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Abstract 

This thesis documents a novel method for method to generate digital samples of spherical 

void phase foams to predict effective hydraulic, thermal and radiative properties with the 

intention of assessing the viability of carbon foam as a volumetric solar receiver. The method 

employs discrete element modeling software to simulate the compression of spherical 

bubbles into a fully periodic, cubic domain. These domains were subsequently used to 

determine a variety of effective transport properties to be used in porous media design 

problems. The predicted properties agreed well with those obtained through experimental and 

other numerical methods, notably predicting more accurate hydraulic properties than those 

obtained using idealized, or unit-cell models. It is concluded that the digital generation 

technique is a cheap, fast, and effective method for obtaining bulk material properties. It is 

further concluded that the carbon foams studied will absorb almost all incident radiation for 

most design cases. 
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Chapter 1  

1 General Introduction 

Porous media are heterogeneous materials comprised of a solid microstructure (or matrix) 

and a fluid which fills the space unoccupied by the matrix. In heat transfer applications, 

an important property of porous materials is the connectivity of the void phase; an inter-

connected pore structure will allow fluids to pass through the material. This characteristic 

allows engineers to leverage a key property of porous materials: the surface area-to-

volume ratio. Consider a cooling application, wherein a thermally conductive solid 

matrix will carry heat from a hot boundary into the porous domain (e.g. DeGroot et. al 

[1]). From there, a cold fluid may be passed through the solid matrix to provide 

continuous cooling. This mechanism is the same as that employed in traditional heat 

sinks with active cooling, however the effective surface area in porous materials is often 

several orders of magnitude greater [2]. In convection applications heat transfer correlates 

positively with the exposed surface area, so porous materials can be expected to 

outperform traditional solutions in many heat transfer applications. 

Considering their effectiveness in applications involving convection heat transfer, it is 

desirable to fully characterize the physical behaviour of porous materials so that they 

might be adequately designed in the presence of other phenomena. The motivation for 

this thesis was to explore one such phenomenon: radiation in porous materials. 

Specifically, it was of interest to evaluate the effectiveness of graphitic foam as a 

volumetric receiver for incident solar radiation for applications in solar collectors. 

As an illustrative example, consider the solar collector in Figure 1.1, where a working 

fluid such as water or air can be forced through the porous medium. The medium 

volumetrically absorbs the portion of incident solar radiation solarq  which penetrates the 

upper glass covering. This heat is then conducted to the working fluid, and advected 

away. Inevitably some heat will be lost through the upper surface due to re-radiation from 

the medium, and free convection. The over-arching goal of this thesis is to collect all of 

the information required to analyze such a device. 
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Figure 1.1 A single pass volumetric solar collector 

This chapter contains the necessary background information to understand the content in 

chapters 2 and 3. After a literature review, the volume averaging process will be carried 

out for the relevant transport equations, the methods used to identify relevant material 

properties, and an introduction of how the continuum Monte-Carlo (MC) method may be 

applied to account for radiation transport. 

1.1 Literature Review 

Before detailing the present work regarding radiation in porous media, it is necessary to 

consider the research efforts to this point. The topics of volume averaging in porous 

media, pore level modeling, radiation in porous media, and solar collectors will be 

reviewed. 

1.1.1 Volumetric Solar Receivers 

Volumetric Solar Receivers (VSRs) have been analyzed as early as 1982 [3]. VSRs 

employ a heterogeneous material to absorb incident solar radiation and transfer heat to a 

working fluid. The material employed may be a porous matrix (the heat is transferred to 

the working fluid via convection), or a fluidized bed (the heat is conducted from the 

interstitial phase to the carrier fluid). This section will review applications where 

stationary porous matrices are used as the volumetric receiver. 

Fend et al. [4, 5] have experimentally tested the performance of foam ceramics, SiC fiber 

mesh, ceramic catalyst carriers, and metallic catalyst carriers. The ceramic foam and fiber 

mesh were found to have superior performance because of their large specific surface 
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areas and favorable pressure losses. Some flow instabilities have been observed and 

explained by Pitz-Paal et al. [6] and Becker et al. [7]; it was found that the instabilities 

were caused by the dependence of viscosity on temperature, creating a two-way coupling 

between the energy and momentum equations. The instability is manifest as a non-

monotonic relation between pressure drop across an irradiated foam sample and the air 

temperature, however the instability vanishes for low irradiation or whenever the ratio 

between Darcy and Forchheimer coefficients exceeds a critical value. 

 Wu et al. [8] used CFD software to analyze an axis symmetric porous plug wherein 

radiation is incident on the front face of the plug. Hischier et al. [9] have performed CFD 

analyses of a solar receiver wherein a concentrator focuses solar energy into a cylindrical 

cavity of absorbing material which transfers heat via conduction and convection to an 

annulus of porous material. Air is forced through the porous annulus to extract the 

sensible heat. The results indicate this is a very effective design, attaining thermal 

efficiencies in the range of ~80% while the outlet air temperature can reach 1000˚C! 

Dhiman et al. [10] forced air through layers of wire meshes in single- and double-pass 

configurations. Experimentally determined thermohydraulic efficiencies were found to 

agree well with predictions from text book heat transfer correlations. More recently, 

Singh & Dhiman [11] have used a response surface methodology to optimize the design 

of a forced-air double-pass wire mesh screen solar collector. Optimal values of mass flow 

rate, channel height, and the fraction of recycled mass flow are reported. 

1.1.2 Microstructure Modeling 

A significant portion of this thesis describes a novel process for generating physically 

realistic digital representations of carbon foam. The rationale behind this effort and 

similar attempts by earlier researchers will be described in this section. 

In order to identify the coefficients of closure terms and effective material properties that 

appear in the volume-averaged transport equations, an inverse analysis must be 

performed on a Representative Elementary Volume (REV) of the porous material of 
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interest. An example of this process is the identification of Darcy permeability and 

Forchheimer coefficient. Whitaker [12] has derived the Darcy-Forchheimer equation: 

 .
f

x x x

cdp
u u u

dx K K


    

(2.1) 

Equation (2.1) is a simplified 1D form of the momentum equation, where the pressure 

gradient, 
dp

dx
, has been expressed as a quadratic function in terms of the extrinsic, or 

superficial, velocity 
xu .  The permeability, K , and the Forchheimer coefficient, fc , may 

be found from specific closure problems formulated by Whitaker [12], however that 

analysis still requires a representation of the pore level microstructure. K  and fc  are 

assumed to be complicated functions of the geometry of the solid matrix. Rather than 

hypothesize about how they might be calculated, it is much more straightforward to 

perform a series of experiments or simulations, enforcing a range of extrinsic velocities, 

and extracting the pressure drop across the domain. K  and fc  may be determined via an 

inverse analysis of the results. In any case, a representation of the microstructure is 

required, and many researchers have proposed various methods for obtaining adequate 

REVs. 

The first, and probably the most obvious method, is to acquire a physical sample of the 

porous material of interest, and perform a series of experiments on the sample to obtain 

the relevant data. This approach has been carried out by Gallego & Klett [13] to evaluate 

heat transfer coefficients for two reticulated carbon foams and two meso-phase pitch 

carbon foams. Straatman et al. [2] ran experiments on four different graphitic foams to 

determine hydraulic and heat transfer coefficients. 

Alternatively, REVs may be reconstructed from Computer Tomography (CT) scans of 

a physical sample of the microstructure of interest. Once a digital representation of the 

microstructure is obtained, simulations may be performed (discretizing the digital model 

if necessary) and post-processed to infer the coefficients of interest. Nakashima et al. [14] 

reconstructed X-ray tomography scans to obtain digital REVs of packed beds, and 
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identified porosity, surface-to-volume ratio, and tortuosity. Maruyama et al. [15] and 

Anghelescu [16] digitally reconstructed samples of carbon foam and performed 

subsequent analyses to determine thermal and mechanical properties. More recently, the 

method has been applied by Haussener, in collaboration with other researchers, to 

determine effective hydraulic, thermal, and radiative transport properties for reticulate 

porous ceramics [17], reacting packed beds [18, 19], and snow [20]. 

CT scanning equipment is expensive, and, depending on the porous material one wishes 

to study, porous media materials may be also be expensive. These costs have motivated 

researchers to imagine REVs which would render the scanning equipment and material 

samples unnecessary. A popular substitute REV is a unit-cell. A unit-cell is a 3D periodic 

geometry representing a single pore deep within the porous domain, typically constructed 

by applying Boolean operations to combine simple geometric shapes. Geometric 

parameters such as porosity and surface-to-volume ratio of a unit-cell can easily be 

calculated using geometric relations, and, because of their simple construction, they are 

often easy to mesh for continuum simulations. A unit-cube model has been proposed by 

Yu et al. [21] who employed the Boolean subtraction of a sphere from a cube to obtain 

hydraulic and thermal properties for Spherica-Void-Phase (SVP) porous media. 

Boomsma & Poulikakos [22] first proposed the use of a tetrakaidecahedron shape, also 

known as the Kelvin cell, to predict thermal conductivity in metal foams. Dai et al. [23] 

identified and corrected some mistakes in Boomsma & Poulikakos’ formulation and 

proposed an extension of the method for calculating thermal conductivity. Kumar et al. 

[24] have used Kelvin cell to evaluate the hydraulic and thermal properties of open-cell 

metal foams, and Sihn et al. [25] have used the Kelvin cell to predict effective Young’s 

moduli and Poisson’s ratios of carbon foams. Leong & Li [26] proposed a unique unit 

cell, comprised of a cubic shell where spheres have been subtracted from the corners to 

analyze hydraulic and thermal properties of carbon foam. 

While the unit cell models are favourable because of their simplicity, they fail to capture 

the randomness of porous structures; specifically, pores are aligned along pre-defined 

channels resulting in an unrealistically anisotropic structure, and all the pores are 

assumed to be equally sized. This has motivated researchers to develop methods to 
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produce REVs which contain both variations in pore size and isotropy. These REVs have 

not been explicitly classified in the literature, so in this thesis they will be referred to as 

stochastic REVs, as there is usually an element of randomness to their generation. Kırca 

et al. [27] modeled pitch-based carbon foam REVs by placing spherical bubbles 

randomly within a cubic domain, and choosing the bubble radii to obtain the desired 

porosity, average bubble radius, and interference between neighbouring bubbles. Finite 

Element (FE) analyses were performed to determine the effective Young’s modulus and 

Poisson’s ratio. Wang & Pan [28] suggested a random-generation growth method, 

wherein representations of open-cell metal foams are generated by randomly placing 

points in a 3D domain and stochastically linking neighbouring nodes. Thermal 

conductivity was predicted from the resulting structure. More recently, Chueh et al. [29] 

modeled SVP porous media using the ‘drop-and-roll’ method of Visscher and Bolsterli 

[30]. Using this method they were the first researchers to obtain cubic, stochastic REVs 

which were periodic in two directions. The REVs were used in a random walk simulation 

to predict thermal conductivity. 

1.1.3 Modeling Thermal Radiation in Porous Media 

As mentioned above, the average behavior of radiation in porous media is the same as 

that of other participating media. Consequently, the methods developed to account for 

radiation transport in homogenous participating media may be used with few 

modifications. The present interest is to decide which method is most suitable for 

implementation within the finite volume conjugate porous/fluid/solid Fortran code 

developed by Betchen et al. [31] to solve problems involving radiation in porous media. 

The traditional Radiative Exchange Method (REM) was developed to analyze radiative 

heat transfer between surfaces inside enclosures filled with non-participating media. A 

description of the REM may be found in undergraduate heat transfer textbooks such as 

Incropera & DeWitt [32] as well as dedicated radiation heat transfer texts [33, 34]. The 

REM requires the analyst to divide the surfaces in the enclosure of interest into 

isothermal surface elements, and determine the view factors between each pair of surface 

elements. Then the heat flux leaving each surface may be determined by finding the 

difference between the emitted energy from the element and the incoming energy from 
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all other elements. The Zonal Method (ZM) is an extension to the REM developed by 

Hottel & Cohen [35] to model enclosures with participating media. In the ZM, the 

volume within the enclosure is broken down into isothermal elemental volumes and the 

surfaces are divided into surface elements; both are referred to as zones. Exchange factors 

may be determined between zones as described by Hottel & Cohen [35] or by Larsen & 

Howell [36]. An energy balance for each zone may be written in terms of the heat fluxes 

from all other zones. Yuen [37] has developed a computationally efficient and robust 

implementation of the ZM for problems involving property for in-homogenous non-gray 

media. The method has not yet been applied to domains involving porous media. 

The method of spherical harmonics, known as the PN approximation, was first proposed 

by Jeans [38] in his study of radiation heat transfer in stars. The method has been 

thoroughly described by Modest [34]. Intensity at a single point travelling in a single 

direction is represented as a two-dimensional Fourier series, where each term in the inner 

sum is the product the average intensity at the point and spherical harmonic function 

characterized by Legrende polynomials. Substitution into the RTE leads to an infinite set 

of coupled differential equations for an infinite number of moments. To render the 

method useful the Fourier series is truncated to N  moments. 

