 

stage kidney disease is indeed cardiovascular (Figure 1.1).2  

 
Figure 1.1: Causes of Death in Patients with End Stage Renal Disease 

Cardiovascular disease encompasses a wide spectrum of pathologies, but in end-stage 

kidney disease patients using hemodialysis (ESRD-HD), up to 60% of cardiovascular 

deaths are by sudden cardiac death (SCD).17 It is well established that SCD risk increases 

as renal function worsens;18 Several mechanisms have been proposed, including 

hemodialysis prescription,19-26 anemia and vascular access,27-31 atherosclerosis,19,32 

arteriolosclerosis,33,34 volume and pressure overload.20,35-40  

1.1  Hemodialysis 

Of special importance in hemodialysis patients are the separate effects of volume 

overload and pressure exerted upon the left ventricular output,20,35-40 which ultimately 

lead to left ventricular hypertrophy41-49 and death.50,51 In conventional hemodialysis 
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patents, urine output is either absent or insufficient, so hemodialysis is performed three 

times a week to remove solutes and fluids. The increase in weight from the end of a 

hemodialysis session to the start of the next session is called interdialytic weight gain 

(IDWG) (Figure 1.2).  

 

Figure 1.2: Interdialytic Weight Gain in Patients Undergoing Hemodialysis  
       Tuesdays, Thursdays and Saturdays 

Overwhelming evidence suggests that, when corrected for confounding factors such as 

nutritional status,52,53 increases in IDWG lead to increased morbidity and mortality in 

hemodialysis patients.37,38,53-56 Thus, defining strategies that effectively control 

interdialytic weight gain is of clinical importance, and likely will lead to improved 

survival of hemodialysis patients.  

Total body volume is regulated through sodium balance,57 and thus the major 

determinant of IDWG is a patient’s total sodium balance (Equation 1.1).  

 

Equation 1.1: Total Sodium Balance 

IDWG ~ [Na+] Balance = [Na+] intake (oral or intravenous)  

- Urinary [Na+]  excretion - Other (fecal/sweat) [Na+] excretion  

+ [Na+] balance in hemodialysis 

In hemodialysis patients, urinary [Na+] excretion is either non-existent or negligible, and 

fecal and sweat sodium excretion is negligible. Thus, the [Na+] balance in a hemodialysis 
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patient is determined by [Na+] intake (oral or intravenous) and by [Na+] balance in 

hemodialysis. It is well established that dietary oral sodium restriction decreases IDWG 

and left ventricular mass.58,59 Likewise, administration of intravenous sodium chloride 

solution increases IDWG.60,61 However, the effect of [Na+] balance, during hemodialysis, 

on IDWG, is less well understood. An understanding of the biological and physical 

processes involved in hemodialysis, and their effects on total sodium balance, is therefore 

essential to determine how to reduce IDWG, and ultimately, hemodialysis patient 

morbidity and mortality. 

Hemodialysis is a process in which a patient’s blood is exposed to a man-made 

dialyzer membrane to remove waste products, to restore the proper balance of 

electrolytes such as potassium and phosphate, and to eliminate excess body fluid (Figure 

1.3). Blood leaves the patient (Figure 1.3- blue curved arrow) from an intravenous 

catheter, into a hemodialysis machine, where it enters “pre-membrane” into the top of a 

dialyzer, simultaneous to clean dialysate fluid entering the bottom of the same dialyzer. 

After the waste products and excess water are removed, blood leaves the dialyzer, and is 

pumped back into the patient (Figure 1.3- red curved arrow).A  

As blood flows through the parallel array of small caliber cylindrical tubes in the 

operational core of a dialysis machine (the dialysis “membrane”), the material walls of 

the tubing are the hemodialysis membrane.  The flow in each tube is approximately 

parabolic in velocity profile, the fastest in the center, and slowest at the wall. The friction 

between these fluid layers is known as viscosity, or less formally as “stickiness.” 

Mathematically, the viscosity (η), is defined as the ratio of the fluid shear stress (τ,in Pa), 

divided by the fluid shear rate (δv/δr, in s-1 ) [η = τ /(δv/δr), thus having units of Pa.s].  If 

the viscosity of a fluid is independent of shear rate, then the viscosity is said to be a 

Newtonian fluid.  While blood does have a minor dependence of its viscosity on shear 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
A  There are many components to the standard hemodialysis machine, including heaters, 
deaeration, blood tubing, blood and dialysate pumps, blood leak detector, flow meter, 
conductivity cell and display, pH probes, filters, dialysis membrane, and electrical supply. 
However, it is not the objective of this thesis to discuss each individual component. Instead, only 
those components that have a role in sodium balance in hemodialysis are discussed. Furthermore, 
the dialysis machine and components are kept relatively constant from one instrument to another. 
These instruments are also kept relatively constant whether a patient performs their treatment in a 
hospital, or at home. Therefore, the biophysical forces involved in hemodialysis are similar 
regardless of the location of the treatments. 
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rate at very low shear rates, it is considered to be Newtonian in the larger blood vessels 

and within the dialysis instrumentation.  

The removal of waste products and water relies upon passage of blood inside one 

of thousands of hollow fibers,B with dialysate fluid moving in the opposite direction on 

the opposite side (Figure 1.4). Since sodium removal during hemodialysis is critical to 

the total body sodium balance, which in turn is important in cardiovascular and all-cause 

mortality,  a  detailed   understanding  of  all  the  factors  that  contribute  to  intradialytic  

 

Figure 1.3: Hemodialysis Process 

sodium balance is essential. Sodium balance during hemodialysis occurs by both 

diffusion and convection. 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
B In nephrology clinical settings, a hemodialysis hollow “fiber” is one of thousands of cylindrical 
“tubes” encased within a hemodialysis “membrane.” 
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Figure 1.4: Dialyzer Hollow Fibers Through Which Blood Flows. 

1.1.1 Diffusion 

The rate of diffusive sodium removal across dialyzer membranes is determined by Fick’s 

law (Equation 1.2). In turn, Fick’s diffusion coefficient depends on a number of factors 

(Equation 1.3). Combining equations 1.2 and 1.3 to determine the rate of diffusive 

sodium removal leads to equation 1.4. 

 

Equation 1.2: Fick’s Law 

δn/δt = -D(A) δc/δd 

 

Equation 1.3: Fick’s Diffusion Coefficient 

D = (κΤ/6πη)(4πΝ/3Μu)1/3 

 

Equation 1.4: Combination of Equations 2 and 3 

δn/δt = (-A) (δc/δd)(κΤ/6πη)(4πΝ/3Μu)1/3 

where δn/δ t = the rate of movement of sodium molecules per unit time (mol/s); D = 

Fick’s diffusion coefficient (m2/s); A = membrane surface area (m2); δc = concentration 

difference (mol/m3) and δd = the distance a sodium molecule must move (m). κ = 

Boltzman’s constant (J/K); T = absolute temperature (Kelvin); η = viscosity [Pa s]; N = 
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Avogadro’s number  (mol-1); M = molecular weight (g/mol); u = partial molar volume 

(m3/mol). 

Boltzmann’s constant (κ = 1.3806 x 10-23 m2kg/s2 deg.K.) and Avogadro’s 

number (N = 6.0221 x 1023 mol-1) are known. Furthermore, dialyzed blood must be 

returned to the patient at a tolerable temperature, between 35.5 and 38.0 degrees Celsius. 

This prevents patient discomfort and hypothermia at low temperatures,62,63 and 

intradialytic hypotension at high temperatures.64-67 Thus, there is only a narrow range for 

the temperature (T), which will be simplified to 36.5 oC, or 309.65 oK. Simplifying for δn 

yields Equation 1.5. 

 

Equation 1.5: Rate of Molecular Movement During Hemodialysis 

δn = (3.09 x10-14) (A) (1/Mu)1/3  (δc)  

 δt   η       (δd) 

where δn = movement of molecules (mol); δt = time (s); A = the area of the dialyzer 

membrane through which molecules move (m2); δc = concentration difference (mol/m3); 

δd = the distance a sodium molecule must move (m); η = viscosity [Pa s)]; M = 

molecular weight (g/mol); u = partial molar volume (m3/mol) 

Thus, diffusive loss of a substance can be increased on hemodialysis by a larger 

dialyzer surface area (A), a shorter distance for a molecule to travel (δd), a greater 

concentration difference (δc), longer time on hemodialysis (δt), and lower blood viscosity 

(η). While the design of dialysis machines and dialyzer membranes is not the goal of the 

research performed for this thesis, a basic understanding is required to establish the 

rationale of our research design. 
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1.1.1.1 Dialyzer Area  

Dialyzer membrane fiber area is a function of both fiber radius and length (equation 6). 

 

Equation 1.6: Hemodialyzer Fiber Area 

A = 2πrL  

  

Where A = fiber surface area (m2), r = fiber radius (m),  

L = fiber length (m). 

 

1.1.1.2 Dialyzer Fiber Radius  

Laminar flow of a Newtonian fluid at constant velocity can be modeled using Poiseuille’s 

equation (equation 1.7). On the one hand, a small inner diameter is desirable because it 

decreases the diffusive distance for solute mass transfer (equation 1.5). However, the 

flow along the length of a hollow fiber is governed by the Poiseuille equation (equation 

1.7), which can be rearranged for blood flow (equation 1.8). 

 

Equation 1.7: Poiseuille’s Law 

ΔP = 8(η)(Q)(L) 

 πr4 

 

Equation 1.8: Blood Flow as per Poiseuille Equation 

Q = ΔP/R  where  R = 8ηL/πr4 

Where ΔP = pressure difference between two points (P2 and P1) along a tube, η = fluid 

viscosity [Pa s)], Q = volumetric flow rate (m3/s), r = radius of tube (m), R = resistance to 

blood flow, L = fiber length (m) 

R and r4 are inversely related; small decreases in hollow fiber radius (r) cause 

large increases in flow resistance (R). In general, however, the principal resistance to 

molecular movement out of dialysis tubing is the hollow fiber material itself with a minor 
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contribution to the radial distance within the blood itself. Since blood flow rate is 

constant during hemodialysis, an increase in flow resistance is matched with a large 

increase in pressure drop. This pressure drop is problematic; osmotic clearance is 

optimized by maximizing a dialyzer membrane’s water permeability. Therefore, high 

flow resistance and associated large pressure drop associates with backfiltration of 

dialysate into the blood compartment.68 This is undesirable, as backfiltration is associated 

with endotoxin exposure, activation of complement, cytokines, inflammation, 

malnutrition and death.69-73 Modifications in hollow fiber radius are thus limited, 

reflecting a compromise between these opposing forces;74 most hollow fibers have a 

relatively standard inner diameter (180-220 µm). 

 

1.1.1.3 Dialyzer Fiber Length  

Like dialyzer fiber radius, the fiber length represents a compromise between opposing 

forces.74 On the one hand, an increase in diffusive capacity can be achieved by increasing 

the fiber area (equation 1.3), which is dependent upon the fiber length (equation 1.6). On 

the other hand, increased fiber length associates with higher flow resistance (equation 

1.8) and larger pressure drop, which leads to backfiltration of dialysate into the blood 

compartment.68 This is undesirable, as backfiltration leads to endotoxin exposure, 

activation of complement, cytokines, inflammation, malnutrition and death.69-73 The 

spectrum of hollow fiber length is thus narrow, reflecting a compromise between these 

opposing forces;74 most hollow fibers have a standard length (20-24 cm).  

1.1.1.4 Distance for Molecule to Travel 

The distance for a molecule in blood to travel, to enter the dialysate, is determined by the 

hollow fiber radius, and the fiber wall thickness (Figure 1.5). Considerations for hollow 

fiber radius are discussed above (Section 1.1.1.2).  

The hollow fiber thickness reflects three competing manufacturing constraints. 

Firstly, the fiber wall must withstand the shear stresses of high blood flow under pressure. 

Shear stress is the external force that blood acts upon the hollow fiber, parallel to the 

plane in which the fiber lies. This relationship is dictated by the Poiseuille equation 
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(equation 1.9). Shear stress against the hollow fiber wall also exerts itself against red 

blood cells, making them susceptible to hemolysis. However, the risk of hemolysis in 

modern hemodialysis machines is very low; thus, shear stress lies within well tolerated 

physiological limits. Secondly, greater membrane biocompatibility leads to 

improvements in complement activation,75 inflammation,76 nutritional status,77 

cardiovascular outcomes72 and mortality.72,78,79 The earliest hemodialysis membranes, 

made of modified or unmodified cellulose,68 had low biocompatibility. These had a wall 

thickness of 6-15 µm.80 The major constituent of these membranes was cellobiose,81 

which contained a high density of hydroxyl groups that activated the alternative 

complement pathway.82 Newer synthetic membranes have successfully replaced the 

hydroxyl group and improved biocompatibility. 

 

Equation 1.9: Shear Stress on Hollow Fiber Wall 

τ = 4ηv/r or  τ = 4ηQ/πr3 

Where τ = shear stress on hollow fiber wall (Pa), η  = blood viscosity [Pa s)],  

v = average blood velocity within hollow fiber (m/s), r = fiber radius (m),  

Q = blood flow rate (m3/s) 

Thirdly, earlier hemodialysis membranes had a low mean pore size, limiting clearance to 

only lower molecular weight toxins.83,84 On the other hand, a number of synthetic 

membranes have been developed, including polysulfone,85 polyamide,86 

polymethylmethacrylate,87 polyethersulfone,88 and polyethersulfone combined with 

polyamide.89 These membranes have higher water permeability and larger pore size, 

permitting improved clearance of higher molecular weight proteins.85,90 Increased 

clearance of higher molecular weight proteins, such as β2-microglobulin, is desirable 

since it has been strongly linked to decreased incidence of neuropathy,70,91,92 

cardiovascular disease93-95 and less strongly to death.94,96 In light of these manufacturing 

limitations and clinical outcomes, newer hemodialysis membrane fibers tend to be 

thicker-walled (> 20 µm).74  
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1.1.1.5 Concentration Difference 

The hemodialysis membrane concentration difference is determined by the concentration 

of substance inside hollow fibers (blood) and outside the fiber (dialysate) (Figure 1.5).C 

However, hemodialysis is needed thrice weekly to achieve a minimal weekly 

hemodialysis clearance to achieve benefits in patient morbidity and mortality.93,97-102 

Therefore, patients’ maximal blood substance concentration reflects two things, being the 

duration and the rate of substance production in the interdialytic interval. 

 
Figure 1.5: Schematic of Solute (*) Inside Dialyzer, Crossing Distance of Hollow Fiber  

       Radius and Fiber Wall to Dialysate 

As the interdialytic interval duration increases, substance concentration increases. 

However, changes in dialysis frequency have more pronounced impacts on the 

interdialytic interval duration (Table 1.2). For example, a 50% increase in dialysis 

duration from 4 to 6 hours (hemodialysis prescription 1 to 2) decreases interdialytic 

interval 5.3% (38 to 36 hours), but a similar 50% increase in dialysis frequency from 4 to 

6 times per week (hemodialysis prescription 1 to 3) decreases interdialytic interval 36.8% 

(38 to 24 hours). More frequent hemodialysis schedules have been associated with 

improved blood pressure,103,104 phosphate control,103 physical function,105 left ventricular 

mass,42,103 and cardiac function.106 However, frequent (>4 sessions per week) dialysis 

modalities of short (<4 hours per session) duration may in fact increase patient mortality, 

compared to equal frequency but similar or longer duration.107 This is probably because 

of increased dialysis access related complications108 and increased myocardial stunning 

secondary to higher fluid removal rates.26,64,109-111 Thus, it is likely that both hemodialysis 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
C Nephrologists, and indeed nephrology literature, refers to the concentration difference between 
dialysate and pre-dialysis sodium, or between post- and pre-dialysis sodium as the DPNa+ or 
PPNa+ “gradient.” However, the term “gradient” implies a distance factor, which is not included 
in the nephrology “gradient” description. To avoid confusion, this thesis uses the term 
concentration “difference” whenever possible, except in published nephrology work, which 
interchangeably uses “gradient.”  

! ! ! !
! ! ! ! ! !
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frequency and duration impact diffusive sodium balance, and thus cardiovascular and 

overall patient mortality. The rate of substance production during the interdialytic period 

is determined by body mass, body composition, nutritional status and general health.98 

Indeed, a U shape curve is found for intradialytic urea reduction rate (x-axis) and survival  

(y-axis); lower survival rates at the lower urea reduction rates reflect poor nutritional 

status, anorexia, and muscle wasting, all of which are low toxin generation states.  

 

Hemodialysis 
Prescription 

Frequency 
(sessions per week) 

Duration        
(hours per session) 

Interdialytic 
Interval (hours) 

1" 4 4 38 
2" 4 6 36 
3" 6 4 24 
4" 6 6 22 

Table 1.2: Interdialytic Interval of Four Hemodialysis Prescriptions 

 Maximal concentration difference requires a low concentration in the dialysate 

concentration (Figures 1.3 and 1.5). For most toxins, a low pre-membrane dialysate 

concentration facilitates maximal diffusive removal. However, rapid concentration shifts 

during hemodialysis are associated with patient morbidity and mortality for some 

substrates, requiring standard dialysate concentrations of sodium and chloride,112,113 

calcium,112,114-116 potassium,117 bicarbonate and acetate,118,119 magnesium112 and glucose 

(Table 1.3).120 Maximal concentration difference is supported by the countercurrent flow 

of blood inside and dialysate outside of the hollow fibers (Figures 1.3 and 1.6). Blood 

flow rate of 350-400 mL/min and dialysate flow rates of 500 mL/min are standard, since 

higher flow rates do not significantly increase small molecular weight solute (eg. Urea) 

clearance.121 

1.1.1.6 Concentration Difference - Sodium 

In patients without kidney disease, plasma sodium concentration is stabilized by 

thirst and ADH responsive osmoreceptors located in the hypothalamus122 and the 

organum vasculosum of the lamina terminalis.123,124 Plasma osmolality is calculated by 

concentrations of glucose, urea and sodium (Equation 1.10).  
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Equation 1.10: Calculated Plasma Osmolality 

Osmolality = 2 [Sodium] + [Urea] + [glucose] 

Where Sodium, urea and glucose are in mmol/L, and osmolality is in mOsm/kg. 

