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ABSTRACT

Most predictive control algorithms, including the Generalized Predictive Control
(GPC) (Clarke er al. ,198,) are based on linear dynamics. Many processes are severely
non-linear and would require high order linear approximations. Another approach, which
is presented here, is to extend the basic adaptive GPC algorithm to a non-linear form.
This provides a non-linear predictive controller which is shown to be very effective in the
control of processes with non-linearities that can be suitably modelled using general
Volterra, Hammerstein and bilinear models. In developing this algorithm, the process
dynamics are not restricted to a particular order as is the case with the current non-linear
adaptive algorithms. Simulations are presented using a number of examples and the steady
state properties are discussed.

The Non-Linear Generalized Predictive Control (NLGPC) algorithm is tested on
a non-linear batch reactor system by carrying out a number of experiments and comparing
its performance with other control strategies. The NLGPC is shown to outperform the
constrained Self-Tuning PID (STPID) controller by Katende and Jutan (1993) and the
Generalized Minimum Variance (GMV) controller by Clarke and Gawthrop (1975). It is
also shown to have better performance than the well known GPC algorithm by Clarke ¢r
al. (1987). The advantage of the NLGPC over the other controllers is attributed to its
adaptive nature and use of non-linear process models in its design.

Keywords: adaptive control, non-linear control, predictive control, non-linear processes
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

During the past three decades, major advances in control theory have occurred as
affordable computer control systems have become readily available. As a group, adaptive
controllers have focused primarily on linear process models. From a parameter update
point of view, it is advisable to have the parameters in a linear space. However, from the
process dynamics view point, linear dynamics can present a severe limitation for highly
non-linear processes. Adaptive control applications based on linear dynamics are very
numerous and the basic engineering theory and applications have been presented in
literature.

For a large number of systems a linearizing approach is acceptable. However, for
some non-linear systems linearizing can result in poor performance. Some of these highly
non-linear systems include pH control in some chemical or biochemical processes, or

thickness control for a rolling mill. In order to obtain improved control over these

]




systems, while maintaining the benefits of self-tuning control techniques, it is necessary
to take account of the non-linear dynamics in an appropriate manner.

Atherton (1975) and Cook (1986) indicate that because of the large number of
different types of non-linearity which can occur in practice, extending a basic linear
control scheme to account for all possibilities is unrealistic. A sensible way of tackling the
general problem is to employ a framework within which a large number of non-linear
processes can be adequately approximated. For seif-tuning such a framework is provided
by the Volterra and Hammerstein models (Agarwal and Seborg, 1987).

Agarwal and Seborg proposed two self-tuning control strategies for non-linear
control problems. Their strategies are applicable to a broad class of non-linear single-
input, single-output systems which can inclnde arbitrary nonlinear functions of the most
recent input.

The aim of this research is to explore adaptive non-linear predictive control
strategies which have the attractive features of a generalized predictive controller, but
without the restriction to linear dynamics. This is an advantage over the current discrete
non-lincar algorithms which usually restrict the process dynamics to second order.
Performance is also improved by using a non-standard cost-function.

In this thesis a new Non-Linear Generalized Predictive Control (NLGPC) algorithm
with a general non-linear and bilinear model structure (Lachmann, 1982 and Svoronos er
al., 1981) is developed. A non-standard and probably more appropriate cost function is
used. In predictive controllers, minimization of a cost function yields the predictive
control law, hence the choice of the criterion function is of paramount importance. The

NLGPC algorithm developed here can deal with both linear and non-linear processes and




is developed in the framework of the GPC algorithm.

Various linear and non-linear models are simulated and the performance of the
NLGPC algorithm is compared to the standard adaptive GPC. The NLGPC performance
is also evaluated using an adiabatic continuous stirred-tank reactor (CSTR). Experimental
studies were carried out using predictive control methods and the results are compared to
those obtained using self-tuning PID (STPID, by Katende and Jutan, 1993) and generalised

minimum variance (GMV, by Clarke and Gawthrop, 1975).

1.2 OBJECTIVES

The following is a brief outline of the objectives of this research:

s Develop a new Non-linear Generalized Predictive Control (NLGPC) algorithm.

s Extend the Non-linear Generalized Predictive Control (NLGPC) to account for
bilinearity in input/outpitt signals.

. Simulate various models of different complexity under (i) Non-iinear Generalized
Predictive Control (NLGPC) , (i1) Generalized Predictive Control (GPC).

. Implement the these Predictive Control algorithms on a batch reactor system,

. Compare the performance of Predictive Control to Generalized Minimum Variance

(GMYV), and the self-tuning PID (Katende and Jutan, 1993) algorithms.




1.3 OVERVIEW

The thesis is broken into three major sections. In chapter two, the literature is
reviewed, chapters three, four and five give the theoretical developments, and chapters six
and seven discuss both the simulation and experimental results. The following is a brief
outline of the thesis:

Chapter 2

In this chapter, progress in the theory of adaptive/model based predictive control
is reviewed. Various approaches are discussed with particular emphasis on model
predictive control and non-linear predictive control. The need for a new NLGPC
algorithm is justified. The capabilities of the existing adaptive/predictive controllers are
also discussed.

Chapter 3

Theory of GPC is discussed in this chapter. The main algorithm is derived as
given in literature. Its features are also discussed and illustrated in detail.
Chapter 4

In this chapter. the new NLGPC algorithm is proposed. A sevond order NLGPC
is also presented. Detailed discussion of the algorithm is given. Steady state performance
of the NLGPC as opposed to that of the GPC are also discussed in detail.

Chapter §

The performance of a NLGPC with penalty on the pseudo-input as opposed to that
of the NLGPC with penalty on the actual input are compared. The need for a modified
cost function is justified.

Chapter 6




Simulations of various models under NLGPC and GPC are shown in this chapter.
The performance of the two algorithms are compared and discussed in detail.
Chapter 7

In this chapter, experimental studies of the Predictive Control, self-tuning PID (by
Katende and Jutan, 1993) and GMV (Clarke and Gawthrop, 1975) are presented.
Chapter 8

General conclusions are made in this chapter. Recommendations for future studies

are also given.




CHAPTER 2

LITERATURE SURVEY

2.1 INTRODUCTION

Research on adaptive control started in the early 1950s. It was initiated by the poor
performance of ordinary, constant gain, linear feedback control systems when used to
control processes with nonlinear dynamic behaviour. Some of the early work done is

discussed by Gregory (1959) and Mishkin and Braun (1961).

In the 1960s there were many contributions to control theory, which were
important tor the development of adaptive control. Siate space and stability theory were
introduced. There were also important results in stochastic control theory. Dynamic
programming, introduced by Bellman (1957, 1961) and dual control theory introduced by
Feldbaum (1960a,b, 1961a,b, 1965), increased the understanding of adaptive processes.

Fundamental contributions were also made by Tsypkin (1971), and major developments

in system identification and parameter estimation by Astrom and Eykhoff (1971).




Active research on adaptive control theory started again in the 1970s. The progress
in control theory during the previous two decades has contributed to an improved
understanding of adaptive control. Much of the theory on adaptive control of chemical
process systems was developed by Astrdm and Wittenmark (1973), Wittenmark (1973),
Astrom (1974), and Clarke and Gawthrop (1975). Few industrial applications were
reported initially. However, considerable progress has been made since then and a number
of industrial applications have been reported. For example, on paper machines given in
Cegrell and Hedquist (1975), and Wittenmark (1974), on adaptive autopilot for ships given

in Astrdom and Killstrom (1980) and many others.

The most recent work and some of the most powerful and practical adaptive control
systems belong to the class of Long Range Predictive Control (LRPC) systems developed
by researchers such as Peterka (1984), Ydstie (1984), DeKeyser and Van Cauwenberge
(1982), Clarke er al (1987a,b), Lee and Sullivan (1988), Favier er al (1988), Soeterboek
(1992), Lee er al (1992) and Scattolini and Schiavoni (1995). There are a large number
of excellent review articles covering the field of adaptive control, e.g. Seborg er al.
(1986), Astrom (1987), De Keyser er al.(1988) and Ljung and Gunnarson (1990), plus

excellent introductory textbooks such as Astrom and Wittenmark (1989) and Ljung (1987).

As a trend, most of the adaptive control literature has focused primarily on linear
process models. Adaptive control applications based on linear dynamics have been

presented in, for example, Harris and Billings (1985) and Warwick (1988).




As indicated by Atherton (1975) and Cook (1986) that for processes with certain
types of non-linearity, non-linear control schemes should be considered. Agarwal and
Seborg (1987) use Volterra and Hammerstein models to develop a self-tuning controller.

‘These models provide a framework within which a large number of non-linear processes

can be adequately approximated.

This chapter provides an overview of model based predictive control and the

relevant non-linear (predictive/adaptive) control strategies.

2.2 MODEL PREDICTIVE CONTROL (MPC)

The earliest MPC design was proposed by Dawkins and Briggs (1965), though
IDCOM (IDentification/COMmand) by Richalet er al. (1978) was the first to be used in
practice. The method, sometimes called Model Algorithmic Control (MAC), has been
analyzed by Reid er al. (1979, 1981); extensions of IDCOM to the multivariable case is
given by Martin and Van Horn (1982). Other analytical comments are given by Bruijin
et al (1980), and Bruijin and Verbruggen (1984) who add control weighting to the IDCOM
cost function.

During late 1970's various articles started to appear showing an increased interest
in MPC by the industry, principally publications by Richalet er al. (1976, 1978) presenting
Model Predictive Heuristic Control (MPHC) (later known as Model Algorithmic Control
(MAC)) and those by Cutler and Ramaker (1980) presenting Dynamic Matric Control




(DMC). A dynamic process model is explicitly used in both algorithms in order to predict
the effect of the future control actions at the output; these are determined by minimizing
the predicted error subject to operational restrictions. An impulse response model is used
in MAC whereas a step response model is used in DMC.

Other areas of interest included, developing Long Range Predictive Control
(LRPC) strategies for processes formulated with input/output models. Research on long
range predictive control (LRPC) was motivated as a result of self-tuning methods based
on GMV approach (Clarke and Gawthrop, 1975,1979) and the polc—p!accment algorithm
(Welistead er al.,1979; Astrom and Wittenmark, 1980), could not cope with a number of
problems. For example, the implicit GMV sclf-tunef is robust ;gainst model order
assumptions but can perform badly if the plant dead time varies. Also the explicit pole
placement method can cope with variable dead time but not with model over-

parametization.

Other LRPC designs within the main-stream ot self-tuning literature which is
generally based on CARMA/ARMAX models include the Extended Horizon Adaptive
Control (EHAC) of Ydstie (1984) and the Extended Prediction Self Adaptive Control
(EPSAC), which was refined over a series of practical applications by De Keyser and Van
Cauwenberghe (1981, 1982a,b, 1985). Other related designs include LQG design (e.g.
Clarke er al. (1985) and the General Predictive Control (GPC) design by Clarke er al.
(1987) which is perhaps the most popular method at the moment. There are numerous

other LRPC formulations amongst which are: Multistep Multivariable Adaptive Control




(MUSMAR) by Greco er ul. (1984), Multipredictor Receding Horizon Adaptive Control
(MURHAC) by Lemos and Mosca (1985), Predictive Functional Control (PFC) by
Richalet er al. (1987) and Unified Predictive Control by Socierboek (1992).

MPC has also been formulated in the state space context (Lee et. al, 1994). This
not only allows for the use of well known theorems of the state space theory, but also
facilitates their generalization to more complex cases such as systems with stochastic
disturbances and noise in the measured variables. By extending the step response model
and using known state space techniques, processes with integrators can also be treated.
The state estimation techniques arising from stochastic optimal control can be used for
predictions without additional complications (Lee er ql., 1994). This perspective leads to
simple tuning rules for stability and robustness: the MPC controller can be interpreted to
be a compensator based on a state observer and its stability, performance and robustness
are determined by the poles of the observer (which can be directly fixed by adjustable
parameters) and the poles of the regulator (determined by the horizons, weightings, etc.).
An analysis of the inherent characteristics of all the MPC algorithms (especially of the
GPC) from the point of view of the Gaussian quadratic optimal linear theory can be found
in the book by Bitmead er al. (1990).

Garcia er al. (1989) provide a review of MPC history, formulation, key features,
applications and references. Ricker (1989) provides a technical overview and more
detailed presentations can be found in the books by Prett and Garcia (1988) and Morari
and Zafiriou (1989) and some conference proceedings edited by McAvoy ez al. (1989).

In books by Camacho and Bordon (1995) and Soeterboek (1991) detailed description of
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model based predictive control schemes can be found. MPC software packages and
application assistance are available commercially. Applications include refinery processes
(Cutler and Hawkins, 1987; Martin er al. 1986), pulp and paper processes (Matsko, 198S;
Ruiz er al., 1986) and a number of miscellaneous applications including a wind tunnel,
glass furnace, steam generators, etc. (Mehra er gl., 1982) and a large municipal sewage

system by Ricker (1989).

2.2.1 General Structure

2.2.1.1 Process Model
The process can be multi-input multi-output, non-square, linear-system with
measured and / or unmeasured disturbances and hard constraints on the manipulated and

/ or output variables.

The concept of MPC i< not limited to any particular mode] form but the model
form chosen strongly affects the implementation and computational requirements. The
most common model form is the truncated step ( or convolution ) model which can, in
principle, be obtained simply by putting a unit step into the process input(s) and recording
the output impulse response(s). Note that with this approach the process model is simply
a vector of constants obtained simply by discretizing a recorded step response. It is used
directly in the controller implementation and does not have to be transformed into transfer

function or state space form. However, the model can be of almost any form, including

transfer function (Prett and Garcia, 1988), state space (Ricker, 1989; Navratil ef al.,
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1989), unstable systems (Morari and Zafirou, 1989) and non-linear systems (Economou

et al., 1986; Bequette, 1991).

2.2.1.2 Objective Function

The various MPC algorithms propose different cost functions for obtaining the
control. The general aim is that the future output (y) on the considered horizon should
follow a determined reference signal (w) and, at the same time, the control effort (Au)
necessary for doing so should be penalized. The general expression for such an objective

function will be:

Ao N,
JN NWN)=ELY SO -wle+pF + 3 A[An(r+j-1)P) Q.1
Eh J=t

N, and N, are the minimum and maximum cost horizons and Nu is the control horizon,
which does not necessarily have to coincide with the maximum horizon. The meaning of
N, and N, is rather intuitive. They mark the limits of instants in which it is desirable for
the output to follow the reference. Thus, if a high value of N, is taken, will provoke a
smooth response of the process. Note that in processes with dead time d there is no reason
for N, 1o be less than d because the output will not begin to evolve until instant t+d. Also
if the process is non-minimum phase, this parameter will allow the first instants of inverse
response to be eliminated from the objective function. The coefficients 8(j) and A(j) are

sequences that consider the future behaviour, usually constant vaiues or exponential
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sequences are considered. For example it is possible to obtain an exponential weight of

8(j) along the horizon by using:

8() = a7 2.2

If « lies between O and 1, inclusively, this indicates that the errors farthest from instant
t are penalized more than those nearest to it, giving rise to smoother control with less
effort. If, on the other hand, & > 1 the first errors are more penalized, provoking a
tighter control. In Predictive Functional Control (PFC) the error is only counted at certain
points (coincidence points); this is easily achieved in the objective function giving a unity
value to the elements of sequence 8(j) at said points and zero at the others.

One of the advantages of predictive control is that if the future evolution of the
reference is known « priori, the system can react before the change has éffectively been
made, thus avoiding the effects of delay in the process response. The future evolution of
reference r(t+k) is known beforehand in many applications, such as robotics, servos or
batch processes; in other applications a noticeable improvement in performance can be
obtained even though the reference is constant by simply knowing the instant when the
value changes and getting ahead of this circumstance. In the objective function, the
majority of methods use a reference trajectory w(t+k) which does not necessarily have to
coincide with the real reference. It is normally a smooth progression from the actual value

of the output y(t) towards the known reference by means of the first order system:

w(n)=)(1) w(t+k)=aw(1+k-1)+(1-a)(t+k) k=1._.N 2.3)




where & is a parameter contained between 0 and 1 (the closer the value is to unity the
smoother the approximation) that constitutes an adjustable value that will influence the
dynamic response of the system.

In practice all processes are subject to restrictions. The actuators have a limited
field of action as well as a determined slew rate, as is the case of valves, limited by the
positions of totally open or closed and by the response rate. Construction reasons, safety
or environmental ones or even the sensor scopes themselves can cause limits in the process
variables such as levels in tanks, flows in piping or maximum temperatures and pressures;
moreover, the operational conditions are normally defined by the intersection of certain
constraints for basically economic motives, so that the control system will operate close
1o the boundaries. All of this makes the introduction of constraints in the function to be
minimized necessary. Many predictive algorithms intrinsically take into account
constraints (MAC, DMC) and have therefore Leen very successful in industry, whilst

others can incorporate them a posteriori, for example the GPC (Camacho, 1993).

