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Abstract 
 

The lack of understanding regarding the controls that govern runoff generation in tropical dry 

forests represent a critical gap in the hillslope and catchment hydrology literature. Tropical dry 

forests account for approximately 42% of the global tropical forests, but represent less than 1% 

of the forest hydrology literature. Three complementary studies were undertaken in a small 

tropical dry forest watershed, Mexico, to assess the controls that govern the retention and release 

of a rainfall in the catchment as runoff. In the first study, the high soil surface hydraulic 

conductivities, absence of a water repellent surface and low rainfall intensities during the wet 

season allows most of the incoming rainfall to percolate through the near-surface soil layers, 

suggesting that runoff is generated through a subsurface flow mechanism. In the second study, it 

was found that two different thresholds were required for streamflow activation and stormflow 

generation. The long dry period depletes the stores of soil water. Only after the soil storage 

deficit in the upper metre is satisfied, is streamflow activated from the catchment. Once 

streamflow became persistent, the stormflow response was almost entirely governed by the 

rainfall event characteristics and not antecedent soil moisture conditions. The third study used a 

combination of isotopic, geochemical and hydrometric measurements to describe the water flow 

pathways, source areas and residence times of stream water in this catchment. It was shown that 

runoff produced during storm events were composed primarily of old water that likely originated 

from either deep subsurface soil layers or groundwater and the source areas expanded, likely 

through sub-basin connectivity, as catchment wetness increased through the wet season. Given 

the arid climate of the watershed and known hydrological literature regarding runoff generation 

in tropical forests, it was hypothesised that runoff in this catchment should be delivered from 

surface or near-surface sources. However, this dissertation has shown that the combination of 

deep, permeable soil on steep slopes have a stronger influence on runoff generation in this 

catchment than climate. These three studies have therefore demonstrated the importance of 

characterising the physical controls that govern runoff generation in forests that are data poor. 

 

Keywords: Hydrology, Tropical forests, Runoff, Infiltration, Soil water repellency, 

Streamflow, Stable isotopes, Tracers  
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Chapter 1 

1.0 Introduction 

1.1 Tropical dry forest distribution, major threats and hydrology 

Tropical dry forests have lived in the shadow of their humid counterparts with respect to 

scientific research. Despite accounting for more than 42% of all tropical forests (Murphy and 

Lugo, 1995) and roughly 6% of the Earth‟s land surface, less than 15% of the literature on all 

tropical forest research has focused on tropical dry forests with the remainder highlighting work 

in tropical wet forests (Sánchez-Azofeifa et al., 2005; Santos et al., 2011). Many of these tropical 

dry forest regions are currently water-stressed and additional pressures from population growth, 

land use and future climate change will have significant implications for the future functioning of 

their natural and socioeconomic systems. 

 

Tropical dry forests lie within the tropical zone, which extends from the equator to 23
o 
in both 

the Northern and Southern hemispheres. They are broadly characterized as having a vegetation 

community typically dominated by deciduous to semi-deciduous trees, annual precipitation 

ranges from 250 – 2000 mm, average annual temperature greater than or equal to 17
o
C, and an 

annual average ratio of potential evapotranspiration (PET) to precipitation (P) greater than 1 

(Murphy and Lugo, 1995). The key defining feature of tropical dry forests is the occurrence of a 

distinct dry period that lasts between 3 and 7 months (Bullock et al., 1995). This ecosystem 

accounts for more than 42% of tropical forests and 19% of the world‟s total forest area (Murphy 

and Lugo, 1995; Miles et al., 2006). The majority of tropical dry forests occur in Central and 

South America (66.7%) with the remainder found in Asia (16.4%), Africa (13.1%) and small 

fragments in Oceania (3.8%). These forests are amongst the most diverse and complex in the 

world, displaying a high degree of endemism (Olson and Dinerstein, 1998; Suazo-Ortuño et al., 

2008). This is especially true in the Mexico, where approximately 60% of the species found in 

that country are exclusive to these forests (Trejo and Dirzo, 2000).  
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Tropical dry forests are recognised as one of the world‟s most threatened terrestrial ecosystems 

with more than 97% of the existing area at risk from threats such as land use change, 

fragmentation, and climate change (Miles et al., 2006). The favourable climatic conditions of 

these regions have encouraged the rapid expansion of human settlements, with more than 42% of 

dry forests found alongside population densities greater than 250 people/km
2
 (Miles et al., 2006). 

As a result of the high population density, more than 48.5% of tropical dry forests (Hoekstra et 

al., 2005) have been removed and converted to either agriculture or urban land uses. These 

changes have occurred in all of the tropical dry forest regions but are particularly severe in Asia 

and parts of Africa, resulting in the increased need to prioritise them for conservation (Miles et 

al., 2006). 

 

Published research on the hydrology of tropical dry forests is rare, accounting for less than 1% of 

catchment hydrology literature. Despite this, limited information does exist regarding the water 

balance and runoff mechanisms observation in tropical dry forests. In many tropical dry forests 

the catchment scale water balance has typically been quantified. Evapotranspiration is the main 

source of water loss from tropical dry forests, on average accounting for 73-86% of the annual 

water loss (e.g. Sandström, 1996; Vose and Maass, 1999; Montenegro and Ragab, 2010). 

Discharge is often very low, representing less than 17% of the annual losses from the catchment 

(e.g. de Araújo and González Piedra, 2009; Montenegro and Ragab, 2010). Most of the studies in 

tropical dry forests which have examined runoff processes have generally focused on identifying 

the specific mechanism by which runoff is generated using either geochemical tracers 

(Sandström, 1996) or hydrometric analyses (McCarntey et al., 1998; Masiyandima et al., 2003; 

Mugabe et al., 2007) but not a combination of both.  

 

Runoff is the process by which water flows over and within the soil substrate. There are three 

major mechanisms of runoff generation: Hortonian or infiltration excess overland flow (HOF), 

Saturated overland flow (SOF) and Subsurface stormflow (SSF). HOF typically occurs when 

rainfall intensity exceeds the infiltration capacity of the soil, resulting in flow over the surface. 

The generation of SOF is more complicated than HOF. The major requirement is that the soil 

must be saturated, either from above through precipitation or from below through a rising water 

table for flow to occur. Under saturated conditions additional precipitation reaching the soil 
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surface cannot infiltrate and flows as surface runoff. SSF can be generated under both saturated 

and unsaturated conditions. Under saturated conditions flow can occur from perched water tables 

or local groundwater mounds that lay close to the ground surface. Under unsaturated conditions, 

precipitation infiltrates the surface layer and moves laterally through the soil profile as bypass 

flow in macropores and pipes or as flow through the soil matrix.  

 

In tropical dry forests, HOF and SOF are the main runoff generating mechanisms (Figure 1.1). 

These dominant mechanisms are quite different from humid tropical forests where runoff is often 

dominated by SOF, SSF and vertical runoff pathways. Despite the identification of the specific 

runoff generating mechanisms in tropical dry forests, much of these analyses remain preliminary 

and limited to less than six studies (Farrick and Branfireun, 2013). Therefore, there is a need for 

increased attention to processes that govern runoff generation particularly: 1. the surface controls 

on infiltration, 2. the specific thresholds of antecedent storage and rainfall, 3. isotopic and 

geochemical characterisation of water sources and connectivity across catchments. 

 

 

Figure 1.1 Comparison of the average annual water inputs and outputs and the dominant 

mechanisms of tropical dry and wet forests (from Farrick and Branfireun, 2013). Values in 

parentheses represent percentage of rainfall. Runoff arrow thickness represents the relative 

contribution to stormflow. 
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1.2 Knowledge gaps 

1.2.1 Surface controls on infiltration 

It is widely accepted that soil infiltration rates play a significant role in dictating the dominant 

hillslope runoff mechanism (Wilcox et al., 1997). Studies have shown that infiltration through 

the surface soil is mainly controlled by the interaction between the rainfall characteristics during 

a storm event and the physical properties at the soil surface, namely hydraulic conductivity (K) 

(Bonell and Williams, 1996; Martínez-Mena et al., 1998; Puigdefabregas et al., 1998). Of 

increasing importance is the recognition that the development of severe soil water repellency at 

the soil surface can result in a two to three time decrease in surface infiltration rates (Imeson et 

al., 1992; Martínez-Murillo and Ruiz-Sinoga, 2007). These relationships are particularly 

important in arid and semi-arid systems, where HOF is the primary form of runoff generation. 

While work in tropical dry forests catchments indicate that HOF does occur, these studies 

generally fail to examine the relationship between rainfall intensity and hydraulic conductivity 

and soil water repellency over a large spatial scale.  

 

1.2.2 Threshold controls on runoff generation 

The increased evidence supporting the non-linear, rainfall-runoff response has resulted in a shift 

in the focus of hillslope and catchment hydrologists to a greater emphasis on quantifying the 

hydrological thresholds and explaining their physical controls (Zehe and Sivapalan, 2009; 

Spence, 2010; Ali et al., 2013). It is clear that, as has been demonstrated in humid temperate, wet 

tropical and semi-arid catchments, that the exceedance of antecedent water storage or rainfall 

thresholds is often required for runoff generation (Spence and Woo, 2003; Cammeraat, 2004; 

Tromp-van Meerveld and McDonnell, 2006; Negishi et al, 2007; Oswald et al., 2011). While 

specific depths of rainfall are needed to generate substantial volumes of runoff, many studies 

suggest that the rainfall threshold is only exceeded after storage deficits are satisfied (Buttle et 

al., 2004, Fu et al., 2013). These observations have sparked debate in the hydrological 

community regarding the relative importance of storage versus precipitation thresholds. Recent 

studies have focused on combining both a depth equivalent of soil water storage and event 

rainfall to assess catchment scale runoff, which reflect both a storage and source area threshold 
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(Detty and McGuire, 2010). To the best of my knowledge, no previous studies have examined 

the importance of storage and rainfall thresholds on streamflow generation in tropical dry forests. 

This information, will undoubtedly improve our ability to examine the impact of climatic and 

land use changes on runoff as well as provide an important metric for inter-catchment 

comparison (Ali et al., 2013).  

 

1.2.3 Water flow pathways, source area contributions and 

residence times 

While it is widely recognised that understanding the specific water flow pathways, source areas 

and residence times of stream water is essential for the management of surface and groundwater 

resources, these studies have mainly gone undescribed in tropical dry forests (Buttle and 

McDonnell 2004; Bonell and Bruijnzeel, 2005). Most of what is known regarding runoff 

pathways in tropical catchments stems from research in the wet tropics. Using either 

geochemical or isotopic tracers, runoff in wet tropical forests has been shown to be composed 

primarily of event water generated as SOF, return flow (RF) or shallow subsurface flow 

(Schellekens et al., 2004; Goller et al., 2005). While studies have focused on runoff processes in 

tropical forests characterised by low surface K or shallow impeding soil layers, research in 

tropical catchments with more permeable soils is severely lacking. Hydrological connectivity is 

regarded as one of the key controls in determining hillslope and catchment rainfall-runoff 

response and has been defined as the ability to transfer water from one part of a landscape to 

another (Bracken and Croke, 2007). The Hewlett and Hibbert (1967) Variable Source Area 

Concept (VSA) has shaped the hydrology community‟s concept of hillslope and catchment scale 

runoff response for over 40 years. The VSA considers that runoff from a catchment is a function 

of the upslope expansion of saturated subsurface areas, connecting the riparian zone to the 

hillslope. Recent work suggests that connectivity also occurs among distinct hydrological units 

across a hillslope (e.g. Tromp-van Meerveld and McDonnell 2006) or zero-order basins (e.g. 

Sidle et al., 2000) rather than evolving from near stream zones. Stream water residence time 

provides an excellent indication of the linkages among flow paths, water sources and storage in a 

catchment (McGuire and McDonnell, 2006). Although source area contributions and stream 
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water residence times have been well studied in humid temperate forests, to my knowledge these 

hydrological processes have not been examined in tropical dry forests. 

 

1.3 General objectives 

The research presented in this dissertation was carried out to improve our understanding of the 

controls that govern the translation of rainfall to runoff in tropical dry forests by addressing the 

research gaps presented in the previous section. Not only will the results help inform future 

predictions of runoff generation under changing climate and land use change but also add to our 

conceptual understanding of catchment hydrology. The general research objectives were as 

follow: 

1. To test the hypothesis that the current knowledge regarding the relationship between soil 

surface hydraulic conductivity, soil water repellency and rainfall intensity in semi-arid 

systems is transferrable to tropical dry forests and to examine the relationship between 

rainfall intensity, soil surface hydraulic conductivity and soil water repellency. 

2. To examine the soil water storage and hydrometeorological controls on streamflow 

activation and stormflow generation in a tropical dry forest catchment. 

3. To identify the dominant flow pathways, water sources and residence times of 

streamflow. To investigate the dominant runoff flow pathways, source water 

contributions and residence times of streamflow in a tropical dry forest catchment.  

 

1.4 Thesis organisation 

This thesis has been prepared in the integrated article format and consists of three manuscripts 

related to the three main research objectives. The introduction (Chapter 1) provides an overall 

introduction to the thesis as whole. It provides background information regarding the distribution 

and threats to tropical dry forests, identifies the knowledge gaps that the research addresses and 

outlines the general objectives of the dissertation. The first manuscript (Chapter 2) investigates 

the controls on surface water infiltration over space and time. The second manuscript (Chapter 3) 

examined the soil water storage and hydrometeorological controls on annual streamflow 
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activation and event scale stormflow generation. The third manuscript (Chapter 4) applies a 

combined isotopic, geochemical and hydrometric analysis to identify the primary water flow 

pathways, source area contributions to runoff and estimate the mean residence time of baseflow. 

The last chapter (Chapter 5) provides an overall summary and general conclusion of the work, 

and identifies future research directions.  
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Chapter 2  

2.0 Infiltration and soil water dynamics in a tropical dry forest: it 

may be dry but definitely not arid 

2.1 Introduction 

Tropical dry forests account for approximately 42% of the world‟s tropical forests (Murphy and 

Lugo, 1986; Miles et al., 2006). In Central America, the majority of these forests occur along the 

Pacific coast of Mexico and are considered to be the most biologically diverse tropical dry 

forests in the world (Olson and Dinerstein, 1998). Over the last 30 years, these forests have 

experienced a 12–16% decrease in area because of deforestation from urban encroachment, 

conversion to agriculture and fire (Miles et al., 2006). In Mexican tropical dry forest watersheds, 

the Intergovernmental Panel on Climate Change has forecasted increases in temperature and 

significant decreases in precipitation, which is expected to reduce the already limited runoff 

volumes generated (Bates et al., 2008), placing additional stress on groundwater resources in a 

country where water scarcity is its most important environmental challenge (Muñoz-Piña et al., 

2008). Despite the importance of hydrology and water availability in this region, the literature on 

the hydrological processes in tropical dry forests is limited to a small number of short term 

investigations, in sharp contrast with the large body of literature on the hydrology of temperate 

and tropical humid forest watersheds (Farrick and Branfireun, 2013).  

 

Tropical dry forests are characterized as having waxyleaved, drought-resistant vegetation, annual 

rainfall from 250–2000mm and an average annual temperature ≥17 °C (Murphy and Lugo, 1995; 

García-Oliva et al., 2003; Miles et al., 2006). The key defining feature of tropical dry forests is 

the occurrence of a distinct dry period that lasts between 3 and 7 months (Bullock et al., 1995). 

These climate and vegetation features are most similar to those of semi-arid regions; a 5–10 

month dry period, annual rainfall from 235 to 805mm (Table 2.1), mean temperatures ≥16 °C 

and waxy, lipid-rich vegetation (Martínez-Mena et al., 1998; Descroix et al., 2001; Verheijen 

and Cammeraat, 2007; Zavala et al., 2009). As with semi-arid regions, the wide range of rainfall 
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and climate conditions may result in a variety of surface hydrological processes (Cerdà, 1998a). 

Despite the climatic range, the similarities between these two ecosystems suggest that the factors 

that govern hydrological processes in semi-arid areas such as vegetation type and annual 

precipitation regime may be transferrable to tropical dry forest catchments. 

 

The rainfall–runoff relationship in semi-arid regions has been well studied, and it is widely 

accepted that runoff in semi-arid areas occurs primarily as infiltration excess (Hortonian) 

overland flow (HOF), where the rainfall rate exceeds the infiltration rate at the soil surface 

(Table 2.1). The generation of HOF is mainly controlled by the interaction between the rainfall 

characteristics during the storm event (Bonell and Williams 1986; Wilcox et al., 1997), slope, 

antecedent soil moisture (Ziadat and Taimeh, 2013) and the physical properties at the soil 

surface, of which hydraulic conductivity (Martínez-Mena et al., 1998; Puigdefabregas et al., 

1998) and soil water repellency (Imeson et al., 1992; Cerdà and Doerr, 2007) are recognized as 

two of the most important controls. 

 

The majority of precipitation events in semi-arid regions during the wet season are low-intensity 

and short-duration rainfalls (Martínez-Mena et al., 1998; Chamizo et al., 2012). Although low-

intensity events dominate by frequency, high-intensity storm events are considered more 

important in runoff generation processes in semi-arid regions as more than 70% of the total 

annual rainfall can be delivered by infrequent, high-intensity, short-duration events (Wilcox et 

al., 1997; Martínez-Mena et al., 1998). Rainfall intensities as high as 120 mm/h have been 

recorded in semi-arid areas (e.g. Bonell and Williams, 1986; Wilcox et al., 1997), and in many 

instances, these rainfall intensities are one to two orders of magnitude greater than the infiltration 

rate at the soil surface (Table 2.1). Because they exceed infiltration, high rainfall intensities 

promote HOF and are therefore an important control in runoff generation in semi-arid regions. 

 

In semi-arid systems, it is also well documented that low surface hydraulic conductivity (K) 

limits infiltration (Table 2.1). Many studies agree that the presence of soil surface crusts, stony 

ground cover, rocky outcrops and the lack of continuous vegetation produce low permeability 

surfaces that reduce infiltration (Wilcox et al., 1988; Puigdefabregas et al., 1998; Yair and 

Kossovsky, 2002). Surface crusts are formed mainly by the breakdown of soil aggregates by 
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raindrop impact or lateral surface flow. The aggregates then disperse across the surface and clog 

pore spaces, creating low K surfaces (Neave and Rayburg, 2007). Hydraulic conductivities have 

been shown to be two to five times lower for crusted versus non-crusted surfaces 

(Puigdefabregas et al., 1998; Eldridge et al., 2000; Descroix et al., 2001). The effect of stones 

and rock fragments on infiltration often depends on the size, orientation and position of the 

stones/rocks within the soil matrix (Poesen et al., 1994). In many cases, the presence of a 

discontinuous cover of loose, small stones at the soil surface increases surface roughness, which 

slows surface runoff and enhances infiltration along the contact between the stone and soil 

matrix (Poesen and Lavee, 1994; Poesen et al., 1994; Cerdà, 2001). Other work has shown that a 

10–20% increase in the portion of embedded stones can reduce infiltration rates by an order of 

magnitude (Wilcox et al., 1988; Mayor et al., 2009). The low density of vegetation cover in 

many semi-arid regions generally promotes low levels of infiltration (Cerdà, 1996). Small areas 

of high infiltration two to three times higher than bare and crusted surfaces have been recorded 

under dense patches of vegetation (Nicolau et al., 1996; Cerdà, 1997b; Mayor et al., 2009). 