The Discrete Ordiantes Method (DOM) was first introduced by Chandrasekhar [39]. 

The method requires that the RTE be solved at discrete points in space for a discrete 

number of directions, without integration over a local solid angle [40]. A weighting factor 

is then assigned to each direction such that integration of the intensity multiplied by the 

weighting function over all solid angles yields a known constant when the intensity is 

uniform. Thus the weighting function is required for two calculations: the in-scattering 

term, and the radiation source term in the energy equation. This convolution of the local 

intensity with a weighting function is referred to as quadrature in the literature. The speed 

and accuracy of various weighting functions have been investigated by Koch et al. [41] 

and Koch & Becker [42]. Malico & Pereira [43] have employed the DO method to study 

the importance of radiation and radiative properties to porous media combustion 

problems by way of analysis of a porous burner. It was found that inclusion of radiation 

within the model allowed for more accurate prediction of the temperature profile in the 
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post-flame region while pertubing the extinction coefficient and scattering albedo also 

influenced the solution. Raithby [44] has critisized the method for its failure to conserve 

radiant energy exactly for some quadratures. 

The Finite Volume Method (FVM) applied to the RTE was first introduced by Raithby 

& Chui [45]. The method is a straightforward extension of the well known FVM [46], 

and it should not be confused with the common implementation of the DOM, known as 

DO-FVM. Implementation of the FVM requires that the problem domain be discretized 

into discrete volumes where the transport properties of interest are assumed to be 

constant within each control volume during every time-step. To solve for radiation 

transport, each control volume is subdivided into finite solid angles. Radiation is then 

conserved within each solid angle for each control volume. Several researchers applied 

the FVM to study multi-physics problems in porous domains. Slimi et al. [47] have 

studied buoyant flows within a porous vertical channel exposed to thermal radiation, and 

found that the heat transferred to the fluid increases with optical thickness and wall 

emissivity, and surprisingly, decreasing effective thermal conductivity within the solid 

phase. Kamel et al. [48] have proposed a variation on the method called FTn-FVM which 

addresses some of the shortcomings of the traditional FVM, such as false scattering, and 

demonstrated the improvements through the analysis of an L-shaped domain. 

Coelho et al. [49] have analyzed the performance of three configurations of 2D and 3D 

enclosures with baffles filled with participating media using the ZM, Radiative Transfer 

Method (RTM), DOM, and FVM. All methods were found to obtain the correct solutions 

for the problems, however both the DOM and the FVM required less computation time 

than the ZM and the RTM in all cases. Little difference was observed between the 

accuracy of the DOM and the FVM. 

The Monte-Carlo Method (MCM) differs substantially from the DO and FV methods in 

that the aim is not aim to solve the RTE directly; instead the progresses of individual rays 

or ray bundles are tracked throughout the domain [50]. Siegel & Howell [33] and Modest 

[34] both provide excellent detailed descriptions of the MCM. Rays are stochastically 

emitted, scattered, or absorbed at solid surfaces, participating volumes or boundaries with 
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a specified amount of radiant energy. Emitted energy is withdrawn from the source and 

deposited at the destination where absorption occurs. The primary advantage of the MCM 

is that it simulates the process of radiation transport rather than modeling it ; the emission, 

reflection, scattering, and absorption of photons is nearly random on the microscopic 

scale, and the MCM approximates this behavior. Consequently, accurate solutions may 

nearly always be obtained when enough rays are launched. The method is not free of 

shortcomings; Howell [51] documents two computational issues during his Monte Carlo 

simulations of a gray gas between parallel plates: for weakly absorbing media, few ray 

bundles are absorbed within the media compared to the number absorbed by the walls so 

a large number of rays must be cast to resolve the temperature field. Conversely, when 

the solution is optically thick, a large number of rays are exchanged between neighboring 

volumes causing significant increase in computation time, a process which could more 

efficiently modeled by a diffusion approximation [33]. 

Hischier et al. [52] have independently implemented the Rosseland approximation, the P1 

method, and the MCM to solve the radiation field within a porous annulus of a 

volumetric solar receiver. A plot of the radiative source term over the radial direction 

indicated excellent agreement between P1 and MC methods over the radius, while the 

Rosseland approximation predicted much higher heat fluxes near the center due to a 

relatively small optical thickness. Unsurprisingly, the computation time of the P1 solution 

was much smaller than the MC solution. 

Finally, Modest [34], who has described all of the above methods in full detail, presents a 

succinct comparison of the methods, indicating that the MC, FV, and DO methods are the 

only methods whose accuracies may be improved to an arbitrary level through casting 

additional rays or refining computational grids. He also mentions that the P1 

approximation is easier to apply than the FV and DO methods, and yields very accurate 

solutions for optically thick media. 

In the end, the MCM was chosen for its ease of implementation and apparent accuracy. 

The problems to be studied require relatively small grid sizes, and the time to compute 

radiative heat fluxes in a few preliminary calculations was on the order of a few minutes.  
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1.2 Governing Equations 

To predict the performance of an engineering design in the absence physical testing and 

suitable empirical correlations, the relevant conservation equations must be solved. When 

analyzing a porous media solar collector with volumetric absorption, the mass, 

momentum, energy, and radiation conservation equations. The instantaneous forms of 

these equations are presented in sections 1.2.1 - 1.2.4. Depending on the problem at hand, 

additional terms may be included in each governing equation to account for various 

effects, and adequate boundary conditions must be applied to characterize quantities 

outside the domain. 

1.2.1 Conservation of Mass 

The conservation of mass equation is given as follows: 

0,
t





  


u  

(2.2) 

where   is the density, and u  is the velocity vector. In all of the problems discussed in 

this thesis, the flows analyzed are assumed to be not only incompressible, but constant 

density. Under this assumption the conservation of mass may be simplified to 

0, u   
(2.3) 

which is often referred to as the continuity equation. 

1.2.2 Conservation of Momentum 

The conservation of momentum for a Newtonian fluid is given as: 

2 ,p
t

   


      


u
u u g u  

(2.4) 

where p  is the pressure within the control volume, g  is the gravity vector, and  is the 

viscosity of the fluid. 
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1.2.3 Conservation of Energy 

The conservation of energy may be written as follows [32, 33]: 

r

Diffusion term; Source term;Advective term; energy transport energy loss/gaTransient term; energy transport via via conductionrate of energy bulk fluid motion
storage

p p

dT
c c T k T

dt
         u q

in
by radiation 

emission /absorption

Source term;Source term;
energy gain byenergy loss by

viscous dissipationvolumetric expansion

.p    u

 
(2.5) 

It can immediately be seen that the second source term, characterizing energy loss by 

volumetric expansion, disappears when the continuity equation (2.3) is inserted. 

Additionally, the final source term will be neglected in this thesis, as viscous dissipation 

is small compared to the other terms for all problems discussed in this thesis. With these 

simplifications, Eq. (2.5) is reduced to: 

r.p p

dT
c c T k T

dt
     u q  

(2.6) 

The mathematical form of the radiation source term will be presented in section 1.2.4. 

1.2.4 Radiative Transfer Equation 

On the sub-atomic scale, radiation transfer occurs via the movement of photons within a 

domain [33]. As with momentum and energy, engineers will desire a continuum 

approximation which captures the bulk movement of photons without needing to track 

them individually. The quantity characterizing this movement is called intensity. Before 

presenting the equation of radiation transfer, two fundamental differences between 

radiation transport and transport of more tangible quantities (e.g. momentum or energy) 

will be highlighted. 

First, consider the fact that momentum and, radiation excepted, energy must be 

associated with a finite mass. This understanding is manifest by the presence of advective 

terms in each of the above equations, which represent the notion that quantities can be 
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carried by mass. For all intents and purposes, intensity has no such reservations, which is 

why it can propagate unimpeded through a vacuum. While this fact precludes the use of a 

control mass to derive the equation of radiation transfer, a second quality of radiation 

provides a suitable starting point. 

It is known that, outside of relativistic effects such as diffraction [53], photons travel 

along straight paths. The inclusion of these relativistic effects is uncommon in the 

engineering treatment of thermal radiation heat transfer, and will not be considered in this 

thesis. The linear motion of photons can be exploited by considering the conservation of 

intensity along a path. This is the approach taken by [33, 34] to derive the Radiative 

Transfer Equation (RTE): 

 
,

Change in intensity at Loss by absorption and scattering
Unsteady term; at position  in

change in intensity ˆdirection 
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ˆ,1
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c t



    
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      
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r
s

r

r s
s r s r s
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,
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,

in in in
4

ˆGain by scattering into direction 

( )

ˆ ˆ ˆ( , ) ( , , )d ,
4

b

s

n I

I

 















  
s

r

r s s s

 (2.7) 

where   and ,s  are the wavelength specific absorption and scattering coefficients, 

respectively, and c  is the speed of light. In a great deal of engineering problems, the 

flight times of the rays are much smaller than all other characteristic timescales, and the 

radiation field may be assumed quasi-steady. The unsteady term will be neglected for the 

remainder of this thesis. Typically, the index of refraction, n , appearing in the emission 

term of Eq. (2.7), is lumped into the blackbody emissive intensity  ,bL r , the emission 

within the medium ( constn  ). In preparation for dealing with refractive boundaries 

between phases, it is more convenient to pull out the 
2n  term and read  ,bL r as the 

emission within a vacuum ( 1n  ) similar to the derivation in chapter 1 of the text by 

Modest [34]. 
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Figure 1.2: Interface phenomena; rays emanating from the interface element dA into 

direction ŝ  may be reflected from phase  i , and transmitted from phase  j . 

The interface condition between two semi-transparent boundaries applicable to Eq. (2.7) 

(shown in Figure 1.2) is defined as the sum of the reflected portion from phase  i  and the 

transmitted (refracted) portion from phase  j : 
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(2.8) 

where the sum of the reflected and transmitted portions must sum to one: 

   
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in in in in
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 (2.9) 

If the  j  phase is considered opaque, an alternate boundary condition applies: 

     
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(2.10) 

The radiation source term in the energy equation (2.6) has been derived by Siegel & 

Howell [33]: 



14 

 

 ,
0

4 .r ba e T i d   


     q   
(2.11) 

where  ,be T  is the emissive power of a blackbody per unit wavelength. Equation (2.11) 

represents the contributions of the two terms inside the integrand: it is the difference 

between the emitted and absorbed power. The mean intensity i  is defined as: 

4

0

1
( , ) .

4
i i d



    


   
(2.12) 

For convenience, the Plank-mean absorption coefficient is introduced, which represents 

the wavelength-average absorption: 
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(2.13) 

Additionally, the wavelength-integrated mean intensity may be defined as: 

0
.i i d 



   
(2.14) 

Using Eq. (2.13) and (2.14), (2.11) may be simplified: 

44 .r P T i       q  (2.15) 

For the remainder of this thesis, the wavelength subscripts will be dropped as the present 

work deals only with wavelength-averaged properties. 

1.3 Volume Averaging the Governing Equations 

The process of volume averaging the governing equations was first presented and carried 

out by Whitaker [54] and Slattery [55], and has since been the topic of a large number of 

subsequent publications, many of which address the topic of closure terms. 
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The closure of the volume-averaged mass-momentum equations has been revisited by 

Whitaker [12], who derived Darcy’s law with the Forchheimer correction term, and 

identified the closure problems to be solved to obtain the Forchheimer coefficient. Darcy 

and Forchheimer coefficients have since been determined using this method for a variety 

of idealized microstructures including a unit-cube model [21], square tubes in a cross-

flow [56], and a tetrakaidecahedron shape [24]. 

The energy equation has also been volume averaged by Whitaker [57]. Treatment of the 

energy equation depends on whether local thermal equilibrium may be assumed. The 

thermal equilibrium assumption states that, at each point within the porous domain, the 

temperature of the solid and fluid phases are equal. Thus, when the thermal equilibrium 

assumption is invoked, one energy equation is used to calculate the temperature field; 

otherwise two equations must be solved to obtain temperature fields for the fluid and 

solid phase. Quintard and Whitaker [58] have derived the volume-averaged forms of the 

energy equation for both cases and Quintard et al. [59] have proposed closure models for 

the non-equilibrium case. 

Of special interest for this thesis is the volume-averaged radiation transfer equation. The 

volume-averaged equation was first given by Zeghondy & Iacona [60] for a heterogenous 

media with one transparent phase and one opaque phase, however the derivation was 

omitted. The general derivation for two semi-transparent phases was completed only 

recently by Lipiński et al. [61]. A follow-up article by Lipiński et al. extended the 

derivation for multi-component media [62]. An interesting consequence of the derivation 

is that no closure terms appear in the final equation. This indicates that the macroscopic 

behavior of radiation transfer in porous media is not fundamentally different than that of 

homogenous participating media, such as gases. It should be noted, however, that the 

bulk properties present in the final equation must be determined using pore-level 

simulations. 