2.2.1.3 Control Law

In order to obtain values u(t+k|t) it is necessary to minimize the objective
function. To do this the values of the predicted outputs ¥y (t-+k|t) are calculated as 2
function of past values of inputs and outputs and of future control signals, making use of
the model chosen and substituted in the cost function, obtaining an expression whose
minimization lead to the looked for values. An analytical solution can be obtained for the

quadratic criterion if the model is linear and there are no constraints, otherwise an iterative
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method of optimization should be used. Whatever the method, obtaining the solution is
not easy because there will be N,-N,+ 1 independent variables, a value which can be high
(in order of 10 to 30). In order to reduce this degree of freedom a certain structure may
be proposed for the control law. Furthermore, it can be found (De Keyser, 1991) that this
structuring of control law produces an improvement in robustness and in the general
behaviour of the system, basically due to the fact that allowing the free evolution of the
manipulated variables (without being structured) may lead to undesirable high frequency

control signals and at the worst to instability.

2.2.2 Dynamic Matrix Control (DMC)

First proposed by Cutler and Remaker (1980), DMC uses the step response to
model the process, only taking into account the N first terms, therefore assuming the
process to be stable and without integrators. This value of N is also the prediction
horizon, using a control horizon Nu < N. As regards the disturbances, their value will be
considered to be the same as at instant t along all the horizon, that is, 10 be equal to the

measured value of the output (y,,) less the one postulated by the model.

(1 +kiny=inn =y, (1) - A1) (2.4)

Where 7i is the predicted noise disturbance and k=0,1,2,... sequence. Therefore the

predicted value of the output will be

3 N
Vr+kn=Y g Autt+k-i)+ Y g Au(t+k-i)y+i(1 +kit) 2.5)
121

1:hel
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where g, are the sample output values for step input Au. The first term contains the future
control actions to be calculated, the second one contains past values of the control actions
and is therefore known, and the last one represents the disturbances. The cost function
may consider future output errors only, or it may include the control efforts, in which
case, presents the well known generic form. One great advantage of this method is that
it allows complex dynamics such as non-minimum phase or delays to be described with
ease. One of the characteristics of this method making it very popular in industry is the
addition of constraints, in such a way that the constraint equations are added to the
minimization. Optimization (numerical because of the presence of constraints) is carried
out at each sampling instant and the value of u(t) is sent to the process as is normally done
in all MPC methods. The inconveniences of this method are: (1) the size of the problem
(involving a great burden of calculation) and (2) the inability to work with unstable

processes.

2.2.3 Model Algorithmic Control (MAC)

Richalet er al. (1976, 1978) were the first researchers to present Model Predictive
Heuristic Control (MPHC) which later became Model Algorithmic Control (MAC), whose
software is called IDCOM (IDentification-COMmand). It is very similar to the DMC with
a few differences. Unlike the DMC, it uses an impulse response model (also known as
weighting sequence or convolution model) valid only for stable processes with stationary

disturbances. The predicted output is related to the past and future input values by the

equation
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N
ﬂnkmi; ha(t+k=ily=H(z ""Yu(t1+kjs) 2.6)

where h, is the sampled output when the process is excited by a unitary impulse of equal
amplitude as the sampling period. The impulse response is truncated and only N values
are considered (thus only stable processes without integrators can be represented). H(z')
is a polynomial of order N, z*' being the backward shift operator.

Furthermore, this method makes no use of the control horizon concept, so in the
cost function the number of control signals is equal to that of the future outputs. It
introduces a reference trajectory as a first order system which evolves from the actual
output to the setpoint according to a determined time constant. The variance of the error
between this trajectory and the output is what one aims at minimizing in the objective
function. The disturbance can be treated as in DMC or their estimation can be carried out

by the following recursive expression:

1t +kiny=ai(t+k-1}0)+(1 -a)y (N -{11) 2.7)

with7i(t|t)=0 and O<a < 1. a is an adjustable parameter closely related to the response

time, the bandwidth and the robustness of the closed loop system (Garcia er al., 1989).

1t also takes into accoun: constraints in the actuators as well as in the internal variables or

secondary outputs.
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2.2.4 Extended Prediction Self Adaptive Control (EPSAC)

Extended Prediction Self Adaptive Control (EPSAC) by De Keyser ez al. (1985)
proposes a constant control signal starting from the present moment while using a sub-
optimal predictor instead of solving a2 Diophantine equation. For predicting the process

is modelled by the transfer function

A ") = B(z " yn(t-d)+w(1) 2.8)

where d is the delay and v(1) the disturbance. The model can be extended by a term

D(z')d (1), vith d, (1) being a measurable disturbance in order to include feedforward
effect. Using this method the prediction is obtained as shown in De Keyser ef al. (1988).
One characteristic of this method is that the control law structure is very simple ‘s it is
reduced to considering that the control signal is going to stay constant from instant t, that
is Au(t+k)=0 for k>0. In other words the control horizon is reduced to unity and
therefore the calculation is reduced to one single value of u(t). To obtain this value a cost

function is minimized:
N
2;v(k)[w(ﬂk)-P(:"»‘i(Hklt)l’ 2.9)
k=

P(z"') being a design polynomial with unit static gain and factor y(k) being a weighting

sequence. The control signal can be calculated analytically (which is an advantage over

the DMC and MAC) in the form:




X
3 o [wlr+k)-P(z 'y +He)
u(ry = &4 — (2.10)
kZ; Yol

a being the discrete impulse response of the system.

2.2.5 Extended Horizon Adaptive Control (EHAC)

First proposed by Ydstie (1984), EHAC tries to keep the future output (calculated
by Diophantine equation) close to the reference at a period of time after the process delay
and also permits different manoeuvres. This formulation considers the process modelled

by transfer function without taking the model disturbances into account:

Az 'w@) = Bz Wu(1-d) Q.11

It aims at minimizing the discrepancy between the model and the reference at instant t+N:

J=(1+Nt)-w(1+N),  with Nxd (2.12)

The solution to this problem is not unique (unless N=d); a possible alternative is to

consider that the control horizon is unity, that is

Au(r+k-1)=0 1<k<N-d (2.13)

or to minimize the control effort:
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N-d
J=Y u?(t+k) (2.19)
k=0

There is an incremental version of EHAC that allows the disturbances to in the load to be

dealt with easily, it is expressed as

N-d
J=Y" Au*(1+k) (2.15)
k=0

In this formulation a predictor of N steps is used as follows

r+nn)=w(1)+F(z A +E(z "Y)B(z H)Au(1+N-d) (2.16)

E(z') and F(z") being polynomials satisfying the equation

(1-2"N)=A(@z DE@E )Y1-2 )+ PRz (1-27Y) (2.17)

with the degree of E being equal to N'. One advantage of this method is that a simple

explicit solution can easily be obtained, resulting in

oyt +N) -5+ M)

N-d
k:

u(t) = u(1-1)+
E a,z (2.18)

]

a, being the coefficient corresponding to Au(t+k) in the prediction equation. Thus the

control law only depends on the process parameters and can therefore easily be made seif-

tuning if it has an on-line identifier. As can be seen the only parameter of adjustment is
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the horizon of prediction N, which simplifies its use but provides little freedom for the
design. Another disadvantage of this method is that the reference trajectory cannot be used
because the error is only considered at each point, so that certain offsets in the

performance cannot be eliminated.

2.2.6 Generalized Predictive Control (GPC)

The GPC method was first proposed by Clarke er al. (1987) and has received a lot
of attention both from industry and academia. It has been successfully implemented in
many industrial applications (Clarke, 1988), showing good performance and a certain
degree of robustness with respect to overparameterization or poorly known delays. It can
handle many different control problems for a wide range of plaits with a reasonable
number of design variables, which have to be specified by the user depending upon a prior

knowledge of the plant and control objectives.

The basic idea of GPC is to calculate a sequence of future control signals in such
a way that it minimizes a multistep cost function defined over a prediction horizon. The
index to be optimized is the expectation of a quadratic function measuring the difference
between the predicted system output and some predicted reference sequence over the

horizon plus a quadratic function measuring the control efforts,

The GPC has many advantages, among which it provides an analytical solution (in
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absence of constraints), it can deal with unstable and non-minimum phase processes and
incorporates the concept of control horizon as well as the consideration of weighting of
control increments in the cost function. The general set of choices available for GPC leads
to a greater variety of control objectives compared to other MPC approaches, some of
which can be considered as subsets or limiting cases of GPC.

In spite of great success of GPC in industry, there was original lack of theoretical
work on the properties of predictive control. Initially, there was lack of accountability on
stability and robustness of GPC. In fact, the majority of stability results are limited to the
infinite horizon case and there is a lack of a clear theory relating the closed loop behaviour
to design parameters such as horizons and weighting sequences.

Bearing in mind the need to solve some of the these problems, a variation of the
standard formulation of GPC was developed by Clarke and Scattolini (1991) called
Constrained Receding-Horizon Predictive Control (CRHPC) and similar work by De
Nicolao and Scattolini (1994) and Mosca and Zhang (1992), which allows stability and
robustness results to be obtained for small horizons. The idea basically consists of
deriving a future control sequence so that the predicted output over some future time range
is constrained 1o be at reference value exactly. Some degrees of freedom of some future
control signals are employed to force the output, whilst the rest is available to minimize
the cost function over a certain interval.

To overcome the lack of stability results for GPC, a new formulation has been
proposed by Kouvaritakis cr al. (1992) and Rossiter and Kouvaritakis (1994) which ensures

that the associated cost function is monotonically decreasing, guaranteeing closed-loop
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stability. The algorithm is called Stable Generalized Predictive Control (SGPC) and is
based on stabilizing the loop before the application of the control strategy. Now the future
values of the reference that are sent to the closed-loop must be calculated first and the

system inputs are obtained in turn as a function of these values.

2.3 CONSTRAINED MPC

It is not very realistic to formulate a control problem considering all signals 1o
posses an unlimited range since all processes in practice are subject to constraints
(Camactio and Bordon, 1995). Actuators have a limited range of action and a limited slew
rate; as is the case of control valves which are limited by a fully closed and fully open
position and a maximum slew rate. Construction and / or safety reasons, as well as sensor
range, cause bounds in process variables, as in the case of levels in tanks and flows in
pipes. Furthermore, in practice, the operating points of plants are determined to satisfy
economic goals and lie at the intersection of certain constraints. ‘The control system
normally operates close to limits and constraint violations are likely to occur. The control
system, especially for long range predictive control, has to anticipate constraint violations

and correct them in an appropriate way.

2.3.1 Constraints and GPC

From Clarke er a/ (1987) the GPC controtl actions can be calculated by computing

vector u of future control increments that minimizes a quadratic objective function given
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J=(Gu+f-w)(Gu+f-w) + ru"u (2.19)

where w is a vector of future setpoints, G is a matrix and f a vector formed from the
Diophantine equations, and A is the control weighting. The optimal solution of this

problem is found by solving the linear equation

u:(GTG+ll)"lGT(w~j) (2.20)

In practice, the normal way of using a GPC is to compute the current control signal
u(t) and apply it to the process. If u(t) violates the constraint it is fixed at its limits, either
by the control program or by the actuator. The case of u(t+1),...,u(t+N) violating the

constraints is not even considered as in most cases these signals are not even computed.

This way of operating dces not guarantee that the optimum will be obtained when
constraints are violated. The main purpose of GPC, which is to apply the best possible

control signal by minimizing the objective function J, will not be achieved.

Not considering constraints on manipulated variables to their full extent, may
results in higher values of the objectives function and thus in a poorer performance of the
control system. However, manipulated variables can always be kept to their limits either

by the control program or by the actuator and this is not the main reason for treating

constraints in an appropriate way. Violating the limits on the controlled variables may be




more costly and dangerous as it could cause damage to equipment and losses in production.
For example, in most batch reactors the quality of the production requires some of the
variables to be kept within specified limits violating these limits may create a bad quality
product and in some cases the loss of the whole batch. When the limits have been set
because of safety reasons, the violation of these limits could cause damage to equipment,
spillage, or in most cases the activation of the emergency system which will normally
produce an emergency stop of the process, losing and /or delaying production, and a

normally costly start up procedure.

Constraint violations on the output variables are not contemplated when the only
way of handling constraints is by clipping the manipulated variables. One of the main
advantages of MPC, its prediction capabilities, is not used to its full potential by operating
in this way. Control systems, especially long-range predictive control should anticipate

constraint violation and correct them in an appropriate way.

The constraints acting on the process can originate from amplitude limits in the
control signals, slew rate limits of the actuator and the limits on the output signals, and can
be described respectively by

Usu)ys U Wt

# < w()-u(t-1) s u Vi (2.21)
Ysun sy Wi

These constraints can be expressed as
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1Y < Tu+ru(t-1)1 s AU Wt
lwsuslu W 2.22)
Iy s Gu+fsly Wt

where 1 is an N vector whose entries are ones and T in an N x N lower triangle matrix

whose entries are ones. The constraints can be expressed in condensed form as

Rusc 2.23)
with
]}\'.l:!\'1 l;;
e -t U-1u(1-1)
R = 1 c = | -1U+1u(1-1) (2.249)
-7' -
G y-f
-G | “lyf

The constraints on the output variables of the type ¥ s y(t) < yare normally
imposed because of the safety reasons. Other types of constraints can be sei on the process

controlled variables to force the response of the process to have certain characteristics, as

shown by Kutnetsov and Clarke (1994), and can also be expressed in a similar manner.




2.3.1.1 Band Constraints

Sometimes one wishes the controlled variables to foliow a trajectory within a band.
In the food industry, for example, it is very usual for some operations to require a
temperature profile that has to be followed with a specified tolerance.

This type of requirement can be introduced in the control system by forcing the
output of the system to be included in the band formed by the specified trajectory plus-

minus the tolerance. That is

N s ¥ < W) (2.25)

These constraints can be expressed in terms of the increments of the manipulated

variables as follows

Gu < y-f
G > o F (2.26)

2.3.1.2 Overshoot Constraints

In some processes overshoots are not desirable. In the case of robotics, for
example, an overshoot may produce a collision with the workplace or with the piece it is
trying to grasp.

Overshoot constraints have been treated by Kutnetsov and Clarke (1994) and are
very easy 1o implement. Every time a change is produced in the setpoint, which is
considered to be kept constant for a sufficiently long time, the following constraints are

added to the control system
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Wi+j) s W) for j = N, N, .27

where N, and N, define the horizon where the overshoot may occur (N,, and N, can
always be made equal to 1 and N if this is not known). These constraints can be expressed

in terms of the increments of the manipulated variables as follows

Gu < 1w(t)-f (2.28)

2.3.1.3 Monotonic Behaviour

Some control systems tend to exhibit oscillations, known as kick back, on the
controiled variables before they have gone over the setpoints. These oscillation are not
desirable in general because, amongst other reasons, they may cause perturbations in other
processes. Constraints can be added to the control system to avoid this type of behaviour
by imposing a monotonic behaviour on the output variables. Each time a setpoint changes,
and is again considered to be kept constant for a sufficiently long period, new constraints

with the following form are added to the control system:

M1+7) s v(t+j+1) if 1) < w(r)

Mie+j) 2 y+j+1) if ) > w(r) (2.29)

These type of constraints can be expressed in terms of the manipulated variables as follows

Gu+f < [—g;;] u + [%;-)-] (2.30)
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where G' and ' result from clipping the last n rows (n is the number of the output

variables) of G and f. These constraints can be expressed as

G,-G,

-

o

0

tG)\’~I-GA’—2 Gy 3Gy s - Go.

2.3.1.4 Non-minimum Phase Behaviour

WS,
A A

us

i" N- |: Sy

(2.31)

Some processes exhibits a type of non-minimum phase behaviour. That is, when

the process is excited by a step in its input the output variables tends to first move in the

opposite direction prior to moving to the final position. This kind of behaviour may not

be desirable in many cases.

Constraints can be added to the control system to avoid this type of behaviour. The

constraints take the form

Mi+j) < WD)
Mi+p) > y1)

if Y(D)<w(r)
if yrpw(n)

(2.32)

These constraints can be expressed in terms of the increments of the manipulated

variables as follows




Gux21y(H-f (2.33)

2.3.1.5 Actuator Nonlinearities

Most actuators in industry exhibit dead zones and other type of nonlinearities.
Controllers are normally designed without taking into account actuator nonlinearities.
Because of the predictive nature of MPC, actuator nonlinearities can be dealt with as
suggested by Chow and Clarke, (1994).

