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1 ABSTRACT 

The majority of worldwide weather-related transmission line failures have been attributed 

to High Intensity Wind (HIW) events in the form of tornadoes and downbursts. The 

research conducted in the current thesis presents a significant development in the 

understanding of the structural behaviour of transmission line systems under tornado 

loading. A comprehensive in-house numerical model that combines the data of 

computational fluid dynamic (CFD) simulations of tornado wind fields with three 

dimensional nonlinear structural analysis modelling is developed. A three dimensional 

four-noded cable element is first formulated to simulate the nonlinear large deformation 

behaviour of the conductors. The support provided to the conductors through the towers 

and the insulators is modelled using a three dimensional nonlinear spring system with 

stiffness dependent on the rotation experienced by the insulators. This lines model is used 

to assess the importance of accounting for the flexibility of the insulators and supporting 

towers on the lines behaviour, the effect of the tornado loads acting on conductors on the 

overall response of transmission towers, and the behaviour of conductors under the most 

critical tornado configurations. The in-house model formulation is extended by including 

a simulation for members of the lattice towers using three dimensional nonlinear frame 

elements. By including a failure model, the numerical model is employed to predict the 

tornado velocities at which failure initiates and to describe the progress of collapse. The 

in-house numerical model provides a lot of flexibility, in term of computational 

efficiency and in term of implementation of various failure models. A sophisticated 

aeroelastic model of a three span transmission line system is designed and constructed to 

perform a boundary layer wind tunnel test. The results of the test are used to investigate 
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the dynamic response of the transmission line system under boundary layer wind, and to 

validate the developed numerical model. Finally the numerical model is used to develop a 

set of load configurations simulating the critical effect of F2 tornado on Lattice 

transmission line structures that can be implemented in the codes of design and can be 

used by line design engineers.  

KEYWORDS  

Transmission line, Tornado, Wind load, Finite element, Aeroelastic, Design, Failure, 

Wind tunnel, Transmission tower      
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7 LIST OF SYMBOLS 

Symbol Units Description 

Ai m2 Projected area perpendicular to “ i “ direction at the loaded  

  Node 

Ax m2 Projected area perpendicular to X - direction at the loaded  

  Node 

Ay m2 Projected area perpendicular to Y - direction at the loaded  

  Node 

Az m2 Projected area perpendicular to Z - direction at the loaded  

  Node 

Cf -- Drag Force coefficient  

Cfx -- Average of drag force coefficients in X - direction  

Cfy -- Average of drag force coefficients in Y - direction  

Cfz -- Drag force coefficients in Z - direction  

E N/m2 Modulus of elasticity  

Eeq N/m2 Equivalent modulus of elasticity   

Fc kN Reaction force of the conductors on the tower  

Fg kN Reaction force of the ground wire on the tower  
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Fwi N Nodal point wind force in “ i ” direction 

Fx N Total tornado wind force component in global X - direction 

Fy N Total tornado wind force component in global Y - direction 

Fz N Total tornado wind force component in global Z - direction 

G -- Gust response factor 

ho m Height of the fluid computational domain 

K -- Shielding factor 

K’ -- Wind parameter for G gust response factor calculations 

Kz -- Exposure coefficient  

Kzt -- Topographic coefficient  

L m Total lines (conductors) span – Tower members length  

Lc m Inclined equivalent cable element length  

LI m Insulator length 

Ls -- Wind parameter for G gust response factor calculations 

Lx m Horizontal lines (conductors) length  

P N/m Distributed tornado force on the tower – Axial force in  

  tower members 
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Py N/m Weight per unit length of adjacent conductors   

R m Radial distance between the tower center and the tornado  

  center 

r m Radial distance relative to the tornado center in the CFD 

ro m Radius of the fluid computational domain 

Rfa m Radial full-scale distance between point “a” and the   
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  The tornado centre  

S -- Swirl ratio – S = 0.5 (Vt / Vr) at the CFD boundaries  

S’ m or ft Design Span  

T sec or N Fundamental natural period – Cable Tension  

V m/sec Wind velocity 

Vo m/sec Reference velocity for CFD model 

Vama m/sec CFD axial velocity components of point “a” 

VAX m/sec Full-scale axial velocity component of point “a” 

Vi m/sec Tornado velocity component in “ i “ direction -   

  10 m reference 3-sec wind speed in “ i ” direction  
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1 CHAPTER 1 

     INTRODUCTION 

1.1 General  

Electricity plays a vital and essential role in our daily life as almost all business and 

activities depend on having a reliable source of electricity. Transmission lines are 

responsible of carrying electricity from the source of production to the distribution 

system and ultimately to the end users. Failure of transmission lines can have devastating 

social and economical consequences, so it is imperative to understand how failure occurs, 

and how to prevent it. The structural components of a transmission line system, as shown 

in Fig. 1-1, are the towers, the conductors, the ground-wires, and the insulator strings. 

The towers are slender and flexible structures, which makes them vulnerable to strong 

wind loads. With respect to structural behaviour, transmission towers can be classified as 

either self-supported or guyed towers, depending on how they are attached to the ground. 

Self-supported towers are most commonly used; however, guyed towers tend to be more 

economical. Majority of transmission towers are made of lattice steel members. 

Conductors are attached to the towers via insulators strings. For lightning protection, the 

ground wires are attached directly to the top of the towers. The current study focuses on 

the behaviour of both types of towers mainly under tornado wind loads. 

In Canada, tornadoes occur in almost all the southern regions of the country, such as in 

southern Alberta, Manitoba, Saskatchewan, Ontario, and Quebec. Ishac and White (1994) 

reported that of all the populated areas in Canada, southwestern Ontario experiences the 
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highest rate of tornado incidences. About two tornadoes per 10,000 (km2) occur every 

year in this region, and most of transmission line failures are caused by tornadoes. 92% 

of these tornadoes are F2 or less on the Fujita scale. The electrical company Ontario 

Hydro reported that five out of six weather related line failures in their territory are due to 

tornadoes (Behncke and White 2006). Newark (1984) concluded that on an average an F3 

tornado occurs in southwestern Ontario every five years. In the United States, 800 to 

1,000 high-intensity wind storms occur each year leading to extensive damage and/or 

failure of transmission structures (Behncke and White 2006). The CIGRÉ (2006) 

questionnaire on line failures indicated that 65% of weather-related events on 

transmission lines were caused by tornadoes. Twisdale (1982) suggested that tornado 

wind loads should dominate the design of most transmission lines over 10 miles in central 

areas of the United States. Despite these facts, the codes of practice, design guidelines, 

and utilities design methodologies are based solely on the loads resulting from large-scale 

synoptic events with conventional boundary layer wind profiles. Those profiles are 

characterized by a monotonic increase in velocity with height, which is different than the 

wind profiles attributed to tornadoes where the maximum wind speed occurs near the 

ground. Based on metrological studies, Kareem (2010) concluded that winds developed 

by thunderstorms, both tornadoes and downbursts, fundamentally differ from the 

conventional boundary layer wind. A main difference is in the velocity profile along the 

height. The same conclusion about an inverted velocity profile for tornadoes and 

downbursts was mentioned by Holmes and Oliver (2000) and Letchford and Chay 

(2002). Tornadoes and downbursts, which are often referred to as High Intensity Wind 
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(HIW), are localized events. This leads to a spatial variation in their wind fields, unlike 

large scale wind events such as hurricanes and cyclones.   

 

Fig. 1-1 Schematic View of Guyed Transmission Line System  

The tornado wind profile has three velocity components. These are the tangential, radial, 

and vertical components.  Unlike conventional wind, the vertical component of a tornado 

wind profile has a significant effect on the behaviour of transmission line (ASCE 2010). 

The complexity in analyzing transmission line structures under HIW arises from the fact 

that tornadoes are localized events with relatively narrow path width and complex wind 

profile. Due to the localized nature of tornadoes, the forces acting on the tower and the 

conductors vary based on the location of the event relative to the tower. In fact, some 

incidences of transmission line failures were attributed to tornadoes with centers located 

far from the transmission line as documented in the  ASCE (2010). The behaviour of the 

conductors is complicated due to its highly nonlinear behaviour. As a result, the ASCE 

(2010) recommends that the tornado loads on the lines should be neglected because of 

such complexity. An extensive study is conducted in the current thesis to develop and 

validate numerical tools that can be used to determine the behaviour, study the failure 
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under tornadoes and to design lattice transmission towers to resist the critical loads 

associated with such events. 

1.2 Literature Review  

1.2.1 Tornadoes Wind Profiles  

Tornadoes are rotating wind vortices with high wind speeds affecting relatively narrow 

paths as defined by Fujita (1981). They originate from convective clouds that generate 

rotating columns of air (Twisdale 1982). The Fujita scale (Fujita and Pearson 1973) is the 

most widely tornado scale currently used. It categorizes tornadoes between F0 to F5 

based on maximum wind speed, path length, path width, and level of damage. In 2001, 

the Texas Tech University Wind Science and Engineering Research Center recommended 

an alternative categorization, known as the Enhanced Fujita Scale (McDonald et al. 2004 

and Ramsdell, Jr. and Rishel, 2007). The Enhanced Fujita Scale is based on the highest 

wind speed estimated in the tornado path, but the damage classification is still based on 

the criteria recommended by the original Fujita Scale. The Enhanced Fujita Scale is not 

widely used yet and the intent to implement it in design codes and manuals of practice 

has been considered as perhaps being premature due to wind speed estimates being based 

upon design practices specific to the USA (Doswell III et al. 2009). In Table 1-1, a 

comparison of tornado categorizations from different design codes, such as ASCE 

(2010), Enhanced Fujita Scale, and CIGRE` (Council of Large Electric Systems 2009), 

are presented.  
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 The size and intensity of tornadoes cannot be measured in the field by traditional 

recording stations due to the severity and the localized nature of these events. 

Photographic analysis using videos of moving objects in tornadoes, Doppler radar, and 

damage investigations are the only available methods to estimate the tornado wind speeds 

(McCarthy and Melsness 1996). This explains the lack of full-scale data for tornadoes 

available in the literature. Recently, field measurements were recorded by Wurman 

(1998) and were introduced by Sarkar et al. (2005) for the 1998 Spencer South Dakota F4 

tornado and by Lee (2005) for the 1999 Mulhall F4 tornado. Doppler radars are used to 

obtain the tornado field measurements but the recorded data is not very accurate for the 

near ground region. Laboratory simulations of tornadoes have been used to obtain the 

behaviour in the near ground region and to describe the characteristics of the tornado-

like-vortices phenomena. The first laboratory attempts were made by Ward (1972) by 

developing the Ward-type simulator. Tornado simulators were developed over time and 

led to the creation of Tornado Vortex Chambers (TVC), which provide a good simulation 

of the characteristics inside a tornado. However, the results from the laboratory 

simulation are sensitive to the applied boundary conditions. Numerical simulations, using 

Computational Fluid Dynamics (CFD), can provide a good assessment of the flow field 

near the ground.  

Harlow and Stein (1974) developed one of the first numerical models to simulate 

tornado-like vortices. The two-dimensional axisymmetric model produced both the one-

cell and two-cell vortices using a free-slip lower boundary condition. Rotunno (1977) and 

Rotunno (1979) was able to capture the vortex break down of a tornado-like vortices 

using a no-slip lower boundary condition. The simulations showed the vortex core size to 
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be function of the swirl ratio (S), where S is half the ratio between the tangential and 

radial velocities at the computational domain boundaries. Rotunno (1984) was able to 

simulate multiple vortices by introducing random noise to a three dimensional modal of 

Ward-type tornado vortex chamber (TVC). The simulation showed secondary vortices 

with 20–30% more tangential velocity than the mean flow. Fiedler (1994), Fiedler 

(1997), and Trapp and Fiedler (1995) used an axisymmetric model to study vortices that 

form within a domain with rigid boundaries by introducing the concept of buoyancy in a 

rotating cylinder of fluid. The study showed that the vortex touchdown produces wind 

speeds that exceed the thermodynamic speed limit by a factor of 5 and at higher swirl 

ratios produced multiple vortices. Lewellen et al. (1997) and Lewellen et al. (2000) 

modelled real scale tornado flow using Large Eddy Simulations (LES) and analyzed the 

flow dynamics close to ground surface. The results showed the production of multiple 

vortices at high swirl ratios.   

Table 1-1 Comparison of Tornado Categorizations from Design Guides (ASCE 2010 

and CIGRÉ 2009) and the Enhanced Fujita Scale for Tornadoes 

  

Enhanced Fujita Scale 
3 - sec gust 3 - sec gust 

Scale Wind Speed Path length Path width 
Cumlative 

Percentage
(mph) (mph)

Gust Wind 

(2-3 sec gust)

(m/sec)

Potential 

Wind 

Gust Width 

Frequency of 

Occurance

(avergae) 

Notes 

F0
72 (mph)

32.2 (m/sec)

< 1.0 (mile)

1.61 (km)

< 50 (ft)

15.2 (m)
22.9 45 - 78 65 - 85

F1
73 - 112 (mph)

32.6 - 50 (m/sec)

1.0 - 3.1 (mile)

1.61 - 5.0 (km)

51 - 170 (ft)

15.2 - 52 (m)
57.6 79 - 117 86 - 110

F2
113 - 157 (mph)

50 - 70.2 (m/sec) 

3.2 - 9.9 (mile)

5.0 - 15.9 (km)

171 - 530 (ft)

52 - 162 (m)
86.1 118 - 161 111 - 135 45 - 70 1000 (m) 1/5

Torsional 

Loading 

F3
158 - 206 (mph)

70.6 - 92.1 (m/sec)

10 - 31 (mile)

16 - 50 (km)

531 - 1,670 (ft)

162 - 509 (m)
96.8 162 - 209 136 - 165 70 - 95 400 (m) 1/1000

F4
207 - 260 (mph)

92.1 - 116.2 (m/sec)

32 - 99 (mile)

51 - 159 (km) 

1,671 - 4,750 (ft)

509 - 1,448 (m)
99.5 210 - 261 166 - 200 95 - 120 200 (m) 1/4000

F5

261 - 318 (mph)

116.2 - 142.2 

(m/sec)

100 - 315 (mile)

160 - 507 (km)

4,751 - 6,000 (ft)

1,448 - 1,829 (m)
100 262 - 317 >  200 > 120 200 (m) 1/10,000

Fastest Quarter-mile wind speeds Tornadoes 

Fujita Scale CIGRÉ (2009)
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The tornado wind field used in this study is obtained from a three dimensional CFD 

conducted by Hangan and Kim (2008). They related the swirl ratio (S) used in the CFD 

simulation to the Fujita scale. The CFD simulation was conducted using the commercial 

program FLUENT (FLUENT Inc. 2005). Hangan and Kim (2008) modeled tornadoes 

using three dimensional RANS simulations with the Reynolds Stress Model (RSM) 

turbulence closure. The simulations of tornado-like vortices included the formation of a 

laminar vortex at low swirl ratio, followed by turbulent vortex breakdowns and vortex 

touch downs at higher swirl ratio values. The simulation was initially conducted using a 

swirl ratio S = 0.28. This is the same swirl ratio applied in the experimental program 

conducted by Baker (1981) using a Ward-type vortex chamber. The results of the CFD 

analysis with S = 0.28 were validated by Hangan and Kim (2008) through a comparison 

with Baker’s experimental results. The numerical analysis was then extended by Hangan 

and Kim (2008) by considering values of S = 0.10, 0.4, 0.7, 0.8, 1.0 and 2.0, respectively. 

An extensive study was conducted by Hangan and Kim (2008) to estimate the proper 

swirl ratio that provides good matching between the numerical results and the F4 tornado 

field measurements. Hangan and Kim (2008) also introduced a geometric scale and a 

velocity scale which can be applied to CFD data to estimate the F4 tornado field. They 

concluded that the F4 tornado approximately corresponds to a swirl ratio S of 2.0. Very 

few field measurements are yet available in the literature for F2 tornadoes. This is despite 

the fact that 86% of categorized tornadoes are associated with F2 tornadoes or less as 

stated in the ASCE (2010). Hamada et al. (2010) presented a procedure to estimate the 

velocity field for F2 tornado using Hangan and Kim (2008) CFD data and the parameters 

of F2 tornadoes defined in the Fujita scale. It should be mentioned that the CFD velocity 
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field for tornadoes were developed assuming smooth ground surface, i.e. without 

considering the topographical effect. In addition, This CFD model does not include a 

turbulence component. 

1.2.2 Behaviour of Transmission Lines under Normal and High Intensity 

Wind 

Many investigators and hydro companies conducted valuable research in the area of 

transmission line systems behaviour under wind loads. The majority of the research 

focused on assessing the response of transmission line components separately to large 

scale boundary layer wind events. Few attempts have been made in the literature to 

investigate the behaviour of transmission line systems under HIW events. The modelling 

and assessment of the behaviour of transmission lines under downburst loading was 

conducted by Shehata et al. (2005) and Shehata and El Damatty (2007). In this study, a 

three dimensional finite element model simulating the towers and a two-dimensional 

model simulating the conductors were developed to assess the structural performance of 

transmission towers under downburst loading. An extensive parametric study was 

conducted in the same investigations to determine the critical downburst loading cases. 

The studies done by Shehata et al. (2005) and Shehata and El Damatty (2007) were 

extended by Shehata and El Damatty (2008) to investigate the structural performance of 

the tower under these critical downburst loading cases. The failure of a transmission 

tower during a downburst event, which occurred in Manitoba, Canada in 1996, was 

assessed by Shehata and El Damatty (2008). In this study, a numerical scheme, which 

included a failure model, was developed to study the progressive collapse of the guyed 
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tower. Shehata et al. (2008) extended the numerical model by including an optimization 

routine. This model is capable of predicting the critical downburst parameters and the 

corresponding forces. The failure of a self-supported lattice tower under modelled 

tornado and microburst wind profiles was investigated by Savory et al. (2001). The 

analytical tornado wind model used in this study is based on the model developed by 

Wen (1975). Only the horizontal wind profile corresponding to F3 tornado was used in 

the analysis without considering the vertical component of the tornado wind field. The 

turbulence component associated with the tornado and the downburst wind loading was 

neglected. The tower members were modelled using three dimensional truss elements. 

The dynamic analysis was done for the tower alone, including its self-weight, without 

modelling the lines.  The failure observed in this study under tornado loads was a shear 

failure, which was observed in some field observations. Ladubec et al. (2012) studied the 

effect of large displacement on the response of transmission towers under downburst 

wind field. The analysis used nonlinear space frame elements to simulate the towers 

members. The study showed an increase of 20% compared to linear analysis in the peak 

axial forces in the tower main leg chord members. The study is considered as an 

extension to the linear analysis of transmission towers that was performed by Shehata and 

El Damatty (2008).  

Loredo-Souza and Davenport (1998) investigated experimentally, through wind tunnel 

testing, transmission line failures. The experimental results compared successfully with 

the theoretical predictions obtained from a statistical method combined with using 

influence lines. The study shows that the dynamic behaviour of the conductors is affected 

significantly by the value of aerodynamic damping, which can be as high as 60% of the 
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critical damping. The aerodynamic damping is directly proportional to the wind velocity 

and inversely proportional to the line mass. The study concluded that the background 

response is indeed the main contributor for the total fluctuating response. Darwish et al. 

(2010) modified the two-dimensional nonlinear finite element model of the transmission 

lines developed by Shehata et al (2005) to study the dynamic characteristics of the 

conductors under turbulent downburst loading.  The modified model accounted for the 

large deformations and the pretension loading, and was used to predict the natural 

frequencies and mode shapes. In this study, the turbulence component was extracted from 

full-scale data and then added to the mean component of the downburst wind field 

developed by Kim and Hangan (2007). The study concluded that the resonant component 

due to turbulence is negligible as a result of the large aerodynamic damping. In addition, 

the study discussed the effect of the pretension force on the natural period and mode 

shapes of the conductors. Loredo-Souza and Davenport (2003) reviewed the influence of 

the design procedure, such as the statistical method and the influence lines procedure, for 

the establishment of wind loading on transmission tower response. In this study, a 

comparison was carried out between Davenport’s gust response and the statistical method 

that uses the influence lines procedure for estimating wind loading on transmission line 

structures. The second approach accounts for the effect of the higher modes. Loredo-

Souza and Davenport (2003) concluded that the dynamic response of transmission towers 

depends strongly on both the structural and aerodynamic damping of the towers. Hamada 

(2009) studied the dynamic behaviour of a guyed transmission line system under the 

translation motion of F4 and F2 tornadoes. Without considering the turbulence 

component, it was concluded that the dynamic analysis has a minor effect on the towers. 
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This conclusion was explained by the high aerodynamic damping of the conductors, and 

the significant difference between the loading period associated with a moving tornado 

(minimum of 13 sec) and the towers’ period (about T = 0.5 sec). Lin et al. (2012) studied 

an aeroelastic model of a single transmission line span and a single guyed tower under 

boundary layer and downdraft flow. The study was conducted at a length scale of 1:100. 

The analysis of the test results concluded that the aeroelastic model responded quasi-

statically to both types of wind loading. In addition, the study showed that the resonant 

dynamic response was less significant with the downdraft flow wind load than the 

boundary layer wind load.  

Hamada and El Damatty (2011) conducted a comprehensive study to assess and 

understand the performance of transmission line structures under tornado loading. The 

study investigated the variation of the tower members’ internal forces with the tornado 

locations relative to the transmission line system. In addition, the study provided an 

insight about the structural response of the towers under tornado wind loads. The 

dynamic effect associated with the translation motion of the tornado was assessed and the 

results of the parametric study were used to assess the sensitivity of the members’ peak 

forces with the parameters defining the location of the tornado relative to the 

transmission line. Altalmas et al. (2012) and El Damatty and Hamada (2013) assessed the 

transmission lines’ failure mechanisms under critical tornado configurations. In addition, 

the studies predicted the maximum tornado velocity that various lines can withstand 

before experiencing global failure. The study also described different failure modes as 

well as their progression. Hamada and El Damatty (2013) assessed the behaviour of two 

guyed transmission line structures under F2 tornado wind field, boundary layer wind, 
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electrical companies’ recommended wind field, and CIGRE` recommended tornado 

loading cases. In addition, a comparison was carried out between the forces in the 

transmission tower members, resulting from the tornado, and those obtained in the case 

of broken wires under F2 tornado wind loads. 

1.3 Background  

The Author during his Master of Engineering Science (M.E.Sc.) thesis developed a 

procedure to model and predict the structural performance of lattice tangential guyed 

transmission lines subjected to tornado wind loads. The tornado wind field was based on 

a model scale CFD analysis developed and validated by Hangan and Kim (2008). The 

CFD results, together with the full-scale tornado measurements and different manual of 

practices recommendations, were used to establish wind fields associated with F4 and F2 

tornadoes as discussed in detail by Hamada et al. (2010). These tornado wind fields vary 

spatially in a three dimensional manner and are time independent representing the steady-

state status of a tornado. The data along the circumference at different heights and radii 

from the tornado center was averaged leading to axisymmetric set of F4 and F2 tornado 

data. A tornado wind field has three main components; radial, tangential, and axial 

(vertical) components. The procedures used to obtain the wind forces due to these three 

components of the wind field acting on the transmission lines and towers nodes were 

described by Hamada et al. (2010). A numerical code was developed by the author to 

calculate the F4 and F2 tornado forces acting on the components of a lattice transmission 

line system. A three dimensional nonlinear finite element model for the transmission line 

system was developed using the commercial software SAP 2000 (CSI Inc. 2008). The 
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model included a simulation of the transmission tower, in addition to two towers and 

three spans of transmission lines (conductors and ground-wires) on each side of the 

middle tower (the tower of interest). The model accounted for the geometric nonlinearity 

resulting from the large deformations experienced by the lines and the towers. A two-

noded cable element was used to model the lines and the supporting guys, while 

including the effect of tension stiffening and sagging. Only one guyed tower was used in 

the study, which is the generic tangent lattice tower A-402-0 belonging to the electrical 

company Manitoba Hydro. The analysis procedure and various steps were discussed in 

detail by Hamada et al. (2010) and Hamada (2009). 

The study proceeded by studying the dynamic response of transmission lines under 

tornado loads. In this study, the time history variation of the loading resulted from the 

translation of the tornado. The numerical code simulating the tornado loading was 

modified to produce the required loading time histories associated with a tornado 

movement perpendicular, parallel, and oblique to the lines. The natural period and mode 

shapes of the considered transmission line system were first determined by conducting 

free vibration analyses. The static finite element model was modified to account for the 

time history variation of the tornado forces resulting from the translation motion of the 

tornado event. In addition, the model accounted for the structural and the aerodynamic 

damping of the transmission towers and lines. Time history analyses were conducted and 

results were compared with quasi-static analyses results. The study showed no significant 

dynamic effect associated with the translation motion of the tornado. This resulted mainly 

from the large aerodynamic damping of the conductors and the low fundamental period 
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of the towers in comparison to the loading period. More details regarding the dynamic 

analyses and the obtained results are provided by Hamada and El Damatty (2011).  

The developed numerical model was then used to conduct an extensive parametric study 

to investigate the structural performance of the guyed transmission tower under loads 

resulting from different F4 and F2 tornado events. The parametric study was conducted in 

a quasi-static manner based on the dynamic analysis conclusions. The parametric study 

was conducted by carrying out a large number of analyses; each analysis corresponded to 

a specific tornado location relative to the transmission line system. Firstly, the study 

assessed the behaviour of transmission lines under an F4 tornado wind field. Secondly, 

the behaviour was assessed under an F2 tornado wind field. In the third part of the study, 

the structural behaviour of the guyed transmission tower under various critical tornado 

locations was described. Lastly, the results of the parametric study results were used to 

assess the sensitivity of the member forces to the variation of the tornado location relative 

to the transmission line system. More details regarding the extensive parametric study 

results and the sensitivity analyses are provided by Hamada and El Damatty (2011). 

The research conducted in the current Ph.D. thesis represents a significant extension to 

the study carried on by the author in his M.E.Sc. Thesis. As mentioned earlier, the 

structural analysis previously conducted in the Master thesis relied on a commercial 

software. A major step accomplished in this Ph.D. thesis is that a comprehensive in-house 

numerical model that combines the CFD data with nonlinear structural analysis 

modelling is developed. This provides a lot of flexibility, in term of computational 
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efficiency and in term of implementation of various failure models as described later. The 

objective and scope of the thesis are provided below. 

1.4 Objectives of Thesis  

The major objectives of the thesis can be summarized in the following:  

1- Develop an in-house comprehensive numerical model for the analysis and 

prediction of failure of transmission line systems under tornado loading. The 

numerical model includes the tornado wind field obtained from CFD simulations 

together with nonlinear three dimensional finite element simulation for the 

transmission line system.  

2- Study the behaviour of the conductors under tornado loading and assess the effect 

of various parameters that might affect this behaviour.  

3- Design an aeroelastic model of a multi span guyed transmission line system that 

can be used for better understanding of the behaviour of such structures under 

wind loads and also to validate the developed numerical model.  

4- Use the developed model to conduct a number of case studies in order to gain an 

insight about the resilience of lattice transmission towers against failures when 

experiencing an F2 tornado event. Also, use those case studies to assess and 

describe the failure modes of the towers under F2 tornadoes.  

5- Develop a set of load cases that simulate and provide an envelope for the effect of 

tornadoes on tangent transmission line structures for possible implementation in 

the design guidelines.  
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1.5 Scope of Thesis  

The thesis has been prepared in ‘Integrated-Article’ format. In the present chapter, a 

review of the studies related to transmission lines and tornadoes and the objectives and 

thesis’s scope are provided. The following six chapters address collectively the thesis 

objectives. Chapter eight presents the conclusion of the study together with suggestions 

for further research work. A description of scope of each chapter is provided below. 

1.5.1 Chapter 2 – Analysis and Behaviour of Guyed Transmission Lines 

under Tornado Wind Loads – Case Studies  

This chapter builds on the research done by the author during his Master thesis. The 

analyses are conducted in this chapter using the commercial software SAP 2000. The 

main purpose is to assess the significance of F2 tornado loading on tangent transmission 

line systems in comparison with the loading cases recommended by design codes, 

manuals of practice, and other HIW events such as downbursts. Numerical models are 

developed to study the behaviour of two guyed transmission lines under F2 tornado and 

several other wind loads. The F2 tornado wind field used is based on a full three 

dimensional CFD model that was developed and validated in earlier studies. Three 

dimensional nonlinear finite element models of existing transmission lines belonging to 

electrical utilities are developed. This chapter studies the behaviour of two guyed 

transmission line structures under F2 tornado wind field, boundary layer wind, 

downbursts, and CIGRE` recommended tornado loading cases. In addition, a comparison 

is carried out between the internal forces induced in the transmission tower members, 

resulting from the tornado, and those obtained in the case of broken wires during a F2 
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tornado event. The study reveals the importance of considering tornadoes when designing 

lattice transmission line structures.  

1.5.2 Chapter 3 – Nonlinear Formulation of Four-Noded Cable Element and 

Application to Transmission Lines under Tornadoes 

 Transmission line conductors and ground-wires are sensitive to wind loads as they 

typically have long spans and are very flexible compared to the supporting towers. The 

analysis of transmission lines is challenging due to the nonlinearity introduced by large 

displacements that are often much larger than the conductors’ diameter and of same order 

of magnitude compared to the initial sagging.  A powerful three dimensional four-noded 

cable element is developed in the current chapter. After validating this nonlinear 

formulation, the element is used to model multi-span conductors. In this simulation, the 

support provided to the conductors through the towers and the insulators is modelled 

using a three dimensional spring system with stiffness dependent on the rotation 

experienced by the insulators. This numerical development is used to study the behaviour 

of transmission line conductors under tornadoes. The study is confined to F2 tornadoes 

since the vast majority of tornadoes are equal to or less than this level. The effect of 

boundary conditions and the importance of accounting for the flexibility of the insulators 

and the supporting towers are then assessed. 
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1.5.3 Chapter 4 – Behaviour of Transmission Line Conductors under 

Tornado Wind Loads  

The study conducted in the Chapter builds on the development of the sophisticated model 

of transmission line conductors accomplished in the previous chapter. Many codes of 

practice recommend neglecting the tornado forces acting on the conductors and ground-

wires because of the complexity in predicting the conductor’s response to such loads. As 

such, the current chapter assesses the effect of tornado loads acting on conductors on the 

overall response of transmission towers. Then, the behaviour of the conductors under the 

most critical tornado configuration is described. In addition, the sensitivity of the lines’ 

behaviour to the magnitude of tornado loading, the level of initial sag, the insulator’s 

length, and lines self-weight is investigated. 

1.5.4 Chapter 5 – Failure Analysis of Guyed Transmission Lines during 

Tornado Events  

In this chapter, an in-house numerical model simulating lattice towers is developed. This 

is coupled with the numerical model of the conductor developed in Chapter 3 together 

with the tornado wind field to form a comprehensive package for the analysis of 

transmission lines under tornado loads. The numerical model is also extended in order to 

predict the tornado velocities at which failure might initiate and to describe the progress 

of collapse under this type of loading. Two different assumptions regarding the post 

yielding behaviour of members under tension are included in the numerical models. Two 

transmission line systems are considered in this chapter as case studies. Using the 

developed numerical models, failure studies are conducted for each transmission line 
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system. For each system, the failure studies included two critical tornado configurations, 

determined in view of previous studies. In addition, each failure study case is repeated 

twice using the two material models describing the post yield behaviour of tensions 

members. The study gives an insight about the resilience of transmission against failures 

when experiencing F2 tornadoes, describe the failure modes under such events, assess the 

effect of different assumptions regarding post yield tension behaviour, and quantify the 

effect of inclusion of geometric nonlinearities in this type of analysis.   

