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Abstract

Compared to conventional open heart procedures, minimally invasive off-pump beating heart

mitral valve repair aims to deliver equivalent treatment for mitral regurgitation with reduced

trauma and side effects. However, minimally invasive approaches are often limited by the lack

of a direct view to surgical targets and/or tools, a challenge that is compounded by potential

movement of the target during the cardiac cycle. For this reason, sophisticated image guidance

systems are required in achieving procedural efficiency and therapeutic success. The develop-

ment of such guidance systems is associated with many challenges. For example, the system

should be able to provide high quality visualization of both cardiac anatomy and motion, as

well as augmenting it with virtual models of tracked tools and targets. It should have the

capability of integrating pre-operative images to the intra-operative scenario through registra-

tion techniques.The computation speed must be sufficiently fast to capture the rapid cardiac

motion. Meanwhile, the system should be cost effective and easily integrated into standard

clinical workflow.

This thesis develops image processing techniques to address these challenges, aiming to

achieve a safe and efficient guidance system for off-pump beating heart mitral valve repair.

These techniques can be divided into two categories, using 3D and 2D image data respectively.

When 3D images are accessible, a rapid multi-modal registration approach is proposed to link

the pre-operative CT images to the intra-operative ultrasound images. The ultrasound images

are used to display the real time cardiac motion, enhanced by CT data serving as high quality

3D context with annotated features. I also developed a method to generate synthetic dynamic

CT images, aiming to replace real dynamic CT data in such a guidance system to reduce the

radiation dose applied to the patients. When only 2D images are available, an approach is

developed to track the feature of interest, i.e. the mitral annulus, based on bi-plane ultrasound

images and a magnetic tracking system. The concept of modern GPU-based parallel computing

is employed in most of these approaches to accelerate the computation in order to capture the

rapid cardiac motion with desired accuracy.
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Validation experiments were performed on phantom, animal and human data. The overall

accuracy of registration and feature tracking with respect to the mitral annulus was about 2-

3mm with computation time of 60-400ms per frame, sufficient for one update per cardiac cycle.

It was also demonstrated in the results that the synthetic CT images can provide very similar

anatomical representations and registration accuracy compared to that of the real dynamic CT

images. These results suggest that the approaches developed in the thesis have good potential

for a safer and more effective guidance system for off-pump beating heart mitral valve repair.

Keywords: Mitral valve repair, Minimally invasive, Off-pump, Beating heart, Image guidance,

Real time, Dynamic image processing, Ultrasound, CT, Synthetic CT, Registration, Feature

Tracking
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Chapter 1

An Introduction to Guidance of Minimally

Invasive Off-pump Beating Heart Mitral

Valve Repair

Minimally invasive off-pump closed beating heart mitral valve repair is being developed to

deliver the same quality of repair as conventional open-heart surgery. However, this approach

precludes the direct vision of the surgical targets and tools, which must be substituted by an

image-guidance system that displays all the critical features of the target for optimal visualiza-

tion of lesions and tools for optimal repair. This chapter first introduces the clinical background

of minimally invasive off-pump closed beating heart mitral valve repair, the requirements and

challenges of the image guidance system for it, the limitations of the current imaging modali-

ties. It then outlines the contributions made in this thesis to address these challenges by using

ultrasound guidance augmented by mixed reality visualization techniques.

1
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1.1 Mitral Valve Anatomy

The mitral valve (MV), also known as the bicuspid valve, is a complex structure, located be-

tween the left atrium (LA) and left ventricle (LV) of the heart, comprising several components

working in synchrony. It is designed to ensure the oxygenized blood flows unidirectionally

from the LA to the LV. Its components include the leaflets, annulus, chordae tendineae, and

papillary muscles [1], and some literature considers the posterior left atrium wall and the left

ventricle wall as part of the mitral valve as well [2].

Leaflets: The mitral valve has two leaflets, anterior and posterior (see Figure 1.1). Each

leaflet can be further divided into three regions, A1-A3 for the anterior and P1-P3 for the

posterior leaflets respectively. The posterior leaflet is narrow and usually extends two-thirds of

the annular circumference around the left atrioventricular junction, whereas the anterior leaflet

occupies the remaining third. The basal-to-edge distance of the anterior leaflet can be two or

more times than that of the posterior leaflet, which makes it more mobile, whereas the smaller

posterior leaflet fulfills a secondary or supporting role in the valve closure [3]. Historically, the

mitral leaflets had been viewed as passive connective structures, but some investigations have

found an active function which is assigned to the striated muscle bundles that form part of the

valve tissue [4]. However, it is still uncertain as to whether or not these muscle fibres play

important roles in the valve closure.

Annulus: Strictly speaking, the mitral annulus (MVA) is a non-existent structure, being

the virtual space at the transition (or junction) of the endocardial layer of the LA, the valve

tissue, and the endocardium and myocardium of the LV [5]. Generally, the MVA is described

as having a saddle shape, although the detailed shape of the MVA is unique for each individual.

The orifice area of the mitral valve at the annulus level is approximately 6.5 cm2 and 8 cm2, and

the circumference of the annulus is about 9 cm and 10 cm for women and men respectively [6].

Because the annulus moves outwards with the posterior wall of the left ventricle and dilates to

a certain extent during diastole, the shape of the annulus becomes more circular and the area

of the orifice larger, the actual size of the annulus can vary between systole and diastole by as
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Figure 1.1: Anatomy of the mitral valve leaflets

much as 30% [7].

Chordae tendineae: Chordae tendineae are string-like structures that connect the mitral

valve leaflets and the papillary muscles (see Figure 1.2). There are three types of chordae

tendineae depending on where they attach. The marginal (primary) chords attach to the free

edge of the rough zone of the leaflets preventing the eversion of the free edge into the LA

during systole. The intermediate (secondary) chords attach to the body surface of the leaflets

preventing the doming. The basal (tertiary) chords attach near to or in the annulus supporting

the centre of the leaflets [1, 5].

Papillary muscles: There are two papillary muscles located at the inner wall of the LV

supporting the chordae tendineae. One of them is usually seen at the border of the anterolateral

and inferolateral walls, whereas the other is usually positioned over the inferior wall of the LV.

In most adults, each papillary muscle can have up to three heads [8]. The major function of

these structures is to maintain proper tension to the mitral valve leaflets through the chordae

tendineae, preventing the leaflets from prolapsing into the LA.
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Figure 1.2: Anatomy of the chordae tendineae and the papillary muscles

1.2 Mitral Regurgitation

Mitral Regurgitation (MR) is a very common heart disorder in which the mitral valve cannot

close properly during systole resulting in blood flowing back from the LV to the LA, referred as

the regurgitation (see Figure 1.3). The prevalence of MR is approximately 2-3% of the popu-

lation in North America in 2001 with no gender predominance [9]. This disorder decreases the

efficiency of the LV pumping oxygenized blood through the aorta to the entire body, which can

lead to symptoms as shortness of breath, pulmonary edema, orthopnea, and decreased exercise

tolerance [10].

The severity of the mitral regurgitation is measured by the regurgitant fraction, which is

defined as

RegurgitantFraction =
(Vmitral − Vaortic)

Vmitral
(1.1)

where Vmitral is the volume of blood flowed through the mitral valve during diastole and Vaortic

is the volume of blood flowed through the aortic valve during systole. The degree of severity

is determined to be mild with RF less than 20% and severe with RF more than 60%.
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Figure 1.3: A transesophageal echocardiogram image with mid-esophageal 4-chamber view
showing mitral regurgitation with Doppler color flow

There are many different causes and mechanisms for MR. Generally, the causes of MR can

be divided into non-ischemic and ischemic, i.e. related to coronary artery diseases, and the

mechanisms can be divided into functional and degenerative (organic) [11]. In functional MR

cases, the valve itself remains structurally normal and the MR results from failure of coaptation

of the mitral valve leaflets, caused by abnormalities in segmental LV wall motion, annular

and/or LV dilation, or papillary muscle displacement and/or dysfunction. On the other hand,

degenerative MR is associated with structural abnormalities of the leaflets or the subvalvular

apparatus, such as the chordae tendineae.

Degenerative MR is most commonly associated with mitral valve prolapse (prolapse of

one or both of the mitral leaflets into the LA). The diagnosis of mitral valve prolapse was once

highly prevalent, as much as 35% among teenage girls [12], due to incorrect assumption that the

shape of the mitral valve is planar. This over-diagnosis was then corrected after the important

work in echocardiography that refined the normal mitral anatomy [13–15]. Currently, the more

precise definition of mitral valve prolapse is that one or both of the leaflets prolapse at least
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2mm beyond the long-axis annular plane, with or without leaflet thickening. According to this

definition, the prevalence of prolapse in 2005 is about 2-3% equality distributed among men

and women [16].

Functional MR can occur without any abnormalities in the valve itself. It usually results

from a primary ventricular pathology that leads to ventricular remodeling and/or dysfunction

[17]. There are two major ways whereby ventricular dilation can cause functional MR. First

a dilated ventricle leads to papillary muscle displacement, which means the distances between

the papillary muscles and the proper valve closure position, i.e. tethering distances, are en-

larged. Since the chordae tendineae are not extensible, which constrains the movement of the

leaflets, the displaced papillary muscles tend to prevent the leaflets from closing properly. Sec-

ond, a dilated ventricle may lead to the dilation of the mitral annulus as well. As the size

of the leaflets is not changed, a dilated annulus can naturally lead to insufficient coaptation.

However, some recent studies have shown that ventricular dilation does not necessarily lead to

functional MR, because in some patients who have LV dilation, the mitral valve leaflets can

be enlarged spontaneously by as much as 31%, as compensation to the LV dilation, to provide

sufficient coaptation [18, 19]. The question why the mitral leaflets enlarge in some patient with

LV dilation but does not enlarge in others so far remains unanswered.

1.3 Surgical Treatments for Mitral Regurgitation

Although pharmacological treatments are available to alleviate the symptoms and, in some

cases, to reduce the severity of regurgitation, they do not actually prevent or correct the phys-

ical damage to the heart caused by MR. Mitral valve surgery is the only treatment for MR

that provides sustained relief of symptoms and prevents the development of heart failure [20].

Studies have shown that early surgical treatment should be recommended for patients with se-

vere MR, even when they have no or minimal symptoms because of the low operative risk and

low postoperative mortality, especially when mitral valve repair is feasible [21]. The two main
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surgical options for MR are mitral valve repair and mitral valve replacement.

1.3.1 Mitral Valve Repair

Mitral valve repair (MVR) includes a set of valvular, subvalvular, and annular procedures that

aim to restore normal leaflet coaptation, i.e. normal valvular function. The choice between

repair and replacement is based on many factors including patients general health, the condition

of the valve, and expected benefits of the surgery. However, in the recent years a trend has

been formed among surgeons to favor repair to replacement in most cases when the former is

feasible, due to lower mortality and morbidity rate and the development of related techniques

[22–24].

Surgical repair for degenerative MR

Most causes for degenerative MR are chordae-related, such as ruptured and elongated chordae,

among which the posterior chordal rupture is probably the most common with a prevalence

twice that of elongated chordae, and more times than that of anterior chordal rupture [25]. One

typical and traditional technique to repair prolapsed posterior leaflet is achieved by resection

of the prolapsed segment, sometimes along with the damaged chordae, in conjunction with

posterior annulus placation sutures. However, removing part of the leaflet can decrease the

overall valve leaflets area when the size of the annulus remains the same, which may lead to

leakage. Consequently, mitral annuloplasty may also need to be performed after the resection

to reduce the size of the annulus. One approach that is gaining in popularity is to repair the

stretched or ruptured chordae by implanting artificial chordae without resecting the prolapsed

leaflets. The repair of the prolapsed anterior leaflets is more challenging than that for posterior

leaflets. The reconstructive techniques include chordal replacement, shortening, or transposi-

tion, folding plasty, and triangular resection [26]. Another technique that does not directly deal

with the chordae is to create a double orifice valve by suturing or clipping part of the edges of

both leaflets together, which can also enforce the correct coaptation of the leaflets [27].
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Surgical repair for functional MR

In functional MR, the repair is mainly achieved by remodeling the distorted mitral annulus

aiming to reduce its size (diameter), i.e. annuloplasty. The conventional means of performing

mitral valve annuloplasty is to attach a ring to the annulus, which reshapes the annulus to the

shape of the ring. In the past, the ring was designed with a flat or curved outline. However, new

insight into the 3D dynamic behavior of the mitral valve has promoted a redesign of the ring to

be saddle-shaped, which is closer to the natural shape of the annulus [28, 29]. Some modern

techniques have also been developed to perform percutaneous mitral annuloplasty, which can

be delivered through a minimally invasive procedure [30, 31].

1.3.2 Mitral Valve Replacement

Mitral valve replacement, as its name implies, involves the implantation of a biological or

mechanical prosthesis as a replacement of the original valve. Biological valves are usually

made from animal tissue or, in some cases, from tissue from the patients themselves. Such

valves are associated with lower risk of thromboembolic disorders, but they may only last

for 10-15 years [32]. Mechanical valves are usually made from metal or pyrolytic carbon

and last longer than biological valves, but patients with mechanical valves may have to take

blood-thinning medications regularly to prevent clotting. The choice of valve types to implant

depends on the patient’s age, general health conditions, preferences with medication, and life

expectations.

1.4 Approaches to Deliver the Surgical Therapy

With a history of about 60 years, cardiac surgery is considered to be a very young discipline

in medicine. Although it has been a long time since human beings tried to pursue knowledge

about the heart, it was not until early 20th century that cardiac surgery was attempted. For

example, Dr. Werner Forssmann first documented right heart catheterization in humans with
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radiographic techniques in 1929 [33] and Dr. Robert E. Gross performed closure of patent

ductus arteriosus in 1939, which is considered to be the first surgical correction of a congenital

heart defect [34]. There are many difficulties that have to be resolved before it is possible

to perform operations on the heart, among which one of the most important is to maintain

sufficient blood circulation for the patient to survive during the surgery. Dr John H. Gibbon, Jr.

attempted to resolve this difficulty by introducing a heart lung machine (see Figure 1.4), also

referred as cardiopulmonary bypass (CPB), which was designed to maintain extracorporeal

circulation during the surgery. Dr. Gibbon performed the first successful open-heart operation

with the use this device in Philadelphia on May 6th, 1953, which brought modern open heart

surgery to its infancy [35].

However, it is noteworthy that much of the surgical trauma in open heart surgery is not

a result of action on the surgical target itself, but rather occurs during the process of gaining

access to it. Dr. Gerard Guiraudon has divided a surgical procedure into three components [36]:

the target, - the pathological tissue/organ to be treated; the bullet, - the therapeutic agent that

defines the actual therapy to be performed on the target; and the gun, - the surgical procedure

that delivers the therapy to the target, but does not affect the target directly. This description

characterizes most surgical procedures as the means of delivering therapy, and this leads to the

idea that it is the delivery procedures that causes most of the morbidity or even mortality in

surgery. This concept promoted the development of minimally invasive surgery, which aims to

deliver equivalent or similar therapy to that of open heart surgery through minimized incisions;

and off-pump beating heart surgery, which aims to operate on the beating heart without the use

of the heart lung machine. The next subsections discuss these different approaches to deliver

the surgical therapy.

1.4.1 Open Heart Surgery

Conventional open heart surgery usually starts with a procedure called a “sternotomy”, in

which a 15-to-25 cm vertical incision is made along the sternum (or breastbone) after which



Chapter 1. Introduction 10

Figure 1.4: 1955 heart-lung machine

the sternum itself is split. The purpose of this procedure is to provide visual and surgical access

to the heart. The heart lung machine is attached to the patients cardiovascular system, and the

heart is arrested. Via the Heart-Lung machine, blood is drained from the heart, oxygenized by

the machine, and pumped back to the patients body temporarily taking over the function of the

heart during surgery.

Open heart surgery with heart lung machine is a great innovation, because it has made

many complicated operations on the heart possible to be performed. Nowadays, open heart

surgery is routinely performed in many clinical centres worldwide and studies have suggested

that elderly patients with comorbidities and advanced cardiovascular disease benefit more from

cardiac surgery than from medical therapy alone [37]. However, this technique is associated

with a large amount of many side-effects, such as chest pain, risk of stroke, renal dysfunction,

and cognitive complications. Some of the side effects are discussed below.
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Chest Pain: One of the most salient side effects is the pain associated with the long incision

along the chest caused by the media sternotomy [38]. Since the breastbone is broken during

the surgery, the patient has to suffer from great pain in the chest for about six weeks after the

surgery. Even normal breathing becomes difficult and painful during that period.

Infection & Inflammation: Postoperative infection is one of the major factors that in-

creases the risk of postoperative mortality. This may come from the surgical incisions as with

any other surgical procedure, as well as from the use of cardiopulmonary bypass [39]. The

overall incidence of infections after open heart surgery is around 3% [40], while this num-

ber can be higher (9%) in developing countries [41]. It has been reported that the frequency

of infection for patients with postoperative acute renal failure ranged from 23.7% to 58.5%

depending on whether or not they required dialysis [42].

Arrhythmia & Atrial fibrillation: Arrhythmia is very common after open heart surgery,

especially associated with the use of heart lung machines, with the reported incidence of post-

operative arrhythmia after open heart surgery being over 70%, while the incidence of severe

arrhythmia can still be over 40% [43, 44]. Atrial fibrillation, the most common arrhythmia

occurring postoperatively with incidence rate around 30% [45], increases the risk of stroke and

mortality [46] and also leads to longer hospital stay and increased health-care costs.

Renal Dysfunction: Acute renal insufficiency or renal failure (ARF) is another major com-

plication associated with open heart procedures. The incidence of patients having ARF that

requires dialysis, ranges from 1% to 4% in different studies [47–49]. The more important fact

is that the mortality rate of patients with ARF is significantly greater (in excess 60%) [50] than

those with no ARF, while the general mortality after open heart surgery is 2-8% [51–53].

Central Nervous System Complications: Neurological complications can be categorized

into two groups. Type I complications include fatal or non-fatal stroke, stupor, or coma at dis-

charge, whereas type II complications include chronic syndromes of cognitive decline, such as

inattention, amnesia, aphasia, and apraxia [54]. Stroke is one of the most fatal complications

after open heart surgery. The general frequency of this complication varies from 1.6% to 5.6%
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in different studies [55–57], and rate is much higher in patients over 75 years of age (almost

9%) and patients undergoing valve surgery (∼16%) [58]. The incidence of peri-operative overt

stroke has declined progressively since the invention of open heart surgery thanks to improve-

ments in technology. However, the cognitive complication has remained with high incidence

and in some respects has become the most important side-effect [54, 59]. Newman et al. [60]

reported a cognitive decline in 53% of patients at discharge, 36% at 6 weeks, 24% at 6 months,

and 42% at 5 years with a significant decline defined as 20% reduction from baseline. Cogni-

tive complication can greatly affect the patients’ post-operative quality of life, although it may

not lead to mortality.

1.4.2 Minimally Invasive Heart Surgery

Minimally invasive (MI) cardiac surgery, as its name implies, aims to minimize the incisions

applied on patients for the access to the surgical targets. In other words, it attempts to replace

the median sternotomy with small incision(s). Many incision techniques have been developed

to replace conventional median sternotomy, including right mini-sternotomy, which is probably

the most common incision type for now [61–63], J-sternotomy [64, 65], left thoracotomy [66,

67], right infra-axillary thoracotomy [68], trans-sternal approach [69], inverted T-sternotomy

[70], and V-incision [71].

Mitral valve surgery has been one of the areas of cardiac surgery that is most widely influ-

enced by MI approaches. The first MI valve surgery was performed by Cosgrove in 1996 [72],

while in the same year Carpentier performed the first video assisted mitral valve repair with

minithoracotomy [73]. In 1998, Carpentier advanced his work by performing the first com-

pletely robotic mitral valve repair using the surgical robotic, Da Vinci (Intuitive Surgical Inc.,

CA, USA) [74]. Since then, the development of alternative methodologies and technologies

in terms of new incision approaches, new surgical tools, new CPB techniques, especially can-

nulation techniques, and new image guidance approaches, have been promoted and developed

with a rapid pace.
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Although some studies have shown that there is no difference in mortality between MI

surgery and open heart surgery [75–78], MI approaches have many advantages including de-

creased length of stay in hospital, decreased surgical trauma, reduced pain, improved patient

satisfaction, and potentially reduced hospital resource utilization.

1.4.3 Off-pump Beating Heart Surgery

When MI heart surgery was first introduced, it did not eliminate the use of the heart lung

machine. On the contrary, some studies showed that MI approaches may lead to increased

operating time, and consequently increased CPB time [79], which can raise the incidence of

some CPB-related side effects [80]. This problem can be resolved by performing MI off-pump

procedures, in which the patients heart keeps on beating and the blood flows through the heart

as normal.

Although it is interesting to note that there are actually on-pump beating heart surgeries,

in which the heart is perfused normally through the aortic root [81–83] and off-pump beating

heart (BH) surgery with full sternotomy [84], minimally invasive off-pump beating heart (BH)

surgery has gained more interest and popularity. Many studies have shown evidence that com-

pared to on-pump procedures, off-pump procedures lead to lower risks and morbidity [85–87]

and lower cost [88]. The next section describes some commercially available MI off-pump BH

mitral valve repair techniques.

1.4.4 Existing Techniques for MI Off-pump BH Mitral Valve Repair

Transapical Artificial Chordae Implantation

NeoChord©DS1000 (NeoChord Inc., MN, USA) is a device designed to perform off-pump

beating heart mitral valve repair for degenerative MR, especially mitral valve prolapse [23, 89].

The therapy it delivers is to implant artificial chordae tendineae to a ruptured leaflet. The device

is introduced into the left ventricle through a 2 to 3 inch incision between the ribs and a hole at
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the apex of the heart (see Figure 1.5). A jaw close to the tip of the device can be opened and

used to grasp the leaflets. A needle can go through a channel built inside the device and apply a

suture on the leaflet. After the suture is applied, the device comes out of the heart and the other

end of the suture is tied at the apex. This procedure may need to be repeated several times to

apply multiple sutures to the leaflets. The sutures then limit the movement of the leaflets and

prevent them from prolapsing into the left atrium at systole.

Figure 1.5: An illustration of NeoChord DS1000 device and the related transapical procedure
for artificial chordae implantation

One of the difficulties in conventional chordae implantation procedures is the determination

of the length of the implanted chordae. This difficulty is resolved in the NeoChord procedure,

because it allows the surgeons to adjust the length of the implanted chordae and assess the

result by intra-operative Doppler echocardiogram, before they tighten the chordae and secure

it at the apex.