Dead zones can be treated by imposing constraints on the controller in order to
generate control signals outside the dead zone, say (u,,u,) for dead zone on the slew rate
of actuators and (L11,,0,) for the dead zone on the amplitude of actuators. That is

I,le s Tu+u(i-1)1 < l-(_/d

luds u < 1u,

2.349)

The feasible region generated by this type of constraints is non-convex and the

optimization problem is difficult to solve as pointed out.

2.3.1.6 Terminal State Constraints

These types of constraints appear when applying CRHPC of Clarke and Scattolini




(1991) where the predicted output of the process is forced to follow the predicted reference
during a2 number of sampling periods m after the costing horizon N,. The terminal state
constraints can be expressed as a set of equality constraints on the future control

increments by using the prediction equation for y,=[y(t+N,+1)"....Y@+N,+m)")":

Yo = Guf (2.35)

If the predicted response is forced to follow the future reference setpoint w,,, the following

equality constraint can be established

Gu=w-f (2.36)

All constraints treated so far can be expressed as Ru< ¢ and Au=a. The GPC
problem when constraints are taken into account consists of minimizing a quadratic
objective function subject to a set of linear constraints. That is, the optimization of a
quadratic function with linear constraints, what is usually known as q quadratic

programming problem (QP).

2.4 NON-LINEAR (PREDICTIVE) CONTROL

In this section it is not attempted to review the whole area of non-linear control
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theory but to discuss only the non-linear (predictive/adaptive) control strategies which we
consider relevant to this research. In section 2.3.1 a self-tuning controller for non-linear
processes developed by Agarwal and Seborg (1987) is described in detail and section 2.3.2
gives a non-lincar multistep predictive algorithm developed by Brengel and Seider (1989).

2.4.1 A Self-wuning Controller for Non-linear Systems

This control strategy was proposed by Agarwal and Seborg (1987). They consider

the non-linear discrete-time process model of the form

N
Az "W(=Y bu"(t-k)Y (1-1)+d+C(z- 1)E(r) .37
i=1

Y(r-Dzgy(r-1-m), m=0,1,..; u(t~k-j), j=12,.}, i=1.2,..N (2.38)

where t is the sampling instant, t=1,2,3,...; k is the known time delay expressed as one
plus the largest integer multiple of the sampling period smaller than or equal to the time
delay (k21); y(t) is the measured output at time t; u(t) is the manipulated input at time t;
§(t) is zero-mean random noise independent of previous inputs and outputs; d is the
unknown disturbance; g; are known single-valued time-invariant functions involving known

parameters; 2" is the backward shift operator; b, are system pasameters and A(2' ) and




C(z") are polynomials with the assumption that all roots of C(z"') lie inside the unit circle
in the z-plane. Parameters r;N,n, n. are known integers with r,20.

They considered the following performance index

T=E{[P(z "' pAr k) -R(z "' WP +{O( (D)) (2.39)

where E is the expectation operator conditioned with respect to data up to time t, w(t) is
the setpoint, R(z') and Q(z') are rational transfer functions, and P(% ) is an observer
polynomial.

The control is rather complex and is obtained by minimizing the above cost
function and utilizing the Diophantine equation. The main drawback of this method is its

complex algebraic manipulations.

2.4.2 Multistep Nonlinear Predictive Controller

Brengel and Seider (1989) present a2 model predictive formulation to control MIMO
nonlinear processes. It directly extends the model predictive concepts that have been
exploited for the control of linear systems (e.g., IMC and Q/DMC). This algorithm uses
multistep predictor, unlike the algorithm by Economou et al. (1986) and Li and Bicgler
(1988), which were limited to a single predictive step. Brengel and Seider (19889) derive

the multistep predictor through a linearization of the ordinary equations at several instants
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within a sampling interval, leading to recursive, algebraic equations that relate the
predicted outputs to future and past values of the manipulated inputs. This multistep
algorithm was shown to result in superior performance over single-step methods.
Furthermore, this multistep algorithm does noi require iterative calculations, as required
by Economou at al. (1986) and is more efficient for each predictive step. The algorithm

also easily handles constraints involving the state variables and manipulated inputs.

2.4.2.1 The Algorithm

Brengel and Seider (1989) aim to develop a general algorithm that can efficiently
control nonlinear processes near and within operating regimes characterized by hysteresis
and periodic or even chaotic operation. To meet this goal, they developed an algorithm
which constructs an easily calculable, explicit expression that relates the process outputs
to the manipulated inputs. Their Non-Linear Prediction (NLP) is simplified by replacing
‘he ODEs with an exprussion for x, . ,.....,Xx,p a$ a function of the manipulated inputs at
past and future sampling instants,

With the dynamic constraints replaced, the NLP can easily be solved, using
programs such as OPT (Lang and Biegler, 1987) and MINOS(Murtagh and Saunders,
1983), for the optimal values of the manipulated inputs and the associated process
trajectory, given a set of weighting coefficients and tuning parameters. Brengel and
Seider's result assuruzs that there is no process/ model mismatch and that all of the
disturbance are measurable. (For a nonlinear process, because the principle of

superposition does not hold, an unmeasured disturbance is analogous to process/moc~1




mismatch.) In practice, however, the nonlinear model only approximates the process
performance, sensor noise exists, and unmeasured disturbances normally enter the process.

To solve the nonlinear control problem, the control algorithm needs to compensate
for the process/model mismatch and sensor noise. Since the model is expected to deviate
from the process, it is not important to obtain very accurate values of xx.,,..., Xk p-
Instead, it should be more efficient to obtain approximate solutions that display the proper
dynamics trends while requiring few computations. To achieve this, Brengel and Seider
developed the following approximation method.

Brengel and Seider (1989) consider a non-linear model which is used to predict the
vector of n outputs, x, at a each of P future sampling instants as a function of the vector
of n manipuiated inputs, u, at M future sampling instants, where k is the index of the
current sampling instant. They, thus, formulate the following NLP

,l
. 2, SP_ . Ty SP_
min w00, ;[yj(xk,j xk,j) C(x,w xk”)+
Ve

(2.40)
B =iy, Y DU, 1y, )

subject to

Ni=flau}  x{1=0}=x, u{1=0}=u,

gixu}=0
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uosH,  su j=1,. .M

U ag= W ipga1 =Sl p (FWe a0y B,=0 vi>M

hi{xu}<0

Let x, and y, be the deviation variables from the steady state at the current
sampling instant, just prior to a step change in the inputs, and expand the right-hand side

of the differential equation about x, and u, , in a first-order Taylor series:

(ka)*( .;Z) (u-u,.,) 2.41)

(/]
Xpelly -y

M—‘-f{O,Oh( :‘:1)

Xty g

Defining another set of deviation variables gives

x=x-x‘,, uzu-uk_] (2.42)

The differential equation can be expressed as




KY}

= + —a-'[ + -a-i
Mt=0.0) ( Bx) g ( éu).‘ou

0.0 (2.43)
Ai=f10,0}+J x+J u
Taking the Laplace Transform and simplifying gives
x{s}=(sA—J,)"[J.u{s) +—'-ﬂ0,0}] (2.44)
5
Then, for a u step change in the input vector at the current sampling instant,
Al
ufs} =:M (2.45)
and
xis} =-:T(.s'A =y '[Juu +f10,0}] (2.46)
By use of a general expansion, the inverse can be expressed analytically, and
1 4. B e G,
~(sA-J) =) — (2.47)
) S ;1 08 .

where A is a vector of n eigenvalues of A'J,. Substituting the above equation into (2.46)




gives

}J_u +££0,0}) (2.48)

The above equation expresses the linearized dynamic constraints in the continuous Laplace
domain. To obtain the output vectors at future sampling instants as a function of the past
and future manipulated inputs, Brengel and Seider (1989) invert the above equation. They

thus obtain the resulting expression in the time domain at t=T

X =[B+le Ce Y 1) (2.49)

Therefore, in the above equation deviation variables can be replaced and then equation
generalized to apply for projections of the output vector j sampling instants into the future.
The above equation can be derived using the state transition matrix. However, this
approach requires calculation of the eigenvectors of A'J,, a step not required in this
algorithin.

Normally, sampling time is in the order of the smallest time constant of the process
model. However, variations in the smallest time constant may require the linearization to

be performed more often. An alternative to reducing the sampling time, to obtain more
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accuracy and better control, is to implement the local linearization at equally spaced times
within the sampling intervals.

Brengel and Seider (1989) indicate that the use of repeated linearization of the
nonlinear ODEs differs significantly from the aforementioned methods of controlling
nonlinear processes in which the model is linearized once and the linear model is used over
the entire predictive horizon (The latter is analogous to the linearized constraints for a
single iteration of the SQP algorithm). For highly nonlinear processes, this assumption
can be expected 1o result in poor, or even unstable, control.

The problem of modifying the model to more accurately represent the process
dynamics is difficult to address theoretically. When no measurement noise exists and the
dynamic equations have the correct terms, the parameters can be updated to eliininate the
process/model mismatch. With measurement noise or an incorrect structure for the model,
it may be prudent to restrict the number of parameters that are updated, the rate at which
they can change, or some combination of the two, to obtain a more effective updating
procedure. Such strategies are analogous to those employed for parameter estimation and
adaptive control. The fact that almost the whole process model should be known entirely,

a priori, is the main drawback of this method.

2.5 RECURSIVE PARAMETER ESTIMATION

In many applications, such as self-tuning control algorithms, it is necessary to

estimate the process variables and noise model parameters, or the controller parameters
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(for the implicit case) recursively as data become available. In this section some of the
most common algorithms, namely, recursive least squares, recursive generalized least
squares, recursive extended least squares and recursive maximum likelihood are presented.

Consider a system described by the following CARMA (controlled autoregressive

moving average) model structure

Az 'Yy, = Bz, +H(z "), (2.50)

where ¢, is a white noise sequence, f is the number of whole periods of time delay and

Az D=l+aiz "+ va,z ™™ .51)

h.‘

n

-,

Bz Y=bz '+ +b (2.52)

o

n

and H(z') is a noise filter polynomial. Each of the recursive estimation algorithms
mentioned above can be described by the following common algorithm (Warwick and

Rees, 1986)




6,20, +Kg, (2.53)

X P _x

! !

A *x,TP, 4, 2.54)
T
21 P xx P,
])I-I -1 A*x TP x (2-55)

where 0 is a vector of parameter e<..mates based on the input/output data available up to
and including time t, £, is an estimate of the one-step ahead prediction error, X is the
Kalman gain, and P, is a matrix proportional to the variance-covariance matrix of the
parameter estimates. The scalar A is a discounting factor which in the standard algorithms
for estimating fixed but unknown parameters is set to one but when it is desired to

discount past data in an exponential fashion this term is set between .90 and 1.0.

2.5.1 Recursive Least Squares (RLS)

Consider the model (2.50) with the noise filter H(z')=1. y, can be expressed in

terms of past values of y and u as
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Yi=—ay, = -an.yr—n.*biut-f'! T +b".u'_f.”‘*€, (2.56)

y=x, 0+, .57

where

C (- - T
o ot VRTINS n;":-r-|~---~”f-_r-n,,)

0=(a,.....a, b,,...b, )

"y

So, at any sampling instant t the least squares estimates of 0 based on observations Y(y,,

¥2. .--» ¥) can be obtained by solving the following equations

8=xx) XY, (2.58)

where X, is (X,. X5, ..., X)'

Defining P,, as (also see 2.69)
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Po= X:r\’:-l) ' (2.59)
where
1’12(‘\’17‘\'1) lz("’t?l‘\’l l*xr\‘IT) ! (:-6())
we can rewrite (2.60) as
P, exxy ! (2.61)

Using a well known matrix inversion lemma (Noble, 1969) the P, matrix can be expresscd

as

Popxx'P,
pep, - (2.62)

L 7
(l+x, P, x)

Substituting this expression for P, into the least squares equation (2.58) gives




o
it

P, xx'P
Prl-_’tit;‘_—tl" l‘lYl'l+leI]
(I+x, P, x)

1 » P""
=P X1\Y, -— P, XY, ,
(15,7, %)

Pox(l xPlxv-xP

+ l 1”1
(1+x, l’,_,x,)

Upon substituting

6, =r Xy

and collecting terms we get

where

(2.63)

(2.64)

(2.65)

(2.66)



K P, x,
SN
(lex, P, x)

(2.67)

The recursive least square algorithm (2.65). (2.66), (2.67) can thus be seen to be
the general form (2.53), (2.54), (2.55) with A = 1.0, and with the one-step prediction

error given by

e=(r,-x"0, ) (2.68)

Thus RLS algorithm necessitates the recursive updating of two equations, one for

-

the parameter estimates 0, and one for the matrix P, which is proportional to covariance
matrix of the estimates

l’,-‘-(.’{',YXJ) '=—l;cm'(é‘)

o,

(2.69)

Initial values 0 (0) and P(0) are needed to start the algorithm. Taking P(0)=al where «
is large, is a common choice when little prior knowledge of 0 (0) exists. In this case the
recursive and non-recursive version of least squares are equivalent. The simplicity of the

recursive algorithm stems from replacing the matrix inversion at each stage by a simple




scalar inversion.
To allow for time varying parameters, one may discount past data in an exponential
fashion by minimizing

4
Y argl 2.70)
a

with 4 < 1.0.

2.5.2 Recursive Generalized Least Squares (RGLS)

Biased parameter estimates are obtained when using linear least squares estimation

if the disturbance term is correlated. Let us consider the model (2.50) with a noise filter

. i
H(: 1) =
G Y 2.71)

This allows flexibility in accounting for autocorrelation errors.

The model can therefore be wriiten as

A "y, = Bz M, +n, 2.72)

where
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C(z "n=¢, 2.73)

n, is correlated, but the autocorrelation function is known. The sequence €, is uncorrelated

and the C(z"') is invertible. The system equation can therefore be rewritten as

AG Y =BE e, (2.74)
where
¥, =0 Yy, (2.75)
and
w =Cz "y, (2.76)

Then the least squares can be applied, once the values y'(t), u’(1) are calculated,
in order to obtain the estimates of ihe parameters within the polynomials A(z") and B(z",.

The filter polynomial C(z') is also estimated.

The idea of RGLS, therefore, is to alternately apply the orcinary RLS algorithm
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to each of these in turn. The following is a summary of the algorithm:
1. Fit model equation (2.50) with modifications shown in equation (2.71) to data by using

linear least squares parameter estimation.

2. Test the residuals obtained for whiteness. If they are white then stop.
3. Using linear least squares estimate C(z).

4. Filter the input and output through C(z"')

5.Goto]

2.5.3 Recursive Extended Least Squares (RELS)

Lets take the noise filter H(z')=C(z") in the model equation (2.50), where C(z")

and A(z'') are assumed to have no common factors.

The model can therefoie be expressed as

vEx B¢, (2.77)

where

0'=la,...an b, ..b_.c,..c,]

"a’ [ERRRY n,




This set of equations suggests that RLS be used on the extended x, and 0 vectors.

However, the g, is not known. We thus proceed to replace x,’ vector by

. T
X, = [ypnV My g gyl gy sy
~ .A . .7
: i (2.78)

=1,

where ¢, is the estimated residual sequence given by

f:,-——y,-.\', 0,, (2.79)

The standard recursive algorithin can therefore ke used with the extended 8,' vectors

defined above.

2.5.4 Recursive Maximum Likelthood (RML)

The recursive least squares parameter estimation method deals with models that are
linear in parameters. Maximum likelihood estimation however, covers a more gencral

class of problems.

Consider model equation (2.50) with the noise filter  H(z')= C(z"'). Polynomial
C(z") has roots inside the unit circle. If the €, sequence is assumed 10 be normally
distributed then the maximum likelihood estimates of the parameters, conditional upon

starting values for equation (2.50), are given by minimizing the sum of squares function
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(Box and Jenkins, 1990)

1\

)35 (2.80)

The off-line minimization of this function is obtained by iterating the following equation

8,=)’,+a,)',_ 1 Yo +a~vt-n“~bl"r-f~l e

-hnh"l;l‘nb‘clcl*l -"'-cn 8r‘n (2'81)

Iteration is continued until the residual sequence calculated has a minimum sum of squa.. ..
The off-line algorithm is usually based upon linearizing the model about the current
parameler estimates, solving the approximate linear least squares problem, and iterating
in this manner until the parameter estimates no longer change. At this point a minimum

of the sum of squares has been reached.

A recursive approximation to this algorithm is given by Soderstrom (1973) and

Soderstrom er al. (1978).

2.6 CONCLUSIONS

Various predictive control algorithms have been introduced and proven with great




success during the past two decades. It has also been indicated that the current MPC
strategies have their own drawbacks. For example, DMC and MAC involve a great
burden of calculation and also cannot work with unstable processes, the EPSAC has no
flexibility on control horizon and the EHAC neither does it include disturbance in its
design nor use the reference trajectory except at instant t+N. All the above strategies
including the elegant GPC are based on linear process models. There are some non-linear
control strategies but they also have their own drawbacks and are usually very difficult to
implement.

Many industrial processes display non-linear behaviour. Not all these processes
can be appioximated in a satisfying way by a linear model. For this reason there is a great
need for some good effective control strategies for processes which have a non-lincar
structure. In practice, measured process signals are also ofien overlapped by some
coloured or white noise. It is clear then that there is a strong need for an casily applied
non-linear control algorithm along the lines of the popular GPC. In this thesis it is
proposed that the newly developed NLGPC helps to serve this need. Before the

introduction of the NLGPC algorithm, an analytical discussion of the GPC algorithm will

be presented in the next chapter.
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CHAPTER 3

ANALYSIS OF THE GENERALIZED
PREDICTIVE CONTROL

ALGORITHM

3.1 INTRODUCTION

The long range predictive control (LRPC) design by Clarke et al. (1987) namely,
General Predictive Control (GPC), has received a lot of attention and success since its
presentation. Clarke's GPC has a number of attractive technical features:

@ it can be applied to open-loop unstable and/or non-minimum phase processes.

@ the stability and tracking properties are unaffected by stable or unstable pole-zero
cancellations (Crisalle et al., 1989).

@ it can handle unknown, variable time delays even in multi-variable applications (Shah
et al., 1987).

@ it provides offset free control for step inputs and performs well in presence of moderate
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noise and disturbances with relatively simple filter predictors (Mohtadi, 1989; Wittenmark,

1989).

In this chapter the capabilities of the GPC are demonstraw:d as indicated in
literature. All the properties discussed are verified by simulation. The relation between
GPC with state space LQ control law is illustrated, that is, as the input and output control
horizons tend to infinity the GPC automatically leads to infinity LQ control law. All the
work given in this chapter is not new but is used later as a theoretical basis for the new
NLGPC algorithm. Some of the examples are extracted from the book by Soeterboek

(1992). Also similar work done by Mcintosh er al. (1991).

3.2 GPC Theoretical Development

Clarke and Mohtadi (1989) used the following Controlled Auto-Regressive

Integrated Moving Average (CARIMA) model to derive a GPC

ay )
Aq "y = Big -1y ~ 29 gy G.1)
O

where §(t) is the disturbance, T(q') is an observer/filtering polynomial and 2 =(1-q").
For purposes of model following polynomial P(q"') is introduced und thus the

diophantine identity is written as

Pig N=E(q YAs+q (g ) 3.2)
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Multiplying the model equation by Eg' and substituting for E/Aa gives

P1+j)=G an(t+j-1)+Fy()+E T5(1+j) (3.3)

where G,=EB. Since ET and § are uncorrelated then ETE=0.

For j=1,2 ..N the above equation can be written in matrix form as

y=Gu+f 3.4)

where the vectors are N x 1:

F=[ie+ ) J(+2),.. J+N)
wu=[ar(t).a(t1+1).....,a(s+N-1)Y’

S D) (12), L F p i+ N)Y

and the matrix G is a lower triangular of dimension N x N.
In order 10 compute the vector of controls they propose the cost function J g, to

be minimized




Ny N
Jope = Z [f'(hj)-u(ﬁj)]’*-z Aﬂau(nj-l))’ 3.5)
AN J-1

where N, is the minimum costing horizon, N, is the maximum costing horizon, NU is the

control horizon, A is the control weight and w is the reference trajectory.

The minimization of J;, ( i.e by writing dJ;,../du=0 ) results in the increment vector:

Au=(G 'G+AD'G T(w-N (3.6)

so that the current control law is given by:

w(n)=u(1-1)+g "(w-f) 3.7

where g’ is the first row of (G'G+2l)'G'.

So, at each sampling interval:
(1, given y(t) and previous values of y, u, the predictions of freely responding process are
computed and compared with future set-points w, which may be known or assumed equal
to w(t).

(2) for the given {N1, N2, NU, 4, y*, w} the optimal control vector Au is computed.

(3) the first element u(t) =u(t-1)+Au(1) is implemented and sequences are shifted ready for

55




the next sampling interval.

3.3 Relation of GPC with State Space LQ Design
Consider a plant of the form

Asy()=Bau(t-1) (3.8)

Note that the disturbance is not included in order to consider stability and numerical

properties. The discrete state space model of the above system can thus be written as

x(1+1)=ax(1)+ban(r) 3.9)

M =cx(1) 3.10)

where a is the state transition matrix which is taken to be in observable canonical form
(thus obtained from As), b is the vector of B parameters and polynomials P (the auxiliary
model) and T (the observer or filtering polynomial) ( see Clarke er al. (1985), and
¢=[1,0,0,...,0].

Note tiiat the number of states is max(deg(Aa),deg(B)) and :

a,=0 fori > deg(As)

b,=0 fori > deg(B)

The cost function in the state-space formulation can be written as:
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N
J=Y [x(1+i-1)Ox(r+i- 1)+ A(r+i-Dau(r+i-1)*] a1
1=]

where Q=c'c.
The solution is obtained by iterating the algebraic Riccati equation (ARE) below.

Measurement update:

P (0)=P(i+1)-P(i+1)b[AG) +b TP(i+1)B] b TP(i+1) (3.12)
Time update:

P(i=Q+a’P (ia (3.13)

k=[2(1)+b TP()E] b TPt (3.14)

an(t)=-kx(1) .15)

P is called the "covanance matrix”. N, iterations are performed backwards starting
from Q, the terminal covariance matrix. Note that since both the "one shot" (GPC)
method (discussed earlier) of cost minimization and the dynamic programming approach
of state-space (LQ) succeed in minimizing the same cost under certain conditions (i.e.
linear system ), the resulting control law must be the same because there is only one
minimum and so their stability characteristics must be identical.

Note that fixing the projected control signal in the future is equivalent to employing

a large penalty on the appropriate increment (i.e. A(i) - «). That means that the




measurement update need not be updated for the particular values of i. Two special cases
of GPC are considered below.
Lemma:
The closed loop system is stable if the system (a,b,c) is stabilizable (controllable) and
detectable (observable) and if:
(i) N, - =, NU=N, and A(i) > Oor
(ii) N, ~ =, NU ~ = where NU < N,-n+1 and A(i)=0
Proof:
Part (i): Is easily proven from the stability conditions of the state-space LQ controller.
The cost function tends to infinite stage cost and for convergence to the algebraic Riccati
equation (ARE) solution. Q can be positive semi-definite if A is positive definite for ali
terminal covanances (Kwakernaak and Sivan, 1972). Part(ii): For the first n-1 iterations
of the Riccati equation only the time updates are necessary. Note that the terminal
covariance Q is of rank one. Each of the time-updates increases the rank of the matrix P
by onc and after n-1 iterations the matrix P(N,-n+1) is of full rank. It is seen that P(N,-
n+1)is [la"cc'a’ - the observability Grammian which is guaranteed positive definite for
the structure assumed.

It therefore follows that as NU - « the iterations above converge to the ARE

solution for all values A > 0.
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3.4 Control Law Implementation

In order to implement ti:e control law above the following equation is proposed by

Astrom and Wittenmark (1989) , Clarke et al. (1987):

R(g Mau(t)=T(g " (1)-S(g () (3.16)

where R, S are polynomial associated with equation (3.7), u is the control effort, w is the

set-point or reference signal and vy 1s the system output. Equation (3.7) can be written as:

au(N=h(v.-F()-Gau(r- 1))

where h=[h, ... hy,]. The above equation is equivalent to equation (7) with

LY bW
1=T, +q '[ z\;hg,]. k='l'0m{ gi,,], .s:{;l;/-j,
A [N Iy

The polynomuals T, R and S are of degree max (degree(T,,,.), degree(B)), degree(T,,,,) and

degree max(degree(A).degree(T,. )+ degree(P)-N1), respectively.
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3.5 Simulation

The GPC can effectively be used to control most of the processes which are
difficult to control with simpler controllers if it is properly tuned. It is not an easy task
to tune a GPC controller since i‘t has many tuning nobs, namely, the time horizons and the
control weightii.g. It is the w@w of this simulation to get an idea how the elegant GPC
can be tuned in the most optimal way and thus extend this knowledge to the new NLGPC
algorithm. The influence of control honizon, NU, cost horizon, N2, observer polynomial,
P, and control weighting, A, on a closed loop system, for processes of different complexity
is studied in this section.

3.5.1 The influence of NU on the closed-loop system.

| Settings:N1=1, N2=25, P=1, T=1, 1=0

Process:

Hie 1)=_0.029z '(1+0.928- )
(1-0.882:-1)(1-0.905z *)

I Model: Identical to Process

| Parameters: NU=1.3

A

R S T

1+0.025¢" .925-0.7695q" 3595
1+0.7235¢" | 41.5245-21.4832¢" | 20.3839




Increasing NU makes the controller more active and the closed-loop system faster
(see figures 3.1 and 3.2). For NU =1 a mean level controller is approximated, while for
NU =degree(A)+1 a dead beat controller is obtained. The characteristic equations of a

closed loop system (AR+q ‘BS) are given as:

1-1.73454 '+07543¢g °

and

1-0.1407¢ '-0.002¢ *-0.0007¢q *

for NU=1 and NU =23 respectivels. For NU=1 the roots of the characteristic equation
are 0.8671 + 0.05041 and zero. For NU =23 roots are 0.0992 + 0.0377:1 and 0.0578.

Thus increasing NU leads to a more stable closed-loop system.
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Figure 3.1: The effect of NU on the closed-loop system for NU =1
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Figure 3.2: The eftect of NU on the closed-loop system for NU=3




3.5.2 The influence of NU on the closed loop when N2=NU and A+0

Settings: NI1=1,P=1, T=1, A=0.01

Process: Asin (1)

Model: Identical to the process

1+0.2582q" 13.6483-7.6665q""

Suppose that, t.. is the settling time of the closed-loop system for N2 - «, at every
sct-point change. Then the closed-loop system is the same for all N2 > t_, because in this
case the contribution of the predicted process output y(k+i) and the controller output
u(k+i-1) for i=t. +1....,= to the criterion function is constant (see figures 3.3 and 3.4).
With N2=NU -~ = aa infinite LQ controller is approximated.

The characteristic equations of the closed-loop system are given as:

1-1.340¢ '+0.4825¢ ?

and
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Figure 3.3: The effect of NU on the closed-loop system for N2=NU=2
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Figure 3.4: The effect of NU on the closed-loop system for N2=NU=10




1-0.9696¢ ' +0.3278¢ 2

for N2=NU=2 and N2=NU=10 respectively. For N2=NU=2 the roots of the
characteristic equation are 0.5670 + 0.4012i and zero. For N2=NU=10 roots are 0.4848

+ 0.3045i and zero.

3.5.3 The influence of N2 on the closed loop when NU=1 and A=0

e e T — e . e Ot e S e

Settings:NU= 1, N1=1, P=1, T=1, A=0

Process: As in (1)
Model: Identical to Process

1+0.4790q’ 24.9116-14.2242¢" | 10.9815

In this case, increasing the horizon makes the controller move from a constrained
minimum variance (Katende and Jutan, 1993) to a mean-level controller. From figures
3.5 and 3.6, it is obvious that increasing N2 makes the closed-loop system respond slower

10 step-wise set-point changes.
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Figure 3.5: The effect of N2 on the closed loop system for N2=2
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Figure 3.6: The effect of N2 on the closed-loop system for N2=25




This effect can easily be explained by the fact that the controller moves from a constrained
minimum variance t0 a mean-level controller as N2 increases. When N2 - = the step

response of the closed loop system will be as slow as that of the open-loop system.

3.5.4 The influence of N2 on the closed-loop system in controlling a non-minimum

phase process

| Settings: NU=3, NI=1, P=1, T=1

| Process:

_ 05954z '(1-1.2269: ")

H: Y
1-1.591z '+0.7261: ?)

| Model: Identical to the process

{ Parameters: N2=3. 4.

-2.6722 + 1.2195¢"
1-1.2188¢" -2.6611+ 1.2115q"
1+1.11600" | 0.5325-1.1093q"

70



From figures 3.7 and 3.8, it can be seen that the closed loop system is unstable for
N2=3, 4. Increasing the N2 further makes the closed loop system stable. Figure 3.9
shows a situation when the closed loop of' a non-minimum phase process is stabilized for
N2=20.

The characteristic equations of a closed-loop system are given as:

1-12269¢ !

1-12254¢ !

1-0.7920¢4

for N2=3, 4 and 20 respectively. For N2=3 the root of the characteristic equation is

1.2269, for N2 =4 the root is 1.2254 and for N2 =20 the roat is 0.7920.
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Figure 3.7: The effect of N2 on the closed-loop (NMP) system for N2=
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Figure 3.8: The effect of N2 on the closed loop (NMP) system for N2 =4
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3.5.5 Influence of P on the closed loop system

| Settings: N1=2, N2=4, NU=3, T=1, A

{ Process:

Hee 1)-0.029 “1(1-0.928: )
(1-0.0882= ')(1-0.905: 1)

| Model:ldentical to Process

| Parameters: P=1, or P=1-0.85¢" _

R S T
140.6873q"! 37.9568- 20.4070q" | 17.8852

Figures 3.10 and 3.11 show the effect of P on the closed loop system. By taking
the roots of the characteristic equation (AR-+q'BS), it is noticed that all the closed loop
poles are at the origin in case of P=1. Thus, a dead-beat controller is selected. For the

case of P=1-0.85q", the closed-loop poles are at -0.85 and zero.
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Figure 3.10: The effect of P on the closed-loop system for P=1
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3.6 CONCLUSIONS

The GPC tends to a mean-level controller as N2 ~ = if NU=1, N1=1, A=0 and
P=1. A mean leve! controller provides a simple step in control following a step change
in set-point which will drive the process output exactly to the new set-point at steady state.
The use of polynomial P(q') weighting allows GPC to achieve model-following. For
exact model following the controller attempts to cancel the process zeros and it is therefore
recommended to set P=1 in case of non-minimum phase processes. GPC is equivalent to
stable state dead-beat controller if the system is observable and controllable and
NU=degree(A)+1, N2=degree(A)+degree(B), P=1, 2=0. State dead-beat control

places all of the closed-loop poles at the origin. It has also been shown that GPC tends to

infinite LQ control when N2=NU - «,




CHAPTER 4

NON-LINEAR PREDICTIVE

CONTROL

4.1 INTRODUCTION

As a group, adaptive controllers have focused primarily on linear process models.
From a parameter update point of view, it is advisable to have the parameters in a linear
space. However, from the process dynamics view point, linear dynamics can present a
severe limitation for highly non-linear processes. Adaptive control applications based on
linear dynamics are very numerous and the basic engineering theory and applications have
been presented in, for example, Harris and Billings (1985) and Warwick (1988).

Multistep long range predictive controllers have been well received by industry.
Early long-range. multi-step predictive algorithms such as DMC (Cutler and Ramaker,
1980) were based on deterministic impulse or step response models. Long-range multi-
step predictive controllers based on auto-regressive moving average (ARMA) models (De
Keyer and Van Cauwenberghe, 1982; Peterka, 1984; Mosca er al., 1984) were also
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developed and these led to fewer parameters in the model representation. These
controllers could be made adaptive if combined with an appropriate recursive parameter
estimation routine. The Generalized Predictive Control (GPC) algorithm (Clarke er al.,
1987 1 & 11) is a generalization of the previous multi-step predictive algorithms, as well
as being the natural long-range extension of the well-known Generalized Minimum
Variance (GMV) controlier of Clarke and Gawthrop (1979). Garcia and Morari (1982)
and Soeterboek (1992) showed that all model-based predictive schemes (DMC, PCA,
MAC, IDCOM, GPC, EPSAC, EHAC) are structurally similar.

GPC has attractive features in that it can be applicable to :(1) non-minimum phase
processes (2) open-loop unstable processes or processes with badly damped poles (3)
processes with variable or unknown dead-time (4) processes with unknown order (5) multi-
input, multi-output (MIMO) processes. The GPC is, however, based on linear process
models.

For a large number of systems a linearizing approach is acceptable. However, for
some non-linear systems linearizing can result in'poor performance. Some of these highly
non-linear systems include pH control in some chemical or biochemical processes, or
thickness control for a rolling mill. In order to obtain improved control over these
systems, while maintaining the benefits of self-tuning control techniques, it is necessary
to take account of the non-linear dynamics in an appropriate manner.

Atherton (1975) and Cook (1986) indicate that because of the large number of
different types of non-linearity which can occur in practice, extending a basic linear

control scheme to account for all possibilities is unrealistic, A sensible way of tackling the



general problem is to employ a framework within which a large number of non-linear
processes can be adequately approximated. For self-tuning such a framework is provided
by the Hammerstein model, Agarwal and Seborg (1987).

Agarwal and Seborg proposed two self-tuning control strategies for nonlinear
control problems. Their strategies are applicable to a broad class of non-linear single-
input, single-output systems which can include arbitrary nonlinear functions of the most

recent input.

In this chapter a newly developed non-linear predictive control algorithm is
introduced based on a process suitably modelled by a Hammerstein model. The controller
can thus deal with both linear and non-linear systems and is developed in the framework

of the GPC algorithm.

4.2 THEORETICAL DEVELOPMENT

4.2.1 Process Model

We consider non-linear and bilinear l.screte-time process models described by

Agarwal and Seborg (1987)

Alg '))(:)J; B(q " (t-d-1)+B, (g "(t-d-1)(t-1)+C(g &) 4.1)

where t is the sampling instant, t=1,2,3...; d is the time delay and the extra delay is due
to sample and hold; y(t) is the measured output at time t; u(t) is the manipulated input at

time t; £(1) is zero-mean random noise independent of previous inputs and outputs; A, B,
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and C are polynomials given by

A(q V)=1+aq™ s..+a, g T

B(g V=b,+b,q '+ +b q e,

5,

Clg MV=t+e g+ . +c,q "¢

C

with the assumption that all roots of C(q"') lie inside the unit circle in the g-plane.

Parameters n, n,, n, and n,. are known integers.

The following is a general form of discrete time Hammerstein model

A(q " w(n=Blg "YWu(n) “4.5)

where f is a non-linear function, y is the process output. A, B are polynomials in the back
shift operator q*. Equation (4.6) type of models is a special case of the non-linear model,

equation (4.1), shown above with no bilinear term.

A(g "W(n)=B(q (1)+B(q 1)+

- B,(g (1) + Clg )elt) 4.6

The advantage of the above models is that they are linear in the parameters, and thus can




be easily estimated using, for example, recursive least squares.

4.2.2 A gereral form of NLGPC

4.2.2.1 Modelling and Prediction

Consider a process described by the following nth order Hammerstein model

n -1
Atg w0 = 979 B S e @.7)
=1

where y is the system output, u is the system input, £ is the disturbance, A, B, C are
polynomials, d is the dead-time (one is due to sample and hold) and A is 1-q”.

We denote

Zl:Bi(q")u-’(t) = x(1) 4.8

where x(1) is a 'pseudo’ input. A bilinear term can be included in the definition of x(t)
when using a process model with a bilinear term.

We can write (4.7) as

-1
Alg ' = q“‘”’”’x(t)*ﬂ‘AL—)E(f) 4.9)
or
-(f+1) P |
20 = Lty L5 ‘.
Ag™)  Ad@g™) (.10
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We denote the last term as, a noise or disturbance N(t), whence

Cqh
My = —LLEqw) a.11
M) @1H

From (4.9) with the pseudo input x, y is linear in x and polynomials A and B, can be

estimated on-line from equation (4.7) using a recursive least squares method. C is usually

set equal to T (a tuning polynomial) which is known as the observer polynomial.
Further if we let D=sA and C=T, the prediction of the stochastic disturbance, N,

at t+i is given by

we o 2 T .
N(r+i) = B.‘,(lﬂ) @4.12)

In order to separate (4.12) into future and past terms, the following Diophantine equation

is used

-_— = E’«r(l” ! (4!3)

where E, and F, are polynomials with degrees
nm=i'l

g, =max(n-i,n,-1)




Thus (4.12) can be written as

F
N@+i) = E,E(r+i)+-D—'£(t) (4.14)

In equation (4.14) the first term on the RHS consists of future noise only and is thus
unknown. The second term can be calculated using the available data at time t.

Mutltiplying (4.10) by F/T, rearranging and using D=aA yields

]'. 1: (I“l
— = (1)~ L—x(1-1 4.15
DE(') 7,[)(1) y x(1 )] (4.15)

The i-step-ahead predictor ‘or the process output (4.10) is thus given as

-d F -d
iy = Loxtrei-1ys=yiry- Lax(e-1)|[+EE(1+i) (4.16)
A T A
which gives the minimum variance output prediction as

W1+i) = "—;x(m- 1)+f7-1[,(:)--‘l;x(:-1)] “4.17)

with the prediction error €(t+i) given by

€(1+i) = EE(+i)=y(1+i)-J(1+i) (4.18)




Since this prediction error consists of future noise only and because E(t) is assumed to be
white noise with zero mean, the variance of the prediction error is constant.

We can rewrite (4.17) after applying the certainty equivalent principle as

-d F
i) = Loxrei-1)+=p0-50] (4.19)
with
d
Ju) = i;!—x(r—l) (4.20)

For the i-step-ahead predictor (4.19) the first term on the RHS has both future
(unknown) and past (known) terms. The following Diophantine equation is used to

separate (4.19) into future and past terms

l . -1+d i .
—_ = —_— i»d+1 4.21
I 4.21)

Degree G, < i-d-1
Degree H;, = n,-1,

Therefore G, is given as



G =g g '+ g ,q """ 4.22)

Using (4.21) the i-step-ahead predictor becomes

H F,
Wt+i) = G, x(t+i-d-1) + —A—’x(M) + —Ti[y(t)-f(t)} 4.23)

The term Gx(t+i-d-1)=G.X".., Bu/(1+i-d-1) contains only current and future controller

outputs.

4.2.2.2 Matrix Notation
The i-step-ah~>d predictor (4.23) for i=d+1,..,N, can be written in matrix form

as (Soeterboek, 1992)

¥ = Gx+Hx+Fc (4.24)

where

§ = [+de),.. JN))

X = [x(1)... x(1+N,-d- 1)}’
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¢ = [e()c(t-1),..)

with

- M)-W)
=7

The G, H, F matrices are constructed as follows:

£y 0 -0
G - 8, & -
0
fyyag &
Hd*l
H=|H,




This matrix form will be used later to develop the control law.

4.2.2.3 Predictive Control Law

In order to obtain the control law the following GPC style cost function is

minimized
Ny Nu
=Y (PR -PQ )P Y (x(r+i- 1)) (4.33)
N, i1

where P is a monic polynomial and

LIRS )
10
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A is the control weight, w is the set-point. Note that the penalty is on the 'pseudo input’
x. This is appropriate if we consider that for non-linear processes, the usual input u, often
enters indirectly as a function of u, i.e x, and it is this 'net effect’ of u that we wish to

penalize.

If the cost function J is minimized with respect to vector x, then any local optimum

for x satisfies

Since x is a function of u, the optimal u can be calculated from optimal x.

In matrix form we can write the cost function as

J= (@ -w) (@ -w)rde Tx (4.36)

where

W= [POM(N,), POW(N))




$° = [PUE+N),....PH1+N,))

x = [x(t),..x(t+Nu-1))7

Now, for (4.36) the gradient with respect to x is

cr’

22 2= " -w *)+20x
ax

av

Repeating equation (4.24) gives

#' = Gx+HE+Fe

Differentiating we have

ox

=GT

Therefore

&

Fi 2G (Gx+Hx+Fc-w *)+2ix
1%

(4.40)

(4.41)

(4.42)

(4.43)
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or

_g;l. = G TG+ADx+2G (Hx+Fc-w*) (4.449)
1S

Setting (4.44) to zero, we get

x = (GTG+AD'G T(w' -Hx-Fc) (4.45)

Equation (4.45) gives the optimal x vector, from which as in GPC, we require only the
first element to implement the control law.
We obtain the current x value at time t (first element of x) by the following

equation

x(t)y = vhw' -hTx-fT¢ (4.46)

where

vT=yTGT 1 x (N,-N,+1) (4.47)




x"=¢,R,’ I x (N,-d) (4.48)
T T

e, =[1.0,...,0] 1 x Nu (4.49)

R =(G7G+iD Nu x Nu (4.50)

h7=v"H 1 x ny,+1 (4.51)

fT=vTF 1 x np+l 4.52)

Once v, h and f are obtained, the current optimal value of x can be calculated.

4.2.2.4 Computation of the optimal u
From (4.8) we know that -'nce the optimal pseudo input x is known we then go

ahead to compute the process input u

SBu=x (4.53)
i-}
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We can write (4.53) as

& = Y by}, +(B,-b, )i’ -x=0

PR

where i involves only the past u values.

In order to obtain u_,,

respect to u,, is given as follows

" J

PR B
o

c"uop, M éuapl

Newton's method can be used.

(4.59)

The gradient of ¢ with

(4.55)

The optimal control u,,, is obtained by iteration of the following equation

uop,(md) = uop,(m)-%

(4.56)

It is possible to derive a direct algorithm for second order non-linearities. This is detailed

in the following section.




4.2.3 Quadratic NLGPC Algorithm

For this algorithm we minimize the cost function with respect to the input directly.
An analytical solution could be obtained by setting the Jacobian to zero or a singe step
numerical solution can be obtained solving the Jacobian and the Hessian iteratively. This

algorithm is found to be very time efficient through simulation.

4.2.3.1 Modelling and Prediction
A second order non-linear Hammerstein model with non-stationary noise can be

written in the well known CARIMA form (with non-linearity in u)

! = B(a "Wli-1) + M2ty » g ),
Alg (1) (g ur=1) + B(qg uc(-1) - £(n (4.57)

where §(1) is the disturbance, T(q"') is an observer/filter polynomial and a=(1-g").

The polynomial P(q") is introduced, and this gives rise to the diophantine identity

Ttg Wq ')=Efg "Ma+q'Ffq™) (4.58)

where j=1,N and N=prediction horizon.

Multiplying the model equation by E,¢’ and substituting for EAa gives

2
g Wys) = Y Goau'(t+j-1) + Py + ET%(1+)) (4.59)
1=1

where G,=EB,. We set all future, ET§(t+j) values to zero for minimum variance




prediction

For j=1,2 ..N equation (4.59) can be written in matrix form as

F=)_Gu'sf (4.60)

=1

where the vectors ¥, u. u?, fare N x 1 and setting T=1:

P[P+ 1).P(t+2).. PN (4.61)
u=[anu(t).au(t+1),....au{t+N-DY (4.62)
ul=[anX(1).au*(1+1), an?(1+N-1 ) (4.63)

S = [(G,-g)Au(n) + FHN(G,-g,-&,)Au(1+1)

F+1),.... Gy-g,-...-g)Au(t+N-1) + F(1+N-1) (4.64)

and the matrix G is a lower triangular of dimension N x N.



4.2.3.2 Predictive control law - Quadratic Model

In order to compute the vector of controls the following cost function J is

minimized

N NU
J = L B0l - 3 hfautr-1F 4.65)
=N J=

where N, is the minimum cost horizon, N, is the maximum cost horizon, NU is the control
horizon, and A is the control weight. Note that the cost function is identical to that defined
by Clarke er al (1987) in the derivation of the GPC algorithm.

In matrix form we write

J = E{(F - w)(F-w) + AuTu)} (4.66)

or

J = K(Gu+Gu+f-w)(Gu+Gu+f-w) + AuTu (4.67)

Let us denote

v=G UG of-w (4.68)
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where v is a column vector. Equation (4.67) becomes

J=E{v Tv+Au Tu) (4.69)
Let the G, and G, matrices be represented by column vectors g, , g,, 8,... , that is:

[g(” () (” ] (4.70)

G [&(2) 2) (2) ] (4.7!)

4.2.3.3 Objective Minimization

For optimal control we minimize J in equation (4.69) with respect to u. This is achieved

in several steps:

& _rev R rcu

¢ 71
cn, 614‘ o, Fiibe du, 4.72)
or
8./ ov
—_— T..._ + 2),”1 @4.73)

au, on,



where v can be written as a sum of outer products

b = g omg®s.. g ouy g

2 2 2 Q2
+ uozg,f Do, +u g,“ . *uN_,g,:, ), + f+w

4.74)

N-1 is the number of columns of G, and G, matrices.
We now express the partial derivative of v with respect to u; as linear combinations of the

columns of G, and G,

v eV g
- ng” (4.75)

which is a column vector. Multiplying both sides of equation (4.75) by 2v' we obtain

rel

ou,

r, )

el — 2 g 4‘42"" g(Z) (4.76)

which is a scalar.

We can now obtain the partial derivative of J with respect to u as the row vector

eJ RER a.z] )

léu du, :31'41‘,_1J



That is

-[21"' W 2 TgM | 2p T

+ [auy g auy "gfz) . du,_vTgd 4.78)

+ [2An, ZMll...ZA”N- J

or

S’ = 207G, +2hu T+av Tu g ug? .. uy g 4.79)
4

Finally, we can rewrite the above equation in a more compact form as

&

cu

= 2v TG, +av TG diag(u)+2Au T (4.80)

The gradient 1 (4.80) can also be used to calculate the Hessian matrix directly and used

for function minimization in say, Newton's method.

The Hessian of J with respect to u is written as

&J oy
ou} Ouydu, ouu,, |

0 L. (4.81)

e 2
e &
LE‘MN_ A ony |
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After much algebraic manipulation (see appendix),the Hessian can be written as

5;‘:!;=26,’G, +G (Gydiag(u))+2(G diag(u))'G,

+4(G -2diag(u))'(G,diag(n)) +2A1 +Adiag(v 'G,)

(4.82)

As is usually the case with receding horizon schemes, the current control law is given as
the first element of vector u, obtained formally as a solution to (4.80) by equating 10 zero
or numerically, using (4.80) and (4.82) iteratively.

If we denote

o/ aJ?

T vt ¢’=._—...

’ 2
a”op: cn opt

the optimal value of current controller output, u(t), can be obtained by iteration of the

following equation

¢

u op,(n«» 1)=u op:(”)';‘;

This algorithm can now be used to calculate the optimal control vector u,, for which we

implement the first element only. This algorithm is based on a process described by a



second order Hammerstein model and using a criterion function given by equation (4.67)

in the controller design.

4.2.4 Performance of NLGPC at Steady State

Prediction error:
The i-step ahead predictor for the process output is

~(d+1) -1
t+fy) = L.._ 1+ +._C.!1_l t+i
Wi+i) A(q,,)x( ) M(q,,)i( i) (4.85)

Multiplying (4.85) by F/T, rearranging yields

-~

F iy L xisi-1y
A

F, feei) = 1
—_—Pl+§) = —
! |‘l 7

Multiplying the above equation by E; and rearranging we obtair. the prediction error

EE(1+i) = AAE, :+i)~-‘fo(:+i-1 )
! T A
We allow parameter estimates for A and B, and substitute for y(t+i) with equation (4.85)

we get

- -d
EE(1+i) = -A-A?Ii{fl’;x(:«i—l )--‘l:‘;-‘ t+i-1)+N(1+i) (4.88)

as the prediction error.
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Prediction error elimination:

Socterboek (1992) indicates that for a stable system driven by a signal v(t) that
satisfies f; (q"')v(t) =0 as t tends to infinity, then all signals v,t) in the system f; (q")v(t)
=0 ( where f; is a stable polynomial). Soeterboek considered only linear cases. We can
extend the same argument to our system.

Let the disturbance, as t tends to infinity, satisfy:

SN =0 4.89)

where f; is a polynomial.

For a stable closed-loop system, as t tends to infinity, we have

Sy =0 (4.90)

If f; is a factor of AA then the prediction error at steady state is equal to zero, since

prediction error as given by equation (4.88) is
AAL L, ¢ -d
EEu+iy = —1L _x(rei-1)-L—g(1+i-1)+N(t+i)
I | 4 A
Furthermore, Soeterboek (1992) indicates that if the system is stable and driven by

disturbance N(t) and reference trajectory w(t) which in steady state satisfy f,N(t)=0 and

f.w(1)=0 where { is a polynomial. Then y(t) and u(t) (linear system) at steady state

satisfy:




104

S, (=0 ; J, w(®)=0 4.92)

where f, = min{ f,f }(i.ef is the polynomial with smallest degree for which
f.w(t)=0 and f,N(1)=0.

For our system assuming the system is stable and driven by disturbance N(t) and
reference trajectory w(t) at steady state we have f.N(t)=0 and f w(t)=0. At steady state

we can therefore write:

L, y0=0 £, x(N=0 (4.93)

where f, = min{ f;, f, }
If £, isa factor of AA then for a stable closed-loop system, the steady state errors do not
occur irrespective of modelling errors.

We also know that

Clqg Y
N1 = —L—25a) ,
AAd(g h (4.94)
Let C=1, then
AA(q N1 = E(1) (4.95)

where E(t) is white noise with zero mean. From equation (4.89) and (4.95) we can say
that f ; is a factor of AA and from (4.90) and (4.94) we can say that f ., is a factor of AA
hence confirming that the NLGPC has no steady state errors irrespective of any presence

of modelling errors.



4.2.5 Performance of GPC at steady state

For the GPC prediction error is given as

1.: -
EE(1+i) = %wi)-%’éu(m-l)}

If the parameters A and B are estimated and since we simulated non linear Hammerstein

process models, we substitute for y(t+i) and we thus get

AAE  q-B -ap
E&+) = = | il 'u(t*i-|)+-‘-I—;’—-2—uz(t+i-l)+...

- L Boreic1y + Nueiy )
4

as the prediction error.  Using the same argument as we used above for the NLGPC case,
if f ¢ is a factor of AA, GPC will eliminate the steady state prediction error if and only if
the process output y(t+i) is a linear process. However, for our case we have a non-linear
Hammerstein process models which leads to the presence of the non-linear u-terms in the
prediction error equation. For this case f ; being a factor of AA does not guarantee

elimination of prediction error.

4.3 CONCLUSIONS

A general form of Non-linear Generalized Predictive Control (NLGPC) has been
derived based on processes modelled by a non-linear and bilinear model structure which
includes Hammerstein model structure with a general non-linear input signal.

In order to define how well the predicted process output tracks the set-point, a cost
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function is used. Typically, such a cost function is a function of predicted process output,
set-point (reference trajectory), and process output. The simplest cost function that can

be used for predictive controller design is :

N NU
J = 2; mr+j)~wu+m=+2; Afau(r+j-1)F (4.98)
= 'l &

Minimization of J yields a controller which minimizes the tracking error between the
predicted process output and the reference trajectory. If there is no model mismatch and
/ or no constraints, the process will track the reference trajectory exactly on the sampling

instants. If there is a time delay, d, the minimum cost horizon, N1, is settod+1.

The optimal value of 'x’ over the prediction horizon is obtained analytically by
minimization of J with respect to 'x’, see equation (4.33). The optimal u is obtained
numerically from the optimal 'x’. As a result the future tracking error is minimized with
all elements of u penalized. The subsequent numerical search for u can lead to 5., .liple
solutions, some of which are clearly inadmissible, such as complex or wrong sign
solutions.

A second order Non-linear Generalized Predictive Control algorithm has also been
derived based on processes modelled by the second order Hammerstein model structure.
The usual cost function is mnimized to obtain the control law. Evaluation of these

algorithms is treated in the following two chapters.




CHAPTER 5

EFFECT OF COST FUNCTION ON

THE PERFOMANCE OF NLGPC

5.1 INTRODUCTION

Although adaptive control of non-linear processes has been studied in the past, few
researchers have considered modifying the criterion function used in controller design to
improve the performance. in predictive control, minimization of a criterion function
yields the predictive control law, therefore, the choice of the criterion function is of great
importance. In the past modification of the criterion function has been avoided by

focussing primarily on linear processes, and quadratic objective functions.

In this chapter the effect of different criterion functions on the performance of non-
linear predictive control strategies is explored. Here two non-linear predictive control
algorithms are explored using a second order Hammerstein model structure. For the first
algorithm a conventional quadratic criterion function is used with no modifications. A
different and probably more appropriate cost function is used, for a second algorithm in
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which analytical expressions for the gradients are obtained. Lastly, the Non-linear
Generalized Predictive Control (NLGPC) algorithm developed in chapter 4 is briefly

discussed.

5.2 THEORETICAL DEVELOPMENT
5.2.1 Penalizing the Process Input

A quadratic cost function is mostly chosen as a mathematical convenience.
Nevertheless, it is also somewhat intuitive for linear process models with constrained
control. However, when we consider non-linear models of the Hammerstein form, a
number of different options (within the basic quadratic functional form) are possible. For
a general non-linear input, do we weight just the square of the linear term u - what if there
is no linear terms in the process model? This leads us to the concept of the ‘pseudo’ input
x. It now makes sense 10 penalize the square of x which in turn contains the manipulated
variable u as it appears in the process dynamics.
5.2.1.1 Modelling and Prediction

A second order non-linear Hammerstein model with non-stationary noise can be

written in the well known CARIMA form (with non-linearity in u)

’ . 1 Iy, 2 g ')
Alg 'p(1) = B(q "w(1-1) + Bylg Yu(1-1) + '-—-:—-5(’) (5.1)



where £(t) is the disturbance, T(q") is an observer/filter polynomial and a=(1-q™").

The polynomial P(q") is introduced, and this gives rise to the diophantine identity

Ng ZWP(g ")=E(q )Ma+q'F(g™") (5.2)

where j=1,N and N=prediction horizon.

Multiplying the model equation by E,¢’ and substituting for E,Aa gives

2
Tig "WPyi+j) = )_; Gau'(t+j-1) + Fy(1) + ETE(1+) (5.3)

where G,=EB,. We set all future; ET§(t+j) values to zero for minimum variance
prediction
For j=1,2 ..N equation (5.3) can be written in matrix form as

2

5= Gu'+f (5.4)

1=

where the vectors §, u, u?, f are N x 1 and setting T=1:

F=IPR+1)Pi(1+2),.. .Pit+N)) 5.5)

u=[an(t),au(r+1),....au(t+N-1))" (5.6)
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u={an?(1),au’(1+1),....au*(t+N-1)) .7

f = [(G) 'go)A"(!) + F 1 y(’)-(Gz-gz-go)A”(’ +l)
+ FZ wWe+1),..., G.\'_gN“'“ ‘go)A"(l"‘N" 1) (5.8)
v Fy ytsN-DY

and the matrix G is a lower triangular of dimension N x N.

§.2.1.2 Predictive control law - Quadratic Model
As indicated in chapter 4, in order to compute the vector of controls the following

cost function J is minimized

N, AU
J = Y ) -wi)P + 3 Alau(+j- 1P (5.9)
1=\ 71

where N, and N, are minimum and maximum cost horizons respectively, NU is the control
horizon, and A is the control weight. Note that the cost function is identical to that defined
by Clarke et al (1987) in the derivation of the GPC algorithm.

In matrix form we write
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J = E(F - w(F-w) + duTu)

or

J = E(Gu+Gu+f-w) (Gu+Gut+f-w) + AuTu

For consistency with earlier results, let us denote

v=Gu+Gu?+f-w

where v is a column vector. Equation (5.11) becomes

J=E{v Tv+du Tu)}

Let the G, and G, matrices be represented by column vectors g, , g,, £2,---

'

G, = Ig" &" &" ]

- 2y ()
Gz‘ s & & -]

(5.10)

(5.11)

(5.12)

(5.13)

, that is:

(5.14)

(5.15)
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5.2.1.3 Objective Minimization

Again as shown in chapter 4, for optimal control we minimize J in equation (5.13)

with respect to u.
aJ p T ov av ru ou
v+2Au
BM, Su, au au‘ (5.16)
or
EJ T Bv
— 2 ¢ 4 ‘)l
n, ' u " (5.17)

where v can be written as a sum of outer products

|
v = ugMeug! ’+.. wugs. +uA g
2,@),

(5.18)
+ U8y ..t g, +...+u,.‘._,g,‘._l + f+w

N-1 is the number of columns of G, and G, matrices.

We now express the partial derivative of v with respect to u, as linear combinations of the

columns of G, and G,
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which is a column vector. Multiplying both sides of equation (5.19) by 2v" we obtain

2v yOv

U,

—_—=2y g“’+4uv gm (5.20)

which is a scalar.

We can now obtain the partial derivative of J with respect to u as the row vector

ol _ 1 s coJ 5.2]
u  |ow, ou T du,, ©-2D
That is
*[2" gy 2TV 20 Tl
+ [4uyy T2 au AL Te® 4u,. v g,f,z_’, (5.22)
+ [24n, 2An,..20u,, )
or
aJ = 207G+ T+dv T g® ua® | @
i v TGy +2hu T+dv Tuogy? u,g!® ... uy g5\ (5.23)

Finally, we can rewrite the above equation in a more compact form as



..g.J; = 2v TG, +av "Gdiag(u)+2hu T (5.24)

The gradient in (5.24) can also be used to calculate the Hessian matrix directly and used

for function minimization in say, Newton's method.

The Hessian of J with respect to u is written as

A
aul  Omgdu, onon,,
2
';;"If : : : (5.25)
azj asa see azJ
A, O, d ,,; A

After much algebraic manipulation (see appendix), the Hessian can be written as

2
%=zc.’c, +G (G diag(w))+2G diag(u)) G,

+4(G-2diag(u)) (G,diag(u)) +2AI+4diag(v ’G,)

(5.26)

As is usually the case with receding horizon schemes, the current control law is given as
the first element of vector u, obtained formally as a solution to (5.24) by equating to zero

or numerically, using (5.24) and (5.26) iteratively.
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In the next section we modify the development by considering what may be a more

natural way of penalising the effect of the non-linear control on the cost function J.

5.2.”. Penalizing the Process Pseudo Input

In choosing a cost function J of the form given by (5.9) in conjunction with the
quadratic model form in (S.1), we could argue that we shouid penalize the control input
in J in a form which more appropriately reflects its structure in the model. This leads to

a modified objective.

In order to compute the vector of controls the following cost function J is
minimized

N

NU
J = 3B DEY halB (Mt DBy DF (5.27)
z

=N

where

y
B=b,+bqg' . | B(l)=zlb,

Notice that the control variable u affects the objective J in the same way as it affects the
model. Also averaged steady state weights B(1) are used to reflect similar scaling that

115




appears in the model.

In matrix form we write

J = E{G-w)'G-w) + MB(w
« BT [B(u + B(1w?))

or
J = E(Gu+Gu+f-w) (G u+Gul+f-w)
+ A[B (1w +B,( ja*Y[B (1 )u+By()u?]}
Let us denote

z=B,(1m~By(1)u?

v=Gu+Guief-w

where v and z are column vectors. Equation (5.30) becomes

J = E{vTv+iz gy
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(5.30)

(5.31)

(5.32)

(5.33)

Let the G, and G, matrices be represented by column vecto. s g, , &, g;,..- as before.
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5.2.2.1 Objective Minimization
For optimal control we minimize J in equation (5.33) with respect to u. This is

again achieved in several steps:

or
el (5.35)
where v can be written as
vauggy ving e g ‘*"\ AR A (5.36)

2 (2) 2
RO E FEERETRLLC 15\'\ 1*f*“'

N-1 is the number of columns of G, and G, matrices.

Using the same arguments as before we can obtain the final expression for the

gradient as

f_‘.{.zizvrr‘i” ¢ g“) p1Y g(”

cu
v [dugy Tl anpy Tg® | au, v g, (5.37)

+ 2A[B,(Du+By(Du *Y[B,(1)+B,(1)u?)




Finally, we can rewrite the above equation in a more compact form as

& 2 207G, +av TGdiag(u) +

ou (5.38)
2A[B (1) +By(1)u J7[B,(1)+B,y(1)u]

By setting equation (5.38) to zero, a solution for u can be obtained numerically.
Note that similar arguments were used to obtain NLGPC for more complex
processes in Katende and Jutan (1996). In that paper a general form of Hammerstein and

Volterra process models were considered. They defined the process model as:

v, 1
A(q ') = q“”"’x(m-(-%——l&(t) (5.39)

where x(t) is a ‘pseudo’ input and is any function of u(t). They define a cost function as:

-"': Nu
=Y [P iy-PQw(t+)F +1 Y (x(t+i- 1)) (5.40)
=N 1=1

After some algebraic manipulation they arrive at a solution for the optimal 'pseudo’

control x as

x=(GTG+AD 'G T(w'-Hx-Fc¢) (5.41)

where w* is a modified vector of w ; ¢ is a vector of prediction error through a filter T
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and G, H and F are polynomials defined by the diophantine equations. They obtain u from
x by using Newton's method. It could be noted that this algorithm is a general form of

what we have obtained above.

5.3 DISCUSSION

The value of the control weight A is , in general, difficult to choose, a priori, and
is often considered an on-line tuning parameter - although there are some guidelines
available in the literature (Lam, 1980), for the standard objective weighting. These guides
may be of use with weighting on the 'pseudo’ input x, since this converts the non-linear
form to an equivalent linear one. Choice of A, when we weight one of a number of non-
linear functions of u, would doubtless be very ‘ad hoc' in its approach. Selection of
weighting style may not be a question of taste either, since, as some later simulations show
quite different control results. In effect, with different components of x dominating in
different ranges, we end up with an effective weighting given as function of u.

An additional practical problem is the question of multiple solutions for the optimal
control value u,,. In the example we encountered, it was obvious which the correct
solution was since the other candidates were rejected on heuristic grounds. 1If, say,
Newton's method was used for the iterations, a good initial guess (the previous control
action was used) was often sufficient to converge to the correct option.

Based on the above discussion the following cost function is defined for the

NLGPC with penalty on 'pseudo’ input
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Nz Nu
J= 2; [Pi(1+i)-PQyw(t+D)P+AY (x(t+i-1))? (5.42)
1=N; 1=1

Note that the 'x’ is a non-linear function of the controller output, u. This way the control
weighting affects both the linear and non-linear parts of the input signal. In many ways
this latter weighting is more effective since the effect on the output y occurs not only

through u but also through the various non-linear inputs.

Thus by penalizing x we are actually penalizing the ‘net effect’ of the input on the
process output. The optimal value of x over the prediction horizon is obtained by
minimization of J with respect to x. An analytical solution is obtained since x is linear.

The optimal u is then obtained numerically from the optimal x.

5.4 SIMULATION STUDIES

In order to evaluate the effect of different control weighting choices on the design
of non-linear predictive controllers, simulation studies were carried out for two second

order non-linear processes based on a Hammerstein model structure.
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Process Models Simulated

Model 1:

(1+022¢ "'-.7991¢ )(f)=q "1 (.029+.0269¢ " Yu(f)+q '(.021+.003q " Yu?()+E(1)

This model is open-loop stable with a second order non-linearity in the input .It also has
first order B-polynomials. The tuning parameters for both NLGPC were set as follows:
N1=2; N2=3; NU=1; P=1; T=1 and A=0.0001

Model 2:

(1+0.022¢ ! - 0.799, W) = ¢ (0.029 + 0269 ! + 0.0156q (1)

+ ¢(0.021+0.003¢ " + 0.0023q *)u 3(1)+E(1)

The above model is open-loop stable since all the roots of A-polynomial are inside the unit
circle of the g-plane. It has a second order non-linearity in the input signal with second
order B-polynomials. The tuning parameters for both NLGPC were set as follow: N1=2;
N2= 3; NU=1; P=1; T=1; and A=0.0001.

The process parameters were estimated using a standard UDU version of RLS
(Bierman, 1977). Persistent excitation was guaranteed by turning off the adaptation
whenever the increment in the input signal became minimal. An exponential forgetting

factor was adopted with values ranging from 0.98 to unity (no forgetting). The parameter
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estimates were initialized in simulation with b,, and by, equal to unity and the rest equal
to very small numbers. The diagonal of the initial covariance matrix was set to 10*. For
all simulation runs noise variance was set to 0.001.

The figures shown below indicate the behaviour of the closed-loop system with 200
samples. The set-point was switched between two level (one and zero) for all simulation
runs. The input signal, u, was limited between 100 and -100.

5.4.1 Results

Figure 5.1 and 5.2 show a large difference in performance between two NLGPC
algorithms, one with a penalty on the input and the other with 2 penalty on the pseudo
input, when applied to a non-linear process (model 1). The NLGPC algorithm with
penalty on the input controls the non-linear process model 1 with a slower response and
the input seem to be less noisy as shown in figure 5.1. On the other hand, the NLGPC
with penalty on the pseudo input controls the non-linear process model well enough with
faster response as shown in figure §.2. Figure 5.3 demonstrates the performance of
NLGPC with penalty on input on the non-linear process mode! 2 and figure 5.4 shows the
corresponding performance of the NLGPC with penalty on pseudo input on the same
model. Here control action is much smoother and much of the noise response is
eliminated.

The different control behaviour cannot be attributed solely to different weighting
in the objective function. Here, since the control objectives, and hence the optimal
solutions are different, the control behaviour is expected to be different as well. Here the

two optimal solutions are quite different as well. Here, the two optimal solutions are quite
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Figure 5.3: Adaptive NLGPC with penalty on the input (controlling process model 2)
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different in their sensitivities to the same noise level. The 'quality’ of the final control is
a function of trial and error tuning and we were not able to match this as well as we
wanted 0. Nevertheless, the question of what is the more appropriate objective function
remains open and these results show that both control quality and sensitivity to noise will
be affected. No doubt stability is also an issue but this was not treated in this initial

study.

5.5 CONCLUSIONS

Analytical expressions for the gradient matrix and the Hessian matrix have been
obtained for the optimal control solution using a second order NLGPC algorithm. The
results allow for reduction in on-line calculational load. Typical computation time is
reduced by 50% compared to the case where a purely numerical approach is taken. An
additional issue of the choice of penalisation in the objective function is considered. The
performance of two NLGPC algorithms based on different criterion functions has been
evaluated using a number of simulation runs. The first algorithm was based on a quadratic
cost function with penalty on the input signal u. For the second algorithm the 'pseudo’
input x was penalised which in turn contains the manipulated variable. It has been shown
through simulation that selection of control weighting style is very important but the best

choice remains an open question.
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CHAPTER 6

SIMULATION STUDIES TO

EVALUATE NLGPC PERFORMANCE

6.1 INTRODUCTION

In practice, before a controller is implemented on 2 real time process, it is
important to analyze the dynamics of the closed loop system through simulation in order
to study the performance of the controller designed. This will not only allow the
controller designer to anticipate the behaviour of the closed loop system but aiso give him
an idea of any difficulties that might arise during the actual implementation of the
controller. Centain conclusions drawn from the simulation results may deviate from what
was expected, if that happens some alterations may be required for the controller design

before implementation.

In this chapter, simulation studies carried out on two different types of control
algorithms, namely, the generalized predictive control (GPC) and the non-linear

128



generalized predictive control algorithm are presented. A number of different process
models of different complexity are simulated. The performance of the NLGPC is then

compared to that of the GPC by using simulation results of both cases.

6.2 PROCESS MODELS (HAMMERSTEIN STRUCTURE)

In order to evaluate the usefulness of the new non-linear predictive control
algorithm simulation studies were carried out for a linear process (model 1), two non-
linear processes (models 2 and 3) based on a Hammerstein model structure and one non-
linear process with a bilinear term (model 4). These processes were also modelled as
approximate linear processes in order to develop control algorithms for the standard GPC
for comparison purposes. Starting with first order polynomials, A(q') and B(§ )
polynomial orders were gradually increased until the best approximate CARMA model was
selected which suitably matched the dynamics of the Hammerstein model, in the given

range. These best fitting CARMA models were used in the GPC design routine.

Process Models Simulated
Model 1:

(1+0.022¢ '-0.7991¢ ')(1)=q (0.0290+0.0269q “*Yu(r)+E(7)
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Model 2:

(1+.0229 "'-.7991¢ *p(1)=q '(.029+ 0269¢ u(r)+q '(.021+.003¢ u(N+E)

Model 3:

(1+0.022¢ '-.7991q *(1)=q 1(0.029+.0269q '+.0156¢ *)u(r)

+q '(0.021+0.003¢g '+0.0023q *)u(1)+E()

Model 4.

(1+ 0229 '- 7991q *p(n=¢ '(.029+.0269q "(r)+q '(023+.0012¢g ')
g '(021+.003g "(rpie-1)+5(r)

The process model parameters are summarized below in Table 6.1. For all

simulation runs the noise variance was set to .001.
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Table 6.1: Summary of model parameters.

Model 1 (Linear)

A=1 + 0.0220q" - 0.7991q"
B1=0.0290 + 0.0269q"
B2=0

C=1

Parameter Settings: NI=2N2=3 NU=1P=1T=1 4A=0.0001

P linearity in i
A=1 + 0.0220q" - 0.7991q?
B1=0.0290 + 0.0269q"

B2=0.0210 + 0.0030q"

c=1

Parameter Settings: N1=2 N2=3 NU=1P=1T=1 A=0.0001

R ineari
A=1 + 0.0220q" - 0.7991q"
B1=0.0290 + 0.0269q" + 0.0156q?
B2=0.0210 + 0.0030q" + 0.0023g”
C=1

Parameter Settings: N1=2 N2=3 NU=1P=1 T=1 A=0.0001
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Model 4 (Bill
A =1 + 0.0220q" - 0.799q7
Bl = 0.0290 + 0.0269q"

B2 = 0.230 + 0.0012q"

| B3 =0.021 + 0.003q"

The parameters of the A, Bl and B2 polynomial were estimated using a standard
UDU version of RLS (Bierman, 1977). Persistent excitation was guaranieed by turning
off the adaptation whenever the increment in the input signal becamec minimal. An
exponential forgetting factor was adopted with values ranging from 0.98 to unity (no
forgetting). The parameter estimates were in‘tialized in simulation with b, and b,;, equal
to unity and the rest equal to very small numbers. The diagonal of the initial covariance
matrix was set to 10°.

The figures shown below indicate the behaviour of the closed-loop system with 200
samples. The set-point was switched between two levels (one and zero) for all simulation
runs. The noise variance was set at 10*, The input signal was limited between 100 and

-100.



6.2.1 Resuits

Figure 1 shows the performance of the NLGPC on process model 1. Model 1 has
no non-linear term as B2=0. As expected the performance of the standard GPC on
process model 1 shown in figure 6.2 is similar to that of NLGPC shown in figure 6.1.
One can easily observe that for a linear process model, the general form of NLGPC
produces a similar response to that of the GPC. However, the NLGPC seems to be more
active at the instant of set-point change. This may be due to the fact that the control
weighting on x includes the effect of the b-parameters whereas if we weight u directly its

‘effective parameter' is unity.

By contrast, figure 6.3 and 6.4 show a large difference in performance between
NLGPC and GPC when applied to the non-linear process. The NLGPC algorithm controls
the non-linear process model 2 very well as shown in figure 6.3. On the other hand, the
GPC could not control the non-linear process model! well enough as shown in figure 6.4.
Unacceptably large process output occurs or sometimes the closed loop system went
unstable when the GPC was loosely tuned. Better, though still unsatisfactory, results were
obtained when the GPC was heavily penalized. Even after much tuning of the GPC a
persistent offset (due to the second order input non-linearity) was experienced which could
not be properly eliminated by the integral action. Figure 6.5 demonstrates the
performance of NLGPC on the non-linear process model 3 and figure 6.6 shows the
corresponding performance of the GPC on the same model. It is clear that GPC was

unable to control the non-linear processes well (model 2 and 3) whereas the NLGPC
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showed good performance with both linear and non-linear models.

The bilinear model (model 4) was simulated under the NLGPC control (figure 6.7).
It can be observed that good control was obtained thus showing the extended ability of the
NLGPC algorithm to control bilinear systems as well.

In these examples the NLGPC outperformed the GPC for the non-linear processes.
Note that, for a linear CARMA model the NLGPC defaults to the structure of the GPC,
but the control weighting in the objective function is different. An analysis of the

performance of the NLGPC is provided below.
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6.3 CSTR TEMPERATURE CONTROL

An adiabatic continuous stirred-tank reactor (CSTR) with a zero order, exothermic
reaction and no external cooling (Agarwal and Seborg (1987), Steadman (1978) ) was
simulated in order to evaluate the performance of the NLGPC algorithm on a set of
dynamics based on a real process. Agarwal and Seborg (1987) write the unsteady-state

energy balance for the reactor as

mc e . g (T -T,)+k F(-AHyexp(=AE,)
Pdll ptte 70 0 RTo

where t' is continuous time in hours; R is the universal gas constant; V is the holdup
volume; M is the mass holdup of liquid; F; is the feed flow rate; C, is the specific heat of
liquid; -AH is tne heat of reaction; k, is the reaction rate constant; AE is the activation
energy; T; is the feed temperature; and T, is the outlet temperature.

As in Agarwal and Seborg(1987), the outlet temperature T, and the flowrate, F,
were considered to be the output and manipulated variables respectively. The feed
temperature, T;, is the unmeasured load variable. In their paper Agarwal and Seborg
illustrate the steady state process conditions and gains when the load is set at , T,=456K.
Here F, passes through a minimum at T,=478.2K. At this value of T,, the process gain
is discontinuous. Reducing F, to below the minimum of F;leads to a runaway condition.

We simulated the simple Hammerstein model

Hny+a(t-1)=bu(1-1)+bu*(1-1)



to represent the reactor dynamics and based the corresponding NLGPC algorithm on this
Hammerstein model, that is, A=1+a,q"; B,=b,; B,=b,. The tuning parameters were set
as N;=2; N,=3; P=1; T=1 N,=1 and A=0.0001. The parameters a,, b, and b, were
initialized to small numbers and estimated using a recursive least squares method as
described earlier. Persistent excitation was guaranteed by shutting off the estimation
whunever the increment in the input signal became minimal. F, was constrained between
10000 and 50000 Kg/h and the setpoint was changed between 473 and 463K every 50

sampling instants. Process variables were set according to table 6.2.
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Table 6.2: CSTR Data

Variable Value

\' 23151

M 166.7 kg

F, Flow (Manipulated Variable)

Cp 0.85 keal kg K

-H 78S kcal kg

ko 2.265x 10° kg I'' h!

E 20456 kcal ..2"' mole’

T, Inlet Temperature (unmeasured load)
T, Outlet Temperature (controlled variable)
R 1.9872 cal g-mol” K"

The process was simulated using a fourth order Runge-Kutta numerical integration
method. Figure 6.8 shows the results of a closed loop run under the NLGPC when the
load, T, is set to 456K. At each optimal control calculation two values of u are obtained.
A selection of the correct one to implement was based on a simple logic check. A logic
‘check routine’ was included in the simulation program to reject any values which do not
give outlet temperature values close enough to the setpoint as well as negative or imaginary
values. From figure 6.8 it can be & en that the NLGPC controls the CSTR temperature

very well while using a simple Hammerstein model for parameter estimation and the

setpoint practically coincident with the output temperature.

144




145

480} 4
3 480} .
- 470( \ J 4
460} g
450 - - 4
0 S0 100 150 200
x 10° Sampling Instant
1.€ T T Y
= 14 - <
)
=
ic 1.2f
il
0 50 100 150 200

Sampling Instant

Figure 6.8: Temperature Control of CSTR using NLGPC




6.4 CONCLUSIONS

A non-linear generalized predictive control algorithm, based on a class of non-
linear dynamics that can be suitably modelled using Volterra and Hammerstein structures
has been simulated to control a number of processes of different complexity. Non-linear
Generalized Predictive Control (NLGPC) showed an advantage over generalized predictive
control (GPC) in that NLGPC controllcu processes with high non-linearity in input signal
very well. A lot of simulation runs were carried out but only interesting cases were used
to demonstrate the performance of the NLGPC and compare it with the GPC. The
NLGPC performed very well when used to control an adiabatic continuous stirred-tank
reactor (CSTR).

A proof describing the existence of an offset when a non-linear Hammerstein
process model is simulated and controlled by a linear model based GPC is given in section
4.2.4 and 4.2.5. Furthermore, the offset existence in case of GPC controlling a non-linear
process based on a Hammerstein model can qualitatively be attributed to the change in sign
of the input deviation for the even terms in the simulated non-linear process mode! which

is not catered for in the controller design.
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CHAPTER 7

Experimental evaluation of Predictive
Temperature Control for a Batch

Reactor System

7.1 INTRODUCTION

It is a well known fact that in practice processes are non-linear ;.. - ature. In fact
the major sources of non-linearities in practical applications can be known. For example,
combined mass and energy balances can resuit in bilinear or non-linear equations for the
process control problems. Process thermodynamics, kinetics and characteristics of control
valve can all result in non-linear equations.

Most of the applications in industry are based on controllers designed around linear
models. Unfortunately, in some cases these controllers fail to achieve the required goals.
Many attempts have been made to modify the PID controller, the most popular controller
in industry, into a self-tuner to cater for possible process non-linearities. For example,
Vega and co-workers (1991) introduced an explicit self-tuning PID controller with two
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nested loops. One loop is the optimization loop and the other is the parameter estimation
loop. Such an algorithm is difficult to implement and can lead to a complex closed loop
system. Other self-tuning PID controllers have a narrow application range for example
the self-tuning PID controller by Cameron and Seborg (1983) (Vega er al., 1991). In
order to introduce the integral action in their self-tuning PID algorithm, Cameron and
Seborg introduce a restrictive relationship between the constraint polynomial in their
objective function and a polynomial that occurs in the controller algorithm. They also need
to introduce an additional design parameter for tuning purposes. They use a first order
filter polynomial which, together with the other restrictions, may limit the maximum order

of the process model upon which the controller is based.

o Katende and Jutan (1993) also introduced an algorithm for an implicit self-tuning
controller which has a PID structure. Some of their ideas were adopted from the work of
Astréom and Wittenmark (1973), Clarke and Gawthrop (1975). Their method is based on
the minimisation of a general quadratic cost function of prediction errors and control
efforts over a single step. They used a general Box-Jenkins imodel (Box and Jenkins,
1990) to describe the process, so that a stochastic framework is taken into account and
models of variable complexity can be considered. They also used a recursive least squares
identification scheme to update the parameter estimates. The solution to the control design
problem is given as a recursive on-line algorithm which allows the PID parameters to be
updated at each sampling interval or leads to a converged parameter set for a fixed process

model.
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However, all the above algorithms, are based on linear process models which may
create problems in handling very non-linear processes over a wide range of operating
conditions. Katende and Jutan (1996) developed an adaptive non-linear predictive control
strategy which has the attractive features of a generalized predictive controller, but without
the restriction to linear dynamics. This is an advantage over the current discrete non-linear
algorithms which usually restrict the process dynamics to second order. Performance is
also improved by using a non-standard cost-function. The Non-linear Generalized
Predictive Control (NLGPC) algorithm can deal with both linear and non-linear processes

and is developed in the framework of the GPC algorithm.

The aim of the experimental studies is to illustrate the performance of the NLGPC
on a batch reactor system. The NLGPC is used to control the temperature of the reactor
contents and the results are compared to those obtained using a GPC, GMV and STPID
algorithms on the same reactor system. In order to achieve this, we set up a number of
experimental runs to test the NLGPC strategy. This was done by interfacing a personal
computer with a batch reactor system. A closed loop system was set up and data was
collected. In order to compare the NLGPC with other existing strategies, a number of
experimental runs were carried out on a batch reactor system under the self-tuning PID
control (Katende and Jutan, 1993),GMYV control (Clarke and Gawthrope, 1979), GPC

control (Clarke er al., 1987).

In this chapter, the system used to run the experiments is described in section 7.2,
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The performance of a new self-tuning PID controller on a batch reactor system is
illustrated in section 7.3, and the results for GMV control are discussed in section 7.4.
Lastly, the performance of the GPC when connected to the batch reactor is discussed in

section 7.5 and that of the NLGPC is detailed in section 7.6.

7.2 PROCESS DESCRIPTION

The reactor system is a 2 litre batch reactor filled with water and then sealed. The
reactor contents were heated or cooled by the fluid in the jacket. The process input (or the
controller output) signal was split into two signals which were directed to separate steam
and water valves. At full heating the steam valve was 100% open (allowing maximum
flow rate of 14.46lb/h) and the water valve fully closed. Conversely, at full cooling the
water valve was 100% open (allowing a maximum flow rate of 42.42Ib/h) and the steam
valive fully closed. This strategy is known as split range or parametric control (Jutan and

Uppal, 1984).

A jet pump or mixer which instantly mixes steam and water and feeds it to the
reactor jacket was employed to implement the parametric control. The water pressure was
set at SOpsi and steam pressure at 35psi to ensure water flow at the mixer even at full
heating. The temperature of the reactor contents was measured as the process output. A

schematic diagram of the process is shown in figure 7.1.
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The fluid enters the reactor jacket from the bottom, and exits through a float type
steam trap at the top of the jacket. The steam trap acts as a back pressure device, which
allows the water to develop superheated temperatures in the jacket. It also has its normal
steam trapping function at higher operating temperatures. Steam is coupled with cooling
water to provide sufficient energy removal. It is more energy efficient to have a variable
cooling level. In the heat-up cycle, we would not wish to waste energy on a
predetermined and fixed minimum cooling level. This minimum cooling level is usually
determined by the cool-down profile. In fact, many batch reactors are run with a fixed
level of cooling, and temperature change is achieved by varying steam flow. A better

approach is to use split range parametric control used here.

The reactor has, typically, three cooling/heating sections which are: the full cooling
section, the cooking section and the full heating section. During the full cooling stage
there is more cold water than steam injected into the reactor jacket, and at times it is
simply cold water which is injected into the system. This would mean a rapid drop in
temperature of the reactor content (for our study the reactor content was water). The rate
at which the temperature of reactor content drops will depend on the specific heat capacity
of water in the cooling jacket, the specific heat capacity of the reactor content, the heat
transfer coefficient between the reactor content and the cooling water and the fouling
factors. During the cooking stage laige changes in temperature of reactor content are
minimized. During the full heating stage more steam than cold water is injected into the

reactor jacket, and at times 100% steam is injected into the system. This would mean
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rapid rise in temperature of the reactor content. “'he rate at which the temperature of
reactor content rises will dep2nd on the latent heat of steam (in addition to the factors
mentioned above). Because the latent heat of steam is much higher than the specific heat
of water, there is a big difference in the rate of heating and cooling. The gain of such a
heating/cooling system is often non-linear, since it is typically much easier to add energy
to the reactor, than to remove it. The temperature controller would often need to have
several sets of controller tuning constants to cope with this induced non-linearity. By
altering the curves/lines describing the movement of steam and cold water valves
(parametric curves) one can reduce or increase the non-linearity of the system but never

reach complete elimination of the non-linear dynamics.

Jutan and Rodriguez (1987) describe a design to determine a set of parametric
curves u,(2) and u,(2), using trial and error as well as engineering judgement, that would
tend to decrease or increase the non-linearity between the parametric variable (control
signal), z, and the reactor steady state temperature, T. u, is the manipulated steam valve
opening and u, the cooling water valve opening. They give two equations to describe the
parametric relationship

u, = f,(2)+¢,
u, = f,(z)+c,

where f, describes a mapping function between u, and z; f, describes a mapping function

between u, and z; ¢ and,c are constants. Figure 7.2 is extracted from Jjutan and
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Rodriguez's (1987) paper illustrating typical parametric curves for steam and water.

Although no exothermic reaction is carried out here, internal heat generation can
be simulated by injecting steam into the reactor directly. We also concentrated our studies
on setpoint disturbance since this strategy would take us into different operating ranges and
bring out the nonlinearities in the process.

Digital data collection was achieved using a 486DX personal computer interfaced
with a Data Translation Board, DT2801 series. Programming was done in real-time,
utilizing QuickBASIC, C and C+ + programming language and software packages like
©Matlab and ©Simulink as well as Simulink Predictive Adaptive Control Environment

(SPACE) by Scokaert er al. (1995).
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7.3 REACTOR TEMPERATURE CONTROL UNDER STPID

A constrained self-tuning PID (STPID) controllier (Katende and Jutan, 1993) does
not require one to have the priori knowledge of the process model. The controller output

is

viu=-glz )y, .1

where

g V=g rgs g (7.2

The three parameters of the polynomial g(z') cre estimated on-line, via a recursive
parameter estimator. For this experiment, the recursive parameter estimator used was the
standard recursive least squares method with modifications suggested by Bierman (1977)

to ensure stability and convergence in discrete form.

Note that this kind of self-tuning PID controller is in an implicit form, that is, the
process model parameters have been re-parameterized to give the controller parameters.
Therefore, we directly estimate the controller parameters. This is in contrast with the

explicit self-tuning controllers whereby the process model parameters are estimated and



then the diophantine equation is numerically computed to give the controller parameters.

7.3.1 Discussion of Results

Table 7.1 gives the summary of the initial conditions for the experimental run
under the constrained self-tuning PID controller. Note that the forgetting factor A is
initially set at 0.9 and then increased exponentially until it approaches the value of 1.
Introduction of the exponential forgetting factor implies the minimization of a time-
weighted least squares. In this manner, observations made in the distant past are given
very low weights and will have little influence on the current parameter estimates.
Conversely, the most recent observations are weighted most heavily and therefore

contribute most to the current estimates, This method therefore allows the scheme to track

slowly changing parameter values.

| Run Type

Table 7.1: Initial conditions for the experimental run with STPID _

STPID control algorithm
parameters

| From 30°C to 60°C

From 60°C 10 40°C

Temperature setpoint change:

b=1 time delay

d=1 order of v -for non stationary
disturbance.

E=1 constraint

b,.=0.9 -1 exponentially increasing t
forgetting factor

GT=([1.1.1]
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A value of the constraint § which was chosen by trial and error was set at a value
of unity. The setpoint was then changed from 30°C to 60°C and then finally to 40°C. This
was intended to test the adaptability of the controller at different operating ranges. The
non-linearity of this batch: reactor system was discussed in Katende (1992). Here a

standard PID controller was also tried but had poor performance.

The convergence of the g parameters is shown figure 7.3. 1t can be seen that
converges of the g parameters was reached at each setpoint. From the optimat g parameter
estimates we obtain the conventional PID controller parameters using the following

equations

Td
&= -Kc( l *2—7—.) (7.4)



£,=K l7d (7.5)
where T is the sampling interval. Figure 7.4 shows the variatior nf these parameters with
time.

Figure 7.5 shows the variation of reactor temperature (process output) with time
and that of steam flow and water flow (process inputs) with time. It can clearly be seen
that the process output was kept at its setpoint with the self-tuning PID control despite the
wide changc. in the operating range. At the beginnir « of the experiment the setpoint vzas
set to 30"C. From figure 5 it can be seen that the ¢ ntroller responds in a very smooth
fashion which results in a smooth process response with an overshoot of approximately
5”C. The only problem is that the rise time and response or settling time are quite high
(approximatcly 2250 seconds and 9000 seconds respectively). Once steady state is reached
the controller maintains the reactor temperature at the desired value. When the setpoint
was stepped-up 0 60°C from 30 C, a number of problems were encountered. The
controller responds slowly but steadily to increase the flow of steam and decrease the flow
of cold water  This smooth transition resulted in a high overshoot (approximately 26°C)
and high rise time (approximately 900 seconds). This operating range is considered to be
the 1nost non-linear and poor performance of a self-tuning PID, which is based on a linear
model, is not surprising. When the setpoint was stepped-down to value of 40°C, the
controller performance improved considerably. The undershou! was quite small, although

the controller response was still not satisfactory.
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7.4 Reactor Temperature Control Under GMV

Clarke and Gawthrop's (1979) Generalized Minimum Variance (GMV) controller,
requires one to have some a priori knowledge of the process model. In particular its
performance is quite sensitive to the process dead time. It also does not perform well for

non-minimum phase processes. The controller output is given as

poo_azh
‘ e (7.6)

where

alz earas T e 2

m

Ve = Yty ey

and
I>s+p+k

m=r+max{q-k-1;p+d-1}



where s,1,p and q are the values of order of polynomials ©,5,¢ and O respectively (of
Box-Jenkins model, 1 >x and Jenkins (1990).

The parameters 6"=[a,.a,,...,0,,Y,.Y,....,Y,] can be updated every sampling
interval via a recursive parameter estimator and used in the control law. For chis
experiment, the recursive parameter estimator used was a simple recursive least squares
method with modifications suggested by Bierman (1977) for the same reasons as described
above. Because the GMV algorithm is given in an implicit form, we can directly estimate

the controller parameters.

7.4.1 Discussion of Results

Table 7.2 gives the summary of the initial conditions for the experimental run
under GMV control. The forgetting factor 2 is initially set at 0.9 and then increased
exponentially until it approaches the value of 1. Introduction of the exponential forgetting
factor implies the minimization of a time-weighted least squares function as discussed in
section 7.3.1. A value of the constraint ¢ which was chosen by trial and error was set at
a value of unity. The setpoint was then changed from 30°C to 60°C and then finally to
40°C. The convergence of the estimated O parameters is shown figure 7.6. It can be seen
that converges of the O parameter estimates to their true values was reached at each

setpoint.

Figure 7.7 shows the variation of reactor temperature (process output) with time

and that of steam flow and water flow with time (process inputs). From the figure one can
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see that the process output was kept at its setpoint under the GMV control despite the wide

changes setpoint settings.
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able 7.2: Initial conditions for experimental run with GMV

| Run Type GMYV control algorithm parameters

{ Temperature setpoint changc: m=4 number of a parameters
From 30°C to 60°C 1=4 number of y parameters
| From 60°C to 40°C b=1 time delay

d=1 order of v -for non stationary
distu.bance.

E=1 constraint

A=0.9 -1 exponentially increasing
forgetting factor

07=[.9423 .2441 -.0291 -.1680 .9164
.2582 .0044 -.0381)
Initial values for 0)

First, we started by setting the setpoint to 30°C just like the case with the self-
tuning PID. Figure 7.7 shows that at the beginning of the experiment the controller
responds in a comparably smooth fashion which results in a smooth process response with
an overshoot of apprevimately 9°C. The rise time and response or settling time were
barely acceptable at approximately 1800 seconds and 7200 seconds respectively, becausc
of a relatively slow controller response. Once steady state is reached the controller tracks
the setpoint in a very tight manner. When the setpoint was stepped-up to 60°C from 30°C,
again a few problems were encountered. The controlier responds relatively fast and
aggressively to increase the flow of steam and decrease the flow of cold water. The

aggressive response resulted in an average overshoot (approximately ,&°C), high response
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time (approximately 4500 seconds) and high rise time (approximately 1350 seconds).
Since this is considered to be the most non-linear operating region, the performance of the
GMV is commendable. When the setpoint was stepped-down to value of 40°C, the
controller performance improved considerably. Just like the case with self-tuning PID the

controller response was still not satisfactory but the undershoot was admissible.

7.5 REACTOR TEMPERATURE CONTROL UNDER GPC

The GPC by Clarke er al. (1987) discussed in chapter 3 is used to control the
temperature of a batch reactor system. The incremental control vector obtained by

minimizing the cost function is also given in chapter 3 as:

Au=(G'G+A) G T(w-)) (7.9)

so that the current control law is given by:

u()=n(1-1)+g "(w-f) (7.10)

where g' is the first row of (G'G+Al)'G’.

So, at each sampling interval:
(1) given y(t) and previous values of y, u, the predictions of freely responding process are
computed and compared with future set-points w, which may be known or assumed equal

to w(t).
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(2) for the given {N,, N,, NU, A, y hat, w} the optimal control vector Au is computed.
(3) the first element u(t)=u(t-1)+Au(t) is implemented and sequences are shifted ready for
the next sampling interval.

Note that the GPC algorithm has an explicit form. We can therefore estimate the
process parameters first and then use the estimated parameters in the controller design.
Figure 7.8 illustrates the schematic diagram of the GPC controller used in the experiment
under ®Matlab/Simulink environment and a modified version of SPACE (Scokaert ¢r al.,

1995).

7.5.1 Discussion of Results

Table 7.3 gives the summary of the initial conditions for the experimental run
under GPC control. Note that the forgetting factor is set at a constant value of 0.98. The
control weighting A which was also chosen by trial and error was set at a value of 0.181.

The setpoint was then changed from 30°C to 60°C and then finally to 40°C.

Figure /.9 shows the variation of reactor temperat...e (process output) with time
and that of steam flow and water flow with time (process inputs). Figure 7.9 illustrates
that the process output was kept at its setpoints under the GPC control despite the non-

linearity of the process.



Table 7.3: Initial conditions for experimental run with GPC _

Run Type GPC control algorithm parameters

Temperature setpoint change: N1=2, N2=4,K Nu=1, d=1, A=0.181,

From 30°C to 60°C At=90 sec

From 60°C to 40°C

Rules of thumb formulated in literature were used to arrive at the parameter settings
of the GPC and of course fine tuning was necessary to achieve the desired performance.
The minimum cost horizon N1 was set to 2, that is, N1 was set to be equal to d+1. The
maximum cost horizon N2 was set to 4 after trying many different values. Our aim was
to achieve quick controller response without causing too much controller activity or high
overshoots. The control horizon NU was set to 1 and the control weighting A was set to
0.181 after trying out a number of values. Higher values of A did not seem to improve

coniroller activity.

As before, at the beginning of the experiment the setpoint was set to 30°C. From
figure 7.9 it can be seen that the controller responds in a very smooth fashion which results
in a smooth process response with an overshoot of approximately 10°C. The rise time and

response or settling time are small (approximately 270 seconds and 850 seconds
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respectively), due to a very fast controller response. This is an improvement over the
previous two cases. Once steady state is reached the controller tightly maintained the
reactor temperature at the desired value. When the setpoint was stepped-up to 60°C from
30°C, a few problems were encountered. The controller responded in an aggressive
manner to increase the flow of steam and decrease the flow of cold water. This aggressive
controller response resulted in an average overshoot (approximately 18°C) and small rise
time (approximately 400 seconds). This operating range is considered to be the most non-
linear and the performance of a GPC which is based on a linear model, though
satisfactory, is not surprising. When the setpoint was stepped-down to a value of 40°C, the
controiler performance improved considerably. The undershoot was quite small and the
controller response was very good. The above results show the advantage of GPC over

the previous two strategies.
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7.6 REACTOR TEMPERATURE CONTROL UNDER NLGPC
7.6.1. A general form of NLGPC

The NLGPL discribed in chapters 4,5 and 6 is also used to control the temperature
of a batch reactor system. It was shown in chapter 4, that by minimizing the cost function

J with respect to vector x, we obtain x as:

x = (GTG+AI)'G T(w'-Hx-Fc) (7.11)

Equation (7.11) gives the optimal x vector, from which as in GPC, we require only the
first element to implement the control law. In order to obtain u,, from the computed x

value, Newton's method can be used.

Note that the NLGPC algorithm also has an explicit form. We can therefore
estimate the process parameters first and then use the estimated parameters in the controller
design. Figure 7.10 illustrates the schematic diagram of the NLGPC controller used in the
experiment taking advantage of ©Matlab/Simulink environment and a modified version of

SPACE.
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7.6.2 Discussion of Results

Table 7.4 gives the summary of the initial conditions for the experimental run
under NLGPC control. Note that the forgetting factor is set at 0.98. The control
weighting A which was also chosen by trial and error was set at a value of 9.6. The

setpoint was then changed from 30°C to 60°C and then finally to 40°C.

Figure 7.11 shows the variation of reactor temperature (process output) with time
and that of steam flow and water flow with time (process inputs). It can clearly be seen
that the process output was kept at its setpoints under the NLGPC control despite the non-
linearity of the system and the wide changes in the setpoints.

Table 7.4: Initial conditions for experimental run with NLGPC

Run Type NLGPC control algorithm parameters

Temperature setpoint change: N1=2, N2=5, Nu=1,d=1, A=9.6,

{ From 30°C to 60°C At=90 sec., A=1st order Bl =1st order

i From 60°C t0 40°C B2=1 order

In order to arrive at the tuning parameters shown in table 7.4, we initially set these
parameters (o values determined by the knowledge we acquired through experience. Then
fine tuning was done, essentially by trial and error, to arrive at the values shown.

The minimum cost horizon N1 was set to d+1 so that the tracking error over the

entire prediction horizon is included in the objective function. For example, if N1 was set




to d+2 the tracking error at t+d+1 would not be included in the criterion. The maximum
cost horizon N2 was set to 5. This was necessary since we needed to design a controller
with a quick response, at the same time avoiding high overshoots and undesirable
oscillation in the process output. From experience it was noted that increasing the value
of N2 to a large value slows down the response of the process under NLGPC. NU was
set to 1, lowest possible value since, from experience, large values of NU tend to slow
down the computation and may also result in poor performance. The control weighting
A was set to 10.6, after trying out many values. This value gave the best controller

activity and best overall closed-loop robustness.

At the beginning of the experiment the setpoint was set t0 30°C just like the
previous runs. From figure 7.11 it can be seen that the controller responds in a very
smooth fashion which results in a smooth process response with an overshoot of
approximately 8°C. As before with GPC, the rise time and response or settling time were
very small (approximately 270 seconds and 85 seconds respectively), due to a fast
controller response. Once steady state is reached the controller tightly maintains the
reactor temperature at the desired value. When the setpoint was stepped-up to 60°C from
3;0°C, the NLGPC utilized its non-linear nature to keep the reactor temperature at its
desired value with minimal strain. The controller quickly responds to increase the flow
of steam and decrease the flow of cold water in a relatively smooth fashion. This
transition resulted in a low overshoot (approximately 12°C) and small rise time

(approximately 350 seconds). This operating range is consiucred to be the most non-linear
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and the excellent performance of the NLGPC proves its advantage over the linear model
based controllers. When the setpoint was stepped-down to a value of 40°C, the controller
performance resnained good. The undershoot was quite small and the controller response

was very satisfactory.
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7.7 COMPARISON OF STRATEGIES

From the analysis summarized in the tables below the NLGPC, GPC, GMV and
the constrained STPID controllers can handle the non-linear, time varying processes with
different levels of ability. The predictive algorithms (NLGPC and GPC) outperformed

both the GMV and the self-tuning PID controllers.

When the setpoint was set at 30°C all the controllers had an overshoot of
approximately 10°C (see table 7.5) except for the STPID which had a § C overshoot.
However, the response or settling time and rise time were far much better with the
predictive controllers, 850 sec. and 270 sec. respectively, and worst with the self-tuning
PID. The controller activity was more or less moderate for all controllers.

When the setpoint was stepped-up to 60°C more non-linearity was experienced and
hence the linear model based controllers had the most difficulty (see table 7.6). The
overshoot was more or less the same for all controllers except for the self-tuning PID
which had the largest overshoot of 26°C. The NLGPC had the best response or settling
time (1500 seconds) and rise time (350 seconds). The controller activity was much 1nore

moderate for both the NLGPC and the self-tuning PID,

When the setpoint was stepped-down from 60°C to 40°C the process exhibited less
non-linearity in its dynamics and thus controller activity was quite good for all controllