Western University Scholarship@Western

Electronic Thesis and Dissertation Repository

12-16-2014 12:00 AM

Applying Probabilistic Methods to the NATO Military Load Classification System for Bridges

Andrew J. MacDonald The University of Western Ontario

Supervisor Dr. F.M. Bartlett *The University of Western Ontario*

Graduate Program in Civil and Environmental Engineering A thesis submitted in partial fulfillment of the requirements for the degree in Master of Engineering Science © Andrew J. MacDonald 2014

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Part of the Risk Analysis Commons, and the Structural Engineering Commons

Recommended Citation

MacDonald, Andrew J., "Applying Probabilistic Methods to the NATO Military Load Classification System for Bridges" (2014). *Electronic Thesis and Dissertation Repository*. 2570. https://ir.lib.uwo.ca/etd/2570

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

APPLYING PROBABILISTIC METHODS TO THE NATO MILITARY LOAD CLASSIFICATION SYSTEM FOR BRIDGES

(Thesis format: Monograph)

by

Andrew J. MacDonald

Graduate Program in Civil and Environmental Engineering

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Engineering Science

The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada December 2014

© Andrew J. MacDonald, 2014

Abstract

Military vehicles frequently use civilian bridges. The loading effects of military vehicles, both wheeled and tracked, are specific and different than those of civilian vehicles in normal traffic. Calibration to determine appropriate load factors for military loading of civilian bridges has not been fully performed and the corresponding levels of safety have not been quantified. This lack of calibration prevents the implementation of limit state design methods for military bridges and the evaluation bridges for military loading. This thesis quantifies probabilistically the single lane traffic load effects on interior girders of simply supported slab-on-girder bridges for three military vehicles in use by the Canadian Forces with corresponding load factors for design and evaluation. General categories of military bridge design and evaluation.

Keywords:

Bridge evaluation, Military vehicle, Live load, Load factors, Limit state design, Code calibration, Military engineering, Bridges, Simply-Supported Spans, Slab-on-Girder

For my Daughter Lucy.

From birth to a bouncing pre-schooler, you have grown up so much since the beginning of this.

Acknowledgments

I would like to acknowledge the help, guidance and knowledge from my supervisor, Dr. Bartlett, who graciously accepted me as a student (albeit with my infant daughter in tow for many of the early meetings), I am also grateful to the Royal Military College project sponsors, Dr. Wight and Dr. Tanovic, who identified me as an appropriate candidate to undertake this research. Their experience and insights have helped to direct the research and derive workable solutions for the challenges addressed in this document.

I would also like to thank the large number of Canadian Forces personnel and Department of National Defence employees who provided extremely valuable insight that helped direct the research focus. Within the Department of National Defence I would specifically like to thank the individuals with Air Movements and the National Movement and Distribution System Support Center for providing data, and answering questions about intermodal container weights.

I would like to thank the Canadian Department of National Defence for financial support, as well as access to technical information pertaining to this research. I am also grateful for financial support provided by the National Sciences and Engineering Research Council (NSERC).

Finally I would like to thank my wife, Linda, and my daughter, Lucy, for their support and perspective while working on this thesis.

Table of Contents

Abstract	ii
Acknowledgments	iv
Table of Contents	v
List of Tables	xi
List of Figures	xv
Nomenclature	xviii

Chapter 1: In	troduction	1
1.1 Milita	ary Load Classification System	1
1.1.1	Vehicle Classification	2
1.1.2	Bridge Rating	5
1.2 Limit	States Design	6
1.2.1	Allowable Stress Design Methods	6
1.2.2	Limit States Design Methods	7
1.2.3	Advantages of LSD	7
1.2.4	Data Needed for Limit State Design of Military Bridge Design and Evaluation	8
1.3 Resea	arch Objectives	9
1.4 Thesi	s Outline	10

Chapte	er 2: Ac	ceptable Risk for Military Bridges	12
2.1	Accep	table Risk and Military Operations	12
	2.1.1	Mission Planning Factors and Life Safety Risk	13
2.2	Accep	table Risk for Military Personnel during Bridge Crossings	18
	2.2.1	NATO Standardized Agreement 2021 - "Risk Crossing"	19

	2.2.2	Acceptable Risk Level and Maximum Allowable Probability of Bridge Failure
2.3	Chapte	er Conclusions
Chapte	er 3: Op	timal Risk for Military Bridges
3.1	Differ	ent Parameters in Cost Optimization Factors for Military Bridges
	3.1.1	Ancillary Costs of Construction or Repair
	3.1.2	Period of Consideration or Usage
	3.1.3	Cost of Collateral Damage from Bridge Collapse
	3.1.4	Military Vehicle Operating Costs
3.2	Optim	ization Factors Unique to Military Bridges
	3.2.1	Main Supply Routes
	3.2.2	Consideration of Hazards Associated with Other Crossing Alternatives . 33
	3.2.3	Risk of Bridge Damage due to Conduct of War
	3.2.4	Risks from Hazards due to Enemy Action
3.3	Chapte	er Conclusions
Chapte	er 4: Qu	antification of Military Vehicle Loading
4.1	Estima	ation of Gross Vehicle Weight Variability
	4.1.1	AHSVS-PLS (Transport)
	4.1.2	LAV III-ISC (Armoured Personnel Carrier)
	4.1.3	Leopard 2A4M Tank
4.2	Relation	onship between Payload Weight Fraction and Vehicle Weight Variability 58
4.3	Indivi	dual Axle Loads61
	4.3.1	AHSVS-PLS (Transport) Axle Load 61
	4.3.2	LAV III-ISC (Armoured Personnel Carrier) Axle Load

4.3.3	3 Leopard 2A4M Tank	65
4.4 Disc	ussion	67
4.5 Chaj	pter Conclusions	68

Chapte	er 5: Pro	babilistic Quantification of Military Vehicle Load Effects	. 69
5.1	Static	Load on Simple Spans	. 69
	5.1.1	AHSVS-PLS (Transport)	. 69
	5.1.2	LAV III-ISC (Armoured Personnel Carrier)	. 76
	5.1.3	Leopard 2A4M Tank	. 79
5.2	Dynar	nic Load Effects	. 81
5.3	Latera	l Load Distribution	. 86
5.4	Overa	Il Live Load Effects	. 96
5.5	Chapt	er Conclusions	101

Chapte	er 6: Lo	ad Factors for Military Loading103
6.1	Load I	Factor Derivation 103
6.2	Specif	ic Load Factors for Canadian Military Vehicles
	6.2.1	AHSVS-PLS (Transport)
	6.2.2	LAV III-ISC (Armoured Personnel Carrier)
	6.2.3	Leopard 2A4M Tank
6.3	Partial	Load Factors
6.4	Genera	alized Load Factors for Military Vehicles115
	6.4.1	Proposed Military Load Classification System Vehicle Categories 115
	6.4.2	Statistical Load Parameters for Other Unsurveyed Vehicle Populations 118
	6.4.3	Load Factors by Military Vehicle Category
6.5	Discus	ssion 121

6.6	Chapter Conclusions	124
-----	---------------------	-----

Chapte	er 7: Bri	dge Evaluation and Design Using Military Load Classification System. 12	26
7.1	Militar	ry Load Classification using Load and Resistance Factor Design	26
7.2	Case-S	Specific Evaluation	27
	7.2.1	Vehicle-Specific Live Load Factors	28
	7.2.2	Mean Load Method	28
	7.2.3	Inherent Conservatism in Military Load Classification System	29
7.3	Bridge	Evaluation for Different Acceptable Risk Levels	31
7.4	Chapte	er Conclusions 13	31
Chapte	er 8: Sui	mmary, Conclusions, and Recommendations for Future Work	32
8.1	Summ	ary 13	32
	8.1.1	Acceptable Risk of Bridge Collapse in the Context of Military Operation	s 32
	8.1.2	Statistical Parameters for Weight of Military Transport and Fighting Vehicles	32
	8.1.3	Live Load Effects Caused by Military Vehicles	33
	8.1.4	Live Load Factors for Military Vehicles	33
	8.1.5	Applying Limit State Design to Military Load Classification System 13	33
8.2	Conclu	usions	34
	8.2.1	Target Reliability for Military Bridge Design and Evaluation	34
	8.2.2	Statistical Parameters of Weight of Military Vehicles	34
	8.2.3	Live Load Effects of Military Vehicles	35
	8.2.4	Live Load Factors for Military Vehicles	35
8.3	Recom	mendations for Future Research	36
	8.3.1	Dynamic Load Effect Caused by Military Vehicles	36

8.3.2	Lateral Load Distribution of Military Vehicles
8.3.3	Review of Bridge Inventory to Calibrate of Load Factors 137
8.3.4	Review of Other Military Vehicles in use by NATO and Canadian Forces
8.3.5	Collection of Field Data for Military Vehicles
8.3.6	Risk Optimization of Bridge Evaluation in the Context of Military Operations
8.3.7	Target Reliability for Acceptable Risk Levels other than NEGLIGIBLE
8.3.8	Load Factor Calibration for Shear and Other Types of Spans 140
8.3.9	Multiple Vehicle Loading and Traffic Combinations
8.3.10	Calibration for Evaluation of Bridges in Other Nations
References	
Appendix A - Container I	DND National Material Distribution System Intermodal Shipping Mass Data 2006-2012, Departing Afghanistan
Appendix B -	Shipping Container Eccentricity 171
Appendix C - 2012, Depa (AHSVS).	DND National Material Distribution System Vehicle "Weight" Data 2006- art and Arrive Afghanistan, Armoured Heavy Support Vehicle System 173
Appendix D - 2012, Depa Carrier (LA	DND National Material Distribution System Vehicle "Weight" Data 2006- art and Arrive Afghanistan, Light Armoured Vehicle III – Infantry Section AV III-ISC)
Appendix E- Fraction	Weight Bias Coefficient and Variability in Relation to Payload Weight
Appendix F - from: CSA	Comparison of Lateral Load Distribution Amplification Factors Derived (2006a); AASHTO LRFD Bridge (2012); and Pinero (2001)
Appendix G - (Transport)	Load Effect Bias Coefficient and CoV on Bridges for AHSVS-PLS , LAV III-ISC (Armoured Personnel Carrier), and Leopard 2A4M Tank193
Appendix H -	Example Bridges used for Load Factor Calibration
Appendix I - I Traffic	Bridge Specific Load Factors, Interior Girder Moments for Single Lane 242

Appendix J - Partial Load Factors
Appendix K - Expedient Derivation of Partial Load Factor for the Tracked Light Armoured Vehicle (TLAV) – Remote Weapons System (RWS)
Appendix L - Partial Load Factors for Fighting and Wheeled Military Vehicles Based on Payload Weight Fraction
Appendix M - Military Load Classification versus Span for Canadian Forces Vehicles27
Vitae

List of Tables

Table 2.1 – Mission risk assessment matrix with risk definitions (DND, 2007b) 15
Table 2.2 – Acceptable Risk Level (ARL) and associated annual probability of death for conflict or battle within ARL
Table 2.3 – Annual deaths per 100,000 persons aged 20-24 years (Statistics Canada, 2012) 21
Table 2.4 – Event risk for single bridge crossing by n vehicles
Table 4.1 –Nominal AHSVS-PLS with trailer axle loads
Table 4.2 – Necessary data mapping for determination of best-fit parameters 38
Table 4.3 – Intermodal shipping container average eccentricity (Brassington, 2014)
Table 4.4 – AHSVS-PLS "weight" quantification
Table 4.5 – Uparmoured LAV III-ISC nominal axle loads prior to Afghanistan modifications
Table 4.6 – LAV III – ISC operational loads
 47 Table 4.6 – LAV III – ISC operational loads
 47 Table 4.6 – LAV III – ISC operational loads
47 Table 4.6 – LAV III – ISC operational loads
47 Table 4.6 – LAV III – ISC operational loads
47 Table 4.6 – LAV III – ISC operational loads
47 Table 4.6 – LAV III – ISC operational loads
47 Table 4.6 – LAV III – ISC operational loads

Table 5.1 – AHSVS-PLS static load bias coefficient and CoV, for simply supported spans. 75
Table 5.2 – LAV III-ISC static load effect bias coefficient and CoV, for simply supported spans
Table 5.3 – Leopard 2A4M static load effect bias coefficient and CoV, for simply supported spans
Table 5.4 – Description of military vehicles from experimental research of the dynamic loads
Table 5.5 – Dynamic effects for military vehicles on various bridge types 84
Table 5.6 – Statistical parameters for dynamic load allowance (CSA, 2006b) 84
Table 5.7 – Trimble, et al. (2003) dynamic load increment for M1075 PLS(1) 85
Table 5.8 – Lateral load distribution factors 92
Table 5.9 – Statistical parameters for load distribution factors, interior girder bending(Pinero, 2001)
Table 5.10 – Accuracy of proposed load distribution factors for interior girder bending moments (Pinero, 2001)
Table 5.11 – Bias coefficient and CoV of load distribution factors from Pinero (2001) 94
Table 5.12 – Load distribution factor formulas for interior girder bending moments for singlelane traffic on slab-on-beam bridges (Pinero, 2001)95
Table 5.13 – Load effects for AHSVS-PLS, short spans
Table 5.14 – Load effects for AHSVS-PLS, other spans 98
Table 5.15 – Load effects for LAV III-ISC Case (1), short spans
Table 5.16 – Load effects for LAV III-ISC Case (1), other spans
Table 5.17 – Load effects for Leopard 2A4M tank, short and other Spans

Table 5.18 – Bias coefficient of load effect using different statistical parameters as a fraction
of using statistical parameters in CSA (2006b) 100
Table 5.19 – CoV of load effect using different statistical parameters as a fraction of using
statistical parameters in CSA (2006b) 100
Table 5.20 – Summary of dynamic effects and lateral load distributions 102
Table 6.1 – Dead load factors, α_D (CSA, 2006a)
Table 6.2 – Statistical parameters for dead load effects (CSA, 2006b) 103
Table 6.3 – Dead load moment per girder and resistance parameters 104
Table 6.4 – Live load moments per girder 105
Table 6.5 – Achieved reliability indices using average load factors derived from a target
index 3.75, 1.000 vehicles per vear
Table 6.6 – Avg. load factors for bending moments, AHSVS-PLS
Table 6.7 – Avg. load factors for bending moment, AHSVS-PLS with trailer, uncorrelated
container weight
container weight
Table 6.8 – Avg. load factors for bending moment AHSVS-PLS with trailer fully correlated
Table 0.8 – Avg. load factors for bending moment, Aris vS-r LS with traner, fully concluded
container weight
Table 6.9 – Avg. load factors for bending moment, LAV III-ISC (Case 1) 111
Table 6.10 – Avg. load factors for bending moment, LAV III-ISC (Case 2) 111
Table 6.11 – Avg. load factors for bending moment, LAV III-ISC (Case 3) 112
Table 6.12 – Avg. load factors for bending moment, Leopard 2A4M tank 112
Table $6.13 - Average load factors compared to partial load factors for a traffic volume 1,000$
vehicles per year 114
Table 6.14 – Reliability achieved using partial load factors 115

Table 6.15 – Payload "weight" fraction for Canadian Forces vehicles 117
Table 6.16 – Military vehicle payload bias coefficient and CoV 118
Table 6.17 – Partial load factors for different military vehicle categories, $\beta = 3.75$ 120
Table 6.18 – Load factors for military Wheeled-Transport (W-T) vehicles 123
Table 6.19 – Load factors for military Wheeled-Fighting (W-F) vehicles 123
Table 6.20 – Load factors for military Tracked-Transport (T-T) vehicles 124
Table 6.21 – Load factors for military Tracked-Fighting (T-F) vehicles 124
Table 7.1 – MLC designation for moment classification comparison ASD and LSD 127
Table 7.2 – MLC versus span length, AHSVS Tractor with 72t Trailer

List of Figures

Figure 1.1 – Hypothetical standard class vehicles – Wheeled, (NATO, 2006) 2
Figure 1.2 – Hypothetical standard class vehicles – Tracked, (NATO, 2006) 2
Figure 1.3 – Unit bending moment and shear force charts for MLC (Wheeled) vehicles (NATO, 2006)
Figure 1.4 – Comparison of two MLC 20 (Wheeled) vehicles (Photos: Wikipedia.org Commons, 2011)
Figure 2.1 – Acceptable annual risk continuum for military bridging 22
Figure 4.1 – Cumulative distribution for intermodal shipping container "weights" 39
Figure 4.2 – Probability density for shipping container eccentricities $\geq 5\%$
Figure 4.3 – Shipping container eccentricity for different mass categories: (a) cumulative probability; (b) probability density
Figure 4.4 – "Weight" of LAV III-ISC's flown from Afghanistan 2006-2012
Figure 4.5 – Log-Normal distribution for LAV III-ISC flown "weights" 51
Figure 4.6 – Leopard 2A4M tank 54
Figure 4.7 – Weibull distribution for simulated Leopard 2A4M tank GVWs
Figure 4.8 – Maximum annual weight statistical parameters (n = 1,000 veh/yr) versus payload weight fraction: (a) bias coefficient; (b) CoV
Figure 4.9 – Idealization of AHSVS-PLS with PLS trailer (m): (a) Vehicle axle spacing; (b)
Idealized representation
Figure 4.10 – Idealization of LAV III-ISC (m): (a) Vehicle axle spacing; (b) Idealized representation with nominal location of payload; (c) Idealized representation with simulated
location of payload64

Figure 4.11 – Tracked vehicle load distribution cases: (a) Idealized load; (b) Worst case for
moment; (c) Worst case for shear
Figure 5.1 – Gumbel distribution for event AHSVS-PLS with trailer axle loads: (a) Axle 1 &
2 loads; (b) Axle 3 & 4 load; (c) Axle 5 & 6 loads; (d) Shear load effect on 1 m span 70
Figure 5.2 – Probability density of AHSVS-PLS with uncorrelated trailer axle loads: (a)
Overall; (b) Inset detail
Figure 5.3 – Static shear force demand versus span length: AHSVS-PLS and trailer with
uncorrelated container weights: (a) Bias Coefficient; (b) CoV
Figure 5.4 – Static bending moment demand versus span length: AHSVS-PLS and trailer
with uncorrelated container weights: (a) Bias Coefficient; (b) CoV
Figure 5.5 – Static force demand shear versus span length: LAV III-ISC – Case (1) : (a) Bias
Coefficient; (b) CoV
Figure 5.6 - Static force demand moment versus span length: LAV III-ISC – Case (1): (a)
Bias Coefficient; (b) CoV
Figure 5.7 – Static force shear demand versus span length: Leopard 2A4M tank 80
Figure 5.8 – Mean DLA and CoV from Table 5.5 and CoV range for DLA as proposed by
Lenner (2014)
Figure 5.9 – Amplification factor versus span length: All Beam Bridges (Pinero, 2001), 36 m
steel girder bridge (Kim, Tanovic, & Wight, 2010)
Figure 5.10 – Amplification factor versus girder spacing: Pre-Stressed Concrete Bridge
(Pinero, 2001), 37 m CPCI girder bridge (Morrison Hershfield Ltd., 2012)
Figure 5.11 – Amplification factor versus span length: Steel Girder Bridges (Pinero, 2001),
36 m steel girder bridge (Kim, Tanovic, & Wight, 2010)
Figure 6.1 – Partial load factors computed using separation factors for vehicles from Table
$6.15 (n = 1,000 \text{ Veh/yr}) \dots 119$

Figure 6.2 – Partial load factor (1,000 Veh/yr), based on payload weight fraction 120
Figure 6.3 – Impact of annual traffic volume on partial load factor
Figure 7.1 – TLAV-M113A3-RWS (MLC 19 - Tracked), MLC versus span length 130
Figure 7.2 – AHSVS Tractor with 72t trailer (MLC 113 - Wheeled), MLC versus span length

Nomenclature

Abbreviations

AHSVS-PLS	Armoured Heavy Support Vehicle System - Palletized Loading System
APC	Armoured Personnel Carrier
ARL	Acceptable Risk Level
ASD	Allowable Stress Design
CoV	Coefficient of Variation
CHBDC	Canadian Highway Bridge Design Code
CSA	Canadian Standards Association
DAF	Dynamic Amplification Factor
DLA	Dynamic Load Allowance
DND	Department of National Defence (Canada)
FEA	Finite-Element Analysis
GVW	Gross Vehicle Weight
LAV III-ISC	Light Armour Vehicle III – Infantry Section Carrier
LDF	Load Distribution Factor
LRFD	Load and Resistance Factor Design
LSD	Limit State Design
MLC	Military Load Classification System
MSR	Main Supply Route
NATO	North Atlantic Treaty Organization
STANAG	Standardization Agreement
UDL	Uniformly Distributed Load

Symbols

Α	cross-sectional area; or analysis coefficient (mean value \bar{A} , bias δ_A , CoV V_A)
DAF	Dynamic Amplification Factor (mean value \overline{DAF} , CoV V_{DAF})
D_i	specified dead loads (mean value \overline{D}_i , bias δ_{D_i} , CoV V_{D_i})
DLA	Dynamic Load Allowance (mean value \overline{DLA} , bias δ_{DLA} , CoV V_{DLA})
Ε	Young's modulus of elasticity
E_B	modulus of elasticity of the girder
E_D	modulus of elasticity of the deck

е	eccentricity (mean eccentricity \bar{e} , maximum eccentricity e_{max})
e_g	distance between the centers of gravity of the beam and deck
F(x)	cumulative probability
$F_A(x)$ f_b	cumulative probability for the maximum observed weight x in n observations natural frequency of bridge
$F_E(x)$	cumulative probability at for event weight x
F_m	amplification factor for lateral load distribution
i	iteration number; or rank
Ι	moment of inertia
k	Weibull distribution dispersion parameter
K_g	longitudinal stiffness parameter
L	stringer, girder or span length; or nominal static live load (mean value \overline{L} , bias δ_L , CoV V_L)
L_1	nominal live load effect (mean value $\overline{L_1}$, bias δ_{L_1} , CoV V_{L_1})
т	mass of shipping container (mean mass of a single shipping container $\overline{m_1}$, mean mass of two shipping containers $\overline{m_2}$)
M_{D_f}	factored dead load moment per girder
M_g	design moment of a girder
M _{g,avg}	average design moment per girder
M_{l_0}	moment per design lane
M _{ref}	moment per girder
M_r	factored moment resistance per girder
M_T	maximum moment per design lane, CSA (2006a)
\breve{m}_X	Log-Normal distribution central tendency parameter
n	total number of vehicles; number of vehicles entering and leaving the road segment per year; number of observations; number of vehicles per year; or number of design lanes
Ν	number of girders in a slab-on-girder bridge
n _d	number of military fatalities in a conflict
n _i	number of vehicles for the for the reference population
n _{min}	the minimum number of vehicles required to cross a bridge
n_p	total number of military personnel involved in a conflict
p	probability of failure for each crossing
P_{d_1}	annual probability of death for travel along the road segment

P_f	probability of failure
P_{f0}	acceptable annual probability of military personnel fatality attributed to bridge failure
$P_{f_{ARL}}$	annual probability of death corresponding to the ARL
P_{f_T}	probability of death for the conflict
$P_{f_{yr}}$	annual probability of death
P _i	plotting position for the i^{th} observation
P_r	probability of death per vehicle-km
$P_Y(y)$	probability that y collapses happen in n_{min} trials
S	spacing between vehicle axles
S Ī,	constant of proportionality, 0.025; girder spacing; or load effect (mean value bias δ_S , CoV V_S)
S _i	effects due to specified loads
R	resistance (mean value \overline{R} , bias δ_R , CoV V_R)
R_L	modification factor for multi-lane loading
Т	duration under consideration in year
t_s	depth of concrete slab
W _c	nominal curb weight of the vehicle (mean value $\overline{W_c}$, bias δ_c , CoVV _c)
W_p	nominal payload (mean value $\overline{W_p}$, bias δ_P , CoV V_p)
W_V	nominal vehicle weight (mean value $\overline{W_V}$, bias δ_V , CoV V_V)
x	vehicle or intermodal shipping container "weight"
у	number of collapses

Greek Symbols

α	significance level for Kolmogorov-Smirnov (K-S) test
$lpha^*$	separation factor
α_D	dead load factor
α_i	load factors
α_{L_1}	live load factor
β	Gumbel distribution dispersion parameter; or target reliability index
β_1	Gumbel distribution parameter for the weight of a single shipping container

Gumbel dispersion parameter for two independent shipping containers
annual maximum weights Gumbel distribution dispersion parameter
payload weight fraction
central tendency parameter for Gumbel or Weibull distribution
Gumbel central tendency parameter for the weight of a single shipping container
Gumbel central tendency parameter for the sum of two independent shipping container weights
Gumbel distribution central tendency parameter for annual maximum weight
standard deviation
standard deviation of the weight of a single shipping container
standard deviation of the combined weight of two independent shipping
standard deviation of the payload weight
standard deviation of the vehicle weight
Log-Normal distribution dispersion parameter
structural action resistance factor

Chapter 1

1 Introduction

Military vehicles frequently use civilian bridges in domestic, peacekeeping, stabilization and combat theatres of operation. The load effects of military vehicles, both wheeled and tracked, are unique and likely different than those of civilian vehicles in normal traffic. The probabilistic quantification of military vehicle bridge loading has not been fully performed. As such, calibration to determine appropriate load factors for military loading of bridges cannot be undertaken and the corresponding level safety is unknown. This lack of calibration prevents the proper implementation of Limit States methods in military bridge design and evaluation. Investigation of the appropriate life safety risk in bridges for the military has not taken place. Without a defined acceptable risk and quantification of military vehicle loads on bridges, Limit States design and evaluation methods will not be adopted for general military use.

1.1 Military Load Classification System

The Military Load Classification System, outlined in North Atlantic Treaty Organization (NATO) Standardization Agreement (STANAG) 2021, (NATO, 2006) categorizes military vehicle loading and the capacity of bridges, ferries, and rafts. "The aim of this agreement is to standardize, for NATO forces, a method of computing the Military Load Classification (MLC) of bridges, ferries and rafts (including their landing stages) and vehicles" (NATO, 2006). Bridges are assigned an MLC based on the highest vehicle MLC that can safely traverse them. Thus, the Military Load Classification System is the basis of military bridge design and evaluation for NATO member countries and so allows better interoperability between NATO countries. STANAG 2021 (NATO, 2006), outlines the need for NATO countries to account for dynamic load effects and consider appropriate factors of safety when determining a bridge rating, but the definition and application of these values are the purview of each member country (NATO, 2006).

1.1.1 Vehicle Classification

According to NATO (2006), the means of classifying a vehicle is closely associated with the procedure for rating a bridge. This document specifies thirty-two hypothetical wheeled and tracked vehicles, as shown in Figure 1.1 for MLC 20 and 24 Wheeled vehicles and Figure 1.2 for MLC 20 and 24 Tracked vehicles. These thirty-two standard classes between MLC 4 and MLC 150 are used to derive maximum shear and moment tables and charts for these vehicles acting on simply supported reference spans from 1 m to 100 m with ground contact points between vehicles at 30.5 m apart (NATO, 2006). A sample chart for wheeled vehicles is shown in Figure 1.3. Each line in Figure 1.3 corresponds to one of the 16 standard-class wheeled vehicles. The numbers in the vertical column, on the right side of the figure are the corresponding MLCs, spaced vertically to reflect their relative position.

Figure 1.1 – Hypothetical standard class vehicles – Wheeled, (NATO, 2006)

Figure 1.2 – Hypothetical standard class vehicles – Tracked, (NATO, 2006)

Figure 1.3 – Unit bending moment and shear force charts for MLC (Wheeled) vehicles (NATO, 2006)

To assign an MLC to a vehicle, first, the maximum bending moment and shear force due to its fully laden state is calculated for each span length in the tables. For each span length, the bending moment and shear force will be compared to the standard classes (using linear interpolation to assign an MLC when falling between standard classes). The MLC of a vehicle is for the span length which yields the highest MLC, in moment or shear. "At the end of calculations, the MLC as calculated shall be rounded off to the nearest whole figure" (NATO, 2006). It is beneficial to categorize a military vehicle in this manner, rather than its number of axles and Gross Vehicle Weight (GVW), because it allows each vehicle to be rated based on the nominal maximum load effects it causes on a simple span.

One shortfall of this MLC definition procedure is that it does not specifically address the expected, potential or observed variability of the load. The assigned MLC is generally assigned to the whole fleet, which may or may not account for the variability of the actual load effects of each vehicle within that fleet. Thus, two fleets with the same expected fully laden vehicle weight, one with a high variability and the other with a low variability, could receive the same MLC designation. Figure 1.4 indicates an example of such a comparison. The US Stryker – Infantry Carrier Vehicle and the US M813A1-5-ton Cargo Truck are both rated at MLC 20 Wheeled (US Department of the Army, 2008). Although both vehicles have the same MLC designation, the GVW of the M813A1 is mostly payload, transporting various types of cargo, whereas the role of the Stryker is limited to the transporting infantry without significant additional cargo. It is therefore likely that the M813A1-5-ton Cargo Truck would have much greater variability of load effects because it is much easier to overload the M813A1 than the Stryker. Yet they are given the same MLC rating.

M813A1-5-ton Cargo Truck

US Stryker - Infantry Carrier Vehicle

Figure 1.4 - Comparison of two MLC 20 (Wheeled) vehicles (Photos Left to Right: Army Trucks Inc. (2014), US Army (2014))

Although it would seem appropriate to quantify and account for the bias and variability of vehicle load effects in the vehicle and/or bridge MLC designation, this is not addressed in the minimum requirements outlined in NATO (2006). This can be problematic and inefficient for a vehicle that causes relatively low load-effect variability and will have a lower probability of failure than other vehicles with the same MLC that cause greater load-effect variability. Within one MLC designation, the bridge failure probability will therefore be different for each vehicle fleet. Although this may be desirable due to various factors (such as number of personnel that would be vulnerable during bridge collapse, the vehicle cost, the impact of mobility limitations has on achieving/maintaining battlespace advantage, the impact of loss of vehicle on military operations, etc.) this should be a conscientious decision where differences in risk are rationally accounted for.

1.1.2 Bridge Rating

For bridge design and evaluation, the allowable moment and shear resistance of the bridge span are compared to tables and charts in NATO (2006) such as the example shown in Figure 1.3. The bridge MLC rating is the minimum obtained from the moment and shear charts. How each nation defines the allowable moment and shear is their own

prerogative. This can be done by Allowable Stress Design, limiting the allowable stress in structural members subjected to specified loads, or Limit States Design using load and resistance factors. Either approach is roughly based on of "the current civilian structural standards published in their respective countries" (Lenner, Keuser, & Sykora, 2013) with slight modifications. Given that there is limited literature available on force effects due to military traffic on bridges (Kim (2012) and Kim, Tanovic and Wight (2010)) often the Allowable Stress Design method is used as the bridge design and evaluation methodology.

1.2 Limit States Design

Limit States Design (LSD) has generally been adopted by civilian standards for bridge design and evaluation in Canada (e.g. CSA, 2006a) and is similar to Load and Resistance Factor Design (LRFD) that is slowly being adopted in the United States (e.g., AASHTO, 2012). Given that most NATO members are countries that have adopted or are in the process of adopting LSD or LRFD for their bridge evaluation and design standards, it is a logical progression that bridge design and evaluation standards for military traffic would follow suit. For the military, there are advantages in adopting LSD in their bridge standards; however, to do so requires the collection and quantification of statistical data on military traffic loading effects on bridges.

1.2.1 Allowable Stress Design Methods

Prior to the adoption of LSD methods, the predominate approach to structural design was Working Stress Design in Canada, which is similar to Allowable Stress Design (ASD) in the United States (US). ASD is still generally adopted when there is insufficient information available to employ LSD. "The ASD method establishes the ... allowable stress for each construction material as a fraction (or percentage) of the material's loadcarrying capacity, and requires that calculated or design stresses in the structure do not exceed the allowable stress" (DND 2007a). In its purest form, ASD does not consider, in a probabilistic sense, the contribution of the variability of loads and material strengths to the overall structural safety.

1.2.2 Limit States Design Methods

LSD is a more rational approach to structural design and evaluation because it accounts for the statistical variability of both the applied loads and resistance of the structure, as well as the consequences of a particular limit state occurring. In LSD, "[a] structure, or part of a structure, is considered unfit for use or to have failed when it exceeds a particular [limit] state... beyond which its performance or use is impaired" (CSA, 2011). The limit states of particular interest in bridge design and evaluation are:

- Ultimate limit states "The ultimate limit states involve a loss of equilibrium that causes all or part of the structure to collapse" (CSA, 2011). This is generally associated with structural instability or loss of the capacity of structural components due to excessive demands.
- Fatigue limit state "The fatigue limit state is associated with unstable crack growth under cyclic loading that potentially leads to fractures in service and, in turn, to full or partial collapse of the structure" (CSA, 2011). This limit state differs from ultimate limit state in that the behaviour the material, such as its capacity, will change due to cyclic loading and has a strong time/usage component in its derivation.
- Serviceability limit states "The serviceability limit states restrict the normal use and occupancy of the structure" (CSA, 2011). Although exceeding a serviceability limit state does not result in structural failure it does render a structure non-functional for its intended use due to excessive deformations, localized damage or vibration.

1.2.3 Advantages of LSD

LSD has several advantages over ASD. Overall, risks accepted for the design, whether life-safety or economic, are conscious decisions. Some specific advantages of LSD over ASD are:

• in LSD, the factors used in design are tied to the probability of exceeding a limit state by the reliability index, "hence, the advantage of the calibrated

LRFD format from a reliability viewpoint is uniform safety indexes [sic] over different materials, spans, and load effects" (Transportation Research Board, 2001);

- LSD is able take into consideration each member failure mode differently, depending on its impact to life safety, and is better able to incorporate the realities of failure when determining appropriate levels of risk; and
- LSD can account for different variability of specific load types through load factor selection.

In the context of the military, some additional advantages of adopting LSD are:

- ability to quickly estimate and compare the level of life-safety risk being assumed in "risk crossings" as defined by NATO (2006); and
- potential to calibrate bridge life-safety risk to the life-safety risk of the associated military operation.

An impediment to the conversion of structural "design models to the LRFD format from the previous allowable stress design (ASD) practices [is] the lack of high-quality data to calibrate load and resistance factors" (Allen, Nowak, & Bathurst, 2005). This can be a substantial effort. However, the benefits of LSD/LRFD potentially warrant such effort.

1.2.4 Data Needed for Limit State Design of Military Bridge Design and Evaluation

To be able to implement LSD, both structural loads applied and resistances must be quantified in probabilistic terms.

1.2.4.1 Loads

Most bridge loads are able to be accurately described in probabilistic terms in Canada, the United States, and most Western European countries. Describing military vehicular loads in probabilistic terms is the greatest obstacle preventing the application LSD to military bridge design standards. Although there is information available on nominal

weights of military vehicles, there are little data on the operational weights in terms of bias and variability with respect to the nominal weight. Probabilistic quantification of dynamic load effects caused by military vehicles is also lacking in available literature. Collection of this data is necessary to move military bridge design and evaluation from ASD to LSD.

1.2.4.2 Resistance

Structural resistances in most NATO countries are well documented and so can be used for the implementation of LSD for military use (e.g., CSA (2006a, 2006b)). Without some estimate of this behaviour it would be difficult to assign an MLC to a bridge using a LSD approach. Given that bridges will likely be subject to military vehicular loads for short periods of time, the effects of fatigue can likely be ignored.

1.3 Research Objectives

The overarching objective of this research is to quantify the probabilistic description of military vehicular loads on bridges and the associated structural reliability. This will facilitate the development of load factors related to military vehicle loads so that LSD methods can be adopted for use by the Canadian Forces with confidence. The related sub-objectives of this thesis are to:

- examine acceptable life-safety and optimal risks (both life-safety and economic)for bridges in the context of acceptable life-safety risk for military operations to formulate suitable target reliabilities;
- quantify the probabilistic load effects of three vehicles currently in use by the Canadian Forces:
 - Armoured Heavy Support Vehicle System Palletized Loading System (AHSVS-PLS);
 - Light Armour Vehicle III Infantry Section Carrier (LAV III-ISC); and
 - Leopard 2A4M tank.

- generalize the probabilistic load effects of these three vehicles for evaluation of other military vehicles;
- derive load factors specific to the AHSVS-PLS (transport), LAV III-ISC (armoured personnel carrier) and Leopard 2A4M tank, as well as, general load factors for categories of military vehicles; and
- describe methods to reconcile LSD methods with current Military Load Classification System.

1.4 Thesis Outline

To effectively use LSD, one must be able to reasonably quantify: probabilistic loads; probabilistic resistance; and target reliability (on the basis of acceptable life-safety risk). Specifically for Canada, loads (with the exception of military vehicles) and material properties are already well understood in this sense. Bridge acceptable risk in the context of military operations has not been previously explored. As such, bridge acceptable risk for military operations needs to be defined, and probabilistic military vehicle load effects need to be derived.

"Acceptable levels of risk attaining a limit state, to be used as targets in design, should be assessed with due regard to... criteria applicable to the structures under consideration" (CIRIA, 1977). Acceptable levels of risk for bridges in the context of military operations are discussed in Chapter 2, while factors to be considered in risk optimization, both life-safety and economic for bridges in use by the military are presented in Chapter 3. Different acceptable levels of risk are discussed; however, target reliabilities are only defined for circumstances similar to those given in CSA (2006a, 2006b).

Chapter 4 quantifies the probabilistic definitions of the Gross Vehicle Weight (GVW) for three military vehicles. Using these probabilistic definitions, Chapter 5 quantifies the load effects due to these three vehicles by exploiting previous research relating to the dynamic load effects and lateral load distribution of military vehicles.

Chapter 6 derives load factors calibrated to the load effects of the three vehicles from Chapter 5. Further to this, Chapter 6 proposes four Military Vehicle Categories with associated load factors that all military vehicles can be assigned to. Chapter 7 reconciles the proposed Military Vehicle Categories and load factors with the Military Load Classification System.

Chapter 8 summarizes research, presents the main conclusions and recommends follow-up research to further our understanding of military vehicle loads on bridges.

Chapter 2

2 Acceptable Risk for Military Bridges

Life-safety risk, defined in terms of probability of annual death unless otherwise stated, must account for some unique circumstances when evaluating bridges for military use. Given the unlimited liability expected of those in military service, the acceptable risk for military personnel may be higher than that for the civilian population they serve (Canadian Defence Academy, 2007). This chapter therefore seeks to define the maximum acceptable risk based solely on socially acceptable considerations, i.e., without considering economic factors or other benefits. This could be considered an upper risk limit for military bridge evaluation. Acceptable risk should account for "the proportionately greater public concern for multiple-death tragedies than for equivalent number of death caused singly by numerous accidents" (CSA, 1981). This aspect of acceptable risk, will not investigated in the context of acceptable risk for the military.

2.1 Acceptable Risk and Military Operations

Military operations inherently expose armed forces personnel to increased levels of acceptable risk due to: necessity for rapid execution of tasks, exposure to heavy specialized equipment, need to handle hazardous equipment and material (including lethal weapon systems whose intent is to maim or kill), enemy forces actions, and friendly forces actions, such as friendly fire (Armed Forces Epidemiological Board, 1996). It is deemed acceptable that military personnel assume these increased levels of acceptable risk due to the function they perform for the society they serve (Canadian Defence Academy, 2007). The purpose of a military fighting force is to impose the will and desire of the nation-state through the threat of force or the application of force up to and including the use of deadly force to achieve a political purpose. "By its very nature, the application of force will place individuals and resources in harm's way" (DND, 2007b).

2.1.1 Mission Planning Factors and Life Safety Risk

When conducting mission analysis, military planners must weigh the cost of putting personnel at risk of death or injury to the benefits of achieving the mission objective. At times this requires that some individuals assume disproportionally higher risks than others. In military operations, exposing a few individuals to very high risk levels can ensure reduced risk to all other personnel involved in the operation. Given the complexity of risk and the complexity of military operations, risk management tools are put in place "to provide a decision process that will aid planners in identifying, analyzing, evaluating and controlling all types of risk" (DND, 2007b). "[R]isk management is required in military planning to ensure that threats are fully considered, appropriate measures are taken to minimize their effects and that risk decisions are fully understood" (DND, 2007b). In general, this process involves (US Department of the Army, 1998):

- 1) identifying hazards;
- determining impact these hazards have on mission accomplishment in terms of probability and severity;
- 3) developing controls to mitigate the risk associated with hazards;
- 4) developing-analyzing-comparing course of actions
- 5) deciding on a course of action;
- 6) implementation of risk mitigation controls during task execution;
- supervision and re-evaluation during mission execution (which include adjusting to changes in the known situation); and
- mission evaluation to summarize lessons learned for next risk analysis cycle.

A main tenant of this process is to ensure that unnecessary risks are not accepted, and that additional risk is only accepted "if the benefits outweigh the potential costs or losses" (US Department of the Army, 1998). In the risk management process, even after risk mitigating measures are in place, residual risk will always exist; it is left to the commander to "decide whether to accept the level of residual risk to accomplish the mission" (US Department of the Army, 1998). If the residual risk is greater than what has been deemed acceptable by higher command guidance, then subordinate commanders must "seek the higher commander's approval to accept risks" (US Department of the Army, 1998) or change the mission scope to reduce the residual risk to an acceptable level.

2.1.1.1 Mission Risk Assessment

Table 2.1 shows the risk assessment matrix used in the risk management process where risks are defined in the context of accomplishing the mission. Similar to CSA (2011), military mission risk is defined on the basis of consequences and its associated probability of occurrence. Although expected personnel loss (which is essentially life safety risk during the execution of the mission) is closely associated with the risk of not accomplishing the mission, defining mission risk does not categorically identify the acceptable life safety risk to personnel (Wight, 1997). Although the aim is to minimize losses to achieve the mission objective, it might be warranted to increase the risk of mission failure to lower the life safety risk to personnel or increase life safety risk to minimize risk of mission failure. This decision is based on other considerations such as "the public reaction to [personnel] loss against national, strategic, operational or tactical objects" (DND, 2007b) and the consequences of mission failure, where at its extreme when "a leader's survival or when a regime, political, religious, ideological, or economic system is at stake, virtually any level of [life safety] risk may be acceptable" (Wight, 1997).
Risk Assessment Matrix							
		Probability					
Severity		Frequent A	Likely B	Occasional C	Seldom D	Unlikely E	
Catastrophic	I	E	E	Н	н	М	
Critical	II	E	Н	н	М	L	
Marginal	Ш	н	М	М	L	L	
Negligible	IV	М	L	L	L	L	
Risk Definitions							
E - Extremely High Risk: If these threats occur during the mission, it will most likely fail with severe consequences to personnel and equipment or operational objective(s). The ability to accomplish the mission will be lost.							
H – High Risk : If these threats occur during the mission a significant degradation of capability in terms of achieving the required operational objective(s), the inability to accomplish all parts of the mission, or the inability to complete the mission to standard will occur.							
M – Moderate Risk: If these threats occur during mission the expected degradation of mission capability in terms of achieving the required operational objective(s), accomplishing all parts of the mission, or completing the mission to standard will occur. An unlikely probability of catastrophic loss exists.							
L - Low Risk: Expected losses or effects have little or no impact on accomplishing the mission.							

Table 2.1 – Mission risk assessment matrix with risk definitions (DND, 2007b)

2.1.1.2 Acceptable Life Safety Risk

In the context of evaluating mission risk, the commander must weigh the cost/benefit of having personnel assume additional risk to achieve the mission. To quantify the appropriate life safety risk to achieve the mission is a complicated procedure that uses incomplete situation information. It relies on personal experience and other human qualities (such as morale and esprit de corps) that are difficult to quantify in methodical terms. Regardless of how the commander determines the appropriate life safety risk for various sub-elements under their command, this information must be conveyed in a manner that is both reliable and easily understood. Wight (1997) describes life safety based on Acceptable Risk Levels (ARLs), shown in Table 2.2, that "would be a commander's directive to subordinates to shape further planning and execution decisions that specifies what level of potential losses is acceptable in order to achieve the mission objectives" (Wight, 1997). Theses ARLs, are appropriate for use for engineering systems since they can be quantified in terms of probability of death per year. Where the

probability of death per year, P_{fyr} , was not explicitly stated by Wight (1997), it was possible to compute this for each example battle or conflict used. Table 2.2 shows the P_{fyr} for these battles or conflicts, along with other more recent examples, as calculated using:

[2.1]
$$P_{f_{yr}} = 1 - \left(1 - \frac{n_d}{n_p}\right)^{\frac{1}{T}}$$

where n_d denotes the number of military fatalities in the conflict, n_p is the total number of military personnel involved in the conflict and T is the duration under consideration in years. Equation [2.1] is derived assuming that probability of death and total number of personnel remains constant over the duration of the conflict. The actual probability of death varies throughout the conflict.

ARL	Order of Magnitude of Probability of Death per Year (%)	Example within ARL	Probability of death pe	r year (%)		
		This is general	All Causes	0.06 ^[a]		
Negligible	0.01	of death for 20- 24 year olds	Non-Disease Related	0.04 ^[a]		
		Operation Iraqi	All Causes (All)	0.42 ^[b]		
Low	0.10	Freedom 2003- 2007 (US)	Combat Only (All)	0.34 ^[b]		
		Kandahar,	All Kandahar (All)	0.96 ^{[c][d]}		
		Afghanistan	Inside Airfield (All) ^[e] 0.06 ^{[c][d]}			
Madamata	1.0	2006-2011 (Canada)	Outside Airfield (All) ^[e]	1.9 ^{[c][d]}		
Moderate	1.0	Vietnam War	All Causes (All)	2.2 ^[b]		
		1965-1974 (US)	Combat Only (All)	1.8 ^[b]		
			All Causes 16 Dec 1944 to 25 Jan 1945	25 ^[f]		
		Battle of the	(All)			
High	10	Bulge (US)	All Causes 19 Dec 1944 - 6 Jan 1945 (101st Airborne)	45 ^[g]		
		Battle of Britain WWII (Allied)	Combat Only (Pilots Only)	49 ^[h]		
Extreme	70 to Approaching 100	Kamikaze Missions WWII (Japan)	_			

Table 2.2 – Acceptable Risk Level (ARL) and associated annual probability of death for conflict or battle within ARL

[a] Table 2.3 – Annual deaths per 100,000 persons aged 20-24 years

[b] Goldberg (2010)

[c] icasualties.org (2013)

[d] canada.com (2013)

[e] Assumed half troops at airfield at all times. Average number of troops = 2,595, 141 fatalities outside the airfield, 5 fatalities inside the airfield

[f] Wikipedia.org (2014a), 610,000 US troops, 19,000 fatalities, duration of 40 days

[g] Wikipedia.org (2014b), 11,800 101st Airborne troops, 341 fatalities, duration of 18 days

[h] Vancata (2014), 2,367 allied pilots, 446 fatalities, duration of 113 days

2.2 Acceptable Risk for Military Personnel during Bridge Crossings

In military operations, a continuum of acceptable risk exists that depends on the conflict, operation, mission and individual. As such, it would be unreasonable to assign a single value to the acceptable risk for ancillary activities that military personnel participate in during military operations. In the context of military traffic, there should be a continuum of acceptable risk for bridges that is aligned with the Acceptable Risk Level (ARL) of the military operation. Although other factors must be accounted for to estimate the optimum level of risk, this acceptable risk represents the upper bound of risk allowed in bridge crossings. Military planners should also consider if civilian traffic (vehicular or pedestrian) will be present when military vehicles are traversing the bridge. In this case, the civilians would be exposed to the same risk as the military personnel, so the acceptable risk may be lowered from that corresponding to the ARL to that considered acceptable for civilians. This socially acceptable risk for civilians may vary with the situation.

The concept of differing risk levels for bridges based on the type of military operation is not new. During World War II, Britain developed a military-specific classification for roughly 40,000 bridges of importance throughout the country (Chettoe, 1948). In establishing allowable stresses to calculate bridge strengths, Chettoe (1948) states: "Clearly, when the country was in danger of invasion, the use of normal stresses would have laid too much restriction on military movements". Such classification would be used during "…actual fighting or manoeurves – and it was felt that the stresses chosen should be as high as possible – subject to the proviso that a reasonable number of the heaviest loads allowable would not damage the bridges". A higher allowable stress of 50 percent in excess of normal was used to assess and classify bridges. In some cases, dual classifications were given with the lower classification based on allowable stresses of 25 percent in excess of normal (Chettoe, 1948). In the case of "dual classifications, the military authorities were asked to use the lower or "routine" figure whenever possible" (Chettoe, 1948). For more extreme situations "…it was made clear to the military

authorities that the assessment made did not represent the ultimate strength of the bridges, and that, if necessary in the course of actual fighting, loads perhaps twice as great could have been taken across without actual collapse, though the bridges might be irreparably damaged in so doing" (Chettoe, 1948). Given that a land invasion of Britain in World War II might have allowed for a HIGH or EXTREME ARL for Allied Forces in the conduct of warfighting, it is reasonable that greater risks of bridges failure were deemed acceptable following Chettoe's recommendations.

2.2.1 NATO Standardized Agreement 2021 - "Risk Crossing"

NATO Standardized Agreement 2021 (2006) specifies that if a vehicle with a specified MLC that "... is less than or equal to the MLC of the bridge..., the vehicle can cross the bridge...; otherwise it must be diverted" (NATO, 2006). However, "...under exceptional operational conditions, this prohibition may be lifted on special decision of the theatre commander in the operational zone, or on that of civil authorities in areas under their control" (NATO, 2006). These exceptions would be considered "risk crossings". Given that each mission within a military operation has an ARL that could allow for different levels of risk during bridge crossings, a crossing need not be considered a "risk crossing" that required theatre commander approval unless the probability of failure allowed for given the ARL of the mission was exceeded. There could be further restrictions for bridges along designated Main Supply Routes (MSRs), where a bridge collapse may result in strategic consequences. This would give lower levels of command the flexibility necessary to gain the initiative in higher risk missions. If mission risk analysis indicated that crossing a certain bridge was required for mission success, and this activity was a lower risk than the ARL of the operation, it would not require higher command approval since this risk is implicitly allowed given the ARL set by higher command.

2.2.2 Acceptable Risk Level and Maximum Allowable Probability of Bridge Failure

To determine the appropriate risk for bridges used by the military in the absence of civilians, a baseline acceptable risk should be established. The risk of bridge failure

during a crossing should be lower than that of the associated military activities, which is the ARL or the expected losses of the military operation.

Acceptable risk in bridge design and evaluation for civilian application has been defined and used to calibrate civilian design standards based on Limit State Design methods. The annual risk of fatality associated with bridges in Canada is in the order of 0.1×10^{-6} , which "has been associated with a satisfactory fatality rate for bridge users" (Allen, 1992). Railway lines have deemed that 1×10^{-6} is an acceptable annual risk of fatality (Cremona, 2011). In comparing the fatal accident rate of different activities, Menzies (1997) found that for short and medium span bridges the maximum annual "socially acceptable risk of accidental death to members of the public associated with normal highway bridge collapse [is 1×10^{-6}]". Menzies (1997) approached the problem using the fatal accident rate of driving by car of 150×10^{-6} as an upper bound and the background fatal accident rate at home of 10×10^{-6} as a lower bound. The "statistics for all types of accident suggest that a fatal accident rate of about $[20x10^{-6}]$ would be an acceptable value relating to bridge collapse" (Menzies, 1997). This value was however lowered to 1×10^{-6} due to subjective attitudes associated with voluntary and involuntary exposure to risk, "on the basis that the risk of loss of life caused by bridge collapse is an involuntary one, the acceptable probability for such an event is in the region of 0.1×10^{-6} to 1x10⁻⁶" (Menzies, 1997).

Adopting Menzies' perspective, it could be argued that, military activities in Canada, including bridge crossings, are voluntary. Thus under a NEGLIGIBLE ARL it would be deemed acceptable for military personnel to assume an annual risk of fatality of 20×10^{-6} . However, given that the Canadian Department of National Defence (DND) under its Ammunition Safety Program suggests that "the organization must strive to meet high standards in terms of accident prevention" (DND, 2005) with annual probability of death due to an accident related to ammunitation of about 20×10^{-6} (22 deaths between 1983-2005, with the assumption of roughly 50,000 personnel) it would seem, under normal peacetime circumstances, necessary to lower the annual risk fatality to 1×10^{-6} as proposed by Menzies (1997).

Table 2.3 shows the annual death rates of Canadians due to various causes as reported by Statistics Canada (2012). The average annual probability of death for all causes, excluding disease, for Canadians aged between 20 and 24 years is 407×10^{-6} (or 0.04%). The societal acceptable annual risk of fatality for bridge crossings is 1×10^{-6} (or 0.0001%) or 1/400th of this value. Thus the risk of military fatalities for bridge crossings could reasonably be taken as 1/400th of the military ARL.

Table 2.3 - Annual deaths per 100,000 persons aged 20-24 years (Statistics Canada,

|--|

Cause of Death		Year					
		2006	2007	2008	2009	Average	
Disease	16.6	17.8	14.2	15.1	14.9	15.7	
Intentional Self-Harm (Suicide)	13.2	11.7	12.8	11.2	11.9	12.2	
Assault (Homicide)	3.8	3.4	4.0	4.5	3.9	3.9	
Legal Intervention	0.1	0.1	0.0	0.1	0.0	0.1	
Events of undetermined intent	1.3	1.9	1.9	2.0	1.4	1.7	
Motor Vehicle Accidents	17.5	15.7	17.4	14.7	12.5	15.6	
Other Transport Accidents	1.0	1.1	0.8	1.0	0.6	0.9	
Accidental Drowning and Submersion	0.8	1.1	0.9	0.9	0.9	0.9	
Other Non-transport Accidents	5.5	5.4	5.0	5.8	5.9	5.5	
Sum Accidental Cause of Death	24.8	23.3	24.1	22.4	19.9	22.9	
Sum Non-Disease Related Death	43.2	40.4	42.8	40.2	37.1	40.7	
Sum All Causes of Death	59.8	58.2	57.0	55.3	52.0	56.5	

Figure 2.1 shows a relationship between probability of bridge collapse and ARL. The annual risk of fatality is maintained at 1/400th the ARL, and so increases linearly with ARL for ARL greater than 0.04%. Thus:

$$P_{f0} = S \cdot P_{f_{ARL}}$$

where P_{f0} is the acceptable annual probability of military personnel death due to bridge failure, $P_{f_{ARL}}$ is annual probability of death corresponding to the ARL, and *S* is the constant of proportionality, 0.025. For $P_{fARL} < 0.04\%$, the civilian fatality risk limit of 1x10⁻⁶ (Menzies, 1997) governs. This relationship seems reasonable when the ARL is LOW or MODERATE, where the risk associated with bridge crossings is negligible compared to all other risks assumed by military personnel. At these ARLs it is expected that military units at the end of the operation or mission will remain fit for further combat (Wight, 1997).

Figure 2.1 – Acceptable annual risk continuum for military bridging

In general, over the long-term, a conflict can be expected to take fatalities at an ARL of LOW or MODERATE, since the conflict would not continue at a sustained ARL of HIGH or EXTREME. Over the course of a conflict, individual military units in the conduct of the operation may be exposed to an ARL of HIGH or EXTREME for short periods of time (days to months) on individual missions, and would likely sustain losses that would render the units unfit for further combat. At these higher ARLs, the P_{f0} computed using Equation [2.2] could possibly be too conservative. This is best illustrated by looking at the EXTREME ARL, where "losses may result in complete force

annihilation" (Wight, 1997). In its most simplistic sense, in military operations, bridges are obstacles between the current and desired locations of military assets required to complete the mission. Thus for a mission given the highest possible ARL (i.e. $P_{fARL} \rightarrow$ 100%), risks taken to get military assets where they are required, such as crossing bridges, should have an upper limit corresponding to the unit remaining combat effective after completing the crossing. A military unit is considered to be combat capable at 85% or greater strength (e.g., US Department of the Army & US Department of the Navy 2004, US Department of the Army 2003).

For example, assume that a single bridge needs to be traversed to engage the enemy. If the bridge collapses, any military vehicles that had not yet crossed could no longer support the mission. Although several bridges might need to be traversed, only one may contribute significantly to the risk. Thus, the goal of maintaining combat capability would require that 85% of the vehicles will successfully traverse the bridge with say, 99.75% probability, before it is rendered non-functional. The size and vehicle composition of the mechanized military unit, specifically the number of limiting vehicle types involved in the mission, must therefore be considered. For example, an armoured brigade typically includes main battle tanks, infantry fighting vehicles and support vehicles; the main battle tank causes the most severe load effects and so would be the limiting vehicle. The location of the limiting vehicles in the overall convoy (i.e., order of road movement) would also need to be considered in the planning stage because these vehicles are most likely to render the crossing unfit for use by the vehicles that follow.

To determine the acceptable event probability of failure the binomial mass function was used:

[2.3]
$$P_{Y}(y) = \left(\frac{n_{min}!}{y! n_{min}!}\right) p^{y} (1-p)^{n_{min}-y}$$

where *p* is the probability of failure for each crossing, n_{min} is the minimum number of vehicles required to cross (which would normally be taken as a percentage of total number of vehicles, *n*), *y* is the number collapses and $P_Y(y)$ is the probability that y

number collapses happen in n_{min} trials. When y = 0, Equation [2.3] simplifies to:

$$[2.3a] P_Y(0) = (1-p)^{n_{min}}$$

where $P_Y(0)$ is the probability that n_{min} vehicle can successfully cross prior to collapse. Equation [2.3a] can be rearranged to solve for p given n_{min} and $P_Y(0)$:

$$[2.4] p = 1 - P_Y(0)^{1/n_{min}}$$

Given that HIGH and EXTREME ARLs would be more likely employed for mission or situation-specific circumstances and so are not likely to be present for long periods of time, it is beneficial to quantify event risk for each vehicle crossing. Table 2.4 outlines the event risk for the crossing of n vehicles, where greater than n_{min} (taken as 0.85n, rounded up to the nearest integer) vehicles must meet a minimum probability, $P_Y(0)$, that they will successfully traverse the bridge prior to a failure by overloading that renders the bridge non-functional for subsequent vehicles. $P_Y(0)$ at each ARL is taken such that when n = 1, the event risk does not exceed the annual risk given in Equation [2.2]. Table 2.4 does not relate specifically to annual risk since it is confined to the risk associated with a single bridge crossing by n vehicles for a particular mission. The event risk identified Table 2.4, is the maximum risk allowed to ensure a mission involving n vehicles has a sufficient probability of remaining combat capable after a bridge crossing. It is unknown how often HIGH or EXTREME ARL crossings would occur per year (if at all) due to the highly unpredictable nature of warfare.

ARI	ARL	ARL	$P_Y(0)$ probability	Event Risk (%) for Number of Vehicles Crossing (<i>n</i>)					
Boundary	risk of death	risk of death	that 85% Vehicles Cross	1	10	100	1,000	10,000	
EXTREME	99.99 %	2.5%	99.75%	0.25	0.028	2.9E-3	2.9E-4	2.9E-5	
HIGH/ EXTREME	70%	0.3%	99.825%	0.175	0.019	2.1E-3	2.1E-4	2.1E-5	
MODERATE/ HIGH	10%	0.03%	99.975%	0.025	2.8E-3	2.9E-4	2.9E-5	2.9E-6	
LOW/ MODERATE	1%	0.003 %	99.9975%	2.5E-3	2.8E-4	2.9E-5	2.9E-6	2.9E-7	
NEGLIGIBLE /LOW	0.04%	0.0001 %	99.9999%	1E-4	1.1E-5	1.2E-6	1.2E-7	1.2E-8	

Table 2.4 – Event risk for single bridge crossing by n vehicles

Figure 2.1 and Table 2.4 can be used as guidance for determining the minimum level of reliability when evaluating bridges based on the ARL specified by a commander or conversely after an engineer has quantified the reliability of a bridge, a means to report the corresponding level of risk through the chain of command.

An example of this would be at the beginning of a combat mission. Early in the mission, the ARL for the theatre of operations is designated by the commander as MODERATE (1% to 10% probability of death). This was decided on the basis of the type of enemy forces, and need to gain military advantage to capture a high value target. Thus, military engineers rate the MLC of existing bridges in the theatre of operations for a MODERATE ARL using Figure 2.1 (probability of bridge fatality ranging from 0.0025% to 0.025%). During the combat mission, the location of a high value target is identified. Military planners estimate that 10 MLC 22 (Wheeled) vehicles would likely be sufficient to capture the high value target. However, they would need to cross an MLC 14 (Wheeled) bridge, rated for a MODERATE ARL. The proximity of the bridge to the high value target requires that the crossing be uncontrolled. Military engineers are requested to determine the reliability of the crossing. Based on the analysis of the bridge, it is found for this particular case to have an event crossing risk of fatality of 0.006%. From Table 2.4, this corresponds to an equivalent of a HIGH ARL crossing. With this

information, the commander can decide to accept this level of risk in using the bridge, or consider alternative options.

2.3 Chapter Conclusions

In military operations varying levels of risk can be appropriate to achieve mission success. By conducting a risk assessment, a military commander may benefit from allowing personnel to assume greater risks in bridge crossings. The data shown in Figure 2.1 and Table 2.4 outline the maximum acceptable risk of bridge failure given the ARL of the associated military mission. This maximum acceptable risk is an upper bound of the optimal risk for bridges crossings by military vehicles.

Chapter 3

3 Optimal Risk for Military Bridges

Economic factors and constraints associated with military operations are fundamentally different than those in the civilian context. Factors associated with military conflict, such as ensuring military advantage in a battlespace, may warrant accepting much higher life-safety and economic risks in bridge crossings by military vehicles.

In Chapter 2 it was shown that the acceptable risk in bridges used by the military could exceed acceptable civilian risk. This, however, is not reason enough to substantiate the necessity to expose military personnel to greater risk when traversing bridges. It must be shown that there are benefits in accepting greater risk, both economic and life-safety, in bridge crossings than the probable cost of bridge failure. Thus requires a cost optimization involving other relevant factors.

3.1 Different Parameters in Cost Optimization Factors for Military Bridges

3.1.1 Ancillary Costs of Construction or Repair

In Canada, the construction costs of new military bridges are similar to those for civilian bridge construction. However, during combat operations, the bridge construction or repair costs would likely increase. It might be necessary, for example, to secure the construction site from enemy forces to allow construction to proceed unabated. If the construction of a new bridge is being undertaken, it is likely to serve a larger strategic purpose that could be associated with operations costing billions of dollars. The value of the bridge's function to the strategic purpose is vastly greater than the monetary cost of construction. The cost of military operations can be significant; for example, the annual operating cost for each US soldier in Afghanistan was between \$500,000 (Entous, 2009) and \$1 million (Drew, 2009). The combination of the bridge construction cost and the cost of the operation it is intended to support is therefore likely much larger than the

bridge material costs. In many cases, the active bridge construction is likely to be undertaken by Combat Engineers who may, at best, train in non-standard bridge construction every few years but are more likely to have been introduced to it only once during their initial training. Thus the construction cost of new military bridges will be much smaller than the total cost of emplacement (security, personnel, logistics, etc.) and because they will likely be constructed by unspecialized personnel it is expected, given logistics and material availability, that new non-standard military bridges may be oversized from the minimum standards to meet their usage requirements. This will ensure functionality of the bridge and reduce the likelihood of costly follow-on operations for repairs or upgrades. Primary focus of design should be the expediency of construction, ease of repair, and continued functionality if damaged (discussed further in Section 3.2.3).

The relationship between the military and the entity that covers cost of damage to the bridge is also important. In bridge evaluation, if the military or the government (or allied governments) it serves are the owners of the bridge, the cost of repairing damage or full bridge replacement would be considered in the computation of the appropriate economic risk. However, if military operations are conducted in enemy territory, the cost of replacement or damage repair may be of little concern since this cost would be incurred by the enemy during or after the conflict. Thus, the cost of bridge damage or failure may be neglected in the economic risk optimization depending on the circumstances.

3.1.2 Period of Consideration or Usage

With the exception of bridges on or near permanent military installations, in most cases the expected period when military traffic would be transiting a bridge would be much lower than its design life: it would typically be the length of the operation itself. Most bridges in Canada would be unlikely to be subjected to military traffic within their operational life. Exceptions would be domestic operations such as disaster relief or security operations, which are normally the purview of civil authorities unless they are extreme in nature. If a bridge is subjected to only military traffic during extreme emergencies, higher levels of life-safety risk might be acceptable (Sýkora, Holický, Lenner, & Maňas, 2013). In any case, military traffic might use a bridge for domestic operations for a period from several days to several months.

