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Abstract

The finite range of electrons in tissue makes electron beams a useful radiation
treatment modality for many tumour sites. However, the simphistic methods of dose
calculation in current clinical use lack sufficient accuracy in many situations of clinical
importance. This thesis rests on the premise that a more accurate dese calculation method
must incorporate all the maj~r physical processes which shape the dose distribution.

The thesis unites the important transport processes of electron energy loss and
angular scattering in a single mathematical model known as the compound Poisson
process (CPP). CPP-based calculations of energy-loss spectra for 10, 20 and 30 MeV
electrons incident on graphite and aluminum absorbers agreed withi~ 1% with Monte
Carlo simulations for electrons travelling path lengths less than 0.5 g/cm?.  Similarly,
calculations of angular distributions agreed with Monte Carlo simulations within 2% for
5 and 10 MeV electrons traversing water slabs up to 0.5 cm thick.

The evolution and Monte Carlo methods of dose calculation can both incorporate
the CPP model into a complete transport calculation. An analyvsis of the convergence of
the two methods reveals that: (i) the number of histories in a Monte Carlo simulation is
analogous to the number of discrete bins in the evolution method, (ii) the convergence of
the evolution method depends on the dimensionality of the problem while the
convergence of the Monte Carlo method does not, and (iii) for the full six dimensional
transport problem, the ratio of the error in the evolution method to that in the Monte
Carlo method is proportional to N6 where N is the number of histories or bins.

Since the convergence of the evolution method improves with fewer dimensions,
an approximate "dimensionally-reduced” evolution method is proposed. Preliminary
calculations of dose distributions in a homogeneous water phantom achieved reasonable
agreement with Monte Carlo simulations for incident 10 and 20 MeV electron beams.
The least accurate result underestimated the dose by 5% at the depth of dose maximum
and overestimated the width of the 10% isodose line by 8 mm. These early results

indicate that the dimensionally-reduced evolution method merits further investigation.

Keywords: Radiation Therapy, Electron Beams, Energy-Loss, Angular Scattering,
Compound Poisson Process, Phase Space Evolution, Monte Carlo
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Chapter 1. Introduction

1.1 The Radiation Therapy Problem

1.1.1 The Use of Radiation in Cancer Treatment

Radiation therapy aims to maximize the radiation dose to malignant tissues while
keeping the dose to normal tissues within tolerance limits. Although the probability of
controlling a tumour increases with increasing dose, the potential for side effects also
increases due to damage to near-by normal tissues (Emami et al., 1991). Therefore, the
radiation oncologist must weigh the increased likelihood of tumour control against the
increased risk of side effects. A judgement of the quality of a proposed treatment thus
requires an accurate knowledge o” the distribution of radiation dose within all the exposed

tissues as well as radiobiological data on the radiation sensitivity of the tissues.

Probability (NTCP or TCP)

\2

OIP--—_----

-

Radiation Dose
Figure 1-1: Typical Dose Response Curves

The vertical axis represents the probability of a given effect while the horizontal
axis represents the dose delivered. The goal of radiation therapy is to deliver a
large tumour dose (D;) while maintaining a reduced dose to normal tissues

(Dw).

A typical "dose response curve” is shown in Figure 1-1. The curve represents the

probability of observing a radiobiological effect (eg killing all the cells in a tumour or
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observing a normal tissue complication) as a function of the radiation dose delivered.
Typically, on the steep portion of the curve, a 1% change of dose can lead to a 5%
change in either the normal tissue complication probability (NTCP) or the tumour control
probability (TCP) (Burman et al., 1991). In view of the slope and proximity of the dose
response curves, the International Commission on Radiation Units and Measurements
(ICRU, 1976} recommends that the overall uncertainty in local dose not exceed 5%. This
figure represents 2 compromise between the above-mentioned radiobiological concerns
and the accuracy which is practicaily achievable in the clinic. To allow for other sources
of dose uncertainty in treatment delivery, the error in dose calculation should not exceed
3% (see also Brahme, 1984).

Several methods of delivering a radiation dose to the target region are available.
These methods fall into one of two general categories: brachytherapy and teletherapy.
The first category takes its name from the Greek word, "brachy", meaning "at close
range”. It involves either the surgical implantation of encapsulated radioactive sources
directly into the target region or the injection of a radioactive liquid which preferentially
accumulates in the target region. In teletherapy, a target region receives dose from beams
of radiation originating some distance (usually about | meter) from the patient (hence the
use of the Greek word, "tele”, meaning "at long range").

Orthovoltage x-ray generators provided the earliest form of teletherapy treatments.
However, these types of treatment machines produce photon energies in the range 100 to
200 keV and are useful only for lesions at depths of a few millimetres. Target volumes
at larger depths require megavoltage radiztion (ie energies above 1 MeV).

The use of a cobalt 60 (Co™) source together with a collimating system provides
the simplest means of producing a beam of megavolt?te photons. The average energy
of the photons emitted by Co® is 1.25 MeV giving a depth of penetration (50% dose
level) of approximately 10 cm. Aithough multiple "crossed” beams of Co® photons may
be used to treat deep target volumes, the use of higher photon energies can improve the
dose distribution due to increased penetration and improved skin sparing.

Higher photon energies necessitate the use of electron accelerators such as

betatrons. microtrons (Brahme et al., 1975; Brahme et al., 1980) or linear accelerators
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(linacs) (Karzmark et al., 1993). Betatrons and microtrons are "orbital” accelerators
which use magnetic fields to constrain the electrons to roughly circular orbits during the
acceleration process. Linacs, on the other hand, accelerate electrons in a straight line
down a radio-frequency wave-guide. All these accelerators are capable of producing
clinically useful beams of x-rays or electrons. In the case of an x-ray beam, the narrow
clectron beam emerging from the accelerator strikes a thick high-atomic-number target
to produce bremsstrahlung photons. An appropriately shaped flattening filter converts the
forward-directed bremsstrahlung beam into a clinically-useful beam of uniform intensity.
In the case of an electron beam, the x-ray target is removed and the emerging electrons
are scanned magnetically or scattered in foils to produce a uniform broad beam. Most
radiation therapy facilities have high energy linacs capable of producing both x-ray and
electron beams. Thus, Radiation Oncologists have both these treatment modalities at their

disposal in the design of an optimal treatment.

1.2 The Role of Electron Beams

1.2.1 Depth Dose Characteristics

Figure 1-2 demonstrates the very different character of clectron and photon beam
depth d. se distributions. Photons interact in a medium relatively infrequently and, as a
result, a photon beam depth dose curve exhibits a long exponentially decaying "tail”. In
contrast, electrons have a well defined range due to nearly continuous interactions
between the penetrating electrons and the orbital electrons of the scattering medium.
Thus, an electron beam depth dose curve falls off rapidly at a distance equal to the range
of the penetrating electrons (eg 5 cm for the electrons in Figure 1-2). This property of

electron beams provides dose distributions which, in many instances, cannot be achieved

even with multiple photon beams.
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Figure 1-2: Depth Dose "urves for Electrons and Photons

The depth dose distribution of a Co® beam (20x20 cm?, 100 cm SSD) is
compared with that of a broad beam of 10 MeV electrons. The Co* data is
from Johns and Cunningham (1983).

1.2.2 Clinical Applications

Using electron beams, tumours close to the skin’s surface may be irradiated while
deeper normal tissues are spared. This property of electron beams has found application
in many tumour sites (Brady et al., 1992). One of the most obvious applications is the
irradiation of skin lesions using either small fields for localized tumours or large multiple
fields for total skin irradiation. However, tumours of the head and neck, breast, upper
respiratory track and digestive passages have also been treated using electron beams. In
addition, arc electron beams lend themselves to irradiation of the chest wall in breast
cancer. The combination of photon and electron beams is also common. For instance,
electron beams may be used to "boost" the dose to the lymph nodes surrounding the
breast following photon irradiation for breast cancer.

The use of electron beams is not limited to treatment of "shallow" targets,
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however. Gosselin et al. (1993) have developed a technique using high energy (20 MeV)
parallel opposed electron beams to irradiate a mass in the mediastinum. Ironically, the
authors exploited the angular scattering properties of electrons to shield a structure close
to the surface (the spinal cord in this case) while delivering a uniform dose to deeper

structures.

1.2.3 Clinical Methods of Dose Calculation
All the clinical uses of electron beams mentioned in Section 1.2.2 necessitate
methods of accurately calculating the distribution of radiation dose in the tissues. This

section summarizes the various techniques which are currently in clinical use.

Broad Beam Methods

The simplest form of dose calculations, the ray-line method, relies on the
assumption that electrons travel in straight lines. Several authors have formulated the ray-
line method in different ways with different assumptions (Laughlin, 1965; Boone et al.,
1967, Almond et al., 1967, Bagne, 1976) but the basic approach is the same in all
instances. The electrons are assumed to travel along ray-lines originating from a single
"virtual” source. An appropriate shift of the percentage depth dose curve (as measured
for a broad beam in a homogeneous water phantom) along these ray-lines accounts for
the effects of inhomogeneities in tissue density.

Dose distributions calculated in this manner reflect neither the lateral scattering
of electrons near the edge of inhomogeneities (Shortt et al., 1986; Shiu et al., 1992) nor
the back-scattering of electrons at interfaces between media (Werner, 1985). Since these
effects lead to considerable dose perturbations (up to 50%, see Shortt et al., 1986), the
ray-line method has been largely supplanted by the pencil beam summation method.

Pencil Beam Methods
The pencil beam summation method relies on the fact that radiation transport is
a linear process. As shown in Figure 1-3, the method represents a broad beam of

electrons as a superposition of elemental "pencil beams”. The dose, p(r) , at any point,




r, in a medium is the summation of the dose contributions from each pencil beam:
D(r) = [F(z/)-d(z;x')dr’ (1.1)
5
The superposition integral extends over some specified entrance surface, g, at the patient.
The function, g (g’) , represents the incident electron beam fluence for each point, »/,

on the surface, 5. The "kernel” function, d(r; r’) , represents the dose contribution to

a point, g, in the medium from a pencil beam originating at a point, z/.'

Lowest lavel of colimation

Figure 1-3. Pencil Beam Dose Calculations

The pencil beam summatior method of dose calculation treats a broad beam of
electrons as if it were composed of an infinite number of individual pencil
beams (for practical calculations, the number of pencil beams is finite, but the
principle is the same). The figure shows a few representative pencil beams.
Clearly, the shape of a particular pencil beam, 4(z;z’), will depend on the
energy and angular spread of the incident electrons and the presence of any
inhomogeneities near the pencil beam. The various implcmentations of the pencil beam
approach differ in the way they obtain the pencil beam dose distribution and the way the

pencil beams are distorted to account for tissue inhomogeneities.

"This approach to electron beam dose calculations is akin to the superposition method of photon
beam dose calculations (Mackie, 1987; Battista and Sharpe, 1992).
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The idea of using pencil beams to represent a broad beam of electrons is not new.
Lillicrap et al. (1975) measured the dose distributions from very narrow beams and used
these to reconstruct broad beam distributions. Osman (1976) took a similar approach but
used multiple scattering theory to derive the pencil beam dose distributions. However,
neither report considered the effects of tissue inhomogeneities.

Monte Carlo simulation (Berger, 1963; Andreo 1991) can also yield accurate

pencil beam dose distributions, d(x; r’) . for use in the superposition method (Lax et al.,
1983; Mackie, 1987; Altschuler et al., 1992). More commonly, however, investigators
have used the Fermi-Eyges theory of electron transport (Rossi and Greissen, 1941: Eyges,
1948; Rossi, 1952; Jette et al., 1983) to construct pencil beam dose distributions. This
theory provides analytical expressions which describe the electron fluence at any point
in a "slab-type” medium for an incident pencil beam. The term "slab-type" indicates a
medium in which any inhomogeneities are slabs extending infinitely in the directions
perpendicular to the incident beam. The convenient analytical form of the solutions
simplifies the computer implementation of the pencil beam method.

Although the simplicity of this approach is attractive, the Fermi-Egyes theory must
be supplemented with empirical data in order to overcome the limiting assumptions of the
theory (Hogstrom et al., 1981). In particular, the theory assumes (i) that individual
scattering events result only in small angle deflections, (ii) that the electrons’ cumulative
angle of travel remains small and (iii) that the electrons’ kinetic energy varies only as a
function of depth in the scattering medium. Even with the addition of measured data, the
assumptions (i) to (iii) lead to unacceptably large (see Section 1.1.1, page 2) dose
calculation errors -- upto 40% -- in the vicinity of small inhomogeneities (Cygler et al.,
1987; Mah et al., 1989).

Several investigators have modified the Fermi-Eyges theory to further improve the
agreement with measured dose distributions. Some reports present modifications to the
lateral pencil beam spread (Werner et al., 1982; Bruinvis et al., 1983; Van Gasteren,
1987; McParland et al., 1988; Bruinvis et al., 1989; Sandison et al., 1989) while others
modify the Fermi-Eyges transport equation itself (Papiez and Sandison, 1990, Sandison
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and Papiez, 1990; McLellan et al, 1991). Jette has, to somc extent, relaxed the
assumption (ii) above by including second-order angular scattering terms in the transport
equation (Jette, 1985; Jette and Bielajew, 1989). Hemmer and Farquhar (1968) have gone
still further by allowing angular scattering terms of arbitrarily large order. Although this
approach allows large cumalative angles of travel. it does not account for single large-
angle -cattering events. However, Jette and Walker (1992) have done some preliinary
work to include such events in the Fermi-Eyges theory.

Regardless of how the pencil beam dose distribution is obtained, any practical
pencil beam algorithm should account for the presence of tissue inhomogeneities. Since
an inhomogeneity alters the angular scattering and energy loss of the electrons, the shape
of the pencil beam is altered both within and beyond the inhomogeneity. There exists no
simple prescription to predict the distortion of a pencil beam in response to the presence
of an inhomogeneity.

Figure 1-4 describes an approximate method of inhomogeneity correction known
as the "slab approximation”. The pencil beam is assumed to "see" an infinite slab of
materia! lying perpendicular to the broad beam’s central axis. The thickness of the slab
is equal to the vertical distance traversed by the central ray of the pencil beam through
the inhomogeneity. In the case of Fermi-Eyges-based pencil beam dose calculations, the
Fermi-Eyges theory provides explicit equations describing the shape of a pencil beam in
a slab-type medium. In the case of Monte-Carlo-generated pencil beams, there is no clear
method to alter the shape of the pencil beam since the pencil beam dose distribution
provides no information regarding the angular distribution of electrons. However, Lax

and Brahme (1985) present an approximate method which makes assumptions about the

angular distribution of electrons.
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Figure 1-4: The Equivalent Slab Approximation

On the left, an inhomogeneity lies on the central ray of a pencil Leam. To
calculate the distortion of the pencil beam due to the presence of the
inhomogpeneity, an "equivalent” slab of material is used to approximate the
inhomogeneity (shown on the right). In this example, the inhomogeneity is
denser than the surrounding medium and produces moreJateral scattering and
energy loss. Thus, the lateral spread of the pencil beam is increased and the
electrons’ depth of penetration is reduced.

Provided the inhomogeneity is wider than the width of the pencil beam (about one
half the range of the electrons) and the long axis of the inhomogeneity is perpendicular
to the pencil beam’s central ray, then the slab approximation is acceptable. However, for
small inhomogeneities at large depths (where the pencil beam is broadest), the
approximation leads to considerable error in the calculated dose distribution (Lax, 1986).
Other researchers (Cygler et al., 1987; Mah et al., 1989) have shown that dose calculation
errors can be large even when the inhomogeneity lies close to the surface of the scattering
medium.

Yu et al. (1988) and Perry and Holt (1980) have presented a more general
technique to modify pencil beams in the presence of small inhomogeneities. The method
scales the pencil beam dose distribution along "mean electron paths” rather than simply

along the pencil beam’s central ray. However, the method depends on the Fermi-Eyges

model of electron transport and it is still limited by the underlying assumptions of that
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model (including the small angle assumption).

As noted earlier, the pencil beam approach is most accurate when the width of the
pencil beams is small compared with the size of an inhomogeneity. Conventional pencil
beam techniques divide a broad beam into narrow pencil beams at the surface of the
scattering medium and the width of the pencil beams grows with depth. The pencil beam
redefinition method (Storchi and Huizenga, 1985; Storchi and Van der Linden, 1989; Shui
and Hogstrom, 1991) described in Figure 1-5 breaks the beam into a new set of pencil
beams at regular depth intervals. Tu this way, the pencil beams are forced to remain
narrow and the accuracy of dose calculations near small inhomogeneities is improved.
However, the pencil beam redefinition method is still based on the Fermi-Eyges theory
and is limited by the underlying assumptions of that theory. In addition, there exists no

clear way to incorporate measured dose data to offset these fundamental limitations.

/—-PencllBeoms
N\ % Depth 1
\\\ :
\\ \
\\ N

/
/
Vd

Depth 2

Figure 1-5: The Pencil Beam Redefinition Method

The pencil beams at depth 1 each contribute to a new pencil beam at depth 2.
By tallying the number of electrons arriving at the new position from each angle,
the first fesv moments of the angular distribution may be calculated and used to
define the new pencil beam. Repetition of this procedure for each point at
depth 2 allows the calculation of a new set of narrow pencil beams which may
be used for transport calculations for the next increment of depth.

The various dose calculation techniques discussed above cannot accurately

calculate the dose distribution in all situations of clinical interest. The ray line method
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completely neglects the effect of angular scattering while the Fermi-Eyges-based methods
make restricting approximations regarding the angular scattering and energy-loss
processes. Although the pencil beam method provides accurate dose predictions in a
homogeneous medium, heterogeneous media require the application of the slab
approximation which is poor in the case of small inhomogeneities. Clearly, a more

general approach is required.

1.3 The Transport Problem

The common failing of all the dose calculation methods described in section 1.2.3
is the failure to account for all the major aspects of electron transport in heterogeneous
as well as homogeneous media. A more general computational technique -- one

applicable to a greater variety of clinical situations -- requires the accurate modelling of

all the physical processes which shape the dose distribution. The linear Boltzmann (or
transport) equation achieves this required objective and, therefore, serves as a reasonable

starting point in the discussion of more general dose calculation methods.

1.3.1 Time Dependent Transport Problem

The Boltzmann (or transport) equation is a linear integro-differential equation
which describes the transport of particles through a scattering medium (Duderstadt and
Martin, 1979). If £(z, Q, E; t) represents the density of penetrating electrons in a
particular "state" (ie a particular position, g, direction, Q, and energy, g) at a particular
time, ¢, then the time-dependent transport equation gives the time rate of change of
f(r,Q,Eit)"
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df _ _\(r,E)v(E) £(r,Q,Eit) - v(E) V.Q £(r,Q,E;t) +

dt
(1.2)
Epax

f f v(E") £f(r,Q',E'; t) A(x,E') @, (Q,E;Q,E')dE'dQ’

4 E
where ) (z, E) is the average number of angular-scattering and energy-loss events per
unit path length; «(g) is the speed of the penetrating electrons; ¢ ,(...) is the cross
section, differential in both energy and angle, normalized such that its integral over all
energies and directions is unity. The subscript, r, indicates that the cross section depends
on position since the scattering medium may contain inhomogeneities. The energy loss
and angular scattering processes are discussed in Chapters 2 and 3 and specific cross
sections are given in the appendices of the chapters.

The first term on the right hand side of Equation (1.2) represents the rate at which
electrons leave the state, (r, Q, £) . due to energy-loss and angular scattering. The
second term describes the "flow" (or divergence) of the electrons away from the point,
r. Finally, the last term represents the rate at which electrons scatter into the state,
(r, Q, E) ,» from all other states. Therefore, Equation (1.2) implies that the sum of all
three contributions must be the net rate at which electrons enter the state, (r, Q, E) .

Terms representing independent electron sources (eg beta-particles emitted from
a radionuclide, Compton electrons from an external photon beam) and the production of
secondary electrons (delta rays) may also be included in equation (1.2). For our purposes,
we will concentrate on the transport of primary electrons only.

The problem of electron transport reduces to finding the solution of the transport
equation (1.2) with appropriate initial and boundary conditions. For instance, the initial
condition may be a "pulse" of electrons, f£(r,Q, E;0). from an electron linear
accelerator incident on the surface of a patient at time, -0. A reasonable boundary
condition might be that the density of penetrating electrons, £(r, Q, E; t) , is zero on
the surface of the patient for all times, ¢>0, and for all directions which would carry
electrons into the patient (ie clectrons can scatter out of the patient but cannot scatter back

in).
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Figure 1-6: The Electron Transport Problem

The time dependent electron transport problem comprises three elements: (i)
the initial condition, (ii) the boundary conditions, and (jii) the transport equation.
In radiation therapy, the incident beam becomes the initial condition while the
tissue-air interface approximates a vacuum boundary condition (ie electrons
may leave the patient but cannot scatter back in).

The initial condition which describes a point monodirectional, monoenergetic beam
of electrons is the Dirac delta-function?,

£(r,Q,E;t,) - 8(x-1,) 8,(QQ,) 8(E-E,) (1.3)

The solution of the transport equation (1.2) with this initial condition and some set of
boundary conditions will be denoted G,.., (£.Q,E; 2,.Q,, E,) and is termed the

“impulse response”, "Green’s function” or "kemnel”. Since Equation (1.2) is linear’, the

By definition, the angalar Dirac delta function satisfies the relation,

fo,,mn,,)g(mdn = g(Q,)

for any choice of neighbourhood, @, of the point, Q,, and continuous function, g(Q) .

