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Abstract  

Mechanical stimulus such as whole-body vibration (WBV) has shown to promote bone 

formation both in humans and animals. WBV has been hypothesized as a potentially useful 

osteoporosis intervention. While the transmission of WBV has been well characterized in 

humans, there is currently a lack of knowledge in the transmission of vibration in small 

animal models, such as mice, due to the lack of an implantable accelerometer appropriate to 

make such measurements. This thesis introduces an image-based method to quantify 

transmission of vibration in mice using x-ray imaging. Specifically, it utilizes motion blur of 

fiducial markers, which are implanted into the mouse tibia and femur. Vibration 

characteristics in vivo were characterized over the range of 15-40 Hz. Resonance was 

observed in the femur at 25 Hz and reduction in transmission in the tibia at 30 Hz. These 

findings provide an estimate of the magnitude of vibration transmitted into the animal’s limb. 
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Chapter 1  

1 Introduction 

Osteoporosis is a degenerative bone disease that affects millions of Canadians each year. 

In 2010, this disease cost the Canadian economy $2.3 billion, or 1.3% of Canada’s 

healthcare expenditure.1 Osteoporosis affects mostly the senior population, of which 

women are more susceptible than men.2 The incidence of osteoporotic fractures is greater 

than that of stroke, breast cancer, and heart attack combined; and the number of those 

affected by osteoporosis will only continue to rise as baby boomers age. Therefore, the 

need to develop an effective osteoporosis intervention is greater than ever. 

Courtesy of recent advancements in musculoskeletal research, one of the potential, non-

pharmaceutical ways of treating and preventing osteoporosis is by exploiting Wolff’s 

Law.3 This basic idea is that an increase in bone mineral density (BMD) and remodeling 

of bone architecture, and hence overall bone integrity, can be promoted by introducing an 

external mechanical stimulation to the entire body of a healthy animal or human. One 

such way of introducing mechanical stimulation is known as whole-body vibration 

(WBV), which has shown positive effects in both human and animals.4-10 The benefit of 

whole-body vibration extends beyond osteoporosis. For instance, it has been shown to 

enhance bone-implant integration and facture healing.10-12 

1.1 Bone physiology 

1.1.1 Bone Remodeling 

Bones are like the structural steel beams of our body, they allow us to stand up, lift 

external weights, and grow in physical size. However, it is not commonly known that 

bone is a dynamic organ on the cellular level. In fact, bone is constantly remodeling itself 

to repair micro-fractures, replacing old bony tissue, as well as adapting to new local 

mechanical stresses by increasing BMD and remodeling bone architecture where it is 

needed.13-15 Bone remodeling, not to be confused with bone modeling, is a well-

orchestrated process. It primarily involves two different cell types, osteoblasts and 
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osteoclasts. The details of their respective participation in bone remodeling can be 

summarized in two processes, bone formation and bone resorption.  

Osteoclast cells are activated at the site where bone remodeling is taking place.16 The 

cells break down the bone matrix by extracting bone minerals such as calcium and 

phosphorus ions, which get recycled back to the body. This resorption process lasts until 

the activation and differentiation of osteoblast cells, which replenish the location with 

new organic matrix that is then mineralized with the inorganic mineral hydroxyapatite 

(See Fig 1-1). It is important to point out that osteoblast and osteoclast cells travel in a 

group known as Basic Multicellular Unit (BMU). Its speed averages about 25 µm per 

day, with osteoclasts leading and osteoblasts trailing. The average lifetime of a BMU is 6 

 - 9 months, of which bone formation takes up the majority of that time frame.17 

In a healthy person, the rate of these two processes is roughly equal. Thus, the intricate 

balance between bone resorption and bone formation keeps the bone healthy and strong. 

 

Figure 1-1 The process of bone remodeling: Osteoclast cells resorb bone mineral. The 
Osteoblast cells then replenish the bone with new organic matrix that is subsequently 
mineralized [Reproduced with permission of the SAGE Publication from Lerner et al., 

J Dental Res 1:15-21, 2006]. 
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1.1.2 Wolff's Law 

Julius Wolff, a German surgeon and anatomist, proposed in 1892 that the bones of 

humans and animals are constantly adapting to their local mechanical environment. In 

other words, any external mechanical loading such as pressure, shear, strain, and torque 

on the bones will induce them to adapt to those mechanical demands accordingly. This is 

an adaptation analogous to the growth of callus in response to the repetitive friction to the 

skin.  

An example of Wolff's law in action is the loss of bone mass that astronauts experience in 

space.18 In a weightless environment, the bones of an astronaut aren't being mechanically 

subjected to the loading of the astronaut’s weight on Earth. This lack of mechanical 

stimulation triggers the bone to react by resorbing some of the bone mineral, as they are 

no longer needed and this resource (nutrient) can be better used somewhere else in the 

body. In contrast, athletes have higher BMD than the average person due to their daily 

physical training, which stimulates the bone to strengthen itself against the constant 

mechanical forces induced from exercises.19 

While the effects of mechanical influence on the bones are known, the exact mechanism 

of how the bone cells differentiate changes in their mechanical environment (i.e. 

mechanotransduction) is currently unknown and it is an active research topic in the field 

of mechanobiology.20,21 There are many theories that are currently being examined in 

detail, for example, it has been proposed that fluid shear-induced mechanical signaling 

could be the mechanism.22,23 

1.2 Osteoporosis 

In the first two decades of one’s life, the rate of bone formation is greater than the rate of 

resorption, resulting in overall bone growth. The rate approaches equilibrium during mid-

life. However, when one approaches the mid-fifties, this process starts to favor bone 

resorption, i.e., bone loss. Unfortunately, this unbalanced rate only continues to 

accelerate as one ages. This low BMD leads to a medical condition known as 

osteoporosis. In addition, post-menopausal women lose bone mass faster than men of the 
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same age, due to a combined effect of the loss of estrogen and the normal bone aging 

process.24 As result, the majority of osteoporosis sufferers are women. 

Osteoporosis occurs when there is more bone resorption than bone formation, resulting in 

the structurally weakening of the bone. The World Health Organization (WHO) defines a 

BMD below 2.5 standard deviations of the mean BMD in sex-matched, age-matched 

adults to be osteoporotic.25 Figure 1-2a and Figure 1-2b show cross-sectional images of 

iliac crest biopsies from a healthy bone and an osteoporotic bone, respectively. 

 

Figure 1-2 (a) An osteoporotic bone has degenerated trabecular network due to excess 
bone resorption, resulting in a decrease of bone structural integrity. (b) A healthy bone 
has densely populated trabecular network which maintains the structural integrity of the 
bone [Reproduced with permission of John Wiley & Sons from Dempster et al., J Bone 

Miner Res 8:584-595, 2006]. 

As it is evident, a normal bone has a dense, well-established trabecular (cancellous bone) 

network. On the other hand, an osteoporotic bone has irregular and highly deteriorated 

trabecular network, which significantly weakens the structural integrity of the bone. 

Consequently, the bone is susceptible to fractures, even from a minor physical trauma 

such as a fall. The quality of life for those who suffer from osteoporosis is greatly 

affected. 

Other than lack of estrogen, as previously mentioned, there are many other factors that 

could also contribute to osteoporosis. For example, smoking,26 poor nutrition,27 and 
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alcohol abuse.28 Furthermore, one of the common osteoporotic fractures are hip fractures; 

in the USA, 1 in 6 osteoporotic fractures can be attributed to the hip.29 This is significant 

because mortality rate after hip fracture can be as high as 30%.30 Interestingly, studies 

have suggested that men who suffer osteoporotic fracture have higher mortality than 

women.31 

Current treatment of osteoporosis primarily utilizes drug-therapy. In particular, 

bisphosphonates, estrogen therapy, and parathyroid hormone (PTH) are some of the 

commonly used drug therapies. They specifically target osteoclasts, so that the bone 

resorption process is stopped or slowed down. Thus, activity from osteoblasts, which are 

responsible for bone formation, is favored. However, some of them may have long-term 

side effects. For instance, studies have shown that bisphosphonate, in rare cases, could 

cause osteonecrosis of the jaw (ONJ).32 Non-pharmacological treatment of osteoporosis 

also exists commonly as exercises and improved diet.  

1.3 Whole-Body Vibration 

As mentioned previously, the current pharmaceutical treatment of osteoporosis may 

induce long-term negative side-effects. Therefore, finding an effective way of reversing 

bone loss without compromising its natural remodeling processes would be an ideal way 

of treating osteoporosis. The fact that the bone is sensitive to external mechanical 

influence, as described in Wolff's Law, has been proposed as a non-pharmaceutical way 

of preventing, or even reversing, osteoporosis.6 

Whole-body vibration (WBV) stimulates the bone by introducing a low-amplitude 

mechanical vibration to the entire body of a person (or an animal) through the feet. In a 

way, it can be imagined to be like experiencing a miniaturized earthquake. The vibration 

is also cyclic in nature, i.e., in a sinusoidal waveform. However, not all vibration 

parameters are thought to be healthy for the musculoskeletal system. In fact, high 

magnitude and prolonged exposure to vibration can cause tissue damage. The 

International Standards Organization (ISO) has published a guideline (ISO-2631-1),33 in 

which the recommended daily exposures to vertical vibration of different frequencies as 

function of magnitude, measured as acceleration in m/s2. 
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The guideline recommends that for vibration at 1 Hz with an acceleration of 0.5 g, where 

g is the Earth’s gravitational acceleration 9.8 m/s2, exposure to be less than one minute. 

For higher peak-acceleration (magnitude) for a given vibration frequency, the less time 

one should be exposed to it. 

One of the symptoms of prolonged exposure to vibration magnitude >> 1 g is known as 

the Vibration-Induced White Finger, a symptom frequently occurs to workers who use 

power tools such as a jackhammer, or other non-powered tools such as a hammer.34-38 

The syndrome is characterized by the distinct pale appearance of one's hand, which is the 

result of damaged microvasculature.39 In addition, high intensity vibration encountered in 

the industrial setting could cause bone and joint damage.40,41 Finally, research also 

suggests that high amplitude vibration may be potentially catabolic to bone.42 

Currently, the literature suggests that high frequency (10-100 Hz), low-magnitude (< 1 g) 

WBV is anabolic in animal and humans.7,12,42-45 The relationship between peak-

acceleration, vibration amplitude, and vibration frequency is shown below, where “A” is 

the vibration amplitude, “a” is the peak-acceleration, and “f” is the vibration frequency.46  

  (1) 

It’s important to note that the term “vibration amplitude” in WBV is referring to half of 

the peak-to-peak amplitude.  

