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Abstract 

The present study focuses on developing a predictive methodology to scale-up a slurry 

annular photoreactor using a TiO2 Degussa P25 from the bench-scale to a pilot-plant scale. 

The bench-scale photoreactor is a Photo-CREC-Water II (PCWII), a 2.65 L internally-

irradiated slurry annular photocatalytic reactor (Total volume of slurry, 6.0 L). The pilot-

plant scale photoreactor is a Photo-CREC Water Solar Simulator, a 9.8 L pilot-plant 

photoreactor, (Total volume, 18 liters of slurry) externally irradiated by eight lamps.  

The proposed approach involves two Monte Carlo methods to model the Radiative Transfer 

Equation (RTE) inside each photoreactor. The adopted methodology allows the independent 

validation of radiative and kinetic models avoiding cross-correlation issues. With this end, a 

novel probe is developed to measure irradiance at different radial positions. This allows 

determining both adequate boundary conditions directly in the photo-CREC-Water II unit as 

well as establishing a geometry-independent phase function for Degussa P25 TiO2 in the 25 

to 400 mgl
-1

 ranges. Uncertainty of LVREA was compared between different experimental 

methodologies currently found in the open literature for optical parameter estimation. In this 

regard, the proposed methodology was seen to outperform all other presented approaches. 

On the other hand, a kinetic model and kinetic parameters are established by carrying out 

photocatalytic degradations of a model pollutant (Oxalic Acid). The determination of oxalic 

acid concentration is followed by TOC analysis in the PCWII reactor. Kinetic experiments 

are developed at different photocatalyst concentrations and various irradiance conditions. 

Additionally, convective and dispersive transport models are proposed and solved by Finite 

Element (FE) Method to determine the photocatalyst irradiation time in each photoreactor 

unit and ultimately to predict the overall photocatalytic efficiency. Finally the kinetic-

irradiance based model is validated. This is done by successfully predicting irradiance 

profiles and degradation rates at different photocatalyst concentrations and irradiance 

conditions on the larger scale, externally irradiated eight-lamp Photophotoreactor.  

Keywords 

Photocatalytic Reactors; Radiation Field; Monte Carlo, Phase Functions, Scale up, LVRPA. 
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Chapter 1  

1 Introduction 

Heterogeneous photocatalysis is an emerging technology with potential use in many 

oxidation and reduction chemical transformations (Cassano et al. 2000). Interest in 

photocatalysis started in the 1970s when attractive proposals were considered for water 

splitting for hydrogen production (Fujishima et al. 1975). It was not until the 1980s that 

new potential applications were proposed for environmental remediation (Bahnemann, 

2004). From this point on, the interest in this promising technology has done nothing but 

increase (Ahmed et al., 2010). Among these new applications, outstanding examples are 

water purification (Herrmann, 1999), air purification (Garcia Hernandez et al., 2010), 

self-cleaning surfaces and the production of high energy molecules, such as hydrogen 

among others (Escobedo-Salas et al. 2013). 

As other AOPs (Advanced Oxidation Processes), heterogeneous photocatalysis is 

characterized by the production of hydroxyl radicals (OH•). These radicals are extremely 

powerful and non-selective oxidants, which are capable of oxidizing the majority of 

organic compounds very rapidly (Moreira 2011). Heterogeneous photocatalysis was 

found to be very efficient and advantageously versatile, specifically in the removal of a 

wide variety of organic contaminants present in water (Li Puma et al., 2007; Moreira et 

al., 2010; Chong, et al., 2010; Ahmed et al., 2011).  

From a technical perspective, water treatment is based on various mechanical, physical, 

biological and chemical processes. These treatments can be organized in three categories: 

(1) Primary treatments, which rely on physical separation and are used to eliminate 

suspended particles; (2) Secondary treatments, which are based on biological treatments 

and remove bacteria and microorganisms; (3) Tertiary treatments, which consist of more 

effective and non-reactive systems used to remove pollutants hard to degrade or separate 

by other means. 

Drinking water sources may contain some organic contaminants since industrial 

manufacturers and households wastewaters, in many instances, discharge in ground wells 
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and surface water. Some of these organic contaminants, characterized by high chemical 

stability, are not removed via primary and secondary treatments. Thus, for these water 

resources to achieve drinking standards it is necessary to make use of tertiary treatments, 

which are of paramount importance, in a world were about 80% of the population lives in 

areas where fresh water supply is not secure or accessible (BBC News Science and 

Environment 2009). 

Moreover, Andrew Hudson, the UN's principal director of the United Nations 

Development Programme (UNDP) in 2009, stated that access to water and sanitation is 

by far the strongest driver of the Human Development Index (HDI), a UN measure to 

determine how societies are doing socially and economically. According to UNDP, water 

scarcity has very little to do with the physical availability of water and much more with 

the availability of energy, to purify water. (BBC News Science and Environment 2009).  

 

Figure 1.1 Yearly mean of daily Irradiation in UV (280-400nm) on horizontal plane. 

Copyright Mines ParisTech / Armines 2008. 

On the other hand, if the regions where drinking water scarcity are of major social 

concern are located in a world map distribution of UV radiation, such as the one 

presented in Figure 1.1, it can be easily  concluded that most of these regions present 

moderate to relatively high solar irradiance. As photocatalytic reactions are the result of 

the interaction of photons having the appropriate wavelength, with a solid semiconductor 
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(Malato et al., 2004, Franch et al., 2005; Fujishima et al., 2008), sunlight can become the 

main energy source driving the photocatalytic decontamination process. Thus, 

heterogeneous photocatalysis, using solar radiation and an inexpensive semiconductor 

photocatalysts can t help to mitigate some of the social development issues in third world 

countries. 

However, for photocatalytic technologies to achieve their full potential, several issues 

still need to be addressed (Ismail and Bahnemann, 2014). One of  these challenges is the 

required increase of the efficiency of photocatalytic systems at larger scales (Marugan et 

al., 2010). In this regard, significant progress is needed from the engineering design and 

modelling point of view, for the successful application of laboratory data and models  to 

large-scale operations (Gaya and Abdullah, 2008). A main issue limiting photoreactor 

scale–up is the lack of suitable radiation models (Changrani & Raupp, 1999) as well as 

the lack of appropriate kinetics and design procedures (Li Puma et al., 2007; Moreira et 

al., 2012). Particularly, the behavior of UVA radiation and light inside the heterogeneous 

media and its impact on the pollutant local degradation rate is still not well understood 

(Minero, 1999). 

 

Figure 1.2 Problems regarding photocatalytic reaction engineering that this work seeks to 

address. 
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Efficiency
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In all these respects, it is required to consider design variables such as the reactor 

geometry and configuration, photocatalyst concentration, and radiation sources in the 

context of physically sound models. Being able to account for all of these factors, would 

very significantly help the development of a comprehensive model capable of predicting 

photocatalytic performance. This would allow one to make a smooth transition from 

artificially and internally irradiated bench-scale photocatalytic reactors to solar and 

externally irradiated pilot-plant scale photocatalytic reactors. Figure 1.2, explains the 

kind of interrelation that can be found when trying to use a predictive approach to either 

design or to optimize these design variables, while changing scales. 

It is for this reason that the present study centers on the development of a practical and 

accurate approach, to account for relevant design parameters. The proposed model is 

validated by successfully predicting the behaviour of a bench-scale )externally irradiated 

photocatalytic reactor. 

1.1 Research Methodology  

In order to address the aforementioned issues, this study was divided into four main 

stages: i) The development of a a radiative transfer model with scale-up capabilities for 

slurry photocatalytic reactors, ii) The establishment of a methodology to determine the 

radiative model parameters in the bench scale system, iii) The validation of  the radiative 

model for different scales and irradiance set-ups and iv) The establishment of a kinetic 

model suitable for the scale-up of bench-scale to pilot-plant scale, of solar irradiated, 

suspended photocatalytic reactors. 

In the first phase of this PhD study, a Monte Carlo (MC) method was implemented to 

solve the Radiative Transfer Equation (RTE) and to calculate the Local Volumetric Rate 

of Energy Absorption (LVREA) inside of an annular 2.65 L Photo-CREC Water II 

Photoreactor. This model includes relevant radiative boundary conditions (BCs) and 

suspended photocatalyst anisotropic radiation absorption and scattering effects. 

Simulation results were compared against experimentally determined Total 

Transmittance (TT) and Total Rate of Photon Absorption (TRPA). The model irradiance 
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and LVREA sensitivities on the phase functions and boundary conditions were also 

assessed.  

In the second phase of this PhD dissertation, the simulation data  from the first phase 

were analyzed using  a novel probe and an experimental methodology developed to 

measure internal irradiance profiles (RP). This experimental method was applied along 

the radial coordinate and inside the annular section of the bench-scale Photo-CREC 

Water II Photoreactor. The MC method was modified to account for probe intrusion 

effects, obtaining model radial irradiance profiles (RP). As a result, boundary conditions 

and more importantly, the " " scattering parameter for the TiO2 phase function, were 

determined with increased accuracy, establishing LVREA at different photocatalyst 

concentrations and emission conditions with acceptable levels of accuracy. 

In the third phase of this PhD study, the proposed radiative model was validated as a 

fully predictive tool for the determination of the LVREA. This methodology was 

implemented in a 10 L externally and asymmetrically irradiated reactor designated as a 

Photo-CREC III Reactor. This is a slurry photocatalytic reactor four times larger than the 

2.5 L concentric Photo-CREC Water II unit. It was in this set-up where the influence of 

different photocatalyst concentrations and five different irradiance set-ups were 

considered. It was shown that the proposed model over-predicts the LVREA, on average, 

by 6% error. 

In the fourth phase of this PhD dissertation, a scale-up model was developed and 

validated. To accomplish this, a kinetic model for the degradation of a model pollutant 

was proposed, based on a Langmuir-Hinshelwood kinetic equation and a simplified 

charge separation/ recombination scheme accounting for the LVREA. In this case, 

experiments using oxalic acids were developed in the Photo-CREC Water II with a 

variable emission. Kinetic parameters were determined for different photocatalyst 

concentrations and lamp irradiances. Additionally, the developed kinetic model was 

employed to compare  oxalic acid degradation rates, between the Photo-CREC Water II 

and the Photo-CREC III (Solar Simulator). This comparison accounted for their 

respective Residence Time Distributions (RTDs) and Radiation Absorption Fields 
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(LVREA). It was proven that the model developed displayed good predictability of the 

photocatalytic performance.  

1.2 General Objectives 

The present study aims to advance photocatalytic reaction engineering by developing a 

comprehensive model for scale-up of bench-scale slurry photoreactors. This will help us 

to better understand the interrelations between chemical kinetics, transport processes and 

radiation field distribution as functions of radiation sources, photocatalyst loading and 

geometry. In this regard, the objectives of this PhD dissertation can be divided into 3 

main sub-objectives:  

 a) To develop a radiation field model in an externally irradiated photocatalytic 

reactor by using a predictive Monte Carlo method. This model shall be as detailed as 

possible, incorporating irradiation absorption, forward and backward scattering with 

parameters validated at different scales, photocatalyst concentrations and irradiance 

conditions. 

b) To establish kinetic models for the photoconversion of model pollutants in 

externally irradiated photocatalytic reactors. Kinetic models shall account for important 

photoreactor parameters such as: a) reactor geometry, b) local irradiance conditions, and 

c) photocatalyst concentration employed. 

c) To develop a comprehensive model able to predict photocatalytic reactor 

performance in scaled-up internally-irradiated lab-scale photoreactors as well in  

externally irradiated pilot-plant photoreactors. The comprehensive model shall 

incorporate radiative transfer, reaction kinetics and mass and momentum balances. It is 

anticipated that the resulting set of equations will be solved using Finite Element (FE) 

methods combined with Monte Carlo (MC) methods, with this leading to adequate 

evaluations of  reactor performance and reactor energy efficiency. 
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1.3 Specific Objectives 

On the basis of the above, the specific objectives or milestones for this research include 

the following: 

 The development of a Matlab program for Monte Carlo simulations for the Photo-

CREC Water II Photoreactor. 

 The development of a novel probe and methodology for optical parameter 

estimation with increased accuracy in the Photo-CREC water II Photoreactor.  

 The development of a Matlab program for Monte Carlo (MC) simulations in the 

Photo-CREC Solar Simulator Photoreactor. 

 The validation of the MC methodology for the Photo-CREC Solar Simulator 

using various irradiance conditions. 

 The development of a kinetic reaction model for oxalic acid photodegradation, 

based on a Langmuir-Hinshelwood mechanism and a scheme considering charge 

separation and recombination. 

 The estimation of kinetic parameters for oxalic acid and model experimental 

validation, at different photocatalyst concentrations and lamp emissions inside the 

Photo-CREC Water II Photoreactor.  

 The development of Finite Element (FE) simulations coupling chemical reactions, 

mass transfer, and radiative transfer, inside both Photo-CREC Photoreactors. 

 The determination of energy efficiency using thermodynamic efficiency factors 

(PTEF), quantum yields (QY) and rates of reaction for both reactors using the MC 

and FE simulations. 

 The validation of a scale-up approach which allows moving from centrally 

irradiated bench scale units to non-symmetric irradiated (solar irradiated) pilot-

plant units. This will be accomplished by comparing the model and experimental 

reaction rates and overall photocatalytic performance. 
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Chapter 2  

2 Literature Review 

An extensive literature review of photocatalytic reaction engineering is provided in this 

chapter. The  following topics are considered: i) Reaction Mechanisms, ii) Kinetic 

Modelling, iii) Radiation Modelling, iv) Monte Carlo Method, v) Reactors 

Configurations, vi) RTE Parameter Estimation, vii) Reactor Scale-up, viii) Current 

Research Directions and ix) Conclusions. 

2.1 Introduction  

The present chapter, reports a review of the technical literature, covering important topics 

regarding various scale-up approaches for photocatalytic reactors. First, the information 

focuses on the reaction mechanisms for photocatalytic processes, followed by the most 

commonly applied kinetics for photocatalytic reactions. Then, existing radiation models 

for photocatalytic reactor modelling are reported. This is expanded in a  subsection on the 

Monte Carlo (MC) method as a mean for accurate radiation absorption field 

determination. Afterwards, a review is reported on the most commonly used 

configurations and photocatalytic reactor designs as described  in the technical literature. 

Lastly, issues on parameter determination for the radiative transfer equation (RTE) are 

covered, followed by the current research directions on the scale-up of suspended 

photocatalytic reactors.   

2.2 Reaction Mechanism 

Photocatalytic degradation of model pollutants is a multi-staged mechanism in which 

model pollutants produce intermediate compounds before complete mineralization is 

achieved. In this respect, one could argue that all the degradation mechanisms share a 

common initiation step: a charge separation induced by the interaction between a photon 

and a solid semiconductor. However, not every photon that reaches the catalyst particle 

will be able to produce the “e
-
/h

+”
pair. In fact, only those photons with energy equal or 

greater than the semiconductor’s band gap will be able to produce the e
-
/h

+
 charge 
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separation. This band gap represents the energy required by an electron to jump from the 

valence band to the conduction band (Cassano et al., 2000; Fujishima et al., 2008).  

The energy required for the electron excitation, depends on the particular characteristics 

of every semiconductor. This minimum photocatalyst band gap necessary for the photo-

excitation is a function of the wavelength. Table 2.1 reports values of the band gap 

energies for different semiconductors. In this regard, TiO2 Degussa P25 has proven to be 

the most active catalyst in the near-UV-region (Ray et al., 2000; Zhou et al., 2006; 

Moreira et al., 2012), characterized by its high stability, good performance and relatively 

low cost (Fujishima and Zhang 2006). 

After charge separation, both free electrons and electron holes can either undergo 

different reaction pathways or be recombined. In this respect, the “h
+”

site can interact 

with a molecule of adsorbed water to form an adsorbed OH

 free radical. On the other 

hand, the electron can react with an oxygen molecule, and then be neutralized by a proton 

in the solution, to form hydrogen peroxide, which dissociates the free radicals (Navio et 

al 1996; Lengrini et al 1993; Hoffman et al 1995; Litter et al 1999, de Lasa et al, 2006). 

Table 2.1 Band gap of various photocatalysts (Bhatkhande et al., 2001) 

Photocatalyst Band-gap (eV) λbg Photocatalyst 
Band-gap 
(eV) 

λ bg 

Si 1.1 1127 α-Fe2O3 3.1 400 

WSe2 1.2 1033 ZnO 3.2 388 

Fe2O3 2.2 564 TiO2(Anatase) 3.2 388 

CdS 2.4 517 SrTiO3 3.4 365 

WO3 2.7 459 SnO2 3.5 354 

TiO2(Rutile) 3.0 413 ZnS 3.7 335 

 

Organic pollutants may react with OH

 radicals until they reach simpler, more stable 

intermediate states. This process can be repeated several times, until the organic 

compounds are completely oxidized forming CO2 and water. Thus, one can notice that 

every time the model pollutant molecules form an intermediate species, they can,  in the 
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presence of OH

 radicals, be further oxidized until the pollutant is fully mineralized. It 

has been reported by our research group (Ortiz-Gomez 2007 and 2008; Moreira et al., 

2012) that the photodegradation of phenols yields intermediate aromatic and intermediate  

carboxylic species. Figure 2.1, summarizes these findings. These authors reported that 

phenols yield catechol, benzoquinone, hydroquinone, formic and oxalic acids.  

It is also interesting to point out that free radicals are adsorbed on the catalyst surface. 

Therefore, when interacting with the OH

 ,the pollutants and intermediates are in the  

adsorbed state on the catalyst surface.  

 

Figure 2.1. Intermediate compounds formed during the photodegradation of phenol when 

Degussa P25 is used as a photocatalyst (Ortiz-Gomez, et al., 2008). 

 

2.3 Kinetic Modeling 

Based on the previous general degradation mechanism, several approaches have been 

developed for the kinetic modeling of the photodegradation of organic compounds in 

water. However, most kinetic models proposed in the literature still deal with a single 

model chemical species. This assumption may render models that fit experimental data 

very well, with narrow confidence intervals for the kinetic constants. Nonetheless, these 

methods have a lot of shortcomings and none or very little applicability in real-life 

scenario. There are a few examples, like the studies presented by Moreira et al. 2012, Li 

Puma et al 2007 and Gora et al. 2006 where multicomponent kinetic models are 
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discussed. These kinetic models were found to be applicable over a wide range of initial 

concentrations.  

A kinetic model based on the Langmuir-Hinshelwood (L-H) mechanism provides a good 

tool for describing the behaviour of the model compounds and intermediate species in a 

photocatalytic process (Moreira et al. 2012). This approach has demonstrated the 

applicability to model multiple components photodegradation as shown in several 

published papers (Salaices et al., 2004; Ortiz-Gomez et al., 2007 and 2008).  

For the case of phenol, Moreira et al. 2012 obtained a unified kinetic model studying four 

different photocatalysts, while measuring the total organic carbon, degradation of phenol, 

as well as the formation of intermediate compounds (hydroquinone, catechol, 

benzoquinone and acetic and formic acids) considering L-H adsorption isotherms. 

Adsorption constants where determined independently, which minimized the cross-

correlation among optimized kinetic constants. In this work, a general unified reaction 

mechanism was presented. This general reaction mechanism was found to be applicable 

when used with the different TiO2 photocatalysts studied. Although this approach was 

found to predict experimental results very well, it still lacks considering the effect of 

different reactor geometries and radiation intensities in the model as well as different 

catalyst loadings. This turns out to be of greater importance, since the kinetic constants 

are related to the radiation distribution inside the reactor, which will change if the reactor 

is to be scaled up. 

2.3.1 The Langmuir-Hinshelwood and rate equations 

The general form for the L-H equation for photocatalytic reactions is given by (Moreira 

et al., 2012, Moreira 2011): 
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 Eq. 2-1 

where a) subscript i refers to component “i”, b) ri is the reaction rate (mol gcat
-1

 min
-1

), c) 

k
k

i is the reaction kinetic constant (mol gcat
-1

 min
-1

), d) K
A

i is the absorption constant 
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(mol
-1

 l), e) Ci is the concentration of the participating species (mol. l
-1

) and f) “j” is the 

subscript denoting each component of the n chemical species. 

When a reactor is operated in a batch mode as in the case of the photoreactors considered 

in this study, a balance equation for each component “i” can be expressed as follows: 

dt

dC

W

V

dt

V
dN

W

V

dt

dN

W
r i

i

i
i 

1

 

Eq. 2-2 

where W is the mass of the solid catalyst (gcat), V is the reactor volume (l), Ni is the 

number of moles i (mol) and t represents the time (min). 

By substituting Eq. 2-1 into Eq. 2-2, the reaction rate for each chemical species in the 

context of the slurry reaction unit can be obtained: 
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  Eq. 2-3 

This last equation can also be expressed as: 
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Eq. 2-4 

with ki being: 

A

i

k

ii Kk
V

W
k    Eq. 2-5 

The rate constants in Eq. 2-5 represent apparent constants in min
-1

. The intrinsic kinetic 

constant can be calculated using the following relationship: 

i

PFR

PFRCSTRI

i k
V
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k


  Eq. 2-6 
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where VCSTR stands for the volume of the tank and VPFR represents the volume of the 

photoreactor in l.  

Eq. 2-6 is a practical way of expressing that the photocatalyst is active as long as it is 

being irradiated. This equation however, neglects any dynamic effects that may arise 

from the changes in irradiance within the irradiated volume. It assumes there is no 

reaction at all in the non-irradiated volume of the system. 

From the discussion presented above, it can be concluded that for every component 

participating in the reaction scheme, an equation with the form of Eq. 2-4 can be obtained 

to represent the photocatalytic oxidation of the model compounds and its intermediates.  

Several kinetic and adsorption parameters need to be numerically estimated. One 

limitation of the L-H model is that for a large number of chemical species, a large 

number of kinetic and adsorption parameters need to be determined. This may lead to 

models with high cross-correlation. This issue can be solved by the independent 

determination of the adsorption constants of the participating components as previously 

presented by Moreira et al. 2012. 

2.4 Radiation Modeling 

In a strict sense, all the mass balances (one for each reacting species) and the energy 

balance should be written for monochromatic radiation (Cassano et al., 2000). Thus, one 

would have a set of differential equations (mass and energy balances) for each 

wavelength within the interval in which radiation is being absorbed.  

To avoid this problem, it is assumed that the kinetic effects of the absorbed photons at 

different wavelengths are additive, as long as the photon energy is equal or higher than 

the energy band gap. All monochromatic contributions are put together into one energy 

balance and one mass balance for each reacting species. The sum of all monochromatic 

contributions is referred as to the Local Volumetric Rate of Energy Absorption (LVREA) 

and this involves solving the Radiative Transfer Equation (RTE) (Moreira et al., 2010). 
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Mass and energy balances, are coupled through the reaction rate terms as usual. This 

coupling is extended to the radiation balance through the reaction rate. This is due to the 

effect that the reactant has, on the radiation absorption properties of the media (Cassano 

et al., 2000). However, the radiation balance must be treated separately from the thermal 

energy balance.  This is the case, given that the radiation that affects the photochemical 

reactions is usually in the range of 200 nm to 600 nm, a range that is ineffective for 

heating (Cassano et al., 2000). Infrared radiation, if eventually produced by the lamp, is 

usually eliminated by the lamp cooling devices. Emissions within the slurry, on the other 

hand, can usually be ignored, since most photochemical reactions occur at moderate 

temperatures.  

The initiation step of e
-
/h

+
 formation is very fast (time constant approx. 10

15
 s

-1
), and 

when the reactor is well illuminated, radiation intensity stops being a determinant step. 

On the other hand, the uniform illumination of a reactor is very difficult to maintain 

within the reactor space (Cassano et al., 1995).  

This radiation distribution inside a photoreactor is determined by the nature of the reactor 

walls, the lamp type, the lamp-reactor geometry (de Lasa et al., 2005) and the optical 

properties of the medium (Braun et al., 1991). All of these can be seen as factors that 

cannot be neglected while developing an accurate photoreactor model. Distribution and 

absorption of irradiation can be achieved by solving the RTE (a photon balance) and by 

using the appropriate boundary conditions. In this respect, one should combine the 

momentum balance, the energy balance and the mass conservation equations with RTE, 

in order to accurately model and design photocatalytic reactors.  

From the radiative point of view, the application of the Radiative Transfer Equation 

(RTE) must be carried out (Eq. 2-7), and the resulting equation can be expressed as: 

        

  
                   

     
 

  
                     

  

 

 

 

Eq. 2-7 

 

where    is the spectral intensity of radiation, with units being einstein m
-2

 s
-1

 sr
-1

,    and 

   are the wavelength specific absorption and scattering coefficients, respectively, with 
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units of m
-1

.         is the phase function, a property that accounts for the probability 

of a photon being scattered from an incident direction   to a   scattered direction. 

Since photocatalysis is carried out at low temperatures, the emission term can be 

neglected (Eq. 2-8) and thus: 

        

  
            

 

  
                     

  

 

 Eq. 2-8 

where the extinction coefficient           . If the local incident radiation is 

integrated for all directions (Eq. 2-9) , then    can be defined as: 

                     
    

   

 Eq. 2-9 

Where   , multiplied by the spectral absorption coefficient, can be regarded as the 

wavelength specific local volumetric rate of energy absorption as (Eq. 2-10): 

                              Eq. 2-10 

Finally, by adding the different wavelength contributions (Eq. 2-11), the local volumetric 

rate of energy absorption (LVREA), can be expressed as: 

                  

      

              

      

 Eq. 2-11 

Additionally, a Total Rate of Photon Absorption can be obtained via integration of 

LVRPA within the reactor volume, according to the following equation: 

 
V

dVLVRPATRPA  
Eq.2-12 

Besides the calculations in slurry region, consideration has to be given to the selection of 

proper boundary conditions. These boundary conditions can encompass several physical 

phenomena, happening outside of the photoreactor. These are caused by lamps, reflectors 

and other devices, as will be pointed out in the upcoming subsection. 
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2.4.1 Phase Functions  

Another important criterion in radiation modeling of photoreactors is the parameter 

describing the scattering mode, which is the phase function. The phase function is related 

to the probability of photon scattering from the direction of incidence in the catalyst 

particle, to a new direction. Thus, an adequate phase function is important given the 

following: i) the need to provide an accurate representation of the scattering, ii) the 

requirement of accomplishing this, under manageable computation times (Satuf  et al., 

2005).  

2.4.2 Lamp Emission modeling 

In order to solve the RTE for a photocatalytic reactor, boundary conditions need to be 

established. These boundary conditions are based on the mathematical model assumed for 

the radiation source, and therefore it is very important to choose an appropriate lamp 

model. There is a number of radiation source models proposed by different researchers 

(Alfano et al., 1986). The next figure shows a general classification of them.  

 

Figure 2.2. Classification of radiation source models (PDI partially diff. incidence, DI 

diffused incidence model). Cassano et al, 1995. 