Higher plant density often reduces surface crust formation through greater soil stabilization 

(Lavee et al., 1998) and enhances infiltration through the formation of macropores and 

preferential flow pathways along the roots (Cerdà, 1997b; Calvo-Cases et al., 2003). Stone, crust 

and vegetation cover typically exhibit high spatial variability in semi-arid areas because of slope 

position and aspect (Cerdà, 1998b; Cerdà, 1999). These surface heterogeneities are responsible 

for the high spatial variability in infiltration and HOF observed in semi-arid regions (Cerdà, 

1996, 1997b). It is important to note that during wetter months, higher soil moisture reduces 

infiltration rates over vegetated areas, producing more homogenous infiltration rates across the 

landscape (Cerdà, 1996, 1997a). Despite having high spatial variations in infiltration rates, there 

is still the general consensus that HOF dominates semi-arid landscapes as low K coupled with 

the high rainfall intensities promote HOF generation (Wilcox et al., 1997; Martínez-Mena et al., 

1998). 

 

Soil water repellency or soil hydrophobicity is the resistance of soils to surface wetting and is 

due to organic hydrophobic compounds being present in the soil matrix (Doerr et al., 2000). 

These organic, hydrophobic compounds are introduced into the soil by plant roots, fungal 

activity and the waxes and/or lipids derived from decomposing plant litter (Doerr et al., 2000). 
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Although these hydrophobic compounds are always present in the soil, repellent conditions are 

activated under low soil moisture conditions, making soil moisture a particularly important 

control on the establishment of repellency. Low soil moisture conditions lead to the 

concentration of hydrophobic compounds and establishment of repellent surfaces that persist as 

long as such moisture conditions are maintained (Leighton-Boyce et al., 2005; Verheijen and 

Cammeraat, 2007). Semi-arid regions are therefore particularly prone to high levels of soil water 

repellency due to generally low soil moisture and the presence of waxy-leaved, drought-resistant 

vegetation (Cerdà and Doerr, 2007; Verheijen and Cammeraat, 2007). Furthermore, frequent 

fires in these regions further enhance repellency as hydrophobic compounds may become more 

concentrated in the surface soils after burning (Doerr et al., 2000). 

 

In semi-arid regions, soil water repellency has been shown to affect infiltration and, as a 

consequence, runoff generation. Under high levels of repellency, Imeson et al. (1992) recorded a 

reduction in infiltration from 58.2 to 28.7 mm/h, whereas Martínez-Murillo and Ruiz-Sinoga 

(2007) recorded a reduction from 36 to 28 mm/h. The reduced infiltration can increase HOF 

production by an order of magnitude on repellent versus non-repellent soils (Martínez-Murillo 

and Ruiz-Sinoga, 2007). Similar to semi-arid areas, the hydrology of tropical dry forest 

catchments may be controlled by soil water repellency due to the presence of a waxy and lipid-

rich litter layer (García-Oliva et al., 2003) and prolonged dry periods, which reduces soil water 

content to the point of activating soil water repellency. 

 

Rainfall intensity, surface soil hydraulic conductivity and soil water repellency are important 

controls that govern infiltration rates and magnitudes and ultimately runoff generation in semi-

arid environments. We have no such insights into the hydrology of tropical dry forest 

catchments. However, similarities in climate and abundance of waxy-leaved, drought-resistant 

vegetation suggest that the factors that govern infiltration and the runoff generation mechanisms 

in semi-arid areas are transferrable to Mexican tropical dry forest catchments. To test this 

hypothesis, we will: 

 

1. characterize soil surface hydraulic conductivity and soil water repellency over space and time 

in two dominant tropical dry forest types (mixed deciduous and pine-oak);  
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2. characterize the frequency and nature of the shallow soil water response to rainfall input in 

two dominant tropical dry forest types (mixed deciduous and pine-oak); and  

3. consider rainfall event characteristics and timing in light of the measured hydraulic 

conductivity, soilwater repellency and soil water response to evaluate if HOF is a dominant 

runoff mechanism on tropical dry forest hillslopes. 

 

 

 

 

 

 

 

 

 

 

 

 



16 
 

Table 2.1 The annual precipitation, maximum rainfall intensity, hydraulic conductivity and primary runoff mechanism of the 

examined semi-arid watersheds. 

Source Site Annual 

precipitation 

(mm) 

Maximum 

rainfall intensity 

(mm/h) 

Hydraulic 

conductivity 

(mm/h) 

Primary runoff 

mechanism 

Osborn and 

Renard (1970) 

Walnut Gulch, 

USA 

292 >12.7 30.8 HOF 

Bonell and 

Williams (1986) 

Torrens creek, 

Australia 

552 120 25.8 HOF 

Hussein (1996) Mosul City, Iraq  333 60 46 – 37 HOF 

Nicolau et al. 

(1996) 

Rambla Honda, 

Spain 

300 18 116 – 15 HOF 

SOF 

Sandström (1996) Harra, Tanzania 807 - - HOF 

Solé-Benet et al. 

(1997) 

Tabernas, Spain 235 85.2 44.5 HOF 

Wilcox et al. 

(1997) 

New Mexico, USA 500 120 2.7 HOF 

Bergkamp (1998) Castilla la Mancha, 

Spain 

400 55 - HOF 

SOF 

Lavee et al. (1998) Mishor Adumin, 

Israel 

260 - 10.7 HOF 
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Martínez-Mena et 

al. (1998) 

Chicamo, Spain 298 110 8.2 – 4.9 HOF 

SOF 

Puigdefabregas et 

al. (1998) 

Rambla Honda, 

Spain 

300 38 72 – 42 HOF 

SOF 

Descroix et al. 

(2001) 

Western Sierra 

Madre, Mexico 

450 - 14.8 HOF 

Calvo-Cases et al. 

(2003) 

Alicante, Spain 387 – 474 55 – 27 32.7 – 32.9 HOF 

SOF 

Bartley et al. 

(2006) 

Weany Creek, 

Australia  

450 – 650 132 – 60 – HOF 

Wilcox et al. 

(2008) 

Sonora, USA 550 - 190 SSF 

 

Mayor et al. 

(2009) 

 

 

Ventos, Spain 

 

275 

 

64 

 

50 – 33 

 

HOF 

SOF 

Montenegro and 

Ragab (2010) 

Mimoso, Brazil  650 - 11.3 HOF 

Chamizo et al. 

(2012) 

El Cautivo, Spain 

 

235 

 

57 

 

13.3 – 8.8 

 

HOF 

SOF 

 

Liu et al. (2012) Upper Wei River 

basin, China 

 

512 

 

- 

 

112 – 20 

 

SSF 

HOF 
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2.2 Study site 

The study was conducted in a 55-ha sub-watershed of the Lake Zapotlán watershed, 

approximately 100 km south-southwest of Guadalajara, Jalisco, Mexico and 5 km northeast of 

Ciudad Guzmán, Jalisco, Mexico (19.44°N 103.26°W) (Figure 2.1). 

 

The climate is tropical savannah (Köppen-Geiger: Aw) with a distinct wet and dry season (Peel 

et al., 2007). The average annual rainfall (1982–2003) is 813 mm, of which 95% falls between 

June to September (Ortiz-Jiménez et al., 2005). Mean annual temperature (1982–2003) is 19.6 ºC 

with maximum temperatures occurring in July (Ortiz-Jiménez et al., 2005). The catchment is 

dominated by two distinct forest types. The highly heterogeneous mixed deciduous forest 

(dominated by Carpinus caroliniana and Mimosa adenantheroides but with a complex mix of 

understorey and herbaceous vegetation) occurs at elevations between 1600 and 1800m above sea 

level (masl) (Figure 2.1). The pine-oak forest (almost exclusively Pinus montezumae and 

Quercus laeta with a largely unvegetated understorey) occurs exclusively at elevations greater 

than 1800 masl. Prior to our investigation, soil cores were collected from the upper 50 cm of the 

soil profile at both forests and were analysed for particle size distribution using the hydrometer 

technique (Bouyoucos, 1962), bulk density (ρb) and total porosity (n). Total porosity was 

calculated on the basis of the relationship between ρb and particle density (ρp) (Dingman, 2002). 

The texture in the upper 50 cm of soil varies between forest types. Soil at the deciduous forest is 

characterized as sandy clays, whereas sandy loams are present at the pine forest (Table 2.2). The 

portion of stone fragments in the surface soil was low, representing less than 5% of the total soil 

volume.  
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Figure 2.1 Map showing the location of the study watershed, instrumentation and sampling 

transects. 

 

Two 100-m-long transects were established in each forest type and instrumented with a rain 

gauge and soil moisture probes from July 2010 to June 2011 (Figure 2.1). Near-saturated 

hydraulic conductivity and soil water repellency measurements were made at 10m intervals 

along each transect during this period. These sites were selected as they represented the typical 

vegetation and slope conditions in the watershed. 
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Table 2.2 General soil physical properties at different depths at the deciduous and pine forest. Values in parentheses indicate standard 

deviation  

Location Depth (cm) Sand (%) Silt (%) Clay (%) Soil type Bulk density 

(g/cm
3
) 

Porosity 

Deciduous 0 – 5  56 20 24 Sandy clay-loam 0.82 (0.26) 0.69 (0.10) 

 5 – 10 45 17 38 Clay loam 1.10 (0.20) 0.58 (0.03) 

 10 – 20 44 18 38 Clay loam 1.15 (0.07) 0.56 (0.16) 

 20 – 30 38 19 43 Clay 1.18 (0.21) 0.55 (0.11) 

 Average 46 18.5 35.5 Sandy Clay 1.06  0.60 

Pine 0 – 5 64.5 21.5 14 Sandy loam 0.91 (0.16) 0.66 (0.06) 

 5 – 10 75 12.5 12.5 Sandy loam 1.03 (0.10) 0.60 (0.08) 

 10 – 20 50 24 26 Sandy clay-loam 1.14 (0.40) 0.57 (0.10) 

 30 – 45 46 36 18 Loam 0.99 (0.27) 0.62 (0.07) 

 Average 59 23.5 17.5 Sandy loam 1.02 0.61 
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2.3 Methods 

2.3.1 Rainfall measurements 

Open-field precipitation was measured using a Texas Electronics Inc. TE525M-L tipping bucket 

rain gauge from July 2010 to June 2011 at the deciduous forest site (Figure 2.2). The depth 

(mm), duration (h) and intensity (mm/h) were calculated for individual storm events over the 

measurement period. 

 

2.3.2 Soil surface hydraulic conductivity 

Near-saturated hydraulic conductivity was measured in July and August 2010 using a Decagon 

Devices Inc. Mini disk infiltrometer. The mini disk infiltrometer may not be the ideal tool for 

near-saturated hydraulic conductivity measurements because of the small disk diameter (4.5 cm) 

and small area of influence; however, conductivity results from this device are accepted in the 

literature (González-Pelayo et al., 2010; Ronayne et al., 2012). This device was used because of 

its portability and low water volumes required for each test, both necessitated by the remote and 

mountainous sampling locations, which would render the use of more sophisticated devices such 

as a Guelph Permeameter impractical. At each sampling location, duplicate measurements of 

hydraulic conductivity were made within 50 cm of the other, under a pressure head of -2 cm. 

Despite rugged terrain and private property access issues, a total of 80 measurements were made 

in these forests. At each location, prior to measurement, the soil surface was cleared of large 

fragments of loose coarse organic litter and the surface smoothed to allow complete contact 

between the infiltrometer and soil surface. Where the surface was uneven, a thin layer of fine 

silica sand was placed underneath the stainless steel disk to produce a smooth surface and 

improve contact with the soil. The infiltrometer was held in place using a ring stand and clamp. 

Tests were run until a steady state infiltration rate was achieved. 

The hydraulic conductivity (K) of the soil was calculated according to Zhang (1997). 

2

1

A

C
K         (2.1) 
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where C1 is the slope of the curve of the cumulative infiltration vs. the square root of time (t), 

and A2 is a dimensionless coefficient. The value of A2 depends on the suction disk diameter and 

the soil texture of the sample location. A2 is calculated from:  

                       
91.0

1.0

2
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])9.1(92.2exp[)1(65.11
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r

hnn
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
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            (2.2) 

where n and α are the van Genuchten parameters for a specific soil texture (Carsel and Parrish, 

1988), r0 is the disk radius, and h0 is the suction at the disk surface.  

 

2.3.3 Soil water repellency 

Soil water repellency was measured in August 2010, December 2010, May 2011 and June 2011 

using the molarity of an ethanol drop test (Watson and Letey, 1970). This test utilizes the known 

surface tensions of standardized solutions of ethanol in water. Droplets (~0.5 ml) with increasing 

ethanol concentrations (0%, 3%, 5%, 8.5%, 13%, 24% and 36% ethanol in deionized water) were 

applied to the bare soil surface until the droplet infiltrated in <5 s (Watson and Letey, 1970). The 

results from the ethanol drop tests were categorized into simple hydrophobicity classes (Table 

2.3). As there is no standard for the presentation of hydrophobicity data, we have elected to 

present our results in terms of simple hydrophobicity classes. To allow for comparison with other 

hydrophobicity studies, the ethanol concentrations were converted to its equivalent water drop 

penetration time (Table 2.3). 
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Table 2.3 Ethanol drop test and Water drop penetration time after Doerr (1998) 

 Ethanol drop test  Water drop penetration time 

 

Class Ethanol % Soil water 

repellency 

Class Penetration 

time 

Soil water 

repellency 

1 0 Very 

hydrophilic 

1 0-5 s Wettable 

2 3 Hydrophilic 2 5-60 s Slightly water 

repellent 

3 5 Slightly 

hydrophilic 

3 60-600 s Strongly water 

repellent 

4 8.5 Moderately 

hydrophobic 

4 600s-1 h Severely water 

repellent 

5 13 Strongly 

hydrophobic 

5 1-3 h Extremely 

water repellent 

6 24 Very strongly 

hydrophobic 

6 3-6 h Extremely 

water repellent 

7 36 Extremely 

hydrophobic 

7 >6 h Extremely 

water repellent 

 

Before infiltration and repellency measurements were made, soil samples adjacent to 

measurement plots were taken to a 5 cm depth and were used to determine the volumetric water 

content (VWC) and soil textural properties (Bouyoucos, 1962). 

 

2.3.4 Soil water content measurements and soil water response 

Volumetric water content was measured at two soil pits at each of the forest transects using 

Campbell Scientific Inc. CS615 water content reflectometers from July 2010 to June 2011. These 

probes were inserted horizontally in the pits at depths of 10, 20 and 30 cm at the deciduous forest 

and 10, 20 and 45 cm below the surface at the pine forests. The reflectometers were calibrated in 

the lab using soil extracted from the same area as per Stenger et al. (2005). Total depth 

equivalent of soil water (mm) was calculated as the VWC (%) from each layer multiplied by the 

thickness of the measurement layers centred about each measurement (mm).  

 

Soil water infiltration and percolation through the soil pits were characterized for 62 storm 

events, from 1 July 2010 to 30 June 2011. Events ≥2mm were selected for characterization as 

they produced a measurable change in shallow soil moisture. Infiltration and percolation rates 

were calculated using the lag time between rainfall input and the change in depth equivalent of 
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soil water at each water content reflectometer probe, for both forest sites. The total event 

increase in soil water was calculated as the difference between the soil water prior to the start of 

the event and the peak increase in soil water during the storm event. 

 

2.4 Results and discussion 

2.4.1 Rainfall 

A total of 765mmof rainfall was measured between 1 July 2010 and 30 June 2011, 7.9% below 

the long-term annual average of 831mm (Figure 2.2). A total of 49% of the rainfall fell from 

June to July during the early wet season, whereas 50% was delivered from August to September 

during the late wet season (Figure 2.2). Only one rainfall event was recorded during the dry 

period. This 9mm event occurred during the early dry season (~1% of the annual precipitation) 

(Figure 2.2). 

 

Figure 2.2 Daily rainfall from July 2010 to June 2011. The grey arrow indicates rain gauge error 

and period of data loss.  

 

Over this 1 year period, there were 62 discrete rainfall events. By using frequency distribution 

analysis, the events were categorised into 25th, 75th and 95th percentiles. Rainfall events 

≤18mm occurred 47 times (75% of all events) but only accounted for 39% of the total rainfall, 

whereas storm events >18mm occurred 16 times (25% of all events) and accounted for 61% of 

the total annual rainfall during the study period. Storms were generally of short duration, with 

75% being ≤6 h (Figure 2.3). Extreme, long-duration events of 23–40 h occurred and accounted 
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for 5% of all storms (Figure 2.3). Rainfall intensity ranged between 0.2 and 26.1 mm/h, but only 

5% of the events exceeded 17 mm/h (Figure 2.3). These relatively higher intensity events only 

contributed to 12% of the total annual rainfall. Storms with intensities ≤4.2 mm/h represent 75% 

of the events and constituted 64% of the annual rainfall. The high frequency of low intensity 

events can be attributed to convective storms of local atmospheric origin in the region (García-

Oliva et al., 1995). Over an 8-year period, García-Oliva et al. (1995) showed that only 3% of 

storm events had intensities that were greater than 24 mm/h and attributed this to the low 

frequency of cyclonic storm systems. 

 

Figure 2.3 Frequency distribution of a) depth (mm), b) duration (h) and c) intensity (mm/h) for 

62 storm events 

 

The rainfall characteristics at this research site are similar to those of many semi-arid regions, 

dominated by short-duration, low-intensity events during the wet season (Martínez-Mena et al., 

1998; Chamizo et al., 2012). However, two important differences are noted. Firstly, the 
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maximum recorded rainfall intensity is only 26.1 mm/h and was substantially lower than other 

maximum intensities in the semi-arid literature (Table 2.1). Secondly, the contribution of high-

intensity events to the total annual rainfall is only 12% as compared with 70% for semi-arid 

catchments (Wilcox et al., 1997; Martínez-Mena et al., 1998). 

 

2.4.2 Soil surface hydraulic conductivity 

At the deciduous forest, K was spatially variable across both transects (Figure 2.4). Hydraulic 

conductivity ranged from 24.4 to 164.0 mm/h at transect one and 21.0 to 144.1 mm/h at transect 

two. The mean K was 68.7 ± a standard deviation of 49.4 mm/h, with a median value of 50.4 

mm/h. Hydraulic conductivity at all measurement locations was greater than the 75th percentile 

of rainfall intensity, whereas three of the 20 measurements had K that was less than the 

maximum rainfall intensity (Figure 2.4). Given that K exceeds the rainfall intensity of 75% of the 

storm events, infiltration would not be limited during most of the wet period, and HOF is not 

generated during these events.  

 

Hydraulic conductivity at the pine forest was also heterogeneous (Figure 2.4). The K values 

ranged from 9.2 to 53.9 mm/h at transect one and 11.8 to 58.8 mm/h at transect two; with a mean 

value of K was 25.0 ± a standard deviation of 17.0 mm/h, which was two times lower than the 

deciduous forest. The relationship between K and rainfall intensity was similar to the deciduous 

forest. Hydraulic conductivity values at all measurement points exceeded the 75th percentile of 

rainfall intensity (Figure 2.4). Unlike the deciduous forest, there were a greater number of 

measurement locations where K was lower than the maximum rainfall intensity (Figure 2.4). 