Given the 10-100 Hz vibration frequency range and the sub 1 g in peak-acceleration, the 

vibration amplitude in a small-animal WBV experiment is on the order of microns. An 

illustration of WBV of a mouse is shown in Figure 1-4. The mouse is placed on a 

vibration platform with its four limbs in full contact with the platform. 

A =
a

4π 2
f

2



 

Figure 1-3 
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Vibration Quantification 

While the effects of WBV can be quantified in humans and animals precisely, the amount 

of vibration transmitted into the bone is also an interest to researchers. It is typical to 

inertia sensors, such as accelerometers, directly onto the skin in human subjects

soft tissues of various densities surround bones. Thus, vibration at the skin 

level is attenuated and does not truly reflect the magnitude in the bone, as studies have 

Fortunately, this challenge is relatively easy to overcome in the huma

subjects. By using Kirschner wire, accelerometers can be attached directly to the bone 

and this method has been used to quantify transmission of vertical vibration in human

7 
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flect the magnitude in the bone, as studies have 

Fortunately, this challenge is relatively easy to overcome in the human 

accelerometers can be attached directly to the bone 

transmission of vertical vibration in humans.57 



8 

 

There have not been any direct measurements of transmission of vertical vibration in 

small-animals models like rats and mice, which are often used in musculoskeletal 

research due to their availability, life span, and similar skeletal response. Previous studies 

have attempted to quantify the transmission only at the skin-level of a rat using a non-

inertial method.58 Even then, the animal has to be sedated. Otherwise, the motion of the 

animal would affect the measured acceleration from the accelerometer, which is attached 

onto the animal. The two major issues with this setup, first, as mentioned before the 

vibration measured at the skin level does not accurately reflect the magnitude at the 

skeletal level. Second is that the animal is in a sedate state, which implies that its limbs 

aren’t be mechanically loaded. This affects how vibration is transmitted to its body. In an 

even smaller animal such as mice, even vibration quantification at the skin level is 

difficult. This is primarily due to technical limitations. Specifically, the size and the 

weight of the accelerometer are comparable to the size and weight of the animal. Thus, it 

would be a significant weight bearing on the animal. Therefore, there is a need to develop 

a method of characterizing the transmission of vertical vibration in small-animal models. 

The amount of vibration transmitted into the bone is an important quantity to know. As 

mentioned previously, it is not exactly known how bone cells sense mechanical stresses. 

Hence, if one could characterize the transmission of vibration in bones, then it would 

provide researchers an estimate of how much vibration is transmitted into to the bone, 

which in turn will have a direct influence at the cellular level where bone transformation 

is taken place. Furthermore, because of the difference in the profile of each bone and its 

position in the body, each one attenuates vibration transmission differently. Lastly, being 

able to quantify vibration transmission would facilitate the development of appropriate 

vibration protocols for small-animal models. 

1.4 Image-Based Approach to In Vivo Vibration 
Quantification 

It is clear that using sensor-based approach would not be suitable to quantify in vivo 

vibration in a mouse-model with currently available accelerometers. Perhaps, a more 

feasible way is to use an image-based approach. In addition, due to the challenges 

presented in small animal WBV, this image-based method must satisfy two criteria. First, 
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it should have image resolution at least on the order of micron, since that is the common 

WBV amplitude in small-animal models. Second, because we are only interested in the 

transmission of vibration to the skeletal system of the animal, the image-based method 

must be able to produce good contrast on the skeletal structures. There are 3 types of 

imaging modalities that are able to image the bone: x-ray imaging, magnetic resonance 

imaging (MRI), and nuclear imaging. However, MRI and nuclear imaging cannot be used 

in this case due to their lack of imaging resolution (on the order of millimeter) and other 

reasons such as long acquisition time (on the order of minutes). This particular factor is 

troublesome, since we would like the keep the animal unsedated. As result, prolonged 

acquisition time is susceptible to motion artifacts. On the other hand, x-ray imaging has 

the ability to attain sub-millimeter resolution, given the right detector and optical setup. 

Most importantly, bone is the most prominent feature in an x-ray image due to its 

attenuation of the x-ray beam, in the absence of metallic object. 

The detection of x-rays can be classified into two categories, direct and indirect. The 

former converts x-ray photons to electrical signal directly, which is then converted into 

digital signal and fed into a computer. This method of detection has become the norm due 

to the recent advancement of solid-state detectors and computers. The indirect method 

first converts the x-ray into visible photons, via a scintillating screen, which are then 

captured by a camera. While this particular method of x-ray imaging is easy to set up 

relative to the direct imaging method, it suffers from minor degradation in signal and 

resolution due to extra conversion processes. These defects can be a concern, but are 

negligible in most cases. 

1.4.1 Imaging Techniques for Quantifying Vibration 

One other consideration is the appropriate technique for quantifying vibration through x-

ray imaging. It should be noted first that WBV is a form of simple harmonic motion. Its 

motion can be described by a sine wave. Consequently, there are three ways in which one 

can quantify a simple harmonic motion: high-speed imaging and time-exposure imaging. 

High-speed imaging utilizes fast sampling such that the rate of sampling is greater than 

the Nyquist frequency, which is two times of the highest vibration frequency, in order to 
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avoid aliasing. The high sampling rate can be done with an imaging detector capable of 

attaining high frame rate. For instance, if one would like to use high speed imaging to 

characterize 45 Hz vibration, one would need to sample it at least 90 Hz, or 90 frames per 

second. While there are many high-speed cameras available on the market and they are 

more than capable of capturing at high frame rate, the limitation is amount of x-ray flux 

that can be captured in each frame. For example, at 90 frames per second each frame is 

exposed for 11 milliseconds. For higher vibration frequency, the exposure time will only 

decrease. Thus, this factor severely affects the image quality due to lack of x-ray photon 

flux. 

Finally, time-exposure imaging, or long exposure imaging, is a method based on 

sampling a periodic motion much longer than its period. While this particular method is 

able to capture the entire range of motion of vibration, it loses temporal information. This 

is because during sampling the motion is repeated over several cycles, thus any temporal 

information, such as frequency, is blurred out. However, information regarding vibration 

amplitude is preserved, which is the goal in quantifying vibration in vivo. One advantage 

associated with long exposure imaging is that it allows sufficient amount of photon flux 

into the detector. However, by prolong sampling time it also causes image more 

susceptible to motion artifacts. But, a trade off can be made between photon flux and 

susceptibility to motion artifact in term of sampling rate. 

It should be noted that vibration quantification via time-exposure imaging would only 

work if the detector were tracking a particle, since the blur of the particle due to simple 

harmonic motion is clearly distinguishable and its intensity profile can be easily modeled. 

Biological features, such as bone, are difficult to model consistently. This issue can be 

addressed by implanting metallic fiducial markers in the skeleton of the animal. 

Moreover, the metallic fiducial marker would be even more prominent in an x-ray image 

due to the fact that it’s much denser than bone. Therefore, time-exposure imaging of 

vibrating fiducial markers could be a potential candidate in quantifying in vivo vibration. 
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1.5 Thesis Outline 

The aim of this thesis was to develop a novel image-based method to quantify vibration 

in vivo in small-animal models. This approach is based on the implantation of small 

metallic fiducial markers within the skeleton of the subject animal.  These marker beads 

can then be recorded non-invasively by x-ray imaging during whole-body vibration. The 

challenge presented here is that the frequency of the vibration is relatively high, which 

would require a high-speed (i.e. greater than 90 Hz), low-noise fluoroscopic imaging 

sequence to characterize bead motion accurately.  This may not be technically feasible, 

due to limitations in the available x-ray flux.  An alternative approach, which is the topic 

of this thesis, is to use longer x-ray exposures and deliberately allow the image of the 

marker bead to blur. Careful image post-processing can then be used to characterize the 

motion blur and correlate it with the amplitude of vibration.  

Chapter 2 describes the development of such a digital planar x-ray imaging system, as 

well as an image processing technique that was capable of quantifying in vivo skeletal 

vibration using x-ray projection images.  

Chapter 3 describes the application of this technique in vivo by characterizing the 

transmission of vertical vibration in mice. For both of these studies, the x-ray imaging 

system had to be integrated with a customized whole-body vibration platform for mice, 

making an indirect x-ray imaging approach the most feasible design for this project. 
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Chapter 2  

In preparation for submission to the journal of Physics in Medicine and Biology 

2 Quantification of mouse in vivo whole-body vibration 
amplitude from motion-blur using x-ray imaging 

2.1 Introduction 

Osteoporosis is a bone disease characterized by the loss of bone mineral density (BMD). 

As a result, individuals suffering from this disease are highly susceptible to bone 

fractures, even from a relatively minor trauma such a fall. With an increasingly ageing 

population, the financial burden on the healthcare system of treating osteoporosis will 

continue to rise. One potential non-pharmacological treatment for reversing and 

preventing osteoporosis is the use of low-level mechanical stimulation to stimulate bone 

growth.1,2 This treatment is based on the principle of Wolff's law,3 which states that the 

bones of human and animal are constantly adapting to its local mechanical environment 

such as pressure, shear stress, and strain. Consequently, bone is constantly remodeled 

itself resulting in increased or decreased BMD, depending on the mechanical 

requirements of its local environment. One dramatic manifestation of Wolff’s Law is the 

case of astronauts in space,4 where their BMD decreases significantly due to lack of 

mechanical stimulation and decreased load bearing in a micro-gravity environment. 

One way of introducing mechanical stimulation to the body is the whole-body vibration 

(WBV), which applies a carefully controlled mechanical vibration to the entire body of a 

human or animal through the feet. Many positive effects of WBV have been reported, 

both in human studies5-9 and animal studies.10-14 

WBV is characterized by three key parameters: peak-acceleration, vibration frequency, 

and vibration amplitude. It is important to note that not all vibrational parameter 

combinations are healthy to the musculoskeletal system. Prolonged exposure to high 

peak-acceleration vibration has been shown to cause micro-vascular damage in the 

hands.15-17 Therefore, in order to promote bone growth, the common range of vibration 
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parameters used in animals studies are frequencies from 15 - 90 Hz, and peak-

accelerations of 0.1 - 1.0 g, where g is the Earth's gravitational acceleration (9.81 m/s2). 

These parameters result in amplitudes on the order of a few microns to approximately 1 

millimeter. 

While the effects of WBV are well documented, direct and quantitative measurement of 

the degree to which vibration is transmitted through the skeletal system from a vibration 

platform has not been reported, especially for small animals such as mice. 

In humans, WBV studies have previously reported the transmitted vibration at the skin 

level via skin-mounted accelerometers at regions of interest18-20. However, it has been 

noted that the vibration measured at the skin level does not truly reflect that experienced 

at the skeletal level21,22. This problem has been overcome in human cases by Rubin et 

al.,
23 who employed Kirschner-wire inserted onto the proximal femur and lumbar 

vertebrae of the subject. The wires act as a platform from which accelerometers are 

attached, effectively "anchoring" the accelerometers to the bone and allowing the 

transmitted vibration to be accurately measured.  

In murine studies, attaching currently available, relatively heavy accelerometers to the 

skin or directly to the bone introduces significant weight-loading to the relatively-small 

animal, which alters its biomechanics and ultimately vibration transmission. Most 

importantly, it is unlikely for a mouse to stand still sufficiently long enough for accurate 

measurements. As a result, a different measuring technique is needed. Holguin et al.
24

 

used Computer Aided Speckle Interferometer (CASI) to measure the transmitted 

vibration at the skin-level of a rat. There is no currently available technique for 

measuring the transmitted vibration directly at the skeletal level in small animals, such as 

rats or mice. 

In this chapter a novel image-based technique is presented to quantify sinusoidal WBV 

and skeletal transmission in mice using x-ray imaging. This technique is insensitive to 

image quality degradation resulting from the relative motion of the subject and the 

imaging detector. In fact, we exploit this measurable blur in order to quantify the 

vibration. We validate our technique in vivo using a custom x-ray imaging system, 
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vibration platform, and post-processing software. The following discussion will first 

introduce the imaging system, the principle of motion blur and its basic formulation. 

Initial in vivo results are also presented. 

2.2 Material and methods 

2.2.1 Digital x-ray imaging system 

The imaging system used in all of our experiments is integrated with a custom-built 

mouse vibration platform, which is described in detail in the following section. An x-ray 

beam with peak energy of 80 kVp, tube-current of 200 mA, and 630 millisecond exposure 

is passed through an animal standing on the vibration platform and converted to visible 

light using a mammographic screen (MinR-2 2000, Kodak, Rochester, NY) as a 

scintillating material. A CCD camera then captures the resultant visible-light image from 

the scintillating material. Note that there are two ways in which images can be captured 

from the scintillating screen, from the front of the screen and from the back of the screen. 

In our setup, the CCD camera is setup so that it captures the image from the front of the 

scintillating screen. This is done because of two reasons. First, if the CCD were to place 

behind the screen, it would be in direct line-of-sight with the x-ray tube. As result, high 

energy x-ray photons would not only affect the image quality in the form of white noise, 

but also they may cause permanent damage to the CCD chip, resulting in “dead pixels”. 

This problem could be resolved by placing a lead glass in between the CCD and the 

screen. However, the optical quality of a lead glass is generally poor, since it is not 

designed as an optical component. Lastly, image resolution from the back of the 

scintillating screen is poor compared to the front due to the nature of the scintillating 

screen. 

The CCD camera (Cascade 1K, Photometrics, Tucson, AZ) has an overall 1002 x 1004 

pixel resolution, with 8 µm pixel spacing. This camera was chosen not only because of its 

capability of high resolution imaging, but also the fact that it is capable of acquiring data 

in a very low-light environment, with negligible readout noise, due to its electron-

multiplying (EM) technology. A C-mount thread on the face of the CDD camera enables 

it to accept various standard camera lenses. The CCD camera is mounted 40 cm away 
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from the scintillating screen, measured from the CCD plane. The plane of the scintillating 

screen is parallel with the CCD plane. We chose a Nikkor 50 mm f/1.4 lens (Nikon, 

Tokyo, Japan), which results in good light-gathering properties. The entire imaging 

system is enclosed in a light-tight enclosure to reduce confounding ambient light from 

entering the system and maximize the intensity and contrast from the scintillating screen. 

The CCD camera is shielded by approximately 5 mm of lead foil on the side adjacent to 

the x-ray source in order to minimize direct interaction of stray x-ray photons incident on 

the CCD chip. These x-ray photons result in spurious, bright, white pixels on the acquired 

image and potential damage to the detector. 

Image acquisition and camera control are performed using Micro-Manager Open Source 

Microscope Software (www.micro-manager.org).  

A bird’s eye view schematic of the complete system is shown in Figure 2-1. X-rays are 

generated from a ceiling mounted unit (Proteus XR-a, GE Medical Systems, Milwaukee, 

WI, USA). At the centre of the platform is a mouse cage, which would be discussed in 

detail later on. The distance from the focal spot to the centre of the vibration platform is 

65 cm. The centre of the platform to the scintillating screen is 28 cm.  

Due to the orientation of the vibration platform and the x-ray source, the plane of the 

scintillating screen is tilted 32° from the normal, relative to the x-ray beam. Therefore, 

images generated are geometrically stretched in the horizontal direction. This aberration 

can be rectified using a tilted-detector correction algorithm25, which corrects for any 

geometric warping by the camera lens and the geometric stretching due to the detector 

orientation. Briefly, an x-ray image of an evenly spaced (4 mm) metallic bead grid, 

placed at the centre of the platform, was obtained. The image was then used to map the 

distorted spatial distance to the correct spatial distance, since the grid is evenly spaced. 
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Figure 2-1 Isometric view illustrating the layout of the digital x-ray imaging system and 
the vibration platform. A) GE Proteus XR-a x-ray unit; B) Electrodynamics shaker; C) A 
CCD camera; D) Scintillating screen, which is comprised of a cut-out from a from Kodak 
MinR-2 2000 mammographic screen; E) Custom-built mouse cage made of acrylic. 

2.2.2 Vibration Platform 

The custom-built vibration platform designed to study the effects of WBV on mice is 

shown in Figure 2-2. The system consists of the following main components: 1) a 

function generator (Model 148A, WaveTek, AeroFlex, Plainview, NY) which generates a 

sinusoidal control signal at the desired frequency; 2) a 100-watt power amplifier (Signal 

Force, Data Physics Corp., San Jose, CA) to vary the peak-acceleration and amplitude of 

the vibration signal; 3) an accelerometer (Model 7500A1, Dytran Inc., Chatsworth, CA) 

firmly affixed to the vibration platform, to measure the peak-acceleration of the vibration 

platform; and 4) an electrodynamic shaker (Type V20, Signal Force, Data Physics Corp., 

San Jose, CA) to mechanically actuate the vibration platform. The voltage output of the 

accelerometer is converted to g via the manufacturer-supplied conversion rate. 

The interdependence of the amplitude (A), peak-acceleration (a), and frequency (f) of the 

vibration for a simple-harmonic oscillator is given by equation (1),26 

 � � �4���� (1) 
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Therefore, if one is interested in studying the effects of vibration at a particular 

frequency, the peak-acceleration and amplitude must both be varied in order to hold the 

frequency constant. 

 

Figure 2-2 Whole-body vibration platform for mice 

The vibrational amplitude produced by the shaker was verified with respect to 

equation (1) using high-speed (300 frames/second) HD photography, using a Casio Ex-F1 

DSLR, of a Cartesian grid of dots of known spatial separation. The dot paper was 

vibrated with predetermined input amplitudes and the centroid of each dot in each frame 

was then calculated from the high-speed video data. The centroid positions from each 

frame were fitted to a sinusoidal curve to calculate the resultant amplitude, which was 

compared to the requested input amplitude. 

2.2.3 Motion blur analysis 

2.2.3.1 Motion-induced point spread function 

Since our goal is to quantify simple harmonic vibration (i.e. sinusoidal) in vivo, it was 

important to understand how vibration affects image quality. Mathematically, an image, 

I(x,y), is the convolution between the Point Spread Function (PSF) and some object 

F(x,y) in the spatial space, assuming noise is negligible. The PSF describes how the 

object will be modulated in the image space depending on the nature of the optical 

system and the image detector characterization. 
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However, when the object moves relative to the imaging detector, there is an additional 

PSF induced by this relative motion. For the special case of simple-harmonic motion, this 

PSF can be modeled analytically. Furthermore, since the vibration frequency that is used 

in WBV has a period much shorter than our imaging time, the analytical model for the 

simple harmonic motion-induced PSF can be further simplified, as given by Hadar et 

al.,
27 
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where L is the vibration amplitude. We emphasize that this equation is only valid for 

CCD acquisition times much longer than period of the vibration, so that the overall blur is 

due purely to the peak-to-peak cyclic motion caused by the vibration. 

2.2.3.2 Vibration tracking using fiducial marker beads 

Tungsten carbide beads (New England Miniature Ball Company, Norfolk, CT), with 

diameter of 280 µm, were implanted into the mouse leg at several anatomical locations to 

serve as fiducial markers for tracking the vibrational motion in vivo. The high density of 

tungsten carbide provides significantly greater contrast than that of bone and the static 

pixel intensity profile of the bead can be modeled as a 2-D Gaussian surface.  

It was necessary to characterize the effects of harmonic motion on the intensity profile of 

the tungsten-carbide beads before employing this technique in vivo. A total of 

10 reference beads, 5 per side, were glued to the acrylic cage that would contain the 

mouse during the experiment. Images of the static beads were acquired in order to 

characterize the intensity profile of the beads themselves. Images of the motion-blurred 

beads were acquired as the reference cage was vibrated at a frequency of 30 Hz at various 

peak-accelerations and amplitudes outlined in Table 2-1. The phantom was imaged 

3 times at each peak-acceleration value using x-ray energy of 80 kVp, tube current of 

200 mA, and 0.63 second long exposure. The 3 images were then averaged and corrected 

for bright-field, dark-field, and geometric distortion anomalies. A line profile through the 
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centroid of each bead was plotted at each amplitude, only in the direction of vibration (y-

axis), since the applied vibration blurs the motion only in this direction, as shown in 

equation (3). During in vivo experiments, the cage reference beads also served to measure 

the applied input vibration amplitude. 

Table 2-1 Vibration parameters used on bead phantom. 

Vibration 

Frequency 

(Hz) 

30 

Peak-Acceleration (g) Amplitude (µm) 

0.00 0 

0.28 78 

0.43 118 

0.57 157 

0.71 196 

0.86 237 

1.00 277 

 

2.2.3.3 Measurement of reference vibration amplitude based on 
motion blur 

In general, a Gaussian distribution is defined by its standard deviation (SD). In the case 

for a 2-D Gaussian surface, it is characterized by both of the SD along orthogonal 

directions x and y in the image space. Thus, the intensity profile of the bead may be fitted 

to a 2-D Gaussian surface given in equation (4), 

 �	
, � � � � exp �� �	
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where A is maximum pixel intensity, x0 and y0 are the centroid coordinates, k is the 

background greyscale offset, and σx and σy are the SD in the x and y direction 

respectively. The approximate centroid of each bead on the image was manually selected 

to seed an intensity-fitting algorithm, in which a 40 x 40 pixel region centered on the 

centroid and circumscribing the bead, was fitted to a 2-D Gaussian surface using 

weighted, non-linear regression. The resultant SD bead widths in both the x and y 

directions are then calculated using MATLAB (MathWorks, Natick, MA) code. 

In order to eliminate the dependence of the SD on geometric magnification (the ratio of 

x-ray source-to-detector distance over the x-ray source-to-subject distance), a ratio was 
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taken between the SD along the y and x directions such that, in the static case, the y-to-x 

SD ratio is expected to be 1, to reflect the spherical symmetry of the beads. 

2.2.4 Mouse cage with reference beads 

Imaging a live, un-anaesthetized mouse, which is in virtually constant motion, is 

especially troublesome because we are attempting to quantify vibration on the order of 

microns. In order to minimize motion of the animal, a specially designed acrylic cage, 

8.3 cm long x 4.0 cm wide x 3.5 cm height, shown in Figure 2-3, was made to contain 

and confine the mouse. The width of the cage was made adjustable to accommodate mice 

of various sizes. Most importantly, the cage confines the mouse in a way that does not 

apply any physical restraint so there is no additional force applied to the mouse and it 

retains its natural, unrestricted stance and posture. 

The cage was affixed to the vibration platform using neodymium magnets so that it was 

firmly held in place while maintaining the flexibility to orient it freely. 

 

Figure 2-3 The custom-designed, acrylic, cage used to minimize the movement of the 
mouse is shown here magnetically affixed to the vibration platform. Tungsten-carbide 
reference beads on the sides of the cage serve as fiducial markers to measure the applied, 
input vibration amplitude. 
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2.2.5 Surgical implantation of tungsten-carbide fiducial marker 
beads 

All procedures were approved by the University of Western Ontario’s Animal Use 

Subcommittee and were conducted in accordance with guidelines set out by the Canadian 

Council on Animal Care. Both mice (N = 2) used in the experiments were three-month 

old, male, C57BL/6J mice with weights of 25 g. The mice are anaesthetized in an 

induction chamber with 4% isoflurane then maintained on a nose cone with 2% 

isoflurane. An anti-inflammatory agent, Meloxicam, 0.01 ml/kg (Boehringer Ingelheim 

Vetmedica Inc., St. Joseph, MO) was administered prior to surgery. 

Two different surgical implantation techniques were assessed for the measurement of 

vibration amplitude using in vivo tungsten-carbide fiducial marker beads: 1) submuscular 

- placing the bead on the surface of the bone just under the major muscle group; and 2) 

intraosseous - drilling a hole through the cortical shell and placing the bead into the 

cancellous portion of the bone.  

Mouse #1 had 2 submuscular beads implanted lateral to the tibial tuberosity 

approximately, 1 cm distal to the tibial plateau, and 1 submuscular bead placed under the 

quadriceps immediately lateral to the femur.  

Mouse #2 had only 1 submuscular bead placed in a tibial location similar to mouse #1 

and 1 intraosseous bead was inserted into the cortical bone of the femur from the lateral 

side. This procedure was performed by boring a small hole into the bone using a 25 

gauge hypodermic needle (see Figure 2-4) and placing the bead into the hole. 

The beads were sterilized using 70% ethanol solution prior to implantation. After the 

implantation, the incision was closed using dissolvable sutures and the mice were given a 

one-month recovery period. 
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Figure 2-4 Incision into the femur using a 25 gauge hypodermic needle. 

2.2.6 In vivo vibration amplitude measurement based on motion 
blur 

A mouse was placed in the reference-bead cage, which was mounted on the vibration 

platform, and then set of 8 static (no vibration) x-ray images was acquired. The y-to-x SD 

ratio was calculated for each of the 8 static images and those values were averaged. 

The mouse vibration platform was then vibrated at a frequency of 30 Hz, under 0.43 g 

(4.2 m/s2) of acceleration, and with an amplitude of 118 µm, and a second set of 8 

dynamic x-ray images was acquired. Again, the y-to-x SD ratio was calculated for each of 

the 8 dynamic images and the ratios values were averaged.  

The mice were fully conscious during the WBV process because we required our data to 

be gathered under normal weight-bearing conditions – no drug or muscle relaxant was 

administered, which may have affected biomechanics or in vivo vibration transmission. 

As result, some of the acquired images suffered from additional blurring caused by the 

random movement of the mouse. However, it was relatively easy to determine whether an 

image was affected by mouse motion by checking to see that no significant Gaussian 

broadening along the x axis was observed in the reference bead profiles. Images with 

obvious x axis motion during imaging were rejected. A set of 8 images for each static and 

dynamic case are used in our analysis. 
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Lastly, the intensity profile fitting model in vivo is different than the standard 2-D 

Gaussian from equation (4). In vivo, the beads are in close proximity to the bone. Thus, 

the background pixel intensity values could have abrupt variations at the location of the 

bone interface. To account for these background intensity trends, a cubic term was added 

to the last term in equation (4). We must also consider the possibility of a small tilt (θ) in 

the axis of measured vibration, relative to the direction of the applied vibration, due to the 

propagation of the vibration in vivo. Therefore, for our analysis, we used the following 

analytical 2-D Gaussian model for fitting the intensity profile in vivo, which takes both 

abrupt background intensity fluctuation and the non-normal vibrational axis into account. 
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where the parameters A, x0, y0, k, σx, and σy are previously defined from equation (4). And 

a, b, c, d, e, and f are constants. The cubic terms at the end of the equation (5) represents 

potential gradient in the image as result of different biological features on the x-ray 

image. 

2.3 Results and Discussion 

2.3.1 The effect of harmonic vibration on beads 

Single x-ray images of a 280 µm diameter reference-bead attached to the cage wall are 

shown in Figure 2-5 for the static case and several vibrational amplitudes: (a) 0 µm; (b) 

78 µm; (c) 118 µm; (d) 157 µm; (e) 196 µm; (f) 237 µm; and (g) 277 µm. Figure 2-6 

shows plots of the intensity profiles along y-axis (parallel to the axis of vibration) of the 

bead through its centroid over a range of amplitudes. 
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As the vibrational amplitude increases, the residency time of a bead in any given pixel 

decreases resulting in blurring, decrease in contrast, and a higher local minimum in pixel 

intensity. 

As the peak-to-peak amplitude approaches and exceeds the diameter of the bead, the 

intensity profile begins to assume a bimodal distribution due to the nature of simple 

harmonic motion. In particular, at the two extreme points of displacement, the 

instantaneous velocity is zero. Also, at the mid position between the extremes, the bead 

has the fastest instantaneous velocity. Therefore, in terms of a probability distribution, it 

is more likely for the CCD to register the bead at the two extreme points, than at the mid 

position. This is clearly demonstrated by the pixel intensity profile. This behavior can 

also be predicted from the harmonic motion induced PSF in (equation (3)) where, as x 

approaches ±L, the function approaches infinity. Therefore, as long as the peak-to-peak 

vibration amplitude is below the diameter of the bead (280 µm), we can safely 

approximate the intensity profile with a Gaussian function.  

 

Figure 2-5 Images of a single reference-bead used to calculate the y-to-x 

SD ratio at different vibrational amplitudes for calibration: (a) 0 µm; (b) 78 

µm; (c) 118 µm; (d) 157 µm; (e) 196 µm; (f) 237 µm; and (g) 277 µm. 
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Figure 2-6 Line profiles across the reference-bead parallel to 
the y-axis (direction of simple-harmonic motion) for a range 
of vibration amplitudes. 

2.3.2 Vibration amplitude measurement and calibration 

We have shown that we can approximate a motion-blurred bead profile with a Gaussian 

function as long as the peak-to-peak vibration amplitude is less than the diameter of the 

bead. The intensity profile of the bead is fitted to equation (4). The calculated SD in the 

y-direction (parallel to the direction of vibration) is then divided by the calculated SD in 

the x-direction (perpendicular to the direction of vibration). Figure 2-7 shows a plot of the 

reference-bead y-to-x SD ratios as a function of vibration amplitude used as the 

calibration curve for our in vivo measurements. 

Non-linear regression analysis revealed a quadratic relationship (R2 = 0.9994) between 

the y-to-x SD ratio and the vibration amplitude, which strongly agrees with the analytical 

expression for the relationship.  

To measure vibration amplitude in vivo, one has to acquire images of the vibrating beads, 

measure the SD ratio in both the x and y directions, calculate the y-to-x SD ratio, and then 

look up the ratio on the characteristic curve of y-to-x SD ratio vs. vibration amplitude to 

determine vibration amplitude. In this manner, harmonic vibration amplitude can be 



31 

 

quantified by exploiting motion-blur that manifests as a selective broadening of the 2-D 

Gaussian profile of the bead in the direction of the applied vibration. 

 

Figure 2-7 The characteristic curve of y-to-x SD ratios for reference-bead motion-blur at 
each vibration amplitude (error bars are standard deviation of the mean) used for 
calibration of the vibration system. 

It is worth noting that the last two data points in the plot have a higher margin of error 

than the rest of the curve. This is due to the profile of the beads deviating from a 

Gaussian distribution toward a bimodal one as the peak-to-peak vibration approaches and 

exceeds the diameter of the bead. 

A surprising observation from our data for the static scenario (zero amplitude) was that 

the y-to-x SD ratio was not exactly equal to 1. The relative spatial resolution in the 

horizontal (x) and vertical (y) directions of the detector was investigated using a line-pair 

phantom (Nuclear Associates, Carle Place, N.Y.). It was observed visually that the spatial 

resolution along x is slightly better than along y. This small, but detectable, additional 

blur along the y-axis on the image revealed that the x-ray focal spot had a slightly 

asymmetrical shape, causing asymmetric resolution. Regardless of the absolute value of 

the y-to-x SD ratio, this technique is able to accurately and reliably quantify vibration 

amplitude. 

It is clear from the characteristic curve of y-to-x SD ratios that our technique is able to 

reliably quantify vibration amplitude in the optimal range, between 100 µm and 200 µm, 



32 

 

with a very small margin of error, provided that the period of vibration is much shorter 

than the exposure time of the CCD (i.e. approximately 630 ms). 

2.3.3 In vivo vibration amplitude measurement 

The weight of mice 2 weeks post-surgery were 23 g and 23 g for mouse #1 and mouse #2 

respectively. The mice were in good health even though their overall weight dropped by 

2 g, which is expected post-surgery. Currently, the biocompatibility of tungsten carbide is 

not very well documented in the literature. However, we have observed no obvious 

adverse effects in the mice during this study. 

Figure 2-8 (a) and (b) shows an example of 2-D Gaussian fit of the bead in vivo using 

equation (5). Note that the close proximity of the bone contributed to the cubic behavior 

of the background pixel, which was taken into account in equation (5). Figure 2-9 (a) and 

(b) show static images of the tungsten-carbide beads implanted in the mice (circled in 

white). All other beads are the reference beads that are attached to the acrylic cage to 

monitor the applied vibration. Figure 2-9 (c) and (d) show images of the two mice during 

WBV at 118 µm vibration amplitude. Note the circular appearance of all of the static 

beads, Figure 2-9 (a) and (b), and the vertical blurring of the beads in the dynamic WBV 

cases, Figure 2-9 (c) and (d) which is exploited to measure the vibrational amplitude. 

The derived y-to-x SD ratios for each of the 4 cases are plotted in Figure 2-10. A 

commercially available statistics package (“Prism”, GraphPad Software, La Jolla, CA) 

was used to perform a one-way, non-parametric ANOVA on the data set from each of the 

8 acquired images. Statistical significance is defined as p ≤ 0.05. No statistically 

significantly difference in the y-to-x SD ratios was found between any reference beads, so 

their values were averaged to provide greater statistical power. 

In the static case for mouse #1 (Figure 2-10 (a)), none of the y-to-x SD ratios for the 

beads at the proximal tibia, distal tibia, and femur were statistically significantly different 

from the reference beads (Adjusted p > 0.999, p > 0.999, p = 0.473 respectively). This 

indicates that the animal was in fact motionless during imaging.  
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The same result was observed in mouse #2 (Figure 2-10 (b)), in which there were no 

statistically significant differences between the y-to-x SD ratios for the proximal tibia and 

femur beads in comparison to the reference beads (Adjusted p = 0.873 and p = 0.644 

respectively). 

In the dynamic WBV case for mouse #1 (Figure 2-10 (a)), we observed no statistically 

significant difference in the y-to-x SD ratios between the proximal tibia and distal tibia in 

comparison to the moving reference beads (p = 0.485 and p > 0.999 respectively). 

However, the y-to-x SD ratio for the femoral bead was statistically significantly different 

from that of the moving reference beads (p = 0.007). 

 

 

Figure 2-8 Examples of fitting of a 2-D Gaussian surface to the in vivo beads using (5) in 
order to obtain SD. Note the cubic behavior of the background pixel in both plots. This 
was due to the close proximity of the bead to the bone. (a) Shows the static case, where 
there is no vibration. (b) Shows the dynamic case, where vibration is set at 0.43 g at 
118 µm amplitude. 
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Similarly, in the dynamic WBV case for mouse #2 (Figure 2-10 (b)), no statistically 

significant difference was observed in the y-to-x SD ratios for the tibia and the reference 

beads (p = 0.470). However, the y-to-x SD ratio for the femoral bead was statistically 

significantly different from that of the reference beads (p = 0.011).  

The y-to-x SD ratios obtained from the WBV cases are then translated into vibration 

amplitude via the characteristic curve from Figure 2-7. The averaged vibration 

amplitudes measured from the images in each limb region are listed in Tables 2-2 and 2-3 

for mouse #1 and mouse #2 respectively. 

The measured vibration amplitudes from the reference beads of both mice are in good 

agreement with the input amplitude of the vibration platform, which is 118 µm. As shown 

from our statistical test, the beads that were implanted in the femur in both mice vibrate 

at significantly different amplitude than all the other beads. In terms of the amplitude, this 

suggests that the femur in mouse #1 was experiencing vibration amplitude of 99±7 µm, 

and 102±11 µm for mouse #2. 

 

Figure 2-9 In vivo images of implanted beads in mice, under both static conditions and 
while undergoing whole-body vibration: The bone-implanted beads are outlined in white 
circles. (a) Static x-ray image of mouse #1 (static conditions); (b) Static x-ray image of 
mouse #2 (static conditions); (c) WBV x-ray image of mouse #1 at vibration amplitude 
118 µm;  (d) WBV x-ray image of mouse #2 at vibration amplitude 118 µm. 
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Knowing the vibration amplitude, we can further infer the peak-acceleration at those 

locations, assuming that the vibration frequency remains unchanged in vivo. The peak-

acceleration can be obtained using equation (1). Therefore, at the femur of mouse #1 and 

mouse #2, the peak-acceleration is 0.37 g and 0.36 g respectively. In comparison to the 

input magnitude, which is 0.43 g, these are about 13% reduction in vibration magnitude. 

 

Figure 2-10 (a) y-to-x SD ratios for mouse #1 with no vibration (static) and with vibration 
(dynamic). (b) y-to-x SD ratios for mouse #2 with no vibration (static) and with vibration 
(dynamic). Asterisk denotes statistical significance p ≤ 0.05 as compared to the reference bead in 
the dynamic case in both (a) and (b). 

It is also interesting to observe there is no significant vibration reduction at the tibia. We 

speculate this was caused by the fact that tibia is in close contact with the vibration 

platform. Lastly, from the measured amplitude at the femur region of both mice, there is 

no difference between the bead physically implanted in the bone and the bead that is 

inserted under the muscle group right above the bone. Both surgical procedures yielded 

similar values. In terms of the surgical implantation technique, both implantation 

methods were relatively easy to perform and they were non-invasive in the sense that it 

caused any post-operative complication to the animal. However, in future study, we 

would use the intraosseous technique. This ensures that the bead indeed anchors firmly in 

the bone.  
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The high margin of error in some of the measured amplitudes is due to the confounding 

effects of background image features, such as bone, and the mathematical model used to 

fit the bead’s intensity profile. However, our model is still robust enough to provide 

consistent measurement, providing that we have sufficient image data. 

Table 2-2 Vibration amplitude measured at each 

implanted region from mouse #1 based on SD ratios 

 Amplitude (µm) 
Standard 

Deviation (µm) 

Reference Bead 121 4 
Distal Tibia 110 12 

Proximal Tibia 112 16 
Femur 106 7 

Table 2-3 Vibration amplitude measured at each 

implanted region from mouse #2 based on SD ratios 

 
Amplitude (µm) 

Standard 
Deviation (µm) 

Reference Bead 122 2 
Proximal Tibia 126 12 

Femur 99 11 

Although we have shown that our mouse cage is capable of keeping the mouse still 

during imaging, the cage still lacks a mechanism that prevents the mouse from turning 

within the enclosure. As result, at times it could take up to 2 hours to acquire a set of 

acceptable images per mouse. This issue can be addressed in the future by acclimatizing 

the animal with the cage and vibration protocol well before the experiment. One of the 

other limitations with our imaging system is the x-ray source. Specifically, the x-ray 

source isn’t capable of acquiring multiple images within a short span of time before the 

x-ray tube overheats. This factor also contributes to the additional experiment time, 

which leads to a more agitated animal. 

2.4 Conclusion 

We have demonstrated a simple, reliable, and accurate imaging technique that exploits 

harmonic motion blur of fiducial markers to measure the transmission of whole-body 

vibration in small animals, provided one can consistently model the blurring of the bead, 

and correlate that with the vibration amplitude. This method can potentially be applied to 
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human subjects who already have metallic markers implanted in the bone, such as the 

case of radiostereometric analysis. This would eliminate the need for bone-attached 

accelerometers. Our future direction involves using this technique to assess vibration 

transmission for a range of amplitudes, magnitudes, and frequencies in mice. 
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Chapter 3  

In preparation for submission to the journal of Bone and Mineral Research 

3 Transmission of vertical whole-body vibration in mice 

3.1 Introduction 

As describe in Chapter 1, there is currently great interest in the biological effects of 

applying mechanical stimuli, such as whole-body vibration (WBV), to the bones of 

humans and animals which results in increased BMD (bone mineral density) according to 

Wolff’s law.1 It has been proposed that this effect has the potential to be employed 

therapeutically to reverse osteoporosis and strengthen bones.2-5 Current research suggests 

that high frequency (10 – 100 Hz), low magnitude vibration (< 1 g, where g is the 

acceleration due to the Earth’s gravity, 9.8 m/s2), and relatively short duration (< 30 

minutes) exposure is most effective in anabolic bone synthesis in the skeletal system in 

both humans and animals.6-11 In contrast, high magnitude (>> 1 g) vibration and 

prolonged exposure can be harmful.12,13 

The transmission of vibration in humans is typically measured at the skin level by 

affixing an accelerometer onto the skin at the site of interest.14-16 However, studies have 

shown skin-mounted accelerometers do not accurately reflect the actual magnitude of 

vibration at the skeletal level.17-20 This is due to the attenuation and damping caused by 

the soft tissue surrounding the bone. Fortunately, in human subjects this problem can be 

easily addressed, as it is relatively simple to attach accelerometers directly onto the bone 

through the use of such devices as a Kirschner wire.21 

Small animals, such mice, are frequently used in musculoskeletal research due to their 

short life span, small size, and their similarity to humans in skeletal response to WBV. 

Inertia-based sensors that attach to animals would need to be proportionally small in 

order to not influence the measurement of vibration. Unfortunately, no implantable 

accelerometers of sufficiently small size and mass currently exist for mice or other small 

animals. 
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Perhaps, the biggest difference between human and animal subjects is that there is a 

greater experimental control factor in humans in terms of the ability to remain 

motionless. Thus, it is common practice to anesthetize the animal during the experiment, 

which prevents it from moving around in its local environment. Thus, the animals are 

usually laying in a prone position and not standing in a physiologically-realistic stance.22 

In the case of vertical vibration transmission, this unconscious posture causes diminished 

loading of the limbs compared to a conscious and standing posture.  

An alternative method for measuring vibration transmission, that avoids implantable 

accelerometers, is known as the constrained tibial vibration (CVT) technique, from 

Christiansen et al.
23

 But, as the name implies, this method is limited to the tibial region 

only. The response and interaction to the applied vibration, from adjacent structures – 

femur, tibia, and fibula combined as a whole – is ignored. Therefore, there is currently a 

lack of understanding of the vibration propagation at different skeletal levels in a rodent 

model under different vibration conditions, as well as how the animal’s posture could 

affect the transmission. 

In this chapter transmission of vertical vibration at the tibial and the femoral region in 

mice is characterized using the novel imaging technique described in Chapter 2, for 

vibrational frequencies between 15 – 40 Hz and peak-acceleration (vibration magnitude) 

between 0.09 – 0.87 g. These ranges of vibration parameters are used in animal whole-

body vibration because they have been previously reported to promote bone growth.24,25 

Moreover, the animals under study were kept fully conscious so that the limbs would be 

under normal weight-bearing condition during the therapy. 

3.2 Material and Methods 

All procedures were approved by the University of Western Ontario Animal Use 

Subcommittee and were conducted in accordance with guidelines set out by the Canadian 

Council on Animal Care. A total of six C57BL/6J male mice were used in the 

experiment. The mice were 13 weeks old, all male, and weighed 27±1 g.  
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3.2.1 Fiducial Markers Implantation  

From Chapter 2, we presented a novel technique of quantifying vibration in vivo based on 

motion-blurred fiducial markers – 280 µm diameter, tungsten-carbide beads (New 

England Miniature Ball Company, Norfolk, CT). The mice were given prophylactic, pre-

surgical antibiotics (Meloxicam, 0.01ml/kg, Boehringer Ingelheim Vetmedica Inc., St. 

Joseph, MO) to minimize the risk of infection. Bead-implantation surgery was carried out 

with the animals sedated using a 2% isoflurane anesthetic. The beads were sterilized 

using a 70% ethanol solution and implanted at the tibia crest and mid-diaphysis of the 

femur of the animal. A 25-gauge hypodermic needle was used to penetrate the cortical 

bone of the animal. The bead was then placed into the bone and the wound was closed 

with a suture. In total, the mice were given one month of recovery in order to allow the 

beads to have sufficient time for osteointegration.  

3.2.2 Imaging System and Processing 

A 2-D X-ray projection imaging was used to observe the fiducial markers in vivo. The x-

ray source was a ceiling mounted x-ray unit (Proteus XR-a, GE Medical Systems, 

Milwaukee, WI, USA). An indirect x-ray imaging method was used where x-ray photons 

were passed through the subject, converted into visible-light photons using a scintillating 

material (Kodak, Min-R2 2000 screen, Rochester, NY), and then an image of the 

scintillator was captured by a CCD camera (Cascade 1K, Photometrics, Tucson, AZ), 

which was controlled via µManager26 software. The energy of the x-ray was set to 80kVp 

at 200 mA, and 0.63 ms exposure for all of the experiments. The imaging system was 

integrated with the whole-body vibration platform as shown in Figure 3-1. Image post-

processing was done using MATLAB environment (MathWorks, Natick, MA). 
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Figure 3-1 The digital imaging system consists of an x-ray source (A), vibration 
platform (B), mouse cage (C), scintillating screen (D), and a CCD camera (D). The 
image system is integrated with a vibration platform so that in vivo vibration can be 
quantified. The x-ray is imaged indirectly; first it is converted into visible photons, 
via a scintillating screen, which are then captured by a CCD camera. 

3.2.3 Whole-body Vibration Platform and Mouse Cage 

At the heart of the whole-body vibration platform is an electromagnetic shaker (Type 

V20, Signal Force, Data Physics Corp., San Jose, CA) capable of accurately producing 

vibration in the range of 10 – 100 Hz and 0 – 1 g. A waveform generator (Model 148A, 

WaveTek, AeroFlex, Plainview, NY) controlled the input waveform to the vibration 

platform. The signal from the waveform generator was amplified via a 100W power 

amplifier (Signal Force, Data Physics Corp., San Jose, CA) in order to drive the shaker. 

The frequency and the magnitude of the resultant vibration produced by the shaker were 

monitored by an accelerometer (Model 7500A1, Dytran Inc., Chatsworth, CA) firmly 

affixed to the vibration platform. The waveform generator input and accelerator output 

were recorded using an analog-to-digital recorder (ML750 PowerLab/4SP, 

ADInstruments Inc., Colorado Spring, CO).  



45 

 

The mouse remained non-sedated and conscious during the experiment, in order to 

maintain a natural posture and measured transmissibility of the bone – a sedated mouse 

would be laying in a prone position with no weight bearing on the limbs. The 

predisposition of mice to virtually-constant motion and “fidgeting” poses significant 

motion-related problems to the imaging process of a non-sedated animal. While physical 

restraint of the animal would affect the measured transmissibility, we found that by 

limiting the space in which the mouse is allowed to move minimizes its motion and 

allowed the acquisition of un-blurred images. Thus, a custom mouse cage (Figure 3-2), 

with inner dimensions 8.3 cm long x 4.0 cm wide x 3.5 cm high, and with two ¾” 

ventilation holes, was fabricated from ¼” thick acrylic. The box confines the animal so 

that it is unable to move laterally or longitudinally. The restraining box was magnetically 

attached to the vibration platform to allow its free orientation relative to the x-ray source 

without sacrificing good contact with the platform. Fiducial markers were glued on the 

side of the restraining box to function as reference beads, from which applied vibration 

amplitude could be measured and compared to the in vivo vibration amplitude of the 

bones. 

 

 

Figure 3-2 To prevent 
the mouse from moving 
around during imaging, a 
cage is designed and 
built such that it limits 
the animal’s mobility. 
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3.2.4 Vibration Protocols 

Table 1 lists the vibration frequencies and magnitude used in the experiment. The peak 

amplitudes of vibration were derived according to Griffin27. The mice were first placed in 

the restraining box, and allowed to acclimatize to the confined environment with 

vibration of 25 Hz at 0.28 g for 10 minutes. After which, the vibration protocol was 

initiated from 15 Hz, at the lowest magnitude and progressively increased. A set of 8 x-

ray images were obtained for each vibration condition, per mouse.  

3.2.5 Measurement of transmissibility and its dependence on 
vibration frequency 

For each of the 8 images acquired at one set of vibrational parameters, the intensity 

profile of each reference bead and each implanted bead in the x-ray image was fitted to a 

2-D Gaussian surface. Our previous study (Chapter 2) showed that there is a quadratic 

relationship between the broadening of the intensity profile, in the direction of motion, 

due to motion blur and the vibration amplitude. Therefore, this allows us to infer any 

vibration amplitude based on motion blur. The transmissibility was then calculated as the 

ratio of the measured in vivo vibration amplitude to the measured reference amplitude by 

taking the ratio between the two.  

The amplitudes measured from the eight mice were averaged, categorized according to 

frequency, and plotted for each magnitude of the same frequency group. Lastly, 

averaging the transmissibility values over the entire peak-acceleration category of the 

same frequency group produced the dependence of transmissibility on vibration 

frequency plot. 

3.2.6 Dependence of transmissibility and postures 

Since the mouse was non-sedated, it could be in quite a variety of standing postures 

during imaging. We identified three possible scenarios: normal standing position (Figure 

3-3a), crouch position (Figure 3-3b), and extended position (Figure 3-3c). Additionally, 

we defined the angle between the animal’s tibia and femur as a parameter that could 

affect the transmissibility. This angle was measured from two imaginary lines (Figure 3-

4):  Line 1 was drawn from the distal tibia and extending longitudinally, passing through 
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the implanted bead; Line 2 was drawn from the proximal femur and extending 

longitudinally, passing through the implanted bead. This angle measurement was 

performed for all of the images in ImageJ.28 

 

Figure 3-3 The three possible animal postures during imaging are 
(a) normal standing position, (b) crouch position, and (c) extended 
leg position. 

 

Figure 3-4 The angle between the femoral and tibial bone is defined by 
the two imaginary lines drawn through the respective bones as shown. 
The implanted beads are circled. The femoral line starts at proximal 
femur and extends longitudinally, through the implanted bead. Similarly, 
the tibial line starts at the distal tibia and extends longitudinally, through 
the implanted bead. The angle between the two lines is then measured in 
ImageJ. 
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Table 3-1 Vibration Protocols used in in vivo experiment 

Frequency 
(Hz) 

Magnitude (g) 
Theoretical Amplitude 

(µm) 

15 
0.09 102 
0.14 157 
0.18 204 

20 
0.14 88 
0.21 132 
0.28 177 

25 
0.28 113 
0.36 141 
0.45 181 

30 
0.57 157 
0.64 177 
0.71 196 

35 
0.57 115 
0.64 130 
0.71 144 

40 

0.57 88 
0.64 99 
0.71 110 
0.85 132 

3.2.7 Data Analysis  

Statistical package, GraphPad Prism 6.0 (GraphPad Software, La Jolla, CA), was used for 

all of our statistical analyses. Repeated measure one-way ANOVA was used for the 

transmissibility analysis. Correlation was used to examine the relationship between 

postures and transmissibility. Statistical significance is defined as p ≤ 0.05. 

3.3 Results 

The health of the mice was closely monitored by observing their weight for two weeks 

after surgery. No significance (p = 0.055) was observed between the mice weight pre-

implantation and 2 weeks post-implantation, which indicated good health. In addition, no 

side effects associated with the implantation of tungsten carbide material in vivo were 

observed during our study. 
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A typical data acquisition time was 30 minutes. This time is limited by the x-ray tube, 

which overheats after 30 min period. However, it is possible to complete one set of 

vibration magnitude per frequency per mouse within that time frame. 

An x-ray image of one of the mice during WBV is shown in Figure 3-5. Note the 

elongate shape of the bead due to motion-blur. The implanted beads are highlighted, and 

the scattered beads on the right are the moving reference beads, affixed to the cage. 

The measured in vivo vibration amplitudes for each magnitude at the same frequency 

group are plotted in Figure 3-6. It was observed that between 15 – 25 Hz, there was a 

significant increase in the in vivo vibration amplitude in the femur compared to the 

reference amplitude. At 15 Hz, at a magnitude of 0.14 g and 0.18 g, the in vivo vibration 

amplitude in the femur increased by 13% (p = 0.014) and 11% (p = 0.016) over the 

respective reference amplitudes. At 20 Hz, with magnitude of 0.21 g and 0.28 g, the in 

vivo vibration amplitude increased by 19% (p = 0.014) and 20% (p = 0.001) respectively 

over reference values. Lastly, at 25 Hz, with magnitude of 0.28 g and 0.36 g, the in vivo 

vibration amplitude increased by 26% (p = 0.010) and 36% (p = 0.011) over respective 

reference values. No significant changes were observed for the tibia at those frequency 

ranges. It is noteworthy that, at 30 Hz, there was a sudden decrease of 11% (p = 0.0175) 

and 12% (p = 0.0422) in the transmitted in vivo vibration amplitude in the tibia at the 

magnitude of 0.64 g and 0.71 g compared to reference values. No significant difference 

was observed in the femur at 30 Hz. Finally, no significant difference was observed 

between the reference amplitude and the measured in vivo amplitudes in tibia and femur 

in the 35 – 40 Hz range. 

 

Figure 3-5 An x-ray image of the animal in 
the restrainer. The implanted beads are 
highlighted. The scattered beads on the 
right are the reference beads, which are 
glued onto the restrainer. Note the 
elongation of the bead in the vertical 
direction due to motion blur. 
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Figure 3-6 The vibration amplitudes of each peak-acceleration category of 
the same vibration frequency group are plotted. An asterisk denotes statistical 
significance when compared to the corresponding reference amplitude at the 
same peak-acceleration and vibration frequency (* p • 0.05 and ** p • 0.001). 
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Figure 3-7 The transmissibility values from all the data are plotted against their 
corresponding tibia-to-femur angle. The transmissibility and animal posture have 
negative correlation. In the tibia, r = -0.2842. And, r = -0.2993 in the femur. This 
suggests that as the angle between the tibial bone and femoral bone decreases, the 
transmissibility increases. 

Since the postures of the mice were not a controllable parameter, only a limited number 

of data points were available for the extended position and crouch position. Nevertheless, 

a weak negative correlation between the transmissibility and tibia-to-femur angle was 

observed in the tibia (r = -0.2842) and the femur (r = -0.2993) as shown in Figure 3-7. 

Note that majority of data points clusters in the tibia-to-femur angle range of 30 – 40 

degrees, suggesting that these are the normal standing posture of the animal. 

Figure 3-8a and 3-8b show the dependency of transmissibility on vibration frequency for 

tibia and femur respectively. It is clear that the transmissibility in the femur gradually 

increases from 15 Hz to a maximum at 25 Hz after which the transmissibility decreases 

towards 30 – 40 Hz. A different behavior was observed in the tibia where the 

transmissibility dips to a minimum at 30 Hz, but remains relatively constant at all other 

vibration frequencies. 
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Figure 3-8 The transmissibility from the entire peak-acceleration category of the same 
frequency group are averaged and plotted for each frequency group. The behavior of the 
transmissibility in the tibia across 15 – 40 Hz range and the behavior of the 
transmissibility in the femur across 15 – 40 Hz range are shown. Note the increasing 
transmissibility in the femur in the 15 – 25 Hz range. 

3.4 Discussion 

Our objective was to characterize the transmission of vertical, whole-body vibration in 

mice using our previously developed, novel, in vivo, skeletal-vibration quantification 

technique. Our results indicate that the transmissibility is frequency-dependent for both 

femur and tibia – a resonance was observed in the femur at 25 Hz, along with a small 

decrease in the transmissibility in both femur and tibia at 30 Hz. We have chosen to 

characterize the transmission of vertical vibration in mouse in the frequency range 15 – 

40 Hz because that is the region most often explored in the literature. 

There is currently virtually no in vivo information available in the literature with which 

we can compare our results. Previous studies have developed finite-element models 

(FEM) to analyze the natural frequency of isolated murine tibia and femurs. Nemani and 

Yokota29 report a broad resonance (1st mode) of the femur near 23 Hz, which is in 

agreement with our observations (25 Hz) of the femur. They also reported an additional 

resonance at 33 Hz, which we did not observe – in fact, we saw a slight reduction in the 

transmissibility at 30 Hz. In the tibia, we observed no resonance in the 15 – 40 Hz 

frequency range, contrary to the previously reported FEM results and they reported no 

dip in the frequency response around 30 Hz. Factors which may explain some of these 

discrepancies are the gross size of the bones and related age and weight of the mice, non-
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homogeneous nature of the bone, and the examination in the FEM study of the bones in 

isolation – unconnected to adjacent bones (tibia, femur, fibula, pelvis, feet) and other soft 

tissue, such as tendons and cartilage.  

Ex vivo vibration experiments have been conducted in which vibration was localized to 

the isolated tibia and the femur. Kim et al
30

 reported that the natural frequency resonance 

(1st mode) of the femur is in the range of 20.9 – 25.6 Hz. Once again, the resonance we 

observed from our in vivo experiment falls within this frequency range. Christiansen et 

al
23 characterized the transmissibility of the tibia over a much broader range than our 

study (20 – 150 Hz). Their observations of no resonances in transmissibility for the tibia 

in the 20 – 40 Hz range are consistent with ours, including the dip in frequency response 

at approximately 30 Hz. 

A murine model is different from that of human in many ways (bone size, muscle mass, 

posture, etc.). Thus, a direct comparison between the transmissibility curves (Figure 3-8) 

obtained here with that of human is not appropriate. However, there are features that are 

common in mice WBV and human WBV, specifically, resonance (amplification) and 

damping. Rubin et al., observed a resonance in the hip at frequencies less than 20 Hz 

using bone-mounted accelerometer.21 Similarly, using a skin-mounted accelerometer, 

Juha et al. observed resonance in the ankle, knee and hip.14 Damping effect was also 

observed in both studies, although it only occurred in the < 20 Hz region. 

There have been several reports that the mechanical-signaling mechanism associated with 

bone formation is frequency-dependent, rather than strain-dependent.31-33 This could be 

attributed to the fact that resonance occurs at a specific frequency, as we have shown. 

Therefore, if whole-body vibration is applied at the resonance frequency, then vibration 

magnitude can be relatively low, since it would be amplified in vivo by the effect of the 

resonance. Furthermore, because the tibia and femur have slightly different resonance 

frequencies, the potential exists to target the vibration to a specific bone34. 

We also found that the transmissibility is dependent on the posture of the animal. When 

the animal is in a crouched position, more vibration is being transmitted to its body. But, 

when the animal extends its body in a standing posture, i.e., when the angle between tibia 
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and the femur is greatest, less vibration is transmitted. Note also that our data has a wide 

distribution, suggesting biological variability between each mouse. 

In human whole-body vibration, standing posture affects the vibration 

transmissibility.15,35 Similarly, one would expect the transmissibility in mice to be posture 

dependent. But unlike human studies, we do not have control of the animals’ posture 

during the experiments. Therefore, we can only indirectly infer the posture using the knee 

flexion angle from each image. As expected, posture and transmissibility are correlated, 

as shown in Figure 3-7. When the animal is in a crouch position, we observed more 

vibration being transmitted into the skeletal system because its belly is in contact with the 

vibration platform. Thus, the overall transmitted vibration is increased due to the 

increased contact area. The opposite occurs when the animal is in an extended “standing” 

position, i.e., the angle between the femur and tibia is much greater than 40 degrees. Here 

we speculate that the leg muscle is under greater tension, which lowers the transmitted 

vibration. The opposite is true in humans, where a stiffer muscle correlates to better 

transmission of vibration.35 More research is needed to determine the dampening of 

vibration when the leg muscle is activated in mouse. 

There are two limitations associated with this technique. First, the resolution of the 

imaging system limits the smallest vibration amplitude that can be resolved. In our 

current setup, the effective pixel size is 33 µm/pixel. This limits our ability to 

characterize transmissibility beyond 40 Hz, as vibration amplitude is proportional to the 

inverse square of frequency, if acceleration is held constant.27 For example, with a peak 

acceleration of 0.4 g at 90 Hz, the vibration amplitude is only about 12 µm. To obtain 

detectable vibration amplitude at that vibration frequency for our imaging system, we 

would need to increase the peak acceleration to at least 2 g – a regime where the 

vibrational stimulation ceases to promote healthy bone growth and begins to be 

destructive. We have also observed in our studies that the mice are not likely to tolerate 

such high-amplitude stimuli while remaining stationary.  Simply changing the optical 

lens of the CCD will change the resolution of the imaging system, but at a cost of 

decreased field of view. This is problematic because it limits the number of beads that 

can be captured in a single image. 
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The second limitation relates to the location of the implanted beads in the bone and 

surgical considerations. There is limited area on the tibia and the femur in which the 

beads can be implanted in order to ensure firm implantation and minimal damage to the 

bone. For instance, in order to implant the bead at the distal femur, there are tendons that 

need to be cut in order to gain access. This procedure would be too invasive, which 

means longer recovery, and uncertain surgical outcome. These factors limit our ability to 

implant multiple beads per bone, which is desirable for determining how the vibration 

varies at different location of the bone. One possible solution is to affix the bead onto the 

bone with epoxy bone cement to reduce the invasiveness of the procedure while retaining 

firm contact with the bone. It is noteworthy that no animals died from any surgical 

complications, nor did we observe any negative reaction to the tungsten carbide bead 

implantation six-months post-surgery. We found no reports in the literature of problems 

related to the biocompatibility of tungsten carbide, or any known long-term in vivo 

effects. Based on our experience, tungsten carbide beads are safe for in vivo implantation, 

and preoperative sterilization is recommended. 

In summary, this study presents first ever in vivo vibration characterization of 

transmission through the murine femur and tibia in the frequency range from 15 Hz to 40 

Hz. It was observed that the femoral bone has a resonance near 25 Hz and the tibia has a 

significant decrease in transmissibility at 30 Hz. Future work will explore vibration 

transmission at other anatomical locations in the animal, such as the spine or pelvis. 

Additionally, it will be informative to compare skeletal vibration and skin-level vibration 

in mice by affixing fiducial beads directly onto the skin. 
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Chapter 4  

4 Conclusions and Future Directions 

4.1 Summary 

Whole-body vibration (WBV) has shown promising potential in becoming an alternative 

osteoporosis intervention to drug-only therapy1-3. However, more research is needed to 

determine what vibration protocol is the safest and the most effective for a given 

demography. Small-animal models, such as mice, play an important part in answering 

these questions, since they are readily available, cost-effective, and have similar skeletal 

response as humans. However, one of the difficulties associated with mice is the fact that 

their small size also limits the size of instrumentation that can be attached on the animal 

without becoming a significant burden on the animal. Thus, in WBV study of mice, this 

factor attributes to the challenge of in vivo vibration characterization. As such, studies 

have only reported the effects of whole-body vibration in small-animal models, but not 

how much of it is actually transmitted into the skeletal system. A few studies have 

attempted to quantify transmission of vibration in mice, but none of them was able to 

characterize vibration in vivo and in an unsedated condition (full weight bearing on the 

limbs). For example, Christian et al.
4
 was only able to report the tibial bone vibration 

characteristics and also only in an ex vivo environment (femur dissected). Another study 

measured vibration transmission at the skin level in an anesthetized rat using an inertia-

based method.5 Therefore, the goal of this thesis was to develop a method to characterize 

transmission of vibration in mice during whole-body vibration. Most importantly, the 

characterization is done on the skeletal level because at the skin level the vibration is 

attenuated by soft tissues that surround the bone, as shown from studies in human.6-9 It 

can be expected that soft tissue would also have an influence on vibration transmission in 

mice. In addition, the mice would be kept unsedated, so that their limbs would be 

subjected to normal weight bearing. 

We approached this vibration characterization problem using an imaging based method, 

as this does not require attachment of any sensors or instruments onto the animal. We 
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chose x-ray imaging as the main imaging modality since it allows us to see the animal on 

the skeletal level. Thus, a simple digital x-ray imaging system was constructed using 

commercially available components, and integrated with a whole-body vibration 

platform, as described in detail in Chapter 2. The system employed an indirect x-ray 

imaging method, i.e., x-ray photon is converted to visible photon via a scintillating screen 

before being imaged by a CCD camera. We would prefer to quantify motion by modeling 

the change in pixel intensity of the bone, but one of the problems is that bone is difficult 

to model mathematically on an image because its pixel intensity does not stay consistent 

and its orientation could be different in each image. We, therefore, proposed the use of 

fiducial markers to track motion. Specifically, 280 µm diameter tungsten carbide beads 

were implanted in the animal in the formal and tibial bone. The pixel intensity profile of 

the bead on the x-ray image is a 2-D Gaussian surface, which is mathematically simple to 

quantify. There are three ways of tracking the marker during vibration, long-exposure 

imaging, stroboscopic imaging, and high-speed imaging. Given the technical limitation of 

the x-ray tube and the CCD camera, only long-exposure imaging was viable for our 

setup. Consequently, the markers exhibit motion blurring on the x-ray image. However, 

we found an empirical relationship between vibration amplitude and the intensity profile 

of the bead. Specifically, we related the full-width-at-half-maximum (SD), which is 

derived from intensity profile of the maker, to the vibration amplitude. By using this 

method we were able to measure the vibration amplitude in the tibial bone, or femoral 

bone, of a mouse during whole-body vibration. Lastly, since the mouse is unsedated 

during the experiment, it was necessary to restrain the animal such that it would remain 

still. We developed a simple mouse cage that was just big enough to contain the animal. 

It does not physically restraint the animal in any ways, which may affect vibration 

transmission. The restrainer also functioned as a reference cage, from which the input 

vibration was measured, which was achieved by gluing fiducial markers on the side of 

the restrainer. 

The imaging techniques and processing described in Chapter 2 were utilized in Chapter 3 

to characterize transmission of vertical vibration in mice. A total of six C57BL/6 mice 

were used in the experiment. Fiducial markers, following sterilization, were implanted in 

each mouse in the tibial bone and femoral bone, and the mice were given one month of 
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recovery. In the literature, it has been shown that low-magnitude (< 1 g) and high-

frequency vibration (10 – 100 Hz) were capable of inducing bone formation in animals 

and human.2,10-12 Thus, we were interested in characterizing transmission of vibration in 

the range of 15 – 40 Hz and 0.09 – 0.85 g. Resonance was observed in the femur at 

25 Hz, which was within range of prediction of finite element model and ex vivo 

experimentation.13,14 The behavior of the tibial bone in that vibration frequency range 

was also consistent with the ex vivo result from Christiansen et al.
4 We also explored the 

relationship between the posture, which we defined as the angle between tibial bone and 

femoral bone of the animal, and transmissibility (in vivo vibration amplitude to reference 

vibration amplitude). In human whole-body vibration, the transmissibility is affected by 

the standing posture.15,16 Likewise, in mice, we found the correlation between the 

transmissibility and posture to be negative. In other word, when the animal is in a 

crouching position (i.e. small tibial to femur angle), there is more vibration being 

transmitted to its body, and vice versa. Therefore, we have successfully characterized the 

transmission of vibration in mice using a non-invasive image-based method. These 

results may help researchers working with mice in whole-body vibration studies to 

estimate how much vibration is transmitted to the bone at a given vibration frequency, 

and thus enable them to quantify the effects of whole-body vibration as well as amount of 

vibration that is received at a particular region. 

4.2 Limitations and future directions 

There are several limitations with our technique. First, the imaging system limits the 

smallest vibration amplitude that could be imaged. The effective pixel resolution with our 

current setup is about 33 µm/pixel, which is sufficient to detect vibration amplitude of at 

least 80 µm. It is important to note that the vibration amplitude is inversely proportional 

to square of vibration frequency, if the peak-acceleration is kept constant.17 Thus, the 

higher the vibration frequency, the smaller the vibration amplitude would be. This is the 

reason why we were only able to characterize transmission of vibration from 15–40 Hz. 

For instance, for vibration frequency of 70 Hz at 0.43 g, the corresponding vibration is 

only 22 µm, which is too small for our imaging system to differentiate. If we wish to 

characterize vibration at higher frequency, we would need to increase the resolution of 
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the CCD camera or change the optics of the CCD camera. However, these changes would 

decrease the overall field of view of the image, which reduces number of fiducial markers 

that could be imaged. One possible solution is to use smaller fiducial markers (< 200 

µm), which may be more sensitive to smaller vibration amplitude than bigger fiducial 

marker; however, small markers will also provide lower radiographic contrast. It is also 

worthy to note that our imaging time (630 ms) is much longer than any of the vibration 

periods used in this study (e.g. 67 ms, 50 ms, 40 ms, 33 ms, 29 ms, 25 ms). This enables 

us to see the motion blur. Consequently, the temporal information of the bead is lost, i.e., 

vibration frequency. Thus, this technique is not able to determine the vibration frequency 

in vivo; this should not be a problem in our studies, as we apply a sinusoidal waveform at 

a known vibration frequency. A previous study has shown that a phase difference in 

frequency may exist in vivo.
4 We expect the same thing would occur in mice, but just 

how much of difference from the input vibration frequency remains a research question 

yet to be answered.  

Second, while it was relatively easy process to implant the bead, the location of 

implantation is rather selective. This is due to the anatomy of the animal, making some 

regions of the bone easier to access than others, without being more invasive. Therefore, 

the implantation location is very limited. This constraint limits our ability to study 

vibration characteristics in different regions of the same bone. Research questions such 

as, “Does local bone formation contribute to increased vibration transmission at that 

region?” cannot be answered with our technique. The use of bone cement could resolve 

this problem. Specifically, instead of implanting the bead into the bone, one could glue 

the bead onto the bone. This procedure would allow us to put the bead in any location 

without worrying about the invasiveness of the procedure. However, in our experiment, 

we did not explore this possibility. 

Lastly, the mouse restrainer is not perfect. The mice were able to turn their bodies within 

the restrainer, which prolonged imaging time. The restrainer had to be re-orientated each 

time in order to obtain the correct field of view when the animal changes its position in 

the restrainer. In addition, the restrainer was not able to eliminate random movements of 

the animal, such as grooming. Images contain blur caused by random motion were 
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rejected from our data analysis. Finally, the x-ray tube also has its technical limitation in 

terms of number of images that could be taken within a time span. Recall that the x-ray 

energy was 80 kVp at 200 mA. The combination of high energy with exposure of 630 ms 

and multiple successive image acquisitions would cause to the x-ray tube to overheat 

rapidly. Therefore, for each image, one minute cool down time was required. This further 

prolongs the imaging time.  

Looking ahead, this technique of quantifying vibration amplitude using motion blur could 

be used to determine how tissue-level vibration and skeletal-level vibration compares in 

mice. Since the bead is small, it could be attached directly onto the skin of the animal 

without introducing significant weight burden on the limb. The vibration amplitude could 

be then determined, based the motion blur of the bead on an x-ray image. This technique 

can also be extended to other small animals such as rabbits and rats, and the surgical 

procedure becomes easier as the size of the animal increases. As mentioned previously 

from Chapter 2, this quantification technique has the potential to be used in human 

experiments as well. Specifically, in subjects who have implanted fiducial markers for the 

purpose of knee or hip implant position localization (i.e. radiostereometric analysis). 

Thus, no additional surgery is required for bone-mounted accelerometers. 

4.3 Conclusion 

This thesis has introduced an imaging-based method of quantifying vertical vibration 

transmission, specifically in a small animal such as mice. The construction of a simple 

digital x-ray imaging system, which incorporated a whole-body vibration platform, was 

discussed in detail. Also, the theoretical background associated with inferring vibration 

amplitude from motion blur was discussed. We validated our technique by characterizing 

transmission of vertical vibration in six C57BL/6 mice in the 15 – 40Hz range. We 

observed a resonance in the femoral bone at 25 Hz, and a reduction of transmission in the 

tibial bone at 30 Hz. We also observed a negative correlation between the transmissibility 

and animal posture. The imaging system could be improved with higher pixel resolution, 

which would enable characterization in the higher frequency range (> 40 Hz). Moreover, 

this technique can be adapted to other small animal models. 
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