2.4.2.1 Incidence models 

The incidence model assumes a specific energy distribution in the reactor space (Alfano 

et al.,. 1986). These methods do not use operating variables (output power, lamp 

dimensions, etc), they only contain 1 or 2 adjustable parameters obtained by curve fitting 

to experimental data. 
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The following model is designated as the radial incidence model (Gärtner et al., 1958), 

where axial and angular dependencies of radiation emission are neglected (Cassano et al., 

2008; Schechter et al., 1958): 

       
  
 
         Eq. 2-13 

This partially diffuse incidence model, includes partially diffused radiation. The various 

incidence radiation models include parameters that need to be experimentally determined 

(Pareek et al.,. 2008). These parameters vary significantly with the reactor configuration, 

its size and its operation conditions. This makes incidence radiation  unsuitable as a 

predictive tool (or to scale-up)  

2.4.2.2 Emission Models 

The emission models require multiple integration. They are becoming the preferred 

choice to model the effects of lamps in photoreactors (Alfano et al.,. 1986). There are 

different (mathematical) ways in which a lamp may be represented in the emission 

model.  

Lamps may be represented as an emitting line, as an emitting surface (with specular or 

diffuse emission) or as an emitting volume. Mercury arc and neon lamps, can be 

represented by specular emission. On the other hand, diffuse emission is exhibited by 

most fluorescent lamps (Takashi & Takashi., 1972). 

When the line source model is used, the lamp is assumed to be an emitting line. This can 

usually be assumed when the lamp diameter is small, in comparison with the reactor 

diameter (Pareek et al.,. 2008). that is: 

         Eq. 2-14 

Where:   

    
  
  

 Eq. 2-15 
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From this assumption, there are two possibilities, specular and diffuse emission. For 

specular emission the following Eq. 2-16 can be considered:  

   
   
  

 
  

           
 

 

  

   
  

       
   

 
        

   

 
   Eq. 2-16 

 For diffuse emission the following Eq. 2-17 can be adopted : 

   
   
  

 
      

           
 

 

  

   
  

 
   

              

 

  

 Eq. 2-17 

On the other hand, Surface source model assumes that all radiation is being produced on 

the lamp's surface and no radiation is emitted from the interior points. For specular 

emission (Pareek et al.,. 2008):  

     

   
  

      

                 
                   

         

      

      

    

    

 Eq. 2-18 

and for diffuse emission: 

     

   
  

                    

                 
                   

         

      

      

    

    

 Eq. 2-19 

In the volume source model, photons are considered to be emitted by the surface and the 

interior of the lamp. Therefore, the number of photons emitted by a volume element is 

given by (Pareek et al.,. 2008): 

                Eq. 2-20 

where:  

    
  

     
   

 Eq. 2-21 

The incident radiation at each point of the reactor geometry, is given by integrating the 

following equation 2-22 over the entire lamp volume:  
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 Eq. 2-22 

The Volume Source Model was considered to be the only emission model to give good 

results for reactors involving curved reflectors (Alfano et al., 1986 ; Irazoqui et al., 2000).  

However,  it was recently proven that the superficial diffuse emission performs as well 

under near and far field measurements (Duran et al., 2010). Besides the emission model 

in the lamp, absorption, refraction and reflection on the lamp's surface cannot be 

neglected since they considerably improve the accuracy in predicting both near and far 

field measurements (Imoberdorf et al., 2008).Technically, the only aim of a source 

method, is to provide boundary conditions at the beginning of the absorbing reactive 

medium. All other geometric factors are taken into account by the numerical method used 

to solve the RTE. 

Regarding the radiation sources emission spectra, spectral purity is not a very critical 

factor in photocatalytic processes. However, for reactors using titanium dioxide as a 

photocatalyst, the lamp should be able to emit radiation with wavelengths equal or less 

than 387.5 nm (Braun et al.,. 1991). The types of lamps available are arc lamps, 

incandescent lamps, fluorescent lamps and lasers. 

Incandescent lamps tend to emit (mostly) radiation in the visible region, which does not 

have enough energy to promote the electron-electron hole formation. Lasers tend to be 

too expensive to be suitable for this kind of application. The most used lamps are 

fluorescent lamps and  medium-pressure mercury lamps  with an emission between 190 

and 600nm (Phillips et al., 1983). 

2.4.3 Reflectors and interfaces 

Reflectors are important factors to be considered when properly defining boundary 

conditions. They are most commonly used in solar pilot-plant scale reactors. The 

phenomena taking place at these interfaces, when occurring in complex geometries, can 

be described by using the tangent plane approximation, when the wavelength of the 
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electromagnetic wave is small compared to the local curvature of the surface (He et al., 

1991). 

 

Figure 2.3. A rough surface can be a treated by the tangent plane approximation, taken 

from (He et al., 1991). 

In general, reflection and diffraction have already been extensively studied. Snell's Law is 

used for refraction. Reflection can be separated into three cases: a) specular, b) ideal 

diffuse and c) directional diffuse. All of these reflection mechanisms are taken into 

account by the BRDF model (Bidirectional Reflectance Distribution Function Model), 

where the three mechanisms are added, as a total reflectance (He et al., 1991). BRDF 

Models are currently actively being researched (Berger et al. 2012; Colbert et al.,2006). 

However, in some cases, idealized behaviour can be applied to simplify the mathematical 

treatment of reflection phenomena (Hyde et al., 2009), such as is the case for: ideal 

specular, ideally diffuse, directional diffuse and total absorptive surfaces, among others. 

Specular reflection refers to mirror-like reflection, where radiation bounces off the 

interface (also called first surface reflection), as shown in Figure 2.3. This leaves the 

angle between the vector parallel to the radiation direction and the angle between the 

vector normal to the tangent plane, unchanged (before and after radiation interacted with 

the material). 

Diffuse Reflection is caused by multiple subsurface reflections (in dielectric materials).  

It is sometimes caused by surface roughness which causes multiple surface reflections 

(Wolff 1994). In the case of ideal diffuse reflection, also called Lambertian reflectance, 

reflection is independent of the angle of incidence and is described by Lambert's Cosine 
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Law with respect to the surface normal vector. Directional diffuse emission, on the other 

hand, is not independent of the angle of incidence. When combining all reflection 

mechanisms (i.e. specular, ideally diffuse and directional diffuse ), Figure 2.4 depicts 

how a probability distribution for reflection would look.     

 

Figure 2.4. Description of the different mechanisms through which radiation can be 

reflected from a solid surface, taken from (Wolff 1994) 

2.5 Monte Carlo Method 

The analytical solution of the RTE for heterogeneous media is a rather complex task and 

is so far only achievable in a restricted number of idealized reactor models (Grčić and Li 

Puma 2013). TiO2 particles inside the photoreactor annular section cause near-UV 

radiation scattering. Thus, establishing the scattering mechanism poses extra challenges, 

given that it is a function of many variables such as: a) lamp emission spectra, b) reactor 

geometry, c) type of photocatalyst (band-gap), d) optical properties (scattering and 

absorption coefficients), e) chemical properties (agglomeration, charge trapping), and f) 

nature of reactor walls, among other factors(Salaices et al., 2002; Pareek at al., 2003).  

To address these issues, the RTE in photocatalytic reaction engineering has been, most 

commonly, solved numerically. Among the most used methods, are: i) the Monte Carlo 

Method (MC) (Pareek et al., 2008; Changrani & Raupp, 1999; Yokota et al., 1999; 

Valades-Pelayo et al. 2014), ii) the P1 Method (Cuevas et al., 2007; Arancibia-Bulnes 

and Cuevas, 2004) and iii) Discrete Ordinate Method (Duran et al. 2010), and more 

specifically, iv) the Two-Flux and v)the Six-Flux Absorption Scattering Methods (Li 
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Puma & Brucato, 2007; Li Puma, 2003). It has been demonstrated that the MC Method is 

preferable over deterministic methods to calculate the LVRPA with complicated 

geometries (Changrani & Raupp, 1999). This is due to the physical correctness adopted 

in the method (Pareek et al., 2003). Furthermore, it is frequently used to validate other 

Radiation Transport Methods (Iwabuchi, 2006).  

The MC Method consists of tracing individual photons or photon bundles from their 

generation by the UV-radiation source until they are absorbed or scattered inside the 

slurred system. In addition, it has also been shown that a statistical method provides a 

very effective approach in predicting the absorption and scattering phenomena in slurry 

systems (Yokota et al., 1999).  

When solving the RTE in photocatalytic reactors, the following is required:  

(1) TiO2 optical parameters such as absorption and scattering coefficients are to be 

provided. Romero et al., (1997) reported values for the absorption and scattering 

coefficients of Degussa P25 for a concentration range of 5-500 mg l
-1

. Absorption and 

scattering coefficients for Degussa P25 as a function of wavelength were also given by 

Romero et al., (2003) for a range from 275 to 405 nm. 

(2) Photoreactor boundary conditions have to be carefully selected. The radiation 

emitted by the radiation source has to be accurately defined and the optical properties of 

the reactor walls must also be properly identified.  

(3) A scattering phase function has to be established (Piskozub and McKee 2011). 

Phase functions calculate the angle at which photons are scattered from one direction to 

another. As a result, selecting a phase function in heterogeneous photocatalysis allows 

calculating multiple scattering events (Binzoni et al., 2006). It is important to mention 

that in the MC Simulations, the most computer intensive step is frequently the one of 

establishing the new direction of the scattered photon (Moreira et al., 2011). As a result, 

the use of phase functions requiring intensive computations should be limited as much as 

possible. 
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Regarding the numerical method "per se", the RTE is solved by running random events 

where "photons" are emitted. The trajectory of each "emitted" photon is followed and the 

final location and wavelength of the absorbed photon are stored in a matrix. The 

trajectory of each photon is defined based on a stochastic process, in which the events, 

outcomes and probabilities for each possible photon are chosen in a way that they 

represent the natural phenomena occurring inside the reactor. 

From a general perspective, the Monte Carlo Simulation starts with given conditions for 

the reflectors and the reactor walls. These conditions  will depend on the used materials 

and the geometry. The total energy input and the radiation spectrum will be a function of 

the lamp used. However, when the photons are inside the reactive heterogeneous 

medium, the probability of either being absorbed or scattered will be determined by the 

reaction medium itself (Moreira et al., 2010).  

More specifically, photons are traced for each wavelength. Random numbers are 

generated to set the location in the lamp, from which the photon will be "emitted". Once 

the position is set, the direction of emission is also identified by random zenith and 

azimuth angles. The photon trajectory is traced until it penetrates the reaction medium. 

Additionally, the probability of a photon being absorbed by one of the reactor walls is 

based on the transmittance of the material.   

Emission is considered to be a stochastic process, and is defined by lamp specifications, 

such as: a) the wavelength distribution (radiation spectra), b) the number of photons per 

unit time, and/or c) the type of emission pattern that the lamp presents (coherent or 

diffuse emission).  

In the case of reflecting surfaces, diffuse reflection, specular reflection or absorption of 

each photon should be taken into account. If needed, this can be set as a function of the 

wavelength and incidence angle (Wolff 1994). Shadowing during reflection can be hard 

to take into account (He et al., 1991). In order to include this phenomenon in a Monte 

Carlo Method, only one additional stochastic event needs to be added. The outcome for 

each specific event is determined by the relation between the probability distributions and 

the random numbers defined for the specific events: a Markov chain.   
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In the reaction media, the photon can be absorbed or scattered. If the photon is absorbed, 

its trajectory is terminated. If the photon is scattered, the scattering angle will, then need 

to be redefined. The outcome will be chosen according to the phase function and its 

relation with another randomly generated number. The trajectory of the photon will be 

modified and the process will repeat itself (Moreira et al. 2010). This will occur until the 

photon is absorbed or reaches a reactor wall, where it can exit the reaction medium or be 

absorbed into the reactor wall.   

The probability of each event and each possible outcome depends on the physical 

properties of the heterogeneous medium. Once the photon is absorbed by the reaction 

media, its location is stored in a matrix. This action will allow calculating the LVRPA by 

adding all the photons that where absorbed in every single location. 

MC simulations are simple to implement, provided that one is able to capture the physical 

phenomena involved, as a conglomerate of probability density functions. Despite all of its 

advantages, the MC Method still presents certain issues: (1) the large number of events 

that need to be accounted for in the random path simulation, (2) the computationally 

extensive ray tracing at each photon collision and (3) the phase function required to 

calculate scattering angles at each collision point. Thus, large computer power is needed 

for the MC simulation (Li Puma, 2005).  

In spite of this, nowadays, the MC Method is becoming prevalent. Thi is due to 

computational power availability and the possibility of establishing accurate radiation 

models in the context of asymmetric radiation fields. This is the case, given that when the 

geometries are complicated and the medium is heterogeneous, overall, Monte Carlo is the 

most effective tool (Yokota et al., 1999). 

2.6 Photocatalytic Reactors 

Photocatalytic reactors for water treatment can be classified according to their design 

characteristics, the majority of them fall under the next categories (de Lasa et al. 2005; 

Malato et al., 2004): 
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a) State of the TiO2 catalyst (suspended or attached to a support). 

 Slurry reactors. 

 Immobilized photocatalyst. 

b) Type of reactor irradiation source. 

 Artificial UV radiation, UV polychromatic lamps. 

 Solar light. 

c) Position of the radiation source. 

 Reactors with an immersed radiation source. 

 Reactors with an external radiation source. 

 Reactors with distributed radiation sources such as reflectors and light 

 conductors or optical fibers. 

The majority of the photocatalytic reactors currently in use for water treatment are slurry 

reactors. While supported catalyst are still on use, avoiding the need of any separation 

step once the pollutants are degraded, studies have shown that reaction rates from 2 to 5 

times greater are observed in the suspended case (de Lasa et al., 2005).  

There are three standard, most widely used, geometrical configurations of photoreactors: 

annular, parabolic and elliptic. Additionally, a lot of novel designs of photoreactors have 

been used, such as: a) fountain, b) optical fiber, c) monolith, d) falling film, e) U-tube 

reactors, f) double skin sheet, g) rotating disk, h) packed bed, i) Taylor vortex, j) fluidized 

bed and k) corrugated plate reactors among others (Pareek et al., 2008; Braham et al., 

2009; McCullagh et al. 2011). Annular photoreactors allows high throughputs and 

continuous operation. These types of reactors, when using suspended photocatalyst, have 

shown the largest photocatalytic activity when compared to reactors with TiO2 
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immobilized on a support (de Lasa et al., 2005). Usually an additional cooling assembly 

can be used if isothermal operation is required. 

Elliptical reactors are used when high throughputs are not required or if the reactions are 

highly exothermic with high pollutant concentrations. In these reactors, two parallel 

cooling mechanisms are needed (one for the lamp and another one for the reactor). 

Parabolic reactors are suitable for opaque liquid irradiation. Reflectivity of the container 

wall is very crucial in both parabolic and elliptical geometries  

Falling film reactors are basically a combination of the annular and parabolic reactors (a 

thin film in a parabolic container). Optical fibre reactors, as the name suggests use optical 

fibres to ensure adequate illumination of all photocatalyst-coated surfaces. When 

correctly designed, they can overcome photon and mass transfer limitations even with a 

supported catalyst (Denny et al., 2010). 

2.7 RTE Parameter Estimation 

The LVREA can be determined by solving the RTE, which is a property of major interest 

for photocatalytic reaction engineering (Li Puma, 2005).Nonetheless, the optical 

properties of the reaction medium must be known. This is the case, given that reaction 

rates are dependent on photon absorption and not on the photon irradiation “per se”. As a 

result, knowing the radiation absorbed by the photocatalyst in a given reactor system, 

allows one to establish the chemical species rate of change as a function of the energy 

absorption rate (Minero & Davide, 2006). This also permits one to calculate energy 

efficiencies, such as the quantum yield (QY) and the photochemical thermodynamics 

efficiency factor (PTEF) (de Lasa et al., 2005).   

It is important to mention that the LVREA, has never been measured directly. It has, 

instead, been indirectly estimated, i.e. via calculations, by fitting to irradiance and/or to 

actinometrical measurements (Alfano et al., 2000). This inability to measure the property 

of interest, poses an additional challenge in photocatalytic reaction engineering. Using 

actinometry for the estimation of the radiation absorbed by the photocatalyst particles, 

tends to present issues due to non-selective absorption by the actinometer (Turchi & 
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Ollis, 1989). The data obtained by these means is often called “apparent radiation 

absorption” (Brandi et al., 2003). Specifically for irradiance-based RTE parameter 

fittings, the Total Transmittance (TT), the Volumetric Rate of Photon Absorption 

(VRPA) and the Total Rate of Photon Absorption (TRPA) are the most widely used 

variables to determine the LVREA (Valades-Pelayo et al., 2014; Li Puma et al., 2010). It 

should be noted that the TRPA divided by the reactor volume equals the VRPA and as a 

result, one is proportional to the other. 

2.7.1 Phase Function Determination 

The specific selection of the adequate phase functions still remains until today an area of 

uncertainty (Moreira et al. 2010; Moreira et al. 2011; Satuf et al. 2005; Marugan et al. 

2006). However, both isocratic and Henyey-Greenstein phase functions are the most 

widely used, when finding the solution of the RTE for TiO2 in photocatalytic reaction 

engineering. Furthermore, the effect of the scattering mode in the calculated LVREAs is 

not reported nor discussed. In this respect, it has been suggested by different authors that 

a precise evaluation of the scattering mode (or phase function) appears not to be critical 

for a good TRPA representation of experimental values (Moreira et al., 2010; Pasquali et 

al., 1996). 

 Moreira et al. (2010) concluded that for TiO2, the Henyey-Greenstein phase functions 

with g values in the range -0.7 < g < 0.7  are satisfactory. Pasquali et al (1996) also 

studied Isocratic and Diffuse Phase Functions, concluding that both scattering modes 

render close results in the modelling of the radiation field in a photoreactor. It is worth 

mentioning that, with titanium dioxide, the main problem is that the coefficients for 

powders depend strongly on the radiation wavelength. Hence, the RTE must be solved 

for each wavelength. Romero et al. (1997), however, used a wavelength averaged 

absorption and scattering coefficients for experiments carried out in the 220 nm to 1370 

nm range. They proved that this process could be performed without major loss of 

accuracy. 
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Figure 2.5 Optical Properties vs wavelength  for Degussa P25 catalyst: solid line,  *
λ ; 

broken line σ*
λ ; dotted line κ*

λ ; broken dotted line, gλ. Taken from  Satuf et al., 2005. 

Satuf et al. (2005), reported specific spectral values for the g scattering parameter when 

using Degussa P25, as shown in Figure 2.5. These results were determined by measuring 

the total transmittance of TiO2 suspensions in quartz cells, with a 1 to 2 cm internal 

depth. To achieve optimal optical thickness, photocatalyst concentrations considered by 

this study where varied from 200 to 2000 mgl
-1

.  

It should be noted that the phase function determined by Satuf et al. (2005), for Degussa 

P25, is of limited applicability for bench-scale and pilot-plant photoreactors. This is the 

case, given that optimal photocatalyst concentrations in these reactors are about ten times 

smaller than the ones considered by Satuf et al. (2005). In this respect, effects such as 

severe deposition of Degussa P25 at the reactor walls and photocatalyst agglomeration 

are expected to affect the slurry optical properties (Ballari et al., 2010). For instance, for a 

small bench-scale photoreactor, such as the Photo-CREC Water II (2.65 L annular 

photoreactor), the optimum photocatalyst concentration for Degussa P25 was reported to 

lay at 150 mgl
-1

 (Salaices et al, 2002). 

In previous works, our research group developed a MC Method for solving of the 

Radiation Transfer Equation (RTE) in an annular photoreactor (Moreira et al., 2010; 

Moreira et al., 2011; Valades-Pelayo et al., 2014). Isocratic and Henyey-Greenstein Phase 

Functions  were adopted. The predicted results for the Total Rate of Photon Absorption 

(TRPA) and Total Transmittance (TT) were validated with experimentally established 

macroscopic radiation balances as presented in Salaices et al. (2002).  
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Cabrera et al. (1995) studied the effect of different scattering phase functions on the 

solution of the RTE. These authors considered three cases for the phase function: (1) 

specular with partial reflection, (2) isotropic scattering and (3) scattering centers with a 

diffuse type of reflection. Phase functions from backward to forward types of scattering 

were considered. The experimental validation of this model was performed through 

monitoring degradation rates using actinometry. 

Changrani & Raupp, 1999 used Monte Carlo Simulations to replicate a polychromatic 

UV radiation field with direction angles included. Different authors reported the solution 

of the RTE in annular photoreactors. Yokota et al., (1999) also developed a MC 

Simulation Model. These authors consider an attenuation coefficient, a probability of 

photon absorption and isotropic and anisotropic scattering modes. These authors also 

found that the simulation results agreed with the experimental data for most cases of the 

phase functions.  

Other semi-empirical approaches like the two-flux and the six-flux absorption-scattering 

models (Li Puma and Brucato, 2007) have proven to predict radiation reasonably well for 

bench-scale photoreactors, as well as degradation rates for specific reactor geometries 

(Grčić & Li Puma 2013), but none with applicability for scale-up purposes. 

2.7.2 Macroscopic Radiant Energy Balance 

The macroscopic radiation balance was performed in an annular slurry photocatalytic 

reactor (Salaices et al., 2002), to estimate the rate of photon absorption, in the following 

way: 

                Eq. 2-23 

Where the rate of absorbed photons (Pa), equals the rate of photons entering the slurry 

(Pi), minus the rate of photons being backscattered (Pbs) and transmitted (Pt). When 

performing this balance, Pi is estimated from the difference between the total emitted 

photons from the lamp (Po) and the photons that are absorbed or reflected by the reactor 

wall (or any other interphase that the photons must cross to enter the slurry). To calculate 
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the back-scattered photons (Pbs), a measurement must be performed to obtain it from the 

following equation (Eq. 2-24): 

                   Eq. 2-24 

Where, Pc o+ is the rate of photons transmitted when the catalyst concentration 

approaches zero, according to Salaices et al., 2002.  

2.8 Photocatalytic Reactor Scale-up   

The comprehensive design of a photocatalytic reactor requires the description of 

physicochemical phenomena using constitutive equations (de Lasa et al., 2005). In this 

respect, many of the general guidelines for dealing with catalytic reactions can be adapted 

for photocatalytic reactions (Cassano et al., 2000). However, when it comes to specific 

scale-up strategies, most of the traditional procedures used in thermally-activated 

chemical processes, have been of very limited applicability (Marugan et al., 2013). The 

reason being  is that, for photocatalytic reactions, radiation absorption occurs at the very 

beginning of the whole photocatalytic process. They are, therefore, strongly dependent on 

both radiation intensity and distribution (Changrani & Raupp, 1999; Cassano et al., 

2000). This is true to the point that, the LVREA can be regarded as the master variable in 

photocatalytic reaction engineering (Moreira et al., 2010; Camera-Roda et al., 2005). 

The differences, for photocatalytic reactor modelling, are due to the unconventional role 

that the photocatalyst fulfills, when compared to most catalytic processes: it absorbs 

radiation to induce charge separation, while at the same time; it is responsible for the 

scattering effects that determine radiation distribution itself (Cassano and Alfano, 2000). 

In this regard, given that radiation distribution tends to drop abruptly in heterogeneous 

slurry media (Changrani & Raupp, 1999), it is hard to investigate kinetic models 

independently from radiation models. This is true, to the point that, for bench-scale 

photoreactors operating at near optimum photocatalyst concentrations, this effect is 

unavoidable (Marugan et al.,  2013; Marugan et al. 2010; Valades-Pelayo et al. 2014a).  
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 For this reason, an accurate estimation of the LVREA is critical in the design, scale-up 

and performance evaluation of photoreactors (Pareek et al., 2008 ; Pasquali et al., 1996). 

In addition, the correct estimation of the radiation field inside the photoreactor allows for 

the accurate determination of  energy efficiencies, such as the QY and the PTEF. The 

main parameters affecting the LVREA are: i) the reactor geometry, ii) the radiation 

sources emission intensity and iii) the photocatalyst concentration and optical properties, 

among others.  

Regarding these parameters, it has been reported that the reaction rate presents a square-

root dependence with respect to lamp irradiance, being linear at very low irradiances 

(Motengh et al. 2012 ; Camera-Roda et al., 2005).The dependence of the reaction rate on 

the photocatalyst concentration,  has been reported to be linear at low photocatalyst 

concentrations. It then transitions to a square-root dependence as concentration increases. 

Finally, it converts to a zeroth-order/asymptotic dependence that, ultimately,  tends to 

decrease for extremely high photocatalyst concentrations (Kawaguchi, 1994; Kapinus et 

al. 2009; Curco, 2002) 

Moreover, when conceived for scale-up purposes, photocatalytic kinetic models require 

the accounting of several additional phenomena at the photocatalyst particle level, 

besides radiation absorption. One of these phenomena is charge separation and 

recombination at the photocatalyst particle surface (Bahnemann, 2004). Several 

physically meaningful models have been proposed in this regard (Turchi and Ollis, 1989 ; 

Minero, 1999).  They will be explained in section 6.4.2. Furthermore, after charge 

separation is induced in the photocatalyst particles, adsorbed free radicals and desorbed 

aqueous free radicals within the particle vicinity, are generated (Liao and 

Reitberger,2013). It is through them (Lawless et al., 1991) that a great number of 

photocatalytic reactions are made thermodynamically possible (Mohameda and 

Bahnemann , 2012).  

 Moreover, while spatial gradients can be neglected for the concentrations of the 

degraded organic species (de Lasa, 2005), this is not necessarily the case for  the free 

radicals adsorbed on the photocatalyst particles (Davydov, et al. 2001). This is due to two 
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main reasons: i) the spatial distribution of the LVREA and ii) the reaction system 

hydrodynamics. Hydrodynamics can be an important factor to properly predict 

photocatalytic reactor performance when changing reactor scale and/or geometry (Koci et 

al., 2011). This is the case, as hydrodynamics affects the photocatalyst Residence Time 

Distribution (RTD) in the photoreactor unit, and therefore, the time of irradiation 

(Davydov, et al. 2001).   

2.9 Current research directions 

In the last decade, the development and implementation of predictive/scale-up procedures 

for photocatalytic reactor modelling has been a subject of active research for laboratory 

to bench-scale units, where they have shown to be accurate. On this specific subject, 

Imoberdorf et al. (2007) scaled-up a laboratory scale flat plate reactor to a reactor having 

5,209 cm
2
 of irradiated area. Imoberdorf et al. (2008), developed a radiation distribution 

predictive model for a fluidized bed photocatalytic reactor (approx. 2.15 L) where he 

used the experimental effective transmittance (Total Transmittance) to validate the 

simulated radiation. Li Puma et al. (2007), scaled-up a laboratory scale annular 

photoreactor  to compare the two-flux and six-flux methods. Pareek et al. (2008) 

simulated the radiation intensity distribution of a photocatalytic reactor. The validation of 

the model was carried out using experimental data from the photodegradation of a Bayer 

liquor. Marugan et al. (2009) reported a methodology to scale-up a slurry annular lab-

scale photoreactor (0.12 L) to a litre bench-scale (1.25 L) reactor. Finally, Marugan et al. 

(2013) recently simulated a bench-scale annular photoreactor (1.25 L) operating at 

optimum photocatalyst concentration by using a predictive procedure and kinetic data 

from a laboratory scale photoreactor (0.188 L). 

Thus, it is noticed that predictive models have been shown to be adequate for the scale-up 

of laboratory to bench-scale symmetrically-irradiated photoreactors, not surpassing the 2 

to 3 liters scale. In spite of this significant progress, in recent years, special interest  has 

been shown to extend the applicability of the kinetic models by using semi-empirical 

radiation methods, for bench to pilot-plant scale photocatalytic reactors (Duran et al., 

2010; Oyama, et al., 2011; Baniasadi et al.,2012). To our knowledge, no kinetic model 
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validation has been done based on predictive RTE models, to scale-up bench to pilot 

plant scale photoreactors, with different irradiance conditions. 