When analyzing transport phenomena in porous media, the straightforward technique is 

to apply the governing equations of section 1.1 to the given problem, analyzing a 

conjugate domain with distinct fluid and solid regions. While this approach is possible, 
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an absurd amount of computational memory would be required to solve such problems. 

This results from the fact that all the interconnections of the microstructure must be fully 

defined to resolve all of the fluid-solid interfaces within the domain. The analyst must 

also discretize the domain into volumes small enough to resolve the pertinent flow 

features. While generating the meshes for the pore-level analyses of section 2.4.2 it has 

been observed that a cubic sample of approximately 5 sphere diameters in edge length 

requires approximately 4 GB of Random Access Memory (RAM); about half of the 

memory resources available on the workstation. During the meshing process, up to 6 GB 

of RAM usage has been observed. From these observations it can be surmised that many 

design problems would be computationally prohibitive to analyze without the use of High 

Performance Computing (HPC). 

This limitation is analogous to that encountered when simulating turbulent flows; in such 

problems the imbalance between inertial and viscous forces cause small flow features 

known as eddies to form, whose characteristic dimensions are minute compared to the 

global (or integral) length scale of the domain. The naive approach is to create meshes 

fine enough to resolve those flow features (such computations are known as Direct 

Numerical Simulations). However, in many problems the required computational 

memory and / or computation times are prohibitively large. To circumvent these issues, 

researchers modify the transport equations of interest to account for the effects of the 

small scale features by the augmentation of material properties, add new terms in the 

equations, or couple the mass-momentum equations to fictitious transport equations. 

When modeling porous media, a similar approach is taken: the governing equations are 

volume-averaged. The term volume-averaging was coined by Whittaker [12], and it is his 

derivation of the volume-averaged mass-momentum equations that will be followed here. 

The volume-averaged energy, and radiative transport equations will be derived thereafter. 

The reader should keep in mind that, although volume-averaging (or any other averaging 

technique, for that matter) is a useful procedure, it should not be confused with the 

discretization of transport equations, which is a further transformation to allow solutions 

to be obtained using numerical methods. When necessary, discretization is always 
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performed after the averaging process. The Finite Volume Method (FVM) of Patankar 

[46] is the discretization applied to the volume averaged mass, momentum, and energy 

equations of the conjugate code used in this thesis, and the Monte-Carlo (MC) method 

has been applied to the volume averaged Radiative Transfer Equation. 

1.3.1 Volume Averaging Theorems 

Two theorems will be instrumental in developing the volume-averaged transport 

equations in this work. The first definition is the extrinsic or superficial average which 

relates a volume-averaged quantity to its local counterpart: 

1
.

m
m m

V
dV

V
     

(2.16) 

The intrinsic average is defined similarly: 

1
.

m

m

m m
V

m

dV
V

    (2.17) 

These definitions are related: 

,
m

m m    
(2.18) 

where   is the volume fraction of phase m . The Spatial Averaging Theorem (SAT) is 

given as: 

Superficial average Gradient of superficial
Volume average of of gradient of quantity average of quantity

crossing the interface fromwithin phase within phase 
 to 

1
ˆ .

mn
m m mn m

A

m m
n m

dA
V



       n   
(2.19) 

Each of the conservation equations of sections 1.3.2 - 1.3.5  are volume-averaged by 

applying  to each term in the equation, and using equations (2.16) - (2.19) to obtain 

an expression in terms of the current transport quantity. Terms which cannot be reduced 
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are called closure terms. Such terms must be appropriately modeled, and their 

coefficients determined from pore level simulation results. 

1.3.2 Conservation of Mass 

The (incompressible) volume-averaged conservation of mass equation for the fluid phase 

is given as: 

0.f u   (2.20) 

SAT (Equation (2.19)) may be applied to yield: 

1
ˆ .

fs
f f fs f

A
dA

V
   u u n u   

(2.21) 

The no-slip condition necessitates 

0.
fs

f A
u   (2.22) 

Therefore the second term in Eq. (2.21) drops out, leaving 

0.f u  (2.23) 

The solid matrix is assumed to be stationary rendering the conservation of mass equation 

for the solid phase unnecessary. 

1.3.3 Conservation of Momentum 

The conservation of momentum equation (2.4) may be volume averaged as follows 

2 .
f

f f f f f f f fp
t

   


       


u
u u f u  

(2.24) 

Fluid properties are assumed to be constant, so density and viscosity may be moved 

outside the averaging brackets: 
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2 .
f

f f f f f f f fp
t

   


       


u
u u f u  

(2.25) 

Each of the terms in Eq. (2.25) will be examined for potential simplifications beginning 

with the first term on the LHS. Invoking definition (2.16) yields 

1 1
.

f f

ff f

f
V V

dV dV
t V t t V t

    
   

    
 

uu u
u  

(2.26) 

 Note the order of differentiation and integration may be interchanged since the volume 

of the fluid phase is independent of time. In addition, (2.16) is used in the final step. 

The convective term requires use of the SAT: 

 
1

.
fs

f f f f f f fs f f f f
A

dA
V

         u u u u u u n u u u u  
(2.27) 

The no-slip condition (Eq. (2.22)) was applied in the final step, causing the integral term 

to drop out. The 
f fu u  term is the average of a product, and must be reduced to some 

combination of averages before it can be used in the final volume-averaged equation. The 

solution proposed by Whitaker [12] is to decompose the transport quantity as follows  

,
m

m m m     
(2.28) 

where 
m

m  is the spatial average as defined above and m  are the deviations from the 

average. The velocity decomposition is written as: 

.
f

f f f u u u  
(2.29) 

Equation (2.29) may be used to decompose the average-product in Eq. (2.27): 
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f f f f

f f f f f f f f f f   u u u u u u u u u u  
(2.30) 

Now Eq. (2.30) must be analyzed term-by-term for simplifications. The first term can be 

simplified through use of Eq. (2.16) 
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(2.31) 

where the 
f

fu  is already an averaged quantity, so it is assumed not to vary within the 

averaging volume. 

The extrinsic average definition may also be used to simplify the second and third terms 

in Eq. (2.30) 

1
,
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f f f

f f f f f f
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(2.32) 

 
1

.
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f f f

f f f f f f
V

dV
V

 u u u u u u  
(2.33) 

The final term in Eq. (2.30) will be dealt with later. Inserting (2.31) - (2.33) yields 

.
f f f f

f f f f f f f f f f   u u u u u u u u u u  
(2.34) 

Furthermore, it can be argued that, since the quantity fu  represents fluctuations about an 

mean value, the average of the fluctuations must be zero, such that 

0.f u  (2.35) 

Under this assumption, Eq. (2.34) may be further simplified: 
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.
f f

f f f f f f u u u u u u  
(2.36) 

The divergence of Eq. (2.36) must be evaluated for application in Eq. (2.27); it can be 

simplified as follows 

 
    .
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 (2.37) 

The first term in Eq. (2.37) contains the gradient of porosity,  . The porosity variation 

across the averaging volume is assumed to be negligible in the present analysis. The 

second term on the RHS contains intrinsic quantities. These can be substituted for their 

extrinsic counterparts using Eq. (2.18), 

     2 1 .
f f

f f f f f f         u u u u u u  
(2.38) 

With these simplifications Eq. (2.37) may be written as 

 1

f f f f f f    u u u u u u . 
(2.39) 

The pressure term in Eq. (2.25) may be expanded using the SAT (Eq. (2.19)): 

1
.

fs
f f fs f

A
p p p dA

V
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(2.40) 

In preparation for decomposition, 
fp  is exchanged for its intrinsic average using 

(2.18), 

1
.

fs

f f

f f f fs f
A

p p p p dA
V

        n  
(2.41) 

As before, the porosity gradient may be neglected, and Eq. (2.41) can be reduced to 
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p p p dA
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(2.42) 

To deal with the integral term on the RHS, the pressure is decomposed according to the 

definition (2.28): 

.
f

f fp p p    
(2.43) 

Inserting Eq. (2.43) into (2.42) gives 

1 1
.

fs fs

f f

f f fs f fs
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p p p dA pdA
V V

     n n  
(2.44) 

Through an analysis of length scales, Whitaker [12] shows that the following 

approximation is reasonable: 
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fs fs
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fs f fs f
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p dA dA p
V V
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(2.45) 

This approximation aligns with the intuition that the average pressure over the averaging 

volume is not expected to vary across the interfacial surface area. 

To reduce the integral on the RHS of (2.45), the SAT will be applied to 1: 

1
1 1 ,

fs
fs
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V
    n   

(2.46) 

where 1 0   and 1 f . With these simplifications, Eq. (2.46) may be reduced to 

1
0,

fs
fs

A
dA

V
   n  

(2.47) 

where the porosity gradient has again been neglected. Inserting (2.47) into (2.45) and 

(2.45) into (2.44) yields 
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(2.48) 

The viscous term in Eq. (2.25) may be broken down using the SAT: 
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(2.49) 

The first term on the RHS of (2.49) requires a second application of SAT, so the fully 

expanded viscous term can be written 
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(2.50) 

The first integral in Eq. (2.50) drops out because of the no-slip condition (Eq. (2.22)). In 

order to reduce the last integral on the RHS of Eq. (2.50), the velocity is again 

decomposed using Eq. (2.29): 

1 1 1
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(2.51) 

More length scale arguments provided by Whitaker [12] suggest that f u  can be taken 

outside the integral. Applying this approximation and further simplifications yield: 
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fs fs
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(2.52) 

Thus, Eq. (2.50) may be written as: 
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(2.53) 
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The body force term in Eq. (2.25) may be reduced by application of Eq. (2.16): 

1 1
,

f fV V
dV dV

V V
   f f f f  

(2.54) 

where the body force, f , is assumed to be constant over the averaging volume. 

Inserting equations (2.26), (2.39), (2.48), (2.53), and (2.54) into Eq. (2.25) and 

simplifying yields 
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(2.55) 

The last two terms in Eq. (2.55) are referred to as the volume filter and surface filter, 

respectively, because the micro-scale information obtained from the subsequent closure 

problems is filtered by these integrals. Also note that the second term on the RHS is 

referred to as the Brinkman correction [63]. The viscous term in the general momentum 

equation accounts for friction between neighbouring layers of fluid moving at unequal 

velocities. The Brinkman term still serves this purpose, although it is often negligible 

compared to the magnitudes of the volume and surface filters. Since the solid phase is 

assumed to be stationary, its momentum equation is unnecessary. 

To obtain a more amiable equation for porous media calculations, Eq. (2.55) must be 

closed. This is a very lengthy process; rather than regurgitate it here, a brief summary 

will be provided, and more ambitious readers may refer to Ref. [12] for details. The 

closed, extrinsic form of the volume averaged momentum equation is given by Vafai & 

Tien [64]: 
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(2.56) 

The goal of the closure process is to find problems which relate the spatially fluctuating 

quantities p and 
fu  to the coefficients K  and 

Fc . The first step is to subtract the volume 

averaged mass and momentum equations, (2.23) and (2.56), from the general mass and 

momentum equations, (2.3) and (2.4), which, through application of Eq. (2.29) and (2.43) 

yield transport equations in terms of the fluctuating quantities. Several length scale 

arguments permit certain terms in the resulting equations to be neglected. Similar to the 

way in which the bulk flow drives the local temporal fluctuations in turbulent flows, the 

bulk flow is identified as the source of local spatial deviations in porous flows. To that 

end  fu  and p  are related to the intrinsic volume-averaged velocity as follows: 

,
f

f f  u M u v   
(2.57) 

and 

,
f

fp    m u  
(2.58) 

Whitaker [12] demonstrates that 0v  and constant   for periodic averaging volumes. 

Since the constant   won’t pass the filter integrals, equations (2.57) and (2.58) may be 

rewritten as 

f

f f u M u , 
(2.59) 

and 

f

fp  m u . 
(2.60) 
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These equations may be back substituted into the transport equations for 
fu  and p  to 

yield transport equations in terms of the tensor M  and vector m . A problem may be 

formulated using the fluid volume in an REV with periodic boundaries to solve for M  

and m  fields. This problem is known as a closure model. This closure model could be 

use to derive relevant coefficients to replace the filters in (2.55), however the form drag is 

known to vary non-linearly (often quadratically) with velocity, they would acquire an 

undesirable dependence on the flow velocity. To avoid this, the M  and m quantities are 

decomposed into sums of B  and C , and b  and c  quantities respectively and are 

substituted into the transport equations for the m quantities. Thus the initial closure model 

is split into two; one for the b quantities, and one for the c quantities. The b quantities are 

defined such that they are purely dependent on the geometry, while the c quantities are a 

function of the geometry and the flow field. The b closure problem may be solved, and 

the results post-processed, to determine the Darcy permeability tensor K  which reduces 

to a scalar coefficient in the case of isotropic media. Likewise the c closure problem may 

be solved to infer the Forchheimer tensor F , or Forchheimer coefficient in the case of 

isotropic media. 