These 11 points indicate that under the highest intensity, infiltration would be limited over much 

of the surface, and HOF can be generated. 

 

The mean K values of 68.0 mm/h at the deciduous forest and 25.0 mm/h at the pine forest were 

greater than K measured in many semi-arid areas (Table 2.1). The higher K at our site is likely a 

result of the higher density of vegetation and understorey growth than in semi-arid catchments. 

Lavee et al. (1998) observed that infiltration increased from arid to semi-arid to sub-humid 

zones, attributing this to greater vegetation densities. A higher plant density often enhances 
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infiltration through macropore formation and preferential flow along root channels (Bergkamp 

1998; Calvo-Cases et al., 2003). Greater plant density also improves soil stability and reduces 

surface crust formation as a result of greater organic matter input (Wilcox et al., 1988; Lavee et 

al., 1998).  

 

Figure 2.4 Spatial distribution of surface hydraulic conductivity (mm/h) along two transects at a) 

the deciduous forest and b) the pine forest. The black horizontal line indicates the maximum 

rainfall intensity. The grey horizontal line indicates the 75th percentile of rainfall intensity 

 

Our results show that unlike many semi-arid regions, K does not limit infiltration across most of 

the ground surface. In many semi-arid regions, rainfall intensity exceeds K producing HOF 

(Table 2.1). At our research site, 90% of the storm events did not exceed K at the deciduous 

forest and 85% did not exceed K at the pine forest, indicating that HOF would not occur through 

most of the wet season. At locations where the rainfall intensity exceeds K, HOF will be 

generated. However, this surface flow will be discontinuous across the hillslope as it would re-

infiltrate at high K surfaces downslope. This response is more like that of humid temperate 

forests, where relatively higher K and low-intensity rainfall promote infiltration and the 

production of more vertical and lateral subsurface flows (Bonell, 1993). 

 

2.4.3 Soil water repellency 

Soil water repellency at the deciduous forest showed high temporal variability (Table 2.4). Fifty 

days after the start of rainfall (late wet), the soil surface was non-repellent with a mean water 

drop penetration time of 0 s. When measured 54 (early dry) and 177 (late dry) days after the last 

rainfall event, the penetration time increased to mean values of 3.8 and 2.6 h (extremely 
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repellent) for each of the sample dates (Table 2.4). Repellent conditions persisted through the 

periods without rainfall and were reduced to a mean penetration time of 0.6 s when measured 14 

days (Early wet) after the onset of rainfall (Table 2.4). Soil water repellency showed little spatial 

variability during each measurement period. All of the sampled areas were non-repellent during 

both wet periods. When measured during the early dry period, extreme water repellent conditions 

were present at 18 of the 20 sampling locations whereas the other two locations exhibited slight 

water repellency. During late dry period, 17 of the 20 locations were extremely repellent whereas 

the other three locations were slightly repellent (Table 2.4). 

 

The temporal distribution of soil water repellency at the pine forest did not differ substantially 

from the deciduous forest (Table 2.4). Both wet periods had penetration times of 0 s. The water 

drop penetration time increased to 3.5 h during the early dry period and was reduced to 2.5 h 

during the late dry period. The spatial distribution of hydrophobic conditions showed low 

variability. There was no variability during both wet periods, with 100% of the sampled area 

being non-repellent. Likewise, 100% of the sample area was extremely repellent in the early dry 

period. During the late dry period, 17 of the 20 sampling locations were extremely repellent with 

the remaining three locations slightly repellent. 

 

Water drop penetration times at the research site are similar to other semi-arid regions, 

dominated by long penetration times and extreme repellency (Martínez-Murillo and Ruiz-

Sinoga, 2007; Zavala et al., 2009). Extreme levels of soil water repellency are produced under 

dry conditions and organic matter input. These conditions were present and persisted during both 

dry periods, where soil moisture is low (Figure 2.5) and litterfall is highest (García-Oliva et al., 

2003). The extreme water repellent conditions at the end of the dry period suggest that there 

would be a reduction in infiltration at the start of the wet season. However, the effect of 

repellency on infiltration appears to be minimal as there are clear, albeit small increases in soil 

moisture 10 cm below the soil surface at both forests (Figure 2.5).  

 

The absence of repellency during the wet season is unlike those of many semi-arid regions, 

where there is no substantial difference in repellency between dry and wet seasons (Crockford et 

al., 1991; Verheijen and Cammeraat, 2007; Zavala et al., 2009). Crockford et al. (1991) and 
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Zavala et al. (2009) attributed this to the short duration and sporadic nature of rainfall, which 

prevent the flushing of hydrophobic compounds from the soil. At our site, the longest period 

without rainfall was 3 days, indicating that there will be significant flushing of hydrophobic 

compounds, which prevents the re-establishment of soil repellency. The absence of soil water 

repellency during the wet season indicates that infiltration will not be impeded and HOF is 

unlikely to occur. 

 

Table 2.4 Water drop penetration time at each individual plot for the Late wet (august 2010), 

Early dry (December 2010), Late dry (May 2011) and Early wet (June 2011) seasons. s = 

seconds, h = hours 

Plot Deciduous forest Pine forest 

Season Late wet Early 

dry 

 

Late 

dry 

Early 

wet 

Late wet Early 

dry 

Late 

dry 

Early 

wet 

1 0 s 4.5 h 3.5 h 0 s 0 s 3.5 h 3.5 h 0 s 

2 0 s 4.5 h 3.5 h 0 s 0 s 2.5 h 2.5 h 0 s 

3 0 s 2.3 h 0.3 h 0 s 0 s 5.3 h 2.5 h 0 s 

4 0 s 4.3 h 4.5 h 0 s 0 s 4.3 h 2.3 h 0 s 

5 0 s 3.5 h 3.5 h 1 s 0 s 4.3 h 2.5 h 0 s 

6 0 s 5.3 h 2.3 h 0 s 0 s 3.5 h 1.3 h 0 s 

7 0 s 3.5 h 4.3 h 0 s 0 s 3.5 h 2.2 h 0 s 

8 0 s 4.5 h 0.3 h 4 s 0 s 4.5 h 1.3 h 0 s 

9 0 s 3.0 h 1.3 h 1 s 0 s 0.6 h 4.5 h 0 s 

10 0 s 3.5 h 3.5 h 0 s 0 s 3.5 h 2.3 h 0 s 

Mean 0 s 3.8 h 2.6 h 0.6 s 0 s 3.5 h 2.5 h 0 s 

 

 

2.4.4 Soil water response to rainfall inputs 

At the deciduous forest, the response to rainfall between 10 and 30 cm below the surface was 

monitored during the wet period (Figure 2.5). Events ≥2mm produced an increase in VWC at the 

10 and 20 cm soil layers, whereas events ≥7mm were needed to produce a response at the 30 cm 

layer. During these storm events, water rapidly percolated through the profile. Mean percolation 

rates of 288, 240 and 221mm/h were calculated for the 10, 20 and 30 cm layers respectively.  
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Figure 2.5 a) Daily rainfall and daily volumetric water content at b) the deciduous forest and c) 

the pine forest. The grey arrow indicates logger error and period of data loss  

 

At the pine forest, the 10 cm layer responded to events ≥2 mm, whereas the 20 and 45 cm layers 

responded to events greater than 3 and 9mm respectively. Percolation through the profile was 

rapid during rainfall events and decreased with depth with a mean value of 206 mm/h at 10 cm, 

170 mm/h at 20 cm and 103 mm/h at 45 cm. The response to rainfall was slower and less 

frequent than the deciduous forests. This is likely due to the lower K at the pine forest and 

rainfall interception by the litter layer, which in other pine forests, can retain up to 1.7 mm of 

rainfall (Putuhena and Cordery, 1996).  
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Figure 2.6 Cumulative gain in rainfall and event-level soil water at the deciduous and pine forest 

for 62 events 

 

The increase in the depth equivalent soil water for the shallow soil profile at both forests had a 

strong positive relationship to the depth of rainfall. This increase is the difference between the 

soil water prior to the start of the event and the peak soil water during the storm event and 

represents the gain before water is lost to evaporation or deep percolation. This change, barring 

interception, saturation or overland flow should equal the depth of rainfall. The event-level 

increase in soil water at the deciduous forest was between 11% and 100% of the incoming 

rainfall, whereas at the pine forest ranged from 8% to 100% of the incoming rainfall. Over the 62 

storm events, the event-level increase in soil water resulted in a cumulative gain of 645 mm or 

84% of the 765mm of rainfall at the deciduous forest and 583mm or 76% of the total storm 

inputs at the pine forest (Figure 2.6). The high re-infiltration of rainfall through the shallow soil 

is unlike semi-arid regions where only 44% of rainfall is redistributed (Bergkamp et al., 1999). 

The greater redistribution of water at our site can be attributed to higher density of vegetation, 

which slows surface runoff and enhances infiltration (Cerdà, 1997b; Bergkamp et al., 1999). 
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2.5 Conclusion 

Despite having similar climate and vegetation regimes, the hydrological controls that govern 

runoff generation in semi-arid catchments are not transferable to tropical dry forests. Our results 

show that extreme levels of soil surface water repellency develop but do not persist during the 

wet season and K was greater than the rainfall intensity of more than 75% of storm events. These 

conditions promoted the rapid infiltration and percolation of water through the upper 30 cm of 

soil, indicating that subsurface flow, not infiltration excess overland flow, is the dominant runoff 

process in this landscape. If we are to improve our understanding of runoff generation in tropical 

dry forests, then a better grasp on the mechanisms and controls on subsurface flow processes is 

essential. In order to do so, we need to increase the spatial extent of hydraulic conductivity 

measurements and examine changes in hydraulic conductivity at different soil depths. 

Furthermore, a greater characterisation of hydraulic conductivity – soil moisture curves and 

direct measurements of soil water fluxes are essential in improving the understanding of 

unsaturated zone soil-water dynamics. 
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Chapter 3 

3.0 Soil water storage, rainfall and runoff relationships in tropical 

dry forest catchment 

3.1 Introduction 

Tropical dry forests account for approximately 19% of the total world forested area and 42% of 

the global tropical forests (Murphy and Lugo, 1986). These forests are widespread in Central and 

South America, particularly along the Pacific coast of México where more than 40% of the 

vegetation is tropical dry forest (Sánchez-Azofeifa et al., 2009). The key defining features of 

tropical dry forests are a distinct 3 – 7 month dry period and an average ratio of annual potential 

evapotranspiration to rainfall >1 (Murphy and Lugo, 1995; Miles et al., 2006) indicating an arid 

and water limited climate (Budyko, 1974) and intermittent streamflow, where streams remain dry 

for 6 – 10 months and streamflow is activated during the short but intense wet season (Vose and 

Maas, 1999; Mugabe et al., 2007).   

 

Most research in tropical dry forests has focused on quantifying the catchment scale water 

balance (Lugo et al., 1978; de Araújo and González Piedra, 2009; Montenegro and Ragab, 

2010), while other work has focused on identifying the primary forms of runoff generation 

(Sandström, 1996; Masiyandima et al., 2003; Mugabe et al., 2007). In tropical dry forests, runoff 

is strongly controlled by the hydraulic properties of the surface and shallow subsurface soils. It 

has been shown that runoff is dominated by infiltration excess (Hortonian) overland flow (HOF), 

saturation excess overland flow (SOF) (Sandström, 1996; McCartney et al., 1998; Mugabe et al., 

2007) and limited subsurface stormflow (Masiyandima et al., 2003). These studies provide a 

foundation of knowledge concerning the mechanisms by which runoff is generated. Building 

upon this knowledge, it is now possible to address questions about the specific thresholds needed 

to initiate runoff. It has clearly been demonstrated in both humid and arid temperate catchments 

that specific thresholds of antecedent storage or precipitation are required to initiate runoff (Ali 



39 
 

et al., 2013); however, debate still exists as to the relative importance of storage versus 

precipitation thresholds (McDonnell, 2013).   

 

A non-linear relationship between antecedent soil water storage and runoff generation has been 

observed in many catchments. Threshold shallow soil moisture contents must first be reached 

before there is an abrupt increase in streamflow and generation of large amounts of stormflow 

(Western and Grayson, 1998; James and Roulet, 2007; Penna et al., 2011b). The soil moisture 

content threshold reflects changes in the storage deficits and the overall wetness of the 

catchment. Above the threshold, storage deficits are low and connectivity between the hillslope 

and stream channel occurs through lateral flow processes (Buttle et al., 2004; Tromp-van 

Meerveld and McDonnell, 2006b; Oswald et al., 2011; Camporese et al., 2014). Recent studies 

have focused on combining both a depth equivalent antecedent soil water content and event 

precipitation to assess stormflow generation at the catchment scale. Detty and McGuire (2010) 

showed that an increase in the sum of antecedent soil water content and event precipitation from 

302 to 332 mm increased stormflow from 0.3 to 11 mm or a 97% increase in the volume of 

stormflow. It has been suggested that the combined antecedent soil water and precipitation 

threshold indicate a storage threshold amount, but also a source area threshold, where above the 

threshold there is increased hillslope-stream connectivity across increasing the size of the 

catchment contributing area (Detty and McGuire, 2010; Fu et al., 2013).  

 

Notwithstanding the importance of non-linear storage and runoff relationships, threshold rainfall 

has been shown to be an important control of runoff across humid temperate forests (Spence and 

Woo, 2003; Kim et al., 2005), humid tropical forests (Negishi et al, 2007) and semi-arid 

catchments (Cammeraat, 2004). Rainfall-runoff thresholds have been identified at the small plot 

(Nicolau et al., 1996), hillslope (Tromp-van Meerveld and McDonnell, 2006a) and catchment 

scale (Cammeraat, 2004; Fu et al., 2013). The threshold depth of rainfall required to generate 

runoff typically increases from the plot to catchment scale, representing not only the greater 

complexity in the interactions among rainfall, soil, vegetation and topography, but also changes 

in the dominant runoff mechanisms (Nicolau et al. 1996; Buttle et al., 2004; Cammeraat, 2004; 

Tromp-van Meerveld and McDonnell, 2006a). Ali et al. (2013) suggested that in order to avoid 

the inherent problems with scaling up non-linear rainfall-runoff responses, it may prove more 
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useful to characterise rainfall thresholds at the catchment scale. Although research characterizing 

the threshold rainfall needed to generate runoff at the catchment scale is limited, most studies 

indicate that this threshold is only exceeded after storage deficits are satisfied, thereby 

connecting hillslopes to streams (Buttle et al., 2004; McGuire and McDonnell, 2010; Fu et al., 

2013).  

 

Because the storage reservoirs are depleted during the 3 – 7 month long dry season, tropical dry 

forests can be used to test the relative importance of storage versus precipitation thresholds. 

Understanding non-linear threshold relationships at the catchment scale is critical in model 

development, which often suffers from scaling issues (Zehe and Sivapalan, 2009; Penna et al., 

2011a). Furthermore, because non-linear stormflow behaviours are observed across many 

catchments, thresholds present a uniform metric e.g. for inter-catchment comparison (Ali et al., 

2013). In this study we investigated the relationship between soil water storage, rainfall and 

runoff in a Mexican tropical dry forest catchment with the goal of improving our understanding 

on the controls that govern streamflow generation. The specific objectives of this work were to: 

1. Identify the soil water storage and hydrometeorological controls on streamflow activation 

after the dry season in a tropical dry forest catchment 

2. Determine if the dominant controls on seasonal streamflow activation are also the 

primary controls on stormflow runoff generation at the event scale.  

3. Use the rainfall-runoff relationship and lag to peakflow to gain insight into the dominant 

runoff mechanism(s) in a tropical dry forest catchment.  

 

3.2 Study site 

The study was conducted in a 3.15 km
2
 catchment in the Lake Zapotlán watershed, 

approximately 100 km south-southwest of Guadalajara, Jalisco, Mexico; 5 km northeast of 

Ciudad Guzman, Jalisco, Mexico (19º46N 103º27W – 19º47N 103º25W) (Figure 3.1). The 

climate is Tropical Savannah (Köppen-Geiger: Aw) with a distinct wet and dry season (Peel et 

al., 2007). The average annual precipitation (1972 – 2003) is 813 mm, of which 95% falls 

between June to September (Ortiz-Jiménez et al., 2005). Rainfall is dominated by short duration, 
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low intensity storm events (Farrick and Branfireun, 2014). The strong wet-dry seasonality results 

in intermittent streamflow production from the catchment. Mean annual temperature is 19.6ºC 

with maximum temperatures occurring in July (Ortiz-Jiménez et al., 2005). The annual average 

ratio of potential evapotranspiration to rainfall in the region is 2.5 (Farrick and Branfireun, 

2013), which indicates an arid and water limited climate (Budyko, 1974).  

 

Elevation ranges from 1557 metres above sea level (masl) at the primary outflow channel to 

2170 masl at the headwater sub-basin. The catchment is steep with slopes ranging from 30º to 

over 40º. The study area is underlain by Pleistocene volcanic basaltic andesite and volcanic fine 

tuff. The channel width ranges from <0.20 m in the headwater sub-basins to 1.0 – 1.5 m at the 

primary outflow channel. The stream channels are deeply incised and steep, with a narrow 

riparian zone (0.2 – 1 m). The soil is classified as a chromic cambisol with andic properties of 

volcanic origin (Gómez-Tagle, 2009). The soil at the hillslope is deep, often >1 m. Soil textures 

are mainly loams and sandy soils and vary from sandy loams in the O and upper A horizons to 

loams and sandy-clay loams at depths below 50 cm (Farrick and Branfireun, 2014). The surface 

hydraulic conductivity (K) is highly variable, ranging from 9 – 164 mm h
-1

 (Farrick and 

Branfireun, 2014). Bulk density and total porosity of the upper 100 cm of soil range from 0.91 – 

1.14 g cm
-3 

and 0.57 – 0.66 respectively (Farrick and Branfireun, 2014).  
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Figure 3.1 Location of study catchment and hydrological instrumentation 

  

The catchment is dominated by two distinct forest types. The pine-oak forest (almost exclusively 

Pinus montezumae, Quercus laeta) occurs at elevations greater than 1800 masl and occupies 

82% of the catchment area. The highly heterogeneous mixed deciduous forest (dominated by 

Carpinus caroliniana, Mimosa adenantheroides, with a complex mix of understorey and 

herbaceous vegetation) occurs at elevations between 1600 – 1800 masl and covers 13% of the 

catchment. Land development in the catchment is low with fragmented agricultural plots and 

roads occupying 4 and 1% of the catchment respectively. 
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3.3 Methods 

3.3.1 Hydrometric measurements  

Open field precipitation was measured from 1 May to 24 September 2012 at 10 minute intervals 

using a Texas Electronics tipping bucket rain gauge installed at three locations across the 

catchment at 1600, 1800 and 1950 masl (Figure 3.1). Rain storm events were defined as periods 

of rainfall greater than 1 mm, separated by 6 h (Penna et al., 2011b). A total of 56 storm events 

were identified during the study period. 