Percutaneous Edge-to-Edge Leaflets Clipping

MitraClip©(Abbott Laboratories, IL, USA) is a percutaneous mitral valve repair system de-

signed to perform edge-to-edge leaflets clipping that creates a double orifice valve. This device

and its related procedure is currently under a randomized controlled clinical trial coded as
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EVEREST (endovascular valve edge-to-edge repair study trial) [90, 91]. The system consists

of implant catheters and the MitraClip clip device with the clip device attached to the tip of a

catheter. The procedure starts with inserting the catheter through the femoral vein to the left

atrium. The clip is then carefully positioned to grasp both mitral valve leaflets and to clip the

two leaflets together. By doing this, a double orifice valve is created to allow greater valve

closure and less regurgitation. This procedure has the potential of treating both degenerative

and functional MR.

Figure 1.6: An illustration of MitraClip device and its related procedure

The advantage of this technique is that the interventionist can release the clip and re-grasp

the leaflets multiple times before the clip is detached from the catheter, so that they can as-

sess the result through Doppler echocardiography and adjust the grasping position accordingly.

When the expected result is achieved, the clip is detached from the catheter and left in the heart

attached to the valve leaflets, and the catheter removed. This approach can treat mitral valve

prolapse without directly dealing with the chordae tendinae. However, some criticism has sug-

gested this is using mitral stenosis to treat MR.

Percutaneous Direct Mitral Annuloplasty

Mitralign©(Mitralign Inc. MA, USA) is a percutaneous annuloplasty device that is designed

to perform mitral annuloplasty with a minimally invasive manner on a beating heart [92]. It

begins by introducing a guide catheter through the aortic valve and positioning it on the pos-

terior side of the left ventricle. Wires are then introduced through the catheter and placed in

the mitral annulus with a predefined distance in between. Pledgets are delivered over the wires
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(one plegdget over each wire) and attached to the annulus. After the deployment, the pled-

gets are pulled together and locked in place, which folds part of the annulus and reduces its

circumference.

Figure 1.7: An illustration of Mitralign and its related procedure

This approach does not involve the attachment of an artificial ring that remodels the shape

of the annulus. The feasibility of this approach is suggested by some literature [93, 94] that

shows suture plication of the posterior portion of the annulus can offer benefit even without a

ring.

Percutaneous Indirect Mitral Annuloplasty

The MONARC©device (Edwards Lifesciences, Irvine, CA, USA) is designed to perform mi-

tral annuloplasty by implanting a curved device within the coronary sinus to reduce the size

of mitral annulus [95, 96]. The MONARC system consists of a nickel-titanium alloy implant

and the delivering catheters. The implant itself comprises a spring-like “bridge” and two self-

expanding anchors at both ends of the bridge. The compressed implant can be introduced
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from the jugular vein through the guide catheter and positioned within the coronary sinus. The

sheath is then removed to allow the anchor to expand, providing fixation.

Figure 1.8: An illustration of MONARC device and its related procedure

This approach has raised many concerns. For example, it has been noted that the coronary

sinus and great cardiac vein typically lie on the atrial side of the mitral annulus rather than

immediately in the mitral annulus plane. The anatomic relationship between the sinus and

the mitral annulus is highly variable. These concerns were confirmed in many studies [97–

99]. In addition, clinical experience has shown that coronary artery compression, ischemia and

infarction may occur after this type of procedure [100].
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1.5 Image Guidance: An Essential Assistance for MI Off-

pump BH Surgery

Lack of direct visual access to either the surgical targets or tools is an intrinsic limitation of MI

procedures and off-pump beating heart intracardiac procedures have one more limitation due to

the flowing blood in the heart chambers that makes normal endoscopic camera impractical for

such procedures. To enable such procedures, some sort of assistance must be provided, so that

the surgeons can know what they are operating on. Image guidance provides such assistance

by providing a model of the surgical environment complemented by intra-operative real-time

information from a variety of imaging sources and tool tracking systems [101].

The most important event that led to the start of the “image-guided procedure” is probably

the discovery of X-ray by Roentgen on November 8th 1895 [102, 103]. A few months after

that, Cox [104] successfully removed a bullet from the leg of a victim based on the radiograph

of the limb at McGill University in Montreal, which was a very rapid translation from a scien-

tific discovery to clinical practice. In the past few decades, image guidance has gained more

and more interest thanks to the tremendous advancement in imaging techniques and modern

computers. Today image guidance has been wildly adopted and become a state-of-art compo-

nent in most of the MI cardiac procedures.

1.6 Challenges for Image Guidance

1.6.1 Requirements of Image Guidance for MI BH Surgery

General requirements of image guidance for MI surgery include the capabilities of visualizing

the surgical targets, the surrounding anatomical context, and the status of the tools in real

time. For the BH surgery, the visualization of the cardiac motion is also necessary. Specific

requirements in terms of image quality vary among different procedures and/or even different

stages in one procedure. Those requirements are discussed below.
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Temporal resolution: Temporal resolution defines the precision of the measurements with

respect to time, which is a key concern for imaging a beating heart. Using the NeoChord and

MitraClip procedures as examples, those two approaches require very high temporal resolution

for the surgeon to grasp the leaflet(s) with the tools due to the fast motion of the leaflets [105,

106]. This explains why the surgeons prefer to use 2D echocardiography, which can provide

very high temporal resolution (>30 Hz), as the imaging modality for leaflets grasping. On

the other hand, guiding a catheter through the femoral vein has a much lower requirement for

temporal resolution.

Spatial resolution: Spatial resolution, often confused with pixel size, is measured by how

close two lines can be placed to each other and still be resolved in an imaging system. Small

pixel size does not necessarily lead to good spatial resolution. Better spatial resolution usually

leads to more detailed images. For example, in the indirect annuloplasty procedures, identify-

ing the ostium of the coronary sinus requires the spatial resolution to be better than 5mm [107],

which is not difficult to achieve for modern imaging techniques.

Field of view (FOV): FOV is the region of the observable space that an imaging system

can provide at a given moment. Figure 1.9 shows an example of two transesophageal echocar-

diogram (TEE) images both with mid-esophageal (ME) 4-chamber view. The left image has

a larger FOV in which the complete left ventricle is contained, whereas the right image has a

smaller FOV which focuses on the mitral valve. The requirement for FOV may also change

during a procedure. For example, in the NeoChord procedure, a relatively large FOV show-

ing the entire left ventricle is required for guiding the tool moving from the apex to the mitral

valve area. When the tool tip is close to the leaflets, a smaller but more detailed view may be

required to show the position and motion of the leaflets. The image guidance system should be

able to adjust the view according to the procedure’s requirements to provide most informative

and intuitive visualization to the surgeons. However, trade-offs must often be made among

FOV, spatial resolution, and temporal resolution.

Soft tissue contrast: Most medical images use grayscale to represent image intensity, so
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Figure 1.9: An example of two TEE images with the same view but different FOV

the soft tissue contrast is basically the difference in intensity that makes a one soft tissue dis-

tinguishable from another. Figure 1.10 shows the comparison between a cardiac TEE image

and an X-ray fluoroscopy image. The TEE image shows excellent contrast between the intra-

cardiac structures, whereas the fluoroscopy image can barely show any of them. A basic re-

quirement for image contrast is that the target and the tools must be recognizable in the image.

In the mitral valve repair procedure, echocardiography is a good choice, because it provides

excellent contrast between the mitral valve leaflets and the blood. In some situations a contrast

agent can be applied to improve the contrast of a certain tissues, typically the blood (angiogra-

phy) in BH surgery.

Figure 1.10: A TEE image and a fluoroscopy image showing different soft tissue contrast
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Some other requirements that are not related to image quality include incorporating pre-

operative images and surgical plans to intra-operative environment, radiation dose management

and economic cost.

Incorporating pre-operative images and surgical plans: Pre-operative images usually

have better image quality, in terms of larger FOV, higher resolution, better signal-to-noise

ratio, and better soft tissue contrast, than intra-operative images and surgical plans are usually

made based on pre-operative images. These attributes motivate the idea of incorporating pre-

operative images, together with the surgical plan, into the intra-operative environment. This is

usually achieved through image registration techniques (detailed discussion in section 1.9).

Radiation dose: Any X-ray based imaging modalities, such as CT and fluoroscopy, are

associated with ionizing radiation dose, which can be harmful to those exposed to it, both

patients and the clinicians. Since good image contrast, high resolution, and long scanning

times can all lead to high radiation dose, a compromise must be made regarding factors to

ensure sufficiently high image quality while minimizing radiation dose.

Economic cost: The economic cost of the guidance system is not directly related to its

effectiveness. However, it affects the affordability and consequently the availability of the

guidance system. In countries where the patient is responsible for a large portion of or even the

entire cost of the medical procedure, economic cost can also have the impact on who can or

cannot receive a certain type of medical treatment. For example, although interventional MRI

is capable of providing real time cardiac images with excellent image quality, its popularity has

been greatly limited by its extremely high cost and general lack of availability in interventional

cardiac suites.

1.6.2 Limitations of the Current Imaging Modalities

Common imaging modalities used for guidance of cardiac surgery include X-ray fluoroscopy,

2D/Bi-plane/3D ultrasound, CT, interventional MRI, and endoscopy. Although these modali-

ties have been used as standard practice for the guidance of cardiac interventional procedures
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for many years, there are limitations of each, which renders them unable to fully resolve the

challenges in guiding minimally invasive and off-pump beating heart procedures.

X-ray fluoroscopy: X-ray fluoroscopy has been the standard imaging modality for many

percutaneous intracardiac procedures for some time [108], and is still widely used in many

clinical centres. It provides real time intra-operatively projection images that can provide good

visualization of the surgical tools and catheters. However, the soft tissue contrast in those

images is relatively low and intracardiac structures can barely be recognized (see Figure 1.10b).

In addition, radiation dose is also a serious concern, especially for long exposure. Many studies

have been performed for radiation dose management to reduce or control its negative effects

[109], but it still remains a serious concern, particularly for long procedures. The use of x-ray

contrast agents can also lead to renal damage.

Ultrasound: Transesophageal echocardiography (TEE), both 2D and 3D, has become pop-

ular for both diagnostic and interventional cardiac procedures. The high temporal resolution of

TEE, especially for 2D imaging, makes it perfect for analyzing the cardiac motion, especially

the motion of the valve leaflets, which is too rapid for most of the other imaging modalities

to capture. Also, ultrasound has no ionizing radiation dose, which makes it safe for extended

imaging. The limitation of 2D TEE, either single plane or bi-plane, is that it is difficult to main-

tain both the surgical target and tools in the imaging plane, which is important for navigating

the tool to reach the target [110, 111]. 3D TEE can overcome this limitation to some extent,

but at the cost of decreased temporal and spatial resolution in a restricted field of view (FOV).

Another limitation of 3D TEE is that it can only be performed for a few minutes before it has to

be switched back to 2D due to the heat generated by the transducer. Further, the signal-to-noise

ratio of 3D TEE is rather low.

Interventional MRI: Other than the high economic cost, interventional MRI has some

other technical limitations as well. First, as an MRI, it requires specifically designed non-

ferromagnetic tools to be used within the operation area. It also needs to deal with radiofre-

quency heating at the tips of guide wires, catheters, and other wire-shaped devices [112]. In
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addition, the space for the surgeons to perform operations is highly restricted.

1.6.3 Multi-stage or Single-stage? No One-size-fits-all

The idea of using one imaging modality or one constant setting for the guidance of the entire

procedure is not appropriate for the increased demand of guidance accuracy and effectiveness.

Image guidance should be considered as a multi-stage task. Some studies have suggested that

for better guidance quality, a surgical procedure needs to be broken down into smaller steps,

that for each such step the most suitable guidance solution should be determined [113] and that

each solution could consist of multiple modalities or the use of mixed reality [114].

A general way of breaking down a guidance procedure is to divide it into two major compo-

nents: navigation and positioning. Navigation refers to the operation of guiding the tool from

an entry point to an area very close to the target, whereas positioning deals with delivery of

the therapy to the target with required accuracy and precision. For example, in the NeoChord

procedure, navigation involves guiding the tool tip from the apex of the heart to the centre of

mitral annulus, while positioning implies deploying the artificial chordae on the leaflet at the

correct positions.

The guidance requirements for navigation and positioning can be very different. In a per-

fect scenario, the only change within the surgical environment after the navigation stage should

be the position of the tool. This concept suggests that navigation is about getting the tool to

the destination with minimized negative impacts to the other aspects of the operation, such as

causing danger to the surrounding tissues, extending operation time, or increasing surgeons’

mental/physical workflow. On the other hand, the details of the target are not the most im-

portant concern in the navigation stage. For example, when a surgeon introduces a catheter

through the aorta in a transcatheter aortic valve implantation (TAVI) procedure, the position of

the catheter tip is more important than the appearance or movement of the aortic valve leaflets.

However, in the positioning stage visualization of the details of the target becomes one

of the most important factors for deploying the therapy at the planned position. The final
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deployment position of the therapy can very often be the key reason for operation success or

failure. For example, when placing a MitraClip device, the cardiologist must find the position

that leads to minimal, if not zero, mitral regurgitation, while making sure the clipped tissues are

sufficiently strong to hold the device. Applying multiple sutures in the NeoChord procedure

requires them to be placed with uniform intervals on the leaflets. Placing a stent in a TAVI

procedure has to make sure the stent does not block the ostia feeding the coronary arteries.

The major task of image guidance in the positioning stage is to help the surgeon to deliver

the therapy accurately at the planned position with confidence. Two facts make a positioning

task very different from a navigation task. First, after successful navigation, the tool is already

very close to the final target and the movement of the tool must be constrained to be within

a smaller region. Second, the requirement of guidance accuracy and image resolution (both

spatial and temporal) may become higher than that during the navigation task. Because of

these two differences, the image guidance for the positioning stage does not need to provide a

very large FOV, but it requires more details of the target.

If we use driving a car to a shopping mall as an example, a navigation task is similar

to driving the car from the start point to the parking lot of the mall using a GPS, while the

positioning task is similar parking the car into a certain lot with the help of a back-up camera.

A navigation task focuses on where the destination is and what the route leading the car from

the start point to the destination is. On the other hand, a positioning task focuses on the details

of the surroundings to ensure the final deployment is at the correct position. Using a navigation

tool, e.g. GPS, for a positioning task, e.g. parking, can lead to very inaccurate results, while

using a positioning tool, e.g. a back camera, for a navigation task, e.g. long distance drive,

could easily get lost, because it focus primarily on the surrounding details without providing

any useful information about the location of the destination. Different tools are required for

guiding the two tasks, and using the wrong tool for the task may end in failure.

This same concept also applies to image guided procedures. A surgical operation is a

very complicated task that requires many specific tools for each specific step in the procedure
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and so should the guidance. The idea of viewing image guidance as a multi-stage task is not

completely new, and some procedures have already adapted this idea in their workflow. The

MitraClip procedure for example, uses fluoroscopy, 2D TEE, and 3D TEE for guidance at

different stages. Actually, Altiok et al. [113] divided the MitraClip procedure into eleven tasks

(not including guiding the catheter with fluoroscopy) in their study and compared the guidance

with 2D and 3D TEE to decide the optimal modality for each task. NeoChord applies the

same idea in their current guidance solution. 3D TEE is used to verify the position of the tool

tip before it is moved through the mitral valve area, while 2D TEE is used for grasping the

leaflets. In summary, image guidance system should not be considered as a single tool that

can hopefully solve all the problems, but a toolbox that can provide the optimal tools for every

specific task according to its requirements.

1.7 Solution to the Challenges: Mixed-reality

As discussed above, no single intra-operative imaging modality can fulfill all the requirements

and resolve all the challenges for the guidance of minimally invasive off-pump beating heart

interventions. A solution to this problem that has been widely adopted by researchers and clin-

icians is to introduce mixed-reality to the guidance systems [114]. According to Milgram et

al. [115] who first defined this concept, mixed-reality covers a whole spectrum from pure real

environment to pure virtual environment, e.g. computer simulations. A mixed-reality based

guidance system attempts to consolidate all the useful information from pre-operative (pre-

op) images, intra-operative (intra-op) images, anatomical models or atlases, surgical plans,

tool tracking systems, and video cameras into a unified platform and visualize them in a way

that can be easily interpreted and understood by the surgeon. It aims to provide more impor-

tant information than any single imaging modality can achieve, ease the navigation task, and

eventually improve the procedural safety, efficiency, and even outcomes. Many studies have

demonstrated the feasibility and benefits of using mixed-reality platform for the guidance of
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MI off-pump BH interventions [101, 110, 111, 116–123].

1.8 Principal Components in a Mixed-reality Guidance Sys-

tem

A mixed-reality based guidance system usually consists of the following major components:

pre-operative images or models, intra-operative images, tool tracking system, image processing

programs, and visualization programs (see Figure 1.11).

Figure 1.11: Overview of an Image Guidance System
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1.8.1 Pre-operative Images

Pre-operative images and models are mostly used for diagnosis and surgery planning. They

can also be integrated into the intra-operative guidance system to provide high quality im-

ages as enhancement to the intra-operative images. Pre-operatively defined models can also

provide useful information that may be difficult to obtain or to produce during the operation,

such as planned surgical path, clearly defined target position, annotations of surrounding tis-

sues, and customized fusion and visualization of multiple images. However, the limitation of

pre-operative images is that they may not present the true intra-operative patient state. Many

factors differentiate pre-operative images from their intra-operative counterparts, such as dif-

ferent imaging modalities, different scanning positions or poses, deformed tissues, surgical

tool presence, and changes in lesions or surrounding tissues. Image registration techniques are

commonly required for using pre-operative images during the surgery.

1.8.2 Intra-operative Images

Intra-operative images show the true state of a patient during the surgery. They can be the

same or different imaging modalities as the pre-operative images. The importance of having

intra-operative images is that they can show not only the anatomy and motion of the patient, but

also the surgical tools and the interaction between the tools and the tissues. The latter cannot

be found in the pre-operative images. However, it is a general requirement that the procedure

of obtaining an intra-operative image should not significantly interfere with the OR workflow.

Waiting half an hour or maybe even ten minutes to get an image is usually not acceptable in the

OR. Furthermore, in beating heart interventions, it is also important to show the real time heart

motion. Inside a beating heart, some tissues, such as valve leaflets, can move rapidly, requiring

high temporal resolution of the imaging modality, which means the scanning process for one

image, must be accomplished within a very short period of time.
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1.8.3 Tool Tracking Systems

Tool tracking systems continuously track the position and orientation of the surgical tools and

send the updated information to the guidance system. Common choices of tracking systems are

optical tracking, visual tracking, magnetic tracking, and image based tracking. Optical tracking

systems usually use two cameras to locate the positions of infrared-emitting or retro-reflective

markers, usually spheres, and compute the positions and orientations of the tracked tool based

on the markers positions. The accuracy is generally excellent, in many cases better than one

millimeter. However, the line-of-sight is a common limitation for optical tracking, implying

that the markers should not be blocked from the camera by any objects at any time for the

tracker to be able to work. Visual tracking is similar to optical tracking, but it uses geometric

patterns attached to the tools for tracking. It is cheaper and can be more scalable than optical

tracking, but it also has the occlusion issue and the general accuracy is not determined yet.

Magnetic tracking systems employ a field generator to generate a magnetic field and sensor

coils placed in the tracking area induce different voltages according to the varying magnetic

fields, which can be used to calculate the position and orientation of the sensors. A major ad-

vantage of magnetic tracking is that it does not have the “line-of-sight” constraint. Sensor coils

can be placed anywhere inside a human body and will operate as long as they are within the

sensitive volume of the field generator. However, metal tools may greatly affect the tracking ac-

curacy, although medical grade stainless steel and titanium are claimed to be non-problematic.

Also, the general accuracy of magnetic tracking is worse than optical tracking. Image based

tracking doesn’t rely on any external devices other than the imaging devices themselves, and

the position and orientation of the tool is calculated based on the tools appearance in the im-

ages. It is a good option when the other three techniques are not applicable, but accuracy of

this technique relies largely on the image quality and the image processing techniques.
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1.8.4 Image Processing Techniques

Image processing programs act as the linkage between pre-operative images/models, the intra-

operative image, and visualization programs. They are used to bring all the useful information

together from available images, either pre-operative or intra-operative, and make them more

salient and easier to interpret for the surgeons. For example, locating and dynamically updating

the position of the surgical target, if possible, often receive the most attention in any image

guidance systems; marking the regions that may cause potential danger if the tool accidently

gets into is helpful for improving the overall safety of the procedure; and incorporating high

quality pre-operative image to the system can help the surgeon to better interpret the anatomy,

when intra-operative images have relatively low quality.

In terms of processing techniques, segmentation, registration, and image filtering including

regularization, enhancing, feature extraction, and thresholding are the most commonly used.

Segmentation usually forms the basis for generating anatomical and/or functional models,

locating surgical targets, and quantitative measurements within the area of interest. For med-

ical purposes, the segmentation results are usually expected to be highly accurate (≤1mm).

However, this level of accuracy is often very hard to achieve. Many segmentation approaches

that give satisfactory results are then very computationally intensive, which limits the oppor-

tunity of using them intra-operatively. Thus, most of the segmentation work is still performed

pre-operatively, which also allows review and correction by the clinician.

Registration is the key component for linking multiple images together, especially for

aligning pre-operative images to intra-operative images. Many factors can lead to variations

between pre-operative and intra-operative images, such as tissue deformation, changes in le-

sions, inter-modality intensity distribution differences, and different coordinate system used by

the imaging systems. In most cases, these factors are combined in various ways, so the choice

of using either rigid or non-rigid registration and the selection of a similarity metric depend

on applications. The factors to be considered are the differences in image presentation, com-

putational efficiency of the approach versus requirement of the efficiency of the application,
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general accuracy of the approach versus tolerance of registration error of the application, ex-

tra time and efforts required for implementing a certain approach versus estimated benefits of

using this approach.

Image filters are commonly used in the pre-processing step before segmentation or regis-

tration. They can smooth or sharpen images, enhance contrast, and detect geometrical features,

etc. In some cases, a well chosen filter can be the difference between success and failure. His-

togram matching, for example, may greatly improve the performance of mono-modality regis-

tration. Such steps are often referred to as engineering tricks as they are not always reported in

publications.

1.8.5 Visualization

Visualization platforms obtain data from the image processing programs and the tool tracking

systems and display them on the screen. There are many different ways of visualizing an image

or a virtual model, such as maximum intensity projection, volume rendering of the whole

image, showing orthogonal slices, rendering a model as polygon or surfaces with shading, and

overlaying/fusing images together. It is not always necessary to show everything that the image

processing programs can provide on the screen. Actually, in many situation, showing too much

is as bad as showing too little. The optimal choice of what to visualize at each certain stage

during the procedure needs careful studies. A general criterion is that the visualization should

ease the mental workload of the surgeons but not add to workload.

1.9 Image Registration Techniques for Guidance of MI Off-

pump BH Procedures

Image registration has two important roles in image guidance system for beating heart in-

tervention. First, it is the core technique that connects the pre-operative images/models and

intra-operative images together. Second, it is essential for analyzing the cardiac motion. Trade-
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off between registration accuracy and efficiency is one of the most important decisions when

choosing registration approaches for the guidance of BH procedures. Many non-rigid regis-

tration approaches aim to achieve excellent registration accuracy, but place little emphasis on

efficiency. Some of them may take hours to finish the computation on one dataset [124, 125].

These approaches are not plausible for intra-operative BH applications. On the other hand,

most of the guidance applications require the root mean square error (RMSe) of the registra-

tion to be within a reasonable range, typically less than 5mm. This means that the registration

approach guidance of BH procedures should be both fast and accurate.

There are hundreds of image registration techniques designed for different applications and

requirements, but basically all of them can be classified into a few categories according to some

simple rules.

1.9.1 Transformation Models

Transformation models define the degrees of freedom (DoF) involved in mapping the moving

image to the reference (fixed) image. To list some of the transformation models from low DoF

to high DoF, there are rigid, procrustes, affine, and non-rigid transformation. Rigid transforma-

tion allows only rotation and translation of the moving image. For a 3D registration problem, a

rigid transformation allows three degrees of freedom in rotation and three degrees of freedom

in translation, i.e. 6 DoF in total. Procrustes transformation adds uniform scaling to the rigid

transformation. Affine transformation preserves only points, straight lines, and planes. Parallel

lines remain parallel after an affine transformation, but the angles between lines and distances

between points are not necessarily preserved. Non-rigid transformation allows local non-linear

deformation to the extent of individual pixel/voxels, and provides the highest freedom, but the

validation of non-rigid registration remains a complicated question. Figure 1.12 shows how a

square shape changes when different transformation models are applied to it.

Rigid transformation can be computed very efficiently, but it does not deal with tissue de-

formation. On the other hand, non-rigid transformation can deal with all kinds of deformation
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Figure 1.12: An illustration of transformation models

in images, even the changes in intensities (e.g. Level-sets based method [126]), but it is usually

computationally intensive and the regularization can be tricky.

Non-rigid transformation has been very widely used to estimate the cardiac motion. The

results are often used to generate dynamic heart motion models or atlases both for diagnosis

and guidance purposes.

For example, Wierzbicki et al. [127, 128] introduced and validated an approach of generat-

ing dynamic heart models using non-rigid registration. This approach was tested on CT animal

images and MRI human images. With properly selected similarity metrics, the accuracy of the

models was reported to be approximately 1mm. Phatak et al. [129] and Veress et al. [130]

used an hyperelastic warping approach to measure the strain of the left ventricle during systole

with untagged cine-MR images. The circumferential and radial strains computed based on the

warping were compared to the results obtained from tagged MR images and showed good cor-

relation. Shi et al. [131] described a approach that registered tagged and untagged MR images

from the same patient simultaneously to a common spatio-temporal reference to estimate the
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cardiac motion. The results were reported to be better than using either tagged or untagged

images alone. Sundar et al. [132] introduced a 4D registration approach that registered all

the 3D images in one cardiac cycle simultaneously. This approach provided better smoothness

in deformation fields between adjacent frames than approaches that register the images frame

by frame. The accuracy of this approach was reported to be 1-2mm compared to tagged MR

images.

The use of ultrasound images for cardiac motion estimation was once limited to 2D images

[133]. However, with the introduction of the matrix transducers 3D ultrasound images are

gaining more and more interest for cardiac motion estimation as well. For example, Elen et al.

[134] used non-rigid registration to estimate the left ventricle strain based on the 3D ultrasound

data of three different left ventricle phantoms and achieved sub-millimeter RMSe in phantom

studies. The development of 3D speckle tracking techniques has also been shown to be a

clinically reliable method for estimating the left ventricle wall function [135, 136].

Most of the non-rigid registration approaches are computationally intensive, which prevent

them from being used for real-time applications. Some studies have accelerated the registra-

tion speed to be faster than 30 seconds per frame with graphic processing unit (GPU) based

implementations [137–139], but so far there have been no reports of sub-second computation

times for non-rigid registrations.

Rigid transformation previously had very few applications in cardiac imaging, because it

cannot deal with the image deformation caused by cardiac motion. Recently, the development

of modern GPU hardware and the programming platform for general-purpose computing on

graphics processing units (GPGPU) have made it possible to perform 3D rigid registration in

real time. This has prompt many studies using rigid registration to develop real time intra-

operative guidance for MI BH procedures.

Although the limitations related to deformation still remain, researchers have attempted to

reduce its negative impact by minimizing the temporal spacing (within the cardiac cycle) be-

tween the images to be registered. For the registration between adjacent images from the same
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sequence, this is achieved by using images with high temporal resolution, typically ultrasound.

For example, Schneider et al. [140] introduced a feature based approach to register a sequence

of 3D ultrasound volumes in real time as the basis for stitching the volumes to expand the field

of view. The accuracy of this approach is approximately 1 mm and they claimed the registration

speed can be as fast as the image acquisition. Kutter et al. [141] used the similar idea to per-

form ultrasound mosaicing using an intensity based registration approach. For the registration

of images from different sequences, a temporal alignment, usually based on gating informa-

tion, is first performed to identify images with corresponding cardiac phases. Many studies

have adopted this idea including the works of Huang et al. [142, 143], Li et al. [144, 145],

Lang et al. [121], Okumura et al. [146], and Zhang et al. [147]. The gating information can

be obtained from either electrocardiography (ECG) signals [142, 147] or image based phasing

techniques [148].

Procrustes transformation adds one more DoF to rigid transformation in terms of uniform

scaling. Although there are some studies suggesting that in the transcatheter aortic valve re-

placement/implantation (TAVR or TAVI) procedure the diameter of the aortic valve measured

in TEE can be underestimated by 1-2mm compared to that in CT [149], the importance of using

procrustes transformation for cardiac procedures has not been supported by other studies.

Affine transformation is often used to provide a good initialization for non-rigid registra-

tion to reduce the computation time as it can partially deal with the deformation [127], but very

few applications in cardiac interventions use affine transformation as the main transformation

model. However, it is reasonable to predict that real time affine registration can become possi-

ble soon in the future with further development in GPU based parallel computing, which may

replace rigid registration in intra-operative applications due to better registration accuracy.

1.9.2 Feature Based and Intensity Based

Feature based approaches require the definition of corresponding feature points to align the

moving and target (fixed) images. The type of feature can vary from a few selected points to
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a large surface containing thousands of points. For example, if the task is to align the images

of a rigid phantom with some salient geometric features, a few non-symmetric feature points

can be sufficient to obtain an accurate registration result. However, this approach requires the

corresponding feature points represent exactly the same point in the real world, otherwise the

result can be heavily biased by the inaccuracy of feature point selection. This requirement

can be very difficult to achieve for some anatomy based features, e.g. the tip of the apex of

the heart. Thus, in many applications, an entire surface of a certain anatomical structure is

selected as the feature, e.g. the inner wall of the left ventricle or the aortic root. Since there

are more geometric features included in a surface, small selection errors in one place can be

compensated by the other part of the surface, which makes this approach more robust.

Schneider et al. [140] and Ni et al. [150] chose to use the first type of feature, i.e. several

feature points, in their 3D ultrasound registration approaches and 3D scale invariant feature

transform SIFT algorithm was used for feature extraction. The registration speed of these

approaches is very fast (over 20Hz in Schneiders study), since only a small number of points

are required for registration. However, the accuracy of this type of approach highly relies

on the repeatability and consistency of the feature extraction, which is the reason that high

temporal resolution imaging and a close-to-stationary probe are required in those studies to

ensure that the features extracted from the two adjacent volumes represent the same physical

feature. Furthermore, this approach may not work with multi-modality registration, because

the feature extraction cannot guarantee finding the corresponding feature points.

The second type of feature, i.e. surfaces, is usually obtained by segmentation and regis-

tration with an iterative closest point (ICP) algorithm [116]. The segmentation of the features

can be achieved manually, semi-automatically, or completely automatically. However, most of

the segmentation approaches are too slow for the beating heart interventions. Although some

automatic approaches have been introduced, which can segment a 3D volume in 5- 90 seconds

[151–153], it is still much slower than the heart rate and the imaging rate of ultrasound.

Intensity based approaches do not require predefined features, and instead compare the
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intensity patterns between the images using similarity metrics, such as sum of squared differ-

ences (SSD), sum of absolute differences (SAD), normalized correlation coefficient (NCC),

and (normalized) mutual information (NMI). There is no fixed rule for which similarity met-

ric to choose for a certain application. The common factors to be considered are the image

modalities, the required efficiency, and workload of implementation. The most commonly

used metrics for multi-modal registrations are mutual information and/or normalized mutual

information [154–160], because they don’t assume linear relationships between intensities of

corresponding features in different images, which is an essential requirement for some other

metrics, such as SAD and SSD. The computation of the similarity metrics can be achieved us-

ing all or a subset of the image, e.g. a thresholded image. Using a sub-set of the images usually

leads to better computational efficiency but not necessarily worse accuracy, if the sub-set is

well selected [142, 144].

1.9.3 Single Modality and Multi-Modality

As the name implies, single modality registration means that the images to be registered are

produced with the same imaging modality, while images in multi-modality registrations are

produced with different modalities. Both of the two techniques are very commonly used in

guidance of beating heart interventions.

Single modality registration is often used for analyzing cardiac motion from a sequence of

images covering one or several cardiac cycles [131, 161–164] or providing real time mosaicing

of the streaming images [140, 141, 150]. Ultrasound images, retrospectively gated CT images,

and cine MRI images are the most popular modalities for this approach.

Multi-modality registration is used to combine images, which contain unique information,

to provide a fused visualization that gives more information than any single imaging modality

can achieve. This method is used in two ways. One is to fuse the pre-operative (pre-op)

images, together with the pre-defined anatomical models, tags, and surgical plans to the intra-

operative (intra-op) images or patients. Typical applications include registering pre-op CT to
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intra-op ultrasound images [143, 145, 165, 166], pre-op MRI to intra-op ultrasound images

[147, 166], and pre-op CT/MRI to intra-op X-ray fluoroscopy [167]. The other is to fuse

two intra-op modalities together in real time. TEE and X-ray fluoroscopy are the two most

frequently used modalities for this approach [168–170]. The fluoroscopy images are used to

visualize the tools, while the TEE images are used for accurate positioning. There is also a

commercially available guidance platform using this approach called EchoNavigator ©[171]

(Philips, Amsterdam, Netherlands).

1.10 Thesis Outline

The objective of this thesis is to develop rapid image processing techniques and integrate them

in the image guidance system for minimally invasive off-pump beating heart mitral valve repair

procedure. The proposed approaches are designed to provide augmented reality/virtuality for

the guidance system through real time image registration that provides the linkage between

pre- and intra-operative images and anatomical feature tracking that tracks and enhances the

feature of interest during the procedure. Chapter 2 describes an approach to generate synthetic

dynamic CT images to be used as high quality pre-operative images in the guidance system.

Chapter 3 introduces an approach to perform real time CT-TEE registration that can be used to

enhance the ultrasound guidance with real or synthetic CT images, while Chapter 4 describes

the development of a real time mitral annulus tracking approach using 2D bi-plane TEE images.

1.10.1 Synthetic CT Generation

Chapter 2 proposes an approach to generate synthetic dynamic CT images based on a static CT

image and a sequence of 3D US images. The role of synthetic CT images is to replace actual

dynamic CT images obtained from retrospectively gated CT scans in the guidance system to

reduce radiation dose and cost. This approach obtains the cardiac motion information in terms

of image deformation field through non-rigid registration and applies that information to a
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static CT image to produce animation. Validation experiments are described comparing the

anatomical region of interest, left ventricle in this chapter, in the synthetic CT images, to that

in actual CT images. Results demonstrated that the synthetic CT images can provide very

similar anatomical representations as the real CT images.

1.10.2 CT Enhanced Ultrasound Guidance

Chapter 3 introduces an approach to enhance ultrasound guidance with dynamic CT images. A

rapid registration method is developed to register the pre-operative CT images to intra-operative

3D TEE images both temporally and spatially in real time. Validation experiments were per-

formed with the mitral annulus as the target, demonstrating the ability to achieve acceptable

target registration error (TRE) (∼3mm). We also compared the registration results between us-

ing synthetic and real dynamic CT images and found no significant difference between them,

supporting the concept of using synthetic CT images in our guidance system.

1.10.3 Ultrasound Based Mitral Anuulus Tracking

Chapter 4 describes a mitral annulus tracking approach using 2D bi-plane images. This ap-

proach uses no pre-operative images. All the feature tracking is based on intra-operative im-

ages and magnetic tracking systems. We validated the approach with a dynamic heart phantom

as well as data collected from animal studies. The results showed excellent tracking accuracy

(≤2mm) on both phantom and animal data when the shift of the annulus is within 2cm.

1.11 Co-authorship Statement

In Chapters 2-4, I was responsible for study design, conducting experiments, data analysis

and the principal contribution to the manuscripts. None of these chapters would have been

completed without the contribution and expertise of many people involved, so within the thesis

I refer to the authors as ’we’.
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2.1 Introduction

Compared to conventional cardiac surgery procedures, minimally invasive beating heart in-

terventions limit the need for thoracic trauma and remove the need to arrest the heart [1, 2].

While these approaches have grown in popularity recently, they are often limited by the lack

of a direct view of surgical targets and/or tools, a challenge that is compounded by potential

movements of the target during the cardiac cycle. For this reason, sophisticated image-guided

navigation systems are required to assist in procedural efficiency and therapeutic success [3].

For minimally invasive beating heart surgical procedures, the optimal navigation system

would show both the pertinent cardiac anatomy and the dynamic motion of the surgical targets

throughout the cardiac cycle. It should also be cost efficient and be easily integrated into

standard workflow within the operating room. Such a goal is however difficult to accomplish

successfully using a single imaging modality. For example, fluoroscopy can only provide 2D

projection images and barely shows the anatomical structures. Intra-operative MRI has the

capability of displaying cardiac anatomy and motion dynamically during interventions [4],

but is very expensive, requires developments of novel, non-ferromagnetic tools and devices,

and is unavailable in most institutions. On the other hand, intra-operative trans-esophageal

ultrasound is more accessible and clinically feasible, but its field of view remains relatively

restricted. Furthermore, artifacts, such as acoustic shadowing [5], can limit the capacity to

accurately develop volumetric models. Another cardiac imaging technique, retrospectively

gated CT, can provide dynamic volumetric imaging, but the temporal resolution is limited by

the gantry rotation speed and radiation dose exposure can be many times that of a static scan

[6, 7]. Accordingly, no single imaging modality appears to be ideal for the provision of 4D

cardiac modeling to plan and guide cardiovascular procedures.

Some previous work has suggested the use of pre-operative high spatial resolution CT and

intra-operative 4D ultrasound images within a navigation system [8, 9], both of which are

commonly used during the standard clinical workflow for cardiac interventions. However, prior

work [10] has shown that registering a 4D ultrasound sequence to a single, static CT image will
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result in high target registration errors (TRE) at cardiac phases other than that represented by

the initial CT scan, because of intra-cycle cardiac morphology changes. To overcome this prob-

lem without introducing extra radiation dose to the patient, we propose a solution that would

allow a high-resolution 4D synthetic CT dataset be derived from a single 3D CT being itera-

tively deformed to create a dynamic 4D sequence using 4D ultrasound data as a target. These

pre-operatively generated images would be employed to provide a high quality 4D anatomical

context through visualization of some or all structural components spatially co-registered (and

ECG-synchronized) to the patient using standard intra-operative imaging, such as 2D/3D ul-

trasound. With these real-time registration techniques, an augmented reality framework can be

developed and integrated into navigation platforms to provide critical information to surgeons

at the time of intervention.

Much work has been performed towards estimating cardiac motion in ultrasound and MRI

images by using non-rigid registration [11–14], with most of the reports suggesting that the

estimated motion can be used for the assessment of both cardiac motion and mechanics. In this

paper, we introduce a new concept that attempts to combine the motion estimation obtained

from dynamic ultrasound images with a static CT image, to generate a synthetic dynamic CT

dataset. These synthetic CT images can take advantage of the higher temporal resolution of

the ultrasound images upon which they are modeled. By introducing these synthetic CT im-

ages into a navigation system, we anticipate improved model-to-patient registration and more

intuitive visualization of therapeutic targets for beating heart surgeries.

Validation was performed by comparing the synthetic CT images to ground truth dynamic

CT images. Quantitiative metrics were obtained by computing the Dice Similarity Coeffcients

(DSC) and Root Mean Square (RMS) errors for the entire left ventricle.
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2.2 Methods

2.2.1 Non-local Means Filtering for Ultrasound Images

In an effort to improve the smoothness of the deformation fields obtained from non-rigid regis-

trations between ultrasound images, a restoration step is first applied on the ultrasound images.

However, restoration of ultrasound images is known to be very challenging, because speckle, as

an inherent characteristic of ultrasound images, is tissue-dependent and cannot be easily mod-

eled. The original patch-based nonlocal recovery paradigm was proposed by Buades et al. [15]

The general assumption behind this approach is that for those points in an image representing

the same feature, similarity should not only be observed in intensities of the pixels, but also

in the patterns surrounding them. In 2009, Coupé et al. [16] adopted this idea and proposed

a nonlocal means based speckle filter to perform speckle reduction, and reported competitive

results on both synthetic and patient data. In this chapter, we use this method to smooth the

ultrasound images before the non-rigid registration.

Suppose we have an 3D image Ω with each point in the image being denoted as pi(xi, yi, zi)

and the intensity of pi is denoted as I(pi). A cubic neighbourhood area centred at pi with a

length of 2rd +1 is defined as N(pi) :=
{
p j(x j, y j, z j)

∣∣∣ |x j − xi| ≤ rd, |y j − yi| ≤ rd, |z j − zi| ≤ rd

}
and a cubic search area centred at pi with a length of 2rs + 1 is defined with the same manner

as S (pi) :=
{
p j(x j, y j, z j)

∣∣∣ |x j − xi| ≤ rs, |y j − yi| ≤ rs, |z j − zi| ≤ rs

}
.

Then, for each point p j in the search area S (pi), the non-local means filter compare the

neighbourhood N(p j) to N(pi) and compute a weight term w(p j, pi) as

w(p j, pi) =
1
Zi

exp−

∥∥∥∥I
(
N(p j)

)
− I

(
N(pi)

)∥∥∥∥2

h2 , (2.1)

where Zi is a normalization constant that ensures the sum of the weights equals to unity, h is the

parameter controlling the decay of the exponential function, and
∥∥∥∥I

(
N(p j)

)
− I

(
N(pi)

)∥∥∥∥ is the

L2-norm between the intensity vector I
(
N(p j)

)
and I

(
N(pi)

)
convolved with a Gaussian kernel.
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Figure 2.1: An example of ultrasound images smoothed by nonlocal means based filtering.
First row: original TEE image. Second row: nonlocal means smooth image. Speckle is greatly
reduced, while anatomical features are mainly retained in the smoothed images.

The filtered intensity value I′(pi) is then computed as a weighted sum of all the points in

the search area S (pi). That is

I′(pi) =
∑

p j∈S (p j)

w(p j, pi)I(p j), (2.2)

Since the nonlocal means methods compare patches around pixels instead of pixels them-

selves, the computational complexity becomes a common drawback of those methods. To

perform such a method on a n3 volume with a search volume size m3 and a patch size p3, the

computational complexity can be O(n3m3 p3). However, since the method described in [16]

treats each voxel independently, we were able to parallelize the method with a GPU implemen-

tation and greatly reduced the computation time. One example of an ultrasound image, filtered

using nonlocal means with search volume size 93 and patch size 73 , is shown in Figure 2.1.
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2.2.2 Fast Free Form (F3D) Registration Approach

The F3D approach [17] is an efficient non-rigid registration approach based on the well known

Free Form Deformation (FFD) algorithm [18]. Compared to the elastic deformation model

based algorithms, e.g. Demons [19], and optical flow based algorithms [20], the advantages

of the FFD based approach are that it does not require linear relationship of tissue intensities

between images, can deal with large image deformations, which is important for cardiac motion

analysis, and provides smooth deformation fields.

The F3D approach uses a transformation model T that consists of a global affine transfor-

mation Tglobal and a local B-spline based transformation Tlocal. The global transformation can

be written as

Tglobal(x, y, z) =


a11 a12 a13

a21 a22 a23

a31 a32 a33




x

y

z

 +


t1

t2

t3

 , (2.3)

while the local transformation is achieved by defining and manipulating a mesh of control

points φ(x, y, z) overlaid on the image domain to compute B-spline curves that indicates the

transformation of each individual voxel (Equations 2.4).

Tlocal(x, y, z) =

3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l, j+m,k+n, (2.4)

where i = bx/nxc − 1, j = by/nyc − 1, k = bz/nzc − 1, u = x/nx − bx/nxc, v = y/ny − by/nyc,

w = z/nz − bz/nzc and Bp, p := l,m, .n are the pth basis function of the B-spline [21] (Equation

2.5).
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B0(u) = (1 − u)3/6

B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3U + 1)/6

B3(u) = u3/6

(2.5)

The cost function used to find the optimized transformation contains an image similarity

term Csimilarity and a deformation field smoothness term Csmooth as shown below:

C(T ) = Csimilarity(I f ixed,T (Imoving)) + λCsmooth(T ), (2.6)

where the similarity term is defined as the measurement of the similarity metric, in this chapter

the normalized mutual information [22], between the transformed image T (Imoving) and the

fixed image I f ixed. The smoothness term itself is defined as

Csmooth =
1
V

∫ X

0

∫ Y

0

∫ Z

0

(∂2T
∂x2

)2

+

(
∂2T
∂y2

)2

+

(
∂2T
∂z2

)2

+ 2
(
∂2T
∂x∂y

)2

+ 2
(
∂2T
∂x∂z

)2

+ 2
(
∂2T
∂y∂z

)2 ,
(2.7)

where V is the volume of the image. The parameter λ determines the weight of the smoothness

term, which is manually tuned as the bending energy (see Table 2.1) in this project for tracking

large deformation as well as maintaining smooth deformation fields.

The optimization procedure is performed by a gradient descent approach. To improve the

computational efficiency, a multi-resolution strategy [23] is used and a parallel implementation

[17] is developed for the local transformation optimization.

2.2.3 Generating Synthetic CT Images

For the generation of a synthetic CT (synCT) series, we require a 3D ultrasound sequence

(usually TEE), that covers at least one complete cardiac cycle, and a single static CT image
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from the same patient. For the purpose of mitral valve repair, we suggest that the CT images

cover the entire heart and that the TEE images are acquired as a mid-esophageal (ME) 4-

chamber or 2-chamber view, that at least contains the entire left ventricle and the mitral valve.