 

Dialysate Constituent Concentration (mEq/L) 
Sodium (Na+) 135 to 145 mmol/L 
Chloride (Cl-) 105 mmol/L 

Calcium (Ca++) 2.5 to 3.5 mEq/L 
Acetate 4.0 mEq/L 

Potassium (K+) 1.5 to 3.0 mmol/L 
Bicarbonate (HCO3-) 33 to 38 mmol/L 

Magnesium (Mg++) 0.75 mEq/L 
Glucose 5 to 10 mmol/L 

Table 1.3: Dialysate Composition 

Tight regulation maintains body fluid osmolality between 280 and 295 mOsm/kg water 

by restoring plasma sodium to a patient specific “setpoint” that is stable over time (Figure 

1.7).125,126,127 While the sodium setpoint is well established in people with normal renal 

function,126 it was not until 1991  that  it  was  confirmed  in  patients  with  severe  

kidney disease,128 and until 2007 that is was confirmed in conventional (< 4 hour per 

session) thrice weekly hemodialysis patients.129-131  However, recent evidence  suggests  

that  thehemodialysis procedure can alter intradialytic plasma sodium concentrations.132 

Moreover, previous reports of sodium setpoint stability in hemodialysis patients excluded 

patients with certain comorbid illnesses, had limited plasma sodium measurements, and 

only considered patients whose hemodialysis sessions were 4 hours or less in duration, 

and 3 times a week. Establishing if the sodium setpoint can be modified in frequent or 

longer hemodialysis is essential, since hyponatremia (low plasma sodium) has been 

associated with increases in all-cause mortality.133,134 The results of previous trials that 

show a survival advantage in longer hemodialysis135,136 and increased mortality in more 

frequent hemodialysis107 may relate to changes in the pre-dialysis plasma sodium setpoint 

(hypothesis 2.1).  
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Legend:                   Blood flow;          Dialysate flow 

Movement of waste product 
 
Figure 1.6: Waste Product Concentration with Countercurrent (A)  

and Concurrent (B) Flow 
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Diffusive balance of sodium during hemodialysis is determined by the 

concentration difference between the pre-hemodialysis plasma sodium concentration 

(Pre-Na+) inside, and the dialysate sodium concentration (DialNa+) outside the 

hollowfiber. In conventional thrice weekly hemodialysis patients, a positive dialysate to 

plasma sodium difference (Dial-Na++ > Pre-Na+) is associated with increased blood 

pressure, IDWG and cardiovascular morbidity and mortality.137-140 On the other hand, a 

negative dialysate to plasma sodium difference  (Dial-Na++ < Pre-Na+)   is   associated   

with   intradialytic   hypotension,  which  is  an independent predictor of death.132,141 

Given these factors, considerable debate persists regarding the appropriateness of 

personalizing dialysate sodium concentration to minimize adverse outcomes. It is 

uncertain whether the dialysate to pre-dialysis plasma sodium   concentration    

difference, or   the    pre-dialysis   to    post- dialysis   plasma   sodium concentration 

difference is preferable to predict clinical outcomes. Furthermore, the predictive value of 

dialysate, pre- and post-dialysis plasma sodium concentrations has not been evaluated in  

 

 
 

Figure 1.7: Homeostatic Mechanism for Plasma Osmolality  
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a hemodialysis population on longer or more frequent hemodialysis sessions. This has 

special relevance in the design of prospective clinical trials in frequent hemodialysis 

modalities, and in the clinical monitoring of such patients (hypothesis 2.2).   

A hemodialysis patient’s albumin concentration influences the amount of sodium 

available for diffusion. Since the anionic albumin is impermeable across hemodialysis 

membranes, its negative charge leads to an electrochemical gradient, leaving less than 

100% of plasma sodium available for diffusion.142 Since plasma albumin concentration is 

variable, this “Gibbs-Donnan effect” may be relevant to diffusive sodium loss during 

hemodialysis (hypothesis 2.3).  

One of the other two components of calculated osmolality is blood glucose 

(equation 1.10). In diabetes mellitus, a quantitative or qualitative insulin deficiency 

prevents glucose movement into cells, leading to hyperglycemia in the extracellular 

space. As hyperglycemia worsens, extracellular fluid osmolality increases (equation 1.10) 

and exceeds that of the intracellular fluid, leading to movement of water out of cells into 

the extracellular fluid. Plasma sodium concentration falls in proportion to the dilution of 

the extracellular fluid, falling approximately 1.6 mEq/L per 5.5 mmol/L increase in blood 

glucose concentration.143 It is thus plausible that the hyperglycemic milieu of diabetes   

alters water and sodium balance during hemodialysis; this has not been well studied 

(hypothesis 2.3). 

1.1.1.7 Time on Hemodialysis 

The maximal duration for conventional hemodialysis treatment was, until recently, 

dictated by facility resources, and ultimately by cost; personnel costs, laboratory tests, 

building maintenance, electricity, water, and administrative costs limited most patients to 

a maximum of four hours per session,144-147 within one of the three hemodialysis shift 

times (8 AM to 12 PM, 12:30 PM to 4:30 PM, 5 PM to 9 PM). However, when compared 

to conventional hemodialysis, sessions longer than 4 hours associate with improvement 

of multiple ESRD-associated conditions. While improved phosphate balance,104,148-151 

renal anemia,148,152 and fertility153 are well accepted, the pathophysiology of improved 

blood pressure,148,150 left ventricular hypertrophy,42,103,154,155 and mortality135,136,156,157 
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remain controversial. There are also cost reductions with home nocturnal (6 to 8 hours 

per session) hemodialysis ($36,840 to $61,220 per annum), compared to in-center 

conventional (4 hours maximum per session) thrice weekly hemodialysis of four hours 

($58,959 to $100,198 per annum).158-161 However, longer hemodialysis treatments are not 

preferable for all patients, as the quality of life has not consistently shown differences 

between hemodialysis modalities.162 Health care administrators have thus advocated for 

more patients to undergo their hemodialysis treatments at home, while many 

nephrologists have advocated for those home treatments to be of longer duration than 4 

hours. Understanding how to optimize hemodialysis duration, within the confines of cost 

and patient comfort, has the potential to improve patient morbidity and mortality.  

In the London Daily Nocturnal Dialysis study,148 IDWG was higher in frequent 

nocturnal (>4 sessions per week, >6 hours per session) than in short hours daily (> 4 

sessions per week, < 4 hours per session) hemodialysis patients using a standard dialysate 

sodium concentration of 140 mmol/L, suggesting that the time of exposure to a higher 

dialysate sodium may affect IDWG. On the other hand, the Frequent Hemodialysis 

Network (FHN) showed lower IDWG in the frequent nocturnal hemodialysis patients,150 

but the patients in this study had variable dialysate sodium concentrations and higher 

residual urinary volumes. This raised the possibility that the time of exposure to a 

diffusive sodium difference was of importance to IDWG (hypothesis 2.3). Likewise, 

whether residual urinary volume affected IDWG was unknown (hypothesis 2.3). Since 

longer hemodialysis duration translates to longer exposure of blood to a diffusive sodium 

difference (equation 1.1), this will alter IDWG and thus cardiovascular morbidity and 

mortality.37,38,53-56 

1.1.1.8 Viscosity 

As blood viscosity increases, diffusive solute loss from blood into dialysate decreases 

(Equation 1.5). The major determinants of blood viscosity are temperature,163 

hematocrit164,165 and plasma protein concentration.166 Tables of blood viscosity based on 

plasma albumin and blood hematocrit167,168 are accurate at low shear rates, but may not 

apply to hemodialysis patients whose blood flows from and back into an arteriovenous 
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fistula, graft or intravenous catheter during hemodialysis (Figure 1.3). However, even at 

the conditions of hemodialysis, the major predictors of blood viscosity have consistently 

been confirmed to be the same.169-172 Since temperature is determined by patient 

hemodynamic stability and symptoms (35.5 to 38.0 degrees Celsius, see section 1.1.1, 

equation 1.4), the remaining factors of importance are hematocrit and plasma protein 

concentration.  

 Progression of kidney disease leads to an erythropoietin deficiency and 

anemia.173,174 Correction of anemia is associated with increases in hematocrit, blood 

viscosity and reduced diffusive hemodialysis clearance.175 However, it is other clinical 

endpoints that determine current guidelines for target hemoglobin of 11.0 to 12.0 g/dL in 

hemodialysis patients;176,177 considerable evidence shows that normalization of 

hemoglobin >13.0 g/dL associates with increased rates of cerebrovascular disease, 

myocardial infarction and death.178-183  

 Under most physiologic circumstances, plasma protein concentration is 

determined by the most abundant plasma protein albumin. Hypoalbuminemia (<35 g/L) 

is associated with cirrhosis, chronic inflammation or infection, and malnutrition.184-186 

Hyperalbuminemia (>50 g/L) is much less common,187 being described in high protein 

diets.188  

Concerns have arisen in studies showing that blood viscosity does not consistently 

decrease with decreasing vessel diameter. This Fahreus-Lindqvist effect has been 

conclusively confirmed in vitro;169,189-196 when blood flows in tubes of decreasing 

diameter, relative viscosity decreases.197 This effect is exaggerated once tube diameter 

falls below 1.0 mm; the dialyzer hollow fiber diameter of 0.18 to 0.22 µm (section 

1.1.1.2) means a ~20% reduction in relative blood viscosity, due to the Fahreus-Lindqvist 

effect.195,198 

 Poiseuille’s law and each of its derivations (equations 1.7 and 1.8) make a number 

of assumptions. Firstly, blood should be an incompressible Newtonian fluid with constant 

viscosity.199 However, blood is non-Newtonian in at least two ways;195 the pressure-flow 

curve is probably not linear,200,201 and shear stress is dependent on blood viscosity. 
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However, blood viscosity still has the same predictors despite the non-Newtonian 

factors;163,202 while the relationship may not be perfectly linear, equations 1.7 and 1.8 still 

provide a reasonable first estimation to identify clinical factors of importance. Secondly, 

there should not be acceleration of fluid in the pipe. This condition holds true for standard 

hemodialysis, since a set blood flow rate from the patient maintains a constant blood flow 

rate through thousands of standardized hollow dialyzer fibers.74 Thirdly, the hollow fiber 

length must be substantially greater than the diameter to avoid the entrance-length 

effect203,204; a length of greater than 10 times diameter is usually sufficient to overcome 

this issue.205 Since the average hollow fiber radius is 180 to 220 µm (section 1.1.1.2), and 

the hollow fiber length 20 to 24 cm (section 1.1.1.3), the entrance-length effect is 

insignificant in hemodialysis. Fourthly and finally, blood flow through a dialyzer should 

be laminar, which holds true under most circumstances.206,207 This can be confirmed by 

calculation of a Reynolds number for the conditions of blood flowing through a hollow 

fiber in a dialyzer for a standard hemodialysis patient.  

Equation 1.11: Reynolds Number for Blood Flow in Dialyzer Hollow Fiber 

Re  = ρ v dH          
                      η 
!
Where  Re = Reynolds number,!ρ = density (kg/m3), v = velocity (m/s), dH = diameter, 

η = viscosity (Pa s). 

 
Dialyzer fiber diameter is approximately 400 mm (section 1.1.1.2), the whole blood 

density ranges from 1043 to 1057 kg/m3, and blood viscosity ranges from 3 to 4 x 10-3 

(Pa s) at 37 degrees Celsius.208 Blood flow during hemodialysis is set to 400 mL/min; 

assuming 12,500 hollow fibers per dialyzer and a fiber radius of 200 mm, the blood 

velocity is 0.00424 m/s. Using these values, the Re of blood in a hollow fiber during 

dialysis is  0.5088, well below the upper limit cutoff for laminar flow, which Reynolds 

initially described to be approximately 2100.209,210  

 

 

 



!

!

21!

1.1.2 Convection 

Convection, also known as ultrafiltration, is the movement of water across a semi-

permeable membrane due to hydrostatic or osmotic pressure.211 The dialysis machine 

pump exerts a negative pressure on the dialysate compartment and a positive pressure in 

the blood compartment, leading to water and dissolved substances leaving the blood into 

the dialysate (“solvent drag”) (Figure 1.8).212 When dialysate and patient plasma sodium 

concentrations are equal, no diffusive difference is present. Intradialytic sodium loss is 

then entirely dependent on negative convective balance.211 

 
Figure 1.8: Blood and Dialysate Compartment Pressures Leading to Net    
           Transmembrane Pressure for Convection.  

Convective fluid losses during hemodialysis have pronounced impact on the 

compartments that make up total body water. In an average healthy 70 kg man, 

approximately 60% of body mass (42 kg) is made up of water, of which 2/3 (28 kg) is 

intracellular and 1/3 (14 kg) is extracellular.213 However, if the same man becomes anuric 

and hemodialysis-dependent, interdialytic weight gains lead to expansion of both 
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intracellular and extracellular fluid compartments (Figure 1.9). Fluid expansion forms the 

basis of clinical dry weight assessment by examining for interstitial fluid expansion  

(edema) and intradialytic hypotension (Figure 1.9).213 However, it is well recognized that 

a hemodialysis patient  can  have  fluid excess     without   clinical   evidence  of    

volume expansion,   commonly    called   “silent   overhydration.” 214-216 Furthermore,  

Figure 1.9: Total Body Water in Healthy 70 kg Man (A) and Hemodialysis Patient With  
       Dry Weight of 70 kg but with 6 kg Interdialytic Weight Gain (B) 

relative proportions of compartments of total  body water differ  significantly  depending  

on  sex, race and body habitus (hypothesis 2.3).217 Likewise, intradialytic hypotension 

occurs when increases in plasma volume from compartments outside plasma occur 

slower than hemodialysis reduces plasma volume.64,218 Refilling from the interstitial fluid 
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continues until 4 hours after a hemodialysis session; intradialytic hypotension is therefore 

a poor marker for total body volume status. Expansion of these compartments leads to 

volume overload, pressure overload,20,33,35,37-40 left ventricular hypertrophy,41-49 and 

death.50,51 This   effect  is   even   more   pronounced   when   dry   weight   is    clinically    

assessed  inaccurately  as   in  “silent overhydration”, since hemodialysis will return a 

patient to a persistently volume overloaded state (Figure 1.10).219,220 Given the 

inaccuracies  of  clinical volume assessment, a great deal of research has focused on 

improving evaluation of hemodialysis patient’s total body water status and dry weight. 

However, natriuretic peptides,221-229 diameter of inferior vena cava,222,227,230 and CRIT-

line monitoring231-239 have limited specificity and generalizability ,220,229 and  their  use  

may   even   increase  mortality.236  Perhaps   the  most  promising   is  the  current   “gold  

 
Figure 1.10: Hemodialysis Patients Oscillate from “Wet” to “Dry” State if Clinical  

         Assessment of Dry Weight is Accurate (A). If Dry Weight is Lower Than  
         Clinically Estimated (B), Patient Will Remain “Volume Overloaded” After     
         Hemodialysis 

standard” of multiple-frequency bioimpedance spectroscopy. The resistance of body fluid 

compartments can be measured, with the ratio of the resistances of the intracellular and 

extracellular water reflecting the relative volume of these compartments.240 As 

hemodialysis patients accumulate excess fluid in their extracellular compartment, this 

ratio proves useful in the evaluation of dry weight. Considerable evidence confirms that 

bioimpedance-guided volume assessment of hemodialysis patients is associated with 

improved clinical outcomes,219,241-243 including mortality.219 While evaluation of these 

technologies is not the objective of this document, it should be mentioned that 
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bioimpedance has confirmed that IDWG reduction is insufficient to reduce 

cardiovascular mortality if  “silent overhydration” persists. This is one inherent limitation 

of any clinical work designed to identify strategies to reduce IDWG.  

1.2 Historical Context 

“Optimal” dialysate sodium concentration has changed more frequently and for more 

reasons than likely any other hemodialysis parameter.244 Early prescriptions relied on a 

negative DPNa+ to increase diffusive sodium loss. A Dial-Na+ of 125 to 130 mmol/L 

was standard, and osmotic loss of plasma water was promoted by using high dialysate 

glucose concentrations.244,245 However, treatment times decreased over time, 

necessitating increases in Dial-Na+ to decrease intradialytic symptoms such as 

disequilibrium syndrome.246,247 A Dial-Na+ of 140 mmol/L became standardized for 

patients undergoing hemodialysis thrice weekly. This increase in Dial-Na+ was further 

supported when acetate-based solutions were replaced with bicarbonate-based dialysate,64 

with the observation that higher Dial-Na+ were associated with less intradialytic 

hypotension.53,248,249 With higher Dial-Na+, sodium removal on hemodialysis occurred by 

convection only, with diffusive losses often replaced with diffusive sodium gain. 

Decisions regarding Dial-Na+ became based upon minimizing patient symptoms within 

the confines of having only 4 hours three times a week to assure all sodium and fluid 

removal. This formed the basis of “sodium ramping,” in which higher Dial-Na+ were 

used for all or part of a dialysis session.248-250 Sodium ramping successfully reduced 

symptoms such as cramping, headaches and intradialytic hypotension.248,249 However, 

significant increases in thirst, pre-dialysis blood pressure and interdialytic weight gain 

(IDWG) raised concern that such prescriptions might exacerbate volume overload and 

cardiovascular mortality.244 As such, the use of sodium ramping has largely fallen out of 

favor.  

  As the burden of cardiovascular disease persisted in hemodialysis patients, new 

strategies to counteract the chronic state of volume and pressure overload were sought. 

This led to reevaluation of the standard prescription of thrice weekly hemodialysis of 3 to 

4 hours each session. More frequent and longer hemodialysis are associated with 

improvements in anemia control,152 calcium and phosphate balance,149,251,252 fertility,153 

and volume and pressure overload.42,154,155,253,254 Indeed, nocturnal therapies associate 
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with improved survival by uncertain mechanisms. This thesis examines the impact of the 

present day hemodialysis prescriptions, on diffusive and convective sodium balance. This 

will ultimately establish the effect of sodium balance on cardiovascular morbidity and 

mortality in hemodialysis patients. 
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2.0 Hypotheses 

Hypothesis 2.1: 

Hemodialysis of a duration greater than 4 hours or a frequency greater than 3 times 

weekly has no effect on the pre-dialysis plasma sodium setpoint. This hypothesis was 

evaluated retrospectively in Chapters 3 and prospectively in Chapter 7. 

