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Abstract 

 

The α7 nicotinic acetylcholine receptor (nAChR) is an ionotropic receptor for the 

neurotransmitter acetylcholine and its precursor, choline.  Interestingly, α7 nAChR binds 

amyloid β 42 (Aβ42) peptide, which has a primary role in Alzheimer’s disease pathology.  

Aβ42 peptide forms aggregates and different structural forms elicit different physiological 

outcomes.  Oligomeric, fibrillar and non-aggregated preparations of Aβ42 were 

characterized by atomic force microscopy.  Immunoblotting of neuronal cells exposed to 

these preparations determined oligomeric aggregates of Aβ42 mediate ERK1/2 intracellular 

signalling through α7 nAChR.  Cell surface ionotropic receptors are regulated through 

endocytosis to maintain the integrity of neurotransmission.  Cellular pathways for 

endocytosis of α7 nAChR are not fully elucidated.  Immunocytochemistry, fluorochrome-

labelled proteins, and laser-scanning confocal microscopy identified a clathrin-independent 

flotillin 1- or caveolin 1α-associated pathway for α7 nAChR endocytosis.  These studies 

identify a biologically important form of Aβ42 relevant to α7 nAChR intracellular signalling 

and an endocytosis pathway for subcellular regulation of α7 nAChR. 
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1.1 The Cholinergic Neuron 

Acetylcholine (ACh) was the first neurotransmitter described (1), it mediates a broad 

range of physiological functions in the central (CNS) and peripheral (PNS) nervous 

systems.  Neurons that synthesize and store ACh are defined as cholinergic (2).  ACh 

synthesis is catalyzed by the enzyme choline acetyltransferase in the cytoplasm of the 

nerve terminal from the substrates choline and acetyl-CoA (3, 4).  Newly synthesized 

ACh is packaged into secretory vesicles by the vesicular ACh transporter (5 - 11).  

Neuronal membrane depolarization leads to the release of vesicular ACh into the 

synaptic cleft by a highly-regulated, Ca2+-dependent, complex cascade of events (12 - 

14).  Upon release from the nerve terminal, ACh may bind its cognate receptors, 

postsynaptic nicotinic or muscarinic receptors or presynaptic nicotinic and muscarinic 

autoreceptors (2, 15 - 17).  Excess, unbound ACh in the extracellular milieu is cleared by 

the enzyme acetylcholinesterase, which hydrolyzes ACh into free acetate and choline 

(18).  Free choline can be taken up from the extracellular space by the sodium-

dependent high-affinity choline transporter, which resides almost exclusively in 

cholinergic nerve terminals and facilitates the replenishment of intracellular choline (19, 

20).  In the PNS, cholinergic neurons innervate skeletal muscle and a number of target 

tissues of the sympathetic and parasympathetic branches of the autonomic nervous 

system.  In the CNS, cholinergic neurons contribute to learning, memory, arousal, and 

sleep functions (21). 

1.2 Organization of Cholinergic Neurons in the CNS 

Cholinergic neurons within the CNS innervate brain structures either intrinsically or 

extrinsically (22 - 24).  Intrinsic innervation arises from cholinergic interneurons within 

the same brain structure, which project their axons locally (23, 24). Innervation of the 

striatum and its structures, the islands of Calleja, olfactory tubercle, nucleus accumbens, 

and caudate-putamen is intrinsic (22 - 25).  Extrinsic innervation connects cholinergic 

regions to other brain structures through efferent projections (23, 24, 26).  Cholinergic 

projection neurons have been divided into two subsystems, the basal forebrain and the 
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pontomesencephalic complex (23, 24).  Axons from the basal forebrain innervate the 

limbic structures and neocortex, while axons from the pontomesencephalic complex 

innervate the thalamus and superior colliculus (23, 24).  Cholinergic cell groups in the 

CNS are diffusely organized and are not confined within traditional nuclear groups, but 

are intermixed with non-cholinergic neurons (24).  In particular, the nucleus basalis of 

Meynert, which provides the primary cholinergic input from the basal forebrain to the 

neocortex, contains a mixture of cholinergic, GABAergic, peptidergic, and dopaminergic 

neurons (27 - 32).  The major groups of cholinergic neurons within the CNS are 

designated Ch1 – Ch8 (24).  The cholinergic cell groupings within the basal forebrain are 

the medial septal nucleus (Ch1), nucleus of the diagonal band of Broca (Ch2), nucleus of 

the horizontal band of Broca (Ch3), and the nucleus basalis of Meynert (Ch4) (24).  Ch5 

and Ch6 designate cholinergic neurons of the pedunculopontine and lateral dorsal 

nuclei, respectively; Ch7 designates cholinergic cells of the medial habenula, and Ch8 

designates cholinergic neurons in the parabigeminal nucleus (24).  Ch1 – Ch4 are major 

sources of cholinergic projections to the hippocampus, olfactory bulb, amygdala and 

cerebral cortex (24).  Ch5 and Ch6 are a source of projections to the thalamic nuclei, Ch7 

to the interpenduncular nucleus, and Ch8 to the superior colliculus (24).  To a large 

extent, cholinergic neurons innervate structures of the brain that are involved in 

learning and memory and other higher order functions.  Although considerable research 

has focused on the role that muscarinic ACh receptors play in cholinergic modulation of 

the neural network (33), nicotinic ACh receptors (nAChR) may also contribute 

substantially to synaptic plasticity (34). 

1.3 Nicotinic Receptors of the CNS 

Neuronal nAChRs are distributed widely throughout the brain, with the majority 

localized to the pre-synapse or pre-terminal, where they modulate the release of almost 

all neurotransmitters (35).  They share a common structure comprised of five subunits 

that surround a central gated cation pore, permeable to Na+, K+, and Ca2+, which is 

opened upon ligand binding (35, 36).  They have distinct pharmacological and functional 
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properties that are determined by their subunit composition (35).  Nine α (α2 – α10) 

and three β (β2 – β4) neuronal nAChR subunits have been identified to date (35).  The 

two major subtypes of nAChR found in the mammalian CNS are heteromeric receptors 

containing α4β2 subunits and homomeric receptors comprised of α7 subunits (35).  

Each neuronal nAChR subunit has a large hydrophilic extracellular amino-terminus 

domain that forms the ACh binding site, followed by three transmembrane domains 

(TM1 - TM3), a large intracellular loop, a fourth transmembrane domain (TM4), and a 

short extracellular carboxyl-terminus (37) (Figure 1.1).  Ligand binding occurs at the 

interface between α and adjacent subunits, the heteromeric α4β2 nAChR, with two α4 

subunits and three β2 subunits, binds two ligands and the homomeric α7 nAChR, with 

five α7 subunits, has five ligand binding sites (35). 

1.4 The α7 nAChR 

The human α7 nAChR subunit was cloned originally from the SH-SY5Y human 

neuroblastoma cell line based on sequence homology with the chick and rat homologue 

α-bungarotoxin (αBTX)-binding receptor (38 - 40).  αBTX is a subtype-selective nAChR 

antagonist isolated from the venom of the Many-banded krait, Bungarus multicinctus 

(36, 41).  The α7 nAChR is unique in the brain in that it has low binding affinity for 

nAChR agonists, such as ACh and nicotine, binds choline as an agonist, and binds αBTX 

with high affinity (36).  The receptor also has unique biophysical properties, exhibiting 

brief channel open times, a large ion conductance, and a high permeability to Ca2+ 

relative to Na+ (36).  Through high Ca2+ conductance, the α7 nAChR is linked to 

activation of a number of intracellular signalling events (42).  Although the α7 nAChR 

was originally thought to exist only as a homomer in the mammalian CNS, evidence 

from heterologous expression studies demonstrate the α7 subunit can also form 

functional heteromeric receptors with α5, β2, or β3 subunits (43 - 47).  Only very 

recently has biochemical evidence emerged in support of the existence of an α7β2-

containing heteromeric nAChR in the brain (48).  The α7β2 nAChR has a pharmacological 

profile similar to the α7 nAChR in that its ligand binding properties reflect that of the  
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Figure 1.1  Structure of the nAChR. 

The neuronal nAChR is a macromolecule comprised of subunit proteins of similar tertiary 
structure.  (A) Each nAChR subunit contains a large hydrophilic extracellular amino-terminus, 
followed by three transmembrane domains (TM1 - TM3), a large intracellular loop, a fourth 
transmembrane domain (TM4), and a short extracellular carboxyl-terminus.  (B) Five subunits 
combine to a form a functional receptor pentamer.  (C) The five subunits surround a central 
cation pore that is permeable to Na+, K+, and Ca2+; gating of the cation pore occurs in response 
to agonist binding at the interface between α and adjacent subunits.  PM, plasma membrane.  
Adapted from (35 - 37). 
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interface between adjacent α7 subunits (46, 48).  While the α7 nAChR is expressed 

throughout the brain, the α7β2 nAChR appears to be localized exclusively to basal 

forebrain cholinergic neurons (48).  This thesis will focus on signalling and molecular 

regulation of the homomeric α7 nAChR.  Altered α7 nAChR activity is implicated in 

cholinergic dysfunction in a number of neurological and psychiatric disorders, including 

Alzheimer’s disease (AD) and schizophrenia (34).  A 2-base pair deletion polymorphism 

in the partial duplication of the α7 nAChR gene has been linked to schizophrenia (49, 

50). 

1.5 Localization of the α7 nAChR within the CNS 

In situ hybridization studies in monkey brain demonstrate widespread expression of 

α7 nAChR subunit mRNA throughout the brain, including the neocortex, basal ganglia 

and the ventral tegmental area (VTA), with the highest levels found in the hippocampus, 

particularly the dentate gyrus (51).  [125I]-αBTX binding in adult rat brain provides similar 

localization, with moderate binding throughout the cerebral cortex and a high level of 

binding in the hippocampus (52).  It is evident that the α7 nAChR has a role in mediating 

cholinergic input to several brain regions and may have an important role in cholinergic 

modulation of synaptic plasticity in the hippocampus (52). 

1.6 Subcellular Localization and Function of the α7 nAChR 
within the CNS 

The subcellular localization and function of α7 nAChR in the brain has largely been 

determined through electrophysiology studies and the use of receptor-selective 

antagonists.  Although there are some examples of α7 nAChR-mediated fast-synaptic 

transmission to interneurons in the hippocampus (53 - 55), to a greater extent, the 

α7 nAChR serves a modulatory role in the brain by regulating the release of other 

neurotransmitters.  Presynaptic α7 nAChR directly modulate the release of glutamate in 

the hippocampus and VTA, as well as excitatory amino acids in the prefrontal cortex (56 

- 58).  Evidence that the α7 nAChR participates in cholinergic volume transmission, as 
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opposed to synaptic transmission, stems from studies of α7 nAChR localization in the 

VTA, where cholinergic terminals are located remotely from αBTX labelling of the 

receptor (57).  Presynaptic α7 nAChR is also involved in indirect release of dopamine 

from the striatum and prefrontal cortex and noradrenaline from the hippocampus (59 - 

61).  This can occur through the triggering of glutamate release and/or γ-aminobutyric 

acid (GABA) release and GABAergic disinhibition (61).  Somatodendritic α7 nAChR in the 

hippocampus can depolarize pyramidal neurons to facilitate short- and long-term 

potentiation within the hippocampus (62 - 64). 

1.7 Signalling of the α7 nAChR 

The modulatory role of the α7 nAChR in the CNS likely reflects the permeability of the 

ion channel to Ca2+ and local activation of Ca2+-dependent signalling pathways. 

Modulation of neurotransmitter release may involve receptor-dependent activation of 

ryanodine-sensitive intracellular Ca2+ stores and extracellular signal-regulated kinase 1 

and 2 (ERK1/2)-dependent phosphorylation of syanpsin-1 (58).  Additionally, activity of 

the receptor has been linked to the phosphorylation of cyclic adenosine 

monophosphate response element binding protein through protein kinase A-dependent 

activation of ERK1/2 (65, 66), which may result in the expression of genes that are 

important for synaptic plasticity (42, 67).  The α7 nAChR may also play a role in 

neuroprotection through the phosphatidyl-inositol 3-kinase-dependent signalling 

pathway (68, 69). 

1.8 Regulation of the α7 nAChR 

A number of factors that regulate function of the α7 nAChR have been identified.  

Through primary amino acid sequence analysis, several amino acid residues within the 

large intracellular loop of the α7 nAChR appear to be important for cell surface 

expression in Xenopus laevis (70). These residues may act in a manner similar to the 

endoplasmic reticulum (ER) retention motif identified on the α1 nAChR subunit, which is 

conserved among heteromeric-receptor forming nAChR subunits (71).  Post-
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translational modification of the α7 nAChR in the form of palmitoylation appears to be 

required for the assembly of α7 nAChR subunits into functional receptors in PC12 cells 

(72).  It is apparent that host-cell specific subcellular proteins are required for functional 

expression of α7 nAChR, as α7 nAChR subunits heterologously expressed in HEK 293 

cells do not form functional αBTX-binding channels unless they are co-expressed with 

the chaperone protein RIC3 (73 - 75), the product of the Caenorhabditis elegans gene, 

resistant to inhibitors of cholinesterase (ric-3), an ER protein that co-ordinates efficient 

assembly of α7 nAChR subunits into receptor pentamers (76).  Receptor activity can be 

regulated by Src-family tyrosine kinases directly through phosphorylation of tyrosine 

residues on the large intracellular loop of the α7 nAChR subunit (77) and indirectly in a 

manner that does not involve phosphorylation of the receptor, but is mediated by N-

ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) (78).  SNAREs 

are also involved in the activity dependent recycling of cell surface α7 nAChR in 

response to nicotine stimulation (79).  Additionally, somatodendritic localization of 

α7 nAChR on hippocampal neurons is regulated by a tyrosine motif in the large 

intracellular loop of the subunit (63).  Although several of these studies focused on 

factors that are involved in the assembly and insertion of α7 nAChR into the plasma 

membrane, few have described mechanisms involved in its removal from the cell 

surface and receptor down-regulation.  Chapter 3 of this thesis demonstrates that 

binding of the competitive antagonist αBTX leads to receptor internalization through a 

unique endocytic mechanism and trafficking of the receptor to a degradative 

compartment in the cell. 

1.9 The α7 nAChR in Alzheimer’s Disease Pathology 

Positron emission tomography studies employing 11C-nicotine to measure nAChR levels 

in the brains of AD subjects have demonstrated a global reduction in nAChRs in the 

brain that correlate with cognitive impairment (80).  However, more recent 

investigations with the α7 nAChR-selective ligand [3H]-methyllycaconitine (MLA) suggest 

that the α7 nAChR may not change during the progression of cognitive decline (81).  
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With the development of transgenic mouse models that express proteins linked to 

familial or early-onset AD, investigators have determined that α7 nAChR in 

hippocampus may be up-regulated in response to increased amyloid β peptide 

production (82).  Critically, knockout of the α7 nAChR gene from an AD mouse model 

protects against the synaptic dysfunction and learning and memory deficits associated 

with expression of the AD-related transgene (83) 

1.10 Amyloid β Peptides 

The proteolysis of the integral membrane protein amyloid β precursor protein (APP), 

resulting in the generation of amyloid β (Aβ) peptides, is hypothesized to be an initiating 

event in AD pathology (84).  Aβ peptides are generated from the sequential cleavage of 

APP, first by β-secretase activity of the β-site APP-cleaving enzyme (85), resulting in 

shedding of the APP ectodomain, then by intra-membrane cleavage of the remaining 

transmembrane fragment of APP by the γ-secretase complex, resulting in the secretion 

of Aβ peptide and the release of the APP intracellular domain (86, 87).  The γ-secretase 

complex is composed of four proteins, presenilin-1 (PS1) or PS2, nicastrin, APH1 and 

PEN2 (85, 88 - 90).  β- and γ-secretase cleavage of APP can generate multiple Aβ peptide 

fragments, with the most abundant being 40 (Aβ40) or 42 (Aβ42) amino acids in length, 

depending on the site of cleavage (84).  Each contains a small portion of the APP 

transmembrane domain (84).  Mutations in APP, PS1 and PS2 are linked to early onset 

familial AD, resulting from an increased ratio of Aβ42/Aβ40 generation (84).  Aβ42 

contains two additional hydrophobic amino acid residues, increasing its potential for 

aggregation into soluble oligomeric forms which can bind receptors and interfere with 

synaptic transmission, or form insoluble fibrillar aggregates found at the core of amyloid 

plaques in the end stages of AD (84).  Measures of the levels of soluble Aβ in the brain 

are a better correlate with the presence and degree of cognitive deficits than the 

burden of Aβ plaques, suggesting soluble Aβ is a causative factor in AD pathology (91 - 

94). 
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1.11 Aβ Peptides and the α7 nAChR 

Initial studies that investigated the interaction between Aβ and α7 nAChR were based 

on observations that α7 nAChR expression correlated with brain areas that exhibited Aβ 

plaques, particularly the hippocampus and cerebral cortex (95).  The α7 nAChR was 

found to co-immunoprecipitate with Aβ42 from human AD brain tissue and localize to 

Aβ plaques in the hippocampus (95).  Subsequent studies determined that Aβ42 binds 

with high affinity to the α7 nAChR (96) and that cell surface expression of α7 nAChR can 

facilitate intracellular accumulation of the peptide (97).  Electrophysiology experiments 

determined Aβ42 could either activate α7 nAChR responses in heterologous expression 

systems (98) or inhibit ACh-evoked receptor responses in the same systems (99, 100) or 

from native α7 nAChR in hippocampus (101).  These observations are not without 

controversy, as it is apparent that Aβ42 can activate Ca2+ signalling independent of 

receptor binding (102) and that Aβ42 may interact directly with plasma membrane lipids 

(103).  An important caveat that may explain these differences is that the Aβ peptides 

used in these experiments have largely been uncharacterized in terms of the different 

structural forms present or the state of aggregation of the peptide.  Given the 

propensity for Aβ42 to aggregate in solution, it is difficult to make comparisons between 

studies that have not characterized the aggregation state of the peptide because 

different aggregates may yield different physiological outcomes.  In Chapter 2 of this 

thesis, I examined the effects of different structural forms of Aβ42 peptides upon 

extracellular signal-regulated kinase mitogen-activated protein kinase (ERK/MAPK) 

signalling through the α7 nAChR and identify oligomeric aggregates as the biologically 

relevant form. 
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1.12 Objectives and Hypotheses Tested in this Thesis 

 

My research interests lie in characterizing the structural forms of Aβ42 peptide capable 

of activating α7 nAChR-dependent intracellular signalling pathways.  There is evidence 

Aβ42 peptide binds the α7 nAChR to activate the receptor ion channel (95) and 

receptor-dependent signalling pathways (82).  However, the state of aggregation of 

Aβ42 peptide in these experiments has not been fully characterized, and the structural 

forms of the peptide capable of activating the α7 nAChR have yet to be determined.  I 

am also interested in investigating subcellular mechanisms that may be involved in 

regulating cell surface levels of the α7 nAChR.  A number of cell surface receptors 

undergo regulated endocytosis in response to ligand binding as a means of modulating 

receptor-dependent signalling.  I would like to determine if ligand binding induces 

internalization of the α7 nAChR and elucidate the subcellular mechanisms involved in 

this process. 

 

1.12.1 Specific Aims: 

1) To identify the structural form of Aβ42 peptide aggregates that signal through the 

α7 nAChR and characterize their effects with dose and time. 

2) To identify factors that affect cell surface expression of the α7 nAChR and elucidate 

the subcellular mechanisms involved. 
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1.12.2 Study One:  Oligomeric Aggregates of Amyloid β Peptide 1-42 
Activate ERK/MAPK in SH-SY5Y Cells via the α7 Nicotinic Receptor 

Rationale:  Previous studies have shown that Aβ42 peptide activates the ERK/MAPK 

intracellular signalling pathway through the α7 nAChR (82, 104).  However, Aβ42 

peptide readily aggregates in solution to take on different structural forms with 

different biological consequences and the structural form of the peptide in these studies 

was not characterized.  Thus, the aim of this study was to determine the structural form 

of Aβ42 peptide aggregates capable of activating ERK/MAPK signalling through the 

α7 nAChR. 

Hypothesis:  Aβ42-dependent ERK/MAPK signalling through the α7 nAChR is 

independent of the structural form or aggregation state of the peptide. 

Outcome:  Using atomic force microscopy, I characterized Aβ42 peptide that had been 

pre-incubated under different solution conditions to yield either oligomeric or fibrillar 

aggregates.  When these were added to human neuroblastoma cells in culture and 

changes in ERK1/2 phosphorylation were measured by immunoblotting, oligomeric 

aggregates of Aβ42 acutely increased phosphorylation of ERK1/2 in a concentration- and 

time-dependent manner.  Fibrillar aggregates of Aβ42 or Aβ42 that had not been pre-

incubated to induce aggregate formation did not significantly change the level ERK1/2 

phosphorylation.  Importantly, MLA, a competitive antagonist selective for the 

α7 nAChR, inhibited oligomeric Aβ42-induced ERK1/2 phosphorylation.  Thus, oligomeric 

aggregates of Aβ42 are the structural form of the peptide that activates ERK/MAPK 

through the α7 nAChR. 
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1.12.3 Study Two:  The α7 Nicotinic Receptor is Internalized via a 
Clathrin-Independent, Flotillin- or Caveolin-Associated Endocytic 
Pathway 

Rationale:  Some ionotropic neurotransmitter receptors undergo regulated clathrin-

dependent endocytosis in response to ligand binding, a process that maintains the 

integrity of neurotransmission (105, 106).  Primary amino acid sequence analysis of the 

large intracellular loop of the α7 nAChR subunit revealed two clathrin adaptor-protein 

binding motifs that could regulate trafficking of the receptor from the cell surface.  The 

aim of this study was to determine if the α7 nAChR undergoes endocytosis in response 

to ligand binding and to determine the subcellular mechanisms involved. 

Hypothesis:  Cell surface expression of the α7 nAChR is not regulated by clathrin and 

dynamin and is independent of adaptor protein binding motifs within the large 

intracellular loop of the receptor subunit. 

Outcome:  Confocal microscopy of cells fixed following pulse-chase with fluorochrome-

labelled αBTX revealed binding αBTX caused internalization of the α7 nAChR.  Following 

internalization, α7 nAChR-αBTX complexes trafficked to early and late endosomes and 

lysosomes, subcellular membrane compartments identified by antibody labelling of 

endogenous and heterologous expression of fluorescent protein-tagged compartmental 

markers.  Null mutation of clathrin adaptor-protein binding motifs within the large 

intracellular loop of the α7 nAChR subunit did not prevent αBTX-induced receptor 

internalization.  Over-expression of dominant negative proteins that block clathrin-

dependent endocytosis determined internalization did not occur through a clathrin-

dependent mechanism.  Inhibition of actin cytoskeleton polymerization, and over-

expression of dominant negative proteins that block actin dynamics, determined 

internalization did not occur through common clathrin-independent mechanisms.  

Rather, internalized α7 nAChR-αBTX complexes localized with fluorescent protein-

tagged flotillin 1 and caveolin 1α, markers for specialized plasma membrane regions 

associated with clathrin-independent endocytosis.  Thus, I demonstrate αBTX binding to 
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the α7 nAChR causes internalization through a clathrin-independent flotillin 1- or 

caveolin 1α-associated pathway, and trafficking through early and late endosomes to 

the lysosomal compartment.  
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2.1 Summary 

The production and aggregation of amyloid β peptides is linked to the development and 

progression of Alzheimer’s disease.  It is apparent that the various structural forms of Aβ 

can affect cell signalling pathways and the activity of neurons differently.  In this study, 

we investigated the effects of oligomeric and fibrillar aggregates of Aβ42 and non-

aggregated peptide upon activation of the ERK/MAPK signalling pathway.  In SH-SY5Y 

cells, acute exposure to oligomeric Aβ42 led to phosphorylation of ERK1/2 at 

concentrations as low as 1 nM and up to 100 nM.  These changes were detected as early 

as 5 min following exposure to 100 nM oligomeric Aβ42, reaching a maximum level after 

10 min.  Phosphorylation of ERK1/2 subsequently declined to and remained at basal 

levels after 30 min, for up to 2 h of exposure.  Fibrillar aggregates of Aβ42 did not 

significantly induce phosphorylation of ERK1/2 and non-aggregated Aβ42 did not 

activate the pathway.  The effects of oligomeric Aβ42 to increase ERK1/2 

phosphorylation above basal levels were inhibited by MLA, a selective antagonist of the 

α7nAChR.  U0126, an inhibitor of MEK1/2, the upstream activator of ERK1/2, completely 

blocked induction of ERK1/2 phosphorylation.  Oligomeric aggregates of Aβ42 were the 

principal structural form of the peptide that activated ERK/MAPK in SH-SY5Y cells and 

these effects were mediated by the α7 nAChR. 
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2.2 Introduction 

Alzheimer’s disease is a common form of progressive neurodegeneration that manifests 

itself as impaired learning and memory and disordered cognitive function (1).  Although 

AD can occur sporadically with a prevalence that increases with age, it has also been 

linked genetically to the overproduction and aggregation of Aβ peptides (1).  Aβ 

peptides are derived from the proteolytic degradation of a type I integral membrane 

protein, amyloid precursor protein (APP) (2).  Cleavage of APP by β- and γ-secretase 

activity results in the production of peptides that are predominantly either 40 or 42 

amino acids in length (Aβ40 or Aβ42) (2).  Familial AD-causing mutations in APP or the γ-

secretase protein presenilin result in either the increased production of Aβ peptides 

and/or an increase in the relative amount of Aβ42 versus Aβ40 produced (2).  Aβ42 

contains two additional hydrophobic amino acid residues than Aβ40 and aggregates 

more readily in solution (3, 4).   Fibrillar aggregates of Aβ42 are found at the core of 

amyloid plaques in the brain and Aβ42 accounts for the majority of Aβ found within 

these plaques (5).  However, the appearance, number, and distribution of plaques does 

not correlate well with measures of clinical dementia; rather it is the levels of soluble Aβ 

peptides that correlate more strongly with the loss of synaptic terminals and dementia 

in AD (6 - 9).  These small soluble aggregates of Aβ peptides are detectable in extracts 

from AD brain, the media of cell cultures and in synthetic preparations of Aβ peptides (9 

- 14).  These oligomeric aggregates of Aβ can inhibit long-term potentiation (LTP; a 

classical model of synaptic plasticity and learning and memory) in in vitro and in in vivo 

models at nanomolar concentrations (15).  Recent evidence from studies using a 

genetically modified mouse model of AD revealed that senile plaques can serve as a 

reservoir for the release of oligomeric Aβ and that this can be toxic to synapses at some 

distance from the plaque (16). 

LTP is dependent upon intracellular signalling, particularly activation of the ERK/MAPK 

signal transduction pathway (17 - 19).  The α7 nAChR plays a role in the formation of LTP 

in the hippocampus and this can involve signalling through ERK/MAPK (20 - 22).  An 



33 

 

interaction between Aβ42 and the α7 nAChR has been implicated in the activation of 

ERK/MAPK in the hippocampus where disjunctive Aβ42-α7 nAChR-ERK/MAPK signalling 

may disrupt ERK/MAPK signalling important for the formation of LTP (23, 24). 

The findings of some, but not all studies suggest that Aβ42 binds the α7 nAChR with 

high affinity and can alter gating of the receptor, either by activating the receptor as an 

agonist or antagonizing receptor activity (25 - 31).  The effects of Aβ42 binding to the 

α7 nAChR and the ability of the peptide to activate receptor-linked intracellular 

signalling pathways are likely affected by the state of aggregation and structural form of 

the peptide.  Previous studies have addressed the possible role of Aβ42 in activation of 

downstream signalling pathways engaged by the α7 nAChR, but those studies did not 

involve documentation of the aggregation state or structural forms of Aβ42 peptides 

responsible for mediating these effects (24). 

In the present study, activation of the ERK/MAPK signalling pathway by well-

characterized oligomeric and fibrillar aggregates of Aβ42 and non-aggregated Aβ42 was 

compared in the SH-SY5Y human neuroblastoma cell line.  Synthetic Aβ42 peptides were 

treated to remove any pre-existing structural forms and subsequently incubated under 

conditions that promoted the formation of either oligomeric or fibrillar aggregates.  

Alternatively, the peptides were not incubated prior to their application to cultured 

neuronal cells to prevent the formation of these aggregates and to retain the peptides 

in monomeric form.  The preparations were applied to SH-SY5Y cells in vitro and the 

acute effects upon phosphorylation of ERK1/2 were monitored to obtain a dose-

response and time-course for oligomeric, fibrillar or non-aggregated forms of Aβ42.  The 

involvement of the α7 nAChR was assessed with the use of a competitive antagonist 

selective for the receptor, MLA. 
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2.3 Methods 

2.3.1 Materials 

SH-SY5Y cells were purchased from American Type Tissue Culture (Manassas, VA).  

Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS) and Ham’s F-12 

nutrient mixture (phenol red-free) were obtained from Invitrogen (Burlington, ON).   

Aβ42 peptides were from Bachem (Torrance, CA) and California Peptide Research (Napa, 

CA); no differences were found in experimental measures made between the two 

peptide sources.  Nerve growth factor 2.5S (NGF) was from Harlan Bioproducts 

(Indianapolis, IN).  U0126 was from Calbiochem (Gibbstown, NJ). MLA, 1,1,1,3,3,3-

hexafluoro-2-propanol (HFIP), dimethyl sulfoxide (DMSO) and bovine serum albumin - 

fraction V (BSA) were from Sigma-Aldrich (Oakville, ON).  Polyclonal antibodies against 

dually phosphorylated ERK1/2 and monoclonal and polyclonal antibodies against ERK1/2 

were from Cell Signaling Technology (Danvers, MA).  Polyclonal antibody against the C-

terminus of actin was from Santa Cruz Biotechnology Inc. (Santa Cruz, CA).  Horseradish 

peroxidase (HRP)-conjugated goat anti-rabbit antibody was from Jackson Immuno-

Research Laboratories (West Grove, PA).  HRP-conjugated sheep anti-mouse antibody, 

ECL western blotting detection reagent and Hybond-C Extra nitrocellulose membrane 

were from GE Healthcare (Baie d’Urfé, QC).  X-OMAT LS film was from Eastman Kodak 

(Toronto, ON). 

2.3.2 Aβ42 Preparation and Atomic Force Microscopy 

Oligomeric and fibrillar forms of Aβ42 were prepared as described previously (14, 32).  

The preparation of Aβ42 peptides and treatment of cells in culture is illustrated (Figure 

2.1).  Briefly, lyophilized Aβ42 peptides were dissolved in HFIP and aliquoted into 

polypropylene micro-centrifuge tubes.  HFIP was removed by evaporation and the 

resulting Aβ42 peptide films were stored at - 80 °C.  Prior to use, these peptide films 

were reconstituted to give an Aβ42 stock solution at a concentration of 1 mM in DMSO, 

sonicated for 10 min, then subsequently diluted to 100 μM with ice-cold Ham’s F-12 

(phenol red-free) and incubated for 24 h at 4 °C to facilitate the formation of Aβ42  
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Figure 2.1  Preparation of Aβ42 Peptides and Cell Culture Treatments. 

(i) Chemically synthesized Aβ42 peptide was obtained from a commercial source as a lyophilized 
product.  (ii) To ensure that the starting material was in a homogenous non-aggregated 
monomeric state, the lyophilized peptide was dissolved in HFIP and aliquoted into micro-
centrifuge tubes.  (iii) HFIP was removed by evaporation in a vacuum centrifuge to yield a 
peptide film.  (iv) Peptide films were reconstituted in DMSO to a concentration of 1 mM and 
sonicated for 10 min immediately prior to (v) dilution to 100 μM in ice-cold Ham’s F-12, 10 mM 
HCl, or PBS, pH 7.4.  DMSO solutions diluted in Ham’s F-12 were incubated for 24 h at 4 °C to 
form oligomeric aggregates and solutions diluted in 10 mM HCl were incubated for 24 h at 37 °C 
to form fibrillar aggregates.  Solutions diluted in PBS were not incubated to prevent the 
formation of aggregates and yield a non-aggregated form of Aβ42.  (vi) The resulting stock 
solutions were serially diluted on ice prior to being added to cells in culture. 
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oligomers.  Alternatively, the DMSO stock solution was diluted to 100 μM with 10 mM 

HCl and incubated for 24 h at 37 °C to facilitate the formation of Aβ42 fibrils.  For non-

aggregated Aβ42, DMSO stock solutions were diluted to 100 μM with ice-cold 

phosphate-buffered saline (PBS) (138 mM NaCl, 2.7 mM KCl), pH 7.4.  Peptide 

preparations were either stored at - 80 °C or used immediately for treatment of cells or 

atomic force microscopy (AFM).  Non-aggregated Aβ42 preparations in PBS were used 

immediately.  Aβ42 aggregates were characterized by TappingMode™ AFM using a 

Multimode SPM with a NanoScope™ IIIa controller and J-series scanner (Digital 

Instruments) (Figure 2.2).  AFM probes were Tap 300 silicon cantilevers with 40 N/m 

spring constants and 300 kHz resonant frequencies (Nanodevices).  Aβ42 solutions at 

10 μM were spotted onto freshly-cleaved mica, incubated for 1 min, then rinsed twice 

with high performance liquid chromatography (HPLC)-grade H2O and blown dry with 

compressed air.  Images of bare mica were captured from freshly-cleaved mica spotted 

with an equivalent volume of HPLC-grade H2O and blown dry.  Samples were imaged at 

scan rates from 0.5 to 5 Hz with drive amplitude and contact force kept to a minimum.  

Section analysis of images was performed to measure the height of Aβ42 aggregates on 

the surface of mica substrate (Figure 2.2 D and E).  Aggregate heights were measured 

individually in images captured from three to four independent preparations of Aβ42 for 

each form of the peptide; oligomeric, fibrillar, or non-aggregated.  The periodicity of 

fibrils was determined by measuring the distance between peaks of subunits. 

2.3.3 Cell Model 

The SH-SY5Y cell line is a human cell line sub-cloned from the SK-N-SH cell line (33) 

originally isolated from a human metastatic neuroblastoma (34).  SH-SY5Y cells 

endogenously express α7 nAChR (35, 36) and they have been successfully employed in 

several studies to investigate subcellular signalling the α7 nAChR (37 - 41).  A signalling 

pathway for activation of ERK/MAPK through α7 nAChR has been characterized in SH-

SY5Y cells (42), making them a candidate model for investigating ERK/MAPK activation  



38 

 

Figure 2.2  Atomic Force Microscopy and Image Analysis. 

(A) AFM is a form of scanning probe microscopy that generates very high resolution topographic 
images by monitoring the interaction of a physical probe with a sample surface.  In 
TappingMode™ AFM, a cantilever and tip integrated on a single silicon crystal is oscillated at or 
near its resonance frequency at a set amplitude and lightly taps across a sample surface during 
scanning.  Laser light reflected off the back of the cantilever is detected by two closely spaced 
photodiodes.  Displacement of the cantilever as it scans across the sample surface alters the 
amount of light reflected into each photodiode.  The amount of light received by each 
photodiode is proportional to the deflection of the cantilever.  A feedback loop maintains the 
constant oscillation amplitude by vertically moving the scanner in the (z) at each (x,y) data point.  
The distance the scanner moves vertically at each (x,y) data point is recorded to create a 
topographic image of the sample surface.  Adapted from (43).  (B) Data sets can be presented as 
an image in two-dimensions with a vertical colour scale, or (C) visualized in three-dimensions as 
a perspective.  (D) Section analysis performed on images in which cross-sections (white line) 
through aggregates were examined to measure the height of each aggregate individually.  (E) 
Profile of cross-section from D, measurement indicated by red arrowheads is a height of 2.9 nm.  
B, C, D, and E are from the same data set. 
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as an endpoint to discriminate between the signalling capability of different structural 

forms of Aβ42 peptide in relation to the α7 nAChR. 

2.3.4 Cell Culture and Treatments 

SH-SY5Y cells were maintained in 75 cm2 flasks using DMEM supplemented with 10% 

FBS and 0.05 mg/ml gentamycin at 37 °C in humidified air with 5% CO2.  Cells were 

plated onto 35 mm dishes two days prior to experimentation, with media changed to 

serum-free media containing 0.1% BSA 24 h prior to experiments.  Treatment groups 

included 50 ng/mL NGF for 5 min; 5 min incubation with 0.01, 0.1, 1, 10, or 100 nM 

oligomeric, fibrillar or non-aggregated Aβ42, or 100 nM oligomeric, fibrillar or non-

aggregated Aβ42 for 2, 5, 10, 30, 60 or 120 min.  The inhibitors MLA (10 nM) or U0126 

(50 mM) were added 30 min prior to the addition of 100 nM oligomeric Aβ42.  Stock 

solutions of MLA at 10 mM in distilled H2O were stored at - 80 °C and activity was tested 

in Ca2+ fluorimetry experiments in which 10 µM MLA, diluted from stock, blocked 1 mM 

nicotine induced increases in intracellular Ca2+ in SH-SY5Y cells loaded with the Ca2+-

sensitive dye fura-2.  The concentration of Aβ42, whether oligomeric, fibrillar, or non-

aggregated, was estimated based on dilution from that of the starting material, 

originally reconstituted from peptide films to 1 mM in DMSO. 

2.3.5 Immunoblotting 

At the end of the specified treatment periods, cells were washed twice with ice-cold 

PBS, scraped into lysis buffer comprised of 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% 

Triton X-100, 1 mM AEBSF, 10 mM NaF, 500 mM NaVO4, 10 mg/ml leupeptin, 25 mg/ml 

aprotinin and 10 mg/ml pepstatin-A and incubated on ice for 30 min.  The protein 

concentration of each lysate was determined by the method of Bradford (44).  Equal 

amounts of protein (50 mg per sample) were resolved on 10% polyacrylamide gels by 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) according to the 

method of Laemmli (45).  To limit the overexposure of immunoblots caused by the 

intensity of NGF-induced bands, 50% less protein (25 mg per sample) from cells treated 

with NGF was loaded onto each SDS-PAGE gel.  Proteins were transferred to 
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nitrocellulose membranes and immunoblotted with phosphorylation-specific (anti-

phosphorylated p44/42 ERK1/2; 1:1000) or phosphorylation state independent (anti-

p44/42 ERK1/2; 1:1000) anti-ERK1/2 antibodies.  Immunoblotting with anti-actin 

antibody (1:5000) was used to demonstrate equal loading and transfer of SDS-PAGE 

gels.  Anti-rabbit or anti-mouse IgG HRP-conjugated secondary antibodies (1:20,000 or 

1:5000, respectively), followed by ECL reagent were used to detect immunoreactive 

protein bands.  Immunoblots were quantified by densitometry with Quantity One 

software, version 4.6 (Bio-Rad, Mississauga, ON).  The density of phosphorylated ERK1 

and phosphorylated ERK2 proteins, resolving as two separate immunoreactive bands, 

were quantified as a single value. 

2.3.6 Statistical Analysis 

Results from the densitometric analysis of immunoblots are presented as a percentage 

of control responses and the data are given as mean ± SEM from three or more separate 

experiments where indicated.  Statistical significance was determined by one-way 

analysis of variance (ANOVA), followed by post hoc Dunnett analysis.  A value of p < 0.05 

was considered to be statistically significant. 

2.4 Results 

2.4.1 Generation of Oligomeric and Fibrillar Aggregates of Aβ42 

Aβ42 in aqueous solution spontaneously assembles into aggregates of various sizes and 

conformations that have been determined to have unique biological properties (46).  To 

differentiate between the effects of these different forms of Aβ42 in our studies, it was 

important that we produce solutions of Aβ42 that could be documented in terms of the 

structural forms of peptides present and demonstrated to be enriched in specific Aβ42 

conformations.  We chose to follow a method previously established to produce specific 

structural forms of Aβ42 (14, 32).  We employed AFM to evaluate the aggregation state 

of our peptide preparations and were able to consistently produce small oligomeric or 
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fibrillar aggregates of Aβ42 that were distinct from non-aggregated Aβ42 and the 

surface of bare mica (Figure 2.3). 

Oligomeric preparations of Aβ42 contained small round globular structures with an 

average height of 3.1 ± 0.7 nm (n = 100), ranging in size from 1.3 to 4.4 nm.  Oligomeric 

aggregates 3.0 - 3.8 nm in height were in the greatest frequency and there appeared to 

be a second smaller population circa 2 nm in height (Figure 2.4).  Fibrillar preparations 

of Aβ42 contained elongated fibrils that extended in length from tens of nanometres to 

micrometres.  These fibrils appeared to be comprised of oligomeric-like subunits with an 

average height of 2.5 ± 0.3 nm (n = 50) that exhibited a distinct periodicity of 36 ± 3 nm 

(n = 20).  Some small round globular aggregates were also present in fibrillar 

preparations, and these structures had an average height of 1.9 ± 0.5 nm (n = 50), 

ranging from 1.1 to 3.2 nm, with 80% of the population 1.4 - 2.6 nm in height.  We 

observed that the majority of the peptide material in fibrillar preparations of Aβ42 was 

confined to elongated fibrils.  Non-aggregated preparations of Aβ42 contained relatively 

small infrequent globular structures with an average height of 0.5 ± 0.4 nm (n = 50), 

ranging in size from 0.2 to 2.0 nm, with 90% of the population 0.2 - 1.0 nm in height.  

Thus, the forms of Aβ42 used in our experiments were either oligomeric aggregates, 

predominantly fibrillar aggregates, or a non-aggregated form of the peptide containing 

smaller and less abundant aggregate structures. 

2.4.2 ERK/MAPK Phosphorylation Induced by Oligomeric Aggregates of 
Aβ42 

Acute exposure of SH-SY5Y cells for 5 min to oligomeric aggregates of Aβ42 induced 

ERK1/2 phosphorylation that was greater than that observed in cells treated with either 

fibrillar or non-aggregated Aβ42 (Figure 2.5). However, the oligomeric Aβ42-induced 

ERK1/2 phosphorylation was less than that mediated by NGF (Figure 2.5 A).  The levels 

of total ERK1/2 and actin were unaffected by treatment of cells with Aβ42.  Oligomeric 

Aβ42 induced ERK1/2 phosphorylation in a dose-dependent manner when cells were 

exposed to concentrations between 0.01 and 100 nM, with the maximum effect  
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Figure 2.3  Atomic force microscopy of oligomeric, fibrillar and non-aggregated 

preparations of Aβ42. 

Lyophilized Aβ42 was dissolved in HFIP, dried, re-suspended in DMSO, sonicated, and then 
incubated for 24 h following dilution in either fresh cell culture medium at 4 °C to yield 
Oligomeric or 10 mM HCl at 37 °C to yield Fibrillar aggregates.  For Non-aggregated Aβ42, 
DMSO solutions were diluted in ice-cold PBS, pH 7.4.  HPLC-grade H2O was used in the place of 
Aβ42-containing preparations to image the surface of bare mica.  Aβ42-containing samples were 
mounted on freshly-cleaved mica at a concentration of 10 μM for AFM.  Images are 
representative 5 μm × 5 μm x-y (Oligomeric and Fibrillar) or 2 μm × 2 μm x-y (Non-aggregated 
and HPLC-grade H2O), 10 nm z-range taken from AFM; insets are 250 nm × 250 nm x-y, 10 nm z-
range.  Images are representative of samples taken from independent preparations (oligomeric 
Aβ42, n = 4; fibrillar Aβ42, n = 3; non-aggregated Aβ42, n = 3; HPLC-grade H2O, n = 3).  Bar, 1 μm. 
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Figure 2.4  Distribution of aggregate heights within oligomeric preparations of Aβ42. 

Section analysis was performed on images captured by AFM from four independent oligomeric 
preparations of Aβ42 peptide.  Cross-sections through aggregates were examined individually to 
measure their heights, 25 aggregates were examined per image.  The distribution of aggregate 
heights within oligomeric preparations of Aβ42 are represented as a percentage of the total 
population (n = 100). 

achieved at a concentration of 100 nM.  When SH-SY5Y cells were treated with fibrillar 

Aβ42 in the same concentration range as oligomeric Aβ42, ERK1/2 phosphorylation was 

increased slightly above basal levels, but this did not increase at higher concentrations 

as was observed for the oligomeric form of the peptide.  Non-aggregated Aβ42 did not 

activate ERK1/2 under these conditions.  At concentrations of 0.1, 1 and 100 nM, 

oligomeric Aβ42 significantly activated ERK1/2 when compared to the basal level of 

ERK1/2 phosphorylation in untreated SH-SY5Y cells (Figure 2.5 B).  In these experiments, 

NGF treatment of cells was used as a well-characterized positive control for ERK/MAPK 

activation.  NGF induced ERK1/2 phosphorylation to a level at least twice that observed 

for oligomeric Aβ42. 

Oligomeric aggregates of Aβ42, at a concentration of 100 nM, induced ERK1/2 

phosphorylation in a time-dependent manner (Figure 2.6).  When SH-SY5Y cells were 

treated with oligomeric Aβ42, the level of ERK1/2 phosphorylation increased from 2 to  
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Figure 2.5  Phosphorylation of ERK1/2 induced by Aβ42 is dependent upon the 

concentration and structural form of the peptide. 

(A) SH-SY5Y cells were treated with oligomeric or fibrillar aggregates of Aβ42 or non-aggregated 
Aβ42 at concentrations of 0.01, 0.1, 1, 10, and 100 nM, or 50 ng/mL NGF for 5 min.  Cells were 
lysed and proteins were resolved by SDS-PAGE and transferred to nitrocellulose membrane for 
immunoblotting for phosphorylated ERK1/2, total ERK1/2 or actin.  Representative immunoblots 
are shown.  (B) Immunoblots were analyzed by densitometry, the density of phosphorylated 
ERK1 and phosphorylated ERK2 bands were quantified together as a single value.  Values were 
expressed as a percentage of the basal level of phosphorylated ERK1/2 measured in untreated 
control cells.  Oligomeric Aβ42 significantly induced phosphorylation of ERK1/2 at 
concentrations of 1, 10, and 100 nM when compared to control cells (*p < 0.05), as determined 
by one-way ANOVA and post hoc Dunnett analysis.  Fibrillar or non-aggregated Aβ42 did not 
significantly affect phosphorylation of ERK1/2.  Data are mean ± SEM (bars) values (oligomeric 
Aβ42, n = 6; fibrillar Aβ42, n = 6; non-aggregated Aβ42, n = 4). 
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Figure 2.6  Phosphorylation of ERK1/2 induced by Aβ42 is dependent upon the 

exposure time and structural form of the peptide. 

(A) SH-SY5Y cells were exposed to oligomeric or fibrillar aggregates of Aβ42 or non-aggregated 
Aβ42 at a concentration of 100 nM for 2, 5, 10, 30, 60, or 120 min.  Cells were lysed and proteins 
were resolved by SDS-PAGE and transferred to nitrocellulose membrane for immunoblotting for 
phosphorylated ERK1/2, total ERK1/2 or actin.  Representative immunoblots are shown.  (B) 
Immunoblots were analyzed by densitometry, the density of phosphorylated ERK1 and 
phosphorylated ERK2 bands were quantified together as a single value.  Values were expressed 
as a percentage of the basal level of phosphorylated ERK1/2 measured in untreated control 
cells.  100 nM oligomeric Aβ42 significantly induced phosphorylation of ERK1/2 after 5 min (*p < 
0.05) and maximally affected ERK1/2 phosphorylation after 10 min of exposure (**p < 0.01).  
Fibrillar or non-aggregated Aβ42 did not significantly affect phosphorylation of ERK1/2 with 
time.  Significance was determined by one-way ANOVA and post hoc Dunnett analysis, data are 
mean ± SEM (bars) values (oligomeric Aβ42, n = 6; fibrillar Aβ42, n = 3; non-aggregated Aβ42, n 
= 4). 
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5 min and reached a maximum after 10 min of exposure, before returning to basal levels 

at 30 to 120 min after the initiation of treatment (Figure 2.6 A).  Although 100 nM 

fibrillar Aβ42 appeared to induce slight ERK1/2 phosphorylation in a time-dependent 

manner similar to oligomeric Aβ42, the level of ERK1/2 phosphorylation was much less 

than that caused by oligomeric Aβ42 and only slightly above the basal level of ERK1/2 

phosphorylation in untreated SH-SY5Y cells.  At the same concentration, non-aggregated 

Aβ42 did not alter ERK1/2 phosphorylation over the time frame examined.  When these 

effects were quantified, 100 nM oligomeric Aβ42 significantly induced ERK1/2 activation 

in SH-SY5Y cells after 5 and 10 min of exposure (Figure 2.6 B). 

2.4.3 Effect of α7 nAChR Antagonist Methyllycaconitine on ERK/MAPK 
Phosphorylation Induced by Oligomeric Aβ42 

To investigate whether the α7 nAChR was involved in oligomeric Aβ42-induced ERK1/2 

phosphorylation in SH-SY5Y cells, we examined the effect of the α7 nAChR-selective 

competitive antagonist, MLA (Figure 2.7).  In the absence of MLA, ERK1/2 

phosphorylation induced by 100 nM oligomeric Aβ42 was elevated approximately two-

fold when compared to that of the basal level in untreated SH-SY5Y cells (Figure 2.7 B).  

Pre-incubation of cells with 10 nM MLA prior to the addition of oligomeric Aβ42 

attenuated the increase in ERK1/2 phosphorylation to near basal levels (Figure 2.7).  

When MLA was added to cells alone, it did not affect basal ERK1/2 phosphorylation 

(Figure 2.7).  This suggests that oligomeric Aβ42 may be acting, at least in part, through 

the α7 nAChR to induce ERK1/2 phosphorylation in SH-SY5Y cells.  Next, we determined 

the effect of inhibition of MAPK kinase 1 and 2 (MEK1/2) upon oligomeric Aβ42-induced 

ERK1/2 phosphorylation.  MEK1/2 resides directly upstream of ERK1/2 in the ERK/MAPK 

cascade (47) and is required for the activation of this pathway in SH-SY5Y cells by 

nicotine (42).  In the presence of the MEK1/2 inhibitor U0126, ERK1/2 phosphorylation 

was completely abolished in both untreated cells and cells that were treated with 

oligomeric Aβ42 (Figure 2.7 A). 
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Figure 2.7  Oligomeric Aβ42-induced ERK1/2 phosphorylation is dependent upon the 

α7 nAChR and the upstream MAPK kinase, MEK1/2. 

SH-SY5Y cells were exposed to 100 nM oligomeric Aβ42 alone, or pre-incubated with 10 nM 
MLA or 50 mM U0126 for 30 min prior to the addition of 100 nM oligomeric Aβ42.  (A) Cells 
were lysed and proteins were resolved by SDS-PAGE and transferred to nitrocellulose 
membrane for immunoblotting for phosphorylated ERK1/2, total ERK1/2 or actin as outlined in 
the Methods.  U0126, an inhibitor of MEK1/2, completely abolished ERK1/2 phosphorylation 
compared to untreated cells and cells that were exposed to oligomeric Aβ42.  MLA, a specific 
antagonist of the α7 nAChR, did not alter ERK1/2 phosphorylation on its own, but prevented the 
phosphorylation of ERK1/2 induced by oligomeric Aβ42.  Representative immunoblots are 
shown from six independent experiments.  (B) Immunoblots were analyzed by densitometry, 
the density of phosphorylated ERK1 and phosphorylated ERK2 bands were quantified together 
as a single value.  Values were expressed as a percentage of the basal level of phosphorylated 
ERK1/2 measured in untreated control cells.  Data are mean ± SEM values (n = 6). 
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2.5 Discussion 

In the present study, we demonstrate that oligomeric aggregates of Aβ42 are the 

principal structural form of Aβ42 peptides responsible for activation of the ERK/MAPK 

signalling pathway.  Oligomeric aggregates of Aβ42 activate ERK/MAPK in a 

concentration and time-dependent manner in SH-SY5Y cells.  Phosphorylation of ERK1/2 

induced by oligomeric Aβ42 is blocked by MLA, a competitive antagonist selective for 

the α7 nAChR, and occurs through a mechanism that requires MEK1/2 as an upstream 

mediator of ERK1/2 activity. 

To differentiate between the biological effects of fibrillar and soluble oligomeric forms 

of Aβ42, we followed a protocol established by Stine and colleagues that defined 

conditions for the aggregation of Aβ42 into either oligomeric or fibrillar structures (14, 

32).  In the absence of incubation under these conditions, non-aggregated Aβ42, that 

lacked the structural complexity of oligomeric or fibrillar preparations, was obtained.  

The oligomeric aggregates that we generated were in the 2 - 4 nm height range of 

oligomers (mean 3.1 ± 0.7 nm) reported by Stine et al., and the images that we obtained 

by AFM support their findings that the conditions they describe yield predominantly 

either oligomeric or fibrillar aggregates of Aβ42 (32).  These oligomeric aggregates are 

structurally similar in size and appearance to the Aβ-derived diffusible ligands generated 

by others, analogues of which have been detected in the cerebrospinal fluid (CSF) of ΑD 

subjects at higher levels than non-demented control subjects (48 - 50). 

AFM is an established method for characterizing and visually distinguishing between 

non-aggregated, oligomeric, and fibrillar preparations of Aβ42 peptide (32, 49).  Other 

methods used to assess the aggregation state of Aβ42 include thioflavin T (ThT) 

fluorescence, circular dichroism (CD), SDS-PAGE, and size-exclusion chromatography 

(SEC), but their application, with the exception of SEC, was of limited value in the 

context of the current study.  Ultraviolet CD is a method for determining the secondary 

structure of proteins through the analysis of dynamic light scattering (51).  Both 

oligomeric and fibrillar aggregates of Aβ42 elicit CD spectra indicative of a β-sheet 
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secondary structure, while HFIP treatment yields monomeric Aβ42, which exhibits an α-

helical conformation (52).  Incorporation of the benzothiazole dye ThT into the β-sheet 

structure of Aβ42 aggregates results in an increase and spectral shift in its fluorescent 

emission, making it ideal for amyloid plaque histology of AD brain and measuring the 

rate of Aβ aggregation (53, 54).  ThT fluorescence and CD can discriminate between 

solutions containing non-aggregated and aggregated forms of Aβ42, but can not be used 

to differentiate between solutions containing oligomeric and fibrillar aggregates due to 

their common secondary structure.  SDS-PAGE, although widely used to characterize 

Aβ42 aggregates, produces nearly identical electrophoretic profiles regardless of 

preparation, either non-aggregated, oligomeric, or fibrillar Aβ42, and the presence of 

SDS alters the distribution of the peptide amongst different molecular weight 

aggregates (49).  SEC, in combination with a method for cross-linking and therefore 

stabilizing oligomeric aggregates of Aβ42 of specific n-mer would have been useful for 

extending the current study.  High-resolution SEC, coupled with multiangle laser light 

scattering analysis allows for the separation and precise determination of the molecular 

weight of Aβ42 oligomers (49).  Photo- and chemically-induced cross-linking of Aβ42 

oligomers has been performed successfully (55, 56).  The combination of photo- or 

chemically-induced cross-linking and SEC would have potentially allowed for the 

isolation and identification of oligomeric species of Aβ42 responsible for the activation 

of ERK/MAPK. 

Oligomeric aggregates of Aβ42, but neither fibrillar aggregates of Aβ42 or non-

aggregated Aβ42, led to activation of the ERK/MAPK signalling pathway in SH-SY5Y cells.  

Although ERK1/2 phosphorylation was not as robust in response to oligomeric Aβ42 as 

to NGF, this study demonstrates phosphorylation of ERK1/2 in response to oligomeric 

Aβ42 as a consequence of dose and time, at concentrations of Aβ42 within the range 

measured in the CSF of AD subjects (57 - 59).  NGF activates ERK/MAPK through its 

cognate receptors, the low-affinity neurotrophin receptor, p75NTR (60) and the high-

affinity neurotrophin tyrosine kinase receptor type 1, TrkA (61).  The concentration of 

NGF in CSF is circa 1 pg/mL (62).  SH-SY5Y cells express both TrkA and p75NTR (63, 64) 
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and will respond to 100 ng/mL NGF to activate ERK/MAPK (65).  We treated SH-SY5Y 

cells with 50 ng/mL of NGF as a positive control for phosphorylation of ERK1/2 and were 

required to reduce the amount of protein resolved by SDS-PAGE by half, compared to 

Aβ42 treated and control cells, to avoid over-exposure of immunoblots due to the 

intensity of NGF-stimulated phosphorylated-ERK1/2 bands.  The concentration of Aβ42 

in the CSF of individuals diagnosed with AD, as measured by enzyme-linked 

immunosorbent assay, is 50 – 200 nM (57 - 59).  In SH-SY5Y cells, oligomeric Aβ42 

acutely induced phosphorylation of ERK1/2 at a concentration of 100 nM, which peaked 

after 10 min incubation.  These results are similar to those of Dineley et al. when they 

examined ERK/MAPK activation in hippocampal slice cultures in response to Aβ42 

peptides (23).  They observed maximal induction of ERK1/2 phosphorylation at an 

earlier time point, after 5 min incubation with 100 nM Aβ42.  However, this study was 

performed with solutions of synthetic Aβ42 peptides that were not characterized in 

terms of the different structural forms or aggregates of Aβ42 that may have been 

present to contribute to these effects.  Our findings of Aβ42-induced activation of 

ERK1/2 differ from those of Townsend et al. and Ma et al. in which they observed 

inhibition of the ERK/MAPK signalling pathway through insulin receptor- or insulin-like 

growth factor receptor-dependent mechanisms, respectively (66, 67).  Several critical 

factors could account for the differences between experimental responses, most 

notably the time frames from the exposure to Aβ prior to monitoring for ERK1/2 

activation and the aggregation state and concentrations of Aβ tested. 

In our analysis, oligomers 3.0 - 3.8 nm in height comprised the majority of the 

aggregates in oligomeric preparations of Aβ42.  We noted the presence of a second 

smaller population of aggregates on the order of 2 nm in height, an aggregate species 

that was also apparent, to a small degree, as oligomers within fibrillar preparations.  The 

presence of oligomers within fibrillar preparations may have been responsible for the 

slight activation of ERK/MAPK observed in our experiments.  However, since we did not 

observe significant changes in the phosphorylation of ERK1/2 in response to the 

application of fibrillar preparations of Aβ42, this suggests the aggregate species which 
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are capable of activating ERK1/2 were absent from this preparation.  Oligomers of Aβ42 

in the range of 3.0 - 3.8 nm in height, which appeared with the greatest frequency in 

oligomeric preparations and were absent from fibrillar preparations, may represent the 

structural form of the peptide responsible for the activation of ERK1/2 in SH-SY5Y cells. 

The sensitivity of oligomeric Aβ42-induced phosphorylation of ERK1/2 to MLA suggests a 

role for the α7 nAChR in mediating activation of this pathway.  SH-SY5Y cells express 

functional α7 nAChR (36, 68) and have been previously used to elucidate the role of the 

α7 nAChR in activation of the ERK/MAPK signalling pathway by the nAChR agonist 

nicotine (42).  MLA is a competitive antagonist selective for the α7 nAChR (69, 70).  

Incubation of SH-SY5Y cells with 10 nM MLA prior to the addition of oligomeric Aβ42 

mitigated the peptide-stimulated increase in phosphorylation of ERK1/2 above basal 

levels.  These findings are in support of those made by Bell et al. that 1 μM MLA blocked 

Aβ42-induced activation of ERK/MAPK in hippocampal slice cultures (24).  The 

dissociation constant (Kd) of MLA for the α7 nAChR is approximately 2 nM (70).  If a 

higher concentration of MLA, on the order of 100 to 1000-fold Kd (0.2 - 2 µM) to ensure 

maximal receptor binding, had been used in our experiments, we may have observed 

significant blockade of oligomeric Aβ42-induced phosphorylation of ERK1/2 and our 

results would have perhaps been more in line with that of Bell and colleagues.  These 

results demonstrate that the α7 nAChR is a mechanism through which Aβ42 oligomers 

can activate the ERK/MAPK signalling pathway.  The p75NTR has also been identified as 

a receptor for oligomeric aggregates of Aβ42 and subsequent activation of ERK/MAPK.  

A low concentration, 25 nM of low n-mer Aβ42 aggregates induces acute 

phosphorylation of ERK1/2 within 5 min in cells stably transfected with p75NTR (71).  As 

SH-SY5Y cells endogenously express p75NTR (64) and interaction between oligomeric 

Aβ42 and p75NTR could have affected our investigation, antisense silencing of 

α7 nAChR mRNA through transfection of SH-SY5Y cells with small interfering RNA (72, 

73) prior to cell treatments would have been useful for determining the contribution of 

α7 nAChR to phosphorylation of ERK1/2 in oligomeric Aβ42 treated cells.  Directly 

upstream of ERK1/2 in the ERK/MAPK pathway, activation of MEK1/2 is required for 
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phosphorylation and activation of ERK1/2 (47).  U0126 is an inhibitor of MEK1/2 that 

prevents phosphorylation of ERK1/2 (74).  Blockade of oligomeric Aβ42-induced 

phosphorylation of ERK1/2 by U0126 suggests that oligomeric aggregates of Aβ42 are 

capable of activating ERK/MAPK in SH-SY5Y cells through the upstream activator 

MEK1/2.  Based on these finding, we would propose a signalling pathway for oligomeric 

Aβ42 that leads from α7 nAChR to the phosphorylation of ERK1/2 through MEK1/2, 

involving an undetermined mechanism that transduces signals from α7 nAChR to 

MEK1/2 (Figure 2.8). 

Our findings reinforce the widely held hypothesis that small oligomers of Aβ42, rather 

than Aβ42 fibrils or non-aggregated Aβ42, represent the biologically active form of the 

peptide.  This relationship to the activity of oligomeric Aβ42 extends to effects on a wide 

variety of other important cellular processes (75), including regulation of calcineurin 

activity (76); production of brain-derived neurotrophic factor (77); protein kinase C 

activity (78); MAPK kinase 6 expression (79); ERK/MAPK-dependent neuronal 

differentiation of bone marrow-derived mesenchymal stem cells (80), and cellular prion 

protein signalling and trafficking (81 - 83).  Activation of ERK/MAPK by soluble diffusible 

oligomers of Aβ42, similar to those we observed in oligomeric preparations of synthetic 

Aβ42, may play a role in the disruption of cognitive function in AD.  Oligomeric 

aggregates of Aβ42 acutely activate the ERK/MAPK signalling pathway through a 

mechanism that involves the α7 nAChR and is dependent upon MEK1/2 activity.  The 

α7 nAChR has an emerging role in learning and memory processes (84).  Given the 

increasing relevance of the α7 nAChR to cognitive function and the importance of 

ERK/MAPK to these processes, the results of this study place an emphasis on identifying 

the structural forms of Aβ42 peptides which may interact with the α7 nAChR and the 

signalling consequences that result. 
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Figure 2.8  A model for oligomeric Aβ42 signalling through the α7 nAChR. 

Oligomeric Aβ42, but neither non-aggregated or fibrillar Aβ42, induces phosphorylation of 
ERK1/2 through the α7 nAChR.  Phosphorylation of ERK1/2 is mitigated by the α7 nAChR-
selective antagonist, MLA, and completely blocked by U0126, an inhibitor of MEK1/2.  MEK1/2 
acts directly upstream of ERK1/2 in the ERK/MAPK signal transduction pathway.  An 
undetermined signal transduction mechanism lies between α7 nAChR and MEK1/2.  Legend, 
inset. 
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3.1 Summary 

The α7 nicotinic acetylcholine receptor is a ligand-gated ion channel expressed at pre- 

and postsynaptic as well as somatodendritic sites throughout the brain, where it can 

modulate activity within the neural network.  The regulated endocytosis of ligand-gated 

ion channels from the plasma membrane is an important mechanism for maintaining 

the integrity of neurotransmission.  We demonstrate that binding of the competitive 

antagonist αBTX causes internalization of the α7 nAChR in HEK 293 cells and an SH-SY5Y 

human neuroblastoma cell line that stably express FLAG epitope-tagged α7 nAChR.  

αBTX-induced internalization of the receptor is clathrin- and dynamin-independent, and 

is unaffected by putative clathrin adaptor protein binding motifs within the large 

intracellular loop of the α7 nAChR subunit.  Internalization is not blocked by inhibition of 

actin polymerization or over-expression of dominant negative RhoGTPases or dominant 

negative RalGTPase, mechanisms of clathrin-independent endocytosis.  Rather, αBTX 

may lead to endocytosis of α7 nAChR-αBTX complexes through alternate flotillin 1 or 

caveolar 1α pathways that traffic through early and late endosomes to the lysosome. 
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3.2 Introduction 

The α7 nAChR is an important neuronal nAChR that modulates synaptic plasticity 

underlying learning and memory processes (1).  It is localized at presynaptic locations (2 

- 5) as well as postsynaptic and somatodendritic sites (6 - 12).  At postsynaptic locations, 

it can convey cholinergic synaptic input to inhibitory interneurons in the hippocampus 

(8, 9, 13) to elicit GABA release, inhibit the hippocampal network (14, 15) and block 

short- and long-term potentiation (16).  Alternatively, at presynaptic or somatodendritic 

locations, the α7 nAChR can enhance glutamate release (3, 17) or membrane 

depolarization to facilitate short- and long-term potentiation within the hippocampus 

(16). 

The α7 nAChR functions as a ligand-gated ion channel and exerts its modulatory effects 

through calcium signalling (1).  To maintain the integrity of neurotransmission, a 

number of neurotransmitter receptors that function as ligand-gated ion channels 

undergo regulated trafficking to control the number of cell surface receptors, and hence 

the response of neurons to the surrounding neural network.  The most thoroughly 

studied are γ-aminobutyric acid type A receptors (GABAARs), α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid receptors (AMPARs), and N-methyl D-aspartate 

receptors (NMDARs).  Plasma membrane levels of GABAARs, AMPARs, and NMDARs are 

each regulated by binding of clathrin adaptor protein AP2 and clathrin and dynamin 

mediated endocytosis (18 - 20).  GABAARs and AMPARs undergo constitutive recycling, 

with receptor turnover occurring within minutes (18, 19), while NMDAR as well as 

AMPAR endocytosis occurs in response to ligand binding (20, 21). 

In this study, we demonstrate ligand-induced internalization of the α7 nAChR transiently 

expressed in HEK 293 human embryonic kidney cells and stably expressed in SH-SY5Y 

human neuroblastoma cells.  The competitive antagonist, αBTX induces endocytosis of 

α7 nAChR in both HEK 293 and SH-SY5Y cells.  The endocytic pathway of α7 nAChR-αBTX 

complexes differs from clathrin-dependent endocytosis because internalization of the 

receptor is not blocked by expression of a dominant negative isoform of dynamin or 
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disruption of the clathrin-coat.  Endocytosis is unaffected by inhibition of actin 

polymerization or by dominant negative isoforms of RhoGTPases.  αBTX appears to 

induce internalization of the α7 nAChR through flotillin 1 or caveolin 1α-positive 

pathways that traffic the receptor through late endosomes to lysosomes. 

3.3 Methods 

3.3.1 Materials 

HEK 293 cells and SH-SY5Y cells were provided by American Type Culture Collection 

(Manassas, VA).  DMEM, Eagle’s minimal essential medium with Earle’s salts (MEM), 

FBS, the pcDNA3.1(+) mammalian expression vector, Lipofectamine 2000, Geneticin 

(G418), αBTX, Alexa Fluor 647-conjugated αBTX, Alexa Fluor 546-conjugated goat anti-

rabbit IgG antibody, Alexa Fluor 546-conjugated donkey anti-mouse IgG antibody, Alexa 

Fluor 633 transferrin, 4’,6-diamidino-2-phenylindole (DAPI) dilactate, and cytochalasin D 

were obtained from Invitrogen (Burlington, ON).  DMSO and polyclonal rabbit anti-FLAG 

antibody were obtained from Sigma-Aldrich Canada (Oakville, ON).  Monoclonal mouse 

anti-EEA1 antibody was from BD Biosciences (Mississauga, ON).  Monoclonal mouse 

anti-LAMP1 (H4A3) was from Abcam (Cambridge, MA).  Monoclonal mouse anti-HA 

antibody (12CA5) was from Roche (Laval, QC).  Polyclonal rabbit anti-α7 nAChR antibody 

(H-302) was from Santa Cruz Biotechnology (Santa Cruz, CA).  HRP-conjugated goat anti-

rabbit IgG secondary antibody was from Jackson ImmunoResearch Laboratories (West 

Grove, PA).  HRP-conjugated sheep anti-mouse IgG secondary antibody and ECL western 

blotting detection reagent were from GE Healthcare (Baie d’Urfé, QC).  Immuno-Blot 

polyvinylidene fluoride (PVDF) membrane was from Bio-Rad Laboratories (Mississauga, 

ON).  X-OMAT LS film was from Eastman Kodak (Toronto, ON).  Shandon Immu-mount, 

EZ-Link sulfo-NHS-SS-biotin and NeutrAvidin Agarose were from Thermo Fisher Scientific 

(Waltham, MA). 
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3.3.2 DNA Constructs and Site-Directed Mutagenesis 

All recombinant cDNA procedures were carried out following standard protocols.  The 

sequence for each oligonucleotide primer is listed in Table 3.1.  The cDNA for the 

α7 nAChR subunit was cloned from a QUICK-Clone™ human universal cDNA library 

(Clontech Laboratories, Mountain View, CA) by PCR using 5’-oligonucleotide primers 

(α7-fwd) and 3’-oligonucleotide primers (α7-rev) designed from the NCBI Reference 

Sequence NM_000746.3 in the GenBank database.  5’-Oligonucleotide primers (α7-

BamHI-fwd) introduced an amino-terminal BamHI restriction site, and 3’-oligonucleotide 

primers (α7-XbaI-rev) introduced a carboxyl-terminal Xba I site to allow sub-cloning of 

the PCR product into pcDNA3.1(+).  3’-Oligonucleotide primers (α7-FLAG-rev) introduced 

a FLAG epitope (DYKDDDDK) to the carboxyl-terminal of the PCR product for sub-cloning 

of a FLAG epitope-tagged α7 nAChR subunit cDNA (FLAG-α7 nAChR) into pcDNA3.1(+).  

The cDNA for human RIC3, matching the GenBank NCBI Reference Sequence 

NM_024557, was purchased from Origene (Rockville, MD).  5’-Oligonucleotide primers 

(hRIC3-KpnI-fwd) introduced an amino-terminal Kpn I restriction site, and 3’-

oligonucleotide primers (hRIC3-NotI-HA-rev) introduced a carboxyl-terminal influenza 

haemagglutinin (HA) epitope tag (YPYDVPDYA) and Not I restriction site to allow sub-

cloning of an HA epitope-tagged hRIC3 (HA-hRIC3) cDNA into pcDNA5/FRT (Invitrogen, 

Burlington, ON).  Mutant isoforms of FLAG-α7 nAChR, Y386A/F389A, Y386F/F389A, 

L420A/L421A, and D417A/L420A/L421A were generated by sequential PCR (22).  GFP-

Rab4, GFP-Rab5, GFP-Rab7, GFP-Rab11, YFP-RhoA T19N, YFP-Rac1 T17N, GFP-Cdc42 

T17N, YFP-RalA S28N, dynamin 1 K44A, and AP180-C constructs were kindly provided by 

Stephen Ferguson.  Flotillin 1-GFP and caveolin 1α-GFP constructs were a generous gift 

from Marco Prado.  All plasmids were confirmed by DNA sequencing to ensure the 

presence of restriction sites, fluorescent or epitope tags, and mutations; that cDNA 

sequences were in the correct orientation for expression, and no other mutations had 

been introduced by PCR. 
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Table 3.1  Oligonucleotide primers used in cloning and sub-cloning of the human 

α7 nAChR subunit and hRIC3 cDNA. 

Primer Sequence (5’ – 3’) 
α7-fwd CGACAGCCGAGACGTGGA 

α7-rev CCGATGGTACGGATGTGC 

α7-BamHI-fwd GCCGGGATCCGCCACCGGGACTCAACATGCGCTG 

α7-XbaI-rev AGACTTTGCGTAACCACGCCTCTAGAGCCG 

α7-FLAG-rev CGGCTCTAGATTACTTGTCGTCGTCGTCCTTATAGTCCGCAAAGTCTTTGGACA
CGGCC 

hRIC3-KpnI-fwd CGGCGGTACCGCCACCATGGCGTACTCCACAGTGCAGAGAGTC 

hRIC3-NotI-HA-rev GCGGCCGCCAACTCACGCATAATCCGGCACATCATACGGATACTCTAAACCCT
GGGGGTTACGCTTCCT 

 

3.3.3 Cell Model 

Human embryonic kidney 293 (HEK-293) cells present a flat surface area conducive to 

transfection as well as a large area of cytoplasm relative to their nuclei beneficial for the 

observation of intracellular proteins by confocal microscopy.  The HEK 293 cell line was 

developed by transforming primary cultures of human embryonic kidney cells with 

adenovirus (23).  HEK-293 cells have been used extensively in studies requiring 

transfection and heterologous expression of proteins (24), including the endocytosis and 

trafficking of transmembrane proteins (25, 26).  HEK 293 cells are limited by their 

inability to heterologously express functional α7 nAChR, this is overcome by co-

transfection with cDNA for the nAChR chaperone protein RIC3 (27). 

The SH-SY5Y cell line is a human cell line sub-cloned from the SK-N-SH cell line (28), 

originally isolated from a human metastatic neuroblastoma (29).  SH-SY5Y cells 

endogenously express α3, α5, α7, β2 and β4 nAChR subunits (30, 31) as well as the 

chaperone protein RIC3 (27).  SH-SY5Y cells have small, round cell bodies with little 

cytoplasm (28) making them difficult to transfect, requiring isolation of stably 

transfected clones for studies involving heterologously expressed proteins and limiting 

their use for confocal microscopy. 
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3.3.4 Cell Culture and Transfection 

HEK 293 cells were grown in MEM containing 10% (v/v) FBS at 37 °C in humidified air 

with 5% CO2.  Cells were seeded at a density of 2.5 × 106 per 100 mm dish and 

transiently transfected by a modified calcium phosphate method (32) with the cDNA 

expression plasmids described in the figure legends.  Following transfection 

(approximately 18 h), cells were pooled and collected for immunoblotting or reseeded 

onto 15 mm collagen-coated glass cover slips in 12-well plates for receptor 

internalization experiments or immunocytochemistry.  SH-SY5Y-FLAG-α7 cells, 

expressing FLAG-α7 nAChR protein and the neomycin resistance gene, and SH-SY5Y-Neo 

cells, expressing only the neomycin resistance gene, were generated by transfecting SH-

SY5Y cells with FLAG-α7 nAChR cDNA in pcDNA3.1(+) and empty vector pcDNA3.1(+) 

DNA, respectively, with Lipofectamine 2000, following the manufacturer’s protocols.  

Briefly, SH-SY5Y cells, 70% confluent in 35 mm dishes, were transfected as described 

and cultured for 48 h prior to being diluted 1:8 into 100 mm dishes and subsequently 

cultured in the presence of 2 mg/mL G418 until individual foci of neomycin resistant 

clonal cells had grown.  Isolated foci were transferred to single wells of a 48-well plate 

and each was separately cultured up to a 75 cm2 flask upon which clones were selected 

based on growth rate and protein expression.  Positive clones were maintained in 

DMEM, 10% (v/v) FBS, 0.2 mg/mL G418 at 37 °C in humidified air with 5% CO2.  SH-SY5Y-

FLAG-α7 cells were identified by binding of Alexa Fluor 647-conjugated αBTX.  Stable 

integration of the neomycin resistance gene into the genome of SH-SY5Y-Neo cells was 

determined by reverse-transcriptase PCR amplification of a neomycin resistance gene 

795 bp fragment using 5’-oligonucleotide (5’-ATGATTGAACAAGATGGATTCCACGC-3’) 

and 3’-oligonucleotide (5’-TCAGAAGAACTCGTCAAGAAGGCG-3’) primers.  The same 

clone, of either SH-SY5Y-FLAG-α7 cells or SH-SY5Y-Neo cells, was used throughout 

experiments.   
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3.3.5 Immunoblotting 

Cells were collected following transfection, washed with PBS (138 mM NaCl, 2.7 mM 

KCl, pH 7.4), lysed in lysis buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% Triton X-

100, 1 mM AEBSF, 10 mM NaF, 500 nM NaVO4, 10 mg/mL leupeptin, 25 mg/mL 

aprotinin, and 10 mg/mL pepstatin A) and rotated at 4 °C for 30 min.  The protein 

concentration of each lysate was determined by the method of Bradford (33).  Equal 

amounts of protein (50 μg per sample) were resolved on 10% polyacrylamide gels by 

SDS-PAGE according to the method of Laemmli (34).  Separate sets of protein samples 

were resolved for each antibody to be blotted and transferred to separate PVDF 

membranes.  Membranes were probed with primary anti-FLAG antibody (1:1000), anti-

α7 nAChR antibody (1:200), or anti-HA antibody (1:1000) and HRP-conjugated anti-

rabbit or anti-mouse IgG secondary antibodies (1:20,000 or 1:5000), followed by 

detection of immunoreactive protein bands with ECL reagent and film. 

3.3.6 Fluorescent α-Bungarotoxin Internalization and Co-localization 

For labelling and internalization of FLAG-α7 nAChR expressed in HEK 293 and SH-SY5Y-

FLAG-α7 cells, cells were reseeded onto collagen-coated glass cover slips, then washed 

with chilled HEPES-buffered salt solution (HBSS) (1.2 mM KH2PO4, 5 mM NaHCO3, 

20 mM HEPES, 11 mM D-glucose, 116 mM NaCl, 4.7 mM KCl, 1.2 mM MgSO4, 2.5 mM 

CaCl2, pH 7.4) and incubated with 500 nM of Alexa Fluor 647-conjugated αBTX in HBSS 

0.1% BSA for 1 h on ice.  The Kd of αBTX is 0.4 - 0.6 nM for the α7 nAChR (35, 36), and a 

concentration of 500 nM, roughly 1000-fold Kd, was deemed sufficient to saturate 

receptor binding sites present on HEK 293 and SH-SY5Y cells.  Cover slips were washed 

with HBSS to remove excess unbound fluorescent αBTX and transferred to cell culture 

medium at 37 °C for the specified time.  At the end of the incubation period, cover slips 

were washed with chilled HBSS containing 0.1% BSA and incubated in the same with 

rabbit anti-FLAG antibody (1:1000) for 1 h on ice.  Cells were washed and subsequently 

incubated with Alexa Fluor 546-conjugated goat anti-rabbit secondary antibody (1:1000) 

in HBSS 0.1% BSA for 1 h on ice, washed and then fixed with chilled PLP (periodate 0.2%, 
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lysine 1.4%, paraformaldehyde 2%) (37) for 20 min on ice.  To stain nucleic acids, fixed 

cells were incubated with 300 nM DAPI in PBS for 5 min and washed before mounting 

onto microscope slides with Immu-mount.  Alternatively, cells were fixed following 

incubation with primary anti-FLAG antibody and stored overnight at 4 °C in PBS before 

being blocked with PBS containing 10% BSA and incubated with Alexa Fluor 546-

conjugated secondary antibody in PBS containing 3% BSA and mounted for microscopy. 

To examine co-localization with EEA1 and LAMP1, HEK 293 cells were incubated with 

Alexa Fluor 647-conjugated αBTX in HBSS containing 0.1% BSA for 1 h on ice, then 

washed and transferred to cell culture medium at 37 °C for the specified time.  At the 

end of the incubation period, cells were transferred to ice, fixed with chilled PLP and 

stored overnight at 4 °C in PBS.  To detect endogenous EEA1 and LAMP1 proteins, cells 

were permeabilized with PBS containing 0.25% Triton X-100 for 5 min, blocked with PBS 

containing 10% BSA for 30 min, washed, and then incubated with anti-EEA1 or anti-

LAMP1 antibodies (1:1000) in PBS containing 3% BSA for 1 h at room temperature.  

Primary antibody-labelled cells were incubated with Alexa Fluor 546-conjugated donkey 

anti-mouse IgG secondary antibody (1:1000) in PBS containing 3% BSA and 6% normal 

goat serum before washing and mounting cover slips to microscope slides.  For HEK 293 

cells co-transfected with RabGTPases, 500 nM Alexa Fluor 647 αBTX was added directly 

to cell cultures at 37 °C and cells were incubated in its presence for 2 h, before being 

washed and fixed on ice with chilled PLP.  In HEK 293 cells co-transfected with flotillin 1-

GFP and caveolin 1α-GFP, cells were incubated with Alexa Fluor 647-conjugated αBTX in 

HBSS containing 0.1% BSA for 1 h on ice, then washed and transferred to cell culture 

medium for 2 h at 37 °C, following which they were returned to ice and fixed with 

chilled PLP. 

3.3.7 Clathrin and Dynamin Inhibition 

To determine if inhibition of clathrin-dependent endocytosis blocked receptor 

internalization, HEK 293 cells were co-transfected with FLAG-α7 nAChR and HA-hRIC3 

and either dominant negative dynamin 1 K44A or AP180-C, then labelled with 500 nM 
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Alexa Fluor 647-conjugated αBTX in HBSS containing 0.1% BSA for 1 h on ice, washed, 

and transferred to cell culture medium at 37 °C for 6 h.  In some experiments, Alexa 

Fluor 633-conjugated transferrin was added to the cell culture media 20 min before the 

end of the incubation period to assess functional expression of dynamin 1 K44A or 

AP180-C.  At the end of the incubation, cells were washed with ice-cold HBSS and fixed 

with chilled PLP on ice before mounting for microscopy. 

3.3.8 Cytochalasin D Treatment and RhoGTPase Inhibition 

To determine the effect of inhibition of actin polymerization on receptor internalization, 

HEK 293 cells co-transfected with FLAG-α7 nAChR and HA-hRIC3 were incubated with 

500 nM Alexa Fluor 647-conjugated αBTX in HBSS containing 0.1% BSA for 1h on ice, 

then washed and transferred to cell culture medium containing 2.5 μM cytochalasin D 

or an equivalent volume of DMSO vehicle and incubated at 37 °C for 2 or 4 h.  At the end 

of the incubation period, cells were washed with ice-cold HBSS, and incubated with 

rabbit anti-FLAG antibody in HBSS containing 0.1% BSA for 1 h on ice.  Primary anti-FLAG 

antibody binding was detected by subsequently incubating cells with Alexa Fluor 546-

conjugated goat anti-rabbit IgG secondary antibody in HBSS containing 0.1% BSA for 1 h 

on ice.  Cells were washed and fixed with chilled PLP on ice for 20 min before mounting 

for microscopy.  To assess the effects of over-expression of dominant negative 

RhoGTPases and RalGTPase on receptor internalization, HEK 293 cells co-transfected 

with FLAG-α7 nAChR and HA-hRIC3 and either, YFP-RhoA T19N, YFP-Rac1 T17N, GFP-

Cdc42 T17N, or YFP-RalA S28N were incubated with 500 nM Alexa Fluor 647-conjugated 

αBTX in HBSS containing 0.1% BSA for 1h on ice, then washed and transferred to cell 

culture medium at 37 °C for 4 h. 

3.3.9 Co-localization with Flotillin 1 and Caveolin 1α 

HEK 293 cells co-transfected with FLAG-α7 nAChR and HA-hRIC3 and either flotillin 1-

GFP or caveolin 1α-GFP were incubated with 500 nM Alexa Fluor 647-conjugated αBTX 

in HBSS containing 0.1% BSA for 1 h on ice, then washed and transferred to cell culture 
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medium at 37 °C for 2 h.  At the end of the incubation period, cells were washed with 

ice-cold HBSS, then fixed with chilled PLP for 20 min on ice and mounted for microscopy. 

3.3.10 Confocal Microscopy 

Confocal microscopy was performed using a Zeiss LSM-510 META -NLO laser-scanning 

microscope with a Zeiss Plan-APOCHROMAT 63 × 1.4 DIC oil immersion lens.  Alexa Fluor 

546 fluorescence was detected by excitation with a HeNe 543 nm wavelength laser and 

565 - 615 nm band-pass emission filter; Alexa Fluor 647 and Alexa Fluor 633 by 

excitation with a HeNe 633 nm laser and 650 - 710 nm band-pass emission filter, and 

GFP with an Argon laser with a 488 nm wavelength excitation filter and 500 - 550 nm 

band-pass emission filter.  DAPI was detected by excitation with a multi-photon 

Chameleon Ti Sapphire laser pulsing photons at a wavelength of 870 nm and a 435 - 485 

nm band-pass filter.  In experiments examining the subcellular localization of Alexa Fluor 

647-conjugated αBTX and Alexa Fluor 633-conjugated transferrin, emission fingerprints 

for each fluorochrome were obtained individually from separate control experiments in 

which HEK 293 cells had been treated with one fluorochrome-conjugated peptide or the 

other.  Spectral signatures were carefully adjusted by comparison to the localization of 

each protein in the control samples to ensure that unmixing the overlapping spectra of 

the two fluorochromes did not alter the appearance or localization of each 

fluorochrome-conjugate in our experimental samples. 

3.3.11 Criteria for Selection of Micrographs 

In the experiments presented, we regarded each transiently transfected HEK 293 cell 

individually.   The rationale for this approach is that we observed varying levels of 

heterologous protein expression following transfection of these cells, which could 

account for varying levels of fluorescent αBTX internalization and subsequent changes 

to FLAG immunofluorescence on the surface of cells.  In most cases, experiments were 

repeated at least once (two independent experiments) or more on cells from different 

passages to ensure that observations were independent from factors that could affect 

protein expression or function in a given trial.  In general, greater scientific rigour would 
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have been achieved by completing more than three independent experiments for each 

investigation.  Experiments designed to assess the time course for protein 

internalization, co-localization, or the effects of dominant negative proteins were 

repeated to ensure that our observations were consistent from transfection to 

transfection and across cell passages.  In protein co-localization experiments, we 

captured images from several cells, dependent upon the efficiency of transfection, to 

ensure that data reported are representative of the general population of cells from 

each transfection.  For each experiment, we report the minimum and maximum number 

of representative micrographs recorded from each condition or time point, from one or 

more coverslip replicates, which reflected our overall observations and led to our 

findings.   

3.4 Results 

3.4.1 The Chaperone Protein, hRIC3 is Required for Functional Cell 
Surface Expression of α7 nAChR in HEK 293 Cells 

Expression of the α7 nAChR in HEK 293 cells was problematic until the discovery of the 

protein RIC3, from the Caenorhabditis elegans gene, resistant to inhibitors of 

cholinesterase (ric-3) (38).  RIC3 is a transmembrane protein resident in the ER of many 

neuronal cells and neuronal cell lines which co-ordinates the efficient assembly of 

α7 nAChR subunits into a functional receptor pentamer (39).  Co-expression of C. 

elegans RIC3 or its human homologue, hRIC3, increases the responsiveness of α7 nAChR 

expressed in Xenopus laevis oocytes and facilitates functional expression of α7 nAChR in 

HEK 293 cells (27).   

I first amplified and sub-cloned the full-length cDNA for the α7 nAChR subunit from a 

human universal cDNA library using primers based on the sequence in the GenBank 

database.  DNA sequencing analysis revealed the coding sequence obtained is identical 

to NCBI Reference Sequence NM_000746.3, except for a silent mutation, adenine 933 to 

guanine, resulting in a codon change, ACA to ACG, and conservation of threonine 311.  

The FLAG epitope amino acid sequence was introduced into the extracellular carboxyl-
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terminus of the α7 nAChR subunit by PCR to generate a FLAG epitope-tagged α7 nAChR, 

FLAG-α7 nAChR.  Addition of the FLAG epitope to the receptor delayed the rate at which 

whole-cell calcium changed in response to the agonist nicotine (Appendix A).   

To verify the requirement of co-expression with hRIC3 for functional expression of 

α7 nAChR in HEK 293 cells, we examined binding of fluorochrome-labelled αBTX and 

immunofluorescent staining of cells with anti-FLAG antibody in HEK 293 cells transfected 

with cDNA for FLAG-α7 nAChR subunit and HA-hRIC3 or FLAG-α7 nAChR subunit and 

empty vector DNA (Figure 3.1 A).  Cells transfected with both FLAG-α7 nAChR subunit 

and HA-hRIC3 bound fluorescent αBTX.  Cells expressing FLAG-α7 nAChR alone were 

detectable by immunofluorescent staining with anti-FLAG antibody on the cell surface 

(not permeabilized) and throughout the cell (permeabilized), but did not bind 

fluorescent αBTX.  Cells transfected with FLAG-α7 nAChR subunit cDNA and empty 

vector DNA that were not permeabilized exhibited consistent surface anti-FLAG staining 

up and down throughout the Z-stack.  This staining was less evident when scanning only 

a thin cross-section of plasma membrane at lower to mid Z, the upper most Z sections 

(top) of cells, which presented the greatest cross-sectional area of plasma membrane, 

provided the strongest fluorescent signal (Figure 3.1 A, FLAG (not permeabilized)).  We 

did not observe binding of fluorescent αBTX or anti-FLAG immunofluorescence in cells 

that had been transfected with empty vector DNA alone (data not shown). 

Immunoblotting of cell lysates from cells transfected in parallel to those labelled with 

fluorescent αBTX demonstrated co-expression of HA-hRIC3 protein in these cells 

following transfection (Figure 3.1 B).  Anti-HA antibody directed toward the HA epitope 

on hRIC3 (apparent molecular weight 48 kDa) detected a single band resolving between 

the 46 and 58 kDa markers.  Anti-α7 nAChR antibody or anti-FLAG antibody detected 

FLAG-α7 nAChR resolving as double bands above 46 kDa and higher molecular weight 

bands between 80 and 175 kDa.  In comparison, anti-α7 nAChR antibody detected wild-

type α7 nAChR resolving as double bands at slightly lower molecular weights than those 

for FLAG-α7 nAChR; the FLAG epitope amino acid sequence has an expected molecular  
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Figure 3.1  The chaperone protein, hRIC3 is required for functional cell surface 

expression of α7 nAChR in HEK 293 cells. 

(A) HEK 293 cells transfected with FLAG-α7 nAChR subunit and HA-hRIC3 cDNA or FLAG-
α7 nAChR subunit cDNA and empty vector DNA were incubated on ice with 500 nM Alexa Fluor 
647-αBTX in 0.1% BSA HBSS for 1 h, washed, fixed with PLP, and mounted.  To detect expression 
of FLAG-α7 nAChR subunit protein in the absence of co-transfection with HA-hRIC3 cDNA, cells 
were fixed with PLP and either left intact (not permeabilized), to label cell surface FLAG-
α7 nAChR subunits, or treated with 0.25% Triton X-100 PBS (permeabilized), to label FLAG-
α7 nAChR subunits throughout the cell, and incubated with anti-FLAG antibody and Alexa Fluor 
546-conjugated secondary antibody.  Images of Alexa Fluor 647-αBTX (green) or Alexa Fluor 546-
conjugated secondary antibody (red) were captured from single z-sections or selected from a 
series of z-sections, captured as a stack, on a laser-scanning confocal microscope.  FLAG (not 
permeabilized) represents the upper most Z section (top) of a cell, which presented the greatest 
cross-sectional area of plasma membrane and strongest fluorescent signal.  Bar, 10 µm.  (B)  
Crude cell lysate from cells transfected in parallel to those in A, immunoblotted with anti-FLAG, 
anti-α7 nAChR, or anti-HA antibody and HRP-conjugated secondary antibody to detect 
expression of FLAG-α7 nAChR, wild-type α7 nAChR and FLAG-α7 nAChR, or HA-hRIC3 proteins 
respectively.  Images are representative of 5 to 10 cells per treatment, per experiment, from 
two independent experiments; immunoblots are representative of two independent 
experiments. 
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weight of 1 kDa.  Anti-FLAG, anti-α7 nAChR, or anti-HA antibodies did not detect bands 

resolving at these molecular weights in cells that were not transfected, and anti-FLAG 

and anti-α7 nAChR antibodies did not detect bands in cells transfected with HA-hRIC3 

and empty vector DNA. 

The cell surface expression of FLAG-α7 nAChR in HEK 293 cells in the absence of hRIC3 is 

supported by a preliminary cell surface biotinylation experiment in which FLAG-

α7 nAChR is detectable in Neutravidin precipitates from cells expressing FLAG-α7 nAChR 

with or without co-transfection with HA-hRIC3 cDNA (Appendix B).  In HEK-293 cells, 

transfected with FLAG-α7 nAChR cDNA and empty vector DNA, FLAG-α7 nAChR and HA-

hRIC3 cDNA, or empty vector DNA and HA-hRIC3 cDNA, cell surface proteins were 

detected by reaction with EZ-Link sulfo-NHS-SS-biotin and subsequent precipitation with 

NeutrAvidin agarose.  Sulfo-NHS-SS-biotin covalently binds preferentially to lysine amino 

acid residues to form biotinylated protein conjugates (40).  It is not plasma membrane 

permeable and reacts with exposed lysine residues in extracellular polypeptides to 

biotinylate only cell surface proteins when incubated with intact cells (40).  The 

α7 nAChR subunit contains 13 lysine residues in extracellular domains, potentially 

available for reaction with sulfo-NHS-SS-biotin, based on topological and 

transmembrane domain predictions provided by UniProt Knowledgebase reference 

P36544 (UniProt Consortium).  The FLAG epitope, appended to the extracellular 

carboxyl-terminus of FLAG-α7 nAChR subunit, may provide an additional two lysine 

residues. 

Immunoblotting with anti-FLAG antibody detected FLAG-α7 nAChR resolving as double 

bands circa 46 kDa and as higher molecular weight bands between 80 and 175 kDa in 

biotinylated fractions, containing only cell surface proteins, as well as crude cell lysates.  

FLAG-α7 nAChR immunoreactivity was noticeably increased, especially circa 46 kDa, in 

the biotinylated fraction of cells that were co-transfected with HA-hRIC3 cDNA. 
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3.4.2 α-Bungarotoxin Induces Internalization of the α7 nAChR 

αBTX is an 8 kDa peptide isolated from the venom of the Many-banded krait, Bungarus 

multicinctus (41).  It is an established subtype-selective nicotinic antagonist (42).  α7- , 

α8-, and α9-containing nAChR, muscle nAChR, and nAChR of Torpedo californica and 

Electrophorus electricus are the only nAChR that bind αBTX with near covalent affinity 

(42 - 48).  When HEK 293 cells are co-transfected with plasmids encoding FLAG-

α7 nAChR and HA-hRIC3, FLAG-α7nAChR can be detected on the cell surface with 

fluorescent αBTX or anti-FLAG antibody.  To investigate whether αBTX binding affects 

α7 nAChR internalization, we employed a pulse-chase paradigm (Figure 3.2).  

Transfected HEK 293 cells were incubated on ice with a saturating concentration of 

fluorescent αBTX, washed, transferred to 37 °C for 0, 1, 2, 4, or 6 h, and then returned 

to ice and subsequently incubated with anti-FLAG antibody and fluorescent secondary 

antibody, directed toward the FLAG antibody, to detect the level of FLAG-α7 nAChR 

remaining on the cell surface.  From 0 through 6 h, fluorescent αBTX was observed to 

internalize from the cell surface and gradually accumulate into intracellular puncta that 

accumulated in perinuclear regions (Figure 3.3 A, + αBTX).  Coincident with the 

internalization of fluorescent αBTX was an apparent loss of cell surface levels of FLAG-

α7 nAChR, detected by anti-FLAG antibody and secondary antibody fluorescence.  In the 

absence of αBTX, the levels of FLAG-α7 nAChR on the cell surface did not appear to 

change over time at 37 °C (Figure 3.3 A, - αBTX).  HEK 293 cells transfected with HA-

hRIC3 cDNA and empty vector DNA did not bind anti-FLAG antibody and fluorescent 

secondary antibody or bind or accumulate internalized fluorescent αBTX after 0 or 6 h at 

37 °C (Figure 3.3 B).  To test whether anti-FLAG antibody was detecting the emergence 

of new α7 nAChR on the cell surface following αBTX-induced internalization, we 

incubated cells with fluorescent αBTX following a pulse-chase with unlabelled αBTX 

(Appendix C).  HEK 293 cells transfected with cDNA for FLAG-α7 nAChR and HA-hRIC3 

were incubated with a saturating concentration of unlabelled αBTX on ice, washed, 

transferred to 37 °C for 0 or 6 h, and then returned to ice and subsequently incubated  
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Figure 3.2  Pulse-chase method for investigating αBTX-induced internalization of α7 

nAChR. 

(i) Transfected cells, seeded onto glass coverslips and maintained at 37 °C, were washed with 
chilled HBSS and transferred to ice to cool the cells and slow plasma membrane trafficking 
events.  While on ice, the cells were incubated with 500 nM Alexa Fluor 647-αBTX in chilled 
HBSS 0.1% BSA for 1 h to label cell surface α7 nAChR.  (ii) Following surface labelling, cells were 
washed with chilled HBSS to remove unbound Alexa Fluor 647-αBTX and then transferred to 
warm cell culture medium and maintained at 37 °C for 0,1,2,4, or 6 h to allow receptor 
internalization events to occur.  (iii) Cells were then returned to ice and washed with chilled 
HBSS to again slow trafficking events before sequential incubation with anti-FLAG antibody and 
Alexa Fluor 546-conjugated secondary antibody to label FLAG-α7 nAChR that remained on the 
cell surface.  Following antibody labelling, glass coverslips were fixed and mounted for confocal 
microscopy. 
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Figure 3.3  αBTX binding induces internalization of α7 nAChR. 

(A) HEK 293 cells transfected with FLAG-α7 nAChR and HA-hRIC3 cDNA were incubated on ice 
for 1 h with (+ αBTX) or without (- αBTX) Alexa Fluor 647-αBTX, washed and transferred to 37 °C 
for 0, 1, 2, 4 or 6 h.  At the end of the incubation, the cells were returned to ice and incubated 
with anti-FLAG antibody, followed by secondary Alexa Fluor 546-conjugated antibody directed 
against the anti-FLAG antibody.  The cells were fixed with PLP and nuclei were stained with DAPI 
prior to mounting.  Images of secondary Alexa Fluor 546-conjugated antibody (red), Alexa Fluor 
647-αBTX (green), and DAPI (blue) were collected from single z-sections on a laser-scanning 
confocal microscope and colour combined.  (B) HEK 293 cells transfected with empty vector 
DNA and HA-hRIC3 cDNA, chased with Alexa Fluor 647-αBTX for 0 or 6 h followed by antibody 
incubations as in A, were used to assess non-specific binding of Alexa Fluor 647-αBTX and anti-
FLAG antibody.  Images are representative of 5 to 30 cells per time point, per experiment, one 
to three cover slips per time point, from four independent experiments.  Bar, 10 µm. 
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with fluorescent αBTX.  After 0 h, no cells bound fluorescent αBTX; after 6 h at 37 °C, a 

fraction of cells showed a small amount of fluorescent αBTX labelling. 

To investigate if αBTX induces internalization of α7 nAChR in a cell line that 

endogenously expresses nAChR, we examined FLAG-α7 nAChR endocytosis in SH-SY5Y 

cells.  For the purpose of these experiments, we generated an SH-SY5Y cell line that 

stably expresses the FLAG-α7 nAChR subunit, SH-SY5Y-FLAG-α7, and a neomycin 

resistant control cell line, SH-SY5Y-Neo, which expresses the neomycin resistance gene.   

When SH-SY5Y-FLAG-α7 cells were incubated with fluorescent αBTX on ice and 

transferred to 37 °C, fluorescent αBTX internalized as intracellular puncta similar to 

what was observed in HEK 293 cells (Figure 3.4 A, + αBTX).  This indicates that both HEK 

293 cells and SH-SY5Y-FLAG-α7 cells exhibit αBTX induced internalization of the 

α7 nAChR, suggesting the use of HEK 293 cells as a suitable model to study αBTX 

induced internalization of the receptor.  However, changes to cell surface levels of FLAG-

α7 nAChR, detected by anti-FLAG antibody and secondary antibody fluorescence were 

not as apparent in SH-SY5Y-FLAG-α7 cells as for HEK 293 cells.  In the absence of αBTX, 

there was no change to cell surface anti-FLAG immunofluorescence over time at 37 °C 

(Figure 3.4 A, - αBTX).  SH-SY5Y-Neo cells did not bind anti-FLAG antibody and 

fluorescent secondary antibody and did not bind or internalize fluorescent αBTX after 0 

or 6 h at 37 °C (Figure 3.4 B).  αBTX appears to induce internalization of the α7 nAChR 

upon binding and lead to its accumulation in perinuclear regions of the cell. 

3.4.3 α7 nAChR-αBTX Complexes Traffic Through Late Endosomes to 
Lysosomes 

To investigate the fate of α7 nAChR-αBTX complexes that have been internalized by 

endocytosis and identify which membrane compartments these complexes traffic 

through, we examined the kinetics of co-localization of fluorescent αBTX-labelled 

α7 nAChR with early and late endosomal membrane markers.  HEK 293 cells transfected 

with FLAG-α7 nAChR and HA-hRIC3 cDNA were incubated on ice with fluorescent αBTX, 

washed, transferred to 37 °C for 0, 1, 2, 4 or 6 h, fixed, permeabilized, and then labelled  
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Figure 3.4  αBTX induces internalization of α7 nAChR in neuronal cells. 

(A)  SH-SY5Y-FLAG-α7 cells stably expressing FLAG-α7 nAChR were incubated on ice for 1 h with 
(+ αBTX) or without (- αBTX) Alexa Fluor 647-αBTX, washed and transferred to 37 °C for 0, 1, 2, 4 
or 6 h.  At the end of the incubation, the cells were returned to ice and incubated with anti-FLAG 
antibody, followed by secondary Alexa Fluor 546-conjugated antibody directed against the anti-
FLAG antibody.  Images of secondary Alexa Fluor 546-conjugated antibody (red) and Alexa Fluor 
647-αBTX (green) were collected from single z-sections on a laser-scanning confocal microscope 
and colour combined.  (B) Neomycin resistant SH-SY5Y cells, chased with Alexa Fluor 647-αBTX 
as in A for 0 or 6 h, were used as a control for non-specific binding of Alexa Fluor 647-αBTX and 
anti-FLAG antibody.  Images are representative of 30 cells per time point, per experiment, one 
to two cover slips per time point, from two independent (+αBTX) and a preliminary experiment 
(-αBTX).  Bar, 10 µm. 
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with antibodies directed toward early-endosomal autoantigen 1 (EEA1) or lysosomal-

associated membrane protein 1 (LAMP1) and fluorescent secondary antibodies.  EEA1 is 

involved in docking of vesicles to early endosomes (49 - 51).  LAMP1 is a major 

lysosomal membrane protein required for maintaining lysosome integrity (52, 53).  

Fluorescent αBTX co-localized with EEA1 after 1 to 2 h, with some co-localized puncta 

visible as late as 4 h, while co-localization with LAMP1 only occurred after 2 h (Figure 

3.5).  After 2 h, fluorescent αBTX increasingly co-localized with LAMP1 positive vesicles 

from 4 to 6 h as α7 nAChR-αBTX complexes appeared to accumulate in this membrane 

compartment.  Lysosomes appear to represent the final destination for α7 nAChR, 

following their removal from the cell surface in response to binding αBTX. 

RabGTPases are small G-proteins that regulate the traffic of membrane-bound 

organelles to specific membrane compartments (54).  We examined co-localization of 

fluorescent αBTX with the green fluorescent protein (GFP)-tagged RabGTPases, Rab4, 

Rab5, Rab7 and Rab11 to determine the involvement of these proteins in the trafficking 

of α7 nAChR-αBTX complexes.  Rab4, Rab5 and Rab11 are localized to early endosomes 

and participate in the endocytic recycling of membrane proteins, while Rab7 regulates 

the traffic of membrane organelles through late endosomes to lysosomes (55 - 61).  HEK 

293 cells transfected with FLAG-α7 nAChR and HA-hRIC3 cDNA were incubated with 

fluorescent αBTX for 2 h at 37 °C to allow for the internalization and accumulation of 

α7 nAChR-αBTX complexes.  Fluorescent αBTX did not co-localize with GFP-Rab4, -Rab5, 

or -Rab11, suggesting that these complexes do not undergo recycling back to the cell 

surface (Figure 3.6).  However, fluorescent αBTX did co-localize with GFP-Rab7 puncta, 

indicating that α7 nAChR-αBTX complexes traffic through Rab7-positive late endosomes 

to lysosomes (Figure 3.6). 

3.4.4 Canonical Endocytic Receptor Trafficking Motifs Do Not Alter Cell 
Surface Expression or Endocytosis of α7 nAChR 

The predicted amino acid sequence of the large intracellular loop between TM3 and 

TM4 of the human α7 nAChR subunit (318 - 469) was identified from the UniProt  
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Figure 3.5  α7 nAChR-αBTX complexes traffic to late endosomes. 

HEK 293 cells transfected with FLAG-α7 nAChR and HA-hRIC3 cDNA were incubated on ice for 
1 h with Alexa Fluor 647-αBTX, washed and transferred to 37 °C for 0, 1, 2, 4, or 6 h.  The cells 
were fixed, permeabilized, and labelled with antibodies directed towards specific markers EEA1 
(early endosomes) and LAMP1 (lysosomes), followed by secondary Alexa Fluor 546-conjugated 
antibody.  Images of Alexa Fluor 647-αBTX (green) and organelle markers (red) were collected 
from single z-sections on a laser-scanning confocal microscope and colour combined.  Note that 
α7 nAChR-αBTX complexes co-localize initially with EEA1 and, after a chase of 4 or 6 h, localize 
extensively with LAMP1.  Insets show magnified images of the areas indicated by an arrowhead 
for Alexa Fluor 647-αBTX (green) with EEA1 or LAMP1 (red) and an overlay of the two.  Images 
are representative of 10 to 16 cells per time point, per experiment, from three (EEA1) or four 
(LAMP1) independent experiments.  Bar, 10 µm. 
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Figure 3.6  α7 nAChR-αBTX complexes traffic through late endosomes/lysosomes but 

not rapidly or slowly recycling endosomes or Rab5 positive early endosomes. 

HEK 293 cells co-transfected with cDNA for FLAG-α7 nAChR, HA-hRIC3, and GFP-Rab4 (rapidly 
recycling endosomes), GFP-Rab5 (early endosomes), GFP-Rab7 (late endosomes/lysosomes), or 
GFP-Rab11 (slowly recycling endosomes) were incubated at 37 °C in the presence of Alexa Fluor 
647-αBTX for 2 h.  The cells were washed, fixed and mounted and images of Alexa Fluor 647-
αBTX (green) and GFP (red) were collected from single z-sections on a laser-scanning confocal 
microscope and colour combined.  Insets show magnified images of the areas indicated by an 
arrowhead for Alexa Fluor 647-αBTX (green) with GFP-tagged RabGTPases (red) and an overlay 
of the two.  Images are representative of 5 to 10 cells per experiment, from two independent 
experiments.  Bar, 10 µm. 



101 

 

 



102 

 

Knowledgebase reference P36544 (UniProt Consortium).  From this sequence, I 

identified two short amino acid sequences that represent putative trafficking motifs that 

could be involved in regulating cell surface expression or endocytosis of the α7 nAChR 

(Figure 3.7 A).  The sequence 386YIGF389 fits the profile of a YXXØ (Y, tyrosine; X, any 

amino acid, Ø, amino acid with a bulky hydrophobic side chain) signal that binds the μ 

subunits of adaptor protein complexes and mediates rapid internalization from the 

plasma membrane and can target proteins to the lysosome (62).  The sequence 

417DEHLL421 is similar to the DXXLL signal present in transmembrane proteins that cycle 

between the trans-Golgi network and endosomes and bind the clathrin adaptor 

proteins, Golgi-localized, γ-ear-containing, ADP-ribosylation factor-binding proteins (62).  

We used site-directed mutagenesis to generate mutant isoforms of the FLAG-α7 nAChR 

subunit containing the mutations Y386A/F389A, Y386F/F389A, L420A/L421A, or 

D417A/L420A/L421A, then compared αBTX-induced internalization of these mutants to 

that of wild-type FLAG-α7 nAChR in HEK 293 cells co-transfected with HA-hRIC3 cDNA 

(Figure 3.7 B, C, and D).  Mutations to these sequences did not appear to alter cell 

surface expression or αBTX-induced internalization of the α7 nAChR, as cell surface anti-

FLAG immunofluorescence and the internalization of fluorescent αBTX did not appear to 

differ between wild-type and mutant isoforms of the receptor after 0, 4, or 6 h at 37 °C.  

This demonstrates that these two motifs do not play a role in the trafficking of α7 

nAChR to the cell surface in HEK 293 cells or prevent αBTX-induced internalization of the 

receptor in these cells. 

3.4.5 Endocytosis of α7nAChR-αBTX Complexes is Independent of 
Clathrin 

Some ligand-gated ion channels are internalized by a clathrin- and dynamin-dependent 

endocytic mechanism (19, 20, 63, 64).  Transferrin receptor internalization is 

characteristic of the clathrin- and dynamin-dependent receptor endocytosis pathway 

(65 - 68).  Calthrin- and dynamin-dependent receptor endocytosis can be blocked by the 

dominant negative mutant isoform of dynamin, dynamin K44A, and the carboxyl-

terminal fragment of adaptor protein 180 (AP180-C) (69 - 71).  GTPase defective  
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Figure 3.7  Canonical endocytic receptor trafficking motifs do not alter cell surface 

expression or endocytosis of α7 nAChR. 

(A) Putative trafficking motifs were identified within the amino acid sequence of the large 
intracellular loop of the α7 nAChR subunit between TM3 and TM4, highlighted in red in the 
schematic.  386YIGF389 (green) may represent a signal that binds the μ subunit of adaptor protein 
complexes and mediates rapid clathrin-dependent internalization from the plasma membrane.  

417DEHLL421 (yellow) may represent a signal that regulates cycling between the trans-golgi 
network and endosomes through binding GGA clathrin adaptor proteins.  (B, C, and D) HEK 293 
cells were transfected with cDNA for HA-hRIC3 and (B) wild-type FLAG-α7 nAChR or isoforms of 
FLAG-α7 nAChR containing mutations to (C) the putative adaptor protein binding motif 386YIGF389 
(Y386A/F389A or Y386F/F389A) or (D) the putative GGA binding motif 417DEHLL421 (L420A/L421A 
or D417A/L420A/L421A).  (A, B and C) Cells were incubated on ice for 1 h with Alexa Fluor 647-
αBTX, washed and transferred to 37 °C for 0, 4, or 6 h.  At the end of the incubation, the cells 
were stained to detect changes to surface levels of FLAG-α7 nAChR as described in Fig. 2.  
Images are representative of 5 to 20 cells per time point, per experiment, from three 
independent experiments.  Bar, 10 µm. 
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dynamin K44A inhibits the budding of clathrin vesicles from the plasma membrane (69, 

70).  AP180-C inhibits the formation of clathrin-coated pits that facilitate receptor 

internalization (71).  Dynamin K44A and AP180-C both block transferrin receptor 

endocytosis (69 - 71).  To determine if α7 nAChR-αBTX complexes undergo clathrin-

dependent endocytosis, we examined internalization of fluorescent αBTX in cells co-

transfected with FLAG-α7 nAChR and HA-hRIC3 cDNA and either dynamin 1 K44A or 

AP180-C (Figure 3.8).  HEK 293 cells were transfected, incubated with fluorescent αBTX 

on ice and transferred to 37 °C for 6 h.  To assess functional expression of dynamin 1 

K44A or AP180-C protein, a fluorescent di-ferric transferrin conjugate was added to the 

cell culture medium 20 minutes prior to the end of the experiment.  Cells co-expressing 

dynamin 1 K44A or AP180-C were indicated by a lack of fluorescent transferrin 

internalization; internalization of fluorescent αBTX was unaffected in these cells (Figure 

3.8 A and B).  We conducted four independent experiments on cells co-transfected with 

dynamin 1 K44A or AP180-C and employed transferrin internalization in our final 

experiment as a measure of the functional expression of these proteins; in any of the 

experiments we conducted we did not observe inhibition of fluorescent αBTX 

internalization.  This suggests that the endocytosis of α7 nAChR-αBTX complexes does 

not occur through a clathrin- or dynamin-dependent mechanism. 