For military engagements, major conflicts that involved Western nations over the last century have ranged between 7 months (Persian Gulf War) to 14 years (Vietnam), with an average duration of interstate conflicts lasting 11 months (Bennett & Stam III, 1996) and civil wars on average last 7 years (Collier, Hoeffler, & Söderbom, 2004). As such, military traffic loads would likely be limited to the length of these conflicts.

Unless a bridge is regularly used by military vehicles due to its proximity to a military base, it should be assumed that a bridge will be in use by the military for a limited duration. It terms of risk optimization, both economic and life-safety, this limits both the period when damage costs can occur and magnitude of the extreme loading. This would allow for higher acceptable loads given target reliability.

3.1.3 Cost of Collateral Damage from Bridge Collapse

If a bridge collapse were to occur, the cost of collapse in terms of number of lives lost and damage to vehicles might be greater for the military than expected under civilian considerations. This is due to two major factors:

- <u>Damage or Loss of Military Equipment</u>: If there is a failure, the cost of losing a military vehicle is much greater than a civilian vehicle. The unit cost of a Leopard 2A4 tank is \$1 CDN million (Army Guide, n.d.). This would be a significant financial loss and would be compounded by the associated loss of the military's ability to conduct operations.
- 2) <u>Number of Persons on Bridge</u>. When military vehicles are used for troop transport, the number of persons at risk due bridge collapse is significantly increased. The 6.7 m long Medium Logistics Vehicle Wheeled (MLVW), can carry up to 20 personnel plus three personnel in the cab. In addition to this, many armoured personnel carriers carry about 10 persons, which is 5 to 10 times greater than the number of persons in most civilian 20 tonne vehicles.

Even for the heaviest military vehicles, tanks at 60 tonnes or greater, the crew is normally four.

3.1.3.1 Perceptions of Civilian Population

The success of most military operations, especially in the context of counter insurgency operations, requires the support of the civilian population. Where "...whatever else is done, the focus must remain on gaining and maintaining the support of the population. With their support, victory is assured; without it, [counter insurgency] efforts cannot succeed" (US Department of the Army, 2006). Bridges temporarily or indefinitely rendered unusable by military operations, could influence the opinion of the local population of the military personnel. In determining an appropriate level of damage or collapse risk, when evaluation an existing bridge that is used by the local population, it may be necessary to consider:

- how the civilian population would weigh the cost of damaged infrastructure to the success of one's military forces' operations;
- how damage to bridge infrastructure cause a negative perception of the military force responsible, and so inhibit the success of operations; and
- how a negative perception of one's military could encourage the local population to aid enemy forces.

Any impact due to the perception of the civilian population is difficult to evaluate in quantitative terms, and would differ drastically given location and context. Even so, this would be an important consideration when assessing crossings with an ARL of MODERATE or greater.

3.1.4 Military Vehicle Operating Costs

There are several costs associated with limiting route network options due to specified maximum acceptable bridge failure risk. The cost of operating military equipment is high, so the additional operating costs may be incurred due to taking less direct routes. For example, the M1-A1 Abrams tank costs about \$92 USD per km (\$147 per mile) to

operate (Greider, 1999), whereas an average tractor trailer for the US in 2011 would cost about \$1.07 USD per km (\$1.71 per mile) to operate (Fender & Pierce, 2012). This also increases the cost of bridge failure due to the cost of diverting military traffic while the structure is repaired or rebuilt. This cost consideration may lead to higher or lower optimal risk of failure levels, depending on the particular circumstances of each crossing. It may be more cost effective to upgrade a bridge to increase its capacity rather than have heavy vehicles use longer alternative routes. A lower risk of bridge failure may be optimal for routes that are constantly used by military vehicles with high operating costs, such as crossings near military bases.

3.2 Optimization Factors Unique to Military Bridges

There are some factors for economic, military-mission, and life-safety risk optimization that are unique to bridges used by the military. Limitations placed on bridge crossings can impact all types of risks associated with other military activities.

3.2.1 Main Supply Routes

In determining the appropriate risk of bridge collapse, the role of the bridge in the logistical support of the military operations is important. In particular interest are Main Supply Routes (MSRs), which are "routes designated within an operational area upon which the bulk of traffic flows in support of military operations" (NATO, 2008). Much like lifeline bridges in post-seismic events for emergency response operations, bridges along MSRs are essential to military operations. A bridge along an MSR would warrant a lower risk of collapse. The two major reasons are as follows:

- the negative impact on the ability to conduct military operations should an MSR bridge collapse would be much greater than other bridges in a battlespace; and
- the number of military vehicle crossings on a bridge along an MSR would be much greater than other bridges in a battlespace.

3.2.1.1 Impact on Military Operations

For each military operation the consequences of temporarily losing access to an MSR will vary. In road networks where there is a single MSR between transited points, the consequences of a bridge collapse is greater than for a network with many alternative supply routes. When there is only one viable MSR in a road network, it would warrant a lower target bridge failure risk than if there were many. The estimated time necessary to initiate use of an alternative route or repair an MSR bridge is also a factor; longer delay times would reduce the optimal bridge failure risk.

3.2.1.2 Highly Variable Annual Traffic Volumes

Depending on the nature of the military operation, MSRs may experience short durations of extremely high traffic rates. During Operation Desert Shield/Desert Storm in the first Gulf War "... at a major checkpoint along the [MSR], an average of eighteen vehicles passed every minute, twenty-four hours a day, seven days a week, for six weeks" (Clair, 1993). This equates to a roughly a million vehicles over the six week period. For such volumes, the consequence of an MSR being interrupted for even a short period of time could have a major impact on the overall operation. Even if the gap created by a bridge collapse was sufficiently narrow to facilitate employment of a rapidly emplaced bridge in 30 minutes, this would have delayed over 500 vehicles in Operation Desert Shield/Desert Storm from reaching their destination.

The likelihood that an extreme load will be observed in a timeframe increases as more vehicles cross a bridge in that specified timeframe. Although with further investigation annual traffic volumes of several thousand would be more likely for bridges on MSRs, an average assumed traffic volume may be applicable for evaluation or design. However, for major operations like Operation Desert Shield/Desert Storm, engineers should be aware that not accounting for traffic volumes much higher than average will result in lower levels of reliability.

3.2.1.3 Recommendations

Should Limit State Design be considered for military use, two different evaluation approaches are suggested; (1) bridges that are categorized as being part of an MSR should account for the expected level of military traffic they will be subject to during the military operation; and (2) for non-MSR bridges it might be appropriate to rate them based on a single crossing of the smallest packet of vehicles allowed to move autonomously within the theatre of operations (likely three or four vehicles) or the likely number of vehicles involved in a single major mission (likely 100 or less).

3.2.2 Consideration of Hazards Associated with Other Crossing Alternatives

In certain circumstances for mission success, it may be imperative that certain vehicles traverse a longitudinal obstacle such as a river or mountainous terrain. If during initial assessment the bridge capacity is not sufficient, given the acceptable risk, other options being considered to traverse the obstacle should be compared to the risk of using the bridge. For example, if a bridge cannot be traversed, the only other option might be fording a river, which can be very risky. If this risk of fording the river is greater than the risk of crossing the bridge, allowing for a greater than normal risk for the bridge crossing may be preferable.

3.2.3 Risk of Bridge Damage due to Conduct of War

In the context of war, bridges may be targeted for attack to limit the mobility of an opposition force. Bridges are also often choke points for mechanized militaries, so force engagements can take place in their vicinity. As such, bridges are often deliberately or collaterally damaged in the conduct of war. In designing rapidly emplaced assault bridges it has been proposed (Walker, Zintilis, & Bulson, 1991) that design could ensure an acceptable residual strength that received expected levels of damage. If this philosophy was adopted for design, it would increase the reliability of undamaged bridges.

3.2.4 Risks from Hazards due to Enemy Action

In the context of war fighting, gaining the advantage on an enemy force can reduce the risk due to the hazard of enemy actions. More road network options, which in effect allows for greater mobility, can provide some advantages over an enemy force by facilitating:

- greater unpredictability in road moves;
- quicker deployment of forces where they are most needed by using more direct routes;
- fewer choke-points for enemy to concentrate effort; and,
- resilience in logistics support through road network redundancy.

It may also be important to achieve a certain force concentration at a particular location to fend off an enemy offensive. Since bridges tend to be choke points for on-road or off-road vehicle maneuvers, additional bridges may facilitate reduced response times. The required response time may dictate what risk is appropriate. It is difficult to quantify these advantages in terms of probability of success against an enemy force or reduction of fatality risk to military personnel from enemy action. However, doctrine for mechanized warfare emphasizes the importance of mobility. "At the tactical level, superior mobility is critical to the success of the force. Mobility facilitates the momentum and freedom of movement and maneuver of forces by reducing or negating the effects of existing or reinforcing obstacles" (US Department of the Army, 2003). Given the importance of mobility in context of war, in most cases, it would be reasonable to allow the risk in bridge crossings to be increased beyond what would normally be acceptable.

3.3 Chapter Conclusions

Some factors that influence the optimal, economic and life-safety risk for military bridges are common to civilian bridges but others are different. In the context of domestic and non-combat operations, the factors that define the optimal risk for military and civilian bridges are common, albeit with somewhat different parameters. In the context of combat operations, a major factor that is unique to military bridge risk optimization is the direct consequence or cost of limiting mobility when conducting military operations against an enemy force or defending against enemy military operations.

The risk factors investigated within this chapter touch on several small aspects of this complicated problem in a highly simplified manner. Given the complicated and situation-specific interactions between factors, further work is necessary to define an optimal risk for military bridges in the context of combat operations. However, if risk optimization could be understood and simplified for use by military planners, it would be an important tool to manage bridge risk effectively without increasing the overall risk of military operations. In the context of military operations there is no single target risk or discrete target risk range that is optimal or acceptable. Each situation will present different risk factors and outcomes, some of which may not be readily quantifiable and will vary over time.

The research reported in this chapter indicates that in the context of combat operations, new bridges should be designed for a higher target reliability than civilian bridges in Canada. Conversely, when evaluating existing bridge infrastructure in the context of combat operations, with the exception of MSRs, a lower target reliability seems justifiable. Similarly, the design of new bridges subject to regular military loads in non-combat/domestic situations might be more appropriately designed to a higher reliability than similar civilian bridges; while in the context of emergency responsedomestic military operations, given the short periods of use and consequences in delaying response time, a lower target reliability may be permitted.

Chapter 4

4 Quantification of Military Vehicle Loading

4.1 Estimation of Gross Vehicle Weight Variability

Three vehicles were investigated, specifically the Armoured Heavy Support Vehicle System – Palletized Loading System (AHSVS-PLS), Light Armour Vehicle III – Infantry Section Carrier (LAV III-ISC), and Leopard 2A4M tank. They were selected because they represent three distinct loading categories: they have either transport or fighting functions and are either wheeled or tracked. The total vehicle weight is the combination of the curb weight and the payload. The curb weight is the weight of the fuelled vehicle and, if uparmoured (which relates to vehicles that have optional armour kits to achieve different levels of protection), additional armour including mine protection. The combat weight, considered the maximum nominal weight of the vehicle, is the curb weight plus the payload weight that consists of cargo, crew, ammunition, communications equipment, consumables (i.e. extra fuel, water, food, etc.), secondary weapons, crew's personal equipment and mission-specific equipment.

4.1.1 AHSVS-PLS (Transport)

The Armoured Heavy Support Vehicle System (AHSVS) is a fleet of militarized Mercedes-Benz Actros trucks that fulfill various heavy logistics functions. The vehicle system was purchased to meet a shortfall in Canadian Forces capabilities for Operation ATHENA in Afghanistan (DND, 2007c). There are seven variants in this family of vehicles; the Cargo Gun Tractor (GT), Cargo with Material Handling Crane (MHC), Heavy Mobile Repair Team (HMRT), Palletized Loading System (PLS), Recovery Vehicle, Tractor 13.5 tonnes and Tractor 24 tonnes.

The vehicle load of the PLS variant, which was investigated in detail, is summarized in Table 4.1. The image shows an AHSVS-PLS and PLS trailer (without payload). The axle loads are given in kg for the curb "weight" (above) and combat "weight" (below) in the top right of the table. The MLC but differs slightly from the GVW since it is derived from force effects.

[a] Photo by Peacock, 2009

[b] DND (2011d)

[c] DND (1999)

[d] email from DND vehicle technical authority and verified with hand calculations

4.1.1.1 Quantification of AHSVS-PLS Payload - Intermodal Shipping Containers

The primary cargo for the AHSVS-PLS is 6.1 m (20 ft) long intermodal shipping containers. The weights of intermodal shipping containers flown by the Canadian Forces from Kandahar Afghanistan between 2006 and 2012 are assumed to be representative of intermodal shipping containers transported by the AHSVS-PLS. A query of the Department of National Defence (DND) National Material Distribution System (NMDS) for 6.1 m intermodal containers yielded 11,371 entries (National Movement and Distribution System Support Center, 2012) including many duplicate entries. There were instances where the stated "weight" were clearly erroneous: containers with weights lower than the "weight" of an empty container (roughly 2,200 kg), others between 2 to 3 times the weight of the maximum allowed weight (roughly 31,200 kg), and some whose description indicated "quadcan" (term used to describe containers roughly 3 m in length). After removing these spurious values from the data set, 3,723 unique intermodal

containers were identified as summarized in Appendix A. The mean mass of these vetted containers entries is 6,880 kg with a Coefficient of Variation (CoV), defined as the standard deviation divided by the mean, of 0.415. To further quantify the data, they were ranked from smallest to largest and Weibull plotting positions were computed using:

where *i* is the rank from lowest (i = 1) to highest (i = n), *n* is the total number of observations, and P_i is plotting position for the *i*th observation with sample cumulative probability F(x) for the corresponding mass, *x*. Other plotting positions were not considered given the "theoretical attributes and the computational simplicity" (Ang & Tang, 1984) of Weibull plotting positions." Then Exponential (shifted), Normal, Lognormal, Gumbel, Weibull and Rayleigh (shifted) distributions were fit to the sample data. Table 4.2 summarizes the necessary mapping of the mass (x-axis) and probability (y-axis) data for the various distributions considered.

Distribution	x-axis	y-axis
Type		
Weibull	$\ln(x)$	$\ln\{-\ln[1-F(x)]\}$
Normal	x	$\Phi^{-1}[F(x)]$
Log-Normal	$\ln(x)$	$\Phi^{-1}\{\ln[F(x)]\}$
Exponential	x	$-\ln[1-F(x)]$
Gumbel	x	$-\ln\{-\ln[F(x)]\}$
Rayleigh	x	$\sqrt{-\ln[1-F(x)]}$

Table 4.2 – Necessary data mapping for determination of best-fit parameters

Linear regression of the transformed data was used to determine the best-fit slope and y-axis intercepts values, from which the parameters defining each distribution were computed. The fitted Log-Normal and Gumbel distributions were in closest agreement with the data. The Cumulative Distribution Function (CDF) for the Log-Normal distribution is:

[4.2]
$$F(x) = \Phi\left(\frac{\ln(x/\breve{m}_X)}{\sigma_{\ln(X)}}\right)$$

where, F(x) is the cumulative probability at x, \breve{m}_X is a measure of the central tendency, and $\sigma_{\ln(X)}$ is a measure of the dispersion. The CDF for the Gumbel Distribution is:

[4.3]
$$F(x) = \exp\left[-\exp\left(-\frac{(x-\mu)}{\beta}\right)\right]$$

where, μ is a measure of the central tendency, and β is a measure of the dispersion. Figure 4.1 shows the sample CDF values superimposed on the CDFs of these fitted distributions. The two corresponding root-mean-square errors are 0.0076 for the Log-Normal distribution and for the Gumbel distribution 0.0073 respectively. The Kolmogorov-Smirnov (K-S) test (Benjamin and Cornell, 1970) was used at a significance level 10% (e.g. $\alpha = 0.10$) to determine which of the fitted CDFs agreed well with the data. Only the best-fit Log-Normal and Gumbel distributions passed this test. For ease of subsequent computations, the best-fit Gumbel distribution with $\beta = 2,247$ kg and $\mu =$ 5,583 kg was selected to describe the "weight" of the intermodal shipping containers.

Figure 4.1 – Cumulative distribution for intermodal shipping container "weights"

It is necessary to account for any eccentricity of the shipping container center of gravity when computing axle loads from the intermodal shipping containers masses. These data were not available for the shipping containers listed in the DND NMDS database. It was assumed the eccentricities of shipping containers transported by the Canadian Forces would be the same as the general shipping container population. Through several lines of query, it was determined that most of the available data on the eccentricity of the resultant of shipping container weights is held by Bill Brassington of ETS Consulting, United Kingdom. Table 4.3 summarizes data made available by Mr. Brassington which is solved by mass category. The various columns present the number of containers where eccentricity exceeded 5% of the container length, the average eccentricity for this subpopulation expressed in metres or as a percentage of the overall container length, and the percentage of the total container population represented by each subpopulation. The total container population, which includes shipping containers with less than 5% eccentricity, consists of $(1,223 \div 17.17\% =)7,121$ containers.

Mass	Numbor	Percentage of	Averag	ge Longitudinal Eccentricity
Category	Number	Total Lifts	(m)	Percentage of total Length
< 5 tonne	307	4.31%	0.332	5.4%
5 - 10 tonne	149	2.09%	0.426	7.0%
10 - 15 tonne	67	0.94%	0.510	8.4%
15 - 20 tonne	146	2.05%	0.411	6.7%
20 - 25 tonne	242	3.40%	0.396	6.5%
25 - 30 tonne	282	3.96%	0.492	8.1%
30 + tonne	30	0.42%	0.652	10.7%
Overall	1,223	17.17%	0.420	6.9%

Table 4.3 – Intermodal shipping container average eccentricity (Brassington, 2014)

The statistical parameters for the mean eccentricity and its variability are desirable for the present study but were not provided by Mr. Brassington. Thus they have been approximately quantified using the following procedure:

- Assume the fraction of the total population within each mass category is identical to that for a separate data set of 37,398 shipping containers provided by Mr. Brassington (shown in Appendix B).
- Estimate the percentage of containers in each mass category that have weight eccentricities of 0.305 m (5%) or greater as the number obtained from Table 4.3 to the overall number of containers from step 1 (shown in Appendix B).
- 3. Estimate a cumulative probability distribution of the weight eccentricity for each mass category. This involves:
- a. Recognizing that three sample CDF values are available:
 - CDF = 0 for 0% eccentricity;
 - CDF = value computed in step 2 for 0.305 m (5%) eccentricity; and
 - CDF = value obtained assuming triangular shape for the upper tail of the mass probability density function for the mean eccentricity shown in Table 4.3.
- b. For the triangular upper tail shown in Figure 4.2, the distance from the 0.305 m (5%) eccentricity to the mean eccentricity, \bar{e} , is 1/3 times the distance from 0.305 m eccentricity to the maximum eccentricity, e_{max} .

Figure 4.2 – Probability density for shipping container eccentricities $\geq 5\%$

The area, A_0 , under the assumed Probability Density Function (PDF), f(x), from the 0.305 m eccentricity to e_{max} is:

[4.4]
$$A_0 = 1 - F(0.305 \text{ m}) = \frac{1}{2}(e_{\text{max}} - 0.305 \text{ m}) \cdot f(0.305 \text{ m})$$

The area under the PDF from \bar{e} to e_{max} is therefore:

$$= \frac{1}{2} \left[\frac{2}{3} \left(e_{\text{max}} - 0.305 \text{ m} \right) \cdot \frac{2}{3} f(0.305 \text{ m}) \right] = \frac{4}{9} A_0$$

Thus the CDF for eccentricity $e = \bar{e}$ is:

[4.5]
$$F(\bar{e}) = 1 - \frac{4}{9} [1 - F(0.305 \text{ m})]$$

c. Using these three points, estimate CDF (shown in Appendix B).

Figure 4.3 shows the cumulative distribution and probability density functions for each mass category as obtained from this procedure. It is apparent that for shipping containers less than 30 tonnes, the eccentricities are closely approximated by a Half-Normal distribution with standard deviation, σ , of 0.226 m. For shipping containers greater than 30 tonnes, a Half-Normal distribution with σ , of 0.140 m is a better fit. Thus the variability of the eccentricity of the center of gravity is less for the heaviest shipping containers, perhaps because, for the heavily loaded containers there is little room available to load the container asymmetrically.

Figure 4.3 –Shipping container eccentricity for different mass categories: (a) cumulative probability; (b) probability density

For payloads of intermodal shipping container it will therefore be assumed that the longitudinal eccentricity of the centre of gravity is normally distributed about the midpoint of the container. If the container mass is less than 30 tonnes, the standard deviation of the eccentricity will be taken as 0.226 m, otherwise it will be taken as 0.140 m.

4.1.1.2 AHSVS-PLS Static Load

The AHSVS-PLS facilitates loading/unloading of intermodal shipping container without the need of an external lift by using its Palletized Loading System (PLS). Often the AHSVS-PLS truck will tow a trailer to transport a second intermodal shipping container with a weight that could be uncorrelated or highly correlated to the weight of the first container. Three configurations must therefore be considered: AHSVS-PLS with no trailer; AHSVS-PLS with trailer (no correlation between intermodal container weights); and, AHSVS-PLS with trailer (fully correlated intermodal container weights).

To verify the curb weight bias coefficient and variability, a query of the NMDS database (summarized in Appendix C) yielded the weights of 30 AHSVS-PLS flown from Afghanistan to Canada. This data set included several entries that were as much as 6,000 kg heavier than the curb "weight" of 22,900 kg (DND, 2011d). These high values might be due to shipping containers being loaded on the AHSVS-PLS for air transport, although this cannot be confirmed through the NMDS query. Thus, the accuracy of the flown weights for the AHSVS-PLS could not be trusted. Two variants similar to the AHSVS-PLS were subsequently also queried, the AHSVS-Cargo and AHSVS-Cargo (Gun Tractor for M777). Both of these variants have the same nominal curb "weight" of 24,300 kg (DND, 2011a). With the removal of a single entry with an unreasonably low weight, the weights of the remaining 22 entries have a bias coefficient of 1.005 and a CoV of 0.023. The actual curb weight may have a lower bias coefficient and smaller CoV due to unknown vehicle conditions at the time of weighing, such as added stowage, and fuel volume. The actual curb weight for the AHSVS-PLS likely has a bias coefficient smaller than 1.005 and CoV smaller than 0.023. Thus, the bias coefficient and variability of the overall weight is quantified assuming curb "weight" to be deterministic, at 22,900 kg (DND, 2011d) and the trailer curb "weight" also

deterministic, 5,020 kg (DND, 1999). Only the intermodal shipping container weights (i.e., the payload) were assumed to contribute to the overall vehicle weight variability.

With these assumptions, the best-fit Gumbel distribution for the event "weight" of the AHSVS-PLS and AHSVS-PLS and trailer with fully correlated container weights can be derived. For the AHSVS-PLS, β is as calculated for the intermodal shipping containers (e.g., $\beta = 2,247$ kg), while μ is the sum of the curb "weight" and payload Gumbel distribution central tendency parameter (e.g. $\mu = 22,900$ kg + 5,583 kg = 28,483 kg). For the AHSVS-PLS with fully correlated trailer, β is twice that of a single container (e.g., $\beta = 2 \cdot 2,247$ kg = 4,494 kg), and μ is twice that for a single intermodal container plus the curb "weight" of the vehicle (e.g. $\mu = 2 \cdot 5,583$ kg + 22,900 kg + 5,020 kg = 39,246 kg).

For the AHSVS-PLS and trailer with uncorrelated container weights, the standard deviation the two independent shipping containers can be calculated by:

$$[4.6] \qquad \qquad \sigma_2 = \sqrt{\sigma_1^2 + \sigma_1^2} = \sigma_1 \sqrt{2}$$

where, σ_2 is the standard deviation of the combined mass of two independent shipping containers and σ_1 is the standard deviation of the mass of a single shipping container. Given that the shipping containers masses are assumed to follow a Gumbel distribution, the standard deviation of the mass of one container can be computed for a known β as:

$$[4.7] \sigma_1 = \frac{\pi}{\sqrt{6}}\beta_1$$

where β_1 is the Gumbel distribution parameter for the mass of a single shipping container. Substituting Equation [4.7] into Equation [4.6] and rearranging, the Gumbel dispersion parameter for two independent shipping containers, β_2 , is:

$$[4.8] \qquad \qquad \beta_2 = \beta_1 \cdot \sqrt{2}$$

The mean mass of two shipping containers, $\overline{m_2}$, is:

$$\overline{m_2} = \overline{m_1} + \overline{m_1} = 2 \overline{m_1}$$

where $\overline{m_1}$ is the mean mass of a single shipping container, this can be computed for known parameters β and μ as:

$$[4.10] \qquad \qquad \overline{m_1} \approx \mu_1 + 0.577\beta_1$$

where μ_1 is the Gumbel distribution parameter for the weight of a single shipping container. Substituting Equation [4.10] into Equation [4.9] and rearranging, the Gumbel central tendency parameter for two independent shipping containers, μ_2 , is:

[4.11]
$$\mu_2 = 2(\mu_1 + 0.577\beta_1) - 0.577\beta_2$$

For the AHSVS-PLS with uncorrelated trailer the Gumbel distribution parameters are $\beta = \beta_2$ as calculated in Equation [4.8], and μ as μ_2 calculated by Equation [4.11] increased by the curb weight of the vehicle and trailer.

Table 4.4 presents the central tendency and dispersion parameters, bias coefficients (defined as the mean value divided by the nominal combat weight) and CoV for the three AHSVS-PLS configurations considered. The statistics are presented for the event vehicle, which represents the overall population of AHSVS-PLS vehicles and for the maximum annual AHSVS-PLS vehicle "weight" corresponding to annual traffic volumes of 100, 1,000, 10,000 and 100,000 vehicles per year. As the event data are assumed to follow a Gumbel distribution, the maximum annual "weights" also follow Gumbel distributions with the dispersion parameter, β_A , given by:

$$[4.12] \qquad \qquad \beta_A = \beta$$

and the central tendency parameter, μ_A , given by:

$$[4.13] \qquad \qquad \mu_A = \beta \cdot \ln(n/n_i) + \mu$$

where β and μ are the dispersion and central tendency parameters of the event distribution, n is the number of vehicles per year and n_i is the number of vehicles for the for the reference population (in this case $n_i = 1$ for the event distribution).

AHSVS-PLS	Gumbel	Event	Maximum Annual				
Curb / Combat ^{[a][b]}	Parameters	Event	100	1,000	10,000	100,000	
	μ (kg)	28,483	38,831	44,005	49,179	54,353	
100 1 raller 22 000 kg / 20 000	β (kg)	2,247	2,247	2,247	2,247	2,247	
22,900 kg / 39,000 kg	Bias	0.764	1.029	1.162	1.294	1.427	
	CoV	0.096	0.072	0.064	0.057	0.051	
Correlated Trailer 28,080 kg / 60,000 kg	μ (kg)	39,246	59,942	70,289	80,637	90,985	
	β (kg)	4,494	4,494	4,494	4,494	4,494	
	Bias	0.697	1.042	1.215	1.387	1.560	
	CoV	0.138	0.092	0.079	0.069	0.062	
Un-correlated Trailer	μ (kg)	40,005	54,640	61,957	69,275	76,593	
	β (kg)	3,178	3,178	3,178	3,178	3,178	
20,000 kg / 00,000	Bias	0.697	0.941	1.063	1.185	1.307	
ĸg	CoV	0.097	0.072	0.064	0.057	0.052	
[a] DND (2011d)							

Table 4.4 – AHSVS-PLS "weight" quantification

[a] DND (2011d)

[b] DND (1999)

As the annual traffic volume increases, the bias coefficients for the maximum annual "weight" increase while the CoVs reduce. The bias coefficients and CoV for the truck-plus-trailer configuration with fully correlated container masses are more severe than for truck-plus-trailer configuration with uncorrelated container masses, which is expected since it is less likely that both containers will be exceedingly heavy if their weights are uncorrelated.

4.1.2 LAV III-ISC (Armoured Personnel Carrier)

Table 4.5 summarizes the uparmoured LAV III-ISC, a fighting vehicle that primarily serves as an Armoured Personnel Carrier (APC) for one infantry section but can also provide additional firepower. It is a variant within the LAV III family of vehicles, which is the Canadian Army's primary light armoured vehicle for mounted combat operations.

This vehicle therefore provides a very different function than the AHSVS-PLS. In Table 4.5, the axle loads are given in kg for the curb "weight" (above) and combat "weight" (below). The MLC differs slightly from the GVW since it is derived from force effects.

Table 4.5 – Uparmoured LAV III-ISC nominal axle loads prior to Afghanistan modifications

Image ^[a]	Axle Loads (Tonnes) and Spacing (m) ^[b]	MLC (fully laden)	Horizontal Axle Spacing(m) ^[d]
	Curb 16.74 Tonnes Combat 20.00 Tonnes 4.33 4.33 4.04 4.04 4.69 4.69 5.31 5.31 4.33 4.04 4.04 1.22 1.42 1.22	^{1.} 22 ^[c]	

[a] Photo by Peacock 2009

[b] Assumed based on multiple phone conversations with DND and GDLS engineers

[c] MLC calculated as prescribed in NATO (2006)

[d] DND (2011c)

The nominal "weights" of the LAV III-ISC without uparmour according to the vehicle data summary are a curb "weight" of 13,702 kg and a GVW of 16,958 kg (DND, 2011c). "When uparmoured and fully loaded, the LAV III weighs 20 tonnes" (DND, 2003). Nominally, a fully laden LAV III-ISC consists of a curb "weight" of 13,702 kg, potentially an additional 3,042 kg of uparmour and a payload of 3,256 kg. In the latter portions of Canada's military engagement in Afghanistan, the LAV III underwent many field modifications to better suit conditions faced during the mission there. Some of the modifications included improvised explosive device protection such as shields for turret crew, hanging seats, a parapet for air sentries and belly armour. The LAV Operational Requirements Integration Task (LORIT) program rationalized these ad hoc field improvements (Defense Industry Daily, 2013). The estimated curb "weight" for the LAV III-ISC after the LORIT program is 20,630 kg (WLAV Chassis Management Team Leader, Department of National Defence, 2014).

This wide range of possible curb "weights" for the LAV III-ISC is reflected in the "weights" of vehicles flown from Afghanistan as obtained from NMDS database (after vetting and removal of repeat entries and entries with descriptions indicating major parts, such as engines removed) These data are presented in Appendix D. A histogram of 77 LAV III-ISC flown "weights", with bin widths of 250 kg is shown at Figure 4.4. Some inferences concerning points of particular interest in Figure 4.4 are as follows:

- a. the single LAV III-ISC mass less than 12,500 kg likely corresponds to a vehicle with parts removed that were not specified in the shipping description and so was removed from the data set;
- b. the grouping of LAV III-ISC masses between 13,250 kg and 14,250 kg reflect vehicles with no uparmour added (nominal mass of 13,702kg);
- c. the concentration of LAV III-ISC masses between 16,500 kg and 16,750 kg reflect LAV III-ISC's with uparmour (nominal mass of 16,744 kg) prior to LORIT modifications; and
- d. LAV III-ISC masses greater than 16,750 kg might correspond to vehicles with differing levels of modification. These cannot be definitively categorized as LORIT modifications but no longer reflect the curb "weight" of unmodified LAV-III's. They could also be LAV III's upgraded under the LORIT program with some armour removed for transportation.

Figure 4.4 – "Weight" of LAV III-ISC's flown from Afghanistan 2006-2012.

The Canadian Forces Fleet Management System (FMS), queried on 20 Nov 2012, indicated that all the vehicles shown in Figure 4.4 are listed as having a curb "weight" of 13,702 kg and a GVW of 16,958 kg. Due to the configuration of the LAV III, it is unlikely that significant additional payload was added to the vehicle for air transport. Except for the volume of fuel in the vehicle (tank capacity is 200 *l* diesel), the data captured likely reasonably approximate the minimum curb "weights" of these vehicles (since some uparmour might have been removed for transport). Clearly the FMS database was not updated to reflect the new weights after modifications. The "weights" given in Figure 4.4 therefore provide a unique opportunity to investigate the variability of the curb weight for a military vehicle undergoing an upgrade. Given this, three loading cases will be considered:

- Case (1) uparmoured LAV III-ISC prior to the Afghanistan modification program with a deterministic curb "weight" with uparmour of 16,744 kg;
- Case (2) uparmoured LAV III-ISC during LORIT upgrade with a variable curb weight, where pre-upgrade weight is the nominal weight; and,
- Case (3) same Case (2) except that the nominal weight is the post-upgrade weight.

Should a future major deployment of LAV III-ISC vehicles require air movements, it would be valuable to investigate the measured curb weights. If all vehicles have been

upgraded to a similar standard, there would likely be a concentration of vehicles around the new curb "weight" of 20,630 kg.

Deficiencies in the FMS database regarding the actual weight of the LAV III-ISC indicates the possibility that these vehicles were operating nearly 3 tonnes heavier than their nominal combat "weight". If so, this would indicate a lack of control that could undermine the confidence in statistical parameters for vehicle weight based on nominal load data, thus requiring larger load factors for bridge design and evaluation.

The LAV III-ISC was selected, specifically, because of personal awareness of the upgrade program for this vehicle and the indication from informal sources of lack of knowledge in the operational weights. This apparent lack of control on the actual vehicle condition should be considered exceptional.

4.1.2.1 LAV III-ISC Curb Weight

For Case (1), it is assumed that prior to the field modifications in Afghanistan, the curb weight of the LAV III-ISC can be considered deterministic. For Cases (2) and (3), the LAV III-ISC "weights" from the NMDS database are used to define statistical parameters for the curb weight of the LAV III-ISC. Figure 4.5 shows that a Log-Normal distribution accurately represents the curb "weights" of vehicles exceeding 16,000 kg, the fit passes the K-S test at the significance level of 10%.

Figure 4.5 – Log-Normal distribution for LAV III-ISC flown "weights"

The fitted Log-Normal Distribution, with parameters of \tilde{m}_X of 16,610 kg and $\sigma_{\ln(X)}$ of 0.086, for the curb "weight" of the LAV III-ISC corresponds to a bias coefficient of 0.996 with respect to the nominal curb "weight" of 16,744 kg and CoV of 0.086.

4.1.2.2 LAV III-ISC Gross Vehicle Weight

Table 4.6 presents the assumptions adopted to idealize the various load components of the LAV III-ISC GVW. Where operational payloads are unknown they are assumed to vary uniformly across the range of each parameter shown, which is intended to conservatively envelope (by disallowing the consideration of vehicles lower than the nominal combat weight) the actual parameter range as determined given operational considerations.

Component of	Nominal	Mass	Assumed "Weight"	Notes
GVW	Quantity	(kg)	Variability for Idealization	
Curb Weight		16,744 ^[a]	Deterministic	Case (1)
including	-	16,744 ^[a]	Log-Normal $\breve{m}_y = 16,610$	Case (2)
Uparmour		$20,630^{[b]}$	kg and $\sigma_{\ln(X)} = 0.086$	Case (3)
Payload A	-	340 ^[c]	(Total Nominal)*(Uniform Distribution between 1 and 1.5)	Inventoried Items
Payload B	-	1,620	(Total Nominal)*(Uniform Distribution between 1 and 2)	Miscellaneous Equipment / Stowage
Crew and Personnel with Combat Gear	10 ^[a]	1,300	(Nominal Quantity) + (Discrete Uniform Distribution between 0 and 10)	Mass of each soldier 136.5 kg ^[d]
Total (Combat		$20,000^{[a]}$		Cases (1) and (2)
Weight)		23,890		Case (3)

Table 4.6 – LAV III – ISC operational loads.

Note: Payload is normally distributed with parameters $\mu = 4,904$ kg, $\sigma = 643$ kg

[a] Department of National Defence (2011c)

[b] WLAV Chassis Management Team Leader, Department of National Defence (2014)

[c] SNC (n.d.)

[d] Emergency Approach Load (US Army Center for Army Lessons Learned, 2003)

Each component of the GVW was assumed independent. Using the data summarized in Table 4.6, 10,000 vehicle weights were randomly generated for each case, yielding the results shown in Table 4.7. The event distribution, assumed Log-Normal, of the LAV III-ISC weight was used to derive the CDF of the maximum weight over a one-year period using the mapping:

[4.14]
$$F_A(x) = [F_E(x)]^n = \left[\Phi\left(\frac{\ln(x/\widetilde{m}_X)}{\sigma_{\ln(X)}}\right)\right]^n$$

where $F_A(x)$ is the cumulative probability at weight x for the maximum observed value of n observations and $F_E(x)$ is the event cumulative probability at x. Several different annual volumes were considered. Using Equation [4.14] the statistical parameters for each annual traffic volume was calculated as summarized in Table 4.7.

LAV-III-ISC	Log-Normal or	Event	Maximum Annual (Gumbel)				
Nominal "Weights" Curb / Combat ^[a]	Gumbel Parameters	(Log- Normal)	100 veh/yr	1,000 veh/yr	10,000 veh/yr	100,000 veh/yr	
Case (1) –	\breve{m}_y or μ (kg)	21,632	23,258	23,820	24,294	24,712	
Deterministic Curb	$\sigma_{\ln(X)}$ or β (kg)	0.031	257	213	187	169	
	Bias	1.082	1.170	1.197	1.220	1.240	
weight 16,744 kg/20,000 kg	CoV	0.030	0.013	0.011	0.010	0.009	
Corr (2) Veriable	\breve{m}_y or μ (kg)	21,510	25,513	26,990	28,269	29,428	
Case $(2) - V$ ariable	$\sigma_{\ln(X)}$ or β (kg)	0.074	670	572	514	475	
16.744 kg/20.000 kg	Bias	1.077	1.293	1.361	1.428	1.485	
10,7 11 Ng 20,000 Ng	CoV	0.073	0.032	0.026	0.023	0.022	
Case (3) – Variable	\breve{m}_y or μ (kg)	21,510	25,513	26,990	28,269	29,428	
Curb "Weight" 20,630 kg ^[b] /	$\sigma_{\ln(X)}$ or β (kg)	0.074	670	572	514	475	
	Bias	0.903	1.083	1.139	1.195	1.243	
23,890 kg	CoV	0.073	0.032	0.026	0.023	0.022	

Table 4.7 - GVW of LAV III-ISC with deterministic and variable curb "weight"

[a] Department of National Defence (2011c)

[b] WLAV Chassis Management Team Leader, Department of National Defence (2014)

When the annual traffic volume equals 100 or more vehicles per year, weight of the maximum annual vehicle is best described by a Gumbel distribution. One might therefore expect that the dispersion factor β would remain constant. The dispersion factors shown in Table 4.7 change slightly for each value of *n* however, because, the Gumbel fit to the values from a Log-Normal mapped Equation [4.14], is good but not perfect. This was verified by adopting a Gumbel distribution for $F_E(x)$ in Equation [4.14], which yielded a constant dispersion factor β for all values of *n*.

4.1.3 Leopard 2A4M Tank

The Leopard 2A4M tank is also a fighting vehicle, primarily used to provide direct weapon fire support; with the vehicle designed primarily for the mobility and survivability of the primary weapon system. When compared to the LAV III-ISC, a larger proportion of its GVW is the curb weight; mostly due to requirements for the primary weapon system and armoured protection.

Figure 4.6 – Leopard 2A4M tank

Table 4.8 shows five flown "weights" from the NMDS database for Leopard 2A4M. The curb "weight" has a bias coefficient of 1.005 with respect to the nominal air shipping "weight" of 56,074 kg (Leopard Requirements Officer, Director Land Requirements 3-4-3, Department of National Defence, 2013) with a CoV of 0.016. The NMDS database does not capture the level of fuel in each transported vehicle (1,200 litres when fully fuelled, nominally 300 litres for transport), or if some components normally removed from the vehicle for transport, such as the chassis Add-on-Armour (AoA), were not removed. Some weight differences shown in Table 4.8 may be attributed to differing volumes of fuel within the vehicle and chassis AoA not removed for transport. Of the five Leopard 2A4M tanks shown, one has a notably higher "weight", 58,163 kg. This closely approximates the "weight" of a Leopard 2A4M with chassis AoA in place, which is 58,424 kg if 300 litres of fuel is included. The bias coefficient and CoV of the remaining four vehicles are 0.997 and 0.004, respectively. Therefore, it is reasonable to assume that the weights of components of the Leopard 2A4M are deterministic, at least when flown.

Dispatch Date	CFR	Mass (kg)
18/Nov/2011	72308	55,684
29/Nov/2011	72334	55,802
29/Nov/2011	72301	56,001
29/Nov/2011	72321	56,214
29/Nov/2011	72316	58,163

Table 4.8 – DND NMDS flown vehicle "weights" for Leopard 2A4M tank

Table 4.9 presents the assumptions adopted to idealize the various load components of the Leopard 2A4M tank GVW. The deterministic curb weight, 59,484 kg, consists of the Leopard 2A4M tank chassis, main gun and turret, AoA, slat armour system, and a full tank of fuel. The crew consisting of four persons at 75 kg each is also assumed deterministic. The nominal masses of the various operational weights are quantified from various DND sources and are sufficient to increase the nominal curb weight to the nominal combat weight. These operational weights are assumed to vary uniformly across the range of each parameter shown, which is intended to conservatively envelope (by disallowing the consideration of vehicles lower than the nominal combat weight) the actual parameter range as determined given the range of possible operational considerations. The potential for an additional operational load of up to ten infantry riding on top of the tank was also considered.

Component of GVW	Nominal Quantity	Combined Nominal Mass (kg) ^[a]	Assumed "Weight" Variability for Idealization	Notes
Curb "Weight" (fully fueled with AoA and Slat Armour)	-	59,184	Deterministic	
Crew	4	300	Deterministic	75 kg per person
Payload A	-	1,000	(Total Nominal)*(Uniform Distribution between 1 and 1.5)	Inventoried Items
Payload B	-	730	(Total Nominal)*(Uniform Distribution between 1 and 2)	Miscellaneous Equipment / Stowage
Infantry Section Transport	0	0	(Discrete Uniform Distribution between 0 and 10)	Mass of each soldier 136.5 kg
Total "Weight"		61,214		

Table 4.9 - Leopard 2A4M tank operational loads

[a] Leopard Requirements Officer, Director Land Requirements 3-4-3, Department of National Defence, (2013)

[b] Emergency Approach Load (US Army Center for Army Lessons Learned, 2003)

Figure 4.7 shows the cumulative distribution for 10,000 Leopard 2A4M tank weights that were randomly generated assuming the load components shown in Table 4.9 are independent. Above the 35th percentile, Weibull distribution has an excellent fit to the simulated data, (passing the K-S test at a significance level of 10%). The CDF of a Weibull distribution has the form:

[4.15]
$$F(x) = 1 - \exp(-(x/\mu)^k)$$

where, μ is the central tendency parameter and k the dispersion parameter.

Figure 4.7 – Weibull distribution for simulated Leopard 2A4M tank GVWs

The event and annual maximum statistical parameters for the Leopard 2A4M tank are shown in Table 4.10. The Leopard 2A4M GVW has negligible variability.

Leopard 2A4M	Weibull or	Event	Maximum Annual (Gumbel)				
Curb / Combat ^[a]	Parameters	(Weibull)	100	1,000	10,000	100,000	
	μ (kg)	62,710	63,523	63,743	63,900	64,021	
50 184 kg / 61 214 kg	$k \text{ or } \beta \text{ (kg)}$	118	105	73	56	45	
<i>39,164 kg / 01,214 kg</i>	Bias	1.021	1.039	1.042	1.044	1.046	
	CoV	0.008	0.002	0.001	0.001	0.001	

Table 4.10 – GVW of Leopard 2A4M tank

[a] Leopard Requirements Officer, Director Land Requirements 3-4-3, Department of National Defence (2013)

Although limited data are available on measured weights of tanks and infantry fighting vehicles (like the LAV III-ISC) at combat weight, Engeler (1994) persents detailed weights of two prototypes of the Austrian Spanish Cooperation Development (ASCOD) armoured fighting vehicle with all crew members and equipment simulated with the use of sand bags. The bias coefficient of the weight of these prototypes are similar to the estimated event bias coefficients calcuated for the both the LAV III-ISC and Leopard 2A4M tanks. The six-roadwheeled (the roadwheel is the wheel that holds

the track in place and transfers loads from the vehicle to the track, but does not contribute to driving power) prototype PT2 has a bias coefficient of 0.993 with respect to the nominal combat "weight" of 27,340 kg, and the 7-roadwheeled prototype PT3 has a bias coefficient of 1.012 with respect to the nominal combat "weight" of 27,969 kg (Engeler, 1994). Although more information would be required to assess the accuracy of the statistical parameters for weight presented in this thesis, the independent corraboration of bias coefficients for similar vehicles adds some confidence to the approach.

4.2 Relationship between Payload Weight Fraction and Vehicle Weight Variability

The assumption that all variability of the vehicle weight is due to its payload, causes the curb weight to become an important factor influencing the statistical parameters for the overall load. A particular payload may be associated with a vehicle depending upon its function. Light and heavy tanks, for example, both require the same crew complement, similar equipment for operation and maintenance, similar communications equipment, with somewhat varied ammunition types (all considered payload). Where they mostly differ is the amount of armour and size of weaponry, which directly impacts the curb weight of the vehicle but minimally impacts the payload. Thus for similar payloads, the maximum annual light tank (with a lower combat weight due to a lower curb weight) would have a greater bias coefficient and a higher CoV compared to a heavy tank. The statistical parameters for the overall weight will therefore likely be related to the payload weight fraction, γ :

$$[4.16] \qquad \qquad \gamma = \frac{W_p}{W_v}$$

where W_p is the nominal payload and W_V is the nominal overall vehicle weight. The nominal vehicle weight can be computed from W_c , the curb weight of the vehicle, as:

$$[4.17] W_V = \frac{W_c}{(1-\gamma)}$$

Since the curb weight is assumed deterministic, the mean vehicle weight, $\overline{W_V}$, is given by:

$$[4.18] \qquad \qquad \overline{W_V} = \delta_p W_p + W_c$$

where δ_p is the bias coefficient of the payload weight. Using Equation [4.16] to eliminate W_p and Equation [4.17] to eliminate W_V , Equation [4.18] can be written as:

[4.19]
$$\overline{W_V} = W_c \left(\frac{\gamma \delta_p}{1 - \gamma} + 1\right)$$

The bias coefficient of the vehicle weight, δ_{ν} , is simply the ratio of Equation [4.19] to Equation [4.17]:

$$[4.20] \qquad \qquad \delta_{\nu} = \gamma(\delta_p - 1) + 1$$

Since all variability of the vehicle weight is due to the payload, the standard deviation of the vehicle weight, σ_v , equals the standard deviation of the payload weight, σ_p . After some manipulation, the standard deviation of the vehicle weight is:

[4.21]
$$\sigma_{v} = V_{p}\delta_{p}W_{c}\frac{\gamma}{(1-\gamma)}$$

where V_p is the CoV of the payload. By dividing Equation [4.21] by Equation [4.18] the CoV of the vehicle weight, V_v , is:

[4.22]
$$V_{\nu} = \frac{V_p \delta_p \gamma}{\gamma(\delta_p - 1) + 1}$$

The payload bias coefficient and CoV for the various levels of maximum annual volume of vehicles as calculated from Equation [4.20] and Equation [4.22] respectively is summarized in Table 4.11.

Annual Maximum $n =$ # of vehicles	<i>n</i> =	= 1	n =	100	n =	1,000	n 10,	= 000	n 100	= ,000
Vehicle	δ_p	V_p	δ_p	V_p	δ_p	V_p	δ_p	V_p	δ_p	V_p
AHSVS-PLS	0.43	0.42	1.07	0.17	1.39	0.13	1.71	0.10	2.03	0.09
AHSVS-PLS and trailer with correlated containers	0.41	0.43	1.08	0.17	1.40	0.13	1.73	0.10	2.05	0.09
AHSVS-PLS and trailer with uncorrelated containers	0.43	0.30	0.89	0.14	1.12	0.11	1.35	0.09	1.58	0.08
LAV III-ISC Case (1)	1.50	0.13	2.04	0.05	2.21	0.04	2.35	0.03	2.47	0.03
Leopard 2A4M tank	1.63	0.15	2.18	0.03	2.27	0.01	2.33	0.01	2.39	0.01

Table 4.11 - Payload bias coefficient and CoV for annual maximum vehicle

Figure 4.8 shows the bias coefficient and CoV for the overall vehicle weight for estimated ranges of payload weight fraction calculated using the payload bias coefficient and CoV for annual traffic volumes of 1,000 vehicles a year given Table 4.11 (other traffic volumes are shown in Appendix E). The relationships for the LAV III-ISC and Leopard 2A4M tank are nearly identical.

Figure 4.8 – Maximum annual weight statistical parameters (n = 1,000 veh/yr) versus payload weight fraction: (a) bias coefficient; (b) CoV

4.3 Individual Axle Loads

To assess the reliability of shorter spans, the statistical parameters for axle loads are required. In this section, suitable parameters are derived from the gross vehicle weight parameters.

4.3.1 AHSVS-PLS (Transport) Axle Load

As shown in Figure 4.9, the first four axles of the AHSVS-PLS are in fact two tandem axles. The PLS trailer does not add a fifth wheel load to the rear tandem axle. Thus the axle loads can be estimated from the total load by idealizing the AHSVS-PLS as a simply supported span between the tandem axle centers. When the eccentricity of the payload

extends beyond the rear tandem axle, a cantilever is assumed. The PLS trailer axle loads can be computed from the total load by idealizing the trailer as a simply supported span between its axles. Based on the nominal curb "weight" and axle loads given in Table 4.1 for the AHSVS-PLS, the curb weight is represented as a point load (shown as black arrows labeled "C") located 1.52 m from the front support. The curb weight for the PLS trailer would be equivalent to a point load applied at mid-span between the two supports. The nominal maximum payloads are also represented as point loads (shown as white arrows labeled "P"), applied at mid-span on the trailer and at 0.52 m in front of the rear support of the AHSVS-PLS. It is assumed that, if there is no eccentricity of the shipping container centers of gravity, the payload will act at these points for any given weight. Thus simple statics can estimate the loads on the single axle and each axle of the tandem axle, assuming that the tandem axle loads are shared equally.

Figure 4.9 – Idealization of AHSVS-PLS with PLS trailer (m): (a) Vehicle axle spacing; (b) Idealized representation

To generate realistic axle loads, intermodal shipping containers were randomly generated based on the statistical parameters presented in Section 4.1.1.1. For each container, longitudinal eccentricity was randomly generated assuming the statistical parameters presented in Section 4.1.1.1. A total of 10,000 vehicles were generated and

analysed to yield the event axle statistics presented in Table 4.12. The front tandem axle of the AHSVS-PLS has a higher bias but lower CoV than the rear tandem axle due to the center of gravity of curb weight. Similarly, the payload of the AHSVS-PLS acts approximately 0.5 m from the rear tandem axle causing the statistical parameters for the weight on these axles to be similar to those of the payload itself. Accounting for payload eccentricity has no impact on the axle load bias coefficients but slightly increases the CoV of the front tandem and two trailer axles.

Axle	1 st ar	nd 2 nd	$3^{\rm rd}$ at	nd 4 th	5^{th} and 6^{th}	
Payload Eccentricity Accounted For?	Yes	No	Yes	No	Yes	No
Mean (kN)	83.5	83.5	62.5	62.5	59.1	59.2
Bias coefficient	0.946	0.946	0.607	0.607	0.574	0.575
Standard Deviation (kN)	2.1	1.5	12.7	12.7	14.7	14.2
CoV	0.026	0.018	0.203	0.204	0.249	0.240

Table 4.12 – AHSVS-PLS event axle load idealization

4.3.2 LAV III-ISC (Armoured Personnel Carrier) Axle Load

For the LAV III-ISC the four axles are assumed to be two tandem axles. As shown in Figure 4.10, the axle loads can be computed from the GVW by idealizing the LAV III-ISC as a simply supported span between the centers of the tandem axles. It was assumed that the center of gravity of the curb weight of the uparmoured LAV III-ISC prior to Afghanistan upgrades is the same as the LAV III-ISC after the LORIT upgrades. The center of gravity for the curb weight of the LAV III-ISC, shown as a black arrow labeled "C", is assumed to be 3.47 m from the front of the vehicle (WLAV Chassis Management Team Leader, Department of National Defence, 2014), which is 1.89 m behind the front axle or 1.28 m behind the idealized front support. Given the axle ratings of the LAV III-ISC prior to LORIT upgrades, at 4,600 kg for the front axles, and 5,200 kg for the rear axles, the center of gravity for the payload, shown as a white labeled "P", is applied 4.25 m from the front of the vehicle (which is 2.67 m behind the front axle or 2.05 m behind the idealized front support). The bias coefficient and variability of the payload eccentricity for the LAV III-ISC is not available in the literature, so it was assumed that

the center of gravity of the payload is located exactly between the 3rd and 4th axle (4.83 m from the front of the vehicle). This results in changes to the payload only affecting the rear two axles. This is a conservative assumption for short spans, because it results in greater variability for the third and fourth axles than if the payload was shared between the front and rear tandem axles.

Figure 4.10 – Idealization of LAV III-ISC (m): (a) Vehicle axle spacing; (b) Idealized representation with nominal location of payload; (c) Idealized representation with simulated location of payload

Table 4.13 summarizes the axle load bias coefficient and CoV for the three cases investigated. Due to the determinist curb weight for Case (1), the CoV of the rear tandem axle is much smaller than the CoV for Cases (2) and (3). Since they are the same load but have different nominal combat "weights", the only difference between Case (2) (nominally 20,000 kg) and Case (3) (nominally 23,890 kg), are their bias coefficients.

Case	Axle	Nominal (kN)	Mean (kN)	Bias	Standard Deviation (kN)	CoV
(1)	1^{st} and 2^{nd}	46.0	42.3	0.919	N/A	0
(1)	3^{rd} and 4^{th}	52.1	63.8	1.226	3.2	0.049
(2)	1^{st} and 2^{nd}	46.0	42.1	0.915	3.6	0.085
(2)	3^{rd} and 4^{th}	52.1	63.6	1.222	4.7	0.074
(2)	1^{st} and 2^{nd}	55.8	42.1	0.754	3.6	0.085
(3)	3^{rd} and 4^{th}	61.3	63.6	1.038	4.7	0.073

Table 4.13 – LAV III-ISC event axle load idealization

4.3.3 Leopard 2A4M Tank

For tracked vehicles, the vehicle load is generally assumed to be uniformly distributed over the contact area of the tracks (NATO, 2006). In fact, there are peaks of pressure where roadwheels are located along the track (Wong, 2010). Given this, it is necessary to check the local load applied beneath the tracked vehicle roadwheel (NATO, 2006). Furthermore, the load in each roadwheel may not be equal, depending on how the vehicle is loaded. For longer spans the impact of these slight differences in roadwheel loads is negligible. For shorter spans, particularly those nearing the length of track itself, these differences could have an impact. Case #1 in Figure 4.11 shows the perfect case where loads are distributed equally between roadwheels, thus creating essentially a Uniformly Distributed Load (UDL) along contact surface of the tracks. In practice, some roadwheels may have heavier loads than others. If these heavier loads are near the middle of the vehicle, as represented by Case #2 in Figure 4.11, a greater maximum moment than that caused by a UDL would be produced. They might also be concentrated to one end of the vehicle as shown in Case #3 in Figure 4.11, which would produce a greater maximum shear.

Figure 4.11 – Tracked vehicle load distribution cases: (a) Idealized load; (b) Worst case for moment; (c) Worst case for shear

In Cases #2 and #3 of Figure 4.11, the load distribution would be caused by differences in the largest roadwheel load and smallest roadwheel load. For Case #2 (for moment) or Case #3 (for shear), if the largest magnitude of the distributed load is 35% larger than the least magnitude, the increase in moment or shear with respect to Case #1 is less than 5%.

For the Leopard 2A4M tank, data could not be obtained for the fully loaded roadwheel loads, although roadwheel loads at curb weight were provided. To estimate the fully loaded nominal road wheel loads for the Leopard 2A4M, the payload and fuel was distributed over the 4 rear roadwheels because a large portion of the fuel and payload is located at the rear of the vehicle. Table 4.14 shows the combined load applied by successive pairs of roadwheels as an absolute load and a percentage of the total vehicle weight. It was assumed that ratio of roadwheel load to total vehicle weight would be maintained for all weights of the Leopard 2A4M tank. This procedure may not yield the actual roadwheel load, but in lieu of better data, may be a reasonable approach.

Road Wheel Pair	1^{st}	2^{nd}	3^{rd}	4^{th}	5^{th}	6^{th}	7^{th}	SUM
Roadwheel Load (kN)	81.4	88.9	88.0	92.0	91.2	82.9	75.9	600.3
Percent of Total Weight (%)	13.6	14.8	14.7	15.3	15.2	13.8	12.6	100.0

Table 4.14 – Fully laden Leopard 2A4M road wheel load

4.4 Discussion

The method used to estimate variability of the AHSVS-PLS combat weight provides a good starting point for investigating other traffic populations. This could indicate if further resources are necessary to gather direct observations of military transport vehicle weights, and so obtain more reliable data to use as a basis for the calibration of Limit States Design based load factors for military transport vehicles.

The methods used to quantify the LAV III-ISC and Leopard 2A4M tank weight variability are based on heuristic assumptions concerning different operational loads that affect the vehicle weight. Given the high level of control, itemized breakdown, and standardization of military fighting vehicle loads, it is possible to make these assumptions with greater confidence than if the payload was uncontrolled. Even though vehicle weight data from the field are required to validate these assumptions, they still yield a useful method of comparing the expected weight variability in different categories of military vehicles.

It is generally assumed that there is higher control in military vehicle loads than civilian vehicle loads (Kim, Tanovic, & Wight, 2010), thus leading to lower weight variability. Based on the observed weights of intermodal containers from Afghanistan and qualitative descriptions of loading practices provided by military personnel while conducting research for this chapter, this assumption may not always be valid, specifically during conflict operations. For example, the AHSVS-PLS, a military transport, had similar statistical parameters for load as Canadian non-permit traffic, indicating no greater load control between the Canadian military and civilian traffic. In using conservative assumptions for the LAV III-ISC and Leopard 2A4M tank loadings, it was illustrated that the weights of these vehicles is less variable because the curb weight, assumed deterministic, is a significant portion of the GVW.

4.5 Chapter Conclusions

Using heuristic assumptions combined with available data, the statistical parameters for the GVW and axle loads for three military vehicles have been quantified. This is a necessary prerequisite to employ Limit State Design (LSD) methods, including the assessment of existing bridges for military vehicles.

This chapter illustrates that many military vehicles have large curb weights and light payloads, and so have weights near to the nominal weight. Reducing the payload weight fraction, i.e., the ratio of the payload to the overall vehicle weight, reduces the overall vehicle weight variability. The following conclusions can be made:

- The statistical parameters for the GVW of military vehicles differ depending on the general configuration and function of the specific vehicle. Specifically, military fighting vehicles have a lower CoV than military transport vehicles.
- 2. The lower weight variability of some military vehicles is less due to effective load control but rather is an inevitable outcome of the design and intended functionality of the vehicle itself.
- Accounting for the eccentricity of the payload has little impact on the axle load bias coefficient, but impacts its CoV.
- 4. It is possible to estimate the statistical parameters for the GVW of military vehicles using the payload weight fraction.

Chapter 5

5 Probabilistic Quantification of Military Vehicle Load Effects

5.1 Static Load on Simple Spans

5.1.1 AHSVS-PLS (Transport)

Figure 5.1 shows Gumbel distributions fitted to the axle loads determined in Chapter 4 for the AHSVS-PLS. Generally the fit of the distribution to the data is excellent. Figure 5.1 (d) shows the event distribution for shear on a 1 m span caused by the AHSVS-PLS and trailer with uncorrelated container loads. The shear data implies the need for two distinct Gumbel distributions: for cumulative probabilities less than 0.90 it is governed by Axles 1 and 2 and for greater cumulative probabilities, it is governed by Axles 3, 4, 5 and 6. This is corroborated by Figure 5.2, which shows the probability density functions for each axle load and for shear on a 1 m span. The probability density functions for each axle load and for shear on a 1 m span. The probability density functions for each axle load and for shear Axles 1 & 2 are essentially identical for loads/shears less than 89 kN. The probability density functions for shear and for the maximum axle load from axles 3 to 6 are essentially identical for loads/shears greater than 92 kN. This illustrates the transition on short spans, from the front axles governing the load effect (for most cases) to the rear axles governing the load effect (for the extreme load cases).

Figure 5.1 – Gumbel distribution for event AHSVS-PLS with trailer axle loads (a) Axle 1 & 2 loads; (b) Axle 3 & 4 load;

(c) Axle 5 & 6 loads; (d) Shear load effect on 1 m span

Figure 5.2 – Probability density of AHSVS-PLS with uncorrelated trailer axle loads (a) Overall; (b) Inset detail

The bilinear cumulative distribution function observed for shear in 1 m spans was also noted for moments. For increasing span lengths, the observed kink at the intersection of the two linear distribution regions decreases. This is due to the load effect of additional axles acting on the span, as well as, the distance between axles being comparatively small to the span length. Eventually, the sample CDFs for shear or moment can be described by a single Gumbel distribution. This occurred between 16 m and 25 m for the different cases investigated.

Figures 5.3 and 5.4 present the bias coefficient and CoV, respectively, for shear and moment for increasing span lengths at different annual traffic volumes (Event, n =100, and n = 1,000). The nominal shear and moment are as produced by a vehicle of the nominal combat "weight" (AHSVS-PLS at 39,000 kg, AHSVS-PLS and PLS trailer at 60,000 kg). At shorter spans, where different axles can govern the maximum event shear or moment, the extreme value distribution at each traffic volume was defined using the most severe load effect due to the n generated vehicles. One thousand simulated data points were generated to determine the bias coefficient and CoV for the n = 100, and n = 1,000 cases. Since the extreme value distribution for n = 1,000 can be idealized using a single Gumbel distribution, the distribution parameters for higher annual traffic volumes can be determined using the log-shift principle, e.g., Equations [4.12] and [4.13]. These Gumbel distribution parameters can be converted to the bias coefficient and CoV for shear and moment at short and long spans using Equations [4.10] and [4.7]. Figure 5.3 indicates that for spans of 20 m, the bias coefficient and CoV for shear stabilizes. Likewise, Figure 5.4 indicates that for spans of 25 m the bias coefficient and CoV for moment also stabilizes. The span length is longer for the moment case because the effect of accounting for individual axle loads instead of resultant force is much smaller for shear than for moment.

Figure 5.3 – Static shear force demand versus span length: AHSVS-PLS and trailer with uncorrelated container weights: (a) Bias Coefficient; (b) CoV

Figure 5.4 – Static bending moment demand versus span length: AHSVS-PLS and trailer with uncorrelated container weights: (a) Bias Coefficient; (b) CoV

A comparison of Figures 5.3 and 5.4 indicates that the bias coefficient and CoV of the either static load effect depends on the span lengths, and both are greater for shorter span lengths. An exception to this trend is the event CoV, which is reduced for shorter span lengths because the critical force effect is due to a single tandem axle, so the event CoV is closely related to the CoV of that axle, which for most cases would be the front tandem axle with a low CoV. On the other hand, extreme value distributions for traffic volumes of more than 100 vehicles per year are mainly defined by the rarer events where the critical force effect is caused by the rear axles, which have a higher CoV.

Table 5.1 summarizes the static load bias coefficient and CoV for simply supported spans up to 100 m. Given the different bias coefficients and CoVs for short and long spans, unique values of each parameter for short and long spans are necessary. The bias coefficient and CoV for the AHSVS-PLS without a trailer are essentially constant at span lengths greater than 16 m for shear and 20 m for moment. For the AHSVS-PLS and PLS trailer, whether the container weights are uncorrelated or perfectly correlated, the near constant values occur at span lengths of 20 m for shear and 25 m for moment. The bias coefficient is from the nominal shear and moment that would be produced by the vehicle at its combat "weight" (AHSVS-PLS at 39,000 kg, AHSVS-PLS and trailer at 60,000 kg).

AHSVS-PLS	Danamatan	Span	Errort	Maxir	num Ann	ual (Traffic	Volume)
Configuration	Parameter	Range	Event	(100)	(1,000)	(10,000)	(100,000)
	Bias	< 16 m	0.816	1.057	1.261	1.502	1.742
No Trailor (Shoor)	Bias	>16 m	0.764	1.030	1.164	1.305	1.444
No Trailer (Silear)	CoV	< 16 m	0.096	0.116	0.103	0.089	0.077
	CoV	>16 m	0.096	0.072	0.063	0.059	0.054
	Bias	< 20 m	0.816	1.057	1.281	1.533	1.788
No Trailer	Bias	>20 m	0.765	1.031	1.165	1.308	1.448
(Moment)	CoV	< 20 m	0.096	0.117	0.103	0.092	0.079
	CoV	>20 m	0.096	0.072	0.063	0.060	0.054
Trailer with	Bias	< 20 m	0.799	1.046	1.277	1.465	1.684
Uncorrelated	Bias	> 20 m	0.709	0.924	1.022	1.121	1.220
Container	CoV	< 20 m	0.092	0.123	0.099	0.084	0.073
Weights (Shear)	CoV	>20 m	0.092	0.059	0.053	0.049	0.045
Trailer with	Bias	< 25 m	0.790	1.052	1.283	1.523	1.759
Uncorrelated	Bias	>25 m	0.695	0.922	1.024	1.124	1.225
Containers	CoV	< 25 m	0.096	0.128	0.100	0.086	0.075
(Moment)	CoV	>25 m	0.096	0.061	0.055	0.050	0.046
Trailer with Fully	Bias	< 20 m	0.799	1.053	1.283	1.522	1.754
Correlated	Bias	>20 m	0.705	1.043	1.204	1.390	1.567
Container	CoV	< 20 m	0.129	0.117	0.103	0.085	0.074
Weights (Shear)	CoV	>20 m	0.129	0.091	0.075	0.071	0.063
Trailer with Fully	Bias	<25 m	0.783	1.053	1.283	1.523	1.755
Correlated	Bias	>25 m	0.696	1.045	1.211	1.404	1.587
Containers	CoV	< 25 m	0.134	0.117	0.103	0.085	0.074
(Moment)	CoV	> 25 m	0.134	0.094	0.077	0.073	0.064

Table 5.1 – AHSVS-PLS static load bias coefficient and CoV, for simply supported spans

Referring to Table 5.1, in considering the three configurations for the AHSVS-PLS (which is more evident at higher traffic volumes), the two cases for AHSVS-PLS and trailer bound the severity of static loads. When the shipping container weights are uncorrelated, the resulting statistical parameters are the least severe, and when the shipping containers are correlated, the parameters are the most severe. The bias coefficient and CoV for the AHSVS-PLS falls between these two cases. The AHSVS-PLS and trailer with uncorrelated shipping container weights has a lower CoV because it is unlikely that an extremely heavy shipping container will occur simultaneously on the truck and the trailer. For shorter spans, the differences between the three configurations are much less, because, primarily axles 3 and 4 have a significant impact on the governing case of moment or shear.

5.1.2 LAV III-ISC (Armoured Personnel Carrier)

Following similar procedures, the bias coefficient and CoV for shear and moment due to the LAV III-ISC for various simply supported span lengths was determined. The nominal shear and moment are as produced by the LAV III-ISC at its nominal combat "weight" (Cases (1) and (2): 20,000 kg; and Case (3): 23,890 kg). Figures 5.5 and 5.6 show the variation of these parameters for shear and moments, respectively, for Case (1) of the LAV III-ISC. For span lengths greater than 15 m for shear and 15 m for moments, the parameters are constant. The shortest span investigated, 2 m, was chosen because the LAV III-ISC would likely self-bridge any lesser span (DND, 2011c).

Figure 5.5 - Static force demand shear versus span length: LAV III-ISC – Case (1): (a) Bias Coefficient; (b) CoV

Figure 5.6 - Static force demand moment versus span length: LAV III-ISC – Case (1): (a) Bias Coefficient; (b) CoV

Table 5.2 provides bias coefficient and CoV values caused by the three Cases of the LAV III-ISC for moment and shear on simply supported spans. Two sets of parameters are provided: one set for short spans, less than 15 m; and the other set for longer spans. The span length defining the boundary between short and long spans is shorter than that for the AHSVS-PLS, because the distance between the front and rear axles of the LAV III-ISC is 3.86 m, compared to 6.83m for AHSVS-PLS or 15.11 if a PLS trailer is present. Unlike Case (1), for Cases (2) and (3) only the bias coefficient varies with span length while the CoV remains relatively constant. This occurs because for Cases (2) and (3) there is an assumed variability in the curb weight that causes the CoVs for all axles of the vehicle to be similar.

Table 5.2 – LAV III-ISC static load effect bias coefficient and CoV, for simply supported

Maximum Annual LAV III-ISC Span Parameter Event Configuration Range 100 1,000 10,000 100,000 Bias <15 m 1.232 1.380 1.423 1.459 1.494 Case (1)Bias >15 m 1.085 1.167 1.191 1.210 1.231 0.013 (Shear) CoV < 15 m 0.049 0.018 0.014 0.014 CoV >15 m 0.030 0.012 0.010 0.010 0.009 Bias < 15 m 1.228 1.380 1.423 1.458 1.493 1.085 1.191 1.211 1.231 Case (1)Bias >15 m 1.168 (Moment) 0.019 0.014 CoV <15 m 0.049 0.013 0.013 CoV 0.030 0.012 0.010 0.010 0.009 > 15 m 1.223 1.455 1.531 Bias <15 m 1.607 1.684 Case (2) >15 m 1.294 CoV 1.080 1.362 1.426 1.489 (Shear) CoV 0-100 m 0.074 0.032 0.026 0.026 0.025 1.223 1.531 Bias <15 m 1.455 1.608 1.684 Case (2)>15 m 1.294 CoV 1.080 1.363 1.426 1.490 (Moment) CoV 0-100 m 0.073 0.032 0.028 0.027 0.025 < 15 m 1.039 1.236 1.301 1.358 1.414 Bias Case (3) >15 m 0.905 1.084 1.141 1.192 1.243 CoV (Shear) CoV 0-100 m 0.074 0.032 0.026 0.023 0.022 < 15 m 1.039 1.236 1.301 1.358 1.414 Bias Case (3) CoV >15 m 0.905 1.084 1.141 1.193 1.245 (Moment) 0.023 CoV 0-100 m 0.073 0.032 0.026 0.024

spans

Table 5.2 shows that Case (1), with its deterministic curb weight, has the lowest event CoV which, when compared to other cases at greater traffic volumes, results in a lower bias coefficient and CoV. Cases (2) and (3) differ only in bias coefficient due to the different nominal combat "weights" (Case (2): 20,000 kg; and Case (3): 23,890 kg).

5.1.3 Leopard 2A4M Tank

Following the same procedures, the bias coefficients and CoV values for shear and moment on simply supported spans was quantified for the Leopard 2A4M tank. The shortest span investigated is 3 m, which corresponds to the maximum trench width the

Leopard 2A4M tank can cross (Leopard Requirements Officer, Director Land Requirements 3-4-3, Department of National Defence, 2013). Figure 5.7 shows the bias coefficient for shear is greater for spans shorter than 10 m, due to the difference between the nominal UDL and the simulated roadwheel loads described in Section 4.3.3 . If only a simulated UDL was considered, the bias coefficient for shear would be constant for all spans. For the Leopard 2A4M, only the bias coefficient for shear was shown in Figure 5.7 because it is the only statistical parameter that changes with span length.

Figure 5.7 – Static force shear demand versus span length: Leopard 2A4M tank

Table 5.3 presents the bias coefficients and CoV values for the Leopard 2A4M tank, where the simulated shear and moment is the worst case between roadwheel loads or idealized as a UDL. The nominal shear and moment are as produced by the Leopard 2A4M at its nominal combat "weight" (61,214 kg) if idealized as a UDL. Due to the different bias coefficient for shear at spans less than 10 m, two categories of span are considered for shear in Table 5.3. The coefficients of variation for the event and the extreme annual distributions are very small.

Leopard	Doromotor	Span	Event •	Maximum Annual				
2A4M	Farameter	Range	Event	100	1,000	10,000	100,000	
Shear	Bias	< 10 m	1.215	1.237	1.241	1.245	1.248	
	Bias	> 10 m	1.020	1.039	1.042	1.045	1.047	
	CoV	0-100 m	0.011	0.002	0.001	0.001	0.001	
Moment -	Bias	0-100 m	1.020	1.039	1.042	1.045	1.047	
	CoV	0-100 m	0.011	0.002	0.001	0.001	0.001	

Table 5.3 – Leopard 2A4M static load effect bias coefficient and CoV, for simply supported spans

5.2 Dynamic Load Effects

The Dynamic Load Allowance is "an equivalent static load that is expressed as a fraction of the traffic load and is considered to be equivalent to the dynamic and vibratory effects of the interaction of the moving vehicle and the bridge, including the vehicle response to irregularity in the riding surface" (CSA, 2006a).

Lenner (2014) recently noted that a "…review of literature does not provide a single value for [Dynamic Load Allowance] that can be used for military vehicles in general terms", but rather "varies from country to country or even agency to agency due to different assumptions and test outcomes". References recommending Dynamic Load Allowance (DLA) or similar factors are "mainly concerned with [the] deterministic value of the [DLA] and no regard is given to the stochastic properties" (Lenner, 2014). For military vehicles speeds less than 25km/hr, a DLA of 0.15 is recommended, with 0.20 for ramps (Hornbeck, Kluck, & Connor, 2005). Lenner (2014) cites Homberg (1970), who proposes DLA at spans less than 18 m of 0.25 for wheeled vehicles and 0.10 for tracked vehicles that in both cases reduce to DLA of zero for spans of 50 m or greater. DND (2007a) recommends a DLA of 0.15 for all bridge types and span lengths, except for timber stringer bridges where DLA is taken as zero. DND (2007a) however, makes an exception for extremely unfavorable pavement conditions, where the DLA is increased to 0.30, and "for extremely short elements of deck (one axle on the span)…a DLA of [0.40] may apply". Lenner (2014) recommends the CoV for Dynamic Amplification Factor

(DAF) between 0.05 to 0.15 but "proposed to assess the dynamic amplification on a casespecific basis". The low CoV for dynamic amplification apply to "bridges with an exceptionally smooth profile or for all bridges with span lengths over 15 m" (Lenner, 2014). The CoV for DLA can be determined from CoV for DAF from:

[5.1]
$$V_{DLA} = \frac{V_{DAF} \cdot (\overline{DLA} + 1)}{\overline{DLA}}$$

where, \overline{DLA} is the mean DLA, V_{DLA} is the CoV for the DLA and V_{DAF} is the CoV for the DAF.

Given the lack of consensus concerning the dynamic effects of military vehicles, it is useful to review existing experimental research of the dynamic loads for several military vehicles, shown in Table 5.4. The results of these investigations can be compared to the statistical parameters for dynamic loads caused by civilian traffic. Some of these vehicles are similar to vehicles investigated in this thesis: the M1-A1 Abrams tank is comparable in size, weight, and function to the Leopard 2A4M tank; the M1075 PLS is similarly comparable to the AHSVS-PLS; and the Bison is comparable to the LAV III-ISC.

Name	Description	Military Vehicle Category	Weight (kN)	Number of Axles (Roadwheels)	Front to Rear Axle (m)	Axle Space	Group ing (m)
M1-A1	Tank	Tracked- Fighting (T-F)	614	(7)	4.57	0	.73
HET	Tank Transporter	Wheeled- Transport (W-T)	1,044	9	13.65	1.10	1.30
M113	Armoured Personnel Carrier	Tracked- Fighting (T-F)	121	(5)	2.68	0	.67
M1075 PLS(1)	PLS Truck	Wheeled- Transport (W-T)	383	5	7.97	1	.52
M1075 PLS(2)	PLS Truck (lighter load)	Wheeled- Transport (W-T)	210	دد	۲۵		"
Bison	Armoured Personnel Carrier	Wheeled- Fighting (W-F)	126	4	3.47	1.10 1	.34 1.04
HLVW	Transport Truck	Wheeled- Transport (W-T)	147	3	5.40		1.4

Table 5.4 – Description of military vehicles from experimental research of the dynamic

loads

Table 5.5 shows the dynamic effects of military vehicles observed in these studies. The observed dynamic load effects from the studies are compared to the statistical parameters for DLA in CSA (2006b), shown in Table 5.6. Statistical parameters for "Short spans" are for spans up to 10 m, for all other conditions "Other span" - 1 lane loaded are used (CSA, 2006a). The DLA was designated based on the axles acting on each span from CL-W Truck which produced the greatest moment for the span length. The DLA shall be: "[a] 0.40 where only one axle of the CL-W Truck is used...; [b] 0.30 where any two axles of the CL-W Truck, or axles nos. 1 to 3, are used; or [c] where three axles of the CL-W Truck, except for axles nos. 1 to 3, or more than

three axles, are used". Following this, the 15.6 m span (Concrete T-Beam, Patrick) has a DLA of 0.25, while all other bridges have a DLA of 0.30.

Study	Туре	Span (m)	Vehicle	Number of	Observed Dynamic Effects		DLA CSA (2006b)			
				Trials	Max	Mean	CoV	Mean	CoV	
Fixed Non-Standard										
Trimble, Cousins and Seda- Sanabria (2003)	Concrete T-Beam (Franklin)	12	M1075 PLS (2)	4	0.15	0.10	0.30	0.18	0.80	
	Concrete T-Beam (Patrick)	15.6	M1075 PLS(2)	4	0.46	0.39	0.15	0.15	0.80	
Deployable / Mobile Bridging										
Kosmatka	Carbon /	11.9	M1-A1	15	0.26	0.23	0.13	0.18	0.80	
(2011)	Epoxy		HET	15	0.69	0.62	0.15	0.18	0.80	
Robinson	Low	4.7	M113	11	0.12	0.02	3.00	0.20	0.60	
and Kosmatka (2011)	Profile FRP Composite		M1075 PLS(1)	9	0.71	0.49	0.39	0.20	0.60	
Landherr	FRP Box	10	Bison	6	0.28	0.13	0.54	0.20	0.60	
(2008)	Beam		HLVW	1	0.27	0.27	N/A	0.20	0.60	

Table 5.5 – Dynamic effects for military vehicles on various bridge types

Table 5.6 – Statistical parameters for dynamic load allowance (CSA, 2006b)

Span		δ_{DLA}	V_{DLA}
Short		0.67	0.60
Other	- 1 lane loaded	0.60	0.80

In the literature reviewed, only Trimble, Cousins and Seda-Sanabria (2003) report experimental dynamic effects of fixed bridges, specifically two concrete T-beam bridges: Franklin County, and Patrick County (these bridges will be referred to herein as "Franklin Bridge" and "Patrick Bridge" respectively). Referring to Table 5.5, for the Franklin Bridge, the DLA specified in CSA (2006a, 2006b) is conservative compared to the observed DLA. Conversely, for the Patrick Bridge, the DLA specified in CSA (2006a, 2006b) is unconservative. For each bridge the maximum dynamic increment observed during four crossings of a M1075 PLS truck was reported. Table 5.7 presents the mean dynamic load allowance and its standard deviation for the combined data statistics for both bridges. The overall mean DLA, considering all runs on both bridges, yields a bias coefficient between 1.33 and 1.60 with respect to the mean DLA given in CSA(2006b) with a lower CoV, 0.63 versus 0.80 (CSA, 2006b).

	Franklin	Patrick	Both
	Bridge	Bridge	Bridges
Mean	0.10	0.39	0.24
Standard Deviation	0.03	0.06	0.15
CoV	0.30	0.15	0.63

Table 5.7 – Trimble, et al. (2003) dynamic load increment for M1075 PLS(1)

In considering all the bridges listed in Table 5.5, observed statistical parameters concerning the DLA show some general trends. Clearly the mean dynamic increments for wheeled vehicles are consistently greater than CSA (2006b) in all cases except for the Bison investigated by Landherr (2008). Tracked vehicles and/or fighting vehicles have consistently lower DLAs compared to wheeled-transport vehicles crossing the same bridge. Also, deployable bridges require greater DLAs than fixed bridges.

It is evident that it is not appropriate to designate a single DLA for all possible combinations of military vehicles and bridge types. Only tracked and fighting vehicles have statistical parameters for DLA that are enveloped by the values recommended in CSA (2006a, 2006b). Given the general trend that deployable bridges require a greater DLA than fixed bridges, then it would be conservative to apply the statistical parameters for DLA given in CSA (2006a, 2006b) to military tracked vehicles or wheeled-fighting vehicles.

Figure 5.8 compares observed mean DLA and corresponding CoV from Table 5.5 to the DLA and CoV_{DLA} proposed by Lenner (2014). Vehicles are described by their configuration and function as Wheeled-Transport (W-T), Wheeled-Fighting (W-F), or Tracked-Fighting (T-F). Not shown in Figure 5.8 is the Tracked-Fighting vehicle M113 (on deployable 4.8 m span) with a mean DLA of 0.02 and CoV of 3.00. The lower dashed line corresponds to $CoV_{DAF} = 0.05$, and the upper dashed line corresponds to

 $CoV_{DAF} = 0.15$. If situation-specific DLAs can be calculated accurately for military vehicles, the approach to probabilistically quantify the CoV of dynamic load effects proposed by Lenner (2014) might be applicable. A major shortfall in the approach proposed by Lenner (2014) is the requirement to calculate a situation-specific DLA, which based on limited experimental data, is difficult to quantify accurately. For all studies reviewed, the combined statistical parameters for tracked vehicles show a lower mean DLA with a higher CoV than for wheeled vehicles.

Figure 5.8 – Mean DLA and CoV from Table 5.5 and CoV range for DLA as proposed by Lenner (2014)

Further research into the dynamic amplification caused by military vehicles is required. In lieu of better information, the mean dynamic load and CoV of the three cases given in Table 5.7 and CSA (2006a, 2006b) will be used in the current study.

5.3 Lateral Load Distribution

Lateral load distribution is the assignment of live load demands per lane to demands per girder (or other longitudinal load-resisting element). Much like dynamic load effects,
there is limited available literature on the lateral live load distribution for military vehicles on bridges. Based on the available literature, a brief investigation for lateral distribution of a single lane of military vehicle moment to an interior girder of slab-on-girder bridges (e.g., steel girder, pre-stressed concrete, and concrete T-beam) will be presented. This has potential merit because, beam type bridges are very common (Dunker & Rabbat, 1990) and can support single lane military traffic, which is a rating used in the NATO Military Load Classification System.

Kim, Tanovic and Wight (2010) examined the lateral load distribution of NATO Military Load Classification (MLC) wheeled design trucks on a 36 m, simple-span, steel I-girder bridge. Using a calibrated three-dimensional Finite-Element Analysis (FEA), the lateral load distributions of these trucks were examined and compared to AASHTO (2007) Load Distribution Factors (LDF). The LDF for moment is defined as follows (Kim, Tanovic, & Wight, 2010):

$$LDF = \frac{M_{ref}}{M_{l_0}}$$

where, M_{ref} is the moment per girder and M_{l_0} is the moment per design lane.

Pinero (2001) derived formulas similar to those specified in AASHTO (1996, 2007, 2012) that are specific to different types of wheeled and tracked military vehicles used by the US military. Harmonic decomposition was used to find the maximum live load effects on a simply supported multi-girder slab-on-girder system. Three bridge types were investigated: steel girder, pre-stressed concrete, and concrete T-beam. Using the LDF determined for specific vehicle and bridge combinations, nonlinear regression analysis was applied to develop proposed load distribution formulas.

CSA (2006a) approaches lateral load distribution differently than AASHTO (2012), so the LDF's reported by others were converted to amplification factors that are consistent with the CSA proceedures. For AASHTO (2012) the LDF is multiplied by single lane traffic load to find the moment for each girder. CSA (2006a) defines the

girder moment as the product of an amplification factor, F_m , and the average load girder force effect. The design moment per girder, M_g , is therefore (CSA, 2006a):

$$[5.3] M_g = F_m M_{g,avg}$$

where $M_{g,avg}$, the average moment per girder calculated by (CSA, 2006a):

$$[5.4] M_{g,avg} = \frac{nM_TR_L}{N}$$

where, *n* is the number of design lanes, M_T is the maximum moment per design lane, R_L is a modification factor for multi-lane loading, and *N* is the number of girders. Since only single lane traffic is being considered, *n* and R_L both equal 1.0. Thus, M_{l_0} and M_{ref} from AASHTO (2012) are equivalent to M_T and M_g from CSA (2006a) respectively. As such, the CSA (2006a) amplification factor, F_m , can be derived for a given LDF using:

For single lane traffic, $M_{g,avg} = M_T/N$, so Equation [5.5] becomes:

$$[5.6] F_m = LDF \cdot N$$

Conveniently, as shown by Equation [5.6], the bias coefficients and CoVs of the LDF and the F_m are identical.

Appendix F compares graphically the load distribution formulas from Pinero (2001), AASHTO (2012), and CSA (2006a), for Class A & B Highways, by converting the LDF to an equivalent F_m . Pinero (2001) proposes "52 new formulas for different types of [US military] vehicles, different types of [girder] bridges, bending moment and shear force values, interior and exterior girders, and for single and multiple lane loading cases". In AASHTO (2012), the distribution of live load moment to interior girders, for one design lane loaded on a slab-on-girder bridge is given by:

[5.7]
$$LDF = 0.06 + \left(\frac{S}{14}\right)^{0.4} \left(\frac{S}{L}\right)^{0.3} \left(\frac{K_g}{12Lt_s^3}\right)^{0.1}$$

where, *S* is the girder spacing (ft), *L* is the span (ft), t_s is the depth of concrete slab (inches), and K_g is the longitudinal stiffness parameters (in⁴). Parameter K_g is computed as:

where, E_B is the modulus of elasticity of the girder, E_D is the modulus of elasticity of the deck, *I* is the moment of inertia of the girder, *A* is the area of the girder, and e_g is the distance between the centers of gravity of the girder and deck. Simplified values of $\left(\frac{K_g}{12Lt_s^3}\right)^{0.1}$ are also given for certain types of bridges specified in AASHTO (2012). For the cases under investigation, the derivation of LDFs in AASHTO (2012) has remained unchanged to AASHTO (1996)

The various amplification factors proposed by Pinero (2001) do not differ greatly from each other and are generally bounded by CSA (2006a), as a conservative upper bound, and AASHTO (2012), as a slightly unconservative lower bound.

Figure 5.9 shows the variation of amplification factor with span. The equations from Pinero (2001) are for *All Beam Bridges*, the bridge used to vary the span is a 36 m steel girder bridge from Kim, Tanovic, & Wight, (2010).

Figure 5.9 – Amplification factor versus span length: *All Beam Bridges* (Pinero, 2001), 36 m steel girder bridge (Kim, Tanovic, & Wight, 2010)

Figure 5.10 shows the variation in of amplification factor with girder spacing. The equations from Pinero (2001) are for *Pre-Stressed Concrete Bridges*, the bridge used to vary the girder spacing is a 37 m CPCI girder concrete bridge (Morrison Hershfield Ltd., 2012).

Figure 5.10 – Amplification factor versus girder spacing: *Pre-Stressed Concrete Bridge* (Pinero, 2001), 37 m CPCI girder bridge (Morrison Hershfield Ltd., 2012)

Figure 5.11 shows the variation of amplification factor with girder spacing. The equations from Pinero (2001) are for *Steel Girder Bridges*, the bridge used to vary the span is a 36 m steel girder bridge described by Kim, Tanovic, & Wight, (2010). One formula given in Pinero (2001), *Bending Moment for Interior Girders, PLS and HEMMT Vehicles, Steel Girder*, is shown circled because it produced abnormally large values.

Figure 5.11 – Amplification factor versus span length: *Steel Girder Bridges* (Pinero, 2001), 36 m steel girder bridge (Kim, Tanovic, & Wight, 2010)

Table 5.8 presents a comparison between the lateral load distribution amplification factors from CSA (2006a), AASHTO (2012) and Pinero (2001) for several bridges. The formula by Pinero (2001) that was previously identified as possibly incorrect, for PLS on a steel girder bridge, is highlighted in grey. With the exception of this entry and, to a much lesser extent, both concrete T-beam bridges, CSA (2006a) is conservative when compared to Pinero (2001). Thus, military vehicles are likely in most cases less severe than civilian vehicles in terms of lateral load distribution. Given this, it is assumed that CSA (2006a) can be conservatively applied when evaluating for military vehicle loads.

Bri	dge Classifi	cation from Pinero (2001)	All Beam Bridges (Steel Girder)	All Beam Bridges (Pre- Stressed)	Steel Girder	Concrete T-Beam (Franklin)	Concrete T-Beam (Patrick)	Pre-Stressed Concrete
	Spa	an Length (m)	36	37	36	12	15.6	37
	Nun	nber of Girders	6	5	6	4	4	5
	Bridge Sp	pecifications Sources	Kim, Tanovic and Wight (2010)	Morrison Hershfield Ltd. (2012)	Kim, Tanovic and Wight (2010)	Trimble, (Seda-Sana	Trimble, Cousins and Seda-Sanabria (2003)	
CS	A (2006a) H	Highway Class A&B, (F_m)	3.30	2.71	3.30	2.10	2.34	2.71
AASHTO LRFD Bridge (2012), ($F_m = LDF \cdot N$)			2.49	2.00	2.54	2.14	2.17	2.21
Experimental Results		Avg – 1.59 Max – 1.72 (FEA)	-	Avg – 1.59 Max – 1.72 (FEA)	1.48 (measured on site)	2.52 (measured on site)	-	
	All	Amplification Factor	2.83	2.04	2.63	1.69	1.89	2.27
	Military	Fraction of CSA (2006a)	0.86	0.76	0.79	0.80	0.81	0.84
	Vehicles	Fraction of AASHTO	1.14	1.02	1.03	0.79	0.87	1.03
	N/1075	Amplification Factor	3.03	2.26	5.00	2.22	2.45	2.34
01)	MIU/S	Fraction of CSA (2006a)	0.92	0.84	1.51	1.06	1.05	0.86
(20	rls	Fraction of AASHTO	1.22	1.13	1.97	1.04	1.13	1.06
iro		Amplification Factor	3.00	2.24	2.66	1.78	2.12	2.35
ine	M113	Fraction of CSA (2006a)	0.91	0.83	0.80	0.85	0.91	0.87
Ц		Fraction of AASHTO	1.21	1.12	1.04	0.83	0.98	1.07
		Amplification Factor	2.78	2.08	2.49	1.63	1.81	2.30
	$M1_{\Delta}1$	Fraction of CSA (2006a)	0.84	0.77	0.75	0.78	0.77	0.85
	MI-AI	Fraction of AASHTO	1.12	1.04	0.98	0.76	0.84	1.04

Table 5.8 – Lateral load distribution factors

Pinero (2001) conducted harmonic analysis to determine the governing LDF on 137 beam bridges. Table 5.9 summarizes the mean LDF and corresponding CoV from his analyses for different vehicles. The track dimension is the vehicle width between center lines of wheels (or tracks). The M1075-PLS is similar to the Canadian AHSVS-PLS; and the ABRAMS M1-A1 is similar to the Canadian Leopard 2A4M tank. Consistently, the ABRAMS M1-A1 has a lower average LDF than the M1075-PLS or M113, probably because it has a markedly greater track dimension. This suggests that tanks could be considered differently from other vehicle types for live load lateral load distribution.

Table 5.9 – Statistical parameters for load distribution factors, interior girder bending (Pinero, 2001)

		Vehicle Type (Track dimension)					
Bridge Type	Coefficient	M1075-PLS	M113	ABRAMS M1-A1			
		(2.0 m)	(2.2 m)	(2.8 m)			
All Beam	Mean	0.47	0.43	0.40			
(137 Bridges)	CoV	0.24	0.24	0.22			
Steel Girder	Mean	0.40	0.39	0.37			
(66 Bridges)	CoV	0.14	0.14	0.12			
Pre-Stressed Concrete	Mean	0.50	0.47	0.43			
(38 Bridges)	CoV	0.22	0.24	0.23			
Concrete T-Beam	Mean	0.56	0.48	0.44			
(33 Bridges)	CoV	0.26	0.18	0.16			

Table 5.10 summarizes Pinero's (2001) assessment of the accuracy of his proposed formulas in the context of his harmonic results. The bias coefficients and CoVs shown are based on the ratio of harmonic analysis result to the result obtained from his proposed formula.

	Coefficient		Vehicle Type							
Bridge Type		M1075 DI S	M112	ABRAMS	All					
		W11073-FLS	IVIT13	M1-A1	Vehicles					
All Boom	Mean	1.05	1.007	1.01	1.015					
All Dealli	CoV	0.159	0.069	0.098	0.119					
Staal Cindan	Mean	0.999	1.003	1.001	1.018					
Steel Olitel	CoV	0.078	0.042	0.059	0.066					
Pre-Stressed	Mean	1.023	1.019	1.008	1.006					
Concrete	CoV	0.115	0.091	0.102	0.12					
Concrete T-	Mean	1.021	1.015	1.073	0.997					
Beam	CoV	0.170	0.074	0.119	0.111					

Table 5.10 – Accuracy of proposed load distribution factors for interior girder bending moments (Pinero, 2001)

With the assumption of Log-Normal distribution for the ratios in Table 5.10, using the given mean and CoV, 10,000 data points were randomly generated using MS Excel. Table 5.11 shows statistical parameters computed from the reciprocals of these generated data points that are applicable to the present study.

Table 5.11 - Bias coefficient and CoV of load distribution factors from Pinero (2001)

	Coefficient		Vehicle Type						
Bridge Type		M1075 DI C	M112	ABRAMS	All				
		M10/J-FLS	IVI115	M1-A1	Vehicles				
All Doom	Bias	0.98	1.00	1.00	1.00				
All Dealli	CoV	0.16	0.10	0.07	0.12				
Steel Cinder	Bias	1.01	1.00	1.00	0.99				
Steel Girder	CoV	0.08	0.06	0.04	0.07				
Pre-Stressed	Bias	0.99	1.00	1.00	1.01				
Concrete	CoV	0.12	0.10	0.10	0.12				
Concrete T-	Bias	1.01	0.95	0.99	1.02				
Beam	CoV	0.17	0.12	0.07	0.11				

The statistical parameters in CSA (2006b) for the "Simplified" lateral load distribution category are a bias coefficient of 0.93 and CoV of 0.12. Compared to the bias coefficient and CoV for the equations proposed by Pinero (2001), some important observations can be made. With the exception of two cases for the M1075-PLS, Pinero's CoV values in Table 5.11 do not exceed 0.12. For all but these two cases presented in

Table 5.8, Pinero's bias coefficients are never greaer than 93% of the CSA (2006a) value. Given that Pinero's harmonic analysis shows his proposed equations have a bias coefficient close to 1.00, it can be inferred that the bias coefficient for lateral load distribution for military vehicles as computed using the "Simplified Method" in CSA (2006a) will be less than 0.93, which conveniently, is the bias coefficient reported in CSA (2006b) for this lateral distribution category. Furthermore, the lateral load distribution factors derived from CSA (2006a) can be applied conservatively for military vehicular loads for the circumstances investigated.

Thus, the statistical parameters for the "Simplified Method" of lateral live load distribution from CSA (2006b) can be used conservatively for bridge evaluation involving military vehicle loads. Equations given in Pinero (2001), can also be used with less conservatism. Given the similarities in mass and track dimension of the ABRAMS M1-A1 tank (mass of 63,600 kg, track width of 0.64 m, track length of 4.58 m, center-to-center spacing of tracks of 2.85 m, (Pinero, 2001)) and Leopard 2A4M tank (mass of 61,214kg, track width of 0.64 m, track length of 4.95 m, center-to-center spacing of tracks of 2.78 m), equations proposed for the ABRAMS by Pinero (2001) are likely also appropriate for the Leopard 2A4M tank. Table 5.12 presents two empirical equations by Pinero (2001) with associated statistical parameters that are assumed for the present study to be applicable to Canadian military vehicles. The symbols for parameters and corresponding units are as defined for Equations [5.7] and [5.8].

Table 5.12 –Load distribution factor formulas for interior girder bending moments for single lane traffic on slab-on-girder bridges (Pinero, 2001)

Vehicle Type	Load Distribution Factor (Pinero, 2001)	Bias	CoV
All Military Vehicles (Wheeled or Tracked)	$0.21 + \left(\frac{S}{12.24}\right)^{0.73} \left(\frac{S}{L}\right)^{0.37} \left(\frac{\frac{E_B}{E_D}I}{12Lt_s^3}\right)^{0.18}$	1.00	0.12
ABRAMS M1-A1 (or Leopard 2A4M)	$0.24 + \left(\frac{S}{12.56}\right)^{1.58} \left(\frac{S}{L}\right)^{0.28} \left(\frac{\frac{E_B}{E_D}I}{12Lt_s^3}\right)^{0.15}$	1.00	0.07

5.4 Overall Live Load Effects

The nominal live load effect, L_1 , is (CSA, 2006a):

[5.9]
$$L_1 = A L(1 + DLA)$$

where *A* is the analysis coefficient (based on the lateral live load distribution), *L* is the nominal live load, and DLA is the dynamic load allowance factor. The mean live load effect, $\overline{L_1}$ is simply Equation [5.9] evaluated at the mean values of *A*, *L*, and DLA:

[5.10]
$$\overline{L_1} = \overline{A} \,\overline{L} (1 + \overline{\text{DLA}}) = \delta_L L \delta_A A (1 + \delta_{\text{DLA}} \text{DLA})$$

where the mean values \overline{A} , \overline{L} , and $\overline{\text{DLA}}$ can be defined as the respective bias coefficients $(\delta_L, \delta_A, \text{ and } \delta_{\text{DLA}})$ multiplied by their respective nominal values. Dividing Equation [5.10] by Equation [5.9], the bias coefficient of the live load effect, δ_{L_1} , is:

[5.11]
$$\delta_{L_1} = \delta_L \delta_A \left(\frac{1 + \delta_{\text{DLA}} \text{DLA}}{1 + \text{DLA}} \right)$$

The CoV for the live load effect, V_{L_1} , is (Kennedy, Gagnon, & Allen, 1992):

[5.12]
$$V_{L_{1}} = \sqrt{V_{A}^{2} + V_{L}^{2} + \left(\frac{\delta_{\text{DLA}}\text{DLA}}{1 + \text{DLA}}\right)^{2} V_{\text{DLA}}^{2}}$$

where V_A , V_L , and V_{DLA} are the CoV for A, L, and DLA respectively.

Accounting for the dynamic load allowance and tranverse live load analysis, a sampling of the annual maximum load effects bias coefficients and CoVs for several military vehicles investigated are shown in Table 5.13 through Table 5.17, bias coefficients and CoV values for all vehicles are given in Appendix G. These statistical parameters apply to single lane traffic moment on interior girders of slab-on-girder type bridges. The statistical parameters for the static live load of military vehicles are taken from Section 5.1. Four sets of statistical parameters are considered for Dynamic Load Allowance, taken as DLA = 0.25 for all cases, with statistical parameters corresponding to

the three cases in Table 5.7 ("Franklin Bridge": δ_{DLA} = 0.40 and V_{DLA} = 0.30, "Patrick Bridge": δ_{DLA} = 1.56 and V_{DLA} = 0.15, "Both Bridges": δ_{DLA} = 0.96 and V_{DLA} = 0.63) and those given in CSA (2006b), δ_{DLA} = 0.60 and V_{DLA} = 0.80. Two methods to derive lateral load distribution amplification factors are considered: CSA (2006a), and Pinero (2001) for all types of slab-on-girder bridges. The statistical parameters for CSA (2006a) are for the "Simplified" lateral distribution category with, δ_A = 0.93 and V_A = 0.12 (CSA 2006b). Two equations given by Pinero (2001), given in Table 5.12 are also considered, specifically the, "All Military Vehicles" statistical parameters (δ_A = 1.00 and V_A =0.12) for the AHSVS-PLS and LAV III-ISC and the "ABRAMS M1-A1" statistical parameters (δ_A = 1.00 and V_A =0.07) for the Leopard 2A4M tank.

		CSA(2006b)		Trimb	Trimble, Cousins and Seda-Sanabria (2003)						
	DLA	CSA (20000)		Fran	Franklin		Patrick		oth		
Annual Traffic Rate	Lateral Load Distribution	Bias	CoV	Bias	CoV	Bias	CoV	Bias	CoV		
Evont	CSA (2006a)	0.698	0.187	0.668	0.160	0.844	0.195	0.753	0.216		
Event	Pinero (2001)	0.751	0.187	0.718	0.160	0.907	0.195	0.809	0.216		
100	CSA (2006a)	0.904	0.199	0.865	0.173	1.093	0.207	0.975	0.227		
100	Pinero (2001)	0.972	0.199	0.930	0.173	1.175	0.207	1.049	0.227		
1 000	CSA (2006a)	1.096	0.191	1.048	0.164	1.325	0.199	1.182	0.220		
1,000	Pinero (2001)	1.179	0.191	1.127	0.164	1.424	0.199	1.271	0.220		
10,000	CSA (2006a)	1.312	0.185	1.255	0.157	1.585	0.194	1.414	0.215		
10,000	Pinero (2001)	1.410	0.185	1.349	0.157	1.705	0.194	1.521	0.215		
100 000	CSA (2006a)	1.530	0.179	1.463	0.150	1.849	0.188	1.650	0.209		
100,000	Pinero (2001)	1.645	0.179	1.573	0.150	1.988	0.188	1.774	0.209		

Table 5.13 – Load effects for AHSVS-PLS, short spans

		CSA (2006b)		Trimble, Cousins and Seda-Sanabria (2003)					
	DLA			Fran	Franklin		Patrick		oth
Annual Traffic Rate	Lateral Load Distribution	Bias	CoV	Bias	CoV	Bias	CoV	Bias	CoV
Event	CSA (2006a)	0.655	0.187	0.626	0.160	0.791	0.195	0.706	0.216
Event	Pinero (2001)	0.704	0.187	0.673	0.160	0.851	0.195	0.759	0.216
100	CSA (2006a)	0.882	0.176	0.844	0.147	1.066	0.185	0.951	0.207
100	Pinero (2001)	0.949	0.176	0.907	0.147	1.146	0.185	1.023	0.207
1 000	CSA (2006a)	0.997	0.173	0.953	0.142	1.205	0.182	1.075	0.204
1,000	Pinero (2001)	1.072	0.173	1.025	0.142	1.295	0.182	1.156	0.204
10.000	CSA (2006a)	1.119	0.172	1.070	0.141	1.353	0.181	1.207	0.203
10,000	Pinero (2001)	1.203	0.172	1.151	0.141	1.454	0.181	1.298	0.203
100 000	CSA (2006a)	1.239	0.170	1.185	0.139	1.497	0.179	1.336	0.201
100,000	Pinero (2001)	1.332	0.170	1.274	0.139	1.610	0.179	1.436	0.201

Table 5.14 - Load effects for AHSVS-PLS, other spans

Table 5.15 – Load effects for LAV III-ISC Case (1), short spans

		CSA(2006b)		Trimble, Cousins and Seda-Sanabria (2003)						
	DLA	CSA (20000)		Fran	Franklin		Patrick		oth	
Annual Traffic Rate	Lateral Load Distribution	Bias	CoV	Bias	CoV	Bias	CoV	Bias	CoV	
Evont	CSA (2006a)	1.051	0.168	1.005	0.137	1.270	0.177	1.133	0.200	
Event	Pinero (2001)	1.130	0.168	1.081	0.137	1.366	0.177	1.218	0.200	
100	CSA (2006a)	1.181	0.162	1.129	0.129	1.427	0.171	1.273	0.195	
100	Pinero (2001)	1.270	0.162	1.214	0.129	1.535	0.171	1.369	0.195	
1 000	CSA (2006a)	1.218	0.162	1.165	0.129	1.472	0.171	1.313	0.194	
1,000	Pinero (2001)	1.309	0.162	1.252	0.129	1.582	0.171	1.412	0.194	
10.000	CSA (2006a)	1.247	0.162	1.193	0.128	1.508	0.171	1.345	0.194	
10,000	Pinero (2001)	1.341	0.162	1.283	0.128	1.621	0.171	1.446	0.194	
100 000	CSA (2006a)	1.277	0.162	1.222	0.128	1.544	0.171	1.377	0.194	
100,000	Pinero (2001)	1.374	0.162	1.314	0.128	1.660	0.171	1.481	0.194	

		CSA (2006b)		Trimble, Cousins and Seda-Sanabria (2003)						
	DLA			Fran	Franklin		Patrick		oth	
Annual Traffic Rate	Lateral Load Distribution	Bias	CoV	Bias	CoV	Bias	CoV	Bias	CoV	
Event	CSA (2006a)	0.928	0.164	0.888	0.131	1.122	0.173	1.001	0.196	
Event	Pinero (2001)	0.998	0.164	0.955	0.131	1.207	0.173	1.076	0.196	
100	CSA (2006a)	0.999	0.161	0.956	0.128	1.208	0.171	1.078	0.194	
100	Pinero (2001)	1.075	0.161	1.028	0.128	1.299	0.171	1.159	0.194	
1 000	CSA (2006a)	1.019	0.161	0.975	0.128	1.232	0.171	1.099	0.194	
1,000	Pinero (2001)	1.096	0.161	1.048	0.128	1.324	0.171	1.181	0.194	
10.000	CSA (2006a)	1.036	0.161	0.991	0.128	1.252	0.171	1.117	0.194	
10,000	Pinero (2001)	1.114	0.161	1.066	0.128	1.347	0.171	1.201	0.194	
100 000	CSA (2006a)	1.053	0.161	1.007	0.128	1.273	0.171	1.136	0.194	
100,000	Pinero (2001)	1.133	0.161	1.083	0.128	1.369	0.171	1.221	0.194	

Table 5.16 – Load effects for LAV III-ISC Case (1), other spans

Table 5.17 - Load effects for Leopard 2A4M tank, short and other Spans

DLA		CSA (2006b)		Trimble, Cousins and Seda-Sanabria (2003)					
				Fran	Franklin		Patrick		oth
Annual Traffic Rate	Lateral Load Distribution	Bias	CoV	Bias	CoV	Bias	CoV	Bias	CoV
Errort	CSA (2006a)	0.873	0.161	0.835	0.128	1.055	0.171	0.941	0.194
Event	Pinero (2001)	0.938	0.129	0.898	0.083	1.134	0.140	1.012	0.168
100	CSA (2006a)	0.889	0.161	0.850	0.128	1.074	0.170	0.959	0.194
100	Pinero (2001)	0.956	0.128	0.914	0.083	1.155	0.140	1.031	0.168
1 000	CSA (2006a)	0.892	0.161	0.853	0.128	1.078	0.170	0.961	0.194
1,000	Pinero (2001)	0.959	0.128	0.917	0.083	1.159	0.140	1.034	0.168
10.000	CSA (2006a)	0.894	0.161	0.855	0.128	1.081	0.170	0.964	0.194
10,000	Pinero (2001)	0.961	0.128	0.920	0.083	1.162	0.140	1.037	0.168
100.000	CSA (2006a)	0.896	0.161	0.857	0.128	1.083	0.170	0.966	0.194
100,000	Pinero (2001)	0.963	0.128	0.921	0.083	1.164	0.140	1.039	0.168

Table 5.18 compares the load effect bias coefficients derived by using different combinations of statistical parameters for lateral load distribution and DLA. The bias coefficients of different combinations is divided by the bias coefficient if statistical parameters from CSA (2006b) are used for both lateral load distribution and DLA.

Statical parameters for Patrick Bridge presents the greatest increase in live load effects bias coefficient (21% to 30% increase).

Table 5.18 – Bias coefficient of load effect using different statistical parameters as a fraction of using statistical parameters in CSA (2006b)

Lateral Load]	Dynamic Load Alle	owance Parameters	8			
Distribution	CSA(2006b)	Trimble, Cousins and Seda-Sanabria (2003)					
Parameteres	CSA (20000)	Franklin Bridge	Patrick Bridge	Both Bridges			
CSA (2006b)	1.00	0.96	1.21	1.08			
Pinero (2001) –							
"All Military	1.08	1.03	1.30	1.16			
Vehicles"							
Pinero (2001) –							
"ABRAMS	1.07	1.03	1.30	1.16			
M1-A1"							

Table 5.19 compares the load effects CoV values derived by using different combinations of statistical parameters for lateral load distribution and DLA. The CoV values of different combinations is divided by the CoV values if statistical parameters from CSA (2006b) are used for both lateral load distribution and DLA. Parameters for both "Both Bridges" presents the greatest increase in CoV values (4% to 17% increase).

Table 5.19 – CoV of load effect using different statistical parameters as a fraction of using statistical parameters in CSA (2006b)

Lateral Load	ad Dynamic Load Allowance Parameters							
Distribution	CSA(2006h)	Trimble, Cousins and Seda-Sanabria (2003)						
Parameteres	CSA (20000)	Franklin Bridge	Patrick Bridge	Both Bridges				
CSA (2006b)	1.00	0.83	1.05	1.17				
Pinero (2001) –								
"All Military	1.00	0.83	1.05	1.17				
Vehicles"								
Pinero (2001) –								
"ABRAMS	0.80	0.52	0.87	1.04				
M1-A1"								

5.5 Chapter Conclusions

This chapter has presented statistical parameters for the load effects of military vehicles by quantifying probabilistically the static load, the static load effect, the lateral load distribution and the dynamic effects of military vehicles. It has been demonstrated that the CSA (2006a, 2006b) "Simplified Method" can be conservatively applied to determine the military vehicle lateral load distribution for slab-on-girder bridges. Pinero's approach for lateral load distribution of military vehicles may be particularly applicable for large tracked vehicles (e.g., the Leopard A4M tank) which would be conservatively analyzed using the CSA "Simplified Method".

A major gap in knowledge is the dynamic load effects caused by military vehicles. Based on the few available observations, applying CSA (2006a, 2006b) procedures to quantify the dynamic load effects of military vehicles seems unconservative for Wheeled-Transport military vehicles, but, applicable for Tracked or Fighting military vehicles.

Using the static loads presented in Section 5.1, the following criteria are suggested for the design and evaluation of bridges for each military vehicle investigated:

- Leopard 2A4M tank (Tracked-Fighting): DLA from CSA (2006a, 2006b), lateral load distribution from Pinero (2001) *ABRAMS M1-A1*;
- AHSVS-PLS (Wheeled-Transport): DLA from the combined statistics for both bridges investigated in Trimble, Cousins and Seda-Sanabria (2003), lateral load distribution from CSA (2006a, 2006b); and
- LAV III-ISC (Wheeled-Fighting): DLA and lateral load distribution from CSA (2006a, 2006b).

Table 5.20 summarizes these criteria in the context of general military vehicle categories. An exception is recommend for Leopard 2A tank (Tracked-Fighting), where lateral load distribution should be calculated following Pinero (2001) equations for *M1-A1 ABRAMS*, where the bias is taken as 1.00 with a CoV of 0.07.

Military Vehicle Category	Dynamic H DLA=0.25).	Effects (for , other spans	Lateral Load Distribution CSA (2006a and 2006b)			
	Bias	CoV	Bias	CoV		
Tracked -Fighting (T-F)	0.60	0.80	0.93	0.12		
Tracked – Transport (T-T)	0.60	0.80	0.93	0.12		
Wheeled – Fighting (W-F)	0.60	0.80	0.93	0.12		
Wheeled – Transport (W-T)	0.96	0.63	0.93	0.12		

Table 5.20 – Summary of dynamic effects and lateral load distributions

Chapter 6

6 Load Factors for Military Loading

6.1 Load Factor Derivation

The application of load and resistance factors the bridge design and evaluation is expedient and desirable. In this chapter, load factors for military vehicle loads will be calibrated using resistance factors, dead loads and dead load factors, and material properties specified in CSA (2006a, 2006b). Tables 6.1 and 6.2 show dead load factors and statistical parameters for dead loads from CSA (2006a, 2006b). The statistical parameters for the live load effects due to a single lane loaded with a military vehicle are as reported in Chapter 5.

		Target Reliability Index, β								
Dead load category	2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00	
D_1	1.03	1.04	1.05	1.06	1.07	1.08	1.09	1.10	1.11	
D_2	1.06	1.08	1.10	1.12	1.14	1.16	1.18	1.20	1.22	
$\overline{D_3}$	1.15	1.20	1.25	1.30	1.35	1.40	1.45	1.50	1.55	

Table 6.1 – Dead load factors, α_D (CSA, 2006a)

Table 6.2 – Statistical parameters for dead load effects (CSA, 2006b)

Dead load type	δ_D	V_D
D_1	1.03	0.08
D_2	1.05	0.10
D_3	1.03	0.30

Live load factors were calibrated for ten different bridges including four CPCI girder bridges, two concrete T-beam bridges, two composite steel girder bridges, one steel stringer girder bridge and one pre-stressed precast box girder bridge. All bridges were designed by others to resist modern civilian traffic loadings. Details of the bridges are presented in Appendix H. Table 6.3 summarizes nominal dead load moments per

girder for each bridge and resistance parameters. The resistance factors shown are computed by determining the factored resistance using the material resistance factors specified in CSA (2006a) for structural steel, reinforcing steel, pre-stressing steel and concrete. The nominal live loads per girder are shown in Table 6.4.

No	Source	Type	Span	D_1	D_2	D_3	φ	CS (200	SA)6b)
		(# Girders)	(m)	(KNM)	(KNM)	(KNM)	,	δ_R	V_R
1	(Morrison Hershfield Ltd., 2012)	CPCI Girder (5)	37	2,362	3,015	796	0.935	1.06	0.05
2	(Trimblel, Cousins, & Seda- Sanabria, 2003) - Franklin	Concrete T-Beam (4)	12	151	187	-	0.924	1.04	0.08
3	(DND 2007a) – Section F.2.2	Steel- Stringer (5)	22	581	576	-	0.950	1.13	0.10
4	(DND 2007a) – Section F.2.3	Composite Steel Girder (4)	24.4	364	846	-	0.934	1.10	0.10
5	(DND 2007a) – Section F.2.7	Concrete T-Beam (4)	15.3	280	357	-	0.894	1.04	0.08
6	(DND 2007a) – Section F.2.9	CPCI Girder (5)	22.9	911	754	-	0.886	1.06	0.05
7	(Bartlett, 1980)	CPCI Girder (6)	20	592	983	-	0.940	1.06	0.05
8	(Bartlett, 1980)	CPCI Girder (5)	25	1,002	1,200	-	0.938	1.06	0.05
9	(Bartlett, 1980)	Composite Steel Girder (4)	35	1,150	3,098	-	0.924	1.10	0.10
10	(Genivar, 2012)	Pre- stressed Box Girder (8)	30.8	2,363	313	-	0.932	1.06	0.05

Table 6.3 – Dead load moment per girder and resistance parameters

				L_1 (kNn	n)		
	Pafaranca Bridga	Ał	ISVS-PLS	LAV I	II-ISC	Leopar	d 2A4M
No	Source	No	Trailer	Case	Case	Lateral I	Load Dist.
	Bource	Trailer	Uncorrelated /	(1) /	(3)	Pinero	CSA
		maner	Correlated	(2)	(3)	(2001)	(2006a)
	(Morrison						
1	Hershfield Ltd.,	1,663	2,566	916	1,093	2,156	2,809
	2012)						
	(Trimblel,						
2	Cousins, & Seda-	364	377	244	291	583	751
_	Sanabria, 2003) -	201	577	2	_ 1	202	,01
	Franklin						
3	(DND 2007) –	909	1.118	529	632	1.386	1.625
	F.2.2	,,,,		02)	002	1,000	1,020
4	(DND 2007) –	1.097	1.393	630	752	1.596	1.933
	F.2.3	_,	-,- , - , - , - , - , - , - , - , - , -			-,	-,
5	(DND 2007) –	537	598	335	400	1.093	1.030
	F.2.7					,	,
6	(DND 2007) –	1,166	1,529	659	787	1,817	2,023
	F.2.9	, , , , , , , , , , , , , , , , , , , ,	1.105			1 10 6	, 1, 600
7	(Bartlett, 1980)	930	1,106	550	656	1,486	1,688
8	(Bartlett, 1980)	1,104	1,411	632	755	1,623	1,941
9	(Bartlett, 1980)	2,151	2,948	1,190	1,420	3,661	3,649
10	(Genivar, 2012)	353	472	198	236	-	606

Table 6.4 – Live load moments per girder

Assuming the load effects and resistance are log-normally distributed with small coefficients of variation, load factors were calculated using the log-normal approximation for the reliability index, β , given in CSA (2011):

[6.1]
$$\beta = \frac{\ln(\bar{R}/\bar{S})}{\sqrt{V_R^2 + {V_S}^2}}$$

where, \overline{R} and \overline{S} are the mean resistance and mean load effect, respectively, and V_R and V_S are the CoVs of the resistance and load effect, respectively.

The variable \overline{R} can be computed using:

[6.1a]
$$\bar{R} = \bar{S} \cdot \exp\left(\beta \sqrt{V_R^2 + V_S^2}\right)$$

For calibration, it is assumed that the factored resistance exactly equals the summation of the factored load effects:

$$[6.2] \qquad \qquad \phi R = \sum \alpha_i S_i$$

where *R* is the nominal resistance, ϕ is the structural action resistance factor (calculated as the factored resistance divided by the specified resistance), *S_i* are the effects due to specified load type, and α_i are the associated load factors. The nominal resistance can be isolated as:

[6.2a]
$$R = \frac{\sum \alpha_i S_i}{\phi}$$

The mean resistance, \overline{R} , is the product of the nominal resistance, R, and the bias coefficient, δ_R . Using Equation [6.2a] to eliminate R from Equation [6.1a]:

[6.3]
$$\frac{\delta_R \sum \alpha_i S_i}{\phi} = \bar{S} \exp\left(\beta \sqrt{{V_R}^2 + {V_S}^2}\right)$$

For bridges:

F < 17

[6.4]
$$\sum \alpha_i S_i = \alpha_{D_1} D_1 + \alpha_{D_2} D_2 + \alpha_{D_3} D_3 + \alpha_{L_1} L_1$$

where, D_1 is the nominal dead load effect for "factory-produced components and cast-inplace concrete excluding decks" CSA (2006a), D_2 is the nominal dead load effect for "cast-in-place concrete decks, wood, field-measured bituminous surfacing, and nonstructural components" CSA (2006a), and D_3 is the nominal dead load effect for "bituminous surfacing where the nominal thickness is assumed to be 90 mm for evaluation" CSA (2006a) . The nominal live load effect, L_1 , is computed using Equation [5.9]. Substituting Equation [6.4] into Equation [6.3] and rearranging to isolate α_{L_1} :

[6.5]
$$\alpha_{L_1} = \frac{\frac{\phi \bar{S}}{\delta_R} \exp\left(\beta \sqrt{V_R^2 + V_S^2}\right) - (\alpha_{D_1} D_1 + \alpha_{D_2} D_2 + \alpha_{D_3} D_3)}{L_1}$$

The mean load effect, \overline{S} , is the summation of the nominal load effects multiplied by their respective bias coefficients:

[6.6]
$$\bar{S} = \delta_{D_1} D_1 + \delta_{D_2} D_2 + \delta_{D_3} D_3 + \delta_{L_1} L_1$$

The CoV of the load effect, V_S , is calculated by:

[6.7]
$$V_{s} = \frac{\sqrt{\left(V_{D_{1}}\delta_{D_{1}}D_{1}\right)^{2} + \left(V_{D_{2}}\delta_{D_{2}}D_{2}\right)^{2} + \left(V_{D_{3}}\delta_{D_{3}}D_{3}\right)^{2} + \left(V_{L_{1}}\delta_{L_{1}}L_{1}\right)^{2}}{\bar{S}}}{\bar{S}}$$

where, V_{L_1} , V_{D_1} , V_{D_2} , and V_{D_3} are the coefficients of variation for load effect types L_1 , D_1 , D_2 , and D_3 respectively.

6.2 Specific Load Factors for Canadian Military Vehicles

Live load factors are calculated for the AHSVS-PLS, LAV III-ISC and Leopard 2A4M tank. Table 6.5 presents the average load factors computed for $\beta = 3.75$, the value conventionally assumed for civilian bridge design (CSA 2006b) – all values computed for all cases are summarized in Appendix I. Although investigation of a larger bridge inventory would be desirable, live load factors computed for the bridges shown in Table 6.3 are likely indicative. The reliability index obtained when average live load factors are used may be higher or lower than the target value. Table 6.5 therefore also shows the reliability index ranges obtained using Equations [6.1] and [6.2] when the average live load factors are assumed. The ranges are typically between 3.15 and 4.65, which correspond to annual probability of failure of 8.2 x10⁻⁴ and 1.7 x10⁻⁶, respectively. The target reliability index, 3.75, corresponds to an annual probability of failure of 8.8 x10⁻⁵.

Vahiala	Avg.	Lowest Reliabil	ity	Highest Reliabil	ity
venicie	Factor	Bridge	β	Bridge	β
AHSVS-PLS	1.79		3.20		4.06
AHSVS-PLS with	1.57	(DND 2007)	2 21	(Morrison	4.06
Uncorrelated Trailer	1.37	(DND 2007) = E 2 3	3.21	Hershfield Ltd.,	4.00
AHSVS-PLS with	1.80	1.2.5	2 21	2012)	4.02
Correlated Trailer	1.09		3.21		4.02
LAV III-ISC (Case 1)	1.65	(Genivar, 2012)	3.15		4.75
LAV III-ISC (Case 2)	1.85	(Doutlott 1090) #	3.12	(DND 2007) –	4.65
LAV III-ISC (Case 3)	1.55	(Dartiett, 1980) - #	3.13	F.2.9	4.65
Leopard 2A4M	1.36	7	3.21		4.46

Table 6.5 – Achieved reliability indices using average load factors derived from a target index 3.75, 1,000 vehicles per year

6.2.1 AHSVS-PLS (Transport)

Tables 6.6, 6.7, and 6.8 present the average live load factors for the ten bridges, AHSVS-PLS with no trailer, with a trailer with uncorrelated container weights, and with a trailer with fully correlated container weights, respectively. Live load factors are more severe for short spans due to the greater variability in static load, they are similar between all three configurations since the load action from the second tandem axle governs the majority of extreme load cases on short spans. For other spans at traffic volumes equal to or greater than 1,000 vehicles per year, the AHSVS-PLS and trailer with fully correlated container weights has the greatest live load factor, while a trailer with uncorrelated container weights as the least. This reflects the higher CoV in static load effects for the AHSVS-PLS and trailer with fully correlated container weights. At lower traffic volumes, the AHSVS-PLS with no trailer has the greatest live load factor because of the greater bias coefficient for the event vehicle for this configuration, with a smaller payload weight fraction compared to the configuration. At traffic volumes between 1,000 and 10,000 vehicles per year, the AHSVS-PLS has live load factors similar to that in CSA (2006a) for non-permit traffic, which for $\beta = 3.75$, the live load factors are 2.30 for short spans and 1.70 for other spans.

			Short	Spans	(< 20 r	n)			
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	0.94	0.99	1.04	1.10	1.15	1.21	1.27	1.33	1.39
100	1.25	1.32	1.39	1.46	1.54	1.62	1.70	1.79	1.88
1000	1.51	1.59	1.68	1.76	1.85	1.95	2.05	2.15	2.26
10000	1.81	1.90	2.00	2.11	2.21	2.33	2.45	2.57	2.70
100000	2.11	2.21	2.33	2.45	2.57	2.70	2.84	2.98	3.13
			Other	Spans	(>20 n	n)			
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	0.86	0.91	0.95	1.00	1.05	1.10	1.16	1.21	1.27
100	1.15	1.21	1.26	1.33	1.39	1.45	1.52	1.59	1.67
1000	1.30	1.36	1.43	1.49	1.56	1.63	1.71	1.79	1.87
10000	1.46	1.53	1.60	1.68	1.75	1.84	1.92	2.01	2.10
100000	1.62	1.69	1.77	1.86	1.94	2.03	2.12	2.22	2.32

Table 6.6 - Avg. load factors for bending moments, AHSVS-PLS

Table 6.7 – Avg. load factors for bending moment, AHSVS-PLS and trailer, uncorrelated container weight

			Short	Spans	(< 20 r	n)			
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	0.91	0.96	1.01	1.06	1.12	1.17	1.23	1.29	1.35
100	1.26	1.33	1.40	1.48	1.55	1.64	1.72	1.81	1.90
1000	1.52	1.60	1.68	1.77	1.86	1.95	2.05	2.16	2.26
10000	1.80	1.89	1.99	2.09	2.19	2.31	2.42	2.54	2.67
100000	2.07	2.18	2.29	2.41	2.53	2.66	2.79	2.93	3.07
			Other	Spans	(>20 n	n)			
β =	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	0.78	0.82	0.86	0.91	0.95	1.00	1.04	1.09	1.15
100	1.03	1.08	1.13	1.18	1.23	1.29	1.35	1.41	1.48
1000	1.14	1.20	1.25	1.31	1.37	1.43	1.50	1.57	1.64
10000	1.26	1.31	1.37	1.44	1.50	1.57	1.64	1.72	1.80
100000	1.37	1.43	1.50	1.57	1.64	1.72	1.79	1.88	1.96

			Short	Spans	(< 20 r	n)			
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	0.93	0.98	1.03	1.09	1.15	1.21	1.27	1.34	1.40
100	1.25	1.32	1.39	1.46	1.54	1.62	1.70	1.79	1.88
1000	1.52	1.60	1.68	1.77	1.86	1.96	2.06	2.16	2.27
10000	1.79	1.89	1.98	2.09	2.19	2.30	2.42	2.54	2.67
100000	2.06	2.17	2.28	2.40	2.52	2.65	2.78	2.92	3.06
			Other	Spans	(>20 n	n)			
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	0.80	0.84	0.89	0.93	0.98	1.03	1.08	1.14	1.19
100	1.19	1.25	1.31	1.37	1.44	1.51	1.58	1.65	1.73
1000	1.37	1.44	1.51	1.58	1.65	1.73	1.81	1.89	1.98
10000	1.60	1.67	1.75	1.84	1.92	2.01	2.11	2.20	2.31
100000	1.81	1.89	1.98	2.07	2.17	2.27	2.38	2.49	2.60

Table 6.8 – Avg. load factors for bending moment, AHSVS-PLS and trailer, fully correlated container weight

6.2.2 LAV III-ISC (Armoured Personnel Carrier)

Tables 6.9, 6.10, and 6.11 present the average live load factors for the ten bridges for the LAV III- ISC, Cases (1), (2), and (3), respectively. The LAV III-ISC live load factors are less sensitive to traffic volumes for other spans, due to the relatively low CoV in static load effect for this vehicle. Case (2) has the greatest live load factors due to the higher bias coefficient (because the nominal vehicle weight does not account for the larger weight of the vehicle after the upgrade program). Coincidently, Cases (1) and (3) have very similar live load factors, where Case (1) has a larger bias coefficient (which contributes to a larger live load factor) and lower CoV (which contributes to a lower live load factor) than Case (3). Conveniently, this implies that load factors might not need to change if a vehicle fleet is undergoing a major upgrade that changes its GVW; as long as these end changes in GVW are reflected in data for the vehicle (or in an updated Military Load Classification). At a traffic volume of 1,000 vehicles per year, Cases (1) and (3) of the LAV III-ISC have live load factors similar to that given in CSA (2006a) for Permit – Annual (PA) traffic "Simplified", which for $\beta = 3.75$, the live load factors are 1.87 for short spans and 1.60 for other spans).