 

Volumetric water content (VWC cm
3
 cm

-3
) was measured at four soil pits installed across the 

catchment using Campbell Scientific Inc. CS615 Water Content Reflectometers from 1 May to 

24 September 2012 (Figure 3.1). Two of these pits were located at convex hillslopes, 

approximately 60 m upslope of the stream, while the other two pits were installed at concave 

hillslopes approximately 20 m upslope of the stream. We did not measure VWC in the small 

riparian areas as research in other steep catchments with incised streams and narrow riparian 

zones shows that contributions from the near stream area to runoff is often very low (Sidle et al., 

2000; McGuire and McDonnell, 2010). The reflectometers were inserted horizontally in the soil 

pits at depths of 10, 30, 50 and 100 cm below the surface at all four locations. The reflectometers 

were calibrated in the laboratory using soil extracted from the same area following the technique 

of Stenger et al. (2005). The error of calibrated reflectometers was low with a standard deviation 

of ± 3%. The depth equivalent soil water (mm) between the 10 cm and 100 cm soil layers at each 

soil pit was calculated as,  

                             ∑         

 

   

                

where i is the index representing the different soil layers, N is the number of instrumented soil 

layers (3), VWCi is the average of the volumetric water content values bounding each layer (e.g. 

VWC1 uses the mean VWC from the probes 10 and 30 cm below the surface) and Di is the 

thickness of the soil between two reflectometer probes (D1 – D3: 200 mm, 200 mm and 500 mm). 

Using the depth equivalent soil water from the two pits at the convex hillslope, we calculated the 

average value for the convex hillslope. The same method was used for the two soil pits at the 

concave hillslope. 
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The drainable porosity at each instrumented soil layer was calculated by subtracting the VWC at 

field capacity from the total porosity. Total porosity was determined from earlier work in these 

forests (Farrick and Branfireun, 2014), while field capacity was estimated as the VWC at which 

the rate of decline during drainage conditions became insignificant (Oswald et al., 2011). 

  

The stream water level at the primary outflow channel (Figure 3.1) was recorded at 10-minute 

intervals, using a 0.8 mm resolution Odyssey capacitance water level logger (Dataflow Systems 

Ltd.). Modification of the channel occurred before the onset of this current study, where large 

rocks and boulders were removed and an artificial wall was constructed and backfilled to 

produce a quiescent pool and a small dam structure that had a clear free fall on the downstream 

side. Discharge was calculated from the water level using the end-depth method (Jain et al., 

2007). This method was selected as the stream fit the criteria required to accurately measure 

discharge: free fall where the drop is greater than the stream stage, rectangular, smooth channel 

without rocks or boulders. Discharge was calculated as: 

   √                                                                                                     

where Q is the discharge (m
3
/s), C is the coefficient of discharge, g is the acceleration due to 

gravity, b is the channel width (m) and h is the water level (m). A value of 1.66 was used for the 

coefficient of discharge. We confirmed the accuracy of the estimated discharge by conducting 

manual discharge measurements using a stopwatch and buckets under flow conditions, ranging 

from 5.42 x 10
-3

 to 1.46 x 10
-2

 m
3
/s. However, due to the largest events occurring at night when 

access to the site was restricted, we were unable to capture the peakflow of larger storm events. 

Without measuring these flow conditions, there is a degree of uncertainty with respect to the 

discharge and the quickflow volumes produced during the largest storms. 

  

3.3.2 Graphical hydrograph separation 

Storm runoff events were defined as the period from the initial rise in discharge from a local 

minimum in the hydrograph to the next local minimum and were separated into quick flow (QF) 

and delayed flow (DF) volumes using the local minimum method (Sloto and Crouse, 1996). 

Quick flow, DF and total event runoff (R), all in mm, were calculated as the sum of the 10 
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minute values (mm) over the selected event period. The gross event rainfall depth (P) was 

calculated as the sum of the 10 minute values for the duration of the storm event. The hydrologic 

behaviour of the catchment was examined during the study period using the ratio of total runoff 

to rainfall (R/P) and the ratio of quick flow to rainfall (QF/P).  

 

The lag time between storm onset and peak streamflow (Trise) was calculated as the time 

difference (hours) between the start of rainfall and peakflow (Mosley, 1979). The lag time 

between storm onset and peak soil moisture response at the 10 to 100 cm layers was calculated 

as the time difference (hours) between the start of rainfall and peak in VWC. The lag time was 

determined for all rainfall-stormflow events observed during the wet season.  

 

3.3.3 Antecedent wetness calculations 

The effect of antecedent conditions on the catchment runoff response was assessed using three 

different measures of antecedent wetness: 1. antecedent precipitation (mm), 2. antecedent soil 

water (ASW) (mm) and 3. the sum of the antecedent soil water and event rainfall (ASW + P) 

(mm). Antecedent precipitation was calculated as the cumulative rainfall (mm) seven days prior 

to the start of the runoff producing storm event (James and Roulet, 2009). Antecedent soil water 

was calculated as the depth equivalent soil water (mm) before the onset of a storm event. The 

antecedent soil water and event rainfall index was calculated as the sum of the antecedent soil 

water prior to the storm event and the gross event rainfall depth (Detty and McGuire, 2010). In 

order to investigate the threshold behaviour of the catchment, we examined the relationship 

between these antecedent wetness indices and quick flow for the 21 events recorded after 

streamflow had commenced. 

 

Piecewise regression analysis (PRA) was used to examine the threshold behaviour of QF versus 

the combined ASW + P. Piecewise regression models are broken-stick models, where two or 

more lines unite at an unknown point, known as break-points. These break-points represent the 

threshold in relationships (Toms and Lesperance, 2003). These models have successfully been 

used to determine the breakpoint in storage-discharge relationships in boreal catchments (Oswald 

et al., 2011). The piecewise regression analysis was performed using WinBUGS1.4, an 
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interactive Windows based program for Bayesian analysis of complex statistical analysis (Lunn 

et al., 2000).  

 

3.4 Results 

3.4.1 Hydrometeorological conditions 

The total rainfall from May to September, 2012 was 599 mm which was 24% below the long-

term seasonal average of 789 mm for the same period (Figure 3.2). One hundred and nineteen 

millimetres or 20% of the total rainfall was discharged as streamflow during May – September. 

The remaining 80% or 440 mm was distributed among evapotranspiration, ground water 

recharge or change in unsaturated soil storage.  

 

From May 17 to June 10, a total of 15 mm of rainfall was recorded. During this period a stable 

mean VWC of 13.8% between the 10 and 100 cm soil layers from all four pits was recorded 

(Figure 3.2). The size and frequency of storm events increased after June 10. A total of 176 mm 

of rainfall was recorded from June 10 to July 7. During this transition phase or wetting up period, 

there was a progressive increase in VWC from the 10 to 100 cm layer, with the VWC reaching 

field capacity at 10, 30 and 50 cm layers (Figure 3.2). Streamflow was absent for most of this 

period and was only activated after the VWC at 100 cm below the surface increased to a 

threshold value of 23% at the convex hillslope and 29% at the concave hillslope, a mean of 26% 

from both slopes, which was near field capacity (Figure 3.2). The activation of streamflow 

occurred after a cumulative input of 191 mm of rainfall over 52 days.  
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Figure 3.2 Daily variation in a) rainfall, b) convex hillslope volumetric water content, c) concave 

hillslope volumetric water content and d) discharge from May to September, 2012 

 

More importantly, a storage deficit of 162 mm of soil water, calculated as the change in the mean 

depth equivalent soil water (mm) between the 10 and 100 cm soil layers from all four soil pits 
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from June 10 (start of the transition phase) to July 7 (streamflow activation), was satisfied before 

streamflow was activated (Figure 3.3). While the cumulative soil water remained below the 

cumulative precipitation for most of study period, from June 25 and June 29, the cumulative soil 

water was larger than rainfall. Total precipitation between the onset of streamflow on July 7 and 

the end of the study on Sep 24 was 408 mm, of which 118 mm or 29% was discharged as 

streamflow. 

 

 

Figure 3.3 Cumulative rainfall, soil water and streamflow from May to September, 2012 

 

3.4.2 Rainfall – runoff relationships 

A series of 21 storm events were monitored during the wet phase after streamflow had 

commenced. Rainfall depths during these storms ranged from 2.2 to 58.6 mm, with 75% of the 

events being ≤15 mm. The mean rainfall intensities ranged from 0.5 to 25.1 mm h
-1

 with 95% 

events <20 mm h
-1

. Rainfall durations ranged from 0.7 to 22.5 hours during the measurement 

period (Table 3.1). During the wet period, storm runoff during an event ranged from 1 to 35.5 

mm and showed a statistically significant linear relationship with P, (r
2
 = 0.76; p < 0.0001; R = 

0.5949P-3.693) (Table 3.1). A minimum P threshold of 4.1 mm was needed to generate a 1 mm 

increase in runoff. The quick flow or stormflow component of the hydrograph ranged from 0.2 to 

32.2 mm and was strongly influenced by the event rainfall depth, increasing linearly with P (r
2
 = 

0.84; p < 0.0001). Quick flow showed high variability in the relationship with precipitation when 
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P was greater than 14 mm (Figure 3.4a). The mean QF/P was 0.26 and ranged from 0.04 to 0.72 

(Table 3.1) and had a linear relationship with P (r
2
 = 0.40; p < 0.0001), which was statistically 

significant and showed low scatter throughout the relationship when P was less than 14 mm 

(Figure 3.4b). The frequency distribution of the portion of rainfall delivered as QF indicates that 

for 75% of the storm events QF/P was less than 0.36.   

 

Figure 3.4 Relationship between a) event quick flow (QF) and event rainfall (P), b) runoff 

coefficient (QF/P) and P, c) QF and rainfall intensity (mm
-1

) and d) QF and rainfall duration 

(hours) 

 

Quickflow had a weak positive relationship with rainfall intensity and generally increased with 

increased rainfall intensity, although the linear relationship (r
2
 = 0.23, p < 0.03) was poor during 

the wet phase (Figure 3.4c). Similarly, rainfall duration had a weak influence on QF. There was a 

non-significant linear increase in QF (r
2
 = 0.25; p < 0.02) with increased duration (Figure 3.4d).
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 Table 3.1 Storm event characteristics from July to September, 2012. P = event rainfall; R = total event runoff; QF = event quick flow; 

QF/P = runoff coefficient. Above threshold events represent storms that generate more than 4 mm of QF 

  Rainfall characteristics Stormflow response Antecedent wetness 

conditions 

Storm 

Date 

Event 

number 

P  (mm) Rainfall 

intensity 

(mm h
-1

) 

Duration 

(h) 

R (mm) QF (mm)  QF/P Antecedent 

soil water 

(mm) 

Antecedent 

soil water 

+ P (mm) 

Below Threshold Events 

8 Jul  1 10.0 3.0 3.3 1.0 0.9 0.09 261 271 

18 Jul 2 23.0 15.3 1.5 3.0 2.8 0.12 254 277 

21 Jul 4 28.1 12.0 2.3 6.1 3.8 0.14 261 289 

23 Jul 3 14.2 12.2 1.2 2.5 2.3 0.16 267 281 

1 Aug 5 5.0 3.0 1.7 1.3 0.9 0.19 260 265 

7 Aug 6 11.8 2.7 4.3 2.9 2.4 0.20 257 269 

18 Aug 7 4.7 4.7 1.0 1.3 1.0 0.22 266 270 

21 Aug 8 6.5 2.4 2.7 4.8 2.7 0.41 268 274 

23 Aug 9 4.1 1.1 3.7 2.2 0.9 0.22 271 275 

23 Aug 10 6.1 1.5 4.0 2.6 0.2 0.04 272 278 

25 Aug 11 6.3 2.4 2.7 4.8 1.8 0.28 273 279 

1 Sep 12 7.8 1.7 4.5 2.5 0.7 0.09 268 275 

9 Sep 13 7.7 2.9 2.7 1.9 0.4 0.05 267 274 

11 Sep 14 11.0 16.5 0.7 7.0 2.8 0.25 270 281 

12 Sep 15 9.2 3.6 2.5 7.0 2.8 0.31 273 282 

24 Sep 16 11.1 8.3 1.3 1.7 0.8 0.07 244 255 

Mean  10.4 5.8 2.5 3.3 1.7 0.18 264 275 

Above Threshold Events 

21 Jul 17 14.7 4.9 3.0 7.9 4.0 0.24 279 294 

26 Jul 18 41.2 12.4 3.3 21.6 20.9 0.51 265 306 

13 Aug 19 35.6 1.6 22.5 29.2 25.7 0.72 260 295 

19 Aug 20 23.0 4.6 5.0   24.0 15.0 0.65 277 300 

30 Aug 21 58.6 25.1 2.3 35.5 32.2 0.55 261 319 

Mean  34.6 9.7 7.2 23.6 19.5 0.53 268 303 
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The mean lag time between storm onset and peak streamflow was 3.8 h and ranged from 1.5 to 

6.5 h. Events where Trise ≥ 2.5 hours accounted for 75% of the events. The gross event rainfall 

had little control on Trise, with a Spearman‟s correlation coefficient that was not statistically 

significant (rs = -0.52; p < 0.02). Events with long lag times had relatively small volumes of 

rainfall in comparison to events with short lag times. Rainfall intensity had a stronger forcing on 

Trise than P, with a Spearman‟s correlation coefficient that was statistically significant (rs = -0.83; 

p < 0.0001) (Figure 3.5).  

 

 

Figure 3.5 Relationship between a) the lag time in peakflow (Trise) and event rainfall (P) and b) 

Trise and rainfall intensity. r
2
 represents the coefficient of determination for the linear regression. 

rs represents the Spearman‟s correlation coefficient.  
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3.4.3 Antecedent wetness controls on stormflow 

The depth equivalent antecedent soil water calculated between the 10 and 100 cm soil layers 

from all soil pits ranged from 244 – 279 mm with a mean of 265±8 mm (standard deviation) 

during the wet phase. The influence of the antecedent soil water content on stormflow generation 

was not significant (r
2
 = 0.001; p < 0.89) and no threshold response was observed. There were 

two exceptions to this; July 18 and August 19, where two storm events of 23 mm produced 

substantially different stormflow responses. The July 18 event, with 254 mm of ASW, produced 

relatively small amounts of QF (2.8 mm) and QF/P (0.12). In contrast, the August 19 event with 

277 mm of ASW and produced QF (15 mm) and QF/P (0.65) that were 5 times greater than for 

the July 18 event (Table 3.1). 

 

When the antecedent soil water content was summed with the event rainfall, a strong linear 

relationship was observed with QF (r
2
 = 0.84; p < 0.0001). Although the linear relationship 

between QF and ASW + P was strong, it did not differ from that recorded for QF vs. P (Figure 

3.4a). Using the piecewise regression analysis (PRA), we were able to calculate a threshold 

response for the QF and ASW + P relationship at the convex and concave hillslope. The 

efficiency criteria of the PRA model including the 95% confidence interval of the minimum and 

maximum quickflow below (CI1) and above (CI2) the breakpoint and the root mean square error 

(RMSE) of the predicted quickflow are summarized in Table 3.2. The QF predicted from the 

PRA fit well to the observed values. The uncertainty in the predicted QF was low as indicated by 

RMSE <2 mm and the narrow interval of CI1 and CI2 (Table 3.2). The uncertainty in the 

predicted QF at the convex hillslopes was less than at the concave hillslopes; however, the 

difference was not substantial. Likewise, the difference in the threshold breakpoint between sites 

varied by only 4 mm (Table 3.2; Figure 3.6a-b). We therefore used the mean value from all slope 

locations to show a breakpoint in the non-linear relationship between QF and ASW + P at 289 

mm ± a standard error of 2.3 mm (Figure 3.6c). Below this threshold, events produced less than 

2.8 mm of stormflow and a mean QF/P of 0.18, while above threshold events produced more QF 

(3.5 – 32.2 mm) with a mean QF/P of 0.53 (Table 3.1). The volume of stormflow produced by 

all events above the threshold (97 mm) was 78% of the total stormflow generated over the wet 

season (124 mm) from July 7 to September 24. The total stormflow above the threshold also 
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represented a substantially larger fraction of the total precipitation after activation (23%) than the 

stormflow below the threshold (6%).  

 

Figure 3.6 Threshold relationship between the quickflow (QF) measured at the primary outflow 

and a) antecedent water + event rainfall (P) at the convex hillslope, b) antecedent water + P at the 

concave hillslope and c) mean antecedent water + P from all slope locations. Black circles 

represent the observed QF and the grey line represents the predicted response from the Piecewise 

Regression Analysis (PRA) 

 

The mean lag time between storm onset and peak rise in soil moisture at all the instrumented soil 

layers was shorter for storm events above the 289 mm ASW + P threshold (2.3 h) than for storm 
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events below this threshold (5.7 h). This was particularly evident at the 50 and 100 cm soil 

layers. At the 50 cm layer the mean lag time above the threshold (2.5 h) was nearly two times 

shorter than below the threshold (6.2 h). Likewise, the lag time for storms above the threshold at 

the 100 cm layer (2.8 h) was four times shorter than for storms below this threshold (11.4 h). The 

mean lag time between storm onset and peak streamflow for rainfall events above the threshold 

was 3.2 h, which was 40 and 24 minutes slower than the lag times recorded at the 50 and 100 cm 

soil layers respectively. 

 

The antecedent precipitation, represented by the cumulative rainfall seven days prior to the storm 

event, ranged from 2.7 to 79 mm with a mean value of 46.5 mm. Antecedent precipitation had 

little effect on both R (r
2
 = 0.01; p < 0.50) and QF (r

2
 = 0.01; p < 0.65). 
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Table 3.2 Assessment of the Piecewise Regression Analysis (PRA) model efficiency used to produce the non-linear response between 

quickflow and the sum of antecedent soil water and event rainfall 

Location Breakpoint 

(mm) 

β1 QF1 95% CI1 β2 QF2 95% CI2 RMSE 

(mm) 

Convex hillslope 291 0.0798 
1.046 

2.477 

0.273, 1.809 

1.159, 4.032 
1.175 

6.475 

34.74 

3.853, 9.360 

31.61, 37.79 
1.595 

Concave hillslope 287 0.0723 
1.004 

2.582 

0.068, 1.913 

1.078, 4.483 
1.220 

9.076 

35.20 

6.154, 12.00 

31.39, 39.00 
1.900 

All slope locations 289 0.0804 
1.044 

2.511 

0.205, 1.860 

1.106, 4.243 
1.205 

7.680 

35.08 

4.873, 10.61 

31.61, 38.45 
1.720 

The breakpoints derived from the PRA are displayed as the sum of antecedent soil water and event rainfall (mm). β1 is the slope below 

the breakpoint. β2 is the slope above the breakpoint. The minimum and maximum quickflow below (QF1) and above (QF2) the 

breakpoint. The 95% confidence interval of the minimum and maximum quickflow below (CI1) and above (CI2) the breakpoint. 

RMSE is the root mean square error of the modelled quickflow.
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3.5 Discussion 

3.5.1 Streamflow activation in tropical dry forest 

Threshold responses in runoff generation to VWC have been observed at other catchments 

including dry rangeland (Western and Grayson, 1998), temperate humid forest (James and 

Roulet, 2007; 2009), and steep alpine (Penna et al., 2011b) catchments. A mean threshold VWC 

of 26% at the 100 cm soil layer was necessary to activate streamflow from the catchment in the 

present study. This threshold VWC was similar to 23% recorded by James and Roulet (2007) but 

substantially lower than the threshold VWC of 41 – 46% observed by Western and Grayson 

(1998) and Penna et al. (2011b). Below the VWC threshold, streamflow was not generated; 

however, the increase in soil moisture at the 10, 30 and 50 cm soil layers in the hillslopes 

indicates that vertical flow processes were active. Although vertical processes dominated during 

the 52 day transition phase, from June 25 to June 29 the cumulative soil water was larger than 

cumulative rainfall (Figure 3.3) indicating small amounts of lateral flow in the 10 to 50 cm soil 

layers, towards the pits. Above the VWC threshold, streamflow activation signals the occurrence 

of lateral flow from the hillslope. Grayson et al. (1997) described this change of state as a switch 

in the dominant direction of soil water movement from vertical flow under dry antecedent 

conditions to lateral flow under wet antecedent conditions. The threshold response from soil pits 

at the convex and concave hillslopes was highly synchronous, suggesting that hydrological 

connectivity was achieved across the catchment, connecting hillslopes to streams.  

 

Our current study showed that a response in the VWC at deeper soil layers (100 cm) was 

necessary for streamflow activation. This response was unlike the shallow near-surface VWC 

threshold observed in temperate humid catchments (Western and Grayson, 1998; James and 

Roulet, 2007; Penna et al., 2011b). These differences likely reflect the variability in the soil 

properties which affect the mobile soil water that is available for drainage and flow, namely the 

drainable porosity. Field studies in temperate humid catchments with shallow soils show that 

drainable porosity often quickly decreases with depth due to changes in bulk density or soil 

texture (Weiler et al., 2004; 2005). The decrease in drainable porosity with depth allows a small 
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input of rainfall to elicit a rapid rise in the water table which increases the potential for shallow 

lateral subsurface flow (Uchida et al., 2006). With the shallow soil water near its field capacity, 

an increase in VWC satisfies the field capacity, initiating drainage of mobile soil water and 

transport along the shallow saturated lateral flow pathways (Penna et al., 2011b). Unlike those 

humid temperate forests, high drainable porosities (0.29 – 0.22) were observed through the 

profile at all four soil pits in our study site. Although the VWC between the 10 and 50 cm soil 

layers were near or at field capacity, the increase in VWC during rainfall inputs remained below 

the moisture content at saturation, suggesting that transient saturation, which supports saturated 

lateral flow and the near surface threshold response, does not occur.  

 

With the VWC at the 10, 30 and 50 cm soil layers satisfying the field capacity, the excess water 

can readily drain from these layers. Vertical drainage continues through the profile until the 

VWC at the 100 cm layer is brought to field capacity. Once the unsaturated storage between the 

10 and 100 cm soil layers is “filled”, the drainable water is “spilled” laterally downslope, 

activating streamflow. Unlike the saturated fill and spill mechanism observed in many 

catchments (Spence and Woo, 2003; Tromp van Meerveld and McDonnell, 2006b), the increase 

in VWC at the 100 cm layer was only marginally higher than the field capacity, suggesting that 

flow was largely unsaturated. 

 

Although most work in steep catchments with incised stream channels and narrow riparian zones 

indicates that contributions to runoff from near-stream areas are very low (Sidle et al., 2000; 

McGuire and McDonnell, 2010), without direct measurement of riparian groundwater or soil 

moisture near the stream, we are unable to exclude the possibility that runoff may be generated 

from near-stream variable source areas as well. In the year prior to our study, shallow wells (1.5 

– 2 m) were installed near the location of the soil pits; water tables were not observed to develop 

at these depths. While transient subsurface saturation was not observed at any of the four soil 

pits, we are unable to exclude the possibility of its formation as water tables have been shown to 

be 5 – 10 m below the ground surface in very wet Mexican tropical montane cloud forests 

(Muñoz-Villers and McDonnell, 2012). Furthermore, with measurement errors in VWC and 

uncertainties in the porosity, it is possible that saturation may have occurred. We suggest that 
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future work should examine the role of near-stream areas and groundwater in controlling 

streamflow activation. 

 

The 191 mm of cumulative rainfall prior to streamflow activation recorded at our site falls within 

the 64-545 mm range observed at other tropical dry forest catchments (Ewel and Whitmore, 

1973; Masiyandima et al., 2003; Mugabe et al., 2007). Although the cumulative rainfall has been 

used to assess the timing of streamflow activation in tropical dry forests, it is not the most 

accurate method, as the interannual variation in the frequency, depth, intensity and duration of 

storm events has been shown to directly affect the rate at which storage deficits are satisfied and 

consequently the amount of rainfall needed to activate streamflow (Mugabe et al., 2007).    

 

The use of the soil water deficit as a metric of streamflow activation accounts for the annual 

rainfall variability by assuming the deficit is a consistent value that does not vary yearly. By the 

end of the dry phase the lowest values of VWC were recorded (Figure 3.2), indicating the 

maximum storage deficit. The seven month dry phase is part of the annual cycle in this region 

(Ortiz-Jiménez et al., 2005; Farrick and Branfireun, 2014) and we expect these low and stable 

VWC and maximum soil water deficit to be achieved annually. While the soil storage deficit 

approach has been shown to be applicable at our current research site, we suggest that this 

method be tested in conjunction with other alternative hypotheses such as the variable source 

area at other dry forest catchments, before the storage deficit method can be recommended as the 

primary method of determining the storage deficit in dry forests across the tropics. 

 

Using the cumulative increase in soil water we were able to estimate the soil storage deficit. 

Because streamflow was not activated until water percolated 100 cm below the surface we 

assumed that water loss during this period was likely due to losses by canopy and litter layer 

interception, deep recharge, lateral flow or evapotranspiration. However, without direct 

measurements of these water balance components, we are unable to identify the water losses 

during the wetting up period.    
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3.5.2 Controls on stormflow runoff generation 

Once the storage threshold needed to activate streamflow was satisfied, the stormflow response 

of individual events was predominantly controlled by the size of the storm event. During the 

course of the wet season, the VWC at all the instrumented soil layers remained near or at field 

capacity. Under these conditions, the mobile water content that is available for drainage and flow 

is generally limited by the depth of rainfall and not storage. This is evident in the breakpoint of 

the non-linear relationship between QF and ASW + P. Above the breakpoint, rainfall inputs 

greater than 14 mm triggered a rapid and large increase in VWC above field capacity. The 

increased VWC was still below total porosity (saturation), suggesting that conditions remained 

unsaturated. The large input of mobile water was able to displace soil water during drainage. 

Below the breakpoint, rainfall inputs were on average 24 mm lower than storm events above the 

breakpoint. Because the increase in VWC was smaller, the subsequent displacement and 

discharge of soil water as quickflow was substantially lower than above the breakpoint. While 

much of the catchment hydrological literature shows that increasing stormflow and QF/P above 

these threshold breakpoints represents an increase in hydrological connectivity due to the 

upslope expansion of subsurface saturated areas (Kim et al., 2005; Detty and McGuire, 2010; 

McGuire and McDonnell, 2010), the unsaturated conditions maintained during storm events at 

our catchment suggest that the increase in QF/P from 0.17 below the breakpoint to 0.53 above 

the breakpoint reflects an increase in the rapid subsurface flow through preferential pathways or 

the greater displacement of soil water. 

 

The precise mechanism of this displacement and discharge during stormflow and streamflow 

activation remains unclear. However, similar work by Torres et al. (1998), in a catchment with 

steep slopes and highly permeable soils that remained unsaturated, suggest that rainfall inputs 

over generally wet soil produces a pressure wave that generates a rapid response and 

displacement of water in the unsaturated zone. While we do not have the field pressure head data 

needed to indicate pressure wave translation, the rapid increase in VWC above field capacity but 

still below saturation provides the conditions necessary to cause pressure wave translations 

through the unsaturated zone. Furthermore, because the maximum rise in soil moisture at the 100 

cm soil layer occurred before the peak in streamflow, it supports the rapid pressure wave 

movement through the soil matrix. 
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Although it has been shown that the soil moisture data supports the unsaturated flow of water 

through the soil matrix, it is important to consider a preferential flow mechanism at our 

catchment, as it widely recognized that subsurface flow can occur through preferential flow 

pathways that bypass the soil matrix (e.g. Weiler et al., 2005; McGuire and McDonnell, 2010). 

Other work in steep catchments suggests that under higher antecedent wetness and larger storm 

events, the number of interconnected lateral preferential flow pathways increase across the 

hillslope, essentially improving connection between upslope areas and the stream (Sidle et al., 

1995; 2000; 2001). Rapid flow through preferential pathways is supported by observations in 

other dry (Sandström, 1996) and humid tropical forests (Elsenbeer and Lack, 1996; Negishi et al, 

2007), which show that large portions of stormflow is generated through soil pipes and 

macropores. While large macropores and soil pipes were not directly observed, it is likely that 

streamflow activation after the dry season and stormflow may occur as rapid flow through 

preferential pathways. Future work in this catchment should test the hypotheses of pressure wave 

translation and preferential flow.  

 

The minimum rainfall threshold of 4.1 mm needed to generate a measurable increase in runoff 

was similar to that observed by Fu et al. (2013). They attributed the streamflow for events below 

the minimum threshold to direct precipitation on the stream channel and infiltration-excess 

overland flow (HOF) over steep slopes. Although steep sloped areas exist at our site, the high 

surface K recorded in these forests (Farrick and Branfireun, 2014) were 2 – 3 times higher than 

the maximum rainfall intensity during the study period, indicating that HOF is absent over these 

slopes. While the majority of the catchment is characterised by incised streams and steep slopes, 

in very limited sections of the catchment, the slope is gentle and the near-stream area wider. The 

low runoff coefficients observed for events below the rainfall threshold suggests that runoff may 

be generated from these near-stream areas. We do not have the hydrochemical and isotopic tracer 

data to support this assumption or the soil moisture results needed to show that rapid saturated 

overland flow from near-stream areas occurred. In spite of these data deficiencies, studies from 

other research catchments show that low runoff coefficients indicate stormflow produced from 

near-stream areas under small rainfall events, (Sidle et al., 2000; McGlynn and McDonnell, 

2003; Penna et al., 2011b).  
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Earlier work in these forests, which focused on characterizing the surface controls on infiltration, 

suggests that since high surface hydraulic conductivities allowed more than 70% of the rainfall to 

percolate through the soil, shallow subsurface flow was the primary runoff generating 

mechanism across the hillslope (Farrick and Branfireun, 2014). However, because observations 

at plots and hillslopes are not easily scaled up, the relationship between stormflow and rainfall 

intensity and the mean lag time to peakflow can provide much insight with regard to the primary 

runoff generating mechanism at the catchment scale. At catchments where HOF is dominant, a 

strong, positive linear relationship (r
2
 > 0.9; p < 0.0002) exists between stormflow and rainfall 

intensity (Martínez-Mena et al., 1998; Cammeraat, 2004). The weak stormflow–rainfall intensity 

relationship (r
2
 = 0.23, p < 0.03) observed at our site indicates that stormflow was generated by 

subsurface flow. The lag to peakflow – catchment size relationship developed by Dunne (1973) 

indicates than an HOF dominated catchment of 3.15 km
2
 would produce a mean lag time of 0.52 

hours or 31 minutes.This is 7.3 times faster than the mean lag time of 3.8 hours recorded at our 

site, indicating that HOF was not the dominant runoff mechanism. While these results support a 

subsurface stormflow generation mechanism, we present the lag time comparisons with caution 

as topographic (i.e. slope, flow path length, flow path gradient) and other morphological features 

will strongly influence the streamwater transit time (McGuire et al., 2005).  

 

The lag to peakflow showed a negative relationship with rainfall intensity (r
2
 = 0.52; p < 

0.0002). The shorter lag in peakflow observed under higher intensity rainfall is likely the result 

of the rapid entry and mobilisation of water through the catchment. In these forests the surface 

hydraulic conductivity can be 2 – 7 times greater than the maximum rainfall intensity (Farrick 

and Branfireun, 2014). Because infiltration through the surface is not limited, we can assume that 

the rate of flow through the soil and discharge to the stream is primarily controlled by the rainfall 

intensity. The exact mechanism of the transfer is unknown; however, subsurface flow as a result 

of pressure wave transmission (Torres et al., 1998) or the mixing and discharge of stored water 

through macropores and large cracks (McDonnell, 1990; Buttle and Turcotte, 1999) has been 

shown to be strongly influenced by intensity.  
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The hydrometric evidence provided in our current study indicates that runoff is generated as 

subsurface stormflow. This response is unlike those observed in most catchments with similar 

hydroclimatic regimes, where runoff is dominated by HOF (Sandström, 1996; McCartney et al., 

1998) or SOF (Masiyandima et al., 2003; Mugabe et al., 2007). Given that the rainfall 

distribution and extended dry periods are similar among these dry forest catchments, the 

difference in runoff mechanisms may be attributed to the high soil surface infiltration and 

percolation rates found in our catchment. While the response at our catchment differs from most 

studies published to date for dry forest regions, the highly permeable soils of volcanic origin that 

characterises our catchment are distributed worldwide, with more than 60% located in tropical 

countries (Takahashi and Shoji, 2002) suggesting that the observed runoff response may occur 

over much of the tropics.  

 

3.5.3 Streamflow activation and stormflow generation under future 

climate change 

The streamflow produced from our research catchment and other tropical dry forest regions are 

in many cases the main source of water for agricultural systems and many wetlands and small 

lake systems (Farrick and Branfireun, 2013). Therefore, understanding the impact of future 

climate change on streamflow production is imperative. Using a regional climate model for 

Mexico and Central America, Karmalkar et al. (2011) indicate that over the next 30 to 50 years, 

these regions may experience a 13 to 27% decrease in wet season rainfall. Given that stormflow 

in our catchment was strongly controlled by the depth of rainfall, the projected decrease in 

precipitation will likely result in a substantial reduction in the volume of stormflow in this 

catchment.  

 

From the PRA, strong linear relationships were observed between quickflow and ASW + P both 

below and above the breakpoint. Using these two linear relationships it is possible to 

demonstrate how changes in rainfall will alter the runoff generated. As this study was conducted 

in a year with 24% less rainfall, the derived linear relationship may not account for the changing 

frequency and size of storm events, which can alter stormflow generation. We suggest that 
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stormflow from this catchment be monitored over multiple years in order to account for climatic 

variability, before examining the long-term impacts of climate change.  

 

3.6 Conclusion 

We examined the processes that govern streamflow activation and stormflow generation in a 

tropical dry forest catchment, México. Our results show that two different controls were 

responsible for streamflow activation and stormflow generation. Unsaturated soil water storage 

was the main control on streamflow activation, while the gross event rainfall depth was the 

dominant control on stormflow generation. The change in the dominant control from unsaturated 

storage to rainfall depth suggests that once streamflow is activated, the storage deficit become 

low enough that less rainfall goes into storage and more is being translated to runoff. These 

results stress the importance of using a combined storage-rainfall threshold approach when 

examining stormflow generation at the catchment scale. The subsurface stormflow runoff 

mechanism observed during this study is unlike those observed in most arid and tropical wet 

forests, where runoff is dominated by infiltration excess overland flow and saturated overland 

flow. This illustrates the importance of characterising the specific runoff generating mechanism 

for a given catchment. 

 

Our findings have important implications with regards to the ecological and human systems that 

are supported by these dry forest catchments. Runoff produced from this and other dry forest 

catchments is the primary water source to lake and wetland systems and is important for 

agriculture through direct extraction and shallow ground water recharge. The expected reduction 

in stormflow volume under the projected change in rainfall will reduce the supply of water and 

jeopardise the functioning of these systems. These results are therefore important to the 

mitigation and adaptive strategies needed for these regions and should strongly be looked at by 

land managers and policy developers.  
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Chapter 4 

4.0 Flow pathways, source water contributions and water 

residence times in a Mexican tropical dry forest catchment 

4.1 Introduction 

Most of our current understanding of runoff generation processes in tropical systems has been 

produced from research in lowland and montane catchments of the humid tropics (Bonell and 

Bruijnzeel, 2005; Levia et al., 2011; Farrick and Branfireun, 2013). While it is generally 

recognised that rapid flow processes dominate runoff in forested tropical catchments, the specific 

water flow pathways, source areas and residence times of stream water often remain unclear 

(Buttle and McDonnell 2004; Bonell and Bruijnzeel, 2005). This is especially true for tropical 

dry forests, where most research has often focused on quantifying the catchment scale water 

balance (de Araújo and González Piedra, 2009; Montenegro and Ragab, 2010). Understanding 

the water flow pathways in a catchment is necessary for the management of surface and 

groundwater resources. This is particularly important in tropical dry forests where land use 

change (Miles et al., 2006) coupled with the projected decrease in precipitation (Bates et al., 

2008) are expected to reduce the already limited streamflow observed in these catchments 

(Farrick and Branfireun, 2014b). 

 

In most humid tropical forest catchments, runoff is characterised by the rapid translation of 

rainfall to runoff. Stormflow has been shown to be composed of 40 to 81% event water 

(Schellekens et al., 2004; Goller et al., 2005), most of which is translated downslope as 

saturation-excess overland flow (SOF) (Elsenbeer et al., 1994; 1995b), return flow (RF) through 

soil pipes (Schellekens et al., 2004; Negishi et al., 2007) or through shallow lateral pathways 

near the soil surface (Schellekens et al., 2004; Goller et al., 2005). These studies show that the 

hydraulic properties of the shallow subsurface soil, often determines the dominant runoff 

mechanism. Shallow confining soil layers with low hydraulic conductivities (K) impede vertical 
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flow through the highly permeable surface soils, leading to shallow subsurface and SOF 

generation (Bonell and Gilmour, 1978; Elsenbeer and Vertessy, 2000; Godsey et al., 2004).  

 

In the semi-arid tropics, geochemical tracer studies typically show that storm runoff can be 

composed of up to 75% event water (Sandström, 1996; Hughes et al., 2007; Ribolzi et al., 2007). 

However, unlike the humid tropics, the low surface K in the semi-arid tropics often limit 

infiltration, resulting in most runoff being generated as infiltration-excess overland flow (HOF) 

(Bonell and Williams, 1986).  

 

Most concepts regarding hydrological connectivity and variable source areas have originated 

primarily from research in steep humid temperate forest catchments (Bracken et al., 2013). These 

studies often show that connectivity between the riparian zone and hillslope, is needed to 

generate substantial amounts of subsurface flow (Bracken and Croke, 2007) and the relative 

contribution from either source often varies on a seasonal (Ocampo et al., 2006; McGuire and 

McDonnell, 2010) or event basis (McGlynn et al., 2003; Subagyono et al., 2005). In 

geographical regions where a distinct dry-wet season occurs, hillslope and riparian areas often 

remain hydrologically disconnected for extended periods of the year. As rainfall and antecedent 

wetness increases, the upslope expansion of saturated subsurface areas, often through a rise in 

the riparian and hillslope water table, connects these two landscape units (Ocampo et al., 2006). 

The improved connectivity results in a shift in dominant source areas from the riparian zone to 

the hillslope (Ocampo et al., 2006; Jencso et al., 2009). In wetter temperate catchments, with a 

more even annual rainfall distribution, hillslope – riparian connectivity is affected by the size of 

the storm event. Under small rainfall inputs, connectivity is low and most runoff is generated 

from the riparian zone, while large rainfall events improve connectivity with most runoff 

generated from the hillslope (McGlynn et al., 2003; Subagyono et al., 2005). Although hillslope 

– riparian connectivity is important for stormflow generation in temperate forests, in humid 

tropical forests where SOF and RF are the dominant mechanisms, hydrological connectivity 

develops by surface drainage expansion. Zimmerman et al. (2014) showed that as antecedent 

wetness increased, SOF was generated at progressively higher upslope positions, which drained 

into ephemeral channels, essentially expanding the size of the source area contributions to 

runoff. 
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Isotopic residence time analyses have emerged in the last two decades as an important tool that 

can provide insights into hillslope runoff processes.  As stream water residence time is strongly 

influenced by topographic (McGuire et al., 2005) and internal catchment features such as soil 

depth and subsurface geology (Soulsby et al., 2006; Katsuyama et al., 2010), it provides an 

excellent indication of the coupling among the flow paths, water sources and storage in a 

catchment (McGuire and McDonnell, 2006). Although the use of isotopic residence time 

analyses in catchment-scale hydrology has increased, it has generally been limited to humid 

temperate catchments (McGuire and McDonnell, 2006). Though Buttle and McDonnell (2004) 

suggest the use of residence time techniques in tropical forests catchments as a means to improve 

the understanding of the translation of rainfall to stream water, application of these techniques 

have been limited to very few studies (e.g. Crespo et al., 2012). 

 

In this study we report the research on rainfall-runoff response of a steep, tropical dry forest 

catchment with highly permeable soils. High hydraulic conductivities, high soil porosities and 

soil moisture response in deep soil layers suggested that runoff in this catchment is generated as 

subsurface flow through the displacement of stored water in the near-saturated or saturated zone 

(Farrick and Branfireun, 2014a; b). In order to test this hypothesis, the objective of this work is 

to use a combined hydrometric, isotopic and geochemical approach to examine the source areas 

of stream water, dominant flow pathways, and the timing of the translation of rainfall into runoff.  

 

4.2 Study area 

The study was conducted in a 3.15 km
2
 catchment in the lake Zapotlán watershed, approximately 

100 km south-southwest of Guadalajara, Jalisco, Mexico; 5 km northeast of Ciudad Guzman, 

Jalisco, Mexico (19ºN 103ºW) (Figure 4.1). The climate is Tropical Savannah (Köppen-Geiger: 

Aw) with a distinct wet and dry season (Peel et al., 2007). The average annual precipitation 

(1972 – 2003) is 813 mm, of which 95% falls between June to September (Ortiz-Jiménez et al., 

2005). Rainfall is dominated by short duration, low intensity storm events (Farrick and 

Branfireun, 2014a). The strong wet-dry seasonality results in intermittent streamflow production 
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from the catchment, with most flow occurring from July to October (Farrick and Branfireun, 

2014b). Mean annual temperature is 19.6ºC with maximum temperatures occurring in July 

(Ortiz-Jiménez et al., 2005). 

 

 

Figure 4.1 Location of the study site and isotopic and geochemical water sampling locations 

across the catchment 

 

Elevation ranges from 1557 metres above sea level (masl) at the primary outflow channel to 

2170 masl at the headwater sub-basin. The catchment is steep with slopes ranging from 18º to 

over 52º. The study area is underlain by Pleistocene andesitic basalt-basaltic andesite and 

volcanic fine tuff. The channel width ranges from <0.20 m in the headwater sub-basins to 1.0 – 

1.5 m at the primary outflow channel. The stream channels are deeply incised and steep with a 

0.2 – 1 m wide riparian areas. The bedrock along the incised channels is weathered and highly 

fractured. The soil is classified as chromic cambisols with andic properties of volcanic origin 

(Gómez-Tagle, 2008). The soil at the hillslope is deep and were >1 m deep except for on or near 

limestone bedrock outcrops, which are common. Soil textures are mainly loams and sandy soils 

and vary from sandy loams in the O and upper A horizons to loams and sandy-clay loams (>40% 

sand) at depths below 50 cm (Farrick and Branfireun, 2014a). The surface hydraulic conductivity 

is highly variable, ranging from 9 – 164 mm h
-1

 (Farrick and Branfireun, 2014a). Bulk density in 
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the upper 100 cm of soil ranges from 0.91 – 1.1 g cm
3
 (Farrick and Branfireun, 2014a) while the 

total porosity and drainable porosity range from 0.57 – 0.60 and 0.22 – 0.29 respectively (Farrick 

and Branfireun, 2014b). 

 

The catchment is dominated by two distinct forest types. A highly heterogeneous mixed 

deciduous forest (dominated by Carpinus caroliniana, Mimosa adenantheroides, but with a 

complex mix of understorey and herbaceous vegetation) occurs at elevations between 1600 – 

1800 masl and covers 13% of the catchment. A pine-oak forest (almost exclusively Pinus 

montezumae, Quercus laeta) occurs at elevations greater than 1800 masl and occupies 82% of 

the catchment. Land development in the catchment is low with fragmented agricultural plots and 

unpaved roads occupying 4 and 1% of the catchment area respectively.  

 

4.3 Methods 

4.3.1 Hydrometeorological measurements 

Open field precipitation was measured from 1 May to 24 September 2012 at 10 minute intervals 

using a Texas Electronics tipping bucket rain gauge installed at three locations across the 

catchment at 1600, 1800 and 1950 masl (Figure 4.1). 

 

Volumetric water content (VWC) was measured at four soil pits located along two hillslopes 

using Campbell Scientific Inc. CS615 Water Content Reflectometers from 1 May to 24 

September 2012 (Figure 4.1). The reflectometers were inserted horizontally in the soil pits at 

depths of 10, 30, 50 and 100 cm below the surface at all four locations. The reflectometers were 

calibrated in the laboratory using soil extracted from the same area following the technique of 

Stenger et al. (2005). Antecedent soil water was calculated as the depth equivalent of soil water 

(mm) prior to storm event using the methods of Farrick and Branfireun (2014b). Antecedent 

precipitation was calculated as the sum of rainfall 30 days prior to the storm event. 

 

The stream water level at the primary outflow channel (Figure 4.1) was recorded at 10-minute 

intervals, using a 0.8 mm resolution odyssey capacitance water level logger (Dataflow Systems 
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Ltd.). Modification of the channel at the outlet of the catchment occurred at some point in the 

past; large rocks and boulders were removed and an artificial wall constructed and backfilled to 

produce a small impoundment and free fall structure. Discharge was calculated from the water 

level using the end-depth method (Jain et al., 2007). This method was selected as the stream fit 

the criteria required to accurately measure discharge: free fall where the drop is greater than the 

stream stage, rectangular, smooth channel without rocks or boulders. Discharge was calculated 

as: 

   √              (4.1) 

Where Q is the discharge (m
3
/s), C is the coefficient of discharge, g is the acceleration due to 

gravity, b is the channel width (m) and h is the water level (m). We confirmed the accuracy of 

the discharge measurements at lower flows by conducting manual stage-discharge relationships 

using a stopwatch and buckets. 

 

Storm runoff events were defined as the period from the initial rise in discharge from a local 

minimum in the hydrograph to the next local minimum and were separated into quick flow (QF) 

and delayed flow (DF) volumes using the local minimum method (Sloto and Crouse, 1996). The 

gross event rainfall depth (P) was calculated as the sum of the 10 minute values over the duration 

of the storm event. The hydrologic behaviour of the catchment was examined during the study 

period using the ratio of quick flow to rainfall (QF/P). 

 

The lag time between storm onset and peak streamflow (Trise) was calculated as the time 

difference (hours) between the start of rainfall and peakflow (Mosley, 1979). The lag time 

between storm onset and peak soil moisture response at the 10, to 100 cm layers was calculated 

as the time difference (hours) between the start of rainfall and the peak increase in VWC. The lag 

time between storm onset and peak near-stream groundwater was calculated as the time 

difference between storm onset and the peak rise in water table. The lag time was determined for 

all rainfall runoff events during the wet season. 
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4.3.2 Isotope and geochemical water sampling 

4.3.2.1 Rain and baseflow sampling for residence time analysis 

Bulk rainfall and baseflow under non-storm conditions were collected weekly from July to 

September, 2012. Rainfall was sampled from three 20-L HDPE buckets with a 20 cm diameter 

funnel from the upper headwater basin (2000 masl), half basin mark (1800 masl) and the primary 

outflow channel (1600 masl). To prevent changes to the isotopic ratio of rainwater as a result of 

isotopic fractionation due to evaporation, a 2 cm thick mineral oil layer was added to the bucket. 

Baseflow was collected on the same day and the same locations as bulk rainfall samples. 

 

4.3.2.2 Geochemical sampling from lysimeters, wells, seeps and 

baseflow  

Water samples were collected every two weeks from various soil water lysimeters, near-stream 

wells and seepage from exposed hillslopes along the forest roads (Figure 4.1). Zero-tension 

lysimeters were installed at five convex and five concave hillslopes at depths of 10, 30, and 50 

cm below the soil surface. Lysimeters were also installed at a depth of 100 cm but failed to 

collect water, likely as a result of poor contact between the lysimeter and soil. The lysimeters 

were constructed from a 20 x 10 x 5 cm, high density polyethylene (HDPE) container, which was 

inserted horizontally in the soil and drained into a 1000 ml HDPE bottle. Near-stream sampling 

wells were constructed from a 5 cm (inner diameter), slotted PVC tube and screened (250 μm 

Nitex®) along the entire length. The wells were installed approximately 1 m from stream, 40 – 

60 cm below the surface. Sample water was collected from the lysimeters and wells using a hand 

operated suction pump. Baseflow samples were collected from the upper basin and primary 

outflow, usually weekly. 

 

4.3.2.3 Rainfall-runoff event sampling   

The hydrological response of the catchment to storm events was examined during four storms, 

representing a range of antecedent wetness and rainfall characteristics. During these events 
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samples of rainfall and stream water was intensively collected for stable isotope (δ
2
H and δ

18
O) 

and geochemical (major anions and cations) analysis.  

 

Composite rainfall samples were collected for each event in a 20 L high-density polyethylene 

(HDPE) bucket with a 20 cm diameter funnel placed near the tipping bucket gauges (Figure 4.1). 

Stream water at the primary outflow channel (1600 masl) was collected during storm events 

using an automatic water sampler (Model 6700, Teledyne ISCO, Inc). The auto-sampler was 

programmed to start sampling 1 h before the onset of rainfall to include a sample of pre-event 

baseflow. Stormflow was sampled at constant sampling intervals (30 to 120 min depending on 

the magnitude of the event) and collected in an individual 1000 ml glass bottle at each sampling 

interval. Water samples were collected from the field within 24 h of an event. 

 

4.3.3 Isotopic and geochemical storage and analysis 

All isotope samples were stored in a 20 ml HDPE vials with displacement caps, while all 

geochemical samples were collected in 100 ml HDPE bottles and refrigerated until they were 

filtered within 48 h of collection. Isotopic samples were analysed for δ
18

O and δ
2
H using cavity 

ring-down spectroscopy (L2120-i, Picarro, Inc.). The isotope values are reported in permil (‰) 

relative to the Vienna Standard Mean Ocean Water (VSMOW). The precision of the δ
18

O and 

δ
2
H measurements was 0.1‰ and 0.5‰ respectively. All geochemical samples were vacuum 

filtered with of 0.45μm nylon filter within 48 hours into a 60 ml HDPE (Wilde et al., 2004.) and 

frozen until laboratory analysis. Samples were analysed for dissolved organic carbon (DOC) and 

a suite of anions and cations. Ions were measured using Ion Chromatography at the Biotron 

analytical services laboratory, Western University, using a Dionex ICS-3000 (anions) and 

Dionex ICS-1600 (cations). Dissolved organic carbon was measured using a Picarro iTOC. 

  

4.3.4 Residence time modelling 

The mean residence time of stream water was estimated using the sine wave approach, using the 

assumption that water fluxes in the catchment are under a steady state. This method was selected 

due to the short length and coarse frequency of spatial and temporal tracer sampling (Tekleab et 

al., 2014). The seasonal trends in the rainfall and stream water were modelled using periodic 
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regression analysis (Bliss, 1970) to fit the sine wave curve to the annual δ
18

O variations in 

rainfall and stream water. The predicted δ
18

O can be calculated as: 

                          (4.2) 

Where δ
18

O is the modelled δ
18

O (‰) composition, X is the weighted mean annual measured 

δ
18

O (‰), A is the annual amplitude of the measured δ
18

O in rainfall, c is the radial frequency 

constant (0.051502 rad d
-1

), t is the time in days after the start of the sampling period and θ is the 

phase lag of predicted δ
18

O in radians. The radial frequency constant was modified from the 

original 0.0174214 rad d
-1

 designed for a 365 day flow cycle to 0.051502 rad d
-1

 to fit the 122 

day flow period observed in this catchment. Sine wave models fitted to the rainfall and stream 

water δ
18

O variations were used and the mean residence time (T) was calculated as: 

     [(
   

   
)
  

  ]
   

     (4.3) 

Where AZ2 is the amplitude of stream water δ
18

O, AZ1 is the amplitude of rainfall δ
18

O and c is the 

radial frequency of annual fluctuations defined in equation (4.2). The mean transit time was also 

calculated by this method, substituting δ
2
H for δ

18
O. The overall performance of the sine wave 

model was evaluated using the root mean square error (RMSE). 

 

4.3.5 Isotopic hydrograph separation 

A one tracer, two component hydrograph separation (Sklash and Farvolden, 1979) was 

conducted to partition the storm runoff into pre-event (water stored in the catchment prior to the 

storm event) and event (direct water input into the catchment) water sources. The technique 

involves a mass balance approach using δ
18

O or δ
2
H as a tracer and can be described using the 

following mixing equations:  

                (4.4) 

                     (4.5) 

Where Qt, Qp and Qe represent current streamflow, pre-event and event water volumes, 

respectively and Ct, Cp and Ce are the corresponding concentrations of δ
18

O or δ
2
H isotopes (‰ 

VSMOW). The tracer concentration of the base flow one to two hours prior to the storm event 

was used to represent Cp (Sklash and Farvolden, 1979). The Ce was determined as the mean 
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isotopic composition of the storm rainfall. The contributions of event and pre-event water to total 

runoff can be determined by combining equations 4.4 and 4.5 as:  

      (
     

     
)       (4.6) 

The uncertainty associated with the calculated fractions of event and pre-event water was 

evaluated using the technique of Genereux (1998). 

 

4.3.6 Topographic analysis 

A 15 x 15 m digital elevation model was used to calculate the topographic features of the 

catchments using System for Automated Geoscientific Analyses (SAGA). The stream network 

and catchment area was calculated using the multiple flow direction algorithm in SAGA. The 

computed stream network and catchment elevation data was used to delineate the sub-basin area 

of the upper headwater basin and half basin mark. Other topographic attributes such as 

topographic index, slope and flow path length were computed and used as metrics of internal 

catchment form. These values were correlated with the mean residence at each catchment to 

examine possible relationships. The results of these analyses are presented in Table 4.1. 

 

Table 4.1 Catchment characteristics of the stream water sampling locations used in residence 

time analysis 

Sampling 

location 

Elevation 

(masl) 

Catchment 

area (km
2
) 

Mean slope 

(deg) 

Maximum 

slope (deg) 

Mean 

flowpath 

length (m) 

Upper 

headwater 

basin 

2000 0.35 15 37 226 

Half-basin 

mark 

1800 1.41 18 43 201 

Primary 

outflow 

1600 3.15 24 52 157 
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4.4 Results 

4.4.1 Seasonal hydrometeorological conditions 

The total rainfall from July to September, 2012 was 429 mm. The highest monthly rainfall was 

recorded in July (212 mm) and August (196 mm) and the lowest was recorded in September (50 

mm). The total seasonal streamflow was 119 mm or 27% of the wet season rainfall (Figure 4.2). 

The soil moisture at all depths remained near or at field capacity over the wet season, with a 

mean daily VWC over the upper 100 cm of soil from all pits of 32.7±0.9%. The mean daily near-

stream water table position at all locations during the wet season was 0.63±0.13 m below the 

surface. Surface saturation in the near-stream zone only occurred during the largest storm event 

(58.6 mm) of the wet season, with groundwater levels rising above the surface. However, surface 

saturation was only recorded in four of the ten wells.  

 

Over the wet season, from July to September, 21 storm events produced runoff volumes greater 

than 1 mm. The mean QF/P was 0.26 and ranged from 0.04 to 0.78. The stormflow hydrographs 

were generally flashy with a rapid rise and recession. The mean lag time between storm onset 

and peak streamflow (Trise) was 3.8 h and ranged from 1.5 to 6.5 h.  

 

The lag time in the response between storm onset and peak soil moisture response varied 

according the depth of the measured soil layer. Soil moisture at 10 cm and 30 cm peaked before 

streamflow, with mean lag times of 1.9 and 3.4 h respectively. The response at the 50 and 100 

cm layers were more variable. The mean lag time at the 50 cm layer was 5.0±3.7 h, while the 

mean lag time at the 100 cm layer was 8.4±8.0 h, which was two times slower than the Trise. The 

lag time at the 100 cm layer was strongly influenced by the depth of rainfall. Events greater than 

14 mm produced a mean lag time of 2.8 h at the 100 cm, which was 24 minutes faster than the 

corresponding Trise (3.2 h). Events less than 14 mm had a mean lag time of 10.8 h, two times 

slower than the corresponding Trise (4.0 h).  
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Figure 4.2 Daily change in a) rainfall, b) soil moisture, c) near-stream groundwater and d) 

streamflow from July to September, 2012. The numbers on figure 4.2a represent the storm events 

sampled for water isotopes and geochemistry. 

 

The mean lag time between storm onset and peak rise in near-stream groundwater was 3.6±2.6 h. 

Unlike the 50 and 100 cm soil moisture response, the lag time in the response of the near-stream 

groundwater were not strongly affected by the depth of rainfall. The mean lag time for events 
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greater than 14 mm were 3.3 h, which were slightly slower than the 3.0 h response recorded for 

storms less than 14 mm. 

 

4.4.2. Stream water residence time 

The seasonal isotopic ratios from rainfall and stream water plotted on the local meteoric water 

line (LMWL) and showed no evidence of evaporative enrichment (Figure 4.3). The weighted 

mean value of δ
18

O in rainfall over the entire catchment was -8.7‰ and the arithmetic mean was 

-8.1‰. Rainfall ranged between -14.4‰ to -4.7‰ for δ
18

O, while δ
2
H values ranged from -

103.7‰ to -23.8‰. Rainfall samples were increasingly depleted in both δ
18

O and δ
2
H as the 

altitude of the sampling location increased. Mean values of -7.4‰ for δ
18

O and -48.3‰ for δ
2
H 

were measured at 1600 masl and decreased to values of -8.9‰ for δ
18

O and -57.7‰ for δ
2
H at 

2100 masl. The isotopic composition of stream water was less variable than the rainfall. The 

mean weighted value of stream water at the primary outflow was -9.3‰ for δ
18

O and ranged 

from -9.9‰ to -8.3‰ for δ
18

O. Streamflow samples showed a similar depletion in the isotopic 

signature with increasing altitude. Mean arithmetic values of -8.9‰ for δ
18

O and -60.4‰ for δ
2
H 

were measured at the primary outflow (1600 masl) and decreased to values of -9.4‰ for δ
18

O 

and -64.1‰ for δ
2
H at the upper headwater basin (2000 masl).  

 

 

Figure 4.3 δ
2
H and δ

18
O signatures of rainfall and stream water. The insert shows the isotopic 

signatures of stream water from the upper basin, half basin mark and primary outflow. 
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The stream water isotope composition strongly followed the pattern observed for rainfall albeit 

with a strongly damped signature (Figure 4.4). The modelled δ
18

O in stream water at the primary 

outflow, half basin mark and upper headwater basin fit well to the observed isotope values, with 

RMSE of 3.1-3.4‰ for rainfall and 0.5-1.0‰ for stream water (Figure 4.4). The mean stream 

water residence time at the primary outflow calculated from the δ
18

O sine wave curve was 

estimated at 52 days. The mean residence times at the half basin mark and upper headwater basin 

were longer at 105 and 110 days respectively. The estimated residence time using δ
2
H did not 

differ significantly from δ
18

O with times of 48, 91 and 116 days estimated at the primary, half 

basin mark and upper headwater basin respectively.  
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Figure 4.4 Sine wave regression models for δ
18

O in rainfall (the solid line represents the 

weighted rainfall and the dashed line represent the actual rainfall), and streamwater at b) upper 

headwater basin, c) half basin mark and d) primary outflow. The amplitude (AMP) and root 

mean square error (RMSE) of the modelled isotopic signature is included 
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The mean residence time had a strong negative relationship with catchment area, with residence 

time decreasing with increasing catchment area (r
2
 = 0.90). Mean residence time had a similarly 

negative relationship with mean catchment slope (r
2
 = 0.91) and strong positive relationship with 

the mean flow path length (r
2
 = 0.79). The mean topographic index did not vary substantially 

among the catchments (8.4 to 8.6) and strongly influenced the mean residence time at each 

sampling location (r
2
 = 0.80). 

 

4.4.3. Water geochemistry 

The geochemistry of stream water varied seasonally and as well as between locations. The 

concentrations of Ca
2+

, Mg
2+

, Na
+
 and K

+
 at both the upper basin and primary outflow fluctuated 

over the sampling period, but showed a general increase as the wet season progressed from July 

to September (Figure 4.5). The concentrations of the major ions at the primary outflow were 2 to 

3 times higher than baseflow at the upper basin, but exhibited similar ratios (Table 4.2). Piper 

diagrams derived from the cation-anion distribution indicate that baseflow from both stream 

sources fall on a line trending from Ca-HCO3 type waters (Figure 4.6).  
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Figure 4.5 Seasonal variation in calcium, magnesium, sodium and potassium concentrations 

baseflow at a) the primary outflow and b) upper headwater basin 

 

The concentrations of Ca
2+

, Mg
+
 and K

+
 in the near-stream groundwater were greater than the 

concentrations recorded from the baseflow at both stream sources; however, Na
+
 concentrations 

from near-stream groundwater were less than baseflow. Most near-stream groundwater were 

dominated by carbonate mineral dissolution, falling along a similar Ca-HCO3 facies trend lines 

as baseflow (Figure 4.6). Soil water from the 10 cm lysimeter had the highest DOC (range from 

10 to 52 mg/l) and decreased as the wet season progressed (45.9 – 15.8 mg/l). Concentrations of 

Ca
2+

 and K
+
 were also highest in water collected from the upper 10 cm of soil and decreased 

with sampling depth (Table 4.2).  
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Figure 4.6 Piper plot of the major ion chemistry from the baseflow and near-stream groundwater 

from the study catchment 
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Table 4.2 Mean concentrations of the major cations and anions of rainfall, soil water, seepage from the forest road, near-stream 

groundwater and baseflow from the upper headwater basin and primary outflow. Values in parentheses are the standard deviation 

Component Ca
2+

 (mg/l) Mg
2+

 (mg/l) Na
+
 (mg/l) K

+
 (mg/l) Cl

-
 (mg/l) SO4

2-
 (mg/l) DOC (mg/l) 

Rainfall 0.51 (0.20) 0.15 (0.06) 0.20 (0.02) 0.25 (0.12) 0.17 (0.05) 0.69 (0.21) 0.79 (0.32) 

Lysimeter (10 cm) 20.2 (10.9) 3.75 (1.26) 2.45 (1.40) 5.90 (0.43) 1.07 (0.96) 4.93 (3.40) 28.0 (15.9) 

Lysimeter (30 cm) 5.86 (3.54) 4.37 (1.94) 2.56 (1.57) 3.00 (0.86) 1.28 (0.50) 7.59 (4.01) 14.5 (3.95) 

Lysimeter (50 cm) 6.49 (2.51) 4.44 (1.97) 3.27 (1.80) 2.85 (1.01) 0.94 (0.40) 8.48 (4.25) 6.23 (1.50) 

Seep from the forest road 5.50 (1.43) 4.28 (1.11) 4.93 (1.42) 0.95 (0.19) 0.98 (0.11) 4.27 (0.64) 4.20 (1.52) 

Near-stream groundwater 12.6 (3.42)  6.55 (2.05) 3.89 (1.18) 2.88 (1.05) 1.55 (0.50) 2.93 (1.86) 9.85 (8.30) 

Baseflow (upper headwater basin) 6.57 (1.21) 4.91 (1.24) 4.03 (0.88) 1.26 (0.54) 1.83 (0.21) 2.03 (0.50) 3.16 (1.43) 

Baseflow (primary outflow) 11.9 (0.83) 8.30 (1.48) 5.58 (0.73) 1.90 (0.60) 2.85 (0.93) 7.96 (1.77) 4.24 (1.24) 



89 
 

 

4.4.4 Isotopic hydrograph separation and water geochemistry 

during stormflow 

Of the 21 storm events, seven were sampled for hydrograph separation. However, three events 

were discarded because they failed to capture the entire stream hydrograph. The event 

characteristics of the four storm events investigated in detail are summarised in Table 4.3. 

Storms 1, 3 and 4 had rainfall inputs <12 mm and QF/P ratios that ranged from 0.13 to 0.25. 

These storms were marked by increasing antecedent soil water. The first storm (August 7) had 

the driest antecedent soil water conditions (287 mm) and the smallest pre-event contributions 

(72% for δ
18

O). Antecedent soil water conditions increased for the two remaining small storms. 

Although pre-event contributions for storm 3 on September 9
th

 (95% for δ
18

O) and storm 4 on 

September 11
th

 (79% for δ
18

O) were higher than storm 1, pre-event contributions did not show a 

proportional increase with antecedent soil water. For these small storm events, most of the event 

water contributions (18% for δ
18

O), occurred during the recession limb (Figure 4.7a; 4.7c; 4.7d). 

Storm 2 (August 19) was generated under 23 mm of rainfall and produced a QF/P ratio of 0.65. 

The highest seasonal antecedent soil moisture over the upper 100 cm of soil was recorded prior 

to storm 2 (Table 4.3, Figure 4.7). Despite the rapid rise of the hydrograph, stormflow generated 

under this 23 mm event was overwhelmingly dominated by pre-event water (97% for δ
18

O) over 

the entire hydrograph (Figure 4.7b).  
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Figure 4.7 The portioning of stormflow into its event and pre-event water sources using a one-

tracer two component hydrograph separation analysis with δ
18

O as the tracer. Note that storm 2 

is plotted with a different y-axis scale because of the significantly higher discharge. 

 

Table 4.3 Storm event characteristics of the four monitored stormflow events 

 Storm 1 Storm 2 Storm 3 Storm 4 

Date 7 Aug 19 Aug 9 Sep 11 Sep 

P (mm) 12 23 8 11 

Rainfall intensity (mm/h) 2.7 4.6 2.9 16.5 

Rainfall duration (h) 4.3 5.0 2.7 0.7 

QF (mm) 2.4 15 1 2.8 

QF/P 0.20 0.65 0.13 0.25 

Peak discharge (m
3
/h) 0.61 1.64 0.19 0.57 

Antecedent soil water (mm) 287 310 299 302 

30 day antecedent precipitation (mm)  173 188 192 196 

 

 

We examined the behaviour of the stream water geochemistry over the course of the four storm 

events and describe the changes in the cation concentration during stormflow: 



91 
 

1. Storm 1 (August 7). The concentration of K
+
 increased during the initial increase in storm 

runoff from to 1.60 mg/l to 3.28 mg/l, which was most similar to the concentration at the 

10 cm lysimeter. A similar increase in Ca
2+

 and Mg
2+

 were observed during this period 

(Figure 4.8a). After the initial peak, the concentrations of K
+
, Ca

2+
 and Mg

2+
 decreased 

during the rising limb to concentrations most similar to that of baseflow from the upper 

headwater basin. The recession limb was marked by a small increase in the concentration 

of Ca
2+

, Mg
2+

 and Na
+
. The concentrations of Ca

2+
during the recession limb was similar 

to that of baseflow from the primary outflow and near-stream groundwater, while , Mg
2+

 

and Na
+
 continued to reflect the concentrations from upper basin baseflow. Potassium 

remained relatively consistent during the recession limb (Figure 4.8a).   

2. Storm 2 (August 19). The concentration of Ca
2+

, Mg
2+

, Na
+
 and K

+
 decreased from 12.6, 

6.62, 5.89 and 1.74 mg/l to 10.8, 5.30, 5.11 and 1.55 mg/l respectively at peakflow 

(Figure 4.8b). These concentrations during the rising limb were most similar to the 

baseflow concentrations from the upper headwaters recorded three days earlier. The 

concentrations of K
+
, Mg

+
 to Na

+ 
ions gradually increased nine hours into the recession 

limb, still reflecting concentrations from the upper basin. Ca
2+

 behaved similarly to
 
the 

other ions (Figure 4.8b); however, the increase in Ca
2+

 during the recession limb was 

greater (2.7 mg/l), occurring more rapidly than the other ions. Calcium concentration 

during storm runoff recession reflected the concentrations from the primary outflow 

(Figure 4.8b).  

3. Storm 3 (September 9). The concentration of Mg
2+

, Na
+
 and K

+
 were relatively consistent 

over both the rising and recession limbs at 9.45 to 10.69 mg/l for Mg
2+

, 6.25 to 6.76 mg/l 

for Na
+
 and 1.56 to 1.98 mg/l for K

+ 
(Figure 4.8c). The mean concentration of Mg

2+
 and 

Na
+
 during this storm was more concentrated than storms one and two. Calcium 

concentrations increased during the rising limb, reaching a maximum value of 15.6 mg/l 

one hour before peak stormflow, which was most similar to concentrations from the near-

stream groundwater and primary outflow baseflow (Figure 4.8c). Calcium concentrations 

remained high during peakflow and quickly decreased during the recession limb.  

4. Storm 4 (September 11). Mg
2+

, Na
+
 and K

+
 concentrations remained relatively stable 

over the duration of the storm event (Figure 4.8d). Only during the recession limb was a 

decrease in Mg
2+

 (3 mg/l) and Na
+
 (1.15 mg/l) recorded. Calcium increased from 11.7 to 
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14.9 mg/l during the first peak in stormflow to values similar to primary outflow 

baseflow and near-stream groundwater (Table 4.2). Calcium concentrations decreased 

during the initial stormflow recession, but rapidly increased 2.1 mg/l during the second 

peak (Figure 4.8d). High Ca
2+

 concentrations were maintained two hours into the 

recession limb and then rapidly decreased to baseflow concentrations observed at the start 

of the storm event. 

 

 

Figure 4.8 Concentrations of calcium, magnesium, sodium and potassium in the storm water for 

the storm events on a) August 7, b) August 19, c) September 9 and d) September 11. Note that 

storm 2 is plotted on a different scale 

 

4.4.5. Soil moisture and near-stream groundwater response to 

rainfall inputs 

We examined the soil moisture and near-stream groundwater response to rainfall during the four 

monitored events. Because of the general rapid response at the 10 and 30 cm layers we focused 

on characterising the response at the 50 and 100 cm layers, which showed greater variability in 

the response. The peak in soil moisture at the 50 cm layer for storms one and three occurred four 
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and two hours into the recession limb respectively. Although storm four (September 11) also had 

similar rainfall input, soil moisture at 50 cm layer peaked one hour before peak stormflow. At the 

100 cm layer, the maximum increase in soil moisture occurred 10, 23 and 0.5 hours after peak 

stormflow for storms one, three and four respectively. A 1 – 2% increase in soil moisture was 

recorded for these events. For storms one, three and four, a 4 – 7 cm increase in groundwater was 

recorded before peak stormflow.  

 

The response of the soil moisture and near-stream groundwater recorded during storm two 

(August 19) was the opposite of that observed under the three smaller storms. The maximum 

increase in soil moisture occurred 44 and 40 minutes before peak stormflow at the 50 and 100 

cm layers respectively. During this 23 mm event, a 36 cm increase in the near-stream 

groundwater was recorded during the recession limb. 

 

4.5 Discussion 

4.5.1. Stream water residence time across the catchment 

To our knowledge, this study represents one of the first reported estimates of stream water 

residence time in tropical dry forests. The calculated residence times in our study were shorter 

than most studies, reflecting the shorter subsurface contact time and intermittent nature of 

streamflow at our site. An earlier study investigating the storage and rainfall controls on 

streamflow activation indicated that 191 mm of rainfall over a 25 day period was needed to 

produce consistent discharge from the catchment (Farrick and Branfireun, 2014b). The 52 – 110 

day stream water transit time was longer than this 25 day wetting up period, supporting the 

hypothesis by Farrick and Branfireun (2014b) that streamflow in this catchment is produced 

from the displacement of water stored in deeper soil layers. 

 

The estimated stream residence time was not uniform across the catchment. The decrease in the 

length of the residence time from the upper basin to the primary outflow suggests that a different 

runoff delivery mechanism may exist at lower elevations. The geochemistry of stream water 

from both the upper basin and primary outflow presented in the Piper plots falls along the same 



94 
 

Ca-HCO3 facies (Figure 4.6). Piper plots provides a useful tool in characterising source water, as 

they are designed to show the essential chemical character of water according to the relative 

concentrations of the dissolved ions (Piper, 1944). These geochemical observations suggest that 

a similar subsurface water source contributes to baseflow across the catchment, which is also 

well mixed.  

 

It is important to note that the residence time not only reveals information about the source areas, 

but often reflects the length of contact time of mobile water with those source areas (DeWalle et 

al., 1997; Wolock et al., 1997). The difference in stream water residence time likely reflects 

changes in topographic features across the catchment. The catchment area upstream of the upper 

basin sampling location was characterised by a mean slope of 15º and a mean flow path length of 

226 m, while the lower half of the catchment was marked by an increase in slope (24º) and 

substantial reduction in flow path length (157 m). The increase in slope and reduction in flow 

path length effectively increases discharge of subsurface water from the hillslope to the stream, 

resulting in the shorter stream residence time at the primary outflow. These findings are similar 

to work by McGuire et al. (2005) who demonstrated that the mean residence time in a steep 

humid forest catchment was strongly controlled by the internal form and structure of the 

catchment and not the basin area.  

  

While important, it is unlikely that surface topography is the only factor governing residence 

time distributions in our catchment. In other studies in steep forested catchments, greater bedrock 

permeability allows a more rapid translation of stored subsurface water to the stream, resulting in 

shorter residence times (Asano et al., 2003; Katsuyama et al., 2010). Highly fractured bedrock 

embedded into the sidewalls of the incised stream channels have been observed in the lower half 

of the basin. The extent of the fractured rock upslope from the stream channel is currently 

unknown; however, if this fractured rock does indeed extend upslope, it may allow the more 

rapid transfer of subsurface water from the hillslope to the stream, further explaining the reduced 

length of the stream residence time at the primary outflow. Future research in this catchment 

should therefore focus on the impacts of additional catchment features such as bedrock 

permeability and soil depth on residence time. Stream water samples should also be collected at 
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higher spatial resolutions in order to better identify where substantial change in the catchment 

hydrology occurs.  

 

Our results are presented with caution given the short sampling period of the study, which may 

underestimate the residence time (Muñoz-Villers and McDonnell, 2012). Furthermore, even 

though the application of the sine wave method is often appropriate for studies such as ours 

where the frequency of sampling is coarse and the length of the study is short (Tekleab et al., 

2014), this approach works under the assumption of a steady state system, which McGuire and 

McDonnell (2006) state is almost always violated. We recognise that given the intermittent 

nature of streamflow in our catchment, a steady state is not achieved over most of the year. To 

reconcile this we assumed that steady state was achieved once streamflow became consistent and 

then modified the radial frequency constant to fit the 122 day streamflow cycle. The estimated 

residence time while preliminary seems to fit the model well (Figure 4.3) with the root mean 

square errors falling within the range of other studies which used the sine wave approach (e.g. 

DeWalle et al., 1997; Soulsby et al., 2000). 

 

4.5.2. Subsurface stormflow in a tropical dry forest 

The rapid rise and recession of the stormflow hydrograph observed in our tropical dry forest 

catchment was typical of the response observed in most tropical forest catchments (Elsenbeer et 

al., 1995a; Goller et al., 2005). Despite this rapid response, stormflow was overwhelmingly 

dominated by pre-event water (75 – 98%). The high pre-event contributions recorded from our 

catchment challenges the long held observation that stormflow in humid and semi-arid tropical 

catchments are composed of small (30 – 40%) fractions of pre-event water. In humid and semi-

arid tropical catchments, the rapid translation of rainfall to runoff through surface and near-

surface pathways reduces the mixing and displacement of old water stored in groundwater or 

deeper subsurface soil layers, resulting in low pre-event water in stormflow (Schellekens et al., 

2004; Goller et al., 2005). Given the strong relationship between high event water and shallow 

flow pathways, the large pre-event water contributions in stormflow at our catchment suggests 

that storm runoff is likely generated from deep subsurface flow pathways.  
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In most geochemical studies of runoff generation in tropical forest catchments, a large and rapid 

increase of K
+
 is typically observed during peak stormflow (Elsenbeer et al., 1995b; Sandström, 

1996). The high K
+
 is often the result of flow over surface or through shallow subsurface 

pathways, which is enriched with potassium from litter/organic matter (Elsenbeer et al., 1995a; 

Schellekens et al., 2004). The highest K
+
 recorded in the lysimeters within the upper 10 cm of 

soil at our research site suggests a similar leaching from litter and organic matter. However, the 

enriched K
+
 from this soil layer was not observed in the water sampled over the majority of the 

stormflow hydrographs, suggesting that runoff was not a result of flow over the surface or 

through shallow subsurface pathways. The depleted K
+
 in stormflow was most similar to the 

mean concentrations of K
+
 recorded in baseflow from the upper headwater basin and primary 

outflow channel. Likewise the Ca
2+

, Mg
2+

 and Na
+
 concentrations recorded during stormflow 

generally reflected the ion chemistry of the near-stream groundwater and baseflow from the 

primary outflow and upper headwater basin. As baseflow is defined as the portion of flow that 

originates from delayed subsurface flow or groundwater (Tallaksen, 1995), we suggest that the 

strong baseflow signature in stormflow originates from near-saturated subsurface soil water or 

transient groundwater sources. This hypothesis is supported by the geochemistry of the 

underlying bedrock. The andesitic-basalt/basaltic-andesite that characterises this region is 

composed of K
+
, Na

+
, Mg

2+
 and Ca

2+
 ratios of 1:4:5:7 (Luhr and Carmichael, 1980; 1981). The 

baseflow from the upper basin and primary outflow and stormflow show similar mean 

geochemical ratios of 1:3:5:7. Despite these results, we lack the hillslope groundwater tracer and 

hydrometric data to support direct groundwater contributions and suggest that future work in this 

catchment should test for groundwater contributions to runoff.  

