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Abstract 
 

Quantifying the tissue fat concentration is important for several diseases in various 

organs including liver, heart, skeletal muscle and kidney. Uniquely, MRI can separate 

the signal from water and fat in-vivo, rendering it the most suitable imaging 

modality for non-invasive fat quantification. Chemical-shift-encoded MRI is 

commonly used for quantitative fat measurement due to its unique ability to 

generate a separate image for water and fat. The tissue fat concentration can be 

consequently estimated from the two images. However, several confounding factors 

can hinder the water/fat separation process, leading to incorrect estimation of fat 

concentration.  

The inhomogeneities of the main magnetic field represent the main obstacle to 

water/fat separation. Most existing techniques rely mainly on imposing spatial 

smoothness constraints to address this problem; however, these often fail to resolve 

large and abrupt variations in the magnetic field. A novel convex relaxation 

approach to water/fat separation is proposed. The technique is compared to 

existing methods, demonstrating its robustness to resolve abrupt magnetic field 

inhomogeneities.  

Water/fat separation requires the acquisition of multiple images with different 

echo-times, which prolongs the acquisition time. Bipolar acquisitions can efficiently 

acquire the required data in shorter time. However, they induce phase errors that 

significantly distort the fat measurements. A new bipolar acquisition strategy that 

overcomes the phase errors and provides accurate fat measurements is proposed. 

The technique is compared to the current clinical sequence, demonstrating its 

efficiency in phantoms and in-vivo experiments. The proposed acquisition technique 

is also applied on animal models to achieve higher spatial resolution than the 

current sequence.  
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In conclusion, this dissertation describes a complete framework for accurate and 

precise MRI fat quantification. Novel acquisitions and reconstruction techniques 

that address the current challenges for fat quantification are proposed.  

 

Keywords: Chemical-shift imaging, water/fat imaging, fat quantification, field map 

estimation, bipolar acquisition, continuous max-flow.  
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Chapter 1 

Introduction 

1.1 Motivation 

Fat is an important diagnostic marker in many clinical applications, including liver 

[1], cardiac [2, 3], musculoskeletal system [4, 5], kidney [6], bone marrow [7, 8], 

measurement of total body fat [9], quantifying visceral adipose tissue [10], as well 

as distinguishing between white and brown adipose tissue [11, 12]. In liver 

applications for example, non-alcoholic fatty liver disease (NAFLD), one of the most 

common chronic liver conditions, is characterized by fatty infiltration of the liver 

[13, 14], and quantification of fat is necessary in the diagnostic process. Fat signal is 

also a relevant diagnostic marker of cardiac diseases such as myocardial fatty 

infiltration [15], which is associated with sudden cardiac death [16], 

arrhythmogenic right ventricular dysplasia (ARVD) [17] and chronic myocardial 

infarction [18]. Additionally, interest in measuring the epicardial and intra-thoracic 

fat has markedly increased in the last decade [2, 19], with some studies suggesting 

“A journey of a thousand miles begins with a single step” 
- Laozi (Chinese philosopher) 
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such fat deposits to be strongly correlated with the presence of coronary artery 

disease [20].  

Among different medical imaging modalities, Magnetic Resonance Imaging (MRI) is 

well suited for fat quantification for its ability to separate the signals from water and 

fat in the human body. Uniquely, MRI can exploit small differences in the frequency 

of signals received from different chemical species to generate individual images of 

each species. Water and fat are the main sources of signal in MR images for most 

clinical applications. MRI can distinguish between water-based and fat-based tissues 

producing fat-suppressed (water-only) and water-suppressed (fat-only) images, 

which are commonly needed in clinical diagnosis.  

Fat quantification is usually performed in terms of fat fraction, which is the ratio of 

the fat signal to the total signal from both water and fat. A typical example is the 

measurement of liver fat in NAFLD patients, where the fat fraction of healthy liver 

should not exceed 5% [13]. Therefore, accurate and precise fat measurement is 

required. Several confounding factors can bias the fat fraction measure and must be 

considered during signal acquisition and reconstruction. These factors include, but 

not limited to, the tissue-specific relaxation times (such as T1 and T2*) and the 

inhomogeneities of the main magnetic field.  

In this dissertation we will propose novel acquisition and reconstruction techniques 

to address the limitations that hinder the process of accurate and precise fat 

quantification. In this chapter we will revisit the basics of MRI and the gradient-echo 

pulse sequence. Then we will introduce water/fat imaging with all the confounding 

factors that need to be addressed for quantitative fat imaging. In the following 

chapters, will we first propose new techniques to estimate the magnetic field 

inhomogeneities, which are the main obstacle for successful water/fat separation. 

We will then propose a new acquisition strategy for water/fat imaging and then 

demonstrate it for in-vivo applications in animals and humans. 
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1.2 Magnetic Resonance Imaging 

1.2.1 Principles of Magnetic Resonance Imaging 

MRI relies on a strong magnetic field, 𝐵0, which polarizes the nuclear spins in 

parallel and anti-parallel directions with respect to the main magnetic field. In the 

presence of an external magnetic field, the nuclear spins are polarized along the 

main field, leading to a net magnetization in the parallel direction. The precession 

frequency of the nuclear spins can be described by the Larmor equation as follows: 

𝜔0 =  𝛾 𝐵0                                                                         (1.1) 

where 𝜔0 is called the Larmor frequency and 𝛾 is the gyromagnetic ratio of the 

nucleus being imaged. Most of the clinical MRI scans targets the Hydrogen proton 1H 

as it is the dominant nucleus in the human body. For 1H, 𝛾 is equal to 2.68x108 

rad/s/Tesla. The commonly used value is 𝛾 = 𝛾/(2𝜋) = 42.6 MHz/Tesla. 

The net magnetization, 𝑀, resulting from the polarized spins cannot be detected as 

long as it aligns along the direction of the main magnetic field. Hence, an additional 

magnetic field,𝐵1, is applied to tilt the magnetization away from the 𝐵0 direction. 

This process can be described through the Bloch equation as follows: 

𝑑𝑀��⃗
𝑑𝑡

= 𝑀��⃗  × 𝐵�⃗                                                              (1.2) 

where  

𝐵�⃗ =  𝐵0����⃗ +  𝐵1����⃗                                                               (1.3) 

Equation 1.2 is a simplified version of the Bloch equation where the relaxation times 

are neglected. The 𝐵1 magnetic field is generated by a radiofrequency pulse (RF 

pulse) applied through a ‘transmit’ coil tuned at the Larmor frequency. In 

equilibrium, 𝑀 is aligned with 𝐵0 along the longitudinal (�̂�) direction. As of Equation 

1.2, once the RF pulse is applied along 𝑥� or 𝑦� direction, the magnetization vector 

𝑀 is tipped with an angle 𝛼 away from the longitudinal axis towards the transverse 
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plan (x-y plan). The tipping (or flip) angle is determined by the magnitude of the RF 

pulse, 𝐵1, and its duration  𝜏, such that: 

𝛼 =  𝛾 � 𝐵1(𝑡)
𝜏

0
                                                        (1.4) 

Following the RF excitation both the longitudinal and transverse components of the 

magnetization start to relax via two mechanisms: First the longitudinal relaxation 

described by the time constant  𝑇1, where the magnetization starts to relax back to 

its equilibrium state along the �̂� direction. This is called the spin-lattice relaxation as 

it results from the interaction between the spins and the surrounding lattice. The 

second relaxation process is a transverse relaxation resulting from the interactions 

between spins, hence called the spin-spin relaxation. It results from the ‘dephasing’ 

of the spins and is governed by a time constant  𝑇2. The two relaxation processes can 

be described through the Bloch equation: 

𝑑𝑀��⃗
𝑑𝑡

= 𝑀��⃗  × 𝐵�⃗ −  
𝑀𝑥 𝑥� + 𝑀𝑦 𝑦�

𝑇2
−  

(𝑀𝑧 −  𝑀0) �̂�
𝑇1

                           (1.5) 

Shortly after the RF excitation, the signal is sampled at a time ‘TE’ (or echo time) and 

detected through a ‘receiver’ coil. The detected signal is proportional to the 

magnitude of the transverse component of the magnetization, 𝑀𝑥𝑦, and can be 

derived from the Bloch equation above (Equation 1.5). For example, if a pulse with 

𝜋/2 flip angle is applied, the initial magnetization 𝑀𝑖𝑛𝑖𝑡 will be fully tipped to the 

transverse plan. Ideally, immediately after the RF pulse at time 𝑡 = 0, the 

magnetization vector  𝑀𝑧(0) = 0 and 𝑀𝑥𝑦 = 𝑀𝑖𝑛𝑖𝑡. The magnetization vectors at 

time 𝑡 can be then derived from Equation 1.5, resulting in the following components: 

𝑀𝑧(𝑡) =  𝑀𝑖𝑛𝑖𝑡 �1 − 𝑒−
𝑡
𝑇1� �                                              (1.6) 

𝑀𝑥𝑦(𝑡) =  𝑀𝑖𝑛𝑖𝑡 . 𝑒−𝑖𝜔0𝑡. 𝑒−
𝑡
𝑇2�                                           (1.7) 
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Hence the magnitude of the detected signal at time ‘TE’ will be proportional to 

 𝑀𝑖𝑛𝑖𝑡. 𝑒
−𝑇𝐸 𝑇2� . If we started from the equilibrium state, then 𝑀𝑖𝑛𝑖𝑡 =  𝑀0. The 

received signal is therefore proportional to the bulk spin density, 𝜌, in the excited 

volume. 

 

1.2.2 Spatial Encoding 

So far we have introduced two sources of magnetic fields, the main magnetic 

field,𝐵0, and the RF pulse. In order to ‘encode’ the spatial position of received signal, 

additional magnetic fields, called gradients, are employed.  A gradient is a linearly 

varying magnetic field added to the static field to distinguish the spins along a 

certain direction. For example in the 𝑥-direction it is given by: 

𝐵(𝑥, 𝑡) =  𝐵0 + 𝑥 𝐺𝑥(𝑡)                                                  (1.8) 

where 𝐺𝑥 is a constant gradient in the 𝑥-direction. The precession frequency will 

therefore vary along the 𝑥-diretion. Demodulating the Larmor precession, the phase 

accrual occurring due to the applied gradient is given by: 

𝜑𝑥(𝑥, 𝑡) = −𝛾𝑥� 𝐺𝑥(𝑡′) 𝑑𝑡′
𝑡

0
                                             (1.9) 

Similarly, a gradient is added in the 𝑦-direction, also causing an accumulation of 

phase along this direction. For a 2D acquisition, the received signal is now the 

product of the excited spin density with the gradients-induced phase terms along 

the two directions: 

𝑆(𝑥,𝑦) ∝ ∬𝜌(𝑥,𝑦)𝑒−𝑖 �𝜑𝑥(𝑥,𝑡) + 𝜑𝑦(𝑦,𝑡)�𝑑𝑥 𝑑𝑦                         (1.10) 

Defining 𝑘𝑥 and 𝑘𝑦 as the spatial frequencies in the 𝑥- and 𝑦- directions respectively, 

Equation 1.10 can be written as follows: 

𝑆�𝑘𝑥,𝑘𝑦� ∝ ∬𝜌(𝑥,𝑦)𝑒−𝑖2𝜋 �𝑘𝑥 𝑥 + 𝑘𝑦 𝑦�𝑑𝑥 𝑑𝑦                           (1.11) 
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where 

𝑘𝑥 =
𝛾

2𝜋
� 𝐺𝑥(𝑡′) 𝑑𝑡′
𝑡

0
                                                 (1.12) 

𝑘𝑦 =
𝛾

2𝜋
� 𝐺𝑦(𝑡′) 𝑑𝑡′
𝑡

0
                                                  (1.13) 

Neglecting the relaxation terms, Equation 1.11 is the form of a 2D Fourier transform 

(FT) of the spin density 𝜌(𝑥,𝑦). Hence, an inverse 2D FT of the encoded signal will 

be a representation of the distribution of the underlying spin density, i.e. 

𝜌(𝑥, 𝑦) = 𝐹𝑇−1�𝑆�𝑘𝑥,𝑘𝑦��. 

Equation 1.11 shows that MRI spatial encoding is achieved in terms of 𝑘𝑥 and 𝑘𝑦, i.e. 

the signal data is a representation of the spatial frequencies of the spin density, and 

is therefore called 𝑘-space. The 𝑘𝑥 direction is called the frequency encode or the 

readout direction, while the 𝑘𝑦 is called the phase encode direction. For a 3D 

acquisition, another phase encode direction, 𝑘𝑧 , is employed through the linear 

gradient 𝐺𝑧. Most of the clinical scans follow a Cartesian trajectory during the 

acquisitions, where one phase-encode line is acquired at each repetition time (TR). 

Before acquiring the signal at each line, the y- gradient is modified one step (Δ𝑘𝑦) to 

target a new spatial location in the phase-encode direction. The 𝑥-gradient, 

however, is turned on during the signal acquisition to capture the samples in the 

readout direction. The length of the readout for one echo depends on the receiving 

bandwidth and the number of samples in the frequency-encode direction, where the 

receiving bandwidth defines the number of samples collected per unit time. 

For any type of acquisition, a pulse sequence is used to describe the magnitudes and 

the timings of the gradients waveforms, the RF pulses as well as the data acquisition. 

There exist a wide variety of MR pulse sequences, mainly categorized in two 

branches: gradient-echo sequences (GE) and spin-echo sequences (SE). For the 

purpose of this dissertation, we describe next the concepts of GE sequences. 
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1.2.3 Gradient-echo Sequences 

Although water/fat imaging can be performed with SE-based sequences, GE-based 

sequences are usually used as they are generally faster, particularly for 3D imaging 

[21]. In contrast to SE, GE sequences do not employ RF refocusing pulses (𝜋-pulse) 

and hence shorter TRs can be achieved as there is no need to wait for the 

𝑇1 recovery time. The TR is directly proportional to the scan time, so shorter 

acquisitions are achieved with GE. This is particularly important when time-

restricted water/fat acquisitions are required, for example whole-liver fat 

quantification in a single breath-hold (~20s).  

As refocusing pulses are not applied, B0 field inhomogeneities cause an additional 

source of dephasing, in addition to the spin-spin relaxation. In other words, the time 

constant 𝑇2 in the signal equation will be replaced by 𝑇2∗, such that: 

1 𝑇2∗⁄ = 1 𝑇2′⁄ +  1 𝑇2⁄                                                  (1.14) 

where 𝑇2′ is the relaxation factor resulting from the local field inhomogeneities. In 

contrast to 𝑇2 relaxation which is an intrinsic property of the tissue, 𝑇2′ depends on 

different factors including: the shimming of the magnet as well as variations in the 

magnetic susceptibility of the tissues within the patient [22, 23]. Measuring 𝑇2∗ is 

useful in various clinical applications, for example, detecting hemorrhage [24] and 

assessing the iron overload in liver diseases [25]. However, as 𝑇2∗ relaxation is 

shorter than 𝑇2, the transverse magnetization decays faster. This makes GE images 

more prone to signal loss artifacts than spin-echo sequences [21, 23]. 

In order to understand the image produced by a GE acquisition, we must consider 

how the pulse sequence affects signal intensity. There is a single RF pulse in each TR 

of the sequence. All the RF pulses have the same flip angle 𝛼. After a number of 

excitations, the longitudinal magnetization reaches a steady state. Assuming that the 

transverse magnetization is zero at the beginning of each RF excitation, the GE 

signal can be described as follows: 
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𝑆 = 𝑀0  
�1 −  𝑒− 𝑇𝑅 𝑇1� �

�1 − cos𝛼  .  𝑒− 𝑇𝑅 𝑇1� �
. 𝑒

− 𝑇𝐸 𝑇2∗� .  sin𝛼                       (1.15) 

In order to achieve zero transverse magnetization before each RF pulse, ‘spoiling’ 

the signal from previous excitations is necessary. The sequence is therefore called 

spoiled gradient-echo or SPGR. RF spoiling is a commonly used spoiling technique; it 

employs different phases for the RF pulse at each TR. Another spoiling approach is 

to apply additional gradient lobes on the 3 axes at the end of the TR to ensure the 

spoiling in all the directions. This requires that the area of any of the 3 gradients 

must not vary from TR to TR; otherwise the spoiling will be spatially dependent. The 

pulse sequence diagram of SPGR is shown in Figure 1.1 

 

Figure 1.1: A generic SPGR pulse sequence diagram. Here an RF pulse with  𝛼 flip 

angle is applied. GSS is the slice-encode gradient; GPE is the phase-encode gradient 

and GFE is the frequency-encode gradient. TE is the echo-time of the acquired signal; 

TR is the repetition time. Spoilers are indicated at the end of the TR.  
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1.3 Water/Fat Imaging 

Water and fat protons are the main sources in 1H proton MR images. The 

suppression of fat signal is desirable whenever it obscures the underlying pathology 

as in breast imaging [26], head and neck imaging [27] or cardiac imaging [28]. On 

the other hand, detection of the fat signal is of a clinical interest in other applications 

such as the quantification of liver fat deposition in non-alcoholic fatty liver diseases 

(NAFLD) [14, 25, 29], diagnosis of myocardial fatty infiltration [15] and detection of 

renal angiomyolipoma [6]. In such applications, suppressing the water signal is 

instead required. Uniquely, chemical-shift-encoded water/fat imaging allows the 

separation of water and fat, while preserving both signals. It provides a water-only 

(fat-suppressed) and fat-only (water-suppressed) images, which makes it useful for 

a wide variety of clinical needs. 

 

1.3.1 Chemical-Shift-Encoded Water/Fat Imaging 

This technique exploits the frequency spectrum of fat and water signals.  Because of 

the difference of electronic shields, the protons of fat molecules ‘see’ different 

magnetic field than what is observed by the protons in water molecules. This gives 

rise to a difference in the spectral components of the MR signal, with the main peak 

of the fat signal separated by approximately 3.5 parts-per-million (ppm) – Figure 

1.2. This difference is termed the chemical-shift and is equal to ~210 Hz at 1.5 Tesla 

or ~420 Hz at 3 Tesla.  

Chemical-shift-encoded imaging or Dixon methods [30] takes advantage of the 

chemical shift difference in the precession frequencies of fat and water. The protons 

in the fat molecules precess slower than water protons. Once the two species are 

simultaneously excited, a relative phase difference between fat and water protons 

starts to accumulate with time. Consequently, signal acquired at different time-

points will exhibit different phases between water and fat due to the chemical shift 

difference. Hence, if we acquire multiple images at different TEs, we can solve out 
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the problem for the two unknown species and obtain an independent image for each 

species.  

 

 

Figure 1.2: A representative frequency spectrum of the MRI signal, showing two 

main peaks for water and fat, separated by 3.5 ppm 

 

Chemical-shift imaging can be combined with any pulse sequence including steady-

state free-precession (SSFP) [31], fast spin-echo (FSE) [27, 32]and spoiled gradient-

echo (SPGR) [33]. Also, its ability to generate fat-only and water-only (fat 

suppressed) images is a key advantage that made it widely used for water/fat 

imaging. In general, this approach can be described by a simplified model as follows: 

𝑆𝑣(𝑡𝑛) = 𝜌𝑤,𝑣 +  𝜌𝑓,𝑣 𝑒𝑖2𝜋 𝛿 𝑡𝑛                                                (1.16) 

where 𝑆𝑣(𝑡𝑛) is the signal acquired at voxel 𝑣 at time 𝑡𝑛 where 𝑛 = 1, . .𝑁; 

𝜌𝑤,𝑣 represents the water component and 𝜌𝑓,𝑣 is the fat component; 𝛿 is the 

chemical-shift difference (~420 Hz at 3T). This model has neglected other factors as 

𝑇2∗ effect and the multi-peak frequency spectrum of fat. 
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In the last decade, extensive research has been conducted on Dixon-based methods 

showing its robustness in separating water and fat, offering unique advantages over 

other approaches. The next sections we will describe different Dixon-based methods 

in further detail. 