1.5.5 Chapter 6 – Development and Testing of an Aeroelastic Model of a 

Guyed Transmission Line System  

The objective of the current study is to develop and perform a boundary layer wind 

tunnel test of a full aeroelastic model of a guyed transmission line system. The same 

guyed transmission line system that was investigated by the author during his Master 

thesis and in previous chapters of this thesis is used. The aeroelastic model is designed 

for a geometry scale of 1:50 and tested in the Boundary Layer Wind Tunnel Laboratory 

(BLWTL) at the University of Western Ontario, Canada. The aeroelastic model simulates 

the behaviour of four transmission towers with three full spans in between. The model is 

tested using an open exposure conventional boundary layer wind and for different wind 

directions. In addition, the model is tested with and without the transmission lines 

(conductors and ground-wires) to investigate the effect of the lines on the structural 

response of the towers. The results are used to understand the behaviour of transmission 

towers under wind loads and are used to validate the numerical model developed in the 

previous chapters.   
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1.5.6 Chapter 7 – Equivalent F2 Tornado Loading on Lattice Transmission 

Line Systems  

There is a lack of procedures in the design codes and manuals of practice related to the 

estimation of tornado forces on transmission line systems. As such, the purpose of this 

Chapter is to present load cases that simulate the critical effect of F2 tornadoes on tangent 

lattice transmission line structures. The current Chapter builds on the extensive research 

previously conducted on this subject. A main challenge in this application of localized 

wind events is that the forces acting on the structure vary significantly based on the 

location of the tornado and a large parametric study involving varying the tornado 

location has to be conducted for each system to determine critical cases. Critical load 

cases are determined in this Chapter based on parametric studies carried out in previous 

investigations as well as others conducted in the current Chapter. The vertical profile of 

three velocity components associated with each critical load case as well as the horizontal 

profile of the associated transverse velocity along the lines are provided. A procedure that 

will allow practicing engineers to use those profiles for analyzing lattice transmission 

lines under F2 tornadoes is described. Validation of the developed procedure is 

conducted by considering two independent transmission line systems. The results indicate 

that the developed load cases estimates peak internal forces that are either slightly higher 

or 5% less than the values predicted by the detailed parametric studies. 
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2 CHAPTER 2 

ANALYSIS AND BEHAVIOUR OF GUYED TRANSMISSION LINES UNDER 

TORNADO WIND LOADS - CASE STUDIES 

2.1 Introduction  

The 2003 Northwest blackout demonstrated how heavily our societies rely on electricity 

nowadays. Transmission lines are considered the backbone of electricity distribution, 

from the source to the customers. More than 80% of weather-related transmission line 

failures world-wide are attributed to high intensity wind (HIW) events in the forms of 

downburst, microburst, and tornadoes (McCarthy and Melsness 1996). Li (2000) 

mentioned that 90 % of transmission line failures in Australia are caused by HIW events. 

McClure et al. (2008) reported that in many regions of the world, localized high intensity 

winds and icing pose a great risk for transmission lines failures. Ishac and White (1994) 

concluded that of all populated areas in Canada, South western Ontario experiences the 

highest rate of tornadoes. Most of transmission line failures in this area are mainly caused 

by tornadoes. Despite these facts, the codes of practice and design guidelines for 

transmission line structures are based on wind loads resulting from conventional 

boundary layer wind profiles and large-scale events. The conventional wind profile is 

characterized by a monotonic increase in velocity along the height. Wind profiles 

attributed to tornadoes and downbursts have maximum wind speed near the ground, with 

a decrease in the velocity along the height in the case of tornadoes. In addition, a 

significant vertical wind component exists in the tornado wind profile along with the 

tangential and radial wind components. McClure et al. (2008) proposed some simplified 
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design loading cases to account for the effect of localized HIW on transmission line 

supports.    

In the current study, the tornado wind field is obtained from a three dimensional 

computational fluid dynamics (CFD) simulations conducted by Hangan and Kim (2008). 

The numerical tornado models were validated by Hangan and Kim (2008) with field 

measurements recorded by Lee and Wurman (2005) and introduced by Sarkar et al. 

(2005) for the 1998 Spencer South Dakota F4 tornado. The CFD velocity field for 

tornadoes assumes smooth ground surface, and does not include turbulence component. 

Hamada et al. (2010) estimated an F2 tornado velocity field from the CFD data provided 

by Hangan and Kim (2008).  

Very few attempts had been made in the literature to investigate the behaviour and failure 

of transmission line structures during HIW events. Savory et al. (2001) studied the failure 

of a self-supported lattice tower under mathematical models simulating F3 tornadoes and 

microbursts. The mathematical tornado wind model used by Savory et al. (2001) was 

developed by Wen (1975). The behaviour and failure analysis of transmission lines under 

downburst wind loads were conducted by Shehata et al. (2005), Shehata and El Damatty 

(2007), and Shehata and El Damatty (2008). The modelling and assessment of the 

behaviour of transmission lines under F2 and F4 tornadoes were conducted by Hamada et 

al. (2010) and Hamada and El Damatty (2011). In these studies, a three dimensional 

nonlinear finite element model simulating the towers and six spans of the conductors was 

developed to assess the structural performance of guyed transmission lines under F2 and 

F4 tornado loading.  
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In the current study, the nonlinear three dimensional finite element model developed by 

Hamada et al. (2010) and Hamada and El Damatty (2011) is used to conduct an extensive 

parametric study to assess the behaviour of two guyed transmission line systems under 

different wind fields. These wind profiles include F2 tornado wind field, conventional 

boundary layer wind field, CIGRE` (2009) recommended tornado loading cases, and 

downbursts. The behaviour of the two-guyed towers is assessed for all these wind profiles 

in a quasi-static manner. The study compares between the peak member forces resulting 

from F2 tornado and the other loading cases used in the design by utility companies. The 

objective is to assess the significance of F2 tornado loading on tangent transmission lines 

in comparison with the loading cases recommended by the design codes, manual of 

practices, and other HIW events such as downbursts. In addition, a comparison is carried 

out between the forces in the guyed transmission towers’ cross-arms, resulting from F2 

tornado, and those obtained in the case of broken-wire under F2 tornado wind loads. One 

bundle of conductors for one span adjacent to the tower of interest, are removed. Such 

failure case is noticed by industry experts after tornado events. 

2.2 Finite Element Modelling of Transmission Line Systems  

Two guyed transmission line systems are used in the current study to assess the behaviour 

under F2 tornadoes. The two systems are modelled using nonlinear three dimensional 

finite element models developed by the commercial software SAP 2000. The first guyed 

transmission tower is labeled as T1 and has a line span of 480 m. The conductor and 

ground-wire sags are 20 m and 13 m, respectively. The second guyed transmission tower 

is labeled as T2. The tower height is 46.75 m and is supported by four supporting guys 
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with a line span of 460 m. The conductors and ground-wires sags are 16 m. Both towers 

are shown in Fig. 2-1.  

 

Fig. 2-1 Geometry of the Modelled Guyed Towers  

The simulated transmission line system consists of the tower of interest and two towers 

from each side. As such, the three dimensional nonlinear finite element model includes 

five towers and six spans with hinged supports at the two far ends of the conductors. This 

number of spans was recommended by Shehata et al. (2005) and Hamada et al. (2010) to 

accurately account for the force transferred from both the conductors and the ground-

wires to the tower of interest (middle tower). More details regarding the three 

dimensional nonlinear finite element model of the two transmission line systems are 

provided by Hamada et al. (2010) and Hamada and El Damatty (2011). 

Tower T2 Tower T1  

Tower T2 

Tower T1 
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2.3 F2 Tornado  

2.3.1 F2 Tornado Wind Field  

 

Fig. 2-2 Vertical Profile of Tangential Component for Different Radial Distances 

from Tornado Centre 

The velocity wind field associated with F2 tornadoes is described in details in Hamada et 

al. (2010) and Hamada and El Damatty (2011). The tornado wind field is obtained from a 

three dimensional computational fluid dynamics (CFD) simulation conducted by Hangan 

and Kim (2008). The CFD analyses were conducted in a steady state manner with smooth 

surface. Accordingly, the F2 tornado wind field does not vary with time. The velocity 

field Vm (r,θ,z) has a three dimensional spatial variation and is given as a function of the 

cylindrical coordinates r, θ, and z. The velocity field Vm (r,θ,z) has three velocity 

components: the radial Vmr (r,θ,z), the tangential Vmt (r,θ,z), and the axial Vma (r,θ,z).The 

maximum tangential velocity of the F2 tornado is 78 m/sec and occurs at a radius r = 96 
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m and a height Z = 19 m. The maximum radial velocity is 49 m/sec and corresponds to a 

radius r = 146 m and a height Z = 6 m. The maximum axial velocity is 37 m/sec and 

corresponds to a radius r = 171 m and a height Z = 127 m. The vertical profiles of the F2 

tornado’s tangential velocity component for different radial distances from the tornado 

centre are shown in Fig. 2-2. 

2.3.2 Evaluation of the Tornado velocity Components at Various Locations 

of the Transmission Lines System  

The horizontal projection of a transmission tower and an arbitrary location of F2 tornado 

are shown in Fig. 2-3. The following steps are followed to evaluate the tornado velocity 

components at the arbitrary point “a” shown in Fig. 2-3:  

1- The centre of the studied transmission tower is considered as the origin of the set of 

axes used in the analysis.  

2- The tornado centre relative to the centre of the tower is defined by the polar 

coordinates R and θ, as shown in Fig. 2-3.  

3- Knowing R and θ and the coordinates of point “a”, the coordinates Rfa and θfa, shown 

in Fig. 2-3, can be evaluated. 

4-  Knowing Rfa and θfa, and their equivalent Rma, Zma and θma in the CFD model scale, 

the 3-D set of F2 tornado data can be used to obtain the model radial velocity, 

tangential velocity, and axial velocity components of point “a”. More details are 

provided by Hamada et al. (2010). 
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The values of Rma, Zma and θma might not coincide with any of the coordinate values at 

which the CFD data is provided. Accordingly, a three dimensional linear interpolation 

scheme is conducted between the CFD data points to obtain the three velocity 

components at point “a”. The three dimensional linear interpolation scheme has more 

stringent constraints in the Z-direction due to the significant variation of the wind profile 

along the height as shown in Fig. 2-2. The evaluation of the three velocity components 

for conductors, ground-wires, and supporting guys nodes is conducted in a similar way. 

 

Fig. 2-3 Horizontal Projection of Transmission Tower and F2 Tornados 

2.4 ASCE No. 74 Guidelines Wind Field  

In the current section, the considered transmission line systems are analyzed using the 

recommended wind load procedures described in the ASCE (2010). Eq. (2-1) provided in 

the ASCE (2010) guidelines is used to calculate the wind forces acting on the tower and 

the conductors’ nodes in a certain direction “i”. Fwi is the wind force in the “ i ” direction, 
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ρa   is the air density = 1.226 kg/m3; Kzt is the topographic factor; Vi is the 10 m reference 

3-sec wind speed in the “i” direction m/sec, Ai is the projected area of all the elements 

connected to the considered node and perpendicular to the “ i ” direction, G is the gust 

response factor, and Cf   is the drag force coefficient . The values of Kzt are taken equal to 

1, as also recommended by ASCE (2010). A value of force coefficient Cf = 1 is assumed 

for the conductors as recommended by ASCE (2010). As For the tower, the values of 

force coefficient Cf are obtained from Table 2-4 and Appendix G of the ASCE (2010). 

The wind velocity exposure coefficient, Kz, used in Eq. (2-1), modifies the wind speed to 

account for height and terrain effects. Exposure C, open terrain with scattered 

obstructions with heights less than 9 (m), is used in the current study. ASCE (2010) 

recommends Eq. (2-2) to calculate the exposure coefficient Kz.  

21
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  for 10 ≤  Zh ≤ Zg          Eq. 2-2 

Where Zg is the gradient height (274.32 m for exposure C); α is the power law exponent 

(9.50 for exposure C); and Zh is the effective height. The effective heights of the 

conductors and ground-wire are approximated as the height above ground of the 

conductors and ground-wire attachment points to the transmission tower. The gust 

response factor, G, used in the current study was introduced by Davenport (1980). ASCE 

(2010) modified Davenport (1980) equations to account for 3-sec gust wind speed, as the 

original equations were based on 10-min average wind speed. The gust responses 
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equations take into account the dynamic effect and lack of correlation of gusts on the 

wind response of transmission line components. Eq. (2-3) and (2-4) determine the 

transmission lines and transmission tower gust response factors, respectively.  

2

1 2.7 w

w

E B
G

Kv


   Eq. 2-3 

2

1 2.7 t

t

E B
G

Kv


   Eq. 2-4 

Where,  

1

33
4.9

FM

h

E k
Z

 
  

 
      

1

0.8 '
1

w

s

B
S

L





          
1

0.56
1

t
h

s

B
Z

L





 

Where Zh are the effective heights of the transmission lines for the calculation of Gw in ft, 

and the effective heights of transmission tower nodes for the calculation of Gt in ft, S’ is 

the design wind span in ft. Kv is the ratio between 3-sec gust wind speed to the 10-min 

average wind speed and is equal to 1.43, αFM, k, and Ls are wind parameters based on 

exposure category (Exposure C) and are equal to 7, 0.005, and 220, respectively. 

2.5 CIGRE` Overhead Lines Design Guidelines Wind Field  

The transmission line systems considered in this study, are also analyzed using HIW 

analysis procedures recommended by CIGRE`. The CIGRE` committee was developed in 

2004 with a primary objective to identify the characteristics of sever windstorms and 

HIW impact on overhead lines (CIGRE` 2009). Wind speeds exceeding 45 m/sec are 
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defined as HIW and can take the form of Cyclones, Hurricanes, Typhoons, Tornadoes, 

Downbursts, and Microburst’s. The CIGRE` guideline recommended an average F2 

tornado wind speed of 60 m/sec. Transmission Lines facing higher intensity tornados, 

such as F3 and F4, are considered not economically or structurally adequate to be 

designed against failure. This recommended wind speed will lead to a design dynamic 

wind pressure of 2.2 kPa, using the recommended equations and factors of CIGRE` 

(2009). The wind pressure would be applied as a uniform pressure to the transmission 

tower. In addition, a torsional wind case, of the same wind pressure, should be applied to 

the transmission tower as shown Fig. 2-4. According to CIGRE` (2009), no wind loads 

are to be applied to the lines (conductors and ground-wires) in both cases. 

2.6 Evaluation of Tornado and Wind Forces on Transmission Line Nodes  

The ASCE (2010) is used in the current study to calculate the wind forces acting on the 

towers', conductors', ground-wires', and supporting guys' nodes. The shielding effects and 

factors for the vertical wind component of multiple lattice configurations in a row is a 

debatable issue in the literature and design codes. Georgiou and Vickery (1980) 

conducted a comprehensive study for up to 10 frames in any group with five different 

values of solidarity ratios and three aspect ratios. The study concluded that the multiple 

frame shielding coefficients that are present in codes of design (Canada, U.K., N.Z., 

Switzerland, Belgium, and Germany) are not conservative in most of the cases. 

Accordingly, the method described by ASCE (2010) to determine the wind force on each 

member independently (excluding shielding) is used to calculate the vertical forces on 

tower nodes. This method is based on geometry between the wind velocity vector and the 
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axis of the member to calculate the member’s projected area. More details regarding the 

evaluation of tornado and wind forces on the transmission line components are provided 

by Hamada et al. (2010) and Hamada and El Damatty (2011).   

 

Fig. 2-4 Recommended Torsional Wind Load Case Recommended by CIGRE`  

2.7 Parametric Study  

An extensive parametric study is conducted to assess the behaviour of guyed transmission 

lines under F2 tornado wind loads. The study is conducted in a quasi-static manner. The 

self-weight of the towers, conductors, ground-wire, and insulators strings are included in 

the analyses. 240 analysis cases are considered for each guyed transmission line. Each 

analysis corresponds to a specific tornado location, defined by the polar coordinates R 

X 

Y 



38 

 

 

and θ, as shown in Fig. 2-3. The parametric study is conducted for both transmission lines 

by covering the following values for R = 0.0, 25, 50, 75, 90, 100, 125, 150, 200, 250, 

300, 350, 400, 450, and 500 m. For each relative tornado distance R, 16 different values 

of θ are used. 

2.7.1 Analysis of Transmission Line Type T1 under F2 Tornado, ASCE 

2010, CIGRE`, and Downburst Wind Fields  

The results of this extensive parametric study, in terms of peak internal forces for various 

members of tower T1 are provided in Table 2-1. Different zones at which the internal 

forces are reported are illustrated in Fig. 2-1 for towers T1 and T2. The terms diagonal 

(1) and Diagonal (2) denoted in Tables 2-1 and 2-2 represent diagonal members located 

in plans parallel and perpendicular to the lines, respectively. Zone 6 for tower T1 includes 

the guys and conductors’ cross-arms and the internal forces are reported in an upper and a 

lower chord members for each cross-arm. Similarly, the conductors’ cross-arms is located 

in Zone 4 for tower T2. 

In Table 2-1, a comparison is carried out between the internal forces resulting from F2 

tornado and those resulting from normal wind loads (ASCE 2010), CIGRE` (2009), and 

downburst loading. According to the electrical company, this particular tower was 

designed using a reference wind speed of 32.6 m/sec. Thus, the peak forces in the 

members are calculated under normal wind loads using the procedures explained in 

Section 4 with reference wind speed of 32.6 m/sec. The members' peak forces due to the 

two CIGRE` F2 recommended cases of loading are also provided in Table 2-1. The 

members' internal forces due to downburst wind loads, with a downburst jet velocity of 
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70 m/sec were provided by Shehata and El Damatty (2007). In the two last columns of 

the table, the strength capacity of the members, as well as, the design compression forces, 

as provided by the electrical company, are shown. 

 

Table 2-1 Results of the Parametric Study due to F2 Tornado, Downburst, 

Conventional Wind, and CIGRE` Wind 
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2.7.2 Analysis of Transmission Line Typ2 T2 under F2 Tornado, ASCE 

2010, and Downburst Wind Fields  

In this section, the extensive parametric study is repeated for tower T2. The results in 

terms of peak internal forces for some selected members are shown in Table 2-2. In Table 

2-2, a comparison is carried out between the internal forces resulting from F2 tornado and 

those resulting from normal wind loads and downburst loading. According to Electrical 

Company, this particular tower was designed using a reference wind speed of 40 m/sec. 

The internal forces due to downburst wind loads, with a downburst jet velocity of 70 

m/sec are calculated and provided in Table 2-2. The peak forces in the members are 

calculated under normal wind loads with reference wind speed of 40 m/sec. The last four 

columns of the table, the design compression and tension forces, as calculated using 

ASCE 10-97, are provided.   

2.7.3 Discussion  

A comparison is carried out between the peak forces due to the F2 tornado to those 

resulting from normal wind load, downburst wind field, and CIGRE` recommended wind 

fields. The following observations can be drawn from the results shown in Tables 2-1 and 

2-2: 

 Members’ force due to F2 tornado exceed the normal wind, downburst, CIGRE` 

forces. 

 Members’ force due to the two equivalent tornado loads recommended by C CIGRE` 

exceed the conventional wind forces.    
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 For the majority of members for tower T1, the F2 tornado forces are found to be less 

than the capacity of the members.  

 For tower T2, specifically the chord members, the resulting peak internal forces of the 

F2 tornado and the downburst are found to be higher than the capacity of the 

members. 

Table 2-2 Results of the Parametric Study due to F2 Tornado, Downburst, and 

Conventional Wind Fields (Tower T2)   

 

2.8 Analysis of Transmission Line System – Broken Wire  

This section assesses the behaviour of transmission line structures in the case of a broken 

wire under F2 tornado wind loads. For both transmission lines, the nonlinear staged-
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construction analyses option provided by the commercial software SAP 2000 are 

conducted on three steps. Each stage starts with initial conditions, including previously 

defined loads, equal to the end of the previous stage.  First, the analysis is conducted for 

the whole transmission line system to adjust the pretension force in the supporting guys, 

conductors, and ground-wire. The nonlinear stiffness matrix, which includes tension 

stiffening, is calculated. The displacements, stresses, and loads from the end of this case 

are carried forward to the second step. Then, the nonlinear analysis is conducted using the 

applied F2 tornado wind loads. The F2 tornado wind loads are applied on the whole 

transmission line system. Third, the specific conductors are removed from the model. In 

the current analysis, one bundle of conductors for one span adjacent to the tower of 

interest, are removed. Again, the nonlinear analysis is conducted and results are shown in 

the following sections. 

2.8.1 Tower T1  

Two cases are chosen to assess the behaviour of tower type T1 during the case of a 

broken wire. First, the tornado is assumed to be near the tower of interest where R = 125 

m and θ = 90o. Second case, the tornado is assumed to be far from the tower of interest 

with R = 450 m and θ = 90o. These two cases are chosen to simulate the two extreme 

cases where the tornado is close and far from the tower of interest. These critical cases 

were recommended in previous studies conducted by Hamada et al. (2010) and Hamada 

and El Damatty (2011). The results of the broken-wire cases can be observed 

significantly in the conductors’ and supporting guys’ cross-arm zone. Thus, Table 2-3 

shows the results of the two broken wire cases in the cross-arms zone only. 
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2.8.2 Tower T2  

Two cases are chosen to assess the behaviour of guyed tower T2 during the case of a 

broken wire. Based on the same analogy used in Tower T1, the tornado relative location 

of the two cases are R = 100 m with θ = 90o, and R = 400 m with θ = 90o. These two 

critical cases are recommended by El Damatty and Hamada (2013) for transmission 

tower T2. 

2.8.3 Broken Wire Discussion  

The following observations can be drawn from the results shown in Tables 2-3 and 2-4: 

 The members’ peak forces resulting from the broken wire cases are significantly 

higher than the members’ peak forces with all conductors attached to the tower of 

interest. For the supporting guys’ cross-arm chord members, for tower T1, the peak 

internal forces due to the broken wire cases are approximately 300% higher than the 

normal tornado loading cases.    

 Some members become subjected to compression force, such as conductors’ cross-arm 

upper-chord members F72 and F1228. These upper chord members were originally 

designed for zero compression forces as shown in Tables 2-1 and 2-2, respectively.  

 For the broken wire cases, the members’ peak forces due to tornado configuration of R 

= 450 m and θ = 90o and R = 400 m with θ = 90o are higher than the members’ peak 

force due to tornado configuration of R = 125 m and θ = 90o and R = 100 m with θ = 

90o. For cross-arms’ zone, the far tornado location from the tower of interest is more 

critical than a closer tornado in the case of broken wire. This is due to: 
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o The fully loaded adjacent spans.  

o The unbalanced loading of the adjacent spans of the tower of interest. 

o The out-of-plane bending effect on line’s cross-arms due to the broken wire. 

Table 2-3 Results of Broken Wire Cases – Tower T1 

 

Table 2-4 Results of Broken Wire cases – Tower T2  

 

2.9 Conclusion  

The following conclusions can be drawn from the study conducted: 
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 Comparing the internal forces due to F2 tornado to the those resulting from 

conventional wind load and the high intensity wind load cases recommended by 

CIGRE`, it is concluded that the F2 tornado forces exceed the peak forces 

resulting from these loading cases.  

 Members’ peak forces due to F2 tornado exceed the peak internal forces 

developed due to downburst wind having a jet velocity of 70 (m/sec).  

 Despite the fact that the two-guyed towers were designed in nearly similar 

environmental conditions, there is a significant difference in terms of the peak 

internal forces due to F2 tornado wind loads and members resistances.  

 For the supporting guys’ and conductors cross-arms members, the peak internal 

forces due to the broken wire cases during F2 tornado can be up to 300% higher 

than the F2 tornado peak internal forces. Some of these cross-arms members 

become subjected to relatively high compression forces, while they were 

originally designed for zero compression forces.  

 For the broken wire cases, the study reveals that a relatively far tornado location 

from the tower of interest is more critical than a relatively closer tornado, 

especially for guys’ and conductors cross-arms members.  
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3 CHAPTER 3 

NONLINEAR FORMULATION OF FOUR-NODED CABLE ELEMENT AND 

APPLICATION TO TRANSMISSION LINES UNDER TORNADOES 

3.1 Introduction 

Many Civil Engineering structures are supported by cables such as cable-stayed bridges, 

cable roofs, and suspension bridges. Guyed transmission towers are another examples of 

cable supported structures where the stability of the structures is provided through a pin 

support at the base and supporting guys attached to the top region of the towers. In 

addition, transmission line towers support the electrical conductors usually through cross-

arms and insulators.  

Cables are nonlinear structural elements as they are very flexible and can be subjected to 

large displacements that exceed significantly their cross-sectional dimensions. The 

behaviour of cables are affected by the magnitude of the initial prestressing forces that 

are necessary in order to remain stable under their own weights (Han and Lee 2003). The 

flexural stiffness of cable elements is usually neglected and those elements possess 

stiffness only in the axial direction. This axial stiffness depends on the initial prestressing 

force, the initial sagging and varies nonlinearly with the magnitude of the applied loads. 

The behaviour of cables becomes even more challenging when the cables have a curved 

shape similar to the case of electrical conductors (transmission wires) spanning between 

transmission towers. 
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An approach for modelling curved conductors involves using straight linear three 

dimensional truss elements. However, this approach would require employing a large 

number of elements to simulate the curved shape of the conductors. Thus, curved 

elements are best suited to simulate curved cables with large sag and a catenary shape as 

stated by Desai et al. (1988). Desai et al. (1988) also concluded that a fine mesh of two-

noded curved elements might not be satisfactory to model cables even under uniform 

loading. Cables modeled by many standard two-noded elements have convergence 

difficulties because displacements may be in the same order of the structure dimensions 

(Cook 2002). Felippa (1974) found that a parabolic three-noded curved element would be 

too stiff axially and poorly approximates a catenary shape. Felippa (1974), Haase (1979), 

and Schrefler et al. (1983) concluded that a very fine mesh of two-noded elements is 

required for non-uniformly distributed loads.  

The objective of this study is to develop a numerical model that can simulate the 

behaviour of transmission line conductors under tornado loading. Since such a loading is 

expected to be highly non-uniform, the use of high-order element is preferred for such a 

case. A four-noded three dimensional curved cable element that uses a cubic shape 

function to interpolate both the displacements and the geometry was introduced by 

Koziey (1993). However the formulation of this powerful cable element was limited to 

the linear range of behaviour. After describing the element and its liner formulation as 

outlined by Koziey (1993), the task is taken in this study to extend its formulation by 

including the geometric nonlinear effect. A validation for this development is then carried 

out. Details related to the specific modelling of transmission line conductors are then 

presented. In particular, the study discusses the formulation of a nonlinear spring system 



51 

 

 

simulating the rigidity of the transmission towers and the insulators that support the 

conductors. Using this development, a conductor system of a real transmission line is 

numerically simulated. The model is used to assess the performance of the conductor 

under F2 tornado simulated loads. The importance of accounting for the flexibility of the 

towers and the insulators is then quantified. 

3.2 Cable Element Formulation 

3.2.1 Four-Noded Cable Element and Linear Derivation  

A sketch of the cable element introduced by Koziey (1993) is provided in Fig. 3-1. The 

element was used by Koziey (1993) to model steel reinforcement in concrete sections. 

The coordinate systems used in the element’s formulation are shown in Fig. 3-1, and are 

defined as follows:  

- Global Cartesian coordinate system xr, yr, and zr corresponding to global 

displacements ur, vr, and wr. 

- Curvilinear coordinate ζ tangent to the element.  

- Local dimensional coordinate ξ tangent to the element to define the local axial 

displacement dξ
r, the local strain εξ

r, and the local stress 𝜎𝜉
𝑟.  

A curvilinear transformation based on the curvilinear coordinate ζ is used for geometric 

distortion of the element. The location of any point along the element in the global 

coordinate system is given as 
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Where the cubic interpolation functions 
r

iN  are given as 

 1

9 1 1
ζ    (1 )( )( )

16 3 3

rN         Eq. 3-2 

 2

27 1
ζ    (1 )(1 )( )

16 3

rN         Eq. 3-3 

 3

27 1
ζ    (1 )(1 )( )

16 3

rN         Eq. 3-4 

 4

9 1 1
ζ    (1 )( )( )

16 3 3

rN         Eq. 3-5 

and 
r

ix , 
r

iy  , and 
r

iz  are the global coordinates of the ith node.  

The global displacement ur, vr, and wr are calculated using the nodal global displacement 

degrees of freedom ui
r, vi

r, and wi
r at each of the four nodes. A total of twelve degrees of 

freedom exists per element. The axial displacement dξ
r at any point along the element can 

be written in terms of the nodal degrees of freedom as  
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r

i

r r r r r r

i i

r

i

u

d N v

w

  

 
 

    
 
 

   Eq. 3-6 

The direction cosines (λ1
r  , λ2

r ,  λ3
r ) relate the local coordinate axis ξ to the global axes (xr, 

yr, zr) at any point along the element where axial displacement dξ
r is to be calculated. The 

direction cosines are computed as follows: 
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Fig. 3-1 Cable Element Coordinate and Systems and Nodal Degrees of Freedom 

The local axial strain εξ
r is given by 
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   Eq. 3-10 

The local axial strain can also calculated as εξ
r =  [Br] {dr}. {dr} is the vector of nodal 

degrees of freedom and B-matrix [Br], which is provided in Appendix I, is the strain-
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displacement matrix. The B-matrix contains the derivatives of the shape functions Nr 

with respect to the local dimensional coordinate ξ. Differential dζ in the non-dimensional 

coordinate system is related to differential dξ in the dimensional coordinate system 

through  

2 2 2

dx dy dz
dξ      dζ

dζ dζ dζ

r r r     
       

     
  Eq. 3-11 

Using the chain rule, for derivatives of the shape function can be calculated as follows 

2 2 2

dN dN dζ dN dx dy dz
=     =   /  

dξ dζ dξ dζ dζ dζ dζ

r r ri i i      
      

     
  Eq. 3-12 

The axial stress 𝜎𝜉
𝑟can be calculated as follows 

=E r r

     Eq. 3-13 

Where E is the elastic modulus. It should be noted that for cable elements, the axial strain 

is the most significant parameter and all other strains are neglected.  

The element stiffness matrix [kr] is calculated as 

1 1212 1 22 1 1
   E    dV

T
r r r

x
k B B

 
             Eq. 3-14  

And the load vector {Pr} due to the internal pretension stress σξ
r (due to sagging) is 

calculated as 

 
12 1

     dV
T

r r rP B 
      Eq. 3-15  
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Both [kr]and {Pr} are integrated numerically using the Gaussian Quadrature method. 

Five integration points are used for the numerical integration. The element stiffness 

matrix [kr]and load vector {Pr} can be written in non-dimensional coordinate system dζ 

as follows  

2 2 21

112 12 2 1 1 12
1

dx dy dz
   E         dζ

dζ dζ dζ

r r r
T

r r r rk B B A




 


     
                 

     
   Eq. 3-16 
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   Eq. 3-17 

Where Ar is the cable element cross-section area. 

3.2.2 Geometric Nonlinear Formulation of the Cable Element  

The derivation of the finite element formulation is conducted based on the total 

Lagrangian approach. Using the virtual work approach described by Bathe (1996) and El 

Damatty et al. (1997), the finite element discretization expression, written in matrix form, 

at the kth iteration of load increment t is given by: 

         
( 1) ( 1) ( 1)t k t k t t k

NL SK K u R F
      

 
   Eq. 3-18 

Where nonlinear stiffness matrix  [𝐾𝑁𝐿]12𝑥12 
𝑡(𝑘−1)

 can be obtained as follow  

 
( 1) ( 1) ( 1)

12 12 1 1212 1

Tt k t k t k

NL NL NLx xx
K B E B dV

           

and the numerical integration can be used through the following equation 
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   Eq. 3-19 

El Damatty et al. (1997) developed an approach where the nonlinear B- Matrix can be 

evaluated using the linear B-Matrix and this leads to the following relation:  

( 1)

1 12 1 12 1 12

r rt k r

NL x x x
B B B

            
 

The stress stiffness matrix  [𝐾𝑠]12𝑥12 
𝑡(𝑘−1)

 , which contain the effect of tension stiffening and 

the initial pretension stress, can be obtained as follow  
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and the numerical integration can be applied through the following equation  
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   Eq. 3-20 

Where the matrix 
12 12x

N    is provided in Appendix II.  

The unbalanced load vector    
( 1)t t k

R F


 represents the difference between the external 

forces load vector  
t

R  and the internal forces  
( 1)t k

F


. The internal forces load vector is 

calculated in each iteration using the following equation:  

 
( 1) ( 1) ( 1)

12 1 12 1

Tt k t k t k

NLx x
F B S dV

           

and the numerical integration can be conducted using the following equation  
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    Eq. 3-21 

The full element derivation is provided in Appendix III.  

3.2.3 Steps of Nonlinear Analysis  

The following steps are followed to perform the nonlinear analysis:  

1- At the beginning of the analysis, the initial axial stress 
r

  is equated to the 

pretension stress in the cables associated with its own weight and initial sagging. 

2- The external Load is applied incrementally. At each increment (t), the external 

load vector  
t

R  is calculated.  

3- Iterations are applied within each load increment (t) until convergence is reached. 

For an iteration (k) of a load increment (t), the components of the stiffness matrix 

 
( 1)

12 12

t k

NL x
K


,  

( 1)

12 12

t k

s x
K


, and the internal load vector  

( 1)

12 1

t k

x
F


 at the previous 

iteration are calculated using Eqs. (3-19), (3-20), and (3-21), respectively. 

Gaussian Quadrature method is used with five integration points to perform the 

numerical integration. 

4- Eq. (3-18) is solved to obtain the incremental displacement u , then the total 

displacement is updated. 

5- The incremental strain and stress are then evaluated using the following equations 

    NLB u            Eq. 3-22 
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   E                  Eq. 3-23  

6- The convergence criterion is checked. If the convergence criterion is satisfied, the 

analysis proceeds to step 2 with an updated load increment. If convergence is not 

satisfied, further iterations are conducted as described in step 3. 

A force convergence criterion is applied by calculating the ratio between the unbalance 

force and the total load applied in the considered increment. A fraction of 0.001 of the 

total load is set as a convergence tolerance as recommended by Cook (2002). It was 

recommended by Cook (2002) to use force convergence criterion in such nonlinear 

hardening problems. 

3.3 Finite Element Modelling of Transmission Line’s Cables  

In the current study, the behaviour of a conductor of a generic guyed transmission line is 

assessed using the developed cable element. The purpose is to evaluate the reactions 

provided by the supporting towers under an F2 tornado wind load case. As shown in Fig. 

3-2, the conductor has a span of 480 (m) with properties provided in Table 3-1. The 

numerical simulation of the conductor is provided in Fig. 3-2. Three conductor spans are 

simulated from each side of the tower of interest where the reactions are assessed. The 

three dimensional spring systems, shown in Fig. 3-2, represent the stiffness of the towers, 

which provide support to the conductor. This stiffness results from the combined rigidity 

of the towers and the attached insulators. Because of the large rotations experienced by 

the insulators during tornadoes, the spring system is expected to behave in a nonlinear 

manner. The derivation of this nonlinear spring system is provided below. 
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Fig. 3-2 Finite Element Model for Transmission Line Systems 

Table 3-1  Physical Parameters Employed for Conductors and Ground-wires  

 

3.3.1 Derivation of Spring System  

Fig. 3-3 shows an insulator attached to a cross arm and supporting a conductor. The 

objective of this sub-section is to derive the stiffness of a spring system simulating the 

stiffness at point “B”, where the conductor is attached. The derivation starts by evaluating 

the flexibility matrix at point “A” as follows: 

 

0

0 0

0

xxI xzI

A yyI

zxI zzI

f f

f f

f f

 
 

  
 
 

 

 Where, xxIf  and xzIf  are the transverse and vertical displacement of point “A”, 

respectively, due to unit transverse load applied at point “A”. yyIf  is the longitudinal 

Transmission Line 

Conductor 

Name 
1843.2 MCM 72/7

Nelson ACSR

Wind Span m 480

Diameter mm 40.64

Weight N/m 28.97

Modulus of Elasticity N/m2 6.23x1010

Sag m 20

Parameters 
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displacement of point “A” due to unit longitudinal load applied at point “A”. Similarly, 

zxIf  and zzIf  are the transverse and vertical displacements of point “A”, respectively, 

due to unit vertical load applied at point “A”.  

The insulators are considered to be rigid in the vertical direction and pin connected to the 

tower’s cross-arm and the conductors. They can be replaced by two perpendicular 

nonlinear springs KIY and KIX, in the Y and X direction, respectively. Y and X are the 

longitudinal and transverse directions, respectively. The linear expressions for the spring 

constants KIY and KIX are given by Desai et al. (1995). These are modified in the current 

study to account for the variation of stiffness with the rotation angles of the insulator θL 

and θT. This leads to the following expressions for KIY and KIX:  

1
*

cos( ) 2

I
IY y

I L

W
K P L

L 

  
   

  
  Eq. 3-24 

1 2
*

cos( ) 2

I
IX y

I T X

W T
K P L

L L

  
    

  
 Eq. 3-25 

Where, LI and WI are the length and weight of the insulators, respectively. L and Lx are 

the total and horizontal span lengths of the conductor at the adjacent towers, respectively. 

Py is the weight per unit length of the adjacent conductors, the rotation angles θL and θT 

are as shown in Fig. 3-3, and T is the horizontal component of the conductor pretension 

force.  
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Fig. 3-3 Conductors’ Cross-arms and Insulators Configurations  

The flexibility matrix at point “B”, shown in Fig. 3-3, can be evaluated by adding the 

flexibility of the insulator as follows;  
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 The stiffness matrix at point “B” can be then evaluated by inverting the flexibility matrix 
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The rotation limits of the conductors in the longitudinal and the transverse direction are 

set to 90o; rotations at which the insulators become locked to the tower. Once this limit is 

reached in the longitudinal direction, the insulator stiffness KIY is assigned a value of 

infinity. Similarly, once the rotation limit is reached in the transverse direction, the 

insulator stiffness KIX is assigned a value of infinity. 

3.3.2 Cables Modelling  

The three dimensional isoparametric cable element developed in Section 2 is used to 

model the considered transmission line conductor. Each cable span is divided into ten 

elements. The pretension force, T, is assumed to be constant over the entire length of the 

conductor and can be evaluated calculated using Eq. (3-26), in terms of the sag S, weight 

per unit length Py, and the horizontal wind span of the cable Lx.    

2

8

y xP L
T

S
     Eq. 3-26 

3.4 Tornado Velocity Profile and Loading  

The conductors described above is analyzed under F2 tornado loading. The F2 tornado 

wind field is obtained based on the procedures developed by Hamada et al. (2010) to 

estimate a velocity field for F2 tornadoes from the computational fluid dynamics (CFD) 

simulations conducted by Hangan and Kim (2008).  The analyses are conducted under the 

tornado configuration of R = 125 (m) and θ = 180o, where R is the distance between the 

tornado center to the tower of interest, and θ is the angle shown in Fig. 3-4. The profile of 

the transverse velocity along the six spans conductors is shown in Fig. 3-5. Similar 
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profile for the vertical velocity component is shown in Fig. 3-6. The tornado loads acting 

on the conductors depends on the square of the velocity. Accordingly and in view of 

Figures 3-5 and 3-6, one can conclude that the tornado loads acting on the conductors are 

not uniform in both the transverse and vertical directions. Also, the loads acting on both 

sides of the tower of interest are unequal. This will result in difference in tension forces 

on the adjacent spans of this tower. An unbalanced load results from this difference in 

tension, which will be transferred as force acting along the longitudinal direction of the 

line. 

 

Fig. 3-4  Horizontal Projection of F2 Tornado Located at Relative Distance R = 125 

(m) and θ = 180o 
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Fig. 3-5 Transverse Velocity Profile – Conductors (R = 125 (m), and θ = 180o)  

 

 

Fig. 3-6 Conductors Axial (Vertical) Velocity Profile (R = 125 (m), and θ = 180o) 

3.5 Model Validation  

A validation for the developed in-house numerical model is conducted by comparing its 

results to those obtained using the commercial finite element program SAP 2000 (CSI. 
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Inc. 2010). Each span is modelled using thirty two-noded cable element available in SAP 

2000. The Insulators are modelled using a three dimensional truss element. The 

considered conductor is analyzed under the loading associated with the tornado 

configuration R = 125 (m) and θ = 180o, described above.  The profiles of the deformed 

shape of the conductor obtained from both the SAP 2000 and the in-house numerical 

code are provided in Fig. 3-7. The profiles projected in both vertical and horizontal plans 

are provided in this figure. The figure shows a very good agreement in terms of deformed 

shapes for both models. The conductor longitudinal, transverse, and vertical reactions are 

evaluated at the support simulating the intermediate tower from both the SAP and the in-

house numerical models, and are provided in Table 3-2. Again, the results obtained from 

the two sets of analyses indicate an excellent agreement, thus provide a validation for the 

developed numerical model. 

Table 3-2 In-house and SAP 2000 Conductor’s Reactions Comparison (F2 Tornado 

Configuration R= 125 and θ = 180o)  

 

SAP 2000

Flexible 

Tower + 

Insulators 

Rigid 

Tower + 

Insulators 

Flexible

Tower 

Only

Rigid 

Flexible 

Tower + 

Insulators 

Fx (N) Transverse 15,422 15,557 16,122 15,775 15,571

Fy (N) Longitudinal 6841 6067 25,113 45,876 6155

Fz (N) Vertical 24,855 25,337 25,335 25,664 25,217

In-house Numerical Code

Direction
Conductor's 

Reactions 
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Fig. 3-7  Cable Displacements in Elevation and Plan View using SAP 2000 and 

Current Numerical Code (F2 Tornado R= 125 and θ = 180o)  

3.6 Effect of Conductors’ Supports on the Force Transmitted to 

Transmission Towers  

Having validated the developed numerical model, the study proceeds by conducting a 

parametric study to assess the effect of flexibility of the conductors’ supports on the 

forces transmitted to the towers from the conductors due to F2 tornado.  The following 

four cases are considered in this parametric study: 

a) Case 1: the flexibility of both the towers and the insulators are included in the 

analyses. The springs’ stiffness resulting for both the supporting tower and the 

insulators is calculated and updated at each nonlinear step.    

b) Case 2: the insulators are assumed to be flexible while the towers are assumed to 

be rigid. This represents an assumption that the towers are much rigid compared 

to the insulators.    

c) Case 3: the insulators’ flexibility is neglected. The three dimensional springs 

simulates only the stiffness of the towers.   
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d) Case 4: the springs simulating the towers’ and insulators’ flexibility are replaced 

by hinged support. This case assumes that the tower and insulators are both rigid.  

The results shown in the table indicate that the four assumptions made regarding the 

supports’ rigidity do not affect the values of the reactions in both the transverse and 

vertical directions. Meanwhile, those assumptions affect significantly the values of the 

longitudinal reactions. As shown in Table 3-2, the case involving neglecting the 

flexibility of the insulators leads to an increase in the longitudinal reaction from a value 

of 6841 (N) to 25,113 (N), i.e. about 3.50 times. The assumption of pin support increases 

the longitudinal reaction further to a value of 45,876 (N). Also the results indicate that 

neglecting the flexibility of the towers has a minor effect on the longitudinal reactions.  

3.7 Conclusion  

The formulation of a high order finite cable element is extended in this chapter to include 

the geometric nonlinear effect. The element has four nodes and, therefore, provides a 

cubic interpolation for both of geometry and displacements. Such a high order 

interpolation is quite beneficial in modelling curved cables such as electric conductors 

used in transmission line systems. The element is then used to model transmission line 

conductors under the combined effects of own weight, initial tension and forces 

associated with F2 tornadoes. In this simulation, the conductors’ support are modelled 

using three dimensional nonlinear springs representing the combined stiffness of the 

insulators and the towers. The formulation of these nonlinear springs are derived in this 

chapter. This numerical development is used to assess the effect of boundary condition 

assumptions on the cable reactions, which in turn, are transferred to the transmission 
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towers under an F2 tornado. The results indicate that the boundary conditions have no 

effect on the transverse and vertical reactions while they affect significantly the 

longitudinal reactions. The results also show that it is very important to include the 

flexibility of the insulators and less important to include the flexibility of the towers when 

evaluating longitudinal reactions of the conductors.  
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3.10 Appendix  

3.10.1 Appendix I  

B-matrix [Br]  

3 3 32 4 4 4
1 12 1 2 3 1 2 3 1 2 3 1 2

1 1 1 2 2
3

dN dN dNdN dN dN dN dN dN dN dN dN
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3.10.2 Appendix II  
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3.10.3 Appendix III 

The derivation of the finite element formulation is based on the total Lagrangian 

approach. The virtual work approach described by Bathe (1996) and El Damatty et al. 

(1997) is used. Newton – Raphson (N-R) method is used to conduct the nonlinear 
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analysis. Cables have almost no flexural stiffness. Stress stiffening has to be accounted 

for to avoid singularity in the first cycle of the tangent-stiffness under lateral loading and 

accurately accounts for pretension force due to sagging (slacking) behavior. The solution 

is carried out incrementally. At each load increment, iterations are performed till 

convergence is achieved and the load (R) – displacement (u) curve, shown in Fig. 3-8 is 

established.  

( ) ( 1) ( )   t k t k k

i i iu u u    Eq. 3-27 

Where, 𝑢𝑖
𝑡(𝑘)

 is the total displacement value at the current step k,  𝛥𝑢𝑖
(𝑘)

 is the 

incremental displacement, t for static analysis represents the different intensities of the 

applied load as shown in Fig. 3-8, and k is the iteration number.  

 

Fig. 3-8  Iterations to Convergence at Load Level Rt, Newton – Raphson Method 



72 

 

 

the virtual work expression at the kth iteration of load increment t is given by: 

 ( ) ( )   t k t k O

o oSij d ij dV Rt    Eq. 3-28 

( ) ( 1)   t k t kSij Sij Sij    Eq. 3-29 

Where 𝑆𝑖𝑗𝑡(𝑘−1) is known, and ∆ 𝑆𝑖𝑗 is unknown 

Using Green Lagrangian strain tensor Cook (2002) and Bathe (1996) 

1
          
2

j i m m

i j i j

u u u u
ij

x x x x

    
        

   Eq. 3-30 

Using equations Eq. (3-27) and (3-30) 

     
   

1 1

, , , ,
( )

( 1) ( 1)

, , , ,

           1
   
2               

t k t k

i j i j j i j i
t k

t k t k

p i p i p j p j

u u u u
ij

u u u u

 

 

   
 
   
 

   Eq. 3-31 

Eq. 3-31 can be written as  

( ) ( 1)         t k t k

ij ij ij ije       Eq. 3-32 

Where: 

 ( 1) ( 1)

, , , , , ,

1
                      

2

t k t k

ij i j j i p i p j p j p ie u u u u u u            Eq. 3-33 

, ,

1
             

2
ij p i p ju u       Eq. 3-34 

Substituting Eqs. 3-29 and 3-32 into Eq. 3-28 to get: 
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  ( 1)          (   )   (   )  t k

ij ijSij Sij d e d dV Rt         Eq. 3-35 

Expanding Eq. 3-35 to get:  

           ( 1) ( 1)   (   )              (   )         (   )           (   )  t k t k

ij ij ij ijSij d e dV Sij d e dV Sij d dV Sij d dV Rt              
   Eq. 3-36 

Neglect ∫(∆ 𝑆𝑖𝑗 ) (𝑑(∆ 𝜂𝑖𝑗))  𝑑𝑉 due to its small value  

Substituting  

      ijrs rsSij C e      Eq. 3-37 

Where 𝐶𝑖𝑗𝑟𝑠 is the constitutive matrix, which depends on the material behaviour 

         ( 1) ( 1)   (   )            (   )         (   )     t k t k

ij rs ijrs ij ijSij d e dV e C d e dV Sij d dV Rt               

Eq. 3-38 

Eq. 3-38 is the basic equation to be used in the derivation of the finite element 

formulation for the cable element based on the total lagrangian approach. Using finite 

element discretization 

4

1

     n

i n i

n

u N u


       Eq. 3-39 

Where 𝑁𝑛 are the cubic interpolation functions, ∆𝑢𝑖
𝑛 is the incremental degree of freedom 

in the ith direction (u, v, w) associate with the shape function n.  

Substituting Eq. 3-39 into Eq. 3-33 
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( 1) ( 1)

  , , , , , ,

1
                               
2

n n t k n t k n

ij n j i n i j p i n j p p j n i pe N u N u u N u u N u           
    Eq. 3-40 

Since Eq. 3-38 represents a scalar equation and both 𝑒𝑖𝑗  and 𝑆𝑖𝑗 are symmetric in i and j, 

it is to exchange i and j in any terms of Eq. 3-36 without affect the final value of Eq. 3-

38. Thus,  ∆𝑒𝑖𝑗  can be written as:  

( 1)

  , , ,         n t k n

ij n i j p j n i pe N u u N u      

( 1)

  , , ,          n t k

ij p n i jp p j n ie u N u N       

          ( 1)

  , ,       n t k

ij p jp p j n ie u u N       

                  ( 1)

  , ,       n t k

ij p jp p j n ie u u N            Eq. 3-41 

And  

( 1)

  , ,       n t k

rs p sp p s n re u u N          Eq. 3-42 

Change the dummy variable from p to q: 

( 1)

  , ,       n t k

rs q sq q s n re u u N          Eq. 3-43 

Substituting Eq. 3-41 and Eq. 3-43 into Eq. 3-38 

        

    

( 1) ( 1) ( 1)

, , , ,

( 1) ( 1)

, ,

                               (   )  

                 

t k t k n n t k

sq q s n r ijrs jp p j n i q p ij

t k t k n

jp p j n i p

u N C u N u u dV Sij d dV

Rt Sij u N u dV

  



  

 

            

      

 


     

Eq. 3-44 
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Eq. 3-44 leads to the following equations written in matrix form: 

         
( 1) ( 1) ( 1)t k t k t t k

NL SK K u R F
      

 
   Eq. 3-45 

Where: 

Nonlinear stiffness matrix  [𝐾𝑁𝐿]12𝑥12 
𝑡(𝑘−1)

 can be obtained as follow  

   
( 1) ( 1) ( 1)

12 12 1 1212 1

Tt k t k t k

NL NL NLx xx
K B D B dV

           

and the numerical integration can be used through the following equation 

 
1

( 1) ( 1) ( 1)

12 12 1 12
1 12 1

2 2 2

dx dy dz
   dζ

dζ dζ dζ

T r r r
rt k t k t k

NL NL NLx x
x

AK B E B
  



   
     

      
  

    
  

   Eq. 3-46 

Where  

( 1)

1 12

r rt k r

NL x
B B B

              
 

Stress stiffness matrix  [𝐾𝑠]12𝑥12 
𝑡(𝑘−1)

 , which contain the effect of tension stiffening and the 

initial pretension stress, can be obtained as follow  

 
( 1) ( 1)

, ,12 12 12 12

t k t k

s n i n jx x
K S N N dV

         

and the numerical integration can be used through the following equation  

 
1 2 2

( 1)

, ,12 12 12
1

2

12

dx dy dz
   dζ

dζ dζ dζ

t k r

s n i n j x

r r r
r

x
K N AN





     
      

     
      Eq. 3-47 
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The unbalanced load vector    
( 1)t t k

R F


  , as shown in Fig. 3-8, contains of the 

external forces load vector  
t

R  and the internal forces  
( 1)t k

F


. The internal forces load 

vector is calculated in each iteration using the following equation:  

 
( 1) ( 1) ( 1)

12 1 12 1

Tt k t k t k

NLx x
F B S dV

           

and the numerical integration can be used through the following equation  

 
1

( 1) ( 1)

12 1 1 12

2

1

2 2

dx dy dz
   dζ

dζ dζ dζ

r r r
t k t k r

NLx x

rF AB 
 



     
      


   

    
    Eq. 3-48 
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4 CHAPTER 4 

BEHAVIOUR OF TRANSMISSION LINE CONDUCTORS UNDER TORNADO 

WIND LOADS  

4.1 Introduction  

Tornadoes are high intensity wind (HIW) events that produce strong and damaging wind 

forces in various directions. Those events are localized and have a narrow width. Most 

structures are not designed to resist tornado loads since the probability of being exposed 

to a tornado is quite small. This is not the case of long span structures like transmission 

lines that extend for kilometers. When a tornado occurs at a transmission line location, 

the probability that it hits one of the towers is quite high. The failure of one tower can 

trigger a cascade failure because of the unbalanced loads resulting from the conductors’ 

tension. Dempsey and White (1996) reported that 80% of all weather related transmission 

line failures worldwide are due to HIW events. Despite this fact, very little information 

about tornado loads is available in transmission line codes of practice and guidelines. The 

limited information available in some codes ASCE (2010) and CIGRE` (2009) states that 

the tornado forces acting on the conductors can be neglected. The reason behind that, as 

stated in those guidelines, is that the prediction of the conductor response to such loads is 

complicated. As such, the purpose of the current study is to assess the effect of tornado 

loads acting on conductors on the overall response of transmission towers. The study is 

conducted numerically using results of computational fluid dynamics (CFD) simulations 

for the tornado wind field and finite element modelling for the conductors. The CFD 

simulations were conducted by Hangan and Kim (2008) and validated using field 
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measurements reported by Sarkar et al. (2005) and Lee and Wurman (2005) for the 1998 

spencer South Dakota F4 tornado and the 1999 Mullhall F4 tornado, respectively. The 

CFD data was processed by Hamada et al. (2010) to simulate the wind field for F2 

tornadoes. The finite element modelling of the conductors is based on the four-noded 

three dimensional curved cable element that was developed by Koziey (1993) and then 

extended in Chapter (3) to include the geometric nonlinear effect.  

The chapter starts by describing the tornado wind field. It focuses on F2 tornadoes since 

the majority of tornadoes are within or less than this level, and it is not practical to design 

structures to resist higher levels of tornadoes (ASCE 2010 and CIGRE` 2009). Real 

transmission towers are numerically simulated and then analyzed with and without the 

inclusion of the lines (conductors and ground-wires). The results are used to assess the 

importance of including the lines in the analysis of transmission lines under tornado 

loads. The behaviour of the conductors under the most critical tornado configuration is 

described. Finally, the sensitivity of the conductors’ behaviour to the magnitude of 

loading, the level of initial sag, the insulator string’s length, and the lines self-weight is 

assessed. 

4.2 F2 Tornado Wind Field on Tower and Conductors  

The current study assess the forces transferred from the lines (line’s reactions) to the 

supporting towers under F2 tornado wind loads. Two main components are essential to 

conduct the current study: a) the F2 tornado wind field, and b) the modelling of 

transmission line systems used to assess the effect of the conductors on the overall 

behaviour. The current section summarizes the tornado wind field and the following 



79 

 

 

section discusses the nonlinear three dimensional finite element model of the 

transmission line system. The wind field used in the current study is based on the 

procedures developed by Hamada et al. (2010) to estimate a velocity field for F2 

tornadoes from the computational fluid dynamics (CFD) simulations conducted by 

Hangan and Kim (2008). The CFD analyses are conducted with smooth surface and the 

resulting tornado wind field represents the steady state, i.e. does not vary with time. The 

velocity field V(r, θ, z) has a three dimensional spatial variation and is given as a function 

of the cylindrical coordinates r, θ, and z. The tornado velocity field has three velocity 

components: the radial velocity Vr (r, θ, z), the tangential velocity Vt (r, θ, z), and the 

axial velocity Va (r, θ, z). The maximum tangential velocity of F2 tornado is 78 (m/sec) 

and occurs at a radius r = 96 (m) and a height z = 19 (m). The maximum radial velocity is 

49 m/sec and corresponds to a radius r = 146 m and a height z = 6 m. The maximum axial 

velocity is 37 m/sec and corresponds to a radius r = 171 m and a height z = 127 m. 
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Fig. 4-1 Vertical Profile of Tangential Velocity Component for Different Radial 

Distances from Tornado Center (F2 Tornado)  

 

Fig. 4-2 Variation of the Three Velocity Components of F2 Tornado along the 

Height at Distance 100 (m) from Tornado Center 

In order to gain an insight about the F2 tornado wind field, the profile of the tangential 

velocity component along the height is plotted in Fig. 4-1 for different values of r, where 

r is the distance from the tornado center. The near ground region, Z less than or equal 100 

(m), is the main interest of transmission line design. In addition, the vertical profile of the 

three velocity components for radii r = 100 (m) and r = 150 (m) are provided in Fig. 4-2 

and 4-3. The dotted lines shown in these figures indicate the location of the transmission 

lines (conductors) for the two transmission towers considered in the current study. As 

shown in the figures, the tornado wind profile is significantly different than the 

conventional boundary layer wind profile. The peak velocities are close to the ground and 

the velocities change direction with height. The tornado wind profiles in the tangential, 
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radial, and vertical directions are different for each distance r from the tornado center. 

The evaluation of the F2 tornado wind forces on the lines is described in detail by 

Hamada et al. (2010) and Hamada and El Damatty (2011). 

 

Fig. 4-3 Variation of the Three Velocity Component of F2 Tornado along the Height 

at Distance 150 (m) from Tornado Center 

4.3 Description of Transmission Lines and Finite Element Model  

Two different transmission lines are selected to assess the forces transferred from the 

lines to the supporting towers under F2 tornado wind loads. The first guyed transmission 

line is labeled as L1 and has a line span of 480 (m). Two conductors and one ground-wire 

are connected to the supporting guyed towers T1 as shown in Fig. 4-4. The tower height 

is 44.39 (m) and is supported by four guys attached to the tower guy’s cross-arms at an 
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elevation of 38.23 (m).  The geometric and material properties of the conductors and 

ground-wires are provided in Table 4-1. The second guyed transmission line is labeled as 

L2 and has a line span of 460 (m). The guyed tower height is 46.57 (m) and is supported 

by four guys attached to the tower bridge. Three conductors and two ground-wire are 

connected to tower T2 as shown in Fig. 4-4. The conductors in transmission lines L1 and 

L2 are connected to the tower cross-arms using a 4.27 (m) insulators. The geometric and 

material properties of the conductors and ground-wires are provided in Table 4-1. 

 

 

Fig. 4-4 Geometry of the Modelled Guyed Transmission Lines  

    

T1 

T2 
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Fig. 4-5  Cable Element Coordinate and Systems and Nodal Degrees of Freedom  

The tower of interest refers to the middle tower as shown in Fig. 4-4, where the 

conductors’ forces transferred to the supporting tower are studied. The modelling of the 

conductors is based on the four-noded cable element developed in Chapter (3) and shown 

in Fig. 4-5. It follows the same procedures adopted in Chapter (3) where the stiffness of 

the towers and insulators are simulated using a three dimensional nonlinear spring 

system. Three spans from each side of the tower of interest are included in the analysis as 

suggested before by Shehata et al. (2005) and Hamada (2009). The forces in the 

intermediate spring obtained from the nonlinear analyses are evaluated and then reversed 

representing the effect of the conductors on the supporting towers when the system is 

subjected to an F2 tornado. These forces have three components: a) transverse component 

associated with drag loads, b) longitudinal component related to the nonlinear behaviour 

of the conductors and resulting from the differential tension between the two span 

adjacent to the tower, and c) vertical component associated with the lift loads. These 

forces are referred to as lines’ (conductors) reactions in the rest of the study. The tower is 

analyzed under the combined effects of the conductors’ forces and the tornado forces 
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acting on the main body of the tower. More details about the three dimensional nonlinear 

finite element model of the two transmission line systems are provided by Hamada et al. 

(2010) and Hamada and El Damatty (2011). 

Table 4-1 Physical Parameters Employed for Conductors and Ground-wires  

 

4.4 Effect of Conductors on the Transmission Towers Behaviour 

 

Fig. 4-6 Tornado Parameters (Configurations) R and θ 

Conductor Ground-wire Conductor Ground-wire 

Name 
1843.2 MCM 72/7

Nelson ACSR

9 mm Grade 1300

Steel Skywire 

1Kcmil 4x495

0.85'' (22x7) ACSR

3/8''

Steel (GR180)

Wind Span m 480 480 460 460

Diameter mm 40.64 9 21.59 9.53

Weight N/m 28.97 3.9 35.83 3.9

Modulus of Elasticity N/m2 6.23x1010 1.86x1011 5.177x1010 2x1011

Sag m 20 13.54 16 16

L2 Lines 
Parameters 

L1 Lines
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Fig. 4-7 Geometry of Guyed Tower T1 – Transmission Line L1  

The importance of considering the conductors and ground-wires in the analysis of 

transmission line systems under tornado loading is assessed in this section. ASCE (2010) 

states that tornado loading applied to the lines can be neglected because of the small 

tornado path widths (150 m in the case of the F2 tornado) and the complexity of the wind 

force mechanism applied to the lines. Extensive parametric studies are conducted for 

transmission line systems L1 and L2. For each system, the parametric study is repeated 

twice; with and without considering the tornado loads acting on the lines (conductors and 

ground-wire). The difference between the two sets of analyses conducted for each system 
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represents the effect of the conductor forces. Such a study will assist in assessing the 

validity of the recommendation made in some codes of practice for neglecting such 

forces. Similar to the investigation done by Hamada et al. (2010) and Hamada and El 

Damatty (2011), the parametric study for each transmission line system involves a large 

number of quasi-static analyses by considering different values for the tornado 

configurations (R and θ) as shown in Fig. 4-6; R and θ define the tornado location relative 

to the tower of interest. Combinations of thirteen values for R and sixteen values for θ are 

considered in each parametric study. The considered values for R are 50, 75, 90, 100, 

125, 150, 200, 250, 300, 350, 400, 450, and 500 (m) and for the angles θ are 0, 30, 45, 60, 

90, 120, 135, 150, 180, 210, 225, 240, 270, 300, 315, and 330o. 

 

Fig. 4-8 Geometry of Guyed Tower T2 – Transmission Line 2 
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Table 4-2 Results of the Parametric Study Conducted for Transmission Tower T1 

 

The results of the parametric studies conducted for transmission line systems L1 and L2 

are provided in  

Percentage

No. Type (W.L. - WO.L.)/W.L.

Axial 

(kN)

Tornado

Configuration 

Axial 

(kN)

Tornado

Configuration 
%*

R = 125 R = 100

θ = 330 θ = 270 

R = 75 R = 90

θ = 150 θ = 330

R =125 R =125

θ = 240 θ = 240

F141 Chord R =  125 R =  90

θ = 30 θ = 330

F183 Diagonal (1) R = 100 R = 100

θ = 30 θ = 0.0

F172 Diagonal (2) R = 90 R = 125

θ = 60 θ = 60

F318 Chord R =  125 R =  125

θ = 30 θ = 0.0

F368 Diagonal (1) R = 150 R = 100

θ = 150 θ = 150

F359 Diagonal (2) R =  100 R =  100

θ = 240 θ = 270 

R =  450 R =  125

θ = 90 θ = 180

R =  125 R =  125

θ = 30 θ = 0.0

R =  200 R =  125

θ = 60 θ = 90

R = 125 R = 125

θ = 180 θ = 180

R =  125 R =  125

θ = 210 θ = 225

R = 450 R = 125

θ = 90 θ = 180

R = 450 R = 125

θ = 90 θ = 180

%* Negative values - peak forces due to exclusion of the lines are higher than with lines
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Table 4-2 and Table 4-3, respectively. Each table reports the peak forces in selected 

members of both towers that result from the entire parametric study. Those peak forces 

are given for the case of with and without lines. Different zones at which the internal 

forces are reported are illustrated in Fig. 4-7 and Fig. 4-8 for towers T1 and T2, 

respectively. The term diagonal (1) and diagonal (2) used in Table 4-2 and Table 4-3 

represent diagonal members located in plans parallel and perpendicular to the lines, 

respectively. Zone 6 for tower T1 includes the guys and conductors’ cross-arms and the 

internal forces are reported in an upper and a lower chord members for each cross-arm. 

Similarly, the conductors’ cross-arms is located in Zone 4 for tower T2. In addition to the 

peak internal forces, the tables provide also the tornado configurations corresponding to 

those peak forces for each of the reported members. By comparing the results reported in 

Table 4-2 and Table 4-3, the following observations can be concluded: 

- The chords’ peak internal forces increase by 22% to 140% due to the inclusion of 

the lines (conductors and ground-wires) in the analysis of transmission towers 

under tornado wind loads.   

- Some diagonal members experience higher internal forces when the conductors 

and ground-wires are excluded.  

- The critical tornado configurations R and θ that lead to peak internal forces in 

both cases of with and without transmission lines generally coincides. The 

inclusion of the lines results in variation in the critical configurations for few 

members.  

- The reduction in the cross-arms members’ peak internal forces, due to the 

exclusion of the conductors and the ground-wires, is significant. This is expected, 
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as the cross-arms and the upper part of the towers (Zone 6 for tower T1 and Zone 

4 for Tower T2) are mainly responsible of carrying the lines loads. The critical 

tornado configurations that lead to the peak internal forces in these two zones 

when the conductors are included are R = 125 and θ = 180o and R = 450 and θ = 

90o.  

Table 4-3 Results of the Parametric Study Conducted for Transmission Tower T2 
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4.5 Effect of Various Parameters on Conductors’ Longitudinal Reaction  

Having recognized the importance of including the conductors in the analysis of 

transmission lines under tornadoes, the study proceed by conducting a parametric study 

for the conductor reactions. The study focuses on the longitudinal reaction resulting from 

the unbalanced loads that might result from a tornado configuration. Such a reaction is 

not easy to evaluate and requires nonlinear analyses unlike the transverse and vertical 

reactions, which can be evaluated accurately enough based on tributary area. Also, the 

parametric study focuses mainly on one tornado configuration (R=125 (m) and θ = 180o), 

which is shown to be critical for many tower members. However, some other angles “θ” 

are considered in the parametric study for this critical value of R. A schematic showing 

the location of the tornado relative to the tower of interest for the configuration (R=125 

(m) and θ = 180o) is shown in Fig. 4-9. The distribution of the transverse and vertical 

wind field velocity due to this configuration and along a distance of 1500 (m) from both 

side of the tower are provided in Fig. 4-10 and Fig. 4-11, respectively. Fig. 4-10 shows 

that the transverse velocity change directions along the opposite sides of the tower. The 

distribution is shown for values of θ = 30, 45, 60, 90, 180o. The longitudinal reaction 

result from the difference between the magnitudes of transverse velocities along the 

opposite spans. As shown in Fig. 4-10, the tornado configurations of R = 125 (m) with θ 

= 180o leads to the maximum unbalanced load between the two adjacent spans. The 

vertical profile shown in Fig. 4-11 is almost symmetric, and it acts upward against the 

weight of the conductors. As shown in the Figure, the vertical velocity can reach up to 

40% of the maximum transverse velocity. 
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Fig. 4-9 Horizontal Projection of F2 Tornado Located at Relative Distance R = 125 

(m) and θ = 180o 

 

 

Fig. 4-10 Transverse Velocity Distribution along the Conductors – R = 125 (m) and 

θ = 30, 45, 60, 90, 180o 
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Fig. 4-11 Vertical Velocity Distribution along the Conductors – R = 125 (m) and θ = 

180o 

The deformation of the conductors due this wind field, as obtained from the finite 

element analysis, are provided in Fig. 4-12 and Fig. 4-13 for the lines L1 and L2, 

respectively. In each figure, the projection of the deformed shape are provided in a 

vertical and horizontal plan reflecting the effects of the vertical and transverse velocities, 

respectively. For this tornado configuration, the longitudinal reaction obtained from the 

analysis is comparable to the transverse reaction. Longitudinal reaction of 9,006 (N) and 

7,700 (N) are calculated for lines L1 and L2, respectively. The transverse reactions for 

the same lines are 15,422 (N) and 11,841 (N), respectively. The ratio between the 

longitudinal and transverse reactions is in the order of 65%.  

Various parameters can affect the values of the longitudinal reactions. Those include the 

magnitude of loading, the pretension force, the insulator length, and the own weight of 

the conductor. The variation of the longitudinal reactions with those parameters is 

assessed in the following subsections. 

-4

0

4

8

12

16

20

24

28

32

-1440 -960 -480 0 480 960 1440

V
el

o
ci

ty
 (

m
/s

ec
)

Span (m)

Axial (Vertical) Velocity Profile



93 

 

 

 

Fig. 4-12  Deformed Shape of Transmission Line L1 due to F2 Tornado 

Configurations R = 125 (m) and θ = 180o  

 

Fig. 4-13  Deformed Shape of Transmission Line L2 due to F2 Tornado 

Configurations R = 125 (m) and θ = 180o   

4.5.1 Effect of Magnitude of Load  

The variation of the conductors’ longitudinal reactions with the magnitude of F2 tornado 

loads is investigated in this part. The F2 tornado wind load is applied incrementally in a 

quasi-static manner using a load increment of 5%. The variation of the longitudinal 

reactions with the magnitude of F2 tornado loads is plotted for transmission line systems 

L1 and L2 in Fig. 4-14 and Fig. 4-15, respectively. The figures show the plots for the two 

-20

-15

-10

-5

0

5

10

15

20

25

30

35

40

-1440 -960 -480 0 480 960 1440

D
IS

TA
N

C
E 

(m
)

SPANS (m)

Deformed Shape - Elevation View

Deformed Shape - Plan View

Initial Shape

Plan View 

Elevation View 

-15

-10

-5

0

5

10

15

20

25

30

35

40

-1380 -920 -460 0 460 920 1380

D
IS

TA
N

C
E 

(m
)

SPANS (m)

Deformed Shape - Elevation View

Deformed Shape - Plan View

Initial Shape

Plan View

Elevation View



94 

 

 

conductors belonging to line L1 and the three conductors belonging to line L2. For each 

line, the conductors are located at similar height while there locations varies along the 

transverse direction of the cross-arms as shown in Fig. 4-7 and Fig. 4-8. The variation in 

the reaction values between different conductors belonging to same system is due to the 

difference in their horizontal location relative to the tornado. This difference is small for 

line L1, where the cross-arm is relatively narrow (13 (m) width). Meanwhile, a large 

difference is shown for line L2, where the cross-arm has a width of 29.3 (m). All plots 

show a nonlinear variation of the longitudinal reactions with the magnitude of load, 

especially at the early stage of loading.  

For illustration, the transverse and vertical reactions for the conductors of the two lines 

are plotted in Fig. 4-16 and Fig. 4-17 versus the magnitude of applied load. As shown in 

the figures, those reactions exhibit a linear behaviour with variation in magnitudes again 

due to the difference in the transverse location of the conductors. The 29.3 (m) distance 

between the two edge conductors in transmission line system L2 leads to significant 

change in the F2 tornado forces applied on the conductors. Consequently, a difference in 

the conductor’s reactions of 25% occurs in the longitudinal direction, and 33% occurs in 

the transverse direction. The results conclude that the horizontal and vertical F2 tornado 

forces change significantly in space. In addition, this significant change in the lines’ 

reactions leads to an additional torsional moment on the supporting towers and significant 

additional forces in some of the supporting guys. 
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Fig. 4-14 Transmission Line System L1 Longitudinal Reactions due to the Variation 

of the Applied F2 Tornado Loads  

 

Fig. 4-15 Transmission Line System L2 Longitudinal Reactions due to the Variation 

of the Applied F2 Tornado Loads  
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Fig. 4-16 Transmission Line System L1 Transverse and Vertical Reactions due to 

the Variation of the Applied F2 Tornado Loads  
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Fig. 4-17  Transmission Line System L2 Transverse and Vertical Reactions due to 

the Variation of the Applied F2 Tornado Loads 
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4.5.2 Effect of Conductors’ Pretension and Sag  

In this part of the parametric study, both the value of the pre-tension force and yaw angle 

θ are varied, while the tornado location distance R is kept constant at a value of 125 (m). 

Only one conductor of line L1 is shown in the results presented in the current study, with 

similar behaviour for all other conductors in this parametric study. The pretension force is 

varied from 60 (kN) to 200 (kN). Fig. 4-18 to Fig. 4-20 show that the three reaction 

components vary with angle θ, especially the transverse and longitudinal components. 

Regarding the effect of pretension force, negligible variation for the transverse and 

vertical reactions, and significant variation for the longitudinal reactions are exhibited. 

Fig. 4-20 shows that the maximum value for the longitudinal reaction occurs at θ = 180o. 

Fig. 4-21 indicates that the longitudinal reaction decreases nonlinearly with the increase 

of the pretension force.   

 

Fig. 4-18 Variation of Transmission Line’s Transverse Reaction with Pretension 

Force and Sag – R = 125 (m) (Transmission Line System L1) 
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Fig. 4-19 Variation of Transmission Line’s Vertical Reaction with Pretension Force 

and Sag – R = 125 (m) (Transmission Line System L1) 

 

Fig. 4-20 Variation of Transmission Line’s Longitudinal Reaction with Pretension 

Force and Sag – R = 125 (m) (Transmission Line System L1) 
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Fig. 4-21 Variation of Longitudinal Reaction with Pretension force  
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Fig. 4-22 Variation of Longitudinal Reaction with Insulator Lengths  
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Fig. 4-23 Variation of Longitudinal Reaction with Conductor’s self-weight  

4.6 Conclusion 
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directions within one line span, which leads to a high nonlinear behaviour and a 

more complex behaviour.   

- The vertical (uplift and downdraft) velocity component of F2 tornado is 

significant and can be up to 40% of the transverse velocity component. 

Accordingly, nonlinear three dimensional analysis, involving coupling between 

the transverse and the vertical responses, is recommended for the studying 

transmission lines under tornado wind loads.  
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- The study investigates the validity of the recommendation made in some codes of 

practice to neglect the tornado loads acting on the lines. The results show that 

chord’s peak internal forces increase by 22 to 140 % due to the inclusion of the 

lines in the analysis under tornado loads.  

- The length of transmission tower’s cross-arms has a significant effect on the 

conductor’s reactions associated with tornado loads. For the same tower, 

differences of 25% and 33% in the longitudinal and transverse reactions, 

respectively, are reported due to a horizontal distance between the two edge 

conductors of 29 (m). This difference in reactions leads to an additional torsional 

moment on the supporting towers.  

- Significant longitudinal line’s reaction leads to compression forces in tower’s 

cross-arms that are not typically considered in the design of those cross-arm’s 

members. Accordingly, the current study investigates the effect of different 

parameters on the longitudinal reactions of transmission lines. The study shows 

that the longitudinal reaction: 

a) has a nonlinear variation with the magnitude of the applied F2 tornado 

wind loads.  

b) changes significantly and in a nonlinear manner with both the value of 

the initial pretension force and sag, and the length of the insulator 

springs attached to the line.  

c) varies linearly with the change of the conductor’s self-weight      
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In view of these conclusions, transmission lines’ conductors and ground-wires are 

recommended to be considered in the analysis and design of transmission towers 

subjected to tornado wind loads. 
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5 CHAPTER 5  

        FAILURE ANALYSIS OF GUYED TRANSMISSION LINES DURING F2 

TORNADO EVENT   

5.1 Introduction 

Electricity plays a vital and essential role in our daily lives. Almost all businesses and 

activities depend on having a reliable continuous source of electricity. Transmission lines 

are responsible for delivering electricity by carrying it from the source of production to 

the distribution systems. Failure of transmission lines can have devastating social and 

economical consequences, so it is imperative to understand how failure occurs, and how 

to prevent it. As stated by Dempsey and White (1996), more than 80% of weather-related 

transmission line failures world-wide are found to be attributed to high intensity wind 

(HIW) events in the form of downbursts, and tornadoes.  

In Canada, tornadoes occur in almost all the southern regions of the country, such as in 

southern Alberta, Manitoba, Saskatchewan, Ontario, and Quebec. Ishac and White (1994)  

reported that of all the populated areas in Canada, southwestern Ontario experiences the 

highest rate of tornado incidences; about two tornadoes per 10,000 (km2) every year, and 

most of the transmission line failures in this area are caused by tornadoes. 92% of these 

tornadoes were F2 or less on the Fujita scale. Newark (1984) concluded that, on average, 

a F3 tornado occurs in southwestern Ontario every five years. Despite these facts, the 

codes of practice, design guidelines, and utility companies’ design methodologies are 

based on the loads resulting from large-scale synoptic events with conventional boundary 
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layer wind profiles. Conventional wind profiles are characterized by a monotonic 

increase in velocity with height, which is different than wind profiles attributed to 

tornadoes where the maximum wind speed occurs near the ground (Kareem 2010). In 

addition, tornadoes are localized events with relatively narrow path widths. Also, a 

significant vertical wind component (uplift) exists in the tornado wind profile, which 

does not exist for synoptic winds. 

Although it has been well reported that high intensity wind (HIW) events are responsible 

for most weather-related transmission line failures, very few studies were done to assess 

these failures. Shehata and El Damatty (2008) assessed the failure of one of the 

transmission towers that collapsed in 1996 during a microburst event in Winnipeg, 

Canada. Their developed in-house numerical model was able to predict failure modes and 

progression of failure compatible with the post event field observations. The study 

predicted three possible failure scenarios and the progression of failure of each case was 

described in details. Savory et al. (2001) conducted a research study on a self-supported 

transmission tower under both microburst and tornado wind loadings. The study 

investigated the tower behaviour and failure modes under specific microburst and tornado 

parameters. The loading on the conductors and ground-wires was not considered in this 

study. In addition, only the effects of radial velocity component of the microburst and 

tangential velocity component of the tornado were considered on the transmission tower. 

The predicted failure mode showed that the horizontal shear force was the main reason 

for the collapse of the tower. In addition, no significant dynamic effect was found due to 

the translational movement of the tornado. Ladubec et al. (2012) studied the effect of 

secondary moment (P-delta) on the response of transmission towers under a downburst 
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wind field. The analysis used nonlinear space frame elements to simulate the tower 

members. The study showed an increase of 20% compared to the linear analysis in the 

peak axial forces in the tower main legs’ chord members. The study is considered an 

improvement to the linear analysis of transmission towers that was performed by Shehata 

and El Damatty (2008).  

Hamada et al. (2010) and Hamada and El Damatty (2011) developed numerical models to 

investigate the behaviour of transmission line structures under different tornado wind 

fields. One of the challenges in assessing the behaviour of transmission lines under 

tornado loads is that the peak forces vary with the location of the center of the tornado 

relative to the center of the tower of interest, which is defined by the angle of attack as 

well as the relative distance between the tornado and the structure. Accordingly, the 

investigations conducted by Hamada et al. (2010) and Hamada and El Damatty (2011) 

involved large parametric studies by varying those two geometric parameters in order to 

determine the critical tornado locations leading to peak internal forces in various 

members of the towers. In the current study, the numerical model is extended in order to 

predict the tornado velocities at which failure might initiate and to describe the progress 

of collapse under this type of loading. Two guyed transmission line systems are 

considered in this chapter as case studies. Using the developed numerical model, failure 

studies are conducted for each system. For each system, the failure studies included two 

critical tornado configurations, selected in view of the parametric studies conducted by 

Hamada et al. (2010) and Hamada and El Damatty (2011). In addition, each failure study 

case was repeated twice using different two material models describing the post yield 

behaviour of tensions members. The objectives of this study are to gain an insight about 
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the resilience of lattice transmission towers against failures when experiencing an F2 

tornado, to describe the failure modes under such events, to assess the effect of different 

assumptions regarding post yield tension behaviour, and to quantify the effect of 

inclusion of geometric nonlinearities in this type of analysis.   

5.2 F2 Tornado Wind Fields 

A computational fluid dynamics (CFD) model for a small-scale tornado model was 

developed by Hangan and Kim (2008). Firstly, the CFD analysis was conducted using a 

swirl ratio S of 0.28, where S is the ratio between the tangential and radial velocities at 

the inlet boundary. The wind field produced by this CFD analysis was compared to the 

experimental data presented by Baker (1981), which was produced using a Ward-type 

vortex chamber. These experimental results were used to validate the CFD model. The 

numerical model was then extended for values of S = 0.1, 0.4, 0.7, 0.8, 1.0, and 2.0. By 

comparing the numerical results to field measurements, Hangan and Kim (2008) found a 

good agreement between the CFD predicted field with swirl ratio S = 2.0 and the F4 

tornado field measurements provided by Sarkar et al. (2005). Hamada et al. (2010) 

concluded that a swirl ratio S = 1.0 provides a good simulation for the F2 tornado wind 

field. The F4 and F2 tornado velocity wind profiles produced using the CFD simulations 

vary in space in a three dimensional manner, and are presented as functions of the 

cylindrical coordinates’ r, θ, and z measured from the tornado center. The wind fields 

represent steady-state conditions for the tornadoes and, therefore, do not vary with time. 

The tornado wind field has three velocity components; the tangential velocity component 

Vmt (r,θ,z), the radial velocity component Vmr (r,θ,z), and the axial (vertical) velocity 
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component Vma (r,θ,z). More details regarding the F4 and F2 tornado wind fields are 

provided by Hamada et al. (2010) and Hangan and Kim (2008). 

5.3 Description of the Two Considered Guyed Transmission Line Systems  

 

Fig. 5-1 Transmission line system (L1) – Tower Type (T1)   

 

 

Fig. 5-2 Transmission line system (L2) – Tower Type (T2) 

In the current study, two guyed transmission line systems are investigated to assess the 

structural behaviour and progressive failure mechanism under F2 tornado wind field. The 

first guyed transmission line system is labeled as L1 and the corresponding supporting 

460 (m) 
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towers are labeled as T1, as shown in Fig. 5-1. Each guyed tower (T1) has a height of 

44.39 (m) and is supported by four guys attached to two cross-arms at an elevation of 

38.23 (m). Two conductor bundles are attached to the towers’ cross-arms using 4.27 (m) 

insulators. One ground-wire is connected to the top of the towers. The conductors’ span is 

480 (m). The conductors and ground-wire initial sags are 20 (m) and 13 (m), respectively. 

The second guyed tower is labeled as T2 and the transmission line system is labeled as 

L2, as shown in Fig. 5-2. The towers’ height is 46.57 (m) and are supported by four guys. 

Three conductor bundles are connected to the towers’ cross-arms using 4.27 (m) 

insulators. Two ground-wires are attached to the top of the towers. The conductors and 

ground-wires have a span of 460 (m) and they both have an initial sag of 16 (m).  

The numerical simulation of the transmission line systems consists of the tower of 

interest and two adjacent towers from each side, which are included to properly simulate 

the stiffness of the system. As shown in Fig. 5-1 and 5-2, the models include five towers 

and six spans with hinged supports at the two ends. Such a number of spans was 

recommended by Shehata et al. (2005) and Hamada (2009) to accurately account for the 

forces transferred from the conductors and ground wire to the tower of interest. More 

details regarding the two transmission line systems are provided by Hamada et al. (2010) 

and Hamada and El Damatty (2011). 

5.4 Components and Validation of the Numerical Model 

The numerical simulation reported in the current study is conducted using a finite 

element code, called “FTTHIW”, developed in-house. FTTHIW stands for Failure of 

Transmission Towers under High Intensity Wind. In FTTHIW, the transmission lines, the 
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insulators, the tower members, and the guys are simulated using different elements. The 

numerical code is an extension to the models developed and validated previously by 

Shehata and El Damatty (2008), Ladubec et al. (2012), Shehata et al. (2005), Shehata and 

El Damatty (2007) and Shehata et al. (2008). Shehata et al. (2005) modeled the 

conductors using two-dimensional nonlinear curved frame elements, the tower members 

using three dimensional linear frame elements, and the insulators using linear spring 

elements. In addition to the inclusion of the nonlinear geometric effects and a material 

model for the tower members, an improvement in the simulation of the behaviour of the 

conductors is conducted in this study. While using two-dimensional modeling and 

decoupling the analysis of the conductors vertically and transversally were accepted for 

the downburst applications considered by Ladubec et al. (2012) and Shehata et al. (2005), 

this might not be adequate for tornado analysis. For downbursts, the vertical forces are 

quite small compared to the transverse forces and thus decoupling the two effects or even 

neglecting the vertical forces can be acceptable. In contrast for tornadoes, the vertical and 

transverse forces are of same order of magnitude and, therefore, they should be coupled 

together in a three dimensional analysis.  

The nonlinear analyses of the transmission line systems are divided into two main steps. 

Firstly, the six spans of conductors and ground wires, including the insulator springs, are 

modeled separately as shown in Fig. 5-3. In this model, the combined flexibility of the 

towers and the insulators are simulated using three dimensional springs as shown in the 

figure. The model is analyzed nonlinearly under tornado forces and the spring reactions 

are evaluated. In the second step, the lines’ reactions are reversed and applied as forces 
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acting on the tower’s cross-arms. The tower is analyzed under those forces as well as 

under the loads resulting from the F2 tornado acting on the lattice members. 

 

Fig. 5-3 Finite Element Model for L1 and L2 Transmission Lines (Conductors and 

Ground wires)  

5.4.1 Modeling of Conductors and Ground-wires 

 

 

Fig. 5-4 Cable Element Coordinate System and Nodal Degrees of Freedom 
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Fig. 5-5 Cable Geometry and Loading  

 

Fig. 5-6 Cable Displacements in Elevation and Plan View using SAP 2000 and 

Current 4-Nodes Cable Element 

The conductors and ground-wires are modeled using a three dimensional four-noded 

nonlinear cable element developed in-house and discussed in detail in Chapters (3) and 

(4). As shown in Fig. 5-4, the element has 4 nodes allowing a cubic simulation for the 

three displacement components at any points within its length. The accuracy of the cable 

element is verified in the current study using the commercial software package SAP 2000 

(CSI Inc. 2010). The cable geometry and properties shown in Fig. 5-5 and Table 5-1 are 
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used for this validation purpose. The cable is modeled using 10 four-noded elements. The 

cable is analyzed under the combined effect of its own weight and distributed vertical and 

transverse loads applied on a portion of the cable as shown in Fig. 5-5. An initial 

prestressing force of 86 (kN) is applied to the cable and the initial sag under the 

combined effect of own weight and initial prestressing force is assumed to be 20 (m). The 

same cable is modeled using the nonlinear two-noded cable element included in SAP 

2000, when 30 elements are used to simulate the same problem. The two analyses assume 

a linear elastic material behaviour for the cable while the nonlinearity results from the 

inclusion of the large displacement and the P-effects. The material nonlinearity is not 

included the current study, as the cables material model behaves linearly till failure. In 

addition, field observations of most of transmission lines failures did not report lines or 

insulators ruptures. This was confirmed in discussions carried out with engineers from 

various utility companies. The profiles of the deformed shape projected along vertical 

and horizontal plans, as obtained from the analyses, are provided in Fig. 5-6. The figure 

shows the profiles obtained from both the FTTHIW code and the commercial program, 

indicating an excellent agreement. The final axial forces in the cable obtained from the 

two sets of analysis are provided in Table 5-1 indicating also an excellent agreement. 

Table 5-1 Cable Properties and Axial Forces  

 

Length Sag E 
Weight per

Unit volume

Initial 

Pretension

SAP 2000

Axial Force 
Numerical Code

Axial Force

(m) (m) (N/m2) (N/m3) (N) (kN) (kN)

480 20 6.23E+10 22333 86715 172 174
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5.4.2 Simulation of Insulators  

As shown in Fig. 5-3 the simulation of the lines incorporates a number of springs, which 

represent the combined stiffness of the towers and insulators. At each tower location, the 

equivalent spring system is three dimensional and behaves nonlinearly. The derivation of 

the stiffness of this nonlinear spring system is provided in this section. In this derivation, 

X is the direction perpendicular to the line, Y is parallel to the line, and Z is the vertical 

direction. The flexibility matrix of the transmission tower at point “A” shown in Fig. 5-7 

is first evaluated. It is expressed as follows: 

                          

0

0 0

0

xxI xzI

A yyI

zxI zzI

f f

f f

f f

 
 

  
 
 

   

 Where, xxIf  and xzIf  are the transverse and vertical displacement of point “A”, 

respectively, due to unit transverse load applied at this location. yyIf  is the longitudinal 

displacement of point “A” due to unit longitudinal load applied at this point. Similarly, 

zxIf  and zzIf  are the transverse and vertical displacements of point “A”, respectively, 

due to unit vertical load at this location. The insulators are considered to be rigid in the 

vertical direction and pin connected to the tower’s cross-arm and the conductors. The 

insulators can be replaced by two perpendicular nonlinear springs KIY and KIX, in the Y 

and X direction, respectively. An expression for KIX and KIY assuming a linear behaviour 

is provided by Desai et al. (1995). This expression is valid for small values of the rotation 

angles θL and θT, of the insulators, shown in Fig. 5-7. This expression is modified here to 

account for finite values for θL and θT as follows 
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Where, LI and WI are the length and weight of the insulators, respectively. L and Lx are 

the total and horizontal span lengths of the conductor, respectively. Py is the weight per 

unit length of the conductors, the angles θL and θT are shown in Fig. 5-7, and T is the 

horizontal component of the conductor pretension force. 

 

Fig. 5-7 Conductors’ Cross-arms and Insulators Configurations of Tower T1  

Accounting for the deformation of the tower and insulator, the flexibility matrix at point 

“B” shown in Fig. 5-7, is given by:  

A 

B 



118 

 

 

 

1
0

1
0 0

0

xxI xzI

IX

B yyI

IY

zxI zzI

f f
K

f f
K

f f

  
  

  
 

 
   
  
 
 
 
 

  

This flexibility matrix is inverted to obtain the stiffness matrix of the three dimensional 

spring system supporting the lines.  

5.4.3 Simulation of Guys 

 

Fig. 5-8 Equivalent Cable Element  

The initial conditions of the supporting guys, in terms of sag and applied pretension 

force, have a significant effect on the tower overall stiffness. An increase in the guys’ 

pretension force leads to a decrease in sag and an increase in the axial stiffness of the 
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guys. To account for this variation in the cable’s axial stiffness, an equivalent straight bar 

members with an equivalent modulus of elasticity, which combines the effect of both 

material and geometric deformations, are used to model the supporting guys, as shown in 

Fig. 5-8. The equivalent modulus of elasticity is calculated such that the stiffness of the 

straight bar is equal to the stiffness of the curved cable. This approach was described by 

Tung and Kudder (1968), Nazmy and Abdel-Ghaffar (1990) and is summarized in 

Appendix A. Each supporting guy is modeled using one equivalent straight bar element. 

5.4.4 Simulation of Tower Members 

Tower members are modeled using two-noded three dimensional frame elements with six 

degrees of freedom per node (three translations and three rotations). The primary leg 

members have multi-bolted connections that can resist moments, thus, a fixed connection 

assumption between the chord members is used. Meanwhile, a hinged assumption is 

employed for the connection of diagonal members with chord members since such 

connections are done using single bolts. The elastic stiffness matrix of a three 

dimensional frame element is available in many references, such as Przemieniecki (2012) 

and William and Gere (1990). The geometric nonlinear stiffness matrix for 3-D beam 

element can be obtained using the large deflection theory and nonlinear strain-

displacement relationships discussed in detail by Przemieniecki (2012). The geometric 

nonlinear stiffness of the three dimensional frame element that represents the effect of 

large displacement is given in Appendix B. The coupling between axial and flexural 

stiffness can be considered in the nonlinear analysis using the concept of stability 

functions (William and Gere 1990). These functions are used to modify both the bending 
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and axial stiffness of the tower’s members. The three dimensional linear frame element 

stiffness matrix, including the stability functions, is given in Appendix C. The axial 

forces in the members are related to the joint displacements and must be calculated in an 

iterative way within each load increment.  

5.4.5 Numerical Model Validation  

The transmission line L1 is modeled using FTTHIW. The same system is simulated using 

the commercial software SAP 2000 (CSI. Inc. 2012). A critical tornado configuration of 

R = 125 (m) and θ = 0.0, shown in Fig. 5-9, is considered in this validation example, 

where R is the distance between the tornado center to the tower of interest, and θ is the 

angle shown in Fig. 5-9. This tornado configuration was found to be critical in the 

extensive parametric studies conducted by Hamada and El Damatty (2011). Analysis 

under wind loads associated with this tornado location that takes into account the 

geometric nonlinear effects, is conducted using both FTTHIW and the commercial code. 

The internal forces in the intermediate tower, as well as the transmission line reactions 

are recorded for the two analyses. The peak forces obtained from both analyses are 

presented in Table 5-2 for selected chord members shown in Fig. 5-8. Conductor’s 

reactions at the intermediate tower are also evaluated for both analyses and are presented 

in Table 5-3. As shown in the two tables, an excellent agreement, in terms of internal 

forces and conductor reactions, is shown between the two simulations. This provides 

confidence in the accuracy of the developed numerical code within the elastic range of 

behaviour. 
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Table 5-2 FTTHIW and SAP 2000 Transmission Tower (T1) Peak Internal forces of 

Selected Members (R = 125 (m) and θ = 0)  

 

Table 5-3 FTTHIW and SAP 2000 Conductor’s Reactions (R = 125 (m) and θ = 0)   

 

5.5 Failure Analysis  

The current section reports the progressive failure analysis of the two considered guyed 

towers under critical tornado cases chosen based on the extensive parametric study 

conducted in previous investigation by Hamada et al. (2010) and Hamada and El Damatty 

(2011). Most design codes and guidelines such as ASCE MOP. 74 recommend using only 

F2 tornado for the design and analysis of transmission lines. A similar recommendation 

was concluded by Hamada et al. (2010) and Hamada and El Damatty (2011). 

FTTHIW SAP 2000 Differnece

(kN) (kN) %

14 12621 12859 2

86 11761 11988 2

141 10621 10851 2

231 9113 9354 3

318 8407 8628 3

215 2608 2603 1

Selected 

Chord 

Members

FTTHIW SAP 2000 Differnece

(kN) (kN) %

Fx Perpendicular 15422 15567 1

Fy Parallel 6841 6401 6

Fz Verical 26061 26122 1

Transmission 

lines 

Transferred 

Forces to the 

Tower 

Forces 

Direction with 

Respect to 

Lines
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Accordingly, only F2 tornado is considered in the current failure study. The analysis is 

conducted in a quasi-static manner despite the time variation of the wind load resulting 

from the convective velocity of tornadoes. Hamada and El Damatty (2011) concluded 

that the dynamic effect can be neglected due the following two reasons: 

a) The significant difference between the fundamental period of the towers and the 

period of loading associated with the convective component of the tornado.  

b) The large aerodynamic damping of the conductors and ground-wires.  

It should be mentioned that the magnitude of the F2 tornado velocity used in the 

simulation coincides with the maximum value specified in the Fujita scale, which is 

based on field measurements that include both the local and convective portions.  

Extensive parametric studies were previously conducted on the two considered line 

systems by varying the location of the tornadoes in space as shown in Fig. 5-9. The 

results of those parametric studies were reported by Hamada et al. (2010) and Hamada 

and El Damatty (2011), where the internal forces in all members of the tower were 

evaluated for various tornado configurations defined by the parameters “R” and “θ” 

shown in Fig. 5-9. The peak internal forces in all members of the tower obtained from the 

entire parametric studies are recorded. In the current study, the members’ capacities are 

evaluated using the ASCE (1997). The peak forces are divided by the members’ capacity 

to obtain a strength factor “α” for each member. The higher the value of “α”, the more 

critical is the member and the structure with respect to the tornado loading. The tornado 

configurations leading to large values of “α” for a significant number of tower members 
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are identified. The two most critical tornado configurations are considered in the failure 

study of each system.   

For each critical tornado configuration, progressive failure analysis is carried out. The 

tower members are assumed to totally fail once the member capacity is reached. This 

assumption implies that the failure happen in the members’ connection. In the 

incremental analysis, a member reaching this stage at a certain increment is eliminated 

from the structure, i.e. does not contribute to the stiffness or strength of the structure in 

the subsequent increments. This material model is referred to “No post yield”. 

 

 

Fig. 5-9 Tornado Configurations R and θ Relative to the Tower of Interest  
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For each critical configuration, the following steps are conducted in the progressive 

failure analyses: 

1- Using the upper limit of the velocity of the F2 tornadoes, given in Section 2, the 

maximum external loads acting on the conductors and the tower are calculated.  

2- The tornado loads are applied incrementally by gradually increasing the loads. It 

was decided to use an increment of 1% of the maximum load. As such, the total 

load is divided to 100 increments.  

3- A nonlinear analysis is conducted during each increment as described before. The 

internal forces are calculated for all members of the tower.  

4- The ratio between the acting internal forces and the ultimate capacity of each 

member is calculated and denoted as “λ”. A value of λ = 1 (either in tension or 

compression) means that the member has reached its ultimate capacity and is 

eliminated from the model in the subsequent increments.  

5- A state of collapse is assumed when no convergence in the numerical solution is 

reached at a certain increment implying that the structure has lost its overall 

stability.  

The value of the tangential velocity at which failure occurs and its ratio relative to the 

maximum velocity of F2 tornadoes is recorded. In addition, the progression failure of the 

tower is described. 
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5.5.1 Failure Analysis – No Post Yield Strength 

5.5.1.1 Failure Analysis of Transmission Line System L1 and Tower Type 

T1 – No Post Yield Strength 

In order to explain the sequence of failure and the failure mode of the tower T1, a 

description of the structure system and the forces acting on the tower is first provided. A 

sketch of the tower is given in Fig. 5-12 together with a simulation of the tower’s 

structure system as an overhanging beam with pin support at the base and flexible support 

at the supporting guys’ cross-arms location. The distributed forces shown in Fig. 5-12 

represent the tornado loading acting on the tower. The concentrated forces shown at the 

cantilever portion at the top represent the forces transferred from the conductors and 

ground-wire to the tower through the insulators.  

5.5.1.1.1 Failure Mode 1 – Critical Tornado Configuration R = 125 (m) and θ = 180o 

The location of the F2 tornado relative to the tower and the line is shown in Fig. 5-10. A 

schematic of the directions of the radial and tangential components acting on the tower 

are shown in the figure. Also the resultant of those two components is illustrated. This 

value of R leads to large values for both tangential and the radial components as indicated 

by Hamada and El Damatty (2011). Due to this resultant force, supporting guy 1 is 

expected to slack while guy 3 is expected to be subjected to a large tensile force. This 

configuration, in which the line connecting the center of the tornado and the tower is 

perpendicular to the conductors, leads to approximately opposite forces on the conductors 

located on the adjacent spans of the tower. This will result in a relatively small transverse 
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force transmitted from the conductors to the tower as depicted from Fig. 5-11, where the 

transverse F2 tornado velocity acting on the conductors is illustrated. In view of the 

above discussion, and referring to Fig. 5-10, this tornado configuration will lead to large 

forces between the supports and minimum forces at the cantilever portion. This will tend 

to maximize the bending moment at the region between the two supports. Thus, the 

failure of the tower is expected to be triggered by two effects: a) large forces transmitted 

to the members attached to the supporting guy 3, b) large forces on chord members due to 

the significant bending effect.    

The progression of failure resulting from this analysis is shown in Fig. 5-12. Seven 

sequences of members’ failure (denoted as stage I to VII) are shown in the figure, each 

representing a specific load increment. The failure is initiated at stage I at the guys’ cross-

arms level as a result of the large force developing in guy # 3 as explained above. As a 

result of the double moment resulting from the tangential and radial components, one 

chord member will be subjected to compression forces from both bending moments. 

Total collapse occurs when this chord member buckles in load stage VII as shown in Fig. 

5-12. This happens at a tornado velocity of 65 (m/sec), which corresponds to 84% of the 

maximum wind speed of F2 tornadoes. 
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Fig. 5-10 Failure Analysis (First Method) L1 – T1, Analysis Case R = 125 (m) and θ 

= 180o 

 

 

Fig. 5-11 Transverse Velocity Profile – Conductors  
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Fig. 5-12 Simulation of the Tower as an Over-hanging Beam - Failed Members L1 – 

T1, Analysis Case R = 125 (m) and θ = 180o 

5.5.1.1.2 Failure Mode 2 – Critical Tornado Configuration R = 125 (m) and θ = 30o 

Fig. 5-13 shows the location of the tornado relative to the tower and the line. The 

direction of the tangential and radial components acting on the tower due to this 

configuration is shown in the figure. Guy # 3 is expected to slack due to this loading 

configuration. The main difference between this loading configuration and the previous 

one is in the behaviour of the conductors. Fig. 5-14 shows the transverse velocity profile 

on the conductors. Unlike the previous load case, a significant transverse force will be 

transferred in this case from the conductors to the towers. This force acting on the 
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cantilever portion of the tower (see Fig. 5-12), results in reducing the bending moment 

acting on the region of the tower between the two supports. The sequence of failure due 

to this configuration is shown in Fig. 5-15. Failure initiates at the diagonal members at 

the guys’ cross-arm region (stage I and II). Buckling of main chord members occur at 

subsequent load increments (stages III and IV). The tension force in guy # 4 becomes so 

large at this stage such that this guy fails by tension. This results in a change in the 

supporting system of the structure and a redistribution of the internal forces as shown in 

stage V. Other chord members start to fail and an overall collapse then occurs. This 

happens at a tornado velocity of 74 (m/sec), representing about 95% of the maximum F2 

tornado velocity. 

 

 

Fig. 5-13 Failure Analysis (First Method) L1 – T1, Analysis Case R = 125 (m) and θ 

= 30o  
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Fig. 5-14 Transverse Velocity profile – Conductors  

 

 

Fig. 5-15 Failed Members L1 – T1, Analysis Case R = 125 (m) and θ = 30o  
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5.5.1.2 Failure Analysis of Transmission Line System L2 and Tower Type 

T2 – No Post Yield Strength  

In order to explain the failure modes and the sequence of failure of tower T2, the same 

description of the structure system provided for tower T1 (Section 5.1.1) can be used. 

The tower can be simulated as an overhanging beam with a pin support at the base and 

flexible supports at the guys’ location. A major difference between towers T1 and T2 is 

that for tower T2, the conductors and supporting guys are both attached to the same 

cross-arms.  

5.5.1.2.1 Failure Mode 1 – Critical Tornado Configuration R = 125 (m) and θ = 330o 

The location of the tornado relative to the tower and the lines is shown in Fig. 5-16. The 

direction of the radial and tangential components acting on the tower is shown in the 

figure. This value of R leads to large values for both the tangential and the radial velocity 

components. The resultant of those two components acts almost along the lines 

directions. Thus, supporting guys # 3 and # 4 are expected to slack while guys # 1 and # 2 

are expected to be subjected to a large tension force. A significant difference between 

tower T2 and tower T1 is in the effect of the conductors on the overall behaviour of the 

tower. The transverse and longitudinal forces transmitted from the conductors are in the 

same level of the supporting guys. As such, those forces will be transmitted directly to 

the supporting guys. This will tend to maximize the equivalent shear force near the guys 

supporting point. Thus the failure of the tower is expected to be triggered by a) the large 

forces transmitted to the members attached to guys # 1 and # 2, b) large forces on 

diagonal members due to the significant shear force near the cross-arm zone.  



132 

 

 

 

 

Fig. 5-16 Failure Analysis L2 – T2, Analysis Case R = 125 (m) and θ = 330o 

 

The progression of failure resulting from this analysis is shown in Fig. 5-17. Seven 

sequences of member failures (denoted as stages I to VII) are shown in the figure. The 

failure initiates in stages I, II, and III at the guys location as a result of the large force 

developing in the supporting guys # 1 and # 2. As a result of shear force resulting from 

the tangential and radial components, diagonal members will be subjected to significant 

compression forces. Total collapse occurs when all diagonal members buckle in one 

region, and this happens gradually in stages IV, V, VI, and VII, as shown in Fig. 5-17. 

The total collapse occurs at a tornado velocity of 42 (m/sec), which corresponds to 54% 

of the maximum wind speed of F2 tornadoes. 
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Fig. 5-17 Failed Members L2 – T2, Analysis Case R = 125 (m) and θ = 330o 

5.5.1.2.2 Failure Mode 2 – Critical Tornado Configuration R = 100 (m) and θ = 180o 

Fig. 5-18 shows the location of the tornado relative to the tower and the lines. The 

directions of the tangential and radial components acting on the tower due to this 

configuration are also shown in the figure. Supporting guys # 1 and # 2 are expected to 

slack due to this tornado configuration. The main difference between this loading 

configuration and the previous one is in the behaviour of the conductors. Unlike the 

previous configuration, a negligible transverse force will be transmitted from the 

conductors to the tower. In addition, the tangential and radial velocity profiles provided 
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in Fig. 5-19 show that the tower zone beneath the cross-arms is subjected to negligible 

radial forces, and large tangential forces. For this tornado configuration, the tangential 

force act along the direction longitudinal direction of the line.  

 

Fig. 5-18 Failure Analysis L2 – T2, Analysis Case R = 125 (m) and θ = 180o 

 

Fig. 5-19 Vertical Profile of F2 Tornado Three Velocity Components at R = 100 (m)  
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Fig. 5-20 Failed Members L2 – T2, Analysis Case R = 125 (m) and θ = 180o 

The sequence of failure due to this configuration is shown in Fig. 5-20. Failure initiates at 

the diagonal members at the supporting guys region (stage I). Buckling of diagonal 

members’ progresses gradually at subsequent load increments until an overall collapse 

occurs. This happens at a tornado velocity of 43 (m/sec), representing about 55% of the 

maximum F2 tornado velocity. 

5.6 Effect of Material Model  

The assumption used regarding the post yielding behaviour of the tension members is 

assessed in the current section. This is done by repeating the four reported failure 

analyses while assuming that tension members maintain their strength (but lose their 

stiffness) in the post yielding stages. This will represent the behaviour of ductile steel 
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members where no connection premature failure occurs. The sequence of failure obtained 

from this set of analysis and the previous set (with no post yielding tension strength) is 

shown to be almost the same for the two considered towers and the two analyzed load 

cases. The overall collapse is generally delayed and the structures are able to resist higher 

proportions of the F2 tornado. A major difference is shown in the behaviour of the 

diagonal members. In the first set of analysis, diagonal members in tension reaching their 

yielding capacity lose their strength and, consequently, transfer the forces to the adjacent 

compression diagonal members that eventually fail by buckling. This effect is delayed in 

the second set of analysis as tension members are able to withstand a level of tension 

force up to their yield capacities. A summary for the failure velocities predicted for each 

load case of the two towers and using the two assumption regarding post yielding 

behaviour of tension members is provided in Table 5-4. 

Table 5-4 Summary of Failure Velocities Predicted by Both Material Models  

 

5.7 Comparison between Failure Studies of the two Lines 

Despite the fact that the two studied transmission line systems L1 and L2 were designed 

under nearly similar environmental conditions, there is a significant difference in the 

No Post Yield Strength Post Yield Strength 

Critical Tornado

 Configurations

F2 tornado Wind Speed

%

F2 tornado Wind Speed

%

Tornado Config. 1 84 92

Tornado Config. 2 95 102

Tornado Config. 1 54 59

Tornado Config. 2 55 62

Transmission Line L1 

(Tower T1)

Transmission Line L2 

(Tower T2)
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results of their failure studies under F2 tornadoes. The main difference between the 

results of the two systems can be stated as follows:  

1- Tower T2 is predicted to fail under a significant lower level of tornado loads. This 

is clear from the values for maximum tornado velocities that the towers can 

sustain as summarized in Table 5-4.  

2- The progressive failure mode is different between the two towers. For tower T1, 

failure is initiated by buckling of chord members. Meanwhile, for tower T2, it is 

initiated by buckling of diagonal members. As such, one can say that tower T1 

fails by bending while tower T2 fails by shear. Those two modes of failure under 

tornadoes were also reported by Behncke and White (2006) and Ishac and White 

(1994) based on field observations.   

3- Transmission tower T1 are most sensitive to the assumption used regarding the 

post yielding tension behaviour as around 8% difference in the failure velocities is 

obtained from the analyses conducted using the two different material models. 

This difference is reduced to around 6% for tower T2.  

4- While a number of guys of the two towers slack during the analysis, only one guy 

for tower T1 has failed in tension. In comparison, none of the supporting guys 

fails under the critical tornado cases of tower T2. 

These differences in behaviour can be attributed to the geometric configurations of the 

two towers. Tower T2 has two separate legs and a relatively wide cross-arm. The spatial 

variation in the location of the two parallel lines, resulting from the wide cross-arm, can 

lead to variation in the tornado loads on the two parallel transmission lines. As such, 

different values for unbalanced longitudinal forces acting on the cross-arms will develop 
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at those two parallel lines. This can lead to a net torsion effect on the tower. Another 

difference in the structure behaviour between the two towers results from the location of 

the guys which are connected to the conductors’ cross-arms for the case of tower T2. It 

should be mentioned that although the two lines have almost equal spans, transmission 

line system L2 has three conductor bundles while transmission line system L1 has only 

two conductor bundles.  

5.8 Effect of Geometric Nonlinearities 

In order to assess the importance of considering the geometric nonlinear effect in the 

analysis, the progressive failure analyses for transmission line L1 is repeated while 

deactivating the geometric nonlinear feature. This means that the analyses assume a 

linear geometric behaviour and take into account only the material failure described as 

“No post yield strength”. Comparison between the wind failure velocities obtained with 

and without the inclusion of the geometric nonlinear effect is provided in Table 5-5. The 

results show that the difference between the nonlinear analyses and the linear analyses is 

about 8% in terms of failure velocities. A higher difference between the nonlinear and 

linear analyses is expected in the case of transmission tower T2 as the tower is more 

flexible and a higher nonlinear effect is therefore expected. Using linear analysis, tower 

T2 fails due to 71 % of F2 tornado wind velocity.  This reflects a 17 % difference 

between the linear and nonlinear failure analyses for tower T2. In general, the results 

indicate that it is important to consider the geometric nonlinear effect in the analysis of 

transmission towers under tornado wind loads. 
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Table 5-5 Comparison between Linear and Nonlinear Analyses of Tower T1 under 

F2 Tornado Wind Loads 

 

5.9 Conclusion 

The following conclusions can be drawn from the failure studies conducted using the 

numerical code (FTTHIW) developed and validated in the current study:  

The numerical model predicts that two considered guyed transmission tower 

systems cannot withstand the maximum velocity of an F2 tornado. However a 

significant difference in the tornado capacity is shown between the two systems. 

While system L1 is predicted to fail at 84% of the maximum tornado velocity, 

system L2 is predicted to fail at only 54%. Also, the failure modes predicted for 

the two systems are different; system L1 fails by bending while system L2 fails by 

shear. Despite the fact that the two systems have almost equal conductors’ span 

and they were initially designed under similar environmental loads (without 

considering tornadoes), significant difference in tornado capacity and failure 

modes is observed. The main reason affecting the failure mode, whether it is 

bending and shear, is the location of the guys relative to the conductors as 

explained in the chapter. This difference in tornado behaviour between the two 

systems can be attributed to the difference in the geometric configuration of the 

Linear 

Analysis 

Geometric Nonlinearity 

(Large deflections  P-Δ) + 

(Bending P-δ)

Tornado Configuration 1 92 84

Tornado Configuration 2 103 95
Tower T1

% of F2 Tornado Velocity  
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towers, in the number of conductor bundles and in the width of the conductors’ 

cross-arm. As a result of the localized nature of tornadoes, a system with wide 

cross arms will have different forces acting on the parallel conductor lines. This 

can lead to a torsion effect on the tower.  This is observed for system L2, which 

has wider cross arms compared to system L1.  

The assumption made regarding the post yield tension behaviour has no 

significant effect on the failure velocity. Assuming that the tension members 

maintain their post yield strength compared to losing their strength has increased 

the failure velocity by about 8% and 10% for systems L1 and L2, respectively.  

Due to the localized nature of tornadoes, the forces acting on a transmission tower 

depend on the location of the tornado relative to tower. Thus, the failure velocity 

of the same tower can vary based on the location of the tornado. For the two 

considered critical tornado locations, a difference of 11% is observed in the 

failure velocities for system L1. This is reduced to only 3% for system L2.  

The inclusion of geometric nonlinearities is shown to alter the failure velocity of 

systems L1 and L2 by 8% and 17%, respectively.  Because of the larger flexibility 

of system L2, the geometric nonlinear effect is shown to have a more pronounced 

effect for this system.      

Although the conductors are not fully loaded during tornadoes, the failure studies 

conducted on the two systems give an indication that transmission lines are vulnerable to 

failure when they experience an F2 tornado. This is despite the many load cases that 

account for ice, wind, wind-on-ice, and broken wires forces and are typically considered 

in design. As such, studies are needed to develop load cases simulating critical tornado 
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configurations on generic transmission line systems.  It should be noted that the results 

presented in this chapter do not include failures attributed to damage caused by debris 

during tornado events.  
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5.12 Appendices  

5.12.1 Appendix A  

The Equivalent cable modulus of elasticity is given by   
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3
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    Eq. 5-1 

in which eqE  = equivalent modulus of elasticity; E  = cable material effective modulus 

of elasticity; L = horizontal projected length of the cable; w  = weight per unit length of 

the cable; A = cross-sectional area of the cable; and T = cable tension. Eq. (5-1) calculates 

the tangential value of the equivalent modulus of elasticity when the tension in the cables 

equals T. If the tension in the cables changes due to the nonlinear iteration steps from Ti 

to Ti+1, the secant value of eqE  for each load iteration is given by 
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  Eq. 5-2 

The stiffness matrix of an inclined cable of length Lc and cross section A, during a 

pretension T is simply similar to the elastic stiffness matrix of a bar element with an 

equivalent elastic modulus given by Eq. (5-1) or Eq. (5-2). The elastic stiffness matrix in 

local coordinates for the cable element shown in Fig. 5-21 is given by 
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  Eq. 5-3 
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Stiffness matrix of truss element using large deflection theory was given by 

Przemieniecki (2012). Local stiffness matrix including geometric nonlinearity is given as  

     T E GK K K    Eq. 5-4 

where  TK  is the element stiffness matrix in local coordinates,  EK  is the elastic 

stiffness matrix as given in Eq. (5-3), and  GK  is the geometric stiffness matrix of the 

equivalent cable element, and is given by 

 
   
   

6 6
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G G
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G G

 
  

 
  Eq. 5-5 

in which the sub-matrix  G  is given by  

 

0 0 0
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  Eq. 5-6 

 

Fig. 5-21  Equivalent Cable Element in Local Coordinates  
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5.12.2 Appendix B  

Geometric stiffness matrix of three dimensional frame element.  
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 P is the axial force in the member, and L is the member length. 

5.12.3 Appendix C 

The three dimensional linear frame element stiffness matrix including the stability 

functions is given as 

 (1,1) (7,7) (1,7) (7,1) ( ) 5k k k k EA L S              Eq. 5-7 

   3(2,2) (8,8) (2,8) (8,2) (12 ) 1z zk k k k EI L S        Eq. 5-8 
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3(3,3) (9,9) (3,9) (9,3) (12 ) 1y yk k k k EI L S        Eq. 5-9 

2

(2,6) (6,2) (2,12) (12,2) (6,8)

(8,6) (8,12) (12,8) (6 ) 2z z

k k k k k

k k k EI L S

    

      
     Eq. 5-10 

2

(3,5) (5,3) (3,11) (11,3) (5,9)

(9,5) (9,11) (11,9) ( 6 ) 2y y

k k k k k

k k k EI L S

    

       
     Eq. 5-11 

  (4,4) (10,10) (4,10) (10,4) Xk k k k GI L        Eq. 5-12 

(5,5) (11,11) (4 ) 3Y yk k EI L S   Eq. 5-13 

(6,6) (12,12) (4 ) 3z zk k EI L S   Eq. 5-14 

(5,11) (11,5) (2 ) 4Y yk k EI L S   Eq. 5-15 

(6,12) (12,6) (2 ) 4z zk k EI L S        Eq. 5-16 

where E is the tower’s members material modulus of elasticity; A is the cross-sectional 

area; L is the member length; Iy and Iz are the moments of inertia of the cross-section 

about the local principle y and z axes, respectively; Ix is the torsional moment of inertia of 

the cross-section; G is the member material shear modulus; and S are the stability 

functions. S1 through S4 modify the bending stiffness; while S5 modifies the axial 

stiffness. In the case of axial force P is zero; all stability functions take the value of 1. 

Stability functions are expressed in the members’ axial force P, and the member end 

moments M1 and M2, about the member local y and z axes, as shown in Fig. 5-22.  

For tension member (P is positive), the stability functions S1z through S4z are 

31 sinh( ) 12z tS R    Eq. 5-17 
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22 (cosh( ) 1) / 6z tS R     Eq. 5-18 

3 ( cosh( ) sinh( )) / 4z tS R      Eq. 5-19 

4 (sinh( ) ) / 2z tS R     Eq. 5-20 

where  

L    Eq. 5-21 

2

zP EI   Eq. 5-22 

2 2cosh( ) sinh( )tR       Eq. 5-23 

While for a compression member (P is negative), 

31 sin( ) /12z cS R    Eq. 5-24 

22 (1 cos( )) / 6z cS R     Eq. 5-25 

3 (sin( ) cos( )) / 4z cS R       Eq. 5-26 

4 ( sin( )) / 2z cS R      Eq. 5-27 

where 

L    Eq. 5-28 

2

zP EI    Eq. 5-29 

2 2cos( ) sin( )cR        Eq. 5-30 
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The stability functions S1y through S4y can be calculated by replacing Iz by Iy in Eq. (5-

17) through Eq. (5-30).   

The stability function S5 can be calculated as follow: 

For tension members (P is positive) 

3 25 1 1 ( ) 4ty tzS EA R R P L       Eq. 5-31 

where 

2 2 2

2

( 1 2 )(coth( ) cos ( ))

2( 1 2 ) ( 1 2 )(1 coth( ))(2 cos ( ))

ty y y y y y y

y y y y y y y y

R M M ech

M M M M ech

   

   

  

   
   Eq. 5-32 

 y yL    Eq. 5-33 

2

y yP EI    Eq. 5-34 

2 2 2

2

( 1 2 )(coth( ) cos ( ))

2( 1 2 ) ( 1 2 )(1 coth( ))(2 cos ( ))

tz z z z z z z

z z z z z z z z

R M M ech

M M M M ech

   

   

  

   
  Eq. 5-35 

 z zL    Eq. 5-36 

2

z zP EI    Eq. 5-37 

For a compression member (P is negative),  

3 25 1 1 ( ) 4cy czS EA R R P L       Eq. 5-38 

where 
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   Eq. 5-39 

 y yL    Eq. 5-40 
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 z zL    Eq. 5-43 

2

z zP EI    Eq. 5-44 

 

Fig. 5-22 Degrees of Freedom on Three Dimensional Frame Element in Local 

Coordinates  
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6 CHAPTER 6  

        DEVELOPMENT AND TESTING OF AN AEROELASTIC MODEL OF A 

GUYED TRANSMISSION LINE SYSTEM 

6.1 Introduction  

Transmission lines systems are responsible of transferring electricity from the source to 

the end users. Large transmission line systems such as the 500 (kv) are responsible for 

transferring electricity from generation stations to cities and counties, then distribution 

systems deliver the electricity inside cities. Transmission line systems travel for 

thousands of kilometers through different topographies and weather conditions. Failure of 

transmission lines can have significant social and economic impacts. A fact has proven 

during the 1998 Montreal snow storm and the 2003 northeast black out. The electrical 

company Ontario Hydro reported that five out of six weather-related line failures in their 

territory are due to high intensity wind (HIW), such as tornadoes and downbursts 

(Behncke and White 2006). In the United States, 800 to 1,000 high intensity wind storms 

occur each year causing extensive damages on transmission structures (Behncke and 

White 2006). The CIGRÉ (2006), a multinational committee, questionnaire on line 

failures indicated that 65% of weather-related events on transmission lines were caused 

by tornadoes. The structural components of a transmission line system are the towers, the 

conductors, the ground-wires, and the insulator strings. Although the tower’s lattice form 

is favorable, the slenderness and flexibility of the system makes them vulnerable to 

strong wind loads. The transmission line system’s response to wind load is nonlinear and 

complex due to both the large displacements of the towers and the significant movement 

   



152 

 

 

of the lines which can reach to same order of magnitude of the line’s sag, as discussed in 

detail in Chapters 3, 4 and 5. In addition, the vertical conductor bundle deflects on an 

inclined plane under strong wind loads, different from the sagging observed under gravity 

on vertical planes. This deflection on inclined planes couples the in-plane and out-of-

plane lines oscillations (Gattulli et al. 2007). Design codes and manuals of practice also 

recommend gust response factors to account for load amplification from dynamic 

response of structural components of a transmission line systems, e.g. towers and lines, to 

wind gusts. The recommendations include drag coefficients for various solidity ratios and 

shielding factors (ASCE 2010 and CIGRE` 2009). Although very useful and pragmatic, 

these recommendations are primarily derived from two dimensional and three 

dimensional lattice structure section tests and assume, uniformity of solidity ratio with in 

the section and do not consider among other things the following: (i) three dimensionality 

effects such as end effects, (iii) complex geometric variations with height (tapered 

towers, variable spacing of members along height and near the cross arms), and (iii) 

aeroelastic effects. Such complexity in the response of transmission line systems to 

normal wind requires the use of sophisticated numerical models or aeroelastic testing as 

performed in the current study.  

There are various experimental, numerical and field studies reported in literature. 

Momomura et al. (1997) reported full-scale measurements of wind-induced vibration of a 

transmission line system in a mountainous area. The data was collected over a two year 

period, between 1991 and 1993. It was reported that the vibration characteristics and the 

total damping of the supporting towers are strongly influenced by the behaviour and the 

aerodynamic damping (measured up to 8% critical damping) of the conductors. The study 
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also concluded that the vibration mode shapes of the tower with conductors are similar to 

the mode shape of the tower without conductors. Loredo-Souza and Davenport (1998) 

investigated the effect of wind speeds and line’s mass on the aerodynamic damping 

values of different lines in a boundary layer wind tunnel. The study concluded that the 

background response was the predominant contribution to the total fluctuation. The 

resonant component became more significant in the case of low wind speeds and heavier 

conductors, e.g. higher line mass. Loredo-Souza and Davenport (2001) also reported that 

it is very difficult to verify and measure full-scale aerodynamic behavior of transmission 

lines, and wind tunnel testing can be an acceptable alternative. Lin et al. (2012) studied a 

small scale aeroelastic model of a single transmission line span and a guyed transmission 

tower under boundary layer and downdraft wind. The study was conducted at a length 

scale of 1:100. The study concluded that the single span transmission line system has a 

quasi-static response to both boundary layer and downdraft wind. In addition, the 

resonant dynamic response was found to be less significant in the case of downdraft wind 

than boundary layer wind.  

Extensive numerical studies were performed for transmission line system by (Shehata et 

al. 2005, Shehata and El Damatty 2007, Shehata and El Damatty 2008, Hamada 2009, 

Hamada et al. 2010, Hamada and El Damatty 2011, El Damatty and Hamada 2013) to 

assess the structural behaviour under computer simulated wind and HIW events such as 

downburst and tornadoes. The modelling and assessment of the behaviour of transmission 

lines under downburst loading was conducted by Shehata et al. (2005) and Shehata and 

El Damatty (2007). In these studies, a three dimensional finite element model simulating 

the towers and a two-dimensional model simulating the conductors were developed to 
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assess the structural performance of transmission towers under downburst loading. An 

extensive parametric study was conducted in the same investigations to evaluate the 

critical downburst loading cases. The studies carried out by Shehata et al. (2005) and 

Shehata and El Damatty (2007) was extended by Shehata and El Damatty (2008) to 

investigate the structural performance of the tower under these critical downburst loading 

cases. In the same study, the failure of a transmission tower during a downburst event, 

which occurred in Manitoba, Canada in 1996, was assessed. Hamada (2009), Hamada et 

al. (2010) and Hamada and El Damatty (2011) conducted a comprehensive study to 

assess the performance of transmission line structures under tornado loading. They 

investigated the variation of the tower members’ internal forces with the tornado 

locations relative to the transmission line system. Their studies provided an insight into 

the structural response of the towers under tornado wind loads. For example, the dynamic 

effect associated with the translation motion of the tornado was assessed and the results 

of the parametric study were used to assess the sensitivity of the members’ peak forces 

with the parameters defining the location of the tornado relative to the transmission line. 

Altalmas et al. (2012) and El Damatty and Hamada (2013) assessed the transmission 

lines’ failure mechanisms under critical tornado configurations. In addition, the study 

predicted the maximum tornado velocity that various lines can withstand before 

experiencing global failure. Their studies also predicted the main type of failure 

experienced as well as the path of members susceptible to failure. Hamada and El 

Damatty (2013) assessed the behaviour of two guyed transmission line structures under 

F2 tornado wind field, boundary layer wind, electrical companies’ recommended wind 

field, and CIGRE` recommended tornado loading cases.  
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The main objective of the current study is to investigate the aeroelastic characteristics of 

guyed lattice transmission line system, through a simultaneous testing of four aeroelastic 

guyed lattice towers and conductors. The transmission line system simulated in the 

current study is generic guyed transmission tower used by different hydro companies in 

North America and in different parts of the world. The aeroelastic model is designed for a 

geometry scale of 1:50 and tested in the Boundary Layer Wind Tunnel Laboratory 

(BLWTL) at the University of Western Ontario, Canada. The model is tested using an 

open exposure wind profile. The test is performed for three different wind directions and 

for two configurations, with and without the transmission lines (conductors and ground-

wires). Such aeroelastic model of guyed transmission line system with multiple spans is 

not reported in literature. This represent a new contribution to the existing literature of 

the aeroelastic behavior of transmission lines under wind actions. The sub-objectives of 

the current study can be summarized as follow: 

 Estimate accurately the overall wind load on transmission line system through a 

more accurate aeroelastic boundary layer wind tunnel testing 

 Investigate the dynamic response of guyed transmission towers under fluctuating 

wind, and for different wind speeds  

 Assess the effect of the conductors on the dynamic response of guyed 

transmission towers 

 Assess the effect of the conductors on the overall structural response of the 

system.  

 Assess the effect of the supporting guy’s pretension on the natural frequency and 

mode shapes of the structure 
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 Validate the numerical model force calculations, drag, shielding by matching the 

overall reactions of the supporting guys and force balance  

 Validate the finite element model of the transmission line system by matching the 

straining actions in the spine with the full tower numerical model results   

6.2 Description of the Aeroelastic Model of Transmission Line System  

6.2.1 Description of Transmission Line System  

The guyed lattice transmission tower used in the present study is shown in Fig. 6-1. It has 

a total height of 44.39 (m) at full-scale. The tower is supported using four guys, which 

are connected to the tower using two guy’s cross-arms, located at an elevation of 35.18 

(m) from the ground level. Two conductor bundles are connected to the tower cross-arms 

using a 4.27 (m) insulator. The conductors are attached at an elevation of 38.23 (m). One 

ground-wire is connected to the top of the tower. The conductors and ground-wire spans 

used in the current study are 110 (m). The conductors and ground-wire sags are 5 (m). 

The supporting guys’ cross-arms are orthogonal to the conductors’ cross-arms. Steel 

angle members, L-shaped in cross-section, are used for all the transmission tower 

members. The transmission tower has an almost square plan view with a pinned base that 

allow rotation degrees of freedom and restrain translational and torsional ones.  

The supporting guy system for the transmission tower consists of four guys with each guy 

cable consist of 11.68 (mm) diameter grade 225 galvanized steel wire. The presence of 

the supporting guys allow the use of narrow cross-section near the bottom of the 

transmission tower, as shown in Fig. 6-1. Two different initial pretension force of 7 and 
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10 (kN) are used. This pretension forces introduce an initial compression force to the 

vertical legs of the transmission tower beneath the guys’ cross-arms. More details 

regarding the material and geometric properties of the conductors and ground-wire are 

provided by Shehata et al. (2005) and Hamada et al. (2010).  

 

Fig. 6-1 Schematic of the Full-scale Guyed Transmission Tower 
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6.2.2 Dynamic Properties of Full-scale Transmission Line System  

A schematic view of the developed nonlinear three dimensional finite element model of 

the full-scale transmission line system is shown in Fig. 6-2. As shown in the figure, the 

numerical simulation includes the tower of interest along with three conductor’s spans 

along each side of the tower of interest. Simply supported conditions are assumed at the 

two far ends of the last conductors’ span. Therefore, the numerical simulation includes 

five transmission towers with six bays of transmission lines (conductors and ground-

wires).  

 

Fig. 6-2 Schematic View of the Three Dimensional Finite Element Model  

6.2.2.1 Description of Transmission Line In-house Finite Element Model  

The guyed transmission line system shown in Fig. 6-2 is modelled using the in-house 

nonlinear three dimensional finite element model that is developed in the previous 

Chapters. In summary, the transmission tower members are modelled using two-noded, 

three dimensional frame elements that takes into account the geometric nonlinear effect. 

Four-noded, nonlinear, three dimensional cable element is used to model the transmission 
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lines. The cable element has three translational degrees of freedom at each node. The 

cable element nonlinear formulation account for tension stiffness and geometric 

nonlinearities resulting from large displacements and the P-delta effect. Two-noded 

equivalent cable element is used to model the supporting guys. The equivalent cable 

elements accounts for the initial and variation of the pretension force and the tension 

stiffening of the supporting guys. More details regarding the finite element model are 

provided in Chapters 3 and 5.   

6.2.2.2 Natural Frequency and Mode Shapes of the Transmission Line 

System  

A free vibration analysis is conducted to estimate the natural frequency and mode shapes 

of the full-scale and the aeroelastic model of the transmission line systems. The free 

vibration analysis takes into account the tension stiffening resulting from the pretension 

force applied to the conductors, ground-wire and supporting guys. The free vibration 

analysis is calculated for the tower with and without the conductors and ground-wires. As 

concluded by Hamada and El Damatty (2011), the natural frequency and mode shapes of 

the towers are affected by the value of the initial pretension force applied to the 

supporting guys. The first two natural periods and frequencies of the tower together with 

the corresponding mode shapes are provided in Table 6-1 and Fig. 6-3, respectively. The 

results are presented for two cases representing different values for the guys pretension 

force. The first value of pretension force of 10 (kN) represents the recommended value 

by the Hydro Company. The second value of pretension force of 7 (kN) represents the 

slack case, which is affected by different parameters such as temperature change and 
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relaxation. It should be noted that the first vibration mode for the case of pretension force 

of 10 (kN) is along the conductors’ direction (the Y-direction), and the second mode is 

along a perpendicular direction (the X-direction). For the case of pretension force of 7 

(kN), the first vibration mode is perpendicular to the conductor’s direction, and the 

second mode is along the conductors’ direction.  

Table 6-1 Frequencies and Damping of Full-scale Tower  

 

 

Mode Direction Period Frequency Frequency Damping Direction Frequency Damping

(sec) (Hz) (Hz) % (Hz) %

1 X-Direction 0.685 1.46 X-Direction 1.55

2 Y-Direction 0.709 1.41 Y-Direction 1.32

1 Y-direction 0.826 1.21 Y-direction 1.30

2 X-Direction 0.870 1.15 X-Direction 1.07

10

7

2.65

3.2

ASCE MOP. 74 

(2010)

2.0 4.0

Normalized 

Aeroelastic Model 
Full Transmission Tower Pretension 

Force 

(kN)

Mode 1   Mode 2 

Pretension = 10 (kN) 

Mode 1  Mode 2 

Pretension = 7 (kN) 
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Fig. 6-3 First Two Mode Shapes of the Transmission Tower – (Pretension Force 10 

and 7 (kN)) 

6.2.3 Aeroelastic Model and Testing Plan  

The full aeroelastic model of the guyed transmission line system, shown in Fig. 6-4, was 

designed and constructed at a geometric scale of 1:50 relative to the full-scale. The 

aeroelastic model was designed to reproduce the structural and dynamic characteristics of 

the full-scale transmission line system. The Aeroelastic model of the guyed towers has 

the capability of changing the supporting guys pretension force that contribute to the 

overall stiffness of the tower and change the structural response. Three angles of attack 

(AOA), Yaw Ψ angles, are tested ( i.e. AOA = 90, 75, and 30o). Fig. 6-4 shows the Ψ 

angle of 30o.  Open terrain exposure with turbulence intensities of 17% is used. Thirty 

seven test wind speeds are used, ranging from 1.1 to 40.7 (m/sec) with an increment of 

1.1 (m/sec) at full-scale. For each wind speed, the testing time is 2 min (14 minutes full-

scale), followed by a 1 min of constant speed in order to give time to the wind flow to 

stabilize. The approach taken for the full aeroelastic model study is explained in detail by 

the Wind Tunnel Testing: A General Outline (2007) and Irwin (1982). The full 

aeroelastic model is studied in the 5 (m) wide low speed test section of the BLWTL II.  

The aeroelastic model requires equality of the following non-dimensional quantities, 

between the model and full-scale, such as Froude Number, Cauchy Number, Density 

Ratio, Damping Ratio, and Reynolds Number. In addition, a geometric similarity is 

required. Since the lines and supporting guys both tension and sag under gravitational 

loads are important consideration in the dynamic response of transmission line structures, 
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hence the Froude Number scaling has to be considered. Froude Number is the ratio of the 

gravitational to inertia forces. Accordingly, the velocity scale is equal to the square root 

of the length scale, and time scale is equal to 1/velocity scale. The ratio of the elastic 

forces to the inertia force are represented through the non-dimensional Cauchy Number. 

This can be represented by the frequency ratio (frequency/time scale), which is 

maintained as a constant in both the model and full-scale for the modes of vibration. The 

Density Ratio is represented through the relation between the inertia forces of the 

structure to that of the flow. This ratio relates the aeroelastic model mass to the air flow 

in the wind tunnel. Since the air density of the test is assumed the same as that of the full-

scale, the density ratio is taken equal to 1. The damping ratio is very critical for the 

dynamic response and the resonant motions of the structure. The model is designed to 

have as low a value of structural damping as possible to conservatively estimate the 

dynamic response and the magnitudes of the damping ratios are provided in Table 6-1. 

For sharp edged bluff structures, such as the angle members of the tower of interest, 

changes in Reynolds number of several orders of magnitude have negligible effect on 

wind forces (Irwin 1982). For circular members, such as the supporting guys and the 

conductors, the separation points of the wind around these members depend on Reynolds 

number. The Reynolds number for supporting guys and conductors are calculated for 

both the full-scale and the model. The variation of drag coefficient with Reynolds 

numbers graphs recommended by Holmes (2007), Vakil and Green (2009), and ASCE 

(2010) are used to check the variation in drag values.  
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Fig. 6-4 Assembled Aeroelastic Transmission Line Model (Ψ = 30o) 

 

Fig. 6-5 Schematic of the Transmission line Full Aeroelastic Model  
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Fig. 6-6 Aeroelastic model Yaw angle (Ψ = 90, 75, and 30o) 

Three full spans and four towers full aeroelastic model with different yaw angles Ψ of 90, 

75, and 30o are tested, as shown in Fig. 6-5 and Fig. 6-6. The yaw (Ψ) angles are chosen 

based on the geometric scale and the BLWTL II width. The aeroelastic model is divided 

into four components: 1) transmission towers with supporting spines, 2) four supporting 

guys for each transmission tower, 3) two conductors and ground-wire, and 4) the 

bearings. Table 6-2 shows the scaling ratios of the physical parameters used in the current 

aeroelastic model.  
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Table 6-2 Scaling Ratio of Physical Parameters of the Aeroelastic Model 

  

6.2.3.1 Transmission Tower and Spine  

The elastic properties of the guyed lattice transmission tower are modelled by a central 

spine providing the adequate bending and torsional stiffness of the tower, as shown in 

Fig. 6-7 and Fig. 6-8. The spine is made of aluminum bar with different circular cross 

sections along the height as shown in Fig. 6-7. The choice of a circular spine is the most 

appropriate for wind tunnel tests with multiple angles of attacks. Both the flexural and 

torsional rigidity of the transmission tower components such as the vertical shaft, 

conductors’ cross-arms, and guys’ cross-arms are calculated and incorporated in the 

single spine and the equivalent conductor’s and supporting guys’ cross-arms. The 

conductors and guys’ cross-arms are modelled as solid cylinder and rectangular sections, 

Parameters Similitude Requirements Scaling Ratio 

Length 1 : 50

Velocity 1 : 7.07

Time 1 : 7.07

Density 1 : 1

Mass 1 : 125,000

Mass Moment of Inertia 1 : 312,500,000

Acceleration 1 : 1

Damping 1 : 1

Axial Stiffness 1 : 125,000

Bending Stiffness 1 : 312,500,000

Force 1 : 125,000

Force / m' 1 : 2,500

Bending and Torsional Moment 1 : 6,250,000

Warping Stiffness 1 : 781,250,000,000
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respectively. Aluminum is used in order to achieve a light weight model to meet the mass 

scaling requirements, including the cladding mass, as shown in Table 6-3. In this table, a 

comparison between the full-scale and both the aeroelastic model and cladding is 

provided for the different tower sections.    

The tower cladding is segmented into parts to allow wind induced tower movement 

during the wind tunnel test. However it is installed continuously along the tower height 

and fixed at a single point to the central spine which has negligible effect on the stiffness 

of the spine. The cladding is made of plastic materials and provides proper mass and 

geometric shape to simulate the aerodynamic forces. The cladding segments are affixed 

to the central spine through a plastic clamp located at the middle of the cladding sections. 

In order to assess the effect of the central spine on the aerodynamic characteristics of the 

transmission tower, the results recommended by Kong, et al. (2009) are used. Kong, et al. 

(2009) studied the wind action on a four-sided 102 (m) high guyed mast which was 

constructed primarily of angle section for the chord and diagonal members. Kong, et al 

(2009) aeroelastic model was developed similar to the current model, with an aluminum 

circular central spine. Several aerodynamic section-models were constructed and tested to 

assess the effect of this central spine on the overall aerodynamic forces. The aerodynamic 

models were geometrically scaled from the full-scale tower, the first model with a 15% 

reduction of the member widths, the second model with a 20% reduction of the widths, 

and the third model with 30% reduction of the member widths. The study concluded that 

a 15% reduction of member areas leads to drag forces on the combined spine and 

cladding are closest to the target values for angles of attack 0 and 90o. In addition, the 
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study done by kong et al. (2009) concluded that it would be highly unlikely that the tower 

would experience aerodynamic instability, even with very small damping of 0.1%.  

 

Fig. 6-7 The 1:50 Scale of Transmission Tower Aeroelastic Model 
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Fig. 6-8 Assembled Transmission Tower Aeroelastic Model 
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Table 6-3 Matching Tower Mass to Spine Mass   

 

6.2.3.2 Supporting Guys and Insulators  

The four supporting guys are modelled by 0.33 (mm) diameter aircraft cables. This 

diameter is chosen to provide the appropriate scaled mass and wind-induced drag force. 

The aerodynamic drag is calculated by accounting the difference in Reynolds number 

between the full-scale and modelled wire using the value of an infinitely long cylinder. 

For the two middle towers, the equivalent axial stiffness of each supporting guy is 

provided by a calibrated leaf spring attached to the end of each supporting guy, as shown 

in Fig. 6-9. Strain gauges are fixed to each leaf spring in order to permit the adjustment of 

the supporting guys’ pre-tension force to the desired values. As for the two edge towers, 

the axial stiffness is simulated using stainless steel coiled extensional springs.  

The insulators strings are modelled with wood cylinders, as shown in Fig. 6-8. Wood is 

used to simulate the exact scaled mass and drag of the insulator springs. The insulators 

Tower 

Mass

Spine

Mass 

Cladding 

Mass
%

(kg) (kg) (kg)

Sections 

1 and 2
0.0368 0.0309 0.0055 99

Sections 

3, 4, and 5
0.1260 0.1023 0.0189 96

Cross-arms 0.1040 0.0910 0.0156 103

Section 7 0.0200 0.0175 0.0030 103

Tower 

Section 
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are attached to the conductors’ cross-arms by a very small diameter wire (0.18 mm). The 

conductors are attached to stainless steel coiled extensional springs that are hooked to end 

of the insulator spring. Accordingly, the insulators are allowed to swing freely under the 

actions of the wind on the conductors and the insulators.   

 

Fig. 6-9 Supporting Guys Anchorage and Pretension Adjustment and 

Measurements  

6.2.3.3 Conductors and Ground-wire  

Each conductor bundle is modelled as a single steel cable with a diameter of 0.61 (mm) 

to match the conductors bundle mass. Foam cylinders, shown in Fig. 6-8, are added to the 

cables to match the scaled drag that is corrected for the difference in Reynolds numbers 

between the full-scale and modelled conductors. The conductor’s end is connected with 



171 

 

 

stainless steel coiled extensional springs that can be moved as needed. The extension 

spring are chosen to simulate the axial stiffness of the scaled conductors.  

The ground-wire is modelled as a single steel cable with a diameter of 0.18 (mm) to 

match the ground-wire mass and axial stiffness. The scaled ground-wire drag matches the 

target value within a 10% difference than the desired aerodynamic drag. 

6.2.3.4 Bearings  

 

Fig. 6-10 2-DOF Universal Base Support  
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The four spines are mounted on two degrees of freedom universal support systems shown 

in Fig. 6-10. The torsional motion is completely restrained, as well as all translations 

degree of freedom, while allowing base rotations. As for the two central spines, the 

universal supports are mounted on force balance shown in Fig. 6-10 that can measure the 

tower base reactions. The four supporting guys of each tower ends with a leaf spring that 

simulates the axial stiffness.  

6.2.3.5 Model Instrumentation  

Strain gauges are mounted at two locations on the two central transmission tower’s spines 

as shown in Fig. 6-7. The first location is at almost the mid-height of the spine, where the 

maximum bending is expected and based on the transmission tower mode shapes shown 

in Fig. 6-3. The second location is at the conductors cross-arms to assess the contribution 

of the transmission lines on the overall forces in the supporting towers. The gauges are 

arranged in pairs, with each gauge attached to the opposing spine face as its partner. Two 

pairs are aligned to the longitudinal direction of the transmission line system, and the 

other two pairs are in the transverse direction. The strain gauges are calibrated prior the 

assembly process by clamping the spine as a cantilever beam subjected to incrementally 

increasing loads. For each strain gauges pair, the relation between the voltage output and 

the applied force is determined. The estimated bending moment uncertainty is less than ± 

7%  

Strain gauges are mounted on the leaf springs for both the central towers’ supporting 

guys. Similar to the strain gauges on the spines, the strain gauges on leaf springs are 

calibrated. The estimated strain measurements uncertainty is ±5%. In addition, the leaf 
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springs and extensional coil springs stiffness are calibrated by incrementally applying 

loads and measuring displacements.    

Accelerometers are mounted at two locations on the two central transmission towers’ 

spines as shown in Fig. 6-7. At each location, the accelerometers are placed in the X and 

Y (longitudinal and transverse) directions. Measurements are taken in the longitudinal 

and transverse directions for both locations. The first location is at mid-height of the 

spine, while the second location is at the top of the spine. These two locations are chosen 

based on the expected mode shapes of the transmission tower that are shown in Fig. 6-3.  

6.2.3.6 Wind Profile  

The full aeroelastic model is tested with class 3 flat open terrain (Exposure C) that is 

described by the ASCE (2012) as Z0 = 0.03 (m) and Zg = 275 (m).  . The wind speed scale 

is 1:7.07 based on the geometric scale and Froude number relation. A reference velocity 

profile is performed at the center location, location 1 shown in Fig. 6-12. The vertical 

profile of the normalized mean wind speed and the longitudinal turbulence (Iuu) at the 

center location are shown in Fig. 6-11. A reference height of 37.5 (m) is chosen, where 

the conductors’ cross-arms are located.  The profile measurements are done using Cobra 

probs, where the mean velocity and turbulent intensities on the three main axes are 

measured. The sampling time is 180 sec (20 minutes at full-scale). Such a long 

aeroleastic model requires different locations for profile measurements. Six velocity 

measurement locations, shown in Fig. 6-12, are chosen based on the length and width of 

the aeroelastic model of the transmission line system. The other profile measurements’’ 

locations are referenced to the center profile Table 6-4 shows both the normalized mean 



174 

 

 

wind speed at reference height and the longitudinal turbulence (Iuu) at the seven velocity 

measurement locations. The results presented in the table show negligible differences in 

the mean wind speed and turbulence intensities between the all seven locations of 

velocity measurements. The mean velocity and turbulence intensity profiles are matched 

to an Engineering Sciences Data Unit (ESDU) profile for open terrain by setting the 

height of roughness elements along the test section fetch to three urban sheets and eight 

suburban sheets followed by installing a barrier of 0.38 (m) height and installing four 

spires at the test section inlet, as shown in Fig. 6-4. The turbulence intensity in the flow 

direction is appreoximatly17% at the reference height, as shown in Fig. 6-11. 

 

Fig. 6-11 Vertical Profile of Mean Wind Speed and Longitudinal Turbulence 

Intensity Measured at the Center Location, (Reference Wind 46.7 m/sec) 
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Table 6-4 Normalized Mean Wind Speed at Reference Height and the Longitudinal 

Turbulence at the Different Velocity Measurement Locations 

 

 

Fig. 6-12 Wind Profile Test Locations  

Locations

(ref. height 37.5 m) 

Normalized

Full Scale Mean 

Wind Speed

Turbulence 

Intensity 

Iuu %

1 1 17.1

2 1.01 17.8

3 0.99 17.3

4 1.01 17.2

5 1.005 17.3

6 0.95 16.7

7 0.95 17.1
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6.3 Results and Discussion  

The results presented in the current Chapter is only for the test with yaw (Ψ) angle equal 

to 90o, as shown in Fig. 6-13. This case is chosen to assess the objectives of the current 

chapter as discussed in detail in the following sections.  

 

Fig. 6-13 Assembled Aeroelastic Transmission Line Model (Ψ = 90o) 

6.3.1 Mode Shapes Frequencies and Damping  

A free vibration analysis is conducted to estimate the natural frequency and damping of 

the aeroelastic model of the transmission line system. The analysis is performed twice 

with an equivalent full-scale pretension force of 10 and 7 (kN). The measured first two 
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mode shapes’ frequency of both cases are presented in Table 6-1. The aeroelastic model 

frequencies are in good agreement with both the results predicted by the developed in-

house finite element model and the values recommended for lattice transmission lines by 

the ASCE (2010). The measured damping ratios from the aeroelastic model, shown in 

Table 6-1, are lower than the values recommended by the ASCE (2010), and matches the 

Momomura et al. (1997) measurements of full-scale transmission tower damping of 1.7 

to 3.3% critical damping ratios. The low damping ratios of the aeroelastic model enables 

the identification of possible instabilities under the action of wind.    

6.3.2 Accelerometer Results  

 

Fig. 6-14 Relation between Accelerometers rms and Wind Speeds (m/sec) for Both 

Towers – Case of Towers only  
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Fig. 6-15 Relation between Accelerometers rms values and Wind Speeds (m/sec) for 

Both Towers – Case of Towers with Conductors 

Based on visual observations of the aeroelastic model under all test wind speeds, no 

instabilities are observed. In order to verify that, the relation between the root mean 

square (rms) of the four accelerometers and the different wind speeds of both towers is 

shown in Fig. 6-14 and Fig. 6-15  for the far and near towers. Fig. 6-14 shows the results 

for the tower with no conductors attached, and Fig. 6-15 shows the results with the 

conductors attached to the tower. As shown in the figure, the accelerometers rms values 

at different wind speeds are following an exponential curve, similar to the variation of the 

applied force with velocity square. This behaviour matches the response values for 

acceleration that was measured from a full-scale transmission line system by Momomura 
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et al. (1997). Momomura et al. (1997) concluded that the acceleration response increases 

in proportion to the power of the wind speed, with a power index generally less than 2. 

The acceleration values at the top of the tower in the same direction of the wind flow 

(lateral direction) are found to be the maximum. Some minor instabilities are observed 

for the top accelerometer in the lateral direction at low speeds, as shown in Fig. 6-14 and 

Fig. 6-15. By investigating the results, the vibration frequency leading to these 

instabilities is found to be 34 Hz. This is due to vortex shedding or instabilities caused at 

the insulator springs. 

6.3.3  Tower Supporting Guy Forces  

Guyed towers are challenging to analyze in comparison to self-supported towers, as the 

supporting guys’ location, guys’ pretension force, and response to wind loads affect the 

overall structural response and load path of the transmission tower. A clear evidence is 

noticed in the variation of the tower modes shapes and frequencies based on the value of 

the pretension force of the towers. In the following sections, the response of supporting 

guys of transmission towers for yaw (Ψ) angle of 90o of both with and without 

conductors are investigated.  

6.3.3.1 Tower Supporting Guys Forces without Conductors  

The time history response of each of the four supporting guys of each tower are measured 

for each of the 37 wind speeds over 2 mins (14 minutes full-scale). The response time 

histories for the supporting guy number 2 for 9.4, 18.0, 27.0, and 36.6 (m/sec) reference 
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wind speeds as shown in Fig. 6-16. These wind speeds are measured at the reference 

height, which coincides with the cross-arms height.    

 

a) Reference Wind Speed = 9.4 (m/sec)  

 

 

b) Reference Wind Speed = 18.0 (m/sec)  
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c)  Reference Wind Speed = 27.0 (m/sec)  

 

d)  Reference Wind Speed = 36.6 (m/sec) 

Fig. 6-16 Time Histories of Measured Supporting Guy 2 Axial Force for Different 

Wind Speeds – without Conductors Case 

Fig. 6-17 shows the far tower supporting guy 2 response spectral density determined by 

spectral estimation from the fluctuating component of the axial force in guy 2 shown in 

Fig. 6-16. Resonant dynamic response can be distinguished from the background 
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response especially in low wind speeds. For low wind speeds (9 m/sec), the first resonant 

mode is centered a frequency of 8.0 Hz. With increasing the wind speed, the resonant 

peak is shifted slightly to 7 Hz, but with a widened band width and becomes less 

distinguished. A second peak is noticed at a frequency of 9.5 Hz, and is decreased until 

vanished by the increase of the wind speed. With time scaling of 1:7.07, the aeroelastic 

model, without conductors, predicted a fundamental frequency of 1.15 Hz for the full-

scale transmission tower. This matches the results shown in Table 6-1.  
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Fig. 6-17 Boundary Layer Supporting Guy 2 Response Spectra due to Reference 

Mean Wind Speed of 9.4, 18.0, 27.0, and 36.6 (m/sec), Respectively  

The variation of the axial force of the supporting guy number 2 with different wind speed 

is shown in Fig. 6-18. As shown in the figure, the structural response of the supporting 

guy is following an exponential curve, similar to the variation of the applied force with 

velocity square. Similar results was concluded by Momomura et al. (1997) based on a 

full-scale measurements of transmission line system. Momomura et al. (1997) results 

shows increase in the tower response proportion to the power of the wind speed, with a 

power index generally less than 2.   
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Fig. 6-18 Variation of the Internal Force of the Supporting Guy 2 with Different 

Wind Speeds 

6.3.3.2 Tower Supporting Guys Forces with Conductors  

The time history responses shown in the previous sections are presented in the current 

section but for the configuration where conductors are attached to the transmission 

towers. The response time histories are presented for the same supporting guy, guy 2, and 

at the same selected test wind speeds. These time histories are shown in Fig. 6-19. These 

wind speeds are selected as a representation of the results.  
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a) Reference Wind Speed V = 9.40 (m/sec) 

 

 

b) Reference Wind Speed V = 18.0 (m/sec) 
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c) Reference Wind Speed V = 27.0 (m/sec) 

 

d) Reference Wind Speed V = 36.6 (m/sec) 

Fig. 6-19 Time Histories of Measured Supporting Guy 2 Axial Force for Different 

Wind Speeds – with Conductors Case  
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For the case of testing with the conductors, Fig. 6-20 shows the far tower supporting guy 

2 response spectral density determined by spectral estimation from the fluctuating 

component of the axial force in guy 2. Resonant dynamic response can be distinguished 

from the background response especially in low wind speeds. For low wind speeds (9 

m/sec), the first resonant mode is centered a frequency of 7.5 Hz. With increasing the 

wind speed, the resonant peak was shifted slightly to 7 Hz, but with a widened band 

width and becomes less distinguished. Several peaks are noticed at frequencies of 9.5, 11, 

and 17 Hz, and are decreased until almost vanished by the increase of the wind speed.  
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Fig. 6-20 Boundary Layer Supporting Guy 2 Response, with Conductors Case, 

Spectra due to Reference Mean Wind Speed of 9.4, 18.0, 27.0, and 36.6 (m/sec), 

Respectively 

6.3.4 Bending Moments 

The bending moment at almost the mid-tower height is measured using strain gauges. 

This location is chosen based on the mode shapes shown in Fig. 6-3, to better represent 

the behaviour of the central spine which simulates the tower main body. In the following 

sections, the response of bending moment at mid-height for both cases with and without 

conductors are assessed and investigated. 
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6.3.4.1 Mid. Tower Bending Moment without Conductors  

The time history response of the mid-height bending moment of both central towers are 

measured for each of the 37 wind speeds over 2 mins (equivalent to 14 mins at full-

scale). The response time histories for the far tower mid-height bending moment for 9.4, 

18.0, 27.0, and 36.6 (m/sec) reference wind speeds ae shown in Fig. 6-21.  
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c) Reference Wind Speed (27.0 m/sec) 

 

d) Reference Wind Speed (36.65 m/sec) 

Fig. 6-21 Time Histories of Measured Mid. Far Tower Bending Moment for 

Different Wind Speeds – without Conductors Case 
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Fig. 6-22 shows the far tower mid-height bending moment response spectral density 

determined by spectral estimation from the fluctuating component of the bending 

moment at mid-height of the far tower shown in Fig. 6-21. Resonant dynamic response 

can be distinguished from the background response especially in low wind speeds. For 

low wind speeds (9 m/sec), two peaks can be distinguished and centered at frequencies of 

8.0 and 13.5 Hz. With increasing the wind speed, the 8 Hz resonant peak becomes less 

distinguished and vanish at higher wind speed. The 13.5 Hz resonant peak shifted to 12 

Hz, but with a widened band width and becomes less distinguished. With time scaling of 

1:7.07, the aeroelastic model, without conductors, predicted at almost mid-height of the 

towers fundamental frequencies between 1.1 to 1.7 Hz for the full-scale transmission 

tower. This matches the results shown in Table 6-1. 
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Fig. 6-22 Boundary Layer Far Tower Mid. Bending Moment Response Spectra due 

to Reference Mean Wind Speed of 9.4, 18.0, 27.0, and 36.6 (m/sec), Respectively 

6.3.4.2 Mid. Tower Bending Moment with Conductors  

The same time history response shown in the previous section are presented in the current 

section but for the test configuration where conductors are attached to the transmission 

towers. The response time histories are presented for the mid-height bending moment of 

the far tower and for the same selected wind speeds. These time histories are shown in 

Fig. 6-23. These wind speeds are selected as a representation of the results.  
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a) Reference Wind Speed V = 9.4 (m/sec)  

 

 

b) Reference Wind Speed V = 18.0 (m/sec)  
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c) Reference Wind Speed V = 27.0 (m/sec)  

 

d) Reference Wind Speed V = 36.6 (m/sec)  

Fig. 6-23 Time Histories of Measured Mid. Far Tower Bending Moment for 

Different Wind Speeds – with Conductors Case 

For the configuration where the conductors are attached to the transmission towers, Fig. 

6-24 shows the far tower mid-height bending moment response spectral density 
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determined by spectral estimation from the fluctuating component of the bending 

moment at mid-height of the far tower shown in Fig. 6-23. Resonant dynamic response 

can be distinguished from the background response especially in low wind speeds. For 

low wind speeds (9 m/sec), several peaks can be distinguished and centered at 

frequencies of 4, 6, 8, and 14 Hz. With increasing the wind speed, the 4, 6, and 8 Hz 

resonant peaks become less distinguished and vanish at higher wind speed. The 14 Hz 

resonant peak shifted to 11.5 Hz, but with a widened band width and becomes less 

distinguished. With time scaling of 1:7.07, the aeroelastic model, without conductors, 

predicted at almost mid-height of the towers fundamental frequencies between 0.5 to 1.63 

Hz for the full-scale transmission tower. This matches the results shown in Table 6-1 for 

the high frequency. The low frequency peaks are due to the effect of the conductors’ 

oscillation as discussed later.  
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Fig. 6-24 Boundary Layer Far Tower Mid. Bending Moment, with Conductors 

Case, Response Spectra due to Reference Mean Wind Speed of 9.4, 18.0, 27.0, and 

36.6 (m/sec), Respectively 

6.4 Validation of an In-house Three Dimensional Finite Element Model of 

Transmission Line System  

The current section compare the aeroelastic model results with the in-house nonlinear 

three dimensional finite element model that was developed by the author in the previous 

chapters. The main objectives are to validate a) the wind force calculations, including the 

drag coefficients and shielding effect, b) the structural response calculated by the in-

house numerical model. The aeroelastic model results for the A.O.A. of 90o are used in 

the current section. The objective is to evaluate the wind forces without considering the 
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effect of the yaw angle on the applied wind forces on the transmission towers and lines. 

The wind speed of 36.6 (m/sec) is used for the validation of the numerical model. This 

wind speed is measured at the reference height, which is the cross-arms height. The 

equivalent 10 (m) wind speed is 32.18 (m/sec) that is used originally to design the 

transmission line system by the Hydro Company. The wind loads on the transmission 

towers and lines are calculated using the equations provided by the ASCE (2010). The 

mean wind speed is used for the validation purpose. The nonlinear three dimensional 

finite element model of the transmission line system is solved initially to adjust the 

pretension force of the supporting guys and conductors. The stiffness matrix that 

accounts for tension stiffening is formulated. The calculated wind loads are applied to the 

numerical model and the nonlinear analysis is performed. The analyses are repeated 

twice, with and without the conductors. A comparison between the aeroelastic model and 

the numerical model is discussed in the following sections.  

6.4.1 Validation of the Numerical Model without Conductors  

Table 6-5 Supporting Guys Forces, Tower Base Reactions, and Tower’s Bending 

Moments of the Aeroelastic and the Numerical Models – without Conductors Case  

 

In this section the wind loads are applied only to the transmission towers. As shown in 

previous sections, the aeroelastic model responses are recorded. The mean responses are 

Guy 2 Guy 3 Guy 6 Guy 7 Lateral Vertical Lateral Vertical 

(kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN.m) (kN.m)

Aeroelastic

Model 
42 44 42 41 13 60 11 61 115 101

In-house 

Finite Element 

Model 

11 50 11 50 110 110

Bending Moment 

Mid. Height 

Near Tower

Tower Base SupportSupporting Guys Bending Moment 

Mid. Height 

Far Tower

41

Far Tower Near Tower Far Tower Near Tower
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used for the validation. In order to satisfy the two main objectives of the validation, the 

comparison focuses on the mean response of the supporting guys’ forces, tower base 

reactions, and the bending moments of the transmission tower main body. Table 6-5 

shows the results of both the aeroelastic model and the numerical model. The results are 

shown for both the far and near towers. The forces of the upstream supporting guys’ are 

shown. These supporting guys are identified as guy 2, 3, 6, and 7, as shown in Fig. 6-5, 

while the other supporting guys are slacking for the A.O.A. (Yaw angle) of 90o.  As 

shown in Table 6-5, a good agreement between the aeroelastic and the numerical model 

results is indicated, with a maximum difference in the supporting guys’ axial force of 7 

%. Each of the middle towers has a force balance attached to its bases that calculates the 

tower’s reactions in the lateral, longitudinal, and vertical reactions. The lateral and 

vertical reactions of both towers are compared with the numerical model reactions. The 

values reported in Table 6-5 do not include the own weigh of the tower and the effect of 

the supporting guys pretension force. These values represent the effect of the applied 

wind load on the transmission towers. As shown in the table, the difference in the lateral 

and vertical reaction between the aeroelastic and numerical model are 14 and 18 %, 

respectively. The higher difference can be interpreted as a consequence of the higher 

wind effect at the near ground region in the wind tunnel while the numerical model 

assumes a zero wind at ground level. Each of the equivalent spines have a pair of strain 

gauges at the mid-height of the tower body to measure the bending moment at the mid-

height. The results provided in Table 6-5 show a good agreement in terms of the bending 

moment at mid-height of the tower for both the aeroelastic and numerical models. The 
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maximum difference in the mid-height bending moment between the physical and the 

numerical model is 8%.  

6.4.2 Validation of the Numerical Model with Conductors  

 

Fig. 6-25 Time History of Measured Conductor’s Longitudinal Reaction on Tower’s 

Cross-arm (N) – Near Tower   

In this section the wind loads are applied on both the transmission towers and the 

conductors. The case of Yaw angle of 90o is used where only the middle span and two-

third of the two adjacent spans are loaded with wind, as shown in Fig. 6-13. The 

remainder of the conductors’ spans and the two edge towers are located outside the wind 

tunnel walls and are not subjected to wind loads, as shown in Fig. 6-5. The longitudinal 

forces in the conductors are reversed on the towers and called in the current study as the 

longitudinal reaction of the conductors. The bending moment response of the conductor 

cross-arms can be used to understand the behaviour of the conductors under fluctuating 

wind. The time history response of the conductor cross-arm out-of-plane moment are 
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measured for each of the 37 wind speeds over 2 mins (14 minutes full-scale). The 

response time history for the out-of-plane moment on the conductor cross-arm of the far 

tower for the 36.6 (m/sec) wind speed is shown in Fig. 6-25.  Fig. 6-26 shows the far 

tower conductors’ cross-arms out-of-plane bending moment response spectral density 

determined by spectral estimation from the fluctuating component shown in Fig. 6-25. 

Resonant dynamic response can be distinguished from the background response. Several 

peaks can be distinguished and centered at frequencies of 1.4, 3.5, 7, and 12 Hz. With 

time scaling of 1:7.07, the aeroelastic model predicted, at the conductors’ cross-arms 

location, frequencies between 0.2 to 1.7 Hz for the full-scale transmission tower. This 

matches the results shown in Table 6-1 for the high frequency. The low frequency peaks 

are due to the effect of the conductors’ oscillation, which is function of mass, length, sag, 

and pretension force. The results match the typical conductors’ natural frequencies of 0.1 

to 1.0 Hz that are reported in the literature by Hamada and El Damatty (2011), ASCE 

(2010), and Momomura et al. (1997). Table 6-6 shows the mean response of the 

supporting guys’ forces, tower’s mid-height bending moments, and conductor’s 

longitudinal reactions of both the aeroelastic and the numerical models. The forces of the 

upstream supporting guys are reported for both models. The results shown in Table 6-6 

indicate a good agreement between the aeroelastic and numerical models in terms of the 

axial force of the upstream supporting guys of both towers. A maximum difference of 

13% between the aeroelastic and numerical models is reported. The bending moment at 

the mid-height of both the far and near tower are shown in Table 6-6. The maximum 

difference of the mid-height bending moment for the aeroelastic and numerical models of 

both towers is 11%. Due to the unbalanced wind loading on the conductors, the 
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conductors exhibit a longitudinal force on the supporting towers’ cross-arms. These 

conductor’s longitudinal reactions are reported in Table 6-6, with a 13% difference 

between the aeroelastic and the numerical model. This longitudinal force increase 

nonlinearly with the conductor’s span length and other parameters such as insulators 

length, conductor’s pretension force, sag, and own weight, till reach up to 60 % of the 

transverse reactions of the conductors. In the current analysis and due to the short 

conductor’s span, the longitudinal force is only 10% of the transverse reaction of the 

conductors. More details regarding the longitudinal force and parameters affecting the 

magnitude of this force are provided in Chapters 3 and 4. 

 

Fig. 6-26 Boundary Layer Conductor’s Longitudinal Reaction on Tower Cross-

arms Response Spectra due to Reference Mean Wind Speed of 36.6 (m/sec) 



206 

 

 

Table 6-6 Supporting Guys Forces, Tower’s Bending Moments, Conductor’s 

Longitudinal Reaction of the Aeroelastic and Numerical Model – with Conductors   

 

6.5 Effect of Conductors on the Structural Response of the Transmission 

Line System  

The purpose of this section is to understand the effect of the conductors on the structural 

behaviour of the guyed tower in view of the results of Sections 6.4.1 and 6.4.2. The 

results in Section 6.4.1 represent the transmission tower response without the conductors. 

Section 6.4.2 discusses the aeroleastic model results for the test configuration where the 

conductors are attached. The choice of the A.O.A. of 90o, where parts of the adjacent 

spans are not fully loaded with wind load, is to assess the effect of the unbalanced wind 

loads on the transmission lines on the structural response of the supporting towers. The 

following discussion touches only the effect of the transmission line conductors on the 

structural response of the transmission towers, specifically the effect on the internal 

forces of both the supporting guys and the tower.    

6.5.1 Transmission Tower’s Supporting Guys  

Based on the results shown in Table 6-5 and Table 6-6, 30 to 50% increase in the 

supporting guys’ axial forces as a result of conductors’ forces for such a short span. The 

Guy 2 Guy 3 Guy 6 Guy 7 

(kN) (kN) (kN) (kN) (kN.m) (kN.m) (N)

Aeroelastic

Model 
53 56 52 59 106 86 425

In-house 

Finite Element 

Model 

60 63 60 63 97 97 370

Conductor

Longitudinal Reaction  

Far Tower

Supporting Guys Bending Moment 

Mid. Height 

Far Tower

Bending Moment 

Mid. Height 

Near Tower

Far Tower Near Tower
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conductor span used in the current study is 110 (m), while for the same tower, the span 

can reach up to 500 (m). Accordingly, at the same wind speed and for the same number 

of the conductor bundle, the supporting guys’ internal forces can reach up to 250% of the 

internal forces without including the conductor’s wind loads. As shown in Table 6-6, the 

supporting guys’ forces are not similar. For the same tower, both the supporting guys 

internal force are different, despite the fact that the wind flow is perpendicular to the 

transmission line system. The difference in the guys internal forces of the same tower can 

reach up to 12% of the higher internal force. This can be explained in view of the 

longitudinal reaction of the conductors due to the unbalance wind loads applied on the 

lines. This 12% difference increases by the increase of the longitudinal reaction of the 

conductors. It should be noted that the difference in results between the numerical and the 

aeroelastic model increases from 7 to 13% due to inclusion of the conductors, as the 

lines’ behavior and longitudinal reactions are highly nonlinear and very complex to 

predict.       

6.5.2 Transmission Tower’s Internal Forces  

The objective of this section is to assess the effect of the conductors on the internal forces 

of the transmission tower main body and cross-arms. A schematic representing the 

structural system of the guyed tower is shown in Fig. 6-27. In this figure, the tower is 

represented as an overhanging beam supported by a hinge support at its base and by a 

spring system, simulating the stiffness of the guys. The distributed load, P (force/length) 

shown in Fig. 6-27, results from the boundary layer wind acting on the tower. The 

concentrated force Fc result from the wind loads on the conductors. For the tower main 
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body, located between the supporting guys and base, the distributed wind load P and the 

concentrated reaction Fc tend to have opposite effects on the straining actions that 

develop in this part of the tower. The mid-height bending moment measurements of the 

central spine is considered as a good indication for the variation of the straining actions 

of the tower main body. As shown in the results presented in Table 6-5 and Table 6-6 for 

the mid-height bending moment, the bending moment increases for the case with no 

conductors attached and decreases significantly for the case with the conductors. Such 

structural response benefits from the use of the guyed support and the conductors load in 

the overhang to decrease the amount of internal forces in the tower chord members. An 

opposite structural response is expected for the case of self-supported towers, as they can 

be represented as a cantilever.  

 

Fig. 6-27 Simulation of the Guyed Tower as an Overhanging Beam  
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The conductor’s cross-arms are shown in Fig. 6-28. The internal forces in this area of the 

tower is mainly affected by the reaction provided by the conductors to the cross-arms. 

The unbalanced loads acting on the two spans adjacent to the middle two towers lead to a 

resultant forces acting on the conductor cross-arms along the longitudinal direction of the 

conductors as shown in Fig. 6-28. This leads to an out-of-plane bending moment, causing 

compression force in the upper members of the conductor cross-arms as shown in Fig. 

6-28. These members are typically designed as tension only members, as the various load 

cases considered in the design of this tower do not predict any compression force in this 

member. Similar conclusion was reported by (Shehata and El Damatty 2007) for the 

behaviour of transmission towers under downburst wind loads, and by (Hamada and El 

Damatty 2011) for the behaviour of transmission towers under tornado wind loads.   

 

Fig. 6-28 Conductor’s Cross-arms Orientation and Longitudinal Reaction  
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6.6 Conclusions  

The following conclusions can be drawn from the current aeroelastic investigation of the 

transmission line system:   

- For the thirty seven test wind speeds used in the current aeroelastic test, no 

instabilities are found for the tested transmission towers or lines. The general 

dynamic response of the tower follows an exponential curve, similar to the 

variation in the applied wind load.  

- The resonant components of the dynamic response are more significant and 

noticeable in the low wind speeds. With increasing the wind speeds, these 

resonant components become less distinguished and in some cases vanishes.  

- The measured resonant frequencies of the aeroelastic model match those 

calculated by the numerical model of the full tower.  

- In terms of the resonant peaks of the tower’s dynamic response and their 

correspondent frequencies, no significant differences are for the case with and 

without conductors. The resonant peaks almost have the same frequencies for 

both cases. The magnitude of the dynamic response is different due to the 

conductor’s loads. This can be explained in view of both the high aerodynamic 

damping of the conductors and the significant difference in the natural 

frequencies between the conductors and the supporting towers. In addition, most 

of the conductor’s load path is transferred by the supporting guys to ground 

supports.   

- The conductors’ oscillations under fluctuating wind affect the resonant 

component of the conductors’ cross-arms. Such effect is noticed in the mid-tower 
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response at low wind speeds, and become less distinguished with the increase of 

the wind speed.  

- The variation of the transmission tower straining actions with the increase of the 

wind speed follows an exponential curve, similar to the applied wind load.  

- For the case of towers only (no conductors attached), a good agreement is found 

between the measured straining actions of the aeroelastic model and the 

calculated values using the in-house numerical model, with a maximum 

difference in the: 

o supporting guys axial force of 7% 

o lateral base reaction of 14% 

o mid-height bending moment of 8%.  

- For the case of towers with conductors, a good agreement is found between the 

measured straining actions of the aeroelastic model and the calculated values 

using the in-house numerical model, with a maximum difference in the: 

o supporting guys axial force of 13% 

o mid-height bending moment of 11%.  

- The effect of the conductors on the overall structural response of the transmission 

towers is investigated in the current study. The inclusion of the conductors 

changes the transmission towers response under wind loads, with increase or 

decrease of the internal forces of the tower. As shown in the current study, the 

conductors reaction decrease the internal forces in the towers main body, while 

increase the supporting guys and conductor’s cross-arms straining actions. In 

addition, the conductors exhibit a longitudinal force on the supporting towers’ 
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cross-arms due to the unbalanced wind loading on the conductors. This 

longitudinal reactions change the structural response and force distribution in 

different components of the guyed transmission tower.  
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7 CHAPTER 7  

        EQUIVALENT F2 TORNADO LOADING ON LATTICE TRANSMISSION 

LINE SYSTEMS   

7.1 Introduction  

Electricity plays a vital and essential role in our daily life. Almost all business and 

activities depend on having a reliable source of electricity. Transmission lines are 

responsible of carrying electricity from the source of production to the end users. Failure 

of transmission lines can have devastating social and economical consequences, so it is 

imperative to understand how failures occur and how to prevent them. It has been 

reported that 80% of weather-related transmission line failures are attributed to high 

intensity wind (HIW) events in the form of tornados and downbursts (ASCE 2010 and 

Dempsey and White 1996). Ishac and White (1994) reported that within populated areas 

in Canada, Southwestern Ontario experiences the highest rate of tornado incidence (about 

two tornadoes per 10,000 km2 every year) and most transmission line failures in this area 

are caused by tornadoes. 92% of these tornadoes were F2 or less on the Fujita scale. 

Ontario Hydro has reported that five out of six weather-related line failures in their 

territory are due to tornadoes (Behncke and White 2006). Newark (1984) concluded that, 

on average, a F3 tornado occurs in Southwestern Ontario every five years. In the United 

States, 800 to 1,000 HIW storms occur each year leading to many transmission 

structures’ damages or failures (Behncke and White 2006). CIGRE` (2006) questionnaire 

on line failures in different countries indicated that 65% of weather-related events on 

transmission lines were caused by HIW events such as tornadoes. Accordingly, an 
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extensive research program was initiated by a research group at Western University 

(formally The University of Western Ontario), Canada, six years ago to study the 

behaviour of transmission line structures under tornado wind loads. The research 

involved computational fluid dynamics (CFD) simulations of different tornado intensities 

and nonlinear three dimensional finite element modelling of transmission line systems. In 

addition to providing an insight about the behaviour of transmission line systems under 

tornadoes and the modes of failures, an approach for estimating critical tornado loads 

cases simulating the effect of tornadoes on transmission line structures resulted from this 

extensive research.    

 

Fig. 7-1 Vertical profile of tangential velocity component for different radial 

distances from F4 tornado center  

Tornadoes are categorized by the damage-based Fujita scale (Fujita and Pearson 1973), 

or the modified Enhanced Fujita scale (EF-scale). Both have six categories, 0 to 5 which 
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represent the damage level and take into account tornado characteristics such as path 

width, length, and wind speed. Due to the complexity and difficulty of obtaining full-

scale data, especially for the near ground region, laboratory simulations such as Tornado 

Vortex Chambers (TVC) are used in which tornadoes are represented as vortices (Wan 

and Chang 1972, Ward 1972, Davies-Jones 1973, Church et al. 1977, Baker and Church 

1979, Church et al. 1979, Rotunno 1979, Lund and Snow 1993, Wang et al. 2001, and 

Sarkar et al. 2005). The TVCs provide a good simulation of the flow characteristics 

inside a tornado, but the results are quite sensitive and are affected by the applied 

boundary conditions and the experimental limitations. For the near ground region, 

numerical analysis can be done using CFD simulations, which can provide a good 

description for the flow in this region. The field data for the 1998 Spencer South Dakota 

F4 tornado and for the 1999 Mulhal F4 tornado were used to validate the numerical 

(CFD) simulations of F4 and F2 tornadoes conducted by (Hangan and Kim 2008 and 

Hamada et al. 2010).  

The complexity in analyzing transmission line structures under tornadoes arises from the 

following facts: 

1- Tornadoes are localized events with complex wind profiles. The tornado wind 

profile has three velocity components. These are the tangential, radial, and 

vertical components. The forces acting on a tower and its attached conductors 

vary based on the location of the event relative to the tower (Hamada et al. 2010 

and Hamada and El Damatty 2011). In fact, some incidences of transmission line 
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failures were attributed with tornadoes’ centers located far from the transmission 

line as reported by ASCE (2010) and Hamada and El Damatty (2011).  

2- The conventional wind profiles are characterized by a monotonic increase in 

velocity with height, which is different than wind profiles attributed to tornadoes 

where the maximum wind speed occurs near the ground (Holmes and Oliver 

2000, Letchford and Chay 2002, Hamada et al. 2010, Kareem 2010, and Hamada 

and El Damatty 2011) as shown in Fig. 7-1. In this figure the vertical profiles of 

the tangential velocity component of an F4 tornado wind field are plotted at 

different radial distances from tornado center “r”.  

3- The prediction of the structural performance of the conductors is challenging due 

to their expected highly nonlinear behaviour under tornadoes. As a result, the 

ASCE (2010) and CIGRE` (2009) recommend that the tornado loads on the lines 

should be neglected because of such complexity.  

Despite the significance of tornado events on transmission towers as manifested by the 

many failures, the codes of practice, design guidelines, and utilities’ design 

methodologies are based solely on the wind loads resulting from large-scale synoptic 

events with conventional boundary layer wind profiles.  

Few studies related to the behaviour of transmission line systems under tornado wind 

loads are available in the literature. The failure of a self-supported lattice tower under 

tornado and microburst wind profiles was investigated by Savory et al. (2001). The 

analysis was done for the transmission tower, without modelling the lines, and without 

considering the vertical velocity component of the tornado. Hamada (2009) and Hamada 
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et al. (2010) studied the behaviour of guyed transmission line systems under both F4 and 

F2 tornado wind fields. A procedure to estimate the velocity field for F2 tornadoes 

relying on both CFD data and the parameters of F2 tornadoes defined in the Fujita scale 

was developed in this study. Hamada and El Damatty (2011) conducted a comprehensive 

study to assess and understand the performance of transmission line structures under 

tornado loading. The study investigated the variation of the tower members’ internal 

forces with the location of the tornado relative to the transmission line system. The 

dynamic effect associated with the translation motion of the tornado was assessed and the 

results of the parametric study were used to determine the sensitivity of the members’ 

peak forces with the parameters defining the location of the tornado relative to the 

transmission line. Altalmas et al. (2012) and El Damatty and Hamada (2013) assessed the 

transmission lines’ failure mechanisms under critical tornado configurations. In addition, 

the studies predicted the maximum tornado velocity that various lines can withstand 

before experiencing global failure. The study also described the modes of failure and its 

progression for a number of transmission towers. Hamada and El Damatty (2013) 

assessed the behaviour of two guyed transmission line structures under F2 tornado wind 

field, boundary layer wind, electrical companies’ recommended wind field, and CIGRE` 

(2009) recommended tornado loading cases. In addition, a comparison was carried out 

between the forces in the transmission tower members resulting from the tornado, and 

those obtained for the case of broken wires.  

It is evident that the state-of-the-art literature for transmission line-related tornado studies 

includes only characterization of the wind field as well assessment for the behaviour and 

failure modes of the transmission towers. No study is available yet in the literature 
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guiding structural/line engineers to estimate the forces on transmission towers and lines 

due to such tornado events. This becomes very important for tangent towers since the risk 

of tornadoes to cross transmission lines is quite high for tangent towers. As such, the 

objective of the current study is to develop equivalent set of load cases that simulate and 

provide an envelope for the effect of tornadoes on tangent transmission line structures, 

and can be applied by a structural engineer designing such structures. Since F2 tornadoes 

have a cumulative frequency of occurrence of 86% (ASCE 2010), the current study 

focuses on providing equivalent load cases for this magnitude of tornadoes. The study 

also focuses on lattice steel towers. The developed load cases are based on extensive 

parametric studies conducted on four different transmission lines that cover a broad 

spectrum of the transmission line systems commonly used in the industry. The chapter 

starts with a description of the F2 tornado wind profile and the nonlinear three 

dimensional finite element modelling of transmission line systems. The results of the 

extensive parametric studies of the four transmission line systems are used to identify the 

critical tornado locations that lead to the peak internal forces in the studied systems. 

Then, equivalent loading cases with components in the three orthogonal directions are 

developed. Two different transmission line systems, one guyed and one self-supported, 

are finally used to verify the recommended tornado loading cases.   

7.2 Description of the Transmission Line Systems Used to Develop 

Critical Load Cases  

The transmission line systems simulated in the current study are generic guyed and self-

supported tower systems used by different hydro companies. The structural layout of the 
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four transmission line system used for the development of the critical load cases is 

provided in Fig. 7-2 and 3. Towers T1 and T2 are guyed towers, while towers T3 and T4 

are self-supported towers. Only tangent lattice structures are used in the current study. As 

shown in the figures, the considered systems cover single leg, as well as V-shaped 

towers. They cover a variation in the shape and number of cross-arms, as well as the 

number of conductors carried by the transmission towers (from two to eight). For the 

guyed towers, different supporting guys’ configurations are considered including guys 

connected to cross-arms, guys connected to the transmission tower bridge, and guys 

connected to the tower’s bridge, and conductor’s cross-arms. In addition, the chosen 

systems’ spans range between 200 and 480 (m), which covers the common spans used by 

the industry for lattice towers. Different insulator configurations, such as suspension and 

V-suspension insulators, with various lengths are used.  

Tower T1’s height is 44.36 (m) and is supported by four guys attached to the tower 

through two guys’ cross-arms. Two conductor bundles are connected to the line’s cross-

arms using a 4.27 (m) insulator at a height of 38.23 (m). One ground-wire is connected to 

the top of the tower. The conductors and ground-wire spans are 480 (m). The conductors 

and the ground-wire sags are 20 (m) and 13 (m), respectively. The geometric and material 

properties of the conductors, ground-wire, and supporting guys are provided by Shehata 

et al. (2005). Tower T2’s height is 46.57 (m) and is supported by four guys attached to 

the tower’s bridge as shown in Fig. 7-2. Three conductor bundles are connected to the 

lines’ cross-arms and bridge using a 4.27 (m) suspension and V-suspension insulators. 

Two ground-wires are attached to the top of the tower. The lines have a span of 460 (m) 

and a sag of 16 (m). 
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Fig. 7-2 Guyed Towers T1 and T2 

The overall height of the self-supported tower T3 is 47.5 (m). The conductors’ cross-arms 

are located at a height of 35.1 (m) and have a width of 13.4 (m). Conductor bundles are 

connected to the tower at three locations. Each of the outer left and right conductors is 

attached to a suspension insulator of 4.27 (m). The middle bundle is attached to the 

tower’s bridge using a V-suspension insulator, each 5.9 (m) long. Two ground-wires are 

attached to the top of the tower. The transmission line span is 420 (m). The material and 

geometric properties of the conductors and ground-wire are provided by Altalmas (2011). 

For tower T4, the overall height of the tower is 54.7 (m). The tower has six cross-arms on 

which conductors are carried. The lower cross-arms are located at a height of 34.2 (m), 

while the upper cross-arms are located at a height of 49.6 (m). The middle cross-arms are 

Tower T1 Tower T2 
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located at a height of 41.9 (m) with a total width of 14.3 (m). The transmission line spans 

are 213 (m). Each of the six conductor bundles is attached to a single insulator of 2.4 (m) 

long, which is allowed to swing in two perpendicular planes. The ground-wires are 

attached to the top of the tower. The material and geometric properties of the conductors 

and ground- wires are provided by Altalmas (2011) and Altalmas et al. (2012).   

 

Fig. 7-3 Self-supported Towers T3 and T4 

The numerical simulation of each of the four transmission line systems consists of the 

tower of interest and two towers from each side, which are included in order to properly 

simulate the stiffness of the whole system. As such, the nonlinear three dimensional finite 

element model includes five transmission towers with six bays of transmission lines 

(conductors and ground-wires). Such a number of spans was recommended by Shehata et 

Tower T3 

Tower T4 
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al. (2005) and Hamada (2009), in order to accurately account for the forces transferred 

from the lines to the middle tower (tower of interest).  

7.2.1 Finite Element Modelling  

The transmission line systems used in the current study are simulated using nonlinear 

three dimensional finite element models developed using the program SAP 2000 (CSI 

Inc. 2010). The transmission tower members are modelled using two-noded, three 

dimensional frame elements. The element takes into account the geometric nonlinear 

effects. Each member is modelled using one element. Rigid connections are assumed 

between chord members in order to simulate the typically used multi-bolted connections. 

Hinged connections are assumed for diagonal members to simulate single-bolted 

connections used to connect those members to the chord members. A two-noded, 

nonlinear, three dimensional cable element is used to model the transmission lines and 

the supporting guys. The element has three translational degrees of freedom at each node. 

The cable element nonlinear formulation accounts for tension stiffness and geometric 

nonlinearities resulting from large displacements and the P-delta effect. More details 

regarding the finite element model are provided by Hamada et al. (2010) and Hamada 

and El Damatty (2011).   

7.2.2 F2 Tornado Wind Field  

CFD simulation conducted by Hangan and Kim (2008) and used by Hamada et al. (2010) 

to obtain the three dimensional F2 tornado wind field is employed in the current study. 

The CFD simulations were conducted in a steady state manner. The F2 tornado wind 
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field is given as a function of the cylindrical coordinates r, θ, and Z. It has an 

approximate path width of 400 (m), accompanied with an outside gust front width of 

2,400 (m). Vertical profiles for tangential, radial, and vertical velocity components at the 

near ground (100 m) region are provided in Fig. 7-4 to Fig. 7-6. The vertical profiles of 

the three velocity components are provided at various radial distances r. As shown in the 

figures, for radial distance r < 200 (m), the tornado wind profile is significantly different 

than the conventional boundary wind profile. Near the tornado center, the vertical 

location of the peak tangential velocity becomes very close to the ground. Also, away 

from the tornado center, the vertical location of the peak radial velocity becomes quite 

close to the ground. In addition, the radial velocity changes direction with height, where 

negative values shown in the figures imply velocities acting in an inward direction while 

positive values mean velocities acting in the outward direction. The vertical component 

acts in an upward direction and is characterized by a zero value at ground level. It is 

obvious from the figures that the tangential, radial, and axial velocity components change 

significantly with the location relative to the tornado center. The vertical wind profiles of 

the three velocity components vary for different values of radial distance r. The 

maximum tangential gust velocity, which incorporates the tornado translation velocity of 

the F2 tornado, is 78 m/sec and occurs at a radius r = 96 m and a height Z = 22 m. The 

maximum radial velocity is 49 m/sec and corresponds to a radius r = 146 m and a height 

Z = 6 m. The maximum vertical velocity is 37 m/sec and corresponds to a radius r = 171 

m and a height Z = 127 m. 
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Fig. 7-4 Vertical profile of tangential velocity component for different radial 

distances “r” from tornado center – F2 Tornado  

 

Fig. 7-5  Vertical profile of radial velocity component for different radial distances 

“r” from tornado center – F2 Tornado 
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Fig. 7-6 Vertical profile of axial (vertical) velocity component for different radial 

distances “r” from tornado center – F2 Tornado 

7.3 Parametric study  

As mentioned before, the critical load cases developed in this chapter are based on 

extensive parametric studies conducted on the four transmission line system described 

earlier. The analyses of the towers T1 and T3 were conducted previously and were 

reported by Hamada et al. (2010), Hamada and El Damatty (2011), and Altalmas (2011), 

respectively. The analyses of the towers T2 and T4 are conducted in the current study. 

Only analyses under F2 tornado loading are considered since the aim is to develop load 

cases simulating this level of tornadoes. The self-weight of the towers and the lines are 

included in the analyses. The parametric study for each transmission line system involves 

a large number of quasi-static analyses by considering different values for the tornado 

location (R and θ) as shown in Fig. 7-7; R and θ are the relative tornado location with 

respect to the tower of interest. Combinations of thirteen values for R and sixteen values 
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for θ are considered in each parametric study. Each combination represents a different 

load case for the lines and the tower of interest. The considered values for R are 50, 75, 

90, 100, 125, 150, 200, 250, 300, 350, 400, 450, and 500 (m) and for the angles θ are 0, 

30, 45, 60, 90, 120, 135, 150, 180, 210, 225, 240, 270, 300, 315, and 330o. 

 

Fig. 7-7 Tornado Configurations R and θ Relative to the Tower of Interest 

The four parametric studies reveal that the internal forces in all transmission tower 

members change significantly with the variation of the parameters R and θ. Different 

types of transmission tower members, either chord or diagonal members, have 

independent critical tornado configurations R and θ that lead to the peak (compression or 

tension) internal forces in those members.  By examining all the results of the parametric 

studies, a number of critical tornado configurations (R and θ) that lead to peak forces in 
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the main body of the towers as well as in the cross-arms areas are identified in the current 

study. These identified tornado configurations are described in the next two subsections.     

7.3.1 Critical tornado configuration on transmission tower’s main body  

Three critical values for R are identified. In addition, four critical values of θ are 

identified for each value of R. Those critical configurations are: 

R = 100 (m), with θ = 0°, 90°, 180°, and 270° 

 R = 125 (m), with θ = 30°, 150°, 210°, and 330° 

 R = 150 (m), with θ = 60°, 120°, 240°, and 300° 

A discussion is carried out below to highlight the reason the above configurations are 

critical. According to Fig. 7-4 to Fig. 7-6, the relative distance to the tower of interest R 

of 100, 125, 150 (m) coincides with maximum tangential, radial, and vertical velocities 

on the tower of interest. To assess the effect of the lines on the forces transmitted to the 

towers, the variation of transmission lines transverse, vertical, and longitudinal reactions 

with respect to R and θ are shown in Fig. 7-8 to Fig. 7-11, respectively. In the following 

discussion, lines’ reactions represent the conductors and ground-wire forces that are 

inverted on the tower of interest. An analogy can be made between a self-supported 

lattice transmission tower and a cantilever beam, as well as between a guyed tower and 

an overhanging beam. In both cases, due to tornadoes, the beam will be subjected to 

distributed loads acting on the tower members and concentrated loads representing the 

forces (reaction) from the lines transferred to the tower.  
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- Cases of R = 100 (m) and θ = 0o and 180o: these tornado locations relative to the 

tower of interest lead to a large distributed loads along the tower height with 

maximum values close to the ground followed by a monotonic decrease similar to 

the wind velocity profile shown in Fig. 7-4 and 5. The distributed load on tower is 

accompanied with both minimum transverse and significant longitudinal reactions 

from the lines as depicted from Fig. 7-8 and 11, respectively. The minimum lines’ 

transverse reaction is due to the opposite wind directions, almost counter 

balancing each other, on the spans adjacent to the tower of interest. The 

significant lines’ longitudinal reaction is due to unbalanced loads on the spans 

adjacent to the tower of interest. 

- Cases of R = 100 (m) and θ = 90o and 270o: similar to the previous case, a large 

distributed load following the same trend is exhibited along the tower height. In 

this case, a significant transverse lines` reaction exists with a minimum 

longitudinal reaction, as depicted from Fig. 7-8 and 11.  

- Cases of R = 125 (m) and θ = 30o, 150o, 210o, and 330o: These tornado locations 

lead to larger distributed loads along the tower height, especially in the upper 

region. As shown in Fig. 7-4 and Fig. 7-5, the tangential velocity profile has a 

significant wind speed that extends from a height of 20 (m) to 50 (m). In addition, 

the radial velocity component has a maximum value near the ground and 

decreases with height till it reaches almost a zero value at the cross-arms height. 

The transverse loads on the adjacent spans of the towers almost counter balance 

each other and lead to a minimum transverse reaction, as depicted from Fig. 7-8. 

Similar to the case of R = 100 (m) and θ = 0o and 180o, the unbalanced loads on 
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the adjacent spans result in a significant longitudinal reaction from the lines, as 

shown in Fig. 7-11 and Fig. 7-12.  

- Cases of R = 150 (m) and θ = 60o, 120o, 240o, and 300o: the distributed loads 

along the tower height follows the same discussion for R = 125 (m). For θ = 60o, 

and 240o; a significant high transverse reaction from the lines is observed 

accompanied with a significant longitudinal reaction, as depicted from Fig. 7-8 to 

Fig. 7-12.         

Further discussions regarding the behaviour of transmission lines under tornadoes are 

provided by Hamada et al. (2010), Hamada and El Damatty (2011), and Altalmas (2011).  

7.3.2 Critical tornado configuration on cross-arms  

This section is divided into two subsections 3.2.1 and 3.2.2. Subsection 3.2.1 assess the 

critical tornado configurations that lead to the maximum transverse force applied on the 

supporting tower from the transmission lines. Subsection 3.2.2 discusses the critical 

tornado configurations that lead to the maximum longitudinal force for the lines.  

7.3.2.1 Cases of maximum transverse reactions of the conductors  

The extensive parametric study results are used to evaluate the maximum transverse 

(perpendicular to the lines) reactions of the transmission lines on the supporting towers. 

The main objective is to identify the critical tornado configuration R and θ that lead to the 

maximum transverse reactions of the lines. The transverse and vertical reactions of all the 

considered thirteen values of R and the corresponding sixteen values of θ are calculated 

for each conductor and ground-wire of towers T1, T2, T3, and T4. The variation of the 
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transverse and vertical reactions with R and θ is shown to follow the same trend for all 

cases with change only in magnitudes. Thus, only the results for one transmission line 

system, transmission tower T1, are presented in Fig. 7-8 andFig. 7-10, where the 

variations with R and θ of transverse and vertical reactions are plotted, respectively. As 

shown in Fig. 7-8, the transmission line’s transverse reaction varies significantly with R 

and θ. Based on the results of the study, the maximum transmission line’s transverse 

reaction is found to be associated with tornado configuration: R = 250 (m) and θ = 60o 

and 240o.   

 

Fig. 7-8 Variation of Transmission Line’s Transverse Reaction with R and θ (T1 

Tower) 
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Fig. 7-9 Schematic View of Critical Tornado Configuration R = 250 (m) and θ = 60o 

(T1 Tower)  

 

 

Fig. 7-10 Variation of Transmission Line’s Vertical Reaction with R and θ (T1 

Tower) 
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The maximum transverse reaction critical configuration (R = 250 (m) and θ = 60o) can be 

explained in view of the schematic shown in Fig. 7-9. The angle θ = 60o and 240o leads to 

a maximum resultant of the tangential and radial velocity components, as shown in Fig. 

7-9. For this tornado location, the transverse velocity profile along the tributary length 

(mid-span to mid-span of adjacent conductors) carried by the tower of interest is 

unidirectional. This is found to happen regardless of the span length. 

The weight of the conductors and ground-wires is considered as a main component in the 

design of the lines’ cross-arms and the tower. The uplift force generated by F2 tornado is 

found to be always less than the gravity of the lines and, therefore, no vertical uplift 

movement is anticipated for the lines. There is a 20% reduction in the vertical reaction of 

the wire due to some tornado configurations, as shown in Fig. 7-10.  

7.3.2.2 Cases of maximum longitudinal reactions of the conductors  

Longitudinal reactions of transmission lines lead to an important loading case which is 

caused by the unbalanced tornado loads on the adjacent spans of the tower of interest. 

Hamada and El Damatty (2011) concluded that these cases can lead to compression 

forces in the transmission tower’s cross-arms that are not typically considered in the 

design of these tower sections. There was evidence of failure of a transmission tower 

during a downburst event as a result of an unbalanced load case as reported by Shehata 

and El Damatty (2008). The results of one conductor for transmission line system T1 are 

shown in Fig. 7-11, and for transmission line system T2 are shown in Fig. 7-12. As 

shown in both figures, the variation of the longitudinal reactions with R and θ is 

following the same trend with difference in magnitudes. The results show that the critical 
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tornado configurations that give the maximum transmission lines longitudinal reactions 

are as follows: 

R = 450 (m), with θ = 90° and 270° 

 R = 125 (m), with θ = 0° and 180° 

The results also indicate that the longitudinal reaction can reach up to 40% of the 

maximum transverse reaction. This is can be concluded from Fig. 7-12, as the maximum 

longitudinal reaction of transmission line T2 is 11,071 (N), while the maximum 

transverse reaction is 28,859 (N). 

 

 

Fig. 7-11 Variation of Transmission Line’s Longitudinal Reaction with R and θ (T1 

Tower) 
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Fig. 7-12 Variation of Transmission Line’s Longitudinal Reaction with R and θ (T2 

Tower) 

 

7.4 Velocity Profiles for Critical Load Cases for the Towers – Tower 

Profiles   

The basic velocity profiles of the twelve recommended load configurations reported in 

Section 3.1 are resolved from the tangential and radial directions into the Cartesian 

coordinates (X and Y), where X is the direction perpendicular to the lines and Y is the 

direction parallel to the lines. The vertical components of the basic velocity profiles are 

along the Z direction. After careful examination of the X, Y, and Z basic velocity profiles 

along the height of the towers for the twelve cases, it is found that they can be described 
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profiles are illustrated in Appendix I and a curve fit equations is provided to describe 

each one of them.  

Table 7-1 Recommended Twelve Case of Loading of Transmission Towers and 

Lines for Peak Internal Forces in the Tower of Interest  

 

A profile of wind velocity acting along the transverse direction of the transmission lines 

is also associated with each one of the twelve load cases. Also by examining those 

profiles, it is found that they have twelve different shapes and those are donated by 

profiles H to S and are illustrated in Appendix II together with the curve fitting equations 

describing each one of them. The tower profile designation describing the three velocity 

components of the wind field along the height of the towers as well as describing the 

variation of the transverse velocity along the spans of the conductors adjacent to the 

tower of interest are given in Table 7-1 for the twelve load cases. It should be noted, that 

for some diagonal members, it is found that the peak internal forces occur when the 

conductors and ground-wires forces are not included. As such, it is recommended that 

those twelve load cases be repeated twice; firstly with inclusion of both conductors and 

ground-wires and the secondly without the inclusion of both the conductors and ground-

wires. 

x y z x y z x y z

1 0° A - B G H 5 30° C - D G L 9 60° B - F 0.75 G P

2 90° B A G I 6 150° F B 0.80 G M 10 120° D  C 0.75 G Q

3 180° - A B G J 7 210° - C D G N 11 240° - B 0.80 F 0.75 G R

4 270° - B - A G K 8 330° - F - B 0.80 G O 12 300° - 0.80 D - C 0.75 G S

Load

 Case 

#

Load

 Case 

#

Load

 Case 

#

Distance from tornado center R (m) 
Tornado config. R=150 (m)Tornado config. R=125 (m)Tornado config. R=100 (m)

Tornado 

config. θ

Tornado 

config. θ

Tornado 

config. θ

Applied tower velocity (m/s) Cables 

tranverse 

velocity

(m/s)

Applied tower velocity (m/s) Cables 

tranverse 

velocity

(m/s)

Applied tower velocity (m/s) Cables 

tranverse 

velocity

(m/s)
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7.5 Velocity Profiles for Critical Load Cases for Cross-arms – Line Profiles  

The twelve load cases presented above embrace all configurations leading to peak forces 

in members of the main body of a tangent lattice transmission tower. However, the 

analyses indicate that other tornado configurations can lead to peak forces in members of 

the towers’ cross-arms. The internal forces in the cross-arm members depend mainly on 

the forces transmitted from the conductors to the tower as a result of the wind loads 

acting on those conductors. It should be noted that the longitudinal forces result from the 

case where the wind loads acting on two spans adjacent to a tower are unequal. This case 

leads to a variation in the conductor’s internal tension forces between the two spans and, 

consequently, a resultant longitudinal force is transferred to the cross-arms through the 

insulators. As such, the critical tornado configurations for the cross-arms are those 

leading to maximum values for the transverse and longitudinal forces transmitted from 

the conductors to the tower.   

Table 7-2 Recommended Six Case of Loading of Transmission Towers and Lines for 

Maximum Longitudinal and Transverse Reactions of Transmission Lines 

 

The parametric studies conducted on the four lines predict six critical load cases for the 

cross-arm members (reported in Subsection 7.3.2.1 and Subsection 7.3.2.2). Those cases 

are described in Table 7-2, where the values of the radial distance R and the angle θ are 

x y z x y z x y z

13 90° C1 C2 -- C6 15 0° C3 - C4 C5 C8 17 60° 0.8 C4 0.5 C3 0.25 C5 C10

14 270° - C1 - C2 -- C7 16 180° - C3 C4 C5 C9 18 240° - 0.8 C4 -0.5 C3 0.25 C5 C11

Tornado 

config. θ

Tornado 

config. θ

Tornado 

config. θ

Tornado config. R=450
Applied tower velocity Cables 

tranverse 

velocity

(m/s)

Cables 

tranverse 

velocity

(m/s)

Cables 

tranverse 

velocity

(m/s)

Maximum Longitudinal Reaction

Load 

Case #

Load 

Case #

Load 

Case #

Maximum Tranverse Reaction

Applied tower velocityApplied tower velocity

Tornado config. R=125 Tornado config. R=250
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provided for each case. As shown in the table, the variation of the three velocity 

components along the height of a tower can be represented by four basic profiles (C1 to 

C4). Those line profiles are presented graphically and are described mathematically in 

Appendix III. Similar to the load cases for the main body of the tower, each load case for 

the cross-arm is associated with a specific profile for transverse velocity acting along the 

conductor spans adjacent to the tower of interest. Those profiles are denoted in Table 7-2 

as C6 to C11 and are illustrated in Appendix IV. 

7.6 Steps of Applying Critical Load Cases on Transmission lines 

The steps below describe how the above developed critical tornado profiles can be 

applied to a transmission line system in order to predict the response of a tangent tower to 

F2 tornadoes: 

1) The tower, the conductors, the ground-wires, and the supporting guys of guyed 

towers are modelled as described is Section 2.1 using any available commercial 

software. At least two conductors’ spans from each side of the tower of interest 

should be included in the analyses. As shown in Appendix II and IV, the 

conductor loads are provided for a distance of 500 (m) from each side of the 

tower. Beyond this distance, the loading should be maintained constant with a 

value corresponding to that at the 500 (m) distance.  

2) For each load case,  

i. The velocity profiles in the X, Y, and Z directions are used to evaluate the 

velocities at the nodal points of the tower and supporting guys.  
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ii. The lines velocity profile is used to evaluate the transverse velocity at the 

conductors and ground-wire nodal points.  

iii. The horizontal and vertical forces acting on the nodal points of the tower, 

conductors, ground-wire, and supporting guys are evaluated using the 

procedures specified in the design code or manual of practice employed by 

the user (e.g. ASCE 2010).  

iv. Nonlinear (with geometric nonlinearity included) elastic static analysis is 

conducted for the transmission line system. 

v. Tower`s members peak internal forces are evaluated.  

3) Envelop of the tower`s members peak internal force resulting from all critical 

cases is evaluated.  

7.7 Verification using different towers configurations  

The load cases presented above are developed based on extensive parametric studies 

conducted on four different tangent lattice transmission line systems. The approach 

adopted to verify the adequacy of those load cases involves considering two other 

independent and different transmission line systems. As extensive parametric study is 

conducted for those two lines by moving the tornado in space (at different R and θ 

values). For each specific value of R and θ, a nonlinear analysis is conducted for the three 

dimensional finite element model of the transmission line system and the internal forces 

in the members of the tower of interest are recorded. The peak forces in the members 

obtained from the entire parametric studies are determined.  
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Meanwhile, the lines are analyzed nonlinearly under the 18 load cases proposed in this 

chapter and the envelope for the peak forces in various members of the tower due to those 

load cases are determined. The peak forces obtained from both the critical load cases 

analyses and the parametric study are compared together. The proposed load cases would 

be considered conservative if they estimate peak internal forces exceeding those resulting 

from the extensive parametric studies. It is considered here that the load cases are 

acceptable even is the parametric studies give higher peak forces as long as the difference 

is less than 5%. 

7.7.1 Description of the Two Transmission Line Systems 

The two transmission lines systems employed for verification are generic self-supported 

and guyed transmission tower systems used by several hydro companies. The towers are 

labelled as T5 (self-supported) and T6 (guyed) and are shown in Fig. 7-13. Tower T5 

height is 51.81(m) and has six conductors’ bundles connected to the line’s cross-arms 

using a 2.4 (m) insulator strings. Two ground-wires are connected to the top of the tower. 

The transmission line system spans are 450 (m). The conductors and ground-wires sags 

are 20 and 12 (m), respectively. Tower T6 height is 43.44 (m) and is supported by eight 

guys attached to the cross-arms as shown in Fig. 7-13. Three conductor’s bundles are 

connected to the cross-arms using a 4.27 (m) insulator. Two ground-wires are attached to 

the top of the tower. The transmission line system spans are 400 (m) and conductors and 

ground-wires sags are 16 and 11 (m), respectively.  
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Fig. 7-13 Verification Transmission Towers – Tower T5 and T6 

7.7.2 Analysis and Discussion  

Towers T5 and T6 are divided into different zones as shown in Fig. 7-13. For each zone, 

some chord and diagonal members are selected to present the results. In addition, the 

results are shown for several chord and cross-arm’s upper and lower chord members. For 

each selected member, the peak internal forces resulting from the critical load cases and 

the extensive parametric studies analyses are reported in Table 7-3 and 4.  

The following observations can be concluded: 

Tower T5 

Tower T6 
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- The critical tornado configurations (R and θ) that lead to peak internal forces in 

the two systems coincide with the counterpart values reported earlier in the 

chapter.  

- For chord members, the peak internal forces due to the equivalent F2 loading 

cases are higher than the parametric study results with a maximum difference of 

14%.  

- For cross-arms members, the peak internal forces due to the extensive parametric 

study are 5% higher than the peak internal forces obtained from the equivalent F2 

tornado loading cases. This is within the limit set as acceptable difference.  

Table 7-3 Parametric Study and Equivalent Loading Cases Results for Tower T5  
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Table 7-4 Parametric Study and Equivalent Loading Cases Results for Tower T6 

 

7.8 Conclusion  

The current study summarizes the major findings of research conducted during the past 

six years on the effect of F2 tornadoes on tangent lattice transmission line systems. It also 

builds on this research to develop critical load cases for the analysis of such systems 

under F2 tornadoes. The study focuses on F2 tornadoes since they are shown to have a 

cumulative frequency of occurrence of 86%. In the current chapter, the F2 tornado wind 

field is discussed, where the tangential, radial, and vertical basic velocity profiles of such 

events are described. Transmission line systems that are commonly used by utility 

companies and covers different transmission lines variation aspects are used in the 

current study. The description of the nonlinear three dimensional finite element 

modelling of the different transmission lines is provided. Based on the results of 

extensive parametric studies, a number of critical tornado configurations (R and θ) that 
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lead to peak forces in the transmission tower members are identified. For transmission 

towers’ main body, three critical values for R, combined with four critical values of θ for 

each value of R, are identified.  Those critical configurations are:  

R = 100 (m), with θ = 0°, 90°, 180°, and 270° 

 R = 125 (m), with θ = 30°, 150°, 210°, and 330° 

 R = 150 (m), with θ = 60°, 120°, 240°, and 300° 

For transmission tower’s cross-arms, critical tornado configurations that lead to the 

maximum transverse and longitudinal forces transferred from the lines to the 

transmission towers are identified. Critical tornado configurations leading to maximum 

transverse reactions are:  

R = 250 (m) and θ = 60o and 240o 

and critical tornado configurations of maximum longitudinal reactions are: 

R = 450 (m), with θ = 90° and 270° 

 R = 125 (m), with θ = 0° and 180°  

For each of the above eighteen critical load configurations, the velocity wind fields have 

been resolved from the tangential and radial directions into the Cartesian directions 

aligned parallel and perpendicular to the transmission lines. Each critical configuration 

represents a load case and the vertical profile for the three perpendicular velocity 

components along the height of the tower are provided for each case. In addition, the 
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corresponding horizontal profile for the transverse velocity acting on the lines are given 

for each load case.  These equivalent load cases represent an envelope for the effect of F2 

tornadoes on transmission line systems, and can be applied by a structural engineer in the 

design process of lattice tangent transmission line structures. Validation for these 

developed load cases is conducted by considering two independent transmission line 

systems and conducting extensive parametric studies for each system. The results indicate 

that the developed critical load cases lead to peak internal forces in the transmission 

tower members that are either higher or within less than 5% lower than the values 

predicted by the detailed parametric studies. It should be noticed that these cases do not 

include the effect of debris on transmission line structures that might happen during large 

tornado events.  
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7.11 Appendices 

7.11.1 Appendix I 

 

Fig. 7-14 Tower Velocity Profile A along Tower Height – F2 Tornado  
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Fig. 7-15 Tower Velocity Profile B along Tower Height – F2 Tornado  

 

Fig. 7-16 Tower Velocity Profile C along Tower Height – F2 Tornado 
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Fig. 7-17 Tower Velocity Profile D along Tower Height – F2 Tornado  

 

Fig. 7-18 Tower Velocity Profile F along Tower Height – F2 Tornado  
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Fig. 7-19 Tower Velocity Profile G along Tower Height – F2 Tornado  

Tower profiles’ equations (limited for towers with maximum height of 50 m): 

“x” is the height from ground and “y” is the velocity  

Tower Profile A  

8 7 6 5 4 3 23.40 3.35 18.44 19.99 24.18 24.57 5.28 17.646 13.34

( 24) /14.56

y z z z z z z z z

z x

        

 
 

Tower Profile B 

5 4 3 21.76 7.95 10.98 6.24 1.42 77.27

( 18.65) /13.51

y z z z z z

z x
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Tower Profile C 

8 7 6 5 4 3 20.79 0.29 7.34 4.23 10.27 5.98 4.62 7.54 61.57

( 24) /14.56

y z z z z z z z z

z x

        

 
 

Tower Profile D 

7 6 5 4 3 20.22 0.56 0.76 1.34 0.63 4.65 9.14 62.80

( 28.84) /12.04

y z z z z z z z

z x

     

 


 

Tower Profile E 

10 9 8 7 6 5 4 3 20.88 1.19 3.63 6.66 0.62 8.61 4.59 7.29 7.22 2.99 75.75

( 24) /14.56

y z z z z z z z z z z

z x

          

 
 

Tower Profile F  

9 8 7 6 5 4 3 23.38 0.047 20.95 5.36 39.19 14.32 22.65 3.27 22.73 14.99

( 24) /14.56

y z z z z z z z z z

z x

         

 
 

Tower Profile G 

5 4 3 20.006 0.29 0.03 1.87 7.34 19.63

( 27) /11.27

y z z z z z

z x
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7.11.2 Appendix II 

 

Fig. 7-20 Line Velocity Profile H – F2 Tornado Transverse Velocity Profile along the 

Lines 

  

Fig. 7-21 Line Velocity Profile I – F2 Tornado Transverse Velocity Profile along the 

Lines 
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Fig. 7-22 Line Velocity Profile J – F2 Tornado Transverse Velocity Profile along the 

Lines 

 

Fig. 7-23 Line Velocity Profile K – F2 Tornado Transverse Velocity Profile along the 

Lines 
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Fig. 7-24 Line Velocity Profile L – F2 Tornado Transverse Velocity Profile along the 

Lines 

 

Fig. 7-25 Line Velocity Profile M – F2 Tornado Transverse Velocity Profile along 

the Lines 
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Fig. 7-26 Line Velocity Profile N – F2 Tornado Transverse Velocity Profile along the 

Lines 

 

Fig. 7-27 Line Velocity Profile O – F2 Tornado Transverse Velocity Profile along the 

Lines 
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Fig. 7-28 Line Velocity Profile P – F2 Tornado Transverse Velocity Profile along the 

Lines 

 

Fig. 7-29 Line Velocity Profile Q – F2 Tornado Transverse Velocity Profile along the 

Lines 
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Fig. 7-30 Line Velocity Profile R – F2 Tornado Transverse Velocity Profile along the 

Lines 

 

Fig. 7-31 Line Velocity Profile S – F2 Tornado Transverse Velocity Profile along the 

Lines 
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Line Profiles’ equations: 

“x” is the distance from the tower of interest and “y” is the velocity  

Line Profile H 

10 9 8 7 6 5 4 3 211.03 14.80 82.85 106.22 227.91 277.77 277.67 326.1 135.81 179.2 4.63

/ 290.95

y z z z z z z z z z z

z x

          



  

Line Profile I 

10 9 8 7 6 5 4 3 211.56 9.01 98.63 50.64 319.06 75 483.07 22.1 329.88 108.16 64.60

/ 290.95

y z z z z z z z z z z

z x

           



 

Line Profile J 

10 9 8 7 6 5 4 3 28.91 12.23 68.19 89.77 190.18 242.93 231.96 300.68 110.44 176.64 1.63

/ 290.95

y z z z z z z z z z z

z x

           



 

Line Profile K 

10 9 8 7 6 5 4 3 214.68 5.15 123.23 27.54 387.4 34.28 561.56 37.36 364.55 101.71 68.25

/ 290.95

y z z z z z z z z z z

z x

          



 

Line Profile L 

10 9 8 7 6 5 4 3 24.77 12.96 38.92 93.58 118.1 245.83 164.87 289.26 109.29 160.24 35.49

/ 290.95

y z z z z z z z z z z

z x

           



 

Line Profile M 

10 9 8 7 6 5 4 3 216.11 0.58 122.12 10.37 341.96 52.67 434.45 113.88 239.91 115.94 27.05

/ 290.95

y z z z z z z z z z z

z x
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Line Profile N 

10 9 8 7 6 5 4 3 27.99 9.74 59.14 70.31 163.44 186.72 212.23 229.09 135.79 141.31 41.49

/ 290.95

y z z z z z z z z z z

z x

          



 

Line Profile O 

10 9 8 7 6 5 4 3 214.27 5.02 113.93 27.15 338.48 34.59 457.7 32.46 267.23 91.89 32.95

/ 290.95

y z z z z z z z z z z

z x

          



 

Line Profile P 

10 9 8 7 6 5 4 3 216.26 9.59 130.24 56.82 390.33 99.39 539.35 22.71 338.53 74.08 73.02

/ 290.95

y z z z z z z z z z z

z x

           



 

Line Profile Q 

10 9 8 7 6 5 4 3 21.57 17.62 22.55 119.16 110.32 273.3 241.58 223.35 234.15 1.52 59.48

/ 290.95

y z z z z z z z z z z

z x

           



 

Line Profile R  

10 9 8 7 6 5 4 3 213.69 9.14 109.9 56.95 333.52 109.64 475.42 44.17 316.41 64.31 71.85

/ 290.95

y z z z z z z z z z z

z x

          



 

Line Profile S  

10 9 8 7 6 5 4 3 24.46 19.59 21.07 135.27 1.92 319.85 119.66 278.51 185.28 19.50 56.78

/ 290.95

y z z z z z z z z z z

z x
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7.11.3 Appendix III 

 

Fig. 7-32 Tower Velocity Profile C1 along Tower Height – F2 Tornado  

 

Fig. 7-33 Tower Velocity Profile C2 along Tower Height – F2 Tornado 
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Fig. 7-34 Tower Velocity Profile C3 along Tower Height – F2 Tornado 

 

Fig. 7-35 Tower Velocity Profile C4 along Tower Height – F2 Tornado 
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Fig. 7-36 Tower Velocity Profile C5 along Tower Height – F2 Tornado 

Tower Profiles’ equations (limited for towers with maximum height of 50 m): 

“x” is the height from ground and “y” is the velocity  

Tower Profile C1 

5 4 3 20.34 0.38 0.27 1.87 4.04 31.37

( 28.84) /12.04

y z z z z z

z x

     

 
 

Tower Profile C2  

5 4 3 20.76 0.07 1.86 0.03 2.39 26.62

( 18.65) /13.50

y z z z z z

z x

     

 
 

Tower Profile C3  
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5 4 3 21.10 3.68 4.39 11.48 18.41

( 27.06) /11.27

y z z z z z

z x

     

 
 

Tower Profile C4 

5 4 3 20.82 0.17 1.07 3.05 1.78 77.66

( 28.84) /12.04

y z z z z z

z x

     

 
 

Tower Profile C5 

5 4 3 20.56 0.34 2.29 0.87 10.53 13.48

( 22.20) /13.67

y z z z z z

z x

     

 
 

7.11.4 Appendix IV 

 

Fig. 7-37 Line Velocity Profile C6 – F2 Tornado Transverse Velocity Profile along 

the Lines 
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Fig. 7-38 Line Velocity Profile C7 – F2 Tornado Transverse Velocity Profile along 

the Lines 

 

Fig. 7-39 Line Velocity Profile C8 – F2 Tornado Transverse Velocity Profile along 

the Lines 
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Fig. 7-40 Line Velocity Profile C9 – F2 Tornado Transverse Velocity Profile along 

the Lines 

 

Fig. 7-41 Line Velocity Profile C10 – F2 Tornado Transverse Velocity Profile along 

the Lines 
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Fig. 7-42 Line Velocity Profile C11 – F2 Tornado Transverse Velocity Profile along 

the Lines 

Line Profiles’ equations: 

“x” is the distance from the tower of interest and “y” is the velocity  

Line Profile C6 

10 9 8 7 6 5 4 3 24.24 6.59 22.15 33.44 32.92 42.77 23.38 14.39 21.63 23.94 32.32

/ 290.95

y z z z z z z z z z z

z x

          



 

Line Profile C7  

10 9 8 7 6 5 4 3 21.53 7.21 0.19 38.05 32.32 51.19 59.69 14.39 16.66 19.48 34.26

/ 290.95

y z z z z z z z z z z

z x
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10 9 8 7 6 5 4 3 27.37 10.49 56.68 76.62 159.01 205.91 195.19 253.02 91.63 151.59 4.65

/ 290.95

y z z z z z z z z z z

z x

          



 

Line Profile C9  

10 9 8 7 6 5 4 3 28.94 9.19 64.74 68.86 168.41 190.76 187.92 243.14 77.22 150.83 8.13

/ 290.95

y z z z z z z z z z z

z x

           



 

Line Profile C10 

10 9 8 7 6 5 4 3 28.23 6.68 58.09 50.49 138.5 139 106.61 158.58 40.11 36.64 62.32

/ 290.95

y z z z z z z z z z z

z x

          



 

Line Profile C11 

10 9 8 7 6 5 4 3 27.28 6.38 51.75 49.62 123.38 139.24 92.02 161.05 44.40 39.48 62.94

/ 290.95

y z z z z z z z z z z

z x
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8 CHAPTER 8  

        CONCLUSIONS AND RECOMMENDATIONS   

8.1 Summary  

The research conducted in this thesis presents a significant progress in the subject of 

structural behaviour of transmission line structures under tornado loading. Chapter 1 

covers a literature review for the research conducted on this subject. The research 

conducted previously by the author in his M.E.Sc. dissertation is also summarized. The 

tornado wind field used in the previous M.E.Sc. study and the current study is based on 

computational fluid dynamics simulations conducted and validated by other researchers. 

The wind field represents the steady-state of a tornado with open smooth terrain. In his 

M.E.Sc. thesis, the author established a procedure to scale the wind field in order to 

simulate an F2 tornado and to estimate the wind forces acting on transmission line 

systems due to this type of extreme wind events. In the previous research conducted by 

the author, the modelling and prediction of the behaviour of transmission line systems 

was conducted using a commercial analysis software.  

The research reported in Chapter 2 of the current dissertation is conducted using this 

previous model. Two transmission line systems are considered as case studies in this 

chapter and analyses are conducted to compare the internal forces in the tower members 

due to an F2 tornado to those associated with normal wind loads, downbursts, and the 

available guideline for tornado loading on transmission line structures. The purpose of 

   



273 

 

 

this chapter was to assess the significance of tornado loading compared to other type of 

wind events.  

In this thesis, the author has developed a comprehensive in-house numerical model for 

the analysis of transmission lines under tornadoes. This was done incrementally in two 

chapters of the thesis. In Chapter 3, the formulation of a special cable element is extended 

to include the geometric nonlinear effect. This curved element consists of four nodes and 

thus can model efficiently the curved shaped of the conductors and ground-wire of a 

transmission line. A simulation for the insulators connecting the conductors to the 

transmission towers is developed in this chapter using a three dimensional nonlinear 

spring system. In Chapter 5, a nonlinear finite element is developed for the simulation of 

the towers, where three dimensional frame element are used to model the tower members. 

The element includes the geometric nonlinear effect. This is combined with conductors’ 

model developed in Chapter 3 and the tornado wind field obtained from the CFD 

simulations to form a comprehensive numerical tool for the simulation of an entire 

transmission line system. In addition, two failure models are incorporated for the tower 

member in order to study the failure and the progressive collapse of transmission towers 

under tornadoes. This numerical development was used to conduct a number of studies. 

In Chapter 3 and 4, the behaviour of the conductors under F2 tornado loading was 

investigated. In Chapter 5, the progressive failure of two different transmission line 

systems under F2 tornadoes was assessed as case studies.  

In Chapter 6, a unique aeroelastic model was designed and constructed. The physical 

model was tested at the Boundary Layer Wind Tunnel Laboratory (BLWTL) and the 
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results of the test were used to validate the developed numerical model. Finally, in 

Chapter 7, the numerical model was used to develop a set of load configurations 

simulating the critical effect of F2 tornadoes on lattice transmission line structures.  

8.2 Conclusions  

The following conclusions are drawn from the study:  

 Comparing the internal forces due to F2 tornado to the those resulting from 

conventional wind load, downbursts, and the high intensity wind load cases 

recommended by CIGRE`, it is concluded that the F2 tornado forces exceed the 

peak forces resulting from these loads .  

 For the cross-arm members, the peak internal forces are found to be associated 

with a tornado located at a relatively far distance from the tower.  

 Accounting for the flexibility of the tower and the insulator is very important in 

predicting the behaviour of the conductors especially under the unbalanced 

loading cases caused by tornadoes.  

 An assessment is conducted for the validity of the recommendation made in some 

codes of practice and design manuals to neglect the tornado loads applied to 

transmission lines, such as conductors and ground-wire. The results show that the 

peak internal forces in chord members increase by 22 to 140 % due to the 

inclusion of the line loads in the analysis of transmission line systems under 

tornadoes. 
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 The transverse F2 tornado force and wind velocity distributions on transmission 

lines, such as conductors and ground-wires, are highly non-uniform, vary 

nonlinearly, and change directions within one line span.  The vertical (uplift and 

downdraft) velocity component of F2 tornadoes is significant and can be up to 

40% of the transverse velocity component.  

 The length of transmission tower’s cross-arms has a significant effect on the 

conductor’s reactions associated with tornado loads. For the same tower, 

differences of 32% and 47% in the longitudinal and transverse reactions, 

respectively, are reported due to a horizontal distance of 29 (m) between the two 

edge conductors. This difference in lines’ reactions leads to an additional torsional 

moment on the supporting towers.  

 Significant longitudinal line’s reaction leads to an out-of-plan bending effect on 

the tower’s cross-arms and, consequently, compression forces in some members 

that are not typically considered in the design. Accordingly, the current study 

investigates the effect of different parameters on the longitudinal reactions of 

transmission lines. The study shows that the longitudinal reactions: 

a) have a nonlinear variation with the magnitude of the applied F2 

tornado wind load.  

b) change significantly and in a nonlinear manner with both the value of 

the initial pretension force and sag, and the length of the insulator 

springs attached to the line.  

c) vary linearly with a change in the conductor’s self-weight      
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 The numerical model predicts that two considered guyed transmission tower 

systems, L1 and L2, cannot withstand the maximum velocity of an F2 tornado. 

However a significant difference in the tornado capacity is shown between the 

two systems. While system L1 is predicted to fail at 84% of the maximum tornado 

velocity, system L2 is predicted to fail at only 54%. Also, the failure modes 

predicted for the two systems are different; system L1 fails by bending while 

system L2 fails by shear. Despite the fact that the two systems have almost equal 

conductors’ span and they were initially designed under similar environmental 

loads (without considering tornadoes), significant difference in tornado capacity 

and failure modes is observed. The main reason affecting the failure mode, 

whether it is bending and shear, is the location of the guys relative to the 

conductors. This difference in tornado behaviour between the two systems can be 

attributed to the difference in the geometric configuration of the towers, in the 

number of conductor bundles, and in the width of the conductors’ cross-arm. As a 

result of the localized nature of tornadoes, a system with wide cross arms will 

have different forces acting on the parallel conductor lines. This can lead to a 

torsion effect on the tower.   

 The assumption made regarding the post yield tension behaviour has no 

significant effect on the failure velocity. Assuming that the tension members 

maintain their post yield strength compared to losing their strength has increased 

the failure velocity by about 8% and 10% for systems L1 and L2, respectively.  

 Due to the localized nature of tornadoes, the forces acting on a transmission tower 

depend on the location of the tornado relative to tower. Thus, the failure velocity 
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of the same tower can vary based on the location of the tornado. For the two 

considered critical tornado locations, a difference of 11% is observed in the 

failure velocities for system L1. This is reduced to only 3% for system L2.  

 The inclusion of geometric nonlinearities is shown to alter the failure velocity of 

systems L1 and L2 by 8% and 17%, respectively.  Because of the larger flexibility 

of system L2, the geometric nonlinear effect is shown to have a more pronounced 

effect for this system.     

 For the thirty seven test wind speeds used for the aeroelastic test, no instabilities 

are found for the tested guyed transmission towers or lines. The general dynamic 

response of the tower follows an exponential curve, similar to the variation in the 

applied wind load.  

 The resonant components of the dynamic response are more significant and 

noticeable in low wind speeds. With increasing the wind speeds, these resonant 

components become less distinguished and in some cases vanishes.  

 The measured resonant frequencies of the aeroelastic model match those expected 

by the numerical model of the full tower.  

 In terms of the resonant peaks of the tower’s dynamic response and their 

correspondent frequencies, no significant differences are for the case with and 

without conductors. The resonant peaks almost have the same frequencies for 

both cases. The magnitude of the dynamic response is different due to the 

conductor’s loads. This can be explained in view of both the high aerodynamic 

damping of the conductors and the significant difference in the natural 

frequencies between the conductors and the supporting towers. In addition, most 
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of the conductor’s load path is transferred by the supporting guys to ground 

supports.   

 The conductors’ oscillations under fluctuating wind affect the resonant 

component of the conductors’ cross-arms. Such effect is noticed in the mid-tower 

straining actions response at low wind speeds, and become less distinguished with 

the increase of the wind speed.  

 The variation of the transmission tower straining actions with the increase of the 

wind speed follows an exponential curve, similar to the applied wind load.  

 For the case of towers only and the case of towers with conductors, a very good 

agreement is found between the measured straining actions of the aeroelastic 

model and the calculated values using the in-house numerical model.  

 The inclusion of the conductors changes the transmission towers response under 

wind loads, with increase or decrease of the internal forces of the tower. The 

conductors reaction decrease the internal forces in the towers main body, while 

increase the supporting guys and conductor’s cross-arms straining actions. In 

addition, the conductors exhibit a longitudinal force on the supporting towers’ 

cross-arms due to the unbalanced wind loading on the conductors. This 

longitudinal reactions change the structural response and force distribution in the 

different components of the transmission tower. 

 Based on the results of extensive parametric studies, a number of critical tornado 

configurations (R and θ) that lead to peak forces in the transmission tower 

members are identified. For transmission towers’ main body, three critical values 
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for R, combined with four critical values of θ for each value of R, are identified.  

Those critical configurations are:  

R = 100 (m), with θ = 0°, 90°, 180°, and 270° 

 R = 125 (m), with θ = 30°, 150°, 210°, and 330° 

 R = 150 (m), with θ = 60°, 120°, 240°, and 300° 

 For transmission tower’s cross-arms, critical tornado configurations that lead to 

the maximum transverse and longitudinal forces transferred from the lines to the 

transmission towers are identified. Critical tornado configurations leading to 

maximum transverse reactions are:  

R = 250 (m) and θ = 60o and 240o 

and critical tornado configurations of maximum longitudinal reactions are: 

R = 450 (m), with θ = 90° and 270° 

 R = 125 (m), with θ = 0° and 180°  

 There is a lack of information and procedures in the transmission line’s codes of 

design and manuals of practice regarding the estimation of tornado forces on 

transmission lines systems. Accordingly, eighteen critical load configurations 

have been recommended in the current thesis. Each critical configuration 

represents a load case and the vertical profile for the three perpendicular velocity 

components along the height of the tower are provided for each case. In addition, 

the corresponding horizontal profile for the transverse velocity acting on the lines 

are given for each load case. These equivalent load cases represent an envelope 

for the effect of F2 tornadoes on transmission line systems, and can be applied by 
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a structural engineer in the design process and failure investigations of lattice 

tangent transmission line structures.  

8.3 Recommendation for Future Work  

The following recommendations are added for future work which would extend the 

results presented in this thesis: 

 Fluid numerical model for HIW and normal wind should be combined with the 

structural model developed by the author in the current thesis. A fluid-structure 

interaction scheme should be incorporated into the combined numerical models in 

order to account for the variation of the wind fields resulting from the structure’s 

motion.  

 The developed aeroelastic model should be tested under simulated tornado and 

downburst events in WindEEE research institute. The results of the aeroleastic 

tests in WindEEE research institute should be used to calibrate and validate the 

developed wind-structure numerical models.  

 Propose two design levels for transmission lines under HIW. Level I is an 

operational level, which assures that under moderate intensity HIW, no damage is 

anticipated to happen to any structural member of the tower. Level II is a no-

collapse level, which assures that the tower does not collapse under strong 

intensity HIW. This economical design procedure will ensure that power 

interruptions do not occur under moderate HIW. It will also minimize the duration 

of power interruptions after a strong intensity HIW. 
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