Our research group studied a bench-scale annular photoreactor of 2.65 L irradiated 

volume, named the Photo-CREC Water II Reactor (Salaices et al., 2005; Moreira et al. 

2011). Using this unit, diverse kinetic models have been obtained (Ortiz-Gomez, et al., 

2008; Moreira et al., 2012 ; Escobedo-Salas, et al., 2013). However,no validation at 

different irradiance conditions, photocatalyst concentrations, or different scales has been 

acquired. The reactor used in all these studies was irradiated from the center by a 15 W 

Black-Light (BL) UVA lamp. 

Finally, it is worth mentioning that the majority of the laboratory and bench-scale 

reactors studied up to now were irradiated using both artificial radiation sources and 

symmetric irradiation. This type of symmetry of irradiation is not expected to be achieved 

in large scale units, which will most likely be powered by solar energy (Malato et al., 

2002). On this basis, it is expected that scale-up methodologies will need to account for 

drastic changes in the irradiance boundary conditions and reactor geometry, in general 

(Valades-Pelayo et al. 2014c). 

2.10 Conclusions 

There is a need for the established predictive scale-up methodologies to be extended from 

bench to pilot-plant photoreactors. These scale-up methodologies should be based on 

physically sound models, with independently validated radiative and kinetic models.  

Moreover, these models should be capable of accounting for variables such as: i) 

different photocatalyst concentrations, ii) diverse irradiance configurations and 

intensities, and ultimately for iii) different reactor scales and configurations.  

Additionally, establishing radiative models at different scales requires several geometry 

independent parameters to be determined. On this subject, there is a discrepancy in the 

literature, regarding the selection of phase functions and their applicability at different 

scales and operating conditions.  
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Given these facts and to account for any effects arising from the photocatalyst 

agglomeration or wall deposition, a methodology should be developed to determine 

optical parameters directly from the bench-scale units.       
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Chapter 3  

3 Boundary Conditions and Phase Functions in a Photo-
CREC Water-II Reactor Radiation Field 

The information presented in this chapter is based on the article entitled "Boundary 

Conditions and Phase Functions in a Photo-CREC Water-II Reactor Radiation Field", 

published in Chemical Engineering Science Vol. 107 p. 123-136, in April, 2014. The 

sections presented in this chapter consist of stage i) in section 1.1 and present results 

towards the partial completion of general objective a) in section 1.2. 

3.1 Abstract  

This chapter analyses issues and limitations regarding the definition of the Local 

Volumetric Rate of Photon Absorption (LVRPA) in an annular Photo-CREC Water II 

reactor. This analysis is carried out in order to establish the influence of the scattering 

phase functions and Boundary Conditions (BC) on the LVRPA. To accomplish this, 

macroscopic radiation quantities such as the Total Rate of Photon Absorption (TRPA) 

and the Total Transmitted Radiation (TT) as  functions  of photocatalyst concentration 

are experimentally determined. On the other hand, the Radiative Transfer Equation 

(RTE) is solved using a Monte Carlo Method (MC). Boundary conditions accounting for 

lamp absorption/re-emission effects and diffuse reflection/absorption at the inner and 

outer reactor walls are employed. The Henyey-Greenstein and the binomial phase 

functions are used to simulate both forward and backward scattering phase functions. The 

significant influence of the phase functions on the radiation field is assessed for various 

BCs. Simulation results show that in annular photo-reactors, the sensitivity of the 

LVRPA towards the "g" scattering parameter increases when “ ” is set in the forward 

scattering range. Moreover, the comparison with experimental macroscopic quantities 

proves that Degussa P25 displays mostly forward scattering. The investigation of various 

possible BCs also proves that TT and TRPA fitting yields scattering parameters in 

restricted ranges. Consideration of the more physically sound BCs applicable in the 

Photo-CREC Water II, with complete absorption in the outer wall leads to a “g” value in 

the 0.6-0.8 range. It is proven that the MC simulation and the use of TT measurements in 
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the Photo-CREC-Water II reactor with selected BCs are of critical importance for 

establishing phase functions and scattering parameters in photo-catalytic reactors.  

3.2 Introduction  

As mentioned in Chapter 2, to advance in photocatalytic reactor simulation this chapter 

addresses several closely linked issues vis-à-vis of phase functions and BCs selection. 

This chapter focuses on performing a parametric sensitivity analysis showing the 

influence of phase functions and BCs selection on LVRPA. Furthermore, this also allows 

the determination of the statistical limits for both phase functions and LVRPA 

distributions. With this end in view Isocratic, Binomial and Henyey-Greenstein phase 

functions describing forward, isotropic and backward scattering are used to simulate the 

radiation profile inside a photoreactor with TiO2 Degussa P25. It is also proven that a MC 

method using a one parameter Henyey-Greenstein phase function (within a narrow “ ” 

range) and properly selected BCs are able to describe TT in a wide range of conditions. 

We are not aware of a similar contribution for photocatalytic reactor numerical 

simulation in this critical area of phase function definition.  

3.3 Experimental and Mathematical Methods 

3.3.1 Reactor Setup and Radiation Measurements 

The RTE was solved inside an annular photoreactor previously described by Moreira et 

al.(2011 and 2010). The Photo-CREC Water-II photoreactor measurement section is 

reported in Figure 3.2. This unit is comprised of the following components: (1) a 15-W 

black light lamp, (2) a Pyrex glass inner tube, (3) silica windows (4) a black outer tube, 

(5) an outlet and (6) an inlet. The lamp used in the photoreactor is a 15-W 1.33-cm 

radius, 41.3-cm length, black-light UV lamp. It is positioned at the center inside the inner 

tube of the reactor. For this reason, based on its high transmittance, the inner Pyrex 

reactor tube was selected.  
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Figure 3.1. Schematic Representation of the Photo-CREC Water-II Reactor  (Adapted 

from Moreita et al, 2011) 

The complete reactor setup allows having the suspended TiO2 in recirculation in a closed 

system. This system is composed of a photocatalytic reactor, a stirred tank, and a 

centrifugal pump. The pump allows a recirculation flow rate of 16 L min
-1

. 

Characteristics and dimensions of the concentric photoreactor and the UV lamp are 

reported in Table 3.1.   

 

Figure 3.2 Schematic Representation of the Photo-CREC Water II Illustrating the Optical 

Fiber Sensor and the Wide Radiation View Angles (180 degrees semispherical solid view 

angle) of Measurements Performed. 

2

3

4

5

6

1

Pump

Sampling

port

Tank

Air Suply

reactor inlet

reactor outlet

external 

wall

UV-lamp

annular

section

inner Pyrex

glass

silica

windows

Sensor 

surface

Optical 

fiber

Angle ~ 180°



43 

 

Figure 3.2 describes both the positioning of the UV sensor and the geometry of the 

annular reactor. It can be observed that the silica windows allow the positioning of the 

detector flashed to the silica window. This provides a wide solid angle of irradiation 

detection (very close to a semi sphere with a 180 degrees solid angle). These kinds of 

measurements at the annular reactor outer wall were developed as follows: a) in an empty 

unit, b) in a reactor filled with water (TEW), c) in a reactor filled with different 

photocatalysts at various concentrations (TT). Furthermore, available experimental data 

allow performing a macroscopic energy balance to evaluate the TRPA as the difference 

between the TEW and the TT. Additional details about the Photo-CREC Water-II 

photoreactor accessories and radiation measurements  are also reported in Moreira et al 

(2011). 

3.3.2 Mathematical Procedure Adopted for the MC Method 

The spectral distribution of the UV-lamp was measured and is reported in Figure 3.3. For 

MC, the spectral emission distribution is calculated by fitting an eight term Fourier series 

in the 360-380nm range, and a third order polynomial fitting to the 345-360 and 380-388 

nm ranges. It was found experimentally that the BL lamp emits 3.58x1018 photons s
-1

. 

MC simulations trace the photon’s fate from emission until it is either absorbed or 

scattered outside the reacting system. The number of events played in MC computations 

will directly impact the accuracy of the final solution. All MC simulations reported here 

are performed by using spectral distribution of the absorption and scattering coefficients 

as obtained from Romero et al., 1997. 

Table 3.1 Characteristics and Dimensions of the Photoreactor and the UV-Lamp 

Component Parameter Value 

Photo-CREC Water-II annular 
reactor 

Internal radius 
External radius 
Height 
Pyrex glass thickness 

1.76 cm 
4.44 cm 
44.5 cm 
0.23 cm 
 

Black Light Lamp 
(F15T8/BLB) 

input power 
output power 
length 
radius  
emission range 
emission rate 

15 W 
~2 W 
41.3 cm 
1.33 cm 
300 - 420 nm 
5.95x10

-6
 einsteins s

-1
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Figure 3.3 Relative Spectral Distribution of the BL Lamp Used in the Experiments:  () 

Experimental profile, (△) Polynomial Profile Fitting Function (□) Fourier Series Fitting 

Function. 

In order to develop MC calculations minimizing statistical fluctuations in LVRPA 

computations, the annular section of the photoreactor space was divided into 27 and 47 

cells in the radial and axial direction respectively. Photon tracking involves tracing 

through emission, reflection and absorption. When photon absorption takes place, the 

location of the absorption site (reactor coordinates) and wavelength are identified and 

stored. According to the number of photons stored in each cell and the specific energy of 

every absorbed one, the total energy absorbed per unit time at each cell is calculated. 

Dividing the photon number in each cell, by the specific cell volume, the LVRPA 

distribution for the entire reactor volume is established. 

Regarding trajectories and absorption positions, they are calculated by using the 

following steps: 
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(1) Photon Emission from the lamp surface is determined with two random numbers 

uniformly distributed between [0, 1]. A first random number (R1) sets the angular 

position on the lamp surface according to Eq.3-1:  

)sin(

)cos(

2 1

lamplamplamp

lamplamplamp

lamp

ry

rx

R













 Eq.3-1 

Position in the axial direction is obtained by generating a second random number (R2) 

and a probability distribution function presented in Eq.3-2, as reported by Tsekov and 

Smirniotis, 1997: 
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Eq.3-2 

where       is the lamp radius, L is the reactor length,   is the gap between the lamp and 

the reactor, z represents the axial coordinate and Pze is the probability that a photon will 

be emitted at that specific height z (Tsekov and Smirniotis, 1997). 

The direction of emission is determined by two random numbers (R3 and R4) representing 

a Lambertian source emission distribution as shown in Eq.3-3: 
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 Eq.3-3 

The wavelength of the emitted photon is calculated from a PDF proportional to the 

experimental lamp emission spectra, shown in Figure 3.3. The irradiation distribution is 

modeled fitting polynomials in the 345-360 and 380-390 nm ranges and a Fourier Series 

in the 360-380 nm central emission spectral section.  
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Figure 3.4 3D View of the Coordinate System Adopted for MC Simulations  (Adapted  

from Moreira et al 2010). 

(2) Once the position and direction of a an emmited  photon on the lamp surface is 

determined, the next step is to calculate the photon flight l inside the annular reactor 

section. The  photon under consideration travels a distance l before it interacts with a 

TiO2 particle. The probability of such an event is calculated using a power decay law 

involving an extinction coefficient as suggested by Pareek et al.(2008): 

l
elP )(  Eq.3-4 

where    is the extinction coefficient of the medium at the λ emission wavelength. The 

 parameter represents the sum of the water extinction coefficient and the TiO2 Degussa 

P25 absorption and scattering coefficients. Thus, as a result of Eq.3-4, a flight length    

can be generated using a random number R5 ( 15 R ) as follows: 

 5ln
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 (3) Following the photon flight analysis, photon positioning inside the annular 

photoreactor section is determined by calculating the directional cosines designated as 

zyx eandee , . Furthermore, a Cartesian coordinate system is selected given its 

computational advantage for  determining a photon position uniquely specified by 

directional cosines (Changrani et al., 1999). Thus, after  traveling a distance  , a photon 

has an associated location such is the case in point “A’ (refer to Figure 3.4) with 

coordinates determined by: 

lezz

leyy

lexx

zoldnew

yoldnew

xoldnew







 Eq.3-6 

One should note that in Eq.3-6, “old” refers to the  previous location of the photon under 

consideration in the photoreactor and “new” establishes the updated location once the 

photon has traveled a distance  . Details about the directional cosines involved in Eq.3-6 

are given in Prahl et al. (1989). 

(4) Moreover, once a photon is located in a position A as described in Figure 3.4, its 

fate is next determined by the probability of photon absorption. In this step, probability of 

photon absorption is calculated as recommended by  Changrani et al. (1999): 


















)(aP  Eq.3-7 

Thus, at this point, the photon’s fate is determined by another random number ( 16 R  ). 

If 6)( RaP   then the photon is absorbed and its corresponding position is stored. As a 

result, the photon’s evolution is considered complete and another photon is emitted by the 

lamp which means going back to step (1). On the other hand, if the photon is not 

absorbed by the medium , then the photon is scattered in a new direction. 

(5) Finally, the photon scattering direction at point A is calculated by the following 

phase functions: isocratic  (Eq.3-10), binomial (Eq.3-8) or  H-G (Eq.3-9). 
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Eq.3-9 

 

where   is the scattering angle and Iasym and   represent the asymmetry factors of the 

scattered radiation distribution.  

Values for the asymmetry factors can vary from -1 to 1. This gives phase functions 

ranging from completely backward to completely forward scattering. One should note 

that when Iasym and g equal zero, Eq.3-8 and Eq.3-9 yield an isotropic phase function 

given by: 

2

1
)(Pisocratic   Eq.3-10 

 

Figure 3.5. P() Distribution for () isocratic scattering function , a) H-G Phase 

Function for a (  ) backward scattering , g = -0.3 and (
…….

) forward scattering (g = 

0.3) and  b) Binomial Phase Function, (
…….

) backward scattering (Iasym = 1.5) and (  ) 

forward scattering  (Iasym = -0.2). 
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Figure 3.5 reports both the H-G and the binomial phase functions showing the possible 

PDF changes from almost completely backward to essentially completely forward 

scattering. In the case of  H-G, negative values for “g” (g =-0.3) give mainly backward 

scattering, whereas positive “g”(g=0.3) yields dominantly forward scattering. Meanwhile, 

with a negative  Iasym  (Iasym =-0.2) the binomial phase function gives forward scattering 

with the opposite being true for Iasym =1.5. Regarding these various phase function 

alternatives available, four “g” values were considered in this study as will be described 

later: -0.85, -0.2, 0.2 and 0.85. 

Regarding the direction angle assigned to a scattered photon as in point A moving 

towards point B (Figure 3.4), the magnitude of this angle can be calculated using Eq.3-8, 

Eq.3-9 or Eq.3-10. In this respect, a zenith angle is determined with a random number 

from 0 to 1 in the [0,θ] interval such as proposed by Binzoni et al (2006): 

7)( Rdp
o




  Eq.3-11 

Thus, the calculation of the zenith angle yields a relationship between cos , as a function 

of R7 and the “ ” parameter . Therefore, the scattering angle  can be expressed for all 

the different phase functions by: 
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  Eq.3-12 

Furthermore, to fully describe the direction of the scattered photon, the  azimuth angle 

is required. In order to be able to calculate  azimuth angle, a second  R8 random number 

is needed.  Thus, both scattering angles are determined as follows: 

8R2      

))cos(cos(arc








 Eq.3-13 

Once the scattered angles are determined, the photon trajectory is fully established. Thus, 

as a result, one can go back to step (2) of the Monte Carlo method and reconsider a 
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photon as being either interacting with the slurry medium or  interacting with reactor 

boundaries as follows:  a) the inner reactor's walls, b) the outer reactor's wall, c) the 

top/bottom reactor's walls, d) the BL-Lamp or e) the sensor's surface. If as a result of 

these events, a photon is absorbed, calculations are ended and the algorithm restarts at 

step (1). This process is continued until a statistically adequate number of photons are 

considered.  

Figure 3.6 reports a simplified structure of the MC code and its subroutines including the 

following: a) random photon emission (direction, position, wavelength as explained in 

Step (1) above), b) interaction between the photon and the air-glass-water interface, c) 

photon events in slurry media (Reaction Space Subroutine which includes Steps 2 to 5), 

d) Calculation of average irradiation distributions (LVRPA and TRPA).  

 

Figure 3.6. General Structure of the MC Algorithm of the Present Study. The Reaction 

Space Subroutine is described with their inputs and their outputs. 
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Figure 3.6 describes the Matlab program algorithm developed to solve the RTE inside an 

annular photoreactor. It can be noticed that a counter limit is set as "Nphot" and is used to 

account for every photon that is emitted. Nphot are to be kept in excess to 10
6
 to keep the 

statistical fluctuations of the MC method below 5%. It can also be observed that the 

algorithm is divided in: a) a stochastic emission section where the photon wavelength, 

initial position and direction are defined , b) a deterministic section  where the photons 

optical properties and their interaction with the inner Pyrex glass are determined 

according to Snell's law, c) a slurry region entrance conditions, as described in Figure 

3.7, d) a photon termination coordinate assignment section at the absorption cell location, 

e) a LVRPA, TRPA and irradiance profiles calculation module. 

With this end as well, the RAND function is used to generate random numbers. RAND 

has a period of (2
19937

-1)/2, exceeding any computational possible number of simulation 

events needed in this MC method. Simulations were performed by changing both 

asymmetry factors in the binomial and H-G phase functions; values of -0.85, -0.2, 0.2 and 

0.85 were considered. Simulations for an isotropic phase function were also performed. 

All runs were completed for the following TiO2 concentrations: 0.01, 0.02, 0.05, 0.1, 0.2, 

0.3 and 0.4 g L
-1

.  

Figure 3.7 shows additional details of the “Reaction Space Subroutine” which are not 

included in the algorithm of Figure 3.6.  This subroutine is employed for describing the 

radiation field and involves various steps described at the beginning of the mathematical 

MC section. Once the fate of the photon is terminated, the subroutine exits and another 

photon is reemitted in the lamp with new direction, position and wavelength.  
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Figure 3.7. Algorithm of the Reaction Space Subroutine, employed in the MC simulation 

of the radiation field inside the annular section of the photoreactor. 

The described Monte Carlo method, should be run for a large number of photons until the 

recorded reflection, transmission, and absorption profiles approach steady values. 

However, the number of events should be small enough so that simulations can still be 

handled in a PC computer. For the simulations in this chapter, the fate of 6x10
7
 photons 

were tracked in a computer with a 2nd generation Intel i7 quad core at 2.0 GHz. This 

number of computed events resulted in manageable computer time with an accurate 

response (e.g. 2% deviations on consecutive LVRPA calculated profiles). For instance, 

when an isocratic phase function was used, a total of 32 hours were needed for all 

catalyst concentrations. Runs were performed at least three times to ensure  

reproducibility and small statistical fluctuations. This approach ensures that the number 

of events computed using the MC method is sufficient to assume adequate accuracy of 

simulations.  
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3.4 Results and Discussion  

3.4.1 MC Simulation for an Isocratic Phase Function  

The MC method of this sub-section was considered for a photocatalyst concentration of 

0.05 g L
-1

. In this simulation, the isocratic phase function was used in order to assess the 

different results that one can obtain with the MC approach. As described in section 3.3.2, 

the MC code was intended to be used to calculate 3D profiles of the LVRPA inside the 

annular photoreactor. Furthermore, the MC method was set to deliver the total rate of 

energy absorption (TRPA), i.e. the light absorbed by the TiO2 catalyst in the entire 

reactor volume, as well as the radiation reaching the external walls (TT, Total 

Transmitted Radiation). Figure 3.8 reports the 3D profile of the LVRPA inside the 

annular reactor when both a concentration of 0.05 g L
-1

 of catalyst and an isotropic phase 

function are employed.  

 

Figure 3.8. 3D Profile of the LVRPA Inside the Photo-CREC Water II Reactor for 0.05 

gL-1, Isocratic Phase Function (g=0). 

Results reported in Figure 3.8 show that TiO2 particles close to the center of the reactor 

(radial coordinate = 0.0177 m) display a higher rate of energy absorption. As the radial 

coordinate approaches the outer wall of the reactor (radial coordinate = 0.044 m), the 
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LVRPA profile decreases due to shadowing effects from the photocatalyst closer to the 

lamp. This creates the radial profile of the LVRPA inside the reactor. Regarding the axial 

profile of the LVREA, one can notice that this is due to the fact that the lamp emits 

higher radiation intensities at the center and lower towards the lamp edges. Thus, more 

radiation is absorbed by the TiO2 photocatalyst in this central (z=0) reactor region. 

Furthermore, considering the TRPA as defined by Eq.2-12, it was found to be 1.84x10
-6

 

einsteins m
-3

s
-1

. Total transmitted radiation at the external wall of the reactor (radial 

position = 0.044 m) was 257.41 W cm
-2

. 

Concerning the simulations to be reported in the upcoming sections, the same MC 

method as described for the isocratic function (Figure 3.8) and 0.05 gL
-1

 concentration, 

was used with some minor adaptations. This allowed us to establish the effect of different 

parameters in the radiation field as follows: a) photocatalyst concentration, b) scattering 

phase functions and c) boundary conditions. LVRPA data was also valuable to evaluate 

boundary conditions and scattering parameters. 

3.4.2 Effect of catalyst concentration for isocratic phase function 

Simulations with the isocratic phase function (g=0) were performed at different 

photocatalyst concentrations. Figure 3.9 reports a 3D comparison of the LVRPA for four 

different photocatalyst loadings. 

One can notice that at higher photocatalyst loadings the LVRPA displays a steeper decay 

in the radial direction. It can also be observed that for higher photocatalyst 

concentrations, larger values  of LVRPA are found in the "high irradiation" region, 

located close to the radiation source (r<0.03m). For instance, when simulating a 0.2 g L
-1

 

of TiO2 slurry, values of 1.75x10
-2

 einstein m
3
s

-1
 are observed for the LVRPA in the near 

glass wall regions. In contrast for the 0.01 g L
-1

 photocatalyst concentration, values of 

6.21x10
-4

 Einsteins m
-3

 s
-1

 are obtained in the same region.  
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Figure 3.9. 3D view of the LVRPA inside the annular reactor for TiO2 concentrations of 

(a) 0.01, (b) 0.05, (c) 0.1, and (d) 0.2 g L
-1

. 

To more effectively describe how the radial profile for the LVRPA is influenced by  

photocatalyst loading, a 2D plot is reported in Figure 3.10. This figure shows the radial 

profile at z = 0,   describing the significant changes of LVRPA with radial position and 

photocatalyst loadings. Figure 3.10 also reports the tendency of the Photo-CREC Water II 

reactor to form poorly irradiated zones (dark zones) in the outer concentric tube regions, 

under these conditions. 

Regarding LVRPA, Figure 3.10 shows a quick and uniform drop with respect to the 

radial direction. Again, for the higher photocatalyst loadings, TiO2 particles closer to the 

inner wall (or radiation source) absorb most of the radiation entering the reactor. In this 

sense, when a sufficiently high concentration of TiO2 is used, the photocatalyst near the 

external reactor wall would be poorly irradiated. This leads to a radial LVRPA profile 

with highly irradiated zones near the inner wall and poorly irradiated regions for particles 

near the outer wall. In order to determine proper photocatalyst loading, (i.e. the one that 

ensures optimally irradiated conditions inside the photoreactor while avoiding poorly 



56 

 

irradiated zones), one has to quantify two competing effects: i) the photocatalyst capacity 

to absorb radiation which is determined by the absorption coefficient, ii) the shadowing 

effect which is influenced mainly by the photocatalyst scattering coefficient and in 

general the scattering mode (Cabrera et al., 1996). 

 

Figure 3.10. Radial distribution of the LVRPA at z = 0 when isocratic phase function is 

used (x) 0.01, (△) 0.02, (■) 0.05, (○) 0.1, (•) 0.15 and (◊) 0.2 g l-1. 

 

 

Figure 3.11. Total Rate of Photon Absorption for Isocratic Phase Function vs. Catalyst 

Concentration. 
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Figure 3.11 shows the TRPA, for the entire annular section of the 2.65 liter Photo-CREC 

Water II reactor and their changes with photocatalyst loading. Radiation absorbed by the 

TiO2 reaches a close to asymptotic value at 0.10 g L
-1

 or at 95% of the maximum TRPA. 

This point can be regarded as a condition of “minimum” photocatalyst loading ensuring 

maximum radiation utilization with the smallest amount of photocatalyst. The TRPA 

value related to this “minimum” photocatalyst concentration depends as it is shown in the 

upcoming section of this manuscript, on the specific photocatalyst scattering mode (phase 

function used) and the selected boundary conditions. 

3.4.3 Effect of the Scattering Mode at Constant Photocatalyst 
Concentration  

Scattering phase functions can have a major influence on the radial LVRPA profile and 

on  the TRPA. To demonstrate this,  MC simulations using the H-G and the binomial 

phase functions are compared with respect to MC results employing the isocratic phase 

function. The isocratic function is used as a reference given its frequent use by other 

authors (Moreira et al. 2010, Moreira et al. 2011, Satuf et al. 2005 , Marugan et al. 2006) 

Figure 3.12a reports radial LVRPA profiles for different scattering modes at 0.05 g L-1 

of TiO2  employing the H-G phase function. Similarly, Figure 3.12b shows the radial 

LVRPA profiles for the binomial phase function. In an analogous fashion, Figure 3.12c 

shows the same results for a higher concentration of 0.2 g l-1 in the case of H-G and 

Figure 3.12d for the binomial phase function. 

Figure 3.12 shows that there are important LVRPA deviations from MC isocratic 

simulations in all cases considered with the “ ” parameter changing in the -0.85 to 0.85 

range. All simulations within this subsection consider the external wall absorption 

probability of 100%. These significant LVRPA deviations were observed for both 0.05 

and 0.2 g L
-1

photocatalyst concentrations. The major deviations, however, occur for 

highly forward scattering parameters (g = 0.85 for H-G and Iasym= -0.85) and using  the 

H-G phase function. Furthermore, very significant percentual deviations are noticed at 

low concentrations for   = 0.85 and Iasym = -0.85. While comparing the LVRPA resulting 

from the binomial phase function , one can observe closer values as predicted by the MC 
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isocratic simulations and on the other hand, important differences with respect to the H-G 

phase function model predictions. 

 

Figure 3.12. Radial LVRPA Profiles Using the H-G Phase Function (Figures a and c) 

and the Binomial Phase Function (Figures b and d) . Figures a and b are for 0.05 g L
-1

  

photocatalyst concentration, figures c and d are for 0.2 g L
-1

 photocatalyst concentration. 

Outer boundary Condition: 100% of incident radiation. Codes for asymmetry factors: 

Broken double-dotted line (-••-) -0.85, Broken line (- - -) -0.2, Dotted line (••••) 0.2 and 

Broken single-dotted line  (-•-) 0.85. Full line () Isocratic phase function. 

Additionally, Figure 3.13 reports the TRPA for H-G, binomial and isocratic phase 

functions. It is observed in this figure that the selection of the scattering phase function 

plays a very significant role in the calculated TRPA values. 
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Figure 3.13. Total Rate of Photon Absorption vs. Catalyst Concentration for (a) H-G and 

(b) binomial phase functions. Outer boundary condition: 100% of incident radiation. 

Codes for asymmetry factors: Broken double-dotted line (-••-) -0.85, Broken line (- - -) -

0.2, Dotted line (••••) 0.2 and Broken single-dotted line  (-•-) 0.85. Full line () 

Isocratic phase function. 

Thus, the above analysis allows us to conclude that the selection of the correct phase 

function and unit boundary conditions are critical and can, in some cases, lead to quite 

different LVRPAs. These results are in contrast with the findings of Moreira et al., 2010 

and Pasquali et al., 1996  who concluded that the form of the phase function does not 

have significant effect on MC simulation results. Reasons on this disagreement can be 

assigned to restricted variations of BCs by the above mentioned authors.  

It is postulated in the present study that the selection of a phase function involves: i) both 

LVRPA radial profiles and TRPA, ii) a large variation of photocatalyst concentrations, 

iii) carefully selected  boundary conditions for both the inner and outer reactor walls. 

3.4.4 Inner and Outer Boundary Conditions  

Figure 3.14 shows simulations for the H-G phase function including forward, isocratic 

and backward probability distributions. In these Monte Carlo simulations, the extreme 

conditions at the inner boundary of the concentric reactor are varied from total absence of 

photon reemission (PabsLamp=1 )  to complete photon reemission (PabsLamp=0 ).   

Photocatalyst Concentration, g L
-1

0.0 0.1 0.2 0.3 0.4

T
R

P
A

 ,
 E

in
s
te

in
s
 s

-1

0

1e-6

2e-6

3e-6

4e-6

Photocatalyst Concentration, g L
-1

0.0 0.1 0.2 0.3 0.4

T
R

P
A

 ,
 E

in
s
te

in
s
 s

-1

0

1e-6

2e-6

3e-6

4e-6

(a) (b)



60 

 

Figure 3.14 reports that the photon interaction with the lamp (inner BC) plays a critical 

role in the radial LVRPA profile. From the reported results, one can notice the significant 

LVRPA variations assuming either total photon absorption or total photon re-emission. 

This observation holds true for various scattering cases considered in this study. For 

instance, one can notice in Figure 3.14a at g=0.8 that varying the inner BC yields 25-30% 

LVRPA variations. A similar effect is observed in Figure 3.14b (for the isocratic case) 

with 50-55% LVRPA variations. Lastly, Figure 3.14c displays as much as 65-70% 

LVRPA variations for g=-0.8.  

  

 

Figure 3.14. Changes of LVRPA with Inner Boundary Conditions. Outer boundary 

condition: 100% of incident radiation. Photocatalyst concentration set at 0.05 gL
-1

. Phase 

function used is H-G with (a) forward scattering g = 0.8, (b) isocratic scattering and (c) 

backward scattering g = -0.8 phase functions. Simbols: (○) total re-emission from the 

lamp and (•) total absorption in the lamp 

Figure 3.15 reports simulations describing the effect of the outer BC. These simulations 

consider the two extreme cases of total absorption (Pabswall=1) and total diffuse reflection 

(Pabswall=0) in the outer reactor wall. Simulations for the H-G phase function include 

forward (g=0.8), isocratic (g=0) and backward (g=-0.8) probability distributions. Figure 

3.15a , Figure 3.15b and Figure 3.15c show that the outer BC is  critical for LVRPA 

radial profile simulations. In this respect, they all show an increasing deviation of 

LVRPA as g decreases, namely 30-50% for Figure 3.15a (g=-0.8) to 70-90% for Figure 

3.15c (g=0.8). Thus, it can be seen from these results that the outer BC is always 
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significant for a photocatalyst concentration of 0.05 gL
-1
. Furthermore, for positive “g’ 

scattering parameters (g>0) outer BCs become of  increased importance.  

 

Figure 3.15. LVRPA Changes with Outer Boundary Conditions. The H-G phase 

scattering function considers  (a) backward scattering with g = -0.8, (b) isocratic 

scattering and (c) forward scattering  with g = 0.8. Full circles . (•) represent total 

absorption at the outer wall and open circles (○) total diffuse reflection at the outer wall. 

Photocatalyst concentration set at 0.05 gL-1. 

3.4.5 Experimental Study to Determine Scattering Phase Functions 

Moreira et al., (2010 and 2011) were one of the first authors to investigate the Monte 

Carlo method to simulate the radiation field in the Photo-CREC Water II reactor. This 

approach was able to predict the TRPA as a function of photocatalyst concentration using 

Degussa P25 and Anatase TiO2. It was concluded that the form of the phase function is 

not “in principle” critical for obtaining a good representation of the radiation field inside 

the annular section. Boundary conditions considered in Moreira et al., were restricted to: 
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obtained using Macroscopic Radiation Balances (MRB).  
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to the external reactor walls forming a thin TiO2 layer. This TiO2 layer would most likely 

reflect a fraction of the photons coming from the annular section. On the other hand, and 

according to Duran et al., 2010,  accurate lamp irradiance predictions require the 

consideration of both lamp absorbance and lamp photon re-emission contributions. 

To address these issues, a photocatalytic reactor model is considered in this study where 

two probabilistic functions are considered: PabsLamp and Pout-wall representing lamp 

absorption and external wall absorption respectively.  In addition, the model reported 

here is further enhanced by incorporating a Lambertian lamp emission model in the MC 

approach used. This Lambertian emission model is needed to properly capture the various 

photon trajectories from the lamp into the annular photoreactor.  

To validate the calculated LVRPA, measurements were effected as follows: a) TRPA 

from radiometric measurements using a MRB and b) TT radiation measurements using a 

StellarNet EPP2000C-25 LT16 spectrometer. Figure 3.16 a) and Figure 3.16b) report 

TRPA and TT data respectively, as observed in the Photo-CREC-Water II reactor. Lamp 

emission parameters were determined by independent measurements. Lamp emissions 

values were found to be 5.96.10
-6

 E/s, that is 1.92 W/sec (12.8% efficiency from the 

nominal 15 watts). 

 

Figure 3.16. a) Experimental TRPA or Total Rate of Photon Absorption reported as a 

percentual fraction of total photons absorbed by the slurry. b) Experimental TT or Total 
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Transmittance reported in microwatts per square centimeter. Three measurements were 

performed for every experimental point. The error bars represent standard deviations. 

As shown in Figure 3.16a) TRPA rises steadily with catalyst concentration until it 

reaches an asymptotic value, close to 78%. Figure 3.16b) reports a similar decreasing 

behavior for  TT, with TT dropping from 1500 µw/cm2 to close to zero at 0.4 gl-1. TRPA 

and TT standard deviations were 2-7.4% and  4-116 µw/cm2 respectively. It is 

hypothesized that these radiation variations are the consequence of the following: a) 

photocatalyst tendency to form a thin layer of variable thickness close to the reactor wall. 

Thickness of this thin layer may depend on: i) local turbulence, ii) particular catalyst 

local loading and b) natural lamp emission power variations due to small voltage 

changes.  

3.4.6 Limitations of Macroscopic Radiation Balances (MRB) when 
Establishing Scattering Models in Annular Photoreactors. 

The Macroscopic Radiation Balance (MRB) is a valuable tool for assessing absorbed 

radiation as reported by  Salaices et al. (2002). This allows one to obtain the Total Rate of 

Photon Absorption (TRPA) as the difference between the total emitted radiation and 

Total Transmitted Radiation (TT). Although the MRB provides an approximation to 

obtain TRPA, it does not provide enough information on the radial distribution of 

radiation absorbed inside a photoreactor annular section. 

Some of the MRB assumptions are not in agreement with the MC simulation assumptions 

presented in this study. For instance, the MRB neglects forward scattering effects away 

from the outer reactor wall. This becomes more significant as the photocatalyst 

concentration decreases and/or when forward scattering behavior is prevalent. 

Furthermore, the MRB fails to account for photons absorbed both in the inner and outer 

walls reactor top and bottom and the lamp itself. Such assumptions might hold true in 

homogeneous systems or heterogeneous systems at very low photocatalyst 

concentrations. 

Figure 3.17(a-d) reports the TRPA changes as a function of catalyst concentration with 

different sets of BCs for various H-G phase function cases, ranging from full forward to 



64 

 

full backward scattering modes. It is shown in Figure 3.17(c) and Figure 3.17 (d) that 

when both BCs are outside the 0 to 0.2 absorption probability range, no phase function is 

able to fit the calculated TRPA profiles, confining the BCs to an unrealistic low 

absorption range. Figure 3.17a and Figure 3.17b also show that in the 0 to 0.2 absorption 

probability range, there is low parametric sensitivity towards the “g” scattering 

parameter. Given the above mentioned reasons, the TRPA obtained by MRB is not 

reliable for phase function model discrimination. 

 

Figure 3.17. Effect of Boundary Conditions on the TRPA, reported as a percent of the 

total emitted radiation as a function of catalyst concentration (TiO2 mg/l) for (a) PabsLamp 

= 0.1, PabsWall = 0.1, (b) PabsLamp = 0, PabsWall = 0.2, (c) PabsLamp = 0, PabsWall = 0, (d) PabsLamp 

= 0.2, PabsWall = 0.2. With  () g = -0.99, () g = -0.4, ()isocratic, () g = 0.4, (− − −) 

g = 0.7, (− − −) g = 0.9 and  (− − −) g = 0.99 and (○) experimental data. 
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3.4.7 Total Transmittance(TT) Measurements When Establishing 
Scattering Models in an Annular Reactor 

Total Transmittance (TT) measurements as described in the introduction section of this 

manuscript, are a key parameter for the determination of LVRPA in photocatalytic 

reactors. In fact, the evaluation of TT and its changes with catalyst concentration does not 

require special assumptions to be made (as is the case for TRPA) so that BC's and 

scattering models can be established with increased confidence. On this basis, it is 

expected that this methodology could yield better model discrimination.  

Figure 3.18(a-d) report the TT and its changes with catalyst concentration while using the 

H-G phase function model for the limiting combinations of BCs: i) Figure 3.18a with 

PabsLamp = 1, and  PabsWall = 1, ii) Figure 3.18b with  PabsLamp = 0 and PabsWall = 1, iii) Figure 

3.18c with PabsLamp = 1 and PabsWall = 0, and iv) Figure 3.18d with PabsLamp = 0 and PabsWall 

= 0. 

In this respect, Figure 3.18c and Figure 3.18d are valuable to discard two extreme model 

cases where  PabsLamp = 1 and PabsLamp = 0 with PabsWall  being  consistently zero. For these 

two extreme cases, no single “g” value of the H-G phase function capable of representing 

the experimental data with low residuals.  

On the other hand, Figure 3.18a and Figure 3.18b with PabsLamp = 1 and PabsLamp = 0 

respectively and with PabsWall  set at 1, yield TT values adequately representing the 

experimental transmittance data within a narrow range of “g” parameter values. For 

instance, one can observe that adjustments of experimental TT in Figure 3.18a and Figure 

3.18b, leads to a " " scattering parameter in the 0.6 to 0.8 range. 

Table 3.2 and Figure 3.19 describe the residuals for the models of Figure 3.18a and 

Figure 3.18b. It can be seen that in both cases there is consistently an optimum “g” value: 

a) 0.6  for  PabsLamp = 0 and b) 0.8 for PabsLamp = 1. Given the above analysis, one can 

notice that the TT experimental data are most valuable to discriminate in between 

boundary conditions and to calculate between possible g parameter values. 
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Figure 3.18. Effect of Boundary Conditions on the Transmitted Radiation (TT) as a 

Function of Catalyst for (a) PabsLamp= 1, PabsWall = 1, (b) PabsLamp = 0, PabsWall = 1, (c) 

PabsLamp = 1, PabsWall = 0, (d) PabsLamp = 0, PabsWall = 0. With  () g = -0.99, () g = -

0.4,() isocratic,() g = 0.4, (− − −) g = 0.7, (− − −) g = 0.9 and  (− − −) g = 0.99 and 

(○) experimental data. 

 

Figure 3.19. Total Squared Error Variation with Respect to Scattering Mode at Different 

BCs. ,(—) PabsLamp=1 , (••••) PabsLamp=0. Both for PabsWall=1. 
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Table 3.2. Total Transmission (TT) Squared Error for various “g’ Scattering Parameters 

and two sets of BCs. Case a: PabsLamp=1, PabsWall=1. Case b:  PabsLamp=0, PabsWall=1. 

g Case a Case b 

0.4 47,729 346,551 
0.5 27,010 234,026 
0.6 12,406 167,457 
0.7 28,956 92,358 
0.8 63,214 12,992 
0.9 188,709 68,179 

 

 Given that a small fraction of the radiation reaching the outer reactor wall is expected to 

be reflected (PabsWall =1 or close to one) and that one would anticipate reemission to be 

limited (PabsLamp equal or close to one) as postulated by Duran et al. 2010, Figure 3.18a is 

considered to be close to the actual applicable model for irradiance calculations using the 

H-G phase function.  

3.5 Conclusions 

a) It is shown that a MC method is able to simulate the three dimensional field for 

the LVRPA inside an annular photoreactor. The proposed stochastically based MC model 

accounts for radiation absorption through the inner Pyrex glass, reflection of photons 

reaching the inner and outer walls of the concentric unit and photons absorption and 

scattering inside the photocatalyst slurry .  

b) It is proven that MC calculations using isocratic, H-G and binomial scattering 

models play a significant role in the identifying critical simulation factors such as BCs 

and scattering parameters. 

c) It is shown that TRPA measurements, given the uncertainty of underlying 

assumptions, allow limited discrimination between scattering models and BCs, when 

compared to  TT irradiance measurements.  
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e) It is proven that the H-G phase function with a positive 0.6-0.8 “ ” scattering 

parameter and PabsWall =1  and PabsLamp =1 boundary conditions yields adequate prediction 

of  TT experimental values. 
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Chapter 4  

4 Establishing Photon Absorption Fields in a Photo-CREC 
Water II Reactor Using a CREC-Spectroradiometric 
Probe 

The information presented in this chapter is based on the article entitled "Establishing 

Photon Absorption Fields in a Photo-CREC Water II Reactor Using a CREC-

Spectroradiometric Probe", published in Chemical Engineering Science Vol. 116 p. 406-

417, in September, 2014. The results reported in this chapter address stage ii) of section 

1.1, and significantly contribute towards the partial completion of  general objective a) in 

section 1.2. 

4.1 Abstract 

The scattering mode and the appropriate boundary conditions in a Photo-CREC Water II 

annular reactor are assessed from experimental data. These data are obtained using a 

novel spectroradiometric probe (CREC-SP). This probe is designed to measure irradiance 

at different radial positions within the concentric channel. Radiation data obtained are 

analyzed using a calculated Monte Carlo radiation field inside the slurry photoreactor. 

The effect of the phase function and the boundary conditions, as relevant to the 

photoreactor walls are fully determined. The MC method proposed in section 3.3.2 is 

modified in the present chapter to account for refraction, absorption and reflection at the 

probe surface. Lamp emission, refraction and reemission as well as wavelength-

dependent absorption and scattering are accounted for. Regarding Degussa P25, a 

Henyey-Greenstein phase function with a g=0.68±0.03 is needed. On this basis, a 3D 

LVRPA field, is established. This approach also allows one to independently set 

boundary conditions, avoiding cross-correlation with scattering parameters, an issue 

present when using past experimental methodologies, as presented in Chapter 3. As a 

result, the approach presented in this chapter establishes scattering phase functions and 

radiation absorption fields with improved accuracy. Clarification of these matters is of 

crucial importance for the design and scale-up of photocatalytic reactors. 
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4.2 Introduction 

The experimental approach presented in section 3.4.6 and 3.4.7  (Valades-Pelayo et al., 

2014) recently described significant limitations of the most common experimental 

irradiance data: a) they do not provide sufficient information regarding reactor internal 

radiation gradients, b) they do not allow accurate validation of boundary conditions 

(BCs) when scattering parameters are to be determined. These issues are mainly 

attributed to the intrinsic nature of two compensating effects: reflection at the reactor 

boundaries and backscattering from the near-wall slurry region. Furthermore, the LVRPA 

calculated values are strongly affected by uncertainty in the angular dependent phase 

functions (Yang et al., 2005). As a result, a potentially high cross-correlation between 

phase functions, scattering parameters and Boundary Conditions (BC) may be observed, 

which is the case for annular reactors (Valades-Pelayo et al., 2014). Moreover, the 

accurate determination of the LVRPA spatial distribution within the photocatalytic 

reactor is an important factor (Alfano et al., 1994), mainly due to both the inability to 

render precise kinetic information from averaged photon absorption rates (Brandi, et al., 

2003) and the strong non-uniformities inherent to radiation propagation in scattering-

absorption media. 

It is the researcher's view, that for further development of photocatalytic reaction 

engineering, the precision of the irradiance field determination is required to improve, 

and thus, the accuracy of the calculated LVRPA. Specifically, in annular photoreactors, 

the radial dependence of the irradiance field is expected to gather vast information 

regarding the slurry optical properties. To accomplish this, in the present chapter, “radial 

irradiance profiles”(RP) at different photocatalyst loadings are determined. RP are 

obtained by measuring irradiance, with the sensor surface pointing towards the reactor 

centerline (where the lamp is located) while changing the radial position of the sensor. 

This approach allows accounting for the internal radiation gradients in the slurry, unlike 

the total transmittance (TT) and the Total Rate of Photon Absorption (TRPA). Moreover, 

the adequacy of the proposed method is proven to be satisfactory by analyzing the 

uncertainties on the obtained LVRPAs. As a result of this analysis, it is also shown that 

one can considerably reduce the uncertainty on the applicable phase function. 
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4.3 Experimental Method 

4.3.1 Reactor Setup 

A schematic representation of the Photo-CREC Water II photoreactor was reported in 

previous studies by our research group (Moreira et al., 2010; Moreira et al., 2011 and 

Valades-Pelayo et al., 2014). A schematic representation of the Photo-CREC Water II 

Photoreactor is already presented in Figure 3.2 and Figure 4.1. Additionally, details 

regarding its configuration can be found in section 3.3.1. 

The Photo-CREC-Water II Reactor is operated in a down-flow mode with a lean TiO2 

suspension flowing through the concentric unit channel. The Photo-CREC-Water II 

Reactor is configured with a special geometry with a conical bottom section. These 

characteristics are essential to avoid any potential photocatalyst sedimentation in the 

corners of the bottom section. 

The Photo-CREC-Water II unit is operated with slurry velocities many times the 

agglomerate settling velocity, thereby avoiding any particle settling effect. In fact if one 

calculates the particle terminal velocity for Degussa P25 particles, using the Stokes law, 

for a particle agglomerate diameter, as suggested by Salaices et al. (2002), of 1340 nm, a 

TiO2 density of 4,260 kg m
-3

, and a fluid density and viscosity equal to water at 20° C, 

the terminal velocity is several orders of magnitude smaller than the downwards fluid 

velocity in the annular section. 

Furthermore, Figure 4.1 shows an expanded view of the CREC-PS probe with its in-

depth positioning device. The CREC-PS operates in conjunction with a fiber optic-

spectroradiometer system, allowing irradiance measurements at various radial positions 

in the Photo-CREC Reactor annular channel with a wide view angle as the sensor points 

towards the reactor central axis.  
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Figure 4.1. Reactor Schematics and Expanded View of the Probe Sensor Allowing 

Changes and Irradiation Measurements with a wide view  angle at Various Radial 

Positions in the Photo-CREC Annular Channel. 

The spectrometric system, consists of a StellarNet EPP2000C-25LT16 (Black-Comet) 

Spectrometer able to detect radiation in the 190 nm to 850 nm range. This spectrometer 

has a 0.75 nm resolution, with stray light ranging from 0.02% to 0.2% at 435nm and 

220nm respectively. Exposure times can vary from 4 ms to 60 s to avoid sensor 

saturation. For irradiance measurements in the 4,000 to 200 µW/cm
2
 range and using the 

BLB Lamps (F15T8-BLB), standard deviations were observed to stay below 1%. In the 

200 to ~10 µW/cm
2
, percent-wise, standard deviations increased to up to 10%, but were 

never above 20 µW/cm
2
. For the present study exposure time was set between 40 and 100 

ms in order to avoid sensor over-saturation. 30 to 40 irradiance spectra were averaged to 

minimize measurement variations due to the use of short exposure times. 

4.3.2 The CREC-SP Probe 

As described in Figure 4.1 and Figure 4.2, the CREC-PS probe was designed to introduce 

the radiometer’s sensor into the slurry at different radial positions within the reactor 

channel. The CREC-PS is made of stainless steel, HDPE and a thin Pyrex cylinder (~0.7 
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mm thick). The Pyrex cylinder allows a high fraction of radiation in the 340-388 nm 

range, to reach the sensor inside the probe. The probe is designed to go as deep as 25.5 

mm within the annular section (refer to Figure 4.2b).  

 Figure 4.2a shows the CREC-PS screw-like mechanism that allows changing the radial 

positions with high precision. A double o-ring design prevents reactor leaks while the 

CREC-PS probe depth is being adjusted. 

 

Figure 4.2. Description of the CREC PS Probe  while being placed in the Photo-CREC-

Water II Reactor. 

The Photo-CREC-Water II Reactor has 7 window slots that are located at several axial 

reactor positions, allowing the CREC-PC to be placed in each of them. Figure 4.2c shows 

the CREC-PC probe mounted into the middle window. During the experimental runs, the 

probe was moved as needed. Thus, radial measurements at various radial positions where 

obtained by twisting the screw-like end of the probe between the inner (r=0.0175 m) and 

outer bounds(r=0.0445 m) of the slurry region. 

c)

b)

a)
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4.3.3 Experimental procedure 

The head of the spectrophotometric sensor was placed inside the CREC-PS probe. Once 

its position was carefully adjusted, its back-end was connected to a StellarNetEPP2000C-

25LT16 spectrometer port via an optical fiber cable (refer to Figure 4.1). One should 

mention that the CREC-PS Probe was mounted onto one of the windows of the Photo 

CREC-Water II Reactor (refer to Figure 4.2c).  

Prior to The Photo-CREC-Water II Unit operation, the slurry suspension was allowed to 

enter the reactor from the top. A valve located in the reactor bottom section was closed, 

so that the water slurry could accumulate inside the reactor unit. While the reactor was 

being filled, air was being pushed out through a top vent. Once all the air had been 

removed from the unit, the vent was closed and hermetically sealed. This methodology 

ensures that no empty zones or air pockets remain, during operation, within the annular 

reactor section.  

Once the reactor system was filled with 6L of water, the pump and the 15 watts BL lamp 

were turned on. As the lamp emission was stabilized, the irradiation measurements were 

effected. The sensor was placed during each run at seven different radial positions from 

the reactor centerline: 4.12cm., 3.72 cm., 3.32cm., 2.92cm., 2.52cm., 2.12 cm. and 2 cm 

(Figure 4.1). The probe depth was varied by using an adjustable Vernier scale. Three 

measurements were performed at every location and the average local values were then 

calculated. By using these local averages, each radial irradiation profile (RP) was 

established.  

Moreover, by progressively adding Degussa P25, eight RP were generated at 0, 25, 50, 

100, 150, 200, 300 and 400 mgl
-1

 photocatalyst concentrations. pH was kept at 7 for all 

runs. It should be noted that every time the photocatalyst concentration was adjusted, the 

photocatalytic reactor was left in operation for at least 5 minutes until the photocatalyst 

concentration was homogenous and, as a result, radiation measurements were stabilized.   
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All of the above mentioned steps were repeated at least four times until mean values, low 

standard deviations and reduced 95% confidence intervals, as reported in Figure 4.6, 

were obtained. 

4.4 Mathematical Models 

4.4.1 RTE Simulation by Monte Carlo Method 

The Monte Carlo method consists of tracing trajectories of photons until they are 

absorbed or scattered by the slurry medium (Prahl, 1989). This statistical method has 

been extensively used to model near UV propagation in photocatalytic reactors (Moreira 

et al., 2010; Moreira et al., 2011). Chapter 3 already clarifies the methods of, and the 

issues with, Monte Carlo applications used in a Photo-CREC Water II Reactor (Valades-

Pelayo et al., 2014).  

The MC method simulates photon bundle evolution in the photoreactor. Therefore, it is 

based on the physical nature of thermal radiation. This is one of the most used methods to 

solve radiation problems since it is very easy to adapt to complex problems and it also 

provides close to exact solutions within statistical limits (Demirkaya et al., 2005). Section 

3.4 (Valades-Pelayo et al.. 2014) described the Monte Carlo Method for modeling 

radiation transport in an annular Photo-CREC water II reactor with a suspended 

photocatalyst. The main focus of this section is to determine the effect that the phase 

function parameters have on the numerical simulation of the LVRPA for different 

catalyst concentrations. Different boundary conditions for the inner glass and outer walls 

were assumed and their validity was also studied for different catalyst loadings.  

Given the above considerations, a Monte Carlo approach is considered in the present 

chapter. This approach includes assumptions applicable to both the photocatalytic reactor 

and the CREC-PS probe: 

(a) Emission of photons by the lamp is assumed to be non uniform in the axial 

direction, according to Tsekov & Smirniotis (1997). In conjunction with this a 

Lambertian source emission model is considered to establish the direction of the emitted 
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photons. This process is considered to be stochastic. Absorption and reemission of 

photons by the lamp were also considered. 

(b) The inner reactor Pyrex tube absorption is set at 6% of all photons emitted by the 

lamp (Moreira et al., 2010; Moreira et al., 2011). 

(c) Different scattering modes are simulated with the H-G phase function for 

different values of the “ ” scattering parameter. 

(d) Photons that hit the reactor walls have a certain probability of being absorbed and 

terminated. Alternatively, these photons can be reflected by a specularly-diffuse 

reflection mechanism. 

(e) Absorption and scattering coefficients are uniform throughout the annular section. 

The wavelength-specific coefficients were used in accordance to Cabrera et al. (1996). 

(f) Transmission, refraction and absorption in the CREC-PS tip are assumed to 

follow the Fresnel equations for unpolarized light and are treated according to Monte 

Carlo numerical principles, as applicable to the semi-spherical glass-water and glass-air 

interfaces.  

(g) Simulated radial irradiation profiles (RPs), as viewed by the CREC-PS sensor-

probe, are described using multiple independent MC simulations at different sensor radial 

positions. 

Figure 4.3 reports the algorithm used. It describes emissions in the MC simulation with 

photons being absorbed/reemitted by the lamp as well as photons being refracted and 

absorbed at the reactor’s boundaries. One can also see in Figure 4.3, that photons may 

display values for "cond1", where: a) “cond1”=0 represents the bouncing inside the 

reactor, b) “cond”=1 describes photon absorption and trajectory termination. 

Furthermore, Figure 4.4 portrays the so-called “Reaction Space Subroutine”. This 

subroutine provides the logic structure by which the scattering and absorption phenomena 

are accounted within the annular section of the Photo-CREC Water II Reactor. This 

subroutine also considers surface interactions with the walls and the CREC-SP probe.  
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The Monte Carlo method shown in Figure 4.3, begins by launching a photon with a 

specific wavelength from the UV lamp surface into the annular section of the 

photoreactor. The photon's initial direction is chosen according to a Lambertian light 

source distribution. The position of the emission in the axial direction is chosen according 

to the model presented by Tsekov & Smirniotis (1997). On this basis, a uniformly 

distributed random number and a wavelength are chosen according to a probability 

distribution function (PDF). The photon distribution function (Lamp emission spectra) is 

obtained by using a Finite Fourier series and a polynomial fitting to the lamp’s emission 

spectra.  

 

Figure 4.3. General Structure of the Monte Carlo Method Used to Model the Photo-

CREC Water II. 

After the photon is emitted by the lamp, it finds the quartz-air interface where it can be 

either reflected or refracted (as displayed in Figure 4.3). The refraction probability at 

each interface is determined according to the Fresnel's equations for unpolarized 

radiation. In other words, it is a function of the angle of incidence and the material 

refraction indexes. The same procedure is applied to both, the air-quartz and water-quartz 
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interfaces. As a result, photons have a 6% probability of being absorbed in the quartz 

inner cylinder. This absorption probability was also determined experimentally by 

Moreira et al. (2010). 

As shown in Figure 4.4, once a photon evolves inside the annular section, its location can 

be uniquely established by its position and direction. This can be accomplished using 

three spatial coordinates and two directional angles, respectively. As can be seen in 

Figure 4.4, a given photon flight length "Li" is set at every stage of photon evolution. 

Afterwards, three different types of surfaces can interact with the photon: a) a catalyst 

particle, b) the CREC-SP probe and c) both boundaries of the annular section. The 

required formulas for photon direction and angular position at every stage of photon 

evolution were reported by Valades-Pelayo et al. (2014).  

 

Figure 4.4. Algorithm of the Main Subroutine within the MC Simulation Code, Used to 

Model the Reaction Media. 
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For sensor probe interactions, the photon’s angle of incidence with the probe surface is 

calculated, where the probe Pyrex glass is considered to be a semi sphere (refer to Figure 

4.2b). By use of the incidence angle and the Fresnel equations for unpolarized light, a 

probability of absorption is, then, obtained. Lastly, a stochastic absorption process takes 

place and if the photon transmits through the probe, it is considered to collide with the 

sensor's surface. 

On the other hand, when a photon reaches the outer reactor wall, several possibilities are 

considered at this boundary. Photon interaction at the outer wall may ideally involve 

diffuse walls (He et al., 1991) with a PabsWall absorption probability. Furthermore, when a 

photon reaches the lamp again, its trajectory can be terminated with the photon hitting the 

lamp either being absorbed or reflected. The probability of absorption, in this case, is 

determined by the PabsGlass parameter. As a result, having the incident radiation reaching 

the spectroradiometric sensor (refer to Figure 4.4), one can undertake radiation flux 

evaluations at different radial positions as shown in Figure 4.5.  

 

Figure 4.5. Iterative Algorithm Used to Calculate the Radiation Flux Reaching the 

Sensor at Different Radial Positions. "Fluxsensor" is a vector containing the RP. 
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Furthermore, the algorithm implemented in Figure 4.5 involves a stepwise, discrete 

process that mimics the experimental irradiance measurements in the concentric 

photocatalytic reactor. The radial positions chosen for the sensor in the MC method are 

mentioned in Figure 4.5.  

One should mention that in addition to the steps mentioned in Figure 4.3 to Figure 4.5, 

the LVRPA field definition requires an averaging (smoothing) procedure. This smoothing 

treatment reduces the introduced statistical fluctuations inherent in the MC method. One 

should mention that the LVRPA data presented in later sections of this manuscript 

includes such a smoothing algorithm.  

4.4.2 Quantification of the LVRPA Span. 

The LVRPA is a critical local property in photocatalytic reactors. In the present study, the 

LVRPA is considered a function of the axial and the radial positions, the " " scattering 

parameter and the photocatalyst concentration: 

),,,( CcatgzrfLVRPA  

( 

Eq. 4-1 

 

where      is the photocatalyst concentration,   is the scattering parameter in the H-G 

phase function, and  " " and " " are the spatial coordinates in the radial and axial 

directions, respectively. The “g” scattering parameter can be defined in a narrow band as: 

ggg   Eq. 4-2 

Where   represents the sum of a g average value, and g corresponds to the   span for 

the 95% Confidence Interval (C.I.).  

On this basis and considering the potential local variations of " ", one can establish local 

LVRPA deviations using the higher and lower '' " values. These  upper and lower '' "s  

provide upper and lower bounds for LVRPA as follows: 
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One should note that in the context of the present study, the "SpanLVRPA" function, as 

shown in Eq. 4-3, refers to the percentual 95% C.I. deviation for the LVRPA within the 

annular reactor space. Thus, as considered, the "SpanLVRPA" is a function of the 

photocatalyst concentration, the "r" and "z" spatial coordinates and "g"s with 95% C.I. 

span. 

One should note that Eq. 4-3 provides a comprehensive basis for comparing various 

experimental methodologies when determining RTE parameters such as boundary 

conditions or phase functions. The proposed "SpanLVRPA" function will be later and 

specifically used in this chapter, highlighting the significance of measuring radial RPs 

when determining the LVRPA. 

4.5 Results and Discussion 

Figure 4.6 reports the measured changes of irradiance at various radial positions and 

photocatalyst concentrations, as described in section 4.3.3. Bars in Figure 4.6 report the 

standard deviations for the 4 repeats of each measurement. Furthermore, to have a 

comprehensive description of the irradiance profiles, eight different photocatalytst 

concentrations were used: 0, 25, 50 , 100, 150 , 200 , 300 & 400 mgl
-1

.  

Figure 4.6, shows that the measured irradiance decreased progressively when increasing 

both radial position and photocatalyst concentration. There is, however, a range near the 

inner reactor wall (r< 0.025 m) at low photocatalyst loadings (between zero and 50 mgl
-1

) 

where an increase in the sensor irradiance is observed with increasing photocatalyst 

loading. This is expected to happen in annular reactors with partially 

reflective/transmissive inner boundaries, as suggested by the parametric sensitivity 

analysis from section 3.4.4. (Valades-Pelayo et al. 2014). This apparently counter 

intuitive increase in the sensor irradiance is mainly due to the redirectioning of light 

towards the sensor by multiple BC-particle reflections. As photocatalyst increases, the 

distance from the inner BC and magnitude at which this phenomena contributes is 

reduced.  
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In addition, one can notice that the photocatalyst loading afects, to a very significant 

extent, the RP at high photocatalyst concentrations in the near inner wall region. Under 

these conditions, the combined effects of back scattering at the inner glass wall and 

radiation absorption due to the formation of a photocatalyst layer (Ballari et al., 2010) are 

considered to be main factors affecting RPs. 

 

Figure 4.6. Experimental RPs in micro watts cm-2 for Different Catalyst Concentrations 

at (○) water only, (■) 25, (♦) 50, (▲) 100, () 150, (×) 200, (□) 300, and (•) 400 mg l-1. 

Vertical bars report the typical standard deviation for the 4 repeats. 

Once the experimental data of Figure 4.6 were obtained using the CREC-SP probe,  they 

were compared with the predictions of the Monte Carlo based irradiance model. One 

should note that the MC method includes three parameters to be adjusted. These 

phenomenological-based parameters are: (1) the PabsGLASS probability or probability of 

photon absorption by the inner glass and by the lamp. This represents the fraction of 

photons that do not bounce back in the reaction space once they collide with the inner 

reactor boundary, (2) the PabsWALL or probability of photon absorption by the outer reactor 

wall. This represents the fraction of photons that are absorbed once they collide with the 

outer boundary and (3) the " " parameter or scattering for the H-G phase function. This 
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parameter determines the scattering mode or the shape of the probability density function 

for the scattering angle. 

 

Figure 4.7 Outline of the Optimization Algorithm for  Determining the Three Parameters 

Used in the Monte Carlo Method. 

The adjustment of these three parameters in the context of the MC method is computer 

intensive and as a result, a special calculation strategy was implemented in the present 

study. This special strategy allows narrowing down the optimization range of the 
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parameters and thus, minimizing the computational resources needed. Besides the 

optimization of the computational resources, another strong justification for using this 

approach is the need of breaking the cross-correlations between boundary conditions 

(BCs) and scattering parameters. This allows treating the experimental data as subsets 

where different factors dominate, as will be further explained.  

Figure 4.7 describes the general optimization algorithm. Two main simplifications are 

considered in this calculation: (1) For photocatalyst concentrations equal or higher than 

200 mgl
-1

, the RP is considered independent of PabsWALL. This is adequate given that 

under these conditions (refer to Figure 4.7) very few photons reach in fact, the outer 

reactor boundary (Valades-Pelayo et al., 2014). (2) For catalyst concentration zero, 

irradiance profiles are scattering mode independent, and therefore a non-dependency on 

the “ ” parameter is noticed, more specifically, it is assumed that the BCs will, roughly, 

remain the same as photocatalyst is added. 

 

Figure 4.8 Total Percentual Errors (%) between Experimental and Model Results for a 

High Catalyst Concentration Range of 200- 400 mg l-1, for different values of g. Total 

Percentual Error for 21 different data points. Minimum correspond to less than 1% 

average percentual error. 

Figure 4.8 reports the total percentual error (%) of 21 measurements (seven different 

radial positions at three different photocatalyst concentrations) and two limiting inner BC 

values. Photocatalyst concentrations considered are in the 200 to 400 mg l
-1
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presented in Figure 4.6. One can notice that minimum total percentual errors are achieved 

for both a “ ” of 0.81, and a PabsGLASS = 1 and for a “ ” of 0.56 and PabsGLASS = 0. Thus, 

one can conclude that the scattering in the irradiance model always lies in a forward 

scattering mode with the “g” having a weak dependence on the inner reactor boundary 

conditions. These results, while in a slightly narrower range, are in agreement with the 

ones reported in section 3.4.7 (Valades-Pelayo et al., 2014). 

Figure 4.9 describes the total percentual error (%) surface for various probabilities of 

absorption of the inner and outer boundaries. This error surface is generated for a zero 

photocatalyst concentration, as described in the 2nd optimization scheme shown in Figure 

4.7. Under these conditions, irradiance in the photocatalytic reactor is independent of the 

scattering mode. Different colors in this figure represent the total errors between the MC 

irradiation model and the experimental radial irradiation data. It can be observed, on this 

basis, that lower total errors were obtained with a PabsWALL=0.9-0.95 and a PabsGLASS 

=0.05-0.25. 

 

Figure 4.9 Total Percentual (%) Error versus Probability of Absorption on Inner Glass 

(PabsGlass) and on Outer Reactor Wall (PabsWall).Each contour represents approx. 2% 

Total Percentual Error. 7 data points considered. Minimum corresponds to less than 2% 

average percentual error. 
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Thus, given the above results, one can conclude the following: i) For 200 to 400 mg l
-1

 

photocatalyst concentrations and values of 0 and 1 for the inner BCs (PabsGLASS), a 0.56 

and 0.81 “g” respectively, minimizes the error between model and experimental 

irradiation data and ii) for photocatalyst concentrations equal to zero, the “g” does not 

affect calculations and BCs parameters (PabsWALL and PabsGLASS), rendering average 

percentual errors of about 2% for PabsWALL and PabsGLASS,  in the 0.9-0.95 and 0.05-0.25 

range, respectively.  

Based on these assumptions, the parameter ranges could be limited. However, it is worth 

mentioning, that BCs ranges should not be reduced solely based on the evidence provided 

by Figure 4.9, as the photocatalyst sticking to the reactor walls is expected to have an 

effect at higher photocatalyst concentrations. More specifically, the BCs actual value is 

expected to fall somewhere between the absorption probability of the BC's when using 

water only and that of a photocatalyst layer fully adhered to the walls. The probability of 

absorption of the photocatalyst layer is expected to be close to 0.13, namely one minus 

the wavelength-averaged albedo of Degussa P25.  

On the basis of these considerations, the g, and the PabsWALL and PabsGLASS 

parameters were optimized by simultaneously using a limited domain of variation. This 

domain was set to be in the 0.1 to 0.9 range for PabsWALL, 0.1 to 0.4 for PabsGLASS, 

and in the 0.56 to 0.81 range for g. This optimization was again carried out by 

minimizing the deviation between the MC simulation irradiance and the experimental 

irradiance data. The obtained fitting yielded, as reported in Table 1, a value for the g 

scattering parameter of 0.68±0.03, with 0.03 representing the span for the 95% 

confidence interval. This value is within the range suggested in section 3.5 (Valades-

Pelayo et al., 2014). 

Furthermore, the PabsWALL (outer boundary parameter) calculated is consistent with both 

the results shown in sections 3.4.6 and 3.4.7 (Valades-Pelayo et al., 2014) and the 

expected physical properties of the black PVC surface. For the inner boundary, even 

though no previous determination was made, the obtained PabsWALL value fell within the 

expected range, as suggested by Duran et al. (2010).  
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Regarding the " " scattering parameter a value of 0.68 was obtained. It was found to 

represent slightly higher forward scattering than the 0.51 value, obtained from the data 

reported by Satuf et al. (2005) by integrating according to the BL-lamp emission spectra. 

The difference between both values is due the former being determined under 

photocatalyst concentrations ten times smaller than the later. According to the literature, 

severe deposition of Degussa P25 at the reactor walls is known to happen (Ballari et al., 

2010). Therefore, it is expected, that the value obtained in this study represents reduced 

additional backscattering effects. This is the case given the experimental set-up used in 

the present study displays reduced photocatalyst wall-sticking effects and allows 

adequate consideration of irradiance gradients within the annular section.  

Table 4.1.  , PabsWALL and PabsGLASS average values and spans for 95% C.I. 

Parameter: Mean 95% C.I. 

  0.68 ±0.03 

PabsGlass 0.30 ±0.05 

PabsWall 0.65 ±0.05 

 

The MC irradiance distribution inside the annular photoreactor for the optimized  

parameters (g=0.68, PabsWALL= 0.65 and PabsGLASS=0.30), are presented in Figure 4.10 

with the experimental measurements. One should notice from Figure 4.10 that deviations 

between model and experimental results were in all cases smaller than 5% for a 0 to 200 

mg l
-1

 catalyst concentration range. For higher concentrations (200 to 400 mg l
-1

) and 

radial position higher than 3 cm , deviations of up to 20% were observed. This change in 

the percentual errors can be explained given that at high optical thicknesses, irradiation 

measurements significantly drop by a factor of 3x10
2
, the equivalent of ~10 μW cm

-2
. 

Furthermore, Figure 4.11 shows the total transmittance (TT) from the model and its 

comparison with experimental TT data. As can be seen, TT measurements are equally 

well described by this approach with deviations in a ±5% band. The deviations at low 

photocatalyst concentrations for the total transmittance in Figure 4.11 are likely to be a 

consequence of assuming that the BC's are not strongly dependent on the photocatalyst 

concentration. Thus, deviations are induced at the last optimization stage (Figure 8), 

tentatively as an attempt to correct the BC's within the zero to 400 mgl
-1

 range. 
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Figure 4.10. Experimental and Model (g=0.68, PabsWALL= 0.65 and PabsGLASS=0.3) Radial 

Irradiance Profiles (RPs) for Different Catalyst Concentrations () MC simulation 

results, (○)water only, (■) 25, (♦) 50, (▲)100, ()150, (×)200, (□)300, and (•)400 mg l
-1

. 

 

Figure 4.11. Total Transmitted Radiation for Different Photocatalyst Concentrations. 

() MC simulation for g=0.68, PabsWALL= 0.65 and PabsGLASS=0.3, (•) experimental. 
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Figure 4.12 reports the calculated radial profiles for LVREA at z = 0 (central axial 

position) for different photocatalyst concentrations. Moreover, Figure 4.13 displays the 

Total Rate of Energy Absorption (TREA), equivalent to the TRPA, from zero to 400 mgl
-

1
 photocatalyst concentration. As experimentally determined, the lamp emits 2.56 W, the 

asymptotic value of the rate of energy absorption corresponds to 68% of total emitted 

radiation. As can be seen, the TREA reaches 95% of the maximum TREA near the 150 

mgl
-1

 photocatalyst concentration. This photocatalyst concentration is considered as an 

optimum for Photo-CREC Water II operation, as experimentally determined by Salaices 

et al. (2002). 

In addition, the apparent optical thickness for this optimum operation point was 

calculated as proposed by Li Puma & Brucato (2007) for the optimized H-G phase 

function (g= 0.68) by using an average extinction coefficient of 5.32 m2/g and an albedo 

of 0.87. These optical parameters correspond to the wavelength-averaged MC parameters 

in accordance to the lamp emission spectra. Under the above mentioned assumptions, the 

apparent optical thickness was found to fall in the 1.80-3.40 range, as recommended by 

Li Puma (2003) for Degussa P25, with a 3.11 value being obtained. 

 

Figure 4.12. Calculated Radial LVRPA Values at z = 0 when PabsWALL = 0.65, PabsGLASS = 

0.3 and g = 0.68 for (⋅⋅⋅⋅) 25, (— ⋅⋅ —) 100, (— ⋅ —) 200, and (——) 400 mg l-1. 
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Figure 4.13. Calculated Total Rate of Energy Absorption (TREA) as a function of 

Photocatalyst Concentration, for PabsWALL = 0.65, PabsGLASS = 0.3 and g = 0.68. Optimum 

photocatalyst concentration near 150 mgl
-1

. 

Figure 15 reports the 3D LVREA at four different photocatalyst concentrations as 

calculated by the MC radiation model.  

 

Figure 4.14. 3D Profile of the LVREA in µW cm
-3

 inside the Photo-CREC Water II for 

a)50 mgl
-1

, b)100 mgl
-1

, c)150 mgl
-1

, d)200 mgl
-1

. PabsWALL=0.65, PabsGLASS=0.3, g=0.68. 
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4.5.1 Calculating Uncertainty in the LVRPA 

In this section, the method to quantify the percentual span in the LVRPA (         ) is 

applied to the Photo-CREC Water II with photocatalyst concentrations ranging from 0 to 

400 mg l
-1

. It is expected that the span of the LVRPA (Refer for Eq. 4-3) at every given 

point will vary depending on i) location (within the annular section), ii)           for   

and, iii) sensitivity of the LVRPA for that specific range of  .  

To accomplish this, three types of data sets are compared when fitting the " " scattering 

parameter: a) the TRPA, b) the TT and c) the RP. In addition, the accuracy of every 

experimental method is quantified as follows: i) Local           as per Eq. 4-3, ii) 

Probability density function (PDF) generated from the local           values.  

In addition, for the MC method used in this study, when generating the LVRPA, the 

reaction volume is discretized in 27 radial positions and 47 axial positions. As a result, 

PDF calculations consider discretized spatial variables. One should mention that for 

every PDF, its mean, mode and standard deviation are calculated.  

Figure 4.15 report the           functions as defined in section 4.4.2. One should 

notice, for instance, that when the highest bars are closer to zero (e.g. Figure 4.15c), there 

is a greater fraction of the reactor volume displaying small spans for the LVRPA 95% 

C.I. .On the other hand, when high bars shift considerably from zero, one can forecast a 

significant fraction of the reaction volume displaying large spans for LVRPA.  

 

Figure 4.15. LVRPA Percentual Span (%) Distribution for Volume Elements inside the 

Reaction Space for: a) Δg = ±0.2 , average Span of 50% or ±25% , b) Δg = ±0.1 , average 

Span of 24%  or ±12%, c) Δg = ±0.03 , average Span of 10%. or ±6%. 
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Regarding LVRPA spans, if one uses the data from sections 3.4.6 and 3.4.7 (Valades-

Pelayo et al., 2014), it can be noted that Macroscopic Radiation Balances and calculated 

TRPA, lead to a “ ” ranging from 0.5 to 0.9 (Δg = ±0.2). Furthermore, for the TT, the 

admissible “ ” value is in the range of 0.6 to 0.8 (Δg = ±0.1).  

Based on the above, when inputting these parameters into the MC simulation and in the 

Eq. 4-3 for the TRPA (Δg = ±0.2), as reported in Figure 4.15a, the mean of the span field 

variable changes as much as ±25%. Nonetheless, when using TT (Δg = ±0.1), the average 

span drops to ±12% (Figure 4.15b). As reported in section 3.5 (Valades-Pelayo et al., 

2014), the TT is, under these conditions, better suited to discriminate between scattering 

modes. 

On the other hand, when using RPs (local irradiance measurements at 7 radial positions), 

as in the present study, a Δg = ±0.03 and a mean of ±6% is obtained for the LVRPA span 

(Figure 4.15c). All the above mentioned results, are presented in Table 2. Thus, it is 

shown that radial irradiance measurements (RP) and the ensuing proposed MC analysis 

greatly increase the accuracy when determining the absorption field. 

Table 4.2. Span for the LVRPA when using TRPA, TT and Radial RPs. 

Data Type LVRPA Percentual Span 

Total Rate of Photon Absorption (TRPA) ±25% 

Total Transmittance (TT) ±12% 

Radial Irradiance Profiles (RP) ±6% 

 

It can therefore, be postulated that the most desirable parameter discrimination (refer to 

Figure 4.15c) is obtained with radial irradiance data (RP) as given by the CREC-SP. The 

present study also successfully establishes a narrow range for “ ” with a resulting narrow 

span and reduced uncertainty for LVRPA. This is accomplished by breaking cross-

correlations between the BCs and the scattering parameters while properly considering 

irradiance gradients within the reactor space.  
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4.6 Conclusions 

(a) A new approach involving a novel spectrophotometric probe (CREC-PS) was 

employed to obtain radial irradiance distributions in the annular channel of the Photo-

CREC Water II Reactor. 

(b) These radial measurements allow one to break correlations between boundary 

conditions and phase functions. Thus, the accuracy of the radiation model is greatly 

increased while compared to other methods based on Total Transmittance or Total Rate 

of Photon Absorption measurement. 

(c) On this basis, the MC model from section 3.3.2 (Valades-Pelayo et al. 2014) was 

modified to account for the probe intrusion inside the annular section of Photo-CREC 

Water II. This modified MC model and the experimental irradiance data were employed 

to predict via numerical regression, a “ ” H-G scattering coefficient with a much 

narrower span. 

(d) The combined MC model results and the experimental radial irradiance profiles 

obtained allowed us to clarify both boundary conditions for the Radiative Transfer 

Equation and radiation gradients within the annular section to accurately predict suitable 

phase functions.  
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Chapter 5  

5 Photocatalytic Reactor Under Different External 
Irradiance Conditions: Validation of a Fully Predictive 
Radiation Absorption Model. 

The information presented in this chapter is based on the article entitled " Scaled-up 

Photocatalytic Reactor Under Different Irradiance Conditions: Validation of a Fully 

Predictive Radiation Absorption Model.". This article was accepted for publication by 

Chemical Engineering Science journal. The results reported in this chapter address stage 

iii) of section 1.1 and significantly contribute towards achieving the general objective a) 

of section 1.2. 

5.1 Abstract 

The present chapter considers the absorption field in a scaled-up and externally-irradiated 

Photo-CREC Water Solar Simulator Photoreactor with 9.8 L of irradiated volume. This 

photo reactor consists of an annular slurry region surrounded by four curved and equally 

spaced reflector units. Each reflector unit consists of a polished metal reflector surface 

containing of two 15W UVA lamps. Each pair of lamps can be independently turned 

“on” or “off”, generating different absorption fields within the annular region. Irradiance 

measurements were obtained at different axial and angular locations and for different 

external irradiance conditions and photocatalyst loadings. Experimental irradiance data 

was compared to Monte Carlo (MC) simulations accounting for: a) Lambertian emission 

at the lamp surface, b) specular and ideally diffuse reflection, refraction and absorption at  

all interfaces and c) wavelength specific absorption and scattering coefficients. This MC 

model includes a Henyey-Greenstein(H-G) phase function with a "g" scattering 

parameter of 0.68. This H-G phase function obtained in section 4.5 (Valades et al., 

2014b), using symmetric irradiance and a smaller scale annular reactor unit. This fully 

predictive model shows good agreement with experimental irradiance data in an ample 

range of conditions studied for a non-symmetrically irradiated unit. It is thus concluded, 

that the proposed MC approach as implemented in 3.3.2 (Valades et al., 2014b), is a 
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reliable predictive tool to scale-up externally and unevenly irradiated photoreactors, as is 

the case in solar irradiated units. 

5.2 Introduction 

Given the developments shown in Chapter 3 and Chapter 4, it can be stated that MC is a 

reliable tool for photocatalytic reactor modeling. However, endorsing MC method as a 

modeling tool does not necessarily validate it for scale-up purposes, which, as stated in 

Chapter 2, is of great importance for photocatalytic reaction engineering. Thus, stage iii), 

in section 1.1 is still to be accomplished, as there are still important questions that need to 

be addressed, such as: a) Could an irradiance model such as the one  established in 

section 3.3.2 (Valades-Pelayo et al. 2014a) be extended to photoreactors of larger scale 

and external-asymmetric irradiance?, b) Could model parameters presented in section 4.5 

(Valades-Pelayo et al. 2014b) be used in scaled-up reactors utilizing a fully predictive 

modeling approach?. 

In order to address these important issues, the present chapter, considers a Monte Carlo 

(MC) model with no adjustable parameters. The MC method accounts for: 1) a 

Lambertian-surface emission model at the lamp, 2) Specular and ideally diffuse 

reflection, refraction and absorption at all interfaces, 3) Wavelength specific absorption 

and scattering coefficients and 4) a Henyey-Greenstein (H-G) phase function describing 

the scattering phenomena. Results of this model are compared with irradiance 

measurements developed for different outer irradiance conditions. Results show good 

agreement between predicted and experimental data for photocatalyst concentrations 

from 20 mgl
-1

 to 400 mgl
-1

 .  

Thus, the proposed MC model is able to accurately predict local photon absorption rates 

in scaled-up reactors with asymmetric irradiation. This is the first study, as far we are 

aware of, where a MC method is established as a reliable scale-up tool, with no 

adjustable parameters for this type of photoreactor system. This approach is successfully 

used for the scale-up of  slurry annular photocatalytic reactors, from the bench scale. 
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5.3  Experimental Method 

5.3.1 Reaction System Set-Up 

In the present study, an externally-irradiated Solar Simulator Photo-CREC Water 

Photoreactor with 9.8 L of irradiated volume and a 24 L total capacity, is used. This 

photo reactor consists of an annular slurry region bounded by two pieces of cylindrical 

quartz glass. The annular section is encircled by four equally spaced reflector units. Each 

reflector unit consists of a polished metal reflector containing two 15 W UVA lamps. The 

reflectors can be independently turned off, which allows generating different absorption 

fields within the annular region. Additional information regarding this unit is provided in 

the upcoming section of this manuscript. 

The photocatalytic reactor system with accessories are reported in Figure 5.1. The entire 

set-up consists of the following: (a) a Solar Simulator Photo-CREC Water Unit, (b) a 20 

L mixing tank, (c) a port where the photocatalyst is added, and (d) a pump able to 

recirculate the slurry at up to 16 l min
-1

. The photo reactor unit has four inlets and two 

outlets at the top and bottom, respectively. A ventilation system to maintain the UV lamp 

temperature controlled is attached to the reactor doors, as shown in Figure 5.1.  

 

Figure 5.1 Schematic Representation of the Solar Simulator Photo-CREC Water Reactor 
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As reported in Figure 5.2, the Solar Simulator Photo-CREC Water Photoreactor unit 

consists of 1) an annular section where the slurry flows downwards, 2) a reflector section 

containing reflectors housing 8 lamps and 3) a pulley mechanism designed to introduce a 

probe along the central axis of the annular section at carefully controlled heights and 

angles. Figure 5.2,  describes a  side view of the  reactor showing details of the reflectors 

mounted on reactor doors, surrounding the slurry annular section. Figure 5.2 also shows 

the pulley mechanism located at the reactor top section. 