Temporal Matching of Ultrasound and CT Image Series

First, one ultrasound image, at the same or closest cardiac phase to that of the CT volume, is

selected from the 4D US sequence to act as the reference image to be registered to the CT (see

Figure 2.2). Since a prospectively gated CT scan requires that the user first selects a particular

cardiac phase (e.g. mid-diastole) for data acquisition, the cardiac phase of the static CT image

is usually known. The proper phase information of the TEE images can be obtained via ECG

or image-based gating. This temporal alignment is important to ensure similarity of the heart

motion in the reference and CT image.

Figure 2.2: Finding the US Image with the corresponding cardiac phase as the static CT image

Initial Rigid Registration

The reference US image is then rigidly registered to the CT image for initialization. In this

study, this step is performed by employing an iterative closest point (ICP) algorithm [24] using

surfaces of the left ventricles (LV) from both modalities and subsequent rapid image-based
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registration step for robustness [22]. The 4D US series is then resampled using linear inter-

polation into the CT images reference frame via the transformation obtained from this initial

registration.

Obtaining Deformation Fields of the Heart Motion

The third step is to perform non-rigid registration between the 4DUS image frames to obtain

the image deformations that represent the cardiac motion (see Figure 2.3). For this purpose

we employ a GPU-accelerated Fast Free-Form (F3D) multi-level deformable registration [17]

approach with normalized mutual information (NMI) as the similarity metric. Deformable reg-

istration is performed sequentially between adjacent images starting from the reference image.

Here, the reference image is used as the floating image, while the following frame in the se-

quence is the target image for the initial registration. This image becomes the new floating

image and its subsequent image becomes the new target image until all deformations between

US frames are obtained. This process results in a series of deformations that describe the heart

motion throughout one complete cardiac cycle [13].

Figure 2.3: Performing non-rigid registration between US images to obtain deformation fields

Generation of A Synthetic Dynamic CT Series

The obtained deformations are iteratively applied to the static CT image and its deformed

descendants to create a sequence of synCT images that with the cardiac motion derived from
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the TEE images (see Figure 2.4).

Figure 2.4: Applying obtained deformation fields to the static CT image to generate synCT
images

2.3 Experiments

2.3.1 Image Data Acquisition

Images employed in this study were collected retrospectively under a protocol approved by

the the Research Ethics Board of Western University, London, ON. Image data of patients

(N = 10) undergoing valve repair were collected and subsequently anonymized before being

prepared for processing. Each dataset contains a series of dynamic CT images obtained from

retrospectively gated CT scans and reconstructed as ten frames per cardiac cycle with the first

frame in the sequence at mid-diastole. Additionally, patient-specific pre-operative 4D TEE

images of 2-chamber or 4-chamber views was acquired at 25Hz. The dimensions and voxel

spacing of the dynamic CT is about 512×512×150 voxels at 0.4×0.4×1.3(mm), while that of

the TEE images is about 200×200×180 voxels at 0.8×0.8×0.7(mm). CT images were acquired
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on a GE Lightspeed 7-VCT scanner (GE Heathcare, Waukesha, WI, USA) and the ultrasound

images on a Philips iE33 xMATRIX Echocardiography System (Philips Healthcare, Andover,

MA, USA) with a X7-2t probe. The 4D TEE series was acquired to cover at least an entire

cardiac cycle. All datasets fulfilled these requirements and none had to be excluded.

2.3.2 Validation Metrics Employed

The Dice Similarity Coefficient (DSC) is a measure of mean region overlap between region

(RA) and the reference region (RB), using the formula

DS C =
2(RA ∩ RB)

RA + RB
(2.8)

Further a root-mean-squared error (RMSE) between surfaces A and B is defined as

RMS E =

√∑N
i=1(ai − bi)2

N
(2.9)

where ai ∈ A and bi ≡ arg minbk∈B ‖bk − ai‖. The RMSE serves as a distance-based metric.

2.3.3 Validation of Generation of Synthetic CT Series

To validate the suitability of the synthetically generated CT images the first CT frame of each

dynamic CT (dynCT) series was chosen as the reference image from which a synCT sequence

was constructed. An anatomical region important to the navigation task is manually segmented

by an expert user from both the synCT and its corresponding ground truth dynCT series. The

DSC and RMSE measures are calculated to determine the accuracy of the proposed method

in generating proper motion of cardiac anatomical structures. The blood pool of the LV was

chosen as the region to be validated because of its common involvement in navigation tasks

in intra-cardiac image-guided interventions and its vicinity to the aortic and mitral valve. In

addition, it was entirely visible in the 4D TEE series throughout the cardiac cycle. Since synCT

and dynCT images have different frame rates, for each dynCT image, a synCT image with the
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closest cardiac phase to it was selected for comparison. We assume the synCT images present

the same cardiac phase as the corresponding TEE images, so the selection was performed with

the same approach described in section 2.2.3.

2.3.4 Parameter Tuning

All the parameters were manually tuned to achieve good and stable accuracy for all the patients.

The tuning was based on the five of the patient datasets. The values used for the parameters in

this paper are listed below:

Table 2.1: Parameters and their values used in F3D Registration
Number of level in the pyramidal approach 9
Control point spacing in the last level 2.5 mm
Bending energy coefficient 0.005/1

As mentioned previously, we use a multi-resolution pyramidal approach that employs a

small number of control points with large spacing to analysis global deformation first and then

iteratively increases the number of control points to track local detailed deformation. In each

iteration, new control points are added to the centre of two existing control points along each

axis, which means the new control point spacing is exactly half of that in the previous iteration.

The number of level in the table indicates the number of iterations performed in this multi-

resolution approach. The control point spacing in the last level determines the smallest level of

deformation that can be tracked. The bending energy coefficient is defined in the cost function

(Equation 2.6) and determines the trade-off between deformation and smoothness.
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2.4 Results

2.4.1 Visual Results

Figure 2.5 shows one example set of synthetic CT images covering one complete cardiac cycle

compared to its corresponding real dynamic CT images. It can be seen that the left ventri-

cle first contracts and then dilates. The deformation of the left atrium can also be observed,

although this is not as obvious. The right ventricle and right atrium do not show much de-

formation, because the TEE images we used did not cover these regions, and so no motion

information can be obtained from the TEE images for those two areas. While this is a potential

limitation of this approach, from a surgical perspective, one is only interested in the cardiac

motion in the vicinity of the target, i.e. left ventricle together with the mitral valve, and the

deformation of the right ventricle and right atriums not of major concern.

Figure 2.5: One example showing the comparison between the synthetic CT and the corre-
sponding real dynamic CT covering one cardiac cycle

Figure 2.6 shows an example set of segmented LVs from dynCT and synCT images. It

can be observed that the synCT images represent similar LV deformation as that in the dynCT

images for most of the frames through the entire cardiac cycle. However, the deformation at
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end-systole was underestimated (Numerical results in Section 2.4.2).

Figure 2.6: An example manually segmented LV from dynCT and synCT images, showing
the contraction and dilation within one cardiac cycle. First row: surfaces from original dynCT
images. Second row: surfaces from synCT images

2.4.2 Numerical Validation of LV Comparison

The numerical evaluation of suitability of the synCT images is performed by comparing them

to the actual dynCT images generated from the retrospectively gated CT scans. Although

our major purpose is not to generate pathologically “realistic” images that can be used for

diagnosis, but rather images that are appropriate for navigation, we found it helpful to examine

the regional correspondences between synthetic and real versions.

Table 2.2 and Table 2.3 show the DSC and the RMSE between the left ventricles of corre-

sponding synthetic CT images and real dynamic images. The DSC shows the overlap of the

entire left ventricle volume, whereas the RMSE shows the surface distance between the walls

of the left ventricles.

The overall DSC for all the patients is 0.83±0.05 with the overall RMSE being 2.99±0.78mm.

We also computed the mean DSC and RMSE for each patient and each cardiac phase (# of

frames) respectively, demonstrating that for all but two of the patients, the mean DSCs are

above 80%. With respect to the cardiac phases, it is apparent that the accuracy is better for the
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Table 2.2: DSC between synthetic and original CT images
# of frames 2 3 4 5 6 7 8 9 10 Mean±Std

Patient 1 0.88 0.87 0.84 0.84 0.84 0.87 0.89 0.92 0.90 0.87± 0.03
Patient 2 0.88 0.87 0.85 0.84 0.84 0.90 0.91 0.91 0.88 0.88± 0.03
Patient 3 0.82 0.75 0.73 0.72 0.73 0.73 0.79 0.79 0.79 0.76± 0.04
Patient 4 0.91 0.89 0.88 0.86 0.86 0.85 0.87 0.89 0.89 0.88± 0.02
Patient 5 0.88 0.79 0.79 0.81 0.78 0.88 0.89 0.89 0.91 0.85± 0.05
Patient 6 0.85 0.84 0.76 0.80 0.84 0.86 0.86 0.87 0.89 0.84± 0.04
Patient 7 0.82 0.79 0.74 0.76 0.77 0.87 0.90 0.89 0.90 0.82± 0.06
Patient 8 0.88 0.83 0.83 0.78 0.78 0.77 0.82 0.87 0.85 0.82± 0.04
Patient 9 0.91 0.83 0.83 0.84 0.82 0.88 0.86 0.85 0.88 0.86± 0.03
Patient 10 0.85 0.78 0.69 0.68 0.79 0.79 0.74 0.78 0.83 0.77± 0.06

Mean 0.87 0.82 0.79 0.79 0.81 0.84 0.85 0.87 0.87 0.83± 0.05
± Std ± 0.03 ± 0.05 ± 0.06 ± 0.06 ± 0.04 ± 0.06 ± 0.05 ± 0.05 ± 0.04

Table 2.3: RMSE between synthetic and original CT images (mm)
# of frames 2 3 4 5 6 7 8 9 10 Mean±Std

Patient 1 2.62 2.41 3.04 3.13 2.62 2.86 2.78 1.90 2.10 2.61± 0.41
Patient 2 2.57 2.39 2.79 3.20 2.57 2.14 2.41 2.57 3.14 2.64± 0.35
Patient 3 2.80 4.47 4.64 4.36 4.45 4.86 3.55 3.61 3.53 4.03± 0.68
Patient 4 2.09 2.60 2.91 3.47 3.30 3.74 3.46 2.66 2.82 3.01± 0.52
Patient 5 2.19 3.12 4.47 3.43 4.10 2.24 2.17 2.08 1.59 2.82± 1.00
Patient 6 3.06 3.10 4.61 3.69 2.95 2.72 2.79 2.74 2.75 3.16± 0.62
Patient 7 3.20 3.81 4.80 4.42 4.20 2.48 2.10 2.27 2.29 3.28± 1.04
Patient 8 2.55 3.11 2.72 3.91 4.09 4.36 3.42 2.64 2.71 3.28± 0.69
Patient 9 1.77 3.20 2.80 2.64 3.04 2.20 2.77 2.85 2.31 2.62± 0.45
Patient 10 1.83 2.35 3.44 3.50 2.13 1.96 2.47 2.44 2.04 2.46± 0.61

Mean 2.47 3.06 3.62 3.58 3.35 2.96 2.79 2.57 2.53 2.99± 0.78
±Std ±0.49 ±0.68 ±0.89 ±0.55 ±0.81 ±1.01 ±0.53 ±0.47 ±0.57

images in diastole than in systole. The results of the RMSE are basically consistent with those

which can be interpreted from the DSCs. However, the size of the heart may affect the results

somewhat. For example, the mean DSC of patient 10 was the second lowest among all the

patients, but the RMSE of that patient was lower than for many of the others simply because

the patient in question had a relatively small heart.

For further investigation of the synthetic CT images, we also computed the two dimensional

slice-by-slice DSC from the mitral valve plane down to the apex. Such an investigation can

tell us whether the accuracy of the synthetic CT is consistent over the whole left ventricle.

Three graphs are presented in Figure 2.7. The first shows the best result among all the patients,

in which the DSC remained high over the entire left ventricle for all the frames. The second

demonstrates the worst result among all the patients, in which the DSC decreased rapidly when
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approaching the apex for frame 4 and frame 5 (systolic phase). The third graph shows the

average DSC of all the patients. Since the physical size of the left ventricle varies for each

patient, the average computation was performed on slices that were at the same portion point

along the long axis from the mitral valve plane to the apex. The graph demonstrates that despite

the worst case with very low DSC for systolic frames, the average DSC remains good (mostly

over 80%) for all the patients and all the cardiac phases. It also shows that the accuracy of

systole frames was slightly lower than those in diastole.

2.4.3 Computational Efficiency

The computational efficiency was measured on a desktop computer with an Intel© Xeon©

dual core CPU at 3.47 GHz and NVIDIA GeForce© 690 graphics card and CUDA© 4.2 pro-

gramming interface [NVIDIA Corp, Santa Clara, CA, USA].

The CPU based implementation of the non-local means filter took about 2 hours to filter

one ultrasound volume, whereas the GPU based implementation took only 3 minutes.

Similarly, the F3D registration took 10-12 minutes to perform one registration with a CPU

based implementation, whereas it took only 30 seconds with a GPU based implementation.

2.5 Discussion

2.5.1 Field of View

One limitation of this approach is that the synthetic CT images can only deform the anatomical

structures that are presented in the TEE images, whereas the structures outside the imaging

region of the TEE scan cannot be deformed. For example, the right ventricles, right atria, and

part of the left atria did not get deformed correctly in the tests. However, as for the mitral valve

repair application, it is appropriate to show only the left ventricle and the mitral valve area,

since these are the actual regions of interest to the interventionists, whereas the right chambers
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Figure 2.7: Slice-by-Slice DSC Results along the longitudinal axis (Each colored line repre-
sents a different cardiac frame.)

are not the major concern. As for other applications, the users can adjust the TEE views when

performing the scans to ensure that the structures of interest are within the imaging region. It is

also possible to include the deformation of the entire heart in the synthetic CT images by using

ultrasound image mosaicing approaches [25] that can generate images covering a large field of
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view.

2.5.2 Overall Accuracy of the Results

The reported average RMSE between the synCT and dynCT images with respect to the sur-

face of LV was about 2.99±0.78mm. This error comprises the registration errors between TEE

images, the potential differences in the representation of the same structure between CT and

ultrasound images, the temporal distances between the corresponding synCT and dynCT im-

ages, and the variation in manual segmentations. Although there is no literature reporting errors

on exactly the same issue, we compared it to some related studies. For example, Linte et al.

[26] attempted to register intra-op US images to pre-op MRI images for navigation purpose;

Mansi et al. [27] performed non-rigid registration between cardiac cine-MR images using

iLogDemons approach; King et al. [28] validated the registration among 3D US images with

4-chamber views; Huang et al. [29] performed US-MR registrations for guidance of cardiac

intervention as well; Sun et al. [30] attempted to register intra-op 3D intra-cardiac echo (ICE)

images to pre-op CT images; and Wierzbicki et al. [13] aimed to build cardiac models based

on cine MRI images. The comparison is listed in Table 2.4 showing the studies, modalities

used, the region of interest (ROI), and the reported RMSE. It can be observed that although the

RMSE we reported between synCT and dynCT is not the lowest reported in the literature, it

is within a reasonable range compared to the RMSE of other studies. The lowest RMSE was

achieved in Wierzbicki’s study in which he performed non-rigid registration between MRI im-

ages from the same cardiac cycle, which means the RMSE only resulted from the registration

error without any impact from inter-modality variation or imperfect temporal alignment, the

two important sources of error in our application.

2.5.3 Causes for Inaccuracy in Synthetic CT at Systole

The validation of the synthetic CT images against the actual images demonstrates that the

accuracy of the synthetic images may yield lower values for systolic images for some patients,
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Table 2.4: Comparison of RMSE of related works
Study Modality ROI RMSE
Linte et al. MRI-US LV 5.2 mm
Manis et al. Cine-MR LV 2.3-3.5 mm
King et al. 3D US 4 chambers 2.6-4.2 mm
Huang et al. US-MR 5 landmarks 2.0 mm
Sun et al. ICE-CT LA+LV 4.4 mm
Wierzbicki et al. Cine-MR Whole heart 1.1 mm
SynCT generation Syn-Dyn CT LV 3.0 mm

especially in the areas close to the apex. On investigation, we found this to be due to the

nature of the TEE images themselves. Figure 2.8 shows one example of the problem. The

images represent a small time interval centred at the end-systole phase. The first row shows the

last stage of the left ventricle contraction, whereas the second row shows the beginning of the

dilation. It can be seen that a boundary of the inner wall of the left ventricle is clearly shown

in the first image (indicated by the white arrow). However, when the left ventricle continues

to contract, the boundary is missing from the images. This phenomenon lasts for a few frames

until the left ventricle has dilated sufficiently and the boundary appears in the image again (the

last images in the second row). Figure 2.9 shows another cause for missing boundaries. The

three orthogonal slices shows that a segment of the boundary close to the apex was hidden in

the shadow probably caused by the valve calcification.

The missing boundary causes insufficient deformation at the area where it occurred, since

the intensity based registration approach cannot deal with a deformation if it is not present in

the image. The missing boundary probably occurs when the boundary is close to parallel to the

ultrasound beam, so that no reflection is generated at that surface.

While some model based registration methods [31–33] may be able to compensate for

the missing boundary, they have two major limitations, which may prevent them from being

practically used in a real application. First, they usually require a set of parameters to be pre-

defined relating to the biomechanical behavior of the heart muscle. However, these parameters
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Figure 2.8: An illustration of the missing boundary phenomenon at systole

Figure 2.9: Missing boundary caused by shadow

are usually difficult to obtain for specific patients. Second, such models are usually defined

based on data from healthy heart data, and may not be appropriate for pathological cases. We

believe that contrast enhanced TEE images [34, 35] may be a potential solution for such a

problem. With micro bubble contrast agents we could obtain strong reflections from the blood

pool, which would make the surface between the blood and the myocardium clearer.

Some other possible yet minor causes for the inaccuracy are temporal difference between

the corresponding images, difference in cardiac motion during the CT and TEE scans, and

different appearance of the papillary muscles and trabeculae in the CT and TEE scans.
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2.5.4 Visualization Options

For different guidance tasks the visualization of the images and models need to be adjusted to

provide the most suitable display for the surgeon to perform the operation safely and efficiently.

One of the advantage of the synCT images is that they allow multiple visualization options just

as real CT images.

Figure 2.10 shows a few ways to visualize the synCT images. For example, the synCT

image itself can be volume rendered to show a 3D presentation of the entire heart. When proper

transfer function is applied [36], it is also possible to render selected anatomy or features.

Anatomical models can be defined both pre- and intra-operatively and overlaid on the images

through registration or tracking techniques. Direct fusion of the CT and ultrasound images can

be another option.

Figure 2.10: Visualization options
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2.6 Conclusion & Future Work

This chapter introduces a novel approach that attempts to exploit the high temporal resolution

of ultrasound imaging and high spatial resolution of CT imaging to generate a novel, high

spatio-temporal resolution synthetic CT dataset. The synthetic CT images derived the anatom-

ical presentation from the static CT image and the cardiac motion information from the 4D

TEE images. Our validation experiments compared the synthetic CT dataset to the real dy-

namic CT images. Two metrics, DSC and RMSe, were used to measure the level of overlap

and surface distances between the LV segmentations. The results showed that the synthetic CT

images can provide very similar anatomical representations as the real images for the region of

interest. The synthetic dataset is proposed to be used for the guidance of minimally invasive

off-pump beating heart interventions. The advantage is that they can provide high quality 3D

images with high temporal resolution (same as 3D TEE scans) for registration, feature track-

ing, and modelling purposes with no ionizing radiation dose applied to either the patients or

the clinicians.
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3.1 Introduction

The mitral valve provides unidirectional control of blood flow between the left atrium and

the left ventricle. In approximately 2% of people the mitral valve fails to close sufficiently

and leads to clinically significant regurgitation warranting surgical intervention [1, 2]. Con-

ventional mitral valve repair can be accomplished through open heart surgery, a procedure

that requires cardiopulmonary bypass. Such an approach has been associated with appreciable

risk and morbidity, such as renal injury and stroke [3–5]. In an attempt to deliver equivalent

therapy with reduced morbidity, minimally invasive off-pump beating heart (BH) mitral valve

repair (MVR) has recently emerged and is rapidly gaining clinical interest [6–8]. However,

due to the lack of direct visualization of both the surgical tools and tissue targets, these proce-

dures are inherently dependent upon intra-operative image guidance systems to support such

visualization.

3.1.1 Overcoming Inherent Limitations of Intra-operative Imaging

The guidance system should be able to display both the dynamic cardiac anatomy and motion,

employ a low cost but intuitive platform, and have minimal impact on clinical workflow. Cur-

rently, the most commonly used intra-operative imaging modalities for off-pump BH MVR are

2D X-ray fluoroscopy and 2D or 3D TEE [9, 10]. However, due to the complexity of the task

and limitations of imaging techniques, no single modality is considered ideal for the guidance

of the complete procedure [11].

X-ray Fluoroscopy

X-ray fluoroscopy is widely used in interventional procedures and can provide real-time intra-

operative imaging with good representation of surgical tools, particularly wires and catheters,

and of intra-vascular or chamber contrast injections. However, 2D projectional images limit the

capacity of the imaging system to provide real-time spatial registration within a 3-dimensional
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environment. A lack of soft-tissue contrast prevents visualization of relevant tissue targets. Fi-

nally, prolonged use leads to high radiation exposure, raising concern for the safety of patients

and the interventional team.

Transesophageal Echocardiogram (TEE)

TEE can provide real-time intra-operative images of high temporal and spatial resolution, al-

lowing excellent representation of rapid cardiac motion, especially that of the mitral leaflets.

In addition, the visualization of other relevant intracardiac structures is excellent with no as-

sociated concern of radiation exposure. However, 2D and biplane TEE provide only planar

images, making it difficult to maintain both the surgical tool and the anatomical targets in the

same imaging plane. 3D TEE can overcome this limitation to some degree, but at the cost of de-

creased temporal and spatial resolution and a restricted FOV. Furthermore, the signal-to-noise

ratio of TEE is less than that which can be achieved using tomographic imaging techniques,

such as MRI or CT.

Interventional MRI

The intra-procedural use of MRI, typically termed interventional MRI, can display cardiac

anatomy and motion dynamically with improved signal to noise and excellent soft tissue char-

acterization. However, development of these techniques has been clinically hampered by the

requirement to develop and demonstrate safety of non-ferromagnetic tools, and to create spe-

cialized MRI-based tools for the tracking of catheters or devices in real time. These systems

also prevent the simultaneous use of magnetic tracking systems, are not available in most in-

stitutions, and are of high capital and operational cost.

To compensate for these limitations, many authors have suggested fusing pre-operative

and intra-operative imaging to take advantage of the high image quality, large field of view,

and predefined annotations [12–15]. Linte et al. [16] proposed combining high resolution pre-

operative tomographic images with intra-operative ultrasound, both of which are independently
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performed in standard clinical practice. Huang et al. [17] proposed a registration approach

which introduced the possibility of performing registration between ultrasound and CT/MRI

images in real time. However, although retrospectively gated (multi-phase) CT imaging that

provides dynamic information of cardiac motion would be desired for this purpose, concerns

regarding radiation exposure have led to only static, single phase CT imaging being used in

routine clinical practice [18, 19].

3.1.2 Current Clinically Available Systems for BH MVR

Several commercially available techniques have been developed and are currently under clin-

ical trials (details in Section 1.4.4). The NeoChord© procedure (NeoChord, Inc., MN, USA)

is designed to repair flailing leaflets by attaching artificial chordae between the leaflets and

the apex to limit the motion of the leaflets [9, 10]. Another approach is the MitraClip© (Ab-

bott Laboratories, IL, USA), a percutaneous mitral valve repair system that delivers a clip that

grasps the two leaflets together to create a double orifice valve to reduce regurgitation [9, 20].

The Mitralign© procedure (Mitralign Inc. MA, USA) aims to perform percutaneous mitral an-

nuloplasty by deploying pledgets on the mitral annulus and pulling them together to decrease

the circumference of the mitral annulus [21]. Finally, the MONARC© device (Edwards Life-

sciences, CA, USA) uses a different approach to perform annuloplasty by implanting a curved

device in coronary sinus to reduce the spetal-lateral diameter of the mitral annulus [22]. All

current clinically available BH MVR systems rely on ultrasound guidance for intra-operative

imaging, due to its real-time capabilities, low-cost and high availability.

3.1.3 Contributions

In this study, we propose a generic guidance system for BH MVR that can potentially address

the stated limitations of current clinical systems [11, 12] and provide improved visualization

of target anatomy under intra-operative TEE guidance.

The proposed system is able to enhance intra-operative ultrasound images with information
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about the target anatomy generated from pre-operative dynamic CT (dynCT) images in real-

time. Because of the limited clinical availability of dynamic CT imaging, again due to its

increased radiation dose, we examine the accuracy of using a single pre-operative static CT

image to provide a series of synthetic CT (synCT) images through non-rigid registration of 4D

TEE images obtained from the same patient.

Finally, we study the accuracy of the system to visualize anatomic targets using both dynCT

and synCT image datasets and demonstrate that there is no significant difference in their ability

to enhance intra-operative imaging for this clinical application.

3.2 Methods

3.2.1 Overall Workflow

The suggested clinical workflow for using dynCT-enhanced TEE guidance is illustrated in

Figure 3.1. The overall workflow can be broken down into three stages at which parts of the

proposed pipeline are executed [23]:

Pre-operative Stage

In this stage, dynCT images are either acquired by performing a retrospectively gated CT scan

or synCT images are generated from a static CT and a TEE series from the same patient using

the proposed method in Section 2.2.3. The CT image series is used to extract the target anatomy

and are subsequently transferred to the guidance system prior to surgery.

Peri-operative Stage

An initial rigid registration is performed between a peri-operatively acquired 3D US volume

and a CT image at the same or closest cardiac phase using feature based registration. Features,

such as the inner walls of the left ventricle, are rapidly semi-automatically segmented using the
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Figure 3.1: Overall Workflow

approach described by Rajchl et al. [24]. The resulting registration transform is then saved and

employed as an initialization for the intra-operative CT to ultrasound registration.

Intra-operative stage

Here, CT images are registered to the intra-operatively acquired TEE images using a rapid

GPU-based algorithm [25]. The registered images can be visualized differently (i.e. surface

models, volume rendered, etc.) according to surgeon’s preference. In this way, a visual linkage
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can be provided between the intra-operative images, pre-operative image, anatomical models,

and surgical tools (with the help of tool tracking) within the same guidance framework [26].

3.2.2 Generation of 4D Synthetic CT

The methodology employed to generate the synthetic dynamic CT images is to perform non-

rigid registrations between ultrasound images within a single cardiac cycle to obtain patient

specific heart motion maps, in the form of deformation fields, and to apply these deformation

maps to CT images to provide synthetic animation (details in Section 2.2.3).

The procedure begins with selecting one ultrasound image, acquired at a cardiac phase close

to the static CT image, as a reference. A rigid registration [25] is then performed between this

image and the static CT image. This step begins with semi-automatically segmenting the in-

ner wall of the left ventricle [27] from both the static CT image and the reference ultrasound

image, and using the iterative closest point (ICP) method to align the surfaces [28]. The align-

ment is then refined by a mutual information based registration [29] resulting in an optimized

transform. All the other ultrasound images in the 4D sequence are then rigidly registered to the

reference image as initialization for the later non-rigid transform.

After the initial rigid registration step, non-rigid registrations are performed among the

3D ultrasound images in the 4D sequence and the resulting deformation fields are recorded.

This can be achieved either by registering the reference image directly to every image in the

sequence, or by performing a registration between adjacent frames. The deformation fields

obtained from the non-rigid registration are used as cardiac motion maps and applied to the

static CT image to generate a synthetic dynamic CT sequence. By performing the approach

for each frame, we generate an entire sequence of synthetic dynamic CT images with the same

temporal resolution as the dynamic ultrasound images. For this operation we employed the

multi-resolution fast free-form (F3D) deformation registration method of Modat et al. [30]

because of its capability of handling the morphological deformation due to cardiac motion and

providing relatively smooth deformation fields.



Chapter 3. Enhanced Ultrasound Guidance for Beating HeartMitral Valve Repair 100

3.2.3 GPU-based Intra-operative Real-time Registration

The dynCT or synCT images can now be employed to enhance an intra-operative guidance

system. For navigation, they must be registered to the intra-operative TEE images in real-

time (In this context we refer to real-time as the ability to process multiple frames within one

second). The proposed intra-operative registration contains two components: temporal and

spatial registration.

Temporal Registration

A time point in the cardiac cycle is chosen (here mid-diastole) to temporally match the dynCT

or synCT series to the intra-operative 4D US. Similar to the method employed for generation of

the synCT, each frame in the CT series is matched with its corresponding 4DUS frame, which

is determined by finding the nearest neighbour in time (cardiac phase).

Spatial Registration

A rigid registration method, using normalized mutual information (NMI) as the similarity met-

ric with Powell’s conjugate direction method [31, 32] as the underlying optimizer, is employed

to register each CT frame to its corresponding US frame, as determined by the temporal regis-

tration procedure. Since both images series to be registered are specific to the patient, defor-

mations are assumed to be identical in corresponding frames, which is the rationale for using

a rigid approach as a trade-off between efficiency and accuracy. A flowchart depicting the

employed registration pipeline can be found in Figure 3.2.

Initialization: While the proposed optimization method guarantees that local optima are

found, a proper initialization in the peri-operative stage can guarantee quick convergence to

the correct optimum. This initialization can be achieved via registration of landmarks (i.e.

features, manually defined in the LV of a frame) or via LV-surface based registration with the

ICP algorithm, as used in here (Figure 3.3). Rapid LV segmentations were obtained peri-

operatively by using a fast interactive segmentation technique [27].
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Figure 3.2: Intra-operative registration pipeline

Linear interpolation and rigid transformation: The rigid transformation contains six pa-

rameters, three for rotation and three for translation. Let α, β, γ be the rotation angle and t1, t2,

t3 be the translation along x, y, and z axis respectively. A rigid transformation can be written as

x′ = R(α, β, γ)x + T, (3.1)

where x is the original coordinate, x′ is the transformed coordinate, R(α, β, γ) is the rotation

matrix, and T := (t1, t2, t3)′. The rotation matrix R(α, β, γ) is the production of three rotation

matrices, which are

Rx :=


1 0 0

0 cosα − sinα

0 sinα cosα

 Ry :=


cos β 0 sin β

0 1 0

− sin β 0 cos β

 Rz :=


cos γ − sin γ 0

sin γ cos γ 0

0 0 1

. (3.2)
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Figure 3.3: The initialization obtained through surface based registration

A tri-linear interpolation is then used to the matching the transformed floating CT image

and the corresponding US frame. Suppose the coordinate of a transformed point p is (x, y, z)

in the US image space and the lattice point below and above p are denoted as p0(x0, y0, z) and

p1(x1, y1, z1), we define

xd = (x − x0)/(x1 − x0)

yd = (y − y0)/(y1 − y0)

zd = (z − z0)/(z1 − z0)

, (3.3)

Then the interpolated intensity value of p can be computed by performing the interpolation

along x, y, and z axis respectively. The equation used for interpolation along each axis is given

below:

x axis: C j,k = (1 − xd) Ii, j,k + xd Ii+1, j,k (i = 0, j = 0, 1, k = 0, 1)

y axis: Ck = (1 − yd) C j,k + yd C j+1,k ( j = 0, k = 0, 1)

z axis: Ip = (1 − zd) Ck + zd Ck+1 (k = 0)

, (3.4)
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where I indicates the intensity value.

Both the transformation and interpolation components are inherently parallel operations

and implemented simultaneously using GPGPU. In heuristic testing, we observed an approxi-

mately 50-fold increase computation speed for these two steps over sequential computation on

a single CPU thread.

Parallelized mutual information implementation: (Normalized) mutual information is a

very common similarity metric used for multi-modality registration [29]. If we consider two

digital images, A and B, as two random variables, the mutual information of the two images

can be defined as

I(A, B) = H(A) + H(B) − H(A, B), (3.5)

while the normalized mutual information can be written as

I(A, B) =
H(A) + H(B)

H(A, B)
, (3.6)

where H defines the entropy of the random variable and

H(A) = −
∑
a∈A

p(a) log p(a)

H(A, B) = −
∑
a∈A

∑
b∈B

p(a, b) log p(a, b)
(3.7)

The computation of the similarity metric is parallelized using the concept General-Purpose

Programming on Graphics Processing Units (GPGPU) [33–35] for a substantial increase in

computation speed. Since the computation of the mutual information, specifically histogram

construction, is a naturally sequential procedure, race conditions are expected in parallelized

implementations [36]. This implementation mitigates this situation using the MapReduce

paradigm [37] (see Figure3.4), that is, by partitioning the image into parallel sub-images with

independently stored histograms, which are then summed together. For an additional increase

in computation speed of the mutual information, the intra-operative 4D US images are sub-
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jected to a thresholding procedure and only high intensity voxels in TEE images are used to

compute the mutual information (Figure 3.5). The rationale for this step is that it greatly speeds

up the computation of the mutual information metric by only using about 10% of all voxels in

the image and additionally biases the registration towards the myocardial anatomy, which is

particularly desired in this application.

Figure 3.4: MapReduce approach to the computation of the joint histogram in the proposed
GPGPU implementation of the mutual information

3.3 Experiments

3.3.1 Image Data and Patient Population

All data used in the experiments were collected retrospectively under a protocol approved by

the Research Ethics Board of Western University, London, ON.

Image data of patients (N = 10) undergoing valve repair were collected and subsequently

anonymized before being prepared for processing. Each dataset contained a series of retrospec-

tively gated cardiac CT scans using a Lightspeed 7-VCT scanner (GE Heathcare, Waukesha,

WI, USA) with 512 × 512 × 150 voxels at 0.4 × 0.4 × 1.3 mm resolution at 10 single frames

per cardiac cycle, totaling 100 single CT frames (10 frames per patient).

Additionally, a 3D TEE time series of two-chamber or 4-chamber views with approximately
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Figure 3.5: Example of a thresholded intra-operative 4D TEE frame. Top row represents three
orthogonal slices through the volume, while the bottom row shows the result of discarding all
values less than 35% to facilitate faster computations of the parallelized mutual information

200 × 200 × 180 voxels at a resolution of 0.8 × 0.8 × 0.7 mm was acquired at around 25Hz

using an Philips iE33 xMATRIX Echocardiography System (Philips Healthcare, Andover, MA,

USA) with a X7-2t probe. The 4D US series was acquired to cover at least an entire cardiac

cycle.

All datasets fulfilled these requirements and none had to be excluded.

3.3.2 Intra-operative Registration Accuracy

Both the original dynCT and generated synCT series are subjected to the proposed intra-

operative registration pipeline and the resulting mean accuracy over time reported using RMSE

on the mitral valve annulus (MVA), the region that defines the target area in the navigation. The

entire MVA was manually segmented from synCT, dynCT, and TEE images. The target reg-

istration error (TRE) was measured by computing the mean distance between corresponding

points on the MVAs from both CT and TEE images. Note that the TEE images are considered
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to represent the true anatomy of the mitral valve during the procedure. Comparisons were per-

formed between the results using dynCT and synCT series to investigate whether the synCT

series can provide similar or equivalent registration accuracy to the dynCT series when the

latter is not available.

3.3.3 Run Times

The computational efficiency was evaluated on a desktop computer with an Intel© Xeon©

dual-core 3.47 GHz CPU (Intel Corporation, Santa Clara, CA, USA) and an NVIDIA© Tesla

C2075 graphic card (Nvidia Corporation, Santa Clara, CA, USA). The average computation

time for one registration is calculated over the entire dataset using the same parameter settings.

3.3.4 Parameter Tuning

All the parameters were manually tuned to achieve good and stable accuracy for all the patients.

The tuning was based on the five of the patient datasets. The values used for the parameters in

this paper are listed in Table 3.1.

Table 3.1: Parameters and their values used in TEE-CT Registration
Threshold applied on TEE images 0.35/1
Bin number for joint histogram 50×50
Translation to rotation ratio 1000
Step length in Powell’s method 0.0003
Convergence criteria for NMI 0.01
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3.4 Results

3.4.1 Validation of Real-time Registration

The validation is performed for two purposes: accessing the CT-US registration accuracy and

examing if it differs between synthetic and real CT images. As previously stated, the purpose

of generating the synthetic CT sequence is to provide dynamic CT images to the guidance

system without additional patient radiation dose. If the comparison demonstrates equivalent

results, we can conclude that that the synthetic CT images have the potential to replace actual

dynamic CT images in a guidance application.

For each patient, the registration was performed independently between the real dynamic

CT images and the TEE images, and between the synthetic CT images and the TEE images.

The TEE images used here are different from those employed in the generation of synthetic CT

images. To validate the accuracy of the registration, we manually segmented the mitral annulus

from both CT and TEE images as our targets, because the centre of the mitral annulus defines

the destination where the cardiac surgeons want to move the tools to during the navigation

stage.

Table 3.2 presents the overall target registration error (TRE) with respect to the manually

segmented mitral annulus ring models. The mean TRE and the standard deviation were quite

similar to the synthetic and real dynamic CT images. Figure 3.6 shows one of the registration

results, where TEE images are presented in yellow and overlaid on the CT images. The first

row shows the results with real dynamic CT images, whereas the second row displays the

results with synthetic CT images. The red points indicated the MVA from the CT images while

the MVA from the TEE images is displayed in green.

We also compared the TRE results phase by phase throughout an entire cardiac cycle. One

cardiac cycle was divided into ten phases with reference to the real dynamic CT images. Syn-

thetic CT images with the corresponding phases were then selected for comparison. Figure 3.7

shows the result of this comparison, in which we observe that there was also no obvious trend
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Table 3.2: Comparison of the TRE (MVA as target) with Synthetic and Real Dynamic CT
images

Synthetic CT Dynamic CT
Mean (mm) 2.74 Mean (mm) 2.68
Std (mm) 0.93 Std (mm) 0.94

or difference between the results with synthetic and real CT images. We also computed the

confidence interval of the TRE differences between the results using synthetic and real CT

images, which was [−0.35, 0.55]mm with 95% confidence (α = 0.05). This means that if we

replace real CT with synthetic CT in our registration application, the difference in TRE can be

expected to be smaller than half a millimetre on average.

3.4.2 Computational Efficiency

The overall computational run time was 317.3±88.3ms for each registration with about one

million sample points after the thresholding operation used during registration. This is fast

enough for performing one registration per cardiac cycle, while it is not fast enough for ten

registrations per cardiac cycle. Discussions about the efficiency and a possible solution is

addressed in section 3.5.3.

The comparison between the computational efficiency of a CPU based implementation and

a GPU based implementation showed that the latter was about 15 times faster. Figure 3.8 shows

the comparison on one of the dataset.

3.5 Discussion

3.5.1 Overall Efficacy of the Approach

By introducing synthetic dynamic CT images, we are able to use high spatio-temporal reso-

lution dynamic images as a major component of our mixed-reality guidance system for mini-
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Figure 3.6: An Example of the Registration Results

mally invasive off-pump beating heart mitral valve repair. Compared to retrospectively gated

CT scans, the generation of the synthetic CT images can significantly reduce the radiation

dose applied to the patients, whereas the registration accuracy is maintained with respect to the

MVA.

The approach uses only the modalities that are commonly available and are already used as

standard of care, which adds no extra workflow in image acquisition.

Compared to performing non-rigid registration intra-operatively, which is still very difficult

to achieve as a real-time application, the idea of generating synthetic CT images pre-operatively
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Figure 3.7: Comparison between the Phase-by-Phase TRE Results with Synthetic and Real
Dynamic CT images

divides a difficult task into two relatively simple tasks. The synthetic CT generation places the

most computationally intensive tasks, i.e. the non-rigid registration that deals with the heart

deformation, at the pre-operative stage, which eliminates the real-time requirement.

The mutual information based rigid registration approach is used intra-operatively to per-

form the CT-TEE registration. Although it is not the most accurate registration approach, the

accuracy is considered to be sufficient for navigation purposes, and most importantly, it is able

to be performed in real time.

Furthermore, just as for real dynamic CT images, the synthetic images also provide the

opportunity of generating user defined segmentations, annotations and mesh models that may

be integrated into the intra-operative guidance, volume-rendering them with various transfer

functions or even fusing them with intra-operative images.

3.5.2 Overall Accuracy of the Registration Results

In the validation of real-time CT-TEE registration, we used the MVA as the target for our TRE

validation. The resulting TRE error is about 2.7±0.9 mm for both synCT and dynCT images.

As for the synthetic CT generation, this error is a combination of registration error, imperfect
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Figure 3.8: The comparison of processing time between GPU and CPU implementations

temporal alignment, inter-modality variation, and manual segmentation variation.

The most similar validation in terms of MVA tracking was reported in the studies of Schnei-

der et al. [38, 39], in which the MVA was segmented from 3D US images. The segmentation

errors against manual segmentation in those two papers were 1.81±0.78 mm and 1.67±0.63

mm. However, they also reported that the inter-expert variation in manual segmentation was

from 1.63±0.76 mm to 1.99±1.15 mm.

Since we have made several trade-offs between accuracy and efficiency, it is not surprising

that the TRE errors in our study are higher than those reported by Schneider. For example, the

transformation was restricted to be rigid for the sake of speed, whereas a non-rigid deformation

can easily achieve lower TRE error. However, our approach is able to perform several registra-

tions within one second which makes it available for intra-op applications that require real-time

updates, whereas Schneiders approach takes 30-90 seconds for a single segmentation.

In our experience, a TRE of 3-4 mm is within the tolerance of inaccuracy in the navigation

stage of off-pump BH MVR. In this sense, the advantage of our approach is being able to

integrate pre-op images to intra-op applications in real-time with the required accuracy.
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3.5.3 Computational Efficiency

The performance test showed that the registration approach discussed in this paper was able to

perform 3-5 registrations per second, which was still lower than the image acquisition rate for

TEE. Although the efficiency can be improved to ten frames per cardiac cycle by decreasing

the number of sample points used for registration, the registration accuracy suffers as a result.

In other words, with a relatively small number of sample points the registration may still give

correct results for some of the frames, but for others the errors may be in the order of centime-

ters. This situation is unacceptable for a real time clinical application, since robustness is one

of the major concerns.

Another option for overcoming the limitation in efficiency is to perform a single registration

for one frame and applying the resulting transformation to all of the individual CT-US frame

pairs within the cardiac cycle. This approach is based on the assumption that in an ideal world,

where CT and TEE images represent exactly the same heart motion, the corresponding CT and

TEE frames are temporally perfectly aligned, and that they represent exactly the same structure

and deformation. We also assume that the registration approach delivers optimal results, and

the relative position between the TEE probe and the heart is completely fixed. In this scenario,

the rigid transformation between the CT and TEE images should be identical for all the frames.

In the real world, imperfections in the above factors can result in slightly different registration

results for each frame, which is why we perform registration for each frame in the validation

section. However, if the TRE errors associated with using identical transformations for all the

frames in one cardiac cycle are still within the tolerance of the navigation application, it is

reasonable to use this approach as a trade-off between accuracy and feasibility, for a highly

time-critical application. To investigate the accuracy of this approach, we employed the same

datasets as used in the results section, registered the first pair of CT-US frames, applied the

resulting transformations to each of the other nine frames, and compared the results to those

obtained when we performed ten separate registrations per cardiac cycle. Figure 3.9 shows

the results of this comparison, in which the left image displays the comparison between the
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one-transformation-applied-to-all-frames approach (green) and the one-registration-per-frame

approach (blue), with real dynamic CT images, whereas the right image shows the same type

of comparison (results of the one-transformation-per-frame approach in red) with synthetic CT

images. It is seen that applying identical transformations to all the frames led to worse regis-

tration accuracy than that obtained when using a single transform (with a p-value of < .05), but

that the differences in TREs were only about 1-2 mm. If this level of errors is still tolerable for

the navigation application, then this approach may be considered as an option for implementing

a real time application and avoiding the need for additional hardware acceleration.

Figure 3.9: Comparison of the registration accuracy between one-registration-applied-to-all-
frames approach and one-registration-per-frame approach using both real dynamic and syn-
thetic CT images

For comparison, Figure 3.10 shows the registration accuracy, if all the TEE images are

registered to a static CT image, which can be considered as the lower bound of accuracy.

3.6 Conclusion

In this chapter, we introduced an approach to support guidance of minimally invasive off-pump

beating heart mitral valve repair that employs both TEE images and dynamic CT images. The
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Figure 3.10: An illustration of the registration accuracy, if all TEE images are registered to a
static CT image

dynamic CT images are registered to the intra-operative TEE images in real time through a

GPU accelerated rigid registration approach. We demonstrated such an approach can provide

good registration accuracy (TRE: ∼3mm) and consequently accurate MVA tracking results.

To avoid ionizing radiation dose, we attempted to use the synthetic CT images described in

Chapter 2 to replace real dynamic CT images. Validation experiments have compared the reg-

istration accuracy using synthetic CT to that using real dynamic CT. The TRE was measured

by computing the distances between the manually segmented MVAs. The results demonstrated

that the synthetic CT images can provide similar registration accuracy in the CT-TEE regis-

tration applications to that can be achieved using real dynamic CT images. The registration

algorithm was accelerated by a parallelized GPU implementation, which allows it to perform

3-5 registrations per second. Future work may include testing this approach in animal studies,

investigating optimal visualization options, and measuring the impact on clinical outcomes.
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4.1 Introduction

4.1.1 Clinical Background

Mitral regurgitation (MR) is a common heart disorder in which the mitral valve does not close

properly when the left ventricle contracts, and a portion of the oxygenated blood regurgitates

from the left ventricle back to the left atrium, which reduces the amount of blood pumped

out to the body [1]. This phenomenon is associated with symptoms including heart murmur,

shortness of breath, fatigue, and heart palpitations. The most common cause of severe non-

ischemic MR is mitral valve prolapse [2], which means one or both of the leaflets prolapse

upward into the left atrium when the heart contracts. Its prevalence in North America is about

2-3% of the population [3].