 

Hypothesis 2.2: 

The dialysate to pre-dialysis plasma sodium difference and the pre- to post-dialysis 

sodium plasma differences will predict clinical outcomes (blood pressure, interdialytic 

weight gain, intradialytic hypotension) equally effectively in a hemodialysis population 

with frequency greater than thrice weekly and session duration greater than 4 hours per 

session. This hypothesis was evaluated retrospectively in Chapter 4 and prospectively in 

Chapter 6.  

 

Hypothesis 2.3: 

IDWG can be predicted by several demographic and clinical factors, which each impact 

sodium balance on hemodialysis. These factors may include patient factors (age, sex, 

body habitus, diabetes status, dietary salt intake), laboratory factors (patient hematocrit, 

plasma albumin and pre-hemodialysis plasma sodium concentration, residual renal 

function), and dialysis factors (dialysate temperature and sodium concentration, dialysis 

time and duration, dialysis membrane hollow fiber length and radius and wall thickness). 

This was evaluated in Chapter 5. 
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Chapter 3: Plasma Sodium Setpoint: Is it Constant or Changed by Hemodialysis 

Prescription? 
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3.1 Introduction 

Patients with normal renal function have a specific osmolality value, above which thirst is 

generated and fluid ingested. This “setpoint” results in a relatively stable and 

reproducible plasma sodium level over time, not only in patients without kidney disease,1 

but also in patients with advanced renal disease.2 Evidence of this sodium setpoint is also 

seen in thrice weekly conventional hemodialysis patients.3-5 However, hemodialysis 

patients lack the mechanisms to regulate body osmolality and fluid balance.  While 

previous trials examining the clinical effects of different dialysate sodium concentrations 

have treated pre-dialysis sodium “setpoint” as stable, this assumption has not been 

confirmed in quotidian hemodialysis patients.  

Lower pre-dialysis sodium “setpoint” and higher dialysate sodium concentrations 

lead to important clinical outcomes such as increased blood pressure and IDWG,6-13 

which may effect cardiovascular and all-cause mortality.14,15 Lower pre-dialysis plasma 

sodium is independently associated with increased all-cause mortality,16,17 thus a change 

in sodium “setpoint,” might need ongoing monitoring to minimize IDWG, and associated 

cardiovascular morbidity and mortality. 

The objective of this study was to determine if the sodium setpoint changed with 

longer or more frequent exposure to the same dialysate sodium concentrations, when 

patients transitioned from thrice weekly conventional hemodialysis to dialysis modalities 

differing in duration and frequency.  

3.2  Materials and Methods 

Study Population 

We performed a retrospective observational design that included all patients in the home 

hemodialysis program of the Southwestern Ontario Regional Renal Program, from 1998 

to December 31, 2011. A total of 87 patients, 23 still current and 64 no longer on home 

hemodialysis, were included. All patients in our study were on conventional thrice 

weekly hemodialysis in-center (ICHD) prior to home hemodialysis; some continued 
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ICHD while others changed hemodialysis modality upon transferring from in-center to 

home hemodialysis.  

Dialysis Modality 

The modality of home hemodialysis was defined by the duration of dialysis therapy, and 

the frequency of treatments. Short-hours daily (SHD) hemodialysis was defined as a 

minimum of 5 treatments per week, with a treatment time of 1.5 hours to 4.0 hours. 

Intermittent conventional hemodialysis (ICHD) implied a maximum of 4 treatments per 

week, with treatment times of 1.5 hours to 4 hours.  Frequent nocturnal hemodialysis 

(FNHD) was a minimum of 5 treatments per week, with a minimum treatment time of 6.0 

hours. Intermittent nocturnal hemodialysis (INHD) meant a maximum of 4 treatments per 

week, with a minimum treatment time of 6.0 hours. Dialysate sodium concentration was 

not individualized as it was a standard 140 mmol/L for all patients at all times. 

Blood sample collection 

In the 50 days prior to initiation of home hemodialysis, while the patient is on in-center 

thrice weekly conventional hemodialysis (ICHD-IC), pre and post dialysis blood samples 

are taken every one to two weeks. Upon transition to home hemodialysis, pre and post 

dialysis blood samples are routinely taken each month. Home patients are trained to take 

blood from the arterial blood line at the start of dialysis and post-dialysis, using a 

standard slow blood and stop dialysate method. The samples are centrifuged and then 

stored and refrigerated until delivered to the local laboratory for that patient. All patient 

blood tests are measured using automated and standardized methods. Of interest to this 

study were pre-dialysis plasma sodium concentrations. Only outpatient blood tests were 

used, to assure that the patient was at their baseline health status, so that the plasma 

sodium concentration would not be confounded by acute illness. 

Sodium concentration measurement 

Plasma sodium concentration was measured using Beckman-Coulter LX20 Pro 

Chemistry Analyzer with Ion Selective Electrodes prior to, and Roche Modular P 

Chemistry Analyzer with Ion Selective Electrodes after November 4, 2008. This change 
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was made by the London Health Sciences Center because of a need for higher volume of 

laboratory testing. Both plasma Na+ concentration methods were regularly calibrated; 

thus, the measurements were treated as equivalent on data analysis. Dialysate sodium 

concentration was determined using online conductivity measurements built into the 

Fresenius H series hemodialysis machine, which was used for all patients. Blood glucose 

was not measured simultaneous to Na+ concentration; thus, plasma sodium levels were 

not corrected for glucose. Dialysate Na+ concentration measurement is regularly 

calibrated, to assure stability and accuracy of dialysate Na+ concentrations. Home 

hemodialysis machines were evaluated and calibrated at least once, and usually twice 

annually, by the program’s water engineer or one of the trained home hemodialysis 

nurses. 

Database Creation 

Blood test results were available from the electronic patient record (PowerChart by 

Cerner) of London Health Sciences Centre.  

Age (years), sex, diabetes status, residual renal function (mL/min/1.73m2) and 

months of renal replacement therapy prior to initiation of home hemodialysis were 

determined from chart review. Residual renal function was calculated within 3 months of 

conversion to home hemodialysis, as previously described.18 

Weights (kg), dialysis treatment times and frequency were obtained from archived 

dialysis treatment run sheets. The average values for these per month were calculated and 

entered into the study database. For this analysis, a single value for each patient data 

point was used; the average of the monthly values was used regardless of time period on 

hemodialysis modality. There were no duplicate observations for any patient. 

Ethics 

Because of concerns regarding the use of a standard dialysate of 140 mmol/L sodium 

concentration and prompted by the observation of high IDWGs in patients undergoing 

FNHD, a quality assurance investigation was instituted.  All laboratory tests had been 

taken as per routine care protocols; demographic and dialysis treatment information were 
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available from patient records.  Once extracted, all data were de-identified before 

analysis.  No patient had to provide blood samples, answer questionnaires or do anything 

specific for this study which was conducted in accordance with the Declaration of 

Helsinki.  Thus, informed written consent was not obtained from the current patients.  

Statistics 

Data were analyzed using the Statistical Package for Social Sciences (SPSS, IBM, 

Armonk, New York, U.S.) version 19.0.  

Patients exposed to different dialysis modalities were compared using two-tailed 

student T-tests for continuous variables, and Fisher’s exact test for categorical variables. 

Statistical significance was achieved with α<0.05.  

The objective of this study was to determine if the sodium setpoint changed with 

longer and more frequent exposure to the same dialysate sodium concentrations, when 

patients transitioned from thrice weekly conventional hemodialysis to dialysis modalities 

differing in duration and frequency (SHD, ICHD, INHD, FNHD). The “sodium setpoint” 

was defined as the average pre-dialysis plasma sodium concentration over the time period 

specified for each of three endpoints. The three endpoints were DeltaPRENA100, 

DeltaPRENA100-150, and M100 (Figure 3.1). They are defined as follows: 

DeltaPRENA100 is the difference between PRENA100+ and PRENA-50. 

PRENA100+ is the average pre-dialysis plasma sodium concentration, after 100 days of 

home hemodialysis, for the life of the patient while still on the same dialysis modality. 

PRENA-50 is the average of all pre-dialysis plasma sodium values in the 50 days prior to 

transition to home hemodialysis and while on ICHD.  

Each patient’s period of time on home hemodialysis differed after the first 100 

days. Thus, DeltaPRENA100-150 was also calculated as the difference between 

PRENA100-150 and PRENA-50. The PRENA100-150 is the average pre-dialysis plasma 

sodium concentration, between 100 and 150 days post-transition to home hemodialysis.  
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Figure 3.1: Endpoints to Determine Existence of Sodium Setpoint 

PRENA100+ and PRENA-50 were compared, as were PRENA100-150 and 

PRENA-50 in each dialysis modality group, for all patients, and separately for patients 

with PRENA-50 values a) greater than or equal to, or b) less than the dialysate sodium 

concentration of 140 mmol/L. A statistically significant change between Pre and Post-

Na+ values implied a change in sodium setpoint. 

A line of best fit was then calculated from the pre-dialysis plasma sodium values 

versus time plot for each patient over the first 100 days after transitioning to home 

hemodialysis. The slope of these lines of best fit was measured with its confidence 

intervals (M100). The mean M100 values found in different dialysis modality groups 

were compared overall, and again by PRENA-50/dialysate-Na+ relationship. A M100 

with 95% confidence intervals that did not cross zero was evidence for a change in 

sodium setpoint. 

We chose the time period of 100 days because we wanted a minimum of 3 plasma 

sodium measurements for each patient to calculate slope of pre-dialysis plasma sodium 

concentration. Since each home hemodialysis patient undergoes monthly blood work, 

most patients have a minimum of 3 pre-dialysis sodium concentrations within 100 days.  
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Regression models were used to identify an association between the primary 

outcome DeltaPRENA100 and a series of covariates. Specifically, univariate regression 

analyses were performed using DeltaPRENA100, DeltaPRENA100-150, and M100 as 

separately evaluated dependent variables. Independent variables evaluated included 

dialysis frequency and duration, dialysate to (PRENA-50) difference (DPRENA-50), and 

(DPRENA-50) times dialysis duration. We evaluated (DPRENA-50) times dialysis 

duration, as an independent variable, since we have previously shown that this covariate 

is predictive for interdialytic weight gain in a similar patient population.  

Multivariate regression was used in an attempt to determine how 

DeltaPRENA100 was associated with dialysis frequency, duration, the dialysate to 

PRENA-50 difference, and the dialysate to PRENA-50 difference times dialysis duration. 

Here all patients were used regardless of dialysis modality.  

Table 3.1: Demographic Factors of Dialysis Modality Groups 
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3.3 Results 

A total of 87 patients made up the database, with 31, 13, 30 and 13 from SHD, ICHD, 

FNHD and INHD. There were 29, 13, 28 and 12 patients with sufficient data for 

DeltaPRENA100 and DeltaPRENA100-150, and 31, 10, 26 and 11 patients with 

sufficient data for M100 from SHD, ICHD, FNHD and INHD, respectively. A total of 29 

patients had pre-transition pre-dialysis sodium setpoint greater than or equal to 140 

mmol/L, with 12,3,12, 2 from SHD, ICHD, FNHD and INHD. 

There were no statistically significant differences between dialysis modalities for 

age, diabetes status, sex, or vintage of renal replacement prior to initiation of home 

hemodialysis (Table 3.1). However, FNHD patients were heavier than ICHD patients 

(87.5 versus 68.5 kg, p = 0.008). Residual renal function was higher in ICHD patients 

than SHD patients (1.94 versus 0.27 mL/min/1.73 m2, p < 0.001). While on the assigned 

dialysis modality, plasma albumin did not differ between groups. Pre-dialysis phosphate 

concentration was lower in FNHD than SHD patients (1.56 versus 1.76 mmol/L, p = 

0.044). Dialysis duration was shorter in SHD patients (142.3 min) than ICHD (202.3 min, 

p <0.001), FNHD (408.6 min, p<0.001) and INHD patients (372.5 min, p<0.001), and 

shorter in ICHD patients than FNHD (p<0.001) and INHD patients (p<0.001). Dialysis 

frequency was greater in SHD patients (5.7 per week) than ICHD (3.1 per week, 

p<0.001), FNHD (5.2 per week, p<0.001) and INHD patients (3.1 per week, p<0.001), 

and greater in FNHD than ICHD (p<0.001) or INHD patients (p<0.001). Weekly dialysis 

duration was lower in ICHD than SHD (633.7 vs. 803.4 minutes, p=0.001), lower in SHD 

than INHD (803.4 vs. 1148.5 minutes, p<0.001) and lower in INHD than FNHD (1148.5 

vs. 2128.1 minutes, p<0.001). Weekly ultrafiltration volume was lower in ICHD and 

INHD than SHD (6.5 and 6.6 vs. 10.4 L, p<0.001 and p=0.004) and lower in ICHD and 

INHD than FNHD (6.5 and 6.6 vs. 12.0 L, p<0.001 for both). 

Sodium setpoint decreased in FNHD patients when all pre-dialysis sodium 

concentrations from 100 days post-transition onwards were considered (PRENA-50 > 

PRENA100+)(138.5 to 136.7 mM, p=0.015)(Figure 3.2).  
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FNHD = frequent nocturnal hemodialysis; ICHD = intermittent conventional 
hemodialysis; INHD = intermittent nocturnal hemodialysis; SHD = short hours daily 
hemodialysis. 
 
Figure 3.2: Pre-Dialysis Plasma Sodium Concentration Before (PRENA-50), Between  

        Days 100 to 150 After (PRENA100-150) and All Days from 100 days After 
       (PRENA100+) Transition to Home Hemodialysis 

In both SHD and FNHD patients whose pre-transition pre-dialysis sodium 

(PRENA-50) was greater than or equal to the dialysate sodium of 140 mM, sodium 

setpoint decreased when post-transition pre-dialysis sodium concentrations from 100 

days onwards were considered (PRENA-50 > PRENA100+) (SHD 140.2 to 138.7 mM, 

p=0.019; FNHD 140.5 to 137.1 mM, p=0.001) (Figure 3.3). When pre-dialysis plasma 

sodiums were restricted to post-transition days 100 to 150, the sodium setpoint still 

decreased in both SHD and FNHD patients (SHD 140.2 to 138.6 mM, p=0.030; FNHD 

140.5 to 138.0 mM, p=0.008) (Figure 3.3). 

There was no difference in any dialysis modality group, between PRENA-50 and 

PRENA100+, or between PRENA-50 and PRENA100-150, if the pre-transition pre-
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dialysis sodium (PRENA-50) was less than the dialysate sodium concentration of 140 

mM (Figure 3.4). 

FNHD = frequent nocturnal hemodialysis; ICHD = intermittent conventional 
hemodialysis; INHD = intermittent nocturnal hemodialysis; SHD = short hours daily 
hemodialysis. 
 
Figure 3.3: Pre-Dialysis Plasma Sodium Concentration Before (PRENA-50), Between  

       Days 100 to 150 After (PRENA100-150) and All Days From 100 Days After       
       (PRENA100+) Transition to Home Hemodialysis, with Pre-Transition  
       Setpoint > 140 mmol/L 

The slope of pre-dialysis plasma sodium in the first 100 days post-transition 

(M100) was less than zero in all SHD (95% CI, -0.0055 to -0.0318 mM/day) and FNHD 

(95% CI, -0.0010 to -0.0394 mM/day) patients, and in SHD (95% CI, -0.0081 to -0.0351 

mM/day) and FNHD (95% CI, -0.0209 to -0.0695 mM/day) patients whose pre-transition 

pre-dialysis sodium (PRENA-50) was greater than or equal to 140 mM (Figure 3.5). 

Univariate regression analysis was performed to predict M100 using 73 data-sets 

from 29 SHD, 9 ICHD, 24 FNHD and 11 INHD patients. Univariate correlation 

coefficients and p values are shown (Table 3.2). The strongest predictor of M100 was the 
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dialysate to pre-dialysis plasma sodium difference (DPRENA-50)(R2 = 12.65%) although 

no independent factor reached statistical significance (Table 3.1). 

 

FNHD = frequent nocturnal hemodialysis; ICHD = intermittent conventional 
hemodialysis; INHD = intermittent nocturnal hemodialysis; SHD = short hours daily 
hemodialysis. 
 
Figure 3.4: Pre-Dialysis Plasma Sodium Concentration Before (PRENA-50), Between  

       Days 100 to 150 After (PRENA100-150) and All Days From 100 Days After  
       (PRENA100+) Transition to Home Hemodialysis, With Pre-Transition      
       Setpoint < 140 mmol/L 

 Univariate regression analysis was performed to predict DeltaPRENA100 and 

DeltaPRENA100-150 using 82 data-sets from 29 SHD, 13 ICHD, 28 FNHD and 12 

INHD patients. Univariate correlation coefficients and p values are shown (Table 3.2). 

The covariate of (DPRENA-50)(dialysis time) had a correlation of 31.8% and 42.0% for 

DeltaPRENA100 and DeltaPRENA100-150, respectively. However, this was entirely due 

to the DPRENA-50 component; elimination of dialysis duration from the covariate 

improved the correlation coefficient and p value in both DeltaPRENA100 (R2 = 31.8 to 

32.8%, p = 0.540 to 0.030) and DeltaPRENA100-150 (R2 = 42.0 to 42.0%, p = 0.859 to 
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0.002). Dialysis frequency (R2 = 6.19%, p = 0.060) and dialysis duration (R2 = 2.15%, p 

= 0.085) trended towards a relationship with DeltaPRENA100. 

A multivariate model was created to investigate the association of 

DeltaPRENA100 with dialysis frequency and DPRENA-50. 

 

Model 1 

DeltaPRENA100 = 0.4765 (DPRENA-50)  

- 0.3506 (dialysis frequency per week) – 0.2807 

R2   =  35.44% (adjusted R2 = 33.8%) 

F-statistic = 21.68 (on 2 and 79 degrees of freedom, p<0.001)   

DeltaPRENA100 =  (Post100-Na+) – (PRENA-50) 

DPRENA-50  = (Dialysis Na+) – (PRENA-50),  

adjusted p value < 0.001, R2 = 32.8% in univariate model 

Dialysis frequency  =  Dialysis sessions per week,  

adjusted p value = 0.077, R2 = 6.2% in univariate model 

 

 

Table 3.2: Univariate Regression Coefficients and P values for Independent Variables  
Predicting Slope of Predialysis Na+ in first 100 days (M100), Difference in 
Pre and Post-100 Days Post-Transition Pre-Dialysis Na+ (DeltaPRENA100+) 
and Differences in Pre- and Days 100-150 Post-Transition Pre-Dialysis Na+ 
(DeltaPRENA100-150) 
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3.4 Discussion 

The sodium setpoint is considered to be stable in hemodialysis patients. The results of 

this study suggest that this is true at least with ICHD. According to model 1, this 

assumption is reasonable in ICHD patients; a pre-dialysis sodium between 133.0 and 

141.0 mmol/L would be associated with DeltaPRENA100 between -2 and 2 mmol/L. 

This difference could be attributed to changes in total body water, or to laboratory 

measurement variability. In Keen and Gotch’s initial description of the stability of the 

pre-dialysis sodium setpoint,3 89% of patients had an average pre-dialysis plasma sodium 

from 133.0 mM to 141.0 mM.   

 
FNHD = frequent nocturnal hemodialysis; ICHD = intermittent conventional 
hemodialysis; INHD = intermittent nocturnal hemodialysis; SHD = short hours daily 
hemodialysis. 
 
Figure 3.5: Slope of Pre-Dialysis Plasma Sodium Concentration, in First 100 Days After  

Transition from Conventional Thrice Weekly (ICHD) to Home Hemodialysis 
for All patients, and for Patients with Initial Sodium Setpoint (SP) > or < 140 
mmol/L 
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However, there are scenarios in which a sodium setpoint change may occur on the 

basis of model 1. Patients whose dialysate sodium is personalized to be equal or less than 

pre-dialysis sodium may decrease their sodium setpoint. For example, in a patient 

dialyzed 5 times weekly, with a pre-dialysis plasma sodium of 135 mmol/L, whose 

dialysate sodium is personalized to 132 mmol/L, in an attempt to “desalt,” the associated 

DeltaPRENA100 would be -3.5 mmol/L (model 1), which would bring the pre-dialysis 

plasma sodium setpoint down to 131.5 mmol/L, a level associated with increased 

mortality.16,17 

Furthermore, patients dialyzed in units using a “standard dialysate sodium 

concentration” may increase their pre-dialysis plasma sodium setpoint. For example, a 

patient dialysed 3 times weekly, with a setpoint of 130 mmol/L, whose dialysate sodium 

is 140 mmol/L would have an associated DeltaPRENA100 of +3.4 mmol/L (model 1), 

setting the new pre-dialysis plasma sodium setpoint to 133.4 mmol/L. These patients 

would not have been observed in the Keen and Gotch’s description, since none of their 

patients had sodium setpoints under 131 mmol/L. It is unknown whether the increased 

interdialytic weight gain observed in patients with a large dialysate to pre-dialysis plasma 

sodium difference, is offset by any improvement in mortality by increasing the sodium 

setpoint. If so, this may in part explain the unexpected results of Hecking et al, 15,19 who  

discovered that patients whose pre-dialysis sodium was less than 137 mmol/L had 

improved mortality when dialyzing against a higher dialysate sodium concentration, and 

reduced hospitalization and mortality with higher dialysate sodium concentrations, in 

units that did not individualize dialysate sodium concentrations. Dialysate sodium 

prescriptions may have changed some of the pre-dialysis sodium concentrations from a 

low level to a level associated with improved mortality. Prospective trials should evaluate 

the effect of intentionally increasing pre-dialysis plasma sodium setpoints, on 

cardiovascular and all-cause mortality. 

Determining the pathophysiology of a change of plasma sodium setpoint is not the 

objective of this study, and will need to be established prospectively. Stability in blood 

glucose, lipid and paraprotein concentrations needs to be initially assumed. Then if a 

patient has a pre-dialysis plasma sodium concentration greater than the dialysate sodium 
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concentration, one could hypothesize that the post-dialysis plasma sodium concentration 

would decrease towards the dialysate sodium concentration, since sodium loss would 

occur relative to the isosmotic ultrafiltration, leaving the plasma with relative sodium to 

water loss. It is possible that equilibration back to sodium setpoint homeostasis requires 

an interdialytic interval longer than patients on quotidian, but not intermittent 

hemodialysis modalities. This hypothesis would need to be evaluated prospectively. 

However, this would explain why adding (dialysis time) to (DPRENA-50) did not 

improve (DPRENA-50) prediction of DeltaPRENA100 (Table 3.2), since dialysis 

frequency is a much greater determinant of interdialytic interval duration. For example, 

doubling a patient’s dialysis duration from 4 to 8 hours (at dialysis frequency 3 times a 

week) only marginally decreases interdialytic time interval from 39.0 to 36.0 hours, 

whereas doubling a patient’s dialysis frequency from 3 to 6 weekly sessions (at dialysis 

duration 4 hours a session) significantly decreases interdialytic time interval from 39.0 to 

20.6 hours. Indeed, a patient with a pre-dialysis plasma sodium setpoint of 140 mmol/L, 

dialyzing 7 days weekly with a dialysate sodium of 140 mmol/L, would decrease their 

pre-dialysis plasma sodium setpoint to 137 mmol/L; this is a surprising and unexpected 

finding, the etiology of which will need to be elucidated with prospective investigations. 

Finally, quotidian dialysis therapies appear from these results to be associated 

with an increased chance of decreasing the sodium setpoint when the initial pre-dialysis 

plasma sodium setpoint is equal to or greater than the dialysate sodium (Figure 3.3). For 

example a patient on 6 nights a week hemodialysis, with an initial pre-dialysis plasma 

sodium of 143 mmol/L, and a dialysate sodium concentration of 140 mmol/L will have a 

DeltaPRENA100 of -3.8, bringing the pre-dialysis plasma sodium setpoint to 140.2 

mmol/L. Targeting the dialysate sodium concentration to below the pre-dialysis sodium 

setpoint could lead to repeated drops in the pre-dialysis sodium with every change in 

dialysate concentration. This may be undesirable from an outcome perspective.  

Any statistically significant changes in pre-dialysis plasma sodium setpoint were 

observed with 150 days after transition from thrice weekly conventional to home 

hemodialysis (Figure 3.3). It is thus unlikely that any decreases in pre-dialysis sodium 

setpoint related to patients developing comorbidities associated with lower plasma 
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sodium concentrations such as heart or liver disease. Indeed, the strongest associations 

with change in plasma sodium setpoint were iatrogenic, specifically the choices of 

dialysis frequency and the dialysate sodium to pre-dialysis plasma sodium difference 

(Table 3.2). Furthermore, only outpatient blood tests were considered, so acute illness or 

comorbid illness is unlikely to be a confounding factor. 

In light of numerous studies that suggest personalizing dialysate sodium 

concentrations can decrease interdialytic weight gain,6-13 these data give reason for 

caution. If dialysate sodium is intentionally decreased to the pre-dialysis plasma sodium 

concentration, the IDWG may fall, but any benefit in morbidity and mortality may be 

offset by a decrease in sodium setpoint.  

There are weaknesses to this study. Firstly, all data in this study were 

retrospective and measurements did not occur at exact time intervals in all patients. Thus, 

it remains unclear whether any change in sodium setpoint is a continuous process, or if 

any change is upon initiation of dialysis and complete after a short interval of time. 

However, the pre-dialysis plasma sodium setpoint change was completed within 150 days 

in our study, suggesting that patients reach a new “steady state” in which the effects of 

dialysis frequency and dialysate to pre-dialysis plasma sodium difference offset each 

other. Secondly, data points used were aggregates of variable numbers of dialysis and 

laboratory values occurring between variable time periods. This may explain why model 

1 only provides 35% explanation for the change in DeltaPRENA100. Thirdly, there were 

baseline differences between dialysis modality groups, such as residual renal function and 

patient weight, which may be confounders.  The study also has strengths in that numerous 

pre-dialysis plasma sodium values are available and that modalities differing in frequency 

and duration were used with this home hemodialysis population. While the sample size of 

patients was small (n=87), the findings were statistically significant and likely of clinical 

importance. 

Further studies are indicated in quotidian hemodialysis patients that will vary 

prospectively the dialysate sodium to establish the effect of dialysate sodium and sodium 

setpoint on cardiovascular morbidity and all cause mortality.  
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3.5 Conclusions 

In hemodialysis patients, the pre-dialysis plasma sodium “setpoint” is dynamic and 

correlated to the dialysate sodium concentration and dialysis frequency. Nephrologists 

should consider how the selected dialysate sodium concentration affects the dialysate to 

pre-dialysis plasma sodium concentration difference, and should also continue to monitor 

pre-dialysis plasma sodium concentrations. Prospective trials are needed to establish 

when the benefits of a decrease in interdialytic weight gain are offset by a decrease in 

sodium setpoint, and how dialysate sodium concentration should be targeted to minimize 

cardiovascular and all-cause mortality.  
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4.1 Introduction 

The amount of sodium removed from a patient on hemodialysis is the sum of convective 

loss and the diffusive gain or loss on dialysis.1 Diffusive sodium balance on thrice weekly 

intermittent conventional hemodialysis (ICHD) is associated with important clinical 

outcomes, including interdialytic weight gain (IDWG), blood pressure, intradialytic 

hypotension, cardiovascular morbidity and mortality.2-6    Which aspect of sodium balance 

is best to follow (and perhaps influence) is controversial; while decreasing dialysate 

sodium decreases thirst, IDWG and blood pressure,1-8post-dialysis minus pre-dialysis 

plasma sodium (PPNa+) may be superior to dialysate sodium minus pre-dialysis plasma 

sodium (DPNa+) in predicting mortality.6 

While the effects of PPNa+ and DPNa+ in ICHD have been reported, those in 

more frequent dialysis modalities remain unknown. The objective of this study was to 

determine whether DPNa+ or PPNa+ better predicted clinical outcomes in patients on 

short hours daily (SHD) and frequent nocturnal home hemodialysis (FNHD) and to  

define these outcomes in FNHD and SHD. 

4.2 Materials and Methods 

All patients who received treatment through the Southwestern Ontario Regional Home 

Hemodialysis program base in London Ontario, from 1985 to December 31, 2011 were 

considered (n=101). A retrospective observational study was used. Patients were required 

to be on an assigned dialysis modality for a minimum of 120 days, to facilitate adequate 

record collection (n=92). All patients included in this trial initiated home hemodialysis 

after January 1, 1998. Patients who were on either short hours daily (SHD) (n=35) or 

frequent nocturnal hemodialysis (FNHD) (n=38) were included. Intermittent 

conventional hemodialysis (ICHD) (n=11) and intermittent nocturnal hemodialysis 

(INHD) (n=8) patients were excluded because of their low numbers.  

Dialysis Modality and Characteristics 

SHD home (n=35) was defined as a minimum of 5 treatments per week, with a minimum 

treatment time of 1.5 hours and a maximum treatment time of 4.0 hours. FNHD home 
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(n=38) was defined as a minimum of 5 treatments per week, with a minimum treatment 

time of 6.0 hours.  

Dialysate sodium concentration was 140 mmol/L for all patients. Dialysate 

bicarbonate and potassium concentrations were personalized for each patient, to 

normalize pre-dialysis potassium and bicarbonate concentrations. Dialysate calcium 

concentration was 1.25 mEq/L for all SHD patients. From December, 2001 onwards, all 

FNHD patients dialyzed using a 1.75 mEq/L Ca++ dialysate concentration, as is now 

considered standard practice.9 Prior to December, 2001, patients’ dialysate calcium 

concentration was either 1.25 or 1.75 mEq/L. Thus, the majority of FNHD patients 

(26/38, 68.4%) used a dialysate calcium concentration of 1.75 mEq/L for the entire 

duration of this trial, and for those patients who initiated home hemodialysis prior to 

December 2001, 40.6% of data were collected while dialysate calcium concentration was 

1.75 mEq/L. 

Blood sample collection 

Pre and post-dialysis blood samples are routinely taken each month. Home patients are 

trained to take blood from the arterial blood line at the start of dialysis and post-dialysis, 

using a standard slow blood and stop dialysate method. The samples are centrifuged and 

then stored and refrigerated until delivered to the local laboratory for that patient. All 

patient blood tests are measured using automated and standardized methods. Of interest 

to this study were pre-dialysis plasma sodium, bicarbonate and albumin, and post-dialysis 

plasma sodium values.  

Sodium concentration measurement 

Plasma sodium concentration was measured using Beckman-Coulter LX20 Pro 

Chemistry Analyzer with Ion Selective Electrodes prior to, and Roche Modular P 

Chemistry Analyzer with Ion Selective Electrodes after November 4, 2008. 

Dialysate sodium concentration was determined using online conductivity 

measurements built into the Fresenius H series hemodialysis machine, which was used 

for all patients.  
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Database Creation 

Blood test results were obtained from the hospital electronic patient record (PowerChart 

by Cerner). Data from individual patients were only used in the study if a minimum of 3 

pre- and post-dialysis plasma sodium sets were available.  

IDWG, pre and post-dialysis systolic and diastolic blood pressures, dialysis 

treatment times, and ultrafiltration volumes were obtained from archived dialysis 

treatment run sheets. These were the defined outcomes. The average values for these per 

month were calculated and entered into the study database. Summary measures were used 

at the patient level to avoid issues of correlation within patients.  As such, a single value 

representing the average monthly value for each outcome per person was used in the 

analyses regardless of patient hemodialysis vintage.  

Demographic patient information, including age, sex, weight (kg) at initiation of 

therapy, presence of diabetes, months of renal replacement therapy prior to initiation of 

home hemodialysis, and date of initiation of home hemodialysis were recorded by chart 

review. The blood pressure before initiation of home hemodialysis was recorded from the 

pre-home hemodialysis assessment clinic, which is within 1 month of initiation.  

Residual glomerular filtration rate at initiation of home hemodialysis (Kr in 

mL/min/1.73m2), was calculated using 24 hour urine collections for urinary urea and 

creatinine, as previously described.10 Residual urinary volume was not commonly 

recorded, and thus residual renal function was used instead. Patients who urinated less 

than 250 mL urine daily were recorded to have no residual renal function. 

Ethics 

Because of concerns regarding the use of a standard dialysate of 140 mmol/L sodium 

concentration and prompted by the observation of high IDWGs in patients undergoing 

FNHD, a quality assurance investigation was instituted.  All laboratory tests had been 

taken as per routine care protocols; demographic and dialysis treatment information were 

available from patient records.  Once extracted, all data were de-identified before 

analysis.  No patient had to provide blood samples, answer questionnaires or do anything 
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specific for this study that was conducted in accordance with the Declaration of Helsinki.  

Thus, informed written consent was not obtained from the current patients.   

Statistics 

Data were analyzed using the Statistical Package for Social Sciences (SPSS) version 

19.0. The average for all demographic factors was calculated. To compare FNHD and 

SHD patients at baseline, p-values were calculated using two tailed student t-test for 

continuous variables and Fisher’s exact test for categorical variables. Each baseline 

demographic and clinical factor’s distribution was assessed. When a non-normal 

distribution was found, that factor’s median and interquartile ranges were calculated.  

To evaluate which of DPNA or PPNA better predicted the clinical endpoints, 

univariable analyses using dependent variables of IDWG, pre-dialytic systolic and 

diastolic blood pressures, intradialytic change in systolic and diastolic blood pressures, 

and ultrafiltration rate were conducted SHD and FNHD patients were considered 

collectively, then separately. R2 and p-values were calculated, and a p-value of less than 

or equal to 0.05 was considered statistically significant. 

DPNa+ = dialysate minus pre-dialysis plasma sodium concentration; PPNa+ = Post- 
minus Pre-dialysis plasma sodium concentration. 
Table 4.1: Number of Observations for Pre- to Post Hemodialysis (PPNa+) and Dialysate  

      to Pre-Hemodialysis (DPNa+) Sodium Gradient, and for Each Clinical   
      Outcome 
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The mean, median, range, interquartile ranges and variance in the number of 

observations for DPNa+ and PPNa+, and for each clinical outcome, were calculated. The 

effects of DPNa+ and PPNa+ on IDWG, pre-dialytic systolic and diastolic blood 

pressures, intradialytic change in systolic and diastolic blood pressures, and ultrafiltration 

rate were compared between SHD and FNHD using two tailed student t-tests. Statistical 

significance was considered at p ≤ 0.05. 

4.3 Results 

A total of 73 sets of time-averaged pre- and post-dialysis plasma sodium values were 

made from 2065 matched pre- and post-dialysis plasma sodium values. There were a 

mean and median number of 28.3 and 16.0 observations for each patient’s PPNa+ and 

41.1 and 27.0 observations for each patient’s DPNa+ (Table 4.1). The majority of all 

patients combined (90.4%), and each of SHD (88.6%) and FNHD (92.1%) had pre-

dialysate plasma sodium values less than the dialysate sodium of 140 mmol/L(Figure 

4.1). The majority of all patients combined (96.5%) and each of SHD (97.1%) and FNHD 

(94.7%) had post-dialysis plasma sodium levels less than the dialysate sodium of 140 

mmol/L (Figure 4.2).  

There were a mean and median of 13.1 and 8.0 observations for each patient’s 

IDWG, 12.9 and 8.0 observations for each patient’s paired pre and post hemodialysis BP, 

and 13.5 and 8.0 observations for each patient’s ultrafiltration volume (Table 4.1). 