			Short	Spans	(< 15 r	n)			
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	1.23	1.29	1.35	1.40	1.47	1.53	1.60	1.66	1.74
100	1.38	1.44	1.50	1.56	1.63	1.70	1.77	1.85	1.92
1000	1.42	1.48	1.55	1.61	1.68	1.75	1.83	1.90	1.98
10000	1.46	1.52	1.58	1.65	1.72	1.79	1.87	1.95	2.03
100000	1.49	1.56	1.62	1.69	1.76	1.84	1.92	2.00	2.08
			Other	Spans	(>15 n	n)			
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	1.09	1.15	1.20	1.26	1.32	1.39	1.46	1.53	1.60
100	1.17	1.23	1.28	1.35	1.41	1.48	1.55	1.62	1.69
1000	1.19	1.25	1.31	1.37	1.43	1.50	1.57	1.65	1.72
10000	1.21	1.27	1.33	1.39	1.46	1.52	1.59	1.67	1.75
100000	1.23	1.29	1.35	1.41	1.48	1.55	1.62	1.69	1.77

Table 6.9 – Avg. load factors for bending moment, LAV III-ISC (Case 1)

Table 6.10 – Avg. load factors for bending moment, LAV III-ISC (Case 2)

			Short	Spans	(< 15 r	n)			
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	1.24	1.30	1.36	1.42	1.48	1.55	1.62	1.69	1.76
100	1.46	1.52	1.59	1.66	1.73	1.80	1.88	1.96	2.04
1000	1.53	1.60	1.67	1.74	1.82	1.89	1.97	2.06	2.14
10000	1.61	1.68	1.75	1.83	1.91	1.99	2.07	2.16	2.25
100000	1.69	1.76	1.84	1.92	2.00	2.08	2.17	2.26	2.36
			Other	Spans	(>15 n	n)			
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	1.10	1.16	1.21	1.27	1.34	1.40	1.47	1.55	1.62
100	1.29	1.35	1.42	1.48	1.55	1.62	1.70	1.77	1.86
1000	1.36	1.42	1.48	1.55	1.62	1.70	1.77	1.85	1.94
10000	1.42	1.48	1.55	1.62	1.69	1.77	1.85	1.93	2.02
100000	1.48	1.54	1.61	1.69	1.76	1.84	1.92	2.01	2.10

			Short	Spans	(< 15 r	n)			
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	1.06	1.10	1.15	1.21	1.26	1.32	1.37	1.43	1.50
100	1.24	1.29	1.35	1.41	1.47	1.53	1.59	1.66	1.73
1000	1.30	1.36	1.42	1.48	1.54	1.61	1.68	1.75	1.82
10000	1.36	1.42	1.48	1.54	1.61	1.68	1.75	1.82	1.90
100000	1.42	1.48	1.54	1.61	1.68	1.75	1.82	1.90	1.98
			Other	Spans	(>15 n	n)			
β =	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	0.92	0.97	1.02	1.07	1.12	1.18	1.24	1.30	1.36
100	1.08	1.13	1.19	1.24	1.30	1.36	1.42	1.49	1.55
1000	1.14	1.19	1.24	1.30	1.36	1.42	1.49	1.55	1.62
10000	1.18	1.24	1.30	1.35	1.42	1.48	1.55	1.61	1.69
100000	1.23	1.29	1.35	1.41	1.47	1.54	1.61	1.68	1.75

Table 6.11 – Avg. load factors for bending moment, LAV III-ISC (Case 3)

6.2.3 Leopard 2A4M Tank

Conveniently, load factors for the Leopard 2A4M are essentially independent of annual traffic volume because the coefficient of variation of the event vehicle load effects is so small. Furthermore, the lateral load distribution and associated statistical parameters presented by Pinero (2001) and CSA (2006a, 2006b) yield a negligible difference between the calculated live load factors. As such, for each target reliability, β , there is a single a corresponding live load factor for the Leopard 2A4M tank for both approaches regarding lateral load, as shown in Table 6.12. The Leopard 2A4M has live load factors similar to that given in CSA (2006a) for Permit – Bulk Haul (PB) traffic "Simplified", which for $\beta = 3.75$, the live load factor is 1.36 for other spans.

Table 6.12 – Avg. load factors for bending moment, Leopard 2A4M tank

All Spans										
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
All Traffic Volumes	1.08	1.12	1.16	1.20	1.24	1.29	1.34	1.38	1.44	

6.3 Partial Load Factors

Given the need under NATO (2006) for the Military Load Classification System to be interoperable between member nations, the calibration of live load factors for military traffic is complicated because the resistances may be computed differently. It may be necessary to derive partial load factors for military bridge evaluation and design using:

$$[6.8] \qquad \qquad \alpha_{L_1} = \delta_{L_1} e^{(\beta \alpha^* \mathsf{V}_{L_1})}$$

where α_{L_1} is the partial live load factor, α^* is a separation factor is 0.70 (European Committee for Standardization, 2010), β is the annual target reliability index and δ_{L_1} and V_{L_1} are the same as defined in Section 5.4. Although this equation is at best an approximate method to compute load factors (Bartlett, 2008), it has been historically been widely used for live load factor calculation.

Table 6.13 shows the partial load factors for the annual maximum load effects bias coefficient and CoV for a traffic volument of 1,000 vehicles per year, by accounting for the dynamic load allowance and tranverse live load analysis. These partial load factors are compared to the average load factors given in Section 6.2. The partial load factors for all cases of the AHSVS-PLS, LAV III-ISC, and Leopard 2A4M tank are given in Appendix J. There is close agreement between the average live load factors and partial load factors, being slightly conservative compared to the average live load factors for the AHSVS-PLS configurations, with higher CoV, and slightly unconservative for the other vehicles, with a lower CoV. Table 6.14 shows, given a target reliability $\beta = 3.75$, the achieved reliabilities of the partial load factors, for the ten bridges given in Table 6.3. Overall, the range of reliability using partial load factors appears to be adequate for use in lieu of better information or if expediency is required.

	Vehicle	$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
	No Trailer	Avg. Eq [6.5]	1.30	1.36	1.43	1.49	1.56	1.63	1.71	1.79	1.87
<u>s</u>		Eq [6.8]	1.43	1.48	1.54	1.59	1.65	1.71	1.77	1.84	1.90
AHSVS-PI Trailer	No Correlation	Avg. Eq [6.5]	1.14	1.20	1.25	1.31	1.37	1.43	1.50	1.57	1.64
		Eq. [6.8]	1.25	1.30	1.34	1.39	1.44	1.49	1.55	1.60	1.66
	Fully Correlated	Avg. Eq [6.5]	1.37	1.44	1.51	1.58	1.65	1.73	1.81	1.89	1.98
		Eq [6.8]	1.50	1.55	1.61	1.67	1.73	1.80	1.86	1.93	2.00
	Case (1)	Avg. Eq [6.5]	1.19	1.25	1.31	1.37	1.43	1.50	1.57	1.65	1.72
U		Eq [6.8]	1.28	1.31	1.35	1.39	1.43	1.47	1.51	1.56	1.60
SI-III	Case (2)	Avg. Eq [6.5]	1.36	1.42	1.48	1.55	1.62	1.70	1.77	1.85	1.94
AV		Eq [6.8]	1.47	1.51	1.55	1.60	1.64	1.69	1.74	1.79	1.84
Γ_{I}	Case (3)	Avg. Eq [6.5]	1.14	1.19	1.24	1.30	1.36	1.42	1.49	1.55	1.62
		Eq [6.8]	1.23	1.26	1.30	1.34	1.37	1.41	1.46	1.50	1.54
Leopard 2A4M tank		Avg. Eq [6.5]	1.08	1.12	1.16	1.20	1.24	1.29	1.34	1.38	1.44
		Eq [6.8]	1.15	1.17	1.20	1.23	1.25	1.28	1.31	1.34	1.37

Table 6.13 – Average load factors compared to partial load factors for a traffic volume 1,000 vehicles per year

		Traffic Rate of 1,000 Vehicles/year, Target $\beta = 3.75$, α^*									
No	Bridge	AHSVS	AHSVS-PLS	and Trailer	LA	V III-l	Leopard				
		-PLS	Uncorrelated	Correlated	(1)	(2)	(3)	2A4M			
1	(Morrison Hershfield Ltd., 2012)	4.15	4.13	4.10	3.82	3.88	3.88	4.02			
2	(Trimblel, Cousins, & Seda- Sanabria, 2003) - Franklin	3.46	3.46	3.47	3.49	3.49	3.50	3.42			
3	(DND 2007) - F.2.2	3.36	3.34	3.35	3.15	3.19	3.19	3.17			
4	(DND 2007) - F.2.3	3.31	3.28	3.29	3.12	3.15	3.15	3.12			
5	(DND 2007) - F.2.7	3.49	3.48	3.48	3.44	3.46	3.46	3.39			
6	(DND 2007) - F.2.9	4.26	4.18	4.08	4.52	4.50	4.51	4.36			
7	(Bartlett, 1980)	3.80	3.77	3.72	3.78	3.79	3.80	3.79			
8	(Bartlett, 1980)	3.86	3.82	3.77	3.76	3.80	3.80	3.84			
9	(Bartlett, 1980)	3.34	3.34	3.38	2.99	3.04	3.05	3.15			
10	(Genivar, 2012)	3.55	3.59	3.67	3.04	3.12	3.12	3.50			

Table 6.14 – Reliability achieved using partial load factors

6.4 Generalized Load Factors for Military Vehicles

6.4.1 Proposed Military Load Classification System Vehicle Categories

As shown in Chapters 4 and 5, military transport vehicles cause inherently different load effects than fighting vehicles. As such, it is reasonable to derive different load factors for bridge design and evaluation for these two vehicle categories. At present, NATO (2006) specifies two vehicle types: Wheeled (W); and Tracked (T). It is recommended, so that

fighting vehicles are not overly penalized in bridge evaluation, to differentiate in future editions of NATO (2006) four vehicle load types: Wheeled-Transport (W-T), Wheeled-Fighting (W-F), Tracked-Transport (T-T), and Tracked-Fighting (T-F). This allows the further benefit of adjusting the target reliability index (or risk) for a particular vehicle category.

The classification of a vehicle as fighting and transport would requires further investigation, including review of NATO's full military vehicle inventory. However, Table 6.15 categorizes vehicles used by the Canadian Forces based on their intended function, as: Transport (Tpt.), Armoured Personnel Carrier (APC) or Tank. These three functions also correspond to the three vehicles investigated in Chapters 4 and 5; AHSVS-PLS (Transport), LAV III-ISC (APC), and Leopard 2A4M (Tank). The ranges of payload weight fractions, for these vehicles are 2-13% for tanks, 7-21% for APCs and 38-60% for transport vehicles. The payload weight fractions for transport vehicles are clearly distinct from those for the other two categories. It might therefore be appropriate to define Fighting vehicles (such as Tanks or APCs) as those with payload weight fractions greater than 35%. Vehicles with payload weight fractions between 25% and 35%, such as an APC with a trailer attached, require additional investigation to be classified as Transport or Fighting.

Vehicle Name (source)			Mass (kg)	Payload Weight	
		Payload	Curb	Total	Fraction
Leopard 1 ARV – Uparmoured (DND, 2006a)	Tank	760	44,286	45,046	0.02
Leopard 1ARV (DND, 2006a)	Tank	780	39,800	40,580	0.02
Badger AEV (Leo C2 Variant) – Uparmoured (DND, 2006b)	Tank	1,244	46,222	47,466	0.03
Badger AEV (Leo C2 Variant) (DND, 2006b)	Tank	1,244	41,756	43,000	0.03
Leopard 2A4M – Uparmoured (Leopard Requirements Officer, 2013)	Tank	2,030	59,184	61,214	0.03
Leopard 2A6M (Leopard Requirements Officer, 2013)	Tank	1,728	58,673	62,342	0.03
Leopard 2A6M – Uparmoured (Leopard Requirements Officer, 2013)	Tank	1,728	61,500	63,228	0.03
Leopard C2 MBT –uparmoured (DND, 2006c)	Tank	2,600	48,013	50,613	0.05
Leopard C2 MBT (DND, 2006c)	Tank	2,600	40,400	43,000	0.06
Leopard 2 ARV (Leopard Requirements Officer, 2013)	Tank	7,900	57,000	64,900	0.12
Coyote (DND, 2010a)	APC	811	12,569	13,380	0.06
Bison (Ambulance) – Uparmoured (DND, 2010b)	APC	950	12,948	13,989	0.07
M113-A3 (TLAV) – Uparmoured (DND, 2011b)	APC	1,299	15,463	16,762	0.08
Bison (Ambulance) (DND, 2010b)	APC	950	11,500	12,450	0.08
Bison (EW) (DND, 1997)	APC	1,859	11,050	12,909	0.14
LAV LORIT (WLAV Chassis Management Team Leader, 2014)	APC	3,260	20,630	23,890	0.14
LAV III-ISC – Uparmoured	APC	3,260	16,740	20,000	0.16
LAV III-ISC (DND, 2011c)	APC	3,260	13,702	16,958	0.19
LAV III-Engr w Blade (DND, 2011c)	APC	4,105	15,351	19,456	0.21
Heavy Logistics Vehicle Wheeled – Uparmoured (DND, 2006d)	Tpt.	9,000	14,648	23,648	0.38
Heavy Logistics Vehicle Wheeled (DND, 2006d)	Tpt.	9,600	13,076	22,676	0.41
AHSVS-PLS (DND, 2011d)	Tpt.	16,100	22,900	39,000	0.41
Heavy Equipment Support Vehicle (Military Today, n.d.)	Tpt.	15,000	15,360	30,360	0.49
AHSVS-PLS with Trailer (DND, 1999 and 2011d)	Tpt.	31,920	28,080	60,000	0.53
AHSVS-24t Tractor with 72 Tonne Trailer (DND, 2011e)	Tpt.	76,300	50,700	127,000	0.60

Table 6.15 – Payload "weight" fraction for Canadian Forces vehicles

6.4.2 Statistical Load Parameters for Other Unsurveyed Vehicle Populations

Statistical loads parameters have been derived for three specific vehicles in use by the Canadian Forces. These load parameters, or their associated load factors, may be applicable to similar military vehicles of interest. However, in lieu of better information, vehicle specific statistical load parameters might be estimated using the payload weight fraction relationship presented in Section 4.2. Following the methodology presented in Chapters 4, 5 and 6, vehicle load effects and associated load factors can be derived. For longer spans, the statistical parameters for the vehicle load are approximately the same as those for the vehicle weight (Kennedy, Gagnon, & Allen, 1992). For preliminary evaluation, partial load factors, as described in Section 6.3 could be derived. Table 6.16 presents typical statistical load parameter functions for transport, armoured personnel carrier and tanks. Partial load factors for those vehicles can be computed using the method illustrated by the example in Appendix K.

Annual Maximum $n =$ # of vehicles	<i>n</i> =	= 1	<i>n</i> =	100	n = 1	1,000	n = 1	0,000	n = 10	00,000
Vehicle Description	δ_p	V_p	δ_p	V_p	δ_p	V_p	δ_p	V_p	δ_p	Vp
Military Transport	0.428	0.415	1.070	0.168	1.392	0.129	1.712	0.104	2.034	0.087
Armoured Personnel Carrier (APC)	1.503	0.132	2.043	0.046	2.209	0.037	2.350	0.032	2.472	0.028
Tank	1.633	0.151	2.176	0.029	2.266	0.014	2.327	0.014	2.387	0.013

Table 6.16 – Military vehicle payload bias coefficient and CoV

6.4.3 Load Factors by Military Vehicle Category

For evaluation, unless traffic volumes can be anticipated, 1,000 to 10,000 vehicles per year are suggested for bridges on a Main Supply Route (MSR) and 100 and 1,000 vehicles per year for all other bridges. For design, a traffic volume of 1,000 vehicles per year is a suggested minimum, even if lower traffic volumes are anticipated.

Figure 6.1 shows the partial load factors calculated for each vehicle listed in Table 6.15. Payload weight fractions for each classification were then used to compute vehicle static load bias coefficients and CoVs using Equations [4.20] and [4.22] respectively. Statistical parameters for dynamic load effect and lateral load distribution are determined based on the vehicle category as specified in Table 5.20. The partial load factors shown were calculated using Equation [6.8], for traffic volumes of 1,000 veh/year with a target reliability index of $\beta = 3.75$.

Figure 6.1 – Partial load factors computed using separation factors for vehicles from Table 6.15 (n = 1,000 Veh/yr)

Figure 6.1 indicates that the partial load factors for Fighting Vehicles (Wheeled APC, Tracked APC and Tanks) closely align. Given this, it is possible to simplify Figure 6.1 by assigning a trendline for all fighting vehicles and a second trendline for all military transport vehicles, as shown in Figure 6.2. This simplified approach could be used to assign partial load factors based on the payload weight fraction, γ . Table 6.17 summarizes the load factors computed for the average values of γ shown in Table 6.15.

These load factors may be applicable each category of military vehicle used by the Canadian Forces. No data are available for military Tracked-Transport Vehicles, so it has been assumed that their statistical load parameters are similar to those for Wheeled-Transport Vehicles.

Figure 6.2 – Partial load factor (1,000 Veh/yr), based on payload weight fraction

		Load	Factor	Applicable
Military Vehicle Category	Avg. γ	100	100 1,000	
		veh/yr	veh/yr	
Wheeled – Fighting (W-F)	0.131	1.46	1.48	>15 m
Tracked -Fighting (T-F)	0.045	1.33	1.33	All Spans
Wheeled – Transport (W-T)	0.470	1.57	1.77	> 20 m
Tracked Transport (T T)	No Data: Use	1 57	1 77	All Spans
Tracked – Transport (1-1)	W-T load factor	1.37	1.//	

Table 6.17 – Partial load factors for different military vehicle categories, $\beta = 3.75$

Figure 6.3 shows partial load factors at different traffic volumes for a given reliability index, $\beta = 3.75$. Load factors for all combinations of traffic volume (Event, 100 veh/yr, 1,000 veh/yr, and 10,000 veh/yr) and reliability indices ($\beta = 2.75$, 3.25, 3.75, and 4.00) are presented in Appendix L.

Figure 6.3 – Impact of annual traffic volume on partial load factor

6.5 Discussion

The derivation of general load factors for military vehicles has assumed the curb weight to be deterministic. Specifically for APCs, implies using LAV III-ISC (Case 1) data to define the statistical parameters of the payload. As previously discussed, there is a nonnegligible variability in the curb weight of the LAV III-ISC that can be attributed to a vehicle upgrade program. The specified weights in the Canadian Forces Fleet Management System (FMS), accessed 20 Nov 2012, for the LAV III-ISC are those prior to upgrade. The upgrade increases both the greater curb weight and total vehicle weight, so the application of load factors to these nominal weights for the vehicles that have subsequently been upgraded would be unconservative. Based on the flown vehicle weight data from Afghanistan, this inaccurate specification of the actual vehicle condition seems to be the exception, not the rule. Should inaccuracies like those found for the LAV III-ISC be more common, it is more appropriate to use load factors derived for LAV III-ISC (Case 2) with the erroneous weights in the FMS database that do not reflect the effects of the vehicle upgrades.

Based on available information regarding military vehicles in use by the Canadian Forces, the following partial load factors for interior girders in bending are suggested for each Military Vehicle Category as described in Section 6.4.1. Tables 6.18, 6.19, 6.20 and 6.21 show recommended partial load factors for Wheeled-Transport, Wheeled-Fighting, Tracked-Transport, and Tracked-Fighting vehicles, respectively, in use by the Canadian Forces. These factors are specifically derived for interior girders subjected to bending and may be more broadly applicable. Thus, Wheeled-Transport and Tracked-Transport vehicles have relatively high load factors when compared to Wheeled-Fighting and Tracked-Fighting vehicles. For short spans, pending further investigation, it is suggested specific load factors for the three vehicles investigated in detail (AHSVS-PLS, LAV III-ISC, and Leopard 2A4M) are used.
	Short Spans (< 20 m)										
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	0.94	0.99	1.04	1.10	1.15	1.21	1.27	1.33	1.39		
100	1.25	1.32	1.39	1.46	1.54	1.62	1.70	1.79	1.88		
1000	1.51	1.59	1.68	1.76	1.85	1.95	2.05	2.15	2.26		
10000	1.81	1.90	2.00	2.11	2.21	2.33	2.45	2.57	2.70		
100000	2.11	2.21	2.33	2.45	2.57	2.70	2.84	2.98	3.13		
			Other	Spans	(>20 n	n)					
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	0.90	0.94	0.97	1.01	1.04	1.08	1.12	1.16	1.20		
100	1.24	1.29	1.33	1.38	1.42	1.47	1.52	1.57	1.62		
1000	1.42	1.46	1.51	1.56	1.61	1.67	1.72	1.77	1.83		
10000	1.59	1.64	1.69	1.75	1.81	1.86	1.92	1.99	2.05		
100000	1.76	1.82	1.88	1.94	2.00	2.06	2.13	2.20	2.27		

Table 6.18 – Load factors for military Wheeled-Transport (W-T) vehicles

Table 6.19 – Load factors for military Wheeled-Fighting (W-F) vehicles

			Short	Spans	(< 15 r	n)			
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	1.23	1.29	1.35	1.40	1.47	1.53	1.60	1.66	1.74
100	1.38	1.44	1.50	1.56	1.63	1.70	1.77	1.85	1.92
1000	1.42	1.48	1.55	1.61	1.68	1.75	1.83	1.90	1.98
10000	1.46	1.52	1.58	1.65	1.72	1.79	1.87	1.95	2.03
100000	1.49	1.56	1.62	1.69	1.76	1.84	1.92	2.00	2.08
			Other	Spans	(>15 n	n)			
β =	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	1.14	1.17	1.20	1.23	1.26	1.30	1.33	1.37	1.42
100	1.21	1.24	1.28	1.31	1.34	1.38	1.42	1.46	1.50
1000	1.23	1.27	1.30	1.33	1.37	1.41	1.44	1.48	1.53
10000	1.25	1.29	1.32	1.35	1.39	1.43	1.47	1.51	1.55
100000	1.27	1.30	1.34	1.37	1.41	1.45	1.49	1.53	1.57

	All Spans											
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4			
Event	0.90	0.94	0.97	1.01	1.04	1.08	1.12	1.16	1.20			
100	1.24	1.29	1.33	1.38	1.42	1.47	1.52	1.57	1.62			
1000	1.42	1.46	1.51	1.56	1.61	1.67	1.72	1.77	1.83			
10000	1.59	1.64	1.69	1.75	1.81	1.86	1.92	1.99	2.05			
100000	1.76	1.82	1.88	1.94	2.00	2.06	2.13	2.20	2.27			

Table 6.20 – Load factors for military Tracked-Transport (T-T) vehicles

Table 6.21 – Load factors for military Tracked-Fighting (T-F) vehicles

All Spans											
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
All Traffic Volumes	1.15	1.17	1.20	1.22	1.25	1.24	1.30	1.33	1.36		

6.6 Chapter Conclusions

Live load factors computed for the AHSVS-PLS, LAV III-ISC, and Leopard 2A4M tank were derived using the statistical parameters for dead load and resistance given in CSA (2006a, 2006b) for ten representative bridges. The computed load factors are for interior girders resisting bending in simply supported, slab-on-girder type bridges. Using the average load factor to evaluate for a reliability index of 3.75, the ten representative bridges resulted in reliability indices between 3.12 and 4.71.

Partial load factors were presented for general use. Using partial load factors derived on the basis of payload weight fraction, it was possible to quantify partial load factors for other military vehicles. Using these values, Military Fighting Vehicles and Military Transport Vehicles were found to represent different loading categories. Given this, four vehicle categories, rather than two, should be considered under STANAG 2021, (NATO, 2006): Wheeled-Fighting (W-F); Wheeled-Transport (W-T); Tracked-Fighting (T-F); and Tracked-Transport (T-T). This would reflect the difference in the payload weight fraction for Fighting vehicles (0.02 - 0.25) and Transport vehicles (0.35-0.60), and the consequential difference in partial live load factors for bridge evaluation.

Chapter 7

7 Bridge Evaluation and Design Using Military Load Classification System

7.1 Military Load Classification using Load and Resistance Factor Design

Combining CSA (2006a) and NATO (2006), a Military Load Classification (MLC) can be developed based on Limit States Design. Using results from previous chapters, it is possible to designate a moment classification in terms of an MLC for single lane traffic on simply supported slab-on-girder bridges (e.g., "Type C" bridges (CSA, 2006a)).

First, the factored live load capacity per girder must be determined. This is simply the difference between the factored resistance and the factored dead load moments divided by the live load factors:

[7.1]
$$M_g = \frac{M_r - M_{D_f}}{\alpha_{L_1} (1 + \text{DLA})}$$

where M_g is the factored live load capacity per girder, M_r is the factored moment resistance, M_{D_f} is the factored dead load moment, α_{L_1} is the live load factor for the Military Vehicle Category of interest, and DLA is the dynamic load allowance (taken as 0.25 for the load factors presented in this document).

The factored live load capacity per girder must next be converted to a lane load capacity as follows:

$$[7.2] M_T = M_g \frac{N}{F_m \cdot n \cdot R_L}$$

where M_T is the maximum moment per design lane, N is the number of girders, F_m is the lateral load distribution amplification factor (CSA, 2006a), n is the number of design lanes, and R_L is the modification factor for multi-lane loading (CSA, 2006a). Since single lane traffic is being investigated, n and R_L are both equal to 1. Tables given in NATO (2006) are used to designate the MLC of a bridge. Unit bending moments are used, i.e., M_T is divided by the length of the bridge. An example of unit bending moment tables for wheeled vehicles is shown in Figure 1.3. The bridge MLC corresponds to where the unit bending moment of M_T falls with respect to the predefined MLC lines.

Table 7.1 shows the MLC designations, based on bending moments, computed using Limit States Design (LSD) and Allowable Stress Design (ASD) for three bridges from DND (2007a). The MLC bridge designations for Transport vehicles computed using LSD based methods are markedly smaller than those for Fighting vehicles computed using LSD. There is no such distinction in ASD-Based methods. This clearly articulates the benefit in differentiating between Fighting and Transport vehicles for bridge evaluation.

Tupo	Smon	ASD -	- DND	LS	SD - followi	ng Section 7.1		
Type	(m)	(20	07a)	Tra	cked	Wheeled		
	(111)	Tracked	Wheeled	Fighting	Transport	Fighting	Transport	
Steel-Stringer (5)	22	60	63	71	52	67	55	
Composite Steel Girder (4)	24.4	82	87	117	86	114	92	
CPCI Girder (5)	22.9	150	150	150	124	150	145	

Table 7.1 – MLC designation for moment classification comparison ASD and LSD

7.2 Case-Specific Evaluation

In certain circumstances it may be required to evaluate the capacity of a bridge for a particular vehicle rather than to designate an MLC. This would most likely occur when

the bridge MLC is too low for a particular mission-essential vehicle and a less generic evaluation might reach a more favourable conclusion.

7.2.1 Vehicle-Specific Live Load Factors

The procedure given in Section 7.1 can be used to compute vehicle-specific live load factors. Vehicle-specific live load factors were previously presented in Section 6.2.1 for the AHSVS-PLS, Section 6.2.2 for the LAV III-ISC and Section 6.2.3 for the Leopard 2A4M tank. Otherwise, vehicle specific load factors can be computed from the payload weight fraction using Figures 6.2 and 6.3, or following the procedure outlined in Appendix K.

7.2.2 Mean Load Method

The Mean Load Method calculates the approximate reliability index, β , using Equation [6.1]. Should this value be satisfactory, the vehicle would be permitted to use the bridge. The method requires calculation of the mean load and resistance (\overline{R} and \overline{S} , respectively) and their associated CoVs (V_R and V_S , respectively). The mean resistance, \overline{R} , is the product of the unfactored (or nominal) resistance, R, and bias coefficient, δ_R :

$$[7.3] \qquad \qquad \bar{R} = \delta_R R$$

Resistance statistical parameters, δ_R , and V_R , are specified in Table C14.6 of CSA (2006b). The mean load, \bar{S} , and associated CoV, V_S , are calculated by Equations [6.6] and [6.7], respectively. The load effects, L_1 , δ_{L_1} , and V_{L_1} , are calculated using Equations [5.9], [5.11] and [5.12], respectively. For these equations, the nominal static load effect, L, for the specific vehicle must be calculated. If detailed analysis of the vehicle static load has not been conducted, the bias coefficient and CoV of the static load effect, respectively δ_L and V_L , can be estimated with Equations [4.20] and [4.22], respectively. In this case δ_v and V_v are approximately equal to δ_L and V_L , respectively, when individual axle load variability does not govern (which is only applicable for wheeled vehicles).

7.2.3 Inherent Conservatism in Military Load Classification System

The Military Load Classification System determines the MLC of a vehicle by comparing its shear and moment demand to those of design vehicles. The MLC of a vehicle is defined by the span that produces the highest comparable design vehicle MLC, due to static shear or moment. This results in a critical span length that governs the classification, while all other span lengths have varying degrees of conservatism for that MLC classification. Figure 7.1 shows that some vehicles, such as the TLAV-M113A3-RWS (MLC 19 (T)), (DND, 2011b), have static loads that closely mirror the static load of the design vehicle at all spans. However, the configurations of some vehicle types are sufficiently different from the design vehicle that this is not the case. For example, Figure 7.2 shows the MLC for the AHSVS Tractor with 72t trailer (classified as a MLC 113 (W)): it is governed by moment on a 70m span and shear on a 45m span. Specifically, the AHSVS Tractor with 72t trailer at spans lengths less than 5 m has an equivalent classification no greater than MLC 56 (W). This is because the most severe axle load of this vehicle is 12.5 tonnes (DND, 2011e), where the most severe axle load of the design vehicle for MLC 50 (W) is 18.14 tonnes (NATO, 2006). An engineer could therefore determine if a specific vehicle could exceed the rated MLC of a simply supported span, by referring to either a diagram such as Figure 7.2 or a simplified table such as Table 7.2. It could quickly be judged whether any additional risk occurs when the vehicle crossing exceeds the posted MLC of the bridge. Appendix M summarizes comparative MLCs for different span lengths for vehicles in use by the Canadian Forces.

Figure 7.1 - TLAV-M113A3-RWS (MLC 19 - Tracked), MLC versus span length

Figure 7.2 – AHSVS Tractor with 72t trailer (MLC 113 - Wheeled), MLC versus span length

Span Range (m)	0-5	5 - 10	10 - 20	20 - 60	60 - 100
Span Specific MLC	56	82	99	113	113

Table 7.2 – MLC versus span length, AHSVS Tractor with 72t Trailer

7.3 Bridge Evaluation for Different Acceptable Risk Levels

As outlined in Chapters 2 and 3, it may be desirable for the military to evaluate bridges using different reliability levels. A bridge assigned a certain MLC at NEGLIGIBLE risk, would be assigned a higher MLC, if evaluated at LOW, MODERATE, HIGH, or EXTREME Acceptable Risk Levels (ARLs).

CSA (2006a) specifies different target reliability indices for component evaluation based on: System behavior; Element behavior; and, Inspection level. At NEGLIGIBLE acceptable risk, the target reliability indices are satisfactory for bridge evaluation for military loads. Ideally, a general relationship between bridge reliability and component reliability could be established. This would allow target reliabilities based on component: system behavior; element behavior; and inspection level at NEGLIGIBLE risk to be adjusted for other ARLs. This would allow for less stringent load factors to be applied for ARLs of LOW, MODERATE, HIGH and EXTREME.

7.4 Chapter Conclusions

This chapter has presented several methods available to reconcile LSD with the Military Load Classification System. Load and resistance factors used in conjunction with design tables from NATO (2006) are shown to be compatible to assign an MLC to a bridge. When comparing LSD, as proposed in this chapter, to ASD (which does not differentiate between Fighting and Transport vehicles) higher MLCs are achieved for Wheeled-Fighting and Tracked-Fighting vehicles, whereas similar or lower MLCs are achieved for Wheeled-Transport and Tracked-Transport vehicles. Case-specific evaluation is also presented using vehicle-specific load factors, mean load method, and exploiting inherent conservatism in the Military Load Classification System.

Chapter 8

8 Summary, Conclusions, and Recommendations for Future Work

8.1 Summary

8.1.1 Acceptable Risk of Bridge Collapse in the Context of Military Operations

Chapter 2 showed that in military operations, varying levels of risk can be appropriate to achieve mission success. In conducting a mission risk assessment, a military commander might benefit from allowing personnel to assume greater risk during bridge crossings. Thus, a continuum of acceptable risk exists for bridges used by the military which depends on the operational context. Acceptable Risk Levels presented by Wight (1997), are an effective mechanism to relate military operations risk to bridge risk. Chapter 3 indicated that acceptable risk is not the only factor needed to be considered when determining target risk for bridge design and evaluation. General considerations for economic and life-safety risk optimization of military bridges are presented but are not quantified.

8.1.2 Statistical Parameters for Weight of Military Transport and Fighting Vehicles

Chapter 4 quantified the probabilistic weight of a military transport vehicle, the AHSVS-PLS, by assuming its curb weight is deterministic and so all weight variability is due to the vehicle payload, typical 6.1 m intermodal shipping containers. The statistical parameters for the container weights are quantified based on the weights of containers flown from Afghanistan to Canada between 2006 and 2012. Based on these assumptions, the statistical parameters for the weight of the AHSVS-PLS were determined.

Chapter 4 also quantified the statistical parameters for the weights of two military fighting vehicles, the LAV III-ISC and Leopard 2A4M tank. Without field data for the

weights of these vehicles, the operational weights were quantified using heuristic assumptions. Both of these military fighting vehicles have smaller payload weight fractions, i.e., the weight of the payload to the total weight, than transport vehicles.

8.1.3 Live Load Effects Caused by Military Vehicles

Chapter 5 summarized and critically reviews prior research regarding dynamic loading and lateral load distribution of military vehicles to derive statistical parameters for live load effects. The lack of experimental data makes it difficult to quantify these parameters. Thus, the statistical parameters for the "Simplified Method" of lateral live load distribution from CSA (2006b) were assumed to be conservative for bridge evaluation involving military vehicle loads based on analysis of Pinero (2001). The statistical parameters for dynamic load effects of military vehicles were assumed to be the same as those reported by Trimble, Cousins and Seda-Sanabria (2003) for the M1075 PLS (a Wheeled-Transport) on two concrete T-beam bridges for military Wheeled-Transport vehicles and the same as CSA (2006b) for all other military vehicle categories. These assumed statistical parameters for dynamic loading and lateral load distribution were used in conjunction with those for the vehicle weight of military vehicles from Chapter 4 to quantify the live load effects statistical parameters.

8.1.4 Live Load Factors for Military Vehicles

Load factors were derived in Chapter 6 for the three vehicles investigated, using the statistical parameters for dead load and resistance given in CSA (2006a, 2006b) for ten representative bridges. The computed load factors are for interior girders resisting bending in simply supported, slab-on-girder type bridges. Partial load factors are also presented for general use.

8.1.5 Applying Limit State Design to Military Load Classification System

Chapter 7 provided suggestions on how Limit State Design can be applied to the Military Load Classification System. The Mean Load Method is proposed as an alternative means

to evaluate vehicle specific crossings of bridges, and thus circumventing the vehicle and bridge MLC.

8.2 Conclusions

8.2.1 Target Reliability for Military Bridge Design and Evaluation

- Bridge evaluation for military vehicle loading should not be limited to a single level of acceptable risk for normal use (e.g. crossings not considered as Caution or Risk crossing as defined by NATO (2006)). There should instead be a risk continuum for military bridge evaluation that depends on the military operational context.
- 2. In the context of combat operations, a major factor that is unique to military bridge risk optimization is the direct consequence or cost of limiting mobility when conducting military operations against an enemy force.
- 3. The design of new bridges for regular military loading in both combat and domestic situations can be based on a higher reliability than similar civilian bridges.
- 4. When evaluating existing bridge infrastructure in the context of combat operations, lower target reliabilities seem justifiable, except for Main Supply Routes.

8.2.2 Statistical Parameters of Weight of Military Vehicles

- The lower weight variability of some military vehicles is less due to effective load control, (as has been previously suggested by, Kim, Y. J., et. al. (2010), DND (2007a)), but instead is an inevitable outcome of the design and intended functionality of the vehicle itself.
- 6. The payload weight fraction, defined as the ratio of the payload to the total combat weight, impacts the statistical parameters for the vehicle weight. Smaller payload weight fractions are associated with lower overall weight variability. This is important when assessing a bridge crossing by a vehicle with a relatively low

payload and a large self-weight, which would be safer than a crossing by a vehicle with the same weight but a higher payload weight fraction.

7. Military Fighting Vehicles have a lower payload weight fraction, than Military Transport Vehicles, and so have lower weight variability.

8.2.3 Live Load Effects of Military Vehicles

- 8. Dynamic load effects of wheeled military vehicles, in general, appear to be more severe than those specified in the Canadian Highway Bridge Design Code (CSA, 2006a, 2006b) for civilian truck traffic. Tracked vehicles are consistently less severe than wheeled military vehicles with statistical parameters for DLA that are enveloped by the values recommend in the CHBDC, (CSA, 2006a, 2006b).
- Based on available literature, the lateral load distribution of load effects caused by military vehicles can be conservatively evaluated using the "Simplified Method" CSA (2006a, 2006b). This is particularly conservative for tanks that are markedly wider than civilian vehicles.

8.2.4 Live Load Factors for Military Vehicles

- 10. Military Fighting Vehicles and military Transport Vehicles represent different loading categories. Given this, four vehicle categories, rather than two, should be considered under STANAG 2021, (NATO, 2006): Wheeled-Fighting (W-F); Wheeled-Transport (W-T); Tracked-Fighting (T-F); and Tracked-Transport (T-T). This would reflect the difference in the payload weight fraction for Fighting vehicles (0.02 0.25) and Transport vehicles (0.35-0.60), and the consequential difference in statistical parameters for live load.
- 11. Vehicle-specific live load factors (for 1,000 veh/year with a target reliability of $\beta = 3.75$, other spans) are:
 - AHSVS-PLS, 1.79;
 - AHSVS-PLS and trailer, correlated container, 1.57;
 - AHSVS-PLS and Trailer, uncorrelated container, 1.89;
 - Uparmoured LAV III-ISC, 1.65; and

- Leopard 2A4M tank, 1.38.

Higher values apply to short spans for all vehicles except the Leopard 2A4M tank.

- 12. Live load factors for different military vehicle categories (1,000 veh/year with a target reliability of $\beta = 3.75$, other spans) are:
 - Wheeled-Transport (W-T), 1.77;
 - Wheeled-Fighting (W-F), 1.48;
 - Tracked-Transport (T-T), 1.77; and
 - Tracked-Fighting (T-F), 1.33.

Higher values apply to short spans for both Wheeled vehicle categories, but do not apply to the Tracked vehicle categories.

8.3 **Recommendations for Future Research**

Several areas of research that would further the calibration of load factors for military bridge design and assessment has been identified. They are briefly described in this section.

8.3.1 Dynamic Load Effect Caused by Military Vehicles

The dynamic load effect caused by military vehicles on bridges is not well quantified. As shown in Section 5.2, the limited experimental data suggest a wide range of dynamic responses. Military wheeled vehicles cause distinctly different dynamic responses than civilian traffic. Furthermore, tracked military vehicles cause distinctly different dynamic behaviour than wheeled military vehicles. From available experimental data, the provisions of CSA (2006a, 2006b) are unconservative to account for the dynamic loads of wheeled military vehicles. To quantify probabilistically the dynamic load effect of military vehicles, it is recommended that new experimental studies be undertaken for both tracked and wheeled vehicles, especially for spans greater than 15 m. Should the

actual behaviour significantly differ from the assumptions made in Chapter 5, load factors provided in Chapter 6 will need to be revised.

8.3.2 Lateral Load Distribution of Military Vehicles

Pinero (2001) derived Load Distribution Factors (LDFs) for several vehicles used by the US Military. This research was limited to single lane traffic. New research should aim to develop an approach that yields more accurate results based on the current CSA (2006a) provision for an amplification factor, F_m . Furthermore, the lateral load distribution of the load effects caused by two lanes of military vehicles still needs to be quantified.

Review of Pinero (2001) also indicated that, as the ground contact width of the vehicle increased, the load effect per girder decreased (or in other words, the amplification factor, F_m , reduced). This is especially important given that the ground contact width of military vehicles can range from 1.8 m to 4.67 m (NATO, 2006), with the heaviest vehicles generally having a greater ground contact width. Although NATO (2006), DND (2007a), and US Department of the Army (2002), already account for this with corrections to the MLC designation of a vehicle based on the ground contact width: with higher MLCs for vehicles that are not as wide as the design vehicles; and only specified by US Department of the Army (2002) with lower MLCs for vehicles wider than the design vehicles. This correction should be verified to determine their impact on the bias coefficient and CoV of lateral load distribution provision. This would be benificial in eliminating excess conservatism for the assessment of the heaviest military vehicles.

8.3.3 Review of Bridge Inventory to Calibrate of Load Factors

Only ten bridges were investigated for the load factor calibration. A more comprehensive investigation should be undertaken for a wider range of bridges that represent the Canadian inventory.

8.3.4 Review of Other Military Vehicles in use by NATO and Canadian Forces

The statistical parameters for the weights of three vehicles in use by the Canadian Forces were used as the basis for the derivation of general load factors for different Military Vehicle Categories. To better quantify these statistical parameters, other military vehicles in use by the Canadian Forces or NATO should be investigated. This will help to quantify target reliabilities that are better suited for the overall vehicle population of each Military Vehicle Category.

In this research, no Tracked-Transport vehicles were investigated. If specifications for a Tracked-Transport vehicle were available, it would be a worthwhile exercise to follow the methods presented in Chapters 4 through 6 to derive vehiclespecific load factors.

8.3.5 Collection of Field Data for Military Vehicles

8.3.5.1 Traffic Composition and Volume

It has been difficult quantify the expected traffic volumes of military vehicles. Given that load factors are dependent on annual traffic volumes, it would be important to verify, based on pervious operations, what traffic volumes can be expected.

Also, military traffic composition should be verified to improve the average load factors for each Military Vehicle Category presented in Section 6.4.3.

8.3.5.2 Operational Weights of Military Vehicles

A major shortfall in this research is the absence of field data for the weights of military vehicles while on operations. To quantify statistical parameters for static loads of military vehicles, it was assumed that the curb weight of the vehicle was deterministic and the variability of the total weight of the vehicle was due entirely to its payload. Based on this assumption, the payload of the AHSVS-PLS was inferred based on shipping container weights flown by the Canadian Forces during the Afghanistan conflict. Conservative, heuristic assumptions were made to simulate the payload weights

of the LAV III-ISC and Leopard 2A4M tank. To validate these assumptions, field data of the operational weights of military vehicles should be collected through either Weigh in Motion (WiM) or with scales.

The inferred payload behaviour of the AHSVS-PLS using shipping container flown by the Canadian Force is, at the very least, indicative that the military does not have greater control on excessively loaded vehicles during combat operations. Given the greater payload weight fraction for military transport vehicles when compared to military fighting vehicles, it would be important to investigate other types of payloads (other than shipping containers) carried by military transport vehicles.

8.3.6 Risk Optimization of Bridge Evaluation in the Context of Military Operations

Although only briefly investigated in Chapter 3, the optimal risk for military bridge evaluation in the context of military operations should be investigated thoroughly. Given the importance of mobility in a battlespace, optimizing the risk associated with bridge usage is a worthwhile exercise.

8.3.7 Target Reliability for Acceptable Risk Levels other than NEGLIGIBLE

As explained in Chapter 2, under various circumstances it may be acceptable to permit a greater overall risk for all vehicles in crossing bridges. Whereas early in a combat operation, greater mobility requirements to counter enemy actions would warrant bridges rated for a MODERATE risk level. As the military operation continues and the situation stabilizes, bridges might be re-rated to a NEGLIGIBLE or LOW risk level. The basis of these levels of risk is the probability of death in using the structure for its intended purpose. This is best quantified as the probability of system failure. Reliability levels used for engineering design and evaluation have been calibrated for the annual probability of failure for the individual components of a structure. To adequately relate the lower allowable system reliability to the component reliability in a simplified, general sense is essential to create a framework for engineers to rate bridges at different risk levels.

8.3.8 Load Factor Calibration for Shear and Other Types of Spans

Live load factors were derived for the evaluation of flexural loads on interior girders of simply supported slab-on-girder bridges for single lane traffic. Further research is required to calibrate factors related to flexural loads of exterior girders, shear, and other types of bridges.

8.3.9 Multiple Vehicle Loading and Traffic Combinations

The presence of multiple military vehicles or military vehicles mixed with other traffic, including multi-lane traffic has not been considered. Although it is assumed by NATO (2006) that the nearest ground contact points of successive military vehicles are 30.5 m apart, there is no indication that this is actually practiced in the field. No data concerning to the actual vehicle spacing or convoy combinations were found. To accurately quantify the load effects of the presence of multiple military vehicles on bridges requires more information. It is therefore warranted to collect field data relating vehicle spacing and traffic composition of military vehicles under different circumstances, including: on military installations; on bridges owned by civilian authorities near military installations; and during military deployments (domestic and foreign). Video surveillance has probably captured this information on and off military installations, but may be difficult to access.

8.3.10 Calibration for Evaluation of Bridges in Other Nations

Given the need for the Canadian Forces to operate in other nations, it would be beneficial to conduct a thorough investigation of material properties and bridge forms and geometries in other nations. Load factors calibrated for Canadian bridges could be tested for applicability to evaluate bridges in regions or specific nations.

References

- AASHTO. (1996). Standard Specifications for Highway Bridges, American Association of State Highway and Transportation Officials, 16th Edition. Washington, D.C.
- AASHTO. (2007). AASHTO LRFD Bridge Design Specifications, 4th Edition.Washington, DC: American Association of State Highway and Transportation Officials.
- AASHTO. (2012). AASHTO LRFD Bridge Design Specifications, 6th Edition.Washington, DC: American Association of State Highway and Transportation Officials.
- Allen, D. E. (1992). Canadian highway bridge evaluation: reliability index. Canadian Journal of Civil Engineering, 987-991.
- Allen, T. M., Nowak, A. S., & Bathurst, R. J. (2005). Calibration to Determine Load and Resistance Factors for Geotechnical and Structural Design, E-C079. Washington, D.C.: Transportation Research Board.
- Ang, A. & Tang, W. (1984). Probability concepts in engineering planning and design volume 1 basic principles. New York, NY: John Wiley & Sons, Inc.
- Armed Forces Epidemiological Board. (1996). Injuries in the Military A Hidden Epidemic. Washington, D.C.: Armed Forces Epidemiological Board.
- Army Guide. (n.d.). Army Guide. Retrieved March 27, 2014, from http://www.armyguide.com/eng/product1645.html
- Army Trucks Inc. (2014, November 24). *Cargo*. Retrieved from Army Trucks Inc.: http://armytrucksinc.homestead.com/cargo.html
- Bartlett, F.M. (1980). Class Notes, CE 600 Bridge Design, Waterloo, ON

- Bartlett, F. M. (2008). Separation Factors for Load or Resistance Factor Computation: A Sacred Cow to be Put Out to Pasture. Annual Conference of the Canadian Society of Civil Engineering (pp. 2088-2097). Quebec City, QC: Curran Associates, Inc.
- Benjamin, J. R., & Cornell, C. A. (1970). Probability, Statistics, and Decision for Civil Engineers. (pp. 466-475, 667) New York: McGraw-Hill Book Company.
- Bennett, S. D., & Stam III, A. C. (1996). The Duration of Interstate Wars, 1816-1985. American Political Science Association, Vol. 90, No. 2 (Jun., 1996), pp. 239-257.
- Brassington, B., ETS Consulting. (2014). RE: Seeking reference for data presented in ILO publication: "Safety in the supply chain in relation to packing of containers" ISBN 978-92-2-124227-7. Pitstone, Buckinghamshire, United Kingdom. Multiple Private Communications between Jan 2014 to Apr 2014. Contact info for ETS Consulting available at: http://ets-consulting.org/
- canada.com. (2013, September 10). *Timeline: Canadian deaths in Afghanistan*. Retrieved from Canada.com: http://www.canada.com/news/Timeline+Canadian+deaths+ Afghanistan/1037437/story.htm.
- Canadian Defence Academy, C. (2007). Leadership in the Canadian Forces, Leading People. Ottawa, ON, Canada: Her Majesty the Queen in Right of Canada.
- Chettoe, C. S. (1948). The Military Classification of Bridges in Great Britain. The Civil Engineer in War, A Symposium of Papers on War-Time Engineering Problems, Volume 1 Airfield, Roads, Railways, and Bridges (pp. 360-364). London, Britain: The Institution of Civil Engineer.
- CIRIA. (1977). Rationalisation of safety and serviceability factors in structural codes. London, UK: Construction Industry Research and Information Association.
- Clair, C. D. (1993). Lessons in Combat Service Support Tactical Mobility: The Afghanistan Conflict, Falklands War and Operation Desert Shield/Desert Storm.

Monograph. Fort Leavenworth, KS: School of Advance Military Studies, United States Army Command and General Staff College.

- Collier, P., Hoeffler, A., & Söderbom, M. (2004). On the Duration of Civil War. Journal of Peace Resarch, Vol. 41, No. 3 (May, 2004), pp. 253-273.
- Cremona, C. (2011). Structural Performance, Probability-based Assessment. (pp. 81-124) Hoboken, NJ: John Wiley & Sons, Inc.
- CSA. (1981). Guidelines for the Development of Limit States Design, CSA Special Publication S408-1981. Rexdale, ON: Canadian Standards Association.
- CSA. (2006a). Canadian Highway Bridge Design Code, CAN/CSA-S6-06. Rexdale, ON: Canadian Standards Association.
- CSA. (2006b). Commentary on CAN/CSA-S6-06, Canadian Highway Bridge Design Code. Rexdale, ON, Canada: Canadian Standards Association.
- CSA. (2011). Guidelines for the development of limit states design standards, S408-11. Mississauga, ON: Canadian Standards Association.
- Defense Industry Daily. (2013, August 07). Defense Industry Daily. Retrieved April 14, 2014, from http://www.defenseindustrydaily.com/canada-looks-to-upgrade-its-armor-in-afghanistan-05190/
- DND. (1997). Data Summary, Light Armoured Vehicle (LAV), Wheeled, 8x8, Diesel (Bilingual), C-30-650-000/MA-001. Ottawa, ON: Department of National Defence.
- DND. (1999). Operating, Maintenance and Illustrated Parts Instructions for Pallet Loading System Trailer, C-30-874-000/MS-000. Ottawa, ON: Department of National Defence.
- DND. (2003). B-GL-321-007/FP-001, LAV Company Tactics. Ottawa, ON: Government of Canada.

- DND. (2005). Chief Review Services, Evaluation of DND/CF Ammunition Safety Program - 1258-101-2 (CRS).
- DND. (2006a). Data Summary, Armoured Recovery Vehicle Taurus, C-30-733-000/MA-001. Ottawa, ON: Department of National Defence.
- DND. (2006b). Data Summary, Armoured Engineer Vehicle Badger. C-30-734-000/MA-001. Ottawa, ON: Department of National Defence.
- DND. (2006c). Data Summary, Tank Leopard C2 MBT (Bilingual). C-30-731-000/MA-001. Ottawa, ON: DND/MDN Canada.
- DND. (2006d). Data Summary, Truck, Cargo, 10 Tons, 6x6, HLVW, Model H808 with Self-Recovery Winch (Bilingual), C-30-406-000/MA-000. Ottawa, ON: DND/MDN Canada.
- DND. (2007a). Manual for Military Nonstandard Fixed Bridges, B-GL-361-014/FP-001. Ottawa, ON: Not Published.
- DND. (2007b). Risk Management for CF Operations, Change 1, B-GJ-005-502/FP-000.Ottawa, ON: Department of National Defence.
- DND. (2007c). Armoured Heavy Support Vehicle System (00001203). Statement of Operational Requirements.
- DND. (2010a). Data Summary, Chassis, Light Armoured Vehicle (LAV),
 Reconnaissance (Recce), Wheeled, 8x8, Diesel (Bilingual), C-30-600-A00-/MA-001. Ottawa, ON: Department of National Defence.
- DND. (2010b). Data Summary, Light Armoured Vehicle (LAV), Wheeled, 8x8, Diesel, Bison Ambulance (Bilingual), C-30-656-000/MA-001. Ottawa, ON: DND/MDN Canada.
- DND. (2011a). Cargo / Gun Tractor Vehicle Data Summary, C-30-B80-002/MA-001. Ottawa, ON: Government of Canada.

- DND. (2011b). Data Summary, Carrier, Personnel, Full Tracked, Armoured, M113A3 with AN/MWG-505, C-30-775-000/MA-001. Ottawa, ON: DND/MDN Canada.
- DND. (2011c). Data Summary, Chassis, Light Armoured Vehicle (LAV), Armoured
 Personnel Carrier (APC), Wheeled, 8x8, Diesel, C-30-560-000/MA-001.
 Ottawa, ON: Department of National Defence.
- DND. (2011d). Palletized Loading System Vehicle (C-20-B80-003/MA-001). Ottawa, ON, Canada: Department of National Defence.
- DND. (2011e). Tractor 24 t Data Summary (C-30-B80-004/MA-001). Ottawa, ON: Government of Canada.
- Drew, C. (2009, November 15). High Costs Weigh on Troop Debate for Afghan War. New York Times (New York Ed). New York: New York Times.
- Dunker, K. F., & Rabbat, B. G. (1990). Highway Bridge Type and Performance. Journal of Performance of Constructed Facilities (ASCE), 4: 161-173.
- Engeler, A. (1994). Parallel Tests with a 6 and 7 Roadwheel Tracked Vehicle. 6th
 European ISTVS Conference, Off Road Vehicles in Theory and Practice
 Volume II (pp. 603-617). Vienna, Austria: Austrian Armed Forces and Austrian
 Society of Automotive Engineers.
- Entous, A. (2009, November 16). Afghan strategy debate exposes split over price. Reuters. Washington: Reuters. Retrieved March 26, 2014, from http://www.reuters.com/article/2009/11/16/us-afghanistan-usa-costs-analysisidUSTRE5AF2FK20091116
- European Committee for Standardization. (2010). EN 1990:2002+A1 Eurocode Basis of structural design. Brussels, Belgium.
- Fender, K. J., & Pierce, D. A. (2012). An Analysis of the Operational Costs of Trucking: 2012 Update. Arlington, VA: American Transportation Research Institute.

- Genivar. (2012). Drawings, 1, 8, and 9 of Bug River Bridge, CONT No 2012-6015, WP No 6942-10-00, Thunder Bay, ON
- Goldberg, M. S. (2010). Death and Injury Rates of U.S. Military Personnel in Iraq. Military Medicine, Vol 175, 4, p. 220-226.
- Greider, W. (1999). Fortress America: The American Military and the Consequences of Peace. New York: Public Affairs.
- Homberg, H., Berechnung von Brücken und Militärlasten, Band 1, STANAG 2021 Norm für militärische Fahrzeuge und Brückenbelastungen, Werner-Verlag GmbH, Düsseldorf, 1970.
- Hornbeck, B., Kluck, J., & Connor, R. (2005). Trilateral Design and Test Code for Military Bridging and Gap Crossing Equipment. Warren, MI: TARDEC Bridging (AMSRD-TAR-E/ELE).
- icasualties.org. (2013, June 16). iCasualties.org. Retrieved June 18, 2013, from http://icasualties.org/OEF/Nationality.aspex?hndQry=Canada
- Kennedy, D. L., Gagnon, D. P., & Allen, D. E. (1992). Canadian highway bridge evaluation: load and resistance factors. Canadian Journal of Civil Engineering, 19(6): 992-1006.
- Kim, Y. J. (2012). Safety assessment of steel-plate girder bridges subjected to military load classification. Engineering Structures, Vol 38, pp. 21-31.
- Kim, Y. J., Tanovic, R., & Wight, R. G. (2010). Load configuration and lateral distribution of NATO wheeled military truck for steel I-Girder Bridges. Journal of Bridge Engineering, Vol 15, pp. 740-748.
- Kosmatka, J. B. (2011). Dynamic Behaviour of the Composite Army Bridge (CAB):Field Testing. Proceedings of the 8th International Conference on Structural Dynamics (pp. 1559-1565). Leuven, Belgium: EURODYN.

- Landherr, J. C. (2008). Dynamic Analysis of a FRP Deployable Box Beam. Kingston, Ontario: Queen's University.
- Lenner, R. (2014). Safety Concept and Partial Factors for Military Assessment of Existing Concrete Bridges. Munich, Germany: UNIVERSITÄT DER BUNDESWEHR MÜNCHEN.
- Lenner, R., Keuser, M., & Sykora, M. (2013). Assessment of Existing Reinforced Concrete Bridges Exposed to Military Loads. Novak and Vorechovsky: Proceedings of the 11th International Probabilistic Workshop, (p. (not yet published)). Brno.
- Leopard Requirements Officer, Director Land Requirements 3-4-3, Department of National Defence. (22 Nov 2013). ATTLA for Air Shipments, Ottawa, ON, Canada. Private communication
- Menzies, J. (1997). Bridge failures, hazards and societal risks. In P. C. Das, Safety of Bridges (pp. 36-41). London, UK: Thomas Telford.
- Military Today. (n.d.). Western Star. Retrieved November 1, 2012, from militarytoday.com: http://www.military-today.com/trucks/western_star_m4866s.htm
- Morrison Hershfield Ltd. (2012). Ministry of Transportation Bridge Design Training Design Example. Ontario, Canada: Ministry of Transportation, Government of Ontario, Canada.
- National Movement and Distribution System Support Center, Department of National Defence. (2012). Request for Info of Equipment/Seacan Weights – Ref Military Traffic Load Calibration Project. Ottawa, ON, Canada. Private communication.
- NATO, (2006). Standardization Agreement (STANAG) 2021, 6th Edition. Military Load Classification of Bridges, Ferries, Rafts and Vehicles. Brussels, Belgium.
- NATO, (2008). NATO Glossary of Terms and Definitions (English and French), AAP-6(2008). (p. 2-M-1) Brussels, Belgium.

- Pinero, J. C. (2001). Lateral Load Distribution Factors for Military Vehicles on Multi-Girder Deck Slab Bridge Systems. Blacksburg, Virginia: Virginia Polytechnic Institute and State University. Retrieved from http://scholar.lib.vt.edu/theses/ available/etd-05252001-141715/unrestricted/Juan-MSThesis.pdf
- Robinson, M. J., & Kosmatka, P. E. (2011). Experimental Dynamic Response of a Short-Span Composite Bridge to Military Vehicles. Journal of Bridge Engineering, 2011.16: 166-170.
- SNC. (n.d.). SNC Tech Product Brochure 5.56mm, 7.62mm and 9mm ammunition. Retrieved October 31, 2013, from http://www.gdotscanada.com/imports/pdf/en/fiche_techniquel.pdf
- Statistics Canada. (2012, May 30). Canadian Socioeconomic Database. Retrieved June 18, 2013, from http://www5.statcan.gc.ca/cansim/
- Sýkora, M., Holický, M., Lenner, R., & Maňas, P. (2013). Optimum target reliability for bridges considering emergency situations. Proceedings of the 11th International Probabilistic Workshop (pp. 439-450). Brno: Ing. Vladislav Pokorn´y – LITERA.
- Trimble, M. D., Cousins, T. E., & Seda-Sanabria, Y. (2003). Field Study of Live Load Distribution Factors and Dynamic Load Allowance on Reinforced Concrete T-Beam Bridges. Washington, DC, United States of America: US Army Corps of Engineers, Engineer Research and Development Center. Retrieved from http://www.dtic.mil/dtic/tr/fulltext/u2/a417357.pdf
- Transportation Research Board. (2001). National Cooperative Highway Research
 Program, Report 454, Calibration of Load Factors for LRFR Bridge Evaluation.
 (p. 7) Washington, D.C.: National Academy Press.
- US Army. (2014, November 24).*File:Stryker ICV front q.jpg*. Retrieved from Wikimedia Commons: commons.m.wikimedia.org/wiki/File:Stryker_ICV_front_q.jpg

- US Army Center for Army Lessons Learned. (2003). The Modern Warrior's Combat Load, Dismounted Operations in Afghanistan April-May 2003.
- US Department of the Army. (1998). Risk Management (FM 100-14). Washington, D.C.
- US Department of the Army. (2002). Military Nonstandard Fixed Bridging (FM 3-34.343). Washington, D.C.
- US Department of the Army. (2003). The Tank and Mechanized Infantry Battalion Task Force (FM 3-90.2). Washington, D.C.
- US Department of the Army. (2006). Counterinsurgency Fm 3-24. Washington, DC: Headquarters, Department of the Army.
- US Department of the Army. (2008). Engineering Reconnaissance (FM 3-34.170/MCWP 3.17.4). Washington, D.C.
- US Department of the Army, & US Department of the Navy. (2004). Operational Terms and Graphics (FM 1-02/MCRP 5-12A). Washington, DC.
- Vancata, P. (2014, November 3). *Statistics of the Battle of Britain*. Retrieved from Battle of Britain: http://cz-raf.hyperlink.cz/BoB/stat.html
- Walker, A. C., Zintilis, G. M., & Bulson, P. S. (1991). Strength of Damaged Military Bridges. Thin-Walled Structures, Vol 12, pp. 113-128.
- Wight, L. T. (1997, June 13). Operational Commander's Risk Assessment: How much Can You Really Afford to Lose? Naval War College - Published Thesis.
 Newport, RI, United States of America: Defense Technical Information Center. Retrieved from: http://www.dtic.mil/dtic/tr/fulltext/u2/a325249.pdf
- Wikipedia.org. (2014a, November 3). *Battle of the Bulge*. Retrieved from Wikipedia.org: http://en.wikipedia.org/wiki/Battle_of_the_Bulge
- Wikipedia.org. (2014b, November 3). *Siege of Bastogne*. Retrieved from Wikipedia.org: http://en.wikipedia.org/wiki/Seige_of_Bastogne

- WLAV Chassis Management Team Leader, Department of National Defence. (2014). L2-084 CofG Calcs Update.pptx, Ottawa, ON, Canada. Private communication.
- Wong, J. Y. (2010). Terramechanics and Off-road Vehicle Engineering, TerrainBehaviour, Off-road Vehicle Performance and Design (2nd Edition). Oxford,United Kingdom: Elsevier.