 

Figure 5.2 Representation of the Photoreactor Inner (a)Front and (b) Side View with 

Dimensions in cm, Highlighting: 1) Annular Section, 2)  Reflector Section and 3) Pulley 

Probe Mechanism. 

Figure 5.3a shows the reactor annular section, formed by  two ~3 mm thick concentric 

quartz glass cylinders. The outer and inner quartz cylinders are 16 cm and 3 cm in 

diameter, respectively. The annular section is 48 cm long. The reflector section consists 

of four reflectors placed around the annular section. They are arranged at 90 degrees from 

each other. Figure 5.3a and Figure 5.3b also show a top and isometric sectioned view 

describing the relative position between the reflectors and the annular section. 
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Figure 5.3 Sectioned a) Isometric and b) Top view. Inner and Outer Diameter of the 

Annular Section as well as its Relative Position to Two of the Four Reflectors, are shown. 

Dimensions shown in Centimeters. 

Each reflector has a 46.2 cm length and 15.7 cm width. Each reflector houses two near 

UV lamps. Other reflector dimensions are also shown in Figure 5.4 for both (a)side and 

(b)front views. The eight lamps used in the Solar Simulator Photo-CREC Water unit are 

15 W, have a 1.33-cm radius, a 41.3-cm length, and are black-light UV lamps.  

 

Figure 5.4 Reflector Schematics of  Two Lamps and their relative location within the 

Reflector. The a) Side View and b) Front View. Dimensions reported in centimeters.  
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Regarding experimental irradiance measurements, they were obtained by using a 

StellarNet EPP2000C-25 LT16 Spectrometer. The spectrometer is attached to an optical 

fiber cable, connected to a polished quartz sensor. The sensor is introduced into a probe 

system designed to help the sensor descend through the central axis of the annular 

section, mounted on a disk that can rotate 360 degrees. The probe, shown in Figure 5.5, 

allows one to measure the radiation transmitted by the annular section at different 

azimuthal and axial coordinates at the reactor centerline.  

 

Figure 5.5 Schematic Representation of the Photo-CREC Solar Simulator Pulley Probe 

System. Dimensions reported in centimeters. 

5.3.2 Experimental procedure 

To accomplish radiation measurements, the head of a spectrometric sensor is placed 

inside the Photo-CREC Water probe (refer to Figure 5.5). Once it is adjusted, its back-

end is connected to a StellarNetEPP2000C-25LT16 Spectrometer Port. The slurry 

suspension is then allowed to enter the reactor from the top. During this first period, the 

valve located in the reactor bottom section is closed, so that the water slurry accumulates 

inside the annular section. While the reactor is being filled, air is being dislodged through 

a top vent. Once all the air is removed from the unit, the vent is hermetically sealed, 

thereby ensuring that no empty zones or air pockets remain.  
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With the reactor system filled with 20L of water, the pump and the BL lamps are then 

turned on. Once the lamp emission is stabilized (in about 2 minutes), the Total 

Transmittance  is measured at different locations. To accomplish this, the probe depth 

and angle are varied by using a pre-calibrated screw mechanism (refer to Figure 5.5). At 

least four measurements are performed at every location and the average local values are 

then, calculated. Irradiance is measured at eight angles and five different heights. In this 

way, Total Transmittance (TT) profiles of the annular section are established for the 

azimuthal and axial directions.  

The above mentioned procedure was repeated at different photocatalyst loadings. With 

this aim, various Degussa P25 amounts were progressively added to achieve 

photocatalyst concentrations of 0, 10, 20, 30, 40, 50, 70 and 90 mgl
-1

, respectively. One 

should notice that every time the photocatalyst concentration was changed; the 

photocatalytic reactor was left in operation for at least five minutes until the photocatalyst 

concentration was homogenized and as a result, radiation measurements were stable. All 

of the above mentioned steps were repeated at least four times until mean values with 

standard deviations below 5% were obtained. 

To further validate the applicability of the proposed model, the aforementioned 

procedures were repeated for five different configurations of reflectors with their 

respective pairs of lamps turned either “on” or “off”. More specifically, this was the case 

when: i) four reflectors (or all the eight lamps) were “on”, ii) three reflectors were “on”, 

iii) two opposite reflectors were “on”, iv) two adjacent reflectors were “on”  and v) one 

reflector was “on”. 

Lastly, axial and azimuthal irradiance profiles at the reflector edges were measured using 

a separate reflector set-up. This set-up, which was equipped with a pair of lamps, as well, 

had the advantage of excluding the influence of the other neighbouring reflector units as 

could happen with the Photo-CREC set-up. The irradiance profiles were measured at the 

reflector edges having the sensor guided with a double-arm retort stand with two 

modified clamps. Measurements at the reflector edges were repeated at least five times at 

four different azimuthal and eleven different axial positions.  
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5.4 Mathematical Model 

Given both the desired predictive nature of the mathematical method and the complex 

photo reactor/radiation source configuration involved in the present chapter, the MC 

method was chosen as the preferred  modeling approach. In the following section, the 

specific simplifications and assumptions to apply the Monte Carlo (MC) method for 

solving the Radiative Transfer Equation (RTE), as relevant for the Photo-CRE Water 

Solar Simulator Photoreactor, will be explained. If a general approach is needed 

regarding principles, justifications and rationale behind the MC method applied to RTE 

solving, they can be found elsewhere in the literature. 

5.4.1 Overview of the RTE MC method  

The MC method proposed for this study is based on the fact that the reactor geometry 

presents periodicity with respect to the azimuthal direction. From Figure 5.6a, periodicity 

can be observed to be 45 degrees. By choosing boundary conditions that appropriately 

capture this important aspect, the complete reactor can be represented just by considering 

an octant of it. Placing "perfect mirrors" that reflect all photons on each side of the octant, 

as shown in Figure 5.6a, allows one to achieve this, both in a rigorous and less 

computationally intensive scheme. Once this consideration is applied, the octant under 

study, as reported  in Figure 5.6b, is split into different regions: 1) the emission region, 2) 

the reflection region and 3) the scattering region. 

 

Figure 5.6 Schematic Description of  Simplified Reactor Used for MC Simulation:  a) 

Top view and b) isometric view. Note: this schematic  highlights symmetry planes and 

main regions, namely the scattering, emission and reflection regions. 
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The trajectory of the photons is followed from their initial location and direction as they 

evolve within the reactor and through their interactions with the reactor walls, lamps and 

photocatalyst particles. With this end, the following scheme is considered: 1) the reactor 

geometry is  represented by surfaces and the photon trajectory by a parametric straight 

line, 2) the resulting non-linear system of equations for both geometry and photon 

trajectory are solved, 3) the parametric distance between the photon and each surface are, 

as a result, calculated, 4) the interaction between photons and surfaces is established 

based on the "shortest positive non-zero distance", 5)  the fate of all photon-surface 

interactions are determined stochastically  and 6) the resulting photon trajectories are then 

established, as a cumulative sequence of the above described steps. 

 

Figure 5.7 MC representation of a photon trajectory being tracked in hypothetical 3D 

space. The photon trajectory is computed as a series of discrete interactions which 

account for both reactor geometry and photon-reactor interaction. Reactor walls are in 

solid blue lines. Equations are represented by dashed green lines. 

Regarding photon trajectory, a parametric straight line is used to represent it, as reported 

in Figure 5.7. At every interaction, the parametric line equation, is determined by both the 

photon current location and the direction in the 3D space. Figure 5.7 illustrates a 

hypothetical geometry describing the approach used to calculate the photon flight-length. 

The blue solid-lines in Figure 5.7 represent the actual walls and the green dotted-lines 
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describe the model equations (or MC surfaces). To determine the location of the next 

photon-surface interaction, the “shortest positive non-zero photon flight-length” distance 

is selected. This condition, as described in Figure 5.8, is only applicable for determining 

the location of the photon-surface interactions in concave geometries (a geometry whose 

interior is concave). 

 

Figure 5.8 Hypothetical walls (dashed lines) are represented by a set of equations (black 

solid lines). (a) Concave geometry: locus where the “shortest positive non-zero photon 

flight-length” condition  holds true. (b) Convex Geometry: locus where the “shortest non-

negative, non-zero distance condition” does not apply. 

As described in Figure 5.8a, only concave geometries are considered in photon fate 

calculations. Let us assume that both non-concave and concave geometries coexist in a 

geometrical space, as is the case in the geometric space presented in Figure 5.9a (blue 

solid lines). Thus, the MC photon tracing can encounter both concave and non-concave 

angles while evolving in the photoreactor media This would render the "shortest positive 

non-zero photon flight-length" non-applicable (refer to the red dotted circles in Figure 

5.9a). However, the non-concave geometry can be split into concave subspaces connected 

by interphases, as reported in Figure 5.9b (represented by red rectangles). On this basis, 

the “shortest positive non-zero flight length” condition holds true only when considering 

surfaces within the subspaces where the photons are located.  

a) b)
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Figure 5.9 Splitting of a geometrical space to achieve an ensemble of concave subspaces: 

(a) Space with coexisting non-concave and concave angles (blue solid lines), can be split 

into subspaces as shown in Figure 9b.  (b) Subspaces that fulfill the concavity condition 

(red solid rectangles) are connected by "interphases" (thicker purple lines). 

For instance, when applying the MC method to a geometry, such as the one found in the 

Solar Simulator Photo-CREC-Water Reactor (refer to Figure 5.6b), the reactor must be 

split into concave subspaces. More specifically, to maintain concavity, one can consider 

the subsections as highlighted in Figure 5.10. As shown in Figure 5.10a and Figure 5.10b, 

every reactor subsection is limited by an "interphase" with reactor subsections identified 

with numbers. One should also note that only the surfaces adjacent to or within the 

subsection where the photon is located, are considered for the iterative scheme proposed. 

 

Figure 5.10 Areas within the Solar Simulator Photo-CREC Water geometry, split to 

avoid convex geometries from presenting themselves. Areas split into:  1) Lamp space, 2) 

Reflector space , 3) Gap between reflector and reactor, 4) Annular section and 5) Inner 

cylinder. 
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As a result, once relevant subspace information regarding  photon  interaction is 

established, the outcome of this interaction has to be  determined. This is done 

stochastically by considering the following factors: i) location of the interaction, ii) 

photon direction/incidence angle and iii) properties of both the reactor wall and photon 

wavelength. For instance, the probability of absorption at interfaces with zero 

transmittance is chosen according to the material absorbance properties within the lamp 

emission range (e.g. ~7% of absorption for polished aluminum reflectors within the 320 

to 388 nm). Furthermore, the reflection angle, as reported in Figure 5.11, is based on  the 

photon incidence angle and  on a reflection mechanism at every reactor surface (i.e. 

diffuse or specular). On the other hand, for semi-transparent surfaces (i.e. quartz-air and 

quartz-water interfaces), the angle of refraction and the probability of absorption are 

calculated based on the incidence angle and the refraction index as determined by Snell's 

law. 

 

Figure 5.11 A rough surface can be modeled by the tangent plane approximation, taken 

from He et al., 1991. 

Additionally, in the regions where scattering takes place (refer to Figure 5.6b), a random 

photon flight-length is calculated based on Beer's Law, as shown in the following 

equation: 

      
 

    κ   
         

Eq. 5-1 



112 

 

where      represents the photon flight length before a photon-photocatalyst particle 

interaction takes place,    and    are the wavelength specific scattering and absorption 

coefficients respectively, and    is an uniformly distributed random number between 

zero and one. The scattering and absorption coefficients were considered to depend on 

both photon wavelength and photocatalyst concentration, as proposed by Cabrera et al. 

(1996).  

Based on the “smallest, positive, non-zero parametric distance” criteria depicted in Figure 

7, one can  determine whether or not a collision between a photocatalyst particle and a 

photon takes place. If the      is larger than any other calculated parametric distance, then 

the photon-photocatalyst particle interaction does not occur. On the other hand, if the  

     is smaller than any other calculated parametric distance, then photon-photocatalyst 

particle interaction takes place.  

Furthermore, once the photon collides with the photocatalyst particle, it can be either 

absorbed or scattered. The absorption criterion (absorption probability) is proportional to 

the photocatalyst albedo (Puma et al. 2007), i.e. the ratio between the absorption and 

extinction coefficients, as described with: 

      
  
  
 

  
     

 Eq. 5-2 

On the other hand, when a photon is scattered, the photon direction is recalculated, 

according to two random numbers. Each random number represents, scattering and 

azimuth angles, as shown in Figure 5.12. The scattering angle ''φ'' is chosen from a 

probability density function (PDF) represented by the phase function and the azimuth 

angle ''θ" is selected from an uniform distribution. 
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Figure 5.12 Photon-particle interaction where direction is modified due to scattering. The 

scattering angle ''θ'' is chosen, according to the phase function and an azimuth angle "φ" 

from an uniform distribution.  

Finally and in the calculations of the present study, the Henyey-Greenstein (H-G) was 

adopted as a PDF to determine the scattering angle. The H-G phase function equation is: 

     
 

 

      

                
 
 

 
Eq. 5-3 

where         is the probability of a photon being scattered with a given scattering 

angle " θ " and "g" is the asymmetric parameter. The H-G phase function with a  g  value 

of 0.68 was established as being adequate for Degussa P25, as determined in section 4.5 

(Valades-Pelayo et al., 2014).  

5.4.2 MC method subroutines 

To implement the various calculations described in the previous sections, a Monte Carlo 

Method was considered including seven subroutines, namely: a) The photon emission 

calculation , b) The photon tracking in the reflector, c) The photon fate in the reflector 

gap, d) The photon evolution in the reactor annular section, e) The photon-sensor 

interaction in the inner cylindrical section subroutine, f) The absorption field generation 

and g) Irradiance profile calculations. Figure 5.13 describes the interconnection between 

subroutines and possible photon trajectory-termination outcomes. Regarding these 

various subroutines, their functionality and rationale will be  described and detailed in the 

upcoming subsections. 
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Figure 5.13 Schematic Description of the Subroutine Structure  within the MC method 

for the RTE in the "Solar Simulator Photo-CREC Water" photo reactor. Interphases are 

reported in red , planes in blue and green, symmetry planes in black and sensing surfaces 

in purple. 

5.4.2.1 Emission Subroutine 

The emission calculation subroutine includes the lamp as a photon source. Within the MC 

method, a subroutine assigns an initial position and direction as well as a specific 

wavelength to  every photon. With this end, a surface emission model was selected with 

photon emissions at the lamp surface (i.e. surface emission model). Furthermore, the 

following is considered: a) The axial photon emission position on the lamp surface was 
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chosen according to a probability density function (PDF) as in Chapter 3 (Valades-Pelayo 

et al., 2014a ; Tsekov et al., 1997)), b) The azimuthal position was selected according to 

an uniform  PDF distribution, c) The photon direction of emission was considered to be 

Lambertian (i.e. ideally diffused with respect to the surface normal at the point of 

emission).  

The wavelength of the emitted photon, is determined based on a random number. The 

outcome of this stochastic process is determined according to a PDF proportional to the 

lamps' emission spectra, as described in Figure 3.3 and as reported in Chapter 3 and 

Chapter 4 (Valades-Pelayo et al, 2014a ; Valades-Pelayo et al, 2014b).  

It is worth mentioning that a variable named "octant" is created to keep track of the octant 

(or lamp section, as described in Figure 5.6a) in which a photon is located. This is needed 

in cases where there are no symmetric irradiance conditions, i.e. when certain lamps are 

"turned off" or alternatively when there is no symmetric irradiance in the photoreactor. 

This "octant" variable is stochastically chosen, with an evenly distributed probability of 

emission among all the lamps that are turned “on” and zero for any lamp that is "turned 

off". 

5.4.2.2 Reflector and Gap Subroutine 

Following  photon emission, and before the photon enters the reactor annular section, the 

photon crosses the reflector-gap section. To properly implement these calculations, two 

subroutines were developed: a) one that accounts for the surfaces within the reflector 

which is designated  as "reflector subroutine" and b) one that accounts for the surfaces 

found in the gap between the reflector and the slurry annular section which is called  the 

"gap subroutine".  

A separation into two different subroutines is needed to account for a non-concave 

geometry, as explained in section 5.4.1 and presented in Figure 5.8. Both subroutines 

consider the interaction of photons and reactor surfaces, i.e. refraction, reflection and 

absorption. Reflection on non-transparent surfaces is assumed to be diffuse. This is due to 

both the nature of the reactor walls and the emitted radiation wavelengths. One should 
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note that in these subroutines, no particle scattering effects are included given that the 

media is free from TiO2 particles.  

Figure 5.14describes the reflector subroutine. This subroutine model includes irradiance-

reflection phenomena on  seven surfaces: (1) One totally specularly reflective virtual 

plane (symmetry plane),  (2) Two partially reflective polished aluminum surfaces, (3) 

Two non-reflective planes placed at the top and bottom of the reflector, (4) One 

cylindrical surface (lamp) and (5) One totally transparent virtual  surface delimiting the 

interface between the gap region and the reflector (also shown in Figure 5.15).  

 

Figure 5.14 Surfaces considered for the reflector subroutine: 1) One totally specular 

virtual plane (symmetry plane), 2) Two partially reflective planes, 3) Two non-reflective 

planes  and 4) One lamp surface. 

 

Figure 5.15 Surfaces considered for the gap subroutine: 1) A totally transparent virtual  

surface  delimiting the interface between the gap region and the reflector , 2)A totally 

transparent virtual  surface  delimiting the reactor gap boundary with the annular reactor 

section, 3) Two virtual transparent symmetry planes  and 4) Four non-reflective planes. 
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Figure 5.15 shows the "gap subroutine"  (surfaces) which  also includes  seven surfaces: 

(1) The plane surface connecting the gap region with the reflector subroutine, (2) A 

cylinder representing the quartz glass, limiting  the annular section and accounting for 

absorption, reflection and refraction, (3) Two totally reflective virtual planes  

encompassing two symmetry planes and (4) Four non-transparent surfaces displaying 

total  absorption of  radiation, representing the gaps through which radiation can escape. 

5.4.2.3 Annular Photoreactor Section Subroutine 

Once the appropriate series of events direct the photons into the annular photo reactor 

section, the annular section subroutine keeps track of the photon trajectory. As presented 

in Figure 5.16, this subroutine, considers the relevant physical phenomena taking place 

inside the annular section involving photons and photocatalysts:  

1. Forward scattering taking place in the annular photo reactor section,  

2. Absorption by the photocatalyst particles,  

3. Backscattering out of the annular region  

4. Transmission through the annular section.  

A variable named "Cond1" determines the "state" of the photons at the end of each 

iteration, whether they are terminated (Cond1=0), transmitted to a different subroutine 

(Cond1=3 and Cond1=1) or keep being scattered within the annular section (Cond1=2).  

For a more detailed description regarding the scattering/absorption phenomena, one must 

refer to Chapter 3 (Valades-Pelayo et al, 2014a). Additionally, an in depth explanation of 

the Henyey-Greenstein phase function can be found in Moreira et al 2011. Further 

details, regarding RTE numerical solution using Monte Carlo for slurry photoreactors, are 

found in Pasqualli et al. 1996. 
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Figure 5.16 Algorithm of the Annular Photo Reactor Section Subroutine, within the MC 

Simulation, Used to Model the Reaction Media. The schematic algorithm was adapted 

from Chapter 3 (Valades-Pelayo et al. 2014a).  Note: "Cond1" establishes  photon state 

after iteration.  Cond1=0, means that photon trajectory is terminated by TiO2 absorption. 

5.4.2.4 Sensor Irradiance Subroutine 

Once the photons are transmitted/forward-scattered through the slurry annular section, 

the MC method keeps track of the photons, determining whether the photons' "flight" 

ends at  the reactor inner annulus, is back-scattered or transmitted to the slurry or if  they 

interact with the Solar Simulator Photo-CREC Water sensor-probe. Refraction, 

absorption or reflection are also considered for all photons reaching  the inner annulus. 

Once a photon interacts with the probe-sensor, its position (axial location and probe 

angle) is stored.  
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5.4.2.5 Absorption field and Irradiance Profiles Subroutine 

Once all the photon bundles are followed and their fates determined, the location and 

wavelength of every photon is stored. On this basis, the Absorption Field Subroutine and 

the Irradiance Profile Subroutine are algorithms employed to "group" photons by location 

and add up their respective energies. This is done to determine the probability of energy 

absorption at every location. In this manner, PDFs for i) photon absorption within the 

annular section and ii) sensor irradiance profiles, are calculated.  

As PDFs are available for photon absorption within the annular section, the absorbed 

energy per unit volume per unit time or LVREA is approximated by using the following:  

 

         
                     

                  
    

 

    

 

    

 
          

                      
 

 

 
 
Eq. 5-4 

where ρ, θ and z are the radial, azimuthal and axial coordinates respectively; Nt e are the 

total emitted photons per second (from all lamps); Pa , is the photon absorption PDF 

obtained by the MC method; and   ,    and    delimit the volume delta where the 

LVREA is to be approximated by a locally averaged value.   

In the present study, the reaction annular section was split into 27, 52 and 80 subsections 

for the radial, axial and azimuthal directions, respectively. In a similar way, the photon 

irradiance along the reactor central axis, can be calculated by using the sensor area. This 

procedure is further explained in chapter 4 (Valades-Pelayo et al., 2014b). For a rigorous 

definition of LVREA and its role regarding photocatalytic reaction engineering, refer to 

Cassano and Alfano, 2000. 

5.5 Results and Discussion 

The present study imparts a predictive MC RTE model in a Photo-CREC Reactor, as  a 

potential scale-up tool, relevant in the context of solar slurry photocatalytic reactor 

modeling. In order to show its applicability, special consideration is given to the 

irradiance field for LVREA prediction. This is done by calculating irradiance profiles at 
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different properly considered photo reactor locations, photocatalyst concentrations and 

irradiance conditions.  

In addition, the irradiance-based model validation is accomplished by using the following 

strategies: i) A determination of the irradiance profiles at the reflector edges, to ensure an 

accurate estimation of the radiation entering the photo reactor annular section, ii) A 

prediction of  the  axial, azimuthal and photocatalyst dependence on the experimental 

sensor irradiance within the inner annulus (refer to Figure 5.5). This is done with all four 

pairs of lamps turned “on”.  Furthermore and to complement this validation analysis, 

calculations of the azimuthal irradiance profiles of the transmitted radiation are 

developed for four additional lamp configurations, where the following lamps within 

each reflector where turned on: a)  three, b) two opposite, c) two adjacent and d) one. 

Figure 5.17 reports a comparison of experimental and simulated irradiance profiles at the 

reflector/lamp system edges(singular or plural). The sensor head detecting the surface is 

set facing the reflectors in all cases.  Profiles shown describe measurements at 11 axial 

positions and four different azimuthal positions: -4,-2,2 and 4 cm away from the reflector 

center plane and located half-way between adjacent lamps. Figure 5.17 reports very good 

agreement between experimental and simulation results at all the measured axial and 

azimuthal positions. 

Figure 5.18 describes the Total Transmittance dependence with photocatalyst 

concentration when having the four reflectors “on”. The reported irradiances are the 

values measured by the sensor facing the reflectors (space between lamps), at the central 

axial position (z=0, as shown in Figure 5.19). Four measurements were taken (one facing 

each reflector) and then averaged. This process was repeated for various photocatalyst 

concentrations of 0, 10, 20, 30, 40, 50,70 and 90 mgl
-1

. It can be observed in Figure 5.18 

that the 2,200 µW/cm
2
 irradiance for water (free of TiO2), drops to about one half at ~15 

mgl
-1

, to reach almost zero at 90 mgl
-1

. Simulation results, represented by the solid line, 

are found to predict reasonably well the experimental data, within a 10% error band. 
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Figure 5.17 Axial irradiance profiles in µW/cm
2
 at the reflector edges, (•) -2/2 cm and 

(o) -4/4 cm away from the reflector center plane (located between the two lamps) and 

simulation results for (—) -2 ,2 cm and (•••) -4, 4 cm. 

 

Figure 5.18 Changes of Total Transmittance in µW/cm
2
 with the photocatalyst 

concentration as measured within the central annulus, at the central axial position, from 

zero to 90 mgl
-1

 photocatalyst concentration. Codes: (•) Experimental Data and (—) 

Simulated Results. 

Axial Position

-20 -10 0 10 20

Ir
ra

d
ia

n
c
e

 a
t 

re
fl
e

c
to

r 
e

d
g
e

, 
µ

W
/c

m
2

2
 

1500

2000

2500

3000

3500

4000

4500

Photocatalyst Concentration, mgl
-1

0 20 40 60 80

T
o

ta
l 
T

ra
n

s
m

it
ta

n
c
e
, 

µ
W

/c
m

2

0

500

1000

1500

2000

2500



122 

 

Furthermore, Figure 5.19 describes the axial irradiance profiles  for photocatalyst 

concentrations of zero, 20 and 40 mgl
-1
,  when the  four reflectors are “on”. Experimental 

irradiance profiles tend to be close to flat for axial positions in the ±10 cm range, 

dropping to about one half when they are 20 cm away from the central axial position 

(z=0). Magnitude changes for different photocatalyst concentrations are observed to be 

proportional to the values reported in Figure 5.18. Moreover, in Figure 5.18, simulation 

results are seen to again exhibit tendencies close to the ones observed in the experimental 

data. 

 

Figure 5.19 Changes in Total Transmittance in µW/cm
2
 as measured within the central 

annulus, at different axial positions, in cm. Experimental data for (•) zero, (o) 20 and 

(▲)40 mgl
-1

, as well as simulations for (—) zero, (•••) 20 and (---) 40 mgl
-1

 are 

presented. 

Figure 5.20 describes the irradiance azimuthal profiles within the inner annulus of the 

Solar Simulator Photo-CREC Water reactor, for photocatalyst concentrations of zero, 20 

and 40 mgl
-1

 with all four reflectors kept “on” (8 lamps turned on). One can notice that 

experimental irradiance profiles are seen to display an oscillatory behavior with a 

periodicity of 90 degrees. This oscillatory behavior tends to be dampened as 

photocatalyst concentration increases.  
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One can also notice that this reduction in Total Transmittance decreases proportionally to 

the photocatalyst concentration and up to a one order of magnitude (also reported in 

Figure 5.18). Model predictions are found to represent experimental values reasonably 

well. For instance, in Figure 5.20, the deviations in Total Transmittance  between  

experimental and simulated profiles at 40 mgl
-1

, are a maximum of 20%. As far as we are 

aware of, oscillatory irradiance predictions and measurements with these features have 

not been reported in the literature for this kind of photo reactor and scale. 

 

Figure 5.20 Total transmittance (µW/cm
2
), as measured within the central annulus, at 

different azimuthal values (degrees), with all four reflectors on. Experimental data for (•) 

zero, (o) 20 and (▲)40 mgl
-1

, as well as simulations for (—) zero, (•••) 20 and (---) 40 

mgl
-1

 are presented. 

In spite of this thorough analysis of the MC method having four reflectors (8 lamps) 

“on”, it was one of the goals of the present study to extend the MC model validation to 

other highly relevant cases, such as solar energy irradiance in photo reactors. One should 

expect, in these situations, non-homogenous and non-symmetric irradiation of the 

photocatalytic reactor system. To address these issues, irradiation conditions were 

changed in the Solar Simulator Photo-CREC Water Reactor. This was accomplished by 

turning “off” some of the reflectors and keeping others “on”,  in order to create different 

irradiance patterns.  
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Figure 5.21 reports the irradiance angular profiles, for photocatalyst concentrations of 

zero, 20 and 40 mgl
-1

, under different irradiance conditions, in namely: i) Figure 5.21a 

which has three reflectors “on”, ii) Figure 5.21b  which has two opposite reflectors “on”, 

iii) Figure 5.21c  which has two adjacent reflectors and iv) Figure 5.21d  which has one 

reflector “on”.  

As in the case of four reflectors “on”, dampening effects in the oscillations were observed 

as photocatalyst concentration increased, namely for (•••) 20 and (---) 40 mgl
-1

. This 

scattering effect observed is mainly due to the high albedo of Degussa P25 (Li 

Puma,2005). As reported in Figure 5.21a-d, the sensor irradiance (transmittance) 

displayed a consistent change in periodicity with respect to the angular  coordinates. 

One can also observe in Figure 5.21a-d that experimental and simulated irradiance 

profiles both in terms of irradiance oscillatory behavior and magnitude were found to 

agree in all cases when the photocatalyst was loaded in the unit. The only exception is the 

case of  the photocatalyst free of water, shown with solid lines (—) in Figure 5.21. 

It is worth noting that in some regions of these profiles, the calculated irradiance tends to 

underpredict the experimental data. Model underprediction is noticeable for angular 

positions where the detector is facing a reflector whose lamps are “off”. One can notice, 

however, that when small amounts of photocatalyst are added (~20 mgl
-1

), simulated and 

experimental irradiance distributions agree well in all cases and for the entire range of 

angular positions. 

On the basis of the information provided in Figure 5.21a-d, one can see that the RTE MC 

method provides a good representation of all conditions when the Solar Simulator Photo-

CREC Water unit is loaded with a photocatalyst. As stated above, one should notice that 

for cases when the sensor is facing reflectors turned "off", model deviations increase as 

photocatalyst loading tends to decrease to zero. Main reasons for these findings are 

related to the reflector surface reflection model, specifically that: i) the average reflector-

photon interactions per photon increase exponentially as photocatalyst concentration 

decreases,  ii) the reflectance model used  by MC present accuracy issues for large 

numbers of reflector-photon interactions per photon.   
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Figure 5.21 TT (µW/cm
2
), as measured within the central annulus, at different azimuthal 

values (degrees), for the following reflectors on: a) three, b) two opposite, c) two 

adjacent, and d) one. Experimental: (•) zero, (o) 20 and (▲)40 mgl
-1

. Simulations: (—) 

zero, (•••) 20 and (---) 40 mgl
-1

. 

Based on the above information, the accurate determination of the irradiance field, at low 

photocatalyst concentrations (< 20 mgl
-1

), for all lamp set-ups, requires the independent 

experimental validation of a physically based BDRF (Bidirectional Reflectance 

Distribution Function) specifically for the UVA range. This, however, is an active field of 

research (Berger et al., 2012; Hyde et al., 2009; Colbert et al., 2006) and completely out 

of the scope of the present manuscript.  

Furthermore and focusing on the use of irradiance profiles, as a mean for LVREA 

determination, it is important to point out that LVREA errors are expected to be 

proportional to the difference between the entering and transmitted radiation (Valades-

Pelayo et al., 2014b). Thus, given the magnitude of the irradiance entering the annular 
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section (~4,500 µW/cm
2
), the accurate determination of the radiation entering the reactor 

(refer to Figure 5.17) and the magnitude and deviations of the transmitted irradiance, the 

LVREA percentual errors are expected to be, on average, smaller than 5%, as reported in 

Table 5.1.  

Table 5.1. Calculated average and maximum percentual errors for LVREA (%), for the 

reported lamp configurations and photocatalyst concentrations (mgl
-1

), at the reactor 

midsection (z=0).    

Lamp 
Config.: 

Four 
"On" 

Three 
"On" 

Two opposite 
"On" 

Two adjacent 
"On"  

One 
"On"  

Ccat average max average max average max average max average max 

0.0 2.7 5.6 7.9 20.2 4.3 7.3 12.5 31.5 7.4 15.1 

20.0 0.9 1.5 2.5 3.3 2.8 4.0 3.1 4.4 1.8 3.7 

40.0 3.4 4.0 2.8 4.1 2.2 2.8 2.4 3.7 1.4 2.4 

Average 2.4 4.4 3.1 6 3.5 

 

In the worst-case scenario, shown in Figure 5.21c and , at an angular position of 315 

degrees and a central axial position (z=0), when photocatalyst concentration tends to 

decrease to  zero (—),the expected LVREA error is 31.5%.  

 

Figure 5.22. The Total Rate of Photon Absorption (TRPA) is calculated for photocatalyst 

concentrations ranging from zero to 200 mgl
-1

, for (—) four, (•••) three, (- -) two 
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adjacent, (-•-) two opposite and (— —) one reflector "on". The optimum photocatalyst 

concentration is found, for all cases, to be close to 91 mgl
-1

. 

Figure 5.22 describes the TRPA(Total Rate of Photon Absorption) from zero to 200 mgl
-

1
, for all 5 different lamp set-ups. One can see, on this basis, that there is an optimum 

TRPA, in all cases, for a  91 mgl
-1

 photocatalyst loading (95% of the maximum TRPA).   

Figure 5.23 shows the LVREA, in µW/cm
3
, for all four lamps, having the optimum 91 

mgl
-1

 photocatalyst loading. Figure 5.23a, reports LVREA for three sections at a constant 

axial position and Figure 5.23b, describes LVREA at four constant angular sections. 

Specifically, sections are located at Z=0 cm (mid height), Z=15 cm above the midsection 

level and Z=-15 cm below the midsection level. Angular positions reported are  θ = 0, 90, 

180, and 270 degrees. 

 

Figure 5.23. LVREA profiles, for a 91 mgl
-1

 photocatalyst concentration and 4 reflectors 

"on", in µW/cm
3
, at a)constant axial positions for Z = 15, 0 and -15 cm, and at b) 

constant azimuth for zero, 90, 180 and 270 degrees. Energy absorption ranges from 4000 

µW/cm
3
 to zero. Each contour represents a 10% drop. 

Z= 0 cm

Z= 15 cm

Z=-15 cm

a) b)
Θ = 0 ° Θ = 90 ° Θ = 180 ° Θ = 270 °
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Figure 5.24. LVREA profiles at constant axial position, for a) 40, b) 90 and c) 200 mgl
-1

 

photocatalyst concentrations and all reflector combinations, in µW/cm
3
. Each contour 

represents a 10% drop with respect to the scale presented to the right of each contour 

plot. 

As a result of the described analysis, the present chapter validates the optical parameters 

obtained by Cabrera et al., 1994 and in section 4.5 (Valades-Pelayo 2014b), for scaling-

up slurry photo reactors using Degussa P25 with both symmetric and asymmetric 

irradiation. On the other hand, validation of a predictive MC model, for a wide range of 

photocatalysts and irradiance configurations of interest is also demonstrated. As a result, 

the approach reported in the present paper, provides significant confidence on the ability 

of extending the MC method of this study, to the scale-up of Photo-CREC configurations 

under solar irradiation, where non-symmetric angular distribution of irradiance is 

expected.  

On this basis, the use of the MC method can be considered of prime importance for the 

future of photocatalytic reaction engineering and for the development of scale-up 

procedures for slurry photocatalytic reactors irradiated with solar energy.   

a) 40 mgl-1

b) 90 mgl-1

c) 200 mgl-1

4 reflectors on 3 reflectors on 2 opposite reflectors on 2 adjacent reflectors on 1 reflector on
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5.6 Conclusions 

 The radiation and absorption field of a 24 L scale externally irradiated Solar 

Simulator Photo-CREC Water Photo Reactor is successfully modeled for different 

asymmetric irradiance conditions by using a RTE MC method adapted from 

Valades-Pelayo et al. 2014a. 

 The RTE MC method is optimized by i) taking advantage of angular periodicity, 

ii) splitting the reactor geometry into “concave” subsets and iii) employing a 

"shortest-positive distance" criteria. 

 The established predictive MC method includes an "a priori" approach for various 

photon-surface and photon-photocatalyst interactions with optical parameters 

previously determined by Valades-Pelayo et al. 2014b and Cabrera et al. 1995, for 

smaller scale photo reactor units. 

 The reported irradiance predictive approach for the Solar Simulator Photo-CREC 

Water  is proven to be adequate for different lamp configurations with various 

lamps being turned "on" and various  photocatalyst concentrations. 

 The reported MC model allows predicting the Total Rate of Photon Absorption 

and LVREA in all studied cases; including five different irradiance configurations 

and photocatalyst loadings ranging from 20 to 200 mgl
-1

.          
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Chapter 6  

6 Eight-Lamp Externally Irradiated Bench-Scale 
Photocatalytic Reactor: Scale-up and Performance 
Prediction 

The information presented in this chapter is based on the article entitled "Eight-Lamp 

Externally Irradiated Bench-Scale Photocatalytic Reactor: Scale-up and Performance 

Prediction.", submitted to Journal of Chemical Engineering  on, November 16th, 2014. 

The sections presented in this chapter consist of stage iv) in section 1.1and present results 

towards the completion of  general objectives b) and c) in section 1.2. 

6.1 Abstract 

The present study considers a scale-up methodology for photocatalytic slurry reactors. 

The Photo-CREC Water units used  includes: a) a 2.65 L internally irradiated annular 

photoreactor, b) a 9.6 L externally irradiated scaled-up unit. The LVREA (Local 

Volumetric Rate of Energy Adsorption Field) calculation for the bench-scale and the 

scaled-up reactors at different operation conditions are determined by using approaches 

established by Valades-Pelayo et al. (2014b) and Valades-Pelayo et al. (2014c). In the 

bench-scale photoreactor, degradations of oxalic acid are carried out at different 

photocatalyst concentrations and lamp emissions. Residence time distributions are 

determined for both Photo-CREC Water II and Photo-CREC Solar Simulator (Photo-

CREC water III) by using glucose as a tracer. An efficiency factor is calculated in both 

cases including mixing mechanisms and charge/recombination phenomena using a 

simplified kinetic model. To avoid cross-correlation issues, all relevant parameters are 

determined by independent experiments. Model validation is also accomplished by 

comparing model predictions to experimental degradation rates at different photocatalyst 

concentrations in the larger Photo-CREC Solar Simulator (Photo-CREC Water III). The 

proposed methodology confirms the applicability of reaction engineering principles for 

scale up while moving from bench to pilot plant photoreactors.  
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6.2 Introduction 

Based on all of the above mentioned facts, presented in Chapter 2 and considering the 

insights provided in Chapter 3, Chapter 4 and Chapter 5, validation of physically-based 

scale-up models at larger scales and non-idealized operating conditions is needed. 

Furthermore, these models should not only predict concentration profiles during batch 

experiments at different scales, but also predict reaction rates at different photocatalyst 

concentrations and irradiance conditions and configurations. Lastly, to avoid over-

parameterization while retaining model meaningfulness, these kinetic models, should also 

be based on independently-validated, physically-based radiation models that accurately 

represent radiation gradients at all scales.  

Given the significance of research in this area, this chapter reports an original way to 

evaluate parameters at different lamp irradiances combined with the successful 

application of a physically-based kinetic model for photocatalytic degradation rate at 

different scales and geometric conditions. Moreover, we are not aware of a similar study 

considering the scale-up of two reactor designs, such that the methodology is relevant for 

its applicability in the scale-up from bench to pilot-plant solar photocatalytic reactors, 

such as: i) the Photo-CREC Water II Reactor, an internally irradiated bench-scale annular 

photoreactor with 2.65 L of irradiated volume and ii) the Photo-CREC Solar Simulator 

(Photo-CREC Water III), an externally-irradiated annular photoreactor with 9.6 L of 

irradiated volume. Parameter regression for this kinetic model has the additional 

advantage of being supported by previously and independently validated MC RTE 

methods, proposed in Chapter 4 (Valades-Pelayo et al., 2014b) and Chapter 5 (Valades-

Pelayo et al. 2014c) in earlier studies.  

6.3 Experimental 

This manuscript reports a scale-up methodology for photocatalytic reactors. To 

accomplish this, relevant kinetic parameters for the proposed kinetic model are 

determined in a smaller bench-scale photoreactor (Photo-CREC Water II reactor) 

considering the photodegradation of oxalic acid. Oxalic acid was chosen as a model 

organic pollutant due to the absence of intermediates during its degradation mechanism. 
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Following this, photocatalytic oxalic acid degradation rates are predicted in the externally 

irradiated Photo-CREC Solar Simulator (Photo-CREC-Water III) which is about four 

times larger than  Photo-CREC Water II . 

6.3.1 Bench-Scale and Scaled-up System Description 

The bench-scale reactor system used to determine relevant kinetic and radiative 

parameters consists of a 2.65 L annular Photo-CREC Water II  Photoreactor, a pump and 

a tank with its respective sampling ports and air supply, as presented in sections 3.3.1 and 

4.3.1. The photoreactor system has a total volume of 6 L, as presented in Figure 3.1. 

Figure 4.1 describes this annular reactor with  one lamp positioned at the reactor central 

axis. More specifically (refer to Figure 4.1), the photoreactor unit is comprised of the 

following components: (a) a 15-W black light lamp, (b) a Pyrex glass inner tube, (c) 

silica windows (d) a black outer tube, (e) an outlet and (f) an inlet. The lamp used in the 

photoreactor is a 15-W 1.33-cm radius, 41.3-cm length, black-light UV lamp, covered 

with a high transmittance Pyrex reactor tube. The pump allows a recirculation of up to 16 

L min
-1

. 

The reactor used to validate the scale-up methodology is a Photo-CREC Solar Simulator 

(Photo-CREC-Water III), a 9.8 L, annular photoreactor operated in slurry mode. Just like 

in the bench-scale system, the photoreactor system has a pump and a tank with its 

respective sampling ports  and air supply. As explained in section 5.3.1 and presented in 

Figure 5.1, this annular reactor is externally irradiated by eight UV Lamps, allocated 

around the annular section, in pairs inside four equally-spaced reflectors. The annular 

photoreactor unit is composed of: (1) eight 15-W black light lamps, (2) a Pyrex glass 

inner tube, (3) outer Pyrex glass tube, (4) an inlet and (5) an outlet. The lamps and the 

pump used for this system have the same specifications as the ones used for the bench-

scale reactor unit. 

6.3.2 Additional equipment for photocatalytic degradations and tracer 
experiments 

Oxalic acid quantification for photodegradation was carried out by using the Total 

Organic Carbon (TOC) content analyser in the liquid aliquots, determined with a 



139 

 

Shimadzu TOC-Vcph instrument. This instrument operates as follows:  the sample is 

automatically and mechanically injected into a furnace, at 680°Celsius, that contains a 

Platinum-based catalyst, and uses hydrocarbon-free high-purity air as a carrier gas. At 

this temperature, the oxalic acid is broken down and completely oxidized, generating the 

final products H2O and CO2. Dried CO2 is then flown through a Non-Dispersive Infrared 

Detector (NDIR) for quantification purposes. Before analysis, liquid samples are filtered 

using 0.2-micrometer paper to avoid introducing any  bacteria/microorganisms or 

photocatalyst particles. The injected sample volume was 25 micro-liters. A broad-range 

calibration curve obtained from different concentrations of 99.5 % D-(+)-Glucose (Sigma 

G8270) solutions in de-ionized and distilled water was used to quantify the carbon 

content of the experimental samples. Standard deviations were 0.100 or less. The 

detection limit of the instrument is 4 micro-gram/Litre and the measuring range is 0-

30000 milligram/Litre.  The reproducibility ability of the instrument, is within 1.5%. 

Moreover, acidity was monitored by an Orion 2-star pH Benchtop from Thermoscientific. 

This instrument allows pH measurements up to three decimal digits. Temperature was 

measured by an Omega digital thermometer whose probe was immersed in the TiO2 

slurry in both system mixing tanks. Oxygen supply was controlled by rotameters. 

Additionally, lamp emission intensity was regulated by using a POWERSTAT variable 

voltage autotransformer, able to vary voltage between zero and 140 V. Lamp emission 

was monitored by measuring the transmitted irradiance with a EPP 2000 Stellar Net 

Spectroradiometer connected to a quartz sensor through an optical fiber cable. 

6.3.3 Determining RTD in both photoreactor systems 

Tracer experiments were run in both the Photo-CREC Water II Photoreactor and the 

Photo-CREC Solar Simulator (Photo-CREC-Water III). The average residence times 

were independently determined by measuring for systems, reactor volume and volumetric 

flow. Volumetric flows were determined by the use of a container laid on top of a 

Sartorius weighing scale able to weight up to 60,000 grams and a VWR stopwatch. The 

system was turned on and the volumetric flow was obtained from the slope of the 

observed weight plotted against time. This procedure was repeated at least three times for 

each reactor configuration. The volumes were determined by filling each reactor unit 
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with water and weighting all the water contained. For all calculations, water density at 

STP was considered.   

To obtain the RTDs-curves in both reactors, glucose was used as a tracer, mainly due to 

its safety and high solubility in water. Before the experiments were started, both systems 

were filled by turning the pumps on and allowing water to enter the reactor from the top. 

A valve located in both reactors bottom sections was closed, so that water could 

accumulate inside the reactor units. While the reactors were being filled, air was being 

pushed out through a top vent. Once all the air had been removed from the units, the vent 

was closed and hermetically sealed. This methodology ensured that no empty zones or air 

pockets remain during operation, within the annular reactor sections of both reaction 

systems. 

The RTD experiments were then run, by injecting a highly concentrated glucose solution 

in a pulse, through injection ports located at the reactor top while taking timed samples at 

the reactor outlet every 3 to 5 seconds. These tracer experiments were repeated five times 

for each reaction system. For the Photo-CREC Water II, 250 mg of glucose were injected 

in 5 ml. On the other hand, for the Photo-CREC Solar Simulator, 2 g of glucose where 

injected in 10 ml.  

6.3.4 Degradations procedure in bench-scale system 

In the Photo-CREC Water II Photoreactor, the degradation of oxalic acid was performed 

at different photocatalyst concentrations and lamp emission intensities. For all cases, pH 

was kept between 3.15 and 3.35 and temperature was set at 23±2 C during all 

degradation experiments. A solution was prepared by adding 600 mgl
-1

 of oxalic acid in 

250 ml of water. Additionally, different loadings of commercial TiO2 were added to 250 

ml of water. Both solutions were sonicated for at least 10 minutes before being added to 

the reactor system.  

First, the reactor (The Photo-CREC Water II Photoreactor) was filled with 6 L of water, 

as explained in subsection 2.4. Then, the oxalic acid solution was added and let to 

homogenize for at least 5 minutes, until the pH could stabilize at about 3.200. 
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Afterwards, the TiO2 solution was added and let to homogenize again for 5 minutes, until 

the pH could be stable again. Lamps were then turned on and an initial sample was taken. 

From this point on, subsequent samples were taken every 10 to 20 minutes, depending on 

lamp emission intensity and photocatalyst concentration. Reactions were followed by 

TOC analysis for up to 3 hours, or until oxalic acid degraded, to a point where pH could 

increase to a value of 3.300.   

Runs were carried out for photocatalyst concentrations of 25, 50, 75, 100 and 150 mgl
-1

 

with a nominal lamp emission. For this, at least five repeats were carried out. 

Additionally, for 25, 50, 75 and 100 mg
-1

 photocatalyst concentrations, degradations were 

also performed at different lamp emissions. Lamp emission power was inspected between 

40% and 140% of the nominal lamp emission by varying the voltage with a 

POWERSTAT Variable Autotransformer. Approximately ten runs were developed for 

each photocatalyst concentration.  

The percentual lamp emission during the degradation runs was determined using two 

different approaches. First, an empirical equation, reported in Figure 6.1, correlating 

Percentual Lamp Emission with voltage was established. This correlation was obtained 

by directly measuring the lamp axial emission profiles, using the reactor windows as 

shown in Figure 6.1. In this respect, axial emission profiles were measured at different 

voltages. The axial emission profiles were integrated and as a result the total lamp 

emission at set voltages were calculated. The total lamp emission were used to define the 

Percentual Total Lamp Emission Fraction by equating the Total Lamp Emission over the 

Total Lamp Emission at the 110V reference voltage. It is worth mentioning that changes 

in the shape of the lamp axial emission profiles were consistently below 10%. This 

ensured reproducibility of the Total Lamp Emission at various input voltages.  
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Figure 6.1. Empirical equation, correlating the input voltage for the UV-Lamp and the 

percentual emission, determined while the reactor was filled with water only. 

As well, the radiation transmitted through the central quartz windows, reported in Figure 

3.2, was continuously monitored during the degradation experiments. From these data, an 

average lamp emitted radiation was calculated from all the experiments. This average 

radiation was defined using a fitted linear regression function from the MC simulations 

proposed in section 4.4.1 (Valades-Pelayo et al 2014b) to the experimental transmittance 

profiles obtained. 

6.3.5 Degradations procedure in scaled-up system 

In the Photo-CREC Solar Simulator (Photo-CREC-Water III), degradations of oxalic acid 

were run at different photocatalyst concentrations. More specifically, photocatalyst 

concentrations of 30, 60, 90 and 120 mgl
-1

 were used. As for the conditions under which 

the degradations in the bench-scale unit were performed: pH was kept between 3.20 and 

3.30 for all cases, while temperature was set at  23±1 C during all degradation 

experiments. With this end, an oxalic acid water solution was prepared by adding 1800 

mg of oxalic acid in 500 ml of water. Additionally, different loadings of commercial TiO2 

were added to 500 ml of water. All slurry suspensions were sonicated for at least 10 

minutes before being added to the reactor system.  

The reactor system was first filled with 18 L of water, as explained in subsection 2.4. 

Following this, the oxalic acid solution was added and let to homogenize for at least 5 

minutes, until the pH stabilized at a value of 3.2. Afterwards, the TiO2 solution was 
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added and let to homogenize again for 5 minutes until the pH was stable again. Lamps 

were then, turned on and an initial sample was taken. From this point on, subsequent 

samples were taken every 10 to 20 minutes, depending on the photocatalyst 

concentration. Reactions were followed until oxalic acid would degraded to a point where 

the pH  increased to a value of 3.300. Each experiment was repeated 3 times.  

6.4 Mathematical Models and Scale-Up Methodology 

As mentioned in Chapter 1, when proposing a mathematical model for scale-up purposes, 

the following phenomena need to be properly accounted for: i) the LVREA distribution 

within the reaction system, ii) the charge separation/recombination mechanism as a 

function of the LVREA, iii) the free-radical generation/depletion mechanisms at the scale 

of the photocatalyst particle, and iv) the hydrodynamics affecting the free radical 

distribution.  

6.4.1 Radiative models: pH Correction 

In the present chapter, the irradiance and absorption fields for both reactors were obtained 

from radiative models reported in Chapter 4 (Valades-Pelayo et al. 2014 b) and Chapter 5 

(Valades-Pelayo et al. 2014 c) where the simulations and phase function determination 

were determined at pH = 7. Given that the present degradations are to be carried out at a 

pH of 3.25±0.05, this same methodology was used to determine a corrected scattering 

parameter that accounts for the pH change. 

With this end in mind, radial irradiance profiles were determined for pH=3.25, and below 

150 mgl
-1

, by measuring the radial irradiance profiles at five different radial positions in 

the Photo-CREC Water II at three photocatalyst loadings: i) water only, ii)50 mgl
-1

 and 

iii) 100 mgl
-1

. Measurements were repeated five times. Figure 6.2 presents the 

experimental measurements. Furthermore,  in this figure, the simulations for the 

optimized        are presented. Additionally, for comparison purposes, experimental 

data with a pH=7, and simulations with the g determined by Valades-Pelayo et al., 

(2014)b are reported. 
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Figure 6.2 Radial Irradiance Profiles (µW/cm
2
) obtained as proposed by Valades-Pelayo 

et al. 2014b at five different radial positions for three photocatalyst loadings: a) water 

only, b) 50 mgl
-1

 and c) 100 mgl
-1

. At a pH=7 (○) and a pH=3.25(▲),  MC simulations 

with g=0.41 () and g=0.68 (---) are shown.  

Since both reactors (the Photo-CREC Water II and the Photo-CREC Solar Simulator) use 

lamps with the same specifications, the same considerations for lamp emissions apply for 

both RTE MC methods. Lamp emissions for both simulations were determined to be at 

around 13-17% for the range below 388nm (given the band gap for TiO2), with respect to 

the nominal 15W input power for the UVA range. The lamp spectra were considered for 

both reactors, as presented in Figure 3.3. 

6.4.2 Kinetic models: Charge separation and rate equation 

As mentioned in section 1 of this manuscript, the charge separation/recombination 

mechanism is key towards proposing a physically sound equation that is able to predict 

photocatalyst behaviour with respect to both photocatalyst loading and lamp emission 

intensity. This was proposed by a number of researchers such as Motengh et al. (2012), 

Camera-Roda et al. (2005), Kawaguchi (1994), Kapinus et al. (2009) , Curco et al. 

(2002), among others.  
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Regarding photoconversion kinetics, several models have been proposed. Some of them 

assume a behaviour similar to a Langmuir or Michaelis-Menten type of kinetic equation 

(Marugan et al. 2013). These models however, are not set to predict the change in the 

reaction rate with different photocatalyst concentrations and therefore do not allow 

estimating an optimum photocatalyst concentration (Minero and Vione, 2006). On the 

other hand, a model that accounts for back reactions and charge separation/recombination 

effects (Alfano et al. 1997) has proven to be more adequate for predicting the 

photocatalytic behaviour in laboratory scale photoreactors (Marugan et al 2009 ; 

Marugan et al , 2013). 

In this respect, the photocatalytic kinetics  considered in this manuscript are described  by 

proposing a reaction scheme that considers: i) electron and electron-hole generation by 

photo-absorption  on the photocatalyst particle, ii) charge recombination producing heat 

via the re-combination step and iii) electron and electron-holes leading to the production 

free radicals. 

Following this approach, a balance for electrons and electron holes can be obtained, as 

presented in Eq. 6-1 and Eq. 6-2: 

     

  
   

     

       
     

           
               

          
Eq. 6-1 

     

  
   

     

       
     

                  
   

Eq. 6-2 

where      and      are the electron and electron-hole concentrations on the surface of 

the photocatalyst particle, respectively.   with different sub-indexes represent the 

proportionality constants. 

The first term of the RHS of equations Eq. 6-1 and Eq. 6-2, describes the rate of charge 

separation and recombination of electron and electron-hole pair. This rate is based on the 

unit area of photocatalyst surface and is the result of photons being absorbed with a 

quantum energy superseding the band gap. This rate involves the LVREA standing for 
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the Local Volumetric Rate of Energy Absorption, Sp denotes the photocatalyst external 

specific surface and      represents the photocatalyst concentration. Additionally, it 

should be noted that the second RHS term in Eq. 6-1 and Eq. 6-2 accounts for charge 

recombination, while the third RHS term, in both equations, accounts for the reaction 

path leading to the formation of adsorbed free radicals. In this regard, it is assumed that 

the surface concentrations of all other intermediate species before the formation of free 

radicals are in pseudo-steady state.  

Moreover, based on the time scale in which these charge separation/recombination 

processes take place (Hanan and Bahnemann, 2012), it is possible to assume pseudo-

steady states and to obtain an expression for the rate of adsorbed free-radicals formed 

(Alfano et al, 1997; Minero et al. 1999), as reported in Eq. 6-3: 

                
            

      
      Eq. 6-3 

Where ρ,θ,z are the radial, azimuth and axial position respectively and α and   as can be 

defined as: 

  
                 

 
               

  
 Eq. 6-4 

  
      

                               
 

Eq. 6-5 

For a more detailed explanation regarding the derivation of Eq. 6-3, Eq. 6-4 and Eq. 6-5, 

readers are refered to the work of Minero and Vione (2006), Minero (1999) and Alfano et 

al. (1997). For the purpose of the present study,   and   will be regarded as constants, 

with units of m
2
W

-1
 and OH mol s

-1
m

-2
 respectively. One should note that the LVREAs, 

for both reactors, presented in sections 4.5 and 5.5, are a function of the position within 

both annular sections.  
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Furthermore and considering that the volumetric degradation rate of oxalic acid can be 

described using a Langmuir-Hinshelwood kinetic equation, as reported in Eq. 6-6. As 

well as on the basis of the adsorbed free radicals concentration, it results: 

                    
     

       
 Eq. 6-6 

where    represents the concentration of absorbed free radicals per activated unit surface 

area  and ox considers the fraction of TiO2 sites occupied by oxalic acid.    stands for 

the adsorption constant and     is the concentration of oxalic acid in the slurry, where 

non-competitive adsorption between free radicals and organic pollutants is assumed. It is 

worth mentioning that,    does not depend on irradiance conditions (Kawaguchi, 1993). 

To avoid needless complications with the cross-correlation between parameters, the 

kinetic study of the present manuscript was developed within the linear region of Eq. 6-6 

or at conditions where        .  

Regarding the mathematical and kinetic scheme under consideration, adsorbed free 

radicals are assumed to be the ones mainly responsible for photocatalytic activity (Liao 

and Reitberger, 2013; Hanan and Bahnemann, 2012). This is the case given that the 

probability of having a free radical adsorbed on the photocatalyst surface determine, 

among other factors, the rate at which adsorbed chemical species can be photo-degraded. 

Thus, a proper accounting of the distribution of adsorbed free radicals in a photocatalytic 

reaction system, is critical to determine the relative performance between the two reactors 

differing in scale and/or geometry only (the Photo-CREC Water II and the Photo-CREC 

Solar Simulator). 

6.4.3 Transport Models: Free radical distribution and photocatalyst 
activity 

Among the main phenomena affecting the concentration of adsorbed free radicals on the 

photocatalyst particle surface, the following can be cited: i) free radial generation by 

charge-separation, ii) free radical consumption during degradation reactions, iii) free 

radical depletion due to side-reactions. Additionally, different mixing patterns affect the 
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photocatalyst particles residence times, inside different sections of each photoreactor 

system. This leads to different distributions of irradiated and non-irradiated slurry volume 

fractions. Not accounting for these factors, can increase errors when determining relevant 

kinetic parameters, undermining the accuracy of the predictions of the scale-up 

methodology.  

Specifically for the two reaction systems considered in the present study, the Photo-

CREC Water II and the Photo-CREC Solar Simulator (Photo-CREC-III), two main 

components or sections can be considered in each system: a) an evenly or unevenly 

irradiated annular plug-flow reactor with axial dispersion and b) a non-irradiated and 

perfectly mixed tank (CSTR).  

On this basis, a balance equation describing the change of adsorbed free radicals (Eq. 

6-7) valid for both photoreactor systems, is proposed. This equation includes: i) 

generation of free radicals, ii) depletion of free radicals as a proportional function of the 

adsorbed free radicals concentration, iii) free radical axial dispersion and iv) free radical 

convection. While phenomena i) and ii) occur on the photocatalyst particle and as such 

are surface phenomena, the last two effects, iii) and iv), are considered to arise due to 

mixing or hydrodynamic effects experimented by the photocatalyst particles. Due to this, 

the balance equation has to be defined in terms of   , the concentration of adsorbed free 

radicals per unit volume of the slurry, as follows: 

   

  
                           

    

   
   

   

  
 Eq. 6-7 

where  , stands for the irradiation time; and   represents the length along the photoreactor 

axial coordinate, being zero at the reactor inlet and increasing downwards, in the flow 

direction.    represents the axial dispersion coefficient and    denotes the average flow 

velocity in the axial direction. One should note that the concentration of free radicals per 

unit volume (  ) and per unit surface area (  ) are related as: 

             Eq. 6-8 
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One should also note that the           is defined using Eq. 6-3. As well that Eq. 6-9 

considers      which represents a lumped kinetic parameter, accounting for all the 

reactions and side reactions, consuming free radicals on the photocatalyst surface, as 

follows: 

              

 

   

   Eq. 6-9 

where     , is the constant for the rate of free radical disappearance due to side reactions. 

On the other hand, the second RHS term accounts for free radical depletion due to 

various photocatalytic reactions where    represents the stoichiometric coefficients for 

free radicals in the pollutant photodegradation reactions, as proposed by Serrano et al. 

2009.  

In particular, when considering oxalic acid under the conditions mentioned in sections 

6.3.4 and 6.3.5, Eq. 6-9 can be further simplified for to yield Eq. 6-10. This is the case 

given that there is only one reaction consuming oxalic acid with a stoichiometry of 2 

moles of OH consumed per mole of oxalic acid degraded:   

                Eq. 6-10 

On the other hand, since the irradiated section (annular sections of the Photo-CREC 

Water II unit and the Photo-CREC Water Solar Simulator) and the non-irradiated well 

mixed tank section are configured in a closed loop, the boundary conditions for Eq. 6-7 

are determined by the non-irradiated well mixed tank section. This unit can be described 

by a CSTR. As a result, the following physically sound assumptions can be adopted: i) 

the inlet stream is the one exiting the reactor unit, ii) there is a uniform depletion of free 

radicals throughout the non-irradiated tank and iii) the outlet stream is the one fed  to the 

photoreactor unit inlet. Thus, the following Eq. 6-11 stands as adequate: 

 
   

    

  
        

      
              Eq. 6-11 

where the LHS accounts for accumulation in the mixing tank, the 1st and 2nd RHS terms 

account for the free radicals going in and out, respectively, and the 3rd RHS term 
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considers depletion of free radicals due to all the reactions. Additionally, by substituting 

Eq. 6-10 into equation Eq. 6-11, the following Eq. 6-12, can be obtained:   

     
   

    

  
      

                 
    

 Eq. 6-12 

Where   
    

 represents the surface concentration of adsorbed free radicals on the 

photocatalyst particles evolving in the non-irradiated mixing tank;      
 

 denotes the free 

radical concentration at the photoreactor unit outlet and       stands for the mixing tank 

average residence time.   

6.4.4 Efficiency factor 

The above described sets of equations, considers radiation models, kinetic models and 

mixing models. They can be combined to establish an expression for the overall reactor 

performance. This equation allows one to define an efficiency  factor to compare the 

performance of slurry photocatalytic reactors of different geometries and scales in a 

practical yet comprehensive manner.  

With this end, Eq. 6-3 is substituted within Eq. 6-7 and integrated within the internal 

radius (    ) and the external radius (    ) for all azimuth positions yielding Eq. 6-13:     

   

  
            

              

    
             

    

    

  

 

          
    

   
   

   

  
 Eq. 6-13 

Additionally, under the experiments conducted for the present study, steady state can be 

assumed for the absorbed free radical balance. It is important to mention that, even when 

the reactor is considered to be operated in batch mode the    concentration under 

constant irradiance, becomes a function of spatial coordinates only. Thus, Eq. 6-14 and 

Eq. 6-15, simplifies as follows: 

  
    

   
   

   

  
                   

              

    
             

    

    

  

 

 Eq. 6-14 
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 Eq. 6-15 

Eq. 6-14 and Eq. 6-15 can be expressed in dimensionless form, by assuming    
 

 
 , 

  
  

   
 and               

              

    
, to obtain Eq. 6-16 and Eq. 6-17: 

 
  
   

 
   

    
  

  
  
 
  

   
    

      

    
                              

    

    

  

 

 Eq. 6-16 

     
  

 

             
     
  Eq. 6-17 

Furthermore and considering a volume averaged dimensionless variable " ", a 

dimensionless factor can be obtained, as presented in equation Eq. 6-18: 

                  
 

 

                    
    Eq. 6-18 

where          represents the ratio between the volume of the annular photoreactor unit, 

divided by the total volume of the reaction system.  

Finally  , being a dimensionless volume-averaged value of   , can be substituted into Eq. 

6-6, when         to obtain Eq. 6-19: 

       Eq. 6-19 

where    is a zero-th order kinetic constant, and   is the oxalic acid degradation rate. 

One should notice that Eq. 6-19 is able to account for changes on the most relevant scale-

up variables in annular photoreactors such as i) size, ii) geometry, iii) mixing, iv) 

irradiance conditions and v) photocatalyst concentration.  

Additionally, if the rate of free radical generation/depletion on the photocatalyst particle 

is much faster than potential concentration changes resulting from hydrodynamic effects, 
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the latter does not affect the photocatalytic reactor performance, i.e.  
  

   
 
   

    
 

 
  

  
 
  

   
   and            .  

By taking advantage of this condition Eq. 6-16, Eq. 6-17, Eq. 6-18 and Eq. 6-19 can be 

simplified to yield:  

              
               

               

    
     

 

 

         

    

    

  

 

 Eq. 6-20 

where,         
 

    
 , is a lumped zero-th order kinetic parameter. One should note that 

all the other symbols retain their respective meanings and notations.  

It is interesting to point out that for most cases considered in the present study Eq. 6-20  

is expected to hold true. This equations have never been proven to hold for reactors above 

the laboratory scale (i.e. above 1-2 L of irradiated volume). One should always have 

however as a reference the most general radiation-kinetic model as reported in Eq. 6-16, 

Eq. 6-17, Eq. 6-18 and Eq. 6-19, particularly useful when unsteady or periodic irradiation 

is applied or for cases where a high efficiency photocatalyst is considered. 

6.5 Results and Discussion 

The methods proposed by Valades-Pelayo et al., 2014b and Valades-Pelayo et al. 2014c 

for solving RTE using MC in the Photo-CREC Water II and Photo-CREC Solar 

Simulator, required the combined solution of Eq. 6-16 to Eq. 6-19.  

To be able to apply these equations seven parameters have to be determined: i) axial 

dispersion coefficients (  ) and average axial velocities (  ) for both reactors, ii) charge 

recombination parameters for TiO2 ( ), iii) free radical source ( ) and sink term (    ) 

coefficients and iii) the oxalic acid kinetic constant (  ). To minimize cross correlation 

issues, these seven parameters where obtained by via non-linear regression with 

independent data sets.  
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First, the    and    for both photoreactors were determined using non-reactive tracer 

experiments. Second,  ,   and      where established by degradation experiments at 

different photocatalyst concentrations and lamp emissions in the bench-scale Photo-

CREC Water II photoreactor. Finally, degradations in the Photo-CREC Solar Simulator 

(Photo CREC Water III) were performed at different photocatalyst concentrations, to 

assess the suitability of the proposed scale-up approach. 

 

Figure 6.3 Figure 8 RTD tracer experiments (•) and simulations (−) for (a)the Photo-

CREC Water II and (b)the scaled-up Photo-CREC Solar Simulator. Simulations used 

axial dispersion coefficients (  ) of (a) 12.0 cm
2
s

-1
 and (b) 65.0 cm

2
s

-1
. Both systems had 

a volumetric flow of 13.5 cm
3
s

-1
. 

Figure 6.3 reports the RTD fitting using a plug flow reactor, with axial dispersion. The 

axial dispersion model fits the experimental data well for; a) Photo-CREC Water II 

reactor with a    of 1.22 m/s and an    of 12 cm
2
/s, b) the scaled-up Photo-CREC Solar 

Simulator (Photo-CREC Water III) with a    of 1.00 m/s and an    of 65 cm
2
/s. 

Kinetic parameters were determined in the bench scale Photo-CREC Water II using least 

square fitting as shown in Figure 6.4. Figure 6.4a) reports the reaction rate dependence 

with respect to lamp emission, at four different photocatalyst loadings. Both model 

reaction rates (−) and experiments are reported in this figure. Furthermore Figure 6.4b) 

shows the simulated (−) and experimental (○) reaction rate dependence with respect to 

photocatalyst loading, for a 100% nominal lamp emission.  
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Figure 6.4 Experimental degradation rates for oxalic acid in the Photo-CREC Water II 

Photoreactor, under a) different lamp irradiances at (●) 25 mgl
-1
, (□) 50, (■) 75 and (○) 

100 mgl
-1

 photocatalyst loadings. (b) Degradation rates at (○) different photocatalyst 

loadings (100% lamp emission) in the Photo-CREC Water II photoreactor. Simulations 

(−) presented for both cases. 

Table 6.1 reports the optimized parameters with their respective 95% C.I.  One can notice 

that the proposed methodology yields satisfactory results with the photocatalytic reactor 

performance successfully modelled at different catalyst loadings and lamp irradiances. 

Furthermore Table 6.1 also shows large 95% C.I. for parameters A and C. The 95% C.I. 

are even larger than the parameter values themselves. Thus, it is on this statistically sound 

basis, that the model can be safely simplified as reported in Eq. 6-20 eliminating A,      

and k* from the analysis, by considering a single lumped parameter, k**, as presented in 

section 6.4.4. 

Table 6.1. Optimized parameters for the model considering Eq. 6-16 to Eq. 6-19. 

Parameter Value Units 95% C.I. span 

A 3.03x10
-4

 l g
-1

 h
-1

 ±1940% 

B 2.51x10
-6

 g W
-1

 ±5.95% 

     6.70x10
-2

 h
-1

 ±1740% 

k* 1.05x10
6
 ppm C h

-1
 ±1651% 
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Table 6.2  shows the B and k** regressed parameters of the simplified model, displaying 

in this case  with limited 95% C.I. and suggesting as a result a satisfactory kinetic model. 

Table 6.2. Optimized parameters for the model considering  Eq. 6-20. 

Parameter 
Value Units 95% C.I. span 

B 2.56x10
-6

 g W
-1

 ±4.72% 

k** 4.75x10
5
 ppm C h

-1
 ±5.61% 

As a result, it can be observed that scale up model needs to account for the quick 

photocatalyst deactivation, with essentially no additional reaction taking place in the 

mixing tank. This is true for both Photo-CREC-Water II and Photo-CREC Solar 

Simulator (Photo-CREC Water III). 

Furthermore, by using the model of Eq. 6-20 and previously determined parameters 

reported in Table 6.2 for the scaled-up annular photoreactor, the photocatalytic 

performance in the Photo-CREC Solar Simulator (Photo-CREC Water III) is calculated. 

Figure 6.5 shows model predictions (−) and experimental results (○) for the degradation 

rate of oxalic acid. One can notice that the model capture the rapid increase of 

photoreaction rate before 30 mgl
-1

, and the fact that once the photocatalyst concentration 

reaches 30 mgl
-1

, the photoreaction rate augments at a slower pace.   

As it can also be noticed from Figure 6.5, that the proposed model display a slight 

overestimation  with respect to the experimentally determined reaction rates in the Photo-

CREC Water Solar Simulator (Photo-CREC Water III). This is most likely a consequence 

of the overprediction of the LVREA calculated by the RTE Monte Carlo method 

proposed, as mentioned in section 5.5 and 5.6 (Valades-Pelayo et al., 2014c).  
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Figure 6.5 (○) Experimental and (−) simulated degradation rates for oxalic acid in the 

Photo-CREC Water Solar Simulator (Photo-CREC-Water II)  under different 

photocatalyst loadings at  nominal lamp emission (100% lamp emission), with all 8 lamps 

turned on. 

On this basis, a physically sound model, using 2 kinetic parameters, was successfully 

employed to model the oxalic acid photodegradation in two slurry bench-scale 

photocatalytic reactors at different irradiance conditions and photocatalyst 

concentrations. More importantly, this model can be used to calculate energy efficiency 

factors such as the Photocatalytic Thermodynamic Efficiency Factor (PTEF) and the 

Quantum Yields (QY) to compare on a quantitative basis, the relative reactor efficiencies. 

 

Figure 6.6 a) Photocatalytic Thermodynamic Efficiency Factors (PTEF) and b) Quantum 

Yields (QY) are presented for (—) the photo-CREC Water II and (····) the Photo-CREC 

Solar Simulator, for photocatalyst concentrations of 25 mgl
-1

 to 150 mgl
-1

.  
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In Figure 6.6 the PTEF and b) the QY are shown for different reactors and photocatalyst 

concentrations, ranging from 20 to 150 mgl
-1

. Figure 6.6a presents the PTEF. For the 

Photo-CREC Water II reactor, is seen to lay between 7.5-8.0%, while for the Photo-

CREC Water Solar Simulator, PTEF drops between 4.5-5.0%. Additionally, Figure 6.6b 

presents QY. For the Photo-CREC Water II reactor, QY lays between 12.5-13.0%, while 

for the Photo-CREC Water Solar Simulator, drops to values of 8.0-8.5%.  

On this basis, with the aid of the proposed model, one can conclude that during the scale-

up process, going from the Photo-CREC Water II to the Photo-CREC Water Solar 

Simulator, a photocatalytic efficiency loss of 44% is expected when both reactors are 

operated at 40 mgl
-1

. More importantly, this efficiency loss decreases as concentration is 

increased, dropping to 30%, at about 120 mgl
-1

. 

6.6 Conclusions 

a) A physically based, simplified, predictive approach for bench to pilot plant scale 

reactors is proposed.  

b) The proposed model considers irradiance boundary conditions, photocatalyst 

concentration as well as optical properties, reactor hydrodynamics and physically based 

degradation rates account for charge separation/recombination along with pollutants 

adsorption on the photocatalyst surface.    

c) The proposed model of the present study is able to predict important parameters for 

photocatalytic reaction engineering, with this model being suitable at two photocatalytic 

reactor scales: 2.6 liters and 9.6 liters.  

d) The proposed model provides adequate prediction of changes of oxalic acid 

concentrations by accounting for a distribution of adsorbed free radicals on the 

photocatalyst particle.  

e) The proposed model, applied under the conditions of the photocatalytic reactors 

considered in this study(Photo-CREC water II and Photo-CREC Water Solar Simulator), 
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allows one establishing the changes of quantum yields and PTEF as a result, important 

parameters for the scale up of photocatalytic reactors. 
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Chapter 7  

7 Conclusions and Recommendations 

As described in the literature section of this PhD thesis, there is a lack of scale-up 

methodologies for designing photocatalytic reactors. There is in fact, a pressing need to 

evolve from bench-scale units to the pilot plant designs. In this respect, one can envision 

larger externally irradiated pilot plant reactors. To successfully accomplish this, radiation 

absorption fields and related parameters such as LVRPA have to be established. As 

reported in Section 2.4 of this PhD Dissertation, in order to calculate the LVRPA, one has 

to be able to determine suitable phase functions. Furthermore, one can also notice the 

need for better methods to assess photocatalyst performance, together with improved 

radiation modelling. Thus, there are significant gaps in current photocatalytic reaction 

engineering design, with these issues being thoroughly addressed in the present PhD 

research.  

7.1 Conclusions     

The following can be considered as the most significant contributions of this PhD 

research: 

a) A Monte Carlo (MC) probabilistic based method was developed. This 

probabilistic approach was established in a 3D framework, allowing slurry 

photocatalytic reactor modelling and LVRPA calculations. This comprehensive 

method also considered detailed boundary conditions. By using this approach, it 

was proven that photon scattering plays a significant role in identifying critical 

simulation factors such as BCs (boundary conditions) and scattering parameters.  

b) MC simulations of this PhD dissertation allowed one to show that the Total Rate 

of Photon Absorption (TRPA) provides limited discrimination between scattering 

models and boundary conditions (BCs)  when using the Total Transmittance 

measurements (TT) as a basis for comparison. 

c) The MC simulations of this study, demonstrated as described in Chapter 3, that 

the MC yields adequate predictions of the experimental TT of Degussa P25 in the 
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Photo-CREC Water II Reactor. These valuable findings were obtained when 

considering a forward scattering mode phase function (H-G phase function with 

“   in the 0.6-0.8 range) and a highly absorptive outer BC (PabsWall  close to 1). 

 

d) A novel radiometric probe (CREC-PS) was designed and developed in the context 

of the present PhD research. This radiometric probe allows one to reduce the 

uncertainty of the radiation radial profiles as described in Chapter 4. This probe 

was designed to obtain radial irradiance distributions in the annular channel of a 

Photo-CREC Water II Reactor. One should also note that the MC method 

reported in Chapter 3, was modified later in Chapter 4 to account for probe 

intrusion in the slurry.  

 

e) Regarding the determination of the radiation absorption fields, the coupling of 

radial measurements, with a modified MC method, yielded a significantly 

increased accuracy. This gave LVRPA with reduced spans (as defined in section 

4.4.2) of ±6% and “ ” H-G phase function values of 0.68±03. On this basis, the 

combined data from the MC model and the experimental radial irradiance 

profiles, as reported in Chapter 4, allowed one to clarify both boundary conditions 

for the Radiative Transfer Equation (RTE) and radiation gradients within the 

annular section.  

 

f) The radiation and absorption fields of an externally irradiated Solar Simulator 

Photo-CREC Water Photo Reactor with 10 L of irradiated volume were 

successfully modelled as shown in Chapter 5. This "a priori" MC method 

considers: i) all photon-surface interactions being either ideally diffuse or 

specular, depending on the material optical properties and ii) all photon-

photocatalyst interactions being defined by optical parameters previously 

determined in Chapter 4 and by Cabrera et al. 1995. This "a priori" MC method, 

with no adjustable parameters was validated by solving the RTE (Radiative 

Transfer Equation) for different asymmetric irradiance conditions.  Additionally, 

this MC method was optimized by considering the following: i) the radiation 
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angular periodicity, ii) the value of splitting the reactor geometry into “concave” 

subsets and iii) the importance of employing a "shortest-positive distance" 

criteria. This original approach allowed predicting the TRPA and LVREA for five 

different irradiance configurations and photocatalyst loadings, in the 20 to 400 

mgl
-1

 range. 

g) A comprehensive kinetic model accounting for radiation field computations as 

reported in Chapter 3, Chapter 4 and Chapter 5, is established in Chapter 6. This 

kinetic model is proposed as a scale-up tool for bench to pilot plant scale reactors. 

Additionally, Chapter 6  reports the experimental validation of the proposed 

kinetic model by considering the photodegradation of oxalic acid at a pH of 3.25, 

using Degussa P25. This was accomplished in both the Photo-CREC Water II 

Reactor and the Photo-CREC Solar Simulator Reactor at various photocatalyst 

concentrations and different irradiance conditions.  

h) The significance of the pH in the slurry optical properties, affecting particle 

agglomeration was considered in Chapter 6. To accomplish this, the optical slurry 

parameters as well as the radiation absorption fields were recalculated by 

applying the methodology of Chapter 4 at a pH of 3.25. From this analysis, a “ ” 

= 0.41 for the H-G phase function was found to predict the radial irradiance 

profiles. Therefore, it is  determined that for Degussa P25, the phase function, 

needs to consider reduced forward scattering as pH decreases.  

i) The validation of the comprehensive photocatalytic reactor radiation-kinetic 

model of Chapter 6 was achieved by calculating the concentration of adsorbed 

free radicals on the photocatalyst particle surfaces. This involved establishing the 

following: i) detailed irradiance boundary conditions, ii) agglomerate optical 

properties, iii) photocatalyst charges recombination and surface properties, iv) 

RTD in the annular photoreactor and mixing tanks at both scales and v) 

Langmuir-Hinshelwood kinetics for pollutant absorption on the photocatalyst 

particles. To our knowledge, this is the first physically based radiation-kinetic 
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model reported in the literature, able to predict radiation as well as degradation 

rates at reactor scales larger than the laboratory scale.  

7.2 Future Work 

There are several important issues that have arisen, based on the models examined and 

the observations made during this PhD thesis dissertation. In addition, there are areas of 

opportunity and possible approaches for future work. On this basis, a number of 

recommendations are provided in this section, regarding how the reported models could 

be improved and the experimental methodologies could be refined. Such improvements 

are necessary if aiming to extensively apply the scale-up and optimization methodologies 

to commercial scale photocatalytic reactors. 

A first area of opportunity consists in improving the proposed model by accounting for 

the pH and agglomeration effects at a radiative, as well as at a chemical kinetic level. 

This, of course, would require the following:  

i) Determining the optical properties at different pHs, under different mixing 

patterns and intensities for a wide range of photocatalyst concentrations. This 

would provide insights into the dependency of the radiation absorption fields 

when changing the pH, the mixing and the radiation conditions. This could be 

accomplished by using the reported MC method of  Chapter 4.  

ii) Characterizing the agglomerate size distribution when changing agitation, pH and 

photocatalyst concentration. From this information, the PSD (Particle Size 

Distribution) analysis could be employed, to establish the “correct” photocatalyst 

external specific surface area, "  ", currently used to represent the actual 

irradiated surface area. By considering this important parameter, a physically 

based model could be proposed to account for agglomeration as well.  

iii) Validating kinetic models that account for agglomeration. This should be done 

using a wide range of photocatalyst concentrations and pHs. Targeted conditions 

will be the ones where  agglomeration and other particle properties are suspected 

to influence photocatalytic activity. The value of these model improvements could 
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influence reaction rates and radiation fields improvements of photocatalytic 

reactors of  different scale.  

A second area of opportunity for future work would be the extension of these 

methodologies for cases where the chemical paths differ from the single step oxidation 

scheme (oxalic acid) considered in Chapter 6. This could encompass:  

i) The study of  photodegradation reactions involving several reaction steps and 

intermediates.  

ii) The determination of whether all the chemical species involved in the 

photodegradation scheme, present the same dependence with respect to the 

radiation absorption fields and charge separation-recombination mechanisms.  

Finally, a third area of opportunity could be the study of the direct application of the 

methodologies presented in this PhD dissertation at the commercial scale (e.g. 2000 

liters/day of drinking water for a population of 1000 inhabitants). This would be done for 

the purpose of promoting photocatalysis to become more standardized and/or competitive 

at an industrial scale. This could involve the following:  

i) The application of the scale-up methodologies for photocatalysts suitable for solar 

irradiation (lower band gaps) or with minimum charge recombination. 

ii) The study of methodologies to determine key scale-up parameters of important 

reactions such as phenol photodegradation, water-splitting or even for real-life 

scenarios  where several types of photocatalytic processes may take place (e.g. 

pollutants converted via  photo-oxidation and photo-reduction).  

iii) The standardization of a methodology for complete chemical and optical 

photocatalyst characterization. The aim would be to establish a benchmark that 

would facilitate quantification of the overall photocatalytic activity under 

different conditions and designs. This would allow an objective comparison 

between novel and existing photocatalysts for their applicability to specific 

photocatalytic reactor designs.  
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