All background demographic and clinical factors had a normal distribution (Table 

4.2), except for residual renal function (mL/min) and vintage of renal replacement prior 

to initiation of home hemodialysis (months). The mean, median and first to third 

interquartile ranges for dialysis vintage (months) were 67.0, 50.0 and 18.0 to 102.0 for 

SHD and 94.5, 71.0, and 24.0 to 121.0 for FNHD. The mean, median and first to third 

interquartile ranges for residual renal function (mL/min) were 0.47, 0.00 and 0.00 to 0.00 

for SHD and 0.78, 0.00, and 0.00 to 0.84 for FNHD.  
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FNHD = frequent nocturnal hemodialysis; SHD = short hours daily hemodialysis 
Figure 4.1 Pre-Dialysis Plasma    Figure 4.2: Post-Dialysis Plasma 

      Sodium Concentration            Sodium Concentration 

 

SHD patients had a slightly higher dialysis frequency (Table 4.2) (5.54 vs. 5.26 

sessions per week, p=0.03), and as expected, a lower dialysis duration (146.0 vs. 402.8 

minutes, p<0.001) than FNHD patients.  
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Table 4.2: Demographic and Clinical Factors of Patients on Short Hours Daily and  

      Frequent Nocturnal Home Hemodialysis 

PPNa+ was superior to DPNa+ in predicting IDWG (Table 4.3) in SHD patients 

(R2 = 0.105 vs. 0.019, p=0.04 vs. 0.68), FNHD patients (R2 = 0.223 vs. 0.020, p=0.002 

vs. 0.76) and combined (R2 = 0.147 vs. 0.024, p=0.001 vs. 0.75). PPNa+ was superior to 

DPNa+ in predicting pre-dialysis systolic blood pressure in SHD patients (R2 = 0.103 vs. 

0.007, p = 0.02 vs. 0.82). PPNa+ was superior to DPNa+ in predicting intradialytic 

change in systolic BP in FNHD patients (R2 = 0.100 vs. 0.002, p=0.02 vs. 0.16) and 

combined patients (R2 = 0.042 vs. 0.015,  p = 0.002 vs. 0.02). PPNa+ was superior to 

DPNa+ in predicting intradialytic change in diastolic BP in FNHD patients (R2 = 0.066 

vs. 0.019, p = 0.02 vs. 0.06) and combined patients (R2 = 0.014 vs. 0.060, p=0.004 vs. 

1.0). PPNa+ was superior to DPNa+ in predicting ultrafiltration rate in FNHD patients  
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DPNa+ = Dialysate minus Pre-dialysis plasma sodium concentration; FNHD = frequent 
nocturnal hemodialysis; PPNa+ = Post- minus Pre-dialysis plasma sodium concentration; 
SHD = short hours daily hemodialysis 
Table 4.3: PPNa+ and DPNa+ Versus Clinical Outcomes in Short Hours Daily and  

      Frequent Nocturnal Hemodialysis 

(R2 = 0.296 vs. 0.036, p = 0.001 vs. 0.52) and combined patients (R2 = 0.038 vs. 0.003, p 

= 0.05 vs. 0.73).  

DPNa+ was superior to PPNa+ in predicting intradialytic change in diastolic BP 

in SHD patients (R2 = 0.101 vs. 0.003, p=0.02 vs. 0.13). No other statistically significant 

differences were found between DPNa+ and PPNa+, for any clinical endpoints.  
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Ultrafiltration rate was significantly lower in FNHD than SHD patients (0.035 vs. 

0.77 L/hour, p < 0.001) (Table 4.4). While IDWG appeared higher in FNHD than in SHD 

patients (2.25 vs. 1.92 L), this approached but did not reach statistical significance 

(p=0.06). There were no other statistically significant differences in clinical outcomes 

between SHD and FNHD patients. 

Table 4.4: Clinical Endpoints of Standardized Dialysate Bath of 140 mmol/L in Short  
      Hours Daily Versus Frequent Nocturnal Hemodialysis Patients 

PPNa+ correlated with increased interdialytic weight gain in both SHD and 

FNHD patients, but this correlation was stronger in FNHD patients (R2 = 0.105 vs. 

0.019), with greater statistical significance (p = 0.04 vs. 0.68) and with greater slope 

(0.166 vs. 0.134) (Figure 4.3).  

In FNHD patients, PPNa+ associated with greater drops in systolic (slope= -

1.847, R2 = 0.100, p = 0.02) and diastolic (slope = -0.866, R2 = 0.066, p = 0.02) blood 

pressures on dialysis (Figure 4.4). This was in contrast to SHD patients, in whom a 

greater DPNa+ associated with a decreased drop of diastolic blood pressure (slope 

=0.786, R2 = 0.101, p=0.02) (Table 4.3).  This is shown graphically (Figure 4.4); as post-

dialysis plasma sodium increases relative to pre-dialysis plasma sodium in FNHD 

patients, there is more of a drop in systolic and diastolic blood pressures on dialysis. On 

the other hand, as dialysate sodium increases relative to pre-dialysis plasma sodium in 

SHD patients, the magnitude of diastolic blood pressure fall on dialysis decreases. 
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Figure 4.3: Effect of PPNa+ on Interdialytic Weight Gain for Short Hours Daily and  
        Frequent Nocturnal Hemodialysis Patients 

4.4 Discussion 

Total sodium balance on hemodialysis is determined by the net of convective loss and 

diffusive sodium gain or loss.1 Positive sodium balance in patients on thrice weekly 

conventional hemodialysis is associated with IDWG, and, in turn hypertension, left 

ventricular hypertrophy and cardiovascular morbidity and mortality.1,5-8,13 Both low and 

high pre-dialysis systolic blood pressures are associated with increased mortality in 

patients undergoing thrice weekly hemodialysis. However, the clinical effects of more 

frequent and longer duration exposure to a dialysate higher than the pre-dialysis plasma 

sodium has not been described.  
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Figure 4.4: Intradialytic Change in Blood Pressure in Short Hours Daily and Frequent  
        Nocturnal Hemodialysis Patients  

Understanding which of DPNa+ or PPNa+ better predicts clinical outcomes is 

important not only in determining which factors are modifiable, but also to design 

prospective trials aimed at improving outcomes. Reducing dialysate sodium has been 

shown to improve IDWG and blood pressure,1,3-7and DPNa+ has been correlated to 

IDWG.16 However, in large population observational data, PPNa+ appears superior to 

DPNa+ in predicting IDWG in ICHD.17 Our study confirms that in quotidian dialyzed 

patients, PPNa+ has a stronger association than  DPNa+ with IDWG, intradialytic change 

in blood pressure, and ultrafiltration rates, consistent with recent work of Hecking et al.17 

IDWG was more strongly correlated to PPNa+ in FNHD than SHD patients (R2=0.223 

vs. 0.105), and with greater statistical significance (p=0.002 vs. 0.04) and slope (0.166 vs. 

0.134) (Table 4.3) (Figure 4.3). This reflects the longer exposure to a positive diffusive 

difference (402.8 vs. 146.0 minutes, p < 0.001) (Table 4.2). This is consistent with the 

recent work of Munoz-Mendoza et al, who showed decreased IDWG and blood pressure 

in thrice weekly nocturnal patients exposed to lower dialysate sodium concentrations.18 
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DPNa+ was more correlated than PPNa+ with intradialytic change in blood 

pressure, in SHD patients. This was the only clinical variable associated more with 

DPNa+ than PPNa+. This was in contrast to FNHD patients, where PPNa+ was more 

associated with change in BP on dialysis, only in the opposite direction (Figure 4.4). This 

may result from a variety of factors. Firstly, FNHD patients are exposed to a diffusive 

difference longer and thus have a more positive sodium balance. While the higher IDWG 

in FNHD patients in our trial did not reach statistical significance (2.25 vs. 1.92 L, 

p=0.06)(Table 4.4), patients in the London Daily Nocturnal Dialysis Study with a 

dialysate sodium of 140 mM had higher IDWG in FNHD vs. SHD patients. This may 

cause the intradialytic change in blood pressure to reflect relative ultrafiltration 

requirements, which are higher with more positive sodium balance (Table 4.3). Secondly, 

it’s possible that the recumbent position of FNHD patients has different effects on the 

effective circulating volume (ECV), and that time upright is needed before this 

approximates the ECV of SHD patient undergoing ultrafiltration of a similar volume. 

Finally, FNHD patients may have greater restoration in homeostasis of hormones 

involved in blood pressure regulation. The generation of intradialytic hypotension is 

associated with autonomic neuropathy17which may be improved by nocturnal dialysis 

modalities.20 

Intradialytic hypotension is associated with increased mortality in patients 

undergoing thrice weekly hemodialysis.20 However, the increased intradialytic drop in 

blood pressure in FNHD patients with an increased PPNa+ is of uncertain clinical 

significance. FNHD patients are on less anti-hypertensive medications than SHD patients, 

and suffer from fewer dialysis related symptoms like cramping, headaches, dizziness, 

dyspnea, and self-reported intradialytic hypotension.22 The study provides clinically 

important information. Firstly, the majority of quotidian patients (90.4%) are exposed to 

a positive diffusive difference for sodium (Figure 4.1). Ideally, this dialysate sodium 

should be targeted to minimize IDWG, to improve blood pressure and to minimize risk of 

intradialytic hypotension. This can be achieved by personalizing the dialysate sodium so 

that PPNa+ is zero or even slightly negative. This effect appears more crucial in FNHD 

than SHD patients, because of the longer duration of therapy. Furthermore, a negative 
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DPNa+ or PPNa+ does not seem to predispose FNHD patients to the risk of intradialytic 

hypotension as it does in SHD patients.  

This study does have limitations. A relatively small number of patients of variable 

dialysis vintage were studied in a retrospective fashion. All data points were aggregates 

of variable numbers of dialysis and laboratory values, occurring between variable time 

periods, corresponding to patients’ attendance at clinics, when data were entered into the 

electronic patient record. However, numerous pre- and post-dialysis sodium values were 

available from two quotidian dialysis modalities. The active plasma sodium available for 

diffusion could not be quantified precisely in this study. However, the concentration of 

major plasma anions albumin and bicarbonate were not statistically different pre-dialysis 

(Table 4.2), suggesting that the Gibbs-Donnan effect23 did not operate disproportionately 

in one dialysis modality. 

In conclusion, the PPNa+ has a greater association than DPNa+ to IDWG, pre-

dialysis systolic blood pressure, intradialytic blood pressure change and ultrafiltration 

rates in SHD and FNHD patients. However, DPNa is associated with intradialytic 

diastolic blood pressure change in SHD, but not in FNHD patients.  In the latter, a 

positive sodium balance increases the risk of large blood pressure drops on dialysis. 

Further work is needed to establish the effect of altering dialysate sodium concentration, 

on long-term cardiovascular outcomes, in quotidian dialyzed patients.  
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Chapter 5: Modifiable Variables Affecting Interdialytic Weight Gain Include 

Dialysis Time, Frequency, and Dialysate Sodium. 
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5.1 Introduction 

Intradialytic sodium (Na+) removal leads to decreased blood pressure1-3 and decreased 

interdialytic weight gain (IDWG).4-8 This may lead to better outcomes9 in hemodialysis 

patients, although this is controversial.12 The amount of Na+ removed from a patient 

during hemodialysis is the net of that lost by convection with that lost or gained by 

diffusion.4 Diffusive gain occurs when the dialysate Na+ exceeds the pre-dialysis plasma 

Na+. In the London Daily Nocturnal Dialysis study,10 IDWG was higher in frequent 

nocturnal (FNHD) than short hours daily hemodialysis (SHD) patients, using a standard 

dialysate concentration of 140 mmol/L, suggesting that the time of exposure to a higher 

dialysate Na+ may affect IDWG. In contrast, the Frequent Hemodialysis Network 

(FHN)11 showed less IDWG in FNHD patients but they had variable dialysate Na+ 

concentrations and higher urinary volumes. Thus, factors that determine IDWG may 

include residual urinary volume, dialysis time and frequency, and the dialysate to plasma 

diffusion difference (DPNa+). A recent study determined that pre to post dialysis change 

in plasma Na+ (PPNa+) better correlated to clinical outcomes than did the δDPNa+.8 

However, the effect of DPNa+ on mortality remains controversial, with one large 

prospective cohort study showing positive DPNa+ associated with decreased mortality,12 

contrary to the findings of previous studies.13 However, PPNa+ is likely the result of both 

DPNa+ and time of exposure to the diffusive Na+ difference.   

The study objective was to derive an equation, using multivariable regression 

analysis, of modifiable variables that affect IDWG.  

5.2 Materials and Methods 

Study Population 

All patients in the home hemodialysis program of the Southwestern Ontario Regional 

Renal Program, from February 11, 1998 to December 1, 2012, were included, using a 

retrospective observational design.  
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Dialysis Modality 

Modality was defined by the duration of dialysis and its frequency.  SHD implied a 

minimum of 5 weekly treatments with treatment times of 1.5-4.0 hours. Intermittent 

conventional hemodialysis (ICHD) meant a maximum of 4 weekly treatments and times 

between 3-5 hours.  FNHD indicated a minimum of 5 weekly treatments of 6.0 hours or 

more. Dialysate Na+ concentration was always 140 mmol/L. When patients changed 

dialysis modality during the observation period, only the first dialysis modality was 

considered.  

Blood sample collection 

Pre and post dialysis blood samples are taken each month from the arterial blood line 

using a standard slow blood and stop dialysate method. Locking solution (3 mL 4% 

citrate) and a small amount of blood (2 mL) are always spent before blood is collected. 

The samples are centrifuged, stored and refrigerated until delivered to the laboratory. Of 

interest to this study were pre and post-dialysis plasma Na+ and pre-dialysis albumins, 

measured using automated and standardized methods. Only outpatient blood tests were 

used, to assure that the patient was at their baseline health status, so that the plasma Na+ 

concentration would not be confounded by acute illness. 

Na+ concentration measurement 

Plasma Na+ concentration was measured using Beckman-Coulter LX20 Pro Chemistry 

Analyzer with Ion Selective Electrodes prior to, and Roche Modular P Chemistry 

Analyzer with Ion Selective Electrodes after November 4, 2008. This change was made 

by the London Health Sciences Center because of a need for higher volume of laboratory 

testing. Both plasma Na+ concentration methods were regularly calibrated; thus, the 

measurements were treated as equivalent on data analysis. Dialysate Na+ concentration 

was determined using online conductivity measurements built into the Fresenius H series 

hemodialysis machine, which was used for all patients. Blood glucose was not measured 

simultaneous to Na+ concentration; thus, plasma sodium levels were not corrected for 

glucose. 
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Database Creation 

Blood test results were available from the hospital electronic patient record (Power Chart 

by Cerner). IDWG and dialysis treatment times were obtained from dialysis treatment run 

sheets. The average monthly values were calculated and entered into the database. For 

this analysis, a single value for each patient data point was used, being the average of the 

monthly values regardless of hemodialysis vintage. Demographic patient information, 

including age, sex, weight (kg) and height (cm) at initiation of therapy, diabetic status, 

and months of renal replacement therapy prior to initiation of home hemodialysis, were 

recorded by chart review. Residual glomerular filtration rate (ml/min x 1.73 m2) at 

baseline14 was recorded. Our home hemodialysis program does not perform urine 

collections if the 24 hour urine volume is less than 250 mL, since we have found that this 

amount only marginally contributes to weekly standard Kt/V. Thus, patients with less 

than 250 mL urine daily were recorded as having zero renal function. Once obtained, data 

was de-identified and then entered into the study specific database for analysis. 

Interdialytic Weight Gain 

IDWG was calculated as the difference between the post-dialysis body weight and the 

next dialysis session’s pre-dialysis body weight. A single IDWG value for each patient 

was entered into the database, being the average of the monthly values regardless of 

hemodialysis vintage. 

We chose to use interdialytic weight gain as an absolute value (IDWG), rather 

than as a percentage of body weight (IDWG%BW), for three reasons. Firstly, using all 

available clinical and demographic variables, the unadjusted correlation coefficient was 

higher for IDWG than IDWG%BW (R2 = 37.3% vs 32.2%). Secondly, on home 

hemodialysis run sheets, patients did not always record body weight simultaneous to 

IDWG, so there was temporal inaccuracy in IDWG%BW measurements. Thirdly, 

IDWG%BW was autocorrelated with age, diabetes status and PPNa+, each of which were 

important to assess in our final model. 

 



!

!

81!

Ethics 

Because of concerns regarding the use of a standard dialysate of 140 mmol/L Na+ 

concentration and prompted by the observation of high IDWGs in patients undergoing 

FNHD, a quality assurance investigation was instituted.  All laboratory tests had been 

taken as per routine care protocols; demographic and dialysis treatment information were 

available from patient records.  Once extracted, all data was de-identified before analysis.  

No patient had to provide blood samples, answer questionnaires or do anything specific 

for this study which was conducted in accordance with the Declaration of Helsinki.  

Thus, informed written consent was not obtained from the current patients.   

Statistics 

Two time periods were considered. Data prior to December 30, 2011 were used to 

determine the equation for IDWG, which was internally validated using bootstrapping. 

External validation used data from a temporally distinct population group, from August 1 

to December 10, 2012. 

Univariate analyses were used to investigate the relationship of each covariate 

with the dependent variables. Descriptive statistics and univariable analyses were 

conducted using the Statistical Package for Social Sciences (SPSS) version 19.0. 

Multivariable regression models were used to develop predictive models through 

backwards selection and a comparison of the adjusted Akaike Information Criterion 

(AIC) of nested models.15 Starting with a saturated model (containing all potential 

covariates) each independent variable starting with the largest p-value, was sequentially 

removed provided it did not meet the chosen liberal cut-off point for statistical 

significance i.e. a p-value > 0.10.  With each variable removed, the nested model was 

then compared to the previous model based on the corrected AIC value.  The model with 

the smallest AIC was chosen to be the best model.  If the corrected AIC value of the 

nested model was within 1% of the previous model, we considered the models equivalent 

and choose the more parsimonious model (fewer covariates).  The corrected AIC is 

calculated16 as: 
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corrected!!"# = 2! − 2 ln !"#$%"ℎ!!" + 2!(! + 1)! − ! − 1 !, 
 
                                   k = number of parameters  

         n  = number of observations and  
 ln !"#$%"ℎ!!"   = log-likelihood of the model 

Corrected AIC was chosen due to the small sample size.  Model fit was evaluated using 

F-statistic, R2 and adjusted R2 values.   