Appendix A DND National Material Distribution System Intermodal Shipping Container Mass Data 2006-2012, Departing Afghanistan

Dispatch	Mass	Dispatch	Mass	Dispatch	Mass	Dispatch	Mass
Date	(kg)	Date	(kg)	Date	(kg)	Date	(kg)
27/Apr/2010	2040		2273		2830	13/Oct/2011	3062
07/May/2007	2041	22/May/2012	2273		2849	31/Mar/2010	3066
13/Dec/2010	2041	15/Aug/2012	2273	01/Dec/2010	2854	28/Feb/2011	3082
16/May/2012	2060	12/Jul/2012	2273	01/Oct/2008	2860		3084
26/Aug/2011	2080	31/Mar/2011	2275		2867	13/Jul/2006	3084
03/Nov/2011	2080	13/Sep/2012	2277	19/Jan/2010	2870		3084
	2082	02/Jun/2011	2280	18/May/2011	2871	19/Dec/2008	3089
26/Aug/2011	2090	20/Dec/2011	2300		2871	14/Dec/2011	3094
03/Nov/2011	2090	14/Dec/2011	2313		2877		3112
	2093		2313	15/Nov/2011	2887		3114
	2109		2380	11/May/2012	2889	07/Jun/2011	3114
24/Feb/2010	2113	27/Apr/2010	2380	19/Dec/2008	2889	07/Aug/2012	3120
	2117	23/Feb/2010	2380		2889	05/Jul/2006	3121
27/Apr/2010	2120		2386		2892		3121
24/Feb/2010	2130	13/Sep/2012	2390	19/Jan/2010	2898	29/Mar/2010	3124
	2136	02/Dec/2010	2398	21/Dec/2010	2900	15/Jun/2011	3128
07/Aug/2012	2141	14/Nov/2008	2400	20/Jan/2012	2903		3134
08/May/2008	2157	08/Apr/2008	2404		2903	24/Nov/2008	3150
16/May/2011	2159	1	2445	11/May/2012	2906		3155
20/Mar/2006	2170		2452	06/Aug/2009	2910		3157
13/Jun/2008	2170		2454	04/Jul/2012	2920	02/Feb/2010	3160
26/Aug/2011	2177	16/May/2011	2477	09/Jul/2012	2930	08/Jun/2010	3168
13/Jun/2008	2180	27/Nov/2009	2495	25/Feb/2010	2940	19/Sep/2012	3175
22/Aug/2012	2180	16/Dec/2009	2500	15/Apr/2010	2942	1	3175
15/Jun/2011	2181	11/May/2012	2526	•	2942	19/Apr/2011	3193
02/Dec/2010	2182	21/Dec/2007	2532	17/Aug/2010	2948	1	3193
03/Jun/2011	2185	14/Dec/2011	2556	08/Sep/2012	2948	02/Apr/2009	3195
08/May/2008	2186	01/Dec/2010	2586	·	2950	-	3200
01/Feb/2012	2188	27/Jun/2011	2648	11/May/2012	2956		3202
	2189	05/Oct/2011	2650	12/Dec/2011	2957	15/Jun/2011	3204
05/Dec/2011	2190	23/Sep/2011	2650	17/Mar/2008	2967	16/Nov/2007	3214
	2195	30/May/2012	2710	13/Nov/2009	2980	19/May/2011	3216
12/Jan/2010	2200	02/Dec/2009	2720	29/Jun/2011	2994	•	3229
27/Apr/2010	2200	15/Oct/2010	2722		2994		3231
15/Apr/2010	2218		2722	21/Sep/2007	2997		3232
	2218	18/Sep/2007	2729	19/Jan/2007	2998	14/Dec/2011	3239
03/Nov/2011	2230	05/Jun/2012	2737	15/Apr/2010	2998	11/Mar/2009	3240
26/Aug/2011	2230	10/Dec/2009	2745		2998	28/Jul/2011	3240
15/Apr/2010	2232	NULL	2777	16/Dec/2009	3000	15/Jun/2011	3241
15/Nov/2011	2240	19/Dec/2008	2781	10/Mar/2006	3012	31/Mar/2008	3245
02/Dec/2010	2241		2781	13/Dec/2010	3016	08/Jun/2010	3247
18/Aug/2011	2242		2785	16/Feb/2010	3020	15/Jun/2011	3250
15/Apr/2010	2250		2799	19/Jan/2007	3030	13/Nov/2009	3266
16/Jun/2011	2259	31/Mar/2011	2800		3035		3270
	2259		2812	28/Jul/2010	3036	17/Sep/2012	3270
12/Jan/2011	2268	05/Jun/2012	2813	08/Sep/2012	3039	-	3282
	2268	23/May/2012	2816		3039	14/Dec/2011	3284
03/Aug/2010	2268	19/May/2011	2820	22/Jun/2007	3044	31/Oct/2008	3288
14/Apr/2011	2272	-	2821	15/Jun/2011	3048		3300
08/May/2008	2273	27/Oct/2009	2829	29/Jun/2010	3060	29/May/2012	3302

Dispatch	Mass		Dispatch	Mass	Dispatch	Mass	Dispatch	Mass
Date	(kg)		Date	(kg)	Date	(kg)	Date	(kg)
11/Mar/2010	3305			3468	16/Oct/2008	3582		3692
	3315		26/Nov/2009	3470	27/Aug/2010	3583	02/Feb/2010	3700
09/May/2011	3318		10/Dec/2009	3472	28/Jun/2011	3584	15/May/2007	3701
	3331		26/May/2010	3475		3592	11/Feb/2008	3703
19/Dec/2011	3348		20/Aug/2012	3480	25/Jul/2008	3596	16/Oct/2008	3705
17/Dec/2008	3350		16/Sep/2010	3482	09/Nov/2007	3600	08/Oct/2008	3708
09/Jul/2012	3350		07/Sep/2010	3487	26/Feb/2009	3605		3708
31/Mar/2010	3353		16/Sep/2010	3487	16/Jan/2009	3608	04/Dec/2007	3710
	3357			3487	04/Jul/2012	3610	11/Dec/2011	3711
31/Aug/2011	3360		27/Aug/2010	3488	24/Mar/2010	3610		3713
	3361		24/Nov/2009	3490	11/Dec/2011	3611	08/Jun/2007	3719
07/Jun/2011	3366		09/May/2011	3490		3615		3719
	3370		27/Sep/2007	3491	20/Aug/2009	3620	21/Jan/2009	3726
24/Jan/2011	3370			3493	12/Feb/2010	3620	04/Dec/2007	3730
	3377		14/Dec/2011	3496	03/Oct/2007	3622	31/May/2011	3732
25/Oct/2010	3380		19/Jan/2010	3500	28/Jun/2011	3623	25/Jul/2008	3735
19/Nov/2009	3380		09/May/2011	3501	02/Nov/2010	3628	15/Apr/2008	3738
18/Feb/2009	3383		09/May/2011	3504	05/Aug/2008	3629	25/May/2011	3740
31/May/2011	3386			3504		3629		3742
13/Jan/2010	3390		02/Feb/2010	3510	19/Jun/2008	3629	14/Feb/2012	3747
19/Jan/2010	3390		15/Jun/2011	3512		3629		3747
31/May/2011	3402		13/Nov/2009	3520	22/Jun/2007	3630	03/Oct/2007	3751
	3402		08/Jun/2010	3520	08/Jan/2009	3630	26/May/2011	3755
11/Mar/2009	3410		09/May/2011	3521	02/Feb/2010	3630	10/Dec/2009	3756
25/Jul/2006	3410		15/Jun/2011	3522		3631		3756
12/Jul/2010	3411		09/May/2011	3528	20/Jun/2007	3636	27/Feb/2008	3757
08/Jan/2009	3413		•	3529		3638	22/Nov/2006	3760
08/Jun/2010	3417		08/Oct/2008	3530	19/Oct/2011	3638	11/Jan/2008	3770
02/Feb/2010	3420		25/May/2011	3537	15/Feb/2012	3640	12/Jul/2010	3774
	3420		03/Oct/2007	3538	02/Feb/2010	3640	31/May/2011	3776
	3425		09/May/2011	3539		3645	29/Sep/2010	3780
08/Jun/2010	3425		26/Mar/2009	3540	29/Mar/2010	3645	02/Dec/2009	3780
11/Dec/2008	3426		15/Dec/2011	3542	26/Mar/2010	3650	21/Jun/2011	3789
09/Jun/2011	3428		28/Jun/2011	3543	26/Mar/2009	3650	27/Jan/2010	3790
24/Nov/2009	3430		02/Jun/2011	3549	12/Jan/2010	3650	11/Dec/2011	3792
	3431		09/May/2011	3551	08/Oct/2008	3651		3792
	3434			3554	16/May/2011	3660	31/May/2011	3799
28/Oct/2009	3435		09/May/2011	3554	05/Feb/2008	3663	24/May/2012	3800
	3445		15/Jun/2011	3557		3663	15/Oct/2007	3800
	3448		25/May/2011	3557	01/Oct/2007	3665	18/Feb/2008	3801
26/Nov/2009	3449			3561	12/Dec/2011	3665	07/Jun/2011	3809
19/Jan/2010	3450		25/May/2011	3562	16/Mar/2009	3666	24/Nov/2008	3810
25/Nov/2009	3450		25/May/2011	3563	26/Mar/2009	3668		3810
	3452		25/May/2011	3566	07/Jun/2011	3670	08/Apr/2009	3811
29/May/2006	3453		03/Oct/2007	3568	15/Jan/2009	3674	01/Dec/2010	3817
	3456	1	15/Jun/2011	3570	21/Dec/2011	3676	01/Dec/2009	3819
22/Jun/2007	3461	1	25/May/2011	3570	09/Nov/2007	3680		3819
	3463	1		3572	15/May/2009	3681	12/Apr/2011	3830
09/Sep/2010	3465	1	19/Sep/2006	3574	27/Feb/2008	3690	03/Oct/2007	3830
13/Nov/2008	3466	1	28/Jun/2011	3579	21/Jan/2009	3691	08/Feb/2011	3835

Dispatch	Mass	Dispatch	Mass	Dispatch	Mass	Dispatch	Mass
Date	(kg)	Date	(kg)	Date	(kg)	Date	(kg)
	3840	01/Jun/2011	3962	21/Oct/2011	4068		4171
17/Jun/2010	3840	02/Feb/2010	3970	13/Jan/2010	4069	26/Jan/2011	4173
25/Feb/2010	3840	12/Oct/2012	3970	20/Jan/2011	4070	04/Aug/2010	4173
06/Dec/2011	3842	03/Oct/2007	3970	31/Oct/2008	4076		4173
31/Mar/2011	3842		3974	02/May/2011	4080	17/Dec/2009	4180
07/Jun/2011	3843	14/Dec/2011	3985	22/May/2007	4082	22/Nov/2006	4180
09/Feb/2010	3850	04/Aug/2010	3987		4082	25/Jun/2009	4187
	3856	15/Apr/2010	3989	12/Dec/2011	4084	30/Mar/2011	4190
31/May/2011	3856	29/Apr/2010	3989	26/Oct/2007	4090	26/Jan/2012	4190
	3856	09/Feb/2010	3990	25/Apr/2008	4090	10/Sep/2012	4191
16/May/2011	3856	20/Jan/2010	3990	01/Dec/2009	4091	13/Jul/2010	4194
21/Jan/2011	3856	13/Mar/2009	3991	09/Dec/2010	4097	29/Feb/2008	4195
26/Mar/2010	3859	25/Aug/2011	3992	09/Jun/2011	4098	02/Feb/2010	4200
03/Oct/2007	3861		3992		4098	14/May/2010	4200
15/May/2007	3865	09/May/2011	3993	22/Nov/2006	4100	13/Nov/2009	4200
07/Jun/2011	3868	12/Dec/2011	3996	01/Sep/2010	4105	06/Oct/2009	4202
22/Jun/2007	3874	11/May/2007	4000		4107		4203
03/Oct/2007	3876	11/Dec/2006	4000	16/May/2011	4108	26/May/2010	4210
07/Jun/2011	3878	05/Dec/2011	4002	15/Sep/2009	4108	08/Sep/2012	4218
03/Feb/2010	3880	29/Apr/2010	4004	22/Jun/2007	4110	23/Jan/2007	4220
	3885		4012	17/Oct/2011	4110	20/Jan/2010	4220
07/Jun/2011	3890		4014	28/Jun/2011	4112	15/Jan/2009	4221
29/Jun/2010	3891	21/Oct/2011	4018		4114	03/Jun/2010	4228
15/Dec/2011	3891	10/Dec/2010	4019	13/Jul/2010	4116	13/Dec/2006	4230
03/Oct/2007	3898	09/Feb/2011	4019	10/Aug/2010	4119	26/May/2011	4230
28/Sep/2012	3900	17/Aug/2009	4020	28/Jun/2011	4119	04/Jan/2012	4232
25/Feb/2010	3900	27/Jan/2010	4020	30/Oct/2008	4119		4232
28/Aug/2012	3901		4021	12/May/2011	4120		4232
	3901	15/Jun/2006	4030	10/Jul/2012	4120	03/Oct/2007	4233
02/May/2011	3910	12/Jan/2010	4030		4123	05/Dec/2011	4236
	3915		4032	18/Sep/2009	4128	11/Feb/2008	4238
02/Jul/2009	3920	25/Jan/2011	4037		4128	30/May/2011	4239
01/Sep/2010	3924	01/Dec/2009	4037	08/Aug/2011	4128	02/Sep/2011	4240
03/Oct/2007	3924		4037	12/Jul/2010	4130	10/Feb/2010	4240
19/Jan/2010	3930	15/Apr/2010	4039	19/Jan/2010	4130	28/Jun/2011	4240
03/Oct/2006	3930	29/Apr/2010	4039	14/Aug/2008	4131	02/Dec/2010	4241
16/May/2011	3938		4042	06/Jul/2012	4138	29/Sep/2010	4242
13/Nov/2009	3940	21/Oct/2011	4043	10/Jul/2007	4140	03/Oct/2007	4243
11/Feb/2011	3940		4048	04/Aug/2010	4140		4248
05/Jul/2012	3940	25/Aug/2011	4050	22/Oct/2008	4144	08/Apr/2011	4250
17/May/2010	3941	04/Nov/2011	4050	09/Aug/2006	4146	26/Jan/2011	4253
13/Dec/2011	3942	15/Dec/2011	4051	15/Dec/2011	4150	03/Nov/2011	4254
09/Apr/2008	3946	29/Jun/2010	4052	28/Apr/2010	4150		4255
	3946		4053	12/Oct/2007	4150	10/Sep/2008	4256
24/Mar/2010	3950	23/Dec/2011	4057	10/Aug/2011	4151	08/Oct/2008	4260
04/Jul/2008	3953	29/Apr/2010	4059	26/Oct/2010	4152	13/Jul/2010	4260
27/Jun/2011	3954		4060	11/Dec/2009	4156	22/Oct/2008	4260
	3955	13/Jan/2010	4060	28/May/2007	4160		4262
17/Jun/2010	3959	12/Nov/2006	4060	19/Jan/2010	4170	22/Jun/2007	4264
31/Jan/2007	3960	24/Mar/2010	4065	07/Dec/2011	4171		4264

Dispatch	Mass	Dispatch	Mass	Dispatch	Mass	 Dispatch	Mass
Date	(kg)	Date	(kg)	Date	(kg)	Date	(kg)
22/Oct/2007	4267	09/Feb/2011	4363	22/Jun/2007	4482		4581
19/Oct/2011	4269		4368	29/Mar/2010	4488		4584
23/Feb/2010	4270	17/Oct/2011	4370		4488	08/Apr/2010	4588
16/Jun/2010	4271	29/Mar/2010	4380	07/May/2007	4490	16/Jul/2012	4590
17/Jul/2008	4272		4389	•	4491	30/May/2012	4590
15/Dec/2011	4277	23/Mar/2011	4390	23/Mar/2011	4493	31/Mar/2011	4599
13/Nov/2009	4280	04/Feb/2009	4390	29/Jun/2010	4495	12/Jan/2010	4600
01/Jun/2007	4282		4393		4495	27/May/2011	4600
26/Apr/2010	4283		4395	15/Jun/2009	4499	14/Jul/2010	4603
	4289	28/May/2009	4398		4504	19/Nov/2008	4609
08/Oct/2008	4290	26/Jan/2011	4400		4506		4613
28/Jun/2011	4290	22/Jun/2006	4400	13/Aug/2008	4509	20/Jan/2011	4615
22/Jun/2007	4296	21/Nov/2007	4407	26/Jan/2012	4510		4615
23/Feb/2011	4300	25/May/2011	4408	10/Dec/2009	4520	28/Jun/2010	4616
22/Jun/2007	4300	28/Apr/2010	4410	13/Jan/2010	4520	05/Dec/2009	4618
05/Nov/2010	4304		4416	19/Jun/2012	4522	27/Jan/2010	4620
24/Aug/2012	4309	16/Jul/2008	4417	03/Sep/2011	4527	14/Jan/2010	4620
	4309		4418	15/Dec/2011	4527	01/Sep/2010	4627
10/Aug/2010	4309	19/Jan/2010	4420	06/Sep/2011	4529		4627
12/Jul/2010	4310	17/Aug/2009	4423	05/Jun/2008	4530	01/Apr/2011	4629
09/Feb/2010	4310		4427	22/Oct/2008	4530	16/Feb/2010	4630
19/Nov/2007	4316	26/May/2010	4428		4534	09/Jul/2012	4630
11/May/2006	4318	27/Jan/2010	4430	20/Jul/2010	4534	12/Mar/2009	4634
	4318	15/Apr/2009	4430	09/Jul/2012	4535	28/Feb/2007	4637
09/Jun/2011	4320	26/May/2011	4431	27/Aug/2009	4535	20/Jan/2010	4640
09/Feb/2010	4320	17/Aug/2010	4432	22/Jun/2007	4536	28/May/2010	4645
22/Jun/2007	4321	29/Jun/2010	4435		4536	16/Mar/2010	4650
03/Oct/2007	4321		4436	02/Nov/2010	4536	20/Aug/2009	4653
23/Aug/2010	4322	12/Apr/2011	4440	25/Feb/2009	4537	04/May/2010	4658
26/May/2011	4325	17/Dec/2009	4440		4541	03/Jul/2012	4660
16/May/2011	4326	26/May/2011	4443	03/Oct/2007	4548	01/Jun/2010	4660
26/Sep/2007	4326	07/Nov/2011	4445	10/Nov/2006	4549		4661
25/Feb/2009	4328	15/Oct/2010	4445	25/Aug/2011	4550		4663
10/Sep/2008	4329		4445	27/Jan/2010	4550		4667
19/Jan/2010	4330		4445	31/Mar/2010	4552	25/Feb/2009	4668
	4332		4450	03/Dec/2011	4554	01/Apr/2011	4670
30/Mar/2011	4332	15/Feb/2012	4450		4554	12/Nov/2009	4670
22/Jun/2007	4336	26/May/2011	4457	26/May/2010	4562	14/May/2010	4670
08/Apr/2011	4340	13/Jan/2010	4460	05/Feb/2008	4566	13/Dec/2011	4672
04/Oct/2010	4345	04/Nov/2011	4460	02/Dec/2010	4569		4672
26/May/2011	4350		4461	06/Oct/2009	4570		4673
07/Jun/2007	4350	08/Nov/2010	4465	23/Feb/2010	4570		4679
26/Jul/2012	4350	14/Aug/2008	4470	22/Jan/2007	4570	26/Jan/2011	4680
07/Aug/2009	4350		4470	27/Aug/2009	4570		4684
08/Jan/2009	4351	05/Feb/2009	4472	16/Apr/2009	4572	28/Jun/2011	4684
	4352	05/Dec/2011	4473	05/Jul/2012	4575	09/Jul/2012	4685
07/Sep/2006	4355	26/May/2011	4474	12/Dec/2011	4576	05/Jul/2012	4690
	4355	29/Mar/2010	4477	01/Mar/2011	4578		4692
19/Jan/2010	4360	16/Jun/2010	4480	27/Jun/2011	4580		4695
12/May/2011	4360	17/May/2010	4481	10/Aug/2012	4581		4697

Dispatch	Mass	Dispatch	Mass	Dispatch	Mass	Dispatch	Mass
Date	(kg)	Date	(kg)	Date	(kg)	Date	(kg)
09/Aug/2010	4700	24/Nov/2010	4793	18/May/2010	4890		4967
02/Sep/2010	4700	22/Aug/2008	4793		4892	05/Feb/2010	4970
13/Dec/2010	4701	03/Oct/2007	4795	03/Nov/2011	4899	07/Nov/2007	4970
	4702		4797		4899	12/Jan/2010	4970
	4704	28/May/2009	4799		4899	16/May/2011	4971
27/Jun/2011	4704		4800	16/Aug/2010	4900	02/Nov/2006	4980
12/Dec/2011	4704		4808	22/Aug/2011	4900	10/Nov/2006	4987
11/Dec/2008	4705	08/Apr/2009	4809	27/Apr/2011	4900	09/Sep/2010	4988
	4708	14/Dec/2011	4812		4901	05/Jul/2007	4990
08/Feb/2010	4710	09/May/2011	4813	12/Dec/2011	4902		4990
09/Jul/2012	4715		4817		4903	28/Jun/2010	4990
	4717	06/May/2009	4819	31/Oct/2007	4910	27/Jun/2011	4990
25/Jan/2010	4720	26/Nov/2007	4820	25/Jul/2006	4910		4990
30/Mar/2011	4720	08/Apr/2010	4821	20/May/2010	4911	11/Apr/2007	4990
07/Dec/2011	4721		4824	04/Jul/2012	4917	06/Jul/2011	4995
16/Jun/2008	4722	18/Dec/2008	4826	14/Jan/2009	4920		4996
28/Jun/2011	4730	26/Jan/2011	4828	20/Jan/2010	4920	20/Dec/2011	5000
09/Sep/2009	4731	02/Dec/2009	4830		4922	15/Mar/2007	5001
05/Nov/2008	4732	19/Jan/2010	4830	23/Nov/2007	4923		5001
11/Jan/2012	4736	22/Nov/2007	4830		4924	19/Nov/2007	5001
22/Feb/2010	4738	09/Dec/2011	4839	25/Jun/2009	4924		5008
14/Jun/2010	4738	13/Apr/2010	4839		4924	30/Mar/2011	5010
	4740	24/Aug/2010	4840	09/Aug/2010	4926	23/Apr/2007	5010
12/Dec/2011	4745	10/Nov/2009	4840	06/Aug/2008	4929	23/Jun/2010	5011
19/Nov/2009	4746	02/Jul/2009	4844	20/Jun/2011	4930		5012
08/Apr/2010	4748	09/Feb/2011	4844	25/Jan/2010	4930		5013
	4749	07/Mar/2007	4847		4931	04/Aug/2010	5017
22/Jun/2006	4750	25/Jan/2007	4848	28/Sep/2007	4931	10/Oct/2006	5020
01/Feb/2008	4757	13/Feb/2009	4850		4933	24/Jul/2009	5020
12/Apr/2010	4758	17/Jun/2010	4850	16/Jan/2008	4934		5020
20/Nov/2006	4758		4851		4937	01/Dec/2009	5026
07/Feb/2007	4760	22/Nov/2010	4853	16/Aug/2010	4939	03/Oct/2007	5027
	4761	09/Aug/2011	4853		4940	02/Nov/2011	5030
22/Jun/2007	4763		4853	31/Aug/2009	4940	03/Dec/2008	5030
04/Oct/2010	4763	29/Jul/2009	4854	12/Feb/2010	4940	24/Aug/2011	5030
17/Dec/2008	4768	31/Oct/2008	4854	15/Oct/2008	4941	24/Feb/2011	5035
13/Jan/2010	4768	22/Oct/2008	4855	08/Apr/2010	4942	23/Aug/2007	5036
01/Dec/2010	4770		4858	01/Dec/2009	4944	02/Dec/2010	5039
17/Dec/2008	4773	16/May/2007	4860		4945	23/Feb/2010	5040
29/Jun/2010	4775	11/Feb/2011	4864		4946	04/Sep/2008	5040
15/Dec/2011	4776	29/Mar/2010	4870		4949	06/Dec/2007	5041
19/Oct/2011	4779	23/Nov/2007	4872	02/Sep/2010	4949	17/May/2006	5044
28/May/2009	4780	16/Apr/2010	4872	12/Jan/2010	4950		5044
	4781		4878		4958		5046
05/Dec/2009	4783	08/Apr/2010	4878	26/Jan/2011	4959	03/Jan/2012	5049
22/Jun/2007	4785	01/Aug/2006	4880		4960	04/Mar/2011	5050
22/Nov/2007	4787	06/Sep/2011	4881	07/Jun/2007	4961	 08/Nov/2007	5050
26/May/2010	4788	31/Aug/2009	4882	25/May/2011	4965	27/Feb/2008	5050
09/May/2011	4790		4883	17/Dec/2009	4966		5051
19/Feb/2009	4790	27/Jan/2010	4890	22/Jun/2007	4967	 23/Nov/2007	5051

Dispatch	Mass	Dispatch	Mass	Dispatch	Mass	Dispatch	Mass
Date	(kg)	Date	(kg)	Date	(kg)	Date	(kg)
	5053		5126	03/Oct/2007	5208	03/Dec/2011	5280
16/Nov/2007	5056	06/May/2009	5126	26/Aug/2011	5210	23/Jun/2011	5280
11/Dec/2008	5056	11/Jan/2008	5128	03/Nov/2011	5210		5282
NULL	5057	07/May/2007	5130	29/Jun/2010	5212	08/Apr/2009	5284
01/Sep/2010	5058	25/Jan/2010	5130		5214	17/Dec/2009	5285
30/Mar/2011	5060	12/Feb/2009	5130	27/Mar/2012	5216	26/Jan/2011	5286
16/Jun/2010	5060		5137	22/Jun/2007	5216	11/Dec/2009	5287
26/May/2010	5061	03/Jun/2011	5140	23/Nov/2007	5217	11/Feb/2011	5288
04/Mar/2011	5062	11/Feb/2010	5140	08/Apr/2010	5218	29/Mar/2010	5288
27/Nov/2008	5064	16/Jan/2008	5142	11/Dec/2009	5218	11/May/2006	5289
25/May/2011	5069	12/Apr/2010	5146		5219	22/Jun/2011	5289
18/Apr/2011	5070	23/Nov/2007	5148	12/Apr/2011	5219	27/Feb/2008	5290
16/Sep/2010	5074	15/Sep/2010	5148	17/Dec/2009	5220		5290
08/Apr/2010	5075	18/Oct/2011	5150	20/Jun/2011	5220	09/Aug/2010	5290
02/Feb/2011	5076	09/Feb/2010	5150	12/Dec/2011	5222	23/Jun/2011	5290
31/Mar/2011	5080	24/Mar/2010	5151	27/Jan/2010	5230	13/Jan/2010	5290
01/Dec/2009	5080	10/Aug/2011	5153	08/Sep/2008	5230	18/Feb/2011	5292
	5080		5153	03/Oct/2007	5230	09/Feb/2011	5298
	5083	28/Oct/2009	5153	15/Jul/2010	5239	02/Nov/2011	5300
18/Apr/2011	5083	23/Mar/2011	5160		5239		5300
17/Aug/2010	5085	18/Dec/2008	5162	27/Jan/2010	5240	10/Feb/2011	5300
09/Aug/2010	5088	09/Feb/2011	5167	19/Jan/2010	5240	22/Aug/2011	5300
23/Nov/2007	5090	17/Jul/2008	5170	29/Jun/2010	5241	11/Dec/2009	5301
	5096	09/Feb/2010	5170	16/May/2011	5244		5303
08/Apr/2010	5098	04/Aug/2010	5171	23/Nov/2007	5244	06/Dec/2011	5304
05/Aug/2010	5099		5171	16/Apr/2009	5244	08/Sep/2012	5307
04/Nov/2011	5100		5172	29/Oct/2007	5245		5307
11/Dec/2008	5100	27/Apr/2011	5175	08/Mar/2011	5247	04/Nov/2011	5310
12/Jul/2010	5100		5178		5248	10/Feb/2011	5310
07/Apr/2011	5100	01/Dec/2009	5180	13/Nov/2009	5250	29/Jun/2010	5310
09/Dec/2011	5100	16/Jun/2010	5182	10/Feb/2011	5250	16/Feb/2010	5310
	5101		5182	22/Jun/2006	5250		5312
09/Dec/2011	5102	13/Jul/2010	5184	03/Oct/2006	5258	25/May/2011	5312
07/Dec/2011	5103	31/Jan/2008	5185		5259	03/Jan/2012	5314
04/Jul/2012	5103	28/Apr/2011	5189	09/Feb/2010	5260	11/Mar/2010	5317
25/Jan/2008	5104		5189	03/Dec/2008	5260		5318
12/Jul/2010	5110	17/Jul/2008	5190	26/Jan/2011	5260	23/Feb/2010	5320
03/Jul/2012	5110	10/Feb/2011	5190	08/Sep/2012	5262	14/Jul/2010	5322
	5112	16/Jun/2011	5194		5262		5322
20/Jan/2011	5114	03/Oct/2006	5194	05/Feb/2010	5263	01/Mar/2010	5322
	5117	09/Feb/2011	5198		5264		5324
23/Nov/2007	5119	13/Feb/2009	5198		5266	28/Apr/2011	5325
17/Jun/2010	5120		5198	16/Apr/2009	5268		5325
19/Nov/2009	5120	23/Mar/2010	5200	29/Mar/2010	5268	16/Feb/2011	5328
16/Jun/2008	5122	13/Jan/2010	5200	15/Apr/2008	5268	04/Apr/2008	5328
11/Apr/2011	5123	03/Oct/2006	5202		5269	06/Jul/2011	5330
10/Nov/2006	5123	03/Oct/2007	5203	10/Feb/2011	5270		5330
	5123		5205	05/Aug/2008	5271	09/Nov/2007	5330
02/Jul/2009	5123	05/Jul/2010	5205	04/May/2010	5276	04/Mar/2009	5330
28/Aug/2012	5126	09/Feb/2011	5207	15/Jun/2011	5279	25/Feb/2010	5330

Dispatch	Mass	Dispatch	Mass	Dispatch	Mass	Dispatch	Mass
Date	(kg)	Date	(kg)	Date	(kg)	Date	(kg)
24/Jan/2011	5333	11/Mar/2009	5400	26/Jan/2011	5473		5534
12/Oct/2010	5335	18/Feb/2011	5400	10/Jul/2009	5476		5535
20/May/2010	5338	22/Jun/2007	5402	12/Nov/2009	5479		5536
25/Aug/2011	5340	12/Dec/2011	5404	19/Dec/2011	5479	13/Aug/2008	5539
04/Nov/2011	5340	22/Nov/2010	5408	24/Nov/2010	5480	19/Jan/2010	5540
19/Jan/2011	5342	16/Jul/2009	5409	15/Dec/2010	5481	12/Jan/2010	5540
15/Apr/2010	5342	20/May/2010	5410	09/Aug/2010	5484		5543
	5343	27/Jan/2010	5410		5484		5545
16/Nov/2010	5344		5411	09/Mar/2011	5485	13/Jan/2011	5548
30/Nov/2010	5344		5416	27/Aug/2009	5486	03/Dec/2010	5549
11/Dec/2008	5350	08/Feb/2010	5416		5486	25/Feb/2010	5550
26/May/2010	5350	01/Dec/2010	5417	06/Apr/2011	5487	03/Sep/2011	5552
	5350	30/Aug/2010	5419	08/Sep/2012	5489	08/Feb/2007	5555
11/May/2011	5352	27/May/2010	5420		5489	11/Feb/2008	5556
	5352		5420	17/Oct/2007	5489	14/Dec/2011	5557
29/Nov/2010	5356	29/Mar/2010	5421	08/May/2007	5490	26/May/2010	5557
08/Jan/2010	5359		5423	20/Nov/2006	5490		5559
04/Oct/2010	5360	12/Sep/2008	5430	14/Jul/2010	5491	07/Jan/2010	5560
16/Mar/2009	5361	10/Feb/2011	5430		5495		5564
	5362		5434		5498	23/Jun/2011	5564
23/Nov/2007	5365	08/Apr/2009	5436	07/May/2007	5500		5566
05/Feb/2009	5366	08/Apr/2010	5438	21/Aug/2007	5500	10/Jun/2008	5566
22/Sep/2006	5370	08/Apr/2010	5438	08/Oct/2010	5502	01/Sep/2011	5569
	5371	08/Oct/2009	5439	24/Aug/2010	5502	16/Mar/2010	5570
27/Nov/2009	5371		5441		5504		5570
	5373	30/Sep/2010	5443	08/Apr/2010	5505	13/Aug/2008	5571
15/Nov/2007	5374		5443	01/Dec/2008	5507	27/Nov/2008	5571
	5375	28/Mar/2011	5443	06/Jan/2010	5508	10/Mar/2010	5574
10/Aug/2012	5380	18/Nov/2010	5443	27/Jan/2010	5510	12/Apr/2010	5578
04/Feb/2011	5380		5444		5511	08/Sep/2012	5579
19/Sep/2006	5380		5445		5513		5579
25/Jan/2011	5380	04/Aug/2010	5448	05/Oct/2009	5515	23/Apr/2008	5580
27/Apr/2011	5380		5448		5515	25/Aug/2011	5580
10/May/2011	5381	07/Jan/2008	5448	06/Dec/2011	5517	03/Nov/2011	5580
16/Mar/2010	5381	01/Dec/2009	5448	04/Mar/2011	5518	22/Mar/2011	5581
26/Jan/2011	5383	06/Apr/2011	5450		5518		5582
	5384	08/Apr/2010	5450	15/Jan/2007	5520		5582
29/Dec/2008	5388	17/Jul/2008	5452	14/Oct/2009	5520	05/Aug/2010	5583
	5389	04/May/2012	5452		5520		5584
29/Mar/2010	5389		5455	04/Sep/2008	5523	08/Apr/2010	5584
25/Jun/2009	5389	05/Feb/2009	5459	12/Apr/2010	5523	03/Oct/2007	5588
15/Jan/2007	5390	04/Nov/2011	5460		5525	22/Jun/2007	5588
19/Jan/2010	5390	22/Jun/2011	5460	30/May/2011	5525		5588
06/Jun/2007	5391	13/Jan/2010	5460	12/Nov/2010	5527		5588
	5393	21/Feb/2006	5461	18/Nov/2008	5528	28/Sep/2012	5590
29/Mar/2010	5394	29/Mar/2010	5467		5529	02/Apr/2008	5590
11/Mar/2011	5394	26/Jan/2011	5468	03/Nov/2011	5530		5593
08/Sep/2012	5398	06/Feb/2012	5468	25/Aug/2011	5530	04/May/2010	5595
	5399	23/Aug/2010	5470	05/Feb/2009	5530	29/Dec/2008	5596
	5400		5471	15/Oct/2010	5534	05/Dec/2011	5597
Dispatch	Mass	Dispatch	Mass	Dispatch	Mass	Dispatch	Mass
-------------	------	-------------	------	-------------	------	-------------	------
Date	(kg)	Date	(kg)	Date	(kg)	Date	(kg)
01/Dec/2008	5597		5679	07/Jan/2011	5742		5817
29/Mar/2011	5599	07/Dec/2009	5680	19/Oct/2010	5747	04/May/2010	5818
	5600	05/Dec/2011	5681	22/Feb/2011	5750	04/Mar/2011	5818
17/Dec/2008	5601	30/Mar/2011	5683	16/Sep/2010	5751	09/Mar/2011	5820
	5602	11/Feb/2008	5688	•	5752	15/Sep/2011	5820
14/Jul/2010	5606		5688		5754	08/Feb/2010	5826
04/May/2012	5606	04/Mar/2010	5690		5758	23/Nov/2006	5830
22/Aug/2008	5610	02/Feb/2011	5692	11/Feb/2011	5759	16/Jun/2010	5834
08/Jun/2010	5610	25/Jan/2012	5693	18/Jun/2007	5760	22/Mar/2011	5838
11/Feb/2011	5610		5693		5761	26/Sep/2012	5840
21/Jul/2010	5611		5695	30/Jul/2012	5761	-	5842
	5611	16/Aug/2010	5696	10/Mar/2008	5761		5845
	5613	06/Jan/2012	5697	08/Apr/2010	5764	12/Dec/2011	5849
22/Jun/2007	5616	04/Jul/2012	5698	15/Nov/2006	5765	17/Feb/2011	5850
15/Dec/2010	5619	27/Aug/2009	5699	02/Jun/2006	5766	11/May/2006	5851
28/May/2009	5620		5699	10/Aug/2010	5767	-	5851
02/Apr/2008	5620	09/Jul/2012	5700	08/Apr/2010	5769	31/May/2010	5853
22/Apr/2009	5620	23/Apr/2007	5700	17/Feb/2012	5770	-	5854
29/Sep/2006	5625	· ·	5702	17/Oct/2011	5770		5858
-	5625		5702	12/Jan/2010	5770	17/Jun/2010	5860
	5626	26/Jan/2011	5702	25/May/2011	5771	03/Jun/2010	5860
10/May/2011	5628	30/Nov/2010	5704	09/Nov/2010	5774	09/Jun/2010	5861
04/Mar/2011	5629	04/Feb/2011	5705		5774	11/Dec/2008	5864
05/Dec/2006	5630	26/Nov/2007	5707	16/Jun/2010	5775	23/Sep/2011	5864
17/Dec/2009	5630	11/Dec/2011	5709	09/Sep/2010	5780	•	5865
07/Aug/2008	5634	08/Apr/2010	5713	27/Nov/2009	5780	29/Mar/2010	5866
29/Mar/2010	5637	03/Oct/2007	5713		5786	27/Nov/2009	5867
	5638	07/Dec/2011	5714	07/Dec/2011	5786	24/Nov/2009	5868
16/Dec/2008	5640	19/Oct/2010	5714	07/Jan/2008	5786	18/Nov/2009	5870
	5640	19/Nov/2007	5715	06/Oct/2008	5790	05/Jul/2012	5870
14/Jan/2009	5647		5715	09/Nov/2010	5792		5872
	5647	08/Sep/2012	5715	02/Sep/2010	5793	11/Feb/2011	5872
11/Jan/2007	5649		5715	22/Jun/2011	5796	26/Nov/2007	5873
27/Jan/2010	5650		5716		5796	03/Oct/2007	5875
27/Aug/2009	5654	26/Jan/2011	5718	13/Jan/2011	5798	29/Mar/2010	5875
31/May/2011	5657	08/Jan/2010	5720	02/Feb/2011	5799	29/Nov/2010	5876
	5659		5720	04/Jul/2012	5800	27/Feb/2008	5878
01/Dec/2010	5660	16/Mar/2011	5720	24/Jan/2011	5800	01/Dec/2009	5879
14/Sep/2011	5660		5724	08/Apr/2010	5802		5879
09/Aug/2011	5661	05/Feb/2009	5725	07/Jan/2008	5806	07/Jan/2010	5880
	5661	25/Jun/2010	5729	11/May/2011	5806	16/Mar/2011	5884
	5663		5729		5806	06/Jan/2012	5888
05/Feb/2008	5664	02/Jun/2010	5730		5807	09/Aug/2011	5888
28/Sep/2007	5666	18/Jun/2007	5730		5808	20/Jun/2008	5888
05/Feb/2010	5669		5731	17/Jun/2010	5810	15/Jul/2011	5889
01/Jun/2010	5670	14/Dec/2011	5733	02/Dec/2009	5810	14/Aug/2008	5890
	5670	28/Mar/2012	5734	14/Oct/2008	5811	17/Aug/2010	5890
18/Nov/2010	5670		5736		5811	18/May/2007	5891
16/May/2007	5674	02/Nov/2012	5740		5813	17/Aug/2010	5892
10/Dec/2010	5677	26/Nov/2009	5740	14/Dec/2011	5815	27/Feb/2008	5895

Dispatch	Mass	Dispatch	Mass	Dispatch	Mass	Dispatch	Mass
Date	(kg)	Date	(kg)	Date	(kg)	Date	(kg)
16/Jun/2010	5895		5958	05/Feb/2009	6029	02/Feb/2010	6100
20/Jan/2011	5897	29/Jan/2010	5960	26/Apr/2010	6030		6101
	5897	07/Dec/2006	5961	16/Feb/2010	6030		6103
23/Mar/2011	5897	04/Nov/2009	5962	06/Apr/2011	6030	13/Nov/2008	6104
07/Dec/2011	5898		5963	•	6031	18/Nov/2009	6110
11/May/2010	5898		5963	17/Aug/2010	6031	07/Jun/2011	6110
21/Jul/2010	5899	04/Jul/2011	5965	10/Nov/2006	6032	11/Feb/2008	6112
08/Jul/2011	5900		5965	05/Apr/2011	6033		6114
21/Aug/2007	5900	15/Jun/2011	5967	08/Apr/2011	6033		6117
28/Sep/2009	5901	12/Jun/2009	5968	03/Dec/2011	6033	11/May/2010	6118
	5901	22/Oct/2007	5970	11/May/2010	6035	02/May/2011	6120
	5902		5972		6037	20/Nov/2007	6122
06/May/2009	5903	22/Jun/2007	5974		6040	22/Jun/2007	6124
	5904		5974	10/Feb/2010	6040		6124
06/Dec/2011	5906	27/Aug/2009	5974	12/Dec/2011	6044	01/Sep/2010	6126
17/May/2010	5906	04/Jul/2011	5976	22/Oct/2007	6044	19/Oct/2010	6126
08/Apr/2010	5907		5978	09/Aug/2010	6048	10/Jul/2009	6127
	5908	13/Jan/2010	5980		6049	29/Dec/2008	6128
27/Aug/2009	5909	02/Feb/2010	5980	22/Dec/2010	6050	02/May/2011	6130
31/May/2010	5910		5981	11/Feb/2008	6055	11/Dec/2011	6131
20/Jan/2010	5910	15/Jun/2011	5983		6056		6133
01/Apr/2011	5910	19/Oct/2011	5984		6058	13/Mar/2012	6133
	5910	25/Jan/2007	5987	20/Apr/2011	6059		6133
12/Apr/2010	5912	23/Jun/2010	5987	14/Aug/2008	6060		6139
03/Dec/2011	5915		5987	03/Jun/2010	6060	26/Nov/2009	6140
	5915	17/Oct/2007	5988		6060	15/Feb/2012	6140
16/Jul/2008	5915		5990	05/Dec/2008	6062	16/May/2007	6140
25/Nov/2009	5920	28/Jun/2010	5990	25/Jan/2011	6063	10/Mar/2006	6142
26/Jun/2007	5920	07/Feb/2007	5990	17/Nov/2010	6064	12/Apr/2010	6143
26/Oct/2010	5922	04/Feb/2011	5991	12/Oct/2010	6067	01/Feb/2008	6147
10/Mar/2008	5925	07/Mar/2006	5997	19/Nov/2007	6068	15/Jun/2010	6148
12/Dec/2011	5928		5997	06/Feb/2008	6069	17/Dec/2009	6150
	5929		5999	25/Feb/2010	6070	10/Sep/2012	6150
01/Aug/2006	5930	21/Aug/2007	6000	18/Dec/2008	6077		6153
07/Sep/2011	5933	27/Jan/2010	6000	24/Jan/2007	6078	11/Feb/2011	6156
27/Nov/2008	5935	28/Apr/2010	6004	30/Aug/2006	6078	08/Feb/2010	6160
	5935	07/Jan/2011	6005		6078	27/Nov/2008	6162
	5938		6008	29/Nov/2007	6078		6162
15/Sep/2010	5942	12/Apr/2010	6010	02/May/2011	6080	25/Jul/2012	6163
	5942	22/Aug/2011	6010	23/Sep/2011	6080	25/Jul/2008	6166
25/Aug/2006	5943	04/Nov/2011	6010		6083		6167
13/Jun/2011	5947	12/Oct/2010	6015		6085	17/Sep/2010	6169
	5949	06/Nov/2012	6017	22/Jun/2007	6087		6169
22/Mar/2011	5950	15/Sep/2009	6018		6087	28/Jun/2010	6170
15/Nov/2006	5951	25/Nov/2009	6020	22/Jun/2011	6090	19/Nov/2009	6170
	5951		6022	16/Jul/2009	6091		6171
01/Sep/2011	5956	11/Dec/2007	6024		6092	20/Oct/2010	6172
05/Dec/2007	5956	12/Dec/2011	6024	05/Feb/2008	6094	16/Nov/2007	6177
27/Aug/2009	5957		6026	18/Jun/2012	6096	02/May/2011	6180
	5958	22/Mar/2011	6028	26/Oct/2010	6099	10/Nov/2006	6181

Dispatch	Mass	Dispatch	Mass	Dispatch	Mass	Dispatch	Mass
Date	(kg)	Date	(kg)	Date	(kg)	Date	(kg)
19/Nov/2009	6190	09/Feb/2010	6316	05/Nov/2008	6428		6527
	6192	29/Oct/2007	6316		6430	24/Nov/2009	6530
11/Jan/2007	6193	01/Oct/2007	6318	18/Oct/2010	6430	22/Dec/2010	6531
21/Aug/2007	6200	27/Feb/2008	6320	15/Sep/2011	6432	08/Sep/2012	6532
	6201	15/Jun/2009	6326	05/Nov/2008	6435		6532
24/Apr/2012	6210		6328		6437		6535
08/Mar/2011	6210	23/Mar/2012	6330	15/Jun/2011	6437		6536
16/Dec/2008	6214		6337	09/Jul/2012	6438	02/Dec/2009	6540
08/Sep/2012	6214	01/Mar/2011	6340	03/Jun/2010	6439		6541
	6215	10/Sep/2012	6348	05/Dec/2011	6440		6543
25/Jul/2008	6216	01/Aug/2008	6350	27/Jan/2010	6440	01/Mar/2011	6544
	6217	06/Sep/2007	6350	08/Sep/2012	6441	09/Jul/2012	6544
28/Oct/2009	6218	22/May/2007	6350		6441		6545
21/Jan/2009	6220		6350	11/Feb/2008	6446		6548
22/Dec/2010	6220	10/Aug/2011	6359		6447	23/Sep/2010	6550
	6223	25/Feb/2010	6360	09/Jun/2011	6450		6552
03/Dec/2011	6227		6362	27/Jan/2010	6450	25/Oct/2010	6554
20/Jan/2010	6230	11/Feb/2008	6364	26/Jan/2011	6452		6566
07/Jan/2008	6236	16/Jun/2010	6368		6452	09/Jun/2010	6568
	6237	11/Jan/2012	6373	06/Dec/2011	6455	09/Jun/2010	6568
11/Mar/2009	6240	09/Nov/2010	6376	05/Nov/2008	6459		6568
22/Sep/2006	6240	27/Apr/2011	6380	01/Dec/2009	6459	31/Mar/2009	6568
	6241	19/May/2011	6385	24/Apr/2012	6460	23/Sep/2010	6570
23/Sep/2010	6243	19/Jul/2010	6386	02/Feb/2010	6460	16/Mar/2009	6574
25/Feb/2010	6250	17/Jun/2010	6390		6461	28/Sep/2009	6577
10/Nov/2006	6259	27/Jan/2010	6390	16/Jul/2008	6466	11/Sep/2008	6578
	6260	13/Aug/2008	6391	08/Apr/2010	6468	05/Jan/2012	6579
28/May/2010	6260	30/Sep/2010	6392		6468		6579
13/Jul/2010	6260	22/Jun/2012	6396	12/Jul/2010	6470	18/Oct/2010	6580
22/Feb/2010	6263	22/Dec/2010	6396	27/Jan/2010	6470		6584
	6263		6396	15/Nov/2007	6472		6586
04/Jul/2012	6270	10/Nov/2006	6397		6473	18/Jan/2010	6588
08/Dec/2009	6270	17/Oct/2011	6400	16/Jul/2009	6474	05/Feb/2009	6588
	6271	17/Dec/2009	6400	16/Mar/2010	6479	27/Jan/2010	6590
03/Feb/2010	6275		6405	20/Aug/2012	6480	10/Mar/2010	6590
20/Nov/2006	6276	10/Nov/2006	6405	17/Feb/2010	6480	23/Aug/2011	6590
15/Sep/2009	6277		6407	30/Aug/2011	6486	17/Sep/2008	6591
18/Oct/2006	6280		6408		6486		6593
	6280	02/Feb/2010	6410	25/Sep/2009	6488	15/Dec/2010	6599
	6282	17/Jan/2007	6410	27/Jan/2010	6490		6600
	6285		6412		6498	22/Jun/2011	6600
11/Mar/2009	6290	05/Dec/2011	6416	21/Aug/2007	6500		6602
11/Feb/2011	6290	10/Feb/2011	6416		6500		6604
03/Aug/2006	6300		6416	25/Apr/2008	6510		6607
12/May/2006	6305	10/Feb/2011	6418	06/Mar/2007	6510	13/May/2010	6608
	6307	24/Nov/2008	6420		6514		6609
12/Jan/2010	6310	15/Sep/2011	6420	10/Feb/2011	6518	18/Jan/2010	6610
13/Jan/2010	6310	12/Dec/2011	6422		6518		6611
06/Feb/2008	6312	29/Dec/2010	6423	04/Oct/2012	6520	25/Jul/2008	6618
	6314		6427	NULL	6523	02/Feb/2010	6620

Dispatch	Mass	Dispatch	Mass	Dispatch	Mass	Dispatch	Mass
Date	(kg)	Date	(kg)	Date	(kg)	Date	(kg)
08/Jun/2009	6622	31/Oct/2007	6730	07/Jun/2007	6828	17/Oct/2006	6930
31/Jul/2006	6623	27/Jan/2010	6730	05/Oct/2007	6830	27/Sep/2006	6931
	6623	21/Sep/2006	6731	21/Jul/2008	6830	11/May/2010	6931
	6623	•	6731	17/Feb/2011	6830	16/Jan/2012	6933
	6624	14/Oct/2010	6739		6833	07/Mar/2012	6940
17/Aug/2010	6630	16/Mar/2011	6739	11/Dec/2008	6834	08/Sep/2012	6940
03/Sep/2011	6632	16/Mar/2010	6740	16/Jun/2008	6836	•	6940
13/Nov/2008	6636	23/Jan/2007	6740	05/Feb/2008	6839	16/Jun/2010	6944
	6636	11/Oct/2007	6741	04/Jul/2012	6840		6945
	6641		6743	27/May/2010	6840		6949
08/Apr/2009	6642	28/Aug/2009	6745	10/Nov/2006	6846		6949
22/Jun/2011	6650	08/Apr/2009	6749	19/Oct/2010	6848	21/Jan/2011	6950
22/Aug/2008	6651	26/Feb/2009	6750	05/Oct/2010	6849	27/Apr/2010	6950
U	6658	10/Feb/2012	6759	30/Aug/2010	6850	•	6956
	6659		6759	02/Nov/2011	6850	06/Sep/2011	6958
16/Feb/2011	6660	07/Dec/2009	6760		6856	07/Dec/2009	6960
	6666		6763	31/Aug/2009	6860	04/Jul/2012	6960
22/Sep/2009	6668		6765	0	6865	11/Sep/2006	6963
18/Jan/2010	6668	01/May/2009	6766	11/Mar/2011	6867	17/Oct/2006	6970
04/Jul/2012	6670	16/May/2011	6770		6867	28/Mar/2012	6970
27/May/2010	6670	03/Oct/2007	6774	19/Apr/2011	6870	12/Apr/2011	6972
05/Dec/2011	6677	06/Jun/2008	6778	04/Aug/2010	6870	-	6972
09/Mar/2011	6678	-	6779	15/Dec/2008	6870	25/Aug/2006	6972
	6679	08/Feb/2007	6779	16/Feb/2010	6870		6976
10/Feb/2010	6680	02/Feb/2010	6780		6879	02/Mar/2011	6979
29/Mar/2010	6680		6784	25/Aug/2011	6880	07/Aug/2008	6985
06/Oct/2010	6686	28/Sep/2006	6786	02/Nov/2011	6880	_	6985
11/Dec/2008	6689	29/Dec/2008	6786	29/Jan/2009	6882		6988
11/Mar/2009	6690		6788	13/Jul/2010	6889	22/Jul/2008	6990
07/May/2007	6690	17/Jan/2007	6790	13/Jan/2010	6890		6990
23/Mar/2012	6690	16/May/2008	6790	18/Feb/2011	6891	18/Sep/2007	6990
21/Sep/2006	6695		6790	03/Sep/2011	6895	01/Feb/2008	6992
	6695	17/Dec/2007	6800		6895	15/Nov/2010	6995
	6700	07/Jan/2010	6800		6896		7000
13/Dec/2011	6700	25/Jan/2010	6800	02/Sep/2010	6900		7001
27/Jan/2010	6700	25/Jul/2012	6803		6901	12/Oct/2006	7004
	6701	11/Mar/2011	6804		6901	07/Dec/2009	7005
21/Sep/2006	6704	05/Dec/2011	6804	12/Apr/2011	6905	03/Aug/2006	7008
08/Feb/2007	6707		6804	10/Oct/2006	6910	02/Feb/2010	7010
03/Dec/2009	6710		6808	04/Feb/2011	6910	14/May/2007	7010
07/Jan/2010	6711	12/Dec/2011	6810	18/Jun/2007	6911	12/Nov/2010	7013
29/Nov/2010	6713	26/May/2010	6810		6911		7015
	6713	17/Jan/2007	6810	06/Dec/2008	6913	05/May/2010	7020
	6714	12/Nov/2009	6813		6915	29/Sep/2006	7022
	6716		6814	29/Mar/2010	6918	27/May/2010	7024
	6720		6818	10/Oct/2006	6920	03/Sep/2008	7030
17/Feb/2010	6720		6820		6922	29/Oct/2007	7030
21/Sep/2006	6722	03/Jul/2012	6820	17/Dec/2009	6924	27/Sep/2006	7031
	6725	14/Aug/2008	6820		6929		7031
	6727		6822	10/Mar/2008	6929		7033

Dispatch	Mass	Dispatch	Mass	Dispatch	Mass	Dispatch	Mass
Date	(kg)	Date	(kg)	Date	(kg)	Date	(kg)
15/Mar/2007	7034	19/Sep/2006	7150	01/Mar/2010	7234		7341
28/Jan/2008	7038	03/Dec/2009	7150	08/Sep/2012	7239	17/Sep/2009	7342
28/Oct/2009	7039		7151	03/Dec/2009	7240	24/Mar/2010	7345
12/Feb/2008	7040		7153	11/Feb/2011	7240	22/Mar/2011	7345
07/Dec/2009	7040	29/Sep/2010	7154	12/Jul/2010	7240	12/Sep/2008	7348
	7042	05/Dec/2011	7154		7242		7348
26/Jul/2012	7050		7155	20/Jan/2010	7245	13/Jul/2010	7350
14/Dec/2009	7050	16/Mar/2010	7159	27/Sep/2006	7248	11/Oct/2006	7354
23/Sep/2011	7060	22/Apr/2009	7160	17/Jul/2008	7250	09/Jul/2012	7354
	7060		7165	26/Jul/2012	7250	06/Feb/2012	7357
	7063	02/Feb/2011	7166		7251	28/Sep/2012	7360
07/Dec/2006	7063	03/Sep/2011	7167		7255	27/Jan/2010	7360
	7069		7167	25/Aug/2010	7257	02/Feb/2011	7360
05/Dec/2006	7070	09/Jul/2012	7169	15/Apr/2010	7258		7362
07/Dec/2009	7070		7169		7258	09/Jul/2012	7364
	7076	18/Oct/2011	7170	14/Dec/2009	7258		7369
	7076	03/Jun/2010	7170		7258	23/Apr/2008	7370
07/Apr/2008	7080	03/Oct/2006	7172		7260	07/Dec/2009	7370
14/Dec/2009	7080	21/Dec/2010	7173	15/Aug/2006	7260		7371
22/Jun/2012	7085		7174	17/Dec/2009	7260	22/Oct/2007	7374
09/Jul/2012	7089	14/Sep/2009	7175	23/Mar/2011	7268		7376
	7090	23/Jun/2010	7176	30/Aug/2010	7270	03/Feb/2010	7378
28/Sep/2007	7090	03/Jun/2010	7180	07/Dec/2009	7270	03/Dec/2009	7380
06/Apr/2011	7090	08/Sep/2008	7180	09/Jul/2012	7274		7382
04/Jul/2012	7098		7180		7278	08/Apr/2010	7383
02/Jun/2010	7100	22/Oct/2007	7183	02/Apr/2008	7280	06/Sep/2011	7389
	7101		7183	13/Nov/2009	7280	13/Nov/2009	7390
	7103	21/Dec/2010	7186	04/Jun/2010	7280	07/May/2007	7390
04/Apr/2008	7107	05/Jul/2012	7188		7283		7391
07/Jun/2010	7110	12/Jul/2010	7190	09/Jul/2012	7284	03/Dec/2009	7400
27/Jan/2010	7110	05/Feb/2008	7190		7285	24/Dec/2007	7400
03/Dec/2011	7110		7192	04/Jul/2012	7289	17/May/2010	7407
	7115	09/Jul/2012	7194	26/Feb/2007	7290	01/Sep/2010	7407
04/Jul/2012	7120	18/Oct/2011	7199		7296		7407
03/Dec/2009	7120	20/Jan/2010	7200	04/Dec/2009	7300	02/Feb/2010	7410
	7126	07/Jun/2010	7200	17/Aug/2010	7301	16/May/2008	7410
04/Dec/2009	7130		7201		7303		7414
15/Jul/2010	7135	04/Jul/2012	7208	03/Jul/2012	7304	10/Jan/2007	7416
	7135	NULL	7209		7305		7416
01/Sep/2010	7140	15/Apr/2010	7210		7307	10/Mar/2010	7420
14/Nov/2007	7140	12/Jul/2010	7210	14/Nov/2007	7310	08/Jun/2010	7420
17/Dec/2009	7140	16/Jul/2008	7212	14/Oct/2008	7310	20/Feb/2006	7421
01/Mar/2011	7140	21/Dec/2010	7212	21/Dec/2010	7316		7423
	7142		7212	02/Feb/2011	7317	06/Jul/2011	7427
11/Oct/2006	7146		7217	05/Nov/2010	7319	07/Dec/2009	7430
	7146	12/Jul/2010	7220	07/Jun/2010	7320		7434
25/Feb/2008	7148	04/Sep/2008	7220	07/Nov/2011	7320		7436
25/Feb/2008	7148	28/Sep/2012	7220	16/Feb/2010	7330	09/Aug/2011	7439
29/Sep/2006	7149	03/Oct/2007	7230	17/Nov/2010	7338		7439
09/Jul/2012	7149	22/Jun/2012	7230	09/Feb/2010	7340	15/Apr/2010	7440

Dispatch	Mass	Dispatch	Mass	Dispatch	Mass	Dispatch	Mass
Date	(kg)	Date	(kg)	Date	(kg)	Date	(kg)
	7446		7552	23/Mar/2009	7650		7766
	7446		7555		7652	14/Aug/2008	7770
	7448	10/May/2011	7560	05/Aug/2010	7653	22/Oct/2009	7770
29/Jun/2010	7449	27/May/2010	7560	07/Dec/2009	7660	13/Dec/2006	7770
16/Feb/2010	7450		7566	21/Jun/2010	7660	03/Jul/2009	7771
	7453	13/Jan/2010	7569	19/Nov/2009	7661	02/Sep/2010	7771
09/Sep/2010	7455	06/Nov/2006	7570	27/Sep/2006	7666	16/Jun/2010	7772
15/Apr/2010	7460	07/Dec/2009	7570	09/Mar/2009	7670		7772
11/Mar/2009	7460	24/Jan/2011	7578	02/Feb/2010	7670	05/Jan/2012	7777
	7464		7580	10/Feb/2009	7670	22/Nov/2011	7779
20/Feb/2006	7466		7590	03/Oct/2007	7672	25/Feb/2010	7780
21/Dec/2010	7468	06/Jul/2011	7590		7677	18/Jun/2010	7783
12/Jul/2010	7470	07/Dec/2009	7590	06/Nov/2006	7680	20/Feb/2006	7784
10/Mar/2010	7475		7591	27/Jan/2010	7680	28/Oct/2009	7784
20/Sep/2006	7480	31/Jan/2007	7600	25/Jun/2007	7684		7786
21/Sep/2006	7484	14/Dec/2009	7600	20/Feb/2006	7684	22/Feb/2010	7788
	7484	14/Aug/2008	7601	24/Nov/2009	7690	29/Jun/2010	7790
	7489	01/Feb/2008	7602		7698	14/Jan/2010	7790
20/Jan/2010	7490	20/Apr/2007	7602	11/Feb/2008	7698		7791
03/Dec/2009	7490	28/Aug/2008	7602	15/Jul/2010	7700		7793
	7491	17/May/2010	7606	03/Oct/2006	7702	20/Feb/2006	7793
	7493	19/Oct/2010	7606		7703		7795
05/Dec/2007	7494		7607	18/Oct/2010	7710	19/Aug/2010	7797
04/Aug/2010	7500	11/Dec/2007	7609	22/Apr/2008	7711		7797
27/Apr/2010	7500	04/Dec/2009	7610	23/Jun/2011	7712	08/Jun/2010	7800
	7500	13/Jan/2010	7610	05/Feb/2009	7716	26/Feb/2008	7800
10/Nov/2006	7502		7614	17/Mar/2009	7720	01/Dec/2009	7802
	7505		7616	29/Dec/2008	7722		7802
20/Nov/2006	7505	09/Jul/2012	7619	13/Sep/2010	7726	20/Feb/2006	7802
	7509	03/Dec/2009	7620		7729		7804
07/Dec/2009	7510	03/Mar/2008	7620	06/Nov/2006	7730		7806
	7516	31/Mar/2008	7620	13/Dec/2006	7730		7806
04/Dec/2009	7520	20/Feb/2006	7620	05/May/2011	7731	28/May/2010	7808
07/Dec/2009	7521		7625		7734	19/Jan/2010	7810
	7521	27/Sep/2006	7630	03/Oct/2006	7734	09/Oct/2009	7811
	7522	04/Dec/2009	7630	29/Sep/2006	7738	16/Jun/2010	7816
	7525	08/Jun/2010	7630		7738		7820
05/Nov/2008	7530		7632	26/Aug/2011	7740	03/Feb/2010	7820
	7530	03/Dec/2009	7632	03/Nov/2011	7740	07/Nov/2011	7826
	7530	08/Apr/2010	7634	13/Jan/2010	7741	19/Nov/2009	7830
03/May/2010	7530	27/Sep/2006	7639		7741	13/Jan/2010	7830
	7537	09/Jun/2011	7639	03/Mar/2010	7743		7836
09/Jun/2011	7540	09/Jul/2012	7639	30/Mar/2011	7747	02/Feb/2010	7840
17/Dec/2009	7540	04/Dec/2009	7640		7749	14/Jan/2010	7840
23/Mar/2012	7540	05/Sep/2008	7640	13/Dec/2006	7750		7847
24/Oct/2007	7543		7643	16/Mar/2010	7751	17/Jun/2010	7849
	7544	26/Feb/2009	7648	09/Aug/2006	7757	09/Feb/2010	7850
12/Jul/2010	7550	05/Jul/2012	7649	19/Jan/2010	7760	05/Feb/2009	7854
27/Nov/2009	7550	17/Feb/2010	7650	22/Oct/2009	7761		7854
28/Mar/2008	7550		7650	29/Sep/2006	7766		7855

Dispatch	Mass	Dispatch	Mass	Dispatch	Mass	Dispatch	Mass
Date	(kg)	Date	(kg)	Date	(kg)	Date	(kg)
20/Jan/2010	7860	25/Mar/2008	7970	23/Oct/2007	8119		8269
31/Aug/2009	7860	18/Jun/2010	7970	08/Sep/2012	8119	06/Sep/2011	8274
	7861	26/Feb/2009	7973	10/Oct/2006	8120	11/Jan/2010	8275
	7863	03/Jul/2009	7980	12/Apr/2011	8120	17/Jan/2007	8280
	7865	26/Jan/2011	7981	17/Feb/2010	8120	21/Apr/2011	8290
20/Feb/2006	7865	14/Apr/2011	7981		8122	13/Sep/2012	8292
07/May/2007	7870	-	7983		8126	09/Aug/2010	8300
	7870	NULL	7985	15/Aug/2006	8130	08/Sep/2012	8301
18/Nov/2008	7870	26/Feb/2008	7990	23/Feb/2010	8130		8301
	7872	19/Feb/2009	7992		8138	22/Jun/2011	8303
24/Sep/2008	7878	09/Aug/2011	8000	10/Oct/2006	8140		8303
	7879	25/Feb/2010	8000	09/Feb/2010	8140		8304
10/Nov/2006	7880	26/Sep/2008	8008	25/Jun/2007	8148		8307
03/Oct/2007	7880	07/Feb/2008	8010	09/Feb/2010	8150		8308
	7886	18/Nov/2009	8020	08/Feb/2010	8153	18/Aug/2006	8310
13/Nov/2007	7888	15/Feb/2011	8024		8156	01/Feb/2010	8310
26/May/2006	7888		8024	16/Aug/2006	8160	25/Mar/2008	8310
10/Jul/2006	7888	05/Oct/2010	8028	12/Jan/2010	8160	23/Feb/2010	8320
	7888	28/Sep/2006	8029	15/Apr/2010	8165	25/Mar/2008	8320
19/Nov/2009	7890	22/Jun/2006	8029		8165	08/Apr/2010	8323
03/Oct/2007	7890	17/Aug/2010	8030	29/Apr/2010	8165	27/Sep/2006	8328
	7895	03/Jul/2012	8030		8167	09/Jun/2011	8330
	7899	18/Aug/2006	8040	19/Nov/2009	8170	09/Feb/2010	8330
26/Jan/2011	7900	17/Aug/2010	8042	29/May/2006	8171	14/Jul/2010	8333
	7904	09/Feb/2010	8050		8172		8333
05/Oct/2010	7906		8051	24/Dec/2007	8172	21/Feb/2006	8337
02/Nov/2006	7910		8058		8174	05/Jul/2012	8340
26/Oct/2012	7910	17/Feb/2010	8060	09/Feb/2010	8180	10/Nov/2006	8340
13/Jan/2010	7910	11/Jan/2007	8060		8181	26/Mar/2009	8346
	7915		8060	04/Jul/2012	8188		8346
27/Jan/2010	7920		8067	13/Jan/2010	8190		8348
10/Nov/2006	7924	15/Feb/2010	8070	25/Feb/2010	8190	29/Oct/2007	8349
28/Mar/2012	7926	17/Apr/2007	8070	09/Aug/2010	8193	23/Jun/2011	8350
	7927		8074		8194	03/Jul/2012	8359
18/Jan/2010	7927		8074		8199	17/Feb/2011	8360
26/Jan/2011	7930	08/Feb/2011	8076	31/May/2006	8200	16/Sep/2010	8364
	7931		8079	16/Jun/2008	8200		8364
22/Jun/2007	7938	09/Feb/2010	8080	23/Feb/2010	8200	22/Feb/2010	8370
27/Feb/2008	7939		8081	28/Sep/2006	8210		8371
30/Aug/2010	7940	17/Aug/2010	8085	09/Feb/2010	8215		8373
09/Feb/2010	7940		8085	24/Jan/2007	8220	09/Nov/2007	8376
	7941		8088	12/Jan/2010	8230	03/Oct/2006	8376
	7947	27/Jan/2010	8090	12/May/2008	8237	07/Nov/2011	8379
20/Feb/2006	7947	19/Dec/2007	8090	30/Aug/2010	8240	16/Aug/2010	8386
08/Jun/2010	7950	23/Feb/2010	8100	09/Feb/2010	8240	07/Nov/2011	8387
05/May/2010	7950	09/Sep/2008	8100		8244	01/Mar/2010	8390
29/May/2006	7960	19/Nov/2009	8110	31/Oct/2007	8250	21/Mar/2012	8392
22/Jan/2009	7960	19/Sep/2006	8110	26/Oct/2007	8255	18/Jan/2010	8392
22/May/2007	7960		8113		8255		8396
	7963	27/Feb/2008	8116	18/Nov/2010	8268	01/Feb/2010	8400

