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ABSTRACT 

The stochastic process-based models are developed to characterize the generation 

and growth of metal-loss corrosion defects on oil and gas steel pipelines.  The generation 

of corrosion defects over time is characterized by the non-homogenous Poisson process, 

and the growth of depths of individual defects is modeled by the non-homogenous 

gamma process (NHGP).  The defect generation and growth models are formulated in a 

hierarchical Bayesian framework, whereby the parameters of the models are evaluated 

from the in-line inspection (ILI) data through the Bayesian updating by accounting for 

the probability of detection (POD) and measurement errors associated with the ILI data.  

The Markov chain Monte Carlo (MCMC) simulation in conjunction with the data 

augmentation (DA) technique is employed to carry out the Bayesian updating.  

Numerical examples that involve both the simulated and actual ILI data are used to 

validate the proposed Bayesian formulation and illustrate the application of the 

methodology. 

A simple Monte Carlo simulation-based methodology is further developed to 

evaluate the time-dependent system reliability of corroding pipelines in terms of three 

distinctive failure modes, namely small leak, large leak and rupture, by incorporating the 

corrosion models evaluated from the Bayesian updating methodology.  An example that 

involves three sets of ILI data for a pipe joint in a natural gas pipeline located in Alberta 

is used to illustrate the proposed methodology.  The results of the reliability analysis 

indicate that ignoring generation of new defects in the reliability analysis leads to 

underestimations of the probabilities of small leak, large leak and rupture.  The 

generation of new defects has the largest impact on the probability of small leak. 

Keywords 

Pipeline; Metal-loss corrosion; Stochastic process; Hierarchical Bayesian; Measurement 

error; Probability of detection; Missing data; Markov chain Monte Carlo; Data 

augmentation; System reliability  
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Chapter 1 Introduction 

1.1 Background 

Pipelines are widely recognized as the safest and most effective means to transport 

large quantities of hydrocarbons over long distances.  According to the Canadian Energy 

Pipeline Association, there are approximately 115,000 km of natural gas and liquids 

transmission pipelines in Canada; Canada exported approximately $83.5 billion worth of 

crude oil and natural gas in 2012, most of which was transported by pipelines, and the 

Canadian pipeline operators spent about $1.1 billion in 2012 to monitor and maintain the 

vast pipeline network across Canada. 

Metal-loss corrosion is a common threat to the structural integrity of steel pipelines.  

Figure 1.1 shows typical external metal-loss corrosions on buried steel pipelines.  The 

periodical inspection of pipelines using high-resolution in-line inspection (ILI) tools is 

widely employed in the pipeline industry and a key component of the pipeline corrosion 

management practice.  Figure 1.2 shows an ILI tool that has just completed the inspection 

of a pipeline and is being retrieved at the receiving end.  The data obtained from an ILI 

on a given pipeline include the locations and sizes of corrosion features (i.e. defects) on 

the pipeline, which provide a snapshot of the condition of corrosion, whereas the data 

obtained from multiple ILI carried out at different times on the same pipeline allow one 

to infer the progress of the corrosion condition over time.  The main focus of the study 

reported in this thesis is to develop methodologies to make inference of the state and 

progress of corrosion on a given pipeline based on multiple sets of ILI data. 
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Figure 1.1 Typical external metal-loss corrosions on buried steel pipelines 

 

Figure 1.2 An ILI tool being retrieved from the pipeline after the inspection 
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The corrosion process, which involves the generation of new defects and growth of 

existing defects over time, is by nature highly uncertain, and the ILI data are imperfect 

due to the limited detectability and measurement errors associated with the ILI tools.  In 

light of this, the Bayesian methodology was selected as the main vehicle to achieve the 

objective of the study.  The Bayesian methodology has been widely used to carry out the 

condition assessment of aging structures and infrastructures (e.g. Zheng and Ellingwood 

1998; Enright and Frangopol 1999; Kuniewski et al. 2009; Zhang and Zhou 2013).  It 

provides an ideal framework to combine existing knowledge and/or experience about the 

condition of a structure with the new information contained in the inspection data to 

develop the updated knowledge of the condition of the structure.  The methodology can 

also deal with uncertainties from different sources in a straightforward manner.  A brief 

description of the Bayesian methodology as well as the computational techniques involved 

in the methodology is presented in the next section. 

1.2 Bayesian Methodology 

1.2.1 Overview 

The essential characteristic of the Bayesian methodology is its explicit use of 

probability for quantifying uncertainties in inferences based on statistical data analysis 

(Gelman et al. 2004).  The application of the Bayesian methodology can be divided into 

the following three steps: 

1. Set a full probability model, namely a joint probability distribution for all 

observable and unobservable quantities in a scientific problem. 

2. Calculate and interpret the joint posterior distribution based on the observed data. 

3. Evaluate the fit of the model and implications of the resulting posterior distribution. 

1.2.2 Bayesian inference 

Based on Bayes’ rule, the joint posterior distribution of a vector of parameters, θ, in a 

scientific model conditional on the observed data, y, can be written as follows: 
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 (1.1) 

where p(|y) is the joint posterior distribution of ; p(y|θ) is the likelihood function of the 

observed data y and p(θ) is the prior distribution of the model parameters θ.  p(y) is an 

integral of the product p(y|θ)p(θ) over all values of θ and can be regarded as a 

normalizing constant to ensure that p(θ|y) is a proper density.  This means that Eq. (1.1) 

can be further expressed as 

                  (1.2) 

where “” represents proportionality. 

The usual Bayesian structure given in Eq. (1.2) can be extended to a hierarchical 

model if multiple parameters from a hierarchy of multiple levels are involved.  For 

example, a two-level hierarchical Bayesian model is given by 

                          (1.3) 

where   are the prior parameters of θ;        is the likelihood function of the first-level 

model parameters θ conditional on the second-level model parameters  , and      is the 

prior distribution of the model parameters  . 

1.2.3 Markov chain Monte Carlo simulation 

Because of the computational difficulties involved in the evaluation of the joint 

posterior distribution in the Bayesian updating, the Markov chain Monte Carlo (MCMC) 

simulation techniques are commonly used to numerically evaluate the joint posterior 

distribution.  In the MCMC simulation, random samples of the parameters θ are drawn 

sequentially, with the probability distribution of the current sampled draws depending on 

the values of the samples drawn in the previous step.  This forms a Markov chain.  After 

an initial sequence of iterations (i.e. the so-called burn-in period (Gelman et al. 2004)), 

the random samples drawn from the subsequent iterations converge to the target 

distribution, which is the joint posterior distribution.  If the number of sequences is large 

enough, the samples drawn after the burn-in period can then be used to evaluate the 
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probabilistic characteristics (e.g. mean and standard deviation) of the posterior 

distribution.  Many MCMC sampling algorithms have been reported in the literature, e.g. 

the celebrated Metropolis-Hasting (M-H) algorithm (Gelman et al. 2004), Gibbs sampler 

(Gelman et al. 2004) and slice sampling approach (Neal 2003).  A comprehensive review 

of the MCMC algorithms can be found in Liang et al. (2010).   

1.3 Objective and Research Significance  

The study reported in this thesis is part of a Collaborative Research and Development 

(CRD) program funded by the Natural Sciences and Engineering Research Council 

(NSERC) of Canada and TransCanada Pipelines Limited.  The objectives of this study 

were to 1) develop a Bayesian framework to make statistical inferences of the metal-loss 

corrosion process, which includes the growth of existing defects and generation of new 

defects over time, based on imperfect data collected from multiple ILIs, and 2) develop 

methodologies to evaluate the time-dependent system reliability of corroding pipelines by 

incorporating the corrosion models obtained through the Bayesian updating methodology. 

The proposed Bayesian framework provides a rational and consistent approach to 

make quantitative inferences of the corrosion process on pipelines while taking into 

consideration the inherent uncertainties associated with the corrosion process and 

uncertainties associated with the inspection data.  The research outcome will assist 

pipeline integrity engineers in developing defensible maintenance strategies for corroding 

pipelines subjected to the safety and resource constraints.  The probabilistic corrosion 

models and Bayesian framework developed in this study can also be extended to other 

aging structures and infrastructures subjected to localized deterioration. 

1.4 Scope of the Study 

This study consists of two main topics that are presented in Chapters 2 and 3, 

respectively.  Chapter 2 presents the stochastic process-based models to characterize the 

generation and growth of individual corrosion defects on steel pipelines.  The generation 

and growth models are formulated and statistically inferred from the inspection data in a 

hierarchical Bayesian framework by taking into account the uncertainties in the 
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inspection data.  The MCMC simulation techniques in conjunction with the data 

augmentation (DA) are employed to evaluate the model parameters.  The developed 

models and the proposed Bayesian methodology are illustrated and validated by both the 

simulated and real inspection data.  Chapter 3 presents a simulation-based methodology 

to evaluate the time-dependent system reliability of corroding pipelines by 

simultaneously considering the generation and growth of corrosion defects.  This 

methodology provides a tool to incorporate the defect generation and growth models 

obtained from the Bayesian updating to evaluate the system reliability of corroding 

pipelines.  

1.5 Thesis Format 

This thesis is prepared in an Integrated-Article Format as specified by the School of 

Graduate and Postdoctoral Studies at Western University, London, Ontario, Canada.  A 

total of four chapters are included in the thesis.  Chapter 1 presents a brief introduction of 

the background, objective and scope of this study. Chapters 2 and 3 form the main body 

of the thesis, each of which is presented in an integrated-article format without an 

abstract, but with its own references.  The summary, conclusions and recommendations 

for future research are given in Chapter 4. 

Several simulation algorithms and Bayesian formulations developed and derived in 

this study are given in appendices, which follow the last chapter.  Each appendix is given 

an identification that consists of a number and a letter.  The number indicates the chapter 

that the appendix is associated with, and the letter indicates the sequence of the appendix 

appearing in that chapter.  For example, Appendix 2A is the first appendix associated 

with Chapter 2. 
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Chapter 2 Probabilistic Modeling and Bayesian Inference of 

Generation and Growth of Corrosion Defects on Pipelines 

Based on Imperfect Inspection Data 

2.1 Introduction 

Metal-loss corrosion involves two processes, namely the growth of existing defects 

and the generation of new defects.  Both processes involve significant inherent 

uncertainties.  A rational probabilistic approach to characterize these two processes can 

facilitate various tasks (e.g. reliability evaluation and determination of optimal 

maintenance strategies) involved in the corrosion management of oil and gas pipelines. 

The stochastic processes, e.g. the gamma process (e.g. Maes et al. 2009a; Maes et al. 

2009b) and Markov chain (e.g. Timashev et al. 2008; Caleyo et al. 2009), have been 

employed in the context of modeling the growth of corrosion defects.  Recently, the 

gamma process-based corrosion growth models in conjunction with the hierarchical 

Bayesian methodology have been developed based on the inspection data obtained from 

multiple in-line inspections (ILIs) (Zhang and Zhou 2013; Zhang et al. 2014).  The 

gamma process has non-negative and independent gamma-distributed increments over 

disjoint (non-overlapping) time increments, and is suitable to characterize the monotonic 

corrosion growth process and account for the temporal variability of the corrosion growth.  

However, the above-mentioned studies only considered the growth of existing defects but 

ignored the generation of new defects.  Such a simplification may adversely impact the 

accuracy of the integrity assessment and maintenance decision-making of corroding 

pipelines. 

A corrosion defect can initiate randomly in space and time.  The Poisson processes, 

including the homogeneous and non-homogenous Poisson process (HPP and NHPP), 

have been widely used to model the defect generation (e.g. Hong 1999; Valor et al. 2007).  

Hong (1999) employed HPP to characterize the generation of new defects and considered 

the impact of newly generated defects on the evaluation of the failure probability of 

corroding pipelines.  Valor et al. (2007) employed NHPP to model the generation of 

corrosion pits, and the Markov chain to model the pit growth.  Note that the above studies 
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did not address the evaluation of parameters of the HPP and NHPP models based on the 

corrosion inspection data, which involve uncertainties as a result of the imperfect 

detectability of the inspection tool. 

The periodic inspections of pipelines provide valuable information pertaining to the 

condition of the corrosion on pipelines.  The ILI data include the sizes of individual 

defects measured by the ILI tool as well as the number of defects detected by the ILI tool 

at the time of inspection.  The former is subjected to the sizing uncertainty (i.e. the 

measurement errors) (Kariyawasam and Peterson 2008), whereas the latter is subjected to 

the detecting uncertainty as reflected in the probability of detection and probability of 

false call.  It is of high practical value to make statistical inferences of the generation and 

growth of corrosion defects simultaneously based on the inspection data, while taking 

into account both the sizing and detecting uncertainties.  Such studies are however scarce 

in the literature.  Kuniewski et al. (2009) developed a sampling-inspection strategy for 

the reliability evaluation of corroding structures and proposed a Bayesian methodology to 

update the NHPP-based defect generation model based on the sampling inspection data.  

The probability of detection was considered in the updating, but the measurement errors 

were ignored.  Although the gamma process-based growth of corrosion defects was 

considered in the reliability analysis, the parameters of the growth model were assumed 

to be known; therefore, the updating of the growth model based on the inspection data 

was not addressed in their study.  

The objective of the work reported in this chapter is to develop a probabilistic model 

to characterize the growth of existing defects and generation of new defects based on the 

imperfect inspection data.  The growth modeling was focused on the defect depth (i.e. in 

the through-pipe wall thickness direction), as this is the most critical defect dimension.  

The model was formulated in a Bayesian framework, which accounts for the inherent 

variability involved in the corrosion process as well as the sizing and detecting 

uncertainties associated with the ILI tool.  To this end, the non-homogeneous gamma 

process was used to model the growth of defect depths, and the non-homogenous Poisson 

process was employed to model the generation of new defects.  The Markov chain Monte 

Carlo (MCMC) simulation techniques in conjunction with the data augmentation 
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algorithm for dealing with the missing data were used to carry out the Bayesian updating 

to evaluate the probabilistic characteristics of the model parameters.  Numerical examples 

involving both hypothetical and real inspection data were used to illustrate the proposed 

model.  

The rest of this chapter is organized as follows.  Section 2.2 describes the uncertainties 

involved in the ILI data; Section 2.3 presents the probabilistic models for the defect 

generation and growth adopted in this study; the Bayesian methodology for evaluating 

the defect generation and growth models based on the inspection data is described in 

Section 2.4, and illustrated using numerical examples in Section 2.5, and conclusions are 

presented in Section 2.6. 

2.2 Uncertainties in the ILI Tool 

Two categories of uncertainties associated with the ILI tool were considered in this 

study, namely the measurement error and imperfect detectability.  The former includes 

the biases and random scattering error, whereas the latter is characterized by the 

probability of detection (POD) and probability of false call (POFC). 

2.2.1 Measurement error  

The measured depth of the j
th

 defect at the i
th

 inspection, yij, (i = 1, 2, …, j = 1, 2, …) 

can be related to the corresponding actual depth, xij, through the following equation 

(Fuller 1987; Jaech 1985):  

                 (2.1) 

where ai and bi denote the constant and non-constant biases, respectively, associated with 

the ILI tool used in the i
th

 inspection, and εij denotes the random scattering error 

associated with the ILI-reported depth of the j
th

 defect at the i
th

 inspection, and is assumed 

to be normally distributed with a zero mean and standard deviation σi.  It is further 

assumed that for a given inspection i, εij and εik (j ≠ k) (i.e. the random scattering errors 

associated with the ILI-reported depths of the j
th

 and k
th

 defects) are independent, whereas 

for a given defect j, εij and εlj (i ≠ l) may be correlated with a correlation coefficient of ρil  
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(Al-Amin et al. 2012).  Let Ej = (E1j, E2j … Enj)′ denote the vector of random scattering 

errors associated with n inspections for defect j, with “′” representing transposition.  It 

follows from the above assumption that Ej is multivariate normal-distributed and has a 

probability density function (PDF) given by 

   
     

 

     
   

    
    

     
 

 
  

    

      (2.2) 

where    
 denotes the n × n variance-covariance matrix of Ej with the element at the i

th
 

row and l
th

 column equal to ρilσiσl.  In this study, ai, bi and    
 were assumed to be known 

quantities whose values can be evaluated by comparing the ILI-reported and 

corresponding field-measured depths for a set of benchmark defects (Al-Amin et al. 2012) 

or inferred from the vendor-supplied specifications for the accuracy of the ILI tools. 

2.2.2 Probability of detection and probability of false call 

POD represents the ability of an ILI tool to detect a true corrosion defect.  It is 

typically a function of the size of the defect and a set of parameters indicating the 

inherent detecting capability of the ILI tool.  The following exponential POD function 

(Zheng and Ellingwood 1998) was adopted in this study: 

        
                                           

                                                        

   (2.3) 

where x denotes the actual depth of a given defect; xth denotes the detection threshold, i.e. 

the smallest defect size that can be detected, and q is a constant that characterizes the 

inherent detecting capability of the ILI tool.  Figure 2.1 shows the POD curves given by 

Eq. (2.3) with three sets of values of q (1/%wt) and xth (%wt), where %wt represents the 

percentage of the pipe wall thickness (wt).  This figure indicates that the detectability of 

the tool increases as the value of q increases and/or the detection threshold xth decreases. 

The probability of false call (POFC) is the probability of an ILI tool obtaining an 

indication of a defect that does not exist in reality.  For the high-resolution ILI tools 

commonly used to inspect oil and gas pipelines, POFC is typically negligibly small.  
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Therefore, POFC was ignored in the present study; in other words, all the ILI-reported 

corrosion defects were assumed to be true corrosion defects. 

 

Figure 2.1 POD curves with different sets of values of q and xth 

2.3 Probabilistic Models for Defect Generation and Growth 

2.3.1 Defect generation  

The non-homogeneous Poisson process (NHPP) was employed to characterize the 

generation of new defects, as the model has been widely used in the literature (e.g. Valor 

et al. 2007; Kuniewski et al. 2009).  According to this model, the total number of defects, 

N(t), generated within a time interval [0, t] (e.g. t = 0 denotes the time of installation of 

the pipeline) over a given segment of the pipeline follows a Poisson distribution with a 

probability mass function (PMF), fP(N(t)|m(t)), defined as (Beichelt and Fatti 2002) 

              
                

     
 (t ≥ 0) (2.4) 
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where m(t) denotes the expected number of defects generated over the time interval [0, t], 

and is assumed in this study to follow a power-law function of time (Kuniewski et al. 

2009):               
 

 
     with the parameters  and  (,  > 0) to be 

quantified based on the inspection data.  Figure 2.2 depicts the means, 2.5- and 97.5-

percentile values, and realizations of N(t) over 20 years based on Eq. (2.4) corresponding 

to two sets of assumed values of λ and δ.  Note that N(t) degenerates to a homogeneous 

Poisson process (HPP) if  equals unity. 

 

Figure 2.2 Mean, 2.5-percentile, 97.5-percentile and a given realization of NHPP 

Suppose n inspections have been carried out for a given pipeline segment over a 

certain period of time.  It is assumed that each inspection is able to identify new and 

existing corrosion defects by tracking their spatial positions.  This assumption is 

consistent with the corrosion inspection practice for oil and gas pipelines (Al-Amin et al. 

2012).  At the time of the i
th

 inspection (i = 1, 2, ..., n), ti, the total number of corrosion 

defects on the pipeline segment, Ni, can be divided into those defects that have initiated 

prior to the (i-1)
th

 inspection, Ni
o
, and those defects that initiated between the (i-1)
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i
th

 inspections, Ni
g
.  The quantity Ni

g
 then follows a Poisson distribution with a PMF 

given by  

     
 
      

    
 

 
 

 
 
 
 

         (2.5) 

where             
  

    
     

       
  , and t0  0. 

Because of the imperfect detectability of the ILI tool, the detected number of defects is 

in general less than the actual number of defects.  Let Ni
gd

 and Ni
gu

 denote the detected 

and undetected portions of Ni
g
, respectively, i.e. Ni

g
 = Ni

gd
 + Ni

gu
.  Based on the Poisson 

splitting property (Kulkarni 1995), Ni
gd

 and Ni
gu

 follow Poisson distributions with the 

corresponding PMFs as follows: 

     
  

      = 
        

 
 
  

 
 
  

 
              (2.6) 

     
  

      = 
            

 
 
  

 
 
  

 
                  (2.7) 

where      is the average POD with respect to the Ni
g 

 defects.       can be calculated 

as                 
      , where     

     is the PDF of the depths of   
 

defects at 

time ti.   

2.3.2 Defect growth 

The non-homogeneous gamma process (NHGP) (Zhang et al. 2014) was employed to 

characterize the growth of depths of corrosion defects.  It follows that the depth of a 

given defect at time t, X(t), is gamma distributed with the PDF given by:  

                
                          

       
             (2.8) 

where α(t) is the time-dependent shape parameter and assumed to be a power-law 

function of time, i.e. α(t) =         
   (t > ts), with ts denoting the defect initiation time 
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(the time at which a defect initiates and starts growing); β (β > 0) is the time-independent 

rate parameter (or inverse of the scale parameter) (Ang and Tang 2007); Γ(∙) denotes the 

gamma function, and I(0,∞)(x(t)) is the indication function, which equals unity if x(t) > 0 

and zero otherwise.  The mean, variance and coefficient of variation (COV) of X(t) equal 

α(t)/β, α(t)/β
2
 and 1/(α(t))

0.5
, respectively.  The quantity φ1/β represents the mean of the 

depth at the first unit increment of time since ts; φ2 reflects the slope of the mean growth 

path of the defect with φ2 > 1, φ2 < 1 and φ2 = 1 representing an accelerating, a 

decelerating and a linear mean growth path, respectively.  Furthermore, φ2 = 1 

corresponds to a homogeneous gamma process. 

In this study, the parameters φ1 and φ2 were assumed to be common for all the defects, 

whereas ts and β were assumed to be defect-specific to account for the spatial variability 

of the defect growth.  Let tsr and βr denote the time of initiation and rate parameter for the 

r
th

 defect (r = 1, 2, ...), respectively.  It should be emphasized here that the index r is used 

to enumerate all defects, including detected and undetected defects, to distinguish from 

the index j that is used to enumerate detected defects.  The parameter βr was further 

assumed to be an exponential function of the random effect parameter ξr, i.e. βr =    .  

The advantage of expressing βr as an exponential function is that it ensures βr to be 

positive and can easily incorporate local covariates, if any, to more accurately 

characterize βr.   

It follows from the above-described assumptions that the depth increment of defect r 

over the time interval between the (i-1)
th

 and i
th

 inspections, denoted by Δxir, is gamma-

distributed with a shape parameter Δαir and a rate parameter βr, where Δαir is given by 

      
          

                               
                                     

          
               

                 

  (2.9) 

The depth of defect r at the i
th

 inspection, xir, is then the summation of the depth at the 

(i-1)
th

 inspection and Δxir; that is, xir = xi-1, r + Δxir.  Note that xir at t = tsr is assumed to 

equal zero. 
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2.4 Bayesian Updating of Defect Generation and Growth Models 

2.4.1 Overview 

The Bayesian updating was employed to make statistical inferences of the parameters 

of the defect generation and growth models described in Section 2.3 based on the ILI data.  

Through Bayes' theorem, the Bayesian updating combines the previous knowledge about 

uncertain model parameters with the new information contained in the observed data to 

lead to updated knowledge about these parameters.  The previous knowledge is reflected 

in the prior distributions; the new information in the observed data is incorporated in the 

likelihood functions, and the updated knowledge of the parameters is reflected in the 

posterior distributions.  The formulations of the prior and posterior distributions as well 

as the likelihood functions for the defect generation and growth models are described in 

the following sections. 

2.4.2 Likelihood functions 

2.4.2.1 Likelihood function for ILI-reported depths 

Consider that a set of defects have been detected in a total of n inspections.  Suppose 

that defect j is first detected in the l
th

 (l = 1, 2, ..., or, n) inspection.  Let yj = (ylj, yl+1,j, …, 

yl+k,j, …, ynj)
'
 denote the vector of the ILI-reported depths for defect j.  Further let xj = (xlj, 

xl+1,j, …, xl+k,j, …, xnj)
'
 denote the vector of the actual depths of defect j corresponding to 

the ILI-reported depths.  Given the measurement error model described in Section 2.2.1, 

the likelihood of yj conditional on xj can be expressed as 

              
     

     
  

 

       
 

 
          

 
   

  
            (2.10) 

where a = (al, al+1, …, an)
'
, and b is an n-l+1 × n-l+1 diagonal matrix with the k

th
 element 

equals to bl+k.  The above formulation assumes that once a defect is detected for the first 

time, it will be detected in all subsequent inspections.  It should be noted that this 

assumption can be relaxed in the analysis; that is, the defect is not necessarily detected in 

all subsequent inspections.  In this case, the ILI-reported depths corresponding to the 

inspections that do not detect the defect can be considered as the missing data and 
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handled using the multiple imputation technique (Rubin 2009), which has been 

implemented in widely used Bayesian updating software such as OpenBUGS (Lunn et al. 

2009). 

2.4.2.2 Likelihood function for the number of detected defects 

To simplify the likelihood functions for the number of defects, it is assumed that the 

defects detected for the first time (referred to as the newly detected defects) in the i
th

 

inspection are generated between the (i-1)
th

 and i
th

 inspections.  This assumption ignores 

the possibility that some of the newly detected defects in the i
th

 inspection may in fact 

initiate prior to the (i-1)
th

 inspection but remain undetected until the i
th

 inspection.  The 

assumption results in overestimation of the intensity of the defect generation.  It follows 

from the assumption that the newly detected defects in the i
th

 inspection can be denoted 

by Ni
gd

 as defined in Section 2.3.1.  Based on this assumption and Eq. (2.6), the 

likelihood function for the set of newly detected defects in n inspections, i.e. Ni
gd

 (i = 1, 

2, …, n), is given by 

    
  

   
  

     
  

       
         

      
   

  
  

  
  

 
              

      
    

 

   

 

 (2.11) 

Note that the evaluation of      involves the depths of both detected and undetected 

defects in the i
th

 inspection.  The depths of undetected defects were treated as the missing 

data and handled using the data augmentation (DA) technique (Tanner and Wong 1987), 

which is described in Section 2.4.4.  It follows that      serves as a link between the 

defect generation and growth models in the Bayesian updating.   

2.4.3 Prior distributions 

The gamma distribution was selected as the prior distribution for parameters λ and δ of 

the NHPP-based defect generation model, and for parameters φ1 and φ2 of the NHGP-

based defect growth model, based on the consideration that the gamma distribution 
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ensures these parameters to be positive and can be conveniently constructed to be non-

informative.  Consistent with the assumption stated in Section 2.4.2.2, the prior 

distribution for the initiation time of a given detected defect j, tsj, was selected to be 

uniformly distributed with the corresponding upper bound (ubj) equal to the time of the 

inspection that detects the defect for the first time and the lower bound (lbj) equal to the 

time of the immediate previous inspection.  The prior distributions for tsj for different 

defects were further assumed to be mutually independent.  The random effect parameter 

ξr corresponding to different defects were assumed to follow independent identical (iid) 

normal prior distributions with a mean of zero and a common uncertain variance σ
2
.  The 

hierarchical structure for ξr facilitates the generation of the depths of undetected defects 

as required by the data augmentation analysis.  Finally, the prior distribution for 1/σ
2
was 

assigned a gamma distribution (i.e. σ
2
 follows an inverse-gamma distribution) as 

commonly suggested in the literature (e.g. Ntzoufras 2011), which leads to the conjugate 

posterior distribution for 1/σ
2
 and can improve the computational efficiency.  The shape 

(rate) parameters of the gamma prior distributions for φ1, φ2, ,  and 1/σ
2
 are denoted by 

c (d), e (f), g (h),  (η) and (), respectively.   

2.4.4 Posterior distributions, MCMC simulation and missing data 

Because it is not possible to analytically derive the complex joint posterior distribution 

of the parameters of the defect generation and growth models, the Markov chain Monte 

Carlo (MCMC) simulation techniques (Gilks 2005) were employed to numerically 

evaluate the joint posterior distribution of the model parameters.  A hybrid algorithm 

combining the Metropolis-Hastings (M-H) algorithm and Gibbs sampling (Tierney 1994) 

was implemented in Matlab
TM

 to carry out the MCMC simulation.  The derivations of 

full conditional posterior distributions of the model parameters as required by the hybrid 

algorithm are included in Appendix 2A.  It is emphasized that both the detected and 

undetected defects were incorporated in the Bayesian updating.  The actual depths of the 

detected defects are related to the ILI-reported depths through the likelihood function 

given by Eq. (2.10), whereas the actual depths of the undetected defects were treated as 

the missing data and imputed using the DA technique (Tanner and Wong 1987).  

Therefore, the joint posterior distribution of the model parameters was evaluated from the 
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depths of the overall defect population as opposed to the depths of the detected defect 

population only.   

DA is an iterative process and can be straightforwardly incorporated in the MCMC 

simulation.  A given DA iteration includes two steps, namely the imputation step and the 

posterior step (Little and Rubin 2002).  The former is used to generate the samples of the 

missing data from its corresponding probabilistic distribution conditional on the current 

state of model parameters, and the latter is used to generate a new set of samples of 

model parameters from their corresponding posterior distributions conditional on both the 

observed and missing data.  Details of the DA technique can be found in Little and Rubin 

(2002).  

A step-by-step procedure for generating samples of the model parameters as well as 

samples of the missing data (i.e. depths of undetected defects) in the k
th

 (k = 1, 2, ...) 

MCMC simulation sequence is described as follows, where the notation (k) is used to 

denote the value of  obtained in the k
th

 simulation sequence. 

1. Impute depths of undetected defects (i.e. missing data). 

1.1) Generate the number of undetected defects initiated between the (i-1)
th

 and i
th

 (i 

= 1, 2, …, n) inspections, i.e. Ni
gu

(k), from the Poisson PMF given by Eq. (2.7) with , 

 and      replaced by (k-1), (k-1) and          
, respectively.  

1.2) Generate depths of Ni
gu

(k) undetected defects,      
  , (v = 1, 2, ..., Ni

gu
(k)) as follows. 

1.2.1) Set v = 0; 

1.2.2) generate a random effect parameter (k) from the normal distribution with a 

zero mean and a variance of σ
2

(k-1), and then calculate (k) =      ;  

1.2.3) generate a defect initiation time ts(k) based on the procedure described in 

Appendix 2B. 

1.2.4) generate a defect depth x from the gamma PDF given by Eq. (2.8) with 1, 
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2, ts and  equal to 1(k-1), 2(k-1), ts(k) and (k), respectively; 

1.2.5) if x is less than the detection threshold of the ILI tool, i.e. xth, accept x as 

the depth of an undetected defect; otherwise, accept x with a probability of 1 - 

POD(x); 

1.2.6) set v= v + 1 if x is accepted, and 

1.2.7) repeat Steps 1.2.2) through 1.2.6) until v = Ni
gu

(k). 

2. For the set of Ni
gd

 defects (i = 1, 2, ..., n), i.e. the newly detected defects in the i
th

 

inspection, generate the corresponding depths at the i
th

 and all subsequent inspections, 

      
   (l = i, i + 1, ..., n; j = 1, 2, ..., Ni

gd
) as follows:  

2.1) generate the increments of the depth between consecutive inspections for each of 

the Ni
gd

 defects,        
  , from the full conditional posterior distribution listed in 

Appendix 2A using the M-H algorithm, and  

2.2) calculate       
           

   
    for j = 1, 2, ..., Ni

gd
.   

3 Calculate         for i = 1, 2, ..., n as follows:  

          
    

  
           

  
 

  
  

              
  

 
     

  

   

  
  

      
  . (2.12) 

4 Sample (k), (k), 1(k), 2(k), tsj(k), j(k) (j = 1, 2, ...,    
   

   ) and σ
2

(k) from the 

corresponding full conditional posterior distributions listed in Appendix 2A using either 

the M-H algorithm or Gibbs sampling. 

2.5 Illustrative Examples 

2.5.1 Example 1 

In the first example, we used hypothetical (i.e. simulated) inspection data to illustrate 

and validate the proposed Bayesian methodology.  The parameters , , 1 and 2 of the 
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defect generation and growth models were set to be deterministic quantities with  = 2,  

= 1.2, 1 = 3 and 2 = 0.9, and the random effect parameter  for different defects was 

assumed to follow iid normal distributions with a zero mean and σ
2
 = 0.36.  It is assumed 

that three inspections were carried out after the installation of the pipeline (t = 0) with ti = 

i × 5 years (i = 1, 2 and 3).  For simplicity, the constant and non-constant biases included 

in the measurement error model given by Eq. (2.1) were set to equal zero and unity, 

respectively, for all the inspections, and the random scattering errors associated with 

different inspections were assumed to be mutually independent with the same standard 

deviation of unity.  Finally, the POD functions associated with all the inspections were 

assumed to be identical, with the parameters q and xth set to be q = 0.30 (1/%wt) and xth = 

1 (%wt).  Table 2.1 summarizes the simulated inspection data, whereby the simulation 

procedure is described in Appendix 2C.  Note that the simulation is based on the 

assumption stated in Section 2.4.2.2, i.e. the newly detected defects in the i
th

 inspection 

are all generated between the (i-1)
th

 and i
th

 inspections. 

Table 2.1 Summary of the simulated inspection data 

Time of Inspection 
Year 5 Year 10 Year 15 

Number of Detected Defects 9 19 (10) 31 (12) 

Measured 

Depth 

(%wt) 

Mean 8.0 14.3 (6.5) 19.5 (8.8) 

Standard deviation 3.9 9.7 (3.5) 12.8 (3.8) 

Note: The information for newly detected defects in years 10 and 15 year is in brackets. 

The Bayesian updating was carried out to evaluate the parameters of the defect 

generation and growth models based on the simulated inspection data.  The shape and 

scale parameters of the gamma prior distributions for , , 1 and 2 were set to be unity, 

and the shape and scale parameters of the inverse-gamma prior distribution for σ
2
 were 

set to be 10.  A total of 100,000 MCMC simulation sequences were generated following 

the procedure described in Section 2.4.4, with the first 10,000 sequences considered as 

the burn-in period (Gelman et al. 2004) and discarded.  The samples in the rest of the 
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sequences were used to evaluate the probabilistic characteristics of the model parameters.  

The means, medians and standard deviations of the posterior marginal distributions of the 

model parameters that are common to all the defects are summarized in Table 2.2, where 

    ,      and      denote the average POD for the defects generated prior to year 5, 

between years 5 and 10, and between years 10 and 15, respectively.  The results in Table 

2.2 suggest that the posterior mean and median values of , , 1 and 2 are in good 

agreement with the corresponding actual values. 

Table 2.2 Posterior statistics of model parameters for Example 1 

Parameter 

Generation 

(NHPP) 

Growth 

(NHGP) 
 

  

λ δ φ1 φ2                

Mean 1.79 1.26 2.99 0.86 0.66 0.57 0.71 

Median 1.79 1.25 2.91 0.91 0.66 0.57 0.71 

Standard 

Deviation 
0.31 0.08 0.35 0.09 0.08 0.06 0.06 

To investigate the impact of undetected defects on the outcome of the Bayesian 

updating, two additional scenarios were considered.  Scenario I assumes perfect 

detectability associated with all three inspections (i.e. no undetected defects), whereas 

Scenario II considers POD but includes only the detected defects (i.e. ignoring the 

missing data) in calculating      (i = 1, 2 and 3) and updating the growth model.  In 

contrast, the results summarized in Table 2.2 are referred to as the base case.  The MCMC 

simulation was carried out for Scenarios I and II.  For the base case and Scenarios I and II, 

the mean values of the number of generated defects, i.e. m(t) = tδ, were then calculated 

for 0 ≤ t ≤ 20 years, where the values of  and δ were set to the corresponding posterior 

medians.  The results are shown in Fig. 2.3.  For comparison, m(t) evaluated from the 

actual values of  and δ, the simulated total numbers of defects (including the detected 

and undetected defects) at the times of the three inspections, as well as the simulated 

numbers of defects detected by the three inspections are also shown in Fig. 2.3.  As 
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indicated in the figure, m(t) corresponding to the base case is practically identical to the 

actual mean and agree well with the total number of defects, whereas both Scenarios I 

and II lead to underestimated m(t) values with the degree of underestimation increasing 

with time.  The values of m(t) corresponding to Scenario I at t = 5, 10 and 15 years agree 

well with the inspection data.  This is expected because perfect detectability is assumed 

for Scenario I.  The m(t) curve corresponding to Scenario II lies in between those 

corresponding to Scenario I and the base case.  This is because although POD is 

accounted for in Scenario II,      is overestimated as a result of ignoring the missing 

data in the calculation.  

For the base case and Scenarios I and II, the depths of the detected defects at year 20 

were predicted and compared with the corresponding actual defect depths.  The predicted 

depth for a given defect was selected as the mean depth predicted from the NHGP-based 

growth model, with values of the model parameters (i.e. 1, 2, tsj and ξj) set to the 

corresponding posterior medians.  The results are shown in Fig. 2.4.  Figure 2.4 suggests 

that all three cases predict the growth of corrosion defects reasonably well: the predicted 

depths for 90% of the 31 detected defects fall between the two bounding lines of actual 

depth 10%wt.  The differences between the predictions corresponding to the three cases 

are marginal: the predictions for relatively shallow defects (say, depth ≤ 30%wt) 

corresponding to Scenarios I and II tend to be slightly higher than those corresponding to 

the base case. 



24 

 

 

Figure 2.3 Comparison of predicted numbers of defects corresponding to the base case 

and Scenarios I and II 

As described in Section 2.4.2.2, the Bayesian methodology developed in this study 

involves the simplifying assumption that the newly detected defects in the i
th

 inspection 

are all generated between the (i-1)
th

 and i
th

 inspections.  To investigate the impact of this 

assumption on the predictive capability of the proposed methodology, we further 

simulated more realistic corrosion data considering the possibility that some of the newly 

detected defects in the i
th

 inspection may in fact initiate prior to the (i-1)
th

 inspection but 

remain undetected until the i
th

 inspection.  These data were then used to update the 

corrosion generation and growth models and make predictions. 
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Figure 2.4 Comparison of the predicted and actual depths at year 20 

The corrosion inspection data at years 5, 10 and 15 were simulated based on the same 

set of parameters as those used to generate the data summarized in Table 2.1 except for 

the POD curve.  Three different POD curves were considered in this case, corresponding 

to POD of 90%, 70% and 50%, respectively, for a defect depth of 5%wt with a detection 

threshold of 1%wt.  The simulated inspection data corresponding to the three different 

POD curves are summarized in Table 2.3.  The simulation procedure is described in 

Appendix 2D.   

The Bayesian updating was then carried out corresponding to the base case, Scenarios 

I (i.e. perfect detectability) and II (i.e. ignoring the missing data in evaluating the average 

POD).  The mean values of the number of generated defects, i.e. m(t) = tδ, were 

calculated for 0 ≤ t ≤ 20 years, where the values of  and δ were set to the corresponding 

posterior medians.  The results are shown in Figs. 2.5 in a similar fashion as those shown 

in Fig. 2.3. 
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Table 2.3 Summary of the simulated inspection data corresponding three different 

POD curves 

(a) POD = 90% for a defect depth of 5%wt 

Time of Inspection Year 5 Year 10 Year 15 

Number of Detected Defects 12 26 (14) 48 (22) 

Measured 

Depth 

(%wt) 

Mean 5.9 12.4(9.2) 17.8 (10.0) 

Standard deviation 4.2 8.2 (6.4) 11.7 (7.2) 

(b) POD = 70% for a defect depth of 5%wt 

Time of Inspection Year 5 Year 10 Year 15 

Number of Detected Defects 10 25 (15) 49 (24) 

Measured 

Depth 

(%wt) 

Mean 8.0 14.1 (10.4) 18.8 (12.5) 

Standard deviation 4.9 9.0 (7.8) 12.0 (7.6) 

(c) POD = 50% for a defect depth of 5%wt 

Time of Inspection Year 5 Year 10 Year 15 

Number of Detected Defects 7 20 (13) 44 (24) 

Measured 

Depth 

(%wt) 

Mean 7.0 14.1(11.7) 18.3 (12.1) 

Standard deviation 5.3 8.3 (6.4) 11.4 (6.8) 
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(a) POD of 90% for a defect depth of 5%wt 

 

(b) POD of 70% for a defect depth of 5%wt 
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(c) POD of 50% for a defect depth of 5%wt 

Figure 2.5 Comparison of predicted numbers of defects corresponding to the base case 

and Scenarios I and II based on more realistic corrosion inspection data 

As indicated in Fig. 2.5, the m(t) curves corresponding to the base case overestimate 

the total number of defects.  The degree of overestimation decreases as the detectability 

of the inspection tool increases.  This is because the higher is the detectability of the 

inspection tool, the smaller portion of the newly detected defects are previously 

undetected defects and the smaller impact does the simplifying assumption have on the 

prediction.  It is interesting to note that the m(t) curves corresponding to Scenario II agree 

with the total defect population better than those corresponding to the base case and 

Scenario I.  This is because ignoring the missing data in calculating the average POD in 

Scenario II leads to overestimation of the average POD and underestimation of the total 

number of defects, which somewhat offsets the overestimation of the total number of 

defects due to the simplifying assumption that the newly detected defects in the i
th

 

inspection are all generated between the (i-1)
th

 and i
th

 inspections.  It should be pointed 

out that the POD assumptions corresponding to Figs. 2.5(a) and 2.5(b) are more 
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representative of the inspection tools commonly used in the pipeline industry than that 

corresponding to Fig. 2.5(c).  For the former two assumptions, the conservatism in the 

predictions associated with the base case is relatively small. 

2.5.2 Example 2 

In the second example, real ILI data collected from a pipe joint (approximately 13.6m 

long) in a natural gas pipeline located in Alberta were used to illustrate the proposed 

methodologies.  The pipeline was constructed in 1972 and inspected by high-resolution 

magnetic flux leakage (MFL) tools in 2004, 2007 and 2009.  Note that the pipeline had 

also been inspected prior to 2004; however, the corresponding inspection data are not 

available to the present study.  The numbers of defects on the pipe joint considered and 

the statistics of the corresponding defect depths reported by the ILIs in 2004, 2007 and 

2009 are summarized in Table 2.6. 

The measurement errors associated with the three ILI tools as well as the correlation 

between the random scattering errors associated with different ILI tools were quantified 

using the Bayesian methodology in a previous study (Al-Amin et al. 2012).  The 

calibrated biases, the random scattering errors as well as the correlations between the 

random scattering errors are as follows: a1 = 2.04 (%wt) , a2 = -15.28 (%wt), a3 = -10.38 

(%wt), b1 = 0.97, b2 =1.40, b3 = 1.13; 1 = 5.97 (%wt), 2 = 9.05 (%wt) and 3 = 7.62 

(%wt); 12 = 0.70, 13 = 0.72 and 23 = 0.78 (Al-Amin et al. 2012), where the subscripts 

‘1’, ‘2’ and ‘3’ denote the parameters associated with the ILI tools used in 2004, 2007 and 

2009, respectively.  The above-mentioned measurement errors were quantified based on 

128 defects that were located on several pipe joints in the same pipeline considered in 

this example, but were mitigated and ceased growing prior to 2000.  

The actual POD functions associated with the ILI tools are unavailable.  We therefore 

assumed the three ILI tools to have the identical exponential POF function given by Eq. 

(2.3).  The detection threshold xth in Eq. (2.3) was assumed to be 1 (%wt), whereas the 

parameter q was characterized for both the high and relatively low detectability 

assumptions.  The former corresponds to a POD of 90% for a defect depth of 5%wt, 

resulting in q = 0.58 (1/%wt), and the latter corresponds to a POD of 70% for the depth of 
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5%wt, resulting in q = 0.30 (1/%wt).  The two assumed POD curves are compared in Fig. 

2.6. 

Table 2.4 Summary of the ILI-reported defect information 

Time of Inspection 2004 2007 2009 

Number of detected defects 67 78 (11) 99 (21) 

Measured 

Depth (%wt) 

Mean 17 11 (7) 11 (8) 

Standard deviation 7.6 10.0 (1.2) 7.8 (1.2) 

Note: The information for newly detected defects in 2007 and 2009 is in brackets. 