1.3.4 Conservation of Energy 

The conservation of energy equation (2.6) must be volume averaged for problems 

involving energy transport. Unlike the momentum equation, energy transport is assumed 

to occur in both solid and fluid phases. This derivation will not make the local thermal 

equilibrium assumption discussed in section 1.1.1, that is, it will not be assumed that 

f sT T T  . The solid phase energy equation will be derived first, starting with 

equation (2.6), where  has been applied to each term: 

, , r, .s
s p s s p s s s s s s

dT
c c T k T

dt
       u q  

(2.61) 

As noted above, the solid matrix is stationary, therefore 0s u  , and the second term on 

the LHS vanishes. Additionally, the density and heat capacity can be assumed constant 

and can be taken outside the volume averaging brackets; the thermal conductivity will be 
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dealt with when the diffusion term is analyzed below. Given these simplifications, the 

solid-phase conservation of energy may be rewritten as 

, r, .s
s p s s s s

dT
c k T

dt
      q  

(2.62) 

Like the momentum equation, the unsteady term may be reduced by invocation of 

definition (2.16): 

1 1
.

f f

ss s
s

V V

TT T
dV T dV

t V t t V t

    
   

    
   

(2.63) 

The diffusion term may be simplified through application of the SAT: 

1
.

sf
s s s s sf s s

A
k T k T k T dA

V
       n  

(2.64) 

At this point, it is customary to take the solid conductivity, 
sk , outside the averaging 

brackets in the first term on the RHS. This is presumably based on the assumption that 

the solid phase conductivity is constant over the averaging volume (though not 

necessarily isotropic). For many porous media, such as reticulate foams and fibrous 

materials this may be a fair approximation, but for the present application, which deals 

with SVP graphitic foams, this is a terrible approximation; it is now known that graphitic 

foams exhibit an unusually high bulk thermal conductivity because of highly conductive 

ligaments. Klett et al. [65] have observed directly that the ligaments in graphitic foam are 

made up of crystalline graphene sheets, yielding an estimated ligament conductivity of 

W
1300 

m K
. Considering the fact that the measured bulk thermal conductivity of 

graphitic foams is in the range of 
W

150 
m K

 [65, 66], there are very likely large 

variations in thermal conductivity at the pore level. Lifting the constant-conductivity 

assumption is outside the scope of this thesis, and is left as an exercise for the reader. 

Under this assumption, Eq. (2.64) may be simplified to 
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1
.

sf
s s s s sf s s

A
k T k T k T dA

V
       n  

(2.65) 

Furthermore, the SAT may be applied again to yield 

1 1
.

sf sf
s s s s s sf s sf s s

A A
k T k T k T dA k T dA

V V

 
          

 
 n n  

(2.66) 

To tackle the first integral the temperature is broken into mean and fluctuating 

components using Eq. (2.28) and then inserted into Eq. (2.65): 

,
s

s s sT T T    
(2.67) 

1 1 1
.

sf sf sf
sf s sf s sf s

A A A
T dA T dA T dA

V V V
      n n n  

(2.68) 

Because 
s

sT  is already an average, it can be taken outside the integral term, and the 

integral reduces to 
1

sf
sf

A
dA

V 
n , which, through application of (2.47), evaluates to 0, and 

the result may be substituted into (2.66) to give 

tortuosity interfacial heat flux

1 1
.

sf sf
s s s s s sf s sf s s

A A
k T k T k T dA k T dA

V V

 
 

           
 
 

 n n  
(2.69) 

The volume averaged radiation source term will be analyzed after volume averaging the 

RTE in section 1.3.5. Presently, equations (2.65) and (2.69) can be combined to write the 

solid phase volume averaged conservation of energy as follows 
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r,

1

1
.

sf

sf

s

s p s s s s sf s
A

sf s s s
A

T
c k T k T dA

t V

k T dA
V


  

      
  
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(2.70) 

The fluid phase volume averaged energy equation may be written as 

, , r,

f

f p f f p f f f f f f

dT
c c T k T

dt
         u q . 

(2.71) 

Equation (2.71) may be simplified in a similar manner as the solid phase equation; 

however there are two key differences. First, the present work assumes the fluid phase is 

optically thin, meaning that it absorbs and emits an insignificant amount of radiation. 

Consequently the radiation heat flux term may be neglected. Second, the fluid is in 

motion, so the advection term cannot be ignored. The advection term may be simplified 

through use of the SAT: 

1
.

fs
f f f f f f fs f f

A
T T T T dA

V
       u u u n u  

(2.72) 

The no-slip condition causes the second term on the RHS to vanish, leaving 

.f f f fT T u u  (2.73) 

The velocity and temperature must be decomposed into their spatial averages and 

deviations to further simplify Eq. (2.73): 

 .

f f f f

f f f f f f f f f f

f f f f

f f f f f f f f

T T T T T

T T T T

     

    

u u u u u

u u u u

 (2.74) 

The second and third terms vanish, as the spatial averages of the deviation terms are zero 

by definition, leaving 



30 

 

 .f f

f f f f f fT T T  u u u  
(2.75) 

Substituting Eq. (2.75) and simplifications to the transient and diffusion terms into Eq. 

(2.71) yields the extrinsic fluid phase volume averaged energy transport equation 

 , ,

tortuosity interfacial heat flux

1 1
.

fs fs

f ff

f p f f p f f f f f

f f f fs f fs f f
A A

d T
c c T T

dt

k T k T dA k T dA
V V

      

 
 

        
 
 

 

u u

n n

 
(2.76) 

Again, the deviation terms cannot be evaluated directly, and equations (2.70) and (2.76) 

must be closed. 

The interfacial heat flux term appearing in equations (2.70) and (2.76) quantifies the total 

heat transferred between the solid and fluid phases. These can be modeled heuristically 

using Newton’s law of cooling: 

 1
,

fs

fs

fs s s fs fs s f
A

k T dA h A T T
V

     n  
(2.77) 

 1
,

sf

f s

sf f f sf sf f s
A

k T dA h A T T
V

     n  
(2.78) 

where fs sfh h  and fs sfA A . 

The tortuosity term in equations (2.70) and (2.76) contain spatial deviation variables, and 

must be closed. It is postulated that the source of the temperature deviations is the 

temperature gradient. The two quantities may be related via the equations 

,
s

s s sT T b   
(2.79) 
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,
f

f f fT T b  
(2.80) 

where 
sb  and 

fb  are closure parameters. It should be noted that this merely an extension 

of the closure model developed for the thermal equilibrium case. A more detailed 

formulation for the two-equation model is given by Quintard et al. [59].  

Within the present model, Eq. (2.79) may be inserted into the tortuosity term in Eq. (2.69) 

to give 

1 1 1
,

sf sf sf

s s

s sf s s sf s s s s sf s
A A A

k T dA k T dA T k dA
V V V

     n n b n b  
(2.81) 

where the gradient of the average temperature is assumed constant over the interfacial 

area. Inserting equations (2.81) and (2.77) into Eq. (2.70) gives 

   

 

,

r,

1
1 1

,

sf

s

ss

s p s s s sf s s
A

fs

fs fs s f s

T
c k k dA T

t V

h A T T

  
  

      
  

    

I n b

q

 
(2.82) 

where I  is the identity matrix. The terms inside the brackets of the first term on the RHS 

are often grouped together into a single quantity called the conductivity tensor: 

 
1

1 .
sf

se s s sf s
A

k k dA
V

   K I n b   
(2.83) 

In the case of an isotropic medium seK  reduces to a diagonal matrix, which can be 

represented by a constant coefficient called the effective thermal conductivity. In this case 

Eq. (2.82) reduces to 

   2

, r,1 .

s
fs ss

s p s se s fs fs s f s

T
c k T h A T T

t
 


       


q  

(2.84) 
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The fluid phase energy equation requires the additional treatment of the product of 

deviations term, 
f fTu .  To deal with this, the fluid temperature deviations are modeled 

using (2.80): 

  .
f f

f f f f f f f fT T T   u u b u b  
(2.85) 

Inserting Eq. (2.85) into (2.76) and making simplifications similar to those of the solid 

phase equation yields 

 

,

,

f

f f ff

f p f f f fe f

f s

sf sf f s

d T
c T T

dt

h A T T

 
 
     
 
 

 

u K

 
(2.86) 

where the conductivity tensor includes the velocity deviation term: 

,

1
.

fs
fe f f fs f f p f f f

A
k k dA c

V
   K I n b u b  

(2.87) 

When medium is isotropic the conductivity tensor reduces to a diagonal matrix, and Eq. 

(2.86) may be simplified: 

 

2

,

.

f

f f ff

f p f f f fe f

f s

sf sf f s

d T
c T k T

dt

h A T T

 
 
    
 
 

 

u

 
(2.88) 

Thus concludes the volume averaging process of the energy equations. 

1.3.5 Radiative Transfer Equation 

As with the previous transport equations the volume averaging brackets will be applied, 

this time to Eq. (2.7), and each term will be examined for potential simplifications: 
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(2.89) 

Unlike the previous transport equations, the volume averaged RTE will be derived for the 

more general case involving a pair of semi-transparent phases, i  and j . A similar 

subsequent analysis will be carried out for the case where one phase may be considered 

opaque. The averaging procedure introduced by Lipiński et. al for two-phase media [61] 

will be followed here, and the reader is referred to Ref. [62] for an extension to an n-

component heterogeneous medium. The subscript d  has been added to material 

properties to indicate they are discrete-scale properties, and thereby distinguish them 

from the volume-averaged properties, which will appear upon volume-averaging. 

The first term in equation (2.89) may be simplified by way of SAT, where the direction 

vector ŝ  is assumed to be independent of the averaging procedure: 

int
int

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , ) .i i i i i

A
I I I I dA

V

 
        

 
r r x

s r s s r s s r s r s n  
(2.90) 

The first and second terms on the RHS require little manipulation; the discrete-scale 

properties are assumed to be constant over the averaging volume, and the volume 

averaged intensities are recovered: 

, , , , , ,
ˆ ˆ( , ) ( , ) ,d i s d i i d i s d i iI I           r s r s  

(2.91) 

2 2

, , , ,( ) ( ) .i d i b i i d i b in I n I r r  (2.92) 

The final term on the RHS of Eq. (2.89) (the incoming scattering term) is reduced upon 

recognizing that the scattering coefficient is constant over the averaging volume. Also, 

recall that the superficial average definition, Eq. (2.16), necessitates integration over the 

control volume. Fortunately, the order of integration can be changed, as in  and V  are 
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independent. If it is further assumed that the phase function, 
, in

ˆ ˆ( , )d f s s , is constant over 

the volume, Eq. (2.92) may be reduced to: 
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4

, ,

in , in in
4

ˆ ˆ ˆ( , ) ( , )
4

ˆ ˆ ˆ( , ) ( , ) .
4

s d i

i d i

s d i

i d i

I d

I d













  

 





r s s s

r s s s

 
(2.93) 

Inserting the simplified terms and moving the area integral to the RHS yields 

int
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(2.94) 

The final integral on the RHS of Eq. (2.94) is similar to the conduction interface 

condition in Eq. (2.76). In this case, however, the integral may be obtained through 

integration of the semi-transparent interface condition, Eq. (2.8): 
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 (2.95) 

To better understand Eq. (2.95) the reader should focus on bounds of the outer integral 

for each term and refer to Figure 1.2. Also, recall that this term is negated in Eq. (2.94), 

so positive terms are subtracted from the intensity balance, while negative terms are 

added. When ŝ  is pointing towards phase  i , ˆ ˆ 0i s n , and only the first two integrals are 

active (non-zero), and Eq. (2.95) represents the sum reflected rays from phase  i , and the 

transmitted rays from phase  j . On the other hand, when ŝ  points towards phase  j , 
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ˆ ˆ 0i s n , and only the third integral is active. The last integral term has been included to 

preserve the conservation of energy by subtracting the intensity incident on the interface 

(had the final integral term not been included, the intensity would be doubled at each 

boundary element, as the reflected and transmitted portions of rays travelling in the 

present direction, ŝ , are also tallied in other directions). 

The integrals in Eq. (2.95) are still difficult to evaluate. It is helpful to recognize that, on 

the design problem scale, the reflection and transmission phenomena at the phase 

interfaces serve to scatter radiation. To this end, Eq. (2.95) will be further manipulated to 

produce effective scattering coefficients and phase functions which can be considered 

constant over the averaging volume: 
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(2.96) 

The labeled terms in Eq. (2.96) are identical to the effective scattering coefficients and 

phase functions postulated by Lipiński et al. [61]. These definitions are the basis for pore-

level analysis, and can be numerically integrated to determine the effective coefficients.  

Further definitions of summed properties are proposed: 
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Finally, Eqs. (2.96) - (2.98) be inserted into Eq. (2.94) to give the extrinsic, volume 

averaged RTE, for two semi-transparent phases: 
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Behold its majesty. As prescribed, the difficult terms can be restated as effective 

scattering functions. For this reason, little effort is required to convert an existing 

radiation heat transfer computer code applicable to homogonous media into a code 

suitable for volume-averaged radiation calculations. 

The design scale boundary conditions of Eq. (2.99) are nearly identical to their discrete-

scale counterparts. The intrinsic intensity of a ray emanating from a semi-transparent 

interface into the  i  phase is logically identified as the sum of the reflected portion and 

the transmitted portion. The transmitted portion must be multiplied by the area fraction 

(equivalent to the volume fraction for a uniform medium) as the remaining portion is 

transferred to the  j  phase: 
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Equation (2.18) is readily applied to obtain an expression in terms of extrinsic quantities. 

Opaque boundaries require a different treatment; the reflection term is the same as in Eq. 

(2.100), but the second term is replaced by the intensity emitted from a surface: 
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(2.101) 

If one medium can be considered opaque, e.g. in the case of carbon foam submerged in 

water, Eq. (2.99) must be adjusted, starting from the discrete phase interface condition for 

a semi-transparent and opaque medium, where the subscripts  i  and  j  have been 

exchanged for the more familiar  f  and  s  subscripts to explicitly indicate the fluid and 

solid phases. 
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(2.102) 

The RTE for the fluid phase is identical to Eq. (2.7) and will not be restated here. The 

volume averaging procedure is identical to that for two semi-transparent media up until 

Eq. (2.94). At this point Eq. (2.102) must be integrated over the interfacial surface area, 

and similar arguments to those above yield effective coefficients and phase function: 
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where the solid matrix is assumed to have gray walls. Aggregate properties may be 

defined as before: 
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and the extrinsic, volume averaged RTE for the semitransparent phase of a porous media 

composed of one semitransparent and one opaque phase is given as 
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(2.108) 

where the applicable boundary conditions are identical to those given in equations 

(2.100), and (2.101). 

If the  f  phase can be considered optically thin, e.g. for the case of carbon foam 

immersed in air, several simplifications to Eq. (2.108) can be made; specifically, terms 

involving the properties ,d f  and ,d f  can be neglected: 
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where the extinction coefficient, 
int , has been defined as: 

int int ,int.s     (2.110) 

Also notice that Eq. (2.109) has the same form as the general RTE, Eq. (2.7) when the 

transient term is neglected; this makes the adaption of existing discretization methods for 

homogonous media even easier to apply to relevant problems. 

Before multi-physics problems involving coupled, radiation-heat transfer can be tackled, 

the source term in the energy equation must be volume averaged. Modest [34] has 

derived the radiative heat flux vector from the definition of intensity: 

 
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(2.111) 

The next step is to integrate the RTE over all solid angles. For convenience, a modified 

form of Eq. (2.94) will be used as the starting point, where the gradient term on the LHS 

has not been expanded, and thus, the area integral on the RHS does not appear: 
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Constant properties and effective properties can immediately be taken outside the integral 

terms, and the order of integration may be changed in the first term, as   and V  are 

independent. Also, in the third term on the RHS, the in-scattered intensity, in
ˆ( , )iI r s , 
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is independent of  , so it may taken outside the   integral. In addition, 
, ( )b iI r  is 

independent of  , and may be taken outside the integral, and its definition inserted. 

These simplifications yield 
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The first term on the RHS can now be identified as the volume averaged divergence of 

the radiative heat flux using Eq. (2.111). Furthermore, the definition of the phase function 

requires [34]: 
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therefore, the integral in the third term on the RHS may be evaluated directly and Eq. 

(2.113) simplifies to 
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Finally, the because in  and   are both dummy variables, the in- and out-scattering 

terms cancel, and the discrete-phase absorption coefficient may be factored out to yield 

42
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(2.116) 

which is the same as Eq. (2.15), except that the dependency has been shifted from 

continuous quantities to volume-averaged ones. Another derivation shows that an opaque 

phase (often the solid phase) energy equation requires a similar radiation term, where the 
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discrete phase absorption coefficient is replaced by the effective absorption coefficient, 

int : 

     
4
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r, int b,
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ˆ4 , d .s f s fn I I
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1.4 Outline of Upcoming Chapters 

The pertinent transport equations have now been volume averaged, and, in the process, 

equations relating the relevant effective material properties to similar continuous 

properties have come to light. The rest of this thesis describes how several of these 

effective properties may be practically identified for the case of SVP carbon foam. 

The remainder of this thesis is outlined as follows: 

 Chapter 2 is the publication entitled A New Approach to Digital Generation of 

Spherical Void Phase Porous Media Microstructures. It details the approach 

developed to construct digital samples of porous foam; although the approach is 

general, the samples of Spherical-Void-Phase (SVP) carbon foam are of particular 

interest for this thesis. 

 Chapter 3 is the publication entitled Radiative Property Identification of Spherical 

Void Phase Porous Media. It describes the identification of the radiation 

properties using a MC ray-tracing approach and presents the results for a range of 

mean pore diameters and porosities. 

 Chapter 4 summarizes the research contributions, outlines potential future work, 

and provides some final thoughts on the topic. 
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Chapter 2  

2 A New Approach to Digital Generation of Porous Media 

This work describes a novel approach for obtaining digital samples of porous media 

based on a statistical knowledge of the microstructure of interest. The present formulation 

introduces a contact law based on bubble physics that is capable of handling interferences 

among spherical primitives of different diameter placed in a representative elemental 

volume, while the volume is compressed to yield a target porosity. The result is a 

statistically accurate mathematical model of a permeable, spherical-void-phase porous 

material that has the added feature of being spatially periodic in all principal directions. 

To validate the approach, digital samples of spherical-void-phase carbon foam were 

generated and discretized for use in hydraulic and thermal Computational Fluid 

Dynamics simulations. Relevant transport properties were computed from the simulation 

results, and compared to similar data found in the literature. 

2.1 Introduction 

Porous materials play an important role in many applications including heat pipes, heat 

sinks, automotive cooling devices and solar collectors.  Any porous microstructure may 

be characterized by the statistical geometric properties: mean pore diameter, ligament 

length, surface area per unit volume, void shape, and geometric order, each of which 

might be correlated with changes in bulk material properties.  The microstructural 

properties also affect exchanges that occur between fluid and solid phases in the case of 

flow through a permeable porous material, or in the case of external exposure to incident 

radiation.  This has inspired many researchers to study the effects of pore structure 

variation on bulk material properties by developing representative, or idealized, 

geometric models.  Such models permit analysis of properties and exchanges at the pore 

level, which can then be used to develop accurate mathematical models at the porous-

continuum or volume-averaged level, which is what is used in most engineering analyses 

to deal with porous materials. In this paper, our interest is to develop a geometric model 

for a spherical void phase foam (carbon foam) that can be used to study exchanges that 

occur in a highly concentrated solar collector.  Our interest in graphitic foam is that it is 
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highly permeable, highly conductive and it has a high surface area to volume ratio.  

While pore-level geometric models do exist for spherical void phase materials, no current 

model is suitable to yield the material properties and exchanges, while preserving the 

random nature of the structure, which is required for consideration of radiation effects. 

Currently, there are three main approaches to obtain bulk material properties, given the 

porous material of interest.  First, experiments can be conducted to empirically determine 

the desired properties.  While this method is quite useful for determining properties that 

can be used in engineering calculations, it can difficult for researchers to understand the 

influence of the microstructure on the determined properties. Moreover, because 

experiments can only be performed on physical samples, the range of microstructures that 

can be studied is limited by current production capabilities.  

The second method is to conduct Computer Tomography (CT) scans of a representative 

sample of the microstructure, thereby obtaining a digital representation of the structure. 

The raw data from the scan is post-processed to obtain a Computer-Aided Design (CAD) 

model. This model can then be used in computer simulations to determine the desired 

transport properties. Researchers including Haussener et al. [1], Maruyama et al. [2], and 

Anghelescu [3] have used this approach with some success. Unlike the experimental 

approach, this method allows researchers to visualize transport quantities and gradients 

throughout the pore level domain. However, the cost and accessibility of CT scanning 

equipment as well as the limitation of porous media production capabilities leaves more 

to be desired. 

The final method is to generate a large number of small primitive objects (primitives) 

within a finite domain, where the dimensions of the primitives are decided based on 

statistical data describing the microstructure of interest. The interference of these 

primitives gives rise to the interesting features present in the porous domain. A finite 

volume filled with interfering primitives is thought to be an accurate representation of the 

desired microstructure. These digital domains can then be used in small-scale simulations 

to predict effective material properties. This method is unique in the fact that it does not 

require any physical representation of the domain, but only a statistical knowledge of the 
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micro-structural features. Because this method deals with idealized representations of 

porous media, it is important to judge the relevance of all microstructural features to the 

bulk property of interest. Identifying which microstructural features whose variation does 

not influence a bulk property may allow a much simpler geometric model to be used.  A 

first attempt by Yu et al. [4] constitutes the use of a simple primitive: the Boolean 

subtraction of a sphere from a cube (where the centroids of the sphere and cube are 

coincident). This primitive is stacked along all major axis to obtain a uniform structure of 

interconnected pores. This so-called unit-cube model is easy to generate and analyze 

digitally, however it does not capture the effect of bubble size variation, and it exhibits 

uncharacteristic properties due to the axis alignment of the bubbles. When used for 

studying trends in convective/conductive heat transfer and fluid flow, the unit cube model 

is sufficient, as predictions of permeability, inertial drag coefficients, and Nusselt number 

correlations were shown to be reasonable when the flow direction was oriented 45° from 

all principle planes [4, 5]. Kumar et al. [6] performed Computational Fluid Dynamics 

(CFD) analyses involving the periodic tetrakaidecahedron structure (Kelvin cell) relevant 

to open-cell foams. The CFD results were compared with experimental results obtained 

using a uniform microstructure, which yielded excellent agreement. Leong & Li [7] 

determined the effective thermal conductivity of a unit cell which may be described as 

the Boolean subtraction of eight spheres from a cubic shell, where the spheres are 

centered on the vertices of the cube. James et al. [8] presented a novel approach for the 

generation of spherical-void phase (SVP) porous media wherein bubble diameters and 

interferences are chosen based on known probability distribution functions. That said, the 

method presented in [8] has some drawbacks, including the unrealistic assumption that 

the interference between two bubbles in contact is independent of their radii, and the 

random deletion of bubbles to obtain the desired porosity. In another work by Kırca et al. 

[9], carbon foam was modeled by selecting random points within a cubic domain as the 

sphere centers, and calculating the radii of the bubbles based on the desired porosity and 

the average bubble diameter. The method also suffered from the fact that bubble 

interferences were not determined. Wang & Pan [10] have proposed a random-generation 

growth method, wherein representations of open-cell foams are generated by randomly 

placing points in a 3D domain and stochastically linking neighbouring nodes. Finally, in 
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a recent publication by Chueh et. al [11], SVP was modeled by packing spheres into a 

periodic domain using the drop-and-roll method introduced by Visscher and Bolsterli 

[12]. This method relies on the assumption that bubble interferences can be prescribed 

using a constant contact angle, and periodicity is only enforced in two directions. 

The primary motivation for developing the present method is to obtain digital samples of 

SVP carbon foam suitable for prediction of radiation transport properties. The ordered 

nature of the unit-cube model make it a poor candidate for ray-tracing methods, such as 

that presented by Tancrez & Taine [13], so more accurate representations of SVP porous 

media are sought.  In this work, the approach taken is similar to previous efforts, however 

in the Representative Elemental Volumes (REVs) produced using the current method, the 

interferences between features are governed by physically-based force-displacement 

relationship, and the REVs have the distinct advantage of being fully spatially periodic. 

The resulting models are then shown to produce the correct trends for pressure drop and 

convective heat transfer, thereby satisfying the necessary condition that fluid-solid 

interactions within the REV are properly predicted.  Combined with the advantages of 

including variable pore size and preserving the random nature of the structure, the present 

modeling approach is considered most viable for studies on incident radiation. 

2.2 Formulation 

In the current approach, a 3D porous structure is generated from aggregate statistical 

data. For example, an isotropic SVP porous medium may have a statistical data set 

including an average bubble diameter and the standard deviation of the bubble diameters. 

Once these data are determined, the method can be executed with the following steps: 

1) Select an Initial Volume (IV) shape and size. The IV should be large enough to 

completely envelop all of the geometric primitives without any of the primitives 

coming into contact with each other. 

2) Generate primitives. Choose the shape and dimensions of each primitive using a 

probabilistic model that reflects the statistical data. Then attempt to randomly locate 

each primitive within the IV, optionally choosing an orientation based on statistical 
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data. If a primitive interferes with an already placed primitive, randomly select new 

locations and orientations until it does not interfere with other primitives. If a 

primitive cannot be placed after a large number of attempts, this may indicate that the 

IV is too small, in which case the algorithm should be restarted with a larger IV. The 

stopping criterion is at the discretion of the user. A simple approach is to stop after a 

pre-determined number of primitives have been placed. 

3) Using a Discrete Element Method (DEM) code, incrementally compress the IV over a 

sequence of time-steps. During each time-step, the domain boundaries are moved 

closer together. If the boundaries are chosen to be rigid walls, the primitives in 

contact with the boundaries will be forced inward, and come into contact with other 

primitives. Reaction forces (or separating forces) between primitives in contact are 

calculated using an appropriate force-displacement relationship, also known as a 

contact law. Eventually the primitives will reach a jammed state, where every 

primitive is locked in place. After the jammed state has been reached, further 

compression steps require ever-increasing forces to be applied to the walls, while the 

penetrations between primitives in contact are also increased. The stopping criterion 

is at the discretion of the user. A simple criterion would be to stop when the desired 

porosity is reached. 

While rigid walls may be easy to implement, but the resulting domains will not be 

periodic; a desirable trait for subsequent prediction of volume averaged properties.  

To obtain periodic domains, the rigid walls must be replaced with periodic boundary 

conditions. Periodic boundary conditions can be implemented by ‘wrapping’ the 

coordinates of all the primitives inside the domain, a concept illustrated in Figure 1.1. 
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Figure 2.1 Periodic interface implementation showing two original primitives, A  and B , 

as well as one wrapped primitive, 'A . The distance between the two periodic faces is  . 

In Figure 2.1, Primitive A  is wrapped across a flat periodic interface in the x-

direction to form primitive 'A . 'A  acts as a proxy for A ; the collision between 'A  

and B  is treated as a collision between A  and B . In contrast to a rigid wall the 

periodic boundary does not apply a direct force to the primitives in contact. If the 

domain is compressed by some distance  , the co-ordinate of 'A  will increase by 

the same amount. This in turn will increase the penetration of the contact between 'A  

and B . As a consequence, the separation force between A  and B  will also increase. 

4) Extract the dimensions, locations, and (optionally) orientations of the primitives, and 

use the data to generate the CAD model. 

2.3 Contact Law 

Because the current method makes use of the DEM, the interaction between primitives 

(e.g. particles, fibers, bubbles) in contact is dependent on a known contact law. A contact 

law may be defined based on the materials of the two primitives in contact as well as 

their geometries. In preparation for the generation of SVP porous media samples, a 

contact law governing the interaction of bubbles will be derived. 

Carbon foam may be manufactured by bubbling molten tar pitch [14]; during the packing 

phase initially sparse bubbles expand, and are forced into contact with one another as the 

domain is saturated. When the domain is packed, the pitch is cooled and the bubbles are 
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frozen in place. It is of interest to model the packing phase in a DEM simulation, so a 

contact law governing the interaction of bubbles will be derived. 

 

Figure 2.2 Axis-symmetric opposing bubbles affixed to parallel surfaces. The 

overlapping region is called the interaction zone. 

The setup in Figure 2.2 has been analyzed by Chan et al. [15] who derived the general 

force-displacement relationship: 
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where the parameters in equations (3.1) - (3.3) are defined in Table 2.1. 

Table 2.1 Descriptions of terms in Eq. (3.1) 

D  Interference (penetration) between interacting bubbles 

F  Normal force acting along the line of contact between the two bubbles 

1 2, 
 

Surface tension of the fluid surrounding each bubble 

1 2,o oR R
 

Undeformed radius of each bubble 

1 2,o o 
 

Contact angle of each undeformed bubble 
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Two separate forms of the function  B   were proposed: in the first case the contact 

angle   was assumed to remain constant as the bubbles are depressed. In the second case, 

the contact line of each bubble with the wall is assumed fixed, while   is allowed to vary 

during the deformation. Only the first case is relevant to the present application, where 

 B   has the form: 

 
1 1 cos 1

1 ln
2 1 cos 2 cos

B



 

   
     

    
 (3.4) 

In order to apply Eq. (3.1) to bubbles in SVP porous media, a crucial observation must be 

made: deformation of a bubble having a constant wall contact angle of 90o
 is identical to 

the case where a spherical bubble suspended in a liquid is opposed on either side by 

bubbles of equal radii. In other words, if a constant contact angle of 90o
 is assumed for 

either bubble in Figure 2.2, the solid wall behaves as a symmetry plane.  Building on this 

realization, it can be concluded that Eq. (3.1) also applies to the bubbles in Figure 2.3. 
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Figure 2.3 An infinite linear chain of interacting spherical bubbles with alternating radii. 

The bubbles in Figure 2.3 bear some resemblance to interacting bubbles in SVP porous 

media; however, bubbles in porous media often come into contact with three or more 

bubbles with differing radii.  In such cases the loading is no longer confined to a single 

axis, violating the axis-symmetry assumption made by Chan et. al. [10].  In lieu of an 

arduous derivation of a more general force-displacement relationship, Eq. (3.1) is thought 

to be an adequate contact law for usage in a DEM framework, subject to assumptions: (a) 

interacting bubbles retain their spherical shape outside the interaction zone, (b) their 

initial radii remain unchanged during any interactions, and (c) all fully-immersed bubbles 

interact as if they were affixed to a wall with 90o

o  . Inserting assumption (c) into Eq. 

(3.4) yields  1

1

2
oB   . Using this information, Eq. (3.1) can be simplified: 
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Often, the molten pitch can be considered homogenous, and the surface tension acting 

around every bubble can be considered equal. Mathematically, this means 
1 2    . 

Substituting this expression into Eq. (3.5) results in: 
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As indicated by [16], Eq. (3.1) (and by extension Eq. (3.6)) is valid only when (a) viscous 

forces are small in comparison to surface tension forces and (b) the inequality 

1
2 AVG

F

R
 (3.8) 

is satisfied. Inequality (3.8) arises from the assumption that the radius of the contact area 

is small compared to the radius of the bubble. The left hand side of inequality (3.8) will 

hereby be referred to as the force ratio. Constraint (a) is satisfied for SVP porous media 

as the relative motion of bubbles is small during the solidification process. Constraint (b) 

must be verified on a case-by-case basis. 

2.4 Validation 

To validate the method and the contact law from section 2.3, 24 distinct carbon foam 

REVs were generated using the current method. Geometric statistical data provided by 

Oak Ridge National Laboratories [14] were used. A CFD analysis was then performed on 

one REV using ANSYS-CFX
TM

 software [17], and the results were post-processed to 

obtain predictions of the permeability, Forchheimer coefficient, and the Nusselt number 

correlation of the porous material. 

2.4.1 Digital Sample Generation 

The steps to generate digital REVs were completed using an open-source DEM 

framework called Yet Another Development Engine (YADE) [18]. YADE is frequently 

used to study solid particle packing problems with deformable particles, making it well-
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suited for the present application. 

In SVP porous media, the primitives are assumed to be spherical bubbles whose 

interaction is governed by the contact law, Eq. (3.6). YADE employs a penalty method 

when solving contacts (calculating a reaction force based on the contact interference at 

each time-step), so it is necessary to solve Eq. (3.6) for the contact force.  To accomplish 

this, the Newton-Raphson method was used to evaluate the force iteratively.  

Convergence was achieved when the change in force between successive iterations was 

less than 0.1%. 

The number of bubbles in an REV, N , was varied from 100 to 400 by increments of 100. 

Three REVs were generated for each value of N , so that 12 REVs were generated in 

total. 

For each simulation, the steps outlined in section 2.2 were followed: 

1) The IV was chosen to be a cube, occupying five times the total volume of N   

bubbles: 34
5 5

3
IV AVG AVGV NV N R

 
   

 
  

2) N  bubbles were generated. Diameters were selected from a normal distribution 

having a mean pore diameter of 400 μm and a standard deviation of 120 μm [14]. 

3) YADE was used to compress the IV. Periodic boundary conditions were enforced 

throughout the simulation. A surface tension coefficient of 0.035 N/m [19] was 

assumed for molten tar-pitch. During this step every contact was checked at 

regular intervals during compression to test if  / 2 0.1o AVGF R  . Because this 

threshold was never exceeded, it was assumed that (b) was satisfied. The 

simulation was halted when the porosity of the cube reached 80%. 

4) Upon completion of the simulation, the sphere locations and sizes were exported 

to a text file. The text file was then read by a Visual Basic macro, which recreated 

the geometry in the 3D CAD software package, Solidworks
TM

 [20]. An image of 

the CAD geometry of one REV can be seen in Figure 2.4. 
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Figure 2.4 CAD isometric view of a REV of graphite foam sample 

 

Figure 2.5 Electron micrograph images of a graphite foam specimen (a) and (b) [21] in 

comparison to a CAD model of geometry generated using the current method (c) and (d) 
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As Figure 2.5 shows, geometries produced using the current method bear a strong 

resemblance to their physical counterparts, capturing the random nature of the pores. 

 

Figure 2.6 Average Force Ratio vs. Number of Primitives. 

For each simulation, the average force ratio was evaluated upon completion and the 

results can be seen in Figure 2.6. These values were considered to be small enough to 

satisfy inequality (3.8). 

2.4.2 Setup 

Recall that the objective of this work was to generate porous media samples with the 

intent of extracting desired volume-averaged transport properties. While the DEM 

simulations produce geometries that visually resemble their physical counterparts, they 

have not yet been shown to have similar transport properties. To this end, a set of CFD 

simulations have been conducted using a 100-sphere, 80% porosity REV from the 

previous section to determine the permeability, Forchheimer coefficient and convection 

heat transfer coefficients. 
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2.4.2.1 Problem Setup 

Using ANSYS
®

 CFX™ [17], inlet and opening boundary conditions were applied to 

opposite faces the REV, and a mass flow rate was imposed at the inlet boundary. 

Translationally periodic interfaces have been set up for the remaining two pairs of faces. 

The hydraulic and energy equations were solved simultaneously; buoyant forces were 

neglected. A constant wall temperature of 393 K was prescribed, and the bulk inlet 

temperature was 293 K.  Energy increase due to viscous dissipation was also neglected. 

Because the geometry was assumed statistically isotropic, three sets of simulations were 

run using the same REV (enforcing the desired mass flow rate across the x, y, and z 

faces, consecutively) to obtain extra data for comparison. 

2.4.2.2 Computational Setup 

To prepare the simulations, the geometry was first imported into ANSYS Workbench, 

where the model was meshed using the ANSYS
®

 Meshing™ [22] tool. 
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Figure 2.7 shows the resulting mesh composed of 2,932,590 nodes and 16,435,045 

elements. 
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Figure 2.7 ANSYS generated mesh showing (a) broad-view and (b) close-up 
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The working fluid is generic and was prescribed constant properties of ρ= 1000 kg/m
3
, 

μ= 0.001 N s/m
2
, k= 0.6 W/m K, and cp= 4184 J/(kg K). The results were computed on a 

PC with an Intel i7 processor, utilizing 4 cores. Each simulation required approximately 

20 minutes to converge the root mean square residuals within 41 10 . 

2.4.2.3 Grid Independence 

To demonstrate grid independence, the domain was discretized with a finer grid density 

to yield 6,174,702 nodes, and the Re 80 case was re-run. The overall pressure drop was 

observed to be grid independent within 4.55%, while the average wall heat flux was 

observed to be grid independent within 5.38%. 

2.4.3 Results 

2.4.3.1 Momentum Results 

To observe the pressure drop within the Darcy regime and the stationary flow regime, the 

Reynolds numbers considered are  Re 0.1,0.5,1,10,20,30,40,50,60,70,80d  . 

The Darcy-Forchheimer Law may be stated as [23]: 

2fcP
U U

L K K





 

 

(3.9) 

where K  is the permeability and 
fc  is the Forchheimer coefficient. The curve fit 

function available in the python module, numpy.polyfit [24] was used to fit the results to 

Eq. (3.9). Figure 2.8 shows the simulation data and the fitted curves compared with 

results obtained by other researchers.  

The Reynold's number based on pore diameter is 

Red

Ud




 

(3.10) 
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Figure 2.8 Pressure Drop vs. Reynolds’ Number.  Markers are computed points; lines are 

Darcy-Forchheimer correlation 

The x, y, and z series show good agreement with each other. This indicates that the 

subject REV is roughly (statistically) isotropic, and contains enough primitives to be a 

good representation of the desired microstructure. If significant differences between the 

curves were observed, it would indicate that too few microstructural features were 

present to achieve statistically significant results, and more primitives and/or more REVs 

would have needed to be modeled to increase the statistical significance of the predicted 

property. 
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Figure 2.9 Close-up of streamline plot inside the current geometry. The global flow 

direction is into the page. Warmer colors indicate higher velocity. 

The present model is first compared to the unit-cube model analyzed by DeGroot & 

Straatman [5]. Because both approaches use idealized geometry, contrasting the two 

highlights only the effects of using a randomized geometry over uniform one. One such 

geometric difference is the variation in pore window size and pore window alignment. 

Consider, for example, the neighboring pores in Figure 2.9. The left pore has 3 visible 

windows; two are poorly aligned, and the third is very small. This is in contrast to the 

right pore, which has 2 sizable windows, both with fair alignment with the global flow 

direction. The streamline coloring indicates that the flow much prefers the right pore to 

the left. In contrast to the velocity variations in the present analysis, each pore in the unit 

cube model has 3 exit windows, all misaligned from the global flow direction by the 

same amount. Therefore, it is not surprising that the velocity variation predicted by the 

unit cube model is less pronounced than that of the current model.  Furthermore, it is well 

known that beyond Darcy flow, fluid drag, and, by extension, pressure drop varies non-

linearly with velocity.  Thus, the regions with higher flow speeds in the current model 

experience a much greater drag, resulting in a greater overall pressure drop than that 

predicted using the unit-cube model. 