 

1.3.2 Two-Point Dixon 

Dixon first proposed his method by acquiring 2 images at 2 different TEs [34]. The 

first TE is adjusted to acquire an “in-phase” image where water and fat have the 

phase value. The second acquisition is an “out-of-phase” one where water and fat 

exhibit a 𝜋 phase difference. Water and fat components can be therefore obtained by 

simply adding and subtracting the two acquired images - Figure 1.3, leading to: 

𝜌�𝑤 =
1
2
�𝑆�𝑡𝑖𝑝� + 𝑆�𝑡𝑜𝑝��                                                      (1.17) 

𝜌�𝑓 =
1
2
�𝑆�𝑡𝑖𝑝� − 𝑆�𝑡𝑜𝑝��                                                        (1.18) 

where 𝑡𝑖𝑝 and 𝑡𝑜𝑝 are the TE values where fat and water are in-phase and out-of-

phase, respectively. The original work was done using spin-echo sequence, where 

the TE shift was performed by shifting the refocusing pulse by ∆TE/2. However, it 

can be also achieved with GE sequence where two readout gradients are played out 

at the prescribed TEs [33]. This method assumes that the main magnetic field is 

homogenous, which is difficult to achieve in practice due to tissue susceptibility 

differences, even if perfect shimming was attained. As the field inhomogeneities 

disrupt the phase information, sophisticated phase unwrapping techniques are 

therefore required to correct water/fat errors. Recently, Ma et al. [35] proposed a 

region-growing scheme to address this problem by using the magnitude and phase 

information of neighboring voxels . However, due to the complexity of the phase 

unwrapping methods needed to correct for field inhomogeneities, three-point Dixon 

methods were proposed instead. 
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Figure 1.3: The two-point Dixon method reconstructs water and fat images by 

adding and subtracting in-phase and out-of-phase images, respectively. 
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1.3.3 Three-point Dixon 

Glover and Schneider proposed the three-point Dixon method to estimate the 

magnetic field inhomogeneities [36]. Using a spin-echo sequence, they acquire three 

images at 3 different TEs where fat and water exhibit relative phase-shifts of −𝜋, 0 

and 𝜋. The signal model from the 3 acquisitions can be described as follows: 

𝑆(𝑡−𝜋) = �𝜌𝑤 −  𝜌𝑓� 𝑒𝑖(𝜃0− 𝜃)                                                   (1.19) 

𝑆(𝑡0) = �𝜌𝑤 +  𝜌𝑓� 𝑒𝑖𝜃0                                                            (1.20) 

𝑆(𝑡𝜋) = �𝜌𝑤 −  𝜌𝑓� 𝑒𝑖(𝜃0+ 𝜃)                                                      (1.21) 

where 𝜃0 is an unknown systematic phase offset, while 𝜃 is the unknown phase term 

resulting from the field inhomogeneities. After demodulating 𝜃0 of all the 3 

acquisitions using Equation 1.20, water and fat components can be derived as 

follows: 

𝜌𝑤 =
�𝑆′(𝑡0) +  𝛽 �𝑆′(𝑡𝜋) .  𝑆′(𝑡−𝜋)�

2
                                           (1.22) 

𝜌𝑓 =
�𝑆′(𝑡0) −  𝛽 �𝑆′(𝑡𝜋) .  𝑆′(𝑡−𝜋)�

2
                                           (1.23) 

where 𝑆′ is the signal after omitting 𝜃0 and 𝛽 = ±1 is a switch function for sign of 

the complex square root. However, in order to assign the correct 𝛽 sign, a phase 

unwrapping algorithm is required. The main limitation of Glover and Schneider’s 

technique is that it restricts the acquisition to −𝜋, 0 and 𝜋. A more flexible version of 

the three-point Dixon was proposed by Xiang and An [37] where the 3 acquisitions 

are acquired at uniformly-spaced TE shifts. The field inhomogeneity 𝜑  is then 

estimated through a quadratic equation in the phasor term 𝑒−𝑖2𝜋𝜑∆𝑡. Similar to 

Glover and Schneider’s [36], two possible solutions can be obtained from the 

solution of the quadratic equation. The ambiguity in assigning the correct sign will 

lead to errors in the estimated water and fat components. 
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1.3.4 IDEAL 

A novel perspective to the three-point Dixon was introduced by Reeder et al. [38] 

based on a maximum likelihood estimation of the signal. They introduced the 

“Iterative Decomposition of water and fat with Echo Asymmetry and Least-squares 

estimation” (IDEAL) where a nonlinear least-squares fitting is performed at each 

voxel. A general description of the acquired signal at voxel, 𝑣, can be given by re-

writing Equation 1.16 as follows: 

𝑆𝑣(𝑡𝑛) = ��𝜌𝑐,𝑣 𝑒𝑖2𝜋 𝛿𝑐 𝑡𝑛

𝐶

𝑐=1

�  . 𝑒𝑖2𝜋 𝜑 𝑡𝑛                                          (1.24) 

Where  𝐶  is the number of species, 𝜌𝑐,𝑣 is a complex-valued chemical species with 

𝛿𝑐 representing its chemical-shift from the main water-peak (in Hz) and 𝜑 is a map 

of the field inhomogeneities, so called field map. The key point of IDEAL is solving 

the problem in an iterative linearization procedure of the signal equation – Figure 

1.4. The approach can be summarized: 

a. An initial estimate is given to 𝜑. Usually it is set to zero. 

b. The chemical species can be then estimated directly through solving a 

linear least-squares problem.  

c. The estimates �𝜑,� 𝜌�𝑐,𝑣�, 𝑐 = 1, . . ,𝐶 are then fed into a linearized signal 

model, where 𝑒𝑖2𝜋 ∆𝜑 𝑡𝑛  is approximated through Taylor expansion 

by 1 + 𝑖2𝜋 ∆𝜑 𝑡𝑛 .  

d. The signal residues from these estimates are then calculated  

e. A new value for the field map is calculated  𝜑𝑖+1 =  𝜑𝑖 + ∆𝜑, where  𝑖 is 

the iteration number. 

f. Step (b-e) are repeated until ∇𝜑 converges (e.g. < 1 Hz). 

g. Calculate the final estimates of 𝜑 and 𝜌𝑐,𝑣 for all chemical species. 

An additional spatial smoothing filter can be added after step f. on the field map to 

improve the noise performance.  
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IDEAL has several advantages over previous approaches: 1) it can be used with 

arbitrary TEs; 2) it can be combined with any imaging sequence; 3) it works for any 

number of chemical species i.e. not restricted to water/fat applications; 4) complex-

valued chemical species are estimated, which enhances the effective number of 

signal averages (NSA) of the reconstruction (refer to 1.3.5 for more details). On the 

other hand, a major drawback of IDEAL is the initial value required for the field 

map 𝜑; If not correctly estimated for each voxel, the algorithm will converge into 

local minima and wrong estimates of water/fat will be obtained. Hence, IDEAL will 

fail in cases where large inhomogeneities are encountered as it does not enforce any 

global solution to the iterative procedure. Several techniques have been proposed to 

resolve the large variations in the field map [9, 39-46]. Although some methods have 

demonstrated the ability to address challenging cases, an ultimate solution to the 

field map estimation problem has yet to be explored. In Chapters 2 and 3 we will 

propose new methods to overcome the drawbacks of IDEAL. 

 

 
Figure 1.4: Illustration of the IDEAL water/fat separation process.  
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1.3.5 Characterization of Noise Performance 

The noise performance of water/fat separation methods rely on multiple of 

acquisition and reconstruction parameters [47]. The common metric to evaluate the 

noise performance is the effective number of signal averages (NSA) given by  

𝑁𝑆𝐴 =  
𝜎2

𝜎𝑝2
                                                                     (1.25) 

Here 𝜎2 and 𝜎𝑝2 are the variance of the noise in the source image and the 

reconstructed fat (or water) image, respectively. The minimum achievable 𝜎𝑝2  is 

calculated using the Cramér-Rao bound, which is defined as the lower bound on the 

variance of an unbiased estimate. Hence it can be used to optimize the acquisition 

parameters to attain the highest noise performance. Pineda et al. [47] showed that 

for 3-point Dixon, echo-shifts of (𝜋
6

+ 𝜋𝐾, 𝜋
2

+ 𝜋𝐾, 7𝜋
6

+ 𝜋𝐾) achieves best theoretical 

performance using the signal model of Equation 1.24 for water and fat species. In 

theory, the maximum achievable NSA for n-point acquisition is n. NSA depends 

mainly on a number of factors: the number of echoes, the first echo, the echo-shifts 

and the number of unknown parameters to be estimated in the reconstruction [47, 

48]. The type of the reconstruction (magnitude-based or complex-based) also affects 

the noise performance, as discussed later in 1.4.4. 
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1.4 Quantitative Fat Imaging 

Fat quantification is usually performed in terms of fat fraction, which is the ratio of 

the fat signal to the total signal from both water and fat. Several confounding factors 

can bias the fat measurement and must be considered in the reconstruction. Once 

these factors are addressed, the fat fraction will be equivalent to what is referred to 

as proton density fat-fraction (PDFF) which is defined as the ratio of density of 

mobile protons from fat to the total density of mobile protons from fat and water. 

PDFF is currently considered the most practical and meaningful MR-based 

biomarkers for fat quantification [49]. Current research is seeking its 

standardization for clinical diagnosis. 

 

1.4.1 Multi-peak Fat Spectrum 

The signal model presented in Equation 1.16 and Equation 1.24 assumes that fat 

exhibits one peak in the frequency spectrum of the MR signal. However due to the 

complex nature of fat molecule, its protons vary in their precession frequencies. It 

was shown that the fat spectrum can have up to 6 peaks with different amplitudes – 

Figure 1.5. A significant bias in the fat fraction measurements will occur if only the 

main peak is considered [50]. Therefore, a multi-peak fat spectrum is included in the 

signal equation as follows: 

𝑆𝑣(𝑡𝑛) = �𝜌𝑊,𝑣 + 𝜌𝐹,𝑣 . � 𝛼𝑚. 𝑒𝑖2𝜋 𝛿𝑚 𝑡𝑛

𝑀

𝑚=1

� . 𝑒𝑖2𝜋 𝜑𝑣 𝑡𝑛                      (1.26) 

where 𝑀 is the number of fat peaks;  𝛿𝑚  is the frequency of the 𝑚-th peak with its 

corresponding amplitude 𝛼𝑚 (Hz), such that ∑ 𝛼𝑚𝑀
𝑚=1 = 1.  
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Figure 1.5: Frequency spectrum of knee subcutaneous fat showing 6 peaks, with the 

main peak located at ~420 Hz (3.5 ppm) – Figure adapted from [50]. 

 

Equation 1.26 now includes additional 2M unknowns: frequencies and amplitudes 

of the fat peaks. Fortunately, the frequencies are well documented in the literature 

[51-53] and can be assumed to be constant. There are two approaches to obtain the 

amplitudes: self-calibrated and pre-calibrated methods. In the self-calibrated 

method different fat peaks are treated as different chemical species and hence large 

number of echoes (images) are required to solve Equation 1.26. For instance Yu et 

al. [50] used 16 echoes in order to obtain an accurate fit for all the peaks. On the 

other hand, the pre-calibrated approach assumes predetermined amplitude values 

for the fat peaks and hence it leads to the same number of unknowns.  Several 

studies have shown that including the multi-peak fat spectrum improves the 

accuracy of estimating the fat fraction compared to the single peak approach [14, 25, 

29, 48, 49]. 
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1.4.2 Effect of T2* Relaxation 

In Equation 1.24 and Equation 1.26, T2* decay was assumed to be negligible. 

However, this assumption can lead to substantial errors in the fat fraction estimate 

[14, 54, 55], particularly with rapid T2*. Additionally, T2* itself might be of diagnostic 

interest in some cases, such as hepatic iron overload, as R2* (1/T2*) is strongly 

correlated to the iron deposition. Likewise, the presence of fat can lead to wrong T2* 

estimates. Therefore, methods that consider single-T2* [54] and dual-T2* [56] decays 

during water/fat reconstruction have been introduced. The latter approach 

estimates two T2* values for water and fat respectively, while the single-T2* 

approach ignores that difference and a single combined decay is deduced at each 

voxel. In theory, fat fraction bias should decrease with dual-T2*[55]; however, the 

noise performance significantly degrades as more unknown parameters are 

included in the reconstruction process [48]. Consequently dual-T2* models result in 

noisy estimates of fat fraction. In practice, studies have shown that single-T2* 

modeling is more accurate than dual-T2* model for fat quantification, even with high 

fat concentration [57]. 

Yu et al. [50, 54] has extended the 3-point IDEAL method (sec 1.3.4) to consider the 

T2* decay together with an accurate spectral modeling of fat (sec 1.4.1). They 

extended the signal model to include a single T2* decay per voxel, and 

simultaneously estimate a T2* map and the field map in the iterative IDEAL process.  

Pre-calibrated and self-calibrated spectral models of fat were used in the signal 

model. Six-point acquisition with pre-calibrated fat spectrum was therefore 

recommended as a good compromise between acquisition time and accurate 

mapping of the T2* decay. Figure 1.6 illustrates the extended T2*-IDEAL method for 

6-point acquisition. 
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Figure 1.6: Illustration of the 6-point T2*-IDEAL proposed by Yu et al. [50, 54] 
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1.4.3 T1-related bias 

Fat has shorter T1 relaxation time than water. This may result in a dissimilar 

weighting between water and fat signals in the acquired image, as the signal 

received from fat protons is higher compared to that received from water. 

Consequently, significant bias in the fat fraction measurements can occur [58]. 

Accurate PDFF quantification necessitates the correction of T1-related bias [49, 58, 

59].  

In SPGR-based Dixon acquisitions, The T1-weighting of the acquired signal changes 

with the flip angle (Equation 1.15). Therefore, applying RF pulses with small flip 

angles will minimize the T1-related bias in the PDFF estimates [14]. The main 

drawback is the loss of SNR which increases the standard deviation of fat fraction 

measurements. Another approach is the dual-flip angle T1 correction [60]. In 

contrast to small flip angle approach, this method finds a definitive analytical 

solution by performing two consecutive acquisitions with different flip angles, and 

then derives T1-corrected water and fat images. Although it eliminates the T1 effect, 

it doubles the acquisition time. Recently another approach was proposed by Yang et 

al. [61] where a relatively high flip angle is used (8°), followed by a T1-bias 

correction of the reconstructed water and fat images, where pre-determined T1 

values of each species are used. This technique has the advantage of higher SNR 

while the T1-bias is also corrected. However, this method requires mapping the flip 

angle variations (so called flip angle map) to enhance the resultant fat fraction 

estimates.  In general, a small flip angle of ~3° is usually used in clinical practice, as 

it provides a good compromise between T1-bias correction and SNR [62]. It was 

shown that flip angles 3°-5° would cause < 2% bias over 0-100% fat fractions and < 

1% bias for low fat concentrations, while preserving good SNR quality [60]. 

Moreover, it does not require any additional acquisitions. In this dissertation, T1-

bias will be minimized using the small flip angle approach. 
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1.4.4 Eddy Currents 

To shorten the acquisition time, multi-point chemical-shift-encoded sequences 

perform multiple readout gradients in each TR – Figure 1.7. Eddy currents are 

generated at each time the gradients are switched ‘on’ and ‘off’ producing phase 

errors in the acquired signals. In a multi-echo SPGR acquisition, the gradient 

waveform preceding the first readout is different from the waveforms preceding the 

other echoes. Hence, the generated eddy currents and subsequently the resulting 

phase errors are different in the first echo from the rest of the echoes. These 

asymmetric phase errors affect the water/fat separation process, leading to fat-

fraction bias. To address this problem, magnitude-based reconstruction is used, 

where the phase information is omitted. This leads to significant noise amplification 

in the fat fraction image compared to the complex-based reconstruction where the 

complex signals are considered [48]. 

 

Figure 1.7: Three readout gradients are applied in one TR to acquire 3 echoes. 

 

Yu et al. [63] have addressed this problem by performing a hybrid fit where the 

magnitude-based and complex-based reconstructions are combined together with 

different weights. This has improved the noise performance compared to the 

magnitude-based approach. Another method is the mixed magnitude/complex 

fitting proposed by Hernando et al. [48] where only the phase of the first echo is 

neglected, while the complex signals in all the subsequent echoes are considered. 
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This method has led to further SNR improvement over the hybrid method. Recently 

Wade et al. [64] suggested modifying the waveforms of the readout gradient to 

generate similar eddy currents at the first echo as the rest of the echoes. This will 

compensate for the fat fraction bias as the phase errors will be approximately the 

same at all the echoes. However, SNR loss might occur from the insertion of an 

additional waveform before the first echo. We address the eddy currents-induced fat 

fraction bias with our new acquisition strategy proposed in Chapter 4.   

 
1.4.5 Noise-related bias 

Fat fraction bias might also occur when one of the species is at very low 

concentrations, due to noise amplification. Liu et al. [60] addressed this problem by 

using the ‘phase-constrained’ hypothesis where fat and water are assumed to have 

same phase at TE=0. Hence, instead of using the magnitude of fat and water signals 

to calculate the fat fraction, complex values will be used, such that  𝐹𝐹 =

 𝑆𝑓 �𝑆𝑓 + 𝑆𝑤�⁄  for fat-dominant-pixels and  𝐹𝐹 = 1 −  �𝑆𝑤 �𝑆𝑓 + 𝑆𝑤�⁄ �  for water-

dominant pixels, where  𝑆𝑓 and  𝑆𝑤 are the complex signals of fat and water, 

respectively. This approach has shown to overcome the bias occurring at very low 

and very high fat concentrations. 

 

1.4.6 Temperature-related bias 

In contrast to fat protons, the proton resonant frequency of the water is dependent 

on temperature [65]. Hence, the chemical-shift between fat and water is altered, 

causing unexpected bias in the fat fraction. Magnitude-based reconstructions are 

largely affected by the temperature change, and can cause significant bias. However, 

complex reconstructions are more robust to temperature-dependent bias, 

particularly at room temperature (~20°C) and body temperature [65]. Although the 

signal model can be modified to account for the temperature-dependent chemical-

shift frequency, the additional parameter will reduce the NSA.  
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1.5 Parallel Imaging 

In general, water/fat imaging requires lengthy acquisitions. Hence, for time-

restricted applications, accelerated data acquisition is required. The most common 

acceleration technique in clinical practice is parallel imaging [66-70]. 

For a 2D acquisition the scan time is calculated as  𝑡 = 𝑁𝑆𝐴 .𝑁𝑦 .𝑇𝑅, where NSA is 

the number of signal averages and 𝑁𝑦 is the number of phase encodes. Hence for a 

prescribed TR, the fewer phase encodes the shorter the acquisition time will be. 

However, this will violate Nyquist criterion in k-space, causing aliasing artefacts in 

the image domain - Figure 1.8(b). Parallel imaging   techniques address this problem 

by recovering the missing data from subsampled k-space and hence allow aliasing-

free accelerated acquisitions. Reconstruction techniques can either recover the 

omitted data in k-space (e.g. GRAPPA) [66, 67, 69], or un-fold the aliased images in 

image-domain (e.g. SENSE) [70, 71] – Figure 1.8. For 3D imaging, acceleration can be 

achieved in both the phase and the slice directions by acquiring fewer slice/phase 

encodes and recovering them in the reconstruction. This will allow even shorter 

acquisition times.  

The key for parallel imaging is taking advantage of a phased-array of coils. In fact, 

each coil has a non-uniform receive profile - known as coil sensitivity - which is used 

as calibration data in the reconstruction. Parallel imaging reconstruction 

techniques, therefore, employ the calibration data to recover the missing 

slice/phase encodes, whether in k-space or image-domain.  

The drawback of acceleration by parallel imaging is the reduction of signal-to-noise 

(SNR). The SNR loss is equal to the square-root of the acceleration factor multiplied 

by the so-called “g-factor”. The g-factor describes an additional spatially-variant 

noise amplification in the reconstruction [71] and varies depending on the geometry 

and the number of the coils [68, 71].  
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In chapter 4 of this dissertation we will use conjugate-gradient SENSE for parallel 

imaging reconstruction [71]. This is an image-based reconstruction technique that 

uses an iterative approach to un-alias the acquired undersampled data.  

 

 

 

Figure 1.8: (a) A knee image obtained from the Fourier transform of a fully-sampled 

k-space. (b) Undersampling the k-space results in an aliased image. (c) The image is 

reconstructed from the undersmapled k-space using Parallel Imaging 

reconstruction. 
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1.6 Network Optimization Problems 

Resolving the correct field map inhomogeneities in Equation 1.26 is a challenging 

problem that becomes even more complicated when the confounding factors 

mentioned above are included in the signal equation. To address this problem, 

sophisticated optimization techniques can be employed. One of the main branches 

of mathematical optimization is network optimization techniques, which are 

employed in Chapters 2 and 3 to estimate the magnetic field inhomogeneities. 

 

1.6.1 Terminology  

Basically, a network is defined as a graph constituted of two main objects: nodes and 

edges. For instance if an image is mapped through a network, each pixel is 

represented by a node, while weighted edges connect each pixel to other pixels in a 

local neighbourhood. Moreover, two special nodes are added, a sink node and a 

source node. The source and sink nodes are connected to all the other nodes in the 

graph – Figure 1.9.  

A flow in a network is simply a quantity that is flowing in an edge from one node to 

another. Mathematically, a flow of an edge is just a scalar number added on it. A flow 

can have negative values, where in this case it flows in the opposite direction to the 

edge. There are two main constraints on the flows of the network: capacity 

constraints and flow conservation. To define them let’s assume we have a 

graph (𝑉,𝐸), where 𝑉and 𝐸 are the nodes and the edges, respectively. The grid also 

has two terminal nodes, a sink 𝑡 and a source 𝑠. There are three sets of flows: source 

flows, 𝜌𝑠 , from the source node 𝑠 to each node in the grid; sink flows, 𝜌𝑡 , from each 

node into the sink node 𝑡; and spatial flows 𝑞 between the nodes of the grid. The 

capacities constraining the flows in the network are defined as follows: 

• Capacity of source flows, 𝜌𝑠, from 𝑠 to node  𝑣 ∈ 𝑉\{𝑠, 𝑡}:  0 ≤ 𝜌𝑠(𝑣) ≤ 𝐶𝑠(𝑣) 

• Capacity of the sink flows, 𝜌𝑡 , from node 𝑣 ∈ 𝑉\{𝑠, 𝑡} to 𝑡: 0 ≤ 𝜌𝑠(𝑣) ≤ 𝐶𝑡(𝑣) 

• Capacity of spatial flows, 𝑞, for the edges of the grid  𝑒 ∈ 𝐸: |𝑞(𝑣)| ≤ 𝐶(𝑣); 
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where 𝐶𝑠(𝑣), 𝐶𝑡(𝑣) and 𝐶(𝑣) are the capacities of the corresponding flows. When a 

spatial flow 𝑞(𝑒) over the edge 𝑒 ∈ 𝐸 reaches its maximum capacity, it is called a 

‘saturated’ flow. 

The other constraint is the flow conservation, which is defined at node  𝑣 ∈ 𝑉\{𝑠, 𝑡} 

as follows: 

� � 𝑞𝑒(𝑣)
𝑒 ∈ 𝐼(𝑣)

� −  𝜌𝑠(𝑣) +  𝜌𝑡(𝑣) = 0                                           (1.27) 

where 𝐼(𝑣)  ⊂ 𝐸 is the set of the neighbour edges of the node 𝑣. In other words, this 

constraint states that the total flow departing from the node must be balanced by 

the arriving flow at the node. By definition, only the source and sink nodes are 

exempted from this constraint. The flow conservation and the capacity constraints 

are important conditions that will control the solution of max-flow problems, 

described next. 

 

1.6.2 Min-cut / Max-flow problem 

In a graph network, each edge has a cost. A cut that separates the source node from 

the sink node will have a total cost equal to the sum of all the edges it passed 

through. The minimum-cut (min-cut) problem consists of finding the cut that has the 

lowest cost – Figure 1.9. Finding the optimal solution of an optimization problem 

corresponds to finding the min-cut of its graph-network. The graph-cut algorithm by 

Boykov et al. [72, 73] is a widely used algorithm to explore the min-cut of a network. 

Equivalent to the min-cut solution is finding the maximum-flow of the network. In 

fact, min-cut/max-flow theorem is very popular in network optimization. In max-

flow we try to maximize the flow from the source node, while maintaining the 

capacity and the flow conservation constraints, i.e. 

max
𝜌𝑠

� 𝜌𝑠(𝑣)
𝑣 ∈𝑉\{𝑠,𝑡}

                                                           (1.28) 
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subject to the constrains mentioned above. The path that allows the maximum flow 

divergence out of the source node is equal to the minimum cut that separates the 

source from the sink. There are a growing number of medical applications that rely 

on min-cut/max-flow approaches as efficient optimization methods. 

 

Figure 1.9: Left: A discrete flow network problem with a min-cut solution. Right: A 

Continuous flow network problem. 

 

1.6.3 Continuous Max-flow 

The max-flow problem formulated in the previous section was introduced in the 

discrete setting, and can be formulated in the same manner on a continuous domain. 

Let     be a spatial position on a continuous 2D or 3D domain  . The flow 

constraints can be reformulated as follows: 

                                                                                  

                                                                                 

|    |                                                                            
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Where          is the divergence of the flow at   representing the total spatial flow, 

which is analogous to the sum operator in Equation 1.28. The continuous max-flow 

model can now be formulated as follows: 

   
       

∫          
 

 

                                                                  

subject to the constraints in Equations 1.29-1.32. By introducing a multiplier   to 

the flow conservation in Equation 1.33, the max-flow model can be re-written as 

follows: 

   
       

   
 

∫          
 

 

 ∫                        
 

 

                               

                                   |    |       

Analogous to the discrete setting, the continuous max-flow model in Equation 1.34 

is equivalent to the continuous min-cut solution. Yuan et al. [74] have proposed a 

fast continuous max-flow algorithm to address Equation 1.34 using its augmented 

Lagrangian function. They use an iterative approach where the multiplier   is 

updated at each iteration. This algorithm has been used in numerous medical 

applications such as segmentation of vascular structures [75], segmentation of left 

ventricle [76], image fusion[77] and delineation of myocardial scar tissue [78]. The 

main advantage of the continuous max-flow over the graph cut is its ability to find a 

global solution to problems where a graph-based global solution is inefficient 

and/or impractical, such as resolving the field map inhomogeneities. Moreover, the 

continuous max-flow is implicitly parallelized, i.e. its computations can be solved in 

parallel using modern Graphics-processing Units (GPUs). In Chapters 2 and 3, we 

will explore two different methods using the continuous max-flow algorithm to map 

magnetic field inhomogeneities.  
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1.7 Thesis Outline 

The thesis presents novel acquisition and reconstruction methods for water/fat 

separation with in-vivo applications on various human organs. Chapter 2, 3 and 4 

are based on published peer-reviewed articles to Magnetic Resonance in Medicine 

(MRM) and Medical Image Computing and Computer Assisted Intervention 

(MICCAI).  

In Chapter 2 a novel water/fat separation technique is introduced. The chapter is 

adapted from a peer-reviewed paper published in MICCAI 2012 proceedings. The 

technique estimates magnetic field inhomogeneities that hinder the reconstruction 

process. In contrast to most of the previous work that rely on spatial smoothness, 

the presented method uses a labeling model to resolve the ambiguity of the 

estimation. An initial guess of the field map is generated first then the estimate is 

subsequently refined using an IDEAL iterative process. The number of labels used to 

describe the initial estimate is penalized in the cost function to enforce fewer labels. 

This was shown to reduce the vulnerability of converging to local minima. In-vivo 

experiments were performed on cardiac and abdominal datasets showing excellent 

water/fat separation. The results were compared against the commonly-used 

region-growing method and have demonstrated significant outperformance in case 

of abrupt changes of magnetic field. 

In Chapter 3 an optimized version of the method proposed in the previous chapter is 

presented. The effect of T2* decay was integrated in the labeling process. The initial 

estimate becomes better representative of the signal model and therefore more 

robust to local minima. In addition, an adaptive spatial filtering was introduced after 

the labeling procedure to enhance the performance of the method. A continuous 

max-flow approach was employed to address the labeling model, while T2*-IDEAL is 

applied in the second stage; the technique is therefore called Max-IDEAL. In-vivo 

data from the ISMRM challenge 2012 on water/fat separation were used to test the 

technique, resulting in successful separation in 98.44% of cases. The method was 

also tested against recent robust techniques as graph-cut and the FLAME methods 
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on in-vivo cases with severe inhomogeneities and has demonstrated successful 

water/fat separation while the other methods failed. 

In Chapter 4 a new multi-gradient-echo bipolar acquisition sequence for fat 

quantification is proposed. This new acquisition strategy is more efficient than the 

current unipolar sequence currently employed in clinical practice. The sequence 

applied bipolar gradients at the frequency-encode gradient while alternating the 

polarity in the temporal dimension as well as the phase-encode dimension. The 

acquisition and reconstruction pipeline overcomes the bipolar artefacts known to 

corrupt the water/fat separation procedure. Phantoms and in-vivo experiments 

demonstrated accurate fat fraction and increased SNR efficiency compared to the 

established unipolar acquisition. Phase and magnitude artefacts from the bipolar 

acquisition were eliminated in all experiments.  

In Chapter 5 the efficiency of the interleaved bipolar acquisition proposed in the 

previous chapter is demonstrated in animal experiments. One of the common 

applications of water/fat separation is to study obesity on animal models. Fat and 

water images with high spatial resolution are required. Using the interleaved 

bipolar sequence, the spatial resolution was doubled while keeping the same 

acquisition time as the standard unipolar sequence. The results also demonstrated 

higher SNR efficiency of the interleaved bipolar compared to the unipolar 

sequences. 

In Chapter 6, improvements on the reconstruction and acquisition techniques are 

suggested with further applications, and the work presented in this dissertation is 

concluded. 
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Chapter 2 

A Convex Relaxation Approach to 

Water/Fat Separation with 

Minimum Label Description1 

2.1 Introduction 

The ability to separate fat from water in a magnetic resonance (MR) image is an 

important problem for a number of clinical applications. Bright fat signal can 

obscure underlying pathology and therefore suppression of the fat signal is 

required. In other cases, fat is considered an important diagnostic marker, and 

hence a clearer depiction of its signal, rather than its suppression, is desired. 
                                                           
1 This chapter is adapted from a peer-reviewed article published in Springer Lecture Notes in 
Computer Sciences of Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2012: 
Soliman, A. S., Yuan, J., White, J. A., Peters, T. M., and McKenzie, C. A., "A Convex Relaxation Approach 
to Fat/Water Separation with Minimum Label Description," Medical Image Computing and 
Computer-Assisted Intervention – MICCAI, LNCS 7511, pp. 519-526 (2012). 

“The significant problems we have cannot be solved at the 
same level of thinking we were at when we created them”  

- Einstein 
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Common clinical applications of the latter include the diagnosis of non-alcoholic 

fatty liver diseases (NAFLD) [1, 2], as well as a variety of bone marrow diseases [3]. 

However, expanding interest in the evaluation of myocardial fat infiltration [4] and 

pericardial fat volume [5-7] justifies its optimization for cardiac imaging. 

Among various available MR techniques, chemical-shift based (or Dixon-based) 

techniques [8] have become the most commonly used methods to obtain a 

quantitative fat measurement [9]. Chemical-shift based methods are characterized 

by their unique ability to extract a fat-only image with positive contrast, unlike other 

techniques that either tend to suppress the fat signal, making the process of 

identifying fat voxels ambiguous, or apply fat selective excitation which is sensitive 

to B0 and B1 inhomogeneities. 

Unfortunately, a successful water/fat separation with Dixon-based techniques relies 

largely on the homogeneity of the magnetic field. In other words, the mapping of the 

magnetic field inhomogeneities – so called field map, cannot be decoupled from the 

water/fat separation process (see Sec 2.2.1). The field map estimation problem 

therefore, leads to a non-linear non-convex optimization problem, which has 

multiple local minima. An error in estimating the field map would propagate to the 

resultant water and fat images, causing what we term water/fat swaps. A “swap” is 

defined as assigning the main signal in a water-dominant voxel as fat, or vice-versa - 

an example of water/fat swaps is shown in Figure 2.1. 
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Figure 2.1: Water/fat swaps appearing in field map (top), water (left) and fat 

components (right) 
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The commonly-used technique in water/fat separation is the “Iterative 

Decomposition of water and fat with Echo Asymmetry and Least square estimation”, 

abbreviated as IDEAL [10]. IDEAL is a Dixon-based method that acquires at least 

three echoes to estimate the field map, water and fat components. However, IDEAL 

is a local optimization method that heavily depends on the initialization process, 

and hence, convergence to the global optimum is not guaranteed. Moreover, it is a 

voxel-independent optimization, i.e. it does not enforce any global smoothness prior 

to the estimated field map. Yu et al. [11] proposed a region-growing technique  to 

address the flaws of IDEAL. This method implicitly imposes a spatial smoothness on 

the field map; however, it does not account for the abrupt changes in magnetic field 

that might exist at tissue/air interfaces, which might cause water/fat swaps. 

Although several techniques have been proposed in the literature [11-17] to 

address the field map estimation problem, only a few have been considered 

sufficiently robust for clinical use [4, 13].  Further, their application has been limited 

to 1.5 Tesla [4] where B0 field inhomogeneities are modest compared to higher field 

strengths. 

In this work, we propose a novel field map estimation approach that can withstand 

abrupt changes in field homogeneity at higher field strengths, particularly at 3.0 

Tesla, while guaranteeing smoothness of the estimated field map. Our method relies 

on prior knowledge of the periodic variation of signal residuals with the field map 

values [11-13]. We use a two-stage approach to reach the global minimum solution, 

and provide a high resolution mapping of the field inhomogeneities. First, a label-

cost prior max-flow approach [18] is performed on the signal residues to converge 

near the global optimum. The output is employed as an initial guess to the second 

stage, where a conventional gradient-descent IDEAL is applied to reach the exact 

field offset. Our method is tested for cardiac as well as abdominal images obtained at 

3.0 Tesla, where challenging B0 field inhomogeneities commonly exist. Compared to 

the region growing method [11], our approach has significantly improved the 

robustness of field map estimation process and has efficiently removed water/fat 

swaps. 
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2.2 Theory and Methodology 

In the following sections, we first derive the signal equation to be minimized; then 

we introduce the multi-labeling convex relaxation model and its dual continuous 

max-flow formulation along with the minimum description length (MDL) principle, 

which are applied in the first stage of our approach. The proposed MDL-based 

labeling model penalizes the number of “appearing” labels, which helps to avoid the 

small regional water/fat swaps that might appear in the presence of severe and 

rapid changes of magnetic field. In other words, such MDL prior smooth out small-

scale partitions, which usually correspond to regional water/fat swaps. The MDL-

based labeling model results in a coarse estimation of the field map. This step 

guarantees a global minimization by labeling each pixel with a field map value 

located near its global optimum solution. The coarse estimate of field map serves as 

an initial guess for the second stage that consists of applying the IDEAL iterative 

process [10, 19]. A stopping criterion of < 1 Hz was used for the iterative process, in 

order to provide a field map with a sufficient resolution for clinical applications, 

particularly pericardial fat quantification. Once the final field map is obtained, water 

and fat components can be directly computed from Equation 2.2 

 

2.2.1 Signal Equation 

Let 𝑆(. ) denote the signal acquired from a voxel  𝑣 , containing a mixture of water 

and fat, such that: 

𝑆𝑣(𝑡𝑛) = �𝜌𝑊,𝑣 + 𝜌𝐹,𝑣 . � 𝛼𝑚. 𝑒𝑖2𝜋 𝛿𝑚 𝑡𝑛

𝑀

𝑚=1

� . 𝑒𝑖2𝜋 𝜑𝑣 𝑡𝑛  ,                       (2.1) 

where 𝑡𝑛 denotes the echo-time (TE) shift (𝑛 = 1, … ,𝑁) of the acquired signal;  𝜌𝑊,𝑣  

and  𝜌𝐹,𝑣 are the water and fat components at voxel 𝑣, respectively; 𝑀 is the number 

of fat peaks in the fat spectrum;  𝛿𝑚  is the frequency of the 𝑚-th peak with its 

corresponding amplitude 𝛼𝑚 (Hz), such that ∑ 𝛼𝑚𝑀
𝑚=1 = 1; 𝜑𝑣 (Hz) is the local 
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frequency offset at voxel 𝑣 (i.e. the  field map).  We used a calibrated fat spectrum 

model as shown in [20], where 𝑀 = 6 and the main fat peak is at ~ 420 Hz, relative 

to the water peak at 3.0 Tesla. Having three or more echo-times (TE) acquired (as 

described above), Equation 2.1 can be reformulated as follows: 

S𝑣(𝑡) = Ψ(𝜑𝑣, 𝑡) .  A(𝑡) .  Ρ𝑣  ,                                             (2.2) 

where    

Ψ(𝜑𝑣) = �
𝑒𝑖2𝜋 𝜑𝑣 𝑡1 0 0

0 ⋱ 0
0 0 𝑒𝑖2𝜋 𝜑𝑣 𝑡𝑁

� , A = �
1 ∑ 𝛼𝑚. 𝑒𝑖2𝜋 𝛿𝑚 𝑡1𝑀

𝑚=1
⋮ ⋮
1 ∑ 𝛼𝑚. 𝑒𝑖2𝜋 𝛿𝑚 𝑡𝑁𝑀

𝑚=1

� , 

S𝑣(𝑡) = [𝑆𝑣(𝑡1), … 𝑆𝑣(𝑡𝑛)]𝑇 , Ρ𝑣 = �𝜌𝑊,𝑣, 𝜌𝐹,𝑣�
𝑇

. To estimate the required water and 

fat components �𝜌𝑊,𝑣, 𝜌𝐹,𝑣�, the frequency offset 𝜑𝑣 should be demodulated first. 

Hence, dropping the known echo-time shift  (𝑡𝑛), a non-linear least-squares cost 

function can be derived from Equation 2.2 as follows: 

Γ(𝜑𝑣) ≔ �A .Ρ𝑣�  −Ψ�−1(𝜑𝑣) . S𝑣�2 

Γ(𝜑𝑣) ≔ �(AA† −  𝐼)  Ψ�−1(𝜑𝑣). S𝑣�2  ,                                 (2.3) 

where Ρ𝑣�   and Ψ�(𝜑𝑣) are the estimated values of  Ρ𝑣  and  Ψ(𝜑𝑣)  respectively, 𝐼 is the 

identity matrix, and † denotes the pseudo-inverse, 𝑠. 𝑡. A† = [A𝑇A]−1A𝑇 . However, 

two main problems are encountered when minimizing  Γ(𝜑𝑣): first, the non-convex 

property of the function, and second, it does not impose a priori smoothness on the 

estimated field map, as it is a voxel-by-voxel based strategy, and global minimization 

is not guaranteed. 
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2.2.2 The Potts Model 

In image processing, a multi-labeling problem assigns the optimal label 

𝜑 ∈ 𝜑1 … 𝜑𝐿   to each voxel. The Potts model is a labeling approach that minimizes 

the total perimeter of all one-label regions, without assuming any prior order for the 

labels. It results in a partition of the continuous domain  Ω  into  𝐿  disjoint 

subdomains  {Ω𝑖}𝑖=1𝐿 , as follows: 

min
{Ω𝑖}𝑖=1

𝐿
��  Γ(𝜑𝑖, 𝑥) 𝑑𝑥 + 

 

Ω𝑖

𝐿

𝑖=1

𝜆�|𝜕Ω𝑖|
𝐿

𝑖=1

                                                   (2.4) 

𝑠. 𝑡.�Ω𝑖

𝐿

𝑖=1

= Ω,   and  Ω𝑘�Ω𝑚 = ∅, ∀𝑘 ≠ 𝑚 

 

where Γ(𝜑𝑖, 𝑥) is the cost of assigning label 𝜑𝑖 to location  𝑥, as defined in Equation 

2.3, ∅ denotes an empty set, and |𝜕Ω𝑖| measures the perimeter of each subdomain 

Ω𝑖 , 𝑖 = 1, … , 𝐿. 

The Potts model in Equation 2.4 can be efficiently solved by its convex-relaxation 

model as follows [21]: 

min
𝑢 ∈ 𝑆

�Ε(𝑢) ≔���𝑢𝑖(𝑥) Γ(𝜑𝑖,𝑥) 𝑑𝑥 
 

Ω
+ 𝛽� |∇𝑢𝑖|

 

Ω
 𝑑𝑥�

𝐿

𝑖=1

�                 (1. 5) 

where 𝑆 is the convex constrained set of  𝑢(𝑥) ≔ �𝑢1(𝑥), … ,𝑢𝐿(𝑥)�: 

𝑆 = �𝑢(𝑥) |�𝑢𝑖(𝑥) = 1,
𝐿

𝑖=1

   ∀𝑥 ∈ Ω ;     𝑢𝑖(𝑥) ∈ [0, 1],     𝑖 = 1, … , 𝐿 � 
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2.2.3 Minimum Description Length (MDL)-Based Potts Model 

The minimum description length (MDL) principle penalizes the number of 

appearances or labels in image labeling problems. It naturally leads to the use of 

fewer partitions or labels to describe the given image, without simultaneously over 

smoothing the underlying domain [18]. The MDL cost is introduced by adding the 

term 𝛾𝑍 to the Potts model, where 𝛾 is a constant and 𝑍 = #{1 ≤ 𝑖 ≤ 𝐿 | Ω𝑖 ≠

∅} gives the number of non-empty labels, i.e. a label-cost prior. Yuan et al. [18] 

showed that adding the label-cost prior to Equation 2.5 leads to the following 

convex-relaxed MDL-based Potts model, used here: 

min
𝑢 ∈ 𝑆

�Ε(𝑢) ≔���𝑢𝑖(𝑥) Γ(𝜑𝑖, 𝑥) 𝑑𝑥 
 

Ω
+ 𝛽� |∇𝑢𝑖|

 

Ω
 𝑑𝑥�

𝐿

𝑖=1

� + γ�max
𝑥 𝜖 Ω

𝑢𝑖(𝑥)
𝐿

𝑖=1

     (2.6) 

 

2.2.4 A Fast Continuous Max-Flow Approach to MDL-based Potts 

Model 

The continuous max-flow approach [21, 22] to the MDL-based Potts model 

(Equation 2.6) used in this study is summarized below:  

Let Ω be a continuous 2D image domain, 𝐿  the number of labels, and Ω𝑖, 𝑖 = 1, … 𝐿  

a copy of Ω assigned to the 𝑖𝑡ℎ label. For each location  𝑥 𝜖 Ω , a source flow 𝜌𝑠(𝑥) is 

streaming from the source node  𝑠 to a labeled copy  Ω𝑖 , 𝑠. 𝑡. ∀ Ω𝑖 , 𝑖 = 1, … 𝐿, 𝜌𝑠(𝑥) 

is the same. Similarly for each  𝑥 𝜖 Ω , a sink flow to the sink 𝑡  is assigned. However, 

𝜌𝑖(𝑥), 𝑖 = 1, … 𝐿  may differ. A spatial flow  𝑞𝑖(𝑥) 𝑖 = 1, … 𝐿  is also defined for each 

location. The continuous max-flow model can be formulated as follows: 

max
𝜌𝑠,𝜌,𝑞

  �𝑃(𝜌𝑠,𝜌, 𝑞) ≔  �𝜌𝑠 𝑑𝑥
 

Ω
�  ,                                     (2.7) 

subject to the constraints: 
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a. (div 𝑞𝑖 −  𝜌𝑠 + 𝜌𝑖 − 𝑟𝑖 )(𝑥) = 0,         𝑖 = 1, … , 𝐿 

b. |𝑞𝑖 (𝑥)| ≤ 𝐶𝑖(𝑥),   𝜌𝑖(𝑥) ≤ Γ(𝜑𝑖,𝑥), ∫ |𝑟𝑖(𝑥)| 𝑑𝑥 
Ω ≤ 𝛾         𝑖 = 1, … , 𝐿 , 

where 𝐶𝑖(𝑥) = 𝛽  is the capacity of the spatial flow 𝑞𝑖  (𝑥), and  𝑟𝑖(𝑥) is the extra flow 

associated with the penalty of the number of labels. Yuan et al. [18]  proved that the 

max-flow formulation (Equation 2.7) is dual to the convex-relaxed MDL-based Potts 

model, and results in an efficient flow maximization algorithm to Equation 2.6. 

 

2.3 Experiments 

Our method was tested on 19 abdominal and cardiac images acquired on a 3.0 T 

MRI system (Discovery MR 750, GE Healthcare, Waukesha, WI). Cardiac images 

were acquired in different orientations (short-axis, 4-chambers and axial views) 

with a fast multi-echo GRE sequence using a 32-coil cardiac array [23]. Abdominal 

images were acquired with a 3D IDEAL-SPGR sequence [20] using an 8-coil array. 

Four and 6 equally-spaced echo-time shifts were used (interleaved acquisition for 

cardiac data). Each cardiac slice is acquired in one ~20s breath-hold while the 8 

abdominal slices were acquired with parallel MRI acquisition (acceleration factor of 

2) in one ~20s breath-hold. Matrix sizes of acquired images varied between 

256x256 and 256x192. 

The field map estimated from the first and final stages of our approach, as well as 

the fat and water components are shown below (Figure 2.2). For the abdominal 

example, TE/∆TE = 1.04/0.828 msec and TR = 7.324 msec; for the cardiac example, 

TE/∆TE = 2.28/1.54 msec and TR = 12.66 msec.  

Our results are compared to those obtained from the region-growing technique [11] 

on the same dataset, to show that water/fat swaps have been significantly reduced 

(Figure 2.3). A major drawback in the region-growing method is that it forces the 

field map smoothness using a 2D extrapolation approach, which does not account 

for the abrupt changes of field homogeneity, in particular in cardiac images. We 
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have tackled this problem by employing a convex-relaxed labeling model that 

guarantees the global optimum. Moreover, it implicitly imposes smoothness on the 

estimated field map by penalizing small partitions, which correspond to regional 

water/fat swaps. 

The processing time of our method is 1.5-5 minutes per image, depending on the 

level of smoothness and the underlying degree of inhomogeneities, compared to 6.5 

minutes per image for the region-growing method. Moreover, the max-flow stage 

can be easily accelerated over modern computation frameworks, e.g. graphics 

processing units (GPU). 
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Figure 2.2: Left column: axial abdominal slice, Right column 4-chambers cardiac 

view. Top to bottom: the coarse estimate of field map from the max-flow stage, final 

field map after the second stage, water and fat components 
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Water 

Fat 



53 
 

 

 

 

Figure 2.3: Comparison between our approach (left column) and the region-growing 

method (right column) on a short-axis cardiac image. Yellow arrows indicate the 

locations of water/fat swaps that have clearly avoided by our method. 
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2.4 Discussion 

The robustness of field map estimation techniques is usually judged by the visual 

identification of water/fat swaps. However, we provide an approximate metric for 

the effectiveness of the technique by counting the number of pixels that have shown 

water/fat swaps in a user-defined region of interest – In abdominal images, the liver 

is assumed to be the region of interest, while in cardiac images the whole intra-

thoracic space including the area surrounding the diaphragm is considered. An 

approximate average for the pixels showing water/fat swaps is ~274 + 720 pixels 

with the region-growing technique vs. ~17 + 32 pixels with our proposed method. 

Taking into account the periodicity of  Γ(𝜑) [11, 12] (i.e. + 1/ (2∆TE) ), we found 

that using 20 equally-spaced field offsets for the first stage is sufficient to target the 

optimal label. However, relying only on the max-flow stage to reach the exact field 

offset would significantly increase the processing time, as we would use up to ~800 

labels in order to achieve the same high resolution field map. 

Comparing to a recent graph cut-based technique [13] currently used in clinical 

applications [4], our approach provides a field map with higher frequency 

resolution, with an estimation error less than 1 Hz over the whole image. This may 

have important utility for supporting accurate myocardial and pericardial fat 

quantification, given an expanding use of 3.0 Tesla field strengths for cardiac 

imaging. 
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Chapter 3 

Max-IDEAL:  

A Max-Flow Based Approach to 

IDEAL Water /Fat Separation1 

3.1 Preface 

In the previous chapter we introduced a new convex relaxation approach to address 

the field map estimation problem. The technique does not rely on spatial-

smoothness constraints as previous methods; however a unique global smoothness 

constraint is employed to estimate the inhomogeneities. Although successful 

                                                           
1 This chapter is adapted from a peer-reviewed article published in Magnetic Resonance in Medicine: 
Soliman, A.S., Yuan, J., Vigen, K.K., White, J.A., Peters, T.M., and McKenzie, C.A. "Max-IDEAL: A max-
flow based approach for IDEAL water/fat separation." Magnetic Resonance in Medicine 72(2): 510-
521, 2014. 

“Wherever you go, go with all your heart” 
- Confucius 
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water/fat separation was obtained in most cases, few challenges need yet to be 

addressed: 

i. There are several points related to the T2* decay of the signal: 

a) It was shown that the T2* decay affects the accuracy of the quantification. 

Although the inclusion of T2* decay has been previously demonstrated in 

the literature [1] (T2*-IDEAL), the effect of including T2* decay in the 

labeling stage needs yet to be explored.  

b) The initial estimate of the field map produced by the first stage neglects 

the T2* decay. We hypothesize that the inclusion of T2* decay will 

increase the robustness of estimating the initial guess of the labeling 

stage. 

c) For each voxel, there is a certain field map value as well as a combined 

T2* decay for both water and fat components. Up to 50 discrete values of 

field map might be used in the labeling stage. Extending the same 

concept of labeling for the T2* decay, additional 5-10 discrete T2* might 

be also employed at each voxel. This will have a huge computation 

burden as approximately 250-500 labels should be built at each voxel. 

Consequently, the processing time will significantly increase. 

ii. In the previous chapter the imposed smoothness was controlled by two 

factors: the smoothness-constraint parameter and the MDL-parameter (label 

cost). In certain cases, manual tuning of both parameters were required, 

which makes it less applicable in clinical practice.  

iii. The evaluation of the convex relaxation approach was done against the well-

known region-growing IDEAL-based technique [2]. Further comparisons 

against different techniques in the literature are required to assess the 

performance of the proposed smoothness constraint. 
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3.2 Introduction 

Among various methods, Dixon-based, or chemical-shift based, techniques [3] have 

become the most commonly used for quantitative fat measurement due to their 

ability to generate a fat-only image with positive contrast. This approach relies upon 

the chemical-shift induced frequency difference between fat and water (~3.5 ppm).  

Basically, a multi-point Dixon method requires multiple acquisitions at different 

echo-times (TEs), followed by a post-processing step to reconstruct fat and water 

components.  However, this reconstruction process can be severely hindered by the 

inhomogeneities in the main magnetic field (B0) that can cause ambiguity in the 

identification of water and fat signal components. Therefore, mapping such 

inhomogeneities – so called field mapping - is necessary for a correct water/fat 

separation. An incorrect estimation of field map values will propagate to the 

reconstructed fat and water images, causing what is commonly referred to as 

water/fat swaps, where the main signal in a water-dominant voxel is identified as 

fat, and vice-versa. 

Several Dixon based techniques have been proposed in the literature to resolve the 

field inhomogeneity confounding water/fat separation [2, 4-17]; however, an 

algorithm that can guarantee an accurate separation without noticeable swaps has 

yet to be demonstrated. One common technique is the IDEAL (Iterative 

Decomposition of water and fat with Echo Asymmetry and Least-squares 

estimation) method [12] which has demonstrated successful separation in liver 

applications [18]. IDEAL [12, 13] employs an iterative process to simultaneously 

estimate the field map, fat and water components. However, the original IDEAL 

implementation [12, 13] uses a local optimization method that heavily depends on 

the initialization process, and hence, convergence to the global optimum is not 

guaranteed. Moreover, it is a voxel-independent optimization, i.e. it does not enforce 

any global smoothness prior to the estimated field map.  

A region-growing method has been proposed by Yu et al. [2] to address the 

limitations of IDEAL. They performed zero-initialized IDEAL processing on a low-
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resolution version of the image, and used the output as an initial guess for a specific 

region in the high-resolution (original) image. After performing IDEAL, the field map 

values of this region were then linearly extrapolated in a square-spiral trajectory, to 

be used as an initial guess for the local neighboring pixels. Although this method 

implicitly imposes a spatial smoothness on the field map via the extrapolation 

process, it does not account for the abrupt changes in magnetic field that might exist 

at tissue/air interfaces, which might cause water/fat swaps.  

The VARPRO formulation [7] has been used to resolve the ambiguity of field map 

estimation and was addressed using the iterated conditional modes (ICM) algorithm 

[7], which is based on the use of Markov Random Fields, and the well-known graph-

cut algorithm [8]. This approach imposes a smoothness constraint by considering 

the differences between a field map value at certain pixel and the neighboring 

values. While this explicit spatial smoothness is used to avoid incorrect estimation, 

over-smoothing of the field map may occur, particularly where rapid variations of 

B0 exist. To avoid over-smoothness, Lu and Lu [11] introduced the JIGSAW 

algorithm, in which a new consistency measure between adjacent field map values 

replaced the conventional spatial smoothness constraint. However, the algorithm 

was only introduced for a single peak fat spectrum, and the T2* decay, which is 

necessary for accurate quantification of fat fraction [19], was not considered. 

Another recent technique is the Fat Likelihood Analysis for Multiecho Signals 

(FLAME) [17], which identifies water- and fat-dominant pixels by exploiting the 

fitting residuals of two different signal models as complementary information, in 

addition to field map smoothness, to achieve the separation. 

We have previously proposed a modified version of the IDEAL method capable of 

resolving abrupt B0 transitions without over-smoothing the resultant field map 

[14, 15]; it outperforms the widely-used region-growing-based IDEAL. This method 

‘labels’ the field of view into regions of coarse estimates of frequency offsets before 

applying the IDEAL reconstruction. In the current work, the labeling approach is 

extended to include the T2* effect in the reconstruction process, showing that 
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inclusion of T2* in the labeling stage significantly improves the robustness of 

water/fat separation. Moreover, an adaptive spatial filtering stage is added as a pre-

processing step to increase the efficiency of the approach by generating an 

approximate estimate of the vulnerable locations that might result in water/fat 

swaps. Finally, comparisons with recently proposed techniques, namely the graph-

cut [8] and the FLAME [17] methods, are provided. The approach was tested on liver 

and cardiac images of healthy volunteers, abdominal datasets of NAFLD patients 

with iron-overload where T2* maps are required for diagnosis, as well as cases from 

the ISMRM 2012 challenge on water-fat separation. 

 

3.3 Theory 

The proposed method consists of two stages, the first of which produces an 

approximate estimate of the field map in which each voxel is assigned a frequency 

offset near its optimal global minimum.  In other words, a coarse discretization of 

the whole range of the field map (bounds described next section) is used to assign 

each region in the image domain to certain frequency offset. The objective of this 

stage is to enforce the estimation process towards the global minimum. The output 

is employed as an initial estimate of the field map in the gradient-descent-based 

IDEAL processing of the second stage where the final field map (in a higher 

frequency resolution) is obtained. Therefore, the role of the first stage is to resolve 

the ambiguity of the estimation by the convex-relaxation approach, while the second 

step converges to the exact value of the frequency offset. This approach is capable of 

detecting the regions of abrupt changes of frequency offset via a unique smoothness 

constraint imposed in the labeling stage [14, 15]. The process of dividing the image 

domain into regions is termed “labeling”. In this work, the Potts labeling model [20] 

is used through its convex-relaxed formulation [20, 21]. In particular, the approach 

essentially relies on a continuous max-flow algorithm to solve the labeling model 

prior to the IDEAL processing and is therefore named Max-IDEAL.  



64 
 

In addition to the well-known non-convex property of this problem [6-8, 10, 13], the 

required degree of smoothness is another challenge that accompanies the 

estimation process. Although the variations of magnetic field are assumed to be 

smooth, enforcing a strong spatial smoothness can produce erroneous estimation if 

the algorithms employed do not account for the sudden B0 variations that are 

induced at air/tissue interfaces as well as for the high rates of change of 

inhomogeneities that might exist throughout the field of view. Additionally, an 

accurate signal modeling is required for a correct estimation. In other words, as the 

cost function is derived from the signal equation, considering the multi-peak fat 

spectrum and the T2* decay in the signal model is necessary to reduce the 

ambiguity in distinguishing the correct field map from the aliased solution (i.e. the 

solution that causes a “water/fat swap”) [17, 19]. It was previously shown that T2*-

IDEAL stage provides more accurate fat fraction maps [1, 18, 19]. However, as will 

be shown in this work, it is also necessary to incorporate the effect of T2* decay in 

the labeling stage.  

In the following sections, the cost function to be minimized is derived from the 

signal equation, and then the adaptive spatial filter and the multi-labeling model are 

described. 

 

3.3.1 Signal Equation 

Let 𝑆(. ) denote the signal acquired from a voxel  𝑣 , containing a mixture of water 

and fat, such that: 

𝑆𝑣(𝑡𝑛) = �𝜌𝑊,𝑣 + 𝜌𝐹,𝑣 . � 𝛼𝑚. 𝑒𝑖2𝜋 𝛿𝑚 𝑡𝑛

𝑀

𝑚=1

� . 𝑒𝑖2𝜋 𝜑𝑣 𝑡𝑛  𝑒−𝑅2
∗
𝑣 𝑡𝑛  ,                 (3.1) 

where 𝑡𝑛 (s) denotes the echo-time (TE) (𝑛 = 1, … ,𝑁) of the acquired signal;  𝜌𝑊,𝑣  

and  𝜌𝐹,𝑣 are the water and fat components at voxel 𝑣, respectively; 𝑀 is the number 

of fat peaks in the fat spectrum;  𝛿𝑚  (Hz), is the frequency of the 𝑚-th peak with its 



65 
 

corresponding amplitude 𝛼𝑚 , such that ∑ 𝛼𝑚𝑀
𝑚=1 = 1; 𝜑𝑣 (Hz) is the local frequency 

offset at voxel 𝑣 (i.e. the  field map),  𝑅2∗𝑣  (s-1) models the  𝑇2∗ (s) decay at voxel 

𝑣, such that  𝑅2∗ = 1
𝑇2∗

 .  A pre-calibrated fat spectrum model is employed [19], where 

𝑀=6, 𝛿𝑚= [485.41, 434.32, 332.12, 247.82, 49.82, -76.64] Hz at 3.0 Tesla, with 

corresponding amplitudes, 𝛼𝑚=[0.0870, 0.6930, 0.1280, 0.0040, 0.0390, 0.0480]. 

Having four or more echo-times (TE) acquired, Equation 3.1 can be reformulated as 

follows [1, 13]: 

 

 

S𝑣(𝑡𝑛) = Ψ𝑣(𝜑,𝑅2∗ , 𝑡𝑛) .  A(𝑡𝑛) .  Ρ𝑣  ,                                       (3.2) 

where  

Ψ𝑣(𝜑,𝑅2∗ , 𝑡𝑛) = �
𝑒𝑖 �2𝜋 𝜑𝑣+ 𝑖𝑅2∗𝑣�𝑡1 0 0

0 ⋱ 0
0 0 𝑒𝑖 �2𝜋 𝜑𝑣+ 𝑖𝑅2∗𝑣�𝑡𝑁

�,  

 A =

⎣
⎢
⎢
⎢
⎢
⎢
⎡1 � 𝛼𝑚. 𝑒𝑖2𝜋 𝛿𝑚 𝑡1

𝑀

𝑚=1
⋮ ⋮

1 � 𝛼𝑚. 𝑒𝑖2𝜋 𝛿𝑚 𝑡𝑁

𝑀

𝑚=1 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

S𝑣(𝑡) = [𝑆𝑣(𝑡1), … 𝑆𝑣(𝑡𝑛)]𝑇 , Ρ𝑣 = �𝜌𝑊,𝑣, 𝜌𝐹,𝑣�
𝑇

. To estimate the required water and 

fat components �𝜌𝑊,𝑣, 𝜌𝐹,𝑣�, the frequency offset 𝜑𝑣 should be demodulated first. 

Hence, dropping the known echo-time(𝑡𝑛), a non-linear weighted least-squares cost 

function can be derived from (Equation 3.2) as follows: 

Γ𝑣(𝜑,𝑅2∗) ≔ �A .Ρ𝑣�  −Ψ�𝑣
−1(𝜑 ,𝑅2∗) . S𝑣�

2
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Γ𝑣(𝜑,𝑅2∗) ≔ �(AA† −  𝐼).Ψ�𝑣
−1(𝜑 ,𝑅2∗). S𝑣�

2
  ,                             (3.3) 

where Ρ𝑣�   and Ψ�𝑣(𝜑 ,𝑅2∗) are the estimated values of  Ρ𝑣  and  Ψ𝑣(𝜑,𝑅2∗)  respectively, 

𝐼 is the identity matrix, and † denotes the pseudo-inverse, 𝑠. 𝑡.  A† = [A𝑇A]−1A𝑇 .  

Two main problems are encountered when minimizing  Γ𝑣(𝜑,𝑅2∗): first, the non-

convex property of the function shows multiple local minima – Figure 3.1 (a, b). 

Second, Γ𝑣(𝜑,𝑅2∗)  does not impose a priori smoothness on the estimated field map, 

as it is a voxel-by-voxel based strategy.  

It is important to note that to maximize the signal-to-noise performance, the images 

are acquired at equally-spaced echo-time shifts (i.e. TEn −  TEn−1 =  ∆TE) [12]. In 

this case, Γ𝑣(𝜑)  is periodic with a period of  1/∆TE , allowing us to determine the 

lower and upper bounds of the search space, which are set to [ ±1/(2∆TE)], 

necessary for the max-flow model employed in the first stage. 

The required smoothness level depends on the severity of B0 inhomogeneity, which 

varies between different anatomies as well as with different acquisition parameters 

[12, 22] (e.g. first TE, echo-spacing). In Soliman et al. [15], water/fat swaps were 

avoided primarily via adjusting two parameters: a label-cost prior and the 

smoothness parameter of the labeling model. To reduce the effort of case-by-case 

adjustment in the current work, the label-cost prior is replaced instead by 

performing two major modifications to the signal residuals  Γ𝑣(𝜑): 1. incorporating 

T2* effect in the labeling stage; 2. introducing an adaptive spatial filter (ASF) as a 

pre-processing step before the labeling stage. 
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Figure 3.1: (a) A point is selected on a 2D axial cardiac image.  

(b) Neglecting the effect of T2* decay (i.e. R2* = 0), the variation of the signal 

residuals       . (c) By assigning    to its optimal value (-41.5 Hz) and the aliased 

value (-486 Hz), the variation of        
   is drawn with different R2* values. 
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3.3.2 Inclusion of T2* effect 

The residual function Γ𝑣(𝜑,𝑅2∗) varies in a 2D space over the field map, 𝜑 and  𝑅2∗  

respectively. Unlike the field map, the variation of the signal residuals (Equation 

3.3) with T2* decay is less complicated. In order to minimize Γ𝑣(𝜑,𝑅2∗) for the 

optimal field map, a dimensionality reduction is necessary. Previously, “joint” [6, 8] 

and “decoupled” [6] approaches were used to include the T2* effect. In the “joint” 

estimation, for certain frequency offset  𝜑𝑖, the residual function is redefined with 

respect to  𝑅2∗,  𝑠. 𝑡. Γ𝑣 (𝜑𝑖) = min Γ𝑣(𝜑𝑖,𝑅2∗); whereas in the “decoupled” estimation, 

R2*is first neglected 𝑠. 𝑡. Γ𝑣 (𝜑𝑖) = Γ𝑣(𝜑𝑖,𝑅2∗ = 0), then subsequently estimated in a 

second step. In this work, a different approach is used to address the T2* effect. In 

Figure 3.1 (c), we observed that, for certain frequency offset  𝜑𝑖  , the change of the 

residual function, Γ𝑣(𝜑𝑖,𝑅2∗) over a discrete R2* range is a simple convex function, 

which usually has lower residuals from the correct minimum,  𝜑𝑐𝑜𝑟𝑟𝑒𝑐𝑡, than those 

obtained from the aliased solution, 𝜑𝑎𝑙𝑖𝑎𝑠𝑒𝑑. Therefore, by summing the residuals 

over the discrete set of R2* values, a variant of the residual function is defined as 

follows: 

 Γ𝑣 (𝜑𝑖) = � Γ𝑣�𝜑𝑖,𝑅2∗𝑘�
𝐾

𝑘=1
,                                                (3.4) 

where K is the number of discrete R2* set. Consequently,  Γ𝑣����(𝜑) becomes a more 

accurate representation of the cost of assigning frequency 𝜑 at voxel 𝑣. We found 

that this “inclusive” approach is more amenable to the incorporation of T2* decay 

effects in the labeling process, which is essential in some cases, as will be shown in 

the discussion section. 
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3.3.3 Adaptive Spatial filtering (ASF) 

This filter produces an approximate estimate of the locations where water/fat 

swaps may occur, and the corresponding cost of these locations is consequently 

increased. The rationale beyond modifying the cost arises from the fact that, for a 

uniform echo-spacing acquisition,  Γ𝑣����(𝜑) exhibits at least two minima [5, 10, 14] for 

the correct and aliased solutions respectively – Figure 3.1 (b). Hence, by increasing 

the cost of the vulnerable locations,  Γ𝑣����(𝜑) is weighted towards the correct 

frequency offset at voxel 𝑣. The ASF is performed as follows: 

Assuming 𝜂𝑣 is a straightforward minimization of  Γ𝑣����(𝜑) at voxel 𝑣,  𝑠. 𝑡. 

𝜂𝑣 = argmin
{φ𝑖}𝑖=1

𝐿
 Γ𝑣����(𝜑𝑖)                                                       (3.5) 

where L is a discrete set of frequency offsets. As noted by Lu et al. [10], the global 

minimum of the signal residuals at certain location 𝑣 might not represent the 

correct frequency offset. Hence  𝜂 is expected to show clear fat/water swaps, as 

demonstrated by Figure 3.2 (a). For a pixel with coordinates (𝑚,𝑛), we define 

 𝜂𝑥𝑖 (𝑚,𝑛), as a backward finite difference of 𝜂 in the x-direction, 𝑠. 𝑡.  𝜂𝑥𝑖 (𝑚,𝑛) =

𝜂(𝑚, 𝑛) − 𝜂(𝑚− 𝑖,𝑛);   𝑖 = 1 … 𝑐1; and 𝜂𝑦
𝑗 (𝑚,𝑛) as a backward finite difference of 𝜂 

in the y-direction, 𝑠. 𝑡.  𝜂𝑦
𝑗 (𝑚,𝑛) = 𝜂(𝑚,𝑛) − 𝜂(𝑚,𝑛 − 𝑗);   𝑗 = 1 … 𝑐2; where 𝑐1 and 

𝑐2 are two positive constants determining the range of finite differences at each 

direction respectively. Hence, we define 𝐹(𝑘)(𝑚,𝑛) as the filter output at iteration 𝑘, 

𝑠. 𝑡. 

𝐹(𝑘)(𝑚, 𝑛) =  �𝜂𝑥𝑖 (𝑚,𝑛)
𝑐1

𝑖=1

+ �𝜂𝑦
𝑗 (𝑚, 𝑛)

𝑐2

𝑗=1

                                      (3.6) 
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The output of  𝐹(1) is shown in Figure 3.2 (b), where the vulnerable locations of 

water/fat swaps can easily be identified and separated via simple thresholding - 

Figure 3.2 (c). Dropping the pixel coordinates (𝑚,𝑛) for simplicity, the 

corresponding cost at voxel  𝑣 is therefore modified as follows: 

Γ𝑣
(𝑘)�����(𝜑𝑖, 𝑖 = 1, … , 𝐿 | 𝜑𝑖 = 𝜂𝑣) = �

Γ𝑣
(𝑘−1)��������(𝜑𝑖) + 𝑐3                    𝐹(𝑘) > 𝑐4 

Γ𝑣
(𝑘−1)��������(𝜑𝑖)                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

            (3.7)  

where 𝑐3 and 𝑐4 are constants representing the added cost and the filter threshold, 

respectively. At the end of each iteration, 𝜂 is updated, 

 𝑠. 𝑡.  𝜂(𝑘+1) = argmin{φ𝑖}𝑖=1
𝐿 Γ(𝑘)�����(𝜑𝑖). Figure 3.2 illustrates the role of the filter, 

showing 𝜂 before (Figure 3.2 (a)) and after (Figure 3.2 (d)) the ASF processing. The 

resultant data cost, Γ�(𝜑), obtained from ASF is then employed in the labeling stage 

(Equation 3.8), described next. 
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Figure 3.2: (a) Field map, 𝜂, obtained from Eq.5 before applying the adaptive spatial 
filter (ASF); (b) the output of ASF after the first iteration, 𝐹(1), from Eq.6; (c) A 

thresholded version of (b), producing a binary mask for the vulnerable locations of 
water/fat swaps; (d) the final output of the ASF, showing less water/fat swaps than 

(a).  
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3.3.4 The Potts Labeling Model 

Recalling from Chapter 2, the Potts labeling model minimizes the total perimeter of 

all single-label regions, and results in a partition of the continuous 

domain  Ω  into  𝐿  disjoint subdomains  {Ω𝑖}𝑖=1𝐿 , as follows: 

min
{Ω𝑖}𝑖=1

𝐿
��  Γ(𝜑𝑖, 𝑥) 𝑑𝑥 + 

 

Ω𝑖

𝐿

𝑖=1

𝜆�|𝜕Ω𝑖|
𝐿

𝑖=1

                                       (3.8) 

𝑠. 𝑡.�Ω𝑖

𝐿

𝑖=1

= Ω,   and  Ω𝑘�Ω𝑚 = ∅, ∀𝑘 ≠ 𝑚 

where the set of labels  𝜑𝑖 , 𝑖 = 1, … , 𝐿 , corresponds to a set of equally-spaced 

frequency offsets, i.e. it is a rough discretization of the field map range.  Γ(𝜑𝑖, 𝑥) is 

the cost of assigning label 𝜑𝑖 to location  𝑥, as defined in Equations 3.3, 3.4 and 3.7. 

Each subdomain  Ω𝑖, 𝑖 = 1, … , 𝐿 , is labeled with a certain frequency offset  𝜑𝑖, 𝑖 =

1, … , 𝐿, where |𝜕Ω𝑖| measures the perimeter of each subdomain  Ω𝑖 , 𝑖 = 1, … , 𝐿, and 

𝜆 is a regularization parameter that controls the weight of the total perimeter of the 

disjoint regions. It is important to note that the required smoothness of the field 

map is imposed here by the minimization of the total perimeter of the labeled 

regions included in the Potts model. This regularization term replaces the 

conventional local spatial smoothness constraint that was previously used in the 

literature [6-8]. The proposed smoothness constraint is capable of handling field 

inhomogeneities with high rates of change, as shown later. 

The multi-label Potts model in Equation 3.8 can be approximated as a convex 

optimization problem, leading to a convex-relaxed Potts model that can be 

addressed using a flow-maximization approach, as proposed by Yuan et al. [20]. The 

continuous max-flow approach [20, 21] is equivalent to the minimal cut solution 

over the continuous image domain [21]. By mapping the labeling model to a 

continuous network flow problem as described in [20], Γ(𝜑𝑖, 𝑥) is set as the upper 

bound of the sink flow, 𝜌𝑖 , where 𝜌𝑖(𝑥) is the flow streaming from each labeled 
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copy, Ω𝑖, to a sink  𝑡, at each  𝑥 𝜖 Ω. For more details, please refer to Yuan et al. 

[15, 20]. It is important to note that in the convex flow configuration, the 

regularization term, 𝜆 ∑ |𝜕Ω𝑖|𝐿
𝑖=1  in Equation 3.8 is mapped to the spatial flow of the 

network, for which the capacity of the flow controls the smoothness level of the total 

perimeter of the labeled regions. In other words, by employing the continuous max-

flow approach, the capacity of the spatial flow becomes the tunable parameter that 

controls the degree of smoothness of the total perimeter in the labeling 

stage, 𝑠. 𝑡.  |𝑞𝑖 (𝑥)| ≤ 𝛽. Here, 𝑞𝑖(𝑥), 𝑖 = 1, … 𝐿 is the spatial flow at location 𝑥 and 𝛽 is 

its capacity, which for simplicity, is referred to as the smoothness parameter in the 

current context. 

 

3.4 Methods 

3.4.1 MR acquisition 

This work was carried out under approval granted by the Office of Research Ethics 

of Western University, Canada. Cardiac and abdominal images from 5 healthy 

volunteers were acquired on 3T MR system (Discovery MR 750, GE Healthcare, 

Waukesha, WI). The data acquired consists of 32 2D cardiac images from 3 healthy 

volunteers at different orientations (axial; short-axis and 2, 3, and 4 chambers long 

axis), as well as 136 slices from 4 3D axial abdominal datasets acquired from 2 

NAFLD patients and 2 healthy volunteers. All the acquisitions were obtained with 6 

unipolar equally-spaced echo-times (TE). Cardiac images were acquired with a fast 

multi-echo GRE sequence using a cardiac 32-coil array [23]. Each cardiac slice was 

acquired within one ~20 s breath-hold with an interleaving acquisition [23]. 

Acquisition matrices of all cardiac data were 256x192, bandwidth = 651 Hz/pixel, 

flip angle = 8°,  slice thickness = 8 mm, TR ranges between 8.31 ms and 9.74 ms, 

initial TE ranges between 1.82 ms and 2.38 ms with ∆TE between 0.85 ms and 0.96 

ms, respectively. All abdominal data were acquired with a 3D multi-echo SPGR 

sequence [19] in one ~20 s breath-hold with parallel MRI acquisition. Data from 2 
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healthy volunteers were obtained: the first abdominal dataset consists of 8 slices of 

10 mm thickness within the liver, acquired with 8-coil array at bandwidth of 1116 

Hz/pixel, flip angle = 8°, TR = 7.32 ms, TE/∆TE = 1.04/0.83 ms and acquisition 

matrix of 192x192. The second dataset comprised 12 slices of 5 mm thickness, 

acquired with 32-coil array at bandwidth of 1116 Hz/pixel, flip angle = 3°, TR = 5.8 

ms, TE/∆TE = 0.768/0.596 ms and acquisition matrix 128x128. Data from 2 NAFLD 

patients, covering the whole liver in 56 and 60 slices, respectively, were obtained. 

The 2 datasets were acquired with 8-coil array, flip angle = 5°, 5 mm slice thickness, 

acquisition matrix 224x128 and TR/TE/∆TE = 7.48/1.064/0.52 ms and 

7.61/1.08/0.872 ms. These data are processed as follows: 

 

3.4.2 Pre-processing: ASF 

The signal residual at each voxel is constructed as in Equations 3.3 and 3.4, and 

subsequently processed with the ASF as described above. The number of discrete 

T2* values is set to 3 and the values were empirically set to 10, 50 and 60 ms, as this 

was found to be sufficient to include the T2* effect without a significant increase in 

the computation time. T2* values of 50 and 60 ms were chosen as approximations to 

the T2* value of fat, while 10 ms was chosen to consider the effect of rapid T2* decay 

that might exist.  The number of finite differences performed was chosen as a scale 

of the image dimensions, for instance, 𝑐1 and 𝑐2 were set to the width/5 and the 

height/5 of the image, respectively. For a normalized filter 𝐹, 𝑐4 is set to 0.4 and 

increased by 0.2 at each iteration; and 𝑐3 is set to 0.5. 

 

3.4.3 STAGE I: A Continuous Max-flow Approach to Potts Model 

The convex multi-labeling max-flow algorithm is capable of determining the optimal 

label for each voxel. As mentioned above, the labeling range is set between  [ ±1/

(2∆TE)] . The range of frequency offsets is discretized into a set of equally-spaced 

labels, where each corresponds to certain frequency offset. The labeling process is 
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performed in 2D. The number of discrete labels was empirically chosen and set to 

50 in all the experiments, as this was found to be sufficient to target a frequency 

offset near the global minimum, which is the goal of the first stage. The smoothness 

parameter 𝛽 was set to a default value of 0.5. A coarse estimate of the field map is 

produced from this stage. It is worth noting that in some cases B0 inhomogeneities 

vary over more than one period throughout the field of view. This phenomenon is 

automatically detected before the processing. Consequently, the ASF step is 

automatically skipped and the smoothness parameter β is tuned down to 0.3 

without user intervention. This automatic parameter tuning is necessary to avoid 

oversmoothing the initial field map. 

 

3.4.4 STAGE II: T2*-IDEAL Water/fat Separation 

The IDEAL iterative process has been implemented as described in Reeder et al. [12] 

and the T2* decay was integrated in the estimation process as proposed in Yu et al. 

[1]. The original version of IDEAL sets the initial field map estimate of the iterative 

process to zero in all voxels. In the proposed approach, the estimate produced by 

the labeling stage is used as the initial field map. The stopping criterion for the 

IDEAL iterative process is set to < 0.5 Hz for the field map increment over the whole 

image. This criterion is assumed to be sufficient for clinical applications [13]. It is 

worth noting that T2* is initialized to zero. Its effect was considered in the labeling 

stage to provide a more robust estimation of the field map; however, an initial T2* 

map was not carried out in the first stage. 

All the reconstructions were processed on a dual core Intel-Xeon PC @ 2.4 GHz and 

24 GB of RAM.  The Potts labeling stage was accelerated on a graphics processing 

unit (GPU) NVIDIA Quadro 600 with 96 CUDA cores and 1GB of memory. 

Comparisons with the graph-cut were performed using the implementation 

provided in the Fat-Water toolbox with its default set of parameters. For the FLAME 

technique, the online GE reconstruction was used. 
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3.5 Results 

The Max-IDEAL approach was tested on a total of 168 2D slices from the acquired 

cardiac and abdominal data mentioned above. Out of all 168 images employed in 

this study, adjustment of the smoothness parameter was required in 1 cardiac case 

and 1 abdominal case, where β was set to 1 and 0.3, respectively. Among the cardiac 

datasets, a single case of failure demonstrated water/fat swaps that hinder the 

clinical interpretation of the underlying anatomy. Water/fat separation was 

successfully achieved in all abdominal examples. All the datasets were processed 

with the T2* estimation integrated in the estimation process and the R2* map was 

simultaneously obtained in all cases. The average processing time for the whole 

approach (including T2* estimation) was ~14 s. Figure 3.3 shows the reconstruction 

of a cardiac 4-chamber view. As shown in Figure 3.3 (a), the output of the labeling 

stage can successfully handle the variations of B0 magnetic field by mapping each 

region to an approximate frequency offset. Another example of a 2-chamber cardiac 

slice is shown in Figure 3.4, where the fat fraction map (fat/(fat+water)) as well as 

the R2* map are shown. The abdominal data consist of 116 slices from 3D datasets of 

2 NAFLD patients and 20 slices from 2 healthy volunteers. An example for a 

successful separation from a NAFLD patient with iron overload is shown in Figure 

3.5. The reconstruction of the failure case could not be resolved with other state-of-

the-art techniques, such as the graph-cut [8] and FLAME [14] methods as shown in 

Figure 3.6. Figure  3.7 shows a comparison between the proposed method and the 

labeling approach used in [15]. It is clear that using the label cost prior in [15] was 

not sufficient to avoid the occurrence of water/fat swaps; however, a successful 

reconstruction is achieved by the proposed approach. 
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Figure 3.3: Fat water separation in a 4-chamber cardiac slice acquired from a 
healthy volunteer. (a) Output of the labeling stage showing a coarse estimation of 
the field map, (b) Final field map after the second stage, (c) Water component, (d) 

Fat component. 
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Figure 3.4: Reconstructed data from a 2-chamber cardiac. (a) The labeled field map from 
the first stage, (b) final field map, (c) fat fraction map and (d) R2

* map 
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Figure 3.5: Reconstructed data from an axial abdominal slice. (a) The labeled field map 
from the first stage, (b) final field map, (c) fat fraction map and (d) R2

* map   
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Figure 3.6: The reconstruction of the failure case using Max-IDEAL (a), the graph-cut 
method (b) and the FLAME technique (c). Left to right: field map, water, fat and fat 

fraction map. 
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Figure 3.7: Reconstruction of a selected slice from a case provided by the ISMRM 2012 

challenge with the labeling approach in [15] (a) and the proposed method (b). 
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In order to show the ability of Max-IDEAL to resolve the severe variations of B0 over 

previously proposed methods, a comparison with the graph-cut technique [8] is 

shown in Figure 3.8 using cases from the ISMRM 2012 challenge. The reconstructed 

cases show large changes in B0 magnetic field that were incorrectly estimated with 

the graph-cut, while they were successfully resolved with Max-IDEAL. Notice that B0 

changes vary over more than one period, hence the ASF step was skipped, as 

mentioned earlier. Figure 3.9 shows another comparison with the water/fat 

reconstruction of the recent FLAME technique [14] on a short-axis cardiac slice. 

While the FLAME method failed to resolve rapid B0 variations, Max-IDEAL can 

successfully achieve the reconstruction even in the presence of significant breathing 

motion artifact.  
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Figure 3.8: Comparisons between Max-IDEAL (a, c) and the graph-cut method (b, d) 

using two cases from the ISMRM 2012 challenge. The proposed approach can 

resolve strong B0 variations while the spatial smoothness constraint employed in 

graph-cut fails. Left to right: initial field map (a and c only), final field map, water, fat 

and fat fraction map. 
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Figure 3.9: A comparison with the FLAME technique on a short-axis cardiac slice.  
(a) Results from Max-IDEAL; (b) results of FLAME method. Top to bottom: field map, 

water, fat and fat fraction map   
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3.6 Discussion 

In this work, the problem of measuring field inhomogeneities is addressed by using 

a max-flow-based IDEAL approach that is capable of handling abrupt B0 variations. 

The Max-IDEAL method is performed in two stages, the first of which detects the 

correct global minimum while the second stage converges to the exact solution. In 

the labeling stage, the cost function is minimized over a discrete set of frequency 

offsets, such that the output is a coarse field map in which each region is labeled by 

certain offset value. A Potts labeling model was used for the labeling process, and 

was minimized via a continuous flow maximization approach.  

A unique advantage of Max-IDEAL is that the smoothness prior is imposed in the 

labeling stage in a different manner than previous techniques in the literature. In 

previous methods, the smoothness is explicitly enforced spatially by considering the 

difference between the frequency offset of certain voxel and its local neighborhood 

[7, 8]. As an example, the quadratic function used in the graph-cut method [8] might 

not be capable of handling inhomogeneities with high rates of change – Figure 3.8. 

However, in our proposed method, the smoothness is represented by the perimeter 

of each labeled region, described by |𝜕Ω𝑖| in the Potts labeling model (Equation 3.8), 

which enforces smoothness via minimizing the total perimeter of the labeled 

regions. Hence, increasing the smoothness prior in cases of severe inhomogeneity 

limits the occurrence of water/fat swaps without blurring or reducing the frequency 

resolution of the estimated field map.  

The inclusion of the T2* effect in both stages is important. Since the ambiguity of 

distinguishing the correct from the aliased field map is resolved solely by the 

labeling stage, an accurate representation of the signal model is required in this 

stage. By considering T2* decay, the value produced from the signal residuals at each 

voxel (Equation 3.4) becomes a better representation of the cost of assigning the 

corresponding frequency offset at that voxel, which improves the robustness of the 

labeling stage. On the other hand, employing T2* in the second stage produces an 

accurate fat fraction as well as the R2* map as shown in Yu et al.[1, 19]. To illustrate 
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the importance of including T2* in the labeling stage, a case from the ISMRM 2012 

challenge is reconstructed in Figure 3.9 with and without incorporating T2* in the 

labeling stage, while using T2*-IDEAL in the second stage in both reconstructions. It 

is clear from Figure 3.10 that the reconstruction might fail if the T2* effect was not 

considered in the labeling process. 

By employing T2*-IDEAL, the values of R2* map are produced over a continuous 

range, in contrast to the recent graph-cut method which assigns certain value to 

each pixel out of a discrete set of R2* values [8]. Therefore, Max-IDEAL allows more 

efficient estimation of the R2* map of the underlying anatomy without a significant 

increase in the overall computation time. 

The number of discrete values used in the labeling stage is a trade-off between the 

computation time of the labeling model and the accuracy of detecting the correct 

minimum. By using an insufficient number of discrete samples of the residuals curve 

(Figure 3.1 (b)), the algorithm might fail to locate the correct minimum. On the other 

hand, increasing the number of samples can significantly prolong the processing 

time. Fifty equally-spaced discrete values were therefore empirically chosen, as this 

was found to be sufficient to target the correct solution without a significant 

increase in the computation time. 
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Figure 3.10: Reconstruction of a case from ISMRM 2012 challenge with (a) T2* 
applied in both stages of the approach, and (b) T2* incorporated only in the second 

stage (T2*-IDEAL). The reconstruction fails in case T2* decay is not considered in the 
labeling stage.  
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It is important to note that the cost function has a periodic form, such that a  2𝜋 

phase shift does not affect the separation process – Figure 3.7 and Figure 3.8. In 

other words, when limiting the search space to one period centered at zero offset, a 

correct water/fat separation will still be obtained even if a “non-smooth” field map 

is produced. While the apparent smoothness of the field map is a criterion that is 

conventionally used to visually assess the presence of water/fat swaps, in this case 

the “non-smooth” appearance of field map arises from the  2𝜋 phase shift, which 

does not hamper the success of the reconstruction, as can be seen in the 

reconstructed fat and water components - Figure 3.7 and Figure 3.8. 

Although the proposed approach has shown promising results in handling severe B0 

inhomogeneities, Max-IDEAL has two main limitations. Firstly, an artifact might be 

produced in the detection of boundaries in the labeling stage. Boundaries separating 

two neighboring labeled regions in the output of the first stage might not represent 

the actual location of the transition of the sudden change of magnetic field, 

particularly when high level of smoothness is applied. Therefore, a small boundary 

of water/fat swap might appear in the results. An example of this artifact is shown 

in Figure 3.11. This phenomenon was noticed in 6 cardiac images and 18 abdominal 

images (total of 24 images out of 167 successfully reconstructed cases). However, 

the artifact was overcome in 11 cases by manually tuning the smoothness 

parameter β. Moreover, for the cardiac cases, it was subsequently confirmed by an 

expert cardiologist (J.A.W.) to not hinder the clinical evaluation of relevant cardiac 

structures. This artifact appears away from the region of interest (liver) in all the 

affected abdominal cases. 
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Figure 3.11: An example of the boundary artifact appearing in an axial abdominal 
slice. This artifact is induced around the bowels where very low signal is received. 
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Another limitation of Max-IDEAL is its dependence on the smoothness level 

enforced in the first stage. However, as shown in Figure 3.2, the ASF reduces the 

vulnerable regions of water/fat swaps such that a fixed (default) value for the 

smoothness constraint (β=0.5) becomes sufficient in most of the cases to overcome 

the rest of the vulnerable locations in the labeling stage. The effect of changing the 

smoothness level β on the reconstructed data is shown in Figure 3.11 using a case 

from the ISMRM 2012 challenge. As can be noticed in Figure 3.12 (a), the enforced 

smoothness (β=0.2) is not sufficient to avoid fat/water swaps. With higher 

smoothness levels, the algorithm inherently tends to use fewer labels to describe the 

field map [20], and hence details of the underlying inhomogeneities can be omitted, 

causing water/fat swaps - Figure 3.12 (d). Therefore, setting β is a trade-off between 

avoiding such artifact and removing water/fat swaps. 
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Figure 3.12: The effect of applying different smoothness levels on the reconstruction 
of a case from ISMRM 2012 challenge: (a) β=0.2 was insufficient to remove 

water/fat swaps; successful reconstruction can be achieved in (b) β = 0.5 and (c) β = 
2; (d) Oversmoothed initial field map with β = 4 causes water/fat artifacts as noted 

by the arrow. The ASF was not applied in this reconstruction in order to solely 
examine the effect of the smoothness parameter. 
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The feasibility of 3D Max-IDEAL has been recently shown [24]. Preliminary results 

demonstrated successful reconstruction of abdominal datasets. Berglund et al.[5] 

have shown the feasibility of 3D whole body water/fat separation with the 3-point 

Dixon approach, with a qualitative assessment of the separation. We anticipate 3D 

Max-IDEAL to have comparable results in the pelvis, head, arms and legs, while 

boundary artifacts can arise in the thorax and abdomen. However, an automatic 

anatomy-based tuning of the smoothness level might reduce the significance of this 

artifact. 

Although the processing time was less than 13 s for most of the cases (with a matrix 

size of 256x192), a more advanced GPU with higher number of CUDA cores 

(available up to 3072 cores) can significantly accelerate the reconstruction process. 

It is worth noting that applying a more advanced background removal filter than 

simple signal thresholding might also reduce the processing time since background 

pixels unnecessarily prolong the convergence rate; however, this is outside the 

focus of the current work. 

 

3.7 Conclusion 

In this work, we demonstrated a fast max-flow based approach for water/fat 

separation. The proposed method performs the IDEAL water/fat separation guided 

by a convex-relaxed labeling model that is solved via a flow maximization approach. 

Instead of the conventional spatial smoothness used in previous methods, Max-

IDEAL relies on enforcing smooth boundaries in the labeling stage to avoid 

water/fat swaps. Additional robustness is gained by incorporating the T2* effect in 

both stages of the reconstruction, showing the importance of its inclusion in the 

labeling process. Moreover, a pre-processing filtering step was included to improve 

the efficiency of the reconstruction. The approach has demonstrated the ability to 

handle fast and severe B0 variations cases where previous spatial smoothness-

based techniques can fail. 
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Chapter 4 

Fat Quantification Using an 

Interleaved Bipolar Acquisition1 

4.1 Introduction 

Multi gradient echo sequences have been widely used for chemical-shift encoded 

imaging, particularly water/fat separation. Images are acquired at several echo 

times (TE), where fat and water exhibit different phase shifts [1, 2]. The acquired 

images are subsequently post-processed to obtain water and fat components [3-9]. 

To achieve an accurate fat measurement, several confounding factors must be 

considered during the reconstruction process, particularly B0 magnetic field 

inhomogeneities [1, 2], T2* decay[10] , T1-bias [11], noise-related bias [11], 

                                                           
1 This chapter is adapted from an article in submission to Magnetic Resonance in Medicine: Soliman, 
A.S., Wiens, C.N., Wade, T.P., Peters, T. M., and McKenzie, C. A., "Fat quantification Using an 
Interleaved Bipolar Acquisition”, Magnetic Resonance in Medicine (2014). 

“If the facts don’t fit the theory, change the facts” 
- Einstein 
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temperature bias [12], and accurate spectral modeling of fat [13]. Typically, 6 echo-

times are recommended for accurate fat measurement [13, 14]. 

On the acquisition side, parameters such as the flip angle, first echo time (TE1), and 

echo spacing also influence the accuracy of the quantification. Low flip angles are 

usually recommended to reduce T1-bias [11]. The echo combination (TE1 and echo 

spacing) has significant impact on the signal-to-noise (SNR) performance and 

should be chosen carefully to avoid degraded SNR quality [15, 16]. Selection of TE1 

is restricted by the maximum gradient strength, the maximum achievable slew-rate 

during the readout pre-winder gradient and the time required for the RF pulse. Echo 

spacing varies with the selection of receiver bandwidth, spatial resolution, field of 

view (FOV) and gradient performance (slew rate and maximum gradient strength). 

It is important to choose an echo spacing that provides the best SNR performance 

[15, 16]. In addition, short echo spacing is desired to increase the range of frequency 

offsets in which water and fat components can be unambiguously distinguished 

during the reconstruction process [2].  

Multi-echo acquisition can be achieved using either unipolar or bipolar readout 

gradients. In a unipolar acquisition, the echoes have the same readout polarity while 

in a bipolar acquisition the echoes are acquired with both positive and negative 

readout gradient polarities. Typically, fat quantification is performed using 6 

unipolar readout gradients separated by flyback gradients [13, 14].  These long 

flyback gradients increase the minimum achievable echo spacing, heightening the 

ambiguity in identifying fat and water species. To achieve optimal echo spacing 

within an acceptable acquisition time, the echoes are often acquired in an 

interleaved fashion with multiple shots. For instance, the 6 echoes are acquired over 

6/n repetition times (TR) (i.e. over 6/n shots), where n is the number of echoes per 

TR. This also increases the acquisition time. In a bipolar acquisition the flyback 

gradients are omitted and the 6 echoes alternate their polarities [17]. By removing 

the flyback gradients, shorter echo spacing can be achieved, often allowing the 

acquisition of all of the echoes at optimal echoes spacing in one repetition time (i.e. a 
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single shot). Consequently, a shorter scan time can be achieved. Therefore, bipolar 

acquisitions have higher SNR efficiency, as more of the scan time is spent in 

collecting the data. SNR efficiency is defined as the SNR normalized by the total 

acquisition time (SNR / sqrt(acquisition time)). 

However, several challenges accompany bipolar sequences [17, 18]. First, phase 

errors induced by readout gradient delays and eddy currents can severely distort 

the reconstruction if not explicitly accounted for. Although these phase errors also 

exist in unipolar acquisitions, they add up to a fixed phase term on all the echoes. 

This does not disrupt the water/fat separation as the relative phase between the 

echoes remains unaffected. In bipolar acquisition, however, the phase errors are 

alternating their polarities between positive and negative readout gradients, 

causing severe artefacts in the water/fat separation process. Phase errors are 

induced in all spatial directions, but are dominated by a linear phase error in the 

readout direction. Resolving linear and high-order phase errors is essential for a 

correct water/fat separation [18]. A second challenge arises from the behaviour of 

the MRI receiver system. The receiver filters often have non-flat frequency response 

[18, 19]. Hence, a k-space point acquired with a negative readout gradient will be 

subject to a different frequency response than if it is acquired with a positive 

readout gradient. This causes an asymmetric amplitude modulation between 

negative and positive polarities along the readout direction. Finally, distortions 

caused by both the chemical-shift of fat signal and the magnetic field 

inhomogeneities appear in opposite directions for positive and negative echoes. 

Existing approaches have been proposed to overcome these challenges.  Yu et al. 

[18] performed phase and amplitude corrections for bipolar acquisitions using 

additional reference lines acquired with reversed polarities. However, the accuracy 

of the water/fat separation is limited by the number of acquired lines. In other 

words, errors can only be completely removed when full resolution reference lines 

are employed, which will double the acquisition time. The application of these 

corrections was only demonstrated for a qualitative 3-point water/fat separation. 
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The feasibility of fat quantification with 6-point bipolar acquisition was recently 

shown by Peterson et al. [20]. They performed a joint estimation of the phase and 

amplitude errors with the water/fat separation process in a least-squares 

estimation procedure. This technique lowers the expected number of signal 

averages (NSA) of the resulting water and fat components. In addition, the initial 

guess for the phase error was determined from the first three echoes; this phase 

map is vulnerable to 2D phase wraps as the employed 1D linear phase unwrapping 

might not be sufficient in clinical practice. The gradient-descent-based 

reconstruction is subject to the conventional drawback of the original IDEAL, where 

the field map estimation process can be trapped in a local minimum, swapping the 

water and fat signals. 

 In this work we propose a new multi-echo bipolar acquisition scheme that 

overcomes the induced phase and amplitude modulations. The proposed acquisition 

and reconstruction strategies eliminate the bipolar artefacts without requiring 

additional correction algorithms. The proposed technique is compared to the 

established unipolar acquisition as the reference for fat quantification. Experiments 

are performed on phantoms and in vivo, showing accurate fat measurements and 

higher SNR efficiency compared to unipolar sequences. 

 

4.2 Theory 

In a multi-gradient-echo bipolar acquisition, the polarity of the readout gradient 

alternates every other echo, such that odd echoes are acquired with positive 

readout gradient while even echoes acquired with negative readout. For instance, 

for a 6-echo acquisition, all k-space lines have positive polarity at TE1, TE3 and TE5, 

and negative polarity in TE2, TE4 and TE6. Representative pulse sequence diagrams 

of the unipolar and the conventional bipolar acquisitions are shown in Figure 4.1 (a) 

and (b), respectively. In this work, a new acquisition scheme is proposed, where all 

readout gradient waveforms alternate their polarities every other k-space line. In 
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other words, the odd-numbered phase-encode lines are acquired in (+ve, -ve, +ve, -

ve, +ve, -ve) polarities, referred to as scheme 1 herein. For the even-numbered 

phase-encode lines, the polarities of the readout gradient are flipped (i.e. -ve, +ve, -

ve, +ve, -ve, +ve), referred to as scheme 2. In this manner, each echo includes phase-

encode lines acquired in both polarities. By separating positive and negative lines, 

two under-sampled datasets are obtained. For instance, if the acquisition was 

performed without acceleration, then each dataset will be subsampled by a factor of 

two. Parallel imaging reconstruction is then performed to produce two fully-

sampled k-space data with opposite polarities. Additional calibration lines are 

required to perform the parallel imaging reconstruction as described later. The 

pulse sequence diagram is shown in Figure 4.2.  

Following the reconstruction, a complex averaging of positive and negative datasets 

is obtained. This last step will overcome the alternating phase and magnitude errors 

between positive and negative acquisitions and can be described as follows:  

Assuming 𝑆𝑜 and 𝑆𝑒 represent the signal acquired at the odd-numbered and even-

numbered lines, respectively, such that 

𝑆𝑜(𝑡𝑛) = 𝑆 𝑒𝑖𝜃 (−1)𝑛                                                        (4.1) 

𝑆𝑒(𝑡𝑛) = 𝑆 𝑒𝑖𝜃 (−1)𝑛+1                                                     (4.2) 

where 

𝑆 =  �𝜌𝑊 + 𝜌𝐹 . � 𝛼𝑚. 𝑒𝑖2𝜋 𝛿𝑚 𝑡𝑛

𝑀

𝑚=1

� . 𝑒𝑖2𝜋 Φ 𝑡𝑛  

Here, 𝜃 = 𝜓 − 𝑖𝛾 is a complex term representing phase (𝜓) and magnitude (𝛾) 

errors [20], 𝑡𝑛 (s) denotes the echo time (TE) (𝑛 = 1, … , 6) of the acquired signal, 𝜌𝑊 

and 𝜌𝐹 are the water and fat components, 𝑀 is the number of peaks in the fat 

spectrum, 𝛿𝑚  (Hz) and 𝛼𝑚 are the frequency and the amplitude of the 𝑚-th peak 
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respectively, and Φ =  𝜑 +  𝑖/(2𝜋 𝑇2∗)  where 𝜑 is the local frequency offset. By 

averaging the positive and negative datasets: 

�̂�(𝑡𝑛) =
𝑆 �𝑒𝑖𝜃 (−1)𝑛 + 𝑒𝑖𝜃 (−1)𝑛+1 �

2
= 𝑆 cos 𝜃                              (4.3) 

Hence the summation removes the alternating errors between even and odd echoes, 

while adding a constant error term instead on all the echoes that does not disrupt 

the water/fat separation process. This step removes the alternating 

phase/amplitude errors without a direct correction algorithm; therefore it is not 

susceptible to residual phase errors that might persist following any correction 

strategy causing biases in fat measurements.  

To perform a self-calibrated parallel imaging reconstruction the centre lines of the 

k-space should be fully-acquired in a single readout polarity; otherwise the 

calibration lines would be disrupted by the phase/magnitude errors between the 

alternating polarities. However, for a complete cancelation of the alternating phase 

errors in Equation 4.3, the polarity of the readout gradient of the calibration lines 

should also match the polarity of the phase-encode lines. To achieve that, the centre 

lines of the k-space are fully-acquired with the two schemes, obtaining two sets of 

calibration lines, one of each polarity. From both schemes, only the calibration lines 

from a single echo time is needed for the reconstruction. Nevertheless, all the centre 

lines of the k-space from the 2 schemes at all the echoes are incorporated in the 

reconstruction for a further increase in the SNR. The workflow of the proposed 

technique is shown in Figure 4.3. It is important to notice that this acquisition 

scheme can be also combined with parallel imaging acceleration, where the 

interleaving strategy is performed only on the acquired (non-zero) lines. 

Following Equation 4.3, water and fat components can be estimated from �̂� using 

conventional field map estimation techniques that are employed with the unipolar 

sequences.  
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Figure 4.1: (a) A representative diagram of the unipolar sequence. All echoes are 

acquired with the same readout gradient polarity (positive). Here all echoes are 

acquired in a single TR (single shot). (b) A representative diagram of the 

conventional bipolar sequence. Odd echoes are acquired with positive polarities 

(blue arrows) while even echoes have negative polarities (red arrows). The bipolar 

acquisition in (b) necessitates employing post-processing phase and magnitude 

correction algorithms before water/fat separation.  
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Figure 4.2: The proposed interleaved bipolar acquisition: Two bipolar schemes are 

employed, where scheme 1 has opposite polarity to scheme 2. The odd lines are 

acquired with scheme 1 while the even lines are acquired with scheme 2. The centre 

lines are fully-acquired with both schemes. 
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Figure 4.3: The reconstruction pipeline for the interleaved bipolar acquisition. The 

centre of k-space acquired with a positive polarity is used in the self-calibrated 

parallel imaging reconstruction of the positive lines, and vice-versa for the negative 

lines. 

 

 

4.3 Methods 

This work was carried out under approval granted by the Office of Research Ethics 

of Western University, Canada. All experiments were performed on a 3T MR 

(Discovery MR 750, GE Healthcare, Waukesha, WI). An investigational version of 

multi-echo 3D IDEAL-SPGR was modified to acquire data in an interleaved bipolar 

readout scheme. In all phantom and in vivo experiments, 6 echoes were acquired as 

recommended for accurate fat quantification [13]. Flip angle of 3° was used in all 

experiments to minimize the T1-related bias [11]. Optimal echo-spacings were 

targeted in all the acquisitions to maximize the noise performance [15, 16]. 

Consequently, interleaved bipolar acquisitions were obtained in a single shot (echo-

train-length =6), while 2 shots (echo-train length = 3) were used in unipolar 

acquisitions. The size of the additional calibration lines of all the interleaved bipolar 

acquisitions was fixed to ky x kz = 24 x 24 lines. For comparisons of SNR maps, a 

calibration centre of ky x kz = 24 x 24 was used in both unipolar and interleaved 

bipolar acquisitions.  
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Phantom experiments were performed with the interleaved bipolar sequence and 

compared to the unipolar sequence as an established reference. First, axial 

acquisition of a pure-water spherical phantom was obtained with both sequences 

using a head receive-only 8 coil-array at a bandwidth = ±142.86 kHz, acquisition 

matrix = 160x160x40, FOV=32 cm x 32 cm and slice thickness = 6 mm for both 

sequences. TR/TE1/ΔTE = 6.74/1.04/0.82 ms for the unipolar acquisition and 

6.82/0.98/0.88 ms for the interleaved bipolar acquisition. The acquisition time was 

86 s and 50 s for unipolar and interleaved bipolar acquisitions, respectively. Second, 

a phantom set with different fat fraction values was prepared from a mixture of agar 

and peanut oil as described in [21]. Five 60mL plastic vials were prepared with fat 

percentages of 0%, 5%, 10%, 20% and 100% respectively. Coronal acquisition of the 

phantoms were obtained using a torso receive-only 8 coil-array at a BW = ±100 kHz, 

acquisition matrix = 128x128x22, FOV=22 cm x 22 cm and slice thickness = 6 mm 

for both sequences. TR/TE1/ΔTE = 7.38/1.13/0.90 for the unipolar acquisition and 

7.64/1.10/0.99 ms for the interleaved bipolar acquisition. The acquisition time was 

42 s and 26 s for unipolar and interleaved bipolar acquisitions, respectively.  

In vivo experiments were performed on 2 healthy volunteers where abdominal and 

knee datasets were acquired from each volunteer. For all experiments both unipolar 

and interleaved bipolar acquisitions were obtained. 

An oblique knee dataset was acquired from volunteer (A) at approximately 10° from 

the sagittal plane along the S/I axis using a knee transmit-receive 8 coil-array at a 

BW=+142.86 kHz, FOV=24 cm x 18 cm, matrix size=160x144x40, slice thickness=3 

mm for both sequences; TR/TE1/ΔTE = 8.75/1.33/1.13 ms and 10.57/1.4/1.06 ms 

for unipolar and interleaved bipolar acquisitions, respectively. The acquisition time 

was 122 s for unipolar and 56 s for interleaved bipolar, respectively. Another 

oblique knee dataset was acquired from volunteer (B) at approximately 15° from 

the sagittal plane using a knee transmit-receive 8 coil-array at a BW=+142.86 kHz, 

FOV=24 cm x 18 cm, matrix size=160x168x32 and slice thickness=4 mm for both 

sequences; TR/TE1/ΔTE = 10.95/1.47/1.108 ms and 8.51/1.29/1.104 ms for 
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unipolar and interleaved bipolar acquisitions, respectively. The acquisition time was 

118 s for unipolar and 52 s for interleaved bipolar, respectively.  

Whole-liver coverage was achieved in all the abdominal acquisitions and parallel 

imaging acceleration was used to keep the acquisition times within a ~25 s breath-

hold. Abdominal data from volunteer (A) were acquired with a cardiac receive-only 

8 coil-array at a BW=+125 kHz, FOV=36 cm x 27 cm, matrix size=160x120x24, slice 

thickness=8 mm for both sequences; TR/TE1/ΔTE = 5.36/0.82/0.65 ms and 

7.1/0.91/0.96 ms for unipolar and interleaved bipolar acquisitions, respectively. 

Parallel imaging with an outer acceleration of 1.3x1 for unipolar and 1x1 

interleaved bipolar was used for a total scan time of 25s for each sequence. 

Abdominal data from volunteer (B) was acquired with a torso receive-only 32 coil-

array at a BW=+100 kHz, FOV=34 cm x 25.5 cm, matrix size=160x120x32, slice 

thickness=8 mm for both sequences; TR/TE1/ΔTE = 6.16/1.01/0.82 ms and 

8.21/1.06/1.12 ms for unipolar and interleaved bipolar acquisitions, respectively. 

For an acquisition time of 25 s, an outer acceleration factor of 2x1.25 and 1.15x1.5 

was used for unipolar and interleaved bipolar, respectively. 

Following the separation of positive and negative phase-encode lines, conjugate-

gradient SENSE [22] was used to reconstruct two fully-sampled datasets with 

opposite polarities. The first echo – which is positive in scheme 1 and negative in 

scheme 2 – was used for the self-calibration. A complex averaging of the two 

reconstructed sets was then performed. Magnetic field inhomogeneities were 

estimated from the averaged dataset using Max-IDEAL [7]. A complex multi-peak 

fitting with a single T2* decay was considered in the water/fat reconstruction. A pre-

calibrated fat spectrum was used [13] with the frequency and amplitude values 

described in [7]. To compare the accuracy of fat quantification from the phantom 

experiments, noise-bias correction of the fat fraction maps were performed on both 

techniques [11]. Signal-to-noise maps were calculated using the generalized pseudo-

replica method [23]. Three replicas of the acquired data were obtained offline by 

adding pseudo-random Gaussian noise, then the standard deviation of the noise 
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variations in space ([7x7x5] neighborhood) and through the replicas were used to 

calculate the SNR maps [23]. In all experiments, noise-only scans were acquired at 

the same bandwidths and amplitude gains as the corresponding unipolar and 

interleaved bipolar acquisitions, in order to correctly calculate and scale the noise 

covariance matrix [23, 24]. 

 

4.4 Results 

Figure 4.4 shows the fat fraction images from a pure-water sphere acquired using 

unipolar and bipolar acquisitions. As shown in Figure 4.4, phase errors from the 

readout gradient cause fat fraction bias in the unipolar acquisition; this effect is not 

observed in the interleaved bipolar sequence. Phase errors occur in the unipolar 

acquisition from either eddy-currents or other imperfections of the MRI gradients. 

However, in the interleaved bipolar acquisition, these errors have opposite 

polarities from positive and negative readout gradients; hence they cancelled out 

through the complex summation, resulting in correct fat fraction measurements 

without requiring additional correction steps. 

Fat quantification from unipolar and interleaved bipolar acquisitions was 

performed on selected ROIs on the fat fraction images as shown in Figure 4.5 (a), 

where the same ROIs were used in both experiments. Figure 4.5 (b) shows the error 

in fat fraction measurement (True fat fraction – measured fat fraction) from both 

sequences after performing the noise-bias correction. The results of the interleaved 

bipolar acquisition demonstrated accurate fat measurements without further 

correction algorithms. It is worth noting that the standard deviation of the errors 

was slightly larger in the interleaved bipolar results than the unipolar sequence. 

This can be expected as the reconstruction pipeline of the interleaved bipolar 

subsamples the data which results in a g-factor induced SNR loss.  
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Figure 4.4: Fat fraction images (ranging from 0% to 5%) of a pure-water phantom 

from unipolar (a) and interleaved bipolar (b) axial acquisitions. Phase errors from 

the readout gradient cause fat fraction bias in the unipolar acquisition, while the 

errors were negligible in the interleaved bipolar results. 

 

 

 

Figure 4.5: Results from a coronal acquisition of the phantom set. (a) Fat fraction 

map of the phantom set with the locations of the 5 vials of different fat fractions 

indicated. (b) Differences between the true and the measured values from the two 

sequences, demonstrating accurate fat quantification obtained using the interleaved 

bipolar compared to the unipolar sequence. 
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Figure 4.6 demonstrates the efficiency of the interleaved bipolar sequence for in vivo 

applications. Water and fat images with their corresponding SNR efficiency maps 

from oblique knee acquisitions from volunteer (B) are shown. The interleaved 

bipolar sequence demonstrated higher SNR efficiency compared to the unipolar 

sequence. Excellent water/fat separation that does not suffer from phase/amplitude 

errors was obtained with the proposed technique. As shown in the figure, two ROIs 

were selected on the fat fraction maps to compare the fat quantification results. Fat 

fractions in ROI #1 were 1.28 + 3.4 and 1.48 + 3.9 in the unipolar and interleaved 

bipolar acquisitions respectively, while ROI #2 values recorded 96.84 + 3.6 and 

96.76 + 3.5, respectively. The interleaved bipolar technique can therefore produce 

accurate fat fraction maps in a significantly shorter acquisition time compared to the 

unipolar sequence (52 s vs. 118 s) in a fully sampled acquisition. 

 

 
Figure 4.6: Water and fat images of a volunteer’s knee were obtained with the 

interleaved bipolar (upper row) and the unipolar sequence (lower row). SNR 

efficiency maps in (b) and (d) are scaled from [0, 1]. The 2 ROIs in (e) were used for 

the fat quantification results reported in the text, and demonstrated that accurate 

fat fractions were obtained with the 2 sequences. However, the SNR efficiency maps 

(b and d) show that higher SNR efficiency was obtained with the bipolar sequence.  
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Abdominal acquisitions from volunteer (A) are shown in Figure 4.7. Whole-liver 

coverage was achieved in a single ~25 s breath-hold with each sequence by 

adjusting acceleration factors. Excellent water/fat separation that does not suffer 

from phase/amplitude errors was obtained with the interleaved bipolar sequence. 

As shown in Figure 4.7, an ROI is selected in the liver to compare the quantification 

results. The fat fraction was 3.92 + 2.2 and 3.00 + 1.8 in the unipolar and interleaved 

bipolar acquisitions, respectively. Accurate fat fraction maps obtained from the 

interleaved bipolar sequence compared to the standard unipolar acquisition.  

 

 

Figure 4.7: (a) Water, (b) fat and (c) fat fraction maps of a whole-liver acquisition 

from the interleaved bipolar (upper row) and the unipolar (lower row) sequences, 

respectively. The ROIs selected in the liver in (c) were used for the fat quantification 

results reported in the text, and demonstrated that accurate fat fraction was 

obtained with the interleaved bipolar sequence. 
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As the interleaved bipolar acquisition is implicitly faster than its corresponding 

unipolar sequence, so less parallel imaging acceleration is needed during the 

acquisition and higher SNR can be achieved as shown in Figure 4.8. The SNR in the 

liver was ~30% higher in the water image using the proposed sequence. It is worth 

noting that the echo-timing of the interleaved bipolar acquisition (TE1/ΔTE) is 

expected to achieve lower noise performance than its corresponding unipolar 

acquisition [16], particularly at low fat fractions; however the SNR gain from the 

efficiency of the interleaved bipolar is still remarkably higher than the unipolar 

acquisition. 

 

 

Figure 4.8: SNR maps of the 2nd echo (a), the water (b) and the fat (c) images from 

the interleaved bipolar (upper row) and the unipolar (lower row) sequences, 

respectively. Higher SNR was obtained in all the images with the proposed bipolar 

sequence. 
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4.5 Discussion 

We demonstrated a new multi-echo bipolar acquisition and reconstruction 

technique that does not require phase nor magnitude corrections. The interleaved 

bipolar acquisition is more SNR efficient than the current established unipolar 

sequence. The efficiency of the sequence resides from: 1) the removal of fly-back 

gradients; 2) its ability to acquire the 6 echoes within the optimal range of echo 

spacing in a single TR at 3 Tesla, while 2 shots are required in the unipolar sequence 

to achieve similar noise performance. The efficiency of the interleaved bipolar is 

more significant at high bandwidth and small FOVs where the fly-back gradients of 

the unipolar sequence further prolong the acquisition time. For time-restricted 

acquisitions, the proposed acquisition offers higher SNR than its corresponding 

unipolar version. As shown in the abdominal examples, whole-liver coverage in a 

single breath-hold (~25 s) required lower parallel imaging acceleration than the 

unipolar acquisition, so higher SNR was achieved. It is worth noting that in order to 

mitigate SNR losses from increasing g-factor, higher acceleration is used in the slice 

direction first, as the reconstruction method implicitly introduces an additional 

subsampling of 2 in the phase-encode direction. 

Another advantage of the interleaved bipolar technique is that it significantly 

reduces the phase errors induced in the unipolar acquisition (Figure 4.4), where 

additional correction of the acquired data is required before performing the 

water/fat separation process. It is worth noting that the induced phase errors 

depend on the selected physical axis used in the readout. We noticed that these 

errors are negligible when the readout direction is on the Z-axis (head-foot 

direction) and therefore coronal acquisitions were performed in Figure 4.5 for 

comparisons of fat fractions. Finally, the complex addition markedly reduces the 

residual aliasing remaining after parallel imaging reconstruction. Data 

reconstructed from each readout polarity have similar aliasing artifacts but with 

opposite phases [25], hence the residual aliasing is cancelled after the complex 

summation. 
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The proposed technique is limited to coil-arrays as the reconstruction pipeline 

implicitly decimates the data by a factor of 2 and uses parallel MRI to reconstruct 

two fully sampled datasets. However, this limitation is not significant given the 

widespread usage of coil-arrays in clinical practice. It is important to notice that as 

the reconstruction pipeline implicitly undersamples the data in the phase-encode 

direction, the selection of phase and slice-encode directions should be carefully 

performed even in the unaccelerated acquisitions, in order to minimize the residual 

aliasing of the parallel MRI reconstruction. Another drawback of the proposed 

technique is that an additional acquisition of the center of k-space is required for the 

reconstruction, which increases the total acquisition time. Nevertheless, a further 

improvement in the SNR is also obtained as the additional lines are included in the 

reconstruction process. Also the total scan time is still less than the unipolar 

acquisition. Finally, we noticed that residual phase errors might remain after the 

complex summation step at the locations of low signal; this has only occurred at the 

edges of the coil where typically low signal is received.  

 

4.6 Conclusion 

A new bipolar acquisition strategy that provides accurate fat quantification in 

shorter scan time has been demonstrated. The interleaved bipolar sequence is 

shown to be more efficient for fat quantification as it benefits from the advantages 

of bipolar readouts, while producing fat measurements as accurate as the well-

established unipolar acquisitions. The proposed acquisition and reconstruction 

technique compensates for the alternating phase and amplitude errors without 

requiring correction algorithms. Phantoms and in vivo experiments were conducted 

and accurate fat fraction maps with higher SNR efficiency were demonstrated. 
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Chapter 5 

An Efficient Chemical-shift Encoded 

Acquisition for in-vivo Applications1  

5.1 Introduction 

Obesity represents a huge burden on the healthcare system in Canada and 

worldwide. Measuring and localizing the distribution of fat in the human body is 

important for obesity-related research. For example, it was shown that the visceral 

fat in the body is a better and independent predictor for obesity-related diseases 

than total the Body Mass Index (BMI) [1]. Chemical-shift imaging has been therefore 

employed in this task for its ability to separate the fat component from the water. It 

has been used to visualize and quantify the distribution of fat in various human 

organs [2-12]. Applications include measuring the total body fat [13] and separating 

                                                           
1 This chapter is adapted from an article currently in submission: Soliman, A.S., Friesen-Waldner, L.J., 
Sinclair, K.J., Regnault, T.R.H., Peters, T.M., and McKenzie, C.A. An Efficient Chemical-shift Encoded 
Acquisition for in-vivo Applications. Journal of Magnetic Resonance Imaging (2014). 

“Do what you can, with what you have, where you are” 
- Theodore Roosevelt 
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different abdominal fat compartments such as visceral and subcutaneous fat depots 

[14]. 

Animal models are extensively used to research human obesity for ethical and 

practical reasons. For example, animals can be regulated on specific diets while 

monitoring the accompanying anatomical and physiological changes over time on 

different organs. Animal models allow better regulated observation of the effects of 

obesity with fewer barriers to research than in humans. Furthermore, they have 

short generation time, which allows studying the effect of obesity over several 

generations. Mice, rats hamsters, rabbits and guinea pigs can be used as 

experimental models, where the disease to be investigated is experimentally 

induced in the healthy animal for further study.  

Guinea pigs models are used in obesity research due to their similarity to humans in 

regard to metabolic aspects [15, 16]. For example, they show evidences of similar 

hepatic cholesterol concentrations and synthesis as humans. Guinea pigs models are 

used to study the effect of different dietary fat and cholesterol on hepatic 

metabolism [17-19], lipid accumulation [20], lipoprotein metabolism [15], whole 

body and hepatic cholesterol synthesis [21], atherosclerosis [15, 16], metabolic 

syndrome [17] and type-II diabetes mellitus [16]. They accumulate adipose tissue 

during intrauterine life similar to human fetuses [22], and hence they become a 

suitable model to explore human adiposity, particularly in early stages of life.  

Chemical-shift encoded water/fat imaging has been previously utilized for fat 

quantification in the animal model [23-28].  Multi-echo gradient echo sequences are 

usually used, where 6 echoes are acquired as recommended for fat quantification 

[23, 27, 29]. As discussed in Chapter 4 these acquisitions often employ unipolar 

readout gradients, which are less efficient than bipolar acquisitions.  
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In Chapter 4, a new bipolar acquisition/reconstruction strategy for water/fat 

imaging was proposed. The technique demonstrated its efficiency and its accuracy 

in phantom and human experiments. In this chapter we will utilize our new bipolar 

sequence in animal experiments, allowing the acquisition of all the echoes within 

approximately half the acquisition time of the unipolar sequence. Additionally, we 

show that the interleaved bipolar sequence can acquire the data with higher 

resolution (approximately half the voxel size) within the same time frame as 

conventional unipolar sequences. Moreover, we compare the SNR maps of both 

sequences, demonstrating the efficiency of the interleaved bipolar sequence. 

Alternatively, the number of echoes can be doubled using the proposed bipolar 

sequence, benefiting from the short acquisition time. This chapter widens the scope 

through which we can benefit from the proposed bipolar sequence, by proving its 

efficiency in animal models. 

 

5.2 Methods and Experiments 

5.2.1 MRI Acquisition  

The experiments were carried out under ethical approval granted by the Animal Use 

Subcommittee of the Office of Research Ethics at Western University, Canada. Four 

guinea pigs, born in our facility, were fed a normal chow diet since birth. MRI 

scanning was performed on the animals at approximately 3 months of age. In 

preparation for scanning, the guinea pigs were anesthetized with isoflurane (4% 

initially and maintained at 1.5 to 2% isoflurane with oxygen) and a catheter was 

inserted into a vein in the foot.  Breathing rate and temperature were monitored 

and held constant throughout the experiment. All experiments were performed on a 

3T MR system (Discovery MR 750, GE Healthcare, Waukesha, WI). Both unipolar and 

interleaved bipolar acquisitions were performed on all the animals using a cardiac 

receive-only 32 coil array. An investigational version of multi-echo 3D IDEAL-SPGR 

was modified to acquire data in an interleaved bipolar readout scheme, as shown in 
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Chapter 4. We used a unipolar sequence adapted from a protocol employed in 

measuring hepatic fat fraction in guinea pigs [27]. Similar echo spacings were 

targeted in all comparisons in order to achieve same noise performance [30-33]. 

Consequently, all interleaved bipolar acquisitions were obtained in a single shot 

(echo-train-length =6), while 2 shots (echo-train length = 3) were used in all 

unipolar acquisitions. The size of the additional calibration lines of all the 

interleaved bipolar acquisitions was fixed to ky x kz = 28 x 28 lines. T1-related bias 

was minimized in all acquisitions by using low flip angle (= 3°). Four acquisitions 

were performed on each guinea pig as follows:  

A. A 6-echo unipolar acquisition with ETL=3, TR/TE1/ΔTE = ~13.0/1.22/1.02 

ms, FOV = 26 cm x 15.6 cm, flip angle = 3 °, slice thickness = 0.9 mm, 

bandwidth = + 142.86 KHz, number of excitations (NEX) = 3. Whole animal 

coverage was achieved using an acquisition matrix = 276 x 182 x 84 for 

guinea pigs 1 and 2, and 276 x 182 x 88 for guinea pigs 3 and 4. Therefore the 

voxel dimensions were 0.94 x 0.86 x 0.9 mm3 (voxel size = 0.728 mm3). 

Parallel imaging acceleration was not used. Total acquisition time was 

approximately 20 mins. 

B. A 6-echo interleaved bipolar acquisition with ETL = 6, TR/TE1/ΔTE = 

~13.0/1.25/1.29 ms. All other acquisition parameters are the same as the 

unipolar sequence in (A). Parallel imaging acceleration was not used. Total 

acquisition time was approximately 10 mins. 

C. A 6-echo unipolar acquisition with an outer acceleration factor of 1.42 x 1.42 

to achieve similar acquisition time as the interleaved bipolar in (B). All other 

acquisition parameters were kept the same as in (A). 

D. A high resolution 6-echo interleaved bipolar acquisition, where the spatial 

resolution of the bipolar sequence (B) was increased till the acquisition time 

equals the unipolar sequence (A) (i.e. ~20 mins). Here we considered the 

acquisition time of the unipolar sequence in (A) as the baseline, and we 
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therefore utilized the short acquisition time of the bipolar sequence in (B) to 

obtain higher spatial resolution. Whole animal coverage was achieved using 

acquisition matrix = 276 x 278 x 108 for guinea pigs 1 and 2, and = 276 x 278 

x 112 for guinea pigs 3 and 4, with slice thickness of 0.7 mm for all 4 guinea 

pigs. The voxel dimensions were 0.94 x 0.56 x 0.7 mm3 (voxel size = 0.368 

mm3). All other acquisition parameters were kept the same as in (B). 

As noted, the resolution is doubled in (D) as the voxel volume is approximately half 

the size of that in (A). It is important to notice that in order to preserve similar echo-

spacing as the unipolar sequence in (A), the resolution was only increased in the 

phase- and slice-encode directions. This will preserve similar noise performance 

between the sequences in comparisons (i.e. A and D) [30-33]. 

We found that the size of the acquired data from the high resolution interleaved 

bipolar sequence in (D) was too large to be handled by the current available 

processing unit. Hence, only half the number of slices prescribed in (D) was 

acquired for each guinea pig, while the number of excitations (NEX) was set to 6 

(instead of 3 originally) to compensate for the loss of SNR resulting from acquiring 

half the prescribed slice-encodes. Consequently the acquisition time was kept at 

~20 mins as prescribed. In all experiments, noise-only scans were acquired at the 

same bandwidths and amplitude gains as the corresponding unipolar and 

interleaved bipolar sequences, in order to correctly calculate and scale the noise 

covariance matrix [34, 35]. 
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5.2.2 Water/Fat Reconstruction 

The acquired raw data were processed on an Intel i7 CPU with 6-cores @ 3.2 GHz 

and 48 GB of RAM. The interleaved bipolar acquisitions were reconstructed as 

described in Chapter 4. Positive and negative lines were separately processed using 

Conjugate-gradient SENSE reconstruction [36]. The resulting positive and negative 

datasets were complex-added and then fed into Max-IDEAL [37, 38] to generate 

water and fat components. T2* decay and accurate fat spectrum were both included 

in the reconstruction to minimize the related-bias [11, 29, 39, 40], as well as to 

avoid water/fat swaps [37]. A pre-calibrated fat spectrum was used with the 

frequency and amplitude values described in [37]. The inclusion of T2* effect in the 

Max-IDEAL labeling stage was done using 4 initial T2* values: 5, 10, 50 and 60 ms. 

The smoothing parameter 𝛽 was set to 1.5 in all unipolar and bipolar experiments. 

All other parameters of MAX-IDEAL were kept at the default values described in 

[37]. The Potts labeling stage in Max-IDEAL was accelerated on a graphics 

processing unit (GPU) NVIDIA GeForce GTX 660 with 960 CUDA cores. SNR maps 

were calculated using the generalized pseudo-replica method [35]. Normalized SNR 

efficiency maps were calculated by normalizing for the acquisition time and for the 

voxel dimensions.  
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5.3 Results 

Water and fat components were successfully reconstructed from all unipolar and 

interleaved bipolar sequences from the 4 guinea pigs. In the first experiment the 

scan was interrupted to double-check the vital signs of the guinea pig; the MR table 

was moved out and the animal was re-located. The noise scan was not employed in 

the SNR calculation of this experiment. In the same experiment, we found that the 

high resolution sequence described in (D) produced a raw-data file with a size that 

exceeded the maximum available storage disk mounted on the MR console machine. 

Hence, sequence (D) for the first guinea pig was repeated in a separate day after 

replacing the hard drive, and its SNR measure was excluded from the comparisons. 

SNR efficiency maps of all 4 sequences were calculated for the other 3 animals using 

the noise covariance matrix. To compare the high resolution sequence (D) with the 

other sequences, we manually selected the closest slice with similar anatomy to the 

other sequences.  

In all comparisons, the interleaved bipolar sequences (B and D) have consistently 

demonstrated higher SNR efficiency for water and fat components compared to the 

unipolar sequences (A and C). An exception to that is around the diaphragm where 

the respiratory motion artifacts cause noticeable SNR drop (See Discussion section). 

A typical example is presented in Figures 5.1-5.3. The water component with 

corresponding SNR efficiency maps from each of the 4 sequences are shown in 

Figure 5.1. Similarly, the fat component and its SNR efficiency are shown in Figure 

5.2. In all comparisons, the accelerated unipolar sequence has the lowest SNR 

efficiency (sequence C) while the high resolution interleaved bipolar (sequence D) 

shows the highest efficiency. As shown in Figures 5.3, accurate fat fraction maps 

from the interleaved bipolar sequences were also obtained.  Phase and magnitude 

errors were completely negligible in all the bipolar acquisitions.  
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Figure 5.1: The water component (upper row) and its corresponding SNR efficiency 
map (lower row) from the four sequences. The interleaved bipolar sequences (B and 

D) demonstrate higher SNR efficiency compared to the corresponding unipolar 
sequences (A and C) 

 

  



128 
 

 

 

Figure 5.2: The fat component (upper row) and its corresponding SNR efficiency 
map (lower row) from the four sequences. The interleaved bipolar sequences (B and 

D) demonstrate higher SNR efficiency compared to the corresponding unipolar 
sequences (A and C) 
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Figure 5.3: The fat fraction images from the four sequences. (A) Unipolar, (B) 
Interleaved bipolar, (C) Accelerated unipolar, (D) High resolution interleaved 

bipolar. Accurate fat fraction was obtained with the interleaved bipolar sequences 
compared to their corresponding unipolar sequences. 
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Figure 5.4 demonstrates the ability of the high resolution interleaved bipolar 

sequence (D) to clearly depict adipose tissue structures that cannot be identified 

using the unipolar sequence (A), without further increase in the acquisition time. 