 

Previous work in this catchment has suggested that given the rapid increase in soil moisture 

above field capacity but below saturation during storm events, that storm runoff may be 

generated as mass or pressure wave translation through the unsaturated zone (Farrick and 

Branfireun, 2014b). Torres et al. (1998) suggests that when soil is in the near-zero head pressure 

range, rainfall inputs can elicit a small increase in pressure head and a large increase in hydraulic 

conductivity. The resulting increase in the hydraulic gradient and hydraulic conductivity 

generates pressure waves which produces a rapid response, displacement and discharges water in 

the saturated zone. For storms two (August 19) and four (September 11), the rapid increase in 
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soil moisture at the 50 and 100 cm soil layers, coupled with large contributions of pre-event 

water, low K
+
 in storm water and Ca

2+
, Mg

2+
 and Na

+
 concentrations reflective of near-stream 

groundwater and baseflow sources, suggest that the displacement of stored water from the 

saturated zone occurs during these larger storm events.  

 

Although high pre-event contributions and Ca
2+

, Mg
2+

, Na
+
 and K

+
 reflective of near-stream 

groundwater and baseflow were also recorded during storms one (August 7) and three 

(September 9), the soil moisture response at depths below 50 cm lagged behind peak streamflow, 

suggesting a different runoff mechanism. In a catchment with soils of similar volcanic origin, 

Muñoz-Villers and McDonnell (2012) showed that despite a delayed response in the soil 

moisture at depths below 70 cm, runoff was composed of 72 – 99% pre-event water. Muñoz-

Villers and McDonnell (2012) attributed the high pre-event to vertical preferential flow in near-

stream areas, which bypasses the soil matrix and displaces near-saturated soil water or hillslope 

groundwater. Such a mechanism may occur for these two events as the maximum increase in 

near-stream groundwater occurred before peak stormflow. However, despite this rapid increase, 

the geochemistry reflective of near-stream sources was not observed until the recession limb 

(Storm 1) or just before peakflow (Storm 3), suggesting delayed contributions. It is important to 

note that these sampling wells were located in the upper half of the catchment (Figure 4.1) and 

the delayed contributions are likely a result of transport times from these locations.  

 

Caution must be exercised when attributing runoff generation to direct contributions from the 

near-stream area. Chanat and Horberger (2003) suggest that substantial hillslope and 

groundwater contributions may be masked by the higher ion concentrations in the near-stream or 

riparian zone. In our current study, this masking effect likely exists during storm one (August 7). 

Water collected at the 50 cm lysimeter had Ca
2+

 and Mg
2+

 values two times lower than the near-

stream water (Table 4.2). Even if this hillslope water was discharged during the rising limb, the 

higher Ca
2+

 and Mg
2+

 in the near-stream water may mask hillslope contributions. 
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4.5.3. The influence of catchment wetness on source area 

contribution  

We found that while stormflow was composed of water with Ca
2+

, Mg
2+

, Na
+
 and K

+
 

concentrations most similar to baseflow, near-stream groundwater and soil water from the 50 cm 

lysimeter, seasonal variations in the contributing area  of the catchment was observed. During 

storms one (August 7) and two (August 19) the rising limb was characterised by Ca
2+

 

concentrations from the upper basin, while Mg
2+

 concentrations observed over the entire 

hydrograph was characteristic of baseflow from the upper basin. By September, runoff from 

storms three (September 9) and four (September 11) were dominated by water with higher 

concentrations of Ca
2+

 and Mg
2+

 which were most similar to baseflow at the primary outflow. 

Stream water at the primary outflow should represent a mixture of water draining from all the 

sub-basins within the catchment. If this is indeed the case, then storm runoff that reflects the 

geochemistry of baseflow from the primary outflow likely represents contributions from across 

the entire catchment.  

 

The changing seasonal geochemical signal in storm runoff from the upper basin to the primary 

outflow suggests that as the wet season progressed and catchment wetness (represented by the 30 

day precipitation, Table 4.3) increases, the proportion of the catchment which contributes to 

stormflow also increases. In a humid temperate catchment with a similar dry-wet seasonality and 

narrow riparian zones, Sidle et al. (2000) showed as the rainy season progressed and catchment 

wetness increased, there was an increase in the number of linked zero-order basins. This 

connectivity was brought about through the expansion of preferential flow networks. While we 

do not have the hydrometric data to show the upslope expansion subsurface saturation, our 

geochemical data suggests that increasing contributions from near-saturated subsurface soil 

water or groundwater sources to streamflow may occur as catchment wetness increased. From 

July to September, there was an increase in Ca
2+

 and Mg
2+

 in baseflow at the primary outflow by 

2.8 and 3.8 mg/l respectively. As these are the dominant minerals in the underlying bedrock, it is 

reasonable to assume that the increasing concentrations represent greater contributions from 

saturated subsurface areas as the wet season progressed.  
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This study provides preliminary evidence of seasonal changes in hydrological connectivity. 

However, without characterising the geochemistry of a combination of large and small storm 

events in July and September and the current absence of soil and groundwater end-members 

from the lower half of the basin, we are unable to completely identify and compare changes in 

source area contributions over the entire wet season. Therefore future studies in this catchment 

should investigate this hypothesis of seasonal hydrological connectivity, ensuring a full range of 

storms are captured.  

 

4.6 Conclusion 

We examined the runoff generation mechanisms in a tropical dry forest catchment, Mexico. We 

found that over the four monitored storm events, runoff was dominated by pre-event water. The 

geochemistry of these storms strongly reflected the baseflow and deep subsurface soil water 

source waters in the catchment. The combined isotope-geochemical tracer and hydrometric 

analysis suggest that despite the rapid rise and recession of the storm hydrograph, shallow flow 

processes do not control the runoff response in this catchment. Although the runoff response at 

our catchment is unlike that of most arid and humid tropical forests, it is very similar to the 

limited work describing runoff generation in tropical catchments of highly permeable soils of 

similar volcanic origin.  

 

Although preliminary, this study provides evidence that where a strong dry-wet seasonality 

occurs, hydrological connectivity is seasonally and not event driven. The sub-basins at higher 

elevations are important water sources to runoff, particularly during the early part of the wet 

season, when most runoff originated from the headwaters. These findings have important 

implications with regards to land management in tropical dry forest catchments. Much of the 

current extent tropical dry forest in Mexico and Central and South America is under threat of 

land use change, mainly due to agricultural conversion. Decision and policy makers are often 

faced with the task of selecting the appropriate area for development. Our current research 

suggests that development in the headwater sub-basins should be avoided given the potentially 

large contributions to runoff. 
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Chapter 5 

5.0 Summary and conclusions 

5.1 General summary 

Understanding the controls that govern the storage and discharge of rainfall as runoff has never 

been more important, as many forested catchments are coming under increasing stress due to 

climate and human induced changes. These changes are expected to have a strong impact on the 

quantity of water discharged from the catchment. Studies in humid temperate, wet tropical and 

dry, semi-arid forested catchments have shown that the relationship between rainfall intensity 

and hydraulic conductivity and the development of soil water repellency at the soil surface play a 

significant role in dictating infiltration rates and magnitudes and ultimately runoff generation. 

The rate by which rainfall infiltrates and percolates through the unsaturated soil layers to the 

saturated zone is often essential in satisfying storage deficits. Only after these deficits are 

satisfied is a threshold relationship between rainfall and discharge developed. In many cases the 

rainfall threshold reflects the level of hydrological connectivity that is achieved across the 

catchment. In humid temperate forests where subsurface flow is dominant, large rainfall events 

are often needed to connect hillslope and riparian areas, thereby generating substantial volumes 

of runoff is often generated in the catchment. In wet tropical forests and semi-arid systems where 

runoff is generated as overland flow, connectivity does not occur through hillslope-riparian 

linkages, but rather through the expansion of ephemeral stream channels. While infiltration 

characteristics, storage-rainfall thresholds and hydrological connectivity are well researched in 

other forested catchments, they have generally remained undescribed in tropical dry forests. The 

overall goal of this dissertation was to improve our understanding of the controls on runoff 

generation and streamflow response in a tropical dry forest catchment.  

 

The climatic conditions and waxy leaved, drought-resistant vegetation typical of tropical dry 

forest ecoregions are most similar to those that characterise semi-arid regions. In semi-arid 

systems, low hydraulic conductivities and extreme levels of water repellency limit infiltration, 

resulting in infiltration-excess overland flow. Given that little is known about the surface 
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hydrology of tropical dry forests, chapter two tested the hypothesis that the controls on runoff in 

semi-arid systems are transferable to tropical dry forest hillslopes. The results showed that the 

low rainfall intensities, high surface hydraulic conductivities and lack of repellent surfaces 

during the wet season resulted in more than 70% of annual rainfall percolating through the upper 

30 cm of soil. The main conclusion from chapter two was that in spite of similar climate and 

vegetation regimes, hydrological knowledge from semi-arid catchments is not transferable to this 

tropical dry forest.  

 

The finding that infiltration was not limited by the physical surface properties suggested that 

subsurface flow, not infiltration-excess overland flow is the dominant process in this catchment. 

These observations provided the motivation to examine the subsurface soil storage controls on 

runoff. Despite the importance of satisfying storage deficits before runoff can be generated, 

much debate still exists regarding the relative importance of storage versus precipitation 

threshold controls on runoff generation. Chapter three investigated the soil water storage and 

hydrometeorological controls on streamflow activation and stormflow generation. Because the 

soil storage reservoir in the study site is depleted during the seven month long dry period, 

streamflow remained absent through the dry season and the early wet season, and was only 

activated after soil storage deficits over the upper 100 cm were satisfied. Interestingly, once 

streamflow was activated, storage had little influence on storm runoff. When the depth 

equivalent soil water prior to a storm event (proxy of storage) was summed with the event 

rainfall depth, a threshold response was observed with stormflow. Above this threshold, the 

stormflow response and magnitude was almost entirely governed by rainfall event 

characteristics. These results demonstrate that over the course of the wet season in tropical dry 

forests the dominant control on runoff generation changed from unsaturated soil storage to the 

depth of rainfall. This change in the dominant control suggests that after streamflow is activated, 

the storage deficit becomes low enough that less rainfall goes into storage and more is being 

translated to runoff. Overall, chapter three suggests that unless the storage threshold is reached, 

rainfall has little control on runoff generation.  

 

While chapter three showed the importance of threshold storage and precipitation in controlling 

runoff, it did little to indicate where the water flow pathways and sources areas of runoff 
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originated and how these sources may change with time. In chapter four, a combination of 

isotopic and geochemical tracers and hydrometric information was used to examine these flow 

pathways and source area contributions to runoff. The results from chapter four suggest that 

runoff originates from deep subsurface layers. Whether these water sources originated from the 

capillary fringe or hillslope groundwater still remain unknown; however, the geochemistry does 

suggest substantial contributions from the saturated zone. Like the other catchments with steep 

slopes and narrow riparian zones, connectivity appeared to be driven by linkages among sub-

basins across the catchment rather than the hillslope-riparian connections that characterises most 

catchments. The residence time analysis of stream baseflow proved to be a powerful tool in 

identifying potential changes in the topography and internal form of the catchment.  

 

The findings from this dissertation have important implications regarding the potential changes 

to runoff volumes and the specific generating mechanism at this site. Given that stormflow is 

strongly controlled by the depth of rainfall, the decrease in the total annual precipitation expected 

for this region (Karmalkar et al., 2011) will likely result in lower volumes of runoff generated. 

Furthermore the increase in temperature coupled with lower rainfall will produce a drier climate, 

likely extending the number of days needed to activate streamflow. These climatic shifts may not 

affect the subsurface mechanism at this site, as the high hydraulic conductivity at the soil surface 

will not impede infiltration, even under small increases in rainfall intensity. Under an alternate 

scenario of increased annual rainfall with events of greater intensity, streamflow will be activated 

earlier and there will be an increase in total volume of runoff. The greater input of rainfall may 

impact the runoff generating mechanism, as deeper soil layers, particularly at the base of the 

hillslope, may become saturated resulting in the development of SOF.  

 

5.2 Concluding remarks 

In the classic approach to classifying catchment scale runoff generation, Dunne (1983) 

highlighted the various environmental controls on the different runoff mechanisms (Figure 5.1). 

Dunne‟s approach, while based on multiple field investigations, only provides a qualitative 

assessment of the controls based on climate, vegetation, topography and soils. While it makes 
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sense conceptually to lump poorly studied catchments according to the parameters provided in 

the Dunne diagram, the results produced from this dissertation highlight the importance of a 

quantitative characterisation of the controls on runoff generation in a given catchment. If the 

Dunne diagram is used, then infiltration-excess overland flow would be expected given the arid 

climate and xerophytic vegetation. However, chapters two, three and four indicate that 

subsurface stormflow is the dominant mechanism, thereby suggesting that the deep, permeable 

soil and steep slopes and narrow valley bottoms (topography) exert a stronger control on runoff 

in this catchment than climate or vegetation (Figure 5.1).  

 

Figure 5.1 Modified version of the Dunne diagram illustrating the environmental controls on the 

different runoff generating mechanism (after Dunne, 1983). The runoff generating mechanism 

from the current study catchment is plotted as the grey square.  

 

Unlike the Dunne diagram, which attempts to classify catchments based on qualitative features, 

it has been suggested that a catchment scale threshold runoff response provides a more 

quantitative unit of catchment classification and inter-catchment comparison. The shape of the 

non-linear storage-discharge relationship often reflects the underlying mechanisms controlling 

the retention and release of rainfall in a catchment. In humid temperate catchments where large 
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storage deficits are satisfied before subsurface stormflow is generated, the non-linear storage-

discharge relationship often takes on a “hockey stick” shape. A similar hockey stick shape is 

produced from the antecedent soil water-rainfall and runoff response in chapter three. This shape 

and the isotope and geochemistry data (chapter four) indicates a subsurface flow mechanism in 

this tropical dry forest and strongly supports the suggestion made by Ali et al. (2013) that the 

threshold response provides an improved metric of catchment classification. Not only does 

identifying the threshold help in conceptualising how the runoff response may vary under a range 

of conditions, the linear relationship above the threshold also supports the development of 

algorithms needed for predictive models in these catchments.  

 

5.3 Recommendations for future research 

The research presented in this thesis posed and answered a number of fundamental questions 

regarding the controls on runoff generation in a tropical dry forest; yet a number of questions 

remain to be answered with respect to annual variations in runoff response and the specific 

source area contributions to runoff in this catchment. The following suggestions will continue to 

improve our understanding of the hydrology of tropical dry forests: 

 

1. Conduct similar investigations over a multi-year time period. Chapters three and four 

examined the threshold response and water flow pathways in a year in which precipitation 

was 24% below the annual average. This leads to the questions regarding the impact of 

interannual variability on the runoff response, specifically in a year with above average 

rainfall. Characterising the threshold runoff response over a greater range of rainfall 

frequencies, intensities and magnitudes will improve the threshold response derived from the 

piecewise regression analysis, thereby improving our ability to assess how climatic shifts will 

affect the runoff response in this catchment (Ali et al., 2013).  

2. Explore the effectiveness of the soil water storage – rainfall threshold approach at other 

tropical dry forest site. The technique used in chapter three provides a simple and easily 

repeatable approach. However, unless it is tested at other dry forest sites, the approach cannot 

be recommended for catchment wide adoption.  



111 
 

3. Extend the soil moisture measurement locations for threshold analysis to include near-stream 

areas. Although most work in steep catchments with incised stream channels and narrow 

riparian zones suggest that contributions from near-stream areas are very low. However, 

without direct measurement, the possibility of contributions to streamflow activation cannot 

be excluded. 

4. Map the occurrence and extent of hillslope groundwater across the catchment, using network 

of wells and pressure transducers. Multi-level well should be installed to map vertical flow 

gradients to provide direct evidence of flow pathways during storm events. 

5. Explore the direct contributions of subsurface water at depths below one metre to stormflow 

using isotopic and geochemical tracers. Such exploration would confirm if the high pre-event 

water contributions and strong baseflow geochemical signature recorded during stormflow 

(chapter four) originated from deep subsurface soil layers or transient groundwater. This 

would further our process based understanding of runoff generation processes in tropical dry 

forests. 

6. Application of more appropriate isotopic tracers to improve the estimate of the mean stream 

water residence time. The use of stable isotope tracers (δ
2
H and δ

18
O) while suitable have 

been shown to underestimate the age of baseflow in residence time analyses. Tritium based 

characterisation of the baseflow reveals larger proportions of older water and would like 

improve the estimation of residence time in this catchment (Stewart et al., 2010; 2012).  

7. Examine the partitioning of water among the major tree species and dominant forest types 

across the catchment. Canopy interception, transpiration and the rooting depth have strong 

impact on the partitioning of incoming rainfall and the pool of stored soil water. While these 

processes have been shown to strongly impact the amount of water available for runoff in 

wet tropical forests (Bonell and Bruijnzeel, 2005) other work has suggested that two pools of 

water exists, a mobile pool for runoff and a less mobile one for transpiration (Goldsmith et 

al., 2011). Investigating these processes in tropical dry forests will improve our 

understanding of water flow in these catchments. 
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Appendices 
Appendix 1. Change in the soil surface hydraulic conductivity (mm/h) at variable pore pressures 

at four locations at a) the deciduous forest and b) pine forest. 
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Appendix 2. Example of the graphical hydrograph separation using the local minimum method. 

The hydrographs are separated by the dashed line, connecting the local minima. The line 

separates the quickflow (black area) from the baseflow (grey area).  
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Appendix 3. Copyright release agreement for Chapter 1 “Left high and dry: a call to action for 

increased hydrological research in tropical dry forests”.  
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Appendix 4. Copyright release agreement for Chapter 2 “Infiltration and soil water dynamics in a 

tropical dry forest: it may be dry but definitely not arid” 
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Appendix 5. Copyright release agreement for Chapter 3 “Soil water storage, rainfall and runoff 

relationships in a tropical dry forest catchment”. 
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