Both the trend and the magnitudes predicted by the current model align well with the 

correlations predicted by other researchers. Klett [25] ran experiments on POCO
TM

 foam 

of 75% porosity, while Anghelescu [3] reported CFD results based on scanned samples of 

90% porosity graphite foam. Physical SVP porous media is known to have non-spherical 

pores, jagged pore windows and blocked regions, all of which will disrupt the flow. Such 

features will undoubtedly have an impact on the flow field, thereby decreasing the 
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observed permeability. Because none of these features are present in the current model, it 

is not surprising that predicted pressure drops are still lower than measured values. The 

extracted permeability and Forchheimer coefficients are given in  where they are 

compared with the values obtained by DeGroot & Straatman [5], and Straatman et al. 

[23]. 

Table 2.2 Permeability and Forchheimer Coefficients 

Model Permeability (m
2
) K   Forchheimer coefficient 

fc  

POCO
TM a

 [23] 106.13 10  
0.4457  

Unit-cube
b
 [5] -065.25 10  

0.00395  

Current Model
c 101.620 10  

0.6322  

a
 Porosity of 82%; 

b
 Values were re-fitted to equation (3.9); 

c
 Values were averaged 

between three flow directions 

2.4.3.2 Energy Results 

The interfacial Nusselt number in each simulation was computed using the heuristic 

closure proposed by Quintard [27]: 

 

2 2

Nu ,
fs

f f f
Afs fs

fs fs
f f

s f

k T dAA h d d

k kT T

 

 


 n

 (3.11) 

where the integral term is the heat transfer into the domain, 
fsA is the interfacial surface 

area of the REV, 
fk is the thermal conductivity of the fluid, and 

s

sT  and 
f

fT  are the 

intrinsic volume averaged temperatures of the solid and fluid phases, respectively. A 

surface-area-to-volume ratio of 8665 m
-1

 was determined using Solidworks™. The data 

was then fit using the numpy.polyfit function to a second degree polynomial: 

2

2 1 0Nu Re Re .fs d da a a    (3.12) 
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Figure 2.10 Nusselt number vs. Reynold's number. Markers are computed points; lines 

are curve fits to Eq. (3.12) 

Figure 2.10 shows the present simulation data and relevant curve fits in comparison with 

the unit-cube results in [5]. The average coefficients 
0 32.2,a  1 1.53,a  and 

2 0.0066a    may be inserted into equation (2.61) to give a reasonable fit with the data. 

Comparisons have not been made with experimental data because the interfacial Nusselt 

number cannot be directly compared with the average Nusselt numbers found from 

design scale problems such as those in [25, 26]. The interfacial heat transfer is much 

larger than that predicted by DeGroot & Straatman [5] using the unit-cube geometric 

model. A more accurate representation of the pore-level mixing is the main reason for the 

Nusselt number differences. Using the unit-cube geometric model, the pore-level flow is 

structured and spatially periodic. The flow field predicted using the current geometric 

model is well-mixed resulting in much higher convective heat transfer. 
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2.5 Property Identification 

While the analysis of section 2.4 adequately validated the model, hydraulic and thermal 

properties have only been identified for 400 μm,d   and 0.80.   In preparation for 

subsequent work, we will identify the hydraulic and thermal properties of SVP carbon 

foam for a range of pore diameters and porosities. 

To observe the effects of varying the mean pore diameter and porosity, four additional 

REVs have been generated, each containing 100 spheres. First, three REVs with a mean 

pore diameter of 600 μmd   and porosities  0.75,0.8,0.85  were created. A second 

set of REVs were generated with porosity 0.80   and mean pore diameters 

  μm,600 μm,804 0 μm0 0 d   (the same 600 μm, 80% porosity sample was used in both 

sets, and the data from the 400 μm  sample was reused from section 2.4.3). The ratio of 

standard deviation to pore diameter was fixed at 0.3d

d


  in each sample. 

An Unstructured computational grid was generated from the negative volume of each 

REV using the ANSYS Meshing tool, where the grid density for each mesh is 

approximately the same as the validation case. Hydraulic and thermal simulations have 

again been carried out using ANSYS CFX, for  Re 10,40,60,80 .  The results have 

been extracted, post-processed, and fitted to correlations (3.9) and (3.11). The inferred 

coefficients are plotted in Figure 2.11 and Figure 2.12. 
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Figure 2.11 Pressure Drop vs. Reynolds number; markers are simulation data, lines are 

curve fits 

 

Figure 2.12 Interfacial Nusselt number vs. Reynolds number; markers are simulation 

data, lines are curve fits 

These will be used in future volume averaged simulations. 

2.6 Summary 

In this work, a novel method for generating stochastic, spatially periodic digital samples 

of porous media was outlined. The method requires access to DEM, CAD, and CFD 



74 

 

software, but does not require any special equipment beyond a capable personal 

computer. To demonstrate the effectiveness of this approach, 24 digital samples of SVP 

porous media were generated using only aggregate statistical data collected from physical 

samples.  The resulting digital samples were used in CFD simulations to predict 

permeability and Forchheimer coefficients as well as the constants for the Nusselt 

number correlation (Eq. (3.12)), and the data were compared to correlations obtained by 

other researchers. The hydraulic behavior is in very good agreement in terms of the trend 

with increasing Reynolds number, and is closer in magnitude than all previous modeling 

attempts.  The remaining deviations in pressure drop between the present digital REV and 

actual foam samples is thought to be due to non-spherical pores, jagged pore windows, 

and to blocked regions, none of which are accounted for in the digital REV. The thermal 

behavior follows the correct trend with increasing Reynolds number, but over-predicts 

the magnitude of the heat transfer compared to experiments. Once again, this is felt to be 

due mainly to blockage that is present in real foam sample, but not accounted for in the 

digital REV. Nonetheless, the present formulation produces an accurate mathematical 

representation of a spherical void phase foam that contains all of features necessary to 

study all modes of heat exchange at the pore level. Combined with the fact that the 

current approach also incorporates variable pore size and random pore positioning, the 

current approach is considered most viable for studying problems involving incident 

radiation. 
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Chapter 3  

3 Radiative Property Characterization of Spherical Void 
Phase Porous Media 

The present work uses a popular discrete-scale Monte-Carlo method to determine the 

extinction coefficient of spherical-void-phase carbon foam having mean pore diameters 

 400 μm, 600 μm, 800 μm ,d  with porosities  0.70,  0.75, 0.80, 0.85 .   The 

representative elementary volumes were constructed using a known digital generation 

method, and the surface-area-to-volume ratios were identified directly from the digital 

models. The extinction coefficients were identified using the aforementioned method and 

a correlation is fitted to the data. It was found that the extinction coefficient is very large, 

suggesting that, for mean pore diameters and porosities in the given ranges, carbon foam 

may nearly always be treated as a black body. 

3.1 Introduction 

Many engineering applications involve radiation transport within porous materials, 

including porous media burners [1-3], and solar collectors [4, 5]. If the volume-averaged 

radiative properties (absorbtion and scattering coefficients) of the porous structure are 

known, the Radiation Transfer Equation (RTE) may be applied to obtain the radiation 

field within the domain. Appropriate source and sink terms may be added to the RTE and 

the energy equation to enable the two-way coupling required to solve a wide variety of 

engineering problems. 

A common method for determining radiation properties in heterogeneous media is the 

Monte Carlo (MC) ray-tracing technique originally presented by Tancrez and Taine [6]. 

The method requires that a large number of ray-bundles be launched from non-opaque 

phases within a representative microstructure. The ray-bundles are allowed to interact 

naturally at phase boundaries as they propagate through the media. The histories of the 

ray-bundles are fitted to appropriate statistical distribution functions, and the best fit 

coefficients are identified as the pertinent effective properties. Researchers have 

successfully implemented this method to obtain radiative properties idealized geometries 
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[6-8], as well as real microstructures [8-10] (where the digital approximation of the 

physical sample is obtained through X-ray tomography). 

In chapter 2, a method for obtaining digital samples of porous media from aggregate 

statistical data was described, and digital samples of graphitic foam were produced to 

validate and demonstrate the method. The present work employs the same method to 

generate digital samples of graphitic foam, and a discrete-scale MC ray-tracing technique 

was applied to those samples to determine the range of extinction coefficients. 

3.2 The Volume Averaged Radiative Transport 
Equation 

The general, quasi-steady, Radiative Transport Equation (RTE) is given by [11, 12]: 

 
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(4.1) 

where   is the absorption coefficient and ,s   is the scattering coefficient, and 

wavelength subscripts have been dropped for brevity. It is often convenient to express 

their sum as a single quantity, known as the extinction coefficient: 

.s     
(4.2) 

The extinction coefficient therefore captures the combined effects of absorption and out-

scattering, or the radiation deflected away from the current direction, ŝ . 

The volume averaging theorems developed by Whitaker [13] have been widely used in 

the averaging of more common transport equations, such as mass, momentum, and 

energy. The extrinsic, intrinsic, and spatial averaging theorems are given as follows for a 

medium consisting of phases m  and n : 
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The intrinsic and extrinsic definitions may be related through the phase volume fraction: 

.
m

m m    
(4.6) 

To economically model radiation transport within a porous medium comprised of one 

transparent phase and one opaque phase, Lipinski et al. [14] have applied theorems (4.3) - 

(4.6) to the discrete phase RTE (4.1) to synthesize the volume averaged RTE in 

differential form: 
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 (4.7) 

where int int ,ints    is the effective extinction coefficient. The form of the equation 

has remained the same, while the continuous transport properties have been replaced by 

their volume averaged counterparts. In deriving Eq. (4.7), effective absorption and 

scattering coefficients have been defined. These definitions are found in Ref. [14] and 

they have be used to identify the radiative properties using discrete MC simulations (See 

Petrasch et al. [15]). We have instead opted to use the heuristic method of Tancrez and 

Taine [6], and assumed the identified properties are applicable to Eq. (4.7) 
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3.3 Radiation Property Identification 

As mentioned above, the MC ray-tracing technique has been successfully used to 

determine the radiation properties of a variety of porous media. The reasoning behind the 

method introduced by Tancrez and Taine [6] will be reviewed here, followed by a brief 

description of the present implementation, and discussion of the results. 

3.3.1 Bouger's Law and the Cumulative Distribution Function 

The derivation begins with the definition of the extinction coefficient. Consider the 

incident radiation, impinging normally on an infinitesimally thick slab of semi-

transparent material as in Figure 3.1. 

 

Figure 3.1 Intensity incident normally on an attenuating slab of thickness dz  

It has been experimentally observed that radiation is within such a slab is attenuated in 

accordance with the proportionality 

.dI Idz  
(4.8) 

An equation may be formed by introducing a constant of proportionality: 

,dI Idz   
(4.9) 

where   is the extinction coefficient has appeared. 
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Eq. (4.9) is an ordinary differential equation, solvable using the well-known separation of 

variables technique: 

.z

oI I e   
(4.10) 

Eq. (4.10) is Bouguer's law, which is sufficient to describe the attenuation of radiation in 

many semi-transparent media. It is widely accepted that intensity in a particular direction 

is proportional to the number of photons travelling in that direction, therefore, Eq. (4.10) 

can be rewritten as 

.z

oN N e   
(4.11) 

where oN is the number of photons entering the medium, and N  is the number of 

photons leaving the slab. Eq. (4.11) can also be expressed in terms of the number of 

photons attenuated at thickness z , zN  : 

1 .zzN
e

N


   

(4.12) 

Finally, the fraction of absorbed photons at distance z  is identified as the cumulative 

distribution of photon travel distances, or ray lengths: 

( ) 1 .zG z e    
(4.13) 

Eq. (4.13) is accurate for many homogenous, semi-transparent media, and it is desirable 

to treat heterogeneous media in a similar manner. In a two-phase medium, such as carbon 

foam, ( )G z  can be empirically determined by casting a large number of rays from the 

transparent phase and analyzing each of their histories. ( )G z  may be inserted into Eq. 

(4.13) to evaluate  . 

3.3.2 Implementation of the MC Ray-tracing Method 

Two key assumptions can be made to simplify the ray-casting procedure. If the geometry 

is considered homogenous at the macroscopic scale, the distribution of ray lengths will 
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not vary with the position of the origin plane, so ray origins may be selected from all 

points within the domain. Moreover, if the geometry is isotropic, a similar argument leads 

to the conclusion that ray directions may also be randomly selected. 

In the present study, the carbon foam under consideration has two distinct phases: the 

solid carbon matrix, and the intervening fluid. The solid matrix assumed to be black, 

while the fluids of interest, air, is considered to be transparent. 

Rays are launched from random locations within the fluid phase in random directions. 

When a collision is detected at the periodic boundary of the microstructure, the ray length 

is stored, and the ray re-launched in the same direction from the corresponding location 

on the opposite face. Upon collision with the solid matrix, the ray is terminated, and its 

cumulative length is calculated and written to file. More details are provided in the 

computer code which accompanies this publication. Upon completion, a computer 

program was used to bin the ray lengths and fit the data to Eq. (4.13). 

3.3.3 Sample Generation 

Before executing the discrete-scale MC technique to determine the desired properties, 

digital samples of the porous medium of interest must be obtained. In the present work, 

these are generated using the method of chapter 2, which is briefly summarized here. 

Some two-phase media are best described as packings of particles, where the particles 

comprise the discrete phase. The opposite phase is usually a continuous substance in 

which the packing is immersed. To analyze such media using the aforementioned 

method, the analyst must choose a set of particle geometries to be packed into a periodic 

domain. The particles should be placed at random locations within an initial volume 

without interference. When all the particles have been inserted, the periodic walls of the 

domain are slowly compressed. During compression, contact between particles is 

resolved using a pre-determined force-displacement relationship, or contact law. The 

simulation is finished when a target criterion is reached (e.g. desired porosity has been 

achieved). 
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For the case of carbon foam, the natural particle geometry is the sphere, which represents 

a bubble inside the domain. It is further assumed that the bubble diameters may be 

sampled from a normal distribution, whose mean and standard deviation are 

representative of the bubbles in the foam of interest. The bubble-bubble contact law of 

chapter 2 has been used: 

log ,
2 8t t AVG

F F
D

R 

 
   

 
 (4.14) 

where a suitable surface tension, 0.035 N/mt   (see Ref. [16]),  has been assumed. An 

image of the Solidworks
TM

 [17] model can be seen in Figure 3.2. 

 

Figure 3.2 Negative volume of a digitally generated carbon foam sample; 

300,  400 μm, 120 μm, 0.80s dN d       
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One of the aims of the present work is to determine the effects of varying porosity and 

mean bubble diameter on the overall extinction coefficient. Before generating these 

REVs, a suitable REV size must be determined. 

3.3.4 REV Sizing 

When collecting data from small material samples, it is important to verify that the 

samples are indeed representative of the material of interest. Groups of small samples are 

expected to exhibit large variance in effective properties because they do not contain a 

statistically relevant number of microstructural features. Conversely, very large samples 

require more computational resources to generate and analyze. Any sample containing 

enough microstructural features to accurately predict the properties of interest is called a 

Representative Elementary Volume (REV). In the present work, it was of interest to 

determine a suitable REV size for extinction coefficient identification. To this end, a set 

of 24 cubic digital carbon foam samples were generated; bubble diameters were sampled 

from a normal distribution with a mean, 400 μmd  , and standard deviation 

120 μmd  . The final porosity of each sample was 0.80  . In the discrete MC 

analysis, the histories of least 
45 10  rays were tracked. The results can be seen in Figure 

3.3.  
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Figure 3.3 Extinction Coefficient vs. Number of Primitives.  
is the non-dimensional 

extinction coefficient. 

In Figure 3.3 the data has no discernible trends, and are scattered about the mean value, 

1.72   . Because all the data lie within 2%  of the mean, the number of rays cast was 

deemed sufficient for the present application, and all sample sizes appear to have a 

sufficient number of features to accurately predict the desired property. This analysis has 

given the authors confidence to assume that samples containing 300sN   bubbles will 

serve as adequate REVs for predicting radiative properties of carbon foam for similar 

porosities and average bubble diameters. 

3.3.5 Property Identification 

It is of interest to see the effects of pore diameter and porosity variation on the 

performance of a carbon foam solar collector. To do this, the relevant radiative properties 

must be inferred from the results of pore-level analyses of the REVs of interest. This 

section describes the property identification process. 
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To begin, three sets of REVs were generated with average bubble diameters, 

 400 μm, 600 μm, 800 μm ,d  and standard deviations, 

 120 μm, 180 μm, 240 μm ,d   respectively. Each set contains 4 subsets whose 

porosities are  0.70,  0.75, 0.80, 0.85  . Each of these subsets contains 5 statistically 

similar REVs. Thus, the total number of REVs generated is 3 4 5 60   . 

Discrete MC analyses were conducted using all REVs to predict effective extinction 

coefficients. At least 
45 10  rays were launched from random locations and random 

directions from fluid phase of each REV. The results can be seen in Figure 3.4. 

 

Figure 3.4 Non-dimensional extinction coefficient vs. porosity 

Figure 3.4 shows the expected downward trend with increasing porosity. Note the 

extinction coefficient has been scaled using the internal surface area per unit volume, 
fsA

, for comparison with Ref. [6]. Simply stated, a larger void fraction will allow rays to 

travel further before attenuation, resulting in a smaller extinction coefficient. The data 



89 

 

also shows a weak, positive correlation with average pore diameter. The data has been fit 

to a second order polynomial of the form 

2

2 1 0 ,a a a       
(4.15) 

where the coefficients pertaining to each average diameter are given in Table 3.1. 

Table 3.1 Summary of the polynomial coefficients applicable to Eq. (4.15) 

 (μm)d   
0a   

1a   
2a   

400 8.07 -11.6 4.62 

600 7.39 -10.1 3.79 

800 8.12 -12.1 5.11 

Tancrez and Taine [6] have also employed this method to identify the non-dimensional 

extinction coefficient for the case of dispersed radius overlapping transparent fluid 

spheres where [0,1]  , and proposed correlation  1 0.90 1     , which has been 

plotted in  Figure 3.4. The geometric structures used in that study are similar to the 

present geometries, with one distinction: the sphere centers in [6] were randomly placed 

inside the domain, whereas the spheres in chapter 2 were packed together. 

3.4 Conclusion 

In the present work we have generated digital, statistically random REVs representing 

SVP carbon foams with differing mean pore diameters and porosities, and applied a 

statistical MC method to identify their effective extinction coefficients. It was found that 

the non-dimensional extinction coefficients were shown to have a strong, negative 

correlation with porosity, and a weak, positive correlation with mean pore diameter. The 

results have been satisfactorily fitted to a second order polynomial, which may be used to 

evaluate extinction coefficients in lieu of experimental data. 
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Chapter 4  

4 Conclusions and Future Work 

The original objective of this thesis was to explore the viability of spherical-void-phase 

(SVP) carbon foam for use as a volumetric absorber. However, in conducting the 

requisite background research, it was found that there is little available data regarding the 

radiative properties of SVP carbon foam. Thus, the research effort was refocused on 

prediction of radiative properties. This could have been achieved through a series of 

experiments, however this author’s particular skill set lent itself to computational work 

rather than experimental work. The method described by Tancrez and Taine [1] was 

found to be quite suitable, however a digital sample of the microstructure of interest is 

required for implementation. Several researchers have proposed idealized and random 

pore level models which have been useful in the study of hydraulic and thermal 

properties of SVP porous media, however each one of these models was analyzed and 

deemed unsatisfactory for radiative property determination; idealized models exhibited 

an uncharacteristic anisotropy in all directions, while the random generation methods 

available suffered from ad hoc pore interactions and a general lack of realism in their 

generation. Consequently, the effort was again refocused on devising a practical method 

for generating adequate digital samples of SVP porous media. 

All in all, this thesis Although the motivation for the present work has been to assess the 

radiative properties of carbon foams, this author believes the more valuable outcome is 

the ability to quickly generate digital samples of SVP porous media which can be used to 

predict the bulk properties for any  

4.1 Conclusions and Research Contributions 

Chapter 2 documents the method developed for digital sample generation of SVP porous 

media. It has been achieved through use of Discrete Element Modeling (DEM), where the 

interaction between pores has been controlled through use of bubble-bubble contact law, 

and periodicity in all three principle directions has also been achieved. The resulting 

Computer-Aided-Design (CAD) files are, to the author’s knowledge, the most accurate 
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digitally generated samples of carbon foam; they are visually similar to SEM images of 

real carbon foams, and they have been demonstrated to predict hydraulic and thermal 

properties with much more accuracy than the idealized unit-cube model. Upon validating 

the approach, the method was used to generate samples of carbon foam over a range of 

mean pore diameters and porosities, which were then used to determine hydraulic and 

thermal properties using Computational Fluid Dynamics (CFD) software. This illustrates 

a significant advantage of the fictitious digital models over physical samples: the 

dimensions of microstructural geometric features can be incrementally varied over 

desired ranges to explore possible effective properties, where financial costs and 

production capabilities can severely limit the number of microstructural variations which 

can be studied. Moreover, analyzing fictitious samples may inspire manufacturers to 

produce specific microstructures which predict desirable effective properties. 

Chapter 3 describes the subsequent prediction of the extinction coefficient of SVP porous 

media for a range of mean pore diameters and porosities, which for the assumed case of 

negligible scattering, is equal to the absorption coefficient of the foam. The predicted 

non-dimensional extinction coefficient is significantly higher than the predictions from 

Tancrez & Taine [1], likely because the samples in that work contained randomly located 

spheres, where the samples in the present work were packed together. It was further 

concluded that, within the given ranges of mean pore diameter and porosities, the 

boundaries of SVP carbon foam samples may be treated as a black surfaces; i.e. nearly all 

incident radiation is assumed to be absorbed at the surface. 

4.2 Future Work 

In many fields of research, there appears to be an endless list of models to refine, 

assumptions to be validated or lifted, and new ideas to explore. The study of porous 

materials is no exception. This section contains an (incomplete) list for the areas of 

digital generation of porous materials and the prediction of their properties. The items are 

ordered from highest to lowest priority in accordance with their perceived value to the 

academic community. 

The outstanding tasks in the field of digital generation of porous materials are: 
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 Characterization of effective properties. The closure models proposed by 

Whitaker and colleagues [5-7], and Quintard and colleagues [8, 9], have been 

successfully applied to study idealized geometries [10-14] to determine effective 

material properties. With the existing code infrastructure in place, generating a 

variety of random, digital domains can be done with relative ease. Note that while 

the work in this thesis has been focused on the negative volume of SVP porous 

media, only minor adjustments are needed to produce the solid matrix structure in 

CAD, which can be analyzed to determine effective thermal conductivities using 

various techniques described in the literature [2-4]. The models generated can also 

theoretically be used to characterize even more bulk transport quantities, such as 

mass transport, turbulent, and magnetic properties. If a researcher wishes to study 

other sphere based models, such as packed beds, only the contact law needs to be 

re-defined to suit the problem. If a little more effort is invested, the existing codes 

can be modified to characterize the interaction between other types of primitives, 

such as non-spherical particles, or fibres, or combinations thereof. 

 Development of Software tools to aid in digital domain generation. However, in 

this thesis it has been shown, at least for the case of SVP carbon foam, that the 

accuracy of the predicted properties of the random model greatly exceeds that of 

its idealized counterpart, the unit-cube model. As was discovered during this 

research, the practical implementation of this method is not straight forward; it 

requires the orchestration software packages which do not readily interface. An 

estimated 6000 lines of computer code have been written between three 

programming languages to yield a semi-automated system spanning two operating 

systems and three software packages. Needless to say this is not ideal for 

researchers who want to avoid a lengthy setup process. This awkward 

implementation is seen as the primary barrier to researchers wishing to predict 

properties using digital generation techniques. The development of robust, general 

programming scripts to interface between these software packages will likely 

reduce the setup time, making random domain generation of porous samples more 

viable. 
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 Modelling non-spherical bubbles. At its heart, the present SVP generation 

technique is a crude model of the formation process occurring during the 

synthesis of real carbon foams. In order to obtain better representations of any 

porous medium, the analyst should look to the physical processes at play during 

its formation, and understand where those are misrepresented in the current 

models. In the case of SVP porous media, we have presently assumed the bubbles 

maintain their spherical shape. This is not generally true for high contact forces. 

In order to obtain more accurate digital models of SVP porous media, bubble 

deformation must be modeled. This will likely require a move from away from 

DEM, and towards CFD simulations to model bubble interaction dynamically as 

they are compressed with their neighbours.  

 Modelling pore window blockage. When comparing images of the generated 

samples to photographs of real carbon foam, one of the observed differences is the 

shards protruding through the windows (review [fig.]). In the manufacturing 

process, when the carbon foam ‘sets’, the films between neighbouring bubbles 

remain, and the result is a closed-cell medium. These windows are opened by 

applying a large pressure across the foam causing the solid films to shatter. The 

shards are remnants of this process. These shards are thought to significantly 

increase the flow resistance through the foam, so it is desirable to quantify that 

resistance. This could be done through introduction of a two dimensional filter at 

the pore level, or using a random generation technique on the generated samples 

to attach shards around the circumference of pore windows. 

 Solar collector design. While it has been established that the foam can safely be 

treated as a black body for the given range of mean pore diameters and porosities, 

it remains to be seen if the hydraulic and thermal properties will render it useful 

material for solar collectors. This will be investigated using a series of simulations 

using a conjugate porous/fluid/solid CFD code in conjunction with the properties 

determined in chapters 2 and 3. 
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