Dispatch	Mass	Dispatch	Mass	Dispatch	Mass	Dispatch	Mass
Date	(kg)	Date	(kg)	Date	(kg)	Date	(kg)
	8401		8550	09/Sep/2010	8719	NULL	8865
	8403		8552	03/Dec/2009	8720	25/Jan/2007	8870
	8418	18/Aug/2011	8565		8729		8870
10/May/2011	8420		8568	04/Dec/2009	8730		8886
02/Feb/2010	8420	27/Jan/2010	8570	14/Dec/2009	8730	12/Apr/2011	8890
	8426	18/Apr/2011	8590	03/Sep/2010	8732	17/Feb/2010	8890
07/Dec/2009	8428	22/Sep/2006	8591		8734		8891
19/Aug/2009	8430		8591		8736	05/Aug/2010	8895
10/Mar/2010	8436	03/Oct/2007	8593	16/Mar/2012	8740		8897
08/Sep/2012	8437		8593	25/Jan/2007	8750	28/May/2010	8899
	8437		8598	16/Mar/2012	8750	04/Sep/2008	8900
24/Mar/2011	8439	03/May/2010	8600	20/Dec/2010	8760	24/Mar/2010	8903
	8439	15/Dec/2011	8609	21/Apr/2009	8760	28/Sep/2010	8907
05/Mar/2009	8440	16/Mar/2012	8610		8766	06/Dec/2011	8911
	8441	04/Apr/2007	8610	11/Oct/2007	8766		8918
09/Nov/2007	8444	29/Sep/2010	8618		8768	23/Feb/2010	8920
01/Feb/2010	8448		8618	02/Feb/2010	8770		8920
10/Mar/2010	8449		8621	06/Aug/2009	8771	18/Jul/2011	8920
16/Nov/2010	8449		8625		8784	04/Mar/2011	8930
13/Dec/2007	8451	28/Oct/2009	8630	13/Nov/2007	8785	28/Apr/2010	8930
22/Sep/2006	8455	03/Dec/2009	8630	26/Aug/2011	8790	16/Aug/2010	8943
	8455	05/Nov/2008	8635		8793	04/Mar/2009	8950
02/Sep/2010	8460	05/Jul/2012	8636	09/Mar/2011	8794	08/Aug/2012	8950
26/Nov/2009	8460	26/Jul/2006	8640	03/Aug/2006	8795	22/Feb/2010	8953
	8482	20/Dec/2010	8642		8798		8954
	8485	20/Jun/2008	8645	01/Mar/2007	8799	10/Mar/2010	8963
	8487	19/Jan/2010	8650		8800	29/Aug/2007	8967
03/Feb/2010	8490		8657	19/Sep/2006	8800	09/Jul/2012	8970
16/Jul/2010	8496	21/Dec/2007	8657	06/Jan/2010	8800	NULL	8980
	8496		8659		8807	20/Apr/2010	8980
	8498	16/Mar/2012	8660		8809	24/Aug/2012	8981
25/May/2011	8498	27/Apr/2011	8660		8811		8981
26/Oct/2012	8500	18/Nov/2008	8661	13/Jan/2011	8817	15/Mar/2012	8984
22/Sep/2006	8500	09/Nov/2010	8663	28/Feb/2011	8820		8986
	8507	10/Sep/2012	8664	29/Mar/2010	8828	22/Feb/2010	8988
20/Aug/2009	8512		8668		8829	25/Sep/2009	8990
	8514	03/Dec/2009	8680	09/Jul/2012	8830	17/Apr/2008	9000
16/May/2007	8515		8686	14/Dec/2007	8830	11/Dec/2006	9000
03/Feb/2010	8520		8689	28/Jun/2012	8831	18/Feb/2011	9000
	8521	17/Sep/2010	8689	23/Jul/2012	8840		9006
16/Apr/2008	8527	10/Feb/2011	8690	28/Jun/2012	8841	06/Jul/2011	9009
01/Feb/2010	8528		8695		8843		9011
	8528	13/Jan/2011	8700	01/Sep/2010	8845	29/Aug/2006	9018
	8532		8700		8850	09/Sep/2010	9018
	8534	21/Apr/2008	8700	NULL	8850	08/Aug/2012	9030
	8538	17/Aug/2012	8709		8852	09/Nov/2010	9031
	8539		8709		8856		9033
03/May/2010	8540	07/Jun/2010	8710	17/Sep/2010	8857	NULL	9035
	8544	01/Feb/2010	8712	25/Sep/2009	8862		9036
03/May/2010	8550		8716	31/Mar/2011	8864	 25/Jun/2010	9038

Dispatch	Mass	Dispatch	Mass	Dispatch	Mass	Dispatch	Mass
Date	(kg)	Date	(kg)	Date	(kg)	Date	(kg)
NULL	9050	29/Nov/2010	9177		9394		9622
12/Jan/2010	9050	08/Feb/2009	9181	21/Apr/2009	9400	26/Nov/2009	9630
16/Sep/2010	9057	05/Oct/2010	9188	24/Sep/2008	9400		9639
12/Jan/2010	9057	07/Dec/2007	9189		9403	18/Apr/2011	9640
18/Feb/2011	9070	06/Feb/2009	9189	17/Aug/2010	9403		9643
12/Oct/2010	9071	06/Sep/2011	9190	17/Feb/2011	9410		9648
24/Feb/2010	9072	01/Aug/2012	9200	14/Oct/2009	9410	29/Dec/2010	9650
10/Mar/2010	9072	04/Feb/2011	9200	02/Sep/2010	9412		9650
07/Oct/2010	9074	10/Jul/2008	9210		9412	07/Dec/2007	9657
04/Nov/2008	9081		9213	28/Apr/2008	9429	19/Sep/2006	9660
	9083	06/Oct/2010	9215	24/Nov/2008	9430	02/Sep/2010	9662
03/Feb/2009	9086	18/Feb/2008	9222		9433	19/Mar/2008	9670
	9086	01/Dec/2008	9230		9435		9675
03/Feb/2009	9088	17/Feb/2011	9234	02/Feb/2009	9450		9682
02/Feb/2009	9089	02/Feb/2009	9250	24/Nov/2010	9450		9689
20/Feb/2009	9090		9253		9451	22/Feb/2010	9690
03/Feb/2009	9095	06/Feb/2009	9262	02/Feb/2011	9460	12/Jul/2010	9700
07/Feb/2009	9099		9265	13/Jul/2011	9470	20/Dec/2010	9701
05/Oct/2010	9099	NULL	9265		9473		9705
14/Aug/2008	9100		9267	07/Jan/2010	9476	08/Sep/2012	9707
09/Nov/2008	9104	08/Oct/2010	9276	22/Jul/2011	9480	20/Dec/2010	9708
	9104		9276	22/Jul/2011	9490	19/Nov/2009	9710
07/Oct/2010	9108		9278	16/Feb/2010	9490	31/Jan/2007	9711
12/Feb/2009	9110	19/Nov/2009	9280		9494		9712
	9115		9281		9498	26/Jul/2012	9720
03/Feb/2009	9117		9283	22/Jul/2011	9500	23/Feb/2010	9720
	9117	20/Jan/2011	9284	17/Jan/2007	9500		9725
28/Jan/2009	9119	09/Nov/2008	9285		9501	22/Feb/2010	9730
09/Feb/2011	9120	11/Jun/2010	9285	07/Jun/2010	9510	10/Oct/2006	9740
	9122		9287	28/Jun/2012	9517	13/Jan/2010	9740
06/Oct/2011	9126	12/Jul/2007	9299	05/Oct/2010	9526	02/Dec/2009	9740
15/Mar/2012	9127	26/Jul/2006	9300		9526		9748
20/Jan/2010	9130	06/Nov/2008	9301	23/Jun/2011	9530	27/Oct/2008	9750
26/Feb/2010	9139		9308		9535	02/Nov/2011	9750
08/Oct/2010	9140		9310	03/Oct/2007	9540	26/Mar/2012	9752
	9142	06/Oct/2010	9315	26/Nov/2009	9540	06/Oct/2010	9752
07/Feb/2009	9145	03/Feb/2009	9317		9546	03/Jul/2012	9760
03/Oct/2007	9149	28/Apr/2008	9318	01/Sep/2011	9550		9775
03/Mar/2011	9150	04/Jan/2010	9320		9560	03/Sep/2010	9788
17/Feb/2011	9160	22/Feb/2010	9340		9566		9791
28/Jun/2012	9160	01/Feb/2010	9344	17/Aug/2010	9570	07/Mar/2012	9797
02/Oct/2010	9160		9360	15/Jul/2010	9580		9798
	9160	03/Jul/2012	9360	18/Feb/2011	9590	12/Feb/2008	9800
08/Oct/2010	9162	16/Aug/2010	9368	22/Mar/2011	9593		9802
25/Feb/2007	9163	11/Dec/2011	9368	31/Aug/2009	9594		9823
08/Sep/2012	9163	25/Jan/2010	9380		9596	29/Nov/2010	9849
· ·	9163	02/Apr/2009	9380	26/Feb/2007	9614		9852
12/Feb/2009	9170	06/Nov/2008	9381	05/Oct/2010	9616		9866
12/May/2008	9170	29/Jun/2010	9388		9616	31/Aug/2009	9867
	9176	03/Sep/2010	9389	07/Jun/2010	9620	-	9868

Dispatch	Mass	Dispatch	Mass	Dispatch	Mass	Dispatch	Mass
Date	(kg)	Date	(kg)	Date	(kg)	Date	(kg)
26/Feb/2008	9870	29/Jan/2010	10090	07/Sep/2011	10360		10606
	9879		10102	28/Feb/2007	10366	19/Nov/2009	10610
28/Sep/2012	9880	04/Oct/2010	10110	18/Aug/2006	10370		10628
	9888	01/Mar/2007	10115		10378	07/Dec/2009	10640
23/Jan/2008	9890	19/Nov/2009	10130	03/Nov/2010	10381	09/Jun/2011	10640
10/Feb/2010	9890		10132	24/Jan/2011	10400	02/Feb/2010	10640
	9895	04/Jan/2010	10138	-	10403		10641
	9897	NULL	10145	07/Nov/2011	10406	06/Oct/2010	10660
	9897	12/Jan/2010	10150	30/Mar/2011	10416		10660
	9900	18/Jun/2008	10157	27/Apr/2011	10426	29/Jan/2010	10660
30/Apr/2007	9900	20/Dec/2010	10164	09/Nov/2010	10426	28/Jun/2007	10660
25/Feb/2010	9900	04/Jan/2010	10175	05/Feb/2010	10428	08/Nov/2010	10670
	9903	12/Jul/2010	10180	24/Oct/2011	10431	31/Mar/2011	10679
	9909	01/Oct/2008	10183	-	10433	25/Feb/2010	10680
07/Jan/2010	9910		10186	23/Jun/2007	10433	26/Aug/2011	10680
	9911	02/Feb/2010	10190	27/Jan/2010	10440	27/Jan/2010	10690
	9920	22/Nov/2010	10197	06/Jul/2011	10440	12/Jul/2010	10690
19/Feb/2009	9926	14/Feb/2007	10200	19/Nov/2009	10450	01/May/2008	10700
	9927		10204	10/Jul/2009	10460	06/Jan/2010	10705
08/Sep/2012	9934	06/Oct/2010	10206	03/Nov/2010	10461	22/Feb/2011	10710
	9938	22/Sep/2010	10208	03/Nov/2011	10470	19/Nov/2009	10720
11/Mar/2009	9940	12/Oct/2010	10210	07/May/2011	10470		10725
04/Mar/2011	9940	29/Jan/2010	10210	09/Nov/2010	10481	25/Oct/2010	10740
31/Aug/2009	9946	18/Jun/2008	10218	-	10485	02/Feb/2010	10740
0	9952	29/Jan/2010	10230	12/Jan/2011	10485		10743
	9957		10235	05/Feb/2010	10490	12/Jul/2010	10750
	9966		10239	24/Jul/2009	10490		10750
	9968	26/Nov/2009	10240		10495	01/May/2008	10760
31/Aug/2009	9969		10244	12/Jun/2012	10500	•	10773
08/Dec/2010	9970	08/Sep/2012	10251	03/Nov/2010	10521	12/Oct/2010	10773
	9975	07/Nov/2011	10256		10523	21/Apr/2009	10780
08/Sep/2012	9979		10258		10531	-	10793
	9979	29/Dec/2010	10260	12/Jun/2012	10550	08/Sep/2012	10796
21/Mar/2012	9980		10260	19/Nov/2009	10550	08/Nov/2010	10800
24/Jul/2009	9984	10/Jul/2009	10269	26/Aug/2011	10560		10805
19/Oct/2012	10000	29/Jan/2010	10270	04/Nov/2011	10560	04/Mar/2010	10810
25/Feb/2010	10010		10279	04/Jun/2010	10560		10814
26/May/2010	10018	29/Jan/2010	10280	22/Nov/2010	10572		10818
23/Feb/2010	10020		10285	26/Aug/2011	10580	18/Jul/2011	10820
01/Apr/2011	10020	26/Nov/2009	10290	25/Feb/2010	10580	19/Nov/2009	10822
25/Jun/2009	10021	03/Nov/2010	10291		10585	11/Mar/2009	10850
	10029	02/Nov/2011	10300		10587	18/Nov/2009	10850
10/Feb/2010	10030	24/Aug/2011	10300	09/Jul/2012	10589	01/Feb/2010	10860
01/Jun/2011	10038	NULL	10303	13/Jan/2010	10590		10868
22/Oct/2010	10050	06/Oct/2010	10308	13/Nov/2009	10590		10868
	10061	04/Jul/2012	10310		10591	15/May/2009	10886
	10068		10319		10599	08/Sep/2012	10886
	10070		10328	14/Sep/2010	10599	-	10886
22/Oct/2010	10070	29/Nov/2010	10333		10601	19/Nov/2009	10910
	10086		10342		10603	13/Jan/2010	10910

Dispatch	Mass	Dispatch	Mass	Dispatch	Mass	 Dispatch	Mass
Date	(kg)	Date	(kg)	Date	(kg)	Date	(kg)
02/Feb/2010	10920		11249	 06/Jan/2010	11750	04/Dec/2007	12210
01/May/2008	10920	19/Nov/2009	11250	 20/Feb/2006	11766		12213
	10920		11266	 29/Sep/2010	11770		12215
09/Jul/2012	10939	13/Jul/2011	11267	 •	11773	31/Jul/2006	12230
13/Jul/2011	10943		11268	 12/May/2008	11780	04/Aug/2010	12240
	10948	09/Sep/2010	11270	14/Jun/2006	11790	10/Feb/2010	12240
	10954		11281	 14/Feb/2007	11790	08/Sep/2012	12247
	10975	13/Jan/2010	11290		11791		12247
21/Apr/2009	10980	13/Jul/2011	11293	08/Sep/2012	11794	14/Jun/2006	12270
	10988	18/Feb/2011	11300		11794		12283
19/Nov/2009	10990	18/Jan/2011	11305		11805	19/Sep/2006	12290
19/Oct/2010	11000	14/Dec/2009	11320	 12/Oct/2010	11830		12299
23/Feb/2010	11010	14/Sep/2010	11320		11852	24/Aug/2011	12320
01/May/2008	11020	31/May/2011	11340	 05/Jul/2012	11880	02/Nov/2011	12320
13/Jan/2010	11030		11340		11884	NULL	12327
22/Oct/2010	11030	26/Jun/2008	11340	 09/Jul/2012	11900	08/Sep/2012	12338
	11038		11363	27/Aug/2008	11910	02/Feb/2010	12340
26/Aug/2011	11040	02/Feb/2011	11375	 	11925		12349
04/Nov/2011	11040	21/Apr/2008	11385	 13/Jul/2011	11930	31/Jul/2006	12356
	11047	13/Jul/2011	11390		11932	04/Jul/2012	12360
	11049		11394		11932	21/Oct/2008	12372
01/May/2008	11050	05/Jul/2012	11400	 07/Feb/2007	11940	01/Mar/2011	12390
18/Nov/2009	11060		11401	 13/Aug/2008	11950		12397
03/Nov/2011	11090	10/Nov/2006	11418	 	11964	15/Dec/2010	12411
12/Sep/2011	11090	05/Jul/2012	11430		11966	04/Dec/2007	12430
_	11104	13/Jul/2011	11476		11975	11/Nov/2006	12440
09/Jul/2012	11110	04/Jan/2010	11483	28/Mar/2006	11989	10/Oct/2006	12450
06/Oct/2010	11113	18/Feb/2011	11485		11991	09/Jul/2008	12460
	11124	01/Dec/2008	11500		11993	01/May/2008	12480
08/Feb/2007	11137	18/Feb/2011	11503		11998		12481
13/Jan/2010	11140	18/Nov/2009	11510	02/Nov/2011	12040	30/Apr/2007	12489
20/Feb/2006	11140	17/Feb/2011	11512	24/Aug/2011	12040		12519
12/Apr/2011	11150	29/Sep/2010	11540	07/Jun/2007	12048	06/Aug/2009	12520
17/Dec/2009	11150	08/Dec/2010	11558	07/Feb/2007	12050	05/Nov/2010	12530
14/Oct/2008	11160	17/Feb/2010	11580	05/Nov/2012	12066	06/Nov/2012	12531
	11174	08/Dec/2008	11600		12066		12537
09/Jul/2012	11180	26/Jun/2008	11610	22/Oct/2010	12070		12560
	11202	07/Mar/2012	11612		12072	04/Mar/2011	12570
05/Nov/2012	11204		11612	14/Jun/2006	12090		12585
26/Nov/2009	11206		11617	29/Jan/2010	12100	30/Nov/2007	12590
12/Jan/2010	11210	24/Oct/2011	11619	07/Mar/2007	12107		12592
29/Apr/2010	11220	27/Jun/2011	11620	24/Aug/2011	12110	13/Nov/2006	12600
04/Nov/2011	11220	NULL	11627	02/Nov/2011	12110		12605
13/Jul/2011	11229	12/Apr/2011	11660		12122		12610
	11229	17/Feb/2010	11660	22/Nov/2007	12130	21/Oct/2009	12680
25/Aug/2011	11230	28/Nov/2011	11690	02/Sep/2010	12134	17/Feb/2010	12680
09/Feb/2010	11230		11716	30/Nov/2007	12140	15/Sep/2011	12690
08/Aug/2012	11240		11730	16/Jul/2010	12156	06/Aug/2009	12690
	11245		11738	21/Oct/2009	12160	22/Feb/2011	12700
13/Jul/2011	11249		11741	 08/Aug/2012	12180	02/Feb/2010	12700

Dispatch	Mass	Dispatch	Mass		Dispatch	Mass		Dispatch	Mass
Date	(kg)	Date	(kg)		Date	(kg)		Date	(kg)
	12701		13204			14232		15/Sep/2011	15876
02/Feb/2010	12710		13239		09/Dec/2008	14242		18/Apr/2007	16000
10/Sep/2012	12715		13245		17/Sep/2008	14288		24/Oct/2011	16057
06/Nov/2012	12715		13336		01/Aug/2008	14340			16244
	12786	12/Jan/2011	13401		01/Oct/2008	14389		18/Apr/2007	16280
02/Feb/2010	12810	15/Oct/2008	13420		21/Oct/2008	14420		NULL	16308
	12823		13426	_		14443			16663
	12832	24/Oct/2011	13426			14456		14/Jul/2010	16817
	12839		13463		12/Apr/2011	14510		05/Nov/2012	16874
09/Feb/2010	12850	22/Oct/2010	13530		17/Feb/2010	14510			17028
15/Apr/2010	12859		13558			14558		22/Nov/2007	17030
07/Dec/2009	12860	07/Mav/2012	13608		08/Sep/2012	14560			17237
15/Apr/2010	12869		13628			14608		14/Jul/2010	17271
02/Dec/2009	12870	15/Jun/2010	13665		21/Apr/2009	14618			17459
02/Dec/2009	12890		13665		17/Feb/2010	14690			17486
	12891	24/Oct/2011	13717		NULL	14733			17781
03/Jun/2011	12900		13737		01/Oct/2008	14813		24/Oct/2011	18012
02/Dec/2009	12910		13758		04/Jul/2012	14890		06/Oct/2010	18144
	12918	24/Sep/2008	13784			14982		22/Oct/2008	18530
18/Jun/2008	12947		13810		26/Apr/2011	15105		24/Oct/2011	19006
30/Apr/2010	12970	24/Sep/2008	13862		NULL	15190		12/Jan/2011	21128
23/Apr/2010	12970	21/300/2000	13885		TTOLL	15200		NULL	21355
21/Oct/2009	13000	22/Oct/2008	13950			15225	_	24/Dec/2007	21792
15/May/2008	13020	22,0002000	14107		06/Feb/2007	15270	_	03/May/2007	22560
15/Oct/2008	13020	05/Nov/2012	14152		00/100/2007	15333		24/Dec/2007	22700
13/Feb/2007	13038	00/110 // 2012	14152			15336		NULL	23275
23/Apr/2010	13041	20/Jan/2010	14160			15383	_	07/Nov/2011	28506
30/Apr/2010	13059	20,04112010	14164			15502		NULL	28817
23/Apr/2010	13060	01/Oct/2008	14188		NULL	15520		07/Nov/2011	29371
	13154	02/Sep/2010	14198			15740		06/Aug/2010	30482
02/Sep/2010	13177		14213		07/Feb/2007	15760		8	
			_	_					
Entries omn	nitted due t	o not being 6.1m (2	0') interm	юd	al shipping conta	iners or su	ıst	pected erroneous	entry
Dispatch	Mass	Dispatch	Mass		Dispatch	Mass		Dispatch	Mass
Date	(kg)	Date	(kg)		Date	(kg)		Date	(kg)
11/Jul/2007	0	02/Dec/2009	966			1467			1817
18/Aug/2011	1	25/Oct/2010	1032			1484			1845
02/Dec/2009	11		1046			1565			1871
09/Jun/2011	45		1064		21/Feb/2012	1588			1873
15/Feb/2011	91	14/Aug/2009	1128			1608		25/Feb/2010	1920
09/Jun/2011	227		1134			1645			1928
10/Sep/2008	454		1202			1662			1955
19/Jan/2010	534		1254			1701			1996
10/Jan/2011	544		1278			1774			2012
	708	17/Sep/2012	1280			1794			2014
04/Sep/2009	726		1315			1810		16/Sep/2008	68040
03/Dec/2009	751	19/Jan/2010	1365		29/Nov/2007	1814		26/Oct/2007	87763
25/Jan/2007	800	24/May/2007	1370		22/Mar/2007	1814		10/Feb/2010	100299
	800		1386		16/Apr/2010	1814			
13/Dec/2010	907		1454			1814			

Appendix B Shipping Container Eccentricity

Grouping	Percent of Total Population for Grouping	Number of Lifts	Percent Greater than 5% Eccentricity	Percent Less than 5% Eccentricity
< 5 tonne	8.5%	603	50.9%	49.1%
5 - 10 tonne	9.6%	685	21.8%	78.2%
10 - 15 tonne	6.9%	493	13.6%	86.4%
15 - 20 tonne	12.3%	878	16.6%	83.4%
20 - 25 tonne	24.9%	1,771	13.7%	86.3%
25 - 30 tonne	22.7%	1,613	17.5%	82.5%
30 + tonne	15.1%	1,078	2.8%	97.2%
Global	100%	7,121	17.2%	82.8%

Table B.1 – Proportion of shipping containers with greater than 5% eccentricity

Table B.2 – Best-fit for intermodal container eccentricities to half-normal distribution

Container Population (Half- Normal Distribution, Best Fit σ)	Eccentricity (m)	Cumulative probability (data)	Cumulative probability (Best Fit)
	0	0.00	N/A
< 5 tonnes (no fit)	0.305	0.49	N/A
	0.329	0.75	N/A
	0	0.00	0.00
$5 - 10$ tonnes ($\sigma = 0.250$ m)	0.305	0.78	0.78
	0.415	0.89	0.90
	0	0.00	0.00
$10 - 15$ tonnes ($\sigma = 0.214$ m)	0.305	0.86	0.85
	0.482	0.93	0.98
	0	0.00	0.00
$15 - 20$ tonnes ($\sigma = 0.226$ m)	0.305	0.83	0.83
	0.397	0.92	0.93
	0	0.00	0.00
$20 - 25$ tonnes ($\sigma = 0.207$ m)	0.305	0.86	0.86
	0.384	ricityCumulative probability (data)Cum probability 0.00 0.5 0.49 29 0.75 0.00 05 0.78 15 0.89 0.00 05 0.86 82 0.93 0.00 05 0.83 97 0.92 0.00 05 0.86 84 0.93 0.00 05 0.83 70 0.91 0.00 05 0.83 70 0.97 10 0.99 0.00 05 0.83 09 0.91	0.94
	0	0.00	0.00
$25 - 30$ tonnes ($\sigma = 0.238$ m)	0.305	0.83	0.81
	0.470	0.91	probability (Best Fit)0.00N/A0.49N/A0.75N/A0.000.000.780.780.890.900.000.000.860.850.930.980.000.000.830.830.920.930.000.000.860.860.930.940.000.000.830.810.910.950.000.000.830.810.910.970.991.000.000.000.830.820.910.93
	0	0.00	0.00
> 30 tonnes ($\sigma = 0.140$ m)	0.305	0.97	0.97
	0.610	0.99	1.00
	0	0.00	0.00
Overall ($\sigma = 0.226$ m)	0.305	0.83	0.82
	0.409	0.91	0.93

Appendix C DND National Material Distribution System Vehicle "Weight" Data 2006-2012, Depart and Arrive Afghanistan, Armoured Heavy Support Vehicle System (AHSVS)

, , ,	Ve	hicle Sys	sten	n (AHSVS)	j	TT -
Dispatch	CED	Mass		Dispatch	CED	Mass
Date	CFK	(kg)		Date	CFK	(kg)
Р	LS			Cargo gun tra	actor for	· M777
21/Oct/2011	69915	25,564		26/Sep/2011	69957	23,404
26/Oct/2011	69916	24,384		23/Dec/2011	69959	23,355
15/Dec/2011	69917	23,832		15/Dec/2011	69960	24,525
28/Aug/2011	69918	23,394		25/Sep/2011	69961	23,555
02/Aug/2011	69919	25,375		15/Dec/2011	69965	24,786
15/Dec/2011	69920	25,825		15/Dec/2011	69967	24,475
15/Dec/2011	69921	25,365		28/Aug/2011	69970	24,555
09/May/2012	69922	25,945		15/Dec/2011	69973	24,676
28/Sep/2011	69923	24,636		Cargo v	vith crar	ne
28/Sep/2011	69924	24,715		26/Aug/2011	69955	24,394
25/Sep/2011	69926	24,555		30/Sep/2011	69956	23,495
27/Sep/2011	69927	24,555		24/Aug/2011	69958	24,638
01/Nov/2011	69928	24,690		15/Dec/2011	69962	24,625
02/10/2011	69929	24,705		28/Jul/2011	69963	24,685
29/Sep/2011	69930	24,275		08/Sep/2011	69964	24,404
15/Dec/2011	69932	23,445		08/Sep/2011	69966	25,464
15/10/2011	69933	22,414		15/Dec/2011	69968	23,986
27/Sep/2011	69934	26,655		15/Dec/2011	69969	24,825
26/Sep/2011	69935	24,635		09/Aug/2008	69971	24,300
03/Nov/2011	69936	24,505		15/Dec/2011	69986	24,404
12/Nov/2011	69937	26,615		01/Sep/2011	69987	24,844
01/Dec/2011	69938	27,755		15/Dec/2011	69988	24,935
23/Dec/2011	69939	24,834		15/Dec/2011	69989	25,205
24/Aug/2011	69940	25,664				
23/Dec/2011	69941	28,745		Entry omn	nitted du	e to
23/Dec/2011	69943	24,604		adnormally k	ow mass	s given
16/Aug/2011	69944	24,054		vehic	le type	
15/Dec/2011	69945	25,655		Dispatch	CFR	Mass
15/Oct/2011	69946	24,125		Date		(kg)
23/Dec/2011	69947	27,655		Cargo v	vith crar	ne
				15/May/2010	69956	21,319

DND National Material Distribution System Vehicle Weight 2006-2012, Dep & Arr Afghanistan, Amoured Heavy Support Vehicle System (AHSVS)

Appendix D

DND National Material Distribution System Vehicle "Weight" Data 2006-2012, Depart and Arrive Afghanistan, Light Armoured Vehicle III – Infantry Section Carrier (LAV III-ISC)

DND National Materials Distribution System Vehicle Weight 2006-2012, Dep & Arr Afghanistan								
D' (1						3	37.1.1.1	14
Dispatch	CFR	Vehicle	Mass		Dispatch	CFR	Vehicle	Mass
Date	VIII. N	Description	(Kg)		Date	VIII. N	Description	(Kg)
12/Sam/2011	05120	LICUT A DMODED VEHICLE A D	12 202		LA V	2000c	Light A mag and Mahiala A DM	17 204
13/Sep/2011 10/Jul/2007	95130	LIGHT ARMORED VEHICLE, ARI	12,302	-	21/Oct/2011	20044	Light Armored Vehicle, ARM	17,204
19/Jul/2007	40220	Light Amoled Venicle, ARM	13,472	2	21/Aug/2011	04428	LIGHT A DMODED VEHICLE A D	17,333
$\frac{19}{301}2007$	30057	LAVAPCISC 3.25 STEERING	13,008		1/Max/2011	30130	LIGHT ARMORED VEHICLE, AN	17,393
22/Api/2009	40200	LAVAPCISC 3.25 STEERING	13,002	0	$\frac{7}{4} \frac{1}{10} \frac{7}{2000}$	30073	Light Armored Vehicle ARM	17,400
23/1007/2008	30223	LAVAPCISC 3.25 STEERING	13,710		2011 21/Mar/2007	30075	LAVAPCISC 3 25 STEERING	17,434
23/Nov/2008	31143	LAVAPCISC 3.25 STEERING	13,744	2	$20/A \mu \sigma/2011$	96761	LIGHT ARMORED VEHICLE AR	17,503
25/Aug/2011	95121	LIGHT ARMORED VEHICLE AR	13,000	1	17/Mar/2007	30197	LAVAPCISC 3 25 STEERING	17,373
11/Jul/2007	31151	LAVAPCISC 8x8 DIFSFL	14 062		21/Ian/2011	30041	LAV APC ISC 3 25 STEERING	17,743
27/Sep/2011	30219	Light Armored Vehicle ARM	14 604	1	9/Aug/2011	96507	Light Armored Vehicle ARM	17,784
25/Sep/2011	31137	LAVAPCISC 8x8 DIFSFL	14 664	2	23/Aug/2011	30092	Light Armored Vehicle ARM	17,01
28/Nov/2010	29993	Light Armored Vehicle, ARM	14.684	2	29/Aug/2011	40278	Light Armored Vehicle, ARM	17,944
23/Oct/2011	30004	Light Armored Vehicle, ARM	14,714		21/Sep/2011	40253	LAV APC ISC 8x8 DIESEL	18.023
23/Nov/2010	30003	Light Armored Vehicle, ARM	14,744	2	24/Aug/2011	31128	LAV APC ISC 3.25 STEERING	18,113
21/Nov/2010	30075	Light Armored Vehicle, ARM	14.775	2	29/Aug/2011	85989	Light Armored Vehicle, ARM	18,115
29/Jan/2007	30142	LAV APC ISC 3.25 STEERING	14.778		28/Jul/2011	31120	LAV APC ISC 8x8 DIESEL	18.253
28/Oct/2011	30212	LAV APC ISC 3.25 STEERING	14.813	0)9/Aug/2011	40217	Light Armored Vehicle, ARM	18.295
31/Oct/2011	96510	LIGHT ARMORED VEHICLE, AR	14.814	2	20/Aug/2011	40263	Light Armored Vehicle, ARM	18.324
27/Feb/2007	40208	LAV APC ISC 3.25 STEERING	14.828	(02/Oct/2010	40267	LAV APC ISC 8x8 DIESEL	18.357
19/Nov/2011	31119	Light Armored Vehicle, ARM	15.143		11/Sep/2011	31117	Light Armored Vehicle, ARM	18,444
29/Jan/2007	40231	LAV APC ISC 3.25 STEERING	15,368	3	30/Aug/2011	94429	LIGHT ARMORED VEHICLE, AR	18,873
29/Sep/2011	30218	Light Armored Vehicle, ARM	15,464		18/Sep/2010	31186	LAV APC ISC 3.25 STEERING	18,974
22/Feb/2007	30200	LAV APC ISC 3.25 STEERING	15,504	2	20/Aug/2011	30114	Light Armored Vehicle, ARM	19,174
30/Sep/2011	85918	LIGHT ARMORED VEHICLE, AR	15,684	(07/Dec/2010	30135	LAV APC ISC 3.25 STEERING	19,600
28/Jun/2007	31182	Light Armored Vehicle, ARM	15,740	2	23/Aug/2011	30233	Light Armored Vehicle, ARM	19,663
29/Apr/2006	30023	Light Armored Vehicle, ARM	15,899	1	13/Aug/2011	30012	Light Armored Vehicle, ARM	19,813
29/Aug/2011	30208	Light Armored Vehicle, ARM	15,923					
20/Nov/2011	30074	Light Armored Vehicle, ARM	16,083		Dispatch	CED	Vehicle	Mass
18/Apr/2007	40246	LAV APC ISC 8x8 DIESEL	16,103		Date	ULK	Description	(kg)
01/Mar/2007	30045	Light Armored Vehicle, ARM	16,157		LAVIIIAP	PC W/R	WS: Nominal Curb Weight = 18,37	75 kg
19/Mar/2007	31129	LAV APC ISC 3.25 STEERING	16,266	1	27/Sep/2011	40418	LAV III APC W/RWS	17,185
29/Aug/2011	30213	Light Armored Vehicle, ARM	16,294	1	20/Oct/2011	40411	LAV III APC W/RWS	17,213
22/Sep/2011	42018	Light Armored Vehicle, ARM	16,333	1	21/Oct/2011	40417	LAV III APC W/RWS	17,229
15/Aug/2011	31135	Light Armored Vehicle, ARM	16,413	(03/Sep/2011	40413	LAV III APC W/RWS	17,265
22/Aug/2009	40241	LAV APC ISC 3.25 STEERING	16,420	1	21/Oct/2011	40423	LAV III APC W/RWS	17,313
10/May/2007	303138	LAV APC ISC 3.25 STEERING	16,511		13/Oct/2011	40415	LAV III APC W/RWS	17,354
23/Sep/2011	30023	Light Armored Vehicle, ARM	16,553	1	27/Sep/2011	40410	LAV III APC W/RWS	17,375
22/Mar/2007	40209	LAV APC ISC 3.25 STEERING	16,556		14/Sep/2011	40407	LAV III APC W/RWS	17,822
17/Mar/2007	31144	LIGHT ARMORED VEHICLE, ARI	16,645	1	21/Sep/2011	40406	LAV III APC W/RWS	17,844
12/Sep/2011	56180	LIGHT ARMORED VEHICLE, ARI	16,665		17/Oct/2011	40408	LAV III APC W/RWS	17,853
14/Mar/2007	31187	LAV APC ISC 3.25 STEERING	16,701	1	24/Sep/2011	40414	LAV III APC W/RWS	18,143
24/Aug/2011	15002	Light Armored Vehicle, ARM	16,703		16/Sep/2011	40412	LAV III APC W/RWS	18,653
24/Jul/2007	40231	LAVAPCISC 3.25 STEERING	16,720	1	22/Oct/2011	40420	LAV III APC W/RWS	18,703
26/Dec/2006	30142	LAVAPC ISC 3.25 STEERING	16,729		19/Oct/2011	40421	LAV III APC W/RWS	18,804
22/Sep/2011	94479	LIGHT ARMORED VEHICLE, AR	16,734		23/Sep/2011	40422	LAV III APC W/RWS	18,954
21/Aug/2011	96514	LIGHT ARMORED VEHICLE, AR	16,783		13/Sep/2011	40416	LAVIII APC W/RWS	18,963
22/Nov/2011	30221	Light Armored Vehicle, ARM	16,912		24/Sep/2011	40404	LAV III APC W/RWS	20,353
20/Aug/2011	40284	LIGHT A PMODED VEHICLE A P	16,984					
20/Sep/2011	40250	LIOTI A KIVIOKED VEHICLE, AK	10,994					
20/Aug/2011	40259	Light Armored Vehicle, ARM	17,043					
2000 Apr/2000	50055	Light Amoreu venicie, AKW	17,092					

Appendix E Weight Bias Coefficient and Variability in Relation to Payload Weight Fraction

Figure E.1 - Event weight statistical parameters versus payload weight fraction for bias coefficient

Figure E.2 - Event statistical parameters versus payload weight fraction for CoV

Figure E.3 – Maximum annual weight statistical parameters (n = 100 veh/yr) versus payload weight fraction: (a) bias coefficient; (b) CoV

Figure E.4 – Maximum annual weight statistical parameters (n = 1,000 veh/yr) versus payload weight fraction: (a) bias coefficient; (b) CoV

Figure E.5 – Maximum annual weight statistical parameters (n = 10,000 veh/yr) versus payload weight fraction: (a) bias coefficient; (b) CoV

Figure E.6 – Maximum annual weight statistical parameters (n = 100,000 veh/yr) versus payload weight fraction: (a) bias coefficient; (b) CoV

Appendix F Comparison of Lateral Load Distribution Amplification Factors from: CSA (2006a), AASHTO LRFD Bridge (2012), and Pinero (2001)

Figure F.1 - Amplification factor versus girder spacing: *All Beam Bridges* (Pinero, 2001), 36 m steel girder bridge (Kim, Tanovic, & Wight, 2010)

Figure F.2 - Amplification factor versus girder spacing: *All Beam Bridges* (Pinero, 2001), 37 m steel CPCI girder bridge (Morrison-Hershfield, 2012)

Figure F.3 - Amplification factor versus girder spacing: *Steel Girder Bridges* (Pinero, 2001), 36 m steel girder bridge (Kim, Tanovic, & Wight, 2010)

Figure F.4 - Amplification factor versus girder spacing: *Pre-stressed Concrete Bridges* (Pinero, 2001), 37 m steel CPCI girder bridge (Morrison-Hershfield, 2012)

Figure F.5 - Amplification factor versus girder spacing: *Concrete T-beam Bridges* (Pinero, 2001), 12 m concrete T-beam (Franklin) (Trimble, Cousins and Seda-Sanabria, 2003)

Figure F.6 - Amplification factor versus stiffness: *All Beam Bridges* (Pinero, 2001), 36 m steel girder bridge (Kim, Tanovic, & Wight, 2010)

Figure F.7 - Amplification factor versus stiffness: *All Beam Bridges* (Pinero, 2001), 37 m steel CPCI girder bridge (Morrison Hershfield Ltd., 2012)

Figure F.8 - Amplification factor versus stiffness: *Steel Girder Bridges* (Pinero, 2001), 36 m steel girder bridge (Kim, Tanovic, & Wight, 2010)

Figure F.9 - Amplification factor versus stiffness: *Pre-stressed Concrete Bridges* (Pinero, 2001), 37 m steel CPCI girder bridge (Morrison Hershfield Ltd., 2012)

Figure F.10 - Amplification factor versus stiffness: *Concrete T-beam Bridges* (Pinero, 2001), 12 m concrete T-beam (Franklin) (Trimble, Cousins and Seda-Sanabria, 2003)

Figure F.11 - Amplification factor versus span: *All Beam Bridges* (Pinero, 2001), 36 m steel girder bridge (Kim, Tanovic, & Wight, 2010)

Figure F.12 - Amplification factor versus span: *All Beam Bridges* (Pinero, 2001), 37 m steel CPCI girder bridge (Morrison Hershfield Ltd., 2012)

Figure F.13 - Amplification factor versus span: *Steel Girder Bridges* (Pinero, 2001), 36 m steel girder bridge (Kim, Tanovic, & Wight, 2010)

Figure F.14 - Amplification factor versus span: *Pre-stressed Concrete Bridges* (Pinero, 2001), 37 m steel CPCI girder bridge (Morrison Hershfield Ltd., 2012)

Figure F.15 - Amplification factor versus span: *Concrete T-beam Bridges* (Pinero, 2001), 12 m concrete T-beam (Franklin) (Trimble, Cousins and Seda-Sanabria, 2003)

Appendix G

Load Effect Bias Coefficient and CoV on Bridges for AHSVS-PLS (Transport), LAV III-ISC (Armoured Personnel Carrier), and Leopard 2A4M Tank

DLA		CSA (2006b)		Trimble, Cousins and Seda-Sanabria (2003)						
				Fran	ıklin	Patrick		Both		
Annual Traffic Rate	Lateral Load Distribution	Bias	CoV	Bias	CoV	Bias	CoV	Bias	CoV	
Event	CSA (2006a)	0.698	0.187	0.668	0.160	0.844	0.195	0.753	0.216	
Event	Pinero (2001)	0.751	0.187	0.718	0.160	0.907	0.195	0.809	0.216	
100	CSA (2006a)	0.904	0.199	0.865	0.173	1.093	0.207	0.975	0.227	
	Pinero (2001)	0.972	0.199	0.930	0.173	1.175	0.207	1.049	0.227	
1.000	CSA (2006a)	1.096	0.191	1.048	0.164	1.325	0.199	1.182	0.220	
1,000	Pinero (2001)	1.179	0.191	1.127	0.164	1.424	0.199	1.271	0.220	
10,000	CSA (2006a)	1.312	0.185	1.255	0.157	1.585	0.194	1.414	0.215	
10,000	Pinero (2001)	1.410	0.185	1.349	0.157	1.705	0.194	1.521	0.215	
100,000	CSA (2006a)	1.530	0.179	1.463	0.150	1.849	0.188	1.650	0.209	
	Pinero (2001)	1.645	0.179	1.573	0.150	1.988	0.188	1.774	0.209	

Table G.1 - Load effects for AHSVS-PLS, short spans

Table G.2 - Load effects for AHSVS-PLS, other spans

DLA		CSA (2006b) -		Trimble, Cousins and Seda-Sanabria (2003)							
				Fran	ıklin	Pat	rick	Both			
Annual Traffic Rate	Lateral Load Distribution	Bias	CoV	Bias	CoV	Bias	CoV	Bias	CoV		
Event	CSA (2006a)	0.655	0.187	0.626	0.160	0.791	0.195	0.706	0.216		
Event	Pinero (2001)	0.704	0.187	0.673	0.160	0.851	0.195	0.759	0.216		
100	CSA (2006a)	0.882	0.176	0.844	0.147	1.066	0.185	0.951	0.207		
	Pinero (2001)	0.949	0.176	0.907	0.147	1.146	0.185	1.023	0.207		
1 000	CSA (2006a)	0.997	0.173	0.953	0.142	1.205	0.182	1.075	0.204		
1,000	Pinero (2001)	1.072	0.173	1.025	0.142	1.295	0.182	1.156	0.204		
10.000	CSA (2006a)	1.119	0.172	1.070	0.141	1.353	0.181	1.207	0.203		
10,000	Pinero (2001)	1.203	0.172	1.151	0.141	1.454	0.181	1.298	0.203		
100,000	CSA (2006a)	1.239	0.170	1.185	0.139	1.497	0.179	1.336	0.201		
	Pinero (2001)	1.332	0.170	1.274	0.139	1.610	0.179	1.436	0.201		
	DLA	CSA (2 006h)	Trimb	le, Cous	sins and	Seda-Sa	anabria	(2003)		
---------------------------	---------------------------	-------------	----------------	-------	----------	----------	---------	---------	--------		
	DLA	CSA (20000)		Fran	Franklin		rick	Both			
Annual Traffic Rate	Lateral Load Distribution	Bias	CoV	Bias	CoV	Bias	CoV	Bias	CoV		
Event	CSA (2006a)	0.676	0.187	0.647	0.160	0.817	0.195	0.729	0.216		
Event	Pinero (2001)	0.727	0.187	0.695	0.160	0.878	0.195	0.784	0.216		
100	CSA (2006a)	0.900	0.206	0.861	0.181	1.088	0.213	0.971	0.232		
100	Pinero (2001)	0.968	0.206	0.926	0.181	1.170	0.213	1.044	0.232		
1 000	CSA (2006a)	1.098	0.190	1.050	0.162	1.327	0.197	1.184	0.218		
1,000	Pinero (2001)	1.180	0.190	1.129	0.162	1.427	0.197	1.273	0.218		
10,000	CSA (2006a)	1.303	0.183	1.246	0.154	1.575	0.191	1.405	0.212		
10,000	Pinero (2001)	1.401	0.183	1.340	0.154	1.694	0.191	1.511	0.212		
100,000	CSA (2006a)	1.505	0.178	1.440	0.148	1.819	0.186	1.622	0.208		
	Pinero (2001)	1.618	0.178	1.548	0.148	1.956	0.186	1.745	0.208		

Table G.3 - Load effects for AHSVS-PLS and trailer, uncorrelated container, short spans

Table G.4 - Load effects for AHSVS-PLS and trailer, uncorrelated container, other spans

		CSA (2006h)	Trimb	le, Cous	sins and	Seda-Sa	anabria	(2003)
	DLA	CSA (20000)		Fran	Franklin		Patrick		oth
Annual Traffic Rate	Lateral Load Distribution	Bias	CoV	Bias	CoV	Bias	CoV	Bias	CoV
Evont	CSA (2006a)	0.595	0.187	0.569	0.160	0.719	0.195	0.641	0.216
Pinero (2001)	Pinero (2001)	0.639	0.187	0.612	0.160	0.773	0.195	0.689	0.216
100	CSA (2006a)	0.789	0.172	0.755	0.142	0.953	0.181	0.851	0.203
100	Pinero (2001)	0.848	0.172	0.811	0.142	1.025	0.181	0.915	0.203
1 000	CSA (2006a)	0.876	0.170	0.838	0.139	1.059	0.179	0.945	0.202
1,000	Pinero (2001)	0.942	0.170	0.901	0.139	1.139	0.179	1.016	0.202
10.000	CSA (2006a)	0.962	0.169	0.920	0.137	1.162	0.177	1.037	0.200
10,000	Pinero (2001)	1.034	0.169	0.989	0.137	1.250	0.177	1.115	0.200
100,000	CSA (2006a)	1.048	0.167	1.003	0.136	1.267	0.176	1.130	0.199
	Pinero (2001)	1.127	0.167	1.078	0.136	1.362	0.176	1.215	0.199

Table G.5 - Load effects for AHSVS-PLS and trailer fully correlated container, short

spans

DLA	CSA (2006h)	Trimb	le, Cous	sins and	Seda-Sa	anabria	(2003)	
	DLA	CSA (20000)		Fran	Franklin		Patrick		oth
Annual Traffic Rate	Lateral Load Distribution	Bias	CoV	Bias	CoV	Bias	CoV	Bias	CoV
Event	CSA (2006a)	0.670	0.209	0.641	0.185	0.810	0.217	0.722	0.236
Pinero (200	Pinero (2001)	0.720	0.209	0.689	0.185	0.871	0.217	0.777	0.236
100	CSA (2006a)	0.901	0.199	0.862	0.173	1.089	0.207	0.971	0.227
100	Pinero (2001)	0.969	0.199	0.927	0.173	1.171	0.207	1.045	0.227
1 000	CSA (2006a)	1.098	0.191	1.050	0.164	1.327	0.199	1.184	0.220
1,000	Pinero (2001)	1.180	0.191	1.129	0.164	1.427	0.199	1.273	0.220
10.000	CSA (2006a)	1.303	0.182	1.246	0.153	1.575	0.190	1.405	0.212
10,000	Pinero (2001)	1.401	0.182	1.340	0.153	1.694	0.190	1.511	0.212
100,000	CSA (2006a)	1.502	0.177	1.436	0.148	1.815	0.186	1.619	0.208
	Pinero (2001)	1.615	0.177	1.544	0.148	1.952	0.186	1.741	0.208

Table G.6 - Load effects for AHSVS-PLS and trailer, fully correlated container, other

spans

DLA	CEA (2 006b)	Trimb	le, Cous	sins and	Seda-Sa	anabria	(2003)	
	DLA	CSA (20000)		Fran	Franklin		rick	Both	
Annual Traffic Rate	Lateral Load Distribution	Bias	CoV	Bias	CoV	Bias	CoV	Bias	CoV
Event	CSA (2006a)	0.595	0.209	0.570	0.185	0.720	0.217	0.642	0.236
	Pinero (2001)	0.640	0.209	0.612	0.185	0.774	0.217	0.690	0.236
100	CSA (2006a)	0.894	0.186	0.855	0.159	1.081	0.195	0.964	0.216
100	Pinero (2001)	0.961	0.186	0.920	0.159	1.162	0.195	1.037	0.216
1 000	CSA (2006a)	1.036	0.178	0.991	0.149	1.252	0.187	1.117	0.209
1,000	Pinero (2001)	1.114	0.178	1.066	0.149	1.347	0.187	1.201	0.209
10.000	CSA (2006a)	1.201	0.177	1.149	0.147	1.452	0.185	1.295	0.207
10,000	Pinero (2001)	1.292	0.177	1.236	0.147	1.561	0.185	1.393	0.207
100,000	CSA (2006a)	1.358	0.173	1.299	0.143	1.641	0.182	1.464	0.204
	Pinero (2001)	1.460	0.173	1.397	0.143	1.765	0.182	1.574	0.204

DLA	CSA (2006h)	Trimb	le, Cous	sins and	Seda-Sa	anabria	(2003)	
	DLA	CSA (20000)		Frar	Franklin		rick	Both	
Annual Traffic Rate	Lateral Load Distribution	Bias	CoV	Bias	CoV	Bias	CoV	Bias	CoV
Erront	CSA (2006a)	1.051	0.168	1.005	0.137	1.270	0.177	1.133	0.200
Event Pinero (20	Pinero (2001)	1.130	0.168	1.081	0.137	1.366	0.177	1.218	0.200
100	CSA (2006a)	1.181	0.162	1.129	0.129	1.427	0.171	1.273	0.195
100	Pinero (2001)	1.270	0.162	1.214	0.129	1.535	0.171	1.369	0.195
1 000	CSA (2006a)	1.218	0.162	1.165	0.129	1.472	0.171	1.313	0.194
1,000	Pinero (2001)	1.309	0.162	1.252	0.129	1.582	0.171	1.412	0.194
10.000	CSA (2006a)	1.247	0.162	1.193	0.128	1.508	0.171	1.345	0.194
10,000	Pinero (2001)	1.341	0.162	1.283	0.128	1.621	0.171	1.446	0.194
100,000	CSA (2006a)	1.277	0.162	1.222	0.128	1.544	0.171	1.377	0.194
	Pinero (2001)	1.374	0.162	1.314	0.128	1.660	0.171	1.481	0.194

Table G.7 - Load effects for LAV III-ISC Case (1), short spans

Table G.8 - Load effects for LAV III-ISC Case (1), other spans

DLA	CSA (2006h)	Trimb	le, Cous	sins and	Seda-Sa	Seda-Sanabria (2003)		
	DLA	CSA (20000)		Fran	Franklin		rick	Both	
Annual Traffic Rate	Lateral Load Distribution	Bias	CoV	Bias	CoV	Bias	CoV	Bias	CoV
Event C	CSA (2006a)	0.928	0.164	0.888	0.131	1.122	0.173	1.001	0.196
	Pinero (2001)	0.998	0.164	0.955	0.131	1.207	0.173	1.076	0.196
100	CSA (2006a)	0.999	0.161	0.956	0.128	1.208	0.171	1.078	0.194
100	Pinero (2001)	1.075	0.161	1.028	0.128	1.299	0.171	1.159	0.194
1 000	CSA (2006a)	1.019	0.161	0.975	0.128	1.232	0.171	1.099	0.194
1,000	Pinero (2001)	1.096	0.161	1.048	0.128	1.324	0.171	1.181	0.194
10.000	CSA (2006a)	1.036	0.161	0.991	0.128	1.252	0.171	1.117	0.194
10,000	Pinero (2001)	1.114	0.161	1.066	0.128	1.347	0.171	1.201	0.194
100,000	CSA (2006a)	1.053	0.161	1.007	0.128	1.273	0.171	1.136	0.194
	Pinero (2001)	1.133	0.161	1.083	0.128	1.369	0.171	1.221	0.194

DLA	CSA (2006h)	Trimb	le, Cous	sins and	Seda-Sa	anabria	(2003)	
	DLA	CSA (20000)		Fran	Franklin		rick	Both	
Annual Traffic Rate	Lateral Load Distribution	Bias	CoV	Bias	CoV	Bias	CoV	Bias	CoV
Event	CSA (2006a)	1.046	0.177	1.001	0.147	1.265	0.185	1.128	0.207
Event	Pinero (2001)	1.125	0.177	1.076	0.147	1.360	0.185	1.213	0.207
100	CSA (2006a)	1.245	0.164	1.191	0.132	1.505	0.173	1.342	0.197
100	Pinero (2001)	1.339	0.164	1.280	0.132	1.618	0.173	1.443	0.197
1 000	CSA (2006a)	1.310	0.163	1.253	0.131	1.583	0.173	1.412	0.196
1,000	Pinero (2001)	1.409	0.163	1.347	0.131	1.702	0.173	1.519	0.196
10.000	CSA (2006a)	1.376	0.163	1.316	0.131	1.663	0.172	1.483	0.196
10,000	Pinero (2001)	1.479	0.163	1.415	0.131	1.788	0.172	1.595	0.196
100,000	CSA (2006a)	1.441	0.163	1.378	0.130	1.742	0.172	1.554	0.196
	Pinero (2001)	1.549	0.163	1.482	0.130	1.873	0.172	1.671	0.196

Table G.9 - Load effects for LAV III-ISC Case (2), short spans

Table G.10 - Load effects for LAV III-ISC Case (2), other spans

	DLA	CSA (2006h)	Trimb	le, Cous	sins and	Seda-Sa	anabria	(2003)
	DLA	CSA (20000)		Fran	Franklin		Patrick		oth
Annual Traffic Rate	Lateral Load Distribution	Bias	CoV	Bias	CoV	Bias	CoV	Bias	CoV
Evont	CSA (2006a)	0.924	0.177	0.884	0.147	1.117	0.185	0.996	0.207
Pinero (2001)	0.994	0.177	0.950	0.147	1.201	0.185	1.071	0.207	
100	CSA (2006a)	1.107	0.164	1.059	0.132	1.338	0.173	1.194	0.197
100	Pinero (2001)	1.190	0.164	1.139	0.132	1.439	0.173	1.284	0.197
1 000	CSA (2006a)	1.166	0.163	1.115	0.130	1.410	0.172	1.257	0.196
1,000	Pinero (2001)	1.254	0.163	1.199	0.130	1.516	0.172	1.352	0.196
10.000	CSA (2006a)	1.220	0.163	1.167	0.130	1.475	0.172	1.316	0.196
10,000	Pinero (2001)	1.312	0.163	1.255	0.130	1.586	0.172	1.415	0.196
100,000	CSA (2006a)	1.275	0.163	1.219	0.130	1.541	0.172	1.375	0.195
	Pinero (2001)	1.371	0.163	1.311	0.130	1.657	0.172	1.478	0.195

DLA	CSA (2006h)	Trimb	le, Cous	sins and	Seda-Sa	anabria	(2003)	
	DLA	CSA (20000)		Frar	Franklin		rick	Both	
Annual Traffic Rate	Lateral Load Distribution	Bias	CoV	Bias	CoV	Bias	CoV	Bias	CoV
Event	CSA (2006a)	0.889	0.177	0.850	0.147	1.074	0.185	0.959	0.207
Event Pir	Pinero (2001)	0.956	0.177	0.914	0.147	1.155	0.185	1.031	0.207
100	CSA (2006a)	1.058	0.164	1.012	0.132	1.278	0.173	1.140	0.197
100	Pinero (2001)	1.137	0.164	1.088	0.132	1.374	0.173	1.226	0.197
1 000	CSA (2006a)	1.113	0.163	1.065	0.130	1.345	0.172	1.200	0.196
1,000	Pinero (2001)	1.197	0.163	1.145	0.130	1.447	0.172	1.291	0.196
10.000	CSA (2006a)	1.162	0.163	1.111	0.130	1.404	0.172	1.253	0.195
10,000	Pinero (2001)	1.249	0.163	1.195	0.130	1.510	0.172	1.347	0.195
100,000	CSA (2006a)	1.210	0.163	1.157	0.130	1.462	0.172	1.304	0.195
	Pinero (2001)	1.301	0.162	1.244	0.130	1.572	0.172	1.403	0.195

Table G.11 - Load effects for LAV III-ISC Case (3), short spans

Table G.12 - Load effects for LAV III-ISC Case (3), other spans

		CSA (2006h)	Trimb	le, Cous	sins and	Seda-Sa	anabria	(2003)
	DLA	CSA (20000)		Fran	Franklin		rick	Both	
Annual Traffic Rate	Lateral Load Distribution	Bias	CoV	Bias	CoV	Bias	CoV	Bias	CoV
Event	CSA (2006a)	0.774	0.177	0.741	0.147	0.936	0.185	0.835	0.207
Pinero (2001)	0.833	0.177	0.796	0.147	1.006	0.185	0.898	0.207	
100	CSA (2006a)	0.927	0.164	0.887	0.132	1.121	0.173	1.000	0.197
100	Pinero (2001)	0.997	0.164	0.954	0.132	1.205	0.173	1.075	0.197
1 000	CSA (2006a)	0.976	0.163	0.934	0.130	1.180	0.172	1.053	0.196
1,000	Pinero (2001)	1.050	0.163	1.004	0.130	1.269	0.172	1.132	0.196
10.000	CSA (2006a)	1.021	0.163	0.976	0.130	1.234	0.172	1.101	0.195
10,000	Pinero (2001)	1.098	0.163	1.050	0.130	1.327	0.172	1.183	0.195
100,000	CSA (2006a)	1.065	0.163	1.019	0.130	1.288	0.172	1.149	0.195
	Pinero (2001)	1.145	0.163	1.096	0.130	1.384	0.172	1.235	0.195

DLA	CSA (2006h)	Trimb	le, Cous	sins and	Seda-Sa	anabria	(2003)	
	DLA	CSA (20000)		Fran	Franklin		Patrick		oth
Annual Traffic Rate	Lateral Load Distribution	Bias	CoV	Bias	CoV	Bias	CoV	Bias	CoV
Erront	CSA (2006a)	0.873	0.161	0.835	0.128	1.055	0.171	0.941	0.194
Event	Pinero (2001)	0.938	0.129	0.898	0.083	1.134	0.140	1.012	0.168
100	CSA (2006a)	0.889	0.161	0.850	0.128	1.074	0.170	0.959	0.194
100	Pinero (2001)	0.956	0.128	0.914	0.083	1.155	0.140	1.031	0.168
1 000	CSA (2006a)	0.892	0.161	0.853	0.128	1.078	0.170	0.961	0.194
1,000	Pinero (2001)	0.959	0.128	0.917	0.083	1.159	0.140	1.034	0.168
10.000	CSA (2006a)	0.894	0.161	0.855	0.128	1.081	0.170	0.964	0.194
10,000	Pinero (2001)	0.961	0.128	0.920	0.083	1.162	0.140	1.037	0.168
100,000	CSA (2006a)	0.896	0.161	0.857	0.128	1.083	0.170	0.966	0.194
	Pinero (2001)	0.963	0.128	0.921	0.083	1.164	0.140	1.039	0.168

Table G.13 - Load effects for Leopard 2A4M, Short and Other Spans

Appendix H Example Bridges used for Load Factor Calibration

H.1.1 – Cross Section of Interior Girder (Mid Span)

Figure H.1 – Cross Section of interior girder (mid-span) Morrison and Hershfield Ltd. (2012), 37 m CPCI grider (x5) bridge

H.1.2 – Section Parameters

Span Length, $L = 37 \text{ m}$	Strands Ultimate Stress, $f_{pu} = 1860$ MPa
Number of Girder, 5	Area of Pre-Stressing, $A_{ps} = 4,540 \text{ mm}^2$
Girder Spacing, $S = 2400 \text{ mm}$	Density of Steel, $\gamma_s = 77 \text{ kN/m}^3$
Effective Flange Width, $b_f = 2400 \text{ mm}$	Density of Concrete, $\gamma_c = 24 \text{ kN/m}^3$
Concrete Strength of Deck, $f_c' = 30$ MPa	$\alpha_1 = 0.805, \beta_1 = 0.895$ (for deck)

H.1.3 – Dead Load

Dead loads, per interior girder:

$$D_1 = CPCI Girder = 13.8 kN/m$$

 $D_2 = \text{Deck Slab} + \text{Haunch} + \text{Barrier}$

= 13.01 kN/m + 1.64 kN/m + 2.97 kN/m = 17.62 kN/m

 $D_3 = \text{Asphalt} = 4.65 \text{ kN/m}$

Dead load moment per interior girder at mid-span:

$$M_{D_1} = \frac{D_1 \cdot L^2}{8} = \frac{(13.8 \text{ kN/m}) \cdot (37\text{m})^2}{8} = 2,361.5 \text{ kN} \cdot \text{m}$$
$$M_{D_2} = \frac{D_2 \cdot L^2}{8} = \frac{(17.62 \text{ kN/m}) \cdot (37\text{m})^2}{8} = 3,015.2 \text{ kN} \cdot \text{m}$$
$$M_{D_3} = \frac{D_3 \cdot L^2}{8} = \frac{(4.65 \text{ kN/m}) \cdot (37\text{m})^2}{8} = 795.7 \text{ kN} \cdot \text{m}$$

H.1.4 – Vehicle Live Load

Table H.1 - Vehicle live load moment at mid-span of interior girder

L_1 (kNm)						
	CSA (2006a): $F_m = 2.71$					
	Piner	to (2001): <i>F</i> _m	= 2.08			
AHSVS-PLS LAV III-ISC Leopard 2A4M					2A4M	
No	No Trailer		Case	Lateral Lo	oad Dist.	
Trailer Uncorrelated / Correlated		(1)/(2)	(3)	Pinero (2001)	CSA (2006a)	
1,663	2,566	916	1,093	2,156	2,809	

H.1.5 – Calculation of Factored, Unfactored Resistance, and ϕ

Calculate factored value of c/d_p , where c is the distance from the extreme compression fiber to the neutral axis and d_p is the depth of centroid of pre-stress from extreme compression fiber.

$$c/d_p = \frac{\phi_p A_{ps} f_{pu}}{\alpha_1 \phi_c \beta_1 f_c' b_f d_p + \phi_p k_p A_{ps} f_{pu}}$$

$$=\frac{(0.95)(4,540)(1,860)}{(0.805)(0.75)(0.895)(30)(2,400)(1,955) + (0.95)(0.28)(4,540)(1,860)}$$

= 0.102

Check if compression is in slab:

$$c = 0.102d_p = (0.102)(1955 \text{ mm}) = 199 \text{ mm} < 225 \text{ mm}, \therefore \text{ OK}$$

Depth of equivalent stress block:

$$a = \beta_1 c = (0.895)(199 \text{ mm}) = 178 \text{ mm}$$

With c/d_p , calculate the tendon stress at ultimate limit state, f_{ps} :

$$f_{ps} = f_{pu} \left(1 - k_p \frac{c}{d_p} \right) = (1,860 \text{ MPa}) \left(1 - (0.28)(0.102) \right) = 1,807 \text{ MPa}$$

Calculate factored moment resistance, M_{r_f} :

,

a,

$$M_{r_f} = \phi_p A_{ps} f_{ps} \left(d_p - \frac{u}{2} \right)$$
$$= (0.95)(4,540 \text{ mm}^2)(1,807 \text{ MPa}) \left((1,955 \text{ mm}) - \frac{(178 \text{ mm})}{2} \right)$$

= 14,543 kN \cdot m

Calculate specified value of c/d_p :

$$c/d_p = \frac{A_{ps}f_{pu}}{\alpha_1\beta_1f_c'b_fd_p - k_pA_{ps}f_{pu}}$$
$$= \frac{(4,540)(1,860)}{(0.805)(0.895)(30)(2,400)(1,955) + (0.28)(4,540)(1,860)}$$
$$= 0.081$$

Check if compression is in slab:

$$c = 0.081d_p = (0.081)(1955 \text{ mm}) = 159 \text{ mm} < 225 \text{ mm}, \therefore \text{ OK}$$

Depth of equivalent stress block:

 $a = \beta_1 c = (0.895)(159 \text{ mm}) = 142 \text{ mm}$

With c/d_p , calculate the tendon stress at ultimate limit state, f_{ps} :

$$f_{ps} = f_{pu} \left(1 - k_p \frac{c}{d_p} \right) = (1,860 \text{ MPa}) \left(1 - (0.28)(0.081) \right) = 1,818 \text{ MPa}$$

Calculate factored moment resistance, M_{r_f} :

$$M_{r_s} = A_{ps} f_{ps} \left(d_p - \frac{a}{2} \right)$$

= (4,540 mm²)(1,818 MPa) $\left((1,955 mm) - \frac{(142 mm)}{2} \right)$

 $= 15,550 \text{ kN} \cdot \text{m}$

With the specified and factored moment resistance, ϕ can be calculated:

$$\phi = \frac{M_{r_f}}{M_{r_s}} = \frac{14,543 \text{ kN} \cdot \text{m}}{15,550 \text{ kN} \cdot \text{m}} = 0.935$$

To use the appropriate statistical parameters given in CSA (2006b) for resistance bias and CoV, ω_p must be calculated:

$$\omega_p \approx 0.85 \frac{a}{d_p} = 0.85 \frac{(142 \text{ mm to } 179 \text{ mm})}{1955 \text{ mm}} = 0.062 \text{ to } 0.078$$

 $\therefore \ \omega_p < 0.15 \rightarrow \delta_R = 1.06, V_R = 0.05$

H.2 - Trimble, Cousins and Seda-Sanabria (2003), 12 m Concrete T-Beam (x4), Bridge

H.2.1 – Cross Section of Interior Girder

Figure H.2 - Cross Section of interior girder (mid-span) Trimble, Cousins and Seda-Sanabria (2003), 12 m concrete T-beam (x4), bridge

H.2.2 – Section Parameters

Span Length, L = 12 m

Number of Girder, 4

Girder Spacing, $S = 2,134 \text{ mm}$	Area of Steel, $A_s = 8,190 \text{ mm}^2$
Effective Flange Width, $b_f = 2,134 \text{ mm}$	Density of Steel, $\gamma_s = 77 \text{ kN/m}^3$
Concrete Strength $f_c' = 27.6$ MPa	Density of Concrete, $\gamma_c = 24 \text{ kN/m}^3$
Steel Yield Stress, $F_y = 414$ MPa	$\alpha_1 = 0.809, \beta_1 = 0.901$ (for deck)

Area of concrete, $A_c = 203 \text{ mm} \cdot 2,134 \text{ mm} + 508 \text{ mm} \cdot 686 \text{ mm} = 781,690 \text{ mm}^2$

Area of Beam, $A_{beam} = 348,488 \text{ mm}^2$

Area of Deck, $A_{slab} = 433,202 \text{ mm}^2$

H.2.3 – Dead Load

Dead loads, per interior girder:

 $D_1 = A_{beam} \cdot \gamma_c = (0.3485 \text{ m}^2)(24 \text{ kN/m}^3) = 8.36 \text{ kN/m}$ $D_2 = A_{slab} \cdot \gamma_c = (0.4332 \text{ m}^2)(24 \text{ kN/m}^3) = 10.4 \text{ kN/m}$ $D_3 = 0$

Dead load moment per interior girder at mid-span:

$$M_{D_1} = \frac{D_1 \cdot L^2}{8} = \frac{(8.36 \text{ kN/m}) \cdot (12\text{m})^2}{8} = 150.5 \text{ kN} \cdot \text{m}$$
$$M_{D_2} = \frac{D_2 \cdot L^2}{8} = \frac{(10.4 \text{ kN/m}) \cdot (12\text{m})^2}{8} = 187.2 \text{ kN} \cdot \text{m}$$

H.2.4 – Vehicle Live Load

L_1 (kNm)						
	CSA (2006a): $F_m = 2.10$					
	Piner	co (2001): <i>F</i> _m	= 1.63			
AHSVS-PLS LAV III-ISC Leopard 2A4M					2A4M	
No Trailer		Case	Case	Lateral Lo	oad Dist.	
Trailer	Uncorrelated / Correlated	(1)/(2)	(3)	Pinero (2001)	CSA (2006a)	
364	377	244	291	583	751	

H.2.5 – Calculation of Factored, Unfactored Resistance, and ϕ

Note: *a* is taken from surface of concrete.

Calculate *a* for factored material resistance, a_f , by assuming a_f is in the flange of the Tbeam:

$$a_f = \frac{\phi_s A_s F_y}{\phi_c \alpha_1 f_c' b} = \frac{(0.90)(8,190 \text{ mm}^2)(414 \text{ MPa})}{(0.75)(0.809)(27.6 \text{ MPa})(2,134 \text{ mm})} = 85 \text{ mm}$$

Calculate factored moment arm, d_f , between centroid of compression and tension:

$$d_f = (\text{Steel Depth}) - \frac{a}{2} = 203 \text{ mm} + 686 \text{ mm} - 120 \text{ mm} - \frac{85 \text{ mm}}{2} = 727 \text{ mm}$$

Calculate the factored plastic moment resistance, M_{r_f} of the section:

$$M_{r_f} = \phi_s A_s F_y d_f = (0.9)(8,190 \text{ mm}^2)(414 \text{ MPa})(727 \text{ mm}) = 2,218.5 \text{ kN} \cdot \text{m}$$

Calculate *a* for specified material resistance, a_s , by assuming a_s is in the flange of the T-beam:

$$a_s = \frac{A_s F_y}{\alpha_1 f_c' b} = \frac{(8,190 \text{ mm}^2)(414 \text{ MPa})}{(0.809)(27.6 \text{ MPa})(2,134 \text{ mm})} = 71 \text{ mm}$$

Calculate specified moment arm, d_f , between centroid of compression and tension:

$$d_f = (\text{Steel Depth}) - \frac{a}{2} = 203 \text{ mm} + 686 \text{ mm} - 120 \text{ mm} - \frac{71 \text{ mm}}{2} = 734 \text{ mm}$$

Calculate the specified plastic moment resistance, M_{r_s} of the section:

$$M_{r_s} = A_s F_y d_f = (8,190 \text{ mm}^2)(414 \text{ MPa})(734 \text{ mm}) = 2,488.7 \text{ kN} \cdot \text{m}$$

With the specified and factored moment resistance, ϕ can be calculated:

$$\phi = \frac{M_{r_f}}{M_{r_s}} = \frac{2,218.5 \text{ kN} \cdot \text{m}}{2,488.7 \text{ kN} \cdot \text{m}} = 0.891$$

To use the appropriate statistical parameters given in CSA (2006b) for resistance bias coefficient and CoV, the reinforcement ratio, ρ , and balance ratio, ρ_b , must be calculated:

$$\rho = \frac{A_s}{A_c} = \frac{8,190 \text{ mm}^2}{781,690 \text{ mm}^2} = 0.01$$

$$\rho_b = \frac{0.85\beta_1 f_c'}{F_y} \left(\frac{700}{700 + F_y}\right) = \frac{0.85(0.901)(27.6 \text{ MPa})}{(414 \text{ MPa})} \left(\frac{700}{700 + (414 \text{ MPa})}\right) = 0.032$$

 $0.4\rho_b = 0.4(0.032) = 0.013 > \rho = 0.01 \rightarrow \delta_R = 1.04, V_R = 0.08$

H.3 – DND (2007a), Example from Section F2.2, 21.95 m Steel-Stringer (x5), Bridge

Figure H.3 - Cross Section of Bridge (DND, 2007a), 21.95 m steel-stringer (x5)

H.3.2 – Section Parameters

Span Length, $L = 21.95$ m	Steel Section Dead Load, $D = 4.39 \text{ kN/m}$
Number of Girder, 5	Plastic Modulus, $Z_x = 21 \times 10^6 \text{ mm}^3$
Girder Spacing, $S = 2,400 \text{ mm}$	Density of Concrete, $\gamma_c = 24 \text{ kN/m}^3$
Steel Yield Stress, $F_y = 210$ MPa	Steel Section is Class 1

H.3.3 – Dead Load

Dead loads, per interior girder:

$$D_{1} = \frac{5 \times (\text{Stringers}) + 2 \times (\text{Curbs}) + (\text{Braces})}{5}$$
$$= \frac{(21.95 \text{ kN/m}) + (25.49 \text{ kN/m}) + (0.82 \text{ kN/m})}{5} = 9.65 \text{ kN/m}$$

$$D_2 = \frac{(\text{Deck}) + (\text{Rails})}{5} = \frac{(47.52 \text{ kN/m}) + (0.30 \text{ kN/m})}{5} = 9.56 \text{ kN/m}$$
$$D_3 = 0$$

Dead load moment per interior girder at mid-span:

$$M_{D_1} = \frac{D_1 \cdot L^2}{8} = \frac{(9.65 \text{ kN/m}) \cdot (21.95 \text{m})^2}{8} = 581.2 \text{ kN} \cdot \text{m}$$

$$M_{D_2} = \frac{D_2 \cdot L^2}{8} = \frac{(9.56 \text{ kN/m}) \cdot (21.95 \text{m})^2}{8} = 575.8 \text{ kN} \cdot \text{m}$$

H.3.4 – Vehicle Live Load

L_1 (kNm)						
	CSA (2006a): $F_m = 2.78$					
	Piner	o (2001): <i>F</i> _m	= 2.37			
AHSVS-PLS LAV III-ISC Leopard 2A4M					2A4M	
No	Trailer Case Case Lateral Load Dist		oad Dist.			
Trailer Uncorrelated / Correlated		(1)/(2)	(3)	Pinero (2001)	CSA (2006a)	
909	1,118	529	632	1,386	1,625	

H.3.5 – Calculation of Factored, Unfactored Resistance, and ϕ

Calculate the factored plastic moment resistance, M_{r_f} of the section:

$$M_{r_f} = \phi_s F_y Z_x = (0.95)(210 \text{ MPa})(21 \times 10^6 \text{ mm}^3) = 4,190 \text{ kN} \cdot \text{m}$$

Calculate the specified plastic moment resistance, M_{r_s} of the section:

$$M_{r_s} = F_y Z_x = (210 \text{ MPa})(21 \times 10^6 \text{ mm}^3) = 4,410 \text{ kN} \cdot \text{m}^3$$

With the specified and factored moment resistance, ϕ can be calculated:

$$\phi = \frac{M_{r_f}}{M_{r_s}} = \frac{4,190 \text{ kN} \cdot \text{m}}{4,410 \text{ kN} \cdot \text{m}} = 0.95$$

H.4 – DND (2007a), Example from Section F2.3, 24.38 m Steel-Composite (x4), Bridge

H.4.1 – Cross Section of Bridge (excerpts from Figure F-3 of DND (2007a))

Figure H.4 - Cross section of bridge (DND, 2007a), 24.38 m steel-composite (x4)

H.4.2 – Section Parameters

Span Length, $L = 24.38$ m	Steel Yield Stress, $F_y = 250$ MPa
Number of Girder, 4	Area of Steel, $A_s = 31,215 \text{ mm}^2$
Girder Spacing, $S = 2,550 \text{ mm}$	Density of Steel, $\gamma_s = 77 \text{ kN/m}^3$
Effective Width, $b = 2,550 \text{ mm}$	Density of Concrete, $\gamma_c = 24 \text{ kN/m}^3$
Concrete Strength, $f_c' = 30$ MPa	Centroid of Steel, $d_s = 999$ mm

Class of Steel Section:

- 4. Top Flange Class 2
- 5. Web Class 3
- 6. Bottom Flange Class 1

H.4.3 – Dead Load

Dead loads, per interior girder:

$$D_1 = A_s \cdot \gamma_s + (A_{curb} \cdot \gamma_c)/4 = 0.0312 \text{ m}^2 \cdot 77 \text{ kN/m}^3 + (0.415 \text{ m}^2 \cdot 24 \text{ kN/m}^3)/4$$
$$= 4.893 \text{ kN/m}$$

$$D_2 = \frac{[A_{slab} \cdot \gamma_c + (\text{Rails and Bracing})]}{4} = \frac{[1.510\text{m}^2 \cdot 24 \text{ kN/m}^3 + 1.5 \text{ kN/m}]}{4}$$

= 11.38 kN/m

 $D_{3} = 0$

Dead load moment per interior girder at mid-span:

$$M_{D_1} = \frac{D_1 \cdot L^2}{8} = \frac{(4.893 \text{ kN/m}) \cdot (24.38 \text{m})^2}{8} = 363.5 \text{ kN} \cdot \text{m}$$

$$M_{D_2} = \frac{D_2 \cdot L^2}{8} = \frac{(11.38 \text{ kN/m}) \cdot (24.38 \text{m})^2}{8} = 845.5 \text{ kN} \cdot \text{m}$$

H.4.4 – Vehicle Live Load

Table H.4 - Vehicle live load moment at mid-span of interior girder

L_1 (kNm)						
	CSA (2006a): $F_m = 2.35$					
	Piner	co (2001): <i>F</i> _m	= 1.94	,		
	AHSVS-PLS LAV III-ISC Leopard 2A4M					
No	Trailer	Case	Case	Lateral Lo	oad Dist.	
Trailer Uncorrelated / Correlated		(1)/(2)	(3)	Pinero (2001)	CSA (2006a)	
1,097	1,393	630	752	1,596	1,933	

H.4.5 – Calculation of Factored, Unfactored Resistance, and ϕ

Note: *a* is taken from surface of concrete. Assume full plastic moment can be achieved.

Calculate *a* for factored material resistance, a_f , by assuming a_f is in the deck:

$$a_f = \frac{\phi_s A_s F_y}{0.85\phi_c f_c' b} = \frac{(0.95)(31,215 \text{ mm}^2)(250 \text{ MPa})}{0.85(0.75)(30 \text{ MPa})(2550 \text{ mm})} = 152 \text{ mm}$$

With a_f still within the deck, the factored plastic moment resistance, M_{r_f} of the section can be calculated:

$$M_{r_f} = \phi_s A_s F_y \left(d_s - \frac{a_f}{2} \right)$$

= (0.95)(31,215 mm²)(250 MPa) $\left((999 mm) - \frac{(152 mm)}{2} \right) = 6,842.7 \text{ kN} \cdot \text{m}$

Calculate *a* for specified material resistance, a_s , by assuming a_s is in the deck:

$$a_s = \frac{A_s F_y}{0.85 f_c' b} = \frac{(31,215 \text{ mm}^2)(250 \text{ MPa})}{0.85(30 \text{ MPa})(2550 \text{ mm})} = 120 \text{ mm}$$

With a_s still within the deck, the nominal plastic moment resistance, M_{r_s} of the section can be calculated:

$$M_{r_s} = A_s F_y \left(d_s - \frac{a_f}{2} \right)$$

= (31,215 mm²)(250 MPa) $\left((999 mm) - \frac{(120 mm)}{2} \right) = 7,327.7 \text{ kN} \cdot \text{m}$

$$\phi = \frac{M_{r_f}}{M_{r_s}} = \frac{6,831.7 \text{ kN} \cdot \text{m}}{7,322.7 \text{ kN} \cdot \text{m}} = 0.934$$

H.5 - DND (2007a), Example from Section F2.7, 15.25 m Concrete T-Beam (x4), Bridge

H.5.1 – Cross Section of Bridge (excerpts from Figure F-163 of DND (2007a))

Figure H.5 - Cross section of bridge (DND, 2007a), 15.25 m concrete T-beam (x4)

H.5.2 – Section Parameters

Span Length, $L = 15.25$ m	Depth of Steel, $d_s = 1,020 \text{ mm}$
Number of Girder, 4	Density of Steel, $\gamma_s = 77 \text{ kN/m}^3$
Girder Spacing, $S = 2,235$ mm	Density of Concrete, $\gamma_c = 24 \text{ kN/m}^3$
Effective Flange Width, $b_f = 2,235 \text{ mm}$	Density of Asphalt, $\gamma_a = 23.5 \text{ kN/m}^3$
Concrete Strength $f_c' = 25$ MPa	Area of Deck, $A_{slab} = 1,605,300 \text{ mm}^2$
$\alpha_1 = 0.813, \beta_1 = 0.908$	Area of Beam, $A_{beam} = 4 \times 401,325 \text{ mm}^2$
Steel Yield Stress, $F_y = 275$ MPa	Area of Asphalt, $A_{wear} = 365,750 \text{ mm}^2$

Area of Steel, $A_s = 10,000 \text{ mm}^2$

H.5.3 – Dead Load

Dead loads, per interior girder:

$$D_{1} = A_{beam} \cdot \gamma_{c} = (0.401,325 \text{ m}^{2})(24 \text{ kN/m}^{3}) = 9.625 \text{ kN/m}$$

$$D_{2} = \frac{(A_{slab} \cdot \gamma_{c} + A_{wear} \cdot \gamma_{a})}{4}$$

$$= ((1.6053 \text{ m}^{2})(24 \text{ kN/m}^{3}) + (0.36575 \text{ m}^{2})(23.5 \text{ kN/m}^{3}))/4 = 12.275 \text{ kN/m}$$

$$D_{3} = 0$$

Dead load moment per interior girder at mid-span:

$$M_{D_1} = \frac{D_1 \cdot L^2}{8} = \frac{(9.625 \text{ kN/m}) \cdot (15.25 \text{ m})^2}{8} = 279.8 \text{ kN} \cdot \text{m}$$
$$M_{D_2} = \frac{D_2 \cdot L^2}{8} = \frac{(12.275 \text{ kN/m}) \cdot (15.25 \text{ m})^2}{8} = 356.8 \text{ kN} \cdot \text{m}$$

H.5.4 – Vehicle Live Load

L_1 (kNm)						
	CSA (2006a): $F_m = 2.14$					
	Pinero (2001): $F_m = 2.27$					
AHSVS-PLS LAV III-ISC Leopard 2A4M					2A4M	
No	Trailer	Case	Case	Lateral Lo	oad Dist.	
Trailer Uncorrelated / Correlated		(1)/(2)	(3)	Pinero (2001)	CSA (2006a)	
537	598	335	400	1,093	1,030	

Table H.5 -	Vehicle live	load momen	t at mid-span	of interior	girder
					D

H.5.5 – Calculation of Factored, Unfactored Resistance, and ϕ

Note: *a* is taken from surface of concrete.

Calculate *a* for factored material resistance, a_f , by assuming a_f is in the flange of the Tbeam:

$$a_f = \frac{\phi_s A_s F_y}{\phi_c \alpha_1 f_c' b} = \frac{(0.90)(10,000 \text{ mm}^2)(275 \text{ MPa})}{(0.75)(0.8125)(25 \text{ MPa})(2,235 \text{ mm})} = 72.7 \text{ mm}$$

Calculate factored moment arm, d_f , between centroid of compression and tension:

 $d_f = d_s - \frac{a}{2} = 1,020 \text{ mm} - \frac{72.7 \text{ mm}}{2} = 984 \text{ mm}$

Calculate the factored plastic moment resistance, M_{r_f} of the section:

$$M_{r_f} = \phi_s A_s F_y d_f = (0.9)(10,000 \text{ mm}^2)(275 \text{ MPa})(984 \text{ mm}) = 2,435 \text{ kN} \cdot \text{m}$$

Calculate *a* for specified material resistance, a_s , by assuming a_s is in the flange of the T-beam:

$$a_s = \frac{A_s F_y}{\alpha_1 f_c' b} = \frac{(10,000 \text{ mm}^2)(275 \text{ MPa})}{(0.8125)(25 \text{ MPa})(2,235 \text{ mm})} = 60.6 \text{ mm}$$

Calculate specified moment arm, d_f , between centroid of compression and tension:

$$d_f = d_s - \frac{a}{2} = 1,020 \text{ mm} - \frac{60.6 \text{ mm}}{2} = 990 \text{ mm}$$

Calculate the specified plastic moment resistance, M_{r_s} of the section:

$$M_{r_s} = A_s F_y d_f = (10,000 \text{ mm}^2)(275 \text{ MPa})(990 \text{ mm}) = 2,722.5 \text{ kN} \cdot \text{m}$$

With the specified and factored moment resistance, ϕ_{oe} can be calculated:

$$\phi = \frac{M_{r_f}}{M_{r_s}} = \frac{2,435 \text{ kN} \cdot \text{m}}{2,722.5 \text{ kN} \cdot \text{m}} = 0.894$$

To use the appropriate statistical parameters given in CSA (2006b) for resistance bias coefficient and CoV, the reinforcement ratio, ρ , and balance ratio, ρ_b , must be calculated:

$$\rho = \frac{A_s}{A_c} = \frac{10,000 \text{ mm}^2}{747,750 \text{ mm}^2} = 0.013$$

$$\rho_b = \frac{0.85\beta_1 f_c'}{F_y} \left(\frac{700}{700 + F_y}\right) = \frac{0.85(0.9075)(25 \text{ MPa})}{(275 \text{ MPa})} \left(\frac{700}{700 + (275 \text{ MPa})}\right) = 0.05$$

 $0.4\rho_b = 0.4(0.05) = 0.02 > \rho = 0.013 \rightarrow \delta_R = 1.04, V_R = 0.08$

H.6 – DND (2007a), Example from Section F2.9, 22.9 m CPCI Girder (x5), Bridge

H.6.1 – Cross Section of Bridge (except from Figure F-20 of DND (2007a))

Figure H.6 – Cross section of bridge (DND, 2007a), 22.9 m CPCI girder (x5)

Figure H.7 - Cross section of interior girder at mid-span (DND, 2007a)

H.6.2 – Section Parameters

Span Length, $L = 22.9$ m	Strands Ultimate Stress, $f_{pu} = 1,655$ MPa
Number of Girder, 5	Area of Pre-Stressing, $A_{ps} = 4,242 \text{ mm}^2$
Girder Spacing, $S = 2,290 \text{ mm}$	Density of Steel, $\gamma_s = 77 \text{ kN/m}^3$
Effective Flange Width, $b_f = 2,290 \text{ mm}$	Density of Concrete, $\gamma_c = 24 \text{ kN/m}^3$
Concrete Strength of Deck, $f_c' = 35$ MPa	$\alpha_1 = 0.80, \beta_1 = 0.883$ (for deck)

High Strength Steel bars, $K_p = 0.5$

H.6.3 – Dead Load

Dead loads, per interior girder:

$$D_{1} = (\text{Girder}) + \frac{\text{Barriers}}{5} = \left[(0.513 \text{ m}^{2}) + \frac{2}{5} (0.56 \text{ m}) (0.3 \text{ m}) \right] (24 \text{ kN/m}^{3})$$
$$= 13.9 \text{ kN/m}$$
$$D_{2} = (\text{Deck Slab} + \text{Rails} + \text{Ashpalt})/5$$
$$= \left[(10.365 \text{ m}) (0.18 \text{ m}) (24 \text{ kN/m}^{3}) + 2(1 \text{ kN/m}) \right]$$

$$+ (9.145 \text{ m})(0.05 \text{ m})(23.5 \text{ kN/m}^3)]/5$$

= 11.5 kN/m

 $D_3 = 0$

Dead load moment per interior girder at mid-span:

$$M_{D_1} = \frac{D_1 \cdot L^2}{8} = \frac{(13.9 \text{ kN/m}) \cdot (22.9 \text{m})^2}{8} = 911.2 \text{ kN} \cdot \text{m}$$

$$M_{D_2} = \frac{D_2 \cdot L^2}{8} = \frac{(11.5 \text{ kN/m}) \cdot (22.9 \text{m})^2}{8} = 753.8 \text{ kN} \cdot \text{m}$$
$$M_{D_3} = 0$$

H.6.4 – Vehicle Live Load

TT 11 II C	T 7 1 1 1	1 1	4	· · 1		<u><u>c</u> · · ·</u>	•	• 1
I ADIA H 6 -	Vehicle live	neor	moment	at $m_1 d_{-}c$	nan c	11110101	nor	airder
1 auto 11.0 -		IUau	moment	at mu-s	Dan U	л шсі	IUI.	Enuci
								0

L_1 (kNm)						
CSA (2006a): $F_m = 2.65$						
Pinero (2001): $F_m = 2.32$						
	AHSVS-PLS	LAV III-ISC		Leopard 2A4M		
No	Trailer	Case Case		Lateral Load Dist.		
Trailer	Uncorrelated / Correlated	(1)/(2)	(3)	Pinero (2001)	CSA (2006a)	
1,166	1,529	659	787	1,817	2,023	

H.6.5 – Calculation of Factored, Unfactored Resistance, and ϕ

Calculate factored value of c/d_p , where c is the distance from the extreme compression fiber to the neutral axis and d_p is the depth of centroid of pre-stress from extreme compression fiber.

$$c/d_p = \frac{\phi_p A_{ps} f_{pu}}{\alpha_1 \phi_c \beta_1 f_c' b_f d_p + \phi_p k_p A_{ps} f_{pu}}$$

$$=\frac{(0.9)(4,242)(1,655)}{(0.8)(0.75)(0.8825)(35)(2,290)(1,450) + (0.9)(0.5)(4,242)(1,655)}$$

= 0.098

Check if compression is in slab:

$$c = 0.098d_p = (0.098)(1,450 \text{ mm}) = 142 \text{ mm} < 180 \text{ mm}, \therefore \text{ OK}$$

Depth of equivalent stress block:

 $a = \beta_1 c = (0.8825)(142 \text{ mm}) = 125 \text{ mm}$

With c/d_p , calculate the tendon stress at ultimate limit state, f_{ps} :

$$f_{ps} = f_{pu} \left(1 - k_p \frac{c}{d_p} \right) = (1,655 \text{ MPa}) \left(1 - (0.5)(0.098) \right) = 1,574 \text{ MPa}$$

Calculate factored moment resistance, M_{r_f} :

$$M_{r_f} = \phi_p A_{ps} f_{ps} \left(d_p - \frac{a}{2} \right)$$

= (0.9)(4,242 mm²)(1,574 MPa) $\left((1,450 mm) - \frac{(125 mm)}{2} \right)$

 $= 8,337.8 \text{ kN} \cdot \text{m}$

Calculate specified value of c/d_p :

$$c/d_p = \frac{A_{ps}f_{pu}}{\alpha_1\beta_1f_c'b_fd_p + k_pA_{ps}f_{pu}}$$
$$= \frac{(4,242)(1,655)}{(0.8)(0.8825)(35)(2,290)(1,450) + (0.5)(4,242)(1,655)}$$

= 0.082

Check if compression is in slab:

 $c = 0.082d_p = (0.082)(1,450 \text{ mm}) = 119 \text{ mm} < 180 \text{ mm}, \therefore \text{ OK}$

Depth of equivalent stress block:

 $a = \beta_1 c = (0.8825)(119 \text{ mm}) = 105 \text{ mm}$

With c/d_p , calculate the tendon stress at ultimate limit state, f_{ps} :

$$f_{ps} = f_{pu} \left(1 - k_p \frac{c}{d_p} \right) = (1,655 \text{ MPa}) \left(1 - (0.5)(0.082) \right) = 1,587 \text{ MPa}$$

Calculate factored moment resistance, M_{r_f} :

$$M_{r_s} = A_{ps} f_{ps} \left(d_p - \frac{a}{2} \right)$$

= (4,242 mm²)(1,587 MPa) $\left((1,450 \text{ mm}) - \frac{(105 \text{ mm})}{2} \right)$

= 9,408 kN \cdot m

With the specified and factored moment resistance, ϕ can be calculated:

$$\phi = \frac{M_{r_f}}{M_{r_s}} = \frac{8,337.8 \text{ kN} \cdot \text{m}}{9,408 \text{ kN} \cdot \text{m}} = 0.886$$

To use the appropriate statistical parameters given in CSA (2006b) for resistance bias coefficient and CoV, ω_p must be calculated:

$$\omega_p \approx 0.85 \frac{a}{d_p} = 0.85 \frac{(105 \text{ mm to } 125 \text{ mm})}{1,450 \text{ mm}} = 0.062 \text{ to } 0.073$$

 $\therefore \ \omega_p < 0.15 \rightarrow \delta_R = 1.06, V_R = 0.05$

H.7 – Bartlett (1980), 20 m CPCI Girder (x6), Bridge

Figure H.8 – Cross section of interior girder at mid-span, 20 m CPCI Girder (x6)

H.7.2 – Section Parameters

Span Length, $L = 20$ m	Area of Pre-Stressing, $A_{ps} = 1,980 \text{ mm}^2$
Number of Girder, 6	Density of Steel, $\gamma_s = 77 \text{ kN/m}^3$
Girder Spacing, $S = 2,750 \text{ mm}$	Density of Concrete, $\gamma_c = 24 \text{ kN/m}^3$
Effective Flange Width, $b_f = 2,750 \text{ mm}$	Density of Asphalt, $\gamma_a = 23.5 \text{ kN/m}^3$
CPCI Concrete Strength, $f_c' = 40$ MPa	$\alpha_1 = 0.805, \beta_1 = 0.895$ (for deck)
Concrete Strength of Deck, $f_c' = 30$ MPa	Depth of Pre-stressing, $d_p = 1,471.6$ mm
Strands Ultimate Stress, $f_{pu} = 1,860$ MPa	Low-Relax Strands, $K_p = 0.3$

H.7.3 – Dead Load

Dead loads, per interior girder:

$$D_{1} = (Girder) + (Haunch) = (10.827 \text{ kN/m}) + (1.006 \text{ kN/m})$$
$$= 11.83 \text{ kN/m}$$
$$D_{2} = (Deck \text{ Slab}) + ((Asphalt) + (Barrier and Rails))/6$$
$$= (13.2 \text{ kN/m}) + [(29.67 \text{ kN/m}) + (10.08 \text{ kN/m})]/6$$
$$= 19.66 \text{ kN/m}$$
$$D_{3} = 0$$

Dead load moment per interior girder at mid-span:

$$M_{D_1} = \frac{D_1 \cdot L^2}{8} = \frac{(11.83 \text{ kN/m}) \cdot (20 \text{ m})^2}{8} = 591.7 \text{ kN} \cdot \text{m}$$
$$M_{D_2} = \frac{D_2 \cdot L^2}{8} = \frac{(19.66 \text{ kN/m}) \cdot (20 \text{ m})^2}{8} = 983 \text{ kN} \cdot \text{m}$$
$$M_{D_3} = 0$$

H.7.4 – Vehicle Live Load

L_1 (kNm)						
CSA (2006a): $F_m = 3.85$						
Pinero (2001): $F_m = 3.39$						
	AHSVS-PLS	LAV III-ISC		Leopard 2A4M		
No	Trailer	Case Case		Lateral Load Dist.		
Trailer	Uncorrelated / Correlated	(1)/(2)	(3)	Pinero (2001)	CSA (2006a)	
929.6	1,106	550	656	1,486	1,688	

H.7.5 – Calculation of Factored, Unfactored Resistance, and ϕ

Calculate factored value of c/d_p , where *c* is the distance from the extreme compression fiber to the neutral axis and d_p is the depth of centroid of pre-stress from extreme compression fiber.

$$c/d_p = \frac{\phi_p A_{ps} f_{pu}}{\alpha_1 \phi_c \beta_1 f_c' b_f d_p + \phi_p k_p A_{ps} f_{pu}}$$

$$=\frac{(0.95)(1,980)(1,860)}{(0.805)(0.75)(0.895)(30)(2,750)(1,471.6) + (0.95)(0.3)(1,980)(1,860)}$$

= 0.052

Check if compression is in slab:

$$c = 0.052d_p = (0.052)(1,471.6 \text{ mm}) = 77 \text{ mm} < 200 \text{ mm}, \therefore \text{ OK}$$

Depth of equivalent stress block:

 $a = \beta_1 c = (0.895)(77 \text{ mm}) = 69 \text{ mm}$

With c/d_p , calculate the tendon stress at ultimate limit state, f_{ps} :

$$f_{ps} = f_{pu} \left(1 - k_p \frac{c}{d_p} \right) = (1,860 \text{ MPa}) \left(1 - (0.3)(0.052) \right) = 1,831 \text{ MPa}$$

Calculate factored moment resistance, M_{r_f} :

$$M_{r_f} = \phi_p A_{ps} f_{ps} \left(d_p - \frac{a}{2} \right)$$

$$= (0.95)(1,980 \text{ mm}^2)(1,831 \text{ MPa})\left((1,471.6 \text{ mm}) - \frac{(77 \text{ mm})}{2}\right)$$

 $= 4,935.8 \text{ kN} \cdot \text{m}$

Calculate specified value of c/d_p :

$$c/d_p = \frac{A_{ps}f_{pu}}{\alpha_1\beta_1f_c'b_fd_p + k_pA_{ps}f_{pu}}$$
$$= \frac{(1,980)(1,860)}{(0.805)(0.895)(30)(2,750)(1,471.6) + (0.3)(1,980)(1,860)}$$
$$= 0.042$$

Check if compression is in slab:

$$c = 0.042d_p = (0.042)(1,471.6 \text{ mm}) = 61 \text{ mm} < 200 \text{ mm}, \therefore \text{ OK}$$

Depth of equivalent stress block:

 $a = \beta_1 c = (0.895)(61 \text{ mm}) = 55 \text{ mm}$

With c/d_p , calculate the tendon stress at ultimate limit state, f_{ps} :

$$f_{ps} = f_{pu} \left(1 - k_p \frac{c}{d_p} \right) = (1,860 \text{ MPa}) \left(1 - (0.3)(0.042) \right) = 1,837 \text{ MPa}$$

Calculate factored moment resistance, M_{r_f} :

$$M_{r_s} = A_{ps} f_{ps} \left(d_p - \frac{a}{2} \right)$$

= (1,980 mm²)(1,837 MPa) $\left((1,471.6 \text{ mm}) - \frac{(55 \text{ mm})}{2} \right)$

= 5,252.6 kN \cdot m

With the specified and factored moment resistance, ϕ_{oe} can be calculated:

$$\phi = \frac{M_{r_f}}{M_{r_s}} = \frac{4,935.8 \text{ kN} \cdot \text{m}}{5,252.6 \text{ kN} \cdot \text{m}} = 0.940$$

To use the appropriate statistical parameters given in CSA (2006b) for resistance bias coefficient and CoV, ω_p must be calculated:

$$\omega_p \approx 0.85 \frac{a}{d_p} = 0.85 \frac{(55 \text{ mm to } 69 \text{ mm})}{1,471.6 \text{ mm}} = 0.032 \text{ to } 0.040$$

 $\therefore \ \omega_p < 0.15 \rightarrow \delta_R = 1.06, V_R = 0.05$

H.8 – Bartlett (1980), 25 m CPCI Girder (x5), Bridge

Figure H.9 – Cross section of interior girder at mid-span 25 m CPCI girder (x5)

H.8.2 – Section Parameters

Span Length, $L = 25 \text{ m}$	Girder Spacing, $S = 2,500 \text{ mm}$
Number of Girder, 5	Effective Flange Width, $b_f = 2,500 \text{ mm}$

Concrete Strength of Deck, $f_c' = 30$ MPa

Strands Ultimate Stress, $f_{pu} = 1,860$ MPa

Area of Pre-Stressing, $A_{ps} = 2,772 \text{ mm}^2$

Density of Asphalt,
$$\gamma_a = 23.5 \text{ kN/m}^3$$

 $\alpha_1 = 0.805, \beta_1 = 0.895$ (for deck)

Depth of Pre-stressing, $d_p = 1,468.7 \text{ mm}$

Density of Steel, $\gamma_s = 77 \text{ kN/m}^3$ Low-Relax Strands, $K_p = 0.3$

Density of Concrete, $\gamma_c = 24 \text{ kN/m}^3$

Dead loads, per interior girder:

H.8.3 – Dead Load

$$D_{1} = (\text{Girder}) + \frac{\text{Barriers}}{5} = \left[(10.8 \text{ kN/m}) + \frac{(9.989 \text{ kN/m})}{5} \right]$$
$$= 12.82 \text{ kN/m}$$
$$D_{2} = (\text{Deck Slab} + \text{Asphalt} + \text{Other})/5$$
$$= \left[(56.316 \text{ kN/m}) + (20.269 \text{ kN/m}) + (0.09 \text{ kN/m}) \right]/5$$
$$= 15.335 \text{ kN/m}$$
$$D_{3} = 0$$

Dead load moment per interior girder at mid-span:

$$M_{D_1} = \frac{D_1 \cdot L^2}{8} = \frac{(12.82 \text{ kN/m}) \cdot (25 \text{ m})^2}{8} = 1,001.6 \text{ kN} \cdot \text{m}$$
$$M_{D_2} = \frac{D_2 \cdot L^2}{8} = \frac{(15.335 \text{ kN/m}) \cdot (25 \text{ m})^2}{8} = 1,199.6 \text{ kN} \cdot \text{m}$$
$$M_{D_3} = 0$$
H.8.4 – Vehicle Live Load

L_1 (kNm)								
CSA (2006a): $F_m = 2.87$								
	Piner	co (2001): <i>F</i> _m	= 2.40					
	AHSVS-PLS	LAV III-	LAV III-ISC Leopard 2A4M					
No	Trailer	Case	Case	Lateral Lo	oad Dist.			
Trailer	Uncorrelated / Correlated	(1)/(2)	(3)	Pinero (2001)	CSA (2006a)			
1,104	1,411	632	755	1,623	1,941			

Table H.8 - Vehicle liv	e load moment at	t mid-span	of interior g	girder

H.8.5 – Calculation of Factored, Unfactored Resistance, and ϕ

Calculate factored value of c/d_p , where c is the distance from the extreme compression fiber to the neutral axis and d_p is the depth of centroid of pre-stress from extreme compression fiber.

$$c/d_p = \frac{\phi_p A_{ps} f_{pu}}{\alpha_1 \phi_c \beta_1 f_c' b_f d_p + \phi_p k_p A_{ps} f_{pu}}$$
$$= \frac{(0.95)(2,772)(1,860)}{(0.805)(0.75)(0.895)(30)(2,500)(1,468.7) + (0.95)(0.3)(2,772)(1,860)}$$

= 0.080

Check if compression is in slab:

 $c = 0.080d_p = (0.080)(1,468.7 \text{ mm}) = 117 \text{ mm} < 190 \text{ mm}, \therefore \text{ OK}$

Depth of equivalent stress block:

 $a = \beta_1 c = (0.895)(117 \text{ mm}) = 105 \text{ mm}$

With c/d_p , calculate the tendon stress at ultimate limit state, f_{ps} :

$$f_{ps} = f_{pu} \left(1 - k_p \frac{c}{d_p} \right) = (1,860 \text{ MPa}) \left(1 - (0.3)(0.080) \right) = 1,815 \text{ MPa}$$

Calculate factored moment resistance, M_{r_f} :

$$M_{r_f} = \phi_p A_{ps} f_{ps} \left(d_p - \frac{a}{2} \right)$$

= (0.95)(2,772 mm²)(1,815 MPa) $\left((1,468.7 mm) - \frac{(105 mm)}{2} \right)$

 $= 6,768.9 \text{ kN} \cdot \text{m}$

Calculate specified value of c/d_p :

$$c/d_p = \frac{A_{ps}f_{pu}}{\alpha_1\beta_1f_c'b_fd_p + k_pA_{ps}f_{pu}}$$

$$=\frac{(2,772)(1,860)}{(0.805)(0.895)(30)(2,500)(1,468.7) + (0.3)(2,772)(1,860)}$$

= 0.064

Check if compression is in slab:

$$c = 0.064d_p = (0.062)(1,468.7 \text{ mm}) = 93.6 \text{ mm} < 190 \text{ mm}, \therefore \text{ OK}$$

Depth of equivalent stress block:

 $a = \beta_1 c = (0.895)(93.6 \text{ mm}) = 84 \text{ mm}$

With c/d_p , calculate the tendon stress at ultimate limit state, f_{ps} :

$$f_{ps} = f_{pu} \left(1 - k_p \frac{c}{d_p} \right) = (1,860 \text{ MPa}) \left(1 - (0.3)(0.064) \right) = 1,824 \text{ MPa}$$

Calculate specified moment resistance, M_{r_s} :

$$M_{r_s} = A_{ps} f_{ps} \left(d_p - \frac{a}{2} \right)$$

$$= (2,772 \text{ mm}^2)(1,824 \text{ MPa})\left((1,468.7 \text{ mm}) - \frac{(84 \text{ mm})}{2}\right)$$

= 7,213.5 kN \cdot m

With the specified and factored moment resistance, ϕ_{oe} can be calculated:

$$\phi = \frac{M_{r_f}}{M_{r_s}} = \frac{6,768.9 \text{ kN} \cdot \text{m}}{7,213.5 \text{ kN} \cdot \text{m}} = 0.938$$

To use the appropriate statistical parameters given in CSA (2006b) for resistance bias coefficient and CoV, ω_p must be calculated:

$$\omega_p \approx 0.85 \frac{a}{d_p} = 0.85 \frac{(84 \text{ mm to } 105 \text{ mm})}{1,468.7 \text{ mm}} = 0.049 \text{ to } 0.061$$

 $\therefore \ \omega_p < 0.15 \rightarrow \delta_R = 1.06, V_R = 0.05$

H.9 – Bartlett (1980), 35 m Steel-Composite (x4), Bridge

H.9.1 – Interior Girder Cross Section

Figure H.10 – Cross section of interior girder, 35 m steel-composite (x4)

H.9.2 – Section Parameters

Span Length, $L = 35$ m	Steel Yield Stress, $F_y = 350$ MPa
Number of Girder, 4	Beam Dead Load, = 4.78 kN/m
Girder Spacing, $S = 3,310 \text{ mm}$	Density of Steel, $\gamma_s = 77 \text{ kN/m}^3$
Effective Width, $b = 3,310 \text{ mm}$	Density of Concrete, $\gamma_c = 24 \text{ kN/m}^3$
Concrete Strength, $f_c' = 30$ MPa	Area of Steel, $A_s = 62,100 \text{ mm}^2$

Class of Steel Section:

- 7. Flange Class 1
- 8. Web Class 2

H.9.3 – Dead Load

Dead loads, per interior girder:

$$D_{1} = \frac{[(\text{Beam with 5\% for bracing}) + (\text{Barriers})]}{4}$$

$$= [(20.065 \text{ kN/m}) + (9.989 \text{ kN/m})]/4$$

$$= 7.51 \text{ kN/m}$$

$$D_{2} = \frac{[(\text{Slab}) + (\text{Asphalt}) + (\text{Rails})]}{4}$$

$$= \frac{[(59.22 \text{ kN/m}) + (21.62 \text{ kN/m}) + (0.09 \text{ kN/m})]}{4}$$

$$= 20.23 \text{ kN/m}$$

$$D_{3} = 0$$

Dead load moment per interior girder at mid-span:

$$M_{D_1} = \frac{D_1 \cdot L^2}{8} = \frac{(7.51 \text{ kN/m}) \cdot (35 \text{ m})^2}{8} = 1,150 \text{ kN} \cdot \text{m}$$
$$M_{D_2} = \frac{D_2 \cdot L^2}{8} = \frac{(20.23 \text{ kN/m}) \cdot (35 \text{ m})^2}{8} = 3,098 \text{ kN} \cdot \text{m}$$

H.9.4 – Vehicle Live Load

TT 11 TT 0	T 7 1 1 1 1 1	1 1	1	<u>.</u>	• 1
Tahle H U -	Vehicle live	load moment	t of mid_enon	of interior	c ourder
1 a 0 10 11.7 =		Ioau moment	i at mnu-span	or micho	Endu
					0

L_1 (kNm)								
CSA (2006a): $F_m = 2.99$								
	Piner	o (2001): F _m	= 3.00					
	AHSVS-PLS	LAV III-	ISC	Leopard 2A4M				
No	Trailer	Case	Case	Lateral Lo	oad Dist.			
Trailer	Uncorrelated / Correlated	(1)/(2)	(3)	Pinero (2001)	CSA (2006a)			
2,151	2,948	1,190	1,420	3,661	3,649			

H.9.5 – Calculation of Factored, Unfactored Resistance, and ϕ

Calculate neutral axis, \bar{y} , for factored material resistance, by assuming \bar{y} is in the top flange of the steel section:

$$\bar{y} = \frac{\phi_s A_s F_y - 0.85 \phi_c f_c' h_{slab} b}{2b_2 \phi_s F_y}$$

$$=\frac{(0.95)(62,100 \text{ mm}^2)(350 \text{ MPa}) - 0.85(0.75)(30 \text{ MPa})(200 \text{ mm})(3,310 \text{ mm})}{2(550 \text{ mm})(0.95)(350 \text{ MPa})}$$

= 21.8 mm < 40 mm \therefore Assumption is correct

where, h_{slab} is the depth of the concrete slab, and b_2 is the width of the top flange of the steel girder. The factored moment resistance, M_{r_f} , is calculated by taking moments from the centroid of the concrete. Centroid of Steel in tension, \bar{y}_T , is 719.7 mm below the neutral axis.

$$M_{r_f} = \phi_s F_y (A_s - b_2 \bar{y}) \left(\frac{h_{slab}}{2} + \bar{y} + \bar{y}_T\right) - \phi_s F_y b_2 \bar{y} \left(\frac{h_{slab} + \bar{y}}{2}\right)$$

$$= (0.95)(350)[(62,100) - (550)(21.8)] \left[\frac{(200)}{2} + (21.8) + (719.7) \right]$$
$$- (0.95)(350)(550)(21.8) \left[\frac{(200) + (21.8)}{2} \right]$$

 $= 13,578.6 \text{ kN} \cdot \text{m}$

Calculate neutral axis, \bar{y} , for specified material resistance, by assuming \bar{y} is in the top flange of the steel section:

$$\bar{y} = \frac{A_s F_y - 0.85 f_c' h_{slab} b}{2b_2 F_y}$$

$$=\frac{(62,100 \text{ mm}^2)(350 \text{ MPa}) - 0.85(30 \text{ MPa})(200 \text{ mm})(3,310 \text{ mm})}{2(550 \text{ mm})(350 \text{ MPa})}$$

= 12.6 mm < 40 mm \therefore Assumption is correct

The specified moment resistance, M_{r_s} , is calculated by taking moments from the centroid of the concrete. Centroid of Steel in tension, \bar{y}_T , is 662.2 mm below the neutral axis.

$$M_{r_s} = F_y (A_s - b_2 \bar{y}) \left(\frac{h_{slab}}{2} + \bar{y} + \bar{y}_T\right) - F_y b_2 \bar{y} \left(\frac{h_{slab} + \bar{y}}{2}\right)$$
$$= (350)[(62,100) - (550)(12.6)] \left[\frac{(200)}{2} + (12.6) + (662.2)\right]$$
$$- (350)(550)(12.6) \left[\frac{(200) + (12.6)}{2}\right]$$

= 14,703 kN \cdot m

With the specified and factored moment resistance, ϕ can be calculated:

$$\phi = \frac{M_{r_f}}{M_{r_s}} = \frac{13,579 \text{ kN} \cdot \text{m}}{14,703 \text{ kN} \cdot \text{m}} = 0.924$$

H.10.1 – Cross Section of Interior Girder at Mid-span

Figure H.11 – Cross section of interior girder at mid-span, 30.8 m pre-stressed box-girder (x 8)

H.10.2 – Section Parameters

Span Length, L = 30.8 mStrands Ultimate Stress, $f_{pu} = 1,860 \text{ MPa}$ Roadway Width, W = 9.5 mDensity of Steel, $\gamma_s = 77 \text{ kN/m}^3$ Number of Girder, 8Density of Concrete, $\gamma_c = 24.5 \text{ kN/m}^3$ Concrete Strength, $f_c' = 60 \text{ MPa}$ Density of Asphalt, $\gamma_a = 23.5 \text{ kN/m}^3$

$\alpha_1 = 0.76, \beta_1 = 0.82$	Depth Pre-stressing Centroid, $d_p =$
Area of Concrete, $A_c = 711,250 \text{ mm}^2$	1,086 mm
Area of Pre-Stressing, $A_{ps} = 2,970 \text{ mm}^2$	Low-Relax Strands, $K_p = 0.3$

H.10.3 – Dead Load

Dead loads, per interior girder:

$$D_{1} = (\text{Girder}) = A_{c}\gamma_{c} = (711,250 \text{ mm}^{2})(24.5 \text{ kN/m}^{3})$$

$$= 17.43 \text{ kN/m}$$

$$D_{2} = [(\text{Asphalt}) + (\text{Curb and Rail})]/8$$

$$= [(0.09 \text{ m})(9.5 \text{ m})(23.5 \text{ kN/m}^{3}) + (1 \text{ kN/m})]/8$$

$$= 2.64 \text{ kN/m}$$

$$D_{3} = 0$$

Dead load moment per interior girder at mid-span:

$$M_{D_1} = \frac{D_1 \cdot L^2}{8} = \frac{(17.43 \text{ kN/m}) \cdot (30.8 \text{ m})^2}{8} = 2,066 \text{ kN} \cdot \text{m}$$
$$M_{D_2} = \frac{D_2 \cdot L^2}{8} = \frac{(2.64 \text{ kN/m}) \cdot (30.8 \text{ m})^2}{8} = 312.8 \text{ kN} \cdot \text{m}$$
$$M_{D_3} = 0$$

H.10.4 – Vehicle Live Load

Following CSA (2006a) to calculate lateral load distribution using simplified methods, values for *F* and C_f are not specified for single lane traffic for box-girder type bridges. For this case, since C_f remains unchanged for 2, 3, and 4 lanes at ultimate limit states, it will be assumed that this also applies for single lane traffic with a $C_f = 13.3\%$. The difference for *F* between 4 lanes and 3 lanes, as well as between 3 lanes to 2 lanes is 2.734. Given this, it will be assumed this difference is the same between 2 lanes and a single lane, with a F = 5.37. Using these values $F_m = 1.72$.

L_1 (kNm) CSA (2006a): $F_m = 1.72$								
	AHSVS-PLS		LAV III-I					
No Troilor	Trailer	Case	(1)/(2)	$C_{\alpha\alpha\alpha}(2)$	Leopard 2A4M			
NO TIAILEI	Uncorrelated / Correlated		(1)/(2)	Case(5)				
353	472		198	236	606			

Table H.10 - Vehicle live load moment at mid-span of interior girder

H.8.5 – Calculation of Factored, Unfactored Resistance, and ϕ

Calculate factored value of c/d_p , where c is the distance from the extreme compression fiber to the neutral axis and d_p is the depth of centroid of pre-stress from extreme compression fiber.

$$c/d_p = \frac{\phi_p A_{ps} f_{pu}}{\alpha_1 \phi_c \beta_1 f_c' b_f d_p + \phi_p k_p A_{ps} f_{pu}}$$

$$=\frac{(0.95)(2,970)(1,860)}{(0.76)(0.75)(0.82)(60)(1,300)(1,086) + (0.95)(0.3)(2,970)(1,860)}$$

= 0.127

Check if compression is in slab:

$$c = 0.127d_p = (0.127)(1,086 \text{ mm}) = 138 \text{ mm} < 200 \text{ mm}, \therefore \text{ OK}$$

Depth of equivalent stress block:

 $a = \beta_1 c = (0.82)(138 \text{ mm}) = 113.5 \text{ mm}$

With c/d_p , calculate the tendon stress at ultimate limit state, f_{ps} :

$$f_{ps} = f_{pu} \left(1 - k_p \frac{c}{d_p} \right) = (1,860 \text{ MPa}) \left(1 - (0.3)(0.127) \right) = 1,789 \text{ MPa}$$

Calculate factored moment resistance, M_{r_f} :

$$M_{r_f} = \phi_p A_{ps} f_{ps} \left(d_p - \frac{a}{2} \right)$$

= (0.95)(2,970 mm²)(1,789 MPa) $\left((1,086 mm) - \frac{(113.5 mm)}{2} \right)$

= 5,195 kN \cdot m

Calculate specified value of c/d_p :

$$c/d_p = \frac{A_{ps}f_{pu}}{\alpha_1\beta_1f_c'b_fd_p + k_pA_{ps}f_{pu}}$$
$$= \frac{(2,970)(1,860)}{(0.76)(0.82)(60)(1,300)(1,086) + (0.3)(2,970)(1,860)}$$

= 0.101

Check if compression is in slab:

$$c = 0.101d_p = (0.101)(1,086 \text{ mm}) = 110 \text{ mm} < 200 \text{ mm}, \therefore \text{ OK}$$

Depth of equivalent stress block:

 $a = \beta_1 c = (0.82)(110 \text{ mm}) = 90 \text{ mm}$

With c/d_p , calculate the tendon stress at ultimate limit state, f_{ps} :

$$f_{ps} = f_{pu} \left(1 - k_p \frac{c}{d_p} \right) = (1,860 \text{ MPa}) \left(1 - (0.3)(0.101) \right) = 1,804 \text{ MPa}$$

Calculate specified moment resistance, M_{r_s} :

$$M_{r_s} = A_{ps} f_{ps} \left(d_p - \frac{a}{2} \right)$$

= (2,970 mm²)(1,804 MPa) $\left((1,086 mm) - \frac{(90 mm)}{2} \right)$

= 5,573 kN \cdot m

With the specified and factored moment resistance, ϕ can be calculated:

$$\phi = \frac{M_{r_f}}{M_{r_s}} = \frac{5,195 \text{ kN} \cdot \text{m}}{5,573 \text{ kN} \cdot \text{m}} = 0.932$$

To use the appropriate statistical parameters given in CSA (2006b) for resistance bias coefficient and CoV, ω_p must be calculated:

$$\omega_p \approx 0.85 \frac{a}{d_p} = 0.85 \frac{(110 \text{ mm to } 138 \text{ mm})}{1,086 \text{ mm}} = 0.086 \text{ to } 0.108$$

$$\therefore \ \omega_p < 0.15 \rightarrow \delta_R = 1.06, V_R = 0.05$$

Appendix I Bridge Specific Load Factors, Interior Girder Moments for Single Lane Traffic

	Live Load Factors α_L								
	Ve	hicle =	:		AHSVS-PLS				
Later	al Loa	d Distr	ibution	ι =	CSA (2006a, 2006b)				
					Tri	mble, (Cousins	s and Se	eda-
DLA =					5	Sanabri	a (200	3) - bot	h
	Spar	n Type	=				Other		
~ ~			(M	orrisoi	1 Hersl	nfield I	Ltd., 20	12)	
Span Ty	pe =			$\frac{37 \text{ r}}{37 \text{ r}}$	n CPC	I Girde	er (5)	~	
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	0.82	0.85	0.88	0.91	0.94	0.97	1.01	1.05	1.09
100	1.10	1.13	1.17	1.21	1.25	1.29	1.34	1.39	1.44
1000	1.24	1.28	1.32	1.36	1.41	1.46	1.51	1.56	1.62
10000	1.39	1.44	1.49	1.54	1.59	1.64	1.70	1.76	1.82
100000	1.55	1.60	1.65	1.70	1.76	1.82	1.89	1.95	2.02
			(.	DND 2	2007a)	– Secti	ion F.2	.2	
Span Ty	/pe =			21.95	m Stee	el Strin	ger (5)		
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	0.89	0.94	1.00	1.06	1.12	1.18	1.25	1.32	1.39
100	1.19	1.26	1.33	1.40	1.48	1.56	1.64	1.73	1.82
1000	1.34	1.42	1.50	1.58	1.66	1.75	1.84	1.94	2.04
10000	1.51	1.59	1.68	1.77	1.86	1.96	2.07	2.18	2.29
100000	1.67	1.76	1.86	1.96	2.06	2.17	2.28	2.40	2.53
			(.	DND 2	2007a)	– Secti	ion F.2	.3	
Span Ty	/pe =	24.38 m Steel Composite Girder (4)							
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	0.91	0.97	1.02	1.08	1.14	1.20	1.27	1.33	1.40
100	1.22	1.28	1.35	1.43	1.50	1.58	1.67	1.75	1.84
1000	1.37	1.45	1.52	1.60	1.69	1.78	1.87	1.97	2.07
10000	1.54	1.62	1.71	1.80	1.90	2.00	2.10	2.21	2.32
100000	1.70	1.80	1.89	1.99	2.10	2.21	2.32	2.44	2.57
			(.	DND 2	2007a)	– Secti	ion F.2	.9	
Span Type =				2	2.9 m	CPCI ((5)		
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	0.75	0.79	0.82	0.86	0.90	0.93	0.98	1.02	1.06
100	1.04	1.08	1.13	1.18	1.23	1.28	1.34	1.40	1.45
1000	1.18	1.23	1.29	1.34	1.40	1.46	1.53	1.59	1.66
10000	1.34	1.40	1.46	1.53	1.59	1.66	1.73	1.81	1.88
100000	1.50	1.56	1.63	1.70	1.78	1.85	1.93	2.02	2.10

Table I.1 – Live load factors, AHSVS-PLS, other spans (1)

			Live	Load	Factors α_L				
			Veh	icle =	AHSVS-PLS				
La	ateral L	Load D	istribu	tion =	CSA (2006a, 2006b)				
					Trimble, Cousins and Seda-				
			D	LA =	Sanał	oria (20)03) - t	ooth	
			Span T	ype =	Othe	r			
					Bartlet	t (1980))		
Span T	ype =				20 m (CPCI (6)		
β =	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	0.87	0.91	0.94	0.98	1.02	1.06	1.11	1.15	1.20
100	1.17	1.22	1.26	1.32	1.37	1.42	1.48	1.54	1.60
1000	1.32	1.37	1.43	1.49	1.55	1.61	1.67	1.74	1.81
10000	1.49	1.55	1.61	1.68	1.75	1.82	1.89	1.97	2.05
100000	1.65	1.72	1.79	1.86	1.94	2.02	2.10	2.18	2.27
					Bartlet	t (1980))		
Span T	ype =				25 m (CPCI (5)		
β =	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	0.86	0.89	0.93	0.97	1.01	1.05	1.09	1.13	1.18
100	1.15	1.20	1.25	1.30	1.35	1.40	1.46	1.52	1.58
1000	1.30	1.35	1.41	1.47	1.52	1.59	1.65	1.71	1.78
10000	1.47	1.53	1.59	1.65	1.72	1.79	1.86	1.93	2.01
100000	1.63	1.69	1.76	1.84	1.91	1.99	2.07	2.15	2.23
					Bartlet	t (1980))		
Span T	ype =	35 m Steel Composite Girder (4)							
β =	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	0.91	0.97	1.03	1.09	1.16	1.23	1.30	1.38	1.46
100	1.20	1.27	1.34	1.42	1.50	1.58	1.67	1.76	1.86
1000	1.35	1.42	1.50	1.59	1.68	1.77	1.86	1.96	2.07
10000	1.51	1.59	1.68	1.77	1.87	1.97	2.08	2.19	2.30
100000	1.66	1.76	1.85	1.95	2.06	2.17	2.28	2.40	2.53
					Geniva	ur (201	2)		
Span T	ype =		30.8	3 m Pr	e-stres	sed Bo	x Gird	er (8)	
β =	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	0.89	0.94	1.00	1.07	1.13	1.20	1.27	1.34	1.41
100	1.15	1.22	1.29	1.36	1.43	1.50	1.58	1.66	1.74
1000	1.29	1.36	1.43	1.51	1.59	1.67	1.75	1.83	1.92
10000	1.44	1.52	1.60	1.68	1.76	1.84	1.93	2.02	2.12
100000	1.59	1.67	1.75	1.84	1.93	2.02	2.11	2.21	2.31

Table I.2 - Live load factors, AHSVS-PLS, other spans (2)

Live Load Factors α_L									
			Veh	icle =	AHSVS-PLS				
La	ateral L	Load D	istribut	tion =	CSA	(2006a	l, 2006	b)	
					Trim	ble, Co	usins a	nd Sed	la-
			D	LA =	Sanal	oria (20	003) - b	oth	
		5	Span T	ype =	Short				
		(T1	rimblel	, Cous	ins, &	Seda-S	anabria	a, 2003	5) —
Span T	ype =			Frank	lin, 121	n T-be	am (4)		
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	0.94	0.99	1.04	1.10	1.15	1.21	1.27	1.33	1.40
100	1.25	1.32	1.39	1.47	1.54	1.62	1.71	1.79	1.89
1000	1.52	1.60	1.68	1.77	1.86	1.96	2.06	2.16	2.27
10000	1.81	1.91	2.01	2.11	2.22	2.34	2.46	2.58	2.71
100000	2.11	2.22	2.33	2.45	2.58	2.71	2.85	2.99	3.14
			(]	DND 2	007a) – Section F.2.7				
Span T	ype =			15.	25 m T	-Beam	(4)		
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	0.94	0.99	1.04	1.09	1.15	1.21	1.27	1.33	1.39
100	1.25	1.31	1.38	1.46	1.53	1.61	1.69	1.78	1.87
1000	1.51	1.59	1.67	1.76	1.85	1.94	2.04	2.14	2.25
10000	1.81	1.90	2.00	2.10	2.21	2.32	2.43	2.56	2.68
100000	2.10	2.21	2.32	2.44	2.56	2.69	2.82	2.96	3.11

Table I.3 - Live load factors, AHSVS-PLS, short spans

	Live Load Factors α_L								
					AHSVS-PLS with Trailer				
			Veh	icle =	(uncorrelated)				
Lateral Load Distribution =					CSA	(2006a	a, 2006	b)	
					Trim	ole, Co	usins a	ind Sed	la-
			D	LA =	Sanał	oria (20)03) - t	ooth	
			Span T	ype =	Othe	r			
			(M	orrisor	n Hersł	nfield I	_td., 20)12)	
Span T	ype =			37 r	n CPC	I Girde	er (5)		
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	0.75	0.77	0.80	0.83	0.85	0.89	0.92	0.95	0.99
100	0.99	1.02	1.05	1.09	1.13	1.16	1.21	1.25	1.29
1000	1.10	1.13	1.17	1.21	1.25	1.30	1.34	1.39	1.44
10000	1.21	1.25	1.29	1.34	1.38	1.43	1.48	1.53	1.59
100000	1.32	1.37	1.41	1.46	1.51	1.57	1.62	1.68	1.74
			(DND 2	2007a)	– Secti	ion F.2	.2	
Span T	ype =			21.95	m Steel Stringer (5)				
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	0.81	0.86	0.91	0.96	1.01	1.07	1.13	1.19	1.26
100	1.06	1.12	1.18	1.25	1.31	1.38	1.46	1.53	1.61
1000	1.18	1.24	1.31	1.38	1.46	1.53	1.61	1.70	1.79
10000	1.29	1.36	1.44	1.52	1.60	1.68	1.77	1.86	1.96
100000	1.41	1.49	1.57	1.65	1.74	1.83	1.93	2.03	2.13
			(DND 2	2007a)	– Secti	ion F.2	.3	
Span T	ype =		24.3	8 m St	eel Co	mposit	e Girde	er (4)	
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	0.83	0.88	0.93	0.98	1.03	1.09	1.15	1.21	1.27
100	1.08	1.14	1.20	1.27	1.34	1.41	1.48	1.56	1.64
1000	1.20	1.27	1.34	1.41	1.48	1.56	1.64	1.72	1.81
10000	1.32	1.39	1.46	1.54	1.62	1.71	1.80	1.89	1.99
100000	1.44	1.52	1.60	1.68	1.77	1.86	1.96	2.06	2.16
			()	DND 2	2007a)	– Secti	ion F.2	.9	•
Span T	ype =			2	2.9 m	CPCI (5)		
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	0.70	0.73	0.76	0.80	0.83	0.87	0.91	0.95	0.99
100	0.94	0.98	1.02	1.07	1.11	1.16	1.21	1.26	1.32
1000	1.05	1.10	1.15	1.20	1.25	1.30	1.36	1.41	1.47
10000	1.16	1.21	1.27	1.32	1.38	1.44	1.50	1.56	1.63
100000	1.27	1.33	1.39	1.45	1.51	1.58	1.65	1.72	1.79