Surgical options to treat mitral regurgitation are to repair or replace the mitral valve. The

choice between repair and replacement is based on many factors including patient’s general

health, the condition of the valve, and expected benefits of the surgery. However, in recent

years surgeons have begun to favor repair over replacement in most cases due to better survival

rate and development of related techniques [4, 5].

Conventional mitral valve repair (MVR) was usually performed via open-heart surgery to-

gether with the use of a heart lung machine. A sternotomy is performed to gain the visual and

surgical access to the patients heart, which is arrested during the procedure with the heart-lung

machine temporarily taking over the function of the heart. This procedure can be associated

with severe trauma and side effects to the patients, which makes it unsuitable for patients with

co-morbidities such as previous heart surgery or renal dysfunction [6–8]. Aiming to reduce

the trauma and side effects associated with the large incisions and the usage of heart lung ma-

chines, many techniques have been developed to perform minimally invasive off-pump beating

heart mitral valve repair [9], whereby the procedure is performed through small incisions, and

the heart remains beating during the procedure, with the blood flowing through the heart as

normal. This technique can greatly reduce the trauma and side effects and potentially reduce
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the recovery and hospitalization time. However, one important limitation of this technique is

that the surgeons have direct visual access to neither the surgical targets nor the tools, which

greatly increases their cognitive load. For this reason, improved image guidance capabilities

are essential for minimally invasive intracardiac surgeries.

4.1.2 Existing Techniques for Minimally Invasive Off-pump Beating Heart

MVR

Several commercially available techniques have been developed in the past few years to per-

form minimally invasive off-pump beating heart MVR. For example, NeoChord©DS1000

(NeoChord, Inc., MN, USA) [5, 10] is designed to perform transapical mitral valve repair

by implanting artificial chordae to flailing leaflets to restore normal valvular function. Mitra-

Clip© (Abbott Laboratories, IL, USA) [11, 12] is a percutaneous mitral valve repair system

that uses a clip grasping both leaflets to create a double orifice valve that can lead to better

valve closure and less regurgitation. Mitralign© (Mitralign Inc. MA, USA) [13] aims to per-

form percutaneous mitral annuloplasty by attaching plegdgets delivered by wires to the mitral

annulus and pulling the plegdgets together to reduce annulus size. Finally, the MONARC©

device (Edwards Lifesciences, CA, USA) uses a different approach to perform annuloplasty

by implanting a curved device in the coronary sinus to reduce the spetal-lateral diameter of the

mitral annulus [14]. The latter two systems are specific to functional MR (caused by enlarged

ventricles and/or annuli). While the NeoChord and Mitraclip procedures can be used to treat

both functional and degenerative MR (prolapsed or flail leaflets), the NeoChord approach has

been primarily used to treat degenerative MR while the MitraClip is employed primarily for

functional MR.
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4.1.3 Image Guidance for Minimally Invasive Off-pump Beating Heart

MVR

Lack of direct visual access to the surgical targets and tools is a limitation of minimally invasive

off-pump intracardiac procedures. This limitation precludes the intuitive understanding of the

surgical field and anatomy available during open heart surgeries. To solve this problem, image

guidance becomes essential in minimally invasive procedures as visual assistance that shows

the necessary information about the targets and tools for the surgeons to perform the operations

[15, 16]. The two most commonly used imaging modalities in cardiac procedures are X-ray

fluoroscopy and echocardiography.

Although the percutaneous approaches may use X-ray fluoroscopy to guide the catheters to

the heart, all the procedures mentioned above use intra-operative (intra-op) echocardiography,

typically TEE, for intra-cardiac guidance, due to its capability of real-time imaging, zero ion-

izing radiation dose, good soft tissue contrast, low cost, and high availability [17, 18]. Using

NeoChord as an example, the procedure is guided with real time 2D single plane, 2D bi-plane,

and 3D TEE scans at different stages, depending on the task and corresponding imaging re-

quirements. When the tool is approaching from the apex of the heart to the mitral valve area,

it is guided by 2D single/bi-plane scans since 3D imaging lacks sufficient spatial resolution

to properly identify the tool. When the tool is close to the mitral valve, the echocardiographer

switches the scan mode to 3D to confirm the position of the tool tip (2D imaging lacks the sense

of spatial awareness provided by 3D imaging). The imaging mode is then typically reverted to

2D because of its superior temporal and spatial resolution, to guide the procedure of grasping

the leaflets. The MitaClip procedure also uses the same concept of switching between different

scanning modes for guidance at different stages [19, 20].

However, ultrasound guidance introduces several problems. For 2D modes, both single

plane and bi-plane, it is difficult to differentiate the tool tip from a cross-section of the shaft,

because both appear as elliptical shapes in the images. It is also very hard to maintain both

the tool tip and the surgical target in the imaging plane simultaneously. 3D TEE can overcome
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this limitation to some extent, but at the cost of decreased temporal and spatial resolution in a

restricted field of view (FOV). For the NeoChord procedure, it is also hard to differentiate the

tool tip from trabeculae and papillary muscles, when it is close to the apex at the beginning of

the procedure.

Our previous work has demonstrated that by integrating virtual models showing the posi-

tion, orientation, and trajectory of the surgical tools, and the targets in the guidance system, the

safety and efficiency of navigation can be significantly improved [21]. In that work, an MVA

model was manually defined immediately before the beginning of the procedure, by selecting

four MVA points, two points on each plane, in the bi-plane ultrasound images and generating

a cubic spline based on the four points. By visualizing both the MVA model the surgical tool

model that is continuously updated based on the magnetic tracking information in the same

guidance platform, the navigation task is accomplished by moving the tip of the tool model to

the centre of the MVA model. However, one limitation of this work was that the MVA model

was stationary during the procedure, and experience has shown that other than periodic motion

related to the cardiac motion within one cardiac cycle, the MVA can also shift by one or two

centimeters during the procedure, due to tool manipulation and changes in patient position-

ing. A stationary model is not sufficient for accurate navigation when such a situation occurs,

especially for the NeoChord procedure which typically requires the attachment of multiple

chordae. Although it is possible to pause the operation and re-define the new position of the

MVA manually, it is very time-consuming and can be a distraction for the surgeons.

4.1.4 Contributions

In this paper, we introduce an approach to automatically track the MVA and render it at a

desired cardiac phase in near real-time, based on both the TEE images and the magnetic track-

ing information of the TEE probe. The validation of the approach was performed both on a

dynamic heart phantom and on retrospectively on images from a porcine study.
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4.2 Method

4.2.1 Overall System Setup

The guidance system comprises three major components: the TEE, the magnetic tracking sys-

tem including the sensors to be attached to the surgical tools, and the guidance software plat-

form. Figure 4.1 shows the general workflow of the system and how each component interacts

with the others.

Figure 4.1: Overall system setup showing how each component interacts with the others

The TEE probe is inserted into the patients esophagus to scan the surgical targets (i.e.

MVA) together with its surrounding tissues and the surgical tools. The obtained images are

continuously transferred to the guidance software platform in real time. The echocardiography

system we use in this project is the Phillips iE33 ultrasound system and the X7-2t probe. This

system allows the echocardiographer to choose from three scanning modes: single plane 2D,
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bi-plane 2D, and live 3D. For the navigation task in the NeoChord procedure, we use the bi-

plane mode, which is also used in the current guidance solution for the NeoChord procedure,

and we recommend positioning the two planes orthogonal to each other with one showing the

Mid-esophageal (ME) four chamber view and the other showing the ME two chamber view.

The magnetic tracking system tracks the position and orientation of the surgical tools and

the TEE probe and continuously sends the tracking information to the guidance software. We

use the Aurora© system from the Northern Digital Inc. (NDI) as the magnetic tracking system

(MTS) in this project. A flat table-top magnetic field generator is placed between the subject

and the operating table, and the position of the generator should ensure that the operating field

is adequately covered by the magnetic field. A 6 Degree-of-freedom (DoF) magnetic sensor (3

DoF of translation and 3 DoF of rotation) is attached to the side of the transducer, and another

6 DoF sensor is integrated into the NeoChord tool. With proper calibration, those two sensors

provide information about the position and orientation of the tools and the probe with reference

to the field generator. A 5 DoF sensor is attached to the moving part of the NeoChord tool to

track the open-and-close movement of the jaw.

The guidance software platform has four major functions. First, it continuously collects the

TEE images and the tool tracking information in real time, synchronizes them, and stores them

in memory. It then visualizes the TEE images and the tools in one common coordinate frame,

with real time updates based on the tracking information and the pre-defined tool models.

Next, it allows the user to define a few, typically four, MVA points, and generates a virtual

MVA spline model immediately before the procedure starts. Finally, it tracks the movement of

the MVA and updates its new position during the procedure (Figure 4.2).

4.2.2 Mitral Valve Tracking Based on TEE Image Data

Our MVA tracking approach can be divided into three parts: image based gating, predictive

re-initialization, and registration based MVA tracking. Figure 4.3 shows the overall workflow

of the MVA tracking approach.
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Figure 4.2: Overall system setup. Left: Magnetic field generator. Middle: TEE probe with an
attached 6-DoF magnetic sensor. Right: Screen capture of the augmented virtuality guidance
system.

Initialization

In the initialization stage, which occurs immediately after apical access is secured, the user is

asked to define two MVA points on each plane of the biplane image (four MVA points in total).

An MVA model is computed as a cubic spline with the four MVA points as control points, as
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Figure 4.3: Overall workflow of the MVA tracking approach

described in previous work by our group [21]. The initial image together with the four MVA

points is transferred to the mitral valve tracking module for the image based gating component

and the registration component to use.

Image Based Gating

The mitral valve undergoes constant cyclical motion over the course of the cardiac cycle. From

systole to diastole it can move more than 10mm [22, 23]. In our experience, rendering this

motion is actually a distraction for the surgeon, and it is preferable to render only one phase of

the cardiac cycle. However, as mentioned previously the MVA can also shift location during

the surgical intervention, and it is this motion we are interested in tracking and displaying to the

surgical team. Image based gating is necessary to effectively filter out the natural MVA motion

of the cardiac cycle, leaving only the anatomical shift caused by the intervention itself. During
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the procedure the intra-operative (intra-op) TEE images are continuously transferred from the

echocardiography system to the guidance software. The major task of the image based gating

component is to identify the images that represent the same cardiac phase as the initial image

from all the incoming images. This is achieved by comparing each intra-operative image to

the initial image, compute the sum of absolute differences (SAD) similarity between them, and

find the images that lead to a minimum.

The similarity is computed based on small patches rather than the entire images for com-

putational efficiency. For the initial image, four patches are extracted, with each centred at the

user-defined MVA points. Figure 4.4 shows one example of extracting a square-shaped patch

with a width of 101 pixels from a TEE image. The centre of the patch coincides with the

user-defined MVA points. These four patches are stored in the software throughout the whole

procedure and all the patches extracted from the intra-op images are compared to them.

Figure 4.4: An example of extracting two square patches from a TEE image. The patches are
centred at the user-defined MVA point.

During the procedure, for every intra-op image, four patches are extracted at the same

image coordinates as the initial patches, and these patches are stored in four separate queues in
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the memory. The length of the queues can be adjusted according to the heart rate and cover at

least two complete cardiac cycles. When a queue reaches its maximum length, the oldest patch

is eliminated to receive new images. For each patch in a queue we compute the SAD of the

grayscale value between itself and its corresponding initial patch. The SAD metric is chosen

here because this is a relatively simple intra-modality application and it can be very efficiently

parallelized and executed on a graphic processing unit (GPU). Let the initial four patches be

denoted as Pk,0(x, y), k = 1, 2, 3, 4 and the subsequent patches as Pk,i(x, y), k = 1, 2, 3, 4, where

i = 1, 2, 3, 4, ...... indicates the time stamp. Then, we have

S ADk,i =
∑
x,y

|Pk,0(x, y) − Pk,i(x, y)| (4.1)

where Pk,i is the patch of the k-th MVA point with time stamp i and x, y is the image coordinate

of each pixel in the patch with respect to the origin of the whole image. The SADs are also

stored in four queues which correspond to the patch queues. A minimum detection function

is applied continuously on the SAD queues to detect the patches leading to an SAD minimum

(Figure 4.5), i.e. the patches that are most similar to the initial patches. A low-pass filter is

applied to filter out high frequency changes. Once a new minimum is detected, we consider

that patch to be of the same cardiac phase as its corresponding initial patch. Its time stamp

is be sent to the predictive re-initialization component to index the probe tracking information

at that time point, and the relevant patch itself is sent to the registration component for MVA

point tracking.

4.2.3 Predictive Re-initialization

Since the location of the TEE probe is often adjusted during the surgical procedure, our MVA

tracking algorithm must be able to adapt to both new MVA locations in the image plane, and

variations in the actual MVA anatomy being displayed. To accommodate this, we use a pre-

dictive model to re-initialize the start point for our MVA patch registrations. As the intra-op
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Figure 4.5: Flowchart of computing SAD values between the initial patch and the patch queue
and detecting minimums in the SAD queue

images are continuously transferred to the image based gating component, their synchronized

probe tracking data are simultaneously transferred to the predictive re-initialization component.

The probe tracking information, together with the TEE calibration transform, can be used to

compute the position and orientation of the imaging planes in the physical (magnetic tracker)

space. This leads to the transform converting the image coordinate of each pixel in the TEE

image to the physical coordinate with respect to the table-top field generator and vice versa.

The probe tracking information in the form of 2D-3D transforms is stored by the predictive

re-initialization component in a queue with the same length as the patch queue and the SAD

queue. Each time an image patch is added to the patch queue, its corresponding 2D-3D trans-

form is added to the transform queue. In this manner, it is easy to retrieve both a patch and its

transform from the two queues by using the same queue index.

The 2D-3D transforms are used to predict the position (image coordinate) of the MVA

points in a TEE image, based on the last updated MVA model. The prediction is then used as an

initialization in the registration component. Once the image based gating module sends a time

stamp of a patch in the form of a queue index, to the predictive re-initialization component, the

latter finds the corresponding 2D-3D transform. Here, we assume the position of the MVA has
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not changed significantly since the last update. We can then compute the points of intersection

in physical space between the latest MVA model and the imaging planes, as referenced by the

time stamp, and convert the results to 2D image coordinates by using the 2D-3D transform

(Figure 4.6). The converted 2D image coordinates are used as a prediction of the new MVA

position.

Figure 4.6: An illustration of predicting the position of in-plane MVA points based on the last
MVA model and the new imaging plane

4.2.4 Registration for MVA tracking

The registration component updates the position of the MVA points by registering the patches

to the initial image. The update occurs once the gating component detects a new minimum

for each patch, i.e. once per cardiac cycle. The similarity metric used here is also SAD. With

the initial image as the fixed image, and the patch as the moving image, the registration is

performed by using a brute force approach to search every possible location in the transla-

tion space within a user-defined search area to ensure a global minimum. This minimization

problem can be described as

(m, n) = arg min
m,n∈S

∑
x,y∈P

|I0(x, y) − Pi(x + m, y + n)| (4.2)
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where S defines the search space, I0 is the initial image, x, y is the coordinate of a pixel in

image coordinates. After the registration, we assume that the MVA point in the patch coincides

with the MVA point in the initial image. By applying the inverse transform to the MVA point

in the initial image, we can obtain the new image coordinates of the MVA point, which are then

used to update the MVA spline model.

The brute force search approach for such a problem can be very time consuming, if it is

implemented as a single thread application. However, GPU chips with the capability of general

purpose computing have provided an opportunity to perform massively parallel computations

in a very efficient manner [24], which is exactly what the brute force search approach can

benefit from. There are two levels of parallelization that can be performed in this problem.

First, for each set of search parameters, i.e. (m j, n j), a SAD similarity can be computed (Fig-

ure 4.7b). Since the computations of the SADs based on different parameter sets are mutually

independent, in theory all these computations could be performed simultaneously, whereas the

procedure of finding the minimal SAD can be performed by a hierarchical approach called

MapReduce [25]. In addition, for the SAD computation itself, the first step is to compute the

absolute difference (AD) between each pair of pixels (Figure 4.7a), which can also be per-

formed independently and simultaneously. The procedure of summing all the ADs to obtain an

SAD can be performed by the MapReduce approach as well.

As mentioned earlier, we are able to update the four MVA hinge points in approximately

60 ms. Since our goal is to render the annular ring at only one cardiac phase (end diastole),

this speed is more than adequate to track any shift in target anatomy.

4.3 Experiments

4.3.1 Phantom Study

A custom-built phantom, consisting of a left ventricle, mitral and aortic valves, a pneumatic

actuator assembly and an atrial reservoir, was employed to validate our MVA tracking in a con-
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Figure 4.7: An example of parallelization for finding the minimal SAD

trolled environment. The silicone model of the left ventricle has papillary muscles and chordae

tendinae controlling the mitral valve. The anterior and posterior leaflets of the mitral valve

has also made from silicone, with nylon chordae embedded into the silicone for support. The

length from anterior to posterior commissure is 35mm, and 25mm in the perpendicular plane

(across the P2 to A2 leaflets). A microcontroller manages the pneumatic cylinders permitting

a variety of contraction behaviors and rates (Figure 4.8).

Figure 4.8: Left: LV phantom used in validation studies. Middle: LV two chamber long axis
view at systole. Right: same view at diastole.
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The phantom was used to simulate heart shift by translating the whole phantom in a con-

trolled manner. Ground truth measurements of heart shift were obtained by tracking the phan-

tom itself. In the experiments, the phantom was repeatedly translated by controlled distances

(1, 2, and 3cm) within the horizontal plane relative to the tabletop field generator. A 6-DoF

magnetic sensor attached to the wall of the phantom recorded the positions of the phantom

before and after the translation. As the MVA in the phantom is rigidly secured to the frame,

we assume the translation of the MVA to be the same as that of the phantom. The TEE probe

was positioned in the atrial reservoir to mimic a long-axis two chamber TEE view, and was

moved with approximately the same motion as the phantom itself. The virtual MVA model

was manually defined before each translation and tracked by our tracking approach thereafter.

The positions of the four control points of the MVA model were recorded before and after the

translation. The accuracy of our tracking approach was determined by measuring the trans-

lation of the MVA model and then comparing it to that recorded by the 6-DoF sensor. The

phantom heart rate was pre-set to 30 beats per minute.

4.3.2 Retrospective Study on Animal Data

We retrospectively analyzed our algorithm on 5 sets of 2D single plane TEE images with a total

of 6676 images and 2 sets of bi-plane images with 706 images. These images were recorded

during porcine validation studies of our augmented virtuality image guidance platform [21] and

in many cases included the surgical tool in the image plane. Although 2D images, in which

only two MVA points can be identified, do not provide enough information to form an MVA

ring, we used them to validate the in-plane tracking accuracy.

The validation was performed by running the algorithm through each data set and recording

the index of each frame that was detected by the image-based cardiac phase tracking approach.

The coordinates of all the tracked MVA points were updated using the registration approach

described in Section 4.2.4. We then retrospectively displayed these recorded frames on the

screen (without displaying the positions of the automatically detected mitral annulus points)



Chapter 4. Ultrasound BasedMitral Annulus Tracking 137

and asked experienced users to manually identify the mitral annulus. The Euclidean distances

between the automatically tracked MVA points and their manually defined counterparts were

then computed.

Here, manually identified MVA points were used as the ground truth for validating the

accuracy of our MVA tracking approach in the study on animal images. However, since there

is an element of subjectivity in this form of manual identification, it is reasonable to assume

that the results will vary, if multiple users are asked to identify the MVA points on the same

images. This inter-operator variability should be considered as a limitation for any validation

that relies on manual segmentation as ground truth.

To investigate this problem, we asked five experts to identify the MVA points on selected

images, both in single plane and bi-plane modes. The average positions of the MVA points

were computed for each image over all the users and the Euclidean distances were computed

between user’s segmentation and the average.

4.4 Results

4.4.1 Accuracy from Phantom Study

The MVA model was manually defined before each controlled translation of the phantom, and

tracked by our approach thereafter. The coordinates of the four MVA points were recorded

before and after the translations. The centre of the MVA model was computed based on the

coordinates of the four MVA points. For each test, we estimated the true position of the MVA

centre after the translation based on the information recorded by the 6-DoF sensor and com-

pared this with the centre of the tracked MVA. The translation errors along each axis, with the

long axis of the ventricle parallel to the long axis of the field generator, are listed in Table 4.1.

The comparison of the tracked MVA and the estimated MVA (based on sensor translation) is

also illustrated in Figure 4.9. The differences between those MVAs increase gradually along

with the increments of the translation distances.
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Table 4.1: MVA Centre Translation Error (mm) According to 6DoF Sensor
Phantom translation #Test X-axis error Y-axis error Z-axis error
10.00 1 2.18 0.18 1.35

2 1.81 0.02 0.98
3 1.41 0.43 0.61
4 0.51 0.40 1.69
5 0.20 0.05 2.05

Mean±std 1.22±0.84 0.22±0.19 1.34±0.57
20.00 6 2.28 0.73 3.82

7 1.54 1.26 3.41
8 0.93 1.16 2.86
9 0.73 1.20 3.15

10 1.27 1.07 3.33
Mean±std 1.35±0.60 1.08±0.21 3.31±0.35

30.00 11 1.11 2.54 4.13
12 1.76 1.96 3.76
13 1.28 2.24 3.72
14 1.37 2.28 3.90
15 0.93 2.24 3.91

Mean±std 1.29±0.31 2.25±0.20 3.89±0.16
Overall mean±std 1.29±0.58 1.18±0.88 2.85±1.19

4.4.2 Accuracy with Images from Animal Study

The Euclidean distances between the automatically tracked MVA points and their manually

defined counterparts were recorded for both 2D single-plane and bi-plane images. Figure 4.10

shows two example images from the testing dataset and the MVA points are indicated by the

red arrows. The NeoChord tool may be present in some of the images as shown in Figure 4.10b.

Table 4.2 presents the validation results for both single plane and bi-plane images.

The inter-operator variation in manual segmentation were computed over the results of five

users (N=5) and the results are listed in Table 4.3. Comparing the two results, our automatic

tracking approach provides an accuracy of MVA position identification close to that which can

be obtained by manual segmentation.
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Figure 4.9: Comparison of the MVA model tracked by our approach (green) and the estimated
MVA model based on the sensor translation (red). The yellow spheres denote the MVA points
forming the splines. The diameter of the sphere is 2mm.

Figure 4.10: Example images of the test data showing the index of the tracked MVA points

4.4.3 Computational Efficiency

The computational efficiency was measurement on a desktop computer with an Intel© Xeon©

CPU at 3.47 GHz and NVIDIA GeForce© 690 graphic card and CUDA© 4.2 programming

interface [NVIDIA Corp, Santa Clara, CA, USA]. The registration of each point took 15±1
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Table 4.2: MVA tracking accuracy of our approach
RMS of 2D Single Plane

Point #1 (anterior) #2 (posterior) Overall
Mean±Std (mm) 2.41±1.37 2.16±1.64 2.37±1.67

RMS of 2D Bi-Plane
Point #1 (ante-

rior)
#2 (pos-
terior)

#3
(antero-
lateral)

#4 (pos-
terome-
dial)

Overall

Mean±Std(mm) 1.89±1.26 1.52±0.61 4.06±1.92 1.93±0.68 2.3±1.55

Table 4.3: Inter-personal variation in manual MVA points definition
RMS of 2D Single Plane

Point #1 (anterior) #2 (posterior) Overall
Mean±Std (mm) 2.20±1.11 2.44±1.37 2.32±1.24

RMS of 2D Bi-Plane
Point #1 (ante-

rior)
#2 (pos-
terior)

#3
(antero-
lateral)

#4 (pos-
terome-
dial)

Overall

Mean±Std(mm) 1.58±0.80 1.37±0.71 2.07±1.29 1.89±1.61 1.73±1.18

ms, i.e. about 60 ms for four points. The standard deviation was very low, because the brute

force approach was designed to search every possible point in the search space and the number

of the points was constant for all image patches. This computational efficiency is sufficient for

our goal of updating the MVA model once per cardiac cycle.

4.5 Discussion

4.5.1 Overall Accuracy

Both the phantom and the animal studies demonstrated similar MVA tracking accuracy using

our approach, i.e. mean distance error in the range of 1-3 mm with a standard deviation of 1-2
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mm. However, it is worth noting that the reported errors in the two studies were impacted by

different factors.

In the phantom study, the true translation of the MVA was computed based on the position

change of the 6-DoF magnetic sensor, so there is no manual segmentation variation involved in

the MVA tracking error. The inaccuracy in the phantom study came from five major sources.

1. The inaccuracy of our image based tracking approach itself.

2. The magnetic tracking system with a 6-DoF sensor (used to tracking the phantom) and a

table top field generator is reported to have an average RMS error of 0.80 mm in position

[26] and this inaccuracy also applies to the tracked TEE probe to which a 6-DoF sensor

is attached.

3. The calibration of the TEE probe. The calibration was performed using a Z-bar phantom

which typically leads to a RMS error of 1-2 mm [27].

4. Since the relative position between the TEE probe and the MVA was not fixed, it was

likely that the MVA points presented in the TEE images were not always the same phys-

ical points.

5. Although our phantom is designed to accurately mimic the valves of the left ventricle,

the morphology is not an exact match.

In the retrospective study on animal images, the reported inaccuracy was in-plane error,

and no magnetic tracking system or TEE probe calibration inaccuracy was involved. The two

sources of inaccuracy were the image-based tracking approach itself and the inter-operator

variation in manual segmentation.

The phantom study showed that the MVA tracking inaccuracy may increase as the total shift

of the annulus increases. The accuracy was very good (approximately 2 mm) with a translation

distance of 1cm, whereas it rose to almost 4 mm at a translation distance of 3cm. However,

according to our clinical collaborators, the actual heart shift during a mini-thoracotomy apical
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access NeoChord repair procedure is typically less than 2cm, which suggests that our approach

can provide good tracking accuracy in most cases. An adjustment was also made in the soft-

ware to freeze the MVA tracking when the tracked MVA moved far away from its original

position, and re-initialization may need to be performed in such a situation.

4.5.2 Limitation of the Approach

The greatest limitation of this approach occurs when the feature points, i.e. the MVA points,

are missing from the acquired image or disturbed by the tool. In the experiments we noted

that the image based tracking approach may be affected by the tool presence in the image

(Figure 4.11). Two problems can be seen in this image. First, since the tool is very close

to the anterior MVA point, its presence is included in the image patch used for registration.

However, such a feature is absent in the initial image patch, which leads to low registration

accuracy. Second, the posterior MVA point is hidden in the shadow area below the tool. This

phenomenon can last for a few cardiac cycles, which makes it impractical to accurately identify

the position of the posterior MVA point for that period of time, even when using a Kalman filter

or similar techniques that rely on input from the previous repeated patterns. In these situations,

the image-based registration approach gives an arbitrary result, very often far away from the

real position of the MVA point, because there is actually no MVA point shown in the image to

be tracked.

Although these problems cannot be perfectly resolved by image-based approaches, we at-

tempted to solve them with the help of the magnetic tracking system. As the position and

orientation of the TEE probe and the surgical tool can be computed based on the tracking

information, it is possible to estimate when such problems may occur and freeze the MVA

tracking accordingly (the MVA model on the screen will be rendered with a different color).

When the problem disappears, the MVA tracking begins to work again. However, the problem

caused by the shadow of the tool may only occur with a porcine heart, due to its specific heart

orientation and anatomy, and is extremely unlikely to occur in humans.



Chapter 4. Ultrasound BasedMitral Annulus Tracking 143

Figure 4.11: Problems caused by tool presence

Another possible problem occurs when the MVA is outside the field-of-view of the TEE

probe. We used the same approach of estimating the occurrence of the problem with the mag-

netic tracking information and freezing the MVA tracking accordingly.

4.5.3 Navigation vs. Positioning

The difference between navigation and positioning in an image-guided procedure can be com-

pared to that of driving a car to a destination with the help of a GPS and parking it with a

backup camera. The main goal at the navigation stage is to get close to the destination safely

through a shortest (either in time or distance) or safest path, whereas the positioning stage fo-

cuses on deploying a therapy with required accuracy. In the NeoChord procedure, navigation

defines the procedure of moving the tool tip from the apex of the heart close to the centre of

the MVA with tool tip in the left atrium, whereas positioning means grabbing the leaflets and

placing the artificial chordae at the required position. The MVA tracking approach in this paper

is designed for the navigation stage.

The motion of the MVA can be decomposed into two parts: the cyclical motion within each
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cardiac cycle in which the MVA moves approximately 1cm along the left ventricular long-axis

back and forth [28] and the heart shift caused by the tool manipulation and slight changes in

patient position and pose. In our experience, the first type of motion is not of major concern

during the navigation stage [21], whereas the second type of motion is that which we attempted

to track with the approach in this paper.

4.6 Conclusion

In this paper we developed a rapid MVA tracking algorithm for use in the guidance of off-pump

beating heart transapical mitral valve repair. This approach uses 2D biplane TEE images and

was tested on a dynamic heart phantom and interventional porcine image data. Preliminary

results regarding the accuracy and efficiency of this approach are quite promising.

While other systems exist for tracking the MVA, based on ultrasound image data [29, 30],

implementing a system capable of functioning in near real time in a surgical environment

adds a time-critical element to the process. Implemented on a standard desktop computer,

our approach can track about 15 images per second with a low tracking RMS of approximately

2mm, which suggests that this approach can be readily implemented in the operating room.

Future work includes developing an automatic initialization approach based on an image

altas, and further validating the approach with human data.



BIBLIOGRAPHY 145

Bibliography

[1] L. H. Ling, M. Enriquez-Sarano, J. B. Seward, J. Tajik, H. V. Schaff, K. R. Bailey, R. L.

Frye, and A. J. Tajik, “Clinical Outcome of Mitral Regurgitation Due to Flail Leaflet,”

The New England Journal of Medicine, vol. 335, no. 19, pp. 1417–1423, 1996.

[2] E. Hayek, C. N. Gring, and B. P. Griffin, “Mitral valve prolapse,” Lancet, vol. 365,

no. 9458, pp. 507–18, 2005.

[3] L. A. Freed, D. Levy, R. A. Levine, M. G. Larson, J. C. Evans, D. L. Fuller, B. Lehman,

and E. J. Benjamin, “Prevelence and Clinical Outcome of Mitral Valve Prolapse,” The

New England Journal of Medicine, vol. 341, no. 1, pp. 1–7, 1999.

[4] R. R. Moss, K. H. Humphries, M. Gao, C. R. Thompson, J. G. Abel, G. Fradet, and B. I.

Munt, “Outcome of mitral valve repair or replacement: a comparison by propensity score

analysis.,” Circulation, vol. 108 Suppl, pp. II90–7, Sept. 2003.

[5] P. Bajona, W. E. Katz, R. C. Daly, K. J. Zehr, and G. Speziali, “Beating-heart, off-pump

mitral valve repair by implantation of artificial chordae tendineae: an acute in vivo animal

study.,” The Journal of thoracic and cardiovascular surgery, vol. 137, pp. 188–93, Jan.

2009.

[6] I. Bahar, A. Akgul, M. A. Ozatik, K. M. Vural, A. E. Demirbag, M. Boran, and O. Tas-

demir, “Acute renal failure following open heart surgery: risk factors and prognosis,”

Perfusion, vol. 20, pp. 317–322, Oct. 2005.

[7] R. Freeman, B. King, and M. H. Hambling, “Infective complications of open-heart

surgery and the monitoring of infections by the NBT test,” Thorax, vol. 28, pp. 617–621,

Sept. 1973.

[8] M. K. Newman, J. L. Kirchner, B. Phillips-Bute, V. Gaver, H. Grocott, R. H. Johnes, D. B.

Mark, J. G. Reves, and J. A. Blumenthal, “Longitudinal assessment of neurocognitive



BIBLIOGRAPHY 146

function after coronary-artery bypass surgery,” The New England Journal of Medicine,

vol. 344, pp. 395–402, June 2001.

[9] A. Iribarne, R. Easterwood, E. Y. H. Chan, J. Yang, L. Soni, M. J. Russo, C. R. Smith, and

M. Argenziano, “The golden age of minimally invasive cardiothoracic surgery: current

and future perspectives,” Future Cardiology, vol. 7, no. 3, pp. 333–346, 2011.

[10] “http://www.neochord.com/.”

[11] T. Feldman, E. Foster, M. Qureshi, B. Whisenant, J. Williams, D. Glower, and L. Mauri,

“TCT-788 The EVEREST II Randomized Controlled Trial (RCT): Three Year Out-

comes,” Journal of the American College of Cardiology, vol. 60, pp. B229–B230, Oct.

2012.

[12] “http://www.abbottvascular.com/int/mitraclip.html#overview.”

[13] “http://www.mitralign.com/,”

[14] J. Harnek, J. G. Webb, K.-H. Kuck, C. Tschope, A. Vahanian, C. E. Buller, S. K. James,

C. P. Tiefenbacher, and G. W. Stone, “Transcatheter implantation of the MONARC coro-

nary sinus device for mitral regurgitation: 1-year results from the EVOLUTION phase

I study (Clinical Evaluation of the Edwards Lifesciences Percutaneous Mitral Annulo-

plasty System for the Treatment of Mitral R,” JACC. Cardiovascular interventions, vol. 4,

pp. 115–22, Jan. 2011.

[15] C. A. Linte, J. White, R. Eagleson, G. M. Guiraudon, and T. M. Peters, “Virtual and

augmented medical imaging environments: enabling technology for minimally invasive

cardiac interventional guidance.,” IEEE reviews in biomedical engineering, vol. 3, pp. 25–

47, Jan. 2010.

[16] G. M. Guiraudon, D. L. Jones, D. Bainbridge, and T. M. Peters, “Mitral valve implanta-



BIBLIOGRAPHY 147

tion using off-pump closed beating intracardiac surgery: a feasibility study.,” Interactive

cardiovascular and thoracic surgery, vol. 6, pp. 603–7, Oct. 2007.

[17] J. Ender and S. Sgouropoulou, “Value of transesophageal echocardiography (TEE) guid-

ance in minimally invasive mitral valve surgery.,” Annals of cardiothoracic surgery,

vol. 2, pp. 796–802, Nov. 2013.

[18] N. C. Wunderlich and R. J. Siegel, “Peri-interventional echo assessment for the MitraClip

procedure.,” European heart journal cardiovascular Imaging, vol. 14, pp. 935–49, Oct.

2013.

[19] E. Altiok, M. Becker, S. Hamada, S. Reith, N. Marx, and R. Hoffmann, “Optimized

guidance of percutaneous edge-to edge repair of the mitral valve using real-time 3-D

transesophageal echocardiography,” Clinical research in cardiology : official journal of

the German Cardiac Society, vol. 100, pp. 675–81, Aug. 2011.

[20] R. A. Quaife, E. E. Salcedo, and J. D. Carroll, “Procedural guidance using advance imag-

ing techniques for percutaneous edge-to-edge mitral valve repair.,” Current cardiology

reports, vol. 16, p. 452, Feb. 2014.

[21] J. T. Moore, M. W. A. Chu, B. Kiaii, D. Bainbridge, G. Guiraudon, C. Wedlake, M. Cur-

rie, M. Rajchl, R. V. Patel, and T. M. Peters, “A navigation platform for guidance of beat-

ing heart transapical mitral valve repair.,” IEEE transactions on bio-medical engineering,

vol. 60, pp. 1034–40, Apr. 2013.

[22] S. Saito, Y. Araki, A. Usui, T. Akita, H. Oshima, J. Yokote, and Y. Ueda, “Mitral valve

motion assessed by high-speed video camera in isolated swine heart.,” European journal

of cardio-thoracic surgery : official journal of the European Association for Cardio-

thoracic Surgery, vol. 30, pp. 584–91, Oct. 2006.

[23] D. W. Sohn, I. H. Chai, D. J. Lee, H. C. Kim, H. S. Kim, B. H. Oh, M. M. Lee, Y. B.

Park, Y. S. Choi, J. D. Seo, and Y. W. Lee, “Assessment of mitral annulus velocity by



BIBLIOGRAPHY 148

Doppler tissue imaging in the evaluation of left ventricular diastolic function.,” Journal

of the American College of Cardiology, vol. 30, pp. 474–80, Aug. 1997.

[24] F. Li, P. Lang, M. Rajchl, E. C. S. Chen, G. Guiraudon, and T. M. Peters, “Towards

real-time 3D US-CT registration on the beating heart for guidance of minimally invasive

cardiac interventions,” in Proc. SPIE 8316, Medical Imaging 2012 (D. R. Holmes III and

K. H. Wong, eds.), vol. 8316, p. 831615, Feb. 2012.

[25] J. Dean and S. Ghemawat, “MapReduce : Simplified Data Processing on Large Clusters,”

Magazine of Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[26] “http://www.ndigital.com/medical/products/aurora/#specifications-planer-field.”

[27] M. Soehl, R. Walsh, A. Rankin, A. Lasso, and G. Fichtinger, “Tracked ultrasound cal-

ibration studies with a phantom made of LEGO bricks,” in Proc. SPIE 9036, Medical

Imaging 2014: Image-Guided Procedures, Robotic Interventions, and Modeling, 2014.

[28] S. Y. Hayashi, B. I. Lind, A. Seeberger, M. M. do Nascimento, B. J. Lindholm, and

L.-A. Brodin, “Analysis of mitral annulus motion measurements derived from M-mode,

anatomic M-mode, tissue Doppler displacement, and 2-dimensional strain imaging.,”

Journal of the American Society of Echocardiography : official publication of the Ameri-

can Society of Echocardiography, vol. 19, pp. 1092–101, Sept. 2006.

[29] R. J. Schneider, D. P. Perrin, N. V. Vasilyev, G. R. Marx, P. J. del Nido, and R. D. Howe,

“Mitral annulus segmentation from 3D ultrasound using graph cuts,” IEEE transactions

on medical imaging, vol. 29, pp. 1676–87, Sept. 2010.

[30] R. J. Schneider, D. P. Perrin, N. V. Vasilyev, G. R. Marx, P. J. del Nido, and R. D. Howe,

“Mitral annulus segmentation from four-dimensional ultrasound using a valve state pre-

dictor and constrained optical flow,” Medical image analysis, vol. 16, pp. 497–504, Feb.

2012.



Chapter 5

Conclusions

5.1 Contributions

One of the principal challenges for developing guidance applications for off-pump beating

heart procedures is that not only should such applications provide good accuracy in anatomy

presentation, image registration, and feature tracking, but they must have the capability to

perform image processing procedures rapidly to capture rapid cardiac motion as well [1, 2].

These two goals are usually competing with each other and trade-offs must be made between

them. In this thesis, I developed several approaches to resolve this challenge.

Chapter 2 presents an approach to generate synthetic dynamic CT series based on a static

CT image and a sequence of 3D US images. The synthetic CT images are generated by ob-

taining cardiac motion information in terms of image deformation fields and applying them to

the static CT image to deform it into a sequence of dynamic CT images that represent the same

cardiac motion as that shown in the US images. This approach can take advantage of high spa-

tial resolution and image quality of the CT images and high temporal resolution of US images,

whereas the generation procedure is completely virtual and does not require radiation dose to

be applied to either the patients or the clinicians. The experiments compared the synthetic CT

images to the real dynamic CT images obtained from retrospectively gated CT scans. The left

149
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ventricle (LV) was chosen as the anatomical feature for comparison and manually segmented

from corresponding synthetic and real dynamic CT images. Two metrics, DSC that measures

level of overlap between real and synthetic LVs and RMS that measures the distances between

the LV surfaces, were used for the comparison. The results demonstrated that the synthetic CT

images can provide very similar anatomical representations as the real dynamic CT images for

the region of interest (ROI), i.e. the LV. The ROI can be adjusted according to the procedural

requirements. For example, for transcatheter aortic valve implantation (TAVI) procedure, the

ROI can be trimmed to contain the aortic valve and part of the aortic arch [3]. Image mosaic-

ing techniques [4] can also be applied here to provide a large field of view, if US sequences

containing different ROIs are available.

Chapter 3 introduces a means of integrating pre-operative dynamic CT images to the intra-

operative guidance system through real-time CT to US image registration. The dynamic CT

images are used to provide a high quality 3D anatomical context for the guidance system, while

the intra-operative US images are used for visualization of the real time cardiac anatomy and

motion. The static CT image is not suitable in such applications because the target registration

error can be greater than 1cm when the static image is registered to US images with non-

corresponding cardiac phases. However, the retrospecitively gated CT scans that provide real

dynamic CT images are associated with high radiation dose, which can be harmful to the pa-

tient. As discussed in Chapter 2, an approach was developed to generate synthetic dynamic CT

images to replace the real ones in our guidance system in order to eliminate the radiation dose

while providing similar registration results. The proposed CT-US registration approach uses

the rigid transformation model and normalized mutual information as the similarity metric. To

make the approach sufficiently rapid to capture the cardiac motion, I developed a parallelized

implementation based on the GPGPU programming model. The experiments showed that good

registration accuracy had been achieved for both real and synthetic CT images, which allowed

the approach to be potentially used for feature tracking. The results using synthetic and real dy-

namic CT images were also compared, demonstrating that there was no significant difference
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in terms of registration accuracy, which supported the concept of using synthetic CT images

in the guidance system. The GPU based implementation allows registering 3-5 frames per

seconds, which is sufficient for performing one registration per cardiac cycle.

Chapter 4 introduces an approach to track MVA points using bi-plane TEE images. There

are two kinds of MVA motion during the operation, the normal periodic motion within one

cardiac cycle and the shift caused by tool manipulation. This approach aims to track the latter.

The tracking algorithm is based on both image processing techniques and information from

a magnetic tracking system. Unlike the approach described in Chapter 3, this approach uses

solely intra-operative images for feature tracking. We tested the approach with a dynamic heart

phantom as well as on data collected from animal studies. The phantom study showed that the

tracking accuracy was better than 2mm, when the MVA shift was smaller than 20mm, while

it can be as low as 4mm, even when the shift was as large as 30mm. However, according to

our clinical collaborators, the MVA shift in the NeoChord procedure with minithoractomy is

usually smaller than 20mm. The experiment on the animal study data showed that the tracking

accuracy is about 2mm in an actual animal study as well. We also measured the variation in

manually defined MVA points, which was employed as the gold standard in the animal study.

We asked five experienced users to identify the MVA points on the images and the results

showed that the inter-user variation was about 2mm, very similar to the accuracy achieved by

our tracking approach.

5.2 Clinical advantages

The approaches introduced in this thesis aim to resolve some of the major challenges of devel-

oping a clinically usable image guidance system for minimally invasive off pump beating heart

mitral valve repair.

The first challenge comes from the limitations of the imaging techniques. As mentioned be-

fore, so far no one imaging modality can fulfil all the requirements, in terms of spatio-temporal
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resolution, anatomy representation, FOV, feasibility in the OR, and safety, of a guidance sys-

tem for beating heart interventions. With carefully chosen pre-operative and intra-operative

imaging modalities, the techniques to fuse them together intra-operatively, and well designed

visualization components, this thesis attempts to combine the advantages of different modali-

ties together to provide a system that is rich in clinically relevant information as well as intuitive

for the surgeons to interpret and to use.

The second challenge is related to rapid cardiac motion. The guidance system is respon-

sible for showing both the cardiac anatomy and motion at the same time, with the capability

of tracking certain anatomical features when required. This means that the image processing

techniques must provide accurate results within a very limited time, usually shorter than one

second. However, the requirements for accuracy and efficiency are usually competing with

each other and have been an important barrier for many techniques to be translated to practical

clinical applications. This thesis has put much effort in developing approaches that can pro-

vide good accuracy with sufficient efficiency with parallel computing techniques, which makes

intra-operative applications possible. Detailed discussion about trade-offs between accuracy

and efficiency can be found in the section 5.4.

The third challenge is related to clinical workflow. All the approaches in this thesis are

designed to make minimal modifications to standard workflow. For example, all the imaging

modalities suggested in thesis are already used as standard of care. The manual identification

of anatomical features is performed only once immediately before the procedure starts and the

associated workload is kept minimum.

5.3 Possible Extension to Use MRI Images

The approaches described in Chapter 2 and Chapter 3 suggest using CT (synthetic CT) as pre-

operative images. This choice is made mainly under the consideration that CT is currently

used in the standard of care and is widely available. However, MRI images can also be a good
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option, when they are available. The image processing approaches in Chapter 2 and Chapter 3

can be easily adapted to use MRI images as well as generating synthetic dynamic MRI images.

5.4 Trade-offs between Accuracy and Efficiency

As mentioned in the previous chapters, trade-offs between the registration/tracking accuracy

and efficiency were made to achieve applications capable of performing the required process in

real time during the procedure, while still maintain desired accuracy. The trade-offs are listed

below:

1. The non-rigid registration that tracks the cardiac motion is perform pre-operatively in

terms of the generation of synthetic CT images rather than intra-operatively on the in

vivo data. This approach is based on the assumption that the periodic cardiac motion

does not change much between beats or between pre- and intra-operative stages. This

assumption may not hold true when some pathology, such as arrhythmia or fibrillation,

occurs. It would be ideal if real time non-rigid registration could be performed intra-

operatively to track the motion exactly. However, no literature has reported the possibil-

ity of performing non-rigid registration in real time [5, 6]. The fastest GPU accelerated

implementation in the current literature still needs about half a minute to perform one

registration with 3D US data [7, 8]. We divided the registration process into two stages

to deal with this problem. The time consuming non-rigid registration is move to the pre-

operative stage in terms of synthetic CT generation, so that we don’t need to worry about

the computation time. In the intra-operative stage, we perform rigid CT-US registration,

which is achieved in real time with our proposed approach. However, we hope in the

future, with the development of new parallel computing hardware, real time non-rigid

registration can become practical.

2. Rigid, rather than non-rigid, registration, is performed intra-operatively. Following

the fist trade-off, we know that it is impossible to perform real time non-rigid registration



Chapter 5. Conclusions 154

so far. We also know that rigid registration cannot deal with the image deformation

caused by the cardiac motion [9]. Two compensations are performed to achieve good

registration accuracy with rigid registration. First, synthetic dynamic CT images are

generated using a high frame rate pre-operative US image sequence. For each image

in the sequence, one synthetic CT image can be generated. This means that if the US

sequence has a high frame rate (Full volume scan can provide 4D images at about 30Hz),

the corresponding synthetic CT sequence will also have a high frame rate. Thus, we can

create more images within a single cardiac cycle to be used for CT-US registration to

reduce the potential deformation difference between the pre- and intra-operative images.

Second, temporal alignment is performed between CT and US images to ensure the

images to be registered present closest, if not the same, cardiac phases. The gating

information of the US images can be obtained from the ECG signals, while that of the

synthetic CT images is inherited from the corresponding US images.

3. Sample points, rather than the entire image, are used in the registration in Chapter

3. To further reduce the computation time, we use only sample points selected through

thresholding for registration. This is based on the observation that points representing

important anatomical features, such as leaflets and myocardium, are usually associated

with high intensities [10]. We threshold the image and use only those points with high

intensities for our registration, since this can accelerate the application and bias the reg-

istration to myocardium, which is actually what we want. The number of sample points

must be optimized, because too few points may lead to unstable behaviour of the regis-

tration, whereas too many slow the computation.

4. The optimizer can only ensure local but not global optimal registration results. Opti-

mizers use heuristic strategies to accelerate the process of finding an optimum. However,

for non-convex optimization problems they can only ensure local optima. In Chapter 3,

we perform a good initialization to align the images first, making sure the alignment
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is very close to the global optimum, which reduces the number of iterations and time

required by the optimization procedure, as well as increasing the chance of finding the

global optimum. Chapter 4 presents a different methodology. Instead of using an op-

timizer, we perform brute force search within a small area using small image patches.

Brute force search is usually not applicable for real life applications, because it requires

all the possible parameter sets in the searching space are traversed, which is very time

consuming. However, in Chapter 4 with a GPU based implementation, the brute force

search can be achieved in real time. The trade-off is that to enable a real time brute force

search, we have to limit the size of the search space. This approach works when the

movement of the MVA is small and constrained, which is valid most of the time.

5.5 Comparison between the 3D and the 2D Approaches

Chapter 3 and 4 introduced two different methodologies for MVA tracking. The approach

in Chapter 3 performs rapid registration between pre- and intra-operative 3D images. The

anatomical feature of interest, MVA in this thesis, is first defined on the pre-operative images

and then updated intra-operatively based on the registration results, aiming to represent the

real time position of the feature. On the other hand, the approach in Chapter 4 performs feature

tracking based on intra-operative bi-plane images. No 3D images are used in this approach.

According to the experimental results, these two approaches provide very similar accuracy

for MVA tracking, while the 2D approach is slightly faster in run time. However, the most

important differences between the two approaches are the following:

5.5.1 Accessibility to Data

The 3D CT-US registration based approach requires the availability of real time 3D streaming

US images. Our lab is one of the very few labs in the world that have the access to the pro-

gramming interface of the 3D streaming data, which allows us to perform the related research

projects. However, most of the research or clinical centres do not have the same accessibility.
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This means that the 3D registration based approach cannot be easily translated into a widely

available clinical application, unless the echocardiogram system providers are willing to pro-

mote the development and distribution of the programming interface of the 3D streaming data.

On the other hand, the 2D approach does not have such a limitation. Although the interface

of obtaining 2D streaming data is also not available for now, a digital video grabber can be at-

tached to the echocardiogram system to obtain screen captures and transfer them to a computer,

which is how bi-plane images are obatined in this thesis.

5.5.2 Applicability

The 3D approach can be adopted when 3D streaming data and dynamic CT images are avail-

able. The dynamic CT images can be obtained from retrospectively gated CT scans or synthet-

ically generated by the approach described in Chapter 2. Although this approach has only only

been tested for MVA tracking in this thesis, it actually allows tracking multiple anatomical fea-

tures simultaneously through one registration step as long as those features are pre-defined in

the CT images. This is because that the CT-US registration approach we proposed in Chapter

3 is image based and does not rely on any a priori knowledge about the features. The CT im-

ages can also serve as high quality 3D anatomical context with different visualization options.

However, this approach is not applicable when there are major differences between pre- and

intra-operative cardiac motion. For example, arrhythmia and fibrillation occurrence during the

procedure can cause such an approach to fail.

The 2D approach requires only 2D bi-plane streaming images, which are easily accessible.

However, a shortage of 2D images is that as the scanning slice moves around, the anatomy

presented in the images changes accordingly. This can become a serious problem for tracking

MVA points when there is large change in the relative position between the US probe and the

surgical target, since the intersection point between the scanning plane and the MVA can be

centimetres away from the previous tracked point. The predictive re-initialization step was

designed to deal with such a problem. When the predicted target point is far away from the
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previous point, the tracking algorithm pauses the update of the MVA position and the display

of the MVA model is frozen at the last updated position until the predicted points are close to

the last updated positions again.

5.6 Ultrasound Guided Cardiac Intervention without X-ray

Fluoroscopy

Fluoroscopy is a common imaging modality used for cardiac interventions. However, the asso-

ciated ionizing radiation dose is always a concern for patients’ and clinicians’ health [11, 12].

The proposed guidance approaches in this thesis use only ultrasound as the intra-operative

imaging modality with no X-ray fluoroscopy and has showed good potential for being trans-

lated into clinical application in the OR. This idea is already adopted by the NeoChord pro-

cedure [13], which is guided solely by the TEE images in the on-going clinical trial. With

the techniques introduced in this thesis, US based guidance can become more accurate, more

intuitive, and safer for cardiac interventions.

Currently, fluoroscopy is most frequently used in transcathether procedures for tracking the

advancement of guide wires, especially in the navigation stage. For example, the MitraClip

procedure uses fluoroscopy for guidance until the guide wire penetrates the atrial septal. Then

it switches to use the 3D TEE scan for positioning task [14]. Recently, Translucent Medical

©(Translucent Medical Inc., Scotts Valley, CA) introduced guide wires with magnetic sensors

attached to the tips. These guide wires can be tracked by a magnetic tracking system, which can

potentially replace fluoroscopy in the guidance for transcatheter procedures. Thus, fluoroscopy

may eventually be eliminated from the guidance system for cardiac interventions and US would

become the principle imaging modality for such guidance systems.



Chapter 5. Conclusions 158

5.7 Impact of GPU based Massive Parallel Computing on

Guidance Systems

Other than accuracy, the requirement of rapid computation is one of the principal challenges

for developing guidance applications for beating heart procedures due to the fast cardiac mo-

tion. The approaches developed in this thesis have demonstrated the feasibility of developing

such applications using GPU based implementations to accelerate the registration and feature

tracking procedures. The development of modern GPUs allows the user to perform general

purpose parallel computing (only graphics related computing was allowed previously), which

has a great impact on the image processing techniques, especially for 3D images. Previously,

parallel computing could only be performed on super computers with multiple processors or on

distributed systems that contain multiple computers on the network. Such computer systems

are usually very expensive and have limited accessibility. The number of threads that can be

generated is also very limited. However, an average GPU only costs a few hundred dollars, but

is capable of generating millions of threads within one application. Many image processing

algorithms required for real time guidance applications can be completely or partially paral-

lelized, which makes GPU based implementation perfect for such algorithm to be accelerated

to real time. It is foreseeable that GPUs will play an important role in real time interventional

guidance systems in the near future.

5.8 Future Directions

5.8.1 Investigation on How Guidance Inaccuracy Affects the Deployment

One question that we would like to answer is how accurate the image guidance, especially

registration, needs to be for a certain procedure and how the guidance inaccuracy affects the

final deployment results. We have demonstrated that the answer can vary between different

tasks, but we are also interested in having numerical answers to this question. Experiments
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are under development to introduce synthetic registration/tracking errors in a simulated image

guidance scenario to investigate how the surgeons may react to those errors and how these

errors may affect the final deployment error.

5.8.2 Automated Initialization

Both the approaches in Chapters 3 and 4 require initialization immediately before the guidance

starts. Current initialization approach demand manual input, which is slow. An improvement

could be to build a heart atlas or database that can be used for automatic initialization. This

may also allow rapid re-initialization during the procedure when the tracking approach fails

due to unexpected causes.

5.8.3 Transfer Functions

We are also interested in developing sophisticated transfer functions for volume rendering that

can provide customized and tuned visual cues in the mixed reality system [15]. Such transfer

functions may enable the visualization of certain features without performing segmentation

and may also allow more complicated visualization that renders both volumes and surfaces

simultaneously.
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Appendix A

Image Orientation

A.1 Image Orientations

With the development of modern imaging techniques, such as CT, MRI and 3D ultrasound, 3D

images have become more and more popular in medical fields for diagnosis, surgical planning,

training, and guidance purposes. They can provide interior details of a patient’s body and allow

3D visualization and modeling of chosen areas or structures, which helps the clinicians to have

better understanding about the patient’s condition.

One important thing to define before using a 3D image is the image orientation. Commonly,

it is defined in the patient’s coordinate with the head side denoted as “Superior”, foot side as

“Inferior”, right hand side as “Right”, left hand side as “Left”, chest side as “Anterior”, and

back side as “Posterior”.

Image orientation is also associated with how the images are stored in computers. Storing a

3D image in a computer, either in the physical memory or on the hard drive, is usually achieved

by sequencing every point (voxel) in the image with a pre-defined order and then storing the

whole sequence as a 1D array. In other words, if we denote the sequencing procedure as a

function, f , it maps a three dimensional coordinate, (x, y, z), to a non-negative integer, i, with

one-to-one correspondence.

163



Chapter A. Image Orientation 164

f : (x, y, z)→ i (A.1)

The function f must be reversible, so that the program which reads the image knows exactly

how to map each point in the sequence back to the 3D volume space.

A.2 Complications Associated with Image Storing

However, the sequencing order is not standardized. Different programs and data formats tend

to have their own preference of what order to use for sequencing. Because of that, there is

usually one field in the header of a 3D image which indicates the sequencing order used for the

image in the form of either a transformation matrix or a three-letter annotation, such as “RAS”.

Here the annotation “RAS” stands for “Right, Anterior, and Superior”. When a computer

program reads this annotation, it knows that the first point in the 1D sequence corresponds to

the right-anterior-superior corner point in the 3D volume. As the program goes through the

whole sequence, it knows to fill the 3D volume first from right to left, then from anterior to

posterior, and last from superior to inferior (Figure A.1).

It is possible to store and read one 3D volume with different sequencing orders. For exam-

ple, a program can use the sequencing order of RAI orientation to read an image stored with

RAS orientation and that will result in a flipped image in the I-S dimension. In Figure A.2,

there is a 3D image containing an arrow pointing upwards stored with the RAS orientation, so

the first point in the stored 1D array is the right-anterior-superior corner of the whole volume.

However, if this image is then read by a program with the RAI orientation, the first point in

the 1D array will be treated as the right-anterior-inferior corner and the order of filling the vol-

ume in the S-I dimension will be the reverse of how it is stored, so the upward-pointing arrow

becomes a downward-pointing arrow.

Meta image format is the most commonly used data format in the scenario of this thesis. It

stores a 3D image into two separate files, a *.mhd file which contains only the header informa-
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Figure A.1: Sequencing order of RAS orientation

tion as text and a *.raw file which contains the 3D volume as a 1D array. Meta image format

allows the user to define the image orientation by editing the transform matrix in the *.mhd

file, so that the user can use the image in whatever orientation they want with easy editing.

A.3 Complications Associated with Image Registration

The reason why image orientation is so important is that images with different orientations may

be impossible to be registered together, just like its impossible to register a left-hand coordinate

system to a right-hand coordinate system. An illustrative example to explain the problem would

be registering an image to its mirror image.

In Figure A.3, there is a moon-like object and its mirror image. If we try to align the original

object to the mirror object in the 3D space by translation and rotation only, we will find it is

impossible to align them together, because when the original object is moved and rotated to the

backside, it is flipped. Such a phenomenon also occurs when people try to register two images

with opposite orientations in one dimension, such as RAS and RAI.

A mathematical explanation of such a phenomenon can be given as this:
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Figure A.2: Storing and Reading an Image with Different Sequencing Orders

Suppose there is a 3D coordinate system XYZ and a 3D image P, of which each point is

denoted by a 3D coordinate P(x, y, z) (See Figure A.5). Now consider the XZ plane as a mirror

and flip the image along the Y direction, so that the coordinate of each point in the mirror image

becomes P1(x,−y, z). If we denote each point in the image as a vector P := (x, y, z)′, then the

transform from P to P1 can be written in the matrix form:

P1 = MP (A.2)

where

M :=


1 0 0

0 −1 0

0 0 1

 (A.3)

As we know, rigid registration attempts to align two images by rotation and translation and
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a rigid registration can be written in a similar form as Equation A.2, which is

P1 = RP + T (A.4)

where R is a 3 × 3 rotation matrix and T is a 3 × 1 translation vector. The rotation matrix

R is a combination of the following three matrices, each of which deals with the rotation along

one coordinate axis.

Rx :=


1 0 0

0 cosα − sinα

0 sinα cosα

 Ry :=


cos β 0 sin β

0 1 0

− sin β 0 cos β

 Rz :=


cos γ − sin γ 0

sin γ cos γ 0

0 0 1

 (A.5)

To simplify the problem, we can assume the origin of the coordinate system, which is the

center of rotation, is at the center of image P. In that case, the translation vector T is a zero

vector, which leads to

P1 = RP (A.6)

Combing Equation A.2 and A.6, we can see whether or not it is possible to register image

P to P1 with a rigid registration depends on if it is possible to find a rotation matrix R that is

identical to the transform matrix M in Equation A.3. That is

R = M =


1 0 0

0 −1 0

0 0 1

 (A.7)

In the mean time, the rotation matrix R should be the product of Rx, Ry, and Rz regardless

in which order are they multiplied. That is
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R =
∏

i=x,y,z

Ri (A.8)

Combining Equation A.7 and A.8, we have

∏
i=x,y,z

Ri = M =


1 0 0

0 −1 0

0 0 1

 (A.9)

As we know, the determinants of the three rotation matrix are all 1. That is

|Rx| = |Ry| = |Rz| = 1 (A.10)

Also, the determinant of matrix product is the product of the individual determinants, so

we have

∣∣∣∣∣∏i=x,y,z Ri

∣∣∣∣∣ = |Rx| × |Ry| × |Rz| = 1 (A.11)

However, the determinant of the transform matrix M is -1.

|M| = −1 (A.12)

Combining Equation A.9, A.11, and A.12, we notice that it is impossible to find a rotation

matrix R to make Equation A.7 valid. In another word, it is impossible to rigidly register an

image to its mirror image.

With this approach, we can prove that if an image is flipped (or mirrored) in two dimen-

sions, the result image can still be perfectly registered to the original image; if an image is

flipped in all three dimensions, the result image cannot be registered to the original image.

In conclusion, for a 3D image registration problem, we must pay attention to the image

orientation of the images to be registered. If there are differences in one or three dimensions,
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such as RAS versus RAI or RAS versus LPI, it is impossible to correctly register those images

together without changing the orientations.



Appendix B

iE33 Data Export and Conversion

B.1 iE33 and the X7-2t Probe

Philips© iE33© xMATRIX echocardiography system is an ultrasound system designed for

cardiac imaging purposes with real-time 3D imaging capability and it is claimed to be the

world’s first live 3D transesophageal echo (TEE) system. A commonly used probe for TEE

scans with iE33 is the Philips X7-2t probe, where “X” stands for “matrix”, “7-2” indicates the

frequency range is 7-2 MHZ, and “t” stands for “transesophageal”.

The iE33 system provides traditional single plane 2D, X-plane (or biplane) 2D, and live

3D scanning modes. The traditional 2D scan provides single plane B-mode images as most

of the ultrasound systems. The biplane mode provides two intersected single-plane images

simultaneously. One plane is kept stationary during the scan, while the other plane can be

rotated and tilted. The live 3D mode provides real-time cone-shaped 3D images. The frame

rate of the live 3D mode is normally around 20 Hz, whereas it can be increased to 30Hz with

a reduced field of view. In addition, it also provides a full frame function which uses gating

information to reconstruct an image with large FOV and high frame rate from several (typically

four) heart beats.

170
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B.2 Export DICOM Data from QLAB©

The 3D data exported from the iE33 machine is stored as an encrypted DICOM format, which

cannot be correctly read by a third-party DICOM reader. The specific software to read and

visualize those data is called QLAB, which is developed and distributed by Philips itself (see

Figure B.1).

Figure B.1: A Screenshot of the QLAB platform

QLAB offers many functions for visualizing and analyzing the data. However, it does not

provide a programming interface that allows users to develop their own functions and modules,

such as segmentation and registration, and integrate them into QLAB. In order to apply user-

defined functions, the data has to be exported as a normal DICOM data first and then be used

in a different software platform.

QLAB offers a function to export the QLAB-specific 3D data to a non-encrypted DICOM

format (An activation code is required to enable this function). However, there are still a

few fields in the header of the exported data which are privately defined by Philips. Those

fields include the size of dimensions, voxel spacing, and frame rate. For reference, those fields
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together with their meanings are listed in Table B.2.

Table B.1: List of the Specifically-defined Fields in QLAB-exported DICOM Header and Their
Meanings

Fields Meaning
dcminfo.Rows Size of X dimension
dcminfo.Columns Size of Y dimension
dcminfo.Private 3001 1001 Size of Z dimension
dcminfo.PhysicalDeltaX Voxel spacing in X dimension
dcminfo.PhysicalDeltaY Voxel spacing of the Y dimension
dcminfo.Private 3001 1003 Voxel spacing of the Z dimension
dcminfo.NumberOfFrames Number of frames in a 4D data

B.3 Anonymizing the Data

Most of the research ethics approvals require the patients’ data to be anonymized, but QLAB

does not provide an auto-anonymizing function. Manually editing all the fields with patient

names and IDs is very time-consuming. Further, the more complicated task is to eliminate the

patient information integrated as bitmap images in both thumbnail and actual ultrasound im-

ages. A small piece of script is written in Matlab and converted to an executable command line

programm to anonymize the data. The program does two things. First, it finds all the attributes

with patient’s private information, i.e. name, birthday, patient ID, etc., in the DICOM header

and replace them with anonymous information. Second, it erases all the patient information

in the bitmap images by reading the images as HEX code, finding specific HEX strings, and

replacing the area indicated by the HEX string with background color. Thus, all the patient

information is eliminated from the data.

B.4 Export Streaming 4D Data

The 4D TEE data can be exported from the iE33 machine through an Ethernet cable and be

integrated into a user-designed software platform. The programming interface including the
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Figure B.2: A Screenshot of the QLAB platform

codes and *.dll files are confidentially provided by Philips Research North America, Briarcliff

Manor, NY.

The working model of exporting 4D data is illustrated in Figure B.3. There are three com-

ponents in the working model, the iE33 machine, the data conversion program, and user’s own

program. These three components form two client-server architectures. In the first client-server

architecture, the iE33 machine works as a server that broadcasts the 4D frustum data continu-

ously without caring if the data has been received or not. The executable program provided by

Philips, working as a client in this architecture, receives the frustum data and convert it to a 3D

Cartesian data. Then, the executable changes its role to be the server in the second client-server

architecture. It sends out the converted 3D Cartesian data together with a “call-back” signal

which informs user’s program that a volume has been sent out. User’s program, either a guid-

ance platform, a visualization application, or a image processing software, works as a client in

the second architecture and receives the Cartesian data when it is triggered by the “call-back”
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signal.

A shortage of the streaming data is that it contains no header information other than the

size of each dimension. The approach to obtain the voxel spacing is to build a look-up table

of all the spacing values according to the scanning depth and then search the table for voxel

spacing every time when a new depth is set.

Figure B.3: Working Model of 4D Streaming Data Exporting

The standard operating procedure for setting up and testing a computer workstation to

access iE33 4D streaming data is listed below:

1. Connect the iE33 to the workstation with a cross-over Ethernet cable. (There is a cross-

over adapter in the lab, which can be attached to any normal Ethernet cable and make a

cross-over cable.)

2. Run a DHCP server software on the workstation, so that it can automatically assign

an IP address for the iE33. (OpenDHCPServer is available and located in “C: OpenD-
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HCPServer” on the lab laptop. It can also be downloaded from SourceForge. The service

can be started by running “RunStandAlone.bat” in command line.)

3. Check the IP address of iE33 with the following procedure. Press “setup” on the sliding

keyboard → select “Print Network” on the screen → select “Network” → select “Net-

work Device Utility”→ find the IP address in the dialog box.

4. Ping iE33 and the workstation from each other and make sure each is visible to the other.

(This may need some reboots.)

5. Register “..\StreamingData\Dll exes\Stream3d.dll. If you are using a 32-bit OS, this

can be done by running “regsvr32 Stream3d.dll” in command line. If you are using a

64-bit OS, this can be done by the following procedure. Open the command line in

administrator mode (Right click on cmd, choose “Run as administrator”). Go to directory

“C:\Windows\SysWow64”. Run the regsvr32 command in SysWow64.

6. Switch the scan mode to “live 3D” on iE33.

7. Run FrustumStreamTest in “..\StreamingData\Dll exes” with the command “Frustum-

StreamTest IPAddressOfiE33 port”. Port is always 4013. It will show “receiving frustum

data”, if succeed.

8. Edit “..\Paul Streaming Code\StreamUS\server\3DUSTcpServer.bat”. Go to the line

“set addr=” and replace the IP address with iE33’s IP address.

9. Run “3DUSTcpServer.bat” in command line. It will show “Waiting for client”, if suc-

ceed.

10. Open Matlab (32-bit verstion) and set working directory to “..\Paul Streaming Code

\StreamUS\StreamUS matlab”.

11. Run “StreamUS init.m” in Matlab.
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12. Run “script.m” in Matlab. It will show a slice from the streaming data, if succeed.
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