Subcutaneous and intra-abdominal adipose tissue structures can be identified using 

the interleaved bipolar sequence (D), while partial volume effects prevent the clear 

depiction of the same structures in the unipolar sequence (A). 
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Figure 5.4: Fat fraction, water and fat images from 2 different slices are shown. For 

each example, the top image is an axial reformat of a fat fraction map from the 

unipolar sequence. A zoomed view of the region highlighted inside the red box is 

shown.  The arrows indicate the anatomical structures that were clearly identified in 

the high resolution interleaved bipolar images, while they are not clearly depicted in 

the unipolar results.  

Example 1 

Example 2 
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5.4 Discussion  

In this chapter we demonstrated the efficiency of the interleaved bipolar technique 

for in-vivo applications in animal models using 4 different sequence protocols: 

Unipolar sequence (A) vs. interleaved bipolar sequence (B):  

The bipolar acquisition scheme does not employ flyback gradients and hence 

optimal echo-spacing for a 6-echo acquisition was achieved in one TR (ETL = 6). 

This has significantly shortened the total acquisition time: ~10 mins using (B) 

compared to ~20 mins using (A), while providing accurate fat fraction maps. This 

suggested that the interleaved bipolar technique (B) is a more efficient alternative 

to the unipolar sequence (A).  

Accelerated unipolar sequence (C) vs. interleaved bipolar sequence (B):  

Remarkable SNR loss of both water and fat can be noticed using parallel imaging 

acceleration in (C) compared (B), confirming that the interleaved bipolar is a better 

option for faster acquisition.  

Unipolar sequence (A) vs. high resolution bipolar sequence (D):  

The resolution was doubled using the interleaved bipolar sequence within the same 

scan time as the unipolar sequence. Accurate fat fraction and higher SNR efficiency 

were also achieved.  

Taking the unipolar sequence (A) as a baseline for our comparisons, there are 

several ways to benefit from the short acquisition time of the interleaved bipolar 

scheme. One straightforward way is to double the number of excitations (NEX) to 

enhance the SNR. A second alternative is to double the number of echoes, which can 

potentially enhance the noise performance of the resultant species. Here we chose 

to double the spatial resolution by increasing the number of phase and slice 

encodes. For comparisons, however, the frequency resolution was not altered in 

order to preserve similar echo-spacing as the unipolar sequence (A) and therefore 

similar noise performance [30-33]. For a single-shot acquisition, higher spatial 

resolution in the frequency-encode direction will result in larger echo-spacing in 
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sequence (D) and hence degraded image quality [30-33]. On the other hand, 

multiple shots in (D) can achieve better echo-spacing (and hence better noise 

performance) than its corresponding in (A). In practice it is possible to acquire the 

interleaved bipolar sequence on multiple shots, which will enhance the noise 

performance (better echo-spacing) but will increase the total acquisition time.  

We noticed in some cases that there is a more significant SNR loss around the 

diaphragm in the interleaved bipolar (B) than its corresponding unipolar sequence 

(A). We also found more significant breathing motion artifacts in 2 out of 4 animals 

in the interleaved bipolar (B) than unipolar (A). We concluded that the interleaved 

bipolar technique is potentially more sensitive to motion artifacts, as it acquires two 

k-space centres (with positive and negative readout gradients) at two different time 

frames. The resultant complex-added images therefore might exhibit significant 

motion artifacts. For respiratory motion particularly, this problem can be easily 

addressed by using respiratory-gated imaging. Furthermore, in human applications, 

abdominal and thoracic water/fat imaging is often combined with either 

respiratory-gating or performed during breath-holds, which will prevent possible 

breathing motion. The interleaved bipolar might be, however, more sensitive to 

other non-gated/unexpected sources of motions (e.g. physical motion of patient). 

However, faster acquisitions (~ half scan time) are always achieved with the 

interleaved bipolar sequence compared to the unipolar one. Hence it is a trade-off 

between the acquisition speed and the potential reduction of motion artifacts. 
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5.5 Conclusion  

In this work, we demonstrated that the interleaved bipolar sequence is more 

efficient than its counterpart unipolar sequence for in-vivo applications. An imaging 

protocol previously used for guinea pig fat quantification [27] was adopted and used 

as the baseline of the comparisons. The interleaved bipolar technique produced 

accurate fat fraction map in half the acquisition time of the unipolar and achieved 

double the resolution of the unipolar sequence within the same scan time. Higher 

SNR efficiency with accurate fat fraction maps were achieved in all experiments, 

suggesting that the interleaved bipolar is a better alternative for in-vivo applications 

than the current unipolar sequence employed in clinical practice. 
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Chapter 6 

Conclusion and Future Work 

6.1 Summary 

Clinical and scientific interest in fat quantification using MRI has grown remarkably 

in the last decade. Quantifying the tissue fat concentration is important for several 

diseases in various organs including liver [1], heart [2], skeletal muscle [3, 4] and 

kidney [5] as well as quantifying white and brown adipose tissue [6, 7]. The growing 

of clinical need for fat quantification is accompanied by the need to establish 

accurate biomarkers for quantification [8]. Proton Density Fat Fraction (PDFF) is 

currently, by consensus, the most appropriate and practical MR-based biomarker 

for measuring tissue fat concentration [8]. It is the ratio of density of mobile protons 

from fat to the total density of mobile protons from both fat and water. PDFF can be 

generated by either spectroscopy (MRS)-based or imaging-based methods. Both 

techniques rely on the chemical-shift between water and fat. However, MRS-based 

methods generate single-voxel measurements, while imaging-based methods are 

capable of producing fat concentration maps for the entire organ(s) under 

“Science is a wonderful thing if one does not have to 
earn one’s living at it” 

- Einstein 
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examination. Chemical-shift encoded imaging acquires several images at different 

echo-times where water and fat exhibit different phase shifts [9]. Post-processing 

techniques are then applied to separate both water and fat components. PDFF is 

consequently calculated by dividing the ratio of the fat signal by the total signal from 

both species, obtaining fat fraction map. In order to obtain an accurate PDFF map, 

several confounding factors must be considered, such as the magnetic field 

inhomogeneities [10], T1*-related bias [11], T2* decay [12] and the complex 

frequency spectrum of fat [13], noise-related bias [11] and eddy currents [14, 15]. 

Once all the factors are considered, the PDFF will reflect the underlying fat 

concentration, which is a characteristic property of the tissue. While several 

techniques were proposed to address the confounding factors, there is extensive 

ongoing research to improve the precision and the reproducibility of the PDFF 

measurements for clinical use. 

In this dissertation we proposed new acquisition and reconstruction techniques to 

address several challenges to accurate MRI fat quantification. Chapter 2 and 3 

proposed new reconstruction techniques, while Chapter 4 and 5 demonstrated a 

new acquisition scheme with its in-vivo applications. 

 

6.1.1 A Convex Relaxation Approach to Water/Fat Separation 

with Minimum Label Description (Chapter 2) 

In Chapter 2 a novel technique to estimate magnetic field inhomogeneities is 

proposed [16]. Resolving the local frequency variations in the main magnetic field 

represents the main obstacle for water/fat separation process. Previous work relied 

on spatial smoothness constraints; while the presented method employed a multi-

labeling model to resolve the ambiguity of the estimation. The field map is 

generated using a convex-relaxed multi-labeling model, where each label represents 

a frequency offset. To reduce the vulnerability of converging to local minima an 

additional cost is added to penalize the number of employed labels. This will enforce 

fewer labels to be used in the minimization process, and hence improves the 
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performance of the field map estimate. The estimate is subsequently refined using 

an iterative gradient-descent based IDEAL process. The signal model incorporates 

the complex multi-peak fat spectrum. Experiments were performed using low flip 

angle to minimize the T1-related bias. T2* was not considered in this model. In-vivo 

experiments were performed on cardiac and abdominal datasets demonstrating 

correct water/fat separation. The results were compared against the widely-used 

region-growing method and have demonstrated significantly better performance in 

cases of abrupt changes in the magnetic field. 

 

6.1.2 Max-IDEAL: A Max-Flow Based Approach to IDEAL 

Water/Fat Separation (Chapter 3) 

In Chapter 3 the convex relaxation method employed in Chapter 2 is optimized to 

improve the robustness of the water/fat estimation [17]. A new inclusive approach 

was employed to integrate the T2* decay in the estimation process, where few T2* 

values are summed up at each label during the labeling process. The resultant field 

map estimate becomes therefore more representative of the signal model and more 

robust to local minima. In addition, an adaptive spatial filtering was introduced after 

the labeling procedure to enhance the performance of the method. A continuous 

max-flow approach was employed to address the labeling model, while T2*-IDEAL is 

applied in the second stage; the technique is therefore called Max-IDEAL. Data 

provided by the ISMRM challenge 2012 on water/fat separation were used to 

demonstrate the robustness of the technique. The accuracy of water/fat separation 

was calculated by taking the ratio of voxels with correct separation to the total 

number of voxels (excluding background noise). Max-IDEAL scored 98.44% success 

rates from all processed cases. Comparisons against recent robust techniques such 

as the graph-cut and FLAME methods were also performed on in-vivo data, 

demonstrating successful water/fat separation while the other methods failed. 
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6.1.3 Fat Quantification Using an Interleaved Bipolar 

Acquisition (Chapter 4)  

In Chapter 4 we propose a novel acquisition scheme for fat quantification using 

bipolar readout gradients. The proposed bipolar sequence is more efficient than the 

current unipolar sequence currently employed in clinical practice. A multi-echo 

bipolar acquisition is employed such that the even echoes have opposite polarity to 

the odd echoes. The readout gradients alternate their polarities every other phase-

encode line. Each echo, therefore, consists of phase-encode lines with both positive 

and negative polarities. Phase-encodes acquired with the same polarity are grouped 

together, and parallel imaging reconstruction is used to obtain two full k-space 

maps with opposite readout polarities at all the echoes. By complex averaging, the 

inconsistent phase errors between odd and even echoes are removed and water/fat 

separation techniques employed with conventional unipolar sequences can be 

performed. The acquisition and reconstruction pipeline overcomes the bipolar 

artefacts known to corrupt the water/fat separation procedure. Phantoms and in-

vivo experiments demonstrated accurate fat fraction and increased SNR efficiency 

compared to the established unipolar acquisition. Phase and magnitude artefacts 

from the bipolar acquisition were eliminated in all experiments.  

 

6.1.4 An Efficient Chemical-shift Encoded Acquisition for in-vivo 

Applications (Chapter 5) 

In Chapter 5 we demonstrated the efficiency of the interleaved bipolar sequence 

proposed in the previous chapter over the conventional unipolar acquisition in 

animal experiments. Chemical-shift encoded water/fat imaging is utilized in the 

animal model to visualize the fat distribution as well as to quantify the fat 

concentration. Fat and water images with high spatial resolution are required. Four 

guinea pigs were scanned using the unipolar and the interleaved bipolar 

acquisitions. A unipolar imaging protocol previously used for guinea pig fat 
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quantification was adopted and used as the baseline of the comparisons. The 

interleaved bipolar acquisition produced accurate fat fraction maps in half the 

acquisition time of its corresponding unipolar sequences (~10 mins vs. ~20 mins, 

respectively). Similar TE1 and echo-spacing were preserved to achieve similar noise 

performance in all comparisons. Using the interleaved bipolar sequence, the spatial 

resolution was doubled while keeping the same acquisition time as the standard 

unipolar sequence. Higher SNR efficiency with accurate fat fraction maps were 

achieved in all the interleaved bipolar compared to the unipolar sequences, 

suggesting that the interleaved bipolar is a better alternative for in-vivo applications 

than the current unipolar sequence employed in clinical practice. 

 

6.2 Future Directions 

6.2.1 Combining Multiple Smoothness Constraints To Improve 

The Robustness of The Field Map Estimation 

In Chapter 2 and 3 we have presented two field map estimation techniques based on 

the multi-label Potts model, where each frequency offset is represented by a label in 

an initial estimate of the field map. The continuous max-flow algorithm minimizes 

the total perimeter of all labels [18]. As shown in chapter 3, this unique smoothness 

constraint was capable of resolving abrupt magnetic field inhomogeneities, while 

other techniques fail. However, Potts model does not impose any constraints on the 

spatial smoothness of the field map. From our experience on a wide variety of 

datasets including phantoms, animals (e.g. rats, mice and guinea pigs) as well as 

various human organs (abdomen, thorax, knee ankle and brain), both smoothness 

constraints might be needed. The graph-cut method [19] and its variant proposed 

by Berglund et al. [20] are two typical examples of robust spatial-smoothness-based 

techniques, while Max-IDEAL is the first technique that demonstrated the usage of 

total perimeter smoothness. 
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Techniques that solely rely on spatial smoothness might fail to resolve the 

ambiguity of abrupt magnetic field variations. On the other hand, total perimeter 

smoothness employed in the Max-IDEAL might fail to estimate the gradual change of 

magnetic inhomogeneities as no spatial constraints are assumed. The Adaptive 

Spatial Filter (ASF), described in Chapter 3, incorporates spatial information into 

Max-IDEAL before the labeling stage. However, it only uses morphological image 

processing operations which might not be sufficient when sophisticated variations 

in the magnetic field occur.  

It is feasible to integrate the total perimeter smoothness constraint of Max-IDEAL 

with the spatial smoothness of graph-cut-based methods in the cost function to be 

minimized. Weighting these 2 different smoothness constraints, however, will play 

an important role in the robustness of the resultant technique. Fortuitously, the 

energy minimization stage employed in both graph-cut-based methods and the Max-

IDEAL are based on the max-flow/min-cut theory. Therefore, we think it is feasible 

to derive a combined optimization approach that combines the 2 smoothness terms 

of the 2 approaches. However, Max-IDEAL uses the continuous max-flow algorithm 

that is easily parallelized/accelerated on general-purpose graphics processing units 

(GPGPU), while the graph-cut algorithm cannot be efficiently parallelized. It is worth 

noting that Max-IDEAL employs a multi-label approach that can be significantly 

slower than binary labeling used in graph-cut-based methods, in case parallel 

computation hardware (GPGPU) is not used. Nevertheless, employing GPGPU 

renders the Max-IDEAL a faster field map estimation approach than its 

corresponding graph-cut method.  

The spatial smoothness used in Berglund et al. [20] considers the periodicity of the 

cost function, while Hernando’s graph-cut method does not consider it. Max-IDEAL, 

on the other hand, is not influenced by the periodicity of the cost function as shown 

in Chapter 3. It is important to consider this periodicity phenomenon when spatial 

smoothness is employed, particularly for the cases where severe abrupt changes 

exist in magnetic field [17]. 
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6.2.2 Integrating Prior Knowledge of Anatomy into Max-IDEAL 

One of the main challenges for any field map estimation algorithm is that it is 

required to be robust over a wide variety of applications and anatomies. The level of 

inhomogeneities in cardiac imaging, for example, can be more challenging than 

some skeletal muscle applications as knee imaging, due to the presence of air/tissue 

interfaces in the thorax. Few techniques benefit from the knowledge of the 

underlying anatomy in order to enhance the performance of the estimation. Inspired 

from recent techniques, we hypothesized that two anatomy-oriented concepts can 

be combined with the Max-IDEAL: 1) the Fat Likelihood Analysis for Multi-echo 

Signals (FLAME) [21] and 2) the prior estimation of susceptibility-induced field map 

[22].  

FLAME [21] introduced an interesting perspective to “highlight” the locations of fat 

by generating a fat likelihood map of the underlying anatomy. Water-dominant 

pixels will have lower likelihood value while fat-dominant pixels will possess higher 

values. The map is produced by exploiting the spectral differences between water 

and fat using single-peak and multi-peak fat spectrum. The residuals of a cost 

function, R, are calculated at certain pixel using single-peak (sp) and multi-peak 

(mp) models, and then a fat likelihood map [21] is generated as follows: 

𝐹𝑎𝑡 𝐿𝑖𝑘𝑒𝑙ℎ𝑜𝑜𝑑 𝑚𝑎𝑝 =
𝑅𝑠𝑝 −  𝑅𝑚𝑝

max�𝑅𝑠𝑝 −  𝑅𝑚𝑝�
 

This map can be incorporated into Max-IDEAL as a weighing function to highlight 

the type of species at each pixel. However, this map can guide the field map 

estimation only at locations of low (<20%) or high (>80%) fat fractions, while its 

values will be undefined for locations with considerable mixtures of water and fat. 

Another approach has been recently proposed by Sharma et al. [22] where a 

susceptibility map is estimated first before performing the water/fat separation. 

This method assumes that the field map is mainly caused by two factors: 1) the 

background shimming and magnet imperfections, 2) the susceptibility differences 
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between air and various types of tissues. Therefore they estimate the magnetic field 

variations caused by the susceptibility difference first then use it to demodulate the 

source images. Any water/fat separation technique can be subsequently performed 

using the demodulated source images, to estimate the final field map. Although this 

method can be applied prior to any field map estimation technique, however Max-

IDEAL has the advantage of employing a non-spatial smoothness constraint which 

therefore will overcome erroneous estimation occurred from the spatial 

distribution of the susceptibility map.  

 

6.2.3 A Standardized Accuracy Metric of Field Map 

A standard measure of the field map accuracy does not exist. Visual inspection of 

water/fat swaps is the only approximate method to evaluate the accuracy of any 

estimate. An attempt to develop an image-based metric for field map was 

introduced by Smith et al. [23] in the first phase of ISMRM challenge 2012 for 

water/fat separation. However, they concluded that their metric-based strategy 

cannot be reliably used to select the best resultant field map, and this strategy was 

abandoned. First, a straightforward benefit of a standard metric is to automatically 

detect any potential water/fat swaps in the output. Although a ‘swaps-free’ result is 

desired, water/fat swaps located outside the area of interest will also be acceptable. 

Hence, the metric can be anatomy-specific, where the evaluation is only performed 

at the region of interest. Second, the effect of the exact field map values on the 

accuracy of the quantification is still unknown. One might find two techniques that 

generate ‘swaps-free’ field maps, while the exact values of the maps do not match. 

The reason is that water/fat swaps can be avoided once the estimated local 

frequency is within 3.5 ppm of the correct value, but the accurate value might not be 

achieved yet [10, 24].  
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6.2.4 Reduce The Vulnerability of the Interleaved Bipolar 

Sequence to Motion  Artifacts 

Motion artefacts can interrupt any acquisition, whether unipolar or interleaved 

bipolar, particularly if it occurs during the acquisition of the k-space centre. 

However, the interleaved bipolar requires the acquisition of 2 k-space centres, with 

the second centre acquired at the end of the scan.  If motion occurred at one of the 2 

centres, the motion artefacts will distort the contrast of the corresponding dataset 

(positive or negative), leading to more significant artefacts in the final result than its 

corresponding unipolar acquisition. This makes the interleaved bipolar acquisition 

more vulnerable to motion, particularly in breath-hold acquisitions if, for example, 

the patient breathed in the last few seconds. Respiratory, cardiac and the physical 

motion of patient are all potential sources of motion artefacts. One approach is to 

use cardiac- or respiratory- gating, which is frequently employed during 

abdominal/thoracic scans. In fact, the interleaved bipolar has the advantage of being 

more efficient than the unipolar in gated acquisitions, given its short acquisition 

time (~ half) compared to the conventional unipolar. Another approach to reduce 

the vulnerability to motion is to acquire the second k-space centre directly following 

the first one, or employ a centre-out acquisition strategy, where both centres are 

acquired at the beginning followed by the high frequency fraction of the k-space.  

 

6.2.5 Calibration-less Interleaved Bipolar Acquisition 

One of the limitations of the interleaved bipolar sequence is that it requires 2 

acquisitions of the k-space centre. The main purpose of the second acquisition of the 

centre is to use as a calibration set for parallel imaging reconstruction. Compared to 

conventional bipolar sequence, the additional acquisition of k-space centre prolongs 

the acquisition time and hence reduces the expected SNR efficiency. Calibration 

data-free parallel imaging reconstruction has been recently proposed by Shin et al. 

[25], where the reconstruction does not require a separate calibration step to 



150 
 

estimate coil sensitivity information. The multi-channel coils are structured into a 

single data matrix and then single value decomposition (SVD) analysis is performed 

in an iterative algorithm to decompose the signal from the noise subspaces. 

Employing this technique in the interleaved bipolar reconstruction will have two 

advantages: 1) It will shorten the acquisition time as no calibration centres are 

required, 2) it will reduce the vulnerability to motion artefacts as discussed in 6.2.4. 

However, a main challenge here is to preserve the correct phase of the signal after 

the reconstruction to guarantee a complete cancellation of phase and magnitude 

errors; otherwise erroneous fat fraction measures will be produced [26, 27].  

 

6.3 Conclusion  

In this dissertation we presented a complete framework for fat quantification using 

MRI. We presented novel acquisition and reconstruction techniques for fat 

quantification with in-vivo applications in animals and various human organs. The 

proposed reconstruction techniques addressed the confounding factors that hinder 

accurate quantification of tissue fat concentration, while the proposed acquisition 

technique enhances the efficiency of the acquisition compared to the sequences that 

currently used in clinical practice. 
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