3 g(£,9,E;t) and h(r,Q,E; t) both satisfy Equation (1.2), then so does
f{r,Q,E;t)=Ag(x,Q,E;t) +B-h(z,0,E; t) where A and B are constants.
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solution for any arbitrary initial condition may be written as a superposition:

f(r,Q,E;t) =

1.4
ff(.ro.ﬂo,Eo;t:o)Gc_%(r,ﬂ.E;ro,Qo,Eo)dronodEo ¢ )
D

where the limit of integration, p, represents the domain of all possible positions,
directions and energy. This last equation represents a linear superposition of impulse

response functions weighted according to the initial condition, £(r,,Q,, E,; t,) -

1.3.2 Time-Independent Transport Problem

The task of calculating a dose distribution in radiation therapy constitutes a time-
independent problem; the quantity sought is the dose accumulated over the duration of
the radiation exposure (the exposure time is about one minute and an electron takes about
10” seconds to come to rest in tissue). Therefore, the time-independent (or steady-state)
transport equation is of particular significance in radiation therapy dose calculations. It
derives from the time-dependent case simply by setting df/d¢ to zero in Equation (1.2).
Since, the time-independent case requires no initial condition, we instead make the
incident beam of electrons a source term (ie an inhomogeneous term) in the transport

equation. Thus, we have,

A(r,E)f(r,Q,E) +VQf(xr,Q,E) = 0(z,Q,E) +

Enx (105)
f [ Yy(E',E) f(x,Q ,EYA(z,E) 0 (Q,E;Q, E')dE'dQ’
4% E

where y is the ratio* v(g) /v(E) and Q(r,Q, F) is the total number of electrons
set in motion in a given state per unit volume per unit solid angle per unit energy. If

O(r,Q, E) is normalized such that its integral over all position, direction and energy

“The ratio, Y. does not appear if the transport equation is written in terms of the “flux”,
é(r,Q,E)= vE(r,Q,E).
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is unity, then g£(r, Q, E) will represent a probability density.
In the time-indepencent case, the Green's function, G(r,Q, E; £, Q,, E,) -
represents the response to a Dirac delta-function source (ie a monoenergetic,

monodirectional pencil beam at a point in the scattering medium),

0 (£.Q,E) = 8(r-x,) 8,(0Q,) 8(E-E,) (1.6)

The solution for any arbitrary source, o(r, Q, E) , is then,

f(r,Q,E) =

fQ(ro:Qo:Eo)G(rcnvE"ro'ao'Eo)drodaodEo -n
D

This last equation is a generalization of the pencil beam summation (or superposition)

technique for the calculation of dose described above.

1.4 Transport-Based Dese Calculation Methods

Even in relatively simple cases, exact analytical solutions to Equations (1.2) and
(1.5) are not possible and approximate methods of solution are required. Any such
method intended for clinical use must be both fast and accurate. There are two methods
of dose calculation which include the relevant physical processes and which have the
potential for use in clinical treatment planning: the Monte Carlo method and the evelution
transport method. Since both these approaches solve the Boltzmann transport equation,
they will be termed “transport-based dose calculation methods".

1.4.1 The Monte Carlo Method

This section is not meant as an exhaustive review of the Monte Carlo method (see
instead Raeside, 1976; Mackie, 1990; Andreo, 1991) but will instead concentrate on the
theoretical aspects of the method. Three different forms of the Monte Carlo method have
been implemented: analog, condensed history and "macro”. These three forms relate to
i - transport equations (1.2) and (1.5) in different ways.
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Analog Munte Carlo

In its purest form, the Monte Carlo method (Berger, 1963; Andreo, 1991)
simulates each discrete electron iuteraction. Given ar clectron with a particular position,
direction, and energy, analog Monte Carlo (i) samples the distance to the next interaction
from an exponential distribution, (ii) selects the type of interaction, and (iii) determines
the new direction and energy by sampling the appropriate cross section. The interaction
cross sections are sampled randomly by calculating pseudo-random deviates with
appropriate probability distributions (Cormack and Shuter, 1991). Incident electrons are
followed one at a time to the end of their trajectories (until either the electron energy
drops below a pre-determined cut-off or the electron leaves the calculation volume). A
single simulated trajectory is termed a "history".

Each electron history is consistent with the transport equation in the sense that
each electron "obeys” the interaction cross section, ¢ (...}, and satisfies the boundary
conditions. In addition, the start of each history is sampled according to the specified
initial condition, £(r,Q,E; t,) - As a result, a single history is one realization of a
stochastic process whose probability density is the solution of the transport equation (1.2)
with the specified initial condition. The superposition of many histories provides an
estimate of this probability density.

Analog Monte Carlo always solves the time-dependent problem whether this
information is explicitly used or not; a history begins at a certain point and evolves to a
final destination. Often, path length rather than time plays the role of the variable of
evolution, but there is a correspondence between time and path length. Thus, the use of
path length is equivalent to a change of variables in the time-dependent transport equation

(specifically, time, ¢. may be replaced by the path length, g, via the substiwution,

= [ ‘vt de).
s Lv(t)dt

Condensed History Monte Car.o
Although the analog Monte Carlo method has been applied to the calculation of
energy-loss straggling n thin gas layers (Cobb et al., 1976; Ermilova et al., 1977) and
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problems in radiation dosimetry (Bielajew et al., 1993), the method tends to be very time
consuming and impractical for clinical dose calculations’. A technique known as the
condensed history Monte Carlo method greatly reduces the calculation time by grouping
(or condensing) many individual interactions into a single “transport step” (Berger, 1963).
Partial (and usually approximate) solutions to the transport equation govern the change
of an electron’s position, direction and energy over a single transport step. The transport

of an electron over a single step is determined by sampling the Green's function,

Gyeep (£, Q, E; z!,Q’, '), which represents the probability per unit volume, per unit
solid angle, per uzit energy that an electron starting in the state, (r’, Q’, ') . will arrive
in the state, (r, Q, E) . in a single transport step.

For instance, the Monte Carlo code ETRAN (Berger, 1969) defines a transpc.t step
by specifying the path length travelled in the step. The change in angle is calculated
according to the Goudsmit-Saunderson theory (Goudsmit and Saunderson, 1940; see
Chapter 3) while the change in energy is calculated using Landau’s theory (Landau, 1944;
see Chapter 2). The code assumes that the electron travels in a straight line over a small
increment of path length, A 5. Thus, tiiec electron arrives at a position z-2/+}/As at

the end of a transport step provided it started at the position, g/, with the direction, /.
In this case, the Green’s function is represented by,
Garop (. Q,E; 2, Q' E)

(1.8)
= st(ASJ Q,QI) fL(AS, EI_E)G (Z—rI-QIAS)

where £__(..) is the angular transition density predicted by the Goudsmit-Saunderson

theory and £, (..) is the energy transition density predicted by Landau’s theory.
Condensed history Monte Carlo comprises two categories dubbed class I and class

II by Berger (1963). Class I Monte Carlo condenses all electron interactions into a single

transport step. Class II Monte Carlo, on the other hand, explicitly simulates any

A 10 MeV electron incident o, water undergoes Setween 10° and 10/ collisions before finally
stopping.
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"catastrophic” interactions which occur (eg production of an energetic delta ray). For
ir.stance, the Monte Carlo code, EGS4, (Nelson et al., 1985) groups all angular scattering
as well as soft energy-losses (ie those below a predefined energy-loss cut-off) in a single
transport step while catastrophic energy-losses are explicitly simulated. The Monte Carlo
code developed by Andreo and Brahme (1984) considers catastrophic angular changes as
well as catastrophic energy- losses.

Both class I and class 11 Monte Carlo schemes use approximate solutions to the
time-dependent transport equation to model the angular and energy changes over a given
transport step. As a result, the maximum length of a step is limited by the
approximations applied in the solution of the transport equation. Since the calculation
time required for a given simulation is inversely proportional to the average length of the
transport steps, an upper limit for the allowable transport step length implies a lower limit
for the calculation time. Thus, condensed history Monte Carlo is inherently limited in

terms of its calculational efficiency.

The Macro Monte Carlo Method

The macro Monte Carlo method (Mackie and Battista, 1984; Ballinger, 1991,
Neuenschwander and Born, 1992; Svatos, 1994; Neuenschwander et al., 1995) improves
calculation times by eliminating many of the approximations inherent in the conventional
condensed history schemes. The macro Monte Carlo method differs from conventional

condensed history schemes ir one respect: the Green’s functions,

Goeep(Z . Q. E; X, Q, E, governing the changes in position, direction and energy over
a transport step are pre-calculated using either analog Monte Carlo or conventional
condensed hisiory Monte Carlo simulations. As a result, the macro Monte Carlo method
is not limited to a maximum step size and it can achieve much shorter calculation times

than conventional condensed history schemes.
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Figure 1-7: The Kugel Method of Transport Steps

The condensed history Monte Carlo schemes generally define a transport step
using a fixed path length (though the length of the path may vary from step to
step). In the "kugel” method, the transport step begins at the point where an
electron enters a pre-defined closed volume and ends at the point where the
electron first exits the volume. No information regarding the transit time or path
length through the volume is retained.

The macro Monte Carlo methods presented thus far in the literature use a "kugel”
method of defining the transport step. At the start of the transport step, an electron enters
a closed volume (termed a "kugel” for "kernel generating element”) and the transport step
ends when the electron either first reaches a boundary of the closed volume or is
absorbed. Neuenschwander and Born (1992) use a sphere in their approach; Ballinger
(1991) uses a hemi-sphere; Mackie and Battista (1984) proposed a cube. Note that the
path length traversed, or time spent, does not enter the definition of the transport step.
Therefore, the macro Monte Carlo methods capitalize on the time-independent nature of

the radiation therapy transport problem.

1.4.2 The Evolution Transport Method
The evolution transport method, rather than following one electron at a time,
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propagates a population of electrons through the scattering medium (McLellan et al.,
1992; Janssen et al., 1994; Papiez et al.,, 1994). For the purposes of numerical
calculations, discrete bins of position, direction and energ, serve to represent the
distribution of electrons. This discrete distribution is updated (or "evolved") at each
transport step according to the Green’s function, Gyrep2. Q. E; 2/, Q' E') - Thus, the
probability density for the (i+1)™ transport step is given by the recursion relation,

inI (r' Q'E) =

1.9
ff, (2/,Q/,E) G, (z,Q,E;x!,Q, E") dx'dQ'dE’ (2-9)
D

where p represents the domain of all possible positions, directions, and energies.

This expression may be approximated with the discrete summation:

£;,,(z,Q,E)

N, Ng ¥y ' (1.10)
= ;ZEfi(r,,n,,,.E,,)AGm(r,Q.E)

1 m=1 n=1

where the full six dimensional space has beer divided into »_ spatial regions, Ny
intervals of solid angle, and N, cnergy intervals. The quantity, AG,,,(r,Q,E),
represents the total probability of scattering from the I* volume element, Az, the m®
element of solid angle, AQ,, and the n™ energy interval, A E,into the state, (r, Q, E) -
It is given by,

AG,,,(r,Q,E) =

1.11
f Gstep(r'QlEir’:QI:E')dIIdQIdE (1.11)

Ar, A0, &z,
The quantity, Ag,, (r,Q, E), depends only on the initial state, final state and the
manner in which the transport step is defined. Thus, Ag, (r,Q,E) may be

precalculated and stored for use in a variety of different calculations.
The expression (1.10) provides a prescription to calculate the distribution,
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£,.,(z,Q,E, provided the density, F (2. Q,E) is known. Recursive application of
the equation allows a complete ensemble of electrons to be transported in discrete steps
from a known initial state representing the incident electron beam to any desired step

number. The recursive application of (1.10) may be represented symbolically as,

Nyrep-1

ancm(r'Q'E) = H !.j. fi(r,Q.E) (1.12)

i=0

where Nyrep is the number of transport steps required and s ; Yepresents the operator that
“transports” the density, £ (r,Q, E) . a single transport step as defined by equation
(1.10). Equation (1.10) together with the definition (1.11) provide all the elements
necessary to calculate the transport of electrons in a scattering medium and thereby
deduce the dose distribution.

1.5 Thesis Structure

The basic premise of the work presented here is that, to achieve accurate dose
calculations in all situations of clinical interest, one must include all the physical
processes which contribute significantly to the shaping of the dose distribution (eg angular
scattering and energy-loss). The goal of this thesis is: (i) to elucidate the assumptions
underlying the commonly-used models of energy-loss and angular scattering by
formulating the various approaches with a single mathematical framework, and (ii) to
explore, from a theoretical point-of-view, the relative merits of the Monte Carlo and
evolution methods of transport calculations for use in radiation therapy dose calculations.

Chapter 2 (McLellan et al.,, 1994) summarizes various theoretical models of
electron energy-loss in dense media and "unifies” these models in a single mathematical
framework known as the compound Poisson process. It is demonstrated that the theory
provides accurate predictions of electron energy-loss for the conditions relevant to clinical
dose calculations. Chapter 3 provides an analogous discussion of the angular scattering
process. Here also, it is demonstrated that the compound Poisson process provides a
unifying mathematical framework for various models of electron multiple scattering.
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Chapter 4 reveals the mathematical relationship between the Monte Carlo and
evolution methods of electron transport calculations. By analyzing the convergence of
these two methods, the chapter demonstrates that the Monte Carlo method has an
advantage in "high-dimension” problems. As a result, a "dimensionally reduced"
evolution method (McLellan et al., 1992; Papiez et al., 1994) is introduced which treats
the transport of electrons in a medium as an evolution in depth (rather than time or path
length).

Finally, Chapter 5 summarizes the work of the previous chapters. Possible
extensions of the work are introduced and the elements necessary to realize a clinically

usable dose calculation algorithm are discussed.




Chapter 2. Physics of Electron Energy-Loss’

2.1 A Method for the Calculation of Energy-Straggling Spectra

2.1.1 Introduction

As fast electrons penetrate a scattering medium, they suffer discrete energy-losses
along their paths through two types of Coulomb interactions: collisions with atomic
electrons (ionizational energy-losses) and collisions with atomic nuclei (radiative energy-
losses). Due to the randomness in the number and size of these energy-losses, initially
monoenergetic electrons form a spectrum of energies after travelling some finite path
length, s. In the remainder of this paper, we will refer to this variation in energy-loss as
“energy straggling" and we will refer to the resulting distribution of electron energies as
the energy-loss spectrum.

Observed discrepancies (Rogers and Bielajew, 1986; Andreo, 1990) between the
original ETRAN Monte Carlo code (Berger, 1969) and other Monte Carlo codes have
highlighted the importance of energy straggling in electron beam dosimetry. Rogers and
Bielajew (1986) showed that depth dose curves calculated using the original ETRAN code
differ from curves calculated using other codes by 9% (surface dose) for a 20 MeV beam
incident on water. They also noted differences in calculated practical ranges of up to 6%
for 50 MeV electrons. Andreo (1990) also demonstrates these differences in calculated
depth dose curves and notes slight differences in calculated stopping power ratios (up to
1% for 50 MeV incident electrons). However, the differences in stopping power ratios
are quite small and Malamut et al. (1991) report differences of only 0.3% at 50 MeV (at
depths greater than 10 cm). The discrepancies in calculated depth dose curves have been
attributed (Rogers and Bielajew, 1986; Andreo, 1990) to the implementation of the
Landau straggling theory (Landau, 1944) in the ETRAN Monte Carlo code. A correction

“This chapter has been published as: McLellan J, Sawchuk S, Battista JJ, Sandison GA and Papicz
LS (1994) “A method for the calculation of electron encrgy-straggling spectra.” Medical Physics 21:
367-378
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(Seltzer, 1988) of the original ETRAN code to account for weaknesses in the

implementation of Landau’s theory has resulted in excellent agreement with measurement
and with other Monte Carlo codes (Seltzer, 1988; Andreo, 1990).

4 L] v L] L{

Dose per Fluence (Gy cm'® x10° %)

0 ] ; 10 ll.'x 20
Depth (cm)

Figure 2-1: The importance of Energy Straggling

Depth dose curves are shown for a broad, monoenergetic, monodirectional 30

MeV electron beam incident on a semi-infinite water phantom. The calculations

were done using the EGS4/PRESTA Monte Carlo code (a) including all

catastrophic events (AE=0.521 MeV and AP=0.01 MeV) and (b) using the

continuous slowing down approximation.

Our particular interest lies in the application of energy straggling to numerical
methods of electron beam dose calculation. To demonstrate the importance of energy
straggling, we used the EGS4 Monte Carlo code (Nelson et al., 1985) to calculate the two
depth dose curves shown in Figure 2-1. One calculation (a) included straggling by
simulating all "catastrophic events” (ie energy-losses greater than 10 keV) while the other
(b) neglected straggling by using the “continuous slowing down approximation” (csda)
(see also Rogers and Bielajew, 1988). The average energy lost to both bremsstrahlung
and ionization was included in the csda simulation. The depth dose curve calculated
using the csda (b) differs markedly from the more realistic depth dose curve (a). This
result indicates that methods of electron beam dose calculations intended for use in
treatment planning must include energy straggling to achieve accurate dose predictions.



25

Numerical methods of dose computation calculate the "evolution” of the
distribution of electrons (in position, direction, and energy) as they penetrate a scattering
medium. Although they do not explicitly include energy straggling, the familiar pencil
beam methods use measured (Hogstrom et al., 1981) or Monte Carlo (Lax et al., 1983)
data to include implicitly the effects of energy straggling. Other numerical methods
(Huizenga and Storchi, 1989; Morawska-Kaczynska and Huizenga, 1992; McLellan et al.,
1992; Papiez et al., 1994) "propagate” the distribution of electrons in multiple increments
of path length (or, equivalently, time). These methods rely on analytical models of
energy straggling to calculate the evolution of the energy-loss spectrum over each
increment. The accuracy of the numerical transport calculations depends on both the
validity of the analytical models of energy straggling and the size of the path length
increments.

This paper (1) discusses the assumptions inherent in currently available models of
energy-loss straggling and (2) investigates the propagation of energy-loss spectra over
multiple path length increments. We have found that existing methods for calculating
energy-loss spectra for small path lengths (Sec. 2.1.2) derive from a single statistical
model known as the compound Poisson process (Sec. 2.1.3). This "unified” description
helps to clarify the assumptions and limitations inherent in the existing methods. Sec.
2.1.4 presents a convenient and direct method of calculation based on the compound
Poisson process and fast Fourier transforms. Finally, Sec. 2.1.5 describes a method to
propagate energy-loss spectra over multiple path length increments.

2.1.2 Review of Current Energy-loss Models:

Several authors have made theoretical investigations of the energy straggling of
charged particles penetrating an absorbing medium (for short path lengths) and Bichsel
(1988) has categorized these straggling calculations into five basic methods:

1) Moments Method:

This method uses a finite number of moments of the energy-loss spectrum to

characterize the distribution of energy-losses. The first moment, or average

energy-loss, corresponds to the continuous slowing down approximation (ICRU,
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1984a). Inclusion of the second moment yields a Gaussian spread of energies and
comresponds to "Gaussian straggling" (Fano, 1963). A general moments method
which incorporates an arbitrarily large number of moments has also been
described (Kessaris, 1966; Kessaris, 1970). The work of Kessaris describes not
only the energy-loss spectrum but also the depth-penetration of electrons in a
homogeneous phantom.

2) Laplace Transform Method:
Laplace transformation of the "kinetic” (or "Boltzmann") equation that describes
the energy-loss process yields a first-order linear differential equation. Together
with an appropriate initial condition, this equation may be solved analytically
(Landau, 1944; Vavilov, 1957; Shulek et al., 1966) and the inverse Laplace
transform of the solution may be obtained numerically (Borsch-Supan, 1961).

3) Cenvolution Method:
This method approximates the energy straggling distribution using a finite series.
The n* term in the series represents the n-fold convolution of the single-collision
spectrum multiplied by the probability of an electron suffering n collisions
(Bichsel and Saxon, 1975) (the "single-collision” spectrum is the differential
energy-loss cross-section normalized to unity).

4) Monte Carlo Method:
In this method, individual energy-loss events are simulated by the use of pseudo-
random numbers which are used to sample the single-collision spectrum. A
random number of collisions is also generated and the individual energy-losses are
summed to yield the total energy-loss. By repeating this process many times, an
energy straggling distribution may be accumulated (Cobb et al., 1976; Ermilova
et al., 1977). We note parenthetically that both this method (ie analog Monte
Carlo) and the "condensed history” Monte Carlo method (eg ETRAN, EGS4) can
yield accurate results although the latter does nor simulate all individual
interactions. Instead, to model the "soft" portion of the energy loss, the condensed
history codes rely in part on analytical approaches to energy straggling as
described in methods (1), (2) and (2) above. Only catastrophic collisions (ie those
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above a preset threshold of energy transfer) are explicitly simulated.
5) Mixed methods:
The energy-loss spectrum is obtained from a convolution of multiple contributions
to the energy spread. The distributions for the contributing processes are
calculated using the methods listed above or using approximate methods. For
example, Williams (1929) separates the energy-loss process into "soft" and "hard"
collisions and approximates the soft collision energy-loss as a Gaussian straggling
(this is also the approach that we adopt below). In other examples, a Gaussian
function is convolved with Landau’s distribution (Landau, 1944) to include the
effect of the binding of the atomic electrons (Blunck and Leisegang, 1950; Hall,
1984). Matthews et al. (1981) include radiative interactions by convolving the
distribution given by Blunck and Leisegang (Blunck and Leisegang, 1950) with
a spectrum for radiative energy-losses.
We demonstrate in Appendix 2C that methods 1, 2 and 3 may be derived directly from
an underlying compound Poisson process’ (CPP, defined below) (Karlin and Taylor,
1981). Also, we show that the Monte Carlo method (method 4) is equivalent to a
compound Poisson process under specific conditions. Thus, the CPP serves as a unifying
theoretical framework relating these methods and, as discussed in the next section, it
relies on three basic assumptions. As a result, all the inethods summarized above must

rely on these same three assumptions.

2.1.3 The Compound Poisson Process (CPP) Formulation
The basic equation describing the energy-loss, A, for a given path length, s, is:

N(s)

A(s) = ; e, (2.1)
=1

Both the number of events, N(s), and the magnitude of the energy-losses, e,, are

"Kellerer (1969) recognized the connection between the CPP and the Laplace transform methods but
did not pursue the notion further.
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random variables. We assume that;

(i)  The individual energy-losses are all identically distributed according to a single-

collision spectrum, w® (e) , that does not change along the electron’s path as the

electron progressively loses energy (w™ (e) de represents the probability that, in
one collision, the energy-loss will lie in the interval [e, e+de] ).
(it) The energy-loss. .ents are mutually independent (implying that the order in which
events occur is not important).
(iti) The number of events in a given path length is Poisson-distributed.

Since the interaction cross section depends only on the energy of the penetrating electron
and the properties of the target, the first assumption is satisfied provided that the energy
loss of the electron is small. We might expect some discrepancies to arise in the tail of
the energy-loss spectrum where large energy transfers have occured, but these will not
affect the small energy-loss portion of the spectrum. Provided the first assumption holds
then the second assumption follows from physical arguments; there is no causal
connection between the energy loss in one event and the energy loss in any subseq, -
event. Finally, the third assumption follows from the observations that: (1) the probability
of a collision in an infinitesimally small path length increment is vanishingly small and
(2) the number of target atoms available for interaction in any macroscopic path length
increment is very large. Thus, the distribution describing the number of collisions in a
given path length increment may be interpreted as a limiting case of a binomial
distribution; the number of “trials” (ie the number of infinitesimal path length increments)
is large and the probability of "success"” (ie the probability of a collision) in each trial is
very small.

The assumptions stated above are precisely the three assumptions which define a
CPP (Karlin and Taylor, 1981). The probability density describing the overall energy-loss
given in equation (2.1) is well known from statistical theory (Karlin and Taylor, 1981):
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fgo(s'A) - fexp[-.ls(l_vaﬁ(p))]eizlp‘dp (2.2)

We note that (2.2) represents an inverse Fourier transform of the function

exp[-As(1-¢™(p))]. f£%(s,A)dA is the probability that, for an electron
travelling a fixed path length s, the energy-loss will lie in the interval [A,A+dA]. A

is the average number of collisions per unit path length and ¢ (p) is the Fourier

transform of the single-collision spectrum @™ (e) . The superscript E, indicates that the
electron started with total energy E,.

Electrons travelling long path lengths ir a scattering medium violate assumptions
(i), (ii) and (iii) since the energy lost along the path causes changes in the single-collision
spectrum. Thus, energy-loss straggling calculations based on the compound Poisson
process (ie the methods summarized in Sec 2.1.2) are valid only when the mean energy-

loss is small compared with the incident electron energy.

2.1.4 Development of a Numerical Method for Short Path Lengths

In this seciion, we develop a method for the calculation of energy-loss spectra
based directly on equation (2.2). The method is convenient for numerical calculations
because it uses the familiar fast Fourier transform and it allows the input of various
single-collision spectra. Also, the method includes both radiative and ionizational energy-
losses.

Exploiting ihe independence of energy-loss events, we ignore the order in which

the events occur and group energy-losses into three separate terms:

A(s) = A_,.(5) + A, 4(8) + A, 4(s) (2.3)
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N rels)
Als) = ¥ esoft (2.4)
=1
Nhaea!s)
Anals) = Y e (2.5)
=1
and
Nragls)
Arad(s) = E eiad (2.6)

i=1

These three terms represent the soft ionizations (and excitations), hard ionizations and

radiative energy-losses over . path lengui, s. The individual radiative energy-losses,

€529, are all assumed to be identically distributed according to a single-collision spectrum,  r54 (€)

(appendix 2B). Likewise, the individual soft and hard ionizational energy-losses,e°’*

and €7**?, are assumed to be distributed according to the single-collision spectra,

mi‘c’,ft (e) and wi},d(e) , respectively (appendix 2A). A cut-off energy, €,,,. separates

soft ionizations from hard ionizations. Specifically, soft ionizations lie in the range [e,;,,
€,0p)» While hard iomzations lie in the range {e,,,, €,,] and we choose e, to be
larger than the mean atomic binding energy so that hard collisions may be treated as
collisions between unbound electrons. The reason for the division between soft and hard
ionizations will be made clear below. The quantities N, ,,(s), N, (S), and
N;a.q(s) represent the number of radiative, soft ionizational, and hard ionizational
cnergy-losses, respectively, for a given path length, s. We assume that these are Poisson
random variables.

With these assumptions, the three components of energy-loss given by equations

(2.4), (2.5), and (2.6) are independent CPP’s. The corresponding energy-loss spectra,

ff{’,n (s,4). ff:,d(s, A) and ffjd(s, A) are given by equations analogcus to (2.2).
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To apply Equation (2.2), it is necessary to calculate the average number of collisions per
unit path length, A, and the Fourier representation, ¥ (p), of the single-collision

spectrum for each type of interaction (ie radiative, soft ionizational and hard ionizational).
Specifically, the average number of radiative energy-losses per unit path length is given
by

A‘md = nN'zrad (2‘7)

where ny, is the number of nuclei per unit volume of scattering material and I, is the

total radiative cross-section per nucleus (appendix 2B). Similarly, the average number

of soft and hard ionizations per unit path length are given by

A'sofl: = ne‘zsofc (2",

and

Apara = Ng'Zhyra (2.9)

respectively. n, is the number of target electrons per unit volume of scattering material
and T, and X, , are the total cross-sections per target electron for soft and hard

ionizations, respectively (appendix 2A).

.. . . . E , . .
Because the radiative single-collision spectrum, w ,4(€), is relatively "well

behaved"®, we can calculate its Fourier representation, 'Pf'.'.a( p) , directly using a fast

Fourier transform (FFT). lonizational energy-losses do not lend themseives to the same
direct approach since the single-collision spectrum for ionizational energy-loss events
increases rapidly as e becomes small and the number of sampling points required to
obtain an FFT over the full range of e is impractically large. This is our reason for

splitting ionizational energy-losses into soft and hard components. With a judicious

*The radiaiive single-collision spectrum increases with decreasing encrgy-loss but not as rapidly as
the ionizational single-collision spectrum. Also, the radiative spectrum used in the present work
incorporates a factor which brings the single-collision spectrum to zero for zero energy transfers (sce
Appendix 2B).
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choice of e,,,, a reasonable number of sampling points may be used to calculate

E,
h:rd(p) .
In the soft ionizational region (where the single-collision spectrum rises rapidly

with decreasing energy transfer), we will use the "moments method" to approximate the
energy-loss spectrum, f :gn(s, A) , for soft ionizations using the first two moments of
the spectrum. The first moment is simply the average energy-loss A, ., (s) given by,

Crap

Ksoft(s) = S'Asoft'fe'(l):gfc(E) de (2.10)
Cmin

The second moment is the variance of the energy-loss o2,;. (s) given by,

C'.p
Oore () = 8°hgor,” [ € Wi (€) de (2.11)
Cpin

Therefore, we approximate the energy-loss spectrum f::‘;ft(s, A) with a Gaussian

probability density:

-A 2
ffgft(S'A) = 2 ‘exp| - (a Azson(S)) (2.12)
vZROiofc(s) 2ogoft(s)

When e, is small and the average number of soft collisions, A_ ;. s, is large, equation
(2.12) will be a good approximation since A, ., (s) is accumulated through many smali
independent energy-losses (Gikhman et al., 1979; Karlin and Taylor, 1981) (ieA ;. (s)
approaches the "diffusional limit").

The three components of energy-loss are three independent CPP’s. It follows that

the total energy-loss spectrum, £% (s, A), is given by,

£5(5,A) = £, (5,A) *£55,4(8,A) * £r24(s,A) (2.13)
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where the symbol, =, indicates a convolution. Transforming (2.13) to the Fourier domain

yields,
6% (5,0) = & (S, D) “Bravals,P) $raals, D) (2.14)
where
0% (5.D) = exp[-2% (iB ;or, (8) P + WOZer(s) p?)]  (2.15)
¢I€:rd(slp) = exP[_A'hards(l _wioazd(p) )] (2.16)
and
dra(s,p) = exp[-A,,45(1-¥ (D)) (2.17)

The functions ¢§‘,’,ft (s,D), ¢f,:f',,d(s, p) and ¢f‘;d( s, p) are the Fourier transforms of

the spectra ff{’,n(s, A, fff;,d(s, A) and ff:d(s, A) , respectively. The method of
calculation, therefore, consists of evaluating the functions (2.15), (2.16) and (2.17) and

calculating the final energy-loss spectrum £™(s,A) from an inverse FFT of [2.14).

2.1.5 Propagation of the Energy-Loss Spectrum

As we have mentioned, numerical methods for electron transport calculations
propagate the distribution of electrons (in position, direction and energy) in small
increments of path length. In this section, we isolate the propagation of the energy-loss
spectrum so that it may be studied separately from the directional and positional re-
distribution of electrons. The separation of energy loss and angular scattering is
reasonable since the two processes arise from different types of interactions. Specifically,

energy loss results from electron-electron collisions and bremsstrahlung interactions wkile
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angular scattering results primarily from elastic nuclear scattering.

Consider an ensemble of electrons with an initial energy, E,, which have all
travelled a fixed path length s and which have acquired a spectrum of energy-losses
f%(s,A). We can use the Markov (Karlin and Taylor, 1981) property of the energy-
loss process to calculate the energy-loss spectrum £% (s+t, A) for an additional small
increment of path length, t. In particular, we make the approximation,

A

£5(s+t,A) = [£5(s,A) £5 (¢, A-A)) dA' (2.18)
[+]

where

E' = E,-A' (2.19)

The energy-loss spectra ££'(t, A) may be calculated for all "initial" energies E’ using

the method described in the previous section.

The relation (2.18) is only an approximation because we neglect changes in the
single-collision spectra, w®'/e), over the small path length interval, (s, s+t].

However, it can be shown that tue error associated with this approximation is of order

higher than ¢t (ie the error is of order o(t) and -9-%1 vanishes as t is made

infinitesimally small).

The relation (2.18) constitutes a transformation of the energy-loss spectrum,

% (s,A), and we adopt the following shorthand notation:
£P(s+t,A) =T, £f%(s,A) (2.20)

The transformation (2.20) provides a method to propagate the energy-loss spectrum
over a small increment of path length, t. Now let us consider propagating an energy-loss

spectrum over n small path length increments of size t, (i= 1,2,..,n). If we are

given a spectrum, f%(s,,A), at a path length, s,, then at a path length,
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S,= Sy+t,+t,+..+t,, we have,

£5(s,,A) =T, T, -.. T, £%(s,,4)

n (2.21)
= [I T, £5 (50, A)
i=1

Provided that all the increments t; (i = 1,2,..,n) are sufficiently small (ie
olty) _
i

0,i =1,2,..,n), the relation (2.21) gives an accurate representation of the

energy-loss spectrum even for a long path length, s .

Table I: The table summarizes the method of calculation for small pathlengths, s.

Step Explanation

1 Calculate the Fourier transform, wﬁ‘; ra { D) , of the single-collision

spectrum for hard ionizational energy loss, wﬁ,‘.,d (e).

2 Calculate the Fourier transform, § 5,4 (D) , of the single-coliision

spectrum for radiative energy loss, wf‘;d(e) .

3 Evaluate the functions ¢‘j?m (s,p), &r.4(s,p) and
$>,(s,p) as given by equations (2.15), (2.16) and (2.17)
respectively.

4 Multiply the functions &.5s(S,D). ®rag(S,p) and

Eo
b 20(s.D).
5 Take the inverse transform of the result of the muitiplication in

step 4 10 yield the energy-loss spectrum, £™ (s, A) .
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2.1.6 Method and Results

Table I summarizes the method of calculation for small path lengths described in
Sec. 2.1.4. To perform the fast Fourier transforms, we used the Cooley-Tukey algorithm
(Brigham, 1974) with 2'" to 2! sample points for both the forward and backward
transforms. We checked each calculation to ensure that increasing the number of sample
points did not significantly alter the calculated spectrum, thus confirming that any aliasing
artefacts were negligible. Since the electron energy spectrum must be zero for energy-
losses greater than the incident electron kinetic energy, T,, the Nyquist criterion

(Brigham, 1974) requires that the Fourier space representation of the spectrum be sampled

at intervals of —>-. Therefore, we sampled the single-collision spectra out to twice the
1]

incident kinetic energy (i.e. 2T,) to insure that the sampling in Fourier space was
adequate for the backward transform. Appendices 2A and 2B describe the cross-sections
which we used for ionizational and radiative interactions.

Preliminary calculations, done without radiative energy-losses, show the effect of
varying the energy, e,,,, that separates hard and soft collisions. To determine a
reasonable value for the parameter, e,,,, we calculated spectra for successively smaller

values of e We found, as predicted by the theory of stochastic processes (Karlin and

sep*
Taylor, 1981), that the calculated spectra converge to the correct spectrum as e,,, is
reduced (Figure 2-2). For the absorber, the energy and the path length shown in
Figure 2-2, an appropriate choice of €, is less than 0.05 MeV and for all calculations

presented below, e, was set to 0.01 MeV.
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Figure 2-2: The Effect of the Cut-off Energy

The effect of changing the cutoff energy, &,,,, is shown. Spectra were
calculated for incident 10 MeV electrons after travelling a path length of 1.0 cm
in water. The cutoff energies used were 0.01, 0.05, 0.1, and 0.3 MeV.
Radiative energy losses have been exciuded from the calculations (in this
example only).

Figure 2-3 shows the calculated spectra for 10, 20 and 30 MeV electrons travelling
1 cm in graphite (p=1.7 g/cm®) and 0.5 cm in aluminum (p=2.699 g/cm®) absorbers.
Spectra are shown both with and without radiative energy-losses and are compared with
the results of condensed-history Monte Carlo simulations. The Monte Carlo results were
generated using the EGS4 Monte Carlo code (Nelson et al., 1985) supplemented with the
PRESTA routines (Bielajew and Rogers, 1986). The user code was written to sample the
energy of a primary electron after it had travelled a given path length (Sawchuk et al.,
1992). The transport cut-off energies for photons (AP) and electrons (AE) were 0.010
and 0.521 MeV (total energy), respectively. We found that lower values for AE and AP
did not yield significantly different results (the insensitivity of the results to the choice

of AE is explained in Sec. 2.1.7). Any photons and secondary electrons which were set

in motion were immediately terminated. Primary electrons were followed until their total
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encrgy fell below 0.521 MeV (i.e. ECUT=0.521 MeV).

Lol . Graphite, 10 MeV
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Figure 2-3: Calculated Energy Loss Spectsa

Calculated spectra are compared with spectra obtained from EGS4 Monte Carlo
simulations. Data for 10, 20 and 30 MeV electrons travelling 1 cm in graphite
(density of 1.7 g/cm®) and 0.5 cm in aluminum (density of 2.699 g/cm®) are
shown. Circles indicate the Monte Carlo simulations, the solid lines indicate the
calculated spectra including both ionizational and radiative energy losses, and
the dashed lines indicate the calculated spectra with radiative energy losses
ignored (calculations were performed using a single path length increment).
The error bars for the Monte Carlo data are shown only where the size of the
error bar exceeds the size of the circle.

In order to propagate energy-loss spectra over multiple path length increments, the



39
transformation T, defined by (2.20) and (2.18) was discretized in a straightforward way:

F(s+t,A,) = ;F(S,AI) ER(E, A, ) [As-A, ] (2.22)
=]

where E;= E,~-A; and A;-A, , is constant for all increments, i. The path length

increment size, t, was held constant for all increments and the discretized spectra,
(¢, A,), were generated using the method of Table I for “incident" energies E,

(i=1,2,..,M) where M is the number of discrete energy-loss "bins". For energies, E;,

where the electron range (assuming continuous slowing down) was less than the path
length increment ¢, the function £5: (£, A) was set to zero for all A.

Figure 2-4 shows calculated spectra compared with results from Monte Carlo
simulations for 30 MeV electrons travelling various path lengths in graphite. The Monte
Carlo simulations were done in the same manner as described above. In Figure 2-4(a),
the calculations were done using the method of Table I directly (i.e. without using the
inethod of multiple path length increments). Figure 2-4(b) indicates the improved
agreement with the Monte Carlo results when the method of multiple path length
increments is used. Figure 2-5 shows calculations for various path length increment sizes

and demonstrates the convergence of the calculated spectrum as the increment size is
reduced.

2.1.7 Discussion

As outlined in Sec. 2.1.2, several methods exist for the calculation of electron
energy-loss spectra and each of these methods has advantages and disadvantages.
However, since each of these methods derives from a CPP, they are all subject to the
three assumptions which define a CPP (Sec. 2.1.3). It follows that these methods are
valid only for small path lengths where the average energy-loss is much less than the

incident electron energy.
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Figure 2-4: Calculated Energy-Loss Spectra for Long Path Lengths

Spectra are shown for incident 30 MeV electrons (Hgsm=8.812 cm) travelling
various path lengths in graphite (density of 1.7 g/cm®). The circles indicate the
results of an EGS4 Monte Carlo simulation, while the solid lines indicate the
numerical calculations described in the current work. In (a) a single path length
increment was used in the calculation of each spectrum. In (b) multiple path
length increments of 0.25 cm each were used.

The method of moments is useful when the average energy-loss is the quantity of
interest or when only a rough Gaussian approximation of the straggling is required.
However, as can be seen from Figure 2-1, the csda approximation (first moment) is
inadequate for the calculation of depth dose. Furthermore, an accurate calculation of an
energy-loss spectrum using the method of moments necessitates a large number of terms.

The Monte Carlo and convolution methods, on the other hand, can provide
accurate calculations of the energy-loss spectrum. However, in electron beam dosimetry,
we are often interested in situations where a large number of electron interactions occur.
The number of collisions suffered by a 10 MeV electron travelling 1 cm in water is of

the order 10°* collisions. To simulate each individual collision using the Monte Carlo




41
approach requires long calculation times. Also, the convolution approach would require
approximately 10° terms in the expansion with a numerical convolution required for each
term. Bichsel and Saxon (1975) report a method which greatly reduces the number of
required convolutions but, for the path lengths of interest in this paper, their method
would still require many numerical convolutions.

The Laplace transform method is more appropriate when the number of collisions
is large. Landau’s method (Lanuau, 1944), which is a Laplace transform method, is
particularly convenient. Landau expressed the energy-loss spectrum in terms of a
"universal function” (¢ (1) in his notation) which can be scaled for any given incident
electron energy or any given scattering medium. Therefore, the universal function, which
is given as a contour integral in the complex plane, needs to be calculated only once and
tabulated (Borsch-Supan, 1961) or fitted using known functions (Tabata and Ito, 1979;
Findlay and Dusautoy, 1980; Weinhous and Nath, 1984).

However, Landau’s universal function can be obtained only when the maximum
energy-loss for a single collision is extended to infinity (ie no upper limit of energy-loss
is imposed). This approximation makes little difference in the region of the spectral peak,

but it has serious implications for the tail of the distribution. In particular, as A becomes
large, Landau’s distribution asymptotically approaches £ /A2 where £ is a constant. This

implies that the energy-loss averaged over Landau’s distribution is infinite and, therefore,

non-physical:

[A£,(5,4)dA ~ » (2.23)
[«]

where £, (s, A) is Landau’s distribution for a given energy and scattering material. Any
arbitrary average energy-loss can be generated simply by imposing various upper limits
to the integration in (2.23). An a priori knowledge of the correct average energy-loss is
required to set the appropriate upper limit of the integration (Seltzer, 1988). Furthermore,
Landau’s theory is not applicable to calculations of restricted energy-loss straggling (ie

straggling due to soft collisions only).
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To remove the ambiguity in the average energy-loss, it is necessary to impose an
upper limit to the energy lost in a single collision. In this case, Landau’s universal
function is no longer valid and the inverse Laplace transform must be obtained
numerically for every incident electron energy, path length, and scattering material of
interest. These types of numerical calculations have been done successfully (Vavilov,
1957; Borsch-Supan, 1961; Shulek et al., 1966) and very fast methods of sampling the
calculated energy-loss spectra have been developed (Rotondi and Montagna, 1990).
However, we have chosen a different approach in this work for several reasons. The
method of calculation given here does not depend on the interaction cross section used
and allows various cross sections to be investigated. Also, the FFT used in the present
work is a well known numerical technique and allows efficient numerical calculations.

The calculation time for the method described in this paper depends only on the
number of Fourier sampling points used and is proportional to N-log, (N) where N is
the number of sampling points. For calculations on a Sun SPARCstation II with 2'*
sample points (as typically used in Figure 2-3), the CPU time was 220 seconds.
However, we have been quite strict in our choice of the number of sampling points and
the cut-off energy e,,,. The results of Figure 2-3(a) (2'* sampling points, e,,, = 0.01
MeV) change by no more than 0.5% in the spectral peak when only 2'* sample points and
an e,,, of 0.05 MeV are used. In this case, the cpu time is only 10.5 seconds. FFT
algcrithms which are faster than the one used here are available (Brigham, 1974). Also,
we have not taken advantage of the fact that two real functions can be transformed
simultaneously as fast as a single function (Press et al., 1988). These refinements could
decrease the calculation lime by a factor of two, but they remain for future work.

Figure 2-3 shows spectra calculated using our method compared with the results
of Monte Carlo simulations. The comparisons are shown for two tissue substitutes:
graphite, which is a soft tissue analog, and aluminum, which is a cortical bone analog.
The range of energies investigated (10 to 30 MeV) is relevant for electron beam
radiotherapy. The agreement between the calculated spectra and the Monte Carlo
simulations is very good. In fact, the discrepancies are within the statistical uncertainties
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of the Monte Carlo simulation (=1% in the region of the spectral peak). In agreement
with other investigations (Matthews et al., 1981). the results of Figure 2-3 indicate that
the most probable energy-loss (the position of the spectral peak) does not shift
appreciably when radiative energy-losses are neglected. Instead, the height of the spectral

peak increases while the tail of the distribution decreases since fewer large energy

transfers occur.

Table II: Stopping powers derived from the spectra of Figure 2-3 (*Calc") are compared
with values tabulated by the ICRU (“ICRU 377). The stopping powers are given

in MeV cm?/g.
—
B B (2
Medium and Energy P/ ion P/l rad Pl ot
Calc ICRU 37 Calc ICRU 37 Calc ICRU 37
Aluminum 10 MeV 1.6087 1.636 0.2903 0.2858 1.8990 1.921
Aluminum 20 MeV 1.6748 1.704 0.6420 0.6357 2.3168 2.340
Aluminum 30 MeV 1.7123 1.743 1.0123 1.003 2.7246 2.743
Graphite 10 MeV 1.719% 1.745 0.1547 0.1513 1.8738 1.896
Graphite 20 MeV 1.7872 1.816 0.3442 0.3417 2.1314 2.157
Graphite 30 MeV 1.8229 1.852 0.5444 0.5435 2.3673 2.396

RIS SR

By calculating the average energy-losses over the spectra shown in Figure 2-3 and
dividing by the path length, we can calculate the associated electron stopping powers.
In Table II, these stopping powers have been compared with values tabulated by the
International Commission on Radiation Units and Measurements (ICRU) in the ICRU
report 37 (ICRU, 1984b). This comparison scrves as a check on the first moment of our
calculated spectra. The calculated and tabulated values of total stopping power agree
within 1.2%. We have separated the stopping powers in table 11 into ionizational and
radiative components. It may be seen that most of the discrepancy in stopping powers
is due to differences in the ijonizational stopping power. Since the single-collision

spectrum used in the present work for ionizational energy-losses is of a particularly
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simple form (appendix 2A), the slight discrepancy in stopping powers is expected. The
ICRU report 37 (ICRU, 1984) uses the Moller cross-section which accounts for relativistic
and quantum mechanical effects (Evans, 1982). Since the focus of this paper is to
demonstrate the calculational technique, a simplified single-collision spectrum seemed
warranted. Indeed, the simple (Rutherford) cross section used in the present work is
<urprisingly close to the Moller cross section except for large energy transfers where the
differential cross section is very small. A more complex cross-section can be used if
greater accuracy is required.

As Figure 2-4(a) indicates, the spectra calculated using the method of Table I are
accurate only for small path lengths (the single-step spectra are accurate only for a path
length less than approximately 2 cm). The error for long path lengths results from
energy-loss along the electrons’ paths and from the concomitant changes in the single-
collision spectra. The energy dependence of the single-collision spectra leads directly to
the break-down of assumptions (i), (i1) and (iii) in Sec. 2.1.3. This difficulty is avoided
by "propagating” energy-loss spectra in small increments of path length, adjusting the
single-collision spectra at the start of each increment. Figure 2-4(b) shows the improved
agreement with Monte Carle simulations when calculations are made in small incremental
¢« « of path length. Th2 spectra calculated using path length increments of 0.25 cm
agree well with the Monte Carlo predictions even for patin lengths close to the end of the
electron range.

Figure 2-5 shows the effect of varying the path length increment size for 30 MeV
clectrons travelling 8 cm in graphite. Clearly, as the increment size is reduced, the
spectra converge (o a stable result. The spectrum corresponding to 0.5 cm increments is
only slightly different than that for 0.25 c¢cm increments and choosing path length
increments smaller than 0.25 cm does not significantly alter the calculated spectrum.
Thus, an increment size of 0.25 cm (or roughly 0.5 g/cm?) is sufficiently small to

guarantee accurate calculations over the full electron range for 30 MeV electrons in

graphite. Since energy-loss scales with density, 0.5 g/cm® is a suitable path length

increment size for any low atomic number absorber.
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Figure 2-5. The Effect of Varying the Path Length increment Size
Spectra are shown for incident 30 MeV electrons (R.5p,=8.812 cm) travelling 8
cm in graphite (density of 1.7 g/cm®). The spectra were calculated using the
method of multiple path length increments for increment sizes of 0.25, 0.5, 1.0,
2.0 and 8.0 cm.

To separate ionizational energy-loss into soft and hard components, we used the
fact that a CPP can be decomposed into two independent CPP’s (Karlin and Taylor,
1981). We then approximated the soft component of energy straggling with a Gaussian

diffusion process. The energy-loss e,,, marks the separation between soft and hard
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collisions and Figure 2-2 demonstrates a means of determining e,,,. Provided e, is

sufficiently small, the calculated spectrum does not depend much on the choice ofe,,,

(In Figure 2-2, the peak value of the energy-loss spectrum changes by only 1% and the
position of the spectral peak does not shift measurably when e,,, is reduced from 0.05
MeV to 0.01 MeV).

Let us consider in more detail the dependence of the calculated spectrum on e,,,,.

Using the ionizational single-collision spectrum given in appendix 2A, the variances may

be written

2

Osofe = A'(esep—e (2.24)

min)

and

Olara = A (€pay ~€ogp) = A'€pay (2.25)

where A is a constant dependent only on the path length, the incident electron energy and

the type of scattering medium. In all practical cases, the condition, €, > €4, Will

esep > min®

be satisfied and it follows that 03,,4>02,¢.. The total ionizational energy-loss spectrum
8

is given by a convolution of the soft and hard energy-loss spectra. Since the energy-loss

spectrum for soft ionizations, ffgfc(s,A) , i much narrower than that for hard

ionizations, ff:,d(s, A) , the convolution results in a shift of ff:,d(s, A) with little

ande_;

change in its shape. Indeed, ff;n (s, A) approaches a Dirac delta function as e

sep

approach zero. Furthermore, the shift (which is equal to the mean soft ionizational

energy-loss, &) depends only logarithmically on e,,,.

The separation of ionizational energy-losses into soft and hard collisions is a
familiar concept in condensed history Monte Carlo codes (Andreo and Brahme, 1984,
Nelson et al., 1985). In the EGS4 code (Nelson et al., 1985), the transport parameter, AE,
is analogous to €., and we noted in Sec. 2.1.6 that the EGS4 results were not strongly

dependent on the choice of AE (provided AE is sufficiently small). We might expect this
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since equation (2.24) predicts small values for 62,,, and implies that the fluctuations in

soft ionizational energy-losses do not contribute appreciably to the overall energy
straggling. Thus, EGS4 achieves accurate results despite using the continuous slowing

down approximatica for soft collisions.

2.1.8 Summary and Conclusions

Many numerical methods of electron transport calculations use analytical theories
of energy straggling and several such theories appear in the literature. We demonstrate
in the present work that all these theories derive from an underlying compound Poisson
process (CPP) and, therefore, depend on the assumptions which define a CPP. Using the
properties of a CPP and the fast Fourier transform (FFT), we have developed a
calculational method which is convenient for use in situations where the number of
collisions is large. Spectra calculated using this method agree with EGS4 Monte Carlo
simulations within the statistical error of the simulations (=1% in the region of the
spectral peak). Also, stopping powers derived from the calculated spectra agree within
1.2% with values tabulated by the ICRU (1984). Using our method of calculation for
small path lengths, we have investigated the propagation of energy spectra over multiple
path length increments. For low atomic number absorbers, 0.5 g/cm’ path length
increments are necessary to guarantee accurate calculations of energy-loss spectra over

the full electron range.
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Appendix 2A: The Single-Collision Spectrum for Electron-Electron
Collisions

The binding of the target electron to the atom complicates the form of the
differential energy-loss cross-section for electron-electron collisions (eg see Hall, 1984).
) and soft (e<e

We divide electron-electron collisions into hard (e>e ) collision

sep sep

regions and consider the hard collision region first.
If €,5,> 1 where I is the mean ionization potential for the medium, then the
target electrons behave as though they were unbound. This condition is satisfied in our

calculations since e is 10 keV, whereas I is a fraction of 1 keV for most media

sep
(0.078 keV for graphite). Evans (1982) cites Bohr as the source of the following
differential energy-loss cross-section for an incident electron colliding with a free

stationary electron:

(A1)

99in(€) = 2nmc*r, 1
de nT+2) ¢

where T is the ratio of the incident electron’s kinetic energy to its rest energy, mc?,andr,

is the classical electron radius (2.818x10"* m). To account for the indistinguishability of

the incident and target electrons, the upper limit of energy-loss is set to half the kinetic

energy of the incident electron (ie e, = mc2T/2).

The single-collision spectrum, wf‘;,d (e) , is related to the differential energy-loss

cross-section, do, /de, by

1 .dom(e)
mﬁd(e) =T de

’ e_<es<e
i o (A.2)

0, otherwise

where the cross-section is calculated for the incident total energy, E, = mc?(T+1) ,andZ,, ,

is the total cross-section for hard collisions obtained by integrating do,,,/de frome,,,
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to €,,,-
Consider now the soft collision region, e <e,,,. For the moment, we ignore the
difficulties introduced by the binding of the target electrons and we apply the differential

cross-section (A.1) to the soft collision region. Therefore, the single-collision spectrum,

m':‘;n (e) , for soft collisions is given by,

1 .dom(e)
03,(6) = znﬁ de

Cpin SESE, A

0o, otherwise

where the cross-section is calculated for the incident total energy, E, = mc? (T+1) ,andZ

soft

is the total cross-section for soft collisions given by integrating do ;. /de from e, to

min
€q0p-

The neglect of binding and screening effects is, obviously, an approximation and
the form of the single-collision spectrum is more complicated than equation (A.3) would
indicate (see Hall, 1984). We can at least obtain the correct average soft ionizational

energy-loss by choosing e, as,

r

et (o]
e, = ——— exp|l-| —| |-exp(d) )
T o meT(T+2) p. T+1 g

where 8 is the density effect correction as tabulated in ICRU report 37 (ICRU, 1984).
Except for the inclusion of the density effect correction, this value of e, is the same
as that used implicitly by Landau (1944). The use of a more exact cross section would
negate the need to choose e, . However, for the path lengths and media investigated in
this paper, the soft ionizations do not contribute appreciably to the over-all energy
straggling and the use of a more complicated cross section is unwarranted.

We note at this point that (A.3) does not account correctly for the variance of soft

energy-losses and the binding of the target electrons tends to broaden the energy-loss
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spectrum (Blunck and Leisegang, 1950; Shulek et al., 1966; Hall, 1984). Ifw¢s,, (€)

is the "true” single-collision spectrum which allows for the binding of the target electrons,

the correct variance of soft energy-losses is given by,
S
Oty = $°hyn, [P0 (e (A5)
0

where A, ., is the true number of soft collisions per unit path length. It can readily be

shown that a%,,, can be written as the sum of two terms, 03,.. and 03;,4in0- O20rt

is the soft collision variance as given by (2.11) and af,i,,di,,, is given by

s E [
hoa * S [ O[22 T Sifhe 4D

This last quantity represents the increase in energy-loss variance due to the binding of the
target electrons. It has been calculated by direct numerical integration (Hall, 1984) and
by approximate methods (Blunck and Leisegang, 1950; Shulek et al., 1966) and found to
have an impact on the final energy-loss spectrum only when the path length is small or

the atomic number of the absorber is high. Inclusion of af,mdi,,, represents only a very
small correction for the path lengths and atomic numbers investigated in the present work

and 0};,4:ng has been set to zero. It should be noted, however, that the effects of

binding can be incorporated into our calculational method by replacing o2 ;. witho?,,,
in equation (2.12).
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Appendix 2B. The Single Collision Spectrum for Radiative Interactions

The differential radiative energy-loss cross-section which we use for the

calculations in the present work is a modification of the cross-section given by Schiff
(1951):

dond®) _ 2Z%r, [E§+E’ H)-(wu)n-m")

de P e 2 3
E Fo (A.7)
. E[2In(1+b% , 4@-bYarctand _ 8 2
E, b? 3b} 3 9
where
, . 2BEZ (A8)
C 'mct-e
-1
= (A9)

wot 2]
2EE ) c

C is a dimensionless constant with the value i11, the energy of the scattered electron is
E = E,-e, Z is the atomic number of the target nucleus, ar * « is the fine structure
constant. As suggested by Nelson et al. (1985), we have multiplied the cross-section by
the factor F,, which was derived by Migdal (1956). This factor is given by,

a2g2 -1
1 + M (Aclo)
ne?

F, =

where A, is the Compton wavelength for an electron. The factor (A.10) prevents the

cross-section from diverging at small energy transfers, €.

The single-collision spectrum is related to the differential cross-section by
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1 do, [€)
de ]

O<esxe
(,)E"a(e) = zmd -

(A.11)

0, otherwise

In this case, the maximum allowable energy transfer, €, ., is the kinetic energy of the
incident electron. The total radiative cross section, L, ,,, may be calculated by

numerically integrating do,,,/de from O to €,,, .
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Appendix 2C. Relationship of Other Methods to the CPP

In this appendix, we show that the methods of moments, Laplace transforms, and
convolution can be derived directly from equations (2.1) and (2.2) which define a CPP.
Also, we discuss the conditions under which the Monte Carlo method is equivalent to a
CPP. We will deal with a "generic" single-collision spectrum, w (e), since the
discussion can be applied to both radiative and ionizational energy-losses. For
convenience, we drop the superscript, E,, and we assume that all mathematical operations
and series expansions used are well-defined and convergent.
Moments Method:

Expanding the Fourier transform, ¥ (p) , of the single-collision spectrum, w (e) ,

in a Taylor series about p=0 yields,

. v ¥ . (A12)
() )__:o P

where ¢ ™ (0) is the n™ derivative of ¥ (p) evaluated at p=0. These derivatives are

related to the moments of w (e) by,

¥"(0) = (-i2ny"'m, (A.13)

where m_ is the n™ moment of w(e). Substituting equations (A.13) and (A.12) in
n

equation (2.2) gives

fis,A) = fexp lsi .(%:‘)'mn.pu 28 dp (A.14)

It may readily be shown that neglecting terms of order p2 and higher in the exponent
gives a Dirac delta function centred on the average energy-loss, A = Asm, (the first
moment of £(s,A)). This represents the continuous slowing down approximation

(ICRU, 1984a). Alternatively, neglecting terms of order p? and higher gives a Gaussian
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spectrum with mean A and variance, 02 = Asm, (the second central moment of

f(s,A)).
Laplace Transform Method:
Taking the Fourier transform of (2.2) yields,

d(sp) = exp(-As(1-¥())] (A.15)

Differentiating both sides with respect to s and taking the inverse Fourier transform

yields,

& _, o) - :
= f. w(e)fis,A -e) - fis,A) de (A.16)

(we have used the normalization condition f @ (e) de = 1 and the convolution theorem).

Equation (A.16) is the Boltzmann (or kinetic) equation describing the electron energy-loss
and is the starting point for the Laplace transform methods (Landau, 1944; Vavilov, 1957;
Shulek et al., 1966). In the literature, the factor A is often "absorbed" into the single-
collision spectrum, w (e) .
Convolution Method:

By factoring out e ** on the right hand side of equation (A.15) and expanding

the remaining exponential in powers of As ¢ (p) , it may be shown that,

ind N, ~AS
tep) = ¥ ALy A7

n=0

Taking the inverse Fourier transform of (A.17) yields,

fis,A) = i“ Qo e w(A)*" (A.18)
B0 n!

where
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w(e)™ = f w(e-€)  w(e) *® Vde

- (A.19)
w(e)*? = 8(e)
w(@* = w(e)

Equations (A.18) and (A.19) are the basis of the convolution method (Bichsel and Saxon,
1975; Bichsel, 1988). The factor (As)? e 25/n! is equal to the probability of an
electron suffering n collisions (assuming Poisson statistics). Therefore, the n™ term in the

series (A.18) represents the n-fold convolution of w (e) with itself multiplied by the

probability of having n collisions.

Monte Carlo Method:

In the Monte Carlo method, individual energy-losses are simulated and summed
to give the total energy-loss of an electron travelling a certain path length. This
procedure is expressed mathematically in equation (2.1). Provided the energy-losses are
"sampled" from the same single-collision spectrum for each energy-loss and the number
of energy-iosses is “sampled” from a Poisson distribution, the Monte Carlo procedure is
(by definition) a CPP. Under these conditions, the energy-loss spectrum calculated using
the Monte Carlo method will converge (for a large number of simulated electrons) to the
same energy-loss spectrum calculated using any one of the above methods. Monte Carlo
codes normally sample the length of the free path between successive collisions rather
than sample the number of collisions directly. However, if the same exponenial
distribution is used to generate all free paths, then this procedure is equivalent to sampling

the number of collisions from a Poisson distribution.



Chapter 3. Physics of Electron Angular Scattering

3.1 Introduction

As electrons penetrate a dense medium, they change their direction of travel
frequently through collisions with atomic nuclei and, to a lesser extent, through collisions
with orbital electrons. Because angular scattering is a random process, electrons which
all start with the same direction of travel will acquire a spread of directions after
travelling some fixed path length. Since the angular history of an electron determines its
spatial trajectory”, an accurate calculation of the spatial distribution of dose necessitates
an accurate theory which describes the muitiple scattering of electrons in solids.

Chapter 2 introduced the compound Poisson process (CPP) formulation of electron
energy-loss. In close analogy with Chapter 2, this chapter introduces the CPP description
of angular scattering (sec also Ning, 1994) and investigates its accuracy for situations of
relevance to the calculation of therapeutic electron beam dose distributions. Also, we
highlight the close mathematical relationship between the energy loss process and the
angular scattering process.

Given tlie scattering cross section for a single collision, multiple scattering theories
aim to describe the angular distribution of electrons which suffer numerous interactions
over a fixed path length. Goudsmit and Saunderson (1940) and Lewis (1950) present a
general theory of electron multiple scattering. The theory makes only one assumption,
namely that the energy-loss of the electrons is negligible over the path length considered.
The theory does not restrict the form of the angular scattering cross section or the range
of allowable angles. However, Goudsmit and Saunderson’s expression for the multiple
scattering distribution takes the form of a series of Legendre polynomials and, in its

original formulation, the series converges very slowly for small path lengths. By

“The spatial and angular trajectories of an electron are related by,
r(s) = ]‘Q {s’)ds’
where s represents the path length travelled, .l.'(s)o is the position, and Q (8) is the direction of travel.
56
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separating out terms representing the un-scattered and once-scattered eclectrons, the
convergence of the Goudsmit-Saunderson series improves for small path lengths (Berger
and Wang, 1988).

Moliére presents a less general multiple scattering theory (Moligre, 1947: Moliére,
1948; Bethe, 1953) which is valid only for small cumulative scattering angles and a
sufficiently large number of collisions (greater than 20). The multiple scattering
distribution at small angles depends only on a characteristic screening angle (y, in
Moliére’s notation) and not on the particular form of the scattering cross section. At large
angles, the distribution approaches the well-known Rutherford scattering cross section.
Moliere’s theory does not apply to the case of very shori path lengths (ie to single or
plural scattering). However, Biclajew (1994) has recently reformulated Moliére's theory
to remove this restriction.

Bethe (1953) has confirmed that, fo. small angles and a sufficiently large number
of collisions, the Goudsmit-Saunderson series reduces to the expression given by Moliére.
If we further assume that the number of collisions approaches infinity while the size of
individual angular changes approaches zero, the angular scattering process becomes a
diffusion process and the angular distribution approaches a Gaussian function. The
Fermi-Eyges transport theory (Eyges, 1948; Rossi, 1952), which is central to many pencil-
beam dose-calculation methods, relies intrinsically on this Gaussian scattering model.

Section 3.2 of this chapter summarizes the CPP formulation of electron multiple
scattering and demonstrates the mathematical equivalence to the Goudsmit-Saunderson
theory. Section 3.3 goes on to compare angular scattering distributions calculated using
the CPP formulation with measurcd data and EGS4 Monte Carlo simulations. Emphasis
is placed on situations of relevance to the calculation of electron beam dose distributions.

Using the CPP formulation, Section 3.7 helps to clarify the concept of the "angular

scattering power” and its application to the Gaussian scattering approximation.
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3.2 The CPP Formulation of Multiple Scattering

3.2.1 Distribution for a Fixed Number of Scattering Events

In Figure 3-1, an electron travelling initially with direction Q, scatters by an anglee,
and azimuth ¢, relative to Q,. After the scattering event, the electron has a new
direction of travel, 2,. The change in directionis AQ, = Q, -Q,. If the electron were
to scatter a second time with a change of direction AQ,, then the new direction would
be given by Q, = Q, +AQ,. In general, the direction of travel after the n™ collision is

given by the vectorial sum,

Q,=Q,+) AQ, (3.1)
1=]1
1
1. - Surface of
\& Sphere

Figure 3-1: Spherical Geometry for Angular Scattering

An electron scatters from a direction, Q,, to another direction, Q,. Both
directions may be represented by points on a sphere of unit radius. The
scattering angle, a,, is the angle between the two directions, Q, and Q,. The
scattering azimuth, ¢,, is the angle formed between two arcs on ths: surface of
the sphere: one arc connecting the points ©, and Q, and the other arc
connecting £2, with the z-axis.

This last equation describes the angle of travel after exactly n collisions. Since the
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outcome of any single scattering event is random, the direction, Q ,,. is a random variable.
The random variable, Q , is described by an appropriate conditional probability
density which specifies the probability per unit solid angle that an electron will acquire
a direction, Q . given that it started with a direction, Q,, and suffered exactlyn
collisions. Since the angular scattering cross section is symmetric about the initial
direction of travel, these probability densities will be rotaticnally symmetric about the
direction, Q,.
The probability density which describes the case of no collisions (ie n=0) is given
by the “angular" Dirac delta function’, 8,(Q-Q,). where the quantity, Q-Q,,
represents the scalar (or "dot") product of the two vectors. In other words, electrons

which have not scattered remain in the direction, ,. The probability density describing

the case of one collision (ie n=1), 0% (Q-Q,) . is the differential angular scattering cross

section normalized such that its integral over all directions is unity. The superscript, Q,,
denotes the axis of symmetry (ie the initial direction).

The probability densities corresponding to more tharn one scattering event (ie n>1)

will be denoted by @ (Q-Q,) *". The use of the superscript, " *n", is explained below.

These probability densities may be generated using the recursion relation,

on (Q.Qo) mn . fwﬂl(g,gl) mﬂo (Q/.ﬂo) *(n-1) A0/ (3.2)
4x

with
0% (00" = 85(QL,) (3.3)

The relation (3.2) results from the following intitive argument. The quantity,

“By definition, the angular Dirac delta function satisfies the relation,

[8a100,) gt0) da = g(Q,)
w

for any choice of neighbourhood, @, of the point, Q,, and continuous function, g () .
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0% (Q/ Q,) 7737, represents the probability per unit solid angle that, in n2-1 collisions,
an electron will scatter from a direction, Q,, into an intermediate direction, Q’. The
quantity, w2 (Q-Q’) , represents the probability per unit solid angle that an electron will
scatter from the intermediate direction, Q’, to the final direction, Q, in one additional
scattering event. Multiplying the two together gives the probability per unit solid angle
that an electron will scatter from Q, to Q via the intermediate direction, Q. Finally,
summing (ie integrating) over all possible intermediate dircctions yields the desired
probability density, % (Q-Q,) .

The relation (3.2) has a form analogous to a convolution. Thus, 0% (Q-€,) *?

is the n-fold "spherical convolution” of W (Q-Q,) with itself (hence the use of the
superscript, " *n"). This approach assumes implicitly that all the scattering events,
AQ,, i=1,..,n areidentically distributed (ie the scatiering cross section is the same

in each collision).

3.2.2 Distribution fer a Fixed Path Length

The relation (3.2) gives the angular distribution of elcctrons which have scattered
exactly n times. However, in any fixed path length, s, the number of angular scattering
events is a random variable. Assuming that the number of scattering events is Poisson
distributed, then the fraction of electrons which scatter exactly n times is (As) "e-*5/n!
where A tepresents the average number of scattering events per unit path length. If the

scattering events are independent, then we may sum the probability densities,

T (Q-Q,) *", with the appropriate weights for all possible values of n to obtain the

probability density, £ (s, Q4Q,), describing the angular distribution of electrons for

a fixed path length, s. ie
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f°°(S.Q‘Q°) = E ﬁf_}z_f_:f_:i 'w°°(0'ﬂo) en (3.4)

n=0

This last expression gives the probability per unit solid angle that an electron will change
its direction of travel from Q, to Q in the course of travelling a path length, s.

The following summarize the assumptions made in the derivation of Equation

(3.4):
(i) the scattering events are independent,

(ii) all scattering events are identically distributed, and

(iii) the number of events in a given path length is a Poisson random variable.
These are precisely the assumptions which define a compound Poisson process (see
Chapter 2). "n fact, equation (3.4) is completely analogous to the convolution method for
the calculation of the energy-loss distribution described in Chapter 2 (see Appendix 2C,
Equation A.18).

The CPP expression (3.4) for the angular scattering distribution provides a
convenient means to calculate the angular distribution for short path lengths since only
the first few terms of the series make a significant contribution. However, in the case of
long path lengths, the number of terms required is excessive; the number of terms
required is of the order of As (ie the average number of angular scattering events). Ning
(1994) has shown that accurate and practical calculations may be performed by splitting
the angular scattering process into small and large angle regimes in a 'nanner analogous
to the division between "soft” and "hard" energy-loss events presented in Chapter 2.
Small angle scattering is treated as a diffusion process (which is Gaussian for small
cumulative angles of travel) and the CPP series is used to calculate the contribution from
the few large-angle collisions.

Instead, this chapter uses the expression,
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% (s,0Q,) =

- ) (3.5)
;: 211 oxpl-As(1-a) ] P, (Q-Q,)
% 4=n
where
(1) _ Q
a; = fm °(Q-Q,) P, (Q-Q,)dQ (3.6)
4n

is the i* Legendre polynomial, P, (Q-Q,) , averaged over the normalized cross section, w % (Q-Q,)

(ie al¥ =(P; (Q-Q,) )1). Appendix 3C demonstrates that Equation (3.5) is completely

1

equivalent to the expression (3.4). However, (3.5) has the advantage of faster

convergence for large path lengths.

In the special case where the electrons travel initially along the z-axis (ieQQ, =k
where k is a unit vector lying along the z-axis), Equation (3.5) reduces to the familiar

expression given by Goudsmit and Saunderson (1940):

£y(s,0) = £¥(s,Q%)

(3.7)

2 2;1;1 e—ls(l—<P,(cosO)>,)Pi(cose)

i=0

where 0 denotes the scattering angle with respect to the z-axis and P, (cos@) are the

Legendre polynomials.
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3.2.3 Analogy with Electron Energy-Loss

Table 3.1: The mathematical formulation of electron energy loss straggling is
compared with that of angular scattering. Both processes are described using
a CPP formalism.

Quantity Energy-Loss Straggling Angular Scattering

Random Variable E Q

Relative Variable A =E-E Q-Q,

| Probability density for @ (A)*n ©%(Q-Q.) "
: fixed number of 0
interactions

| Probability density for £ (s, A) £% (s, Q-Q,)
I fixed path length °

CPP formulation = (As)e*s & )
(convolution form) ,§ Y ©™(4)™

CPP formulation - . |
(alternate form) fe"“"l-t (P) gi2np8 dp,

The CPP formulation of multiple angular scattering is completely analogous to the
description of electron energy-loss given in the previous chapter. Table 3.1 lists the
corresponding variables and expressions in each of the two formalisms. In the last row

of Table 3.1, the energy-loss distribution is written as a superpostion of the basis

functions, ei2"P4  (je as a Fourier transform) while the angular distribution is written as

a superpostion of the basis functions,

21;1 P,(Q-Q,). Intke case of electron energy-

loss, the superposition takes the form of a continuous integral since only the boundary
condition at E=0 needs to be specified. In the case of angular scattering, the
superposition takes the form of a discrete sum since directions are defined only on the
surface of the sphere and the distribution of directions must satisfy periodic boundary

conditions.
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From a mathematical standpoint, only two differences exist between angular
scattering and electron energy-loss: (i) the direction of travel is described by a two-
dimensional vector while the energy loss is described by a one dimensional scalar, and
(ii) the direction of travel is defined only for a finite space which corresponds to the

surface of the unit sphere while electron energy is defined for the infinite interval [0, ).

3.3 Method of Calculation

This section provides details of the CPP formulation of the multiple angular
scattering process for situations relevant to the calculation of therapeutic electron beam
dose distributions. Angular distributions are presented for monoenergetic,
monodirectional electrons which have passed through a uniform slab of scattering
material. To validate the calculated angular distributions, comparisons are made both
with measured angular distributions (Hanson et al., 1951) and with EGS4 Monte Carlo

simulations.

3.3.1 Evaluation of the Series (3.5):
The angular scattering distribution is given by the series (3.5). In the calculations

presented below, the initial direction of travel will coincide with the z-axis so that the

expansion coefficients, a;'’, are given by Equation (C.2). The coefficients were

calculated numerically using a trapezoidal numerical integration technique (Press et al.,
1988) and the Legendre polynomials were generated using the procedure described by
Press et al. (1988). The discrete bins used in the numerical integration were concentrated
at small angles where the single-collision cross section changes rapidly. The calculations
used the Mott angular scattering cross section with a screening correction to account for
the effects of orbital electrons (Appendix 3B).

Even for the shortest path length considered here, the series converged at small
angles (less than one radian) with at most 1000 terms. However, the convergence of the
series is slow at very large angles. Fortunately, the number of electrons scattered into

large angles is negligible (at least for our purposes) when the path length is small. In the
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case of 15.7 MeV electrons passing through a 0.001 cm thick gold foil, 1000 terms in the

series provides complete convergence at all angles up to | radian. The number of

electrons at this angle is already 6 orders of magnitude less than the number of forward-

directed electrons.

3.3.2 Absorbers Containing More than One Atomic Species:

In cases where the scattering medium contains more than one atomic species, the
angular scattering process is assumed to be a superposition of independent processes
which represent the scattering contributions from each of the atomic species (Karlin and
Taylor, 1981). For n, different atomic species, the series (3.5) becomes (assuming the
initial direction of travel is along the z-axis),

(1)

ng
- : -8y A,(1-a ,,,))
fk(s,cos0) = 3—5—;—19( =l ‘ P, (cos6) (3.8)
=0

where A, is the average number of collisions with the m" atomic species per unit path

length and a/') is the i expansion coefficient for the m™ atomic species given by,

all = 2ufw,‘,‘,(cosﬂ) P, (cos®) sinBd0 (3.9)
V]

wX(cos0) is the normalized single collision cross section for the m” atomic species.

3.3.3 Energy-Loss Correction

The CPP formulation of electron multiple scattering assumes that all angular
scattering events are identically distributed. However, electrons passing through a
relatively thick slab may lose a significant portion of their initial energy. Since the
angular scattering cross section is energy dependent, the single-collision probability

density, w® (Q-Q,) , will change slightly along the electron’s path. In the calculations

presented below, the average energy-loss was estimated to be S, (E,) Az where
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S,,. (E,) is the total stopping power calculated at the incident electron energy, E,,andA z
is the thickness of the slab of scattering material. The scattering cross section was then
calculated for the average electron energy in the slab which is given approximately by
Ey-S,,.(E,) Az/2. This approximation is valid since the stopping power remains

nearly constant along the electron’s path except near the end-of-range.

3.3.4 Path Length Correction

On average, the true path length traversed by the electrons is greater than the
thickness of the scattering slab. If the average angle cosine for electrons penetrating the
scattering slab is <cos@>,,, then the thickness of the slab, Az, and the electrons’

average path length are related approximately by,

Az = s<cos®>,, (3.10)

To calculate the path length, s, for a given slab thickness, A z, we require an expression
for the average angle cosine, <cos@>,,. Note that cos@ is just the first Legendre
polynomial, P, (cos0). Note also that the averages of the Legendre polynomials,
(P;(cosB)) 5 for a given path length, s, are given by,

(Py{cos®)) = 21tfP1(cosﬂ)f"(s,cosﬂ)sinﬂdﬂ (3.11)
0

(assuming that the electrons travel initially along the z-axis). Inserting the series (3.5) in

this last expression and using the orthogonality of the Legendre polynomials, we find,

(P,(cos®)) = exp(-Ais(1-a;")) (3.12)

If we approximate the average angle cosine, <cos@>,,, by the average of P, (cos0)
at a point mid-way through the scattering slab (ie at Az/2), then the electrons’ average
path length through the scattering slab is,
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s = exp(A% (1-a'"")) Az (3.13)

This "path length correction” was applied to the calculated angular distributions given
below.

3.3.5 Characteristic Screening Angle

The angular scattering cross section incorporates a “characteristic screening angle”
to account for the screening effects of the orbital electrons. The calculated multiple
angular scattering distribution can vary significantly depending on the choice of this
screening angle. Rossi (1952), Jackson (1962), and ICRU (1984a) give a screening angle
which under-estimates the screening effect and therefore gives angular distributions which
are too broad compared with experiment. The present work uses the more accurate
screening angle given by Moliére (see Bethe, 1953). Nigam et al. (1959) give an even
more accurate expression for the screening angle, but Moliére’s expression was found to

be sufficient for all the cases investigated here.

3.3.6 EGS4 Monte Carlo Simulations

To assess the accuracy of the calculational technique described above, we wrote
a user code (called "FOIL") for the Electron Gamma Shower (EGS4) Monte Carlo
system. The user code simulates the scattering of electrons in a uniform slab of material.
The angular distributions of primary and secondary electrons (or delta rays) were scored
separately and, in all cases, the secondary electrons gave a negligible contribution to the
angular scattering distribution at small angles (even for a delta ray production threshold
as low as AE=0.512 MeV which corresponds to a kinetic energy of 0.00i MeV).
Therefore, the Monte Carlo data presented below includes only primary electrons.

For the simuiation of low energy electron transport, EGS4 allows the user to fix
(in subroutine FIXTMX) the maximum fraction of an electron’s kinetic energy which may
be lost in one transport step (ESTEPE). Preliminary calculations were done with various
values of ESTEPE. For high atomic number materials (eg gold), an ESTEPE of 0.3%
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was required while, for low atomic numbers (eg water), an ESTEPE of 1.0% was
adequate.

The other EGS4 parameter of interest (AE) determines the division between "soft"
collisions (energy transfer less than AE) and catastrophic collisions (energy transfer
greater than AE). EGS4 "double counts” the angular scattering due to electron-electron
collisions (Wermer et al., 1994) and, for small values of AE, EGS4 over-estimates the
angular scattering of elect-ons. This effect is especially important in low atomic number
materials. The calculations presented below used an AE of 0.911 MeV (total energy) and
showed no strong dependence on AE when the value was reduced to 0.711 MeV.

3.4 Results

3.4.1 Comparison with Measured Data

Since Monte Carlo simulations will serve as a comparison for the calculated
angular distributions, some validation of the Monte Carlo calculations was necessary. To
this end, this section compares published measurements (Hanson et al., 1951) both with
data from the Monte Carlo simulations and with our calculated angular distributions.

Figure 3-2 shows the comparison of the measured, calculated, and Monte-Carlo-
generated data for a gold foil approximately 0.001 cm thick. Figure 3-3 makes the same
comparison but for a foil of twice the thickness.

The agreement between the measured data, calculated distributions and Monte
Carlo simulations is excellent in the case of the thin gold foil. In the case of the thick

gold foil, both the CPP calculation and the EGS4 simulation under-estimate the forward-

scattered intensity by about 2%. However, the agreement at larger angles is excellent.
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Figure 3-2: Angular Scattering in a Thin Gold Foil

The figure shows the angular distributici of 15.7 MeV electrons passing
through a gold foil of thickrass 18.66 mg/cm®. The CPP calculation (solid line)
used 1000 terms in the series (3.5). The squares represent the data maasured
by Hanson et al. (1951) and the triangles (with error bars) represent the EGS4
Monte Carlo data (ESTEPE is 0.3%, AE is 0.911 MeV).
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Figure 3-3: Angular Scattering in a Thicker Gold Foil

The figure makes the same comparison as in Figure 3-2 except that the
thickness of the foil is 37.28 mg/cm?®.
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3.4.2 Calculations in Tissue-Equivalent Media

Although the comparisons made above serve to validate the EGS4 Monte Carlo
simulations, the case of a thin high atomic number foil is of little relevance to the
situations encountered in the calculation of electron dose distributions in tissue. We are
more interested in relatively thick slabs (eg 1 cm) of low-atomic-number materials.
Therefore, this section compares the CPP calculaions with EGS4 Monte Carlo

simulations of the angular scattering of electrons in slabs of water of various thicknesses.

Probability Density (sr™1)

00 005 010 045 020 025 030
Scattering Angle (radians)

Figure 3-4: Angular Scattering of 10 MaV Electrons in Water Slabs

The figure shows the angular distribution of 10 MeV electrons passing through

a 2.5 mm water slab and a 5.0 mm water slab. The solid lines represent the

summation of 500 termns in the series (3.£). The triangles represent EGS4

simulations using the user-code, “FGilL." (ESTEPE is 1.0%, AE is 0.911 iMeV).
Figure 3-4 demonstrates that the agreement between the CPP calculations and the

EGS4 Monte Curlo simulation is very good for 10 MeV clectrons passing through water

slabs of 2.5 mm and 5.0 mm thickness. The agreement is <imilarly good for the case of

5 MeV electrons (Figure 3-5).
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Figure 3-5: Angular Scattering of 5 MeV Electrons in Water Slabs

The figure shows the angular distribution of 5 MeV electrons passing through a
2.5 mm water slab and a 5.0 mm water slab. The solid lines represent the
summation of 500 terms in the series (3.5). The triangles represent EGS4
simulations using the user-code, 'FOIL" (ESTEPE is 1.0%, AE is 0.911 MeV).
These comparisons indicate that the CPP formulation gives an accurate description
of the angular scattering process for the slab thicknesses and electron energies
investigated thus far. However, the theory does break-down for sufficiently large slab
thicknesses and low incident electron energies. Figure 3-6 shows the case of 5 MeV
electrons incident on a 1.0 cm thick water slab. In this case. the CPP calculation
significantly over-estimates the amount of angular scattering. 7 ..ree factors lead to the
deviation of the theoretical resuit from the Monte Carlo simulation:
(i)  Although rhe energy-loss correction on page 65 accounts for the average encrgy-
loss, energy-loss straggling increases with slab thickness
(ii) The path length correction ((3.13)} is accurate only for relatively small path
lengths and it becomes more inaccurate as the scatlering angies increase.

(iii) The number of clectrons transmitted through the foil decreases with increasing

slab t ickness (in Figure 3-6, only 94% of the electiuns are transmitted in the
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Monte Carlo simulation). The application of the CPP model to scattering in a slab
of material does not account for back-scuttering of electrons since it assumes
100% forward transmission. Renornalization of the distribution to compensate
for the loss of back-scatiered electrons is possible but an a priori knowledge of
the fraction of back-scattered electrons is required. The possibility of

renormalization has not been pursued here.

Probability Density (sr
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Figure 3-6: Angular Scattering in a Thick Water Slab

The figure shows the angular distribution of 5 MeV electrons scattered in a 1.0
cm thick water slab. The solid line represents the summation of 500 terms in
the series (3.5) while tha triangles represent the EGS4 Monte Carlo simulation
(ESTEPE is 1%, AE is 0.911 MeV).

3.5 Summary and Discussion

The energy-loss (Chapter 2) and angular scattering (Chapter 3) of electrons in
tissue are the two most important factors influencing the shape of the dose distribution
in electron bean radiation therapy. The previous chapter dealt with the energy-loss
process while this chapter deals with the angular scattering process. As discussed in

Section 3.2.3, the compound Poisson process un:fies both processes in a single




73
mathematical formalism.

The CPP formulation of the angular scattering process relies on the three

assumptions listed in Section 3.2.2. ie

(i) the scattering events are independent,

(i1}  all scattering events are identically distributed, and
(iii) the number of events in a given path length is a Poisson random variable.
These assumptions are satisfied provided that the electron energy-loss is negligible over
the path length considered. This fact may be understood as follows. Assumption (i) is
satisfied in an unpolarized medium on the basis of physical arguments; there is no causal
connection between the angular change in one scattering event and the angular change in
any other scattering event. If the electron energy is the same in each scattering event,
then the differcatial angular scattering cross section will be the same in each event and
assumption (ii) will be satisfied. The same is also true of the total cross section. Thus,
the average length of the free path between two successive collisions does not depend on
which two collistons we choose. In this case, the number of collisions on any path length
interval, [s,, s], must be a Poisson random variable (see page 365 of Papoulis, 1984)
and assumption (iii) is satisfied.

Moliére’s theory and the Gaussian approximation are limiting cases of the CPP
formulation. Thus, these descriptions of the angular scattering process make assumptions
beyond the three assumptions listed above. Specifically, Moliére’s theory assumes that
the cumulative angie of travel is small ana his mathematical approach requires that the
number of collisions be large (greater than 20). In addition to the assumption of small
cumulative angles of travel, the Gaussian approximation assumes that the number of
collisions approaches infinity as «he size of individual scattering events becomes
vanishingly small.

The independent variable (or variable of evolution) ir the CPP formulation of
angular scattering is path length. However, the straight-line distance of travel is a more

relevant parameter for numerical dose calculations. The path length correction (3.13)

provides an estimate of the path length travelled for a given straight-line distance.
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However, this correction is only approximate and will fail for large distances.

The path length correction together with the neglect of energy-loss limit the CPP
angular scattering formalism to small straight-line distances (or "transport steps”). The
calculations presented above indicate that the CPP formalism is accurate for transport
steps of up to 0.5 g/cm? in water equivalent media for an incident electron energy of 5
MeV. This upper limit on the transport step size will decrease as the electron energy
decreases or as the atomic number of the scattering medium increases. As a rough
estimate, the maximum step size will be proportional to the square of the incident electron
kinetic energy and inversely proportional to the square of the atomic number of the
scattering medium. For the situations encountered in the calculation of therapeutic dose
distributions, an accurate description of the angular scattering process may be achieved

with a reasonable (ie not too small) step size.

3.6 Conclusions

This chapter demonstrates that the compound Poisson formulation of angular
scattering and the Goudsmit-Saunderson theory are equivalent mathematical descriptions
of the angular scatter:ng process. Given the single scattering cross section for a medium,
the CPP formulation is exact aside from the neglect of electron energy-loss. Comparisons
of the theory with measured data and Monte Carlo simulations shows excellent agreement

for thin gold foils. The theory also provides an accurate description of angular scattering

in watei slabs for slab thicknesses up to 0.5 cm for an incident electron energy of 5 MeV.
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3.7 An Aside: Interpretation of Scattering Power

The scattering power of a medium characterizes the rate at which electrons of a
given kinetic energy increase their angular spread as they increase their path length. In
analogy with the mass stopping power, the ICRU (1984a) defines the mass angular

scattering power as,

X0%) . (3.14)

Ir.a
P p ds

where p is the mass density of the scattering medium and (82) , is the average of the
square of the scattering angle with respect to the initial direction of trave! for electrons

which have travelled a path length, s. The CPP formulation of the anguiar scatiering

process provides interesting insights into the concept of mass angular scattering power.

3.7.1 Derivation of Scattering power
To begin, let us derive an expression for the mass angular scattering power from
the definition (3.14) and the CPP formulation given by Equation (3.4). Since we arc free

to chose the orientation of our co-ordinate system, we will make the initial direction of

travel coincident with the z-axis (ie Q,=Xk). The average of 82 is then given by,

C

fﬂzf"(s, Q-k) dQ
4an

(3.15)

2nf02f"(s,cos9) sinBdo

(o]

Using the definition of a derivative, the expression for the mass angular scattering power
(3.14) becomes:

T_1 11m[<62>3 - <°2>°] (3.16)
P s-0

The quantity (02), vanishes since the electrons have no angular spread at s=0.
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Substituting the equation (3.15) in to this last expression yields,

(3.17)

T -1 1im
p

ﬂfﬂzf k(s,cos0)sinfdd
P s-0 S s

Using the CPP equation (3.4) and interchanging the order of summation and integration

gives,

°lN
]

(3.18)

27 lim

P 8-0

n=0 n!

1w e (AS)" faz & s
- 2 A T 2 [B wX(cosh) *?sinBdd

Noting that the term with n=0 vanishes and calculating the limit, only the term with n=1
survives. The scattering power becomes, then, an average over the single-collision cross

section:

. 27N, foz d"“” 5inBdd (3.19)

where do/dQ is the differential angular scattering cross section, N,, is Avogadro’s
number and A is the atomic mass of the scattering medium. This last expression
incorporates the fact that w* (cos0) is just the normalized single scattering cross seciion

1

(ie ——
tot

dﬁ) and the average number of collisions per unit path length, A, is just the

total cross section for angular scattering, o multiplied by the volume density of

tot*
scattering targets (ie the number of nuclei per unit volume).

McParland (1989) used an expression identical to Equation (3.19) in his
calculation of scattering power. Other reports (Rossi, 1952; ICRU 1972; ICRU 1984a)
also use equation (3.19) but they apply the small angle approximation, sin@ =0, and

restrict the upper limit of the integral to 1 radian. However, since the magnitude of the
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differential angular scattering cross section is appreciable only for small scattering angles,
the small angle approximation does not have much impact on the numerical value of the
scattering power. It is important to note that the concept of scatiering power does not
rely on the small angle approximation since the expression for scattering power arises

directly from the definition (3.14) and the CPP equation (3.4) without any further

approximations.

3.7.2 Scattering Power and G. ussian Scattering

v

x/ S __.S\l/

Figure 3-7: The Prujected Angle of Travel

The diagram shows the direction vector, €2, which forms an angle, 6, with the z-
axis. The projection of Q on the xz-plane makes an angle, 6,, with the z-axis.
An analogous angle, 6,, may be defined for the projection of Q on the yz-plane.
The mass angular scattering power is often associated with the Gaussian angular
scattering approximation which assumes (i) that the angular distribution is a resuit of
many small angle scattering events and (ii) that the cumulative angle of travel remains
small. The association is so common that the ICRU (1984a) cautions that "the mass
scattering power must be used with care for thin absorbers where single large-angle
scattering events can be important.” However, as noted in the previous section, the

derivation of the scattering power expression (3.19) makes nc assumption of small angles.
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Moreover, the scattering power is defined in the limit of small path length (ie for an
infinitely thin absorber). The ICRU’s statement appears to be inconsistent with this fact
and some clarification of the connection between scattering power and the Gaussian
approximation seems warranted.

In the Gaussian approximation, the angular probability density is given by,

. 62 2
fmuss(zlaxley) = 1 5 eX ——f-fzi (3.20)
2®0o, 20,

where 0, and 0, are the projected angles defined in Figure 3-7 and o is the variance

of the one dimensional projected distribution of electrons given by,

o = (82) = (82) = feifk(z,n»k) dQ (3.21)
4=n

The path length, s, has been replaced by the depth in the scattering medium, z, since the
two are interchangeable in the limit of small angles. The projected angle, 0,, is related
to the scattering angle, 8, by tan®, =tan0cos¢ which becomes 0,=0c - ¢ in the

small angle approximation. Inserting this into the last expression, we find that

(82) ,=2 (%) _ and the Gaussian angular distribution becomes,

2 2
1 0, + €5 .
froauss(2:0,,0) - —— exp|- ——— (3.:2)
Gauss xtVy ‘It(92>z P (ez>z ]
where, to first order in z, the mean square angle of scatter is given by,
0%, = 0%, + f T(pu) pdu (3.23)
0

This last expression assumes that the mass angular scattering power is a function of depth
only (Eyges, 1948).

The Gaussian description of angular scattering given by equations (3.22) and
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(3.23) will fail in two instances: (i) when the number of collisions is too small and (ii)
when the cumulative angle of travel becomes too large. Although the Gaussian
approximation breaks-down in these cases, it is important to note that the concept of
scattering power is not limited by the Gaussian approximation. Therefore, ICRU"s
assertion that "the mass scattering power must be used with care for thin absorbers where
single large-angle scattering events can be important” can be more precisely stated as,

“"the mass scattering power should not be applied to the Gaussian description of angular

scattering when the number of scattering events is small.”
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Appendix 3A: Expansion of a Function on the Unit Sphere

Each point on the surface of a unit-radius sphere centred on the origin may be
specified using a unit-length vector, Q. Therefore, a function, g(Q), is said to be a
function on the unit sphere. Any continuous and finite function on the unit sphere may

be expanded in terms of the spherical harmonics, Y, (Q), as follows (Arfken, 1985):

8@ =Y Y a,v,(Q) A.d)

n=0 m=-n

where the expansion coefficients, a,,. are given by,

a,, = [&(@) Y, ()0 (A2)
4x

The superscript, "*", denotes the complex conjugate. This last expression follows from
the orthogonality relation of the spherical harmonics,

1 ifi=n, j=m

[r@7,@)a - { (A3
ax 0 otherwise

In the case of a function which is rotationally symmetric about the z-axis (ie
g{Q) =g(0) where 0 i- the angle with respect to the z-axis) all the terms except those

with m=0 will be zero. The expansion may then be written,

20 = ¥ 21, p (cos6) (A4)
a0 4m

where P, (cos@) are the Legendre polynomials (Arfken, 1985) and the expansion

coefficients, a,, are now given by,
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a, = 27 [g(8)P,(cosB)sinBd0 (AS)
0

The addition theorem for spherical harmonics (Arfken, 1985) allows the rotation
of spherically symmetric functions. If two vectors, Q, and Q, form an angle « then the

addition theorem states,

4n .
I’ (A.6)

P (cosa) =

For instance, if we wish to rotate the function given by the expansion (A.4) such that the
new axis of symmetry is the direction, Q,, we may apply the addition theorem to write

the expansion as

§(Q-Qy = f:a,,f: Y (Q)Y,.(Q) (A.7)
n=0
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Appendix 3B: The Screened Mott Cross Section

Using the first Born approximation, Mott (1929) derived a relativistically correct
angular scattering cross section for the scattering of electrons from a point charge. The
cross section takes the form of an infinite series but may be well approximated by (Evans,
1982),

ﬂ = :‘—g_ - B%i 2— + —_ i .9. i .9_ .1
[dQL(l Bsin 1t"137( s‘"z)s‘"z) ®.)

where [do/dQ], is the Rutherford scattering cross section, B is the velocity of the
clectron as a fraction of the speed of light and Z is the atomic number of the scadtering
nucleus. The factor in the brackets, (...), on the right hand side acts as a relativistic
correction to the Rutherford cross section and it is important only at large scattering
angles.

The screening of the nucleus by the orbital electrons becomes an important effect
at small scattering angles (ie large impact parameters). Therefore, the present work uses

the screened Rutherford cross section in (B.1):

-2
[ ] 27 +l)r ( ) [sinz [:] . _ﬂ_i ] (B.2)
4 Bp 2 4

where p is the momentum of the incident electron, r_ is the classical electron radius, m
is the electron mass and c is the speed of ligh: in a vacuum. The factor Z(Z+1) is used
in place of Z2 to account in an approximate way for the contribution of electron-electron
collisions. The characteristic screening angle, 0_, as calculated by Moli¢re (see Bethe,

1953) is,

) (1.13 + 3. 76(-73—)’) 8.3

o = (Z‘ mc a
4
0.885p

where a is the fine structure constant,
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Appendix 3C: Derivation of Equation (3.5)

This appendix demonstrates that the CPP Equation (3.4) leads directly to the
equivalent expression (3.5). The derivation relies on the expansion of a function on the
unit sphere as described in Appendix 3A. To begin, we require a relation between the
expansion coefficients for the multiple scattering distribution and the expansion
coefficients for the single-scattering distribution.

If the electrons travel initially along the z-axis (ie Q, = k where k is a unit vector
lying along the z-axis) and © denotes the scattering angle with respect to the z-axis, then
the probability density for electrons scattered n times may be expressed in terms of an

expansion in Legendre polynomials as follows (see Appendix 3A):

o*(QK)™" = wcos)™" = Z %ﬂa‘@ P (cosB) (C.1)
i=0 4N

where P, (cos0) represents the Legendre polynomials (Arfken, 1985) and the expansion

coefficients, a;” , are given by,

af” = [w*Qb™P@kdQ
4x

(C.2)
= 2n [ w*(cosB)™ P (cosB)sinBdB
0

Since w* (cos0) *° are normalized probability densities, the coefficients, a;" , represent

averages of the Legendre pclynomials, (P, (cos0)) o The notation, (), denotes a

quantity averaged over the probability density for electrons scattered n times. The
superscript “(n)" indicates that the expansion coefficicnts apply to the probability density
for electrons scattered n times.

We may use the addition theorem for spherical harmonics (Appendix 3A} to write

the expansion (C.1) for any arbitrary initial direction, Q. ie
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- [
o™QQY™" = T a"Y Y)Y, (Qy (C.3)

1=0 j= i
where Y;,(Q) represent the spherical harmonics (Arfken, 1985) and the superscript "*"

denotes the complex conjugate. Substituting (C.3) in the recursion relation (3.2) and

using the orthogonality property of the spherical harmonics yields,

a}"’ - 0:"’ af""“ (C4)

This recursion relation for the expansion coefficients may be rewritten as,

a” = (a")" (€5)

In other words, the expansion coefficients of the n-scattered probability density are given
simply by raising the coefficients for the single-scatter probability density to n™ power''.
This result will prove useful in deriving the series (3.5) from equation (3.4).

To derive Equation (3.5), we begin by substituting the expansion (C.3) in Equation
(3.4):

o040y -
(C.6)

- n,-is & i
y &I ol 3 raor;@p
n=0 '

i=0 j=-i

Interchanging the order of summation and applying the result (C.5) gives,

""This result is analogous 10 the familiar convolution theorem whereby Fourier transforming a
convolution of two functions is equivalent to multiply:ng the Fourier transtorms of the two functions.



fno (S,Q 'Qo) =

(C.7"
(lsa(")n

> ¥ r@v@ge E

=0 y=-i

The last summation on the right hand side is the Taylor series expansion of

exp(Asa, ). Therefore, the previous cxpression may be written,
i P P y

.00y -
. . (C.8)
Y exp(-As(1-a") ¥ Y (Q)Y;(Qy)
i=0 Ji
Applying the addition theorem for spherical harmonics, we obtain
600 -
C9)

): -—-——cxp[ As(1 -a{"P(Q-Qy)

which is identical to Equation (3.5).




Chapter 4. Transport-Based Dose Calculations: The
Monte Carlo and Evelution Methods"

4.7 Introduction

The previous two chapters presented models of electron energy-loss and of angular
scattering. These were both based on a gencral statistical theory known as the compound
Poisson process. However, we now require a means of applying these models to the
calculation of electron beam dose distributions. As discussed in Chapter 1, two methods
of transport calculations lend themselves to this task: the Monte Carlo method (Berger,
1963) and the evolution method (McLellan et al. 1992; Papiez et al., 1994; Janssen ct al.,
1994). Tke term "transport-based” is used to describe these two methods since they arrive
at a dose distribution by providing a complete numerical solution of the transport problem
(ie they provide the joint angle-position-energy distribution of electrons from which the
dose distribution is derived rather than just the dose distribution directly).

The Monte Carlo method has long been applied to various problems in radiation
dosimetry (Andreo, 1991). Recently, the increasing computational power available in
typical radiation therapy departments has sparked interest in 1. ¢ use of the Monte Carlo
method for routine treatment planning (DeMarco et al., 1994; Neuenschwander et
al.,1995). Similarly, the evolution method benefits from computer advances and may also
provide a computationally efficient basis for routine treatment planning. However, neither
method is yet fast enough for routine clinical use on the computers typically available for
clinical treatment planning. Therefore, the question arises: which _method is the most

computationally efficient?
The Monte Carlo method simulates many individual electron trajectories one at

a time and uses the information gained to estimate the quantity of interest (in this case,

the dose deposited in the patient). On the other hand, the evolution method simulates the

28ections 4.1 and 4.2 of this chapter will be submitted to Medical Physics as “A comparison of the
Monte Carlo and evolution methods of dose calculation: Theoretical considerations.” The remainder of
the chapter has already been published (see Papiez et al., 1994).
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transport of an entire population of electrons; the angular scattering and energy-loss
models are used to "evolve” the complete distribution of electrons from an initial state to
a final state in which all the electrons have been stopped. Since the evolution method
propagates all the clectrons at once rather than one electron at a time, one would expect
intuitively that the evolution method would be more efficient than the Monte Carlo
method. However, this chapter demonstrates that, for problems involving several
dimensicns, this not necessarily the case.

This chapter analyzes the convergence of the Monte Carlo and evolution methods
of dose calculation and comments on the relative merits of the two methods. A
"dimensionally reduced” evolution method which uses the convergence properties of the
evolutior method to advantage is then introduced. The feasibility of the dimensionally
reduced algorithm is demonstrated through calculations of two dimensional dose

distributions in a water absorber exposed to 10 and 20 MeV beams of electrons.

4.2 Comparison of the Methods
4.2.1 Mathematical Connection

As discussed in Chapter 1, the basic equation underlying the evolution method is,

fi.l(IIQrE) =

(4.1)
(r.Q,E; ', Q,E"Ydr'dQ'dE’

f £ (2, Q,E)G,,0p
D

where p represents the domain of all possible positions, directions, and energies. Th's
equation "evolves" the joint density of electrons, £, (r,Q,E). a single transport step
(from the i" step to the (i+1)" step). A straightforward discretization of the six-
dimensional space, (z, Q, E) , allows the integral to be performed numerically. In this
approach, the probability density, £, (r,Q, E). is approximated using a regularly
spaced grid of points. Iterative application of the numerical integration allows the
transport of electrons in successive transport steps. The result of the calculation is a

sequence of probability densities, £, (. Q,E) for; = 0,1, 2 , Tepresentin
q P y (2, R, E) 1,2, ep’ TP g

e g V¥ gp
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the evolution of the ensemble of electrons with increasing transport step number. This

procedure is represented schematically in Figure Figure 4-1.

AN

AT L A T
/\f,(r.n,m
iy I S

f(r.Q, E)

I S ST AT ST A

Figure 4-1: The Evolution Transport Calculation Method

The figure shows the evolution method schematically. An incident electron
beam is transported in successive transport steps. At each transport step, the
beam is spread-out according to an appropriate Green's function (or "kernel").
The full six-dimensional distribution of electrons is represented here as a one-
dimensional curve for the purposes of illustration.

At first glance, the Monte Carlo method seems unrelated to the evolution method.
However, consider the manner in which a condensed history or macro Monte Carlo

scheme transports an electron:

1. The starting coordinates, ( r,, Q,, E,) » are sampled from the probability density,
fo (rl Q ’ E) ‘
2. The electron is transported one step by sampling the new coordinates, (r, Q, E) .

from the Green’s function, ¢ (r,Q,E;x,, R, E,) -

step

3. Step 2 is repeated until the electron stops or leaves the calculation volume.

The result of the calcuiation is a sequence of points, (g R E) for
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i+0,1,2,..,N.. The simulation of many histories generates a set of points for
each transport step (for the i" transport step, the set of points may be denoted
(r, ,Q;,E); ., J=1,2,.,Ny }). This set serves to approximate the
probability density, £f;(r,Q,E) (this is discussed further in the next section). The
result of a complete Monte Carlo simulation is a sequence of probability densities,
£,(r,Q,E) for 1 = 0,1,2,.., Nypop with each probability density represented by

a set «” randomly sampled points (ie an irregular grid). T procedure is shown

schematically in Figure 4-2.

i;,( 1,0, E)

Sample —— TN T

n !
pomf\ f] (1. Q,E)
e — ——,«——i—;-—~—~-~—-————q—

Electron ——,” ~ \

"track" p S ' £(r, 0, E)
T Py Ne

. N s

Figure 4-2: The "Evolutionary" Nature of the Monte Carlo Method

Each history in a Monte Carlo simulation generates a random sample of a
probability density for every transport step in the history. Therefore, the
simulation of many histories will generate a set of points associated with each
transport step. The sequence of sets thus formed represents an “evolution® of
the ensemble of incident electrons with increasing step number. The figure
depicts three representative histories and, therefore, three sample points per
transport step. Obviously, many more histories are required to achieve an
accurate representation of the evolution of probability densities.

Both the Monte Carlo method and the evolution method solve the integral
(1.9), (4.1) numerically for a sequence of probability densities, £ (r,Q, E) for

1=0,1,.,Noop From a mathematical standpoint, the only differgnce between the
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evolution and Monte Carlo methods is the manner in which they represent the probability
densities, £;(x,Q, E)- In the case of the evolution method, the probability density is
approximated by a set of samples on a regularly spaced grid (one sample per grid-point).
In the case of the Monte Carlo method, a set of randomly sampled points (one sample per
history) may be used to reconstruct an approximation of the probability density. Thus,
the total number of grid points in the evolution method is analogous to the total number
of histories in the Monte Carlo method. The number of grid-points or histories required
to achieve a given accuracy requires a knowledge of the convergerice of the evolution and

Monte Carlo methods.

4.2.2 Convergence in Monte Carlo

The previous section notes that the set of randomly sampled points,
{(r,, Q.. E);, F=1,2,.,Ny, ) Serves to approximate the probability density,
£,(r,Q,E) - Since this probability density represents the probability per unit volume,
per unit solid angle, per unit energy of finding an electron at the point, (g, Q, ) , after
the i™ transport step, an estimate of the probability density at any given point, (r, Q, E) .

may be obtained from the expression,

u

1 . Ng
£,(r,Q,E v (4.2)

where v, is the volume (in six dimensional phase space) of a small region, g, contaiiing
the point, (r,Q, E) , and p, is the number of points in the set which lie in the region, g
(termed a "scoring region”). This estimate of £ (r, Q, E) becomes exact in the limit
that the number of histories, Nyjoe becomes infinite while the volume of the region, v,
shrinks to zero.

A practical Monte Carlo simulation cannot achieve an infiniie number of histories
or infinitely small scoring volumes, v,. Thus, a Monte Carlo simulation provides only
an estimate of the probability density, £, (r,Q, E) , with some associated uncertainty.

A consideration of this uncertainty will aid in an analysis of the computational efficiency



of the Monte Carlo method.

The number of electrons, N, arriving in the small region, g, after the i transport

step is a binomial random variable with the density,

Nyjs:!
Np=n} = hige PR (1-Pp) psen 4.3
PriNg=n} = Lt or PR(1-Py) (4.3)

where p_ is the probability that an electron will arrive in the region, g, after the i"

transport step (p, = N,/ N,;.,)- Since is a binomial random variable, its variance
is given by oi,n = Np;oe Pr(1-Pp) and this serves as a convenient estimate of the error

in n,. The error, Af (r,Q,E). in the estimate of the probability density,

f,(r,Q, E), is then given by,

v P (1-P.)
Af,(r,Q,B) = L. % . _}_.FI—PR) (4.4)
VR Nhisc VR N)zisc

This gives a relative error of,

Af(z,Q,E) _ 1-Pp (4.5)
£(r,Q,E) Npise'Pr

where we have made the substitution, PpaNp/Npis,- This last expression shows that the

error in the Monte Carlo simulation is inversely proportional to VVhise 35 is well known
in practice. For example Neuenschwander et al. (1995) found empirically that the
calculation time of their macro-Monte Carlo method was inversely proportional to the
square of the uncertainty. Since the calculation time is also proportional to the number
of simulated particles, their finding is consistent with the expression (4.5).

Note that the error (4.5) depends on the probability, p,- This implies that the
error in a Monte Carlo simulation Jepends on the fraction of the total number of histories

reaching a given scoring region (as one would expect intuitively). In fact, the expression

(4.5) implies that the error increases rapidly as p_ becomes small. Thus, a Monte Carlo
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simulation provides fast convergence in a "high-probability region” (eg points within the
beam’s path) but provides poor corvergence in "low-probability regions” (eg points well

outside the primary beam).

4.2.3 Convergence in the Evolution Method

The evolution method of transport calculations described in Chapter 1 is
essentially a six-dimensional numerical integration. The theory of numerical integration
has been well studied and methods for its implementation on computers have been
developed (Press et al., 1988). We require an expression relating the error in the discrete
representation of a continuous integral and the number of bins used in the numerical
integration.

Consider first the general problem of integrating a one-dimensional function,

F(u) , from a lower limit, ., , to an upper limit, . The exact integral, 1 is

exact’

given by,

Unax
Iexact = fF(u) du (4.6)
Unin

Dividing the range of integration into x, __ discrete bins each of size A u. the integral
may be written,

Noins ugrBu/2

Toace = Y, [ Fludu (4.7)

i=1 u;-8u/2

where the points,  , represent the centres of the discrete bins. Expanding p(y) in a

Taylor series about the bin centres yields,

_ Nping o A F”( ) Aul . (‘.8)
Iexact - 1: s (Ul) U + l'll '74— e
=1

where g/ (y,) represents the second derivative of g(y) with respect to ; evaluated at
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the point, ;.. Compare this with the approximate numerical integral,

Npins

Lapprox = Z F(u;)Au (4.9)

1=1

The relative error in the numerical integration may be defined by
AI/I = (Ipace=Tapprox) / Texact: Considering terms up to second order in A ; and

noting that Ay=(u

oy~ Umin) /Np, e the error in the numerical integration is given

approximately by,

N, ns
Az _ 1 (e tnn) g% P70 (4.10)
I Ntzzins 24 i=1 F(ui)

Therefore, in the case of a one-dimensional integration, the relative error is proportional
to 1/Nf;,. Where p, __ is the total number of bins used. For an integral of D

dimensions, the discrete bins must be shared among the various dimensions and the error

becomes 1/n2[2 . Therefore, the six-dimensional integral of the evolution method has

a relative error proportional to 1 / Néi’f;s'

4.2.4 Comparisons

A comparison of the convergence of the evolution and Monte Carlo methods
indicates that the Monte Carlo method has a computational advantage over the evolution
method. Consider a total number of samples, n= Npjoe=Nping’ from the function,
f;(r,Q,E) - The error in the evolution method is proportional to 1 /y1/3. Compare

this with an error proportional to 1 /n1/2 in the Monte Carlo method. Assuming that the

constant of proportionality is the same in each case, the error is a factor of p1/6 smaller
in the case of the Monte Carlo method (Figure 4-3). Of course, the constant of

proportionality will not, in general, be the same and the relative convergence will depend
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on: (1) the electron fluence in the region of interest (via the quantity Py in equation (4.5))
and (ii) the "smoothness” of the function (via the quantity g/ ) in equation (4.10)).
The convergence of the evolution inethod relative to the Monte Carlo method improves

in regions where the electron fluence is smooth (in all six dimensions) and the electron

fluence is low. However, the shape of the curve in Figure 4-3 will remain the same.
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Figure 4-3: The Convergence of the Evolution and Monte Carlo Methods

The graph shows the relative rate of convergence for the evolution method and
the Monte Carlo method. Since the evolution method is a six dimensional
integral, the relative convergence is proportional to N'. Aithough various
factors (see text) will shift the curve up or down, the shape of the curve remains
unaffected.

A comparison of the calculational speed of the Monte Carlo and evolution methods
is more problematical than a consideration of their relative convergence since the
calculational speed depends almost entirely on the details of the computer implementation.
However, it is possible to draw some general conclusions. Note that the calculational
speed of a particular method is distinct from the convergence; the convergence indicates
the number of histories or bins required to achieve a given accuracy while the
calculational speed indicates the time required to make a calculation with & given number

of histories or bins.
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In the case of the Monte Carlo method, the calculation time will simply be
proportional to the number of histories simulated ( Nhist)° In the case of the evolution
method, the relationship between the total number of bins, y, ., and the calculation time
is somewhat more complicated. The integral (1.9), (4.1) must be evaluated numerically
to obtain a single point in the discrete representation of £,  (r,Q, E). The time for

one of thesc integrations is proportional to p, . In the worst case, a single source
point, (¢/, @/, E’) . can contribute to all destination points in phase space, (g, Q, E)»

so that the integral must be evaluated a total of n, _ times. This leads to a total

calculation time proportional to ;2. . In the best case, a source point, ! g'y,can
p po bins po ( ’ Q ’ E )

contribute only to a single destination point, (z,Q,E). This would lead to a total

calculation time proportional to ., . In reality, the true calculation time will lie

between there two extremes so that the calculation time will be proportional toy,%

where o is a number in the range (1, 2) -

Computational "over-head"” is also important in a consideration of the speed of a
particular numerical method. The evolution method can take advantage of the fact that
calculations are performed on a regular grid to streamline the computer algorithm. For
instance, coordinate transformations can be precalculated and stored in look-up tables (see
for example Morawska-Kaczynska and Huizenga, 1992). Also, the spatial grid may be
chosen such that interfaces in the scattering medium correspond to points on the discrete
grid. The so-called "boundary-crossing" probiem (as well as coordinate transformations)
represent a very significant computational burden in the Monte Carlo method. Such
considerations complicate the comparison of the calculational speed of the evolution and
Monte Carlo methods.

Despite their close mathematical relationship, the computer implementations of the
evolution method and Monte Carlo method differ significantly. The evolution method
requires that the complete density, £, (r,Q, E; . for the i" transport step be known
before the density. £, (z,Q, E) , for the (i+1)" transport step . 1 be calculated. Thus,

the computer must store in memory (or on disk) the full discrete representation of
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£,(r,Q,E). Assuming a modest 20 discrete bins per dimension. the total computer
memory required is 244 MBytes (allowing for 4 bytes per floating point number). This
is in addition to other data which must be stored for the calculation (eg CT data, pre-
calculated Green’s functions). By contrast, the Monte Carlo method tracks only one
electron at a time and the computer must store only the current position, direction and
energy of the electron (a total of only 24 bytes'') to calculate the coordinates for the
next transport step. It should be noted, however, that the Green's functions,
Gsrep (X R, Ei Xy, Q,, E,) » €30 OCCUPY & sizable amount of computer memory. To
reduce the memory requirements, current implementations of the macro Monte Carlo
method ignore the correlations between position, direction and energy for electrons

emerging from the kugel (Ballinger, 1991; Neueaschwander, 1992).

4.3 A Dimensionally-Reduced Evolution Method"

4.3.1 Introduction

The above discussion indicates that, due to the large number of dimensions
involved, the Monte Carlo method has a potential advantage over the evolution method
for situations relevant to electron beam treatment planning. This section presents an
approximate evolution method which reduces the number of dimensions involved in the
numerical integration and reduces the computer memory requirements by using depth,
rather than path length, as the variable of evolution. The reduced number of dimensions
provides a significant gain in calculational speed. The improvement in memory
requirements and gain in calculational efficiency is made at the expense of two
assumptions: (i) electrons travel in straight lines within a single transport step, and (ii)
electrons do not back-scatter (since depth is the variable of evolution). The purpose of

this section is to establish the feasibility of such a method. At this point in the

“Even if the Monte Carlo simulation tracks secondary particles and must store the coordinates of,
say, 10 paticles, the total memory required is only 240 bytes.

“See Papiez ¢t al. (1994)
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implementation of the method, the computer code has not been optimized for calculational
efficiency and only simplified models of electron energy loss and angular scattering have
been used. Thus, quantitative timing comparisons with the Monte Carlo method have not

been made.

4.3.2 Modification of the Green’s Function

» //‘“/

S
Az

2, 1 (x.y)

Figure 4-4: Geometry for Depth Evolution

The modified transport cheme assumes that electrons travel in straight lines
over a small increment of depth. Therefore, an electron is projected along its
initial direction of travel from one plane at depth, z,, to the plane below at
depth, z,. Once the electron is projected to the lower plane, its direction of
travel and energy is altered according to an appropriate Green’s function. In
this fashion, the complete distribution of electrons at depth, z,, is transported to
a depth, z,. Using multiple depth increments, the distributior: of electrons
“evolves” from an incident surface distribution to any desired depth.

The first step in the development of the modified tran.port scheme is the
construction of an appropriate Green’s function. Figure 4-4 shows the modified transport

scheme graphically. Two angles, @ and ¢, specify the electron’s direction of travel while
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the lateral coordinates, (x,y). and the depth, 2, spzcify the electron’s position. A
transport step is defined so that an electron travels in a straight line until it has increased
its depth a specified amount, A z. This scheme assumes that an electron which has a
direction of travel greater than /2 is absorbed locally in the scattering medium. In
effect, this transport scheme evolves the electron distribution as a function of depth.
Therefore, the depth, z, plays the role of the variable of evolution (ie depth is analogous
to time in this model) rather than contributing to the dimensionality of the problem.
Since electrons are assumed to travel in straight lines, an electron leaving the
position, (x,y), at a depth, z,. will armive at a new position given by,
(x + Az tan®/cosd’, y + Aztan®'sind’).atdepth > = z +Az. Therefore, we

approximate the Green’s function goveming the spatial redistribution of electrons as

follows,

G lx,y;x',y',0/,¢") =
(4.11)
8(x-x'-Aztan®/ cosd’) -8(y-y’-A ztan®’'sing’)

where § (..,) denotes Dirac’s delta function. In reality, electrons do not follow straight
lines and the error associated with the straight-line approximation is of the order A 2.
This error constrains the size of the depth increments and forces the calculation to
proceed only in small increments of depth.

The process of electron energy-loss was described in Chapter 2 which gives the
probability density, ££(g, A). for an electron of energy, g, to lose an amount of
energy, A, in a path length, ¢. In the modified transport scheme presented here, the path
length depends on the initial direction of travel and the size of the depth increment, A 2.
ie

s =Azy1 + tan?0’ , 0'< I (4.12)

2

Thus, the Green’s function describing the energy-loss process may be written,

where the path length, g, is given by equation (4.12) and the energy change is given by



G.(E:E’,0) = Ff'(s,A) (4.13)

A = E-E
The angular scattering process has a similar dependence on path length and the

Green’s function describing the angular scattering process is,

Gy(0,4:0',¢',E') = £%¥(s,QQ") (4.14)

The probability density, £9'(s, Q-Q/), is discussed in Chapter 3. The dot product,

Q-Q’. may be expressed as follows:

0Q’ = sinBsin®/cos ($p-¢’) +cosOcosd’ (4.15)

Assuming that the angular scattering and energy-loss processes are independent,

the complete Green’s function is a multiplication of the three component parts given

above:

Garep (X, R, E; T/, E')

H

Garep(X.¥.0,0,.E; x',y', 0,4/, E')

8 (x-x'-Aztan®/ cos¢’) 8 (y-y/-Aztan®/'sind’) & (s,A) f¥(s,Q-Q')
(4.16)

it

Inserting this expression into equation (1.9), (4.1) above yields,

£,,,(x,y,0,¢,E) =

f,;(x-Aztan®'cosd’, y-Aztan®'sind’, 0/, ¢, E') -+ (4.17)
8.9.8

f7(s,8) £fY(s,Q-Q') dO'dP'dE’

This approximate expression forms the basis for a modified evolution method. It allows

electrons at a given depth, > ot be transported an increment of depth, A z, to a new

depth, z, . = z,+Az. lterative application of the equation (4.17) allows the transport
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of a beam of electrons from the surface of the scattering medium to any desired depth in
increments of depth, A z.

Due to the fashion in which the transport steps are defined, the distribution of
electrons essentially evolves with depth rather than time or path length. Because depth
now plays the role of the variable of evolution, the problem reduces to 5 dimensions
rather than six (ie x, y. 8. ¢ and Eg) and the calculation time drops by a factor equal

to the number of depth bins when compared with the full six-dimensional implementation.

4.3.3 Implementation in Two Spatial Dimensions

Mathematical Formulation

This section presents a simplified version of the modified transport scheme in
which only two spatial dimensions are considered: depth, z, and lateral position, x. This
two-dimensional version of the evolution method assumes that tissue inhom: .eneities
extend infinitely in the y-direction and it tracks only the projection of the electron motion
on the xz-plane. Since this section aims only to establish the feasibility of the method,
the current implementation uses simplified models of electron energy-loss and angular
scattering. Specifically, the theory of Landau (1944) was chosen to describe the energy-
loss of the electrons while the angular scattering was assumed to be Gaussian. The
Gaussian approximation for the angular scattering of electrons was described in Chapter
3. Note that the choice of models made here was guided by the need for simplicity and
the numerical method is not dependent on this particular choice.

Although the simplified geometry will aid in demonstrating the method, the two-
dimensional nature of the calculations introduces one complication. Since the projection
of an electron’s path on a plane is always shorter than the true three dimensional path and
the angular scattering and energy-loss processes are both path length dependent, a method
to estimate the true length of the three dimensional path is required. Appendix 4A

presents such a method.
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In the two dimensional version of the evolution method, the distribution of
elecions is described using the reduced set of coordinates, ( x,0,, E) . whereg_
represents the projection of the angle, @, on the xz-plane. Equation (4.17) given in the

previous section simplifies to,

£;,,(x,0,,E) =

Enax x/2 (‘018)
f f f,(x-Aztanb,,08,, E') £ (s, E'-E) £%(s,0,-0,) ' dE’
E -n/2

In keeping with the Gaussian model of angular scattering, the angular transition density

is expressed in terms of the difference, @/, -0,

Numerical Calculations

To implement the transport scheme on a computer, the coordinate space,
(x,0,, E) , was organized into discrete bins, (%;,0,,E;))-for j=1,..,N.k=1,..,N,

and 71=1, .., N The discrete form of equation (4.18) is then,

f.i*l (Xj,ek, El) =

Ng N (4.19)
Y Y fi(x,-Aztan8,,8,,E,) -AGy(8,:0,,E,) -AG,(E,;E,,8,)
m=1 n=1
where
8,+40/2
AGy(8,:0,,E) = f £9(s,0-0,) A0’ (4.20)
0,-40/2

represents the probability for an electron to scatter from the m® angular bin to the angle,
0, - Similarly,
E,+AF/2

AGy(E,; E,,8,) = f ft(s,E,-E,) dE’ (4.21)
E,-AE/2
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represents the probability for an electron to acquire an energy, E,. at the end of a
transport step given that it started in the n® energy bin. The quantities, A@ and A g, are,
respectively, the sizes of the angular and energy bins.

Since the lateral point, x-Az tan@,. does not necessarily lie on one of the
discrete points, X the function, f;(x-Aztan@,,0,, E, ) . must be interpolated using
the information from nearby discrete points. The function. f,(x-Aztanb,,0,,E,) -
in equation (4.19) represents a linear interpolation between the two discrete points either
side of x-Aztan@,,

The discrete equation (4.19) was coded in VAX FORTRAN for the purpose of
computer calculations. Calculations were performed on VAX 3200 and 4000 workstations
under the VMS operating system as well as on SPARCstations 11 and 10 under the SunOS
operating system. The "look-up tables”, AG,(0,:0,, E,) and AG,( E,;E,,0,) . were

pre-calculated and stored on disk for use in subsequent transport calculations.

Dose Scoring

A careful accounting of the energy lost by the penetrating electrons yields the dose
deposited in the scattering medium. To determine the dose deposited in absolute terms,
it is necessary to determine the number of electrons incident on the scattering medium.
The incident beam of electrons is represented by the discrete probability density,
£o(%4,0,,E)) > which is normalized to satisfy the condition,

N, Ng Ng

;:EEfo<xj.6k.E1)AerAs= 1 (4.22)
=] k=1 1=1

Since the two-dimensional implementation of the evolution method assumes that the beam
extends infinitely and uniformly in the y-direction, the normalization condition implies
that one electron per unit distance in the y-direction is incident upon the medium.

The number of electrons leaving the point, (x ,-Aztan®,,8,, E,) - is

f,(x;-Aztan6,,0,, E)AxAOAEAy where Ay is an increment of distance in the
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y-direction. The fraction of these electrons which arrive at their destination with energy,
E;» S Ag,(E,;E,,8,) and each of these electrons deposits an amount of energy,

E,-E,- Summing the contributions from all source points yields the total energy

deposited:
Z.+Z.,
Egop (Xje - 2 =) =
(4.23)
"E " Nb'
Y Y (£,-E)AG:(E};E,.B,) f,(x;-Aztans,,0,,E,) AXABAEAy
1=1 mrl n=1

z.i+zi+1 ) .

Notice that this assumes that all the energy is deposited at the point, (x ” 5

The dose deposited is simply the energy deposited in a voxel divided by the mass

of the voxel. ie

Zi+z.

i+l
D(x,, Zit%ina,y Eaop (30 =5
o2 (x,, 21121y Av Ay AZ
Py —=%— Y
(4.24)
Ng [

Ny N
Y Y (E,-E)AG.(EiE,.8,) f;(x,-Aztanl,,0,, E,) ABAE

- 1=1 m=1 n=1

p(xy, > *1)Az

where p (..) is the mass density at the specified point. The calculation of dose adds very
little to the computational burden since the energy deposited at each discrete point may

be tallied "simultaneously” in the course of doing the transport calculation.

Monte Carlo Simulat.ons

Monte Carlo simulations were performed using the EGS4 Monte Carlo code and
its associated preprocessor, PEGS4. The user code XYZDOS was used to obtain the
central axis depth dose and isodose data for comparison with the depth evolution method.

As a consequence of the use of Landau’s theory for electron energy-loss, the depth
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evolution method neglected the energy lost to bremsstrahlung photons. Neither did the
depth evolution method account for the transport of secondary electrons. Therefore, the
Monte Carlo simulations took one of two forms: either a full simulation which included
all electron interactions or, a modified calculation which suppressed the creation of
bremsstrahlung radiation and deposited secondary electrons "on-the-spot”. The modified
Monte Carlo simulations necessitated two alterations. Firstly, the preprocessor, PEGS4,
was altered (Sawchuk et al., 1992) to set the bremsstrahlung cross sections, the radiative
branching ratio. and the radiative stopping power to zero. Secondly, the user code
XYZDOS was altered to terminate secondary electrons as soon as they were created and
deposit the associated energy at the point of creation. These modifications mimic the

approximations inherent in the depth evolution method.
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Figure 4-5: Depth Dose Curves for 10 MeV Electrons in Water

The figure compares the depth dose curve calculated using the depth evolution
method (smooth curve) with the results ot two Monte Carlo simulations: a full
simulation (open squares) and a modified simulation (solid squares) in which
bremsstrahlung is neglected and secondary electrons are deposited “on the

spot”.
For all Monte Carlo calculations, one million histories were simulated and the dose
scored throughout a two-dimensional array of rods. The number of histories was

sufficient to achieve better than 1% statistical accuracy in the peak dose region. Each
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primary electron was followed until its kinetic energy fell below 10 keV (ECUT=521
keV) at which time it was considered to be locally absorbed. In the unmodified Monte
Carlo calculations, secondary electrons and bremsstrahlung photons were set in motion
and transported provided that their kinetic energy was above 10 keV (AE=521 keV,
AP=10keV). Photon histories were terminated if their kinetic energy fell below 100 keV
(PCUT=100 keV).
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Figure 4-6: Depth Dose Curves for 20 MeV Electrons in Water

Same as Figure 4-5 but for 20 MeV electrons.

4.3.4 Results and Discussion

Figure 4-5 shows the depth dose curves for 10 MeV electrons incident on a water
equivalent scattering medium. The field size was 10x10 cm’ and the electrons were
monoenergetic and incident normally on the surface of the scattering medium. The figure
shows the results of the depth evolution method, the full Nionte Carlo simulation, and the
modified Monte Carlo simulation. Figure 4-6 shows the same comparison for 20 MeV
electrons. In both cases, the number of angular bins, p,, was 31, the lateral increment
size was 0.25 cm, and the depth increment size was 0.5 cm. The number of energy bins
was 50 for the 10 MeV case and 100 for the 20 MeV case. All curves are displayed in

dimensions of dose per unit incident fluence.




106

Due to the neglect of bremsstrahlung energy-loss, the depth evolution method
over-estimates the penetration of the electrons when compared with the full Monte Carlo
simulation. In addition, the depth evolution method uver-estimates the depth of dose
maximum. However, the agreement with the mc lified Monte Carlo calculations is
markedly improved. Aside from a slight urder-estimate of the dose at depth maximum,
the depth evolution method agrees reasonably well with the modified Monte Carlo results.
Recall that the depth evolution methed assumes (i) that electrons travel in straight

lines within a single transport step and (ii) that electrons do not back-scatter. The
agreement observed between the depth evolution method and the modified Monte Carlo
simulations indicates that these assumptions do not cause serious errors in the calculation

of depth dose distributions in a homogen=zous absorber.

Distance from Central Axis (cm)

(wo) mdaq

Figure 4-7: Isodose curves for 10 MeV Electrons in Water

The isodose distribution calculated using the depth evolution method (solid
lines) is compared with the resuits of a modified Monte Carlo simulation
(dashed lines) in which the energy lost to bremsstrahlung is neglected and
secondarg electrons are deposited "on the spot”. The dose is displayed in units
of Gy cm® / electron.

Figure 4-7 shows isodose distributions calculated using the evolution method as
well as a modified Monte Carlo simulation. The incident 10x10 cm® beam consisted of
10 MeV monoenergetic and monodirectional electrons incident normally on the surface

of the scattering medium. At ali points near the central axis, the agreement between the
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two data sets is very good. Discrepancies appear in the penumbra region especial beyond
one half of the electron range. The depth evolution method over-estimates the width of
the penumbra at the 10% isodose level by 8mm (ie the 4x10"" Gy cm? isodose line).
Several possible reasons for this discrepancy exist:
(1) The Gaussian approxiriation for the angular scattering used in the depth evolution
method may over-estimate the angular spread of the electrons. This would lead
to an increased penumbia width.
(2) In the depth evolution method, electrons arriving at a lateral point (which may not
lie exactly on one of the discrete grid points) are placed in the two nearest discrete
lateral points according to a linear weighting. This has the effect of causing a
lateral spread of the electrons and this "grid diffusion” may contribute to the over-
estimate of the beam penumbra width.
(3) As described above, the depth evolution method assumes that the energy lost by
electrons travelling from a source point to a destination point is deposited at the
destination point. In regions where lateral electron equilibrium does not exist (eg
the penumbra), this dose deposition scheme causes a net lateral shift in the local
dose deposition. This shift occurs in the predominant direction of electron travel.
The sources of error (1) and (3) listed above may be eliminated by appropriate
modifications of the depth evolution method. In (1), an improved model of angular
scattering, such as that described by Moliére (1948), may be used in place of the
Gaussian angular scattering model. In (3), the method of dose deposition may be
modified to spread the energy uniformly between the source and destination points. The
source of error (2), however, appears to be a fundamental limitation of the discrete
representation of the electron distribution. It is worth noting, though, that “grid diffusion”
also occurs in the discrete ordinates approach (o transport calculations (Duderstadt and
Martin, 1979) and in the transport calculations described by Janssen et al. (1994) and does
not appear to cause any undue errors in dose calculation.

As yet, no rigorous timing comparisons of the evolution and Monte Carlo methods
have been made. The dimensionally-reduced evolution method reduces the problem to

five dimensions which still leaves the Monte Carlo method with a slight (theoretical)
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advantage. Whether the high computational burden of the Monte Carlo method eliminates
this advantage remains to be seen. As discussed in Chapter 5, the possibility exists to
incorporate a higher order numerical integration scheme in the evolution method. Using

such a method in all 5 dimensions would give the evolution method a relative

convergence rate of 1 /x4/5 which is somewhat better than the Monte Carlo method.

4.3.5 Conclusions

The results indicate that the dimensionally-reduced evolution method provides
accurate predictions of the central axis depth dose when compared with the modified
Monte Carlo calculations. Inclusion of radiative energy-losses is clearly needed to
provide good agreement with the full Monte Carlo simulations. Discrepancies in the
calculated dose distributions occur in the beam penumbra beyond a depth of half the
electron range. These discrepancies may be due to the use of the Gaussian angular
scattering approximation, grid diffusion, or assumptions in the method of dose scoring.
Appropriate modifications of the calculational scheme will likely improve the calculated
dose distribution.

The two assumptions of the dimensionally reduced evolution method -- namely
(i) electrons travel in straight lines within a single transport step and (ii) electrons do not
backscatter -- do not contribute to excessive errors in dose calculations for homogeneous,
water-like media. The data suggest that this approach to electron beam dose calculations

is feasible and worth pursuing.
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Appendix 4A: Calculating Path Length in Three Dimensions

As mentixoned above, the projection of an electron’s path on a plane is always
shorter than the true three-dimensional path. This appendix presents a method of
approximating the average length of the three-dimensional path given the length of the

two-dimensional path and information regarding the angular spread of electrons.

22

X

Figure 4-8: The Projected Path Length

A line segment of length, s, is projected onto the xz-plane to form a new line
segment of length, s,. Clearly, s, is always less than or equal to s.

Based on the geometry shown in Figure 4-8, the true three-dimensional path length

for an electron moving from depth > to depth > _ is given by,

s = Azy1+tan?0

= Az,/1+tan’8,+tan?0,

(A.1)

The length of the projection of this path on the zx-plane is given by,
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s, = Az /1+tan%, (A.2)

Applying the small angle approximation, these two expressions reduce to,

2 2
s=Az(1+&+&) (A.3)
2 2
and
2
s, = Az (14—%’-‘) (A.4)

The difference between g and Sy is the increase in path length due to the excursion in

the y-direction which is given by,

As,6 = s-8,
(A.S)
8,
= Az —2—-
Taking averages of both sides and assuming (ei) = (oi) yields,
_ Az _ /n2
Asy) = == (0 (A.6)

The increase in path length due to excursions in the y-direction may be estimated
using this last expression. The resulting approximate path length, ¢ = S+t 3. is

used in all table look-ups of the angular and energy transition densities.



Chapter 5. Discussion and Conclusion

5.1 The Present Work
5.1.1 Summary

Chapter | discussed the shortcomings of the electron beam dose calculation
methods currently in clinical use. These methods are semi-empirical in nature and can
fail in some situations encountered in clinical dose calculations (eg in the presence of
small tissue inhomogeneities). The premise of this thesis is that a more accurate dose
calculation method -- one that is applicable to all situations :ncountered in clinical
practice -- must incorporate the major physical processes which shape the dose
distribution.

The two most important physical processes which drive the transport of electrons
in a scattering medium are energy-loss and angular scattering. Chapters 2 and 3 address
these two processes by developing a mathematical model which predicts the energy
spectrum and angular spread of electrons which have travelled a given path length in a
scattering medium. This mathematical model is based on the compound Poisson process
and its applicability to situations relevant to clinical dose calculations is demonstrated.

Two "transport-based” dose calculation methods (ie methods which include the
major physical processes) have been Jroposed for clinicai use: the evolution method and
the Monte Carlo method. Chapter 4 analyzes these two approaches and compares their
numerical convergence. Chapter 4 also presents an approximate evolutic.: method which

incorporates two simpiifying assumptions:

(i) electrons travel in straight lines over a single transport step, and

(i1) electrons do not backscatter.

The approximate method is intended to reduce the calculation time and computer memory
requirements in comparison with the “exact” evolution transport method. The effects of

these two assumptions on the accuracy of dose calculations are investigated using a two-
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dimensional dose calculation algorithm.

5.1.2 Conclusions
The major conclusions of the ;;revious four chapters may be summarized as
follows:

(1) Commonly used models of energy-loss and angular scattering may be
described using a single statistical model known as the "compound Poisson
process''.

The compound Poisson process (CPP) underlies many commonly used models of
electron energy-lcss (Landau, 1944; Vavilov, 1957; Bichsel and Saxon, 1975) and angular
scattering (Goudsmit and Saunderson, 1940; Moli¢re, 1948; Lewis, 1950). The CPP in
turn relies on three basic assumptions:

(i) energy-loss or angular scattering events are independent,
(i) all events are identically distributed (ie the cross sections do not change along the
electron’s path), and
(iii) the number of events in a given path length is a Poisson distributed random
variable.
The effect of these three assumptions is to impose an upper limit of the allowable path
length. The results of Chapters 2 and 3 indicate that, for water-like media, the upper limit
of path length is approximately 0.5 g/cm’. o

(2) The macro Monte Carlo method and evolution method are both numerical
methods of solving the same integral.
The basic equation underlying both the macro Monte Carlo method and evolution
method is,
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fiol(r' Q.E) =

5.1)
(r,Q,E; ', Q, E'"Y dr’dQ’dE’ (

Tstep

ffi(r’,Q’.El)f'
D

where ¢ (r,Q,E:; 2, Q’, E") is the Green’s function which gives the probability

step
density of arriving at position, r, direction, (3, and energy, g, in one transport step given
that the electron started at position, g/, direction, 3/, and energy, g’. The probability
density, £ (r,Q, E), represents the ensemble of penetrating electrons after the i
transport step ( £, (r, Q, £) represents the incident electron beam) and p represents the
domain of all possible positions, directions and energies. The Monte Carlo method and
the evolution method differ only in the way they represent the probability density,
f;(z,Q,E) . The evolution method uses a regularly spaced grid of points while the
Monte Carlo method uses a set of randomly sampled points. The total number of points,
N, ;. in the regular grid is analogous to the total number of samples, n, 1000 Uir the total

number of histories) in the macro-Monte Carlo approach.

(3) The Monte Carlo method offers faster convergence than the evolution method
for the full six-dimensional integral.

The convergence of the evolution method depends on the dimensionality of the
integral while the Monte Carlo method does not. For a six-dimensional integral, the error
in the evolution method is proportional to 1 /,}/3 compared to an emor proportional to1 / n7,}/2,
for the Monte Carlo method. The convergence of the evolution method improves with
decreasing dimensionality of the integral: specifically, the rate of convergence is

proportional to 1 /x5 2/D where p is the dimensionality of the integral.

(4) The assumptions needed for a dimensionally-reduced evolution method do not
cause excessive errors for the purposes of radiation therapy treatment
planning.

A dimensionally-reduced evoiution method may be formulated such that the
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distribution of electrons evolves as a function of depth. The formulation relies on the two
assumptions:

(i) electrons travel in straight lines within a transport step, and

(ii) electrons do not back-scatter.
Caiculations of two-dimensional dose distributions indicate that these assumptions do not
cause significant error in the calculated dose distributions. Also, the calculation time and

memory requirements are reduced by a factor equal to the number of depth increments

when compared with the full six-dimensional evolution method.

5.2 Future Research and Development
5.2.1 Generalization of Multiple Scattering Theory

The generalization of the models of energy- :0ss and angular scattering presented
in Chapters 2 and 3 is unlikely to impact on the accuracy of dose calculations in a
clinically significant way: the models used in the EGS4 (Nelson et al., 1985) and ETRAN
(Berger, 1969) Monte Carlo codes both rely on the assumptions of the compound Poisson
process yet they provide sufficiently accurate predictions for the purposes of clinical dose
calculaticn. However, these Monte Carlo codes are known to give poor results in some
problems (eg electron back-scattering calculations) due to the approximate nature of the
multiple scattering and energy-loss formalisms. Therefore, the generalization of the
multiple scattering theory merits serious attention in the solution of these types of
problems.

Two approximations have been applied in Chapters 2 and 3. Firstly, the angular
scattering and energy-loss processes are assumed to conform to the conditions of a
compound Poisson process. Secondly, since the angular scattering and energy-loss
processes have been treated separately, it is assumed implicitly that they are independent
processes. Therefore, we may generalize the mathematical formalism on two levels: (i)
remove the restrictions of the compound Poisson process, and (ii) include correlations
between angular scattering and energy-loss.

The angle-energy correlations may be included within the framework of the
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compound Poisson process. In other words, the generalization (ii) may be achieved
without relaxing the conditions for a compound Poisson process. In analogy with the
formalisms of Chapters 2 and 3, let o _(Q, E; Q,, E,) represent the probability density
for an electron to acquire an angle, 1, and an energy, g, after exactly n collisions, given
that it started with an angle, Q , and an energy, E,- This probability density is defined

by the recursive relation,

w,(Q,E;Q,,E) = f w, (Q,E;Q,E) w,, (Q,E;Q,, E,) dQ'dE’
all @', E’ (5.2)

where o_(Q, E; @/, £) is the probability density for a transition to the "state”, (Q, E) ,

from an intermediate state, (Q‘, g’), in a single interaction. This single-scattering
probability density may be constructed from a normalized sum of the cross sections for

the various possible modes of interaction:

0,(Q,E;Q',E) =

Opos (R, E;Q,EN) +0,,.(Q,Ei Q) E') +0,,,,(Q,E;Q, E) (3-3)

Emol + z:nur: + zlzrem

where ¥ ,and » brem 3T€ the total cross sections for Moller (electron-electron),

mo1® L puc
nuclear (electron-nucleus), and bremsstrahlung interactions respectively. Similarly,
0,0, () 0,,.(.),and Oprom () are the corresponding differential scattering cross
sections (differential in both solid angle and energy). The probability density,
w, (R, E;Q,, E,) - corresponding to no collisions (a=0) is the Dirac delta function,
8,(Q€Q,)8 (E-E,) -

The conditions of the compound Poisson process imply that we can write the
probability densities, @, (Q,E;Q,,E).a8a function of the difference, A = E,-E» and
the dot product, nQ, (e w,(Q,E:Q,,E) = w,(QQ, 4)) The joint angular-
energy density for a given path length is then given by,
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b Ny -AS
£(s,,5) =y {25l 7 (aq,, ) (5.4)

n=Q

where ) is the average number of collisions (of any type) per unit path length. Since the
expression (5.4) uses cross sections which are differential in both energy and angle, the
correlations between energy-loss and direction are retained.

The expression (5.4) is not useful when ), s is large (ie when the path length is
relatively large compared with the mean free path of the electrons) since the number of
terms in the series required for accurate calculations becomes too iarge. Therefore, the
next step in the procedure is to write the expression (5.4) in an alternate form suitable for
relatively long path lengths as was done for the angular scattering and energy-loss
processes (see Table 3-1 in Chapter 3).

A complete gencralization of the multiple scattering process requi-¢s that we relax

the conditions of the compound Poisson process. This may be achieved by replacing )
with le(s') ds’ and by replacing w_(Q-Q,,A) With & _(Q,E;Q,, E,) in the

expression (5.4). With these substitutions, the methods used in Chapters 2 and 3 to derive
the expressions for relatively long path lengths are no longer : ‘icable. Thus, the
challenge in deriving a more generai scattering theory lies not in . . actual formulation
but in finding convenient expressions for incorporation into transport calculations.
However, since a general scattering theory would not be restricted to a maximum path

length increment, the challenge seems well wonh the effort.

5.2.2 Timing Bench-marks

Results reported by Neuenschwander et al. (1995) and Janssen et al. (1994) afford
a rough estimate of the relative calculational specd of the macro Monte Carlo method and
the evolution method. Both papers report a speed gain over comparable EGS4 Monte
Carlo calculations of about one order of magnitude indicating that the macro Monte Carlo

method and the evolution method achieve comparable calculation times. Although this
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result is not a rigorous timing bench-mark, it does suggest that, despite the advantage of
faster convergence, the macro Monte Carlo method can not achieve dramatically shorter
calculation times than the ev.iution method.

However, no quantitative comparisons of calculation times have appeared in the
literature. Since any method of clinical dose calculation must be fast (eg <5 minutes per
beam), timing "bench-marks" are essential to establish the practicality of a given method.
Also, since the calculation time can vary with many factors (eg incident beam energy and
the presence of inhomogeneities) time comparisons between two methods must be made
under identical conditions. Therefore, a set of standard test cases would aid in the

comparison of calculation times.

5.2.3 Cube-Based Macro Monte Carlo

Two practical considerations lead to an increased computational burden for the
macro Monte Carlo method. Firstly, the kugel data-base is generated only for a single
incident electrun position and direction; to consider all possible incident positions and
directions would generate an impractically large amount of data (Mackie and Battista,
1984). Secondly, the kugel data-base is generated only for homogeneous kugels.

The first limitation implies that the kugel data-base provides only the change in
position, direction and energy over a given transport step. Thus, a coordinate
transformation is required after each transport step to calculate the new position and
direction of an electron given the position and direction immediately prior to the transport
step. These coordinate transformations add to the time needed for a Monte Carlo
simulation.

The second limitation implies that an electron should not cross a boundary
between two dissimilar media in a single transport step. Thus, at every transport step, the
calculational algorithm must check to see if a boundary has been crossed. If it has, then
the algorithm must recalculate the transport step such that the step ends exactly on the
boundary. The recalculation of steps near boundaries requires additional calculation time.

In contrast to the macro Monte Carlo method (as currently implemented), the

evolution method requires neither coordinate transformations nor boundary crossing
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algorithms. Since the distribution of electrons is represented using a regularly spaced
grid, the position, direction and energy of an electron is determined by a set of six
integers corresponding to the grid indices. Therefore, to change the position, direction
and energy of an electron over a transport step requires only a shift of the grid indices.
This shift requires far less computational effort than the coordinate transformation
rcquired in the macro Monte Carlo method. In addition, since the geometry of the
scattering medium is obtained from computed tomography data (ie a three dimensional
regularly spaced array of voxels), the calculational grid may be constructed such that
medium boundaries coincide with discrete grid points. Such an arrangement precludes
the possibility of crossing a boundary within a single transport step. Therefore, the
discrete nature of the evolution method leads to a “stream-lined" numerical algorithm.

A dose calculation algorithm which combines the calculational simplicity of the
evolution method with the faster convergence of the Monte Carlo method would provide
shorter calculation times. Such an algorithm may be achieved by using cubes as kugels
(as suggested by Mackie and Battista, 1984) rather than spheres or hemispheres as is done
presently. To avoid coordinate transformations, the data base should be generated for all
possible incident directions and positions. To avoid an excessively large data-base, the
incident and exit positions of the electrons can be restricted to the comners of the cube.
This is the approach taken by Janssen et al. (1994) in their evolution algorithm. The
cube-based approach will also make it possible to avoid, a priori, the possibility of
crossing a boundary within a transport step. The possibility of a cube-based macro Monte

Carlo approach presents an exciting possibility for future development.

§.2.4 Generalization of the Depth Evolution Method

Chapter 4 demonstrated the feasibility of a depth evolution method of dose
calculation for use in clinical treatment planning. However, several refinements of the
method are required to achieve more accurate dose calculations.

Most importantly, better models of angular scattering and energy-loss (as described
in Chapters 2 and 3) are needed to replace the overly simplistic models used in the
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preliminary version of the algorithm. Inclusion of secondary electron and bremsstrahlung
transport will further improve the accuracy.

One important assumption of the depth evolution method is that electrons do not
back-scatter. This assumption may be relaxed somewhat by using a straight-line transport
approximation for the backward-travelling electrons. In this approach, electrons which
have acquired a polar angle of travel greater than x /2 radians are projected in a straight
line for a distance equal to their residual range. The energy of these back-scattered
electrons is spread uniformly along this line.

It is also important to establish the "robustness” of the depth evolution method.
In other words, one must establish the limitations of the algorithm by finding situations
in which the dose predictions are inaccurate or erroneous. For example, one weakness
of the algorithm noted in Chapter 4 is the grid-diffusion problem. Electrons arriving at
a given lateral point are placed in the discrete grid points closest to the true destination
point. This has the effect of causing an artificial lateral spreading of the electrons.
Further investigation is required to find the electron energy and material density for which
this effect becomes unacceptably large.

Improving the calculation time will still be an important goal for the dimensionally
reduced evolution method. Since the evolution method is simply a form of numerical
integration, it seems reasonable to attempt to use more sophisticated numerical integration
techniques to improve the rate of convergence and thereby improve the calculation time.
Higher order numerical integration techniques such as Gaussian quadrature are well

established (Press et al., 1988) and improve the convergence of a one-dimensional integral

from 1/Nb21ns to 1/Nb4ins'

Using Gaussian quadrature, the error in the five-dimensional integral of the depth

evolution method would be proportional to 1 /n,%/3 which is somewhat better than the

convergence provided by the Monte Carlo method. Unfortunately, Gaussian quadrature
requires that the discrete grid points be placed at the zeros of the Legendre polynomials
and it remains to be seen if this would provide sufficiently small angular bins in the

forward direction.
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Whatever final form the depth evolution method may take, quantitative timing

bench-marks remain an important requircment for the assessment of the practicality of the
method.  Although the depth evolution method will certainly improve upon the
calculational speed of the full six-dimensional evolution method, its performance relative

to the Monte Carlo method must also be assessed quantitatively.

5.2.5 Clinical Implementation

Chapter 4 presented depth-evolution results which tested the two basic
approximations of the method: (i) electrons travel in straight lines within a given transport
step, and (ii) electrons do not back-scatter. In this case, EGS4 Monte Carlo served as a
suitable "gold standard” to isolate and test the approximations under idealized situations
(ie "clean", monoenergetic, monodirectional beams incident on a homogeneous flat
phantom). These types of comparisons were ideal for uncovering the weaknesses in the
depth evolution method which were identified in Section 5.2.4. However, even once these
weaknesses have been addressed, the depth evolutior method must be compared with
measured data obtained for clinically realistic sit.ations.

Valid comparisons of the depth evolution method with data measured in clinically
realistic situations first requires that the beam emerging from the medical linear
accelerator be adequately modeled. Fortunately, considerable work has been done to
calculate the distribution of electrons (in position, direction and energy) emerging from
the electron applicator of a medical accelerator. Perhaps the most promising work has
involved the use of the EGS4 Monte Carlo code to simulate all the components of the
beam-shaping apparatus (Rogers et al., 1995). This provides a means to completely
specify the properties of a clinical electron beam and use this information as input to a
dose calculation. The depth evolution method can accept this input through appropriate
specification of the initial conditions.

Once the questions of the numerical convergence of the evolution method and the
modelling of the incident beam have been addressed, the validation of the depth evolution

method in clinically realistic situations may proceed. The validation entails a careful
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check of calculations against measurements for the many different situations of clinical
interest. Complications encountered in the clinic can be broadly divided into two
categories: (i) variations in the surface contour, and (ii) variations in the composition and
geometry of inhomogeneities.

The variation of surface contour will present a particular challenge for the depth
evolution method since, as noted above, the grid-diffusion problem will be exaggerated
in low density media (eg the air space between the applicator and the patient surface).
However, it seems reasonable to expect that pencil beam methods will be adequate to
simulate the scattering of electrons in-air. One can envision, then, a hybrid method where
a pencil beam calculation is used to bring the electrons from the level of the applicator
to the patient’s surface and the depth evolution method is used to calculate the electron
transport thereafter.

The variation of the composition and geometry of inhomogeneities may be tested
using standard test geometrics which have been presented in the literature (Shui et al.,
1992). However, it is also important to find test cases specific to a given method which
probe its limitations. In the case of the depth evolution method, low density
inhomogeneities will be of particular importance since the grid-diffusion problem will be
most severe in these cases. The importance of grid diffusion will vary with the size and
depth of the inhomogeneity. For example, small air cavities located near the end of the
electron range (where the angular distribution of electrons is very bioad) are unlikely to
lead to significant errors. The same may not be true of large inhomogeneities located
near the surface of the scattering medium. Therefore, experiments which vary the size
and depth of inhomogeneities are required to probe the performance of the depth
evolution method.

The geometry and scattering properties of the tissues is generally inferred from
computed tomography data. It is well known that the CT number of a given voxel does
not uniquely define the density and atomic number of the material within the voxel.
However, approximate methods have been developed (Huizenga and Storchi, 1985) which
are sufficiently accurate considering the uncertainty in the dose calculations themselves.

Once more accurate methods of dose calculation become available, it seems prudent to
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re-investigate the adequacy of methods used to translate between CT number and the
scattering properties of a material.

As discussed in Chapter 1, the semi-empirical dose calculation methods in current
clinical use do not provide sufficiently accurate dose predictions for all situations of
interest. This has, to some extent, limited the applicability of electron beams to a few
specific sites. However, with more accurate dose calculation techniques at their disposal
and once assured of the accuracy of the dose predictions, medical physicists and radiation
oncologists will be better able to develop more complex electron irradiation techniques

and (hopefully) more effective treatments.
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