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Abstract 

Polyisobutylene (PIB) and its copolymers are used in a wide range of commercial products 

owing to their high chemical stability, impermeability, elasticity, and biocompatibility. In this 

thesis, linear and arborescent PIB containing small percentages of isoprene (IP) were 

functionalized to provide epoxide, allylic alcohol, and carboxylic acid derivatives of PIB. These 

carboxylic acid derivatives were subsequently used to conjugate the antiproliferative agent 

paclitaxel (PTX) for investigation as a potential vascular stent coating. The PTX release rates 

were compared with those of physical mixtures of PTX with carboxylic-acid-functionalized PIB 

and with the triblock copolymer PS-b-PIB-b-PS. Covalent conjugation led to significantly slower 

drug release. AFM imaging of films of the materials suggested that the physical mixtures 

exhibited multiple domains at the surface, while the materials in which PTX was covalently 

conjugated appeared very uniform. Coatings of the conjugated materials on a stainless steel 

surface suffered less surface degradation than the physically mixed materials, remained intact, 

and adhered well to the surface throughout the thirty-five day study. Tensile testing and 

rheological studies showed that the incorporation of carboxylic acids or PTX into the polymer 

introduced significant changes to PIB's mechanical and rheological properties. Cytotoxicity 

assays showed that the coatings did not release toxic levels of PTX or other species into a cell 

culture medium over a 24 hour period, yet the levels of PTX in the materials were sufficient to 

prevent C2C12 cells from adhering to and proliferating on them. Overall, these results suggest 

that covalent PIB-PTX conjugates have promise as coatings for vascular stents. 

 

Keywords 

Polyisobutylene, paclitaxel, arborescent, isoprene, drug release, stent coating, tensile testing, 
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Chapter 1 

1 Introduction  

1.1 General Introduction  

Biomaterials are a vast and continuously evolving field that encompasses the enhancement and 

extension of life through materials. There are many different classifications of biomaterials, 

however a common theme is the use of materials to enhance or substitute function within a 

biological system. Biomaterials are used widely in a variety of applications, including 

cardiovascular, dental and neural implants, orthopaedic prosthetics and drug delivery systems. 

Biomaterials can be both medical and non-medical and they can be natural or synthetic. For 

clarity, biomaterials can be separated into two sub-categories, which are not mutually exclusive - 

structural and functional biomaterials. Examples of structural biomaterials include glass eyes and 

artificial limbs. Their purpose is to provide structural support without interacting with the 

biological system. Functional biomaterials on the other hand interact with the biological system 

to replace or enhance biological function; examples of functional biomaterials are artificial 

organs, pacemakers and controlled release implants. Most biomaterials are still being optimized 

to tackle some common issues, including improved biocompatibility, mechanical properties and 

degradation. These issues are critical to the enhancement and development of biomaterials for 

explicit applications. Thus this thesis will look at improvement of a one such potential 

biomaterial. Specifically, linear butyl rubber and arborescent polyisobutylene (PIB) will be 

fictionalized with carboxylic acid moieties and paclitaxel (PTX). The resultant changes in the 

physical properties of these polymers will be examined via tensile and rheological experiment. A 

release and preliminary biological study of these polymers will be carried out to evaluate the 

potential application of these polymers for stent coating.     
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1.2 Butyl rubber  

1.2.1 Historical development of butyl rubber 

Butyl rubber (RB) is a synthetic copolymer with unique physical and chemical properties. RB is 

a copolymer of isobutylene (IB) and a small amount of isoprene (IP). The IP units are added to 

provide an olefinic handle for cross-linking, most commonly performed using sulfur. The cross-

linking improves mechanical properties as well as abrasion resistance. RB has numerous 

attractive properties including low permeability to air, gases and moisture, excellent aging, 

thermal and chemical stability, resistance to ultraviolet (UV) degradation, oxidation and ozone, 

electrical insulation properties, good adhesion to other types of rubber and biocompatibility.
1,

 
2
 

PIB was first polymerized in 1873, but had a low molecular weight (MW). I. G. Farben 

was subsequently able to synthesize a higher MW PIB by decreasing the polymerization 

temperature in 1931.
3
 Their process used boron trifluoride as a catalyst at -75 °C. In 1937 

William Joseph Sparks and Robert McKee Thomas of Standard Oil and Development Company 

(Exxon) were able to synthesize poly(isobutylene-co-isoprene), commonly referred to as RB. 

They first used 1,3-butadiene as the co-monomer but found that 2-methyl-1,3-butadiene 

(isoprene, IP) was a better co-monomer. RB became more prominent in World War II due to the 

shortage in the supply of natural rubber. The desire to make PIB into a rubbery copolymer with 

low functionality, resulted in the production of a low-modulus vulcanized networks that resisted 

ozonolysis and oxidation.
4
 Furthermore, due to its oxidative, enzymatic and hydrolytic 

resistance, it is also biocompatible for long-term applications.
10

 

1.2.2 Synthesis of butyl rubber 

RB is currently synthesized by cationic polymerization of isobutylene (IB) (2-methylpropene) 

and IP at -78°C in methyl chloride (MeCl) (Scheme 1.1). High purity monomers are required for 

this process. They are purified via flashing and stripping. The polymerization is performed using 

a Lewis acid catalyst system (co-initiator and initiator). Some common Lewis acid co-initiators 

include alkylaluminum dichloride, tin tetrachloride, aluminum trichloride, titanium tetrachloride 

and boron trifluoride. Typical initiators include hydrochloric acid, organic acids, and Brønsted 

acids such as water. Alkyl halides can also be used. The polymerization is initiated by reacting 

IB with a Lewis acid to produce a carbenium ion (Scheme 1.2). The polymerization is 
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propagated by the addition of IB and IP to the carbenium ions. This reaction is highly 

exothermic, thus it can be manipulated by decreasing the temperature. The rate of propagation is 

limited by diffusion and can be tuned by manipulating temperature, solvent polarity and the 

presence of counterions, and has been determined to be around 108 L/(mol*s). The polymers 

propagate until chain transfer or termination occurs.
6, 7

 The polymerization of IB and IP occurs 

head-to-tail resulting in a predominantly 1,4-addition (90-95%)
 
. Chemical analysis has shown 

little evidence for the presence of 1, 2 and 3, 4 modes of entry.
8
 The amount of IP can be tuned 

from 0.5% to 7.0%. The IP is distributed randomly throughout RB, due to the low percentage 

and similar reactivity ratios between IP and IB.
3 

 

Lewis acid catalyst system

CH3Cl,  -78 
o
C

 

Scheme 1.1. General scheme for the cationic polymerization of butyl rubber 
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Initiation 

AlCl3 + H2O H (AlCl3OH)

(AlCl3OH)H + (AlCl3OH)

Propagation 

+ H
H

n

n

Termination and Chain Transfer

Chain Transfer

n

H H

n+1

++

Chain Termination via "proton abstraction"

(AlCl3OH) +
C

H

H
HH n

H

n

+ (AlCl3OH)H

+

 

Scheme 1.2. Cationic polymerization of RB showing initiation, propagation and termination 

steps. 

Chain transfer occurs when a monomer abstracts a proton from the growing polymer 

chain. The polymer chain is subsequently terminated and the monomeric carbocation propagates 

a new chain. The chain transfer can also occur with solvent, another polymer chain or impurities. 

The MW of the polymer is strongly influenced by the temperature of the polymerization because 

the activation energy of the chain transfer is higher than for propagation. This issue is more 

prominent in the synthesis of RB containing higher IP content. By increasing the IP percentage, 

lower MW copolymers are observed due to the co-monomer’s affinity to chain transfer.
4
 Chain 

termination occurs by unimolecular rearrangement of the ion pair, where the 2nd last carbon of 

the chain releases a proton and forms a terminal alkene bond. Chain termination can also happen 
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through formation of stable allylic carbenium ions or via carbocation reaction with nucleophilic 

species like amines or alcohols. The control of the termination step is important because it allows 

for production of RB with various MWs and which is capable of further modification.  

1.2.3 Chemical and physical properties  

RB exhibits high hydrolytic, oxidative and enzymatic resistance .
1,3,10

 The saturated segments of 

PIB impart RB with physical properties including low permeability to both gases and liquids, 

thermal stability, weathering, chemical and moisture resistance as well as vibration damping.
13

 

RB has a Tg of about -65 °C.
15

 Some important physical properties of RB are summarized in 

Table 1.1.  

Table 1.1. Physical properties of RB.
19

 

Property Value 

Density (g/cm
3
) 0.917 

Glass Transition, Tg (°C) -75 to -67 

Heat Capacity, Cp (kJ/kgK)
b 

1.95 

Refractive Index, np 1.5081 

 

RB and its derivatives are readily soluble in nonpolar solvents. Owing to the hydrophobic 

nature of RB, it has excellent stability, especially to UV degradation and oxidation. However RB 

can be degraded by atmospheric ozone over extended periods of time. This can be prevented by 

the introduction of antioxidants.
14

  RB has shown air retention within tires to be at least 8 times 

better than that of natural rubber.
11

 This is attributed to the efficient intermolecular packing 

resulting in relatively high density and low permeability to small molecule diffusants such as N2, 

CO2, He, H2, and O2.
16-18

 Table 1.2 compares the diffusivity of several gases in RB and natural 

rubber.  
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Table 1.2.1.2 Diffusivity of gases in butyl rubber and natural rubber at 25 °C.  

Gas 
Diffusivity (cm

2
/s) x 10

6 

Butyl Rubber Natural Rubber 

N2 0.045 1.1 

CO2 0.058 1.1 

O2 0.081 1.6 

H2 1.52 10.2 

He 5.93 21.6 

1.2.4 Properties and biomedical applications of polyisobutylene and butyl rubber 

The favorable properties of PIB-based materials allow them to be used in diverse array of 

products such as automobile tires, sporting equipment, adhesive sealants, viscosity modifiers, 

chewing gum, and drug eluting stents.
1,2

 The major use of PIB-based materials is in the 

automotive industry, involving tires (tire innerliner, innertubes) and other automotive parts 

(sidewalls and hosing).
12-14, 19

 PIB based materials have also been used in pharmaceutical 

applications such as RB-stoppers and have been approved by the food and drug administration 

(FDA) for chewing gum because of their biological inertness.
11

 The excellent biocompatibility of 

PIB-based material makes them ideal for other biomedical applications as well. For example, 

PIB-based materials are being investigated as corneal shunts for the treatment of glaucoma,
20

 as 

well as in synthetic aortic valves.
21

 There has also been some research showing  PIB-poly(methyl 

methacrylate) (PMMA) composites have good properties relative to commercial bone cements, 

because of  the incorporation of the elastomeric PIB into the glassy PMMA material.
23, 24

 

However, there were limitations in this application because of void formation throughout the 

material. This led to inconsistencies in the material itself, rendering it unsuitable for clinical use 

in bone cements. Multi-arm copolymers of PIB-cyanoacrylates have been reported as promising 

materials for intervertebral disk replacement.
25, 26 

 

In the Taxus™ vascular stent, a linear triblock copolymer of polystyrene (PS)-PIB-PS 

(SIBS) is used in the drug-eluting coating.
10, 28

 The PS blocks impart thermoplastic properties to 

the rubber, allowing it to behave as a cross-linked rubber at physiological temperature and also 

making it readily processable at higher temperatures or in solution. Moreover, copolymers of 

PIB and hydrophilic polymers for example poly(N,N-dimethylacrylamide) or poly(ethylene 
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glycol) (PEG) have been used to develop membranes that can encapsulate cells while allowing 

the exchange of oxygen, nutrients, and secreted proteins such as insulin across the membrane.
5
 

PEG incorporation into RB materials is also of interest because of PEG’s characteristic nature to 

exhibit protein resistance.
29

 PIB-PEG copolymers could therefore be used to protect against 

biofouling.
4
  There are also many other examples involving the functionalization of PIB for its 

incorporation into polymer networks
31-34 

as well as linear,
35-39

 star,
40-42

 miktoarm,
43-45 

and graft 

copolymers. 
45-51

 With these systems, interesting functions such as stimuli-responsive network 

swelling,
 31, 33

 templating of inorganic materials,
35,45

 cell encapsulation,
5 

controlled drug 

release,
52

 and protein patterning and resistance
45,46

 have been achieved.  

 

1.3 Arborescent polyisobutylene 

1.3.1 Historical development of arborescent polyisobutylene 

The development of several new living polymerization techniques during recent decades has 

provided the opportunity to make a wide variety of branched polymers. These include dendritic 

(hyperbranched and arborescent) structures, 
53, 54 

star-like structures, 
55

 graft copolymers, 
56 

and 

others. There has been significant interest in branched polymers due their significantly lower 

viscosity and less shear sensitivity than their linear counterparts.
58

 Dendritic structures have 

shown a great deal of potential, because of their spherical symmetry comprising a central core 

surrounded by a regular branching pattern.
59 

 Monodisperse dendritic polymers (dendrimers) 

were first synthesized by Fritz Vögtle in 1978 using the divergent approach.
65

  Since their first 

synthesis, many other groups including Denkewalter, Tomalia, Newkome, and Fréchet have 

worked in this area, developing divergent and convergent strategies for their synthesis.
60,61

 

Dendrimers have very narrow molecular weight distributions and have a controlled and 

symmetric structure. However dendrimers have a major drawback, which is their complicated 

and time-consuming synthesis process.  

 

Hyperbranched polymers are another class of branched polymers that have less 

symmetrical architectures and lower branching frequencies. The history of hyperbranched 

polymers can be dated back to the end of 19
th

 century, when Berzelius described the formation of 

a resin from tartaric acid and glycerol. In 1901 Smith reported the reaction between phthalic 
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anhydride or phthalic acid and glycerol to prepare a polymer.
62

 In the 1940s Flory outlined an 

route that relied on “one-pot polycondensation” to synthesize hyperbranched polymers.
63

 The 

one pot polycondensation is simple compared to dendrimer synthesis, however the reaction time 

is often very long (10-100 h). In the 1990s, Fréchet
57, 64, 65

 developed a novel approach for the 

synthesis of hyperbranched polymers called “Self-Condensing Vinyl Polymerization” (SCVP). 

This method allowed for the synthesis of hyperbranched structures using “inimers”. The inimers 

have the features of both a monomer and an initiator. In SCVP the initiator component of the 

inimer reacts with the monomer component of another inimer, forming a dimerthat has two 

active sites. (Scheme 1.3) 

 

Scheme 1.3. Self-condensing vinyl polymerization 

 

Arborescent polymers combine the features of both dendrimers and hyperbranched 

polymers, with longer polymer chains between the branching points. The concept of arborescent 

polymers dates back to 1991, where two papers were published almost simultaneous by 

Gauthier
76

 on arborescent polymers and Tomalia
61

 on comb-burst polymers. These syntheses 

relied on grafting onto procedures, where side chains were synthesized separately and then 

reacted with substrates bearing suitable coupling sites. Since then, high MW arborescent 

polystyrenes and polyisoprenes have been prepared by this method, but this synthetic route is 

rather time-consuming and difficult. In 1996 Puskas and coworkers developed an alternative and 

commercially feasible method using a small quantity of an inimer copolymerized with an 
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olefin.
65-67

 In 1998 Puskas and coworkers were able to synthesize high MW arborescent 

polyisobutylene (arb-PIB) (Figure 1.1) in a one-pot living-type polymerization process using 4-

(2-hydroxyisopropy)styrene or 4-(2-methoxyisopropyl)styrene as the inimer.
69, 70

 This living 

polymerization requires that the chain transfer side reactions and irreversible termination should 

be absent. Another requirement is that the initiating and propagating sites on the inimer have 

comparable reactivity. In 2008 the same group was able to develop high MW arborescent 

polymers comprising a PIB core and an outer shell composed of IB and IP, p-methyl styrene or 

cyclopentadiene.
71

      

 

Figure 1.1. Cartoon of arb-PIB prepared using the 4-(2-methoxy-isopropyl)styrene inimer. 

1.3.2 Synthesis of arborescent polyisobutylene and its copolymers 

Arb-PIBs with outer blocks are prepared by first polymerizing IB in the presence of the inimer 

and then adding the next monomer to complete the polymerization. For example, Scheme 1.4 

shows the polymerization of arb-PIB-co-IP. The core was synthesized by living carbocationic 
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polymerization of IB using 4-(2-methoxy-isopropyl)styrene as the inimer and TiCl4 as the 

initiator.
69

 The polymerization was carried out at -95 
o
C in methylcyclohexane (MeCHx) and 

MeCl at 60/40 vol/vol. The reaction order was determined to be close to one. The IP was added 

to this mixture after complete conversion of IB. To improve the incorporation N, N-

dimethylacetamide (DMA) was also added. The polymerization was terminated by addition of 

NaOH in methanol.  

CH CH2

C CH3CH3

O CH3

CH3

C

CH3

CH3 ++ TiCl4
MeCHx/MeCL = 60/40 v/v

T= - 95 
o
C

Arb C

CH3

CH3

Cl 2TiCl4+ C

CH3

CH3

Arb +

Arb C

CH3

CH3

C

CH3

CH3

Arb+ Polyisoprene

2,6 di-tertbutyl pyridine

Ti2Cl9

 

Scheme 1.4. Cationic polymerization of arborescent polyisobutylene 

    

1.3.3 Properties of arborescent polyisobutylene 

The initial studies have shown many possibilities for arb-PIB materials becoming an excellent 

substitute to the linear SIBS material in biomedical applications like stent coating.
73

 Also arb-

PIBs have better combinations of properties such as improved fatigue life and lower creep in 

comparison to the linear counterparts. This is due to a “double network” structure with a 

covalently branched core embedded into a self-assembling thermolabile network.
71,74

 Arb-PIB 

typically retains the properties of its linear counterparts including good thermal, environmental 
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and chemical resistance, coupled with processability, excellent barrier properties, and 

outstanding biostability and biocompatibility.
72,75

  The arb-PIB-co-IP with terminal IP-rich 

sequences exhibits thermoplastic elastomer properties unlike RB.
53

  The Gillies group has 

recently prepared arb-PIB grafted with PEG chains and compared them with the linear PIB-PEG 

graft copolymers.
68

 It was found that the arborescent materials exhibited similar resistance to 

protein adsorption as the linear analogues when cast as films, but different tensile properties and 

self-assembly behaviour in aqueous solution and in the solid state. Overall, this work reinforces 

the importance in polymer architecture in imparting specific properties to materials.  

 

1.4 Vascular stents   

Cardiovascular diseases (heart disease) have been one of the major causes of death in modern 

society. Cardiovascular diseases are a class of diseases caused by disorder of the heart and the 

blood vessels. The causes of cardiovascular diseases are diverse but atherosclerosis and 

hypertension are the most common. The atherosclerosis process includes a number of problems 

that result in the thickening of artery walls. It can be caused by the accumulation of lipid 

deposition and lipid-laden macrophages in atherosclerotic plaques. The rupture of these plaques 

is the prime reason behind arterial thrombosis, the changes in the artery wall that interfere with 

the blood flow and increase the chance of heart attack.
77

 Thrombosis is the formation of a blood 

clot in the artery which blocks the flow of the blood in the vessel. It occurs because of an 

immune system response involving platelets and fibrin which form a blood clot to prevent blood 

loss. This can result in too much clotting which can reduce the blood flow to a tissue causing 

hypoxia. In turn, this can result in accumulation of lactic acid in the oxygen-deprived tissue. The 

clot can also break free, resulting in the formation of a embolus, which is capable of clogging 

arterial capillary beds at a site distant from its origin. The use of vascular stents to treat these 

conditions has been one of the most effective and rapidly adopted medical interventions. The 

vascular stents are made of small expandable tubes which are mounted onto a balloon catheter 

and inserted into the narrow section of the vessel and then expanded. (Figure 1.2) A vascular 

stent acts as a stabilizing framework for the blood vessel and thus maintains its patency (a non-

obstructed state).
78 

Initially, only balloon inflations were used to reduce coronary lesions but this 

only served as a temporary solution.
79 

The rates of restenosis were very high after balloon 
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angioplasty because of recoil effect of the vessels and constrictive remodeling. Restenosis is re-

narrowing of the blood vessel leading to restricted blood flow. It occurs after angioplasty or 

insertion of a stent as new tissue grows inside the stent, covering the struts of the stent. These 

new tissue consists of healthy cells from the lining of the arterial wall. This is a favorable effect 

because development of normal lining over the stent allows blood to flow smoothly over the 

stented area without clotting. However, scar tissue may later form underneath the new healthy 

lining. The growth of these scar tissues underneath the lining of the artery may cause the artery 

to be become narrow, thus obstructing blood flow. Restenosis is typically seen 3 to 6 months 

after the insertion of stent.
82

 

 

Figure 1.2. Implantation of a stent into blood vessel
80

 

 

In 1987, Sigwart
81

 adopted intravascular stents to combat this problem; the stent was able 

to reduce the recoil phenomenon at both acute and chronic levels. This first generation of stent 

was named the bare metal stent (BMS). However there have been numerous reports suggesting 

that the BMS causes unavoidable vessel damage due to the pathological biological cascade, 

which causes thickening of the blood vessel (Figure 1.3b).
82 

The late luminal damage restricts the 

lasting effectiveness of the BMS, potentially leading to thrombosis and blood clotting. The 

restenosis rates for the BMS are between 20 to 40%, which is an improvement from 40 to 60% 

for arteries not stented.
83

 These rates are very reliant on the patient and their current/previous 

medical conditions such as diabetes. There are currently dozens of BMS available in the market 

and they are usually made of 316L stainless steel (316L SS), cobalt-chromium (Co-Cr) alloy or 
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titanium and its alloy (e.g. Nitinol). 316L stainless steel is the most common used metal for 

stents.
84

  

 

Figure 1.3. Cross-sectional images of porcine coronary arteries with stent explants, a) a 

poly(carbonate urethane)-coated stent exhibiting substantial inflammation and proliferation (2 

months), b) a bare metal stent at 3 months showing some restenosis and c) poly(styrene)-co-

poly(isobutylene)-co-poly(styrene) (SIBS)-coated stent at 180 days showing resilience
84

. 

 

The development of the drug eluting stent (DES) is considered to be the most successful 

improvement to stents in the history of their development. It uses polymers containing drugs 

coated on metal stents to help with the treatment of cardiovascular diseases.
85

 The DES provides 

mechanical support to the artery and also inhibits in-stent restenosis response as well as early 

thrombosis by means of pharmacotherapy (Figure 1.3c). A decade of clinical use of the first 

generation DES has shown overwhelming support of its benefits over BMS counterparts
 85, 86

. 

The first generation of DES that received regulatory approval from both European Union 

Conformiteé Européenne (CE) and FDA are Cypher
TM

 (Cordis, Warren, New Jersey, USA) and 

Taxus
TM

 (Boston Scientific, Natick, Massachusetts, USA). The Cypher
TM

 is made of 316L SS 

platform and has a coating of poly(ethelene-co-vinyl acetate) and poly(n-butyl methacrylate) 

carrying sirolimus
87

. The Taxus
TM

 also uses a 316L SS substrate, but it has a single layer of SIBS 

coating containing 1 μg/mm
2
 paclitaxel (PTX).

88
 Even though the first generation of DES 

represent a marked improvement over the BMS, there are still concerns. Restenosis has still been 

observed, along with poor re-endothelialization,
89

 delayed healing
89

 and tissue growth
90

 behind 

the polymeric film, causing thrombosis. While the cause of these phenomena are still not fully 

understood, multiple factors including toxic effects from the entrapped drug and/or an acute or 

delayed hypersensitivity reaction from the polymer and/or drug could be involved.
85

 The second 

a) b) c) 
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generation of DES incudes Endeavor
TM

 (Medtronic vascular, Santa Rosa, CA, USA) and Xience 

V
TM

 (Abbott Vascular, CA, USA)
91

The substrate for these stents is Co-Cr. Endeavor has a 

coating of zotarolimus and an anti-fouling phospholipid-based copolymer,
92

 while  Xience V has 

a coating of poly(n-butyl methacrylate) and poly(vinylidenefluoro-co-hexafluoropropylene) 

acting as an intermediate layer and drug carrier layer respectively.
93

 There is no convincing 

evidence that the 2
nd

 generation of DES are superior to 1
st
, as the problems like restenosis and 

impaired endothelial healing are still being reported for these devices. However the Co-Cr 

substrate in the 2
nd

 generation DES is more flexible with higher radial strength allowing for 

thinner strut design than stainless steel 316L SS 
94

.  

 

 

Figure 1.4. Drug release profile via control of wt % of drug to polymer.
99

 

 

The polymers used for DES are known to be durable, but they are limited by low 

adhesion to the metal, which can result in delamination of the polymers from the substrate, 

causing thrombosis.
95,

 
96

 These polymers have also been shown to exhibit erratic release profiles.
 

97, 98
 The DES drug release profiles have been studied extensively and the release of the drug can 

be controlled to some degree, by using different weight percentages
 99

 (wt. %) of drugs and 

modifications of the carrier.
 100, 101

 The release profile of SIBS and PTX has been tuned by 
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changing the wt. % of the mixture (Figure 1.4).
 99

 The release rate of PTX can be increased by 

the addition of more hydrophilicity, by using of poly(styrene-co-maleic anhydride) (SMA) as 

part of the polymer mixture.
 101

 There has also been research done on using biodegradable stents 

(BDS), which can be prepared from both polymers (e.g., poly(lactic acid), poly(glycolic acid), 

polycaprolactone) and metals (Mg-based or Fe-based alloys).
102

 The BDS are designed to 

temporarily support the artery for about 3-6 months.
85

 The polymer most commonly used in 

biodegradable stents is poly(L-lactic acid) (PLLA), which is metabolized into lactic acid, carbon 

dioxide and water.
103

 Metals with low toxicity like pure magnesium, iron and their alloys can be 

applied in designs of BDS.
104

 The BDS have several advantages but also have several 

limitations. For example, ester hydrolysis can cleave random sites and will result in a burst 

release of drug. In addition, accumulated acidity caused by the degradation can lead to local 

chronic inflammation and hypersensitivity. Once the polymer has been degraded, the substrate 

can have the same problem as BMS. Moreover these biodegradable polymers do not have the 

ideal mechanical properties needed for the constant wear in vivo
107

 and have similar rates of 

restenosis as DES.
105, 106 

 The limitation with using a biodegradable metallic stent made of Mg or 

its alloys is that Mg corrodes into soluble Mg(OH)2, MgCl2 and H2 at a fast rate.
108

 The released 

Mg ions, together with the formation of hydrogen bubbles will increase local pH values, which 

again can cause chronic inflammatory reactions and blood disorders.
109, 110

 Also the metal-based 

BMS becomes thinner during the process of corrosion, resulting in the loss of strength of the 

scaffolding. The BMS made of pure Fe and its alloys are still under evaluation concerning the 

biocompatibility and toxicity of the degradable products.
111, 112

  

The DES has three major components - the drug, polymer, and scaffold. The two drugs 

approved for clinical use are sirolimus and PTX. These drugs have very different mechanisms of 

action, but yield a similar result of inhibition of cell proliferation. Sirolimus (rapamycin) is a 

natural macrocyclic, lipophilic lactone with immunosuppressive activity. Sirolimus was first 

isolated in 1970’s from bacteria Streptomyces hygroscopicus found in soil samples from the 

Easter Islands.
 113

 It has excellent antimicrobial, antifungal and immunosuppressive properties, 

and is also used to prevent rejection in organ transplantation. Sirolimus binds to a specific class 

of cytosolic proteins called FK binding protein 12 (FKBP12), which results in inhibition of 

regulatory signal transduction kinase.
114-116

 On the other hand, PTX inhibits cell proliferation by 

stabilizing microtubules. It interferes with the normal breakdown of microtubules during cell 
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division. PTX has shown a remarkable reduction in neointimal hyperplasia in animal studies, 

thus leading to its use in DES.
118, 119

  

The development of DES is multi-faceted and complicated in terms of polymer and drug 

selection, every decision can change the way the stent affects the therapeutics of the DES. The 

current approaches of optimizing the DES are focused on preparing new platforms, new coatings 

and new techniques of elution.
120

 There has been far more focus on methods used to combine 

drug and stent. For example, the use of different drug loading methods can influence the release 

kinetics and stent-blood interface.
121

 The current commercial DES has disadvantages such as 

delamination and burst release, but these problems can be fixed through optimization. Therefore 

it should be possible to capitalize on the excellent mechanical properties of the DES.  

1.5 Paclitaxel 

 

Figure 1.5. Structure of paclitaxel 

PTX (Figure 1.5) is one of the most effective chemotherapy drugs used to inhibit cell division. It 

is used in the treatment of a broad range of cancers including lung, ovarian, and breast cancer.
122

 

PTX is also used to prevent restenosis, which is the recurrence of abnormal narrowing of an 

artery or valve after corrective surgery. First isolated in 1967 by Wall and Wani from the bark of 

Taxus brevifolia while working at Research Triangle Institute, it was named as Taxol. It was 

discovered later that entophytic fungi living in the bark synthesize PTX.
123

 PTX was first 

commercially developed by Bristol-Myers Squibb Company and sold under generic name of 

Paclitaxel with the trademark of Taxol. PTX is a crystalline powder with the empirical formula 
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of C47H51NO14. It has a molecular weight of 853.9 g/mol and the melting point is about 216 

o
C.

123
 PTX is very lipophilic, and therefore has very poor aqueous solubility (~0.4 μg/mL). PTX 

solubility is increased by using Cremophor EL (CrEL) (polyoxyethylated castor oil) as an 

excipient. However, CrEL is known to have many serious side effects, such as hypersensitivity 

reactions.
125

  Extensive research is been done to find other ways of administrating PTX to 

mitigate these side effects. This research is largely based on using nanoparticle assisted 

chemotherapeutic drug delivery.
126-128

 The use of nanoparticles for drug delivery has other 

advantages such as slower clearance and improvement of accuracy in target delivery.
124

    

Paclitaxel targets tubulin. It has been observed that PTX treated cells have difficulty with cell 

division, spindle assembly and chromosome segregation.
123

 PTX stabilizes and protects 

microtubules against disassembly. At higher doses it can block microtubule detachment from the 

centrosomes.
123

 Because of its biological properties, PTX is also being used as an 

antiproliferative agent to prevent restenosis of coronary stents and is one of two drugs most 

commonly found in drug-eluting stents, the other being Sirolimus.  

 

1.6 Evaluation of polymers 

1.6.1 Physical characterization 

1.6.1.1 Tensile testing  

Tensile tests are among the most common mechanical tests that can be performed on materials. 

They are usually simple, relatively inexpensive and fully standardized, where the sample of 

specific material is exposed to controlled tension until failure. Tensile test results are very 

important in the selection of materials for any application. They show how a material will behave 

under force and are used to create stress (σ) versus strain (ε) curves of the material. Figure 1.6 

shows stress versus strain curves for some typical polymeric materials. Tensile testing is used to 

provide information about the material's ultimate tensile strength (UTS),
129

 Figure 1.7 Shows 

some important parameters gotten from a stress versus strain curve.   
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Figure 1.6. Stress – strain plot for typical polymeric materials. 

 

Figure 1.7. A stress – strain curve showing important parameters.   

 

A universal testing machine is the most common type of testing machine used for tensile 

tests. It uses two self-aligning grips where the sample is positioned and secured. The alignment 

of the sample is crucial, because if there is misalignment either due to an angle or offset to one 
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side the sample will undergo a bending force. This can be very bad for a brittle material and 

dramatically skew the results, causing the initial potion of the stress-strain curve to be non-linear. 

132
 The samples for tensile testing are aligned with the direction of the pull and stretched 

uniaxally until failure (breakage) by slowly increasing the tensile load. Tensile testing machines 

need to stretch the sample at a constant rate while at the same time measuring the instantaneous 

applied load and resulting displacement. The load (F) and the displacement (Δ) are used to 

determine the stress (σ) and strain (ε) by using the initial cross-sectional area A0 and length L0 by 

the following equation.
129

  

  
 

  
          

 

  
 

    

  
    1 

 

In the initial portions of the stress versus strain curve, most materials obey Hooke’s law to 

reasonable approximation. Therefore, the relationship between stress versus strain is linear. The 

slope of this region is known as modulus of elasticity or Young’s modulus (E). 

 

 
 

  
 

 
 

2 

 

The Young’s modulus is the measurement of the stiffness or resistance to elastic 

deformation of the material. In this region the material behaves elastically and will return to its 

initial shape after the applied stress is removed. Stiffer materials exhibit higher Young’s 

modulus.
129

 Once the stress versus strain deviates from the straight-line relationship and Hooke's 

Law no longer applies, some permanent deformation will result in the material. This point is 

called the elastic or proportional limit (yield point) and the material will plastically deform upon 

any further increase in load.
131

 The material will not return back to its initial shape under relaxed 

conditions (no load). However the elastic limit is not always well defined, so the yield strength is 

used. The yield strength is the stress required to produce a minor amount of plastic deformation.  

In the plastic portion of the curve the material undergoes a rearrangement of its internal 

molecular or microscopic structure, wherein atoms are moved to new equilibrium positions. 
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The plasticity is the result of molecular mobility of a material; However for crystalline materials 

it can result from dislocation motion.
133

 Materials missing this mobility, for example by having 

internal microstructures which block dislocation motion, are usually brittle rather than ductile. 

This stress versus strain curve of brittle materials is usually linear over the full range of strain 

and terminates in fracture without noticeable plastic flow.
132

 Another important point from the 

stress versus stain curve is the ultimate tensile strength (UTS). This is the maximum stress the 

material can sustain during the test. The UTS for brittle materials is at the end of the linear-

elastic portion of the stress-strain curve or close to the elastic limit. However for ductile 

materials the UTS is typically in the plastic portion of the stress-strain curve. The UTS is the 

highest point in the stress vs stain curve.  

 

A polymer usually follows Hooke’s law at lower strain, therefore enabling the calculation 

of Young’s modulus.
130

 However, for many elastomers and semi-crystalline polymers, the linear 

portion of the curve is difficult to define. Because of this, moduli may be determined by secant 

or tangent methods. In the secant method the curve is bisected and the slope (E) is determined 

from the bisecting line.
131

 In the tangent method the value of E is determined at any point in 

linear section of the curve. E for elastomers is normally very low, in the range of 0.5 – 1 MPa,
129

 

while semicrystalline polymers exhibit higher values for E and UTS. Elastomers usually have 

higher strain at yield point (yield strain) than other materials, in the range of 1 to 10.
132

 The yield 

strain is important, because a larger yield strain corresponds to resistance to brittle fracture, 

which is very important for many biomedical applications.   

 

The necking and drawing are important concepts in tensile testing. They show the 

behavior of the material and its fracturing. Necking occurs once the yield point is reached; there 

will be a site on the sample where the local stress is maximum, due to perhaps a nick or some 

other defect at the surface. The localized flow at this site cannot be compensated by further strain 

hardening, so the area at this site will be reduced.
129

 This will increase the local stress even more 

and thus accelerate the flow further. This localized and increasing flow will lead to necking in 

the material. Before the necking, the deformation of a material is usually uniform throughout the 

specimen, but after necking all subsequent deformation happens in the neck.
135

 The neck can 

become smaller and smaller until fracture. This is the fracturing process of most brittle 
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materials.
136

 However in the ductile material, once the necking is formed it does not continue to 

shrink but stretches to a “natural draw ratio” which is a function of temperature and specimen 

processing. The drawing is observed after this ratio. Drawing occurs when the material at the 

neck shoulder is pulled down. Through the drawing process the neck propagates until it is the 

full length of the sample.
132

 However not all polymers are able to withstand the drawing process 

and drawing will only happen when the necking process produces a strengthened microstructure 

whose breaking load is higher than the load needed to induce necking in the material just outside 

the neck area. Figure 1.8 shows the necking and drawing process of a polymer.  

 

 

Figure 1.8. Necking and drawing  

              

1.6.1.2 Rheology 

Rheology is the study of the deformation and flow of a material. It is used to study the 

deformation of materials whose behaviour falls between solids and fluids (i.e., viscoelastic 

materials).
136

 Rheological studies are used to determine the intrinsic properties of a material, 
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including its viscosity and elasticity. Viscosity (η) is the property of a fluids resistance to flow or 

deformation and is the relationship between shear rate and shear stress that causes the movement 

of a fluid (equation 5)
137

.  Rheology functions on the principle that an external force exerted on a 

material will result in the particles undergoing displacement relative to each other. This 

displacement of the particles is known as strain. An ideally viscous material will undergo 

irreversible strain after an external anisotropic force is exerted on it. An ideally elastic material 

on the other hand will undergo elastic strain once an external anisotropic force is exerted on the 

sample. The energy needed for this strain is stored, and after the force is released an elastic 

material will spontaneously fully recover to its original form. There are only a small number of 

materials with any importance which show ideally viscous behaviour. Most materials are neither 

ideally viscous nor ideally elastic, but rather exhibit behaviour between these two ideal 

conditions.
138

 These materials are called viscoelastic materials. Viscoelastic materials exhibit a 

time dependent elastic response. Once the force is removed, part of the deformation recovers 

instantly. More force is recovered with time and in some materials there will be a permanent 

deformation. Rheology was first coined in 1920 by Eugene Bingham a professor at Lehigh 

University.
134

 Rheological studies can be utilized to analyze substances with complex 

microstructure, for example muds, sludge, suspensions, polymers, bodily fluids and other 

biological materials or other materials which belong to the class of soft matter.
140

  

Rheology studies are performed using a rheometer. This instrument imposes a specific 

stress to the fluid, and monitors the resultant deformation. The rheometer has the ability to 

provide a steady shear rate that enables it to be used as a viscometer to measure steady shear or 

bulk viscosity.
135

 It is also able to apply very small amounts of rotation or deformation in a 

dynamic or oscillatory fashion.  This dynamic shear testing can be visualized as if the sample 

were being “vibrated” between parallel plates or concentric cylinders, as opposed to being 

sheared in a continuous fashion. The rheometer enables this “vibratory” measurement to be 

applied to a sample in a controlled fashion while also controlling the sample temperature.
142 

There are number of typical sample testing geometries, the most common type being parallel 

plates (Figure 1.9A), cone and plate (Figure 1.9B), concentric cylinder (Figure 1.9C), and solid 

or torsion rectangular (Figure 1.9D).
139 

The parallel plate geometry is more commonly used for 

elastomers while concentric cylinder is more commonly used for fluids.   
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Figure 1.9. Common rheometer testing geometries: a) parallel plate, b) cone and plate 

c)concentric cylinder, d) solid or torsion rectangular.
139 

 

Figure 1.10. Illustration of the parallel plate model 

 

In a typical measurement using the parallel plate configuration, the material is placed 

between two plates, a moving plate and a fixed plate (Figure 1.10). The top plate (moving plate) 

with a known surface area of A [m
2
], is moved by force F [N=kgm/s

2
] at the speed of v [m/s]. 



24 

 

The bottom plate (fixed plate) will remain at rest and can be used to provide heat to the material. 

The height of the material is known as h [m].
138

 The change in the position of the moving plate 

will result in the thinnest element of the material undergoing displacement between the plates. It 

is fundamentally important for rheological studies that displacement is laminar. If it is turbulent, 

the flow resistance will be increases, and material will show false rheological properties. The 

rheological properties that can be determined from this test are shear rate (D), shear stress (τ), 

viscosity (η) and strain (γ). Shear rate (equation 3) or the velocity gradient is the rate at which 

shear deformation occurs and it has the units of s
-1

.
135

  

  
 

 
      3 

 Shear stress (equation 4) is a parallel-acting force, where two layers inside the fluid slide against 

each other. This is in contrast to compression (perpendicular-acting force), tension (stretching 

force), and torsion (twisting force). Shear stress has the units of Pascal. 

  
 

 
       4 

Viscosity of a fluid is the ratio of the shear stress to shear rate. Viscosity has the units of Pascal-

sec. 

  
 

 
       5 

Strain is ratio of displacement and gap and thus is dimensionless.  

  
  

 
      6 

Hooke’s law is used to give the relationship between force and deformation. Hooke’s law states 

that the force is proportional to deformation. The elastic modulus (G) is the constant of 

proportionality and it is an intrinsic property of a solid.  

          7 

 

Rheological properties of viscoelastic materials can be determined by running a 

sinusoidal oscillations experiment. The basic principle of this experiment is to induce a 
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sinusoidal shear deformation into the material and measure the resultant stress response. The 

frequency of oscillation (ω) of the shear deformation is used to determine the time scale. In this 

experiment one plate is kept stationary (bottom plate) while the other plate (top plate) is rotated 

by motor, thus imposing a time dependent strain on the sample. 

 

 ( )        (  )    8 

 

The time dependent stress τ (t) is determined by measuring the torque imposed by the 

sample onto the rotating plate. The time dependent stress response at a single frequency reveals 

key differences between materials. Ideally an elastic material will exhibit stress in phase with the 

applied sinusoidal strain deformation. Therefore sample stress is proportional to the strain 

deformation, and the proportionality constant is the shear modulus of the material. However in 

an ideally viscous material, applied strain and the measured stress are out of phase, with a phase 

angle of α = π/2. Again sample stress is proportional to the rate of strain deformation and pro-

portionality constant for ideally viscous material is the viscosity of the fluid. Viscoelastic 

materials have a response that is both in-phase and out-of-phase. This response shows the solid 

like (in-phase) and liquid like (out-of-phase) behaviour of the material. The phase shift of α of 

viscoelastic materials lies between that of solids and liquids, 0< α <π/2. The data for viscoelastic 

materials is analyzed by decomposing the stress wave into two waves of the same frequency, one 

in phase (sin ωt) with strain wave and one out of phase(cos ωt), described by equation 9 

  

            
     (  )    

     (  )   9  

 

The viscoelastic behaviour of a material at ω can be characterized by the storage modulus (in-

phase), G’ (ω), and the loss modulus (out-of-phase), G’’ (ω)   

   
  
 

  
 , storage or elastic moduli    10 

   
  
 

  
, viscous or loss moduli    11 

Oscillatory experiments are typically performed to measure G’(ω) and G’’(ω). These  

measurements are made as a function of ω, because these material properties are dependent on 
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the time scale over which it is deformed. Figure 1.11 shows a typical example of G’(ω) and 

G’’(ω) plot.
140 

Figure 1.11a displays a plot for hydrogel particles suspended in a liquid?. At low 

ω the response is viscous-like, where G” is larger than the G’. However at the higher ω the G’ 

dominates the response, indicating solid-like behaviour. Figure 1.11b show the response of an 

elastomer which is dominated by a solid like behaviour over full range of available ω. 

 

 

Figure 1.11. Frequency dependence of G’ and G’’ for (a) a suspension of hydrogel and (b) for 

the elastomer blend DC-9040 (Dow Corning), a typical additive in cosmetic and pharmaceutical 

formulations.
140

  

 

Another important parameter from this test is the loss tangent, which is the ratio of viscous 

modulus over elastic modulus. It indicates the behaviour of viscoelastic material. A loss tangent 

less than one is indicative of a solid-like matrial, while higher than one indicates a more viscous 

material.        

             
  

       12 

Another experiment that can be done using the rheometer is the creep and recovery test. In the 

creep section of this experiment the stress is increased instantly from 0 to τ0 and the strain is 

recorded against time. The material will react to this stress by deforming. In the recovery section 

of this experiment the stress is removed and the elastic response of the material is measured. 
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When creep and recovery tests are combined they enable the measurement of elasticity of the 

sample, because an elastic material will recoil and attempt to recover its original shape. In an 

ideal elastic material, as long as the stress is applied, a constant strain will be observed. 100 % of 

the strain energy is stored and once the stress is removed the material will display immediate 

recovery to original shape. In an ideal viscous material the constant stress will result in the strain 

increasing linearly over time. The input stress is used up for flowing process and once the stress 

is removed the strain obtained by the material will be maintained, thus there will be no recovery. 

The viscoelastic material will show characteristics of both elastic and viscous strain. A partial 

recovery by the elastic portion will be observed, but the portion of viscous strain will remain. 

Viscoelastic materials which exhibit complete recovery after sufficient time following removal 

of load are called anelastic.  

 

Figure 1.12. Creep and recovery a) stress applied to the polymer vs time, b) Resultant strain 

profile of the polymer.  

 

Figure 1.12 shows an ideal creep and recovery of a material. The applied stress will lead to a 

spontaneous jump in strain, the strain rate will then decrease. During this time the 

macromolecules are reoriented and stretched. In the recovery phase two types of recoveries take 
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place, elastic and viscoelastic. The elastic recovery is the initial drop in strain. In the viscoelastic 

recovery stain is recovered over time. If the remaining strain is very small the material is called 

viscoelastic solid. If it is large, the material is considered as a viscoelastic liquid. Typically, 

creep and recovery data is expressed in term of compliance (J). Compliance is a material specific 

quantity and it measures the flexibility of a material. The greater the compliance the more a 

material can be strained under certain shear stress.   

 ( )   ( )         13 

 

1.7 Motivation and Goals of Thesis  

While much research has explored the optimization of RB and PIB for applications in the 

automobile industry, the promise of these polymers for biomedical applications has yet to be 

fulfilled. Due to the limited numbers of chemical functional groups on RB available for 

performing chemical reactions, the functionalization of these polymers has yet to be fully 

explored, especially in the areas of tuning their properties and functions for biomedical 

applications. In the area of DES, there are limitations to the current coating, including poor 

control over the drug release, and modest adhesion to the metal surface. The overall goal of this 

thesis was to develop new synthetic methods for functionalizing both linear RB and arb-PIB, 

especially with carboylic acid moieties, to study how these functional groups affect the physical 

properties of the rubber, and to apply them for the covalent conjugation of PTX to control its 

release. The physical properties of the materials will be examined, primarily by tensile and 

rheological experiments. A preliminary biological study of linear RB and arb-PIB will be carried 

out to look at the potential application of these polymers for stent coatings.     

 Chapter 2 describes the synthesis of carboxylic acid functionalized RB and studies of its 

properties. The starting material will be the allylic alcohol functionalized polymer previously 

developed in the Gillies group. Once the carboxylic acid functionalized RB is synthesized, its 

mechanical properties need to be examined and compared with RB and it derivatives. The 

mechanical properties will be examined by tensile testing and rheological studies. The 

introduction of chemical functionality, and in particular carboxylic acid moieties should improve 

the tensile properties, due to increasing number of electrostatic interactions and hydrogen 
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bonding.  Additionally, RB containing lower (2.2) and higher (7) percent of IP will be compared 

to determine the effects of the density of pendant functional groups on the properties. It is 

hypothesized that the derivatives prepared from RB with higher IP containing should have better 

tensile and rheological properties due to the presence of more electrostatic and hydrogen bonding 

interactions.   

 Chapter 3 describes the synthesis and study of PTX functionalized linear RB for potential 

stent coating applications. The mechanical properties of the drug conjugate will be examined by 

tensile and rheological experiments and compared to carboxylic acid functionalized RBs and 

SIBS. It is hypothesized that the PTX functionalized RB should be more brittle then carboxylic 

acid functionalized RBs, due to introduction of crystallinity arising from the PTX. Additionally 

PTX release studies will be conducted to evaluate the effects of the covalent conjugation on the 

drug release rates. These materials will be compared with commercial SIBS. Also the toxicity 

and ability of films of these polymers to support the growth of cells will be evaluated.  

 Chapter 4 describes the application of the synthetic methods described in Chapters 2 and 

3 to arb-PIB. The mechanical and rheological properties of the polymers are studied along with 

the drug release, film properties, and preliminary biological properties. The results will be 

compared to the SIBS and the linear analogues.    
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Chapter 2 

2 Carboxylic acid functionalized butyl rubber: synthesis, 

characterization and physical properties 

2.1  Introduction 

Polyisobutylene (PIB)-based materials are widely used commercially in a diverse array of 

products such as automobile tires, sporting equipment, adhesive sealants, viscosity modifiers, 

chewing gum, and drug eluting stents.
1,2

 The widespread use of these polymers can be attributed 

to their favorable properties, including but not limited to, exceptional thermal and chemical 

stability, impermeability to gas and water, high damping, high elasticity, and non-toxicity. While 

the simple, saturated hydrocarbon backbone is responsible for many of PIB's advantageous 

properties, it also limits the ability to modify and tune the properties of the polymer. For this 

reason, many applications of PIB have involved the introduction of chemical functionalities to 

the PIB backbone or terminus, or the incorporation of PIB into block copolymers. For example, 

isobutylene can be copolymerized with small amounts (i.e., < 8 mol%) of isoprene (IP) to 

produce a random copolymer commonly referred to as RB. These sites of unsaturation on the IP 

can be used to cross-link the rubber, providing the mechanical properties required for many 

applications. In the Taxus™ vascular stent, a linear triblock copolymer of polystyrene (PS)-PIB-

PS (SIBS) is used in the drug-eluting coating.
3,4

 The PS blocks impart thermoplastic properties to 

the rubber, not only allowing it to behave as a cross-linked rubber at physiological temperature, 

yet also making it readily processable at higher temperatures or in solution. There are also many 

other examples involving the functionalization of PIB for its incorporation into polymer 

networks
5-8

 as well as linear,
9-13

 star,
14-16

 miktoarm,
17-19

 and graft copolymers. 
20-25

 With these 

systems, interesting functions such as stimuli-responsive network swelling,
5,7

 templating of 

inorganic materials,
9,19

 cell encapsulation,
26

 controlled drug release,
27

 and protein patterning and 

resistance
20,22

 have been achieved.  
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Of the various chemical functionalities that can be introduced to PIB, carboxylic acid 

moieties are of particular interest. First, they provide versatile functional handles that can be used 

for further functionalization with a wide range of nucleophiles such as amines and alcohols. 

Secondly, they provide sites for ion-pair or hydrogen-bond-mediated aggregation within the 

rubber. This can potentially alter the material properties such as mechanical strength and 

rheological behavior.
28-30

 Thirdly, carboxylic acid moieties can enhance adhesion to metal 

surfaces.
31-33

 This has the potential to reduce delamination from vascular stents, a challenge that 

has been previously reported for the SIBS material in the Taxus™ stent.
3
  

 

There are several examples involving the functionalization of the PIB terminus with 

carboxylic acid moieties,
34,35

 as well as the polymerization of poly(t-butylacrylate) and poly(t-

butylmethacrylate) from atom transfer radical polymerization (ATRP) initiation sites at the 

terminus or in the middle of the PIB chain, followed by acidic or thermal deprotection to provide 

carboxylic acid moieties.
12,17,18,36

 There are also examples involving the introduction of pendant 

carboxylic acids along the backbone of RB via the grafting of maleic anhydride, followed by the 

anhydride ring-opening with amines or alcohols.
37-40

 However, there are still relatively few 

studies concerning the effects of these carboxylic acid moieties on the properties of these 

modified materials.
38,39,41,42

 

 

The Gillies group has reported a simple and highly efficient epoxidation/elimination 

sequence to provide access to RB derivatives having allylic alcohol moieties along the polymer 

backbone. These hydroxyl groups have been activated and reacted with alcohol and amine 

functionalized PEG to provide RB-PEG graft copolymers.
20,21

 They have also been further 

derivatized to undergo elimination to exo-dienes, which can undergo Diels Alder reactions to 

prepare graft copolymers with or without carboxylic acid moieties.
40

 Presented here is an 

approach for the elaboration of the allylic alcohol moieties to introduce pendant carboxylic acid 

moieties via either the ring opening of cyclic anhydrides. The effects of the carboxylic acid 

moieties on the adhesion of the resulting materials to stainless steel surfaces, as well as their 

tensile and rheological properties are explored.  
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2.2 Experimental section 

2.2.1 General procedures and materials 

Two forms of RB, one with 2 mol% isoprene (IP), Mw = 400 kg/mol, PDI = 2.8 and the other 

having 7 mol% IP, Mw = 1050 kg/mol, PDI = 3.3 were provided by LANXESS Inc. (London, 

Canada). Polymer 2-l was prepared as previously reported.
21

 Solvents were purchased from 

Caledon Labs (Caledon, Ontario). All other chemicals were purchased from either Sigma-

Aldrich or Alfa Aesar and were used without further purification unless otherwise noted. Dry 

toluene was obtained from an Innovative Technology (Newburyport, USA) solvent purification 

system based on aluminium oxide columns. Dichloromethane, pyridine and triethylamine were 

freshly distilled from CaH2 prior to use. 
1
H NMR spectra were obtained in CDCl3 at 400 MHz or 

600 MHz on Varian Inova instruments. NMR chemical shifts (δ) are reported in ppm and are 

calibrated against residual solvent signals of CDCl3 (δ 7.26). Infrared spectra were obtained of 

films from CH2Cl2 on NaCl plates or as KBr pellets using a Bruker Tensor 27 instrument. Size 

exclusion chromatography (SEC) was performed on a Waters 2695 separations module equipped 

with a 2414 differential refractometer using THF or CHCl3 as solvent and two Polymer 

Laboratories Resipore  columns (300 mm x 7.5 mm) in series as the stationary phase. Molecular 

weight calibration was carried out using PS standards. Differential scanning calorimetry (DSC) 

and thermogravimetric analysis (TGA) were performed on a Mettler Toledo DSC 822e. For 

DSC, the heating/cooling rate was 10 °C/min between -120 to +150 °C. Glass transition 

temperatures were obtained from the second heating cycle. 

2.2.2 Synthesis of polymer 4d-l  

Allylic alcohol functionalized polymer 2-l 
21

 (10 g, 3.9 mmol of hydroxyl groups) was dissolved 

in 350 mL of anhydrous toluene in a nitrogen purged flask containing a magnetic stir bar. The 

solution was heated to 70 °C prior to the addition of triethylamine (NEt3) (11 mL, 78 mmol) and 

4-(dimethylamino)pyridine (DMAP) (0.99 g, 7.8 mmol). Finally, a solution of diglycolic 

anhydride (4.5 g, 39 mmol) dissolved in anhydrous toluene (30 mL) was added via syringe and 

the reaction mixture was allowed to stir at 70 °C for 16 hours. The product was washed with 

distilled water then twice with 6M HCl before being concentrated under reduced pressure. The 

product was purified by precipitation (2:1 acetone/toluene) and then dried under high vacuum to 
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provide 9.1 g of polymer 4d-l as off-white amorphous solid in 90 % yield. Tg= -61 °C; 
1
H NMR 

(400 MHz, CDCl3) δppm 5.29 (br s, 1H), 5.12 (s, 1H), 4.95 (s, 1H), 4.20-4.40 (m, 4H), 1.42 (s, 

145H), 1.12 (s, 431H); IR (KBr pellet): 1230, 1365, 1390, 1475, 1733, 1758, 2974 cm
-1

; SEC 

(CHCl3): Mw = 309 kg/mol, PDI = 2.5. 

2.2.3 Synthesis of polymer 4d-h 

Epoxidized RB derivative 1-h
22

 (10 g, 12 mmol of epoxide) was dissolved in 350 mL of 

anhydrous toluene. To this solution was added one equivalent of HCl (1.0 mL, 12 mmol) and the 

reaction mixture was stirred at at room temperature for 1 hour. Due to solubility issues, 2-h was 

not isolated. Instead, the HCl was neutralized with sodium carbonate and then the solution was 

dried with MgSO4. The mixture was centrifuged and the solution of 2-h decanted from the 

MgSO4. The solution was then heated to 70 °C, then 20 equivalents of NEt3 (33.7 mL, 242 

mmol) were added followed by 2 equivalents of DMAP (3.1 g,  24.2 mmol). A solution of 

diglycolic anhydride (10 equivalents, 14.0 g, 121 mmol) dissolved in toluene was then added via 

syringe and the reaction mixture was stirred at 70 °C overnight. The product was then purified 

and isolated as described above for 4d-h to provide 8.6 g of the polymer as a white amorphous 

solid in 86 % yield over the two steps.; Tg= -53 °C; 
1
H NMR (400 MHz, CDCl3) 5.29 (brs, 1H), 

5.12 (s, 1H), 4.95 (s, 1H), 4.20-4.40 (m, 4H), 1.42 (s, 69H), 1.12 (s, 209H). IR (thin film from 

CH2Cl2): 1230, 1365. 1390, 1475, 1733, 1758, 2974 cm
-1

. 

2.2.4 Tensile testing 

To make samples for tensile testing, 1.5 g of polymer was compressed into a 0.3 mm thick flat 

sheet using a hydraulic hot press (Carver Hydraulic Unit Model # 3851 OC). Samples 60 mm x 5 

mm in size were cut from this sheet. The tensile test was performed at ambient (22 ± 1 ºC) 

temperature  using an Instron 3300 Series Universal Testing Machine with a 1-kN load cell at an 

extension rate of 400mm/min, in accordance with ASTM D882 – 12.
43

 Load and extension were 

calibrated prior to the test. To prevent slippage of the samples from the clamps of the testing 

machine, 10 mm of material was inserted into each clamp, leaving an effective sample length of 

40 mm. At least six trials were performed for each polymer. 



41 

 

2.2.5 Adhesion tests 

Rubber samples for adhesion tests were prepared by compressing the polymers into flat sheets 

0.5 to 3.3mm thick between mylar and teflon using a hydraulic hot press (Carver Hydraulic Unit 

Model # 3851 OC) for 5 minutes at 100 °C. A 6.35  50.8 mm strip of material was cut from the 

sheet using a standard die. The test specimens were then placed in the apparatus at right angles to 

each other to define the area of contact. A 450 g weight was placed on the weight support, the 

dwell time was set to 60 seconds, and strips were died out with the Tel-Tak die. The stainless 

steel specimen was placed in the top platen. The Mylar was removed from the rubber surface and 

placed in the lower platen. The force gauge was zeroed. The lower platen was raised to make 

contact with the specimen in the upper platen. At the end of the dwell time period the drive 

motor began to pull the specimens apart and the force required for separation was recorded. The 

measurements were performed in triplicate for each sample.  

2.2.6 Rheology 

Rheological measurements were performed using a TA Instruments AR-1500ex stress-controlled 

rheometer with a 25 mm-diameter parallel-plate tool. Sandpaper was glued to both plates to 

prevent slip. Circular samples 25 mm in diameter were cut from a sheet prepared by compressing 

1.5 g of polymer into a flat sheet using the hydraulic hot press. The sample thickness was 

measured at three different places, approximately 0.5 mm for all samples. The sample was then 

placed in the rheometer, the gap between the plates set to the lowest of these measurements, and 

the sample annealed at 100 ºC for 1 hour. Small-angle oscillatory shear and creep-recovery 

measurements were carried out on each sample. Oscillatory tests were performed at angular 

frequencies between 0.1 and 100 rad/s with the oscillating stress amplitude controlled at 100 Pa, 

which we confirmed was in the linear viscoelastic regime for our materials. All rheological 

measurements were done at 37 ºC. The data were averaged over at least three trials for each 

polymer. 
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2.3 Results and Discussion 

The starting material for the synthesis was a previously reported epoxidized RB derivative.
21,22

 

This material was prepared from RB starting materials containing either low (2 mol%) or high (7 

mol%) IP content, providing derivatives containing either 2 mol% (1-l) or 7 mol% (1-h) 

epoxidized monomers. 1-l was reacted with aqueous HCl in toluene to provide the allylic alcohol 

derivative 2-l (Scheme 2.1). For the initial synthetic studies, the reactivity of 2-l with various 

cyclic anhydrides (3a-d) was investigated.  

 

Scheme 2.1.  Synthesis of butyl rubber with pendant carboxylic acid moieties. 

 

As shown in Scheme 2.1, the reaction of 2-l with excess maleic anhydride 3a in the 

presence of triethylamine (NEt3) and 4-(dimethylamino)pyridine (DMAP), standard conditions 

for the reaction of alcohols with anhydrides,
44,45

 resulted only in the recovery of the starting 

material. The saturated, and thus more reactive succinic anhydride, 3b, under the same 

conditions, provided only minimal conversion to the desired carboxylic acid, 4b-l. The more 

reactive pentadioic anhydride 3c provided approximately 50% conversion to acid 4c-l, while 

finally the electron deficient diglycolic anhydride 3d provided a quantitative conversion of all 

allylic alcohols to the corresponding acid 4d-l based on 
1
H NMR spectroscopy (Figure 2.1). 

Even if the excess of anhydride was dropped to 10 equivalents quantitative conversion was 

retained. To achieve higher carboxylic acid content, the reaction was also performed on the 

material derived from the 7 mol% IP rubber. In this case, the epoxide 1-h was directly converted 

to 4d-h without isolating the alcohol intermediate.  
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Figure 2.1. The downfield region of the 
1
H NMR spectra of a) polymer 2-l and b) polymer 4d-l 

showing conversion of the allylic alcohol to the carboxylic acid derivative.  

 

 In addition to NMR spectroscopy, the products were also characterized by infrared (IR) 

spectroscopy. The appearance of two peaks in the carbonyl region at 1728 and 1748 cm
-1

 was 

consistent with the introduction of carboxylic acid moieties via ester linkages. Chloroform 

performed better than THF for size exclusion chromatography (SEC) of 4d-l, and a weight 

average molecular weight (Mw) of 309 kg/mol and a polydispersity index (PDI) of 2.5 relative to 

PS standards was measured under these conditions. This was a modest decrease relative to the 

starting RB, which had an Mw of 400 kg/mol and a PDI of 2.8. This might be attributable to 

some interactions of the carboxylic acid moieties with the column rather than due to any 

degradation of the backbone. Due to column interactions, meaningful SEC results could not be 
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obtained for 4d-h. DSC revealed that polymer 4d-l had a Tg of −61 C, in comparison to −70 C 

to −63 ºC reported for RB.
46,47

 A further increase to −53 C was observed for polymer 4d-h with 

the higher carboxylic acid content. It is likely that the increase in intermolecular hydrogen-

bonding and dipole-dipole interactions due to the introduction of the polar pendant groups 

restricts the segmental motion of the polymer, resulting in this increase in Tg.   

2.3.1 Measurement of adhesion 

The adhesion of rubber to stainless steel is critical for its use in vascular stent coatings, as well as 

a vast array of other potential coating applications, as weak adhesion can lead to coating 

delamination. The adhesion of the polymer to the metal substrate is result of the van der waals 

forces acting between the polymer and the metal surface. Unmodified RB is known to show only 

moderate adhesion to stainless steel.
42

 It is therefore of interest to determine whether the 

introduction of carboxylic acid moieties enhances the rubber's adhesivity. In addition, the 

adhesivity of the various synthetic intermediates, including the epoxide- and hydroxyl-

functionalized rubber derivatives, were also studied.  

 To measure adhesion, a RB sample was pressed between two stainless steel plates with a 

contact area of 320 mm
2
, and the force required to separate the plates was measured. As shown 

in Table 2.1, all of the functionalized rubber derivatives exhibited stronger adhesion than the 

parent RB. As expected, the carboxylic acid functionalized rubber had the highest adhesivity, 

likely due to the ability of the carboxylic acid moities to undergo specific ligand-metal 

interactions at the stainless steel surface. The hydroxyl-functionalized rubber also exhibited good 

adhesivity, likely for similar reasons. Based on the expected interactions with the metal surface, 

it was anticipated that the materials derived from the RB with the higher IP content (PIB-h,1-h, 

2-h, 4d-h) would exhibit higher adhesivity than the analogous materials prepared from the lower 

IP content rubber (PIB-l,1-l, 2-l, 4d-l). This was not the case, however. The lower apparent 

adhesion of 2-h and 4d-h can possibly be attributed to the properties of the materials, as the test 

resulted in the fracture of the material itself during the test, rather than delamination from the 

metal surface. These properties will be explored further through mechanical and rheological 

studies described below. For comparision, a comparable experiment on a phosphonium-

functionalized rubber prepared from RB with 6.5 % IP content gave a separation force of 30.3 

psi, very similar to that of the carboxylic acid functionalized 4d series.
48

 Importantly, our results 
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indicate that a significantly enhanced adhesivity can be achieved even at very low (2 mol%) 

carboxylic acid content.  

Table 2.1. Adhesive properties of butyl rubber derivatives. 