To establish which factors influenced the dependent variable IDWG, independent 

variables included PPNa+, dialysis time and frequency, patient age, sex, albumin, 

diabetes status, and residual renal function. Patient albumin was included in the model 

because of concerns regarding the Gibbs-Donnan effect.17 Model building was performed 

to build our first equation, and the F-statistic, R2 and adjusted R2 values were calculated 

for resulting model. 

To derive an equation defining IDWG, we used multivariable regression analysis. 

PPNa+ cannot be used as an independent variable since the post-dialysis plasma Na+ has 

to be known. We thus investigated the correlation of PPNa+ to diffusive balance of Na+, 

represented by the product of DPNa+ and dialysis time, using Pearson’s correlation 

coefficient.  A multivariable linear model was then developed leading to Equation 5.2.  

The F-statistic, R2 and adjusted R2 values were calculated.  

The final predictive model was validated using internal bootstrapping for both 

model selection and predictive qualities.18 Multivariable data analysis and bootstrap 

validations were conducted using the statistical software R version 2.14.1.19 Bootstrap 

validation was conducted by randomly sampling N=86 observations with replacement, to 

create the validation sample. Estimates of the residual standard error, mean square 

predictive error and mean residual value were calculated by fitting the bootstrap data to 

the final predictive model. For each bootstrap sample, we developed new linear models 

and estimated the regression coefficients and model properties.  This process was 

repeated for 1000 bootstrap samples and the average values of all estimates calculated.  

To evaluate the predictive properties of the final equation, the data from each of the 1000 

bootstrap samples were fit using the predictive model.   
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For external validation, we applied equation 5.2 to our current home hemodialysis 

patients and compared predicted with actual IDWGs. The variables required for the 

predicted were obtained from charts, electronic patient records and dialysis run sheets; 

data between August and December 2012 with at least 2 pre-dialysis blood sample results 

were taken, averaged and used in the equation 5.2. Actual IDWGs for each dialysis 

session in that same period were obtained from run sheets and averaged. Patients who 

were in the internal validation were excluded, leaving 24 new patients for the external 

validation. The distribution of dialysis modalities (8 SHD, 8 ICHD, 4 FNHD, 4 INHD) 

spanned all hemodialysis modalities. Predicted and actual IDWGs were compared by 

linear regression and Bland-Altman analyses.20  

Figure 5.1: Distribution of Pre-Hemodialysis Plasma Sodium Concentrations 

5.3 Results 

A total of 2868 matched pre and post-dialysis plasma Na+ values were available, giving 

86 sets of time-averaged patient pre and post-dialysis Na+ values (Figures 5.1 and 5.2), 

from SHD (n=32), ICHD (n=17) and FNHD (n=37) patients. The majority (87.2%, 

75/86) of the pre-dialysis plasma Na+ values were below the dialysate Na+ of 140 

mmol/L, while 16.3% (14/86) were below 135 mmol/L. Both pre-dialysis and post-
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dialysis plasma Na+ spanned at least the entire normal range (Table 5.1), with median 

values of 137.73 mmol/L and 137.37 mmol/L, respectively. 

Figure 5.2: Distribution of Post-dialysis Plasma Sodium Concentrations 

The mean, median, and standard deviation of all independent variables were 

calculated (Table 5.1), and the range spanned the range for most factors.  

DPNa+ = dialysate minus Pre-dialysis plasma sodium concentration; PPNa+ = Post- 
minus Pre-dialysis plasma sodium concentration 
 
Table 5.1: Demographic and Clinical Factors of Patients in  

      Multivariate Regression Model 
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DPNa+ = dialysate minus Pre-dialysis plasma sodium concentration; PPNa+ = Post- 
minus Pre-dialysis plasma sodium concentration 
 
Table 5.2: Univariate Regression Analysis of Interdialytic Weight Gain  

      in Home Hemodialysis 

Using univariable regression analysis for IDWG, the unadjusted p-values and 

correlation coefficients for independent factors were calculated (Table 5.2). PPNa+ 

(R2=20.36%, p<0.001), albumin (R2=9.35%, p=0.020), dialysis frequency (R2=1.74%, 

p=0.019) and female sex R2=1.28%, p=0.029) were significantly (p-value > 0.05, 

R2>1%) correlated to IDWG. Univariable regression analysis confirmed that PPNa+ was 

better than DPNa+ at predicting IDWG (R2 = 20.36% versus 6.66%, p<0.001 versus 

0.152).  

Equation 5.1 was calculated using multivariable regression analysis, and the same 

independent variables, to predict IDWG. Since DPNa+ was less effective at predicting 

PPNa+, only PPNa+ was used in our regression model for equation 5.1. 

 

Equation 5.1:  IDWG = 5.0694 + 0.17889(PPNa) – 0.1542(frequency) – 0.0145(Age)  

– 0.2316(if female) – 0.0457(Albumin) +0.001354 (Dialysis Time) 

Where  IDWG   = interdialytic weight gain, in liters 

PPNa+ = (plasma post-dialysis Na+)–(plasma pre-dialysis Na+),in mmol/L 

 Frequency = dialysis frequency, in sessions per week 

 Albumin = average patient albumin, in g/L 
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 Dialysis time = Dialysis session time, in minutes 

F-statistic  = 7.309 on 6 and 79 degrees of freedom (p-value < 0.001),  

R2   = 35.69% (adjusted R2 = 30.81%) 

Standard errors, p-values and 95% confidence intervals for the regression coefficient 
estimates are presented in Table 5.3. 

Since the post-dialysis plasma Na+ cannot be determined prior to dialysis, we 

correlated PPNa+ to the diffusive Na+ balance, represented by the product of DPNa+ and 

dialysis time (minutes). The Pearson correlation coefficient between PPNa+ and this 

product is 0.4054, suggesting a moderate correlation. In a simple linear regression model 

between PPNa+ and the product of (DPNa+) and dialysis time, there was an F-statistic of 

16.53 on 1 and 84 degrees of freedom, corresponding to a model p-value of <0.001. 

Given the product of DPNa+ and dialysis time was well correlated to PPNa+, a 

second equation was developed by fitting a multivariable linear regression model to 

IDWG. This second model included all independent variables from equation 5.1, except 

PPNa+, which was replaced by the covariate of (DPNa+) times dialysis time. Thus, 

equation 5.2 included factors that were all known prior to the dialysis session. 

 

Equation 5.2: IDWG = 5.8178 + 0.00023215 (DPNa+)(Dialysis time) – 0.0107(Age) 

- 0.1558(frequency) – 0.2977(if female) – 0.0654(Albumin)  

Where IDWG  = Interdialytic weight gain, in Liters 

DPNa+  = (Dialysate Na+) – (Pre-dialysis plasma Na+) 

Dialysis time = Dialysis session time, in minutes 

Frequency = dialysis frequency, in sessions per week 

Age  = years old, of patient 

 Albumin = average patient albumin, in g/L 

F-statistic  = 4.1940 on 5 and 80 degrees of freedom (p-value = 0.002),  

R2 =  20.77% (adjusted R2 = 15.82%) 

Standard errors, p-values and 95% confidence intervals for the regression 

coefficient estimates are presented in Table 5.3.  The parameter estimates obtained 

through the bootstrap sample were all normally distributed. The average (min, max) of 
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the residuals was 0.0055 (-0.2207, 0.2449); the average deviation of the bootstrap 

samples from the predictive value is close to 0.  The average bootstrap residual median 

was -0.0091, suggesting that the residuals may have been slightly skewed. The Root 

Mean Squared Error (RMSE) for equation 5.2 was 0.7208; this describes the discrepancy 

of observations and the estimated model. The bootstrap samples’ average Root Mean 

Squared Predictive Error was 0.7218; the predictive power is slightly reduced when 

fitting Equation 5.2 to the bootstrap samples.  The unadjusted R2 value for the bootstrap 

samples was 20.13%, close to the unadjusted R2 value (20.77%) in Equation 5.2.

 
DPNa+ = dialysate minus Pre-dialysis plasma sodium concentration; PPNa+ = Post- 
minus Pre-dialysis plasma sodium concentration 
 
Table 5.3: Multivariable Regression Analysis to Predict Interdialytic Weight Gain by  

      Equations 1 and 2 

The average R2 value (min, max) for the 1000 created models was 29.62% 

(4.80%, 65.85%) and an adjusted R2 of 24.92% (0.10%, 62.79%).  The average F-statistic 

value was 6.6521 on 5 and 80 degrees of freedom (average p-value = 0.005).  The 

average occurrence of variable selection is presented in Table 5.4; (DPNa+)(dialysis 

duration), sex, albumin and dialysis frequency were in over 80% of the bootstrap 

samples, while age, diabetes status and residual renal function (Kr) were in 74%, 73% 

and 41%, respectively.   The average regression coefficient estimates are also in table 4; 

the mean parameter estimates are close to those regression coefficients estimated in 
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Equation 5.2. The absolute bias for all covariates is less than 0.08 (except for the 

intercept, which shows an absolute bias of 3.3).  

The 95% confidence intervals for the bootstrap parameter estimates are also 

calculated; the confidence intervals for residual renal function and diabetic status include 

0, so these variables were not included in the model. The upper limit for age is close to 0, 

but we chose to leave Age in the model since it improved our predictive ability. The 

remaining covariates did not include 0 and thus reinforced their inclusion in the model. 

DPNa+ = dialysate minus Pre-dialysis plasma sodium concentration; PPNa+ = Post- 
minus Pre-dialysis plasma sodium concentration 
 
Table 5.4: Bootstrap Validation of Predictive Equation for  

      Interdialytic Weight Gain (Equation 2) 

A calibration plot was completed for the external validation cohort (n=24) (Figure 

5.3). There were 37 pre-dialysis plasma Na+ measurements available for the external 

validation cohort, an average and median of 1.54 and 1.00 for each patient, respectively. 

The distribution of IDWG for these patients was determined (Table 5.5), and spanned a 

wide range (0.39 to 3.16 liters), with a mean and median of 1.83 and 1.87 Liters. The x-

axis represents predictions of IDWG from equation 5.2, and the y-axis represents the 

observed IDWG. The solid 450 line represents the performance of the ideal predictive 

equation, with thick dashed 450 lines on either side to depict +/- 0.5 Liters. Most (15/24, 

62.5%) observations fell within 0.5 L of predicted IDWG, and almost all (22/24, 91.7%) 

fell within 1.0 L of predicted IDWG. The line of best fit of the grouped observations (thin 

dashed line) was almost superimposed upon the ideal predictive equation (solid line). The 
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correlation between predicted and observed IDWG (Figure 5.3) was strong (R2 = 0.51, 

95% CI 0.25 to 0.75, p<0.001). 

A Bland-Altman plot was completed (Figure 5.4). The x-axis represents the average of 

predicted (from Equation 5.2) and observed IDWG. The y-axis represents the observed 

minus the predicted IDWG. The correlation between difference and average IDWG 

(Figure 5.4) was strong (R2 = 0.49, 95% CI 0.18 to 0.74, p<0.001), suggesting that the 

difference between observed and predicted IDWG increases with increasing magnitude of 

IDWG.  

Figure 5.3: Calibration Plot for External Validation Cohort for Equation 5.2 

5.4 Discussion 

Increased IDWG is associated with hypertension,1,2,6,8 left ventricular hypertrophy and 

cardiovascular morbidity and mortality.3 IDWG is influenced by many factors, but salt 

balance is one of importance. Dietary salt restriction reduced IDWG, hypertension and 
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LVH in a Turkish hemodialysis population, while increased salt intake increased 

IDWG.21 

Table 5.5: Interdialytic Weight Gain in Patients for External Validation 

Factors associated with the dialysis treatment may also influence salt balance. The use of 

a dialysate with a Na+ greater than the pre-dialysis plasma Na+ will lead to diffusive Na+ 

gain by the patient and therefore the need to increase convective removal by 

ultrafiltration to restore Na+ balance. Keen and Gotch have shown that the difference 

between dialysate Na+ and pre-dialysis plasma Na+ positively correlates with IDWG.22 

Figure 5.4: Bland-Altman Plot of Observed Minus Predicted Interdialytic Weight Gain  
       Versus Average Interdialytic Weight gain 
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Several studies have shown that reducing dialysate Na+ concentration will reduce 

IDWG and improve outcomes.2-8 The dialysate to patient pre-dialysis Na+ difference is 

clearly an important factor in this area. Theoretically, the time and frequency of patient 

exposure to this difference should also influence Na+ balance and IDWG but, to date, this 

appears to have escaped attention. It may be of relevance that the patients undergoing 

nightly hemodialysis had significantly higher IDWG than those treated by short hours 

daily hemodialysis in the London Daily/Nocturnal Hemodialysis study when both were 

using a dialysate Na+ concentration of 140 mmol/L.10 Whether reductions in dialysate 

Na+ concentration are always desirable remains controversial; recent work suggests that 

reductions in IDWG need to be achieved in context of other potentially adverse 

outcomes.23 Prospective controlled trials are certainly indicated. 

The reduction of plasma Na+ over the course of dialysis also influences IDWG. 

We have previously shown that progressive reduction of the end dialysis plasma 

conductivity (Na+) using a biofeedback control system (DiaControl, Gambro Ab, 

Sweden) leads to increased ionic mass removal (Na+) by diffusion and significant 

reductions in IDWG, extracellular water and blood pressure.24 Whether the dialysate to 

pre-dialysis plasma Na+ difference, or the pre to post dialysis plasma Na+ change more 

strongly determines IDWG was uncertain although Hecking and colleagues recently 

showed that the latter was more predictive of clinical outcomes.8 The Na+ difference 

must be the driving force for the plasma Na+ change but other factors will influence that 

change such as the pre-dialysis plasma Na+ and the duration of the dialysis treatment. It 

is also possible the plasma albumin via the Gibbs-Donnan effect is of influence. 

From the clinical perspective, it is desirable to understand the factors that 

influence IDWG. There may be factors that can be modified within the dialysis 

prescription. It is accepted that this cannot be finite and that attention must also be given 

to psychosocial aspects of salt and water intake. Thus, as part of a Quality Initiative, the 

records of our home HD patients were examined creating an ideal study because 

treatment modalities included use of extended times and frequency. Furthermore, pre and 

post dialysis plasma Na+ levels had been routinely measured.  
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Knowing the availability of data we chose as possible independent variables that 

influence IDWG: age, sex, diabetic status, residual renal function, duration and frequency 

of dialysis treatments, and either DPNa+ or PPNa+. The results of univariable regression 

analysis showed that PPNa+ was more predictive than DPNa+, supporting the work of 

Hecking.8,12 Diabetic status and residual renal function did not appear to predict IDWG 

based on the univariable and multivariable models (Table 5.2).  The remaining 

independent variables were used in the multivariable analysis in Equation 5.1. This 

indicated significant associations between IDWG and dialysis frequency, PPNa+, plasma 

albumin, and age.  Female sex was included in this model despite not being statistically 

significant because it appeared to improve the model. 

A moderate correlation of PPNa+ with the product of dialysis duration and 

DPNa+ was found (Pearson coefficient = 0.4054).  Thus, a multivariable linear regression 

model was developed for Equation 5.2, which determines IDWG as a function of 

independent variables known before dialysis, eliminating the post-dialysis plasma Na+ 

value. These are the product of DPNa+ and dialysis duration, plasma albumin, female 

sex, and dialysis frequency. Patient age was also included in this model despite not being 

statistically significant, because it generally improved the predictive ability of the model. 

An internal bootstrap validation to investigate the predictive properties and model 

selection was conducted and showed reproducibility of our model selection, suggesting 

that the predictive model covariates in Equation 5.2 are stable for our data. External 

validation with a temporally distinct group of new patients showed excellent predictive 

ability of Equation 5.2. While Bland-Altman plot (Figure 5.4) shows that IDWG is 

underestimated at high IDWG, almost all (91.7%, 22/24) of observed and predicted 

IDWG are within 1.0 L, and most (62.5%, 15/25) are within 0.5 L (Figure 5.3). Equation 

5.2 does provide clinically important information. The use of a generic dialysate with 

Na+ content of 140 mmol/L is not desirable for patients undergoing nightly dialysis for 6 

to 8 hours per treatment when most (75/86, 87.2%) of the patients have pre-dialysis 

plasma Na+ levels lower (Figure 5.1). A positive Na+ difference of 5 mmol/L, found in 

16.3% (14/86) of our patients, will itself account for 0.42 Liters of IDWG (equation 5.2) 
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in these circumstances. In most patients, the difference should be zero or even slightly 

negative. As a result of this quality initiative study, our local practice will change.  

The study is limited by the relatively small number of patients studied and the 

retrospective review of laboratory and dialysis run sheet data (e.g. IDWG). Furthermore, 

all data points used are aggregates of variable numbers of dialysis and laboratory values 

obtainable at variable time periods corresponding to patients’ attendance at clinics. This 

may explain why equation 5.1 only provides 30% explanation for IDWG. Post-dialysis 

weight is not necessarily the dry weight; this likely influences dietary water and salt 

consumption, neither of which can be easily controlled for.. On the other hand, the study 

has strengths in that pre and post dialysis plasma Na+ values are available and the fact 

that a variety of dialysis modalities were used including short hours daily and long 

nightly. 

We have created an equation to predict IDWG on the basis of independent factors 

readily available before a dialysis session. The modifiable factors include dialysis time 

and frequency, and dialysate Na+. Patient sex, age and plasma albumin are also 

correlated to IDWG. Further work is required to establish how improvements in IDWG 

influence cardiovascular and other clinical outcomes. 
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6.1 Introduction 

Cardiovascular death is the leading cause of mortality in hemodialysis patients.1 A 

chronic state of volume and pressure overload is a major contributor2-5 leading to 

hypertension, left ventricular hypertrophy,6-10 and death.11,12 Considerable research has 

evaluated the effect of dialysis frequency and duration on clinical outcomes.6,13-15! It is 

well established that longer hemodialysis sessions improve outcomes13,14,16-19 including 

mortality.20-22 How this improvement relates to volume and pressure control remains 

controversial.  

In patients undergoing conventional thrice weekly hemodialysis, pre-dialysis 

plasma sodium is stable over time,23,24 and is thus called sodium setpoint (SP). When the 

dialysate sodium concentration exceeds the SP, diffusion of sodium into the patient 

occurs, and a number of undesirable clinical outcomes result, including increased 

interdialytic weight gain (IDWG), blood pressure, and ultrafiltration rate.25-30 These 

clinical outcomes are predicted by the magnitude not only of dialysate to pre-dialysis 

plasma sodium difference (DPNa+), but also by the post to pre-dialysis plasma sodium 

difference (PPNa+).30 However, there are no prospective trials evaluating personalized 

dialysate sodium in patients who dialyze more than thrice weekly, or longer than four 

hours per session. Quotidian and nocturnal hemodialysis patients are exposed more 

frequently and longer to a diffusion difference; how this alters clinical outcomes has not 

been prospectively evaluated. 

 Three objectives were tested in a randomized crossover study. The first objective 

was to determine how exposure to a higher DPNa+ altered IDWG, pre- and post-dialysis 

blood pressure, and ultrafiltration rate, in a study population that included conventional, 

quotidian and nocturnal hemodialysis patients. The second objective was to determine the 

effect of dialysis frequency and duration on each of the same clinical outcomes. The third 

objective was to establish which of PPNa+ or DPNa+ better predicted clinical outcomes. 
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6.2 Subjects and Methods 

Study Population 

All patients in the home hemodialysis program of the Southwestern Ontario Regional 

Renal Program were considered. Patients were excluded if they were under the age of 18, 

pregnant, or not expected to survive 6 months.  

Study Design 

A randomized crossover trial design was used (Figure 6.1). The average of the two most 

recent monthly pre-dialysis plasma sodium (Pre-Na+) measurements defined the patient’s 

sodium setpoint (SP). Patients were randomized to a dialysate sodium (Dial-Na+) 

concentration group either 3 mmol/L above (HIGHDialSOD period), or 3 mmol/L below 

(LOWDialSOD period) their SP (Figure 1). Dialysate sodium concentration range was 

restricted to between 130 and 150 mmol/L, because of concerns of clinical effects. After 

100 days, patients crossed over study periods. Patients were followed for another 100 day 

period, then the study was completed.  

Blood sample collection 

Pre-dialysis and post-dialysis blood samples were collected biweekly from the arterial 

blood line, using a standard slow blood and stop dialysate method. Locking solution (2 

mL of 4% citrate) and a small amount of blood (~2 to 5 mL) are spent prior to blood 

collection. The samples are centrifuged and refrigerated until delivered to the laboratory, 

within 12 hours of collection. Of interest in this study were pre-dialysis (Pre-Na+) and 

post-dialysis (Post-Na+) plasma Na+. Only outpatient blood tests were considered, to 

eliminate the confounding effect of acute illness. 

Na+ concentration measurement 

Plasma Na+ concentration was measured using Roche Modular P Chemistry Analyzer 

(Roche Diagnostics, Laval, Quebec, Canada) with ion selective electrodes. Dialysate Na+ 

concentration was determined using online conductivity measurements in the Fresenius H 

series hemodialysis machine.  
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Dial Na+ = dialysate Na+ concentration (mmol/L); SP = Pre-dialysis plasma sodium 
setpoint (mmol/L); LOWDialSOD = Time period when Dialysate sodium concentration = 
SP – 3 mmol/L; HIGHDialSOD = Time period when Dialysate sodium concentration = 
SP + 3 mmol/L 
 
Figure 6.1: Randomized Crossover Study Design 

 

Database creation 

Demographic, clinical and hemodialysis data were collected from the electronic patient 

record (Power Chart by Cerner), home hemodialysis run sheets and the outpatient 

hemodialysis unit paper chart. Background factors of interest included patient age, sex, 

diabetes status, height (cm), weight (kg), residual renal function (mL/min x 1.73 m2) and 

vintage of hemodialysis (days). Residual renal function was calculated as previously 

described.31 Hemodialysis records were used to record target weight (kg) and dialysis 

frequency (sessions per week) and duration (hours per session) throughout the study. 
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Outcomes collected included interdialytic weight gain (IDWG), pre- and post-

dialysis systolic and diastolic blood pressure, and ultrafiltration volume. IDWG was 

calculated as the difference between the post-dialysis patient weight and the next dialysis 

session’s pre-dialysis patient weight. Dialysate to pre-dialysis plasma sodium (DPNa+) 

and post- to pre-dialysis plasma sodium (PPNa+) concentration differences were 

recorded. We decided a priori that a minimum of 3 observations per study period would 

be required for each outcome, for a patient to be included in the final analysis.  

Ethics 

Ethics approval was granted by the Western University Health Sciences Research Ethics 

Board. Informed written consent was obtained from all patients. The study was conducted 

in accordance with the Declaration of Helsinki.  

Statistics 

Data were analyzed using the Statistical Package for Social Sciences version 19.0. The 

mean, median, standard error, and interquartile range were calculated for all background 

demographic and clinical factors.  

Statistics- Objective 1 

Each patient’s outcomes were averaged for each study period. Patients’ outcomes were 

then averaged for each study period, and compared using paired two-tailed student T-

tests, with an α value of 0.05 considered for statistical significance.  

Statistics- Objective 2 

Pearson correlation coefficients were calculated between each clinical outcome and 

firstly hemodialysis frequency, then hemodialysis duration. Each patient provided two 

data points in the analysis, one from each study period. Two-tailed p values with α of 

0.05 were used for statistical significance.  
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Statistics- Objective 3 

Pearson correlation coefficients were calculated between each clinical outcome and 

firstly DPNa+, then PPNa+. Two-tailed p values with α of 0.05 were used for statistical 

significance.  

DPNa+ = dialysate minus Pre-dialysis plasma sodium concentration; PPNa+ = post- 
minus pre-dialysis plasma sodium concentration; HIGHDialSOD = when Dialysate 
sodium concentration Setpoint + 3 mmol/L; LOWDialSOD = when Dialysate sodium 
concentration = Setpoint – 3 mmol/L 
 
Table 6.1: Number of Observations per Clinical Outcome 
 

6.3 Results 

A total of 27 patients completed both study periods. All patients had at least 3 

observations for each outcome, and were thus included in data analysis. The mean and 

median observations were greater than 40 for all clinical outcomes in both 

HIGHDialSOD and LOWDialSOD study periods (Table 6.1). The mean and median 

observations were at least 3.0 for both DPNa+ and PPNa+ in both study periods.  

The study population’s background factors included an average age of 54.2 years, 

with 40.7% female and 33.3% diabetic (Table 6.2). Dialysis frequency averaged 4.4 

sessions per week, with a median of 4.0 weekly sessions. Dialysis duration averaged 4.8 

hours per session, with a median of 4.0 hours. More than half of study patients had no 

residual renal function, with a mean of 0.51 and median 0.00 mL/min.  
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Table 6.2: Background Demographic and Clinical Data 

 

Objective 1 

IDWG (2.15 vs. 1.90 kg, p=0.002), IDWG as % target weight (2.78 vs. 2.39%, p=0.002), 

pre-dialysis systolic (143.3 vs. 138.3 mm Hg, p=0.001), diastolic (78.6 vs. 75.6 mm Hg, 

p=0.008) and mean arterial pressure (100.2 vs. 96.5 mm Hg, p=0.003) and post-dialysis 

systolic (135.4 vs. 130.0, p=0.04), diastolic (75.8 vs. 72.4, p=0.006) and mean arterial 

pressure (95.7 vs. 91.6, p=0.009) were significantly higher in HIGHDialSOD than 

LOWDialSOD study period (Table 6.3). No change in target weight, or intradialytic 

change in systolic, diastolic or mean arterial pressure was found.  

Objective 2 

Hemodialysis frequency was inversely related to IDWG% (R = -0.295, Slope = -0.002, P 

= 0.034), and positively correlated with post-dialysis diastolic blood pressure (R = 0.366, 
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slope = 3.464, p=0.008)(Table 6.4). Hemodialysis duration was inversely correlated with 

ultrafiltration rate (R = -0.593, slope = -0.053, p<0.001) and positively correlated with 

IDWG (R = 0.562, slope = 0.184, p<0.001) IDWG% (R = 0.507, slope = 0.002, p<0.001) 

and intradialytic change in diastolic blood pressure (R = 0.280, slope = 1.127, p=0.044).  

HIGHDialSOD = when Dialysate sodium concentration Setpoint + 3 mmol/L; 
LOWDialSOD = when Dialysate sodium concentration = Setpoint – 3 mmol/L 
 
Table 6.3: Clinical Endpoints for Home Hemodialysis Patients in HIGHDialSOD  

      and LOWDialSOD Study Periods 
 
 

Objective 3 

Increased DPNa+ associated with increased IDWG (R = 0.346, slope = 0.001, p=0.012), 

pre-dialysis diastolic (R = 0 284, slope = 0.824, p= 0.041) and post-dialysis diastolic (R = 

0.325, slope = 1.084, p=0.019) and mean arterial (R = 0.292, slope = 1.030, p=0.036) 

blood pressure (Table 6.5). Increased PPNa+ associated with increased IDWG (R = 

0.306, slope = 0.001, p=0.029) and post-dialysis systolic (R = 0.181, slope = -0.067, 

p=0.049) blood pressure.  
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Bolded text denotes statistical significance 
 
Table 6.4: Pearson’s Correlation of the Clinical Outcome with Hemodialysis Frequency  

      and Duration 

 

6.4 Discussion 

In conventional thrice weekly hemodialysis, positive sodium balance is associated with 

IDWG, hypertension, left ventricular hypertrophy, and cardiovascular morbidity and 

mortality5,26-30,32,33 However, the clinical effects of frequent or prolonged exposure to 

higher dialysate sodium concentrations have not been prospectively evaluated. Our study 

population included patients on quotidian and nocturnal hemodialysis prescriptions 

(Table 6.2). There were a high proportion of females (40.7%) and diabetics (33.3%), and 

a wide spectrum of other demographic factors such as age and body habitus. 

Furthermore, each patient had multiple measurements of each clinical outcome in each 

study period. Thus, our study population was representative of a typical hemodialysis 

population, and the clinical outcomes were rigorously evaluated. 



! 105!

This study confirms that in a patient group with quotidian and nocturnal 

hemodialysis patients, personalization of Dial-Na+ higher than SP leads to several 

undesirable clinical outcomes, including IDWG, pre- and post-dialysis systolic, diastolic 

and mean arterial pressure (Table 6.3). This is consistent with previous trials in thrice 

weekly conventional hemodialysis patients.27-30 However, there was no difference in 

intradialytic change in systolic, diastolic or mean blood pressure between 

HIGHDialSOD. 

Bolded text denotes statistical significance; DPNa+= dialysate minus Pre-dialysis plasma 
sodium concentration; PPNa+ = post- minus pre-dialysis plasma sodium concentration 
 
Table 6.5: Pearson’s Correlation of Clinical Outcomes with  

      DPNa+ and PPNa+ Differences 

 

and LOWDialSOD study periods. Previous trials in thrice weekly conventional 

hemodialysis patients have demonstrated that low dialysate sodium increases risk for 

intradialytic hypotension.34-36 However intradialytic hypotension occurs when increases 
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in plasma volume from compartments outside plasma occur slower than hemodialysis 

reduces plasma volume.35,37 Our study population had longer hemodialysis duration than 

previous trials (mean 4.8 hours, interquartile range 3 -7 hours, Table 6.2). Since plasma 

refilling is dependent upon the ultrafiltration rate, longer hemodialysis likely tapered this 

effect and decreased the dependence of intradialytic blood pressure changes on dialysate 

sodium concentration.  

Whether and how dialysis frequency or duration modifies the clinical outcomes 

evaluated in this study is of clinical relevance. Our study confirms three important 

relationships. Firstly, hemodialysis frequency associates with decreased IDWG% (Table 

6.4). Consider the common clinical situation of a patient undergoing thrice weekly 

conventional hemodialysis with persistent volume overload and recurrent intradialytic 

hypotension. Increased dialysis frequency could improve fluid removal15,38,39 and a 

slightly positive DPNa+ difference would protect from intradialytic hypotension.34,36,40 

Our data provide evidence to support increasing hemodialysis frequency to decrease 

IDWG in such patients. Secondly, hemodialysis duration associates with an increased 

IDWG and IDWG%. While one might hypothesize that this relates to more prolonged 

exposure to a DPNa+ difference, the difference was positive in the HIGHDialSOD, but 

not in the LOWDialSOD study period. Therefore, this could reflect the common practice 

of avoiding food and drink during hemodialysis; this would disrupt dietary intake for 

conventional and quotidian, but not nocturnal patients. Thirdly, hemodialysis duration 

associated with increased intradialytic fall in diastolic blood pressure. Previous research 

has consistently shown that increased hemodialysis time decreases ultrafiltration rate and 

risk of intradialytic hypotension,22,27,34,41 contrary to this study’s findings. However, 

nocturnal hemodialysis patients often sleep during hemodialysis, so post-dialysis blood 

pressure is measured in the morning in a relaxed state, unlike the shorter hemodialysis 

sessions in conventional dialysis. Therefore, the intradialytic blood pressure change may 

relate also to vasomotor tone, rather than ultrafiltration rates.  

 DPNa+ was superior to PPNa+ in predicting IDWG%, pre-dialysis diastolic, post-

dialysis diastolic and mean arterial pressure (Table 6.5). These data are in contrast to a 

number of trials that suggest PPNa+ to be more predictive.30,42,43 Plasma Na+ approaches 
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Dial-Na+ throughout hemodialysis, so intradialytic change in plasma Na+ was predicted 

to be less than 3 mmol/L in our study, since Dial-Na+ was randomized to be 3 mmol/L 

above (HIGHDialSOD) or below (LOWDialSOD) the SP. Indeed, mean PPNa+ was 

quite low in our study (LOWDialSOD PPNa+ = -1.08 mmol/L; HIGHDialSOD PPNa+ = 

0.57 mmol/L), so PPNa+ was too small to overcome the lack of precision in the plasma 

Na+ measurement. However, use of the PPNa+ difference has the disadvantage of using 

Post-Na+ and therefore not being known prior to a hemodialysis session. Knowing that 

DPNa+ predicts clinical outcomes better than PPNa+ when Dial-Na+ is 3 mmol/L above 

or below the SP provides useful information, and helps guide selection of dialysate 

sodium to improve clinical outcomes. Furthermore, it makes measuring Post-Na+ 

unnecessary so long as Dial-Na+ is within 3 mmol/L of the Pre-Na+.  

This study does have limitations. Firstly, we did not record dialysis membrane 

surface area or blood glucose,44-47!each of which can impact diffusive sodium balance on 

hemodialysis. However, use of a randomized crossover design negated these effects, 

since each patient served as their own control, and since these factors were unlikely to 

change for any particular patient between study periods. Secondly, our study population 

was small. Despite this, an abundance of clinical endpoints and numerous pre- and post-

dialysis sodium values were available from all patients on multiple dialysis modalities. 

We were still able to report important outcomes of statistical and clinical significance.  

In conclusion, higher personalized dialysate sodium concentrations lead to 

increased interdialytic weight gain, pre- and post-dialysis blood pressure, and 

ultrafiltration rates in a patient population that includes conventional, quotidian and 

nocturnal hemodialysis patients. While hemodialysis frequency associates with decreased 

IDWG%, the opposite relationship is seen with hemodialysis duration. Furthermore, 

longer hemodialysis leads to greater falls in diastolic blood pressure, counter to previous 

research findings. DPNa+ difference is preferable to PPNa+ to predict clinical outcomes 

so long as the Dial-Na+ is personalized within 3 mmol/L of the SP. Further work is 

needed to establish the effect of personalizing the dialysate sodium concentrations on 

long-term cardiovascular outcomes in quotidian and nocturnal hemodialysis patients. 
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Chapter 7: Effect of Personalized Dialysate Sodium Prescription on Plasma Sodium 

Concentration and Sodium Setpoint in Conventional, Quotidian and Nocturnal 

Hemodialysis.  
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7.1 Introduction  

Cardiovascular disease is the leading cause of mortality in hemodialysis patients.1  

Chronic volume and pressure overload are major contributing factors, leading to 

hypertension, left ventricular hypertrophy and death.2-5 Several strategies to improve 

these risk factors have demonstrated success, including dietary sodium restriction,6,7 

increasing hemodialysis frequency and duration,8-13 and volume management guided by 

bioimpedance.14,15 Of recent relevant interest to this topic is the dialysate sodium 

prescription.16-18 

Pre-dialysis plasma sodium concentration is relatively stable in thrice weekly 

conventional hemodialysis patients, and is thus termed the “sodium setpoint” (SP).19-21 

When dialysate sodium concentration is less than SP, increased diffusive sodium removal 

occurs, leading to improvement in interdialytic weight gain, pre- and post-dialysis blood 

pressure,16,18,22-24 and perhaps also in cardiovascular outcomes and mortality.25,26 

However, marked reduction in dialysate sodium concentration gives rise to intradialytic 

symptoms including intradialytic hypotension.27,28  This may be mediated by intradialytic 

shifts in plasma sodium concentration.27  

While effects of personalized dialysate sodium prescription are well described in 

conventional thrice weekly hemodialysis patients, these outcomes have not been 

prospectively evaluated in quotidian or nocturnal hemodialysis patients. Whether plasma 

sodium concentration changes during more frequent or longer hemodialysis sessions is 

unknown, and whether such changes impact the sodium setpoint has not been 

prospectively evaluated. Three objectives were tested in a randomized crossover study, in 

conventional, quotidian and nocturnal home hemodialysis patients. Our first objective 

was to determine if personalized dialysate sodium prescription modified plasma sodium 

concentration from the start to the end of a hemodialysis session. Our second objective 

was to determine if a change in dialysate sodium concentration altered the pre-dialysis 

sodium setpoint. Our third objective was to determine if dialysis frequency or duration 

modulated changes in either plasma sodium throughout dialysis or sodium setpoint. 
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7.2 Materials and Methods 

Study Population 

All patients in the home hemodialysis program of the Southwestern Ontario Regional 

Renal Program were considered. Patients were excluded if they were under the age of 18, 

pregnant, or not expected to survive 6 months. 

Study Design 

A randomized crossover trial design was used. The average of the two most recent 

monthly pre-dialysis plasma sodium (Pre-Na+) measurements defined the patient’s 

sodium setpoint (SP). Patients were randomized to a dialysate sodium (Dial-Na+) 

concentration group either 3 mmol/L above (DialNa+ = SP + 3 = HIGHDialSOD), or 3 

mmol/L below (DialNa+ = SP – 3 = LOWDialSOD) their SP (Figure 7.1). Dialysate 

sodium concentration range was restricted to between 130 and 150 mmol/L, because of 

concerns of clinical effects. After 100 days, patients crossed over study periods. Patients 

were followed for another 100 day period, then the study was completed.  

Blood sample collection 

Pre-dialysis and post-dialysis blood samples were collected biweekly from the arterial 

blood line, using a standard slow blood and stop dialysate method. Locking solution (2 

mL of 4% citrate) and a small amount of blood (~2 to 5 mL) are spent prior to blood 

collection. The samples are centrifuged and refrigerated until delivered to the laboratory, 

within 12 hours of collection. Of interest in this study were pre-dialysis (Pre-Na+) and 

post-dialysis (Post-Na+) plasma Na+. Only outpatient blood tests were considered, to 

eliminate the confounding effect of acute illness. 

Na+ concentration measurement 

Plasma Na+ concentration was measured using Roche Modular P Chemistry Analyzer 

(Roche Diagnostics, Laval, Quebec, Canada) with ion selective electrodes. Dialysate Na+ 

concentration was determined using online conductivity measurements in the Fresenius H 

series hemodialysis machine.  
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SP = Plasma sodium setpoint (mmol/); DialNa+ = dialysate Na+ concentration (mmol/L); 
Blue arrow denotes mean 
 
Figure 7.1: Prospective Randomized Crossover Study Design 

 

Database creation 

Demographic, clinical and hemodialysis data were collected from the electronic patient 

record (Power Chart by Cerner), home hemodialysis run sheets and the outpatient 

hemodialysis unit paper chart. Background factors of interest included patient age, sex, 

diabetes status, height (cm), weight (kg), residual renal function (mL/min x 1.73 m2) and 
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vintage of hemodialysis (days). Residual renal function was calculated as previously 

described.29 Hemodialysis records were used to record dialysis frequency (sessions per 

week) and duration (hours per session) throughout the study. 

Dialysate to pre-dialysis plasma sodium difference (DPNa+) and post-dialysis 

(Post-Na+) to pre-dialysis (Pre-Na+) plasma sodium difference (PPNa+) concentration 

were also recorded. We decided a priori that a minimum of 3 observations per DPNa+ 

and PPNa+ would be required in each of HIGHDialSOD and LOWDialSOD study 

periods for a patient to be included in the final analysis.  

Ethics 

Ethics approval was granted by the Western University Health Sciences Research Ethics 

Board. Informed written consent was obtained from all patients. The study was conducted 

in accordance with the Declaration of Helsinki.  

Statistics 

Data were analyzed using the Statistical Package for Social Sciences version 19.0. The 

mean, median, standard error, and interquartile range were calculated for all background 

demographic and clinical factors.  

Statistics- Objective 1 

The average pre- and post-dialysis plasma sodium concentrations were calculated for 

each patient for each study period. The group average pre- and post-dialysis plasma 

sodium concentrations were then compared between HIGHDialSOD and LOWDialSOD, 

using paired two-tailed student t-tests with an α value of 0.05 considered for statistical 

significance. 

Statistics- Objective 2 

A change in SP was defined in two ways (Figure 7.2). Firstly, the average Pre-Na+ 

differed between HIGHDialSOD and LOWDialSOD study periods. Secondly, the slope 

of Pre-Na+ (M100) over time differed between study periods. Differences were detected 
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using paired two-tailed student t-tests with an α value of 0.05 considered for statistical 

significance. 

Figure 7.2: Endpoints to Determine Change in Pre-Dialysis Plasma Sodium Setpoint 

 

Statistics- Objective 3 

Pearson correlation coefficients were calculated to determine if changes in SP were 

modulated by hemodialysis frequency or duration. Y axis included either change in pre-

Na+ or slope of Pre-Na+ from HIGHDialSOD to LOWDialSOD study periods. X axis 

included hemodialysis frequency or duration. Slope of correlation was calculated and 

two-tailed p values were determined with an α value of 0.05 for statistical significance. 

7.3 Results 

A total of 27 patients completed both study periods. All patients had at least 3 

observations for each of DPNa+ and PPNa+, and were thus included in the final analysis.  

Mean and median SP was 138.1 and 138.5 mmol/L, with an interquartile range of 135.5 

to 141.0 mmol/L (Figure 7.1, Table 7.1). The study population was an average age of 

54.2 years, with 40.7% female and 33.3% diabetic (Table 7.1). Dialysis frequency 
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averaged 4.4 sessions per week, with a median of 4.0 weekly sessions. Dialysis duration 

averaged 4.8 hours per session, with a median of 4.0 hours. More than half of patients 

had no residual renal function, with a mean of 0.51 and median 0.00 mL/min.  

Table 7.1: Background Demographic and Clinical Data 

 

Objective 1 

Pre-Na+ and Post-Na+ did not differ in HIGHDialSOD study period (137.4 to 137.8 

mmol/L, p=0.45). However, plasma Na+ fell throughout dialysis (136.8 to 135.0 mmol/L, 

p=0.002) in LOWDialSOD study period (Figure 7.3).  

Objective 2 

Pre-Na+ sodium setpoint decreased from HIGHDialSOD to LOWDialSOD study period 

(137.4 to 136.8 mmol/L, p=0.03) (Table 7.2). The slope of Pre-Na+ (M100) also 

decreased from HIGHDialSOD to LOWDialSOD study periods (0.014 to -0.015 

mmol/L/day, p=0.009). 
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HIGHDialSOD= when Dialysate sodium concentration is 3 mmol/L greater than pre-
dialysis plasma sodium “setpoint”; LOWDialSOD=when Dialysate sodium concentration 
is 3 mmol/L lower than pre-dialysis plasma sodium “setpoint.” 
 
Figure 7.3: Pre and Post-Dialysis Plasma Sodium Concentration with High (Period 1)  

       or Low (Period 2) Personalized Dialysate Sodium 

 

Objective 3 

The change in Pre-Na+ across study periods was not correlated to hemodialysis 

frequency (R = 0.264, p=0.193) or duration (R = 0.032, p=0.877) (Table 7.3). Likewise, 

the change in slope of Pre-Na+ across study periods was not correlated to hemodialysis 

frequency (R = 0.172, p=0.401) or duration (R=0.067, p=0.745).  

7.4 Discussion 

Reduction in dialysate sodium concentration can reduce IDWG, blood pressure and 

negative cardiovascular outcomes.16,18,23 However, it may also give rise to intradialytic 

hypotension,27,28 mediated by intradialytic shifts in plasma sodium concentration.27 

Whether personalized dialysate sodium prescription associates with intradialytic shifts in 

plasma sodium in quotidian or nocturnal hemodialysis patients is previously unreported.  
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HIGHDialSOD = Dialysate sodium concentration 3 mmol/L higher than pre-dialysis 
sodium setpoint; LOWDialSOD = Dialysate sodium concentration 3 mmol/L lower than 
pre-dialysis sodium setpoint. Bolded text denotes statistically significant changes. 
 
Table 7.2: Difference in Absolute and Slope of Pre-Dialysis Plasma Sodium Setpoint  

      with Two Personalized Dialysate Sodium Concentrations 
 

P = p value; R = Pearson’s correlation coefficient 
 
Table 7.3: Effect of Hemodialysis Frequency and Duration on Change Across Study  

      Periods in Absolute and Slope of Pre-Dialysis Sodium Setpoint 
 

This randomized crossover study included patients with a spectrum of dialysis 

frequency (mean = 4.4, interquartile range = 3 to 6 sessions per week) and duration 

(mean = 4.8, interquartile range 3-7 hours)(Table 7.1). There was a high number of 

females (40.7%) and diabetics (33.3%) and a wide spectrum of other demographic and 

clinical factors such as blood pressure, age and body habitus. Every patient had at least 3 

recordings of PPNa+ and DPNa+ during each study period. The sodium setpoint (SP) 

varied widely in our study population (interquartile range 135.5 to 141.0, Table 1 and 

Figure 7.1). Thus, our study population was representative of a typical hemodialysis 

population, and outcomes were evaluated with rigor.  
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While the HIGHDialSOD plasma sodium did not change over dialysis (137.4 to 

137.8 mmol/L, p=0.45), there was a significant decrease from Pre-Na+ to Post-Na+ in the 

LOWDialSOD study period (136.8 to 135.0 mmol/L, p=0.002)(Figure 7.3). This is 

consistent with Suckling et al’s recent work.27 While the magnitude of intradialytic 

plasma sodium change was small in our study, there is still reason for concern. Firstly, 

intradialytic decrease in plasma sodium is linked to intradialytic hypotension,27 which 

independently increases risk of death.28 Secondly, ignoring patient-specific SP by facility 

level decreases in dialysate sodium concentrations will lead to significantly negative 

DPNa+ differences in some patients. Again, this increases the risk of intradialytic 

hypotension. Ultimately, selection of dialysate sodium should be personalized to the 

patient to limit adverse outcomes of a very positive DPNa+, while simultaneously 

avoiding the complications of intradialytic plasma sodium shifts from a negative DPNa+; 

this can only be done by regularly following the Pre-Na+ and adjusting the Dial-Na+ 

accordingly.  

 While Pre-N+ is stable as a “setpoint” in thrice weekly conventional hemodialysis 

patients,19-21 this has not been prospectively evaluated in quotidian or nocturnal 

hemodialysis patients. A retrospective study by our research group found that conversion 

from thrice weekly conventional to quotidian hemodialysis associated with a reduction in 

SP, when DPNa+ was neutral or negative.30 We confirm a change in SP prospectively in 

this study, as mean pre-Na+ (137.4 vs. 136.8 mmol/L, p=0.03) and slope of pre-Na+ 

(0.014 vs. -0.015 mmol/L/day, p=0.009)(Table 2) differ between HIGHDialSOD and 

LOWDialSOD study periods. While the magnitude of the change in pre-Na+ is small, 

this is both statistically and clinically important. Firstly, decreases in sodium setpoint are 

independently associated with increased mortality.31,32 Secondly, hemodialysis units that 

use facility wide dialysate sodium prescriptions will lead many patients to having highly 

negative DPNa+ and thus more exaggerated decreases in SP. Thirdly, in units that 

personalize dialysate sodium by following Pre-Na+, repeated decreases in Dial-Na+ to 

maintain a negative DPNa+ could cause repeated and undesirable decreases in SP. 

Finally, this raises the possibility that hemodialysis prescription might be modified to 

increase SP in vulnerable patients. More research will be required to determine the 
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pathophysiologic mechanism of a change in SP in these patients, and to determine the 

impact on cardiovascular outcomes. 

 There are limitations to this study. Firstly, we did not measure blood glucose, 

lipids or paraprotein levels, each of which can impact plasma sodium measurement.33-35 

However, use of a randomized crossover study design negated these effects, since each 

patient served as their own control, and since these factors were unlikely to change for 

any particular patient between study periods. Secondly, our study population was small. 

However, our patients are highly compliant, having participated in multiple previous 

research trials.12,13 This enabled the recording of numerous pre- and post-dialysis sodium 

values from all patients on multiple hemodialysis modalities. We were thus able to report 

statistically and clinically significant outcomes.  

 In conventional, quotidian and nocturnal hemodialysis patients, the 

personalization of Dial-Na+ to lower than the SP decreases plasma sodium throughout 

hemodialysis. Furthermore, Dial-Na+ can modify the Pre-Na+ “setpoint.” Further 

research is needed to determine the effect on cardiovascular morbidity and mortality. 
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8.0 General Discussion and Conclusions 

The most common cause of death in patients with end stage kidney disease is 

cardiovascular (Figure 1.1).1 A major contributor is the chronic state of volume and 

pressure overload,2-8 which leads to left ventricular hypertrophy9-17 and death.18,19 Of 

critical importance is the total sodium balance during a hemodialysis session,8,20-24 which 

is determined by the sum of diffusion and osmosis.  

 Diffusive balance during hemodialysis reflects the effects of several factors 

(Equation 1.4). Many factors are not modifiable, such as dialyzer hollow fiber radius 

(Chapter 1.1.1.1 and 1.1.1.2), length (Chapter 1.1.1.1 and 1.1.1.3) or thickness (Chapter 

1.1.1.4). Likewise, several factors must be maintained within a narrow range, such as 

dialysate temperature (Chapter 1.1.1), patient hematocrit and albumin (Chapter 1.1.1.8). 

On the other hand, the hemodialysis frequency and duration can be modified, as can the 

difference between dialysate and pre-hemodialysis plasma sodium concentrations 

(DPNa+). In Chapter 4, using retrospective data, we confirm that the post- to pre-dialysis 

plasma sodium difference (PPNa+) is superior to DPNa+ to predict clinical outcomes 

such as interdialytic weight gain, blood pressure, and the change in blood pressure during 

a hemodialysis session.25 However, the opposite was found using prospective data 

(Chapter 6). This could be because the magnitude of the DPNa+ and PPNa+ difference 

was much smaller as the study design involved personalization of the dialysate sodium 

within 3 mmol/L from the pre-hemodialysis plasma sodium concentration, or “setpoint.” 

This is an important observation for three reasons. Firstly, there is no clinical advantage 

to current practice of performing pre- and post-hemodialysis plasma sodium 

concentrations, so long as the dialysate sodium concentration is within 3 mmol/L of the 

setpoint. Secondly, the dialysate sodium concentration can be chosen before a dialysis 

session, making it modifiable, unlike the post-dialysis plasma sodium concentration. 

Finally, it confirms that the selection of dialysate sodium concentration greater than the 

setpoint leads to undesirable increases in interdialytic weight gain and blood pressure.  
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 Selection of dialysate sodium concentration within 3 mmol/L of the setpoint 

requires knowing it will remain stable over time. Previous trials confirm setpoint stability 

in thrice weekly conventional hemodialysis.26-28 However, the setpoint is not stable in a 

patient population of quotidian, conventional and nocturnal hemodialysis patients, 

retrospectively in Chapter 3,29 nor prospectively in Chapter 7. Use of a Dial-Na+ of 140 

mmol/L led to decrease in setpoint in patients with pre-hemodialysis plasma sodium 

concentration greater than or equal to 140 mmol/L (Chapter 3). Furthermore, 

personalization of dialysate sodium concentration 3mmol/L less than the SP leads to a 

decrease in setpoint (Chapter 7). Given that low pre-hemodialysis plasma sodium 

concentration independently predicts mortality,30 this is an important observation. This 

gives pause to the practice of increasing diffusive sodium loss by using a dialysate 

sodium concentration lower than the pre-hemodialysis plasma sodium concentration. 

Further research is required to determine if intentional increases in setpoint are possible 

or beneficial for cardiovascular and all-cause morbidity and mortality.  

 The factors that determine interdialytic weight gain are important to delineate, so 

that they may be modified prior to a hemodialysis session. In Chapter 5, those variables 

were determined to be dialysis time, frequency and dialysate sodium.31 Furthermore, 

several unmodifiable factors were important, including patient sex, age and serum 

albumin. Ultimately, an equation was created that was validated internally using 

bootstrapping and externally using a temporally distinct patient subset. Our research 

group is currently prospectively validating this equation, with a dataset that includes 

patients with a variety of dialysate sodium concentrations, dialysis durations and 

frequencies, and residual renal functions.  We hope to finish this work by June, 2015. 

 As plasma water is removed from a patient, plasma hematocrit increases during 

hemodialysis, causing an increase in blood viscosity (Section 1.1.1.8). As interdialytic 

weight gain increases, the requirement for fluid removal during hemodialysis also 

increases, and thus also blood viscosity. Since increases in blood viscosity lead to 

decreased diffusive sodium loss (Equation 1.5), one might hypothesize that the increased 

mortality from higher interdialytic weight gain occurs partially due to decreased solute 

clearance towards the end of hemodialysis, when blood viscosity reaches its maximum. 
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As our equation is validated in more populations, we will need to establish the effect of 

blood viscosity on solute clearance and mortality. This hypothesis evidently needs further 

evaluation.  

 While hemodialysis equipment modification was not the focus of this thesis, it is 

noteworthy that the design of materials already considers Poiseuille’s Law (Equation 

1.7). Specifically, it is desirable not to have increased pressure drop across the hollow 

fiber of the dialysis membrane; this prevents backfiltration of the dialysate, which is 

undesirable (Section 1.1.1.2 and 1.1.1.3). Even a small (10%) increase in hollow fiber 

radius causes a large (46%) decrease in blood flow resistance. So long as the blood flow 

is constant, this leads to a significant increase in the pressure drop over a hollow fiber, 

which again leads to backfiltration of dialysate  (Equation 1.8). Similarly, a long hollow 

fiber would increase pressure drop (Equation 1.7), but would also increase surface area 

for diffusion (Equation 1.6). It is thus inevitable that advances in hemodialysis 

technology will play a key role in optimizing safe diffusive and osmotic sodium removal  

in the years to come. In light of these future trials designed to improve hemodialysis 

technology, our work will play a key role in assuring their safe and effective design. 

Specifically, it will be essential to monitor the pre-dialysis plasma sodium setpoint to 

assure stability. Use of the DPNa+ and PPNa+ concentration differences under particular 

circumstances that have been defined by our studies will also be important. Finally, 

focusing on factors that are modifiable for patients’ interdialytic weight gain will improve 

the yield of such studies.  

Hemodialysis prescription continues to be an essential consideration in improving 

cardiovascular mortality in patients with end stage kidney disease. Future research will 

need to combine dialysis prescription with monitoring measurements such as 

bioimpedance. While low dialysate sodium improves clinical outcomes such as 

interdialytic weight gain and blood pressure, it is associated with decrease in setpoint in 

patients on frequent or longer hemodialysis treatments. It is thus proposed that sodium 

balance-neutral or slightly positive is a preferable choice, ensuring quality dialysis with 

minimal sodium gain-related complications. Only with careful monitoring of pre-dialysis 
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setpoint and personalized selection of dialysis frequency, duration and dialysate sodium 

concentration can outcomes be optimized.  
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