Table I.4 - Live load factors, AHSVS-PLS and trailer uncorrelated, other spans (1)

Live Load Factors α_L											
					AHSVS-PLS with Trailer						
	Vehicle =						(uncorrelated)				
La	ateral L	Load D	istribut	tion =	CSA	CSA (2006a, 2006b)					
							usins a	nd Sed	la-		
			D	LA =	Sanał	oria (20)03) - ł	ooth			
		,	Span T	ype =	Othe	r					
	Bartlet	t (1980))								
Span T	ype =				20 m (CPCI (6)				
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	0.79	0.82	0.86	0.89	0.93	0.97	1.01	1.05	1.09		
100	1.04	1.08	1.13	1.17	1.22	1.27	1.32	1.37	1.42		
1000	1.16	1.21	1.25	1.30	1.36	1.41	1.47	1.53	1.59		
10000	1.27	1.33	1.38	1.44	1.49	1.55	1.62	1.68	1.75		
100000	1.39	1.45	1.51	1.57	1.63	1.70	1.77	1.84	1.91		
					Bartlet	t (1980))				
Span T	ype =				25 m (CPCI (5)					
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	0.78	0.81	0.85	0.88	0.92	0.96	1.00	1.04	1.08		
100	1.03	1.07	1.11	1.16	1.21	1.25	1.30	1.36	1.41		
1000	1.15	1.19	1.24	1.29	1.34	1.40	1.45	1.51	1.57		
10000	1.26	1.31	1.37	1.42	1.48	1.54	1.60	1.66	1.73		
100000	1.38	1.43	1.49	1.55	1.62	1.68	1.75	1.82	1.89		
					Bartlet	t (1980))		•		
Span T	ype =		35	m Ste	el Con	nposite	Girde	r (4)			
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	0.82	0.87	0.92	0.97	1.03	1.09	1.15	1.22	1.28		
100	1.06	1.12	1.19	1.25	1.32	1.39	1.47	1.55	1.63		
1000	1.18	1.24	1.31	1.38	1.46	1.54	1.62	1.70	1.79		
10000	1.29	1.36	1.43	1.51	1.59	1.68	1.77	1.86	1.96		
100000	1.41	1.48	1.56	1.64	1.73	1.82	1.92	2.02	2.12		
					Geniva	ur (201	2)				
Span T	ype =		30.8	3 m Pr	e-stres	sed Bo	x Gird	er (8)			
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	0.79	0.84	0.89	0.94	0.99	1.04	1.10	1.16	1.22		
100	1.02	1.07	1.13	1.19	1.25	1.31	1.37	1.44	1.50		
1000	1.13	1.19	1.24	1.31	1.37	1.43	1.50	1.57	1.64		
10000	1.23	1.30	1.36	1.42	1.49	1.56	1.63	1.71	1.78		
100000	1.34	1.41	1.47	1.54	1.62	1.69	1.77	1.84	1.93		

Table I.5 - Live load factors, AHSVS-PLS and trailer uncorrelated, other spans (2)

	Live Load Factors α_L										
					AHS	VS-PL	S with	Trailer			
			Veh	icle =	(unco	rrelate	d)				
La	ateral L	load D	istribut	tion =	CSA	(2006a	ı, 2006l	b)			
					Trim	ole, Co	usins a	nd Sed	a-		
			D	LA =	Sanał	oria (20)03) - b	oth			
		e e e e e e e e e e e e e e e e e e e	Span T	ype =	Short						
		(Tr	(Trimblel, Cousins, & Seda-Sanabria, 2003) –								
Span T	ype =		Franklin, 12m T-beam (4)								
$\beta =$	2	2.25	2.25 2.5 2.75 3 3.25 3.5 3.75 4								
Event	0.91	0.96	0.96 1.01 1.06 1.12 1.17 1.23 1.29 1.35								
100	1.26	1.33	1.33 1.40 1.48 1.56 1.64 1.73 1.82 1.91								
1000	1.52	1.60	1.68	1.77	1.86	1.96	2.06	2.16	2.27		
10000	1.80	1.89	1.99	2.09	2.20	2.31	2.43	2.55	2.68		
100000	2.07	2.18	2.29	2.41	2.53	2.66	2.80	2.94	3.08		
			(]	DND 2	007a) -	– Secti	on F.2.	7			
Span T	ype =			15.	25 m T	-Beam	ı (4)				
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	0.91	0.96	1.01	1.06	1.12	1.17	1.23	1.29	1.35		
100	1.26	1.33	1.33 1.40 1.47 1.55 1.63 1.72 1.81 1.90								
1000	1.52	1.59 1.68 1.76 1.85 1.95 2.05 2.15 2.26									
10000	1.79	1.89	1.89 1.98 2.08 2.19 2.30 2.42 2.54 2.66								
100000	2.07	2.17	2.29	2.40	2.52	2.65	2.78	2.92	3.06		

Table I.6 - Live load factors, AHSVS-PLS and trailer uncorrelated, short spans

	Live Load Factors α_L									
					AHS	VS-PL	S with	Trailer		
			Veh	icle =	(corre	elated)				
La	ateral L	load D	istribut	tion =	CSA	(2006a	a, 2006	b)		
					Trim	ble, Co	ousins a	nd Sed	a-	
			D	LA =	Sanal	oria (20)03) - t	oth		
			Span T	ype =	Othe	r				
~ ~			(M	orrisoi	1 Hersl	nfield I	Ltd., 20	12)		
Span T	ype =			37 r	n CPC	I Girde	er (5)			
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	0.76	0.79	0.82	0.85	0.88	0.92	0.95	0.99	1.03	
100	1.14	1.18	1.22	1.27	1.32	1.36	1.41	1.47	1.52	
1000	1.32	1.37	1.42	1.47	1.52	1.58	1.64	1.70	1.76	
10000	1.54	1.60	1.66	1.72	1.78	1.85	1.92	1.99	2.07	
100000	1.75	1.81	1.88	1.95	2.03	2.10	2.18	2.26	2.35	
			(.	DND 2	2007a)	– Secti	ion F.2	.2		
Span Ty	pe =		21.95 m Steel Stringer (5)							
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	0.83	0.88	0.93	0.99	1.05	1.11	1.17	1.24	1.31	
100	1.22	1.29	1.37	1.44	1.52	1.61	1.70	1.79	1.88	
1000	1.41	1.49	1.57	1.66	1.75	1.84	1.94	2.05	2.15	
10000	1.64	1.73	1.83	1.93	2.03	2.14	2.25	2.37	2.50	
100000	1.85	1.95	2.06	2.17	2.29	2.41	2.54	2.67	2.81	
			(.	DND 2	2007a)	– Secti	ion F.2	.3		
Span Ty	pe =		24.3	<u>8 m St</u>	eel Co	mposit	e Girde	er (4)		
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	0.85	0.90	0.95	1.01	1.07	1.13	1.19	1.26	1.33	
100	1.25	1.32	1.40	1.47	1.55	1.64	1.73	1.82	1.91	
1000	1.44	1.52	1.60	1.69	1.78	1.88	1.98	2.08	2.19	
10000	1.67	1.76	1.86	1.96	2.07	2.18	2.29	2.41	2.54	
100000	1.89	1.99	2.10	2.21	2.33	2.45	2.58	2.72	2.86	
			(.	DND 2	2007a)	- Secti	ion F.2	.9		
Span Ty	pe =			2	2.9 m	CPCI ((5)			
β=	2	2.25 2.5 2.75 3 3.25 3.5 3.75 4								
Event	0.72	0.76	0.79	0.83	0.87	0.91	0.96	1.00	1.05	
100	1.10	1.15	1.20	1.26	1.32	1.38	1.44	1.51	1.57	
1000	1.28	1.34	1.40	1.46	1.53	1.60	1.67	1.74	1.82	
10000	1.50	1.57	1.64	1.71	1.79	1.87	1.96	2.05	2.14	
100000	1.70	1.78	1.86	1.95	2.04	2.13	2.22	2.32	2.43	

Table I.7 - Live load factors, AHSVS-PLS and trailer correlated, other spans (1)

	Live Load Factors α_L									
					AHS	VS-PL	S with	Trailer		
			Veh	icle =	(corre	elated)				
La	ateral L	Load D	istribut	tion =	CSA	(2006a	ı, 2006	b)		
					Trim	ole, Co	ousins a	ind Sed	a-	
			D	LA =	Sanat	oria (20)03) - t	ooth		
		5	Span T	ype =	Othe	r				
					Bartlet	t (1980))			
Span T	ype =				20 m C	CPCI (6	5)			
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	0.81	0.85	0.89	0.93	0.97	1.01	1.05	1.10	1.14	
100	1.21	1.26	1.31	1.37	1.43	1.49	1.55	1.62	1.68	
1000	1.40	1.45	1.52	1.58	1.65	1.72	1.79	1.86	1.94	
10000	1.62	1.70	1.77	1.84	1.92	2.00	2.09	2.18	2.27	
100000	1.84	1.92	2.00	2.09	2.18	2.27	2.36	2.47	2.57	
					Bartlet	t (1980))			
Span Ty	pe =		25 m CPCI (5)							
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	0.80	0.84	0.88	0.91	0.95	0.99	1.04	1.08	1.13	
100	1.20	1.25	1.30	1.35	1.41	1.47	1.53	1.60	1.66	
1000	1.38	1.44	1.50	1.56	1.63	1.70	1.77	1.84	1.92	
10000	1.61	1.68	1.75	1.83	1.90	1.98	2.07	2.15	2.24	
100000	1.82	1.90	1.98	2.07	2.16	2.25	2.34	2.44	2.54	
					Bartlet	t (1980))			
Span Ty	pe =		35	m Ste	el Con	nposite	Girder	: (4)		
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	0.83	0.89	0.94	1.00	1.06	1.12	1.19	1.26	1.33	
100	1.22	1.29	1.36	1.44	1.52	1.60	1.69	1.78	1.88	
1000	1.40	1.48	1.56	1.65	1.74	1.83	1.93	2.03	2.14	
10000	1.63	1.72	1.81	1.91	2.01	2.12	2.23	2.35	2.47	
100000	1.84	1.94	2.04	2.15	2.27	2.39	2.51	2.64	2.78	
				(Geniva	r (2012	2)		-	
Span Ty	pe =		30.8	m Pr	e-stress	sed Bo	x Girde	er (8)		
β=	2	2.25 2.5 2.75 3 3.25 3.5 3.75 4							4	
Event	0.80	0.85 0.90 0.96 1.01 1.07 1.13 1.19 1.25								
100	1.17	1.23	1.29	1.36	1.42	1.49	1.56	1.64	1.71	
1000	1.34	1.41	1.48	1.55	1.62	1.70	1.77	1.86	1.94	
10000	1.56	1.63	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
100000	1.76	1.84	1.92	2.01	2.10	2.20	2.29	2.39	2.49	

Table I.8 - Live load factors, AHSVS-PLS and trailer correlated, other spans (2)

	Live Load Factors α_L										
					AHS	VS-PL	S with	Trailer	•		
			Veh	icle =	(corre	elated)					
La	ateral L	load D	istribut	tion =	CSA	(2006a	, 2006	b)			
					Trim	ble, Co	usins a	nd Sed	la-		
			D	LA =	Sanał	oria (20	003) - b	oth			
		S	Span T	ype =	Short						
		(Tr	(Trimblel, Cousins, & Seda-Sanabria, 2003) –								
Span T	ype =		Franklin, 12m T-beam (4)								
$\beta =$	2	2.25	2.25 2.5 2.75 3 3.25 3.5 3.75 4								
Event	0.93	0.98	0.98 1.03 1.09 1.15 1.21 1.27 1.34 1.41								
100	1.25	1.32	1.32 1.39 1.46 1.54 1.62 1.70 1.79 1.88								
1000	1.52	1.60	1.69	1.77	1.87	1.96	2.06	2.17	2.28		
10000	1.80	1.89	1.99	2.09	2.20	2.31	2.43	2.55	2.68		
100000	2.07	2.17	2.28	2.40	2.52	2.65	2.79	2.93	3.07		
			(]	DND 2	007a) -	– Secti	on F.2.	.7			
Span Typ	pe =			15.	25 m T	-Beam	(4)				
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	0.93	0.98	1.03	1.09	1.15	1.21	1.27	1.33	1.40		
100	1.25	1.32	1.32 1.39 1.46 1.53 1.61 1.70 1.78 1.87								
1000	1.52	1.60 1.68 1.77 1.86 1.95 2.05 2.16 2.27									
10000	1.79	1.89	1.89 1.98 2.08 2.19 2.30 2.41 2.53 2.66								
100000	2.06	2.17	2.28	2.39	2.52	2.64	2.77	2.91	3.05		

Table I.9 - Live load factors, AHSVS-PLS and trailer correlated, short spans

	Live Load Factors α_L									
			Ve	ehicle =	LAV II	I-ISC (Ca	ase 1)			
	La	teral Loa	d Distrib	ution =	CSA (2	006a, 20	06b)			
				DLA =	CSA (2	006a, 20	06b)			
			Span	Type =	Other					
Span	Type =	(N	Iorrison	Hershfie	ld Ltd., 2	2012) - 3'	7 m CPC	I Girder (5)	
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	1.06	1.09	1.13	1.17	1.21	1.25	1.29	1.34	1.39	
100	1.14	1.17	1.20	1.24	1.28	1.33	1.37	1.42	1.48	
1000	1.16	1.19	1.22	1.26	1.30	1.35	1.40	1.45	1.50	
10000	1.17	1.21	1.24	1.28	1.32	1.37	1.42	1.47	1.52	
100000	1.19	1.23	1.26	1.30	1.34	1.39	1.44	1.49	1.54	
Span Ty	pe =	([OND 200	7a) – Sec	ction F.2.	.2- 21.95	m Steel	Stringer (5)	
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	1.12	1.18	1.25	1.32	1.40	1.47	1.55	1.64	1.72	
100	1.20	1.27	1.34	1.41	1.49	1.57	1.65	1.74	1.83	
1000	1.22	1.29	1.36	1.44	1.51	1.60	1.68	1.77	1.86	
10000	1.24	1.31	1.38	1.46	1.54	1.62	1.71	1.79	1.89	
100000	1.26	1.33	1.40	1.48	1.56	1.64	1.73	1.82	1.91	
Span Ty	pe =	e = (DND 2007a) - Section F.2.3 - 24.38 m Steel Composite Girder (4)								
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	1.15	1.21	1.28	1.35	1.42	1.49	1.57	1.65	1.73	
100	1.23	1.30	1.36	1.43	1.51	1.59	1.67	1.75	1.84	
1000	1.25	1.32	1.39	1.46	1.54	1.61	1.70	1.78	1.87	
10000	1.27	1.34	1.41	1.48	1.56	1.64	1.72	1.81	1.90	
100000	1.29	1.36	1.43	1.50	1.58	1.66	1.75	1.83	1.92	
Span Ty	pe =		(DND 2	007a) –	Section I	F.2.7 - 15	.25 m T-	Beam (4)	•	
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	1.09	1.14	1.19	1.25	1.30	1.36	1.42	1.49	1.55	
100	1.17	1.22	1.28	1.34	1.40	1.46	1.52	1.59	1.66	
1000	1.19	1.25	1.30	1.36	1.42	1.48	1.55	1.62	1.69	
10000	1.21	1.27	1.32	1.38	1.44	1.51	1.57	1.64	1.71	
100000	1.23	1.29	1.35	1.41	1.47	1.53	1.60	1.67	1.74	
Span Ty	pe =	.1	(DND	2007a) -	- Section	F.2.9 - 2	22.9 m C	PCI (5)	1	
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	0.88	0.91	0.95	0.99	1.02	1.06	1.10	1.14	1.19	
100	0.95	0.99	1.03	1.07	1.11	1.15	1.19	1.23	1.28	
1000	0.98	1.01	1.05	1.09	1.13	1.17	1.21	1.26	1.31	
10000	0.99	1.03	1.07	1.11	1.15	1.19	1.24	1.28	1.33	
100000	1.01	1.05	1.09	1.13	1.17	1.21	1.26	1.31	1.35	

Table I.10 – Live load factors, LAV III-ISC Case (1), other spans (1)

			Live Load Factors α_L								
			Veh	icle =	LAV	III-ISC	C (Case	e 1)			
La	ateral L	.oad D	istribut	tion =	CSA	(2006a	ı, 2006	b)			
			D	LA =	CSA	(2006a	ı, 2006	b)			
		9	Span T	ype =	Othe	r		·			
			-		Bartlet	t (1980))				
Span T	ype =				20 m C	CPCI (6	5)				
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	1.08	1.12	1.15	1.19	1.24	1.28	1.32	1.37	1.42		
100	1.16	1.19	1.24	1.28	1.32	1.37	1.41	1.46	1.52		
1000	1.18	1.22	1.26	1.30	1.35	1.39	1.44	1.49	1.54		
10000	1.20	1.24	1.28	1.32	1.37	1.42	1.46	1.51	1.57		
100000	1.22	1.26	1.30	1.34	1.39	1.44	1.49	1.54	1.59		
					Bartlet	t (1980))				
Span Ty	/pe =		25 m CPCI (5)								
β=	2	2.25	2.25 2.5 2.75 3 3.25 3.5 3.75 4								
Event	1.07	1.11	1.15	1.19	1.23	1.28	1.32	1.37	1.42		
100	1.14	1.18	1.18 1.23 1.27 1.32 1.36 1.41 1.46 1.								
1000	1.17	1.21	1.25	1.29	1.34	1.39	1.44	1.49	1.54		
10000	1.18	1.23	1.27	1.31	1.36	1.41	1.46	1.51	1.57		
100000	1.20	1.25	1.29	1.33	1.38	1.43	1.48	1.54	1.59		
					Bartlet	t (1980))				
Span Ty	/pe =		35	m Ste	el Con	nposite	Girder	: (4)			
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	1.19	1.27	1.36	1.44	1.54	1.63	1.74	1.84	1.95		
100	1.27	1.35	1.44	1.53	1.62	1.72	1.83	1.94	2.05		
1000	1.29	1.37	1.46	1.55	1.65	1.75	1.86	1.97	2.08		
10000	1.31	1.39	1.48	1.57	1.67	1.77	1.88	1.99	2.11		
100000	1.33	1.41	1.50	1.59	1.69	1.79	1.90	2.01	2.13		
				(Geniva	r (2012	2)				
Span Ty	/pe =		30.8	m Pr	e-stress	sed Bo	x Girde	er (8)			
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	1.19	1.28	1.37	1.47	1.57	1.67	1.78	1.89	2.00		
100	1.26	1.35	1.45	1.54	1.64	1.75	1.86	1.97	2.08		
1000	1.28	1.37	1.47	1.56	1.67	1.77	1.88	1.99	2.11		
10000	1.30	1.39	1.49	1.58	1.68	1.79	1.90	2.01	2.13		
100000	1.32	1.41	1.50	1.60	1.70	1.81	1.92	2.03	2.15		

Table I.11 - Live load factors, LAV III-ISC Case (1), other spans (2)

	Live Load Factors α_L									
			Veh	icle =	LAV	III-ISC	C (Case	: 1)		
La	ateral L	Load D	istribut	tion =	CSA	(2006a	, 2006	b)		
			D	LA =	CSA	(2006a	, 2006	b)		
		S	Span Type = Short							
		(Tr	(Trimblel, Cousins, & Seda-Sanabria, 2003) –							
Span T	ype =			Frank	lin, 121	n T-be	am (4)			
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	1.23	1.29	1.35	1.40	1.47	1.53	1.60	1.66	1.74	
100	1.38	1.44	1.50	1.56	1.63	1.70	1.77	1.85	1.92	
1000	1.42	1.48	1.55	1.61	1.68	1.75	1.83	1.90	1.98	
10000	1.46	1.52	1.52 1.58 1.65 1.72 1.79 1.87 1.95 2.03							
100000	1.49	1.56	1.62	1.69	1.76	1.84	1.92	2.00	2.08	

Table I.12 - Live load factors, LAV III-ISC Case (1), short spans

	Live Load Factors α_L									
			Ve	ehicle =	LAV II	I-ISC (C	ase 2)			
	La	teral Loa	d Distrib	ution =	CSA (2	006a, 20	06b)			
-				DLA =	CSA (2	006a, 20	06b)			
-			Span	Type =	Other					
Span	Type =	(N	Iorrison	Hershfie	ld Ltd., 2	2012) - 3'	7 m CPC	I Girder (5)	
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	1.07	1.10	1.13	1.17	1.21	1.26	1.30	1.35	1.41	
100	1.25	1.28	1.32	1.36	1.41	1.45	1.50	1.56	1.61	
1000	1.31	1.35	1.39	1.43	1.47	1.52	1.57	1.63	1.69	
10000	1.37	1.40	1.45	1.49	1.53	1.58	1.64	1.69	1.75	
100000	1.43	1.46	1.51	1.55	1.60	1.65	1.70	1.76	1.82	
Span Ty	pe =	([DND 200	7a) – See	ction F.2	.2- 21.95	m Steel	Stringer (5)	
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	1.13	1.19	1.26	1.34	1.41	1.49	1.57	1.66	1.75	
100	1.33	1.40	1.48	1.56	1.64	1.73	1.82	1.91	2.01	
1000	1.39	1.47	1.55	1.63	1.72	1.81	1.90	2.00	2.10	
10000	1.46	1.53	1.62	1.70	1.79	1.88	1.98	2.08	2.18	
100000	1.52	1.60	1.69	1.77	1.87	1.96	2.06	2.16	2.27	
Span Ty	pe =	(DND 2	2007a) –	Section	F.2.3 - 24	4.38 m S	teel Com	posite Gi	rder (4)	
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	1.16	1.22	1.29	1.36	1.43	1.51	1.59	1.67	1.76	
100	1.36	1.43	1.50	1.58	1.66	1.75	1.83	1.92	2.02	
1000	1.43	1.50	1.58	1.66	1.74	1.83	1.92	2.01	2.11	
10000	1.49	1.57	1.65	1.73	1.82	1.91	2.00	2.10	2.20	
100000	1.56	1.63	1.72	1.80	1.89	1.98	2.08	2.18	2.29	
Span Ty	pe =		(DND 2	007a) –	Section I	F.2.7 - 15	.25 m T-	Beam (4)		
β =	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	1.10	1.15	1.21	1.26	1.32	1.38	1.45	1.51	1.58	
100	1.30	1.36	1.42	1.48	1.55	1.62	1.69	1.76	1.83	
1000	1.37	1.43	1.49	1.56	1.63	1.70	1.77	1.85	1.92	
10000	1.43	1.49	1.56	1.63	1.70	1.77	1.85	1.93	2.01	
100000	1.49	1.56	1.63	1.70	1.77	1.85	1.93	2.01	2.10	
Span Ty	pe =		(DND	2007a) -	- Section	F.2.9 - 2	22.9 m C	PCI (5)		
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	0.89	0.93	0.96	1.00	1.04	1.08	1.13	1.17	1.22	
100	1.08	1.12	1.16	1.20	1.24	1.29	1.34	1.39	1.44	
1000	1.14	1.18	1.22	1.27	1.32	1.36	1.41	1.47	1.52	
10000	1.20	1.24	1.29	1.33	1.38	1.43	1.49	1.54	1.60	
100000	1.26	1.30	1.35	1.40	1.45	1.50	1.56	1.62	1.67	

Table I.13 - Live load factors, LAV III-ISC Case (2), other spans (1)

		Live Load Factors α_L									
			Veh	icle =	LAV	III-ISO	C (Case	e 2)			
La	ateral L	load D	istribut	tion =	CSA	(2006a	ı, 2006	b)			
			D	LA =	CSA	(2006a	ı, 2006	b)			
		S	Span T	ype =	Othe	r					
					Bartlet	t (1980))				
Span T	ype =			4	20 m C	CPCI (5)				
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	1.09	1.13	1.17	1.21	1.25	1.30	1.35	1.40	1.45		
100	1.28	1.32	1.37	1.42	1.47	1.52	1.57	1.62	1.68		
1000	1.35	1.39	1.44	1.49	1.54	1.59	1.65	1.70	1.76		
10000	1.41	1.46	1.51	1.56	1.61	1.66	1.72	1.78	1.84		
100000	1.47	1.52	1.57	1.62	1.68	1.74	1.80	1.86	1.92		
			Bartlett (1980)								
Span Ty	/pe =				25 m C	CPCI (5)				
β=	2	2.25	2.25 2.5 2.75 3 3.25 3.5 3.75 4								
Event	1.08	1.12	1.16	1.20	1.25	1.29	1.34	1.39	1.45		
100	1.27	1.31	1.31 1.36 1.41 1.46 1.51 1.56 1.62 1.4								
1000	1.33	1.38	1.43	1.48	1.53	1.58	1.64	1.70	1.75		
10000	1.39	1.44	1.49	1.54	1.60	1.65	1.71	1.77	1.83		
100000	1.45	1.50	1.56	1.61	1.67	1.72	1.78	1.85	1.91		
					Bartlet	t (1980))				
Span Ty	/pe =		35	m Ste	el Con	nposite	Girder	: (4)			
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	1.19	1.28	1.36	1.45	1.55	1.65	1.75	1.86	1.97		
100	1.39	1.48	1.57	1.66	1.76	1.87	1.98	2.10	2.22		
1000	1.45	1.54	1.64	1.74	1.84	1.95	2.06	2.18	2.30		
10000	1.51	1.60	1.70	1.80	1.91	2.02	2.13	2.25	2.38		
100000	1.57	1.67	1.77	1.87	1.98	2.09	2.21	2.33	2.46		
				(Geniva	r (2012	2)				
Span Ty	/pe =		30.8	m Pr	e-stress	sed Bo	x Girde	er (8)			
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	1.19	1.28	1.38	1.47	1.57	1.68	1.79	1.90	2.01		
100	1.37	1.47	1.56	1.66	1.77	1.87	1.98	2.10	2.22		
1000	1.43	1.53 1.63 1.73 1.83 1.94 2.05 2.17 2.2							2.29		
10000	1.49	1.58	1.68	1.79	1.89	2.00	2.11	2.23	2.35		
100000	1.55	1.64	1.74	1.85	1.95	2.06	2.18	2.30	2.42		

Table I.14 - Live load factors, LAV III-ISC Case (2), other spans (2)

			actors	$\alpha_{\rm L}$						
			Veh	icle =	LAV	III-ISC	C (Case	: 2)		
La	ateral L	load D	istribut	tion =	CSA	(2006a	, 2006	b)		
			D	LA =	CSA	(2006a	, 2006	b)		
		S	Span Type = Short							
		(Tr	(Trimblel, Cousins, & Seda-Sanabria, 2003) -							
Span T	ype =			Frank	lin, 121	n T-bea	am (4)			
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	1.24	1.30	1.36	1.42	1.48	1.55	1.62	1.69	1.76	
100	1.46	1.52	1.59	1.66	1.73	1.80	1.88	1.96	2.04	
1000	1.53	1.60	1.67	1.74	1.82	1.89	1.97	2.06	2.14	
10000	1.61	1.68	1.68 1.75 1.83 1.91 1.99 2.07 2.16 2.25							
100000	1.69	1.76	1.84	1.92	2.00	2.08	2.17	2.26	2.36	

Table I.15 - Live load factors, LAV III-ISC Case (2), short spans

	Live Load Factors α _L									
			Ve	ehicle =	LAV II	I-ISC (Ca	ase 3)			
	La	teral Loa	d Distrib	oution =	CSA (2	006a, 20	06b)			
			9	DLA =	CSA (2	006a, 20	06b)			
		0	Span	Type =	Other				~	
Span Ty	pe =	(N	Aorrison	Hershfie	Id Ltd., 2	2012) - 3	/ m CPC	I Girder (5)	
β =	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	0.89	0.92	0.95	0.98	1.02	1.05	1.09	1.13	1.18	
100	1.05	1.08	1.11	1.14	1.18	1.22	1.26	1.30	1.35	
1000	1.10	1.13	1.16	1.20	1.23	1.27	1.32	1.36	1.41	
10000	1.14	1.18	1.21	1.25	1.28	1.33	1.37	1.42	1.47	
100000	1.19	1.22	1.26	1.30	1.34	1.38	1.42	1.47	1.52	
Span Ty	pe =	([DND 200	7a) – See	ction F.2.	.2- 21.95	m Steel	Stringer (5)	
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	0.94	1.00	1.06	1.12	1.18	1.25	1.32	1.39	1.46	
100	1.11	1.17	1.24	1.30	1.37	1.45	1.52	1.60	1.68	
1000	1.17	1.23	1.30	1.37	1.44	1.51	1.59	1.67	1.76	
10000	1.22	1.28	1.35	1.42	1.50	1.58	1.66	1.74	1.83	
100000	1.27	1.34	1.41	1.48	1.56	1.64	1.72	1.81	1.90	
Span Ty	$y_{\text{pe}} = (\text{DND } 2007a) - \text{Section } F.2.3 - 24.38 m Steel Composite Girde$							rder (4)		
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	0.97	1.02	1.08	1.14	1.20	1.26	1.33	1.40	1.47	
100	1.14	1.20	1.26	1.32	1.39	1.46	1.54	1.61	1.69	
1000	1.20	1.26	1.32	1.39	1.46	1.53	1.61	1.69	1.77	
10000	1.25	1.31	1.38	1.45	1.52	1.59	1.67	1.75	1.84	
100000	1.30	1.37	1.43	1.51	1.58	1.66	1.74	1.82	1.91	
Span Ty	pe =		(DND 2	007a) –	Section H	F.2.7 - 15	.25 m T-	Beam (4)	•	
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	0.92	0.97	1.01	1.06	1.11	1.16	1.21	1.27	1.33	
100	1.09	1.14	1.19	1.24	1.30	1.35	1.41	1.47	1.54	
1000	1.14	1.20	1.25	1.30	1.36	1.42	1.48	1.54	1.61	
10000	1.20	1.25	1.30	1.36	1.42	1.48	1.55	1.61	1.68	
100000	1.25	1.30	1.36	1.42	1.48	1.55	1.61	1.68	1.75	
Span Ty	pe =	•	(DND	2007a) -	- Section	F.2.9 - 2	22.9 m C	PCI (5)	•	
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	0.75	0.78	0.81	0.84	0.87	0.91	0.94	0.98	1.02	
100	0.90	0.93	0.97	1.01	1.04	1.08	1.12	1.16	1.21	
1000	0.95	0.99	1.02	1.06	1.10	1.14	1.18	1.23	1.27	
10000	1.00	1.04	1.08	1.12	1.16	1.20	1.24	1.29	1.33	
100000	1.05	1.09	1.13	1.17	1.21	1.26	1.30	1.35	1.40	

Table I.16 - Live load factors, LAV III-ISC Case (3), other spans (1)

r											
			Live Load Factors aL								
			Veh	icle =	LAV	III-ISO	C (Case	e 3)			
La	ateral L	load D	istribut	tion =	CSA	(2006a	i, 2006	b)			
			D	LA =	CSA	(2006a	i, 2006	b)			
		e e e e e e e e e e e e e e e e e e e	Span T	ype =	Othe	r					
					Bartlet	t (1980))				
Span T	ype =				20 m C	CPCI (6	5)				
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	0.91	0.94	0.98	1.01	1.05	1.09	1.13	1.17	1.21		
100	1.07	1.11	1.15	1.19	1.23	1.27	1.31	1.36	1.41		
1000	1.13	1.17	1.20	1.25	1.29	1.33	1.38	1.43	1.47		
10000	1.18	1.22	1.26	1.30	1.35	1.39	1.44	1.49	1.54		
100000	1.23	1.27	1.31	1.36	1.40	1.45	1.50	1.55	1.60		
					Bartlet	t (1980))				
Span Ty	/pe =		25 m CPCI (5)								
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	0.90	0.94	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
100	1.06	1.10	1.10 1.14 1.18 1.22 1.26 1.31 1.35 1.4								
1000	1.12	1.15	1.19	1.24	1.28	1.32	1.37	1.42	1.47		
10000	1.17	1.21	1.25	1.29	1.33	1.38	1.43	1.48	1.53		
100000	1.22	1.26	1.30	1.35	1.39	1.44	1.49	1.54	1.60		
					Bartlet	t (1980))				
Span Ty	/pe =		35	m Ste	el Con	posite	Girder	: (4)			
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	1.00	1.07	1.14	1.22	1.30	1.38	1.47	1.56	1.65		
100	1.16	1.24	1.31	1.39	1.48	1.57	1.66	1.76	1.86		
1000	1.22	1.29	1.37	1.45	1.54	1.63	1.72	1.82	1.93		
10000	1.27	1.34	1.42	1.51	1.60	1.69	1.79	1.89	1.99		
100000	1.32	1.39	1.48	1.56	1.65	1.75	1.85	1.95	2.06		
				(Geniva	r (2012	2)				
Span Ty	/pe =		30.8	m Pr	e-stress	sed Bo	x Girde	er (8)			
β=	2	2.25 2.5 2.75 3 3.25 3.5 3.75 4							4		
Event	1.00	1.08	1.15	1.24	1.32	1.41	1.50	1.59	1.69		
100	1.15	1.23	1.31	1.39	1.48	1.57	1.66	1.76	1.86		
1000	1.20	1.28	1.36	1.45	1.53	1.62	1.72	1.81	1.91		
10000	1.25	1.33	1.41	1.49	1.58	1.67	1.77	1.87	1.97		
100000	1.29	1.37	1.46	1.54	1.63	1.72	1.82	1.92	2.02		

Table I.17 - Live load factors, LAV III-ISC Case (3), other spans (2)

Live Load Factors aL										
Vehicle =						LAV III-ISC (Case 3)				
Lateral Load Distribution =					CSA	(2006a	, 2006	b)		
			D	LA =	CSA (2006a, 2006b)					
		S	Span T	ype =	Short					
(Trimblel, Cousi					ins, &	Seda-S	anabria	a, 2003	5) —	
Span T	ype =			Frank	in, 12m T-beam (4)					
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	1.06	1.10	1.15	1.21	1.26	1.32	1.37	1.43	1.50	
100	1.24	1.29	1.35	1.41	1.47	1.53	1.59	1.66	1.73	
1000	1.30	1.36	1.42	1.48	1.54	1.61	1.68	1.75	1.82	
10000	1.36	1.42	1.48	1.54	1.61	1.68	1.75	1.82	1.90	
100000	1.42	1.48	1.54	1.61	1.68	1.75	1.82	1.90	1.98	

Table I.18 - Live load factors, LAV III-ISC Case (3), short spans

Live Load Factors aL											
			V	ehicle =	Leopard 2A4M						
	La	teral Loa	d Distril	oution =	Pinero (2001): ABRAMS						
				CSA (2	CSA (2006a, 2006b)						
			Span	Type =	All						
Span	Type =	(N	Aorrison	Hershfie	ld Ltd., 2012) - 37 m CPCI Girder (5)						
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	1.00	1.03	1.05	1.08	1.10	1.13	1.16	1.19	1.23		
100	1.02	1.05	1.07	1.10	1.12	1.15	1.18	1.22	1.25		
1000	1.03	1.05	1.07	1.10	1.13	1.16	1.19	1.22	1.25		
10000	1.03	1.05	1.08	1.10	1.13	1.16	1.19	1.22	1.26		
100000	1.03	1.05	1.08	1.10	1.13	1.16	1.19	1.22	1.26		
		(Trin	nblel, Co	ousins, &	Seda-Sa	nabria, 2	003) – Fr	anklin, 12	2m T-		
Span	Type =				bea	m (4)					
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	1.06	1.10	1.14	1.18	1.22	1.27	1.32	1.37	1.42		
100	1.08	1.12	1.16	1.20	1.25	1.29	1.34	1.39	1.44		
1000	1.08	1.12	1.16	1.21	1.25	1.30	1.34	1.39	1.44		
10000	1.08	1.12	1.17	1.21	1.25	1.30	1.35	1.40	1.45		
100000	1.09	1.13	1.17	1.21	1.26	1.30	1.35	1.40	1.45		
Span Ty	pe =	([OND 200)7a) – See	ction F.2	.2- 21.95	m Steel	Stringer (5)		
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	1.07	1.12	1.17	1.22	1.27	1.33	1.39	1.44	1.51		
100	1.09	1.14	1.19	1.24	1.30	1.35	1.41	1.47	1.53		
1000	1.10	1.14	1.19	1.25	1.30	1.36	1.41	1.47	1.54		
10000	1.10	1.15	1.20	1.25	1.30	1.36	1.42	1.48	1.54		
100000	1.10	1.15	1.20	1.25	1.31	1.36	1.42	1.48	1.54		
Span Ty	pe =	(DND	2007a) –	Section	F.2.3 - 2	4.38 m S	teel Com	posite Gi	rder (4)		
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	1.09	1.14	1.19	1.24	1.29	1.34	1.40	1.46	1.52		
100	1.11	1.16	1.21	1.26	1.31	1.37	1.43	1.48	1.55		
1000	1.11	1.16	1.21	1.26	1.32	1.37	1.43	1.49	1.55		
10000	1.12	1.17	1.21	1.27	1.32	1.38	1.43	1.49	1.56		
100000	1.12	1.17	1.22	1.27	1.32	1.38	1.44	1.50	1.56		

Table I.19 – Live load factors, Leopard 2A4M tank, all spans (1)

Live Load Factors aL										
			V	Leopard 2A4M						
	La	teral Loa	nd Distrik	Pinero (2001): ABRAMS						
	24			CSA (2006a, 2006b)						
Span Ty	pe =		(DND 2	$\frac{221}{007a} - 3$	Section F	5.2.7 - 15	.25 m T-]	Beam (4)		
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	1.06	1.10	1.14	1.19	1.23	1.28	1.32	1.37	1.42	
100	1.08	1.12	1.17	1.21	1.25	1.30	1.35	1.40	1.45	
1000	1.09	1.13	1.17	1.21	1.26	1.30	1.35	1.40	1.45	
10000	1.09	1.13	1.17	1.22	1.26	1.31	1.35	1.40	1.46	
100000	1.09	1.13	1.17	1.22	1.26	1.31	1.36	1.41	1.46	
			Span	Type =	All			1		
Span Ty	pe =		(DND	2007a) -	- Section	F.2.9 - 2	2.9 m CI	PCI (5)		
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	1.04	1.08	1.12	1.17	1.22	1.27	1.32	1.37	1.43	
100	1.06	1.10	1.14	1.19	1.24	1.29	1.34	1.39	1.45	
1000	1.06	1.10	1.15	1.19	1.24	1.29	1.34	1.40	1.45	
10000	1.06	1.11	1.15	1.20	1.25	1.30	1.35	1.40	1.46	
100000	1.06	1.11	1.15	1.20	1.25	1.30	1.35	1.41	1.46	
Span	Type =		•	Bartlet	t (1980) ·	- 20 m C	CPCI (6)			
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	1.04	1.07	1.10	1.14	1.17	1.20	1.24	1.28	1.31	
100	1.06	1.09	1.13	1.16	1.19	1.23	1.26	1.30	1.34	
1000	1.07	1.10	1.13	1.16	1.19	1.23	1.27	1.30	1.34	
10000	1.07	1.10	1.13	1.16	1.20	1.23	1.27	1.31	1.34	
100000	1.07	1.10	1.13	1.17	1.20	1.24	1.27	1.31	1.35	
Span Ty	pe =			Bartlet	t (1980) ·	- 25 m C	CPCI(5)			
β =	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	1.03	1.06	1.09	1.12	1.16	1.19	1.23	1.26	1.30	
100	1.05	1.08	1.11	1.15	1.18	1.21	1.25	1.28	1.32	
1000	1.05	1.09	1.12	1.15	1.18	1.22	1.25	1.29	1.33	
10000	1.06	1.09	1.12	1.15	1.19	1.22	1.26	1.29	1.33	
100000	1.06	1.09	1.12	1.15	1.19	1.22	1.26	1.29	1.33	
Span Ty	pe =		Bartlett	: (1980) -	35 m S	teel Com	posite Gi	rder (4)		
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	1.08	1.13	1.18	1.23	1.29	1.35	1.41	1.47	1.53	
100	1.10	1.15	1.20	1.25	1.31	1.37	1.43	1.49	1.56	
1000	1.10	1.15	1.20	1.26	1.31	1.37	1.43	1.50	1.56	
10000	1.10	1.15	1.21	1.26	1.32	1.38	1.44	1.50	1.57	
100000	1.11	1.16	1.21	1.26	1.32	1.38	1.44	1.50	1.57	

Table I.20 - Live load factors, Leopard 2A4M tank, all spans (2)

Live Load Factors aL											
			Ve	Leopard 2A4M							
	La	teral Loa	d Distrib	oution =	CSA (2006a, 2006b)						
				CSA (2006a, 2006b)							
			Span	All							
Span	Type =	(N	Iorrison	Hershfie	ld Ltd., 2	2012) - 37	7 m CPC	I Girder (5)		
β =	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	0.97	0.99	1.02	1.05	1.08	1.11	1.15	1.18	1.22		
100	0.98	1.01	1.04	1.07	1.10	1.13	1.17	1.20	1.24		
1000	0.99	1.01	1.04	1.07	1.10	1.14	1.17	1.21	1.24		
10000	0.99	1.02	1.05	1.08	1.11	1.14	1.17	1.21	1.25		
100000	0.99	1.02	1.05	1.08	1.11	1.14	1.18	1.21	1.25		
~	_	(Trin	iblel, Co	usins, &	Seda-Sa	nabria, 20	003) – Fr	anklin, 12	2m T-		
Span	Type =				bea	m (4)					
β =	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	1.04	1.08	1.13	1.18	1.23	1.28	1.33	1.39	1.45		
100	1.06	1.10	1.15	1.20	1.25	1.30	1.36	1.41	1.47		
1000	1.06	1.10	1.15	1.20	1.25	1.31	1.36	1.42	1.48		
10000	1.06	1.11	1.16	1.20	1.26	1.31	1.37	1.42	1.48		
100000	1.06	1.11	1.16	1.21	1.26	1.31	1.37	1.43	1.49		
Span Ty	pe =	([(DND 2007a) – Section F.2.2- 21.95 m Steel Stringer (5)								
β =	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	1.04	1.09	1.14	1.19	1.25	1.31	1.37	1.44	1.50		
100	1.06	1.11	1.16	1.22	1.27	1.33	1.40	1.46	1.53		
1000	1.06	1.11	1.16	1.22	1.28	1.34	1.40	1.47	1.53		
10000	1.06	1.11	1.17	1.22	1.28	1.34	1.40	1.47	1.54		
100000	1.07	1.12	1.17	1.23	1.28	1.34	1.41	1.47	1.54		
Span Ty	pe =	(DND 2	2007a) –	Section	F.2.3 - 24.38 m Steel Composite Girder (4)						
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	1.06	1.11	1.16	1.21	1.27	1.33	1.39	1.45	1.52		
100	1.08	1.13	1.18	1.23	1.29	1.35	1.41	1.48	1.55		
1000	1.08	1.13	1.18	1.24	1.30	1.36	1.42	1.48	1.55		
10000	1.08	1.13	1.19	1.24	1.30	1.36	1.42	1.49	1.56		
100000	1.08	1.14	1.19	1.24	1.30	1.36	1.42	1.49	1.56		
Span Ty	pe =		(DND 2	007a) - 3	Section I	F.2.7 - 15	.25 m T-I	Beam (4)			
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	1.03	1.08	1.12	1.17	1.22	1.27	1.33	1.38	1.44		
100	1.05	1.10	1.14	1.19	1.24	1.30	1.35	1.41	1.47		
1000	1.06	1.10	1.15	1.20	1.25	1.30	1.35	1.41	1.47		
10000	1.06	1.10	1.15	1.20	1.25	1.30	1.36	1.42	1.47		
100000	1.06	1.11	1.15	1.20	1.25	1.31	1.36	1.42	1.48		

Table I.21 - Live load factors, Leopard 2A4M tank, all spans (3)

	Live L and Frankers									
			Live	actors αL						
			Ve	Leopard 2A4M						
	La	iteral Loa	ad Distrib	CSA (2006a, 2006b)						
				CSA (2	006a, 20	06b)				
		1	Span	Type =	All					
Span Ty	pe =		(DND	2007a) -	- Section	F.2.9 - 2	22.9 m Cl	PCI (5)		
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	1.00	1.05	1.10	1.15	1.20	1.25	1.31	1.37	1.43	
100	1.02	1.07	1.12	1.17	1.22	1.28	1.33	1.39	1.46	
1000	1.02	1.07	1.12	1.17	1.23	1.28	1.34	1.40	1.46	
10000	1.03	1.07	1.12	1.18	1.23	1.28	1.34	1.40	1.46	
100000	1.03	1.08	1.13	1.18	1.23	1.29	1.34	1.40	1.47	
Span	Type =		•	Bartlet	t (1980) -	- 20 m C	CPCI (6)		•	
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	1.02	1.06	1.09	1.13	1.17	1.21	1.25	1.30	1.34	
100	1.04	1.08	1.11	1.15	1.19	1.23	1.28	1.32	1.37	
1000	1.04	1.08	1.12	1.15	1.20	1.24	1.28	1.32	1.37	
10000	1.05	1.08	1.12	1.16	1.20	1.24	1.28	1.33	1.37	
100000	1.05	1.08	1.12	1.16	1.20	1.24	1.29	1.33	1.38	
Span Ty	ne =	1100		Bartlet	t (1980) ·	- 25 m C	PCI(5)	1.00	1.00	
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	1.01	1.04	1.08	1.12	1.15	1.19	1.24	1.28	1.32	
100	1.03	1.06	1.10	1.14	1.18	1.22	1.26	1.30	1.35	
1000	1.03	1.07	1.10	1.14	1.18	1.22	1.26	1.31	1.35	
10000	1.03	1.07	1.11	1.14	1.18	1.22	1.27	1.31	1.35	
100000	1.04	1.07	1.11	1.15	1.19	1.23	1.27	1.31	1.36	
Span Ty	pe =	,	Bartlett	(1980) -	- 35 m S	teel Com	posite Gi	irder (4)		
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	1.04	1.09	1.14	1.20	1.26	1.32	1.39	1.45	1.52	
100	1.06	1.11	1.17	1.22	1.28	1.34	1.41	1.48	1.55	
1000	1.06	1.11	1.17	1.23	1.29	1.35	1.41	1.48	1.55	
10000	1.06	1.12	1.17	1.23	1.29	1.35	1.42	1.48	1.55	
100000	1.00	1.12	1.17	1.23	1.29	1.35	1.12	1 49	1.56	
Span Ty	ne =	1.12	Genivar	(2012) -	30.8 m l	Pre-stress	sed Box (Girder (8)	1.00	
$\beta =$	2 2	2.25	2.5	2 75	3	3 25	3 5	3 75	Δ	
P Event	1.00	1.04	1.09	1 13	1 18	1 23	1 28	1 34	1 39	
100	1.00	1.04	1.07	1.15	1 20	1.25	1 30	1 36	1.37	
100	1.01	1.00	1.10	1.15	1.20	1.25	1.30	1.30	1.41	
1000	1.02	1.00	1.11	1.15	1.20	1.25	1.31	1.30	1.42	
10000	1.02	1.00		1.10	1.21	1.20	1.31	1.30	1.42	
100000	1.02	1.07	1.11	1.10	1.21	1.20	1.51	1.57	1.42	

Table I.22 - Live load factors, Leopard 2A4M tank, all spans (4)

Appendix J Partial Load Factors

Short Spans (< 20 m)												
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4			
Event	1.02	1.06	1.10	1.14	1.19	1.23	1.28	1.33	1.38			
100	1.34	1.39	1.45	1.51	1.57	1.63	1.70	1.77	1.84			
1000	1.61	1.67	1.74	1.80	1.87	1.95	2.02	2.10	2.19			
10000	1.91	1.98	2.06	2.14	2.22	2.30	2.39	2.48	2.58			
100000	2.21	2.29	2.38	2.47	2.56	2.66	2.76	2.86	2.97			
	Other Spans (>20 m)											
β =	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4			
Event	0.96	0.99	1.03	1.07	1.11	1.15	1.20	1.25	1.29			
100	1.27	1.32	1.37	1.42	1.47	1.52	1.58	1.64	1.70			
1000	1.43	1.48	1.54	1.59	1.65	1.71	1.77	1.84	1.90			
10000	1.60	1.66	1.72	1.78	1.85	1.92	1.98	2.06	2.13			
100000	1.77	1.83	1.90	1.97	2.04	2.11	2.19	2.27	2.35			

Table J.1 - AHSVS-PLS partial load factors, $\alpha^* = 0.7$, bending moment

Table J.2 - AHSVS-PLS and trailer, uncorrelated container, partial load factors, $\alpha^* = 0.7$, bending moment

Short Spans (< 20 m)											
β =	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	0.99	1.02	1.06	1.11	1.15	1.19	1.24	1.29	1.34		
100	1.34	1.40	1.46	1.52	1.58	1.65	1.72	1.79	1.86		
1000	1.61	1.67	1.73	1.80	1.87	1.94	2.02	2.10	2.18		
10000	1.89	1.96	2.04	2.11	2.19	2.28	2.36	2.45	2.55		
100000	2.17	2.25	2.34	2.42	2.51	2.60	2.70	2.80	2.91		
			Other	Spans	(>20 n	n)					
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4		
Event	0.87	0.90	0.94	0.97	1.01	1.05	1.09	1.13	1.18		
100	1.13	1.17	1.21	1.26	1.30	1.35	1.40	1.45	1.50		
1000	1.25	1.30	1.34	1.39	1.44	1.49	1.55	1.60	1.66		
10000	1.37	1.42	1.47	1.52	1.58	1.64	1.69	1.75	1.82		
100000	1.49	1.55	1.60	1.66	1.72	1.78	1.84	1.91	1.97		
ner, correlated container, partial load factors, a											
--	------	------	------	------	------	------	--				
bending moment											
Short Spans (< 20 m)											
2.5	2.75	3	3.25	3.5	3.75	4					
1.09	1.14	1.19	1.24	1.29	1.34	1.40					
1.44	1.50	1.56	1.63	1.69	1.76	1.83					
1.74	1.81	1.88	1.95	2.03	2.11	2.19					

2.36

3.5

1.14

1.63

1.86

2.15

2.41

2.45

2.79

3.75

1.19

1.93

2.23

1.70 1.76

2.50 2.59

2.54

2.90

4

1.24

2.00

2.31

Table J.3 - AHSVS-PLS and Trailer, correlated container, partial load factors, $\alpha^* = 0.7$,

ben

2.11

Other Spans (>20 m)

2.75

1.01

1.46

1.67

1.93

2.17

2.19

2.33 2.41 2.50 2.60 2.69

3

1.05

1.52

1.73

2.00

2.25

2.27

3.25

1.10

1.57

1.80

2.08

2.33

 $\beta =$

Event

100

1000

10000

100000

 $\beta =$

Event

100

1000

10000

100000

2

1.00

1.33

1.61

1.89

2.17

2

0.89

1.30

1.50

1.73

1.95

2.25

1.05

1.39

1.67

1.96

2.25

2.25

0.93

1.35

1.55

1.80

2.02

2.04

2.5

0.97

1.41

1.61

1.86

2.09

Table J.4 - LAV III-ISC (Case 1) partial load factors, $\alpha^* = 0.7$, bending moment

Short Spans (< 15 m)										
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	1.33	1.37	1.41	1.45	1.50	1.54	1.59	1.63	1.68	
100	1.48	1.52	1.57	1.61	1.66	1.71	1.76	1.81	1.86	
1000	1.53	1.57	1.62	1.66	1.71	1.76	1.81	1.86	1.91	
10000	1.56	1.61	1.65	1.70	1.75	1.80	1.85	1.91	1.96	
100000	1.60	1.65	1.69	1.74	1.79	1.84	1.90	1.95	2.01	
	Other Spans (>15 m)									
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	1.17	1.20	1.24	1.27	1.31	1.35	1.39	1.43	1.47	
100	1.25	1.29	1.33	1.36	1.40	1.44	1.48	1.53	1.57	
1000	1.28	1.31	1.35	1.39	1.43	1.47	1.51	1.56	1.60	
10000	1.30	1.34	1.37	1.41	1.45	1.50	1.54	1.58	1.63	
100000	1.32	1.36	1.40	1.44	1.48	1.52	1.56	1.61	1.65	

Short Spans (< 15 m)									
β=	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	1.34	1.38	1.43	1.47	1.52	1.56	1.61	1.66	1.72
100	1.57	1.61	1.66	1.71	1.76	1.81	1.86	1.92	1.97
1000	1.65	1.69	1.74	1.79	1.85	1.90	1.95	2.01	2.07
10000	1.73	1.78	1.83	1.88	1.94	1.99	2.05	2.11	2.17
100000	1.81	1.86	1.92	1.97	2.03	2.09	2.15	2.21	2.27
	Other Spans (>15 m)								
β =	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
Event	1.18	1.22	1.26	1.30	1.34	1.38	1.42	1.47	1.52
100	1.39	1.43	1.48	1.52	1.56	1.61	1.66	1.70	1.75
1000	1.47	1.51	1.55	1.60	1.64	1.69	1.74	1.79	1.84
10000	1.53	1.58	1.62	1.67	1.72	1.77	1.82	1.87	1.93
100000	1.60	1.65	1.69	1.74	1.79	1.85	1.90	1.95	2.01

Table J.5 - LAV III-ISC (Case 2) partial load factors, $\alpha^* = 0.7$, bending moment

Table J.6 - LAV III-ISC (Case 3) partial load factors, $\alpha^* = 0.7$, bending moment

Short Spans (< 15 m)										
β =	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	1.14	1.17	1.21	1.25	1.29	1.33	1.37	1.41	1.46	
100	1.33	1.37	1.41	1.45	1.49	1.54	1.58	1.63	1.67	
1000	1.40	1.44	1.48	1.52	1.57	1.61	1.66	1.71	1.76	
10000	1.46	1.50	1.54	1.59	1.64	1.68	1.73	1.78	1.83	
100000	1.52	1.56	1.61	1.65	1.70	1.75	1.80	1.85	1.91	
	Other Spans (>15 m)									
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	
Event	0.99	1.02	1.06	1.09	1.12	1.16	1.19	1.23	1.27	
100	1.17	1.20	1.24	1.27	1.31	1.35	1.39	1.43	1.47	
1000	1.23	1.26	1.30	1.34	1.37	1.41	1.46	1.50	1.54	
10000	1.28	1.32	1.36	1.40	1.44	1.48	1.52	1.56	1.61	
100000	1.34	1.38	1.42	1.46	1.50	1.54	1.59	1.63	1.68	

Table J.7 - Leopard 2A4M partial load factors, $\alpha^* = 0.7$, bending moment

All Spans									
$\beta =$	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
All Traffic Rates	1.15	1.17	1.20	1.23	1.25	1.28	1.31	1.34	1.37

Appendix K

Expedient Derivation of Partial Load Factor for the Tracked Light Armoured Vehicle (TLAV) – Remote Weapons System (RWS) Problem Statement – Derive partial load factor for the Tracked Light Armoured Vehicle with Remote Weapons System (TLAV-RW), at an expected traffic rate of 750 vehicles per year, with a reliability index, β , of 3.75 (Negligable Risk) for spans greater than 10 m.

Step 1: Obtain pertinate vehicle information.

Found in the vehicle data summary for the TLAV-RW (Data Summary, Carrier, Personnel, Full Tracked, Armoured, M113A3 with AN/MWG-505, C-30-775-000/MA-001) is the pertinate weight information for the vehicle. The curb "weight" of the TLAV-RWS is 11,253 kg with a combat "weight" of 16,762 kg, which includes 4,210 kg of uparmour (DND, 2011b). Based on this information we can calculate the payload, if we included the uparmour with the curb "weight":

Payload = Combat "weight" – Curb "weight" – Uparmour
Payload =
$$16,762 \text{ kg} - 11,253 \text{ kg} - 4,210 \text{ kg}$$

Payload = $1,299 \text{ kg}$

Step 2: Calculate vehicle "weight" bias coefficient and CoV.

Using Equation [4.16] the γ of the vehicle is calculated:

$$\gamma = \frac{W_p}{W_V} = \frac{1,299 \text{ kg}}{16,762 \text{ kg}} = 0.077$$

The TLAV-RWS is best categorized as an Armoured Personnel Carrier, so referring to Table 6.16, for n = 1,000 per year (since 750 vehicles per year should be conservatively rounded up) the following statistical parameters for the payload are given: $\delta_p = 2.209$; and $V_p = 0.037$.

Thus, the vehicle weight bias coefficient, δ_v , is calculated using Equation [4.20]:

$$\delta_v = \gamma(\delta_p - 1) + 1$$

 $\delta_v = 0.077(2.209 - 1) + 1$
 $\delta_v = 1.093$

Likewise, the vehicle weight CoV, V_v , is calculated using Equation [4.22]:

$$V_{\nu} = \frac{V_{p}\delta_{p}\gamma}{\gamma(\delta_{p} - 1) + 1}$$
$$V_{\nu} = \frac{(0.037)(2.209)(0.077)}{(0.077)((2.209) - 1) + 1}$$
$$V_{\nu} = 0.006$$

Also note, since the vehicle is tracked, the statistical parameters for the vehicle load (δ_L and V_L) can be taken as the same as the statistical parameters of the vehicle weight (δ_v and V_v). Thus:

$$\delta_L = 1.093$$
 and $V_L = 0.006$

Step 3: Selection of probabilistic parameters for dynamic and lateral load distribution

To use Table 5.20, evaluation should use a DLA of 0.25 and determine lateral load distributions following CSA (2006a) (with the exception of the Leopard 2A family of vehicles where Pinero (2001) can be used for lateral load distribution and corresponding parameters). Based Table 5.20, the dynamic effects has a bias coefficient, $\delta_{DLA} = 0.60$ and CoV, $V_{DLA} = 0.80$. The "Simplified Method" for live load lateral load distribution has a bias coefficient, $\delta_A = 0.93$ and a CoV, $V_A = 0.12$. Based on these values, and those derived in Step 2, the bias coefficient of the load effect, δ_{L_1} , can be calculated using Equation [5.11]:

$$\delta_{L_1} = \delta_L \delta_A \left(\frac{1 + \delta_{\text{DLA}} \text{DLA}}{1 + \text{DLA}} \right)$$

$$\delta_{L_1} = (1.093)(0.93) \left(\frac{1 + (0.60)(0.25)}{1 + (0.25)} \right)$$

$$\delta_{L_1} = 0.935$$

Using Equation [5.12] the CoV of the load effect, V_{L_1} , can be calculated:

$$V_{L_1} = \sqrt{V_A^2 + V_L^2 + \left(\frac{\delta_{\text{DLA}}\text{DLA}}{1 + \text{DLA}}\right)^2 V_{\text{DLA}}^2}$$
$$V_{L_1} = \sqrt{(0.12)^2 + (0.006)^2 + \left(\frac{(0.60)(0.25)}{1 + (0.25)}\right)^2 (0.80)^2}$$
$$V_{L_1} = 0.154$$

Step 4: Calculate partial load factor

With the information from Step 3, for a target reliability, β , is 3.75, the partial load factor can be calculated using Equation [6.8] using a separation factor, $\alpha^* = 0.70$:

$$\alpha_{L_1} = \delta_{L_1} e^{(\beta \alpha^* V_{L_1})}$$
$$\alpha_{L_1} = (0.935) e^{[(3.75)(0.70)(0.154)]}$$
$$\alpha_{L_1} = 1.40$$

Appendix L Partial Load Factors for Fighting and Wheeled Military Vehicles Based on Payload Weight Fraction

Figure L.1 – Partial load factors, $\beta = 2.75$ with varied traffic rates

Figure L.2 – Partial load factors, $\beta = 3.25$ with varied traffic rates

Figure L.3 – Partial load factors, $\beta = 3.75$ with varied traffic rates

Figure L.4 – Partial load factors, $\beta = 4.00$ with varied traffic rates

Figure L.5 – Partial load factors for Event vehicle and varied β

Figure L.6 – Partial load factors for 100 veh/yr traffic and varied β

Figure L.7 – Partial load factors for 1,000 veh/yr traffic and varied β

Figure L.8 – Partial load factors for 10,000 veh/yr traffic and varied β

Appendix M

Military Load Classification versus Span for Canadian Forces Vehicles

TLAV-RWS							
Span Range (m)	0 - 5	5 - 10	10 - 20	20 - 60	60 - 100		
Span Specific MLC	19	19	19	19	19		
Leopard 2A4M							
Span Range (m)	0 - 5	5 - 10	10 - 20	20 - 60	60 - 100		
Span Specific MLC	59	65	67	67	67		
	L	eopard 2A6	5M				
Span Range (m)	0 - 5	5 - 10	10 - 20	20 - 60	60 - 100		
Span Specific MLC	62	68	69	69	69		
HLVW							
Span Range (m)	0 - 5	5 - 10	10 - 20	20 - 60	60 - 100		
Span Specific MLC	20	20	23	24	25		
AHSVS-PLS							
Span Range (m)	0 - 5	5 - 10	10 - 20	20 - 60	60 - 100		
Span Specific MLC	31	33	41	41	42		
	AHSV	S-PLS with	n Trailer				
Span Range (m)	0 - 5	5 - 10	10 - 20	20 - 60	60 - 100		
Span Specific MLC	31	34	47	54	54		
A	HSVS T	ractor with	72 t Trailer				
Span Range (m)	0 - 5	5 - 10	10 - 20	20 - 60	60 - 100		
Span Specific MLC	56	82	99	113	113		
LAV III-ISC - Uparmoured							
Span Range (m)	0 - 5	5 - 10	10 - 20	20 - 60	60 - 100		
Span Specific MLC	18	20	20	22	22		
LAV III-ISC - LORIT							
Span Range (m)	0 - 5	5 - 10	10 - 20	20 - 60	60 - 100		
Span Specific MLC	22	24	25	27	27		

Table M.1 – Military Load Classification by span of Canadian Forces vehicles

Figure M.1 – Military Load Classification (Tracked) versus span for TLAV-RWS

Figure M.2 - Military Load Classification (Tracked) versus span for Leopard 2A4M tank

Figure M.3 - Military Load Classification (Tracked) versus span for Leopard 2A6M tank

Figure M.4 - Military Load Classification (Wheeled) versus span for HLVW

Figure M.5 - Military Load Classification (Wheeled) versus span for AHSVS-PLS

Figure M.6 - Military Load Classification (Wheeled) versus span for AHSVS-PLS with Trailer

Figure M.7 - Military Load Classification (Wheeled) versus span for AHSVS-PLS with 72 t Trailer

Figure M.8 - Military Load Classification (Wheeled) versus span for LAV III-ISC Uparmoured

Figure M.9 – Military Load Classification (Wheeled) versus span for LAV III-ISC LORIT

Curriculum Vitae

Name:	Andrew James MacDonald
Post-secondary Education and Degrees:	The University of Western Ontario London, Ontario, Canada 2012-2014 M.E.Sc.
	Royal Military College of Canada Kingston, Ontario, Canada 2002-2006 B.Eng.
Honours and Awards:	-
Related Work Experience	Teaching Assistant The University of Western Ontario 2013-2014
	Construction Engineering Officer Canadian Forces 2002-2013

Publications:

MacDonald, A.J., Bartlett, F.M., Tanovic, R. and Wight, R.G. (2014) "Probabilistic Quantification of Military Vehicle Loading", *Proceedings of the 9th International Conference on Short and Medium Span Bridges*, Calgary, AB