 

Figure 2.6 Comparison of the two assumed POD curves 

The shape and scale parameters of the gamma prior distributions for , , 1, 2 and 

1/σ
2
 were set to be 10.  For a given POD curve, a total of 100,000 MCMC simulation 

sequences were generated with the first 10,000 sequences discarded.  The samples in the 

rest of the sequences were used to evaluate the posterior characteristics of the model 

parameters.  The posterior means, medians and standard deviations of the model 
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parameters corresponding to the high and low detectability assumptions are summarized 

in Table 2.5, where     ,      and      denote the calculated average PODs for the 

defects initiated within the periods of 1972-2004, 2004-2007 and 2007-2009, 

respectively. 

The mean, 2.5- and 97.5-percentile values of the number of defects generated as a 

function of time according to NHPP are shown in Fig. 2.7.  The mean value was obtained 

as m(t) = tδ, with  and δ equal to their corresponding posterior median values.  The 2.5 

and 97.5- percentile values of the number of defects were obtained by assuming that the 

total number of defects at a given time approximately follows a normal distribution with 

a mean of tδ and a standard deviation of      according to the central limit theorem.  

For comparison, the numbers of defects reported by ILI tools in 2004, 2007 and 2009, 

respectively, are also plotted in Fig. 2.7.  Figure 2.7 indicates that the predicted mean 

numbers of defects in 2004, 2007 and 2009 are greater than those reported by ILI tools.  

This is expected because the number of defects predicted by the NHPP model includes 

both the detected and undetected defects, whereas the ILI-reported defects are detected 

defects only.  The mean numbers of defects corresponding to the relatively low 

detectability assumption are higher than those corresponding to the high detectability 

assumption.  This also makes sense because the total number of defects increases as the 

detectability of the tool decreases, if the number of detected defects remains the same.   

Table 2.5 Posterior statistics of model parameters for Example 2 

Parameter 

Generation 

(NHPP) 

Growth 

(NHGP)  

  λ δ φ1 φ2 σ
2
                 

Mean 
 H

1
 0.70 1.41 3.62 0.58 0.21 0.98 0.76 0.76 

 L
2
 0.69 1.44 3.65 0.57 0.21 0.93 0.60 0.58 

Median 
H 0.67 1.41 3.60 0.58 0.20 0.98 0.77 0.76 

L 0.66 1.44 3.62 0.56 0.21 0.93 0.60 0.58 

Standard  

Deviation 

H 0.24 0.10 0.53 0.05 0.03 0.01 0.10 0.08 

L 0.24 0.10 0.60 0.05 0.03 0.02 0.09 0.08 

1. High detectability. 2. Relatively low detectability 
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Figure 2.7 Predicted number of defects as a function of time corresponding to the high 

and relatively low detectability assumptions 

The mean, 2.5- and 97.5- percentile values of the predicted growth paths for five 

selected detected defects, Defects #13, #26, #37, #61 and #64, are plotted in Figs. 2.8(a) 

through 2.8(e), respectively.  For a given defect, the mean, 2.5- and 97.5- percentile 

values were evaluated based on the fact that the defect depth at a given time t (t ≥ tsj) 

follows a gamma distribution with the shape parameter equal to 1(t – tsj)


2

 
 and the rate 

parameter equal to e
ξj.  The values of 1, 2, tsj and ξj were set to their corresponding 

posterior medians.  For comparison, the corresponding ILI-reported depths in 2004, 2007 

and 2009 are also plotted in the same figures.  The results indicate that the predicted 

growth path differs from defect to defect, which is expected because of the defect-

specific initiation time tsj and random effect parameter ξj.  The predicted depths 

corresponding to the high detectability assumption are almost the same as those 

corresponding to the relatively low detectability assumption, suggesting that the 

detectability of the ILI tool has a negligible impact on the predicted growth paths of the 

detected defects.  
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(a) Defect #13 

 

(b) Defect #26 
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(c) Defect #37 

 

(d) Defect #61 
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(e) Defect #64 

Figure 2.8 Predicted growth paths of selected defects corresponding to the high and 

relatively low detectability assumptions 

The impact of POD and the undetected defects (i.e. missing data) on the outcome of 

the Bayesian updating was further investigated.  In addition to the base case presented in 

Table 2.7, two additional scenarios, similar to the two scenarios considered for Example 

1, were considered: Scenario I assumes perfect detectability for all three inspections, 

whereas Scenario II accounts for POD but ignores the missing data in calculating      (i 

= 1, 2 and 3) and updating of the growth model.  The mean values of the predicted 

number of defects, m(t), corresponding to the base case and Scenarios I and II are shown 

in Fig. 2.9.  Note that all the predictions shown in Fig. 2.9 are based on the POD curve 

corresponding to the relatively low detectability assumption.   For comparison, the 

numbers of defects reported by the three inspections are also shown in the same figure.  

As indicated in Fig. 2.9, m(t) corresponding to the base case are greater than the 

corresponding ILI-reported numbers of defects as explained in the previous section.  On 

the other hand, m(t) corresponding to Scenario I agree with the ILI-reported numbers of 

defects better than the other two cases, and m(t) values corresponding to Scenario II are 
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greater than the ILI data and those corresponding to Scenario I but less than those 

corresponding to the base case..  The explanation for these observations is the same as 

those for Fig. 2.3.  

 

Figure 2.9 Comparison of predicted numbers of defects corresponding to the base case 

and Scenarios I and II for the relatively low detectability assumption 

The mean growth paths for Defects #13, #26, #37, #61 and #64 predicted from the 

base case and Scenarios I and II corresponding to the relatively low detectability 

assumption are plotted in Figs. 2.10(a) through 2.10(e), respectively.  The results indicate 

that the predicted growth paths corresponding to Scenario I and II are in general slightly 

higher than those corresponding to the base case.  This is because the undetected defects 

(i.e. missing data), which are typically shallow defects, were included in the Bayesian 

updating of the parameters of the growth model in the base case.  Ignoring the undetected 

defects in the Bayesian updating leads to that the values of the defect-common 

parameters (i.e. φ1 and φ2) tend to be higher than those of the same parameters by 

considering the missing data; therefore, the predicted defect growth paths corresponding 

to Scenario I and II tend to be somewhat higher than those corresponding to the base case 

for the same defect. 
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(a) Defect #13 

 

(b) Defect #26 
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(c) Defect #37 

 

(d) Defect #61 
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(e) Defect #64 

Figure 2.10 Comparison of the growth paths corresponding to the base case and 

Scenario I and II for the relatively low detectability assumption 

2.6 Summary and Conclusions 

A stochastic process-based hierarchical Bayesian methodology was proposed to 

characterize the generation and growth of metal-loss corrosion defects on oil and gas 

pipelines.  The defect generation was characterized by the non-homogenous Poisson 

process, and the growth of the defect depth was modeled by the non-homogenous gamma 

process with a time-dependent shape parameter and a time-independent scale parameter.  

All the model parameters were treated as uncertain variables and evaluated from the 

Bayesian updating based on the imperfect inspection data obtained from multiple ILI 

runs.  The imperfect detectability of the ILI tool as characterized by POD as well as the 

measurement errors associated with the ILI data were accounted for in the Bayesian 

updating.  The Markov chain Monte Carlo (MCMC) simulation together with the data 

augmentation (DA) algorithm to deal with the undetected defects (i.e. missing data) was 
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employed to evaluate the posterior distributions of the parameters involved in the defect 

generation and growth models. 

The application of the proposed model was illustrated using the simulated inspection 

data in Example 1 and real inspection data in Example 2.  For both examples, three 

different scenarios were considered, namely including the missing data in calculating the 

average POD for each inspection, ignoring the missing data in calculating the average 

POD and assuming perfect detectability for all the inspections (i.e. ignoring POD).  

Based on the inspection data simulated in accordance with the simplifying assumption 

involved in the proposed model, namely the newly detected defects in the i
th

 inspection 

are all generated between the (i-1)
th

 and i
th

 inspections, the results of the Bayesian 

updating indicate that the last two scenarios lead to underestimated overall defect 

population, which is consistent with the model formulations and validates the proposed 

model.  Based on the more realistic simulated inspection data, the results of the Bayesian 

updating indicate that the first scenario leads to overestimation of the overall defect 

population because of the simplifying assumption involved in the proposed model.  

However, the degree of overestimation is marginal as long as the detectability of the 

inspection tool is high or relatively high, which is typically the case for high-resolution 

inspection tools employed on oil and gas pipelines nowadays.  The overestimation of the 

defect population due to the simplifying assumption is somewhat compensated by the 

overestimation of the average POD in the second scenario; as a result, the predicted 

overall defect population agrees well with the actual population.  The last scenario leads 

to underestimated overall defect population.  On the other hand, the growth paths of the 

detected defects predicted by the three scenarios differ only slightly, with the predictions 

corresponding to the latter two scenarios being slightly higher than those corresponding 

to the first scenario for shallow defects. 
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Chapter 3 Reliability Analysis of Corroding Pipelines 

Considering the Generation and Growth of Corrosion Defects 

3.1 Introduction 

Metal-loss corrosion poses a significant threat to the structural integrity of oil and gas 

pipelines.  The corrosion process involves both the generation of new defects and growth 

of existing defects over time.  Both aspects should be taken into consideration in the 

evaluation of the time-dependent reliability of corroding pipelines. 

The majority of reliability evaluations of corroding pipelines reported in the literature 

employed the random variable-based growth models for corrosion defects (e.g. Ahammed 

1998; Caleyo et al. 2002; Amirat et al. 2006; Zhou 2010, 2011).  Note that the random 

variable-based growth model cannot capture the temporal variability involved in the 

corrosion growth process (Pandey et al. 2009).  This drawback of the random variable-

based corrosion growth model can be overcome by the stochastic process-based growth 

model (van Noortwijk and Frangopol 2004; Frangopol et al. 2004).  Hong (1999) 

evaluated the system reliability of corroding pipelines in the context of developing the 

optimal inspection and maintenance schedule subjected to the reliability constraint.  The 

Markov process was employed to characterize the growth of corrosion defects, and the 

homogeneous Poisson process was used to model the generation of new defects.  

Parametric analyses were carried out to illustrate the impact of the probability transition 

matrix of the Markov process on the system reliability and optimal inspection schedule, 

whereas the updating of the defect growth and generation models based on the inspection 

data was not discussed in Hong's study.  Recently, a homogenous gamma process-based 

growth model was employed in the system reliability evaluation of corroding pipelines 

(Zhang and Zhou 2013).  A Bayesian approach was applied to evaluate the parameters 

involved in the gamma process-based growth model using the inspection data obtained 

from multiple in-line inspections (ILIs).  The updated parameters were used to predict the 

growth of depths (i.e. in the through-pipe wall thickness direction) of individual corrosion 

defects.  The predicted depths of the corrosion defects were then employed in the limit 

state functions to evaluate the time-dependent system reliability of corroding pipelines.  
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However, the generation of new defects was ignored in Zhang and Zhou's study; that is, 

the number of corrosion defects in the pipeline was assumed to be fixed over time.  It 

follows that this assumption leads to overestimation of the system reliability of the 

corroding pipeline.  

This chapter presents a methodology to evaluate the time-dependent system reliability 

of corroding pipelines by incorporating the Bayesian updating of the defect generation 

and growth models based on the imperfect inspection data.  The gamma process and non-

homogeneous Poisson process as presented in Chapter 2 were employed to characterize 

the growth of existing defects and generation of new defects on the pipeline.  The 

parameters of the growth and generation models were evaluated through the Bayesian 

updating based on the imperfect in-line inspection (ILI) data.  The Markov chain Monte 

Carlo (MCMC) simulation techniques were employed to carry out the updating.  The 

updated defect growth and generation models were then incorporated in the simple Monte 

Carlo simulation to carry out the system reliability analysis of corroding pipelines in 

terms of three distinctive failure modes, namely small leak, large leak and rupture.  A 

numerical example is used to illustrate the proposed methodology. 

The rest of this chapter is organized as follows.  Section 3.2 describes the defect 

generation and growth models; Section 3.3 presents the Monte Carlo simulation-based 

methodology to evaluate the time-dependent system reliability of corroding pipelines by 

considering the generation and growth of corrosion defects; the illustrative numerical 

example is described in Section 3.4, and the conclusions are presented in Section 3.5. 

3.2 Corrosion Generation and Growth Models 

3.2.1 Defect generation and growth modeling 

The non-homogeneous Poisson process (NHPP) and non-homogenous gamma process 

(NHGP) as described in Chapter 2 were employed to model the generation and growth of 

corrosion defects, respectively.  Let t (years) (t = 1, 2, ...) denote the time elapsed since 

the installation of a given pipeline (t = 0 indicating the time of installation) and tsr denote 

the initiation time of defect r (r = 1, 2, ...).  Further let tn denote the time of the most 
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recent inspection of the pipeline.  Pipeline integrity engineers are typically interested in 

evaluating the system reliability of the pipeline for a given forecasting period T (years) 

(e.g. T = 5 or 10 years) starting from tn. 

It follows from Eq. (2.5) in Chapter 2 that the increase in the number of defects from 

years t -1 to t, denoted by ΔNt, follows a Poisson distribution with a probability density 

function (PDF) given by 

            = 
                

    
                  (3.1) 

where m(t) denotes the expected number of defects generated over the time interval [0, t] 

and is commonly expressed as              
 

 
.  The expression λv(t) is the so-called 

intensity function, with λ and v(t) being the proportionality constant and shape function, 

respectively.  As described in Section 2.3.1 of Chapter 2, we assumed a power-law 

intensity function: λv(t) = λδt
δ-1

.  It follows that m(t) = λt
δ
.  Both λ and δ were treated as 

uncertain parameters and updated through the Bayesian inference based on the ILI data.  

Substituting m(t) = λt
δ
 into Eq. (3.1) results in 

            = 
                

    
                       (3.2) 

The total number of defects generated from the time of the most recent inspection (tn) 

to year tn + τ (τ = 1, 2, ..., T), i.e. the τ
th

 year within the forecasting period, is given by 

                             
     
       (3.3) 

It follows from Eq. (2.8) in Chapter 2 that the growth of the depth of defect r (r = 1, 2, 

...) from years t -1 to t, Δxtr, follows a gamma distribution with PDF given by 

                 
  

        
                  

Γ      
              (3.4) 

where Δαtr and βr are the shape and rate parameters of the corresponding gamma 

distribution, respectively.  As described in Section 2.3.2 of Chapter 2, Δαtr was assumed 
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to equal          
                 (t ≥ tsr +1) and βr equals to    , where ξr is 

the random effect parameter. 

The depth of defect r at year tn + τ (τ = 1, 2, ..., T), xr(tn + τ), i.e. the depth at the τ
th

 

year within the forecasting period, is given by 

                                
     
    (3.5) 

Note that         and        for t ≤ tsr. 

3.2.2 Bayesian updating of the defect generation and growth models 

The Bayesian updating was employed to make statistical inferences of the parameters 

of the defect generation and growth models based on the imperfect ILI data, as described 

in Section 3.2.1.  Through the Bayesian updating, the previous knowledge about the 

corrosion models and the new information contained in the ILI data can be combined to 

update the knowledge about the defect generation and growth models.  The previous 

knowledge is reflected in the prior distributions of the model parameters; the new 

information in the ILI data is incorporated in the likelihood functions, and the updated 

knowledge of the model parameters is reflected in the posterior distributions. 

The inspection data obtained from each ILI run consists of both the number of 

detected defects and measured depths of detected defects.  The probability of detection 

(POD) and measurement error associated with the ILI tool were incorporated in the 

Bayesian updating.  More specifically, the likelihood function for the number of detected 

defects incorporates the average POD of each ILI run, whereas the likelihood function for 

the ILI-reported depths incorporates the measurement error.   

Because of the computational difficulties involved in the evaluation of the joint 

posterior distribution of the model parameters in the Bayesian updating, the Markov 

chain Monte Carlo (MCMC) simulation techniques were used to numerically evaluate the 

joint posterior distribution.  In this study, a hybrid algorithm combining the Metropolis–

Hastings (M-H) algorithm and Gibbs sampling was implemented in Matlab
TM

 to carry out 

the MCMC simulation.  The data augmentation (DA) technique (Tanner and Wong 1987) 
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was also incorporated in the MCMC simulation to deal with the undetected defects (i.e. 

missing data).  Detailed descriptions of the Bayesian updating including the selection of 

the prior distribution, derivation of the full conditional posterior distributions required by 

the MCMC simulation algorithm and a step-by-step procedure to combine the MCMC 

simulation with DA are given in Chapter 2.  

3.3 Time-dependent System Reliability Analysis 

3.3.1 Limit state functions 

A pressurized pipeline at a corrosion defect may fail by two distinctive failure 

mechanisms, namely the small leak and burst (Zhou 2010).  For natural gas pipelines (as 

opposed to liquid pipelines), a burst can be further classified as a large leak or rupture 

(Zhou 2010) depending on if the through-wall defect resulting from the burst extends 

unstably along the longitudinal (axial) direction of the pipeline. 

The limit state function for a given corrosion defect penetrating the pipe wall at time t, 

g1(t), is  

 
1
 t         (t) (3.6) 

where wt denotes the wall thickness of the pipeline, and x(t) denotes the depth of the 

corrosion defect at time t.  The use of 0.8wt as opposed to wt in the above equation is 

consistent with typical industry practice, as a remaining ligament thinner than 0.2wt is 

considered prone to developing cracks that could lead to leaks (Al-Amin and Zhou 2014). 

The limit state function for plastic collapse under the internal pressure at the defect at 

time t, g2(t), is given by 

 
2
 t    (t)    (3.7) 

where rb(t) denotes the burst pressure capacity of the pipe at the defect at time t, and p is 

the internal pressure of the pipeline and assumed to be time-independent in this study. 
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The limit state function for the unstable axial extension of the through-wall defect that 

results from the burst, g3(t), is given by 

 
3
 t     (t)    (3.8) 

where rrp(t) is the pressure capacity of the pipeline at the location of the through-wall 

defect resulting from the burst at time t.  A burst is classified as a rupture if g3(t) ≤ 0; 

otherwise, it is defined as a large leak. 

Given Eqs. (3.6), (3.7) and (3.8), the cumulative probabilities of small leak, large leak 

and rupture within a time interval (0, t], denoted by Psl(t), Pll(t) and Prp(t), respectively, 

are defined as follows (Al-Amin and Zhou 2014) 

Psl(t) = Prob[g1(t) ≤ 0 ∩ g2(t) > 0] (3.9a) 

Pll(t) = Prob[g1(t) > 0 ∩ g2(t) ≤ 0 ∩ g3(t) > 0] (3.9b) 

Prp(t) = Prob[g1(t) > 0 ∩ g2(t) ≤ 0 ∩ g3(t) ≤ 0] (3.9c) 

where Prob[•] denotes the probability of an event, and “∩” represents the intersection 

(i.e. joint event).  Note that the probability of a small leak occurring first then followed 

by a burst was considered extremely small and therefore ignored in the analysis.   

3.3.2 Burst and rupture pressure capacity models 

In this study, we adopted the B31G modified criterion (Kiefner and Vieth 1989) to 

evaluate the burst pressure of a pipeline containing a single corrosion defect.  The burst 

pressure capacity rb is given by 

      
             

 
 

        
 

  

        
 

   

         
 

  
      (3.10a) 

   
          

  

   
          

  

               
  

   
    

            
  

   
                                           

  

   
   

  (3.10b) 
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where y is the yield strength of the pipe material;y + 68.95 (MPa) (i.e.y + 10 ksi) is 

the flow stress; ζb is the model error; D is the outside diameter of the pipeline; L is the 

defect length, i.e. in the longitudinal direction of the pipeline, and M is the Folias factor 

or bulging factor.  

The flow stress-dependent failure criterion for a through-wall flaw developed by 

(Kiefner et al. 1973) was employed in this study to calculate rrp as follows: 

    
     

  
 (3.11) 

where σf is the flow stress and equals y + 68.95 (MPa), and M is the Folias factor given 

by Eq. (3.10b).  Due to a lack of information in the literature, the model error associated 

with Eq. (3.11) was ignored in the analysis. 

3.3.3 Basic assumptions and analysis procedures 

A pipeline containing multiple corrosion defects is a series system because failure at 

any defect causes the failure of the pipeline.  For simplicity, only the defect depth and the 

number of defects were treated as time-dependent in this study, whereas all the other 

uncertain parameters (e.g. the defect length and internal pressure) involved in the limit 

state functions were assumed to be time-independent.  Furthermore, the spatial variability 

of the pipe geometry (i.e. diameter and wall thickness) and material property (i.e. yield 

strength), internal pressure and model error associated with burst capacity model was 

ignored; that is, these parameters at different defects were assumed to be fully correlated.  

Finally, the defect lengths associated with different defects were assumed to be 

independent.  It then follows that the probability of small leak is governed by the 

maximum value of the depths of all the defects, and the probability of burst is governed 

by the minimum value of the burst pressure capacities associated with all the defects. 

The growth of the depth of individual defect was characterized by the NHGP and the 

generation of new defects was modeled by the NHPP described in Section 3.2.1.  The 

posterior median values of the model parameters involved in the generation and growth 

models were evaluated from the ILI data through the Bayesian updating described in 
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Section 3.2.2, and further employed in a simple Monte Carlo simulation to evaluate the 

time-dependent system reliability of a corroding pipeline. 

Consider that a total of Ne defects have been detected and sized by the inspection tools 

on a given pipeline.  A simple Monte Carlo simulation-based approach was developed to 

evaluate the reliability of the pipeline after the most recent inspection considering the 

growth of existing defects and generation of new defects.  The analysis procedure 

involved in a given simulation trial is described as follows.  Note that the depths of the 

undetected defects generated prior to the most recent inspection are generally small 

compared to the detected defects.  Therefore, these undetected defects were ignored in 

the reliability analysis because the system reliability is governed by the critical defects 

with relatively large depths and/or high growth rates. 

1. Generate samples for σy, wt and D, lengths of the j
th

 existing defects Lj (j = 1, 2, ..., 

Ne), the internal pressure p and the model error for the burst capacity model ζb from the 

corresponding probabilistic distributions. 

2 Start from the forecasting time τ = 1 (year)  

2.1) Obtain the depth of the j
th

 existing defect at year tn + τ, xj (tn + τ), based on Eq. 

(3.5).  In Eq. (3.5), Δxτj is generated from the gamma distribution given by Eq. (3.4) with 

the values of φ1, φ2, tsj and ξj equal to the corresponding median values of their posterior 

distributions updated from the ILI data through the Bayesian methodology. 

2.2) Obtain the number of new defects generated from year tn to year tn + τ, N (tn + 

τ), based on Eq. (3.3).  In Eq. (3.3), ΔNτ is generated from the Poisson distribution given 

by Eq. (3.2) with the values of λ and δ equal to their corresponding posterior median 

values resulting from the Bayesian updating. 

2.3) For simplicity and to be slightly conservative, set the initiation time tsk of the 

k
th

 (k = 1, 2, ..., ΔNτ) new defect generated within year tn + τ (τ = 1, 2, ..., T) equal to tn + τ 

-1. 
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2.4) Generate the random effect parameter, ξk, of the k
th

 (r = 1, 2, ..., ΔNτ) new 

defect generated within the year tn + τ (τ = 1, 2, ..., T) from the normal distribution fN (0, 

σ
2
) with σ

2
 equal to the corresponding posterior median value obtained from the 

Bayesian updating. 

2.5) Generate the depth of the k
th

 new defect (k = 1, 2, …, N (tn + τ)) at year tn + τ,  

xk (tn + τ), based on Eq. (3.5).  In Eq. (3.5), Δxτk is generated from the gamma distribution 

given by Eq. (3.4) with the values of φ1 and φ2 equal to the corresponding posterior 

median values, and the values of tsk and ξk were obtained from steps 2.3) and 2.4), 

respectively. 

2.6) Generate the lengths for all the newly generated defects from the corresponding 

probabilistic distribution. 

2.7) Calculate g1 = 0.8wt – max{x (tn + τ)}, where x (tn + τ) is the vector of depths of 

all the existing and newly generated defects.  Set the depth xi (tn + τ) (i = 1, 2, …, N (tn + τ) 

+ Ne) to be 80%wt if xi (tn + τ) > 80%wt. 

2.8) Substitute the values of wt, D, σy, L, ζb and x (tn + τ) into the B31G modified 

model given by Eq. 3.10(a) to calculate the burst pressure capacities at different defects, 

where L is the vector of lengths of all the existing and newly generated defects.  

Calculate g2 = min{rb} – p, where rb denotes the vector of burst pressure capacities at the 

considered defects. 

2.9) If g1 > 0 and g2 > 0, set τ = τ + 1.  Go to step 2.1) if τ ≤ T, and start a new 

simulation trial otherwise.  

2.10) If g1 ≤ 0 and g2 > 0, set sl(τ) = sl(τ) + 1, where sl(τ) is the counter for small 

leak.  Set τ = τ+1.  Go to step 2.1) if τ ≤ T, and start a new simulation trial otherwise. 

2.11) If g2 ≤ 0, calculate g3 = rrpm – p, where rrpm is the rupture pressure at the defect 

that has the lowest burst pressure at year tn + τ.  If g3 > 0, set ll(τ) = ll(τ) + 1, where ll(τ) is 

the counter for large leak; if g3 ≤ 0, set rp(τ) = rp(τ) + 1, where rp(τ) is the counter for 

rupture.  Set τ = τ+1.  Go to step 2.1) if τ ≤ T, and start a new simulation trial otherwise. 
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By repeating steps 1 to 2 for the desired number of simulation trials, Nsim, the 

probabilities of small leak, large leak and rupture up to year τ (τ = 1, 2, ..., T), can be 

evaluated as follows: 

       
       

   

    
   (3.12a) 

       
       

   

    
   (3.12b) 

       
       

   

    
   (3.12c) 

3.4 Example 

3.4.1 General information 

In this section, the same natural gas pipe joint described in Section 2.5.2 of Chapter 2 

is used to illustrate the proposed system reliability evaluation methodology for corroding 

pipelines.  The pipe joint was made from API 5L X52 steel with a specified minimum 

yield strength (SMYS) of 359 MPa and a specified minimum tensile strength (SMTS) of 

455 MPa, and has an outside diameter of 508 mm, an operating pressure of 5.66 MPa and 

a nominal wall thickness of 5.56 mm.  The joint is 13.6 m long and has been inspected by 

high-resolution ILI tools in 2004, 2007 and 2009.  After the ILI in 2009, a total of 99 

defects have been detected and sized by the inspection tools.  A summary of the depths of 

the detected defects is shown in Table 2.6 of Chapter 2.  The measurement errors 

associated with the three ILIs employed in 2004, 2007 and 2009 are presented in Section 

2.5.2.  The probabilistic characteristics of the random variables involved in the reliability 

analysis are listed in Table 3.1.  Note that the lengths (L) of individual defects were 

assumed to be independent and identically distributed with a mean of 50 mm and a 

coefficient of variation (COV) of 15.6% (Zhou 2010).  
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Table 3.1 Probabilistic characteristics of the basic random variables 

Parameter Unit 
Distribution 

type 
Nominal value Mean 

COV 

(%) 
Source 

D mm Normal 508 508 0.06 CSA (2007) 

wt mm Normal 5.56 5.56 4.5 
Jiao et al. 

(1995) 

L mm Normal 50 50 15.6 Zhou (2010) 

y MPa Normal 359 398 3.4 
Al-Amin and  

Zhou (2014) 

p MPa Gumbel 5.66 5.93 2.0 CSA (2007) 

b -- Gumbel 1.00 1.297 25.8 
Zhou and  

Huang (2012) 

3.4.2 Results  

The posterior median values of the parameters of the defect generation and growth 

models have been evaluated from the Bayesian updating based on the three sets of ILI 

data as described in Chapter 2.  These values are summarized in Table 2.5 of Chapter 2 

corresponding to the assumptions of the high and relatively low detectability of the ILI 

tools.  They were then employed in the simple Monte Carlo simulation procedure 

described in Section 3.3.3 to evaluate the time-dependent system reliability of the pipe 

joint.  For the purpose of illustration, we only employed the posterior median values of 

the model parameters corresponding to the high detectability assumption (i.e. a POD of 

90% for a defect depth of 5%wt with a detection threshold of 1%wt) to evaluate the 

system reliability. 

A total of 1,000,000 simulation trials were carried out to evaluate the probabilities of 

small leak, large leak and rupture over an 11-year forecasting period since the most 

recent inspection, i.e. from years 2010 to 2020.  The probabilities of small leak, large leak 

and rupture over the forecasting period considering the growth of existing defects as well 

as the generation and growth of new defects were calculated, and the results are shown in 

Fig. 3.1.  Figure 3.1 indicates that the probability of small leak increases the fastest with 

time compared with the probabilities of large leak and rupture.  The probability of large 

leak is the highest of those of the three failure modes. 
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Figure 3.1 Cumulative probabilities of small leak, large leak and rupture 

3.4.2 Sensitivity analysis 

During the forecasting period, the depths of the existing defects increase with time.  At 

the same time, new defects initiate and start to grow once initiated.  Both the existing and 

new defects therefore impact the system reliability evaluated.  In addition to the base case 

scenario where both POD and the undetected defects (i.e. missing data) were considered 

in the Bayesian updating of the model parameters, two additional scenarios were 

considered to investigate the impact of POD and the undetected defects on the system 

reliability.  The two scenarios are the same as those considered in Section 2.5 of Chapter 

2; that is, Scenario I assumes perfect detectability for all three inspections, whereas 

Scenario II accounts for POD but ignores the missing data in calculating the average 

POD in each inspection.  The posterior median values of the model parameters 

corresponding to the base case, Scenario I and II were then used to carry out the 

reliability analysis. 
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The probabilities of small leak, large leak and rupture corresponding to the base case, 

Scenario I and II were evaluated by considering and ignoring the generation of new 

defects, and are compared in Fig. 3.2.  Figure 3.2 indicates, as expected, that considering 

the generation of new defects results in higher probabilities of small leak, large leak and 

rupture than ignoring the generation of new defects.  The new defects have a greater 

impact on the probability of small leak than on the probabilities of large leak and rupture.  

This is because the probability of small leak is governed by only two variables (i.e. the 

pipe wall thickness and defect depth) as shown in the limit state function g1, and is 

therefore more sensitive to the uncertainty in the depths of newly generated defects. 
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(b) Scenario I (perfect detectability) 
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(c) Scenario II (ignoring missing data) 

Figure 3.2 Impact of generation of new defects on the system reliability corresponding 

to the base case, Scenario I and II 

To better compare the failure probabilities associated with the base case and Scenarios 

I and II, the probabilities of small leak and burst (i.e. the summation of probabilities of 

large leak and rupture) corresponding to the three cases are depicted in Figs. 3.3(a) and 

3.3(b), respectively.  In each of the two figures, the probabilities of small leak or burst 

were evaluated by ignoring and considering the generation of new defects. 

Figure 3.3 indicates that the probabilities of burst corresponding to the three scenarios 

are practically identical, whereas the probabilities of small leak corresponding to the 

three scenarios are marginally different.  The fact that different analysis scenarios have a 

larger impact on the probabilities of small leak than the probabilities of burst is mainly 

attributed to that the probability of small leak is governed by the uncertainties in only two 

variables (i.e. wall thickness and defect depth) and therefore more sensitive to the 

differences in the defect generation and growth models corresponding to the three 
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scenarios.  If the generation of new defects is considered, Scenario II leads to the highest 

probabilities of small leak for the majority of the forecasting period.  This is because that 

Scenario II results in on one hand a higher defect generation intensity than Scenario I and 

on the other hand slightly higher predicted depths of both existing and new defects than 

the base case.  If the generation of new defects is ignored, the base case leads to the 

lowest probabilities of small leak for the forecasting period.  This is because the predicted 

depths of existing defects corresponding to the base case are slightly lower than those 

predicted by Scenario I and II as observed in Chapter 2. 
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(b) Probabilities of burst 

Figure 3.3 Comparison of probabilities of small leak and burst corresponding to the 

base case, Scenario I and II 

3.5 Summary and Conclusions 

This chapter presents a methodology to evaluate the time-dependent system reliability 

of corroding pipelines over a given forecasting period starting from the most recent 

inspection by simultaneously considering the generation and growth of corrosion defects.  

The generation of corrosion defects was modeled by the non-homogenous Poisson 

process, whereas the growth of defects was characterized by the non-homogenous gamma 

process.  The parameters involved in the generation and growth models were evaluated 

from the imperfect ILI data through the Bayesian updating, and the corresponding 

posterior median values of these model parameters were then used in a simple Monte 

Carlo simulation to evaluate the system reliability of corroding pipelines considering 

three different failure modes, i.e. small leak, large leak and rupture. 
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An example that involves three sets of ILI data for a pipe joint within a natural gas 

pipeline located in Alberta was used to illustrate the proposed methodology.  The results 

of the reliability analysis indicate that ignoring the generation of new defects leads to 

underestimations of the probabilities of small leak, large leak and rupture.  The 

generation of new defects has the highest impact on the probability of small leak.  The 

impact on the evaluated system reliability due to three different approaches to deal with 

POD associated with the inspection tool in the Bayesian updating of the defect generation 

and growth models was also examined.  The analysis results suggest that these three 

approaches have a marginal impact on the probabilities of small leak, but practically no 

impact on the probabilities of burst.  The methodology developed in this study could be 

implemented in a decision support tool to facilitate the pipeline corrosion management.   
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Chapter 4 Conclusions and Recommendations for Future 

Study 

4.1 Probabilistic Modeling and Bayesian Inference of Metal-loss 

Corrosion 

To account for the temporally and spatially variable nature of the metal-loss corrosion 

on steel oil and gas pipelines, stochastic process-based models are presented in Chapter 2 

to characterize the generation and growth of corrosion defects.  A Bayesian framework 

was established to make inference of the corrosion models based on imperfect in-line 

inspection (ILI) data. 

The defect generation was characterized by the non-homogenous Poisson process 

(NHPP), and the growth of the defect depth was modeled by the non-homogenous 

gamma process (NHGP) with a time-dependent shape parameter and a time-independent 

scale parameter.  The defect generation and growth models were formulated in a 

hierarchical Bayesian framework, which allows the consideration of the probability of 

detection (POD) and measurement errors associated with the ILI data in the statistical 

inference of the corrosion models.  A simplifying assumption was employed in the 

Bayesian formulation; that is, the newly detected defects in the i
th

 inspection are all 

generated between the (i-1)
th

 and i
th

 inspections.  The Bayesian updating of these model 

parameters were evaluated using the Markov chain Monte Carlo (MCMC) simulation 

based on the imperfect ILI data.  The data augmentation (DA) technique was employed in 

conjunction with the MCMC simulation to deal with the undetected defects (i.e. missing 

data) in the Bayesian updating resulting from the imperfect detectability of the ILI tool.  

The application of the proposed model was validated using the simulated inspection 

data in Example 1 of Chapter 2 and further illustrated using real ILI data in Example 2 of 

Chapter 2.  For both examples, three different scenarios were considered, namely 

including the missing data in calculating the average POD for each inspection, ignoring 

the missing data in calculating the average POD and assuming perfect detectability for all 

the inspections (i.e. ignoring POD).  Based on the simulated inspection data with the 

simplifying assumption involved in the proposed model, the results indicate that the last 
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two scenarios lead to underestimated overall defect population, which validates the 

proposed Bayesian framework.  Based on the more realistic simulated inspection data 

(i.e. part of the newly detected defects may be previously undetected defects), the results 

indicate that the first scenario leads to overestimation of the overall defect population 

because of the simplifying assumption involved in the proposed model.  However, the 

degree of overestimation is marginal as long as the detectability of the ILI tool is high or 

relatively high, which is typically the case for high-resolution ILI tools employed on oil 

and gas pipelines nowadays.  The overestimation of the defect population due to the 

simplifying assumption is somewhat compensated by the overestimation of the average 

POD in the second scenario; as a result, the predicted overall defect population agrees the 

best with the actual defect population among the three scenarios.  In Example 2, it is 

observed that the growth paths of the detected defects predicted by the three scenarios 

differ only slightly, with the predictions corresponding to the latter two scenarios being 

slightly higher than those corresponding to the first scenario. 

4.2 Time-dependent System Reliability Analysis of Corroding Pipelines 

A simple Monte Carlo simulation-based methodology is described in Chapter 3 to 

evaluate the time-dependent system reliability of corroding pipelines containing multiple 

active corrosion defects for a given forecasting period starting from the most recent 

inspection.  This methodology incorporates the corrosion generation and growth models 

evaluated from the imperfect ILI data through the Bayesian updating as described in 

Chapter 2.  The time-dependent system reliability of corroding pipelines is evaluated by 

simultaneously considering the generation and growth of corrosion defects in terms of 

three distinctive failure modes, namely small leak, large leak and rupture.  

The proposed methodology was illustrated using the same pipe joint as described in 

Example 2 of Chapter 2.  The results of the reliability analysis indicate that ignoring the 

generation of new defects in the reliability analysis leads to underestimation of the 

system reliability and has the largest impact on the probability of small leak.  

Furthermore, the three different approaches to consider POD in the Bayesian updating, 

i.e. including the missing data in calculating the average POD, ignoring the missing data 



66 

 

in calculating the average POD and ignoring POD, somewhat impact the probability of 

small leak.  Ignoring the missing data in calculating the average POD in the Bayesian 

updating of the corrosion growth and generation models generally leads to slightly higher 

probabilities of small leak than the other two approaches.  

4.3 Recommendations for Future Study 

The recommended future studies are described as follows. 

First, local covariates such as the type and condition of the coating on the pipe, the 

effectiveness of the cathodic protection, and moisture level and corrosivity of the 

surrounding soils, if available, can be explicitly taken into account in the corrosion 

generation and growth models to improve the predictive capabilities of these models. 

Second, the potential spatial correlations between different corrosion defects are worth 

investigating.  To this end, the application of the random field theory (e.g. Khoshnevisan 

2002; Bensi 2010; Bensi et al. 2011) could be explored. 

Third, a reliability/risk-based decision support tool can be developed to incorporate 

the Bayesian models and reliability analysis methodologies reported in this study to assist 

pipeline integrity engineers in developing defensible inspection and maintenance 

strategies for corroding pipelines.  

Finally, the stochastic process-based Bayesian degradation models can be applied to 

other structures and infrastructure systems subjected to localized deteriorations. 
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Appendix 2A Derivations of Full Conditional Posterior 

Distributions of Model Parameters 

Parameter Conditional posterior distribution  
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Appendix 2B Procedures for Generating Defect Initiation 

Times from a Non-homogenous Poisson Process 

It is noted that an NHPP, N(t), with the mean value function          (t > 0) 

between the time interval (ti-1, ti] can be transformed to a corresponding HPP, N(z), with 

the mean value function m(z) = z between the time interval (0, zi] by letting      

    
 , where zi =   

      
 .  Given that r defects have initiated within the time interval (ti-1, 

ti] or equivalently the transformed time interval (0, zi], it follows from the property of the 

HPP (Parzen 1999) that the unordered transformed initiation times, z1, z2, ..., zr, are 

independent and uniformly distributed within the interval of 0 to zi.  This allows the 

initiation times, tk (k = 1, 2, ..., r), to be generated from the following two steps:   

1) sample zk from a uniform distribution between 0 and zi, and 

2) calculate tk =         
  

. 
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Appendix 2C Procedures for Simulating Corrosion Data with 

the Simplifying Assumption for Defect Generation  

The following is the procedure for simulating the corrosion data and corresponding 

inspection results assuming that the newly detected defects in the i
th

 inspection are all 

generated between the (i-1)
th

 and i
th

 inspections. 

1) Sample the number of newly generated defects Ni
g
 in the i

th
 (i = 1, 2,…, n ) inspection 

from the Poisson PMF given by Eq. (2.5). 

2) Sample the initial times tsr (r = 1, 2,…, Ni
g
) for the Ni

g
 newly generated defects based 

on the procedure described in Appendix 2B. 

3) Sample the random effect parameters ξr (r = 1, 2,…, Ni
g
) for the Ni

g
 defects from the 

normal distribution with a mean of zero and a variance of σ
2
. 

4) Generate the inspected depth of detected defects 

4.1) For the i
th

 inspection, set r = 1. 

4.2) Generate the depth increment,     
 

, from the gamma distribution given by Eq. 

(2.8) with the shape and scale parameters equal to            
   and    , 

respectively.  Note that    
 

 =     
 

 for newly generated defects in the i
th

 inspection 

interval. 

4.3) If    
 

 > xth, accept the defect as a detected defect with a probability of        
 
 .  

If the defect is accepted as a detected defect, go to Step 4.4); otherwise, set r= r+1 

and go to Step 4.2). 

4.4) Generate the depth increment associated with the k
th

 inspection (k = i +1, i +2, ... 

n) for the accepted defect, Δxkr, from the gamma distribution given by Eq. (2.8) with 

the shape and scale parameters equal to            
               

   and    , 

respectively.  Calculate          
 
    as the actual depth of the detected defect r at 

the time of the k
th

 inspection. 
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4.5) Generate the ILI-reported depth for the detected defect from the i
th

 inspection to 

the n
th

 inspection from a multivariate normal distribution fE            . 

4.6) Set r= r+1 and repeat steps 4.2) through 4.5) until r = Ni
g 

 + 1. 

4.7) Repeat Steps 4.1) through 4.6) for all the inspections, i = 1, 2, ..., n.  
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Appendix 2D Procedures for Simulating Corrosion Data 

without the Simplifying Assumption for Defect Generation  

The following is the procedure for simulating the corrosion data and corresponding 

inspection results without the assumption that the newly detected defects in the i
th

 

inspection are all generated between the (i-1)
th

 and i
th

 inspections, i.e. some of the newly 

detected defects in the i
th

 inspection may in fact initiate prior to the (i-1)
th

 inspection but 

remain undetected until the i
th

 inspection. 

1) Sample the number of newly generated defects Ni
g
 in the i

th
 (i = 1, 2,…, n ) inspection 

from the Poisson PMF given by Eq. (2.5). 

2) Sample the initial times tsr (r = 1, 2,…, Ni
g
) for the Ni

g
 newly generated defects based 

on the procedure described in Appendix 2B. 

3) Sample the random effect parameters ξr (r = 1, 2,…, Ni
g
) for the Ni

g
 defects from the 

normal distribution with a mean of zero and a variance of σ
2
. 

4) Generate the inspected depth of detected defects initiated between the (i-1)
th

 and i
th

 

inspection. 

4.1) For the i
th

 inspection, set r = 1. 

4.2) Generate the depth increment,     
 

, from the gamma distribution given by Eq. 

(2.8) with the shape and scale parameters equal to            
   and    , 

respectively.  Note that    
 

 =     
 

 for newly generated defects in the i
th

 inspection 

interval.   

4.3) Generate the depth increment associated with the k
th

 inspection (k = i +1, i +2, ... 

n) for defect r, Δxkr, from the gamma distribution given by Eq. (2.8) with the shape 

and scale parameters equal to            
               

   and    , 

respectively.  Calculate          
 
    as the actual depth of defect r at the time of 

the k
th

 inspection. 

4.4) If    
 

 > xth, accept the defect as a detected defect with a probability of        
 
 .  
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If the defect is accepted as a detected defect, go to Step 4.5); otherwise, accept it as an 

undetected defect and record its depth     (k = i+1, i+2, ... n).  Then set r= r+1 and go 

to Step 4.2). 

4.5) Generate the ILI-reported depth for the detected defect from the i
th

 inspection to 

the n
th

 inspection from a multivariate normal distribution fMVN            . 

4.6) Set r= r+1 and repeat steps 4.2) through 4.5) until r = Ni
g
 + 1.   

5) Generate the inspected depth of detected defects initiated prior to the (i-1)
th

 

inspection. 

5.1) If i = 1, go to step 4); otherwise, set r = 1. 

5.2) Check the depth,    , for the previously undetected defects.  If     > xth, accept the 

defect as a detected defect with a probability of         .  If the defect is accepted as 

a detected defect, go to Step 5.3); otherwise, accept it as an undetected defect and 

record its depth     (k = i +1, i +2, ... n).  Then set r= r+1 and repeat Step 5.2). 

5.3) Generate the ILI-reported depth for the detected defect from the i
th

 inspection to 

the n
th

 inspection from a multivariate normal distribution fMVN            . 

5.4) Set r= r+1 and repeat steps 5.2) through 5.3) until r = N(i-1)
u 

 + 1, where N(i-1)
u
 is 

the number of defect initiate prior to the (i-1)
th

 inspection but remain undetected until 

the i
th

 inspection. 

6) Repeat Steps 4) and 5) for all the inspections, i = 1, 2, ..., n. 
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