Sample Separation force (psi) Sample Separation force (psi) 

PIB-l 14.6 ± 0.3 PIB-h 12.1 ± 0.2 

1-l 22 ± 2 1-h 25 ± 2 

2-l 29.6 ± 0.6 2-h 20 ± 2 

4d-l 33 ± 1 4d-h 28 ± 3 

  

2.3.2 Tensile testing 

Tensile strength is very important for predicting the structural integrity and strength of the 

material and determining its performance in load-bearing applications. Tensile testing of samples 

1-l/h, 2-l/h, and 4d-l/h was performed using the standard ASTM D882 – 12 protocol.
43

 

Representative stress-strain curves are shown in Figure 2.2, and the Young's modulus, ultimate 

tensile strength, and elongation at break are summarized in Table 2.2. The Young's moduli of the 

RB with 2 mol% isoprene (PIB-l) and its derivatives 1-l, 2-l, and 4d-l, were all similar, in the 

range of 0.3-0.6 MPa. The tensile strength of  1-l was the same as that of the original RB. The 

tensile strength was slightly higher for the hydroxyl-functionalized polymer 2-l, and increased 

significantly for the carboxylic-acid-functionalized polymer 4d-l. The observed increase in 

strength may result from ionomeric or hydrogen-bond-mediated cross-linking involving the 

carboxylic acid moieties and, to a lesser extent, the hydroxyl groups. No significant trend was 

observed in the data for percent elongation at break.  
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Figure 2.2. Representative stress-strain curves for functionalized rubber derivatives.  

 

Table 2.2. Tensile properties of the polymers. 

Sample Young’s modulus 

(MPa) 

Ultimate tensile strength 

(MPa) 

Elongation at break 

(%) 

PIB-l 0.6 ± 0.2 0.23 ± 0.01 770 ± 70 

1-l 0.4 ± 0.1 0.20 ± 0.03 800 ± 300 

2-l 0.43 ± 0.07 0.32 ± 0.05 1600 ± 600 * 

4d-l 0.35 ± 0.08 1.7 ± 0.3 600 ± 100 

PIB-h 0.59 ± 0.02 0.8 ± 0.2 430 ± 30 

1-h 0.41 ± 0.07 0.25 ± 0.04 800 ± 100 

2-h 0.8 ± 0.3 0.42 ± 0.05 600 ± 100 

4d-h 3.1 ± 0.8 3.5 ± 1 150 ± 30 

* Some samples failed to break at the maximum elongation of 2000%. Data presented are the 

mean of six measurements per polymer, and uncertainties are the standard deviations. 
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Similar trends were observed for the compounds 1-h, 2-h, and 4d-h, derived from RB 

with 7 mol% isoprene (PIB-h), although the effects appeared to be more significant due to the 

higher density of functional groups. For example, the carboxylic acid derivative 4d-h, had a 

Young's modulus of 3.10 MPa, 5 to 10 times higher than all of the other materials, and an 

ultimate tensile strength of 3.46 MPa, again higher than the other materials, including 4d-l. 

Elongation at break for 4d-h was significantly smaller than for any of the other materials,  

indicating that it is more brittle. This increase in brittleness supports the observations made in the 

adhesion tests. At this increased level of carboxylic acid loading, the brittleness of the material 

outweighs possible increases in adhesion and interactions with stainless steel surfaces. Overall, 

these results suggest that the introduction of chemical functionality, and in particular carboxylic 

acid moieties, along the RB backbone results in significant changes in tensile properties, and that 

the magnitude of these changes depends on the degree of functionalization. While the 

carboxylic-acid-functionalized materials do not exhibit the same tensile properties as cross-

linked rubber or SIBS,
3,49

 their properties are indicative of a physical or supramolecular cross-

linking. 

 

2.3.3 Rheological evaluation 

Rheological measurements are helpful for determining the processing characteristics of 

materials. RB itself is an elastomer that exhibits a considerable amount of creep when subjected 

to stress over a long period.
50,52,53

 We hypothesized that the functionalization of PIB with 

carboxylic acid or other moieties might reduce its susceptibility to creep, making it more useful 

for applications such as biomedical coatings. With this application in mind, the viscoelastic 

behavior of the materials was measured under small-amplitude oscillatory shear at 37 ºC.  

 The viscous and elastic moduli of two representative materials, PIB-h and 4d-h, are 

plotted as a function of angular frequency  in Figure 2.3. Both the viscous modulus G'' and the 

elastic modulus G' depend only weakly on frequency, and G' is much larger than G''. This 

behavior is typical of rubbery materials. In Figure 2.4, the elastic and viscous moduli at  = 1 

rad/s are shown for all of our materials. In all cases, G' >> G'', but the values of the moduli vary 

by an order of magnitude, depending on functionalization. At this frequency, both unmodified 

butyl rubbers, PIB-l and PIB-h have elastic moduli slightly less than 10
5
 Pa and viscous moduli 
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about a factor of three smaller. The epoxide derivative 1-h has moduli similar to its parent 

unmodified rubber at  = 1 rad/s, and indeed, over the full frequency range studied. The 

carboxylated and hydroxyl derivatives 4d-h and 2-h, which have the ability to form hydrogen 

bonds, have substantially lower moduli but qualitatively similar frequency dependence.  

Although the moduli of PIB-l and PIB-h are similar, the materials derived from PIB-l have 

much lower viscous and elastic moduli than the corresponding derivatives of PIB-h.   In general, 

the hydrophobic derivatives have higher moduli than the hydrophilic derivatives, with the 

carboxylated derivative 4d-l having the lowest value over most of the frequency range studied. 

 

Figure 2.3. Frequency dependence of the elastic and viscous moduli, G' and G'' respectively, for 

two representative materials. The data points are averages over at least three trails, and error bars 

are standard deviations.  

 

Figure 2.4. a) Elastic moduli of the polymers at ω=1 rad/s; b) Viscous moduli of the polymers at 

ω=1 rad/s. 
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 The ratio of the viscous and elastic moduli G''/G' = loss tangent (tan α), where α is the 

phase angle between the applied stress and the measured strain.  Loss tangent is less than 1 for 

predominantly elastic materials, while it is greater than one for viscous materials.   Figure 2.5 

shows loss tangent for the polymers studied here. Loss tangent is less than 1 in all cases and at all 

frequencies studied, reflecting the fact that these materials are all primarily elastic. For a given 

polymer, the moduli are expected to become equal to each other and cross over at some low 

frequency ωc, with the reciprocal of the crossover frequency being a measure of the slowest 

relaxation time in the system. Although ωc is below the frequency range we investigated, the 

approach to the crossover is indicated by a rise in loss tangent as the frequency is lowered. Our 

data suggest that ωc is highest and, correspondingly, the polymer relaxation time is shortest, for 

polymer 2-l. The relatively high values of loss tangent we observed at low ω for 2-l and 2-h and 

their fairly low moduli are consistent with our qualitative observation that these materials are 

softer and behave more like weak gels than like rubbers. On the other hand, the carboxylated 

polymers 4-l and 4-h show no increase in loss tangent at low ω, suggesting that the relaxation 

time in these materials is much longer. This suggests that the carboxylic acid groups in these 

materials do indeed form a significant number of cross-links which restrict the dynamics of the 

polymer molecules.  

 

Figure 2.5. Loss tangent as a function of frequency; a) shows behavior of low isoprene content 

derivatives, b) shows behavior of high isoprene derivatives.  

 



50 

 

This viscoelastic data, tensile data, and adhesion data is consistent with the physical form of the 

materials. The epoxides (1-l/h) and the native rubbers feel very similar, while the hydroxylated 

derivatives (2-l/h) appear more like a soft gels than the other materials, and the carboxylic acids 

(4--l/h) appear more like rubbers than the 2 series but are qualitatively more brittle than the 

native rubber.   

2.4 Conclusion 

 The synthesis of a carboxylic acid-functionalized RB was accomplished through the ring 

opening of diglycolic anhydride from allylic alcohol moieties along the polymer backbone 

affording pendant carboxylic acids. The degree of functionalization was controlled via the IP 

content of the RB starting material.  Epoxide-, hydroxide-, and carboxylic-acid-functionalized 

polymers were synthesized.  All of the functionalized materials showed stronger adhesion to 

stainless steel than the unfunctionalized PIB, with the 2 mol% carboxylic-acid-functionalized 

rubber exhibiting the highest adhesivity. Carboxylic acid moieties also significantly increased the 

ultimate tensile strength of the high- IP -content polymer and the Young's modulus of both the 

high- and low- IP-content materials. Rheological measurements showed that functionalization of 

the RB tended to decrease both elastic and viscous moduli. The addition of carboxylic acid 

significantly decreased the ratio of the viscous to the elastic modulus of the polymer, consistent 

with the carboxylic acid groups contributing to the formation of a cross-linked network of 

polymer molecules. Hydroxyl functionalization had the opposite effect. Overall, many of the 

measured properties of these new materials may prove useful in new applications of RB, 

potentially including coatings for stents and other biomedical devices. 
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Chapter 3  

3 Covalent polyisobutylene-paclitaxel conjugates as potential 

vascular stent coatings with controlled drug release 

 

3.1 Introduction 

Atherosclerosis is a leading cause of cardiac arrest and a growing concern for developed and 

developing societies worldwide.
1
 Many treatments are currently available for mild and moderate 

cases,
2-6

 but surgical intervention is often required for more severe cases.
7
 To avoid the more 

invasive bypass surgery, arterial stents can be introduced into an artery to improve blood flow.
8
 

Bare-metal stents consist simply of stainless steel meshes, that although initially effective, 

inevitably lead to severe vessel damage due to the pathological biological cascade.
9
 To address 

this issue, drug eluting stents (DES) were developed. These stents release anti-proliferative 

agents that greatly reduce cell replication and growth, preventing restenosis, the recurrence of 

arterial blockage.
10, 11

  

 Several DES systems have been developed.
12-15

 The coatings used in these stents are 

physical mixtures of a drug and a polymer carrier, and are designed for biocompatibility, 

controlled-release, and adhesion of the polymer to the stainless steel mesh. Although these stents 

have been shown to reduce restenosis relative to bare metal stent (BMS),
16, 17

 they still suffer 

from the possibility of post-implantation thrombosis. In addition, restenosis is still possible as the 

drug-release period is sufficient for the initial healing process, 
18

 but does not necessarily provide 

long-term protection because of drug depletion.
19, 20

 An additional disadvantage of these coatings 

is the possibility of delamination from the stainless steel stent, which would cause a burst release 

of drug, the release of polymeric coating material into the bloodstream, and the exposure of the 

BMS.
21, 22
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 Butyl rubber (RB) is a copolymer of iso-butylene and small amounts of isoprene (IP). 

The IP content provides an olefinic handle for cross-linking. However, the IP units can also be 

chemically modified to provide a range of functionalities, most commonly through 

halogenation.
23-25

 In previous work, the Gillies group reported an efficient and clean 

epoxidation/elimination sequence that produces an allylic alcohol functionalized PIB, which in 

turn was conjugated to amine-terminated PEG to provide access to graft copolymers.
26, 27

 In 

chapter 2, carboxylic-acid-functionalized PIBs were generated by reacting the allylic alcohols 

with cyclic anhydride derivatives. The pendant carboxylic acid moieties were found to enhance 

adhesion of the polymer to stainless steel and to modify the rheological and tensile properties of 

the materials. 
 

 In this chapter, these pendant carboxylic acid groups are used as sites for further covalent 

functionalization of the rubber. Carboxylic acid moieties can act as conjugation sites for a wide 

array of alcohols and amines, providing ester and amide linkages respectively. PIB is the main 

component of the thermoplastic elastomer PS -b-PIB-b- PS (SIBS), which is used in combination 

with the drug paclitaxel (PTX) as the coating material on the clinical TAXUS
TM

 stent.
29

 Here we 

investigate whether carboxylic acid moieties on PIB can be used to covalently immobilize PTX, 

and study the drug release and coating properties of the resultant material. There has been limited 

previous work on the covalent conjugation of drug molecules to polymer coatings,
30

 and we are 

unaware of any reports in the literature on the biomechanical properties of the material or its 

effectiveness in atherosclerosis treatment. In this paper we describe the preparation, chemical 

and physical characterization, and preliminary biological evaluation of two PIB-PTX conjugates. 

3.2 Experimental 

3.2.1 General 

Carboxylic-acid-functionalized PIBs 1a and 1b were prepared as described in chapter 2 from RB 

containing 2 mol% IP (Mw = 4.00  10
5 

g/mol, PDI = 2.8), and 7 mol% IP (Mw = 1.05  10
6 

g/mol, PDI = 3.3) provided by LANXESS Inc. (London, Canada). Solvents were purchased from 

Caledon Labs (Caledon, Ontario) and all other chemicals were purchased from either Sigma-

Aldrich or Alfa Aesar and were used as received unless otherwise noted. Dry toluene was 

obtained from a solvent purification system. Dichloromethane and diisopropylethylamine were 
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freshly distilled from CaH2 prior to use. 
1
H NMR spectra were obtained in CDCl3 at 400 MHz or 

600 MHz on Varian Inova instruments. NMR chemical shifts (δ) are reported in ppm and are 

calibrated against residual solvent signals of CDCl3 (δ 7.26). Infrared spectra were obtained as 

films on NaCl plates using a Bruker Tensor 27 instrument. Size exclusion chromatography 

(SEC) was performed in THF using a Waters 515 pump, Wyatt Rex differential refractometer, 

and two PolyPore columns (300 x 7.5 mm
2
, Agilent) connected in series. Calibration was 

performed using PS standards. DSC and thermogravimetric analysis (TGA) were performed on a 

Mettler Toledo DSC 822e at a heating rate of 10 °C/min. DSC was performed between -120 to 

+150 °C. Glass transition temperatures (Tg) were obtained from the first heating cycle.  

3.2.2 Synthesis of PIBa-cov 

An anhydrous sample (dried under vacuum in the presence of P2O5) of carboxylic-acid-

functionalized PIB (10 g, 3.9 mmol in terms of CO2H derived from PIB containing 2.2 % IP 

(m/m), was dissolved over 36 h, with stirring, in anhydrous toluene (400 mL) under a nitrogen 

atmosphere. A solution of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride 

(EDC∙HCl, 940 mg, 4.9 mmol), diisopropylethylamine (DIPEA, 1.2 mL, 6.8 mmol) and 4-

dimethylaminopyridine (DMAP, 250 mg, 1.95 mmol) were dissolved in anhydrous CH2Cl2 (200 

mL) and added in one portion to the dissolved polymer. The solution was stirred for 20 minutes 

prior to the addition, in one portion, of a solution of PTX (3.7 g, 4.3 mmol) in CH2Cl2 (200 mL).  

The reaction mixture was then stirred at ambient temperature for 16 hours. Following NMR 

determination of conversion, the CH2Cl2 was removed under reduced pressure and the toluene 

solution washed with deionized water, 1M HCl and twice with 1M NaHCO3 successively. After 

reduction of the solution by 2/3 under reduced pressure, precipitation into absolute ethanol 

provided 2a as an off-white solid. Yield = 77 %; ~95 % conversion. 
1
H NMR (400 MHz, CDCl3) 

δppm 8.15 (d, J = 7.4 Hz, 2H, PTX), 7.76 (t, J = 7.1 Hz, 2H, PTX), 7.60 (t, J = 7.1 Hz, 1H), 7.56-

7.45 (m, 3H, PTX), 7.44-7.36 (m, 5 H, PTX), 7.34 (m, 1H, PTX), 7.15-7.10 (m, 1H, PTX), 6.30 

(s, 1H, PTX), 6.29-6.20 (m, 1H, PTX), 6.08-6.01 (m, 1H, PTX), 5.69 (t, J = 6.1 Hz, 1H, PTX), 

5.62-5.57 (m, 1H, PTX), 5.29-5.19 (m, 1.1H, PIB), 5.13-5.06 (m, 1 H, PIB), 4.97 (d, J = 9.1 Hz, 

1 H, PTX), 4.91 (m, 2H, PIB), 4.44 (m, 1H, PTX), 4.37-4.12 (m, 6H, PIB/PTX(ethyl acetate 

contamination), 3.82 (pseudo-d, J = 6.5 Hz, 1H, PTX), 3.68 (t, J = 6.4 Hz, 1H, PTX), 2.62-2.52 

(m, 1H, PTX), 2.49-2.46 (s, 3H, PTX), 2.41-2.35 (m, 1H, PTX), 2.26 (m, 2H, PTX), 2.22 (s, 3H, 
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PTX) 1.96-1.92 (m, 4H, PTX), 1.69 (s, 3H, PTX) 1.42 (s, 315H, PIB), 1.26-0.91 (PIB, m, 950H, 

PIB/PTX). IR (thin film on NaCl, chloroform) 1232, 1367, 1390, 1475, 1670, 1737, 2960 cm
-1

. 

SEC: Mw = 337000 g/mol, PDI = 1.47. Tg = -62 C. 

3.2.3  Synthesis of PIBb-cov 

The conjugate was prepared by the same procedure described above for PIBb-cov, using 

carboxylic-acid-functionalized PIB (derived from 7 % m/m IP, 1.5 g, 1.9 mmol in terms of 

CO2H) in 250 mL of anhydrous toluene; EDC·HCl (540 mg, 2.8 mmol), DIPEA (680 µL, 3.9 

mmol), and DMAP (110 mg, 0.93 mmol) in 50 mL CH2Cl2; PTX (2.0 g, 2.4 mmol) in 100 mL 

CH2Cl2. Yield = 73 %; ~85 % conversion; 
1
H NMR (400 MHz, CDCl3) 8.15 (d, J = 7.3 Hz, 2H, 

PTX), 7.74 (d, J = 6.4 Hz, 2H, PTX), 7.60 (t, J = 7.2 Hz, 1H, PTX), 7.52 (t, J = 7.6 Hz, 2H, 

PTX), 7.49 (t, J = 7.6 Hz, 1H, PTX), 7.44-7.31 (m, 8H, PTX), 7.02-6.96 (m, 1H, PTX), 6.29 (s, 

1H, PTX), 6.28-6.20 (m, 2H, PTX), 6.08-6.00 (m, 1H, PTX), 5.69 (d, J = 6.8 Hz, 1H, PTX), 

5.62-5.56 (m, 1H, PTX), 5.28-5.19 (m, 1.4H, PIB), 5.12-5.07 (m, 1.4H, PIB), 4.97 (d, J = 9.4 

Hz, 1.2H, PTX), 4.91-4.89 (m, 1.6H, PIB), 4.47-4.41 (m, 1H, PTX) 4.40-4.10 (m, 9H, 

PTX/PIB), 3.82 (d, J = 6.5 Hz, 1H, PTX), 3.70-3.64 (m, 1H, PTX), 2.62-2.52 (m, 1H, PTX), 

2.52-2.44 (m, 4H, PTX), 2.42-2.34 (m, 2H, PTX), 2.23 (s, 3H, PTX), 1.94 (bs, 4H), 1.68 (bs, 3H, 

PTX), 1.41 (s, 112H, PIB), 1.29-0.87 (m, 400H, PTX/PIB); IR: 1232, 1367, 1390, 1475, 1670, 

1737, 2960 cm
-1

; SEC: Mw =501400 g/mol, PDI = 2.66. Tg = -56 C. 

3.2.4 Preparation of Films  

The surface of a stainless steel plate with dimensions of 31 mm  11 mm was milled to obtain a  

smooth surface with a roughness of 420 nm. The films were prepared from a 100 mg/mL 

solution of the polymers  in CH2Cl2. For the physically mixed samples, PTX was added to 

achieve the desired wt%. A 100 μL aliquot of each of the polymer solutions was drop cast onto 

the stainless steel plate. The sample was dried under reduced pressure prior to the release study. 

Each sample was prepared and studied in quadruplicate. 

3.2.5 Release Study  

The release study was performed in 0.01 M phosphate buffer solution with pH = 7.4, containing 

0.138 M NaCl and 0.0027 M KCl and 0.05% (m/v) Tween 20 as a surfactant. The stainless steel 
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plates were submerged in 10 mL of buffered solution in a vial. The solution was maintained at 37 

°C. The buffer was removed every seven days for PTX analysis and replaced with fresh medium. 

Due to the low amounts of PTX released, the release medium was removed via lyophilization 

and the resulting solid redissolved in 2 mL of 80:20 water:acetonitrile with agitation and filtered 

through a 2.2 µm syringe filter. A control study demonstrated that PTX was soluble at this 

concentration. 

3.2.6 HPLC protocol  

The high performance liquid chromatography (HPLC) instrument comprised a Waters 

Separations Module 2695, a Photodiode Array Detector (Waters 2998) and a Nova-Pak C18 4um 

(3.9x150mm) column connected to a C18 guard column. The PDA detector was used to monitor 

the PTX absorbance at 228 nm. PTX separation was obtained using a gradient method with 

Solvent A (5% acetonitrile in water) and Solvent B (80% acetonitrile, 0.1% H3PO4 in water) 

flowing at 1 mL/min.  Gradient: Solvent A was decreased from an initial proportion of 65% to 

30% over 10 min, and then increased back to 65% over the next 5 min; the column was then 

allowed to re-equilibrate over 5 min. The calibration curve was obtained from PTX (LC 

Laboratories, >99%, P-9600) standard solutions. Stock solutions of 1000 μg/mL, 100 μg/mL and 

50 μg/mL PTX in acetonitrile were prepared. The stock solutions were used to make standard 

solutions of 25, 20, 15, 10, 7.5, 5, 2, 1, 0.5 μg/mL in 20:80 acetonitrile:PBS solution. Standards 

were filtered and injected at 100 μL using the above instrument method. Samples were prepared 

in a 20:80 acetonitrile:PBS solution, filtered through 0.2 μm filters and injected at 100 μL using 

the same conditions. The limit of detection of PTX was determined to be 0.02 μg. The calibration 

curve and a sample HPLC trace are provided in the appendies. 

3.2.7 Atomic Force Microscopy 

Surfaces for atomic force microscopy (AFM) analysis were those prepared for the release study. 

Surfaces were visualized using an XE-100 microscope from Park Systems. Images were obtianed 

by scanning the surface at three different resolutions: 20 µm  20 µm, 5 µm  5 µm, and 1 µm  

1 µm. Scanning was carried out using rectangular-shaped silicon cantilevers (T300, VISTA 

probes), with a nominal tip radius of 10 nm and spring constant of 40 N/m. Measurements were 

carried out under atmospheric conditions and ambient temperature. Topographic (height) and 
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phase (force imaging mode) images were recorded simultaneously in tapping mode. The 

cantilever was oscillated at its resonance frequency of approximately 300 kHz. All images 

contained 256 data points per line for 256 lines, and the scan rate was maintained at 1 Hz. Post-

imaging analysis was carried out using XEI, version 1.7.0 from Park Systems. Images were 

flattened to remove curvature in both the x and y axes. Grain size calculations were carried out 

on the 5 µm x 5 µm images by measuring the areas of 20 largest grains in the field of view using 

DOMAN3,
31

 for at least two images. The mean size of these 40 (two images) or 60 (three 

images) largest grains is provided as the mean largest grain size (MLGS), and the reported error 

represents the standard deviation of the measurements. These values should be used for 

comparative purposes only. 

3.2.8 Tensile Testing 

Tensile tests were carried out according to ASTM D882 – 12,
32

 using an Instron universal testing 

machine 3300 series. For each sample, 1.5 g of polymer was compressed into 0.3 mm thick flat 

sheets using a hydraulic hot press (Carver Hydraulic Unit Model # 3851 OC). Samples 60 mm  

5mm in size were cut from this sheet for analysis. The tensile test was performed using a 1-kN 

load cell and an extension rate of 400 mm/min at ambient temperature (22 ± 1 ºC). Load and 

extension calibration were preformed prior to the test. To prevent slippage of the samples from 

the clamps, 10 mm of material was inserted into each clamp giving an effective length of 40 mm. 

At least six trials were performed for each polymer. 

3.2.9 Rheology 

Rheological measurements were performed using a TA Instruments AR-1500ex stress-controlled 

rheometer with a 25 mm-diameter parallel-plate tool. Sandpaper was affixed to both plates to 

prevent slip. Circular samples 25 mm in diameter were cut from a sheet prepared by compressing 

1.5g of polymer into a flat sheet using the hydraulic hot press. The sample thickness was 

measured at three different places (all samples were approximately 0.5 mm thick). The sample 

was then placed in the rheometer, the gap between the plates set to the lowest of these 

measurements, and the sample annealed at 100 ºC for 1 hour. The sample was then compressed 

to 90% of the original thickness prior to measurement. Small-angle oscillatory shear 

measurements were performed at angular frequencies between 0.1 and 100 rad/s with the 
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oscillating stress amplitude controlled at 100 Pa. All rheological measurements were done at 37 

ºC. The data were averaged over at least four trials for each polymer.  

3.2.10 Toxicity assay 

Sample preparation: Test samples were melt-pressed to a thickness of 0.4 mm. The melt-pressed 

film was then cut into 1 cm  1 cm squares. Samples were sterilized by washing with 70% 

ethanol and subsequently dried for 2 hours under UV light. They were placed in Petri dishes and 

incubated in 2 mL of Dulbecco’s Modified Eagle Medium (DMEM, Invitrogen) supplemented 

with 10% fetal bovine serum (Invitrogen), 1% Glutamax (100x) solution and 1% Penstrep (100x) 

in an incubator at 37°C for 24 hours. The leachate was then removed and passed through a 0.2 

µm filter.  

MTT assay: C2C12 mouse myoblast cells were seeded in a Nunclon® 96-well U bottom 

transparent polystrol plate to obtain 10,000 cells/well in 100 μL of DMEM containing serum, 

glutamax and antibiotics as described above. The cells were allowed to adhere to the plate in a 

5% CO2 incubator at 37 °C for 24 hours. Next, the growth medium was aspirated and was 

replaced with either the positive control - sodium dodecyl sulfate (SDS) in the cell culture 

medium at concentrations of 0.2, 0.15, 0.10, or 0.05 mg/mL, serial two-fold dilutions of the 

leachate, or just the medium. The cells were then incubated at 37 °C (5% CO2) for 24 hours. The 

medium was then aspirated and replaced with 110 μL of fresh medium containing 0.5 mg/mL (3-

(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) (MTT) reagent. After 4 hours of 

incubation (37 °C, 5% CO2), the MTT solution was carefully aspirated and the purple crystals 

were dissolved by addition of 50 μL of spectroscopic grade dimethylsulfoxide (DMSO). After 

shaking (1 second, 2 mm amp, 654 rpm), the absorbance of the wells at 540 nm was read using 

an M1000-Pro plate reader (Tecan). The absorbance of wells not containing cells but treated by 

all of the above steps was subtracted as a background and the cell viability was calculated 

relative to wells containing cells that were exposed to just culture medium. No (0%) cell viability 

was detected for the cells exposed to the highest concentrations of the positive control sodium 

lauryl sulfate, confirming the sensitivity of the assay. 
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3.2.11  Evaluation of cell growth on films 

C2C12 cells were maintained at 37 ºC and 5% CO2 in Dulbecco’s Modified Eagle Medium 

(Invitrogen) supplemented with 10% fetal bovine serum (Invitrogen) and supplemented with 1% 

Glutamax (100x) solution and 1% Penstrep (100x). First, microscope glass cover slips (circular, 

25 mm diameter) were coated with a minimum layer of polymer by applying a 35 mg/mL 

solution of polymer in toluene and allowing the solvent to dry completely. The surfaces were 

sterilized by submersion in 70% ethanol, and were then left to dry completely under reduced 

pressure for 96 hours. The sterilized samples were placed in the wells of a 6-well plate and 5  

10
5
 cells in 2 mL of cell culture medium were seeded onto each surface. The samples were 

incubated for 48 hours, then fixed with 4% paraformaldehyde solution for 10 min. The samples 

were washed twice with phosphate-buffered saline (PBS) (Invitrogen) at pH 7.2, and then treated 

with 2 mL of acetone at -20 ºC for 5 minutes to permeabilize the membrane. After that, they 

were washed again with PBS, stained with Alexa Fluor 568 phalloidin (Invitrogen) and DAPI 

(Invitrogen) following the manufacturer’s directions.  The samples were washed again with PBS 

and placed face down onto glass microscope slides with ProLong® Gold Antifade Reagent 

(Invitrogen) and sealed. Confocal images were obtained using a confocal laser scanning 

microscope (LSM 510 Duo Vario, Carl Zeiss) using a 20 objective and excitation wavelengths 

of 405 (DAPI) and 578 nm (phalloidin). Cell were counted using Image Pro Plus software on 5 

different images. Statistical analyses (ANOVA followed by Tukey’s test) were performed using 

the software Excel. 

 

3.3 Results and discussion 

3.3.1 Synthesis and characterization of a PIB-PTX conjugate 

The first goal of this work was the development of simple and rapid synthesis of a covalent PIB-

PTX conjugate. To this end, carboxylic-acid-functionalized PIB (Scheme 3.1) derived from 

rubber containing either 2 mol% (1a) or 7 mol% (1b) of carboxylic-acid-functionalized 

monomer was prepared as described in Chapter 2. PTX, a potent mitotic inhibitor,
33, 34

 was 

selected as the pharmaceutical agent as it is used in the commercial SIBS-based stent. The 

relationship between SIBS and the PIB system, in that SIBS contains PIB blocks, allows us to 
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compare the properties of this studied system to a commercial product.
29

  Although widely used 

in anticancer treatment, PTX is also an excellent anti-proliferative for use with cardiovascular 

stents. From a synthetic perspective, Lataste and coworkers demonstrated that, despite the 

molecule’s complexity, esterification of PTX resulted in a single isomeric monoester, as the C2’ 

hydroxyl group is significantly more nucleophilic than the C7 hydroxyl group.
35

 Consequently, a 

single regioisomeric PTX-PIB conjugate is expected (Scheme 3.1).  

 

Scheme 3.1. Synthesis of PIB-PTX conjugates 

As shown in Scheme 3.1, PTX was coupled to 1a/1b using 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC) in the presence of 4-(dimethylamino)pyridine 

(DMAP) in CH2Cl2 to afford the conjugates PIBa-cov/PIBb-cov with PTX loadings 

corresponding to the original degree of carboxylic acid functionalization. Proton nuclear 

magnetic resonance (
1
H NMR) spectroscopy was used to confirm the chemical structure of the 

conjugate and to estimate the PTX loading. The spectra shown in Figure 3.1 indicate an up-field 

shift of the peak corresponding to the allylic proton of the polymer backbone (labeled 3) from 

5.30 to 5.23 ppm. This is indicative of reaction near this site. A small amount of uncoupled 

carboxylic acid results in the small residual peak at 5.30 ppm in Figure 3.1b, but the data indicate 

that the coupling proceeded to greater than 95% conversion, which is remarkable for the 

conjugation of a large drug molecule to a polymer backbone. Based on this, the PTX content is 

approximately 24 wt% for PIBa-cov. In the conjugation between 1b and PTX, the coupling 

regularly proceeded to greater than 80% conversion, resulting in approximately 48 wt% PTX for 

PIBb-cov. The other peaks corresponding to PTX in Figure 3.1 can be reliably assigned based 

on previous reports of PTX and PTX 2’ ester conjugates.
35, 36

 The large downfield shift of the 

peak corresponding to the 2’ proton on PTX (labeled a) undergoes a large downfield shift from 

4.81 to 5.60 ppm, and no resonance is observed at 4.81 ppm in the coupled material.  In addition 

the peak corresponding to the adjacent benzyl proton (labeled b) shifts from 5.80 to 6.05 ppm. 
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These results indicate that the PTX resonances in PIBa-cov and PIBb-cov are due to conjugated 

PTX and not to physically entrapped PTX molecules, and the observed chemical shifts are 

consistent with selective formation of the 2’ ester linkage.
36

  

 

Figure 3.1. Portion of the 
1
H NMR spectrum used to determine the success and extent of PTX 

coupling in PIBb-cov. A) Physical mixture of PTX and 1a; B) Conjugate PIBb-cov. Letter and 

number resonance labels refer to the corresponding protons on PTX and PIB respectively. 

 

Size exclusion chromatography (SEC) analysis of PIBa-cov suggested a slight increase 

in molecular weight over the carboxylic-acid-functionalized rubber and confirmed that no main-

chain degradation had occurred during the synthesis. The compounds were also characterized by 

TGA and DSC (Appendix 3). The TGA traces for both materials demonstrated negligible mass 

loss below 200 °C, with 5 % mass loss at 312 ºC for PIBa-cov, and 240 ºC for PIBb-cov. The 

reported temperature of decomposition for free PTX is approximately 216 ºC, although the 

material does not decompose to gaseous byproducts at this low temperature.
28

 DSC traces for the 

materials suggest that the introduction of even a large quantity of PTX has only a very limited 

effect on the Tg of the materials. The Tg of 1a was previously reported to be -61 ºC (Chapter 2), 

and the introduction of 24 wt% PTX in PIBa-cov results in a similar Tg of -62 ºC. Similarly, the 

Tg of 1b was reported to be -54 °C (Chapter 2), while that of PIBb-cov was measured to be -56 

°C. While PTX is known to be a crystalline solid in its pure form with a melting point similar to 
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its degradation temperature, only trace peaks corresponding to melting transitions were observed 

in the range 100-150 ºC for both PIBa-cov and PIBb-cov (appendix). As the thermal 

degradation of PIBb-cov prevented the DSC analysis above 200 °C, the presence of a melting 

transition above 200 °C for this material cannot be fully excluded. 

3.3.2 Preparation of polymer-PTX films for the PTX release study 

The drug-release properties of films of the PIB-PTX conjugates PIBa-cov and PIBb-cov were 

studied, and compared with those of films of several other materials, as listed in Table 3.1. 

Physical mixtures of PTX and the carboxylic-acid-functionalized rubbers 1a and 1b were 

prepared with the same drug content as in PIBa-cov and PIBb-cov. In addition, samples of SIBS 

containing 10 and 20 wt% styrene, referred to as SIBS1 and SIBS2 respectively, physically 

combined with 24 wt% PTX as in the covalent conjugate PIBa-cov or 8.8 wt% PTX, as used in a 

commercial stent coating were also prepared.
13

 Films were prepared by dissolving a fixed 

quantity of the polymer-drug material in toluene, filtering the solution, and drop casting it on a 

stainless steel surface. 

Table 3.1. Composition, PTX loading, and thickness measurements of films used for the PTX 

release study. Uncertainties are standard deviations.  

Sample 

Name 

Polymer 

Composition 

PTx 

wt.% 

PTx 

immobilization 

Film thickness 

before release 

(µm) 

Film thickness 

after release 

(µm)
a 

PIBa-cov PIBa-cov ~24 Covalent 50 ± 10 39 ± 9 

PIBb-cov PIBb-cov ~48 Covalent 52 ± 7 67 ± 2 

PIBa-phy 1a 24 Physical 51 ± 4 65 ± 5 

PIBb-phy 1b 48 Physical 25 ± 4 42 ± 9 

SIBS1-24 SIBS (10% styrene) 24 Physical 58 ± 5 70 ± 4 

SIBS2-24 SIBS (20% styrene) 24 Physical 60 ± 7 78 ± 2 

SIBS1-9 SIBS (10% styrene) 8.8 Physical 52 ± 2 65 ± 3 

SIBS2-9 SIBS (20% styrene) 8.8 Physical 54 ± 4 89 ± 2 

a
Due to the destructive nature of the AFM thickness measurement, different films were used for 

the measurements before and after release 
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 The thickness of each film was measured by AFM prior to the drug release study. As 

shown in Table 3.1, most samples had thicknesses of 50-60 nm, with the exception of the 

mixture of 1b and PTX, which was considerably thinner than the other samples. This difference 

likely results from the very different physical properties and intermolecular interactions in this 

material resulting from its high carboxylic acid content.   

3.3.3 Release of PTX from polymer-PTX coatings 

 

Figure 3.2. Cumulative fraction of PTX released from the polymeric films listed in Table 3.1 in 

aqueous solution at pH =7.4. Data points are the mean of three trials and error bars are standard 

deviations. Data points for PIBa-cov and PIBb-cov overlap, as do those for SIBS2-24 and 

PIBa-phy. 

 

The release of PTX from the polymer-PTX films was studied according to previously published 

protocols.
29, 37, 38

 PTX release was measured weekly over a period of 35 days. The results are 

shown in Figure 3.2. All SIBS samples exhibited more rapid drug release than the PIB-based 

samples.  SIBS1, which had the lower PS content, released the drug more rapidly than SIBS2, 

with a higher PS content. The PTX covalently bound to the modified PIB materials was released 

far more slowly than the physically-bound PTX at both PTX loadings. In addition, the rubbers 

with 7 mol% carboxylic acid  released the drug more slowly than those with 2 mol% carboxylic 

acid loading in both the physically mixed and covalently bonded cases. Overall, these results 
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suggest that the PIB materials containing covalently bound PTX should exhibit a longer drug-

release life-time than the SIBS materials. In the context of vascular stents, this may provide 

added protection against restenosis.  

3.3.4 AFM imaging of films  

To gain further insight into the release of PTX from the polymer-PTX films, AFM was used to 

image the surfaces before and after release. Representative phase and topography images are 

shown in Figure 3.3. Additional images of the other films are included in the appendix. As 

shown in Figure 3.3a, phase images SIBS2-24 showed the presence of regions within the film 

having different physical properties. This may be indicative of phase separation of the film 

components such as PTX as well as the different blocks of the copolymer. The topography image 

in Figure 3.3b showed many hill-like features about 30 nm in height on the film surface. These 

features were not observed in AFM images of SIBS films without PTX.
39

 This suggests that they 

are due to PTX, and that the PTX forms aggregates rather than being  dispersed evenly 

throughout the films. Figure 3.3c showed that after 35 days of PTX release these features had 

disappeared and been replaced by holes in the film surface, indicating that the aggregates had 

been released over the course of the study. Similar results were observed for the other SIBS-

based films (Appendices).  

 Similar behavior was observed for samples consisting of a physical mixture of PTX and 

carboxylic-acid-functionalized PIB. The phase image for these films (Figure 3.3d) showed two 

distinct phases which we suggest correspond to the rubber and PTX. The topography image 

(Figure 3.3e) is consistent with this interpretation, showing a series of small hills about 10 nm 

high rising from a relatively flat background. Following PTX release, a surface of rolling hills 

was exposed (Figure 3.3f) that were both higher and much larger in lateral extent. The phase 

image of this surface showed only a single phase (considering the large differences in vertical 

height, appendix 3) which we suggest is the remaining carboxylic-acid-functionalized rubber. 

The observed topography may result from the tendency of PIB to shrink during extended 

exposure to water. 
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Figure 3.3 AFM images showing the polymer surface before and after the release study: A-C) 

SIBS2-24; D-F) PIBb-Phy; G-H) PIBb-cov. Phase images: A, D, G; topography images before 

PTX release: B, E, H; topography images after 35 days of PTX release: C, F, I. *The vertical axes of 

the topography images have different magnitudes.  

 

 The AFM images of films of the covalent PIB-PTX conjugates appeared quite different 

from those of the physical mixtures. As shown in Figure 3.3g, the phase image suggested that the 

surface consisted mostly of a single phase. This is consistent with the covalent conjugation of 

PTX to the PIB backbone by the short diglycolic acid linker, which would favour a uniform 

distribution of the drug throughout the rubber. It is also consistent with the thermal properties of 

the materials described above. The topography image (Figure 3.3h) showed some surface 

roughness on the order of 2-3 nm, but did not exhibit the distinct hill-like features of the physical 

mixtures. After PTX release, the remaining surface was did not exhibit any topographical 

features. The large vertical range in Figure 3.3h is due to a few small sharp peaks which we 
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believe to be salt deposits from the release study that were not removed despite repeated water 

washes of the surface.  

 The root mean square (RMS) roughness of the surfaces before and after PTX release and 

the mean largest grain size (MLGS) 
31

 of the PTX aggregates were also measured by AFM. The 

results are provided in Table 3.2. In general, the two covalent PIB-PTX films show much lower 

roughness than any of the physical mixtures due to the absence of PTX aggregates on their 

surfaces. The surfaces of the physical mixtures of carboxylic-acid-functionalized rubber and 

PTX were intermediate in roughness. For a given PTX content, the SIBS films were considerably 

rougher. Even with only 8.8 wt% PTX, the surface of SIBS2-9 was rougher than that of PIBa-

phy, which contained 24 wt% PTX. At 24 wt% PTX, the SIBS1-24 and SIBS2-24 films were 

approximately 10 times rougher than PIBa-phy. These differences in roughness between the 

different physical mixtures can be partially accounted for by differences in the surface roughness 

of PIB and SIBS themselves,
39

 but may also be influenced by differences in how PTX is 

physically incorporated into the two materials. As shown in Table 3.2, the diameter of the PTX 

aggregates on the surface of PIBa-phy was smaller than on SIBS, for the same PTX content, 

suggesting that the PTX may be dispersed more effectively in the carboxylic-acid-functionalized 

rubber.   

Table 3.2. Surface characteristics of polymer-PTX films before and after drug release. 

Sample Roughness prior to 

release (nm) 

Roughness after 

release (nm) 

MLGS paclitaxel 

aggregates (µm
2
) 

PIBa-cov 1.1 2.5 N/A 

PIBb-cov 2.9 4.9 N/A 

PIBa-phy 0.9 630 0.2±0.2 

PIBb-phy 8.2 430 0.5±0.2 

SIBS1-24 48 38 1.7±0.5 

SIBS2-24 28 24 1.1±0.8 

SIBS1-9 3.9 4.0 0.013±0.009 

SIBS2-9 5.0 3.5 0.11±0.07 

Substrate 420 420 N/A 
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 The roughnesses of the SIBS films did not change significantly after 35 days of exposure 

to aqueous buffer. All of the PTX originally on the film surface appeared to have been released 

from the films, and the peaks in the AFM images that were attributed to PTX were replaced by 

pits, resulting in a similar surface roughness. In constrast, films of the physical mixtures PIBa-

phy and PIBb-phy showed a 100-fold increase in roughness resulting from exposure to the 

aqueous environment coupled with the loss of material from the surface. The roughness of the 

covalent conjugates PIBa-cov and PIBb-cov did not change appreicably after 35 days of release, 

consistent with the qualitative observation that AFM images of the surfaces appeared very 

similar before and after release. 

Partial to complete delamination of the SIBS films from the 316L stainless steel substrate 

over the 35-day PTX release study was observed (appendix). This is likely related at least in part 

to the film damage that was observed by SEM. In contrast, most films prepared from the 

carboxylic-acid-functionalized PIB  did not delaminate. The exception was PIBb-phy, which 

contained a very high (48 wt%) loading of PTX and partially delaminated. These results suggest 

that the carboxylic-acid-functionalized PIB materials may have some advantages over SIBS in 

terms of coating properties. Indeed, we have observed that the carboxylic-acid-functionalized 

rubbers 1a and 1b show enhanced adhesion to stainless steel over the parent RBs, and the 

covalent PTX conjugates of these materials may retain this advantageous property.  

3.3.5 Mechanical and rheological properties 

The above results suggest that the covalent PIB-PTX conjugates exhibit slow drug release and 

form smooth, stable films. The mechanical and rheological properties of the materials are also 

critical to their potential application in vascular stent coatings, as they must survive the process 

of stent expansion and the shear forces due to blood flow. The tensile properties of the materials 

are provided in Table 3.3, and are compared with the those of the unfunctionalized RBs, SIBS1 

and SIBS2, as well as the carboxylic acid functionalized rubber derivatives 1a and 1b. 

Representative stress-strain curves are shown in Figure 3.4. Compared to the parent RBs, as well 

as the corresponding carboxylic-acid-functionalized derivatives, the PTX conjugates exhibit 

greatly increased ultimate tensile strength (UTS) and Young’s modulus and a corresponding 

decrease in the maximum elongation, indicative of more brittle elastic behaviour. PIBb-cov has 

a higher Young’s modulus and UTS than the PIBa-cov. This trend is similar to what was seen 
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with acid functionalized rubbers 1a and 1b, where greater changes in properties relative to the 

parent rubbers were observed with increased degrees of functionalization.  In comparison with 

SIBS, the strength and modulus of the new conjugates are comparable to those of SIBS1 and 

SIBS2. However, they are much more brittle, and this limitation should be considered in their 

optimization and application.  

Table 3.3. Tensile properties of polymers.  

Material
a
 Young’s modulus (MPa) Ultimate tensile strength (MPa) Elongation at break (%) 

PIBa-cov 3.7 ± 0.8 3.9 ± 0.6 150 ± 20 

PIBb-cov 6.6 ± 0.1 5 ± 2 110 ± 50 

SIBS1 2.1 ± 0 .4 7 ± 2 800 ± 100 

SIBS2 3.7 ± 0.4 11 ± 2 530 ± 30 

1a 0.35 ± 0.08 1.7 ± 0.3 600 ± 100 

1b 3.1 ± 0.8 4 ± 1 140 ± 30 

PIBa 0.6 ± 0.1 0.23 ± 0.01 770 ± 70 

PIBb 0.59 ± 0.02 0.8 ± 0.2 430 ± 30 

a 
Data for 1a, 1b, PIBa, and PIBb from McEachran et al.  

 As stent coatings are designed to be used at physiological temperatures, the rheological 

behaviour of the materials was studied at 37 ºC. Figure 3.5 shows the storage and loss moduli, G' 

and G'' respectively, of the PTX conjugates as a function of frequency ω, measured in small-

amplitude oscillatory shear. Both moduli are only weakly dependent on frequency, and for both 

materials G' >> G''. This behavior is typical of rubber-based materials. The moduli of PIBa-cov 

and PIBb-cov at ω=1 rad/s are compared with those of the parent carboxylic-acid-functionalized 

RBs and with SIBS in Figure 3.6. In both cases, the storage and loss moduli of the PIB were 

substantially increased by the introduction of the PTX, and the material with the higher PTX  

content had larger moduli than the lower PTX content material. 
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Figure 3.4. Representative tensile behaviour of covalent PTX conjugates and carboxylic-acid-

functionalized rubbers.  

  

 

Figure 3.5. Storage and loss moduli G' and G'' of the PTX-conjugated polymers PIBa-cov and 

PIBb-cov. The data have been averaged over at least three trials, and error bars show the 

standard deviation.  
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Figure 3.6. A) Storage modulus G' and B) loss modulus G'' of the polymers at ω=1 rad/s, of the 

carboxylic acid (1) and PTX-conjugated (PIB-cov) derivatives of both the low isoprene (PIBa) 

and high isoprene (PIBb) butyl rubber along with commercial SIBS1 and SIBS2 for comparison. 

The data have been averaged over at least three trails and error bars represent standard 

deviations.   

 

Figure 3.7. Loss tangent as a function of frequency.  
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  Figure 3.7 shows loss tangent, the ratio of the loss modulus to the storage modulus. A 

value of loss tangent less than one is indicative of solid-like behavior.  The behavior of the PTX-

conjugated PIB and the SIBS materials is very similar as loss tangent is relatively insensitive to 

frequency at low frequencies, but begins to increase as the frequency rises. This increase in the 

ratio reflects the slight upturn in G'' that is visible at high ω in Figure 3.5 and indicates that 

dissipation due to the motion of the polymer molecules on the scale of the distance between 

cross-links is becoming important at high frequencies.  Similar behavior was observed for other 

RB derivatives in chapter 2. These results suggest that the RB derivatives behave similarly to the 

SIBS materials in terms of rheology. 

 

3.3.6 Preliminary biological evaluation  

The toxicity of the polymers and their effectiveness as anti-proliferative coatings is critical to 

their potential application in vascular stents. The polymers themselves are all insoluble in 

aqueous solution, but we investigated  the possibility that they could be leaching toxic materials. 

Consequently, an MTT assay was performed using various concentrations of polymer leachate to 

assess cytotoxicity to C2C12 mouse myoblasts, a model cell line. High-density polyethylene 

(HDPE) was used as a negative control and sodium dodecyl sulfate was used as a positive 

control (toxicity detected at 0.2 µg/mL, results not shown). According to the ISO standard 

10993-5,
40

 a cell viability of greater than 70% is indicative of a non-toxic material. The results of 

the study are shown in Figure 3.8, and demonstrate that all materials tested are non-toxic by this 

measure. Importantly, no toxic leachates were detected in any of the PTX-free materials. 

However, PTX is highly cytotoxic, and the leachates of materials containg PTX did lead to 

modest reductions in cell viability. These modest reductions in cell viability likely result from 

the small quantities of PTX released during this assay.  
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Figure 3.8. Viability of C2C12 mouse myoblast cells grown in various dilutions of leachate (cell 

culture medium that was incubated in the presence of polymer materials), as measured by an 

MTT assay. 

 

 The slow release of PTX from the covalent PIB-PTX conjugates and the lack of toxicity 

seen in the MTT assay raise the concern that the level of bioactive PTX in the coatings may not 

be sufficient to impart the desired anti-proliferative effects required for DES applications. To 

investigate this further, the growth of C2C12 cells on the coatings was investigated. Coatings of 

the polymeric material were seeded with C2C12 cells, incubated for 48 hours, then washed to 

remove cells that had not adhered to the polymer. The cells were fixed and stained with 4’,6-

diamidino-2-phenylindole (DAPI, light grey, cell nulcei) and Alexa Fluor 568 phalloidin 

(cytoskeletons, grey), then imaged by fluorescence confocal microscopy. As shown in Figure 

3.9, both RB (2 mol% IP) (Figure 3.9a) and carboxylic-acid-functionalized rubber 1a (Figure 

3.9b) were very good substrates for cell growth. The cells appeared healthy, the cytoskeletons 

normal, and the cells well spread over the polymer surface.  

 

 The introduction of PTX resulted in significant changes. Most of the PIBa-cov surface 

was free from cells, although a few cells were able to adhere to isolated regions, as shown in 

Figure 3.9c. In these cases, the cells tended to stack rather then spread out on the surface, 

possibly taking advantage of a region of the rubber that has a low PTX content. Most of the 
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surface was free from intact cellular structures and only dead or dying cells and some cellular 

debris was observed (Figure 3.9d). On PIBb-cov, which had a higher PTX loading, no clusters 

of cells were detected (Figure 3.9e). A few isolated nuclei were observed, but no associated 

intact and healthy cytoskeletons. These results were quantified by counting the cells adhered to 

the surfaces. As shown in Figure 3.9f, there were on average, 17 times  fewer cells on PIBa-cov 

and 65 times fewer on PIBb-cov than on the surface of 1a. These results indicate that even 

though these materials release PTX very slowly , the release rate or the presence of the 

covelently-bound drug is sufficient to prevent cell adhesion and growth on the coatings. This is a 

promising indicator that these materials may be able to inhibit restenosis in an implanted stent. 

 

Figure 3.9. Confocal microscopy images of the results of the adhesion tests using C2C12 cells 

on: A) butyl rubber (2.2 % IP); B) 1a; C) PIBa-cov, showing a rare region with cell adhesion; D) 

PIBa-cov, showing a more typical region of the surface; E) PIBb-cov; F) Cell counts for the 

polymers examined. (*P < 0.05). All images are the same magnification and each image 

represents an area of 0.4 x 0.4 mm  
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3.4 Conclusions 

A simple, scalable synthesis of covalent PIB-PTX conjugates was developed. The PTX content 

of these novel materials was tuned to either 24 to 48 wt% by varying the content of pendant 

carboxylic acid moieties on the PIB derivatives. The release of PTX from coatings of the PIB-

PTX conjugates was studied and compared to that from physical mixtures of PTX with the 

carboxylic-acid-functionalized PIB and with SIBS. It was found that the distribution of the PTX 

in the films was more uniform and the release of the PTX significantly slower for the covalent 

PIB-PTX conjugates. In contrast, physical mixtures of PTX with carboxylic-acid-functionalized 

PIB or SIBS displayed what is proposed to be PTX aggregates on the film surfaces, which were 

eroded over the course of the PTX release study. AFM showed that films of the PIB-PTX 

conjugates remained relatively intact throughout the study and exhibited enhanced adhesion to 

the stainless steel surface. The introduction of PTX into the polymer matrix changed the tensile 

and rheological properties of the material, increasing their elasticity and tensile strength. An 

MTT assay revealed that none of the covalent or physically mixed PTX systems released toxic 

levels of PTX. Despite this, the levels of PTX released or on the surface of the covalently 

conjugated PIB-PTX coatings were sufficient to prevent the adhesion and growth of C2C12 

cells, suggesting that they show the desired anti-proliferative effect. Overall, the results of this 

study demonstrate that covalent PIB-PTX conjugates have promise as vascular stent coatings. 

Future work will involve further tuning of the biological and mechanical properties of these 

novel biomaterials. 
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Chapter 4  

4 Synthesis and properties of covalent paclitaxel-arborescent 

polyisobutylene conjugates 

 

4.1 Introduction 

Polyisobutylene (PIB) and its copolymers with isoprene (IP), commonly referred to as butyl 

rubber (RB), exhibit many advantageous properties such as high chemical stability, elasticity, 

biocompatibility, and low permeability to gases and solvents.
1, 2

 This rather unique set of 

properties has enabled the use of PIB materials in wide range commercial products including the 

bladders of sporting equipment, sealants, automobile tires, and even chewing gum. More 

recently, linear PS-PIB-PS (SIBS) triblock copolymers have been developed as the drug-eluting 

coating on the Taxus
TM

 vascular stent.
3, 4 

Over the past couple of decades, there have been many 

reports describing the derivatization of PIB at its terminus.
5-12

 There are also many examples of 

the grafting of small molecules or linear polymer chains to the IP units randomly distributed 

throughout the RB backbone.
13-21

 However, because of the chemical inertness of the PIB 

backbone and the relatively low IP content in RB, the scope of chemical structures accessible 

from linear PIB is still relatively limited.   

 Pioneering work by Puskas and coworkers demonstrated that the cationic polymerization 

of IB in the presence of an initiator-monomer ("inimer") such as 4-(2-

methoxyisopropyl)styrene,
22, 23

 or 4-(1,2-oxirane-isopropyl)styrene,
24

 leads to arborescent (arb-

PIB) or hyperbranched PIB. This technology opens many possibilities for PIB-based materials 

with new properties and functions. For example, Puskas and coworkers have prepared arb-PIB 

with terminal PS domains and found that the arborescent analogues retain the biocompatibility of 

SIBS, yet exhibit different mechanical and rheological properties, including improved fatigue 

life and lower creep.
25-28

 In addition, arb-PIB with terminal IP-rich sequences (arb-PIB-co-IP) 

exhibits thermoplastic elastomer properties unlike RB.
29

  The Gillies group has recently prepared 

arb-PIB grafted with PEG chains and compared them with the linear PIB-PEG graft 
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copolymers.
30

 It was found that the arborescent materials exhibited similar resistance to protein 

adsorption as the linear analogues when cast as films, but different tensile properties and self-

assembly behaviour in aqueous solution and in the solid state. Overall, this work reinforces the 

importance in polymer architecture in imparting specific properties to materials.  

 The Gillies group has also recently reported a chemical derivatization approach for the 

introduction of epoxides and allylic alcohols to RB, and  in Chapter 2 this was extended to 

carboxylic acid moieties. It was found that the introduction of the carboxylic acid moieties in 

particular imparted increased tensile strength and rheological properties characteristic of ionic or 

hydrogen-bond mediated physical cross-linking. In addition, in Chapter 3 it was demonstrated 

that PTX could be conjugated to the carboxylic acid derivatives prepared from RB containing 2 

or 7 mol% IP. This was of interest because PTX serves as an antiproliferative agent in the 

Taxus vascular stent, where its local delivery to the wall of the coronary artery prevents 

restenosis.
31

 In proof of principle studies, it was found that covalent immobilization significantly 

slowed PTX release from the coating, while still inhibiting cell proliferation on the coating 

surface, thereby potentially enhancing the life-time of the stent coating.  

 With the aim of developing new functional materials and investigating the effect of 

polymer architecture on properties and function, we describe here the application of the IP 

derivatization sequence to provide epoxide, allylic alcohol, carboxylic acid, and PTX conjugate 

derivatives of arb-PIB-co-IP. The new materials are thoroughly studied to investigate their 

thermal, tensile and rheological properties. Coatings are prepared from the PTX conjugate and 

the rate of drug release and coating degradation is studied and compared to a control with 

physically incorporated PTX, and to a coating similar to that on the Taxus™ stent. Preliminary in 

vitro studies are also performed to probe the release of toxic molecules from the coatings and the 

adhesion and proliferation of mouse myoblast cells on these coatings. 
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4.2 Experimental 

4.2.1 General procedures and materials 

Arb-PIB-co-IP with 6 mol% IP (Mw = 216 kDa, PDI = 1.4) was prepared as previously reported
29

 

and provided by LANXESS Inc. (London, Canada). Solvents were purchased from Caledon Labs 

(Caledon, Ontario). PTX was purchased from LC laboratories (Woburn, Ma). All other 

chemicals were purchased from either Sigma-Aldrich or Alfa Aesar and were used without 

further purification unless otherwise noted. Dry toluene was obtained from an Innovative 

Technology (Newburyport, USA) solvent purification system based on aluminium oxide 

columns. CH2Cl2, pyridine, triethylamine and diisopropylethylamine (DIPEA) were freshly 

distilled from CaH2 prior to use. 
1
H NMR spectra were obtained in CDCl3 at 600 MHz on a 

Varian Inova instrument. NMR chemical shifts (δ) are reported in ppm and are calibrated against 

residual solvent signals of CDCl3 (δ 7.26). Infrared spectra were obtained of films from CH2Cl2 

on NaCl plates or as KBr pellets using a Bruker Tensor 27 instrument. SEC was performed in 

tetrahydrofuran (THF) with a flow rate of 1 mL/min at 25 °C using an SEC instrument equipped 

with a Viscotek Max VE2001 solvent module and a Viscotek VE3580 RI detector operating at 

30 °C. The separation technique employed two Agilent Polypore (300 mm × 7.5 mm) columns 

connected in series to a Polypore guard column (50 mm × 7.5 mm). The calibration was 

performed using PS standards. DSC and TGA were performed on a Mettler Toledo DSC 822e. 

For DSC, the heating/cooling rate was 10 °C/min between -120 to +150 °C. Glass transition 

temperatures (Tg) and melting temperatures (Tm) were obtained from the second heating cycle. 

4.2.2 Synthesis of epoxide functionalized polymer 2. 

Polymer 1 (10 g, 11 mmol of IP), cut into small pieces (<100 mg each), was dissolved in 

anhydrous CHCl3 (400 mL) over a period of 8 h. To this solution was added a freshly dried 

solution of m-chloroperoxybenzoic acid (mCPBA) (5.5 g, 32 mmol) prepared by washing a 

CH2Cl2 solution (50 mL) of commercially available mCPBA (7.1 g, 77 % purity) using 

phosphate buffer, pH =7.2, followed by drying the organic phase with magnesium sulfate. The 

reaction was stirred for 16 h, and then diluted with CH2Cl2, and washed 3 times with 4 M NaOH, 

then 2 times with H2O. The combined organic layers were then concentrated to ~200 mL, and 

precipitated into acetone (1 L) to provide polymer 2 (10 g, > 99%) as a white rubbery solid. Tg = 
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-66 ºC; 
1
H NMR

1
 (600 MHz, CDCl3) δ 2.75-2.65 (m, 0.3H), 1.40 (s, 29H), 1.10 (s, 88H); IR 

(thin film on NaCl, chloroform): 923, 950, 1230, 1263, 1366, 1389, 1473, 2979 cm
-1

. SEC: Mw = 

194 kDa, PDI = 1.5.  

4.2.3 Synthesis of allylic alcohol functionalized polymer 3 

Epoxidized polymer 2 (9.0 g, 9.4 mmol of epoxide) was dissolved in CHCl3 (400 mL). 

Concentrated HCl (2.5 mL, 30 mmol) was added and the reaction was stirred for 20 min, at 

which point NMR analysis suggested reaction completion. The reaction mixture was then 

neutralized using triethylamine (10 mL, 71 mmol), concentrated to 150 mL, and precipitated into 

acetone (500 mL) to provide polymer 4 (8.9 g, >99%) as a white rubbery solid. Tg = -65 ºC; 
1
H 

NMR
*
 (600 MHz, CDCl3) δ 5.22 (s, 0.07H), 4.88 (s, 0.06H), 4.00-3.94 (m, 0.07H), 1.41 (s, 

29H), 1.10 (s, 88H); IR (thin film on NaCl, chloroform): 923, 950, 1230, 1365, 1389, 1472, 

2979, 3436 cm
-1

. SEC: Mw = 200 kDa, PDI = 1.6. 

4.2.4 Synthesis of carboxylic acid-functionalized polymer 4 

Allylic alcohol functionalized polymer 3 (7.0 g, 7.3 mmol of alcohol) was dissolved in toluene 

(300 mL). The toluene and any residual water were then removed by azeotropic evaporation and 

replaced with fresh anhydrous toluene (300 mL). Diglycolic anhydride (17 g, 150 mmol) was 

added along with freshly distilled triethylamine (21 mL, 150 mmol) and 4-

(dimethylamino)aminopyridine (DMAP) (1.8 g, 15 mmol). The reaction mixture was heated at 

70 ºC for 36 h, and then was cooled to ambient temperature. It was then washed with 1 M HCl, 

saturated NaHCO3, and water. The reaction was then precipitated into acetone (1 L), redissolved 

in toluene (250 mL) and reprecipitated into acetone (1L) to provide polymer 4 (7.0 g, > 98%) as 

an off-white rubbery solid. The material was immediately redissolved in toluene and stored as a 

solution as it physically crosslinks in its solid form on standing, resulting in an insoluble gel. Tg 

= -66 ºC; 
1
H NMR

*
 (600 MHz, CDCl3) δ 5.29-5.21 (m, 0.02H), 5.13-5.10 (m, 0.02H), 4.97-4.85 

(m, 0.04H), 4.32-4.16 (m, 0.53H), 1.41 (s, 29H), 1.10 (s, 88H); IR (thin film on NaCl, 

chloroform): 923, 950, 1228, 1367, 1390, 1486, 1742, 1756, 3006 cm
-1

. SEC: Mw = 228 kDa, 

PDI = 1.6.  

                                                 
11

H NMR integrations are provided for comparison purposes only. Due to the branched nature of the polymer, the 

relaxation times are much higher (>10 s) for the signals associated with the isoprene molecules and thus are 

significantly less than the expected value. 
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4.2.5 Synthesis of PTX-conjugated polymer 5 

A solution of acid-functionalized polymer 5 (1.5 g, 1.6 mmol of acid) in toluene (15 mL) was 

diluted with anhydrous toluene (100 mL) under argon. In a separate flame-dried flask, 1-ethyl-3-

(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC·HCl, 400 mg, 2.1 mmol) was 

dissolved in dry CH2Cl2 (10 mL) along with DIPEA (600 µL, 3.3 mmol) and DMAP (100 mg, 

0.8 mmol). This solution was cannulated into the toluene solution and the resulting reaction 

mixture was warmed to 40 ºC with stirring under an argon atmosphere for 20 min. At this point, 

a solution of PTX (2.2 g, 2.5 mmol) in CH2Cl2 (10 mL) was added at once, and the reaction 

mixture was stirred at 40 ºC for 48 h. After reaction completion (determined by NMR) the 

reaction mixture was cooled to ambient temperature, decanted from some gelled material 

present, and precipitated into acetone. The resulting solid was redissolved in CHCl3 and 

reprecipitated into acetone to provide polymer 5 (2.1 g, 40%) as an off-white solid. A reaction 

conversion of 50% was determined by 
1
H NMR spectroscopy using peak assignments based on 

those of the linear analogues. The analysis was based on a comparison of the PTX peak 

integration (average value = 0.03 H/proton) with those of the IP units (δ= 5.29-5.20, 5.15-5.08 

which include signals corresponding to both the PTX conjugated and unconjugated IP 

derivatives on the backbone, 0.06 H/proton). This implies ~35 wt % PTX content.  TGA mass 

loss analysis on two separate synthetic batches of 5 (each showing approximately 50 % NMR 

conversion) suggested PTX content of 35 and 40 % respectively, averaging to 37.5 wt% PTX in 

the conjugate prepared by this method. Tg = -65 ºC; 
1
H NMR

*
 (600 MHz, CDCl3) δ 8.14 (bd, J = 

6.4 Hz, 0.055H), 7.75 (bd, J = 6.9 Hz, 0.051H), 7.63-7.58 (m, 0.027H), 7.53-7.47 (m, 0.17H), 

7.45-7.33 (m, 0.19H), 7.22-7.19 (m, 0.062H), 7.10-7.05 (m, 0.027H), 6.31-6.20 (m, 0.057H), 

6.07-5.97 (m, 0.026H) 5.70-5.65 (m, 0.028H), 5.64-5.56 (m, 0.032H), 5.29-5.17 (m, 0.067H), 

5.15-5.08 (m, 0.061H), 4.99-4.87 (m, 0.16H), 4.49-4.04 (m, 0.53H), 3.83-3.78 (m, 0.15H), 2.69-

2.51 (m, 0.034H), 2.50-2.42 (m, 0.099H), 2.41-2.38 (m, 0.036H), 2.25-2.23 (m, 0.22H), 1.97-

1.80 (m, 0.18H), 1.69 (s, 0.29H), 1.47-1.33 (m, 29.7H), 1.11 (s, 92H); IR (thin film on NaCl, 

chloroform): 923, 949, 1231, 1366, 1389, 1472, 1645, 1743, 2952 cm
-1

. SEC: Mw = 234 kDa, 

PDI = 1.82. 
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4.2.6 Thermogravimetric analysis of PTX content 

TGA was performed as described above in the general procedures and materials section for 4, 5 

(two different synthetic batches) and PTX itself. Arborescent rubber 4 lost 5.5 % of its mass 

between 170 ºC and 350 ºC, a result consistent with the other arborescent materials 1-3. 

Arborescent PIB-PTX conjugate 5 lost 12.2 % of its mass over the same range. PTX lost 19 % of 

its mass over the same range. The difference in mass loss between 4 and 5 was attributed to PTX. 

This corresponded to a PTX content of 35 wt%, in agreement with the NMR evidence. 

4.2.7 Tensile testing 

1.5 g of polymer was compressed into a 0.3 mm thick flat sheet using a hydraulic hot press 

(Carver Hydraulic Unit Model # 3851 OC). Samples 60 mm x 5 mm in size were cut from this 

sheet. The tensile test was performed at ambient (22 ± 1 ºC) temperature using an Instron 

Universal Testing Machine (Model 5943) and Bluehill 2 software. 1-kN load cell at an extension 

rate of 400 mm/min was used, in accordance with ASTM D882 – 12.
32

 Load and extension were 

calibrated prior to the test. To prevent slippage of the samples from the clamps of the testing 

machine, 10 mm of material were inserted into each clamp, leaving an effective sample length of 

40 mm. At least six trials were performed for each polymer. 

4.2.8 Rheology 

Rheological measurements were performed using a TA Instruments AR-1500ex stress-controlled 

rheometer with a 25 mm-diameter parallel-plate tool. Sandpaper was glued to both plates to 

prevent slip. Circular samples 25 mm in diameter were cut from a sheet prepared by compressing 

1.5 g of polymer into a flat sheet using the hydraulic hot press. The sample thickness was 

measured at three different places in each sample and was approximately 0.5 mm for all samples. 

The sample was then placed in the rheometer, the gap between the plates set to the lowest of the 

thickness measurements, and the sample annealed at 100 ºC for 1 h. Small-angle oscillatory 

shear and creep-recovery measurements were carried out on each sample. Oscillatory tests were 

performed at angular frequencies between 0.1 and 100 rad/s with the oscillating stress amplitude 

controlled at 100 Pa, which we confirmed was in the linear viscoelastic regime for our materials. 

Creep measurements were performed by applying a fixed shear stress of 100 Pa at time t = 0 and 

monitoring the deformation (strain) of the sample over time. At t = 10 min, the stress was 

reduced to zero and the relaxation of the strain monitored for a further 10 min.  All rheological 
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measurements were done at 37 ºC. The data were averaged over at least four trials for each 

polymer. 

4.2.9 Preparation of films on stainless steel  

The surface of a stainless steel plate with dimensions of 31 mm  11 mm was milled to obtain a  

smooth surface with a roughness of 420 nm. The films were prepared from a 100 mg/mL 

solution of the polymer in CH2Cl2. For the physically mixed samples, PTX was added to achieve 

the desired wt%.  A 100 μL aliquot of polymer solution was drop cast onto the stainless steel 

plate. The sample was dried under reduced pressure prior to the release study. Each sample was 

prepared and studied in quadruplicate. 

4.2.10 PTX release from polymer films  

The release study was performed in 0.01 M phosphate buffer solution with pH = 7.4, containing 

0.14 M NaCl, 2.7 mM KCl, and 0.05% (mass/vol) Tween 20 as a surfactant. The stainless steel 

plates were submerged in 10 mL of buffered solution in a vial. The solution was maintained at 37 

°C. The buffer was removed every seven days for PTX analysis and replaced with fresh medium. 

Due to the low amounts of PTX released, the 10 mL of release medium was concentrated by 

lyophilization, followed by redissolution of the resulting solid in 2 mL of 80:20 

water:acetonitrile with agitation. Samples were filtered through a 2.2 µm syringe filter prior to 

HPLC analysis, which was performed as previously reported in Chapter 3.  

4.2.11 Atomic force microscopy 

Surfaces for AFM analysis were those prepared for the release study. Surfaces were visualized 

using an XE-100 microscope from Park Systems. Images were obtained by scanning the surface 

at three different magnifications with fields of view of 20 µm  20 µm, 5 µm  5 µm, and 1 µm 

 1 µm respectively. Scanning was performed using rectangular-shaped silicon cantilevers 

(T300, VISTA probes), with a nominal tip radius of 10 nm and spring constant of 40 N/m. 

Measurements were carried out under atmospheric conditions at ambient temperature. 

Topographic (height) and phase (force imaging mode) images were recorded simultaneously in 

tapping mode. The cantilever was oscillated at its resonance frequency of approximately 300 

kHz. All images contained 256 data points per line for 256 lines, and the scan rate was 
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maintained at 1 Hz. Post-imaging analysis was carried out using XEI, version 1.7.0 from Park 

Systems. Images were flattened to remove curvature in both the x and y axes.  

4.2.12 Toxicity assay 

Test samples were melt-pressed to a thickness of 0.4 mm. The melt-pressed film was then cut 

into 1 cm  1 cm squares. Samples were sterilized by washing with 70% ethanol and 

subsequently dried for 2 h under UV light. They were placed in Petri dishes and incubated in 2 

mL of Dulbecco’s Modified Eagle Medium (DMEM, Invitrogen) supplemented with 10% fetal 

bovine serum (Invitrogen), 1% Glutamax (100) solution and 1% Penstrep (100) in an 

incubator at 37°C for 24 h. The leachate was then removed and passed through a 0.2 µm filter. 

C2C12 mouse myoblast cells were seeded in a Nunclon 96-well U bottom transparent polystrol 

plate to obtain 10,000 cells/well in 100 μL of DMEM containing serum, glutamax and antibiotics 

as described above. The cells were allowed to adhere to the plate in an incubator at 37 °C (5% 

CO2) for 24 h. Next, the growth medium was aspirated and was replaced with either the positive 

control (sodium dodecyl sulfate (SDS) in the cell culture medium at concentrations of 0.2, 0.15, 

0.10, or 0.05 mg/mL), serial two-fold dilutions of the leachate, or just the medium. The cells 

were then incubated at 37 °C (5% CO2) for 24 h. The medium was then aspirated and replaced 

with 110 μL of fresh medium containing 0.5 mg/mL (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) (MTT) reagent. After 4 h of incubation (37 °C, 5% CO2), the MTT 

solution was carefully aspirated and the resulting purple crystals were dissolved by addition of 

50 μL of spectroscopic grade dimethylsulfoxide (DMSO). After shaking (1 second, 2 mm amp, 

654 rpm), the absorbance of the wells at 540 nm was read using an M1000-Pro plate reader 

(Tecan). The absorbance of wells not containing cells but treated by all of the above steps was 

subtracted as a background and the cell viability was calculated relative to wells containing cells 

that were exposed to just culture medium. No (0%) cell viability was detected for the cells 

exposed to the highest concentrations of the positive control SDS, confirming the sensitivity of 

the assay. 

4.2.13 Evaluation of cell growth on films 

C2C12 cells were maintained at 37 ºC and 5% CO2 in Dulbecco’s Modified Eagle Medium 

(Invitrogen) supplemented with 10% fetal bovine serum (Invitrogen), 1% Glutamax (100) 

solution and 1% Penstrep (100). Glass microscope cover slips (circular, 25 mm diameter) were 
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coated with polymer by drop casting 0.25 mL of a 35 mg/mL solution of polymer in toluene and 

allowing the solvent to dry completely. In addition to the polymer samples, an uncoated glass 

slide was used as a positive control. The surfaces were disinfected by submersion in 70% ethanol 

and then left to dry completely under reduced pressure for 96 h. The sterilized samples were 

placed in the wells of a 6-well plate and 5  10
5
 cells in 2 mL of cell culture medium were 

seeded onto each surface. The samples were incubated for 48 h, then fixed with 4% 

paraformaldehyde solution for 10 min. They were washed twice with phosphate-buffered saline 

(PBS) (Invitrogen) at pH 7.2, and then treated with 2 mL of acetone at -20 ºC for 5 min to 

permeabilize the membrane. They were then washed again with phosphate buffered saline (PBS), 

then stained with Alexa Fluor 568 phalloidin (Invitrogen) and 4’,6-diamidino-2-phenylindole 

(DAPI, Invitrogen) following the manufacturer’s directions. The samples were washed again 

with PBS and placed face down onto glass microscope slides with ProLong Gold Antifade 

Reagent (Invitrogen) and sealed. Confocal images were obtained using a confocal laser scanning 

microscope (LSM 510 Duo Vario, Carl Zeiss) using a 20 objective and excitation wavelengths 

of 405 (DAPI) and 578 nm (phalloidin). Cells were counted using Image Pro Plus software from 

3 different random regions on each of 3 surfaces per polymer. Statistical analyses (ANOVA 

followed by Tukey’s test) were performed using the software Microsoft Excel. 

 

4.3 Results and discussion 

4.3.1 Synthesis 

Arb-PIB-co-IP was prepared as previously reported, by the synthesis of arb-PIB using cationic 

polymerization of IB in the presence of the 4-(2-methoxyisopropyl)styrene inimer,
29

 followed by 

the addition of IP, leading to short terminal blocks of isoprene-rich PIB-co-IP (Figure 4.1). 

Overall, the copolymer contained 6 mol% of IP relative to IB. As shown in Scheme 4.1, 

following the chemistry previously developed for linear RB, arb-PIB-co-IP 1 was epoxidized 

using mCPBA in CHCl3 to provide the epoxide 2. The epoxide was subsequently converted to 

the allylic alcohol 3 using HCl in CHCl3. Reaction with diglycolic anhydride in the presence of 

DMAP as a nucleophilic catalysist provided the carboxylic acid functionalized polymer 4. The 

PTX conjugate 5 was prepared by coupling of polymer 4 to PTX (6) using EDC in the presence 

of DMAP and DIPEA.   
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Figure 4.1. Schematic structure of arb-PIB-co-IP. The wavy lines represent the PIB. The inimer 

is represented by the branching styrenic moieties, and the thick black blocks represent IP-rich 

outer arms. 

 

Scheme 4.1. Functionalization of arb-PIB-co-IP and conjugation with PTX (for simplicity, only 

the IP moiety, flanked by two isobutylene groups is shown). 

 This sequence is identical to that previously used for the preparation of linear analogues 

as described in Chapters 2 and 3 except that the final PTX functionalization was found to be 

slower for this arborescent derivative, and was consequently carried out at 40 ºC rather than at 

ambient temperature. This can likely be attributed to steric hindrance due to the close proximity 

of the IP moieties in these materials. The same issue was encountered in the preparation of PEG 

graft copolymers of arb-PIB-co-IP.
30

 



90 

 

 SEC in THF was used to confirm that the functionalization chemistry did not result in 

degradation of the polymer backbone. Small fluctuations in the molar mass and polydispersity 

were observed throughout the functionalization process, likely resulting from the varying 

hydrodynamic volumes of the different functionalized materials and possible interactions of the 

more polar derivatives 3 and 4 with the column. However, the SEC traces and overall molecular 

weight characteristics remained relatively unchanged throughout the process, suggesting that the 

backbone remains intact (appendix).  

 IR spectroscopy confirmed the presence of the expected functional groups at each step. 

For example, a strong OH stretch was observed for the allylic alcohol 3 at 3436 cm
-1

, which was 

not present for the epoxide derivative 2 and which significantly weakened for the carboxylic acid 

derivative 4. Two carbonyl stretches were also observed in the spectrum of 4 at 1743 and 1756 

cm
-1

, corresponding to the expected ester and carboxylic acid functionalities of the conjugated 

diglycolic acid.  Upon conjugation of PTX the carbonyl stretch appeared to shift to 1743 cm
-1

, 

consistent with the conversion of the acid to an ester. However, the large numbers of ester and 

amide functionalities present on PTX complicate this analysis. 

 
1
H NMR spectroscopy was used to monitor the reactions and the peaks were assigned 

based on those of the previously prepared linear analogues. The spectra showed that a clean 

conversion of functional groups was achieved for polymers 2 to 4. However, peaks 

corresponding to the functionalized IP moieties, particularly those on the more polar derivatives 

3 and 4, exhibited integrations considerably lower than expected relative. This is presumably 

because they exhibit long relaxation times due to the branched structure and possibly some intra- 

and intermolecular aggregation. Based on a comparison of the integration of the PTX peaks in 5 

relative to the functionalized IP moieties, approximately 50% conversion of the carboxylic acids 

to PTX esters was obtained, corresponding to ~35 wt% PTX in polymer 5. This coupling yield is 

lower than those previously obtained for the linear analogues and may be attributed to the close 

proximity of the pendant carboxylic acid moieties, which results in steric hindrance to coupling.  

 Attempts to quantify the PTX content using ultraviolet-visible spectroscopy failed to 

provide any meaningful results as the conjugation of PTX to arb-PIB-co-IP results in a 

substantial change in its absorption properties and all attempts to hydrolyze the PTX from the 

polymer for subsequent quantification resulted in the precipitation of the polymer conjugate, 
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even at combinations of very low polymer concentrations (50 µg/ mL) and low (< 4 vol%) water 

content. To corroborate the NMR quantification, quantitative TGA was performed as PTX 

begins to thermally decompose at a lower temperature than the PIB itself.
33

 Through comparison 

of the mass loss results for polymer 4, 5, and PTX, it was determined that the PTX conjugate 5 

contained approximately 37.5 wt% PTX, in agreement with the NMR data.  

4.3.2  Thermal properties 

Thermogravimetric analysis (TGA) showed that polymers 1 - 4 exhibit onset degradation 

temperatures (To) of 381 - 392 ºC and peak degradation temperatures (Tp) of 399 - 411 ºC (Table 

4.1). In contrast, the PTX conjugate 5 exhibits a two phase degradation profile with To of 239 ºC 

and 388 ºC, and Tp of 274 ºC  and 403 ºC.  As described above, the ~13% mass loss between 170 

and 350 ºC can be attributed to degradation of the PTX, which is known to start degrading 

around 216 ºC.
33

 The remaining polymeric material decomposes at a temperature similar to 

derivatives 1 - 4. As shown in Table 4.1, all of the polymers 1 to 5 exhibit very similar glass 

transition temperatures (Tg), in the range -62 to -66 ºC. The PTX conjugate 5 exhibits a melting 

temperature (Tm) of 40 ºC, probably corresponding to the melting of PTX domains, as PTX is 

known to be a crystalline solid. The formation of small domains of PTX may be obtained with 

this arborescent material as the PTX is concentrated in the terminal blocks of the polymer. In 

contrast, no Tm was observed for linear conjugates where the PTX was randomly distributed 

along the polymer backbone.  

Table 4.1.  Thermal behavior of polymers 1 - 5 as measured by TGA and DSC.  

Polymer To (ºC) Tp (ºC) Tg (ºC) Tm (ºC) 

1 381 399 -62 -- 

2 384 400 -66.5 -- 

3 392 411 -65 -- 

4 389 406 -66 -- 

5 239, 388 274, 403 -65 40 
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4.3.3 Mechanical and rheological properties 

As the mechanical properties of these materials will be critical for their use in all applications, 

the tensile and rheological properties of polymers 1 - 5 were investigated. Tensile testing was 

performed using the standard ASTM D882 – 12 protocol
32

 and 6 samples of each material were 

evaluated. Representative stress-strain curves are plotted in Figure 4.2 and the Young's modulus 

(E), ultimate tensile strength (UTS), and elongation at break (Elt) are provided in Table 4.2. The 

tensile properties of the starting arb-PIB-co-IP 1, epoxy derivative 2, and allylic alcohol 

derivative 3 were similar to one another. E, UTS and Elt of 1 and 3 were similar to those of the 

linear analogues prepared, while E for 2 was two-fold higher than its linear analogues. The 

introduction of carboxylic acid moieties in polymer 4 resulted in an increase in E to 0.66 MPa 

from 0.39 MPa for polymer 3. A significant increase in UTS and a decrease in Elt were also 

observed. These results are consistent with those of the linear analogue with similar carboxylic 

acid content, and may be attributed to the ability of the carboxylic acid moieties to form 

ionomeric or hydrogen-bonded domains within the material, which leads to a reinforcing effect. 

Introduction of PTX in polymer 5 resulted in an increase in E and UTS, and a further decrease in 

the Elt. These changes may result from a mechanical reinforcement effect imparted by the 

crystalline domains of PTX suggested by the thermal properties of 5 discussed above. However, 

the linear analogues also exhibited comparable mechanical properties despite no observable Tm.  

 

Figure 4.2. Representative results of tensile tests on polymers 1 to 5. 

 



93 

 

Table 4.2. Tensile properties of polymers 1 to 5. 

Polymer  Young’s modulus (E) 

(MPa) 

Ultimate tensile strength (UTS) 

(MPa) 

Elongation at break (Elt) 

(%) 

1 0.47 ± 0.2 0.3 ± 0.2 900 ± 300 

2 1.1  ± 0.4 0.58 ± 0.09 600 ± 100 

3 0.39 ± 0.04 0.37 ± 0.03 600 ± 200 

4 0.66  ±  0.06 1.2 ± 0.1 560 ± 30 

5 1.4 ± 0.1 2.5 ± 0.6 240 ± 30 

 

The rheological properties of the materials were measured as a function of frequency 

using small-amplitude oscillatory shear. Figure 4.3 shows the results of this study for the 

carboxylic acid functionalized polymer 4 and the PTX conjugate 5. These serve as representative 

examples as all of the materials behaved similarly. Additional data are included in the appendix. 

Figure 4.3a shows the frequency dependence of the elastic and viscous moduli, G' and G'' 

respectively, and Figure 4.3b shows loss tangent, the ratio of the loss and storage moduli, as a 

function of frequency. In all cases, the materials are strongly elastic: G' is greater than G'' (loss 

tangent < 1) over the full frequency range and both moduli are only weakly dependent on 

frequency. The increase in loss tangent at high frequencies hints at an eventual crossover to 

glassy behavior. This behavior is typical of rubbery materials.
34

   

Figure 4.4 shows G’ and G’’ at an angular frequency of ω = 1 rad/s for all the arborescent 

materials. As noted above, G’ is substantially greater than G’’, as expected for a strongly elastic 

material. The moduli of polymers 1 to 4 are the same within experimental uncertainties. This 

result differs from that for the linear analogues (chapter 2), in which case G' and G'' decreased 

significantly on introduction of allylic alcohols or carboxylic acid moieties. Both G' and G'' 

increase by a factor of approximately ten relative to 4 when PTX is introduced, roughly twice as 

large as the increase in the moduli observed for the linear PTX conjugates. Furthermore, in the 

case of the linear analogue, the PTX conjugate had similar G’ and G’’ values as the parent 

rubber. For the arborescent material, the increase is almost an order of magnitude relative to the 

parent arborescent rubber. This difference in behavior between linear and arborescent materials 

may result from the presence of crystalline domains of PTX in polymer 5, as suggested above.  
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Figure 4.3.  A: Frequency dependence of the elastic and viscous moduli, G’ and G’’, of the 

carboxylic acid functionalized polymer 4 and the PTX conjugated polymer 5. Error bars are 

roughly the size of the plotted symbols and are omitted for clarity. B: loss tangent = G’’/G’ as a 

function of frequency for polymers 4 and 5. Polymers 2 and 3 behave in a similar fashion. 

 

Figure 4.4.  Elastic (G’) and viscous (G’’) moduli at 1 rad/s for polymers 1 to 5. Error bars 

represent the standard deviation of at least three measurements. 

 



95 

 

 

Figure 4.5.  Creep and relaxation curves for polymers 2 to 5. A constant shear stress of 100 Pa 

was applied at time t = 0, then removed at t = 600 s. The creep compliance J is plotted as a 

function of time. 

The results of creep experiments are shown in Figure 4.5, in which the creep compliance 

J (strain divided by shear stress) is plotted for polymers 2-5 (abnormal slippage behavior was 

observed for arborescent rubber 1, rendering the data from the creep analysis of this polymer 

meaningless). The hydrogen-bond forming derivatives 3 and 4 have a much lower compliance, 

and so are much more resistant to flow, than the epoxidized version 2. The PTX conjugated 

polymer 5 is even more resistant to flow, and the almost complete recovery of the deformation 

when the applied stress is released indicates the strongly elastic behavior of the material. These 

results suggest that the PTX conjugated arborescent polymer has mechanical and rheological 

properties that are compatible with those required for a stent coating. 

4.3.4 Preparation of films and release of PTX from polymer 5 

To investigate the potential of the PTX conjugate 5 to provide controlled release of PTX, the rate 

of PTX release from polymer films was measured, and the physical changes in the films after 

drug release were investigated. For comparison, we also investigated a physical mixture of 4 and 

PTX at the same drug loading (4 + PTX) to determine the effect of covalent drug conjugation on 

the film’s properties and release rate. A SIBS composed of 80:20 (wt:wt) PS:PIB containing 8.8 

wt% of PTX (SIBS + PTX), similar to the material used in the TAXUS clinical stent coatings, 

was also studied. Films were prepared by drop casting solutions of the materials in CH2Cl2 onto 

stainless steel slides.  
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Table 4.3. Film thickness and roughness measurements before and after the PTX release study. 

Sample Film 

thickness 

before release 

(µm) 

RMS 

roughness 

prior to 

release ( nm) 

Film 

thickness 

after release 

(µm)
1 

RMS 

roughness 

after release 

(nm)
1 

4 + PTX 21 ± 1 51 40 ± 10 55 

5 20 ± 8 48 9 ± 1 60 

SIBS + PTX 54 ± 4 5.0 89 ± 2 3.5 

1
 Due to the destructive nature of the measurement, it was not possible to use exactly the same 

film for measurements before and after release. 

Figure 4.6. Representative AFM images showing the polymer surface before and after the 

release study. a-c) 4 + PTX; d-f) 5; g-i) SIBS + PTX. Phase images before release: a, d, g; 

Topography images before PTX release: b, e, h; Topography images after 35 days of PTX 

release: c, f, i. *The vertical axes of the topography images have different magnitudes. 
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Prior to the release study, AFM was used to determine the film thickness and root mean 

square (RMS) roughness of one representative film of each material, and to image the surface 

topography. Phase images prior to PTX release, and topography images before and after release, 

are shown in Figure 4.6. Phase images after release are available in the appendies. As shown in 

Table 4.3, the film thicknesses ranged from 20 to 54 µm prior to the release of PTX. The 

surfaces of the films prepared from 5 and from 4 + PTX were approximately 10 times rougher 

than the SIBS + PTX film. The high roughness of the 5 and 4 + PTX films masked any phase 

separation. However, in the case of SIBS + PTX, roughly spherical domains with diameters on 

the order of 100 nm and that protrude from the surface by approximately 10 nm were observed in 

both phase and topography images. These features were not observed in AFM images of SIBS 

films without PTX,
35

 which suggests that they may be due to aggregates of PTX. Similar features 

were also observed on the surface of the linear analogues of 4 + PTX, which were considerably 

less rough than their arborescent analogues (and were not visible on the chemically conjugated 

linear analogue of 5).  

 

Figure 4.7. PTX release over 35 days from films of 4 + PTX, 5, and SIBS + PTX into 

phosphate buffer containing Tween 20 at 37 C. Error bars represent the standard deviation of 

three measurements, error bars for 5 are the same size as or smaller than the data markers. 
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The release of PTX from the polymer films was measured using a previously reported 

protocol.
22, 23

 The films were incubated in phosphate buffer containing Tween 20 at 37 C, and 

measurement of the PTX concentration in the release media was measured at various times by 

HPLC.
 36, 37 

The results are provided in Figure 4.7. 4 + PTX exhibits the most rapid PTX release, 

which may be facilitated by the polar carboxylic acid moieties on the polymer backbone that 

enhance water penetration into the film. Polymer 5 exhibits the slowest release of PTX. This can 

likely be attributed to the fact that hydrolysis of the ester linkage between PTX and the polymer 

backbone must occur before the PTX can be released from the film. The release rate from SIBS 

+ PTX is intermediate. The same trends were observed for the linear analogues, and the overall 

release rate of PTX from the covalent arborescent conjugate 5 being very similar to that of the 

linear analogue. As shown in Table 4.3, the film roughness did not change appreciably during the 

release study. No significant changes in surface topography were observed for the films of 4 + 

PTX (Figure 4.6c) or 5 (Figure 4.6f). However, the SIBS + PTX (Figure 4.6i) film became 

pitted with holes, presumably due to the erosion of PTX domains on the surface. 

4.3.5 Preliminary biological evaluation 

Preliminary biological studies were performed to investigate the cytotoxicity of the materials and 

their ability to support cell growth. C2C12 mouse myoblasts were used as a model cell line. To 

determine if toxic molecules were released from the polymer, the films were incubated in cell 

culture medium for 24 h. This medium was then added to the C2C12 cells at different dilutions. 

An MTT assay was performed to assess cell viability after 48 h. As shown in Figure 4.8, no 

significant toxicity was observed for any of the materials, with cell viabilities above 70 %.
38

 This 

suggests that no toxic chemical intermediates leach from the functional polymer derivatives 1 - 

4. In addition, the lack of significant toxicity for the PTX conjugate 5 indicates that the 

concentration of PTX released in this study was not sufficient to kill the cells.  
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Figure 4.8. Viability of C2C12 mouse myoblast cells grown in various dilutions of cell culture 

medium that was incubated in the presence of polymer materials, as measured by an MTT assay. 

Only 5 contains PTX (chemically conjugated). High density polyethylene (HDPE) was used as a 

negative control and sodium dodecyl sulfate (SDS) was used as a positive control (not shown). 

 

To be useful as DES coatings, the materials must release PTX in a manner that allows the 

drug to exhibit its desired anti-proliferative activity, while remaining non-toxic. To investigate 

this, we studied the growth of C2C12 cells grown directly on the films of the PTX conjugate 5, 

the carboxylic acid-functionalized polymer 4 without PTX, and control glass cover slips, which 

is known to be a good substrate for cell growth. Cells were seeded on the surfaces. After 48 h, 

the cells were fixed and their nuclei were stained with DAPI, while their cytoskeletons were 

stained with Alexa Fluor 568 phalloidin. Figure 4.9 shows confocal microscope images of the 

cells on each of the three surfaces studied. Figures 4.9a and b show that cells formed well-

spread, confluent monolayers on both the glass slide and polymer 4. In contrast, there were far 

fewer cells on the PTX conjugate 5 (Figure 4.9c,d), and the cells that were present did not appear 

to have healthy cytoskeletons as can be seen in Figure 4.9c. This is consistent with our previous 

observations for linear PIB-PTX conjugates and with the action of PTX as a microtubule 

dissociation inhibitor that prevents the cell from reorganizing its cytoskeleton.
39

 These results 

suggest that although the release of PTX is very slow, it is still sufficient for the drug to exhibit 

its desired anti-proliferative activity.  
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Figure 4.9. Confocal microscopy images of C2C12 cells on: A) glass slide; B) carboxylic acid-

functionalized polymer 4; C) PTX conjugate 5; D) cell counts for the polymers examined. (*P < 

0.05 by one-way ANOVA test followed by Tukey’s test). The cell nuclei are stained with DAPI 

(light grey) and the cytoskeletons are stained with Alexa Fluor 568 phalloidin (grey). All images 

are the same magnification and each image represents an area of 0.4 x 0.4 mm
2
. 
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4.4 Conclusions 

The chemistry previously developed for the functionalization of linear RB was successfully used 

to prepare epoxide, allylic alcohol, carboxylic acid, and PTX derivatives of arb-PIB-co-IP and 

the properties of these materials were compared to those of their linear analogues. Thermally 

these materials exhibited similar properties to the linear analogues; however, a Tm was observed 

for the arborescent PTX conjugate 5 that was not apparent in the linear analogue. This suggests 

that the introduction of the PTX at high density in the outer blocks of the arborescent material 

allows it to phase separate to a degree, which was not possible for the randomly distributed PTX 

molecules in the linear material. In examining the different derivatives through tensile and 

rheological testing, it was found that the differences in properties between the epoxide, allylic 

alcohol, and carboxylic acid were generally smaller for the arborescent polymer than for the 

analogous linear materials. However, the introduction of PTX imparted significant changes in the 

tensile and rheological properties of both the linear and arborescent materials. The arborescent 

PTX conjugate exhibits slow PTX release relative to physical mixtures of PTX with either SIBS 

or polymer 4, which can be attributed to the requirement for ester bond hydrolysis to occur prior 

to drug release rather than simple diffusion. The PTX release rate from the arborescent conjugate 

was very similar to that of the linear analogue. None of the studied materials released toxic 

concentrations of PTX or other impurities as measured by an MTT assay on C2C12 cells. 

However, the PTX present in and/or released from films of the covalent PTX conjugate was 

sufficient to prevent the growth of C2C12 cells on the material, a promising property suggesting 

that the immobilized drug retains properties characteristic of those required in DES applications. 

These results, coupled with their release profile and acceptable mechanical properties make this 

arborescent PTX conjugate a promising candidate for further evaluation as a DES coating. 
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Chapter 5 

5 Conclusions  

5.1 Concluding remarks and future directions 

Cardiovascular diseases are one of the top causes of death in western society. The current 

treatment for cardiovascular disease may require the insertion of a stent into the artery. However 

current stents on the market have some limitations that can potentially be addressed by 

optimization of the drug-eluting coating. With the aim of achieving this, this thesis described the 

development and study of both linear RB and arb-PIB derivatives and their application to the 

preparation of covalent PTX conjugates to control drug release.  

In Chapter 2, the synthesis of carboxylic acid functionalized RB was described. The 

functionalization was achieved through ring opening of diglycolic anhydride from allylic alcohol 

moieties on the polymer backbone. The introduction of carboxylic acids improved the tensile 

properties of the rubber. The ultimate tensile strength and Young's modulus were increased for 

both the high- and low- IP-content RB. Rheological studies showed that introduction of 

carboxylic acids made the material more elastic, which is believed to result from the formation of 

a physical cross-linked network of polymer molecules. This improvement in physical properties 

of RB can make it more useful for biomedical applications including coatings for stents and 

other devices. 

In Chapter 3, the synthesis of PTX conjugates of RB was accomplished via a 

carbodiimide coupling. The introduction of PTX into RB changed the tensile and rheological 

properties of the material, increasing their elasticity and tensile strength. Films of the PTX 

conjugates were prepared to explore the potential application of these new polymers in drug 

eluting stents. The polymers were compared with several controls that contained physical 

mixtures of PTX and SIBS or the carboxylic acid functionalized rubber. The covalent conjugate 

had a more uniform distribution of PTX and exhibited a very slow, sustained release in contrast 

to the control films. The films of the PTX conjugate also exhibited enhanced adhesion to the 

stainless steel surface and remained intact throughout the study. The preliminary biological 

assays showed that none of the covalent or physically systems released toxic levels of PTX. 
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However, the level of PTX on the surface of the covalently conjugated samples was sufficient to 

prevent the adhesion and growth of C2C12 cells. Therefore they still appear to have the desired 

anti-proliferative properties. The results from these studies suggest the potential of these PTX 

conjugates as vascular stent coatings. 

 In Chapter 4, the chemistry developed in chapter 2 and 3 was successfully used to prepare 

epoxide, allylic alcohol, carboxylic acid, and PTX derivatives of arb-PIB-co-IP. The properties 

of the arborescent materials were compared to the linear analogues. These materials show similar 

thermal properties to the linear analogues; however a melting point was seen for arborescent 

PTX derivative that was not visible in the linear analogue. This suggests that introduction of 

PTX to the arborescent material allows it to phase separate to a degree. The differences in tensile 

and rheological properties of the various arborescent derivatives were found to be generally 

smaller than for the analogous linear materials. The PTX conjugate with the arborescent polymer 

had a lower ultimate tensile strength and higher elongation at break compared to its linear 

analogue. The PTX release rate from the arborescent conjugate was very similar to that of the 

linear analogue. The arborescent materials also showed no toxicity in the MTT assay on C2C12 

cells. However, the level of PTX on the surface of the film was still sufficient to inhibit the 

adhesion and development of C2C12 cells, as for the linear materials. Combined these results 

suggest that the arborescent PIB is also a promising candidate for further evaluation as a DES 

coating. 

With respect to future direction of this work, there are several aspects that can be 

investigated. Films of the drug conjugates were prepared and studied on stainless steel plates. It 

would be beneficial to apply them to actual stents and study their properties and drug release 

rates in this context. In addition, the mechanical properties of the polymers described in this 

thesis are still not as ideal as SIBS. It is not yet clear whether this would prevent their application 

as stent coatings, and this requires further investigation. A means of covalently cross-linking 

these PIBs may still need to be investigated. Finally, all testing was performed in vitro using the 

modal cell line C2C12. It will be important in the future to extend these studies to more relevant 

cells such as human coronary artery smooth muscle cells, and to also perform testing in vivo in 

animal models. 
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Appendices  

Appendix 1: Supporting Information of Chapter 2  

- 1
H NMR spectra of copolymers 4d-l, and 4d-h. 

- Tensile stress vs strain of PIB-l, 1-l, 2-l, 4d-l, PIB-h, 1-h, 2-h and 4d-h. 

- G’ and G” of PIB-l, 1-l, 2-l, 4d-l, PIB-h, 1-h, 2-h and 4d-h. 
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Figure A2.1. 
1
H NMR spectrum of 4d-l 

 

Figure A2.2. 
1
H NMR spectrum of 4d-h 
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Figure A2.3. Tensile stress vs strain of PIB-l  

 

Figure A2.4. Tensile stress vs strain of 1-l  
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Figure A2.5. Tensile stress vs strain of 2-l  

 

Figure A2.6. Tensile stress vs strain of 4d-l  
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Figure A2.7. Tensile stress vs strain of PIB-h  

 

Figure A2.8. Tensile stress vs strain of 1-h  



112 

 

 

Figure A2.9. Tensile stress vs strain of 2-h  

 

Figure A2.10. Tensile stress vs strain of 4d-h  
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Figure A2.11. Frequency dependence of the elastic (G', black) and viscous (G'', grey) moduli for 

PIB-l.  

 

Figure A2.12. Frequency dependence of the elastic (G', black) and viscous (G'', grey) moduli for 

1-l. 
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Figure A2.13. Frequency dependence of the elastic (G', black) and viscous (G'', grey) moduli for 

2-l. 

 

Figure A2.14. Frequency dependence of the elastic (G', black) and viscous (G'', grey) moduli for 

4d-l. 
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Figure A2.15. Frequency dependence of the elastic (G', black) and viscous (G'', grey) moduli for 

PIB-h. 

 

Figure A2.16. Frequency dependence of the elastic (G', black) and viscous (G'', grey) moduli for 

1-h. 
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Figure A2.17. Frequency dependence of the elastic (G', black) and viscous (G'', grey) moduli for 

2-h. 

 

Figure A2.18. Frequency dependence of the elastic (G', black) and viscous (G'', grey) moduli for 

4d-h. 
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Appendix 2: Supporting Information of Chapter 3 

- 1
H NMR spectra of copolymers PIBa-cov, and PIBa-cov. 

- Thermal analysis of PIBa-cov and PIBb-cov 

- Additional AFM images for surfaces 

- Representative tensile curves of SIBS1 and SIBS2 and PIBa/PIBb-cov for comparison 

- Rheological data for PIBa-cov, PIBb-cov, SIBS1 and SIBS2 
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Figure A3.1. 
1
H NMR spectrum of covalent PIB-PTX conjugate PIBa-cov showing the PIB 

peaks. 

 

Figure A3.2. 
1
H NMR spectrum of covalent PIB-PTX conjugate PIBa-cov showing the IP-

related and PTX related peaks as an expansion of Figure A3.1, with toluene contamination. 
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Figure A3.3. 
1
H NMR spectrum of covalent PIB-PTX conjugate PIBb-cov showing the PIB 

peaks. 

 

Figure A3.4. 
1
H NMR spectrum of covalent PIB-PTX conjugate PIBb-cov showing the IP-

related and PTX related peaks as an expansion of Figure A3.3. 
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Figure A3.5. TGA trace for PIBa-cov.   

 

Figure A3.6. DSC trace for PIBa-cov. Note that the first heating cycle was only performed to 

150 °C to ensure that the sample did not degrade thermally. In the second heating cycle, heating 

was performed to 300 °C but no further thermal transitions were observed.  
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Figure A3.7. TGA trace for PIBb-cov. 

 

Figure A3.8. DSC trace for PIBb-cov. Note that the first heating cycle was only performed to 

150 °C to ensure that the sample did not degrade thermally. In the second heating cycle, heating 

was performed to 250 °C but sample degradation was observed above 150 °C.  
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Figure A3.9. Representative phase image of SIBS1-9 prior to release. 

 

 

Figure A3.10. Representative topographic image of SIBS1-9 prior to release. Note peaks due to 

PTX aggregates. 
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Figure A3.11. Representative phase image of SIBS1-9 after release. 

Figure A3.12. Representative topographic image of SIBS1-9 after release. Note the salt deposits 

(peaks, not removed after repeated washes with deionized water) and valleys left by released 

PTX. 
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Figure A3.13. Representative phase image of SIBS2-9 prior to release. 

 

Figure A3.14. Representative topographic image of SIBS2-9 prior to release. Note peaks due to 

PTX aggregates. 
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Figure A3.15.. Representative phase image of SIBS2-9 after release. 

 

Figure A3.16. Representative topographic image of SIBS2-9 after release. Note the salt deposits 

(peaks, not removed after repeated washes with deionized water) and valleys left by released 

PTX. 
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Figure A3.17. Representative phase image of PIBa-phy prior to release.

  

Figure A3.18. Representative topographic image of SIBS1-9 prior to release. Note minor peaks 

(relative to surface undulations) due to PTX aggregates. 
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Figure A3.19. Representative topographic image of PIBa-phy after release. Note the large 

increase in surface roughness, appearance of distinctive ridges after release. 

 

Figure A3.20. Alternative topographic image of PIBa-phy after release. Note the holes in the 

surface left after release. 
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Figure A3.21. Representative phase image of PIBa-cov prior to release. Note minor “peaks” due 

to instrument noise at the bottom of the image.

. 

Figure A3.22. Representative topographic image of PIBa-cov prior to release. Note minor 

“peaks” due to instrument noise at the bottom of the image. 
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Figure A3.23. Representative phase image of PIBa-cov after release. Note the “negative” phase 

of the surface deposits (relative to the “positive” phase observed from PTX in all other samples) 

indicating they are perhaps salts that failed to wash off despite repeated washes with deionized 

water. 

 

Figure A3.24. Typical topographic image of PIBa-cov after release. Note the peaks (potentially 

salt deposits). The salts could not be removed from the surface despite extensive washing with 

deionized water. 
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Figure A3.25. Representative phase image of SIBS2-24 after release. The negative phase 

corresponds to the physical holes observed in the topographic image (manuscript, Figure 3C). 

 

Figure A3.26. Representative phase image of PIBb-phy after release. The large differences in 

vertical height observed on the topographic image are represented by the large apparent 

difference in phase (manuscript, Figure 3F). 
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Figure A3.27. Representative phase image of PIBb-cov after release. The white spots 

correspond to the irremovable salt deposits observed for the corresponding topographic image 

(manuscript, Figure 3I). 

 

Figure A3.28. Representative phase image of stainless steel substrate. 
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Figure A3.29. Representative topographic image of stainless steel substrate.  

 

 

Figure A3.28. Representative tensile-behavior profiles of the examined rubbers. 
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Figure A3.29. Frequency dependence of the elastic (G', black) and viscous (G'', grey) moduli for 

PIBb-cov.  

 

Figure A3.30. Frequency dependence of the elastic (G', black) and viscous (G'', grey) moduli for 

PIBa-cov.  
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Figure A3.31. Frequency dependence of the elastic (G', black) and viscous (G'', grey) moduli for 

SIBS1.  

 

Figure A3.32. Frequency dependence of the elastic (G', black) and viscous (G'', grey) moduli for 

SIBS2.  
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Appendix 3: Supporting Information for Chapter 4  

- 1
H NMR spectra of copolymers 1, 2, 3, 4 and 5. 

- SEC Traces of copolymers 1, 2, 3, 4 and 5. 

- Additional AFM images for surfaces 

- Thermal analysis of 1, 2, 3, 4 and 5. 

- Rheological data for of copolymers 1, 2, 3, 4 and 5. 
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Figure A4.1. 
1
H NMR spectrum of arb-PIB-co-IP 1 (CHCl3, 600 MHz).  

 

Figure A4.2. 
1
H NMR spectrum of polymer 2 (CHCl3, 600 MHz). 
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Figure A4.3. 
1
H NMR spectrum of polymer 3 (CHCl3, 600 MHz).  

 

Figure A4.4. 
1
H NMR spectrum of polymer 4 (CHCl3, 600 MHz (d1 = 10 s)).   
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 Figure A4.5. 
1
H NMR spectrum of polymer 5 (CHCl3, 600 MHz).   

 

Figure A4.6. Expansion of the 
1
H NMR spectrum of polymer 5 (CHCl3, 600 MHz). Key 

resonances are assigned. Ratio of PTX associated peaks to rubber peaks (i.e. c,c’ at 5.23 to i or h 

at 6.02 and 5.59) suggest 50% conversion. PTX and polymer peaks were assigned based on 

previous linear analogues as well as Deutsch et al.
1,1
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Figure A4.7. SEC traces for polymers 1-5 (THF).   

 

Figure A4.8. Representative AFM phase image of 4 + PTX after release study. 
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Figure A4.9. Representative AFM phase image of 5 after the release study. Differences in phase 

correspond to stark differences in topography.  

  

Figure A4.10. Representative phase image of SIBS + PTX after release (Reproduced from 

reference 
2
). 
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Figure A4.11. Thermal analysis data for polymer 1: A) DSC, B) TGA. 
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Figure A4.12. Thermal analysis data for polymer 2: A) DSC, B) TGA.  
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Figure A4.13. Thermal analysis data for polymer 3: A) DSC, B) TGA. 
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Figure A4.14. Thermal analysis data for polymer 4: A) DSC, B) TGA. 
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Figure A4.15. Thermal analysis data for polymer 5: A) DSC, B) TGA.  
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Figure A4.16. TGA of Paclitaxel. 

 

Figure A4.17. Frequency dependence of the elastic (G', black) and viscous (G'', grey) moduli for 

polymer 2 (representative trace shown). 
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Figure A4.18. Frequency dependence of the elastic (G', black) and viscous (G'', grey) moduli for 

3 (representative trace shown). 

 

Figure A4.19. Frequency dependence of the elastic (G', black) and viscous (G'', grey) moduli for 

4 (representative trace shown). 
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Figure A4.20. Frequency dependence of the elastic (G', black) and viscous (G'', grey) moduli for 

5 (representative trace shown). 
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