3.4.6 Inhibition of Actin Dynamics, RhoGTPases or RalGTPase Does Not 
Block α7 nAChR Endocytosis 

Clathrin-independent endocytic mechanisms can induce changes to the actin 

cytoskeleton to facilitate endocytosis (72 - 74).  We investigated the role of actin 

polymerization in the endocytosis of α7 nAChR-αBTX complexes by treating cells with 

cytochalasin D.  Cytochalasin D is a plasma membrane-permeable inhibitor of actin 

polymerization that binds to the ends of actin filaments and prevents the addition of 

monomers (75).  HEK 293 cells transfected with FLAG-α7 nAChR and HA-RIC3 cDNA were 

incubated on ice with fluorescent αBTX and transferred to 37 °C for 2 or 4 h in the 

presence of 2.5 μM cytochalasin D or an equivalent concentration of DMSO vehicle.  To 

label FLAG-α7 nAChR remaining in the plasma membrane, cells were returned to ice and  
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Figure 3.8  Endocytosis of α7 nAChR-αBTX complexes is independent of clathrin. 

HEK 293 cells transfected with cDNA for FLAG-α7 nAChR and HA-hRIC3, and either (A) dominant-
negative dynamin 1 K44A or (B) the C-terminal fragment of the adaptor protein AP180 (AP180-
C) were incubated on ice for 1 h with Alexa Fluor 647-αBTX (green), washed, and transferred to 
37 °C for 6 h.  Twenty minutes before the end of the experiment, Alexa Fluor 633-transferrin 
(red) was added to the cell culture medium. For A and B , images are representative of 10 to 12 
cells per time point, two cover slips per time point, from four independent experiments.  Bar, 10 
µm. 
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incubated with anti-FLAG antibody and fluorescent secondary antibody.  Cytochalasin D 

clearly disrupted actin cytoskeleton dynamics, as evidenced by changes in cell 

morphology, but did not prevent the internalization of fluorescent αBTX (Figure 3.9 A).  

DMSO treatment did not affect cell morphology or internalization of fluorescent αBTX 

(Figure 3.9 A). 

Rho family GTPases regulate actin dynamics and may function in distinct pathways of 

clathrin-independent endocytosis (72 - 74).  We assessed the involvement of 

RhoGTPases in the internalization of α7 nAChR-αBTX complexes in HEK 293 cells co-

transfected with FLAG-α7 nAChR and HA-RIC3 cDNA and cDNA for GFP-tagged dominant 

negative isoforms of the RhoGTPases, RhoA, Rac1, and Cdc42.  Co-expression of RhoA 

T19N, Rac1 T17N, or Cdc42 T17N, did not prevent the internalization of fluorescent 

αBTX after 4 h at 37 °C (Figure 3.9 B). 

RalA is a member of the Ras family of GTPases which plays a role in the endocytosis of a 

variety of receptors and can act upstream of Rac1 and Cdc42 to affect actin dynamics 

(76, 77).  We examined internalization of fluorescent αBTX in HEK 293 cells co-

transfected with FLAG-α7 nAChR and HA-RIC3 cDNA and cDNA for a yellow fluorescent 

protein (YFP)-tagged dominant negative isoform of RalA, RalA S28N (78, 79).  Co-

expression of RalA S28N did not prevent internalization of fluorescent αBTX after 4 h at 

37 °C (Figure 3.9 B).  These results suggest that inhibition of actin dynamics or small 

GTPases that regulate actin polymerization to facilitate endocytosis do not play a role in 

the internalization of α7 nAChR-αBTX complexes. 

3.4.7 α7 nAChR-αBTX Complexes Endocytose Through Flotillin 1 and 
Caveolin 1α Pathways 

Flotillin 1 and caveolin 1α are components of distinct pathways of clathrin-independent 

endocytosis that, in addition to clathrin, indicate separate plasma membrane regions 

involved in internalization (72, 80, 81).  To determine the involvement of these proteins 

in the internalization of α7 nAChR-αBTX complexes, we examined localization of 

fluorescent αBTX and GFP-tagged flotillin 1 or caveolin 1α in HEK 293 cells.  Cells  
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Figure 3.9  Inhibition of actin dynamics, RhoGTPases or RalGTPase does not block α7 

nAChR endocytosis. 

(A) HEK 293 cells transfected with FLAG-α7 nAChR and HA-hRIC3 cDNA were incubated on ice 
with Alexa Fluor 647-αBTX for 1 h, washed, and then transferred to 37 °C in the presence of 
cytochalasin D or DMSO vehicle for 2 or 4 h.  At the end of the incubation, the cells were 
returned to ice and incubated with anti-FLAG antibody to label cell surface receptors, followed 
by Alexa Fluor 546-conjugated secondary antibody.  Cells were fixed with PLP, mounted, and 
images of Alexa Fluor 546-conjugated secondary antibody (red) and Alexa Fluor 647-αBTX 
(green) were collected from single z-sections on a laser-scanning confocal microscope.  (B)  HEK 
293 cells co-transfected with cDNA for FLAG-α7 nAChR, HA-hRIC3, and YFP- or GFP-tagged 
dominant-negative mutant isoforms of RhoGTPases (RhoA T19N, Rac1 T17N, and Cdc42 T17N) 
or RalGTPase (RalA S28N) were labelled with Alexa Fluor 647-αBTX as in A and chased at 37 °C 
for 4 h.  Cells were fixed with PLP, mounted, and images of Alexa Fluor 647-αBTX (green) and 
YFP or GFP (red) were collected from single z-sections on a laser-scanning confocal microscope.  
For A, images are representative of 10 to 18 cells per time point, per treatment, per experiment, 
one to two cover slips per time point, from two independent experiments; for B, 5 to 17 cells, 
per treatment, per experiment, from four independent experiments.  Bar, 10 µm. 
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Figure 3.10  α7 nAChR-αBTX complexes internalize through flotillin 1 and caveolin 1α 

pathways. 

HEK 293 cells transfected with cDNA for FLAG-α7 nAChR, HA-hRIC3, and either (A) flotillin 1-GFP 
or (B) caveolin 1α-GFP were incubated on ice for 1 h with Alexa Fluor 647-αBTX, washed and 
transferred to 37 °C for 2 h.  Cells were fixed and mounted and images of Alexa Fluor 647-αBTX 
(green) and flotillin 1-, or caveolin 1α-GFP (red) were collected from single z-sections on a laser-
scanning confocal microscope and colour combined.  Insets show magnified images of the area 
indicated by an arrowhead for Alexa Fluor 647-αBTX (green) with flotillin 1-, or caveolin 1α-GFP 
(red) and an overlay of the two.  Images are representative of 41 cells for A (flotillin 1-GFP) and 
42 cells for B (caveolin 1α-GFP) from a preliminary experiment.  Bar, 10 µm. 
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transfected with FLAG-α7 nAChR, HA-hRIC3 and GFP-tagged flotillin 1 or GFP-tagged 

caveolin 1α cDNA were incubated on ice with fluorescent αBTX and transferred to 37 °C 

for 2 h (Figure 3.10 A and B).  Co-localization of fluorescent αBTX with flotillin 1 or 

caveolin 1α, in punctate structures, was apparent in nearly all cells we observed.  This 

suggests that these two proteins may represent pathways for internalization of 

α7 nAChR-αBTX complexes from the plasma membrane. 

3.5 Discussion 

Knowledge of mechanisms that regulate surface expression, endocytosis, or trafficking 

of α7 nAChR is currently limited.  Some studies have identified specific sequences within 

the large intracellular loop of the α7 nAChR subunit that regulate the assembly of 

receptors and their insertion into the plasma membrane (82 - 84).  Others have 

determined the necessity for post-translational modification (85) or the expression of 

tissue-specific component proteins, such as the chaperone protein hRIC3 (27), for 

functional expression of the α7 nAChR at the cell surface.  Additional studies have 

determined a role for SNAREs, proteins that mediate vesicular fusion (86), in the 

dynamic cycling of the receptor in response to agonist stimulation (87) or tyrosine 

kinase activity (88).  However, endocytic mechanisms that regulate cell surface levels of 

the α7 nAChR have yet to be described.  In this study, we demonstrate that binding of 

the competitive antagonist αBTX induces internalization of the α7 nAChR and present a 

potential pathway for the traffic of α7 nAChR-αBTX complexes to degradative 

compartments of the cell. 

We began our investigation by verifying that co-expression of the chaperone protein 

hRIC3 is required for functional expression of the α7 nAChR in HEK 293 cells.  Our 

immunocytochemistry and biotinylation findings are in agreement with Williams et al. 

(27), in demonstrating that α7 nAChR can be expressed on the surface of HEK 293 cells 

in the absence of hRIC3, but that co-expression of hRIC3 with the α7 nAChR is required 

for αBTX binding.  hRIC3 appears to be necessary for proper assembly of the α7 nAChR 

and functional expression of the receptor on the surface of HEK 293 cells. 
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We first compared αBTX-induced internalization of the α7 nAChR in HEK 293 cells with 

SH-SY5Y cells, a cell line with a neuronal phenotype (89, 90) that endogenously 

expresses hRIC3 (27).  αBTX induced internalization of the α7 nAChR in both HEK 293 

and SH-SY5Y cells, lead to the accumulation of α7 nAChR-αBTX complexes in perinuclear 

regions after several hours.  Cell surface levels of the receptor following αBTX-induced 

internalization appeared to be down-regulated in HEK 293 cells over time, but similar 

changes were not observed in SH-SY5Y cells, perhaps due to the relative efficiency of 

receptor assembly exhibited by these two cell types (82).  Although SH-SY5Y cells 

internalized αBTX at a rate similar to HEK 293 cells, SH-SY5Y cells may have a greater 

reserve of fully assembled receptors to replace those lost from the cell surface (82).  In a 

preliminary experiment to examine the replacement of receptors on the surface of HEK 

293 cells, we induced receptor internalization with unlabelled αBTX and stained for 

newly emerged receptors after 6 h.  Only a fraction of cells showed a small amount of 

fluorescent αBTX labelling, suggesting that insertion of α7 nAChR into the plasma 

membrane in HEK 293 cells was a slow process.  This also suggests that, when we are 

labelling cell surface receptors with anti-FLAG antibody and fluorescent secondary 

antibody to determine changes to cell surface levels, we are likely labelling receptors 

that remained on the surface of HEK 293 cells and have not yet internalized. 

Following internalization, α7 nAChR-αBTX complexes trafficked to lysosomes from EEA1-

positive early endosomes and Rab7-positive late endosomes.  α7 nAChR-αBTX 

complexes transitioned from early endosomes to lysosomes from between 2 to 4 h and 

all internalized αBTX appeared to be in LAMP1-positive lysosomes after 6 h.  This time-

course is similar to that observed for αBTX-mediated down-regulation of the muscle 

nAChR in CHO cells (91).  We did not find co-localization of αBTX with Rab 4 or Rab11-

positive vesicles, suggesting that, once internalized, α7 nAChR complexes are not 

recycled back to the cell surface; rather they appear to be trafficked directly through 

Rab7-positive late endosomes to lysosomes for degradation.  These results are in 

contrast to Kumari et al. (91), who observed that some muscle nAChR-αBTX complexes 

co-localized with Rab11; there is some evidence to suggest that αBTX-labelled nAChR 
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undergoes dynamic recycling at the neuromuscular junction (92, 93).  Internalized αBTX 

did not co-localize with Rab 5, which seems to contradict with our observation that 

αBTX traffics through EEA1-positive vesicles early in the stages of receptor 

internalization.  Although EEA1 is an important Rab5 effector, required for mediating 

fusion of early endosomes (50), it is evident that EEA1 can tether to endosomes 

independently of Rab5 (94).  

The cell surface expression of several ionotropic receptors can be regulated by signal 

sequences contained within their cytosolic domains (63, 95 - 98).  To determine whether 

the α7 nAChR could be regulated in a similar manner, we identified two putative motifs 

that fit the criteria of sorting signals recognized in a large number of transmembrane 

proteins, 386YIGF389, and 417DEHLL421.  Mutations to these signal sequences can lead to 

increased surface expression of the relevant receptors, as a result of the disruption of 

adaptor protein binding and the prevention of clathrin-mediated endocytosis (63, 95, 

96, 98).  When we generated mutant isoforms of the α7 nAChR and compared their cell 

surface expression and αBTX-induced internalization to the wild-type protein, we did 

not observe a substantial difference between wild-type and mutant, demonstrating that 

386YIGF389 and 417DEHLL421 sequences do not regulate cell surface expression of the 

receptor or alter αBTX-induced internalization. 

To delineate a mechanism that regulates αBTX internalization, we investigated factors 

that are specific to clathrin-dependent and -independent endocytosis.  The 

ineffectiveness of over-expression of dominant-negative dynamin 1 K44A and AP180-C 

demonstrate that αBTX induced internalization of the α7 nAChR is a dynamin- and 

clathrin-independent process.  αBTX induced internalization of the α7 nAChR was not 

affected by treating cells with an inhibitor of actin polymerization, cytochalasin D, or 

over-expression of dominant negative isoforms of the RhoGTPases, RhoA, Rac1, or 

Cdc42, or over-expression of dominant negative RalA, suggesting that clathrin-

independent mechanisms that recruit changes to the actin cytoskeleton and activity of 

these GTPases to facilitate endocytosis did not mediate this process.  It appears that 
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internalization of α7 nAChR-αBTX complexes occurs independently of clathrin and 

dynamin, as well as cytoskeleton dynamics and RhoGTPase activity.  In comparison, 

Kumari et al. (91) found that αBTX-induced internalization of the muscle nAChR was 

independent of dynamin, but required both actin polymerization and Rac1 activity.  

Both systems involve heterologous expression of nAChR, as HEK 293 cells and CHO cells 

do not endogenously express these proteins.  However, the muscle nAChR is highly 

organized at neuromuscular junctions where coupling to the actin cytoskeleton 

maintains synaptic integrity (99, 100).  In contrast, the α7 nAChR is expressed at 

perisynaptic and somatic locations (2 - 5, 7 - 12) and appear to function independently 

of cytoskeleton dynamics (101).  Therefore, actin dynamics may not play a role in the 

internalization of the α7 nAChR in response to binding αBTX. 

Clathrin-independent endocytosis can occur from lipid rafts within the plasma 

membrane that are enriched in either caveolins (caveolae) or flotillins (72, 80, 81).  αBTX 

co-localized with flotillin 1 and caveolin 1α puncta after internalization was allowed to 

proceed for 2 h, a time point at which αBTX is co-localized with EEA1 and in the process 

of becoming internalized.  This suggests that flotillin 1 or caveolin 1α-associated 

pathways may represent mechanisms for endocytosis of α7 nAChR-αBTX complexes.  It 

is currently hypothesized that caveolins and flotillins represent distinct pathways for 

endocytosis (72, 80, 81).  Despite this, it is apparent that the α7 nAChR can associate 

with either caveolin- or flotillin-positive lipid rafts, depending on the cell type (101, 102).  

This has also been demonstrated here. 

HEK 293 cells endogenously express caveolins at negligible levels relative to their level 

of flotillin expression (103, 104).  Caveolar-mediated endocytosis requires dynamin 

GTPase activity (105, 106), while flotillin-mediated endocytosis can occur both 

dependently (107, 108) and independently of dynamin (81).  Given that we observed 

internalization of αBTX was not blocked by a dominant-negative isoform of dynamin, it 

seems likely that endocytosis of α7 nAChR-αBTX complexes occurs through a flotillin-

associated pathway.  However, since we observed co-localization of internalized αBTX 
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with both markers, endocytosis of the α7 nAChR through these pathways could be 

determined by the level of expression of caveolin and flotillin protein or the relative 

affinity of the receptor for localization to caveolae versus flotillin-enriched lipid rafts, 

which is currently unknown.  Fractionation of intact cells followed by density gradient 

centrifugation is a widely used technique for separating subcellular membrane 

compartments, such as endocytic vesicles, for identifying subcellular organelles through 

which proteins traffic (109).  Fractionation of transfected HEK-293 or SH-SY5Y-FLAG-α7 

cells and density gradient centrifugation, following pulse-chase with αBTX, combined 

with immunoblotting for flotillin or caveolin (102) and FLAG epitope could have 

provided biochemical evidence in support of our localization experiment and help 

answer these questions. 

We present here evidence in support of an endocytic pathway for the internalization of 

α7 nAChR in response to binding an irreversible competitive antagonist, αBTX.  We 

propose a model in which αBTX induces internalization of the α7 nAChR alternatively 

through flotillin- or caveolin-associated endocytosis and trafficking of α7 nAChR-αBTX 

complexes through early and late endosomes to lysosomes (Figure 3.11).  This occurs 

independently of clathrin, dynamin, actin polymerization, or RhoGTPase and RalGTPase 

activity and appears to be unique amongst ligand-gated ion channels. 
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Figure 3.11  A Model for αBTX-induced internalization of the α7 nAChR. 

αBTX binding induces endocytosis of α7 nAChR through alternate flotillin 1- or caveolin 1α-
associated pathways and subcellular trafficking through EEA1-positive early endosomes and 
Rab7-positive late endosomes to LAMP1-positive lysosomes.  Legend, inset. 
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4.1 Conclusions 

 

4.1.1 Study One:  Oligomeric aggregates of amyloid β peptide 1-42 
activate ERK/MAPK in SH-SY5Y cells via the α7 nicotinic receptor 

 

1) Aβ42 peptides aggregate into different structural forms under neutral and acidic 

pH.  Neutral pH yields small globular oligomeric aggregates, with 3.0 to 3.8 nm 

height structures in abundance.  Acidic pH yields elongated fibrillar structures tens 

of nanometres in length, comprised of oligomer-like subunits. 

2) Oligomeric aggregates of Aβ42 acutely activate the ERK/MAPK signalling pathway in 

human neuroblastoma cells at concentrations as low as 1 nM. 

3) Fibrillar aggregates or non-aggregated Aβ42 peptide do no activate the ERK/MAPK 

signalling pathway. 

4) Activation of ERK/MAPK by oligomeric Aβ42 is inhibited by MLA, an antagonist 

selective for the α7 nAChR. 

 

4.1.2 Study Two:  The α7 nicotinic receptor is internalized via a clathrin-
independent, flotillin- or caveolin-associated endocytic pathway 

 

1) Binding of the competitive antagonist αBTX causes internalization of the α7 nAChR. 

2) Internalized α7 nAChR-αBTX complexes traffic through early and late endosomes to 

lysosomes. 

3) Internalization is independent of clathrin and dynamin, and is not blocked by 

inhibition of actin polymerization or dominant negative RhoGTPases or dominant 

negative RalGTPase. 

4) Flotillin 1 or caveolin 1α may represent pathways for endocytosis.  
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4.2 Contributions to the Current State of Knowledge 

The aim of the studies described in this thesis was to enhance our knowledge of the 

interaction of Aβ42 peptides with the α7 nAChR as well as factors which may regulate 

α7 nAChR function.  We present two distinct aspects of α7 nAChR physiology; we 

identify a biologically important species of oligomeric Aβ42 peptide aggregate capable 

of inducing signalling through the α7 nAChR, and we determine a pathway for regulation 

of cell surface levels of the receptor in response to antagonist-induced receptor 

internalization. 

In the study in Chapter 2, we compared the ability of different aggregates of Aβ42 

peptide to activate the ERK/MAPK signalling pathway.  Following a previously 

established protocol, we pre-incubated synthetic Aβ42 peptide to induce the formation 

of oligomers or fibrils.  Characterization by AFM demonstrated that these preparations 

primarily contained oligomeric or fibrillar aggregates of Aβ42 (Chapter 2, Figure 2.1).  

Oligomeric aggregates of Aβ42 acutely activated ERK/MAPK at concentrations within 

the range of Aβ42 measured in the CSF of AD subjects.  Fibrillar aggregates or non-

aggregated Aβ42 did not activate ERK/MAPK.  Induction of ERK1/2 phosphorylation by 

oligomeric Aβ42 was inhibited by the α7 nAChR-selective antagonist, MLA.  In addition 

to fibrils, we observed a subpopulation of oligomers 2 nm in height, in fibrillar 

preparations.  In oligomeric preparations, structures 3.0 - 3.8 nm in height were the 

most abundant, representing a biologically important oligomeric aggregate of Aβ42 

capable of inducing ERK/MAPK signalling through the α7 nAChR. 

Since the amyloid cascade hypothesis was proposed by Hardy and Higgins (1), 

suggesting that the generation and aggregation of Aβ peptides, particularly Aβ42, were 

an initiating event in AD pathogenesis, considerable effort has been made to determine 

factors that contribute to the aggregation of these peptides and identify physiologically 

relevant species.  Numerous studies have used AFM and/or SDS-PAGE to identify 

biologically important aggregates of Aβ42 and equate their structure with receptor 

binding, cell signalling, toxicity, or membrane disruption.  We employed AFM as a 
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method for characterizing our preparations because it provided a means for clearly 

distinguishing between different structural forms of Aβ42 peptide.  Using high 

resolution AFM, Mastrangelo and colleagues (2) determined that monomers of Aβ42 

peptide have an approximate height of 2 nm.  Although the AFM instrument that we 

used likely introduced sample compression, thereby underestimating the true height of 

aggregates within our samples, we would propose that the globular structures we 

observed in abundance in oligomeric preparations of Aβ42, with a height of 3.0 - 3.8 nm, 

were representative of dimers of Aβ42 peptide.  Also, given the distribution of 

aggregate sizes we observed, with subpopulations residing between 1.2 and 4.4 nm, 

that our oligomeric preparations contained a mixture of monomers and dimers. 

In our fibrillar preparations of Aβ42 peptide, we observed a subpopulation of 

oligomeric-like aggregates that appeared to represent distinct subunits of the greater 

fibrils.  A recent study in a transgenic mouse model has proposed that plaques of Aβ42 

in the brain may act as reservoirs for the release of Aβ42 oligomers (3).  Plaques are 

thought to be primarily composed of Aβ42 fibrils (4), our AFM analysis appears to 

support the hypothesis that these fibrils can disassemble into oligomeric species. 

Aβ peptides have previously been observed to activate the ERK/MAPK signalling 

pathway through α7 nAChR in hippocampus (5).  An age-dependent increase in 

α7 nAChR protein and coincident reduction in phosphorylated ERK2 protein in this brain 

region in a transgenic mouse model of AD may be a consequence of increased Aβ 

burden and the resulting chronic activation of α7 nAChR-dependent signalling (5).  The 

down-regulation of α7 nAChR-dependent signalling is hypothesized to be a cellular 

mechanism that contributes to AD pathology (5).  Given the evidence that α7 nAChR 

largely plays a modulatory role in neurotransmission in the brain, by regulating the 

release of neurotransmitters (6 - 11), Aβ peptides likely have a complementary 

consequence in early stages of the disease process.  Neurotransmitter release is 

enhanced by α7 nAChR signalling through ERK/MAPK and increased ERK1/2-dependent 

phosphorylation of the synaptic vesicle co-ordinating protein, synapsin-1 (8), which 
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increases the proportion of vesicles available for release in the synaptic terminal (12).  I 

would propose that oligomeric Aβ42 may signal through α7 nAChR and ERK/MAPK, as 

we have observed here, to synapsin-1 to alter activity of the neural network in the 

absence of cholinergic input, thereby contributing to disordered cognitive function in 

AD. 

In the study described in Chapter 3, we investigated the pathway for internalization of 

the α7 nAChR in response to binding the competitive antagonist, αBTX.  αBTX binding 

induced internalization of α7 nAChR-αBTX complexes that trafficked through early and 

late endosomes and accumulated in lysosomes (Chapter 3, Figure 3.4).  Primary amino 

acid sequence analysis revealed two potential clathrin adaptor protein binding motifs 

within the large intracellular loop of the α7 nAChR subunit.  Site-directed mutagenesis 

experiments revealed these motifs did not alter internalization or subcellular trafficking 

of α7 nAChR-αBTX complexes.  Experiments employing over-expression of dominant 

negative dynamin 1 K44A or AP180-C did not block internalization, providing further 

evidence that internalization was independent of the clathrin endocytic machinery.  

Subsequent experiments, in which we disrupted clathrin-independent mechanisms of 

endocytosis, employing cytochalasin D to inhibit actin-polymerization or over-

expression of dominant negative RhoGTPases or RalGTPase, did not have an effect on 

internalization either.  Ultimately, co-localization experiments with flotillin 1 and 

caveolin 1α revealed that these two lipid raft proteins represented pathways for 

endocytosis (Chapter 3, Figure 3.9).  These experiments are the first to report 

internalization of the α7 nAChR in response to binding αBTX and identify lipid raft 

proteins as the potential mediators. 

Caveolins and flotillins represent distinct pathways for endocytosis (13 - 15) and are 

associated with separate lipid microdomains within the plasma membrane (15 - 19).  

These integral membrane proteins are differentially expressed and cell types that do not 

express caveolins often express flotillins as functional homologues in the organization of 

caveolae-like lipid rafts (19).  The α7 nAChR can be found in either caveolin- or flotillin-
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positive lipid microdomains depending on the cell type (20, 21).  However, caveolins are 

not expressed by brain neurons and flotillins are thought to be the primary integral 

membrane proteins associated with cholesterol-rich microdomains in brain neuronal 

plasma membranes (18, 22, 23).  This evidence indicates that floltillins could represent 

the pathway for endocytosis of the α7 nAChR in the brain. 

An important parallel can be drawn between factors that mediate endocytosis of 

flotillins and those which alter cell surface levels of the α7 nAChR.  Endocytosis of 

flotillin 1 and flotillin 2 is regulated by activation of the tyrosine kinase, Fyn, leading to 

the redistribution of flotillins from the plasma membrane to late endosomes and 

lysosomes (24).  Cell surface levels of the α7 nAChR in hippocampal neurons appear to 

be negatively regulated by tyrosine kinase activity that does not involve direct 

phosphorylation of the receptor, with tyrosine phosphorylation depressing α7 nAChR 

responses in brain slices to agonist stimulation (25). 

Additionally, there is a relationship between the level of flotillin expression in the brain 

and the progression of AD, as flotillin levels increase with the development of senile 

plaque formation and the advancement of disease pathology (26).  Increased Aβ42 

peptide production in transgenic mice leads to intracellular accumulation of Aβ42 

peptide in flotillin 1-positive endocytic vesicles (27).  Aβ production appears to require 

flotillin-dependent clustering of the Aβ42 precursor protein, APP, which promotes 

endocytosis and subsequent processing of APP into Aβ peptides (28).  Increased levels 

of [3H]-MLA binding as a measure of α7 nAChR protein in the frontal cortex are weakly 

correlated with Aβ plaque pathology in human subjects in the early stages of AD (29).  

Given the controversy surrounding the interaction between Aβ42 peptides and the 

α7 nAChR, a shared pathway of endocytosis may account for some observations that 

the α7 nAChR mediates internalization of Aβ42 peptides in neuronal cells (30). 

Interestingly, a GPI-anchored cell surface molecule, lynx1, with a structure notably 

similar to αBTX and other elapid snake α-neurotoxins, has been identified in the brain 

(31).  Lynx1 co-localizes with the α7 nAChR in many regions, including cortex, 
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hippocampus, amygdala, and thalamus (32).  Studies in lynx 1 knock-out mice have 

revealed that lynx1 expression increases sensitivity of nAChRs to agonist stimulation, 

alters synaptic activity in the hippocampus, and enhances sensitivity of neurons to 

excitotoxicity, leading to neurodegeneration (33).  Recombinant expression of αBTX in 

cells as a plasma membrane-tethered protein, as a model for lynx1 activity, retains its 

functions as an antagonist (34).  Endogenous α-neurotoxin-like macromolecules in the 

brain may have a role in regulating α7 nAChR function. 

4.3 Limitations of Research 

The characterization of specific aggregate species of Aβ42 peptides of particular 

biological relevance is a persistent and challenging problem.  Although analysis by SDS-

PAGE has been frequently used to characterize Aβ42-containing solutions, this analysis 

does not reflect the nature of aggregates found in solution (35).  AFM analysis relies 

upon the ability of samples to adsorb to the surface of a mica substrate.  All species of 

aggregates within a solution containing Aβ42 peptides may not be equally adsorbed to 

mica, thereby providing a misrepresentation of the true nature of the solution state of 

the peptide (36).  Attempts have been made to circumvent these issues (35), but it is 

apparent that aggregates of Aβ42 peptide in solution are likely in dynamic equilibrium 

and one can only infer from the method of analysis as to the true nature of the 

aggregates.  However, AFM has been established as and remains a method for 

consistently discriminating between solutions containing oligomeric and fibrillar 

aggregates of Aβ42 peptide (37). 

Conducting experiments to examine the trafficking of transmembrane proteins is limited 

by evidence that demonstrates inhibition of one pathway for endocytosis, through over 

expression of dominant negative proteins for example (38), can lead to the up-

regulation of an alternative endocytic mechanism.  We have tried to overcome this by 

examining pathway specific markers in conjunction with the over-expression of 

dominant negative proteins; by comparing localization of internalized αBTX with that of 

transferrin, in the presence and absence of dominant negative proteins that disrupt 
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clathrin-dependent endocytosis.  We also sought to examine the localization of 

endogenous proteins, EEA1 and LAMP1, to avoid artefacts that heterologous over-

expression can create. 

Experiments conducted in cell lines are not ideal, due to the possibility that cellular 

pathways or signalling mechanisms can be disrupted in comparison to their function in 

primary culture or in vivo (14).  However, hippocampal neurons express limited amounts 

of α7 nAChR at the plasma membrane (39), and cell lines, as a model, often provide 

greater transfection efficiency and greater protein expression levels from which to 

ascertain clues as to how such proteins of low abundance may be regulated. 

4.4  Suggestions for Future Studies 

Many models have been proposed for the binding of Aβ42 peptides to the α7 nAChR (40 

- 42).  However, the identification of a specific n-mer of Aβ42 peptide that binds to the 

α7 nAChR as a ligand has yet to be identified in biochemical experiments.  MALDI mass 

spectrometry of nAChR subunits has been performed successfully (43, 44).  Cross-linking 

of α7 nAChR and bound Aβ42 peptide oligomers, followed by MALDI mass spectrometry 

of these isolated complexes could provide a definitive answer as to the composition of 

these oligomers. 

Further studies would be necessary to fully elucidate the mechanism of αBTX-induced 

internalization of the α7 nAChR.  Knock-down of endogenous caveolin or flotillin 

expression through transfection with siRNA (15, 45) could determine if these lipid raft 

proteins were required for receptor internalization.  Immunostaining with antibody 

directed against endogenous flotillin (19), in conjunction with the same for endogenous 

endosomal and lysosomal markers, such as EEA1 and LAMP1, to determine their 

localization with internalized α7 nAChR-αBTX complexes, could determine if flotillin and 

the α7 nAChR traffic together through intracellular membrane compartments. 
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4.5 Significance of the Research 

The studies presented in this thesis further our knowledge of distinct aspects of 

α7 nAChR physiology.  Oligomeric aggregates of Aβ42 peptide are identified as the 

principal structural form of the peptide capable of activating intracellular signalling 

through the α7 nAChR.  This has direct implications in AD pathology in that it reinforces 

the widely held hypothesis that small oligomers of Aβ42 peptide, rather than Aβ42 

fibrils, represent the biologically active form of the peptide and that oligomeric Aβ42-

mediated signalling through α7 nAChR may play a role in the disease process.   The 

studies also describe internalization of the α7 nAChR in response to binding the 

competitive antagonist, αBTX.  This is the first time antagonist-induced internalization of 

the α7 nAChR has been reported.  A unique pathway for endocytosis of the receptor is 

proposed, providing new insight into mechanisms that can regulate cell surface 

expression of the receptor. 
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Appendix A.  Addition of the FLAG epitope to the α7 nAChR subunit slows receptor-

dependent Ca2+ responses to the agonist nicotine. 

(A – C) HEK 293 cells co-transfected with cDNA for HA-hRIC3 and either wild-type α7 nAChR or 
FLAG-α7 nAChR subunit were loaded with the Ca2+-sensitive dye fura-2, perfused with HEPES 
buffered Krebs-Ringer’s solution, and whole-cell fluorescence emission of fura-2 (510 nm) was 
monitored at alternating excitation wavelengths (345 and 380 nm).  An increase in the ratio of 
fluorescence emission at excitations 345 / 380 nm indicated an increase in intracellular Ca2+.  
Nicotine (1 mM) was applied for 0.5 s (arrowhead).  The α7 nAChR antagonist MLA (10 µM) was 
included in perfusion buffer prior to application of nicotine (+ MLA).  (A)  Changes observed in 
five different HEK 293 cells transfected with wild-type α7 nAChR subunit and HA-hRIC3 cDNA.  
Tracings are superimposed to illustrate the variability in responses observed between cells and 
between transfections.  Average tracing from 20 cells (red).  (B)  Changes observed in five 
different cells transfected with FLAG-α7 nAChR subunit and HA-hRIC3 cDNA.  Average tracing 
from 30 cells (red).  (C)  Time to peak response as measured by the difference between the time 
of application of nicotine and the time when fluorescence ratio reached maximum.  Bars 
represent mean ± SEM, n = 20 cells for wild-type α7 nAChR subunit and n = 30 cells for FLAG-
α7 nAChR subunit, from four independent experiments. 
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Appendix B.  Cell surface biotinylation of HEK 293 cells transfected with FLAG-

α7 nAChR cDNA with or without co-transfection with HA-hRIC3 cDNA. 

HEK-293 cells were transfected with FLAG-α7 nAChR cDNA and empty vector DNA; FLAG-
α7 nAChR and HA-hRIC3 cDNA, or empty vector DNA and HA-hRIC3 cDNA.  Eighteen hours after 
transfection, cells were transferred to ice and incubated with EZ-Link sulfo-NHS-SS-biotin (1.5 
mg/mL) in HBSS for 1 h.  To quench unreacted sulfo-NHS-SS-biotin, cells were subsequently 
washed and incubated with chilled HBSS containing glycine (100 mM) for 30 min.  Cells were 
then lysed and equal amounts of protein from each transfection (400 µg) were made up to 
equal volumes in lysis buffer (500 µL) and rotated with NeutrAvidin agarose beads (100 µL of 
slurry; biotin binding capacity of 1 - 2 mg/mL) at 4 °C for 1 h to precipitate sulfo-NHS-SS-biotin 
bound proteins.  NeutrAvidin beads were washed with lysis buffer and biotinylated proteins 
were eluted by heating in Laemmli sample buffer.  (A) Precipitated biotinylated proteins 
immunoblotted with anti-FLAG antibody and HRP-conjugated secondary antibody.  Lanes (a) and 
(b), HEK 293 cells transfected with FLAG-α7 nAChR subunit cDNA and empty vector DNA; lanes 
(c) and (d), cells co-transfected with FLAG-α7 nAChR subunit and HA-hRIC3 cDNA, lanes (e) and 
(f), cells co-transfected with empty vector DNA and HA-hRIC3 cDNA.  (B)  Crude lysate fractions 
from lanes (a), (c) and (e), immunoblotted for FLAG epitope.  Immunoblots are from a 
preliminary experiment. 
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Appendix C.  De novo cell surface α7 nAChR following αBTX-induced receptor 

internalization. 

HEK 293 cells transfected with cDNA for FLAG-α7 nAChR and HA-hRIC3 were incubated on ice 
for 1 h with unlabelled αBTX, washed, and transferred to 37 °C for 0 or 6 h.  At the end of the 
incubation, the cells were returned to ice and incubated with Alexa Fluor 647-αBTX for 1 h to 
detect the appearance of new receptors on the cell surface.  Nuclei were stained with DAPI prior 
to fixing and mounting.  Images of Alexa Fluor 647-αBTX (green) and DAPI (blue) were collected 
from single z-sections on a confocal microscope and colour combined.  Images are 
representative of 16 to 18 cells per time point, from three cover slips, a preliminary experiment.  
Bar, 10 µm. 
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Appendix D.  Permission for reproduction from Neurochemistry International 

The copyright policy of Elsevier, the publisher of Neurochemistry International is as 

followsb: 

 

How authors can use their own journal articles 

Authors can use their articles for a wide range of scholarly, non-commercial purposes as outlined 

below. These rights apply for all Elsevier authors who publish their article as either a subscription 

article or an open access article. 

We require that all Elsevier authors always include a full acknowledgement and, if appropriate, a link 

to the final published version hosted on Science Direct. 

For open access articles these rights are separate from how readers can reuse your article as defined 

by the author's choice of Creative Commons user license options. 

 

Authors can use either their accepted author manuscript or final published article for: 

 Inclusion in a thesis or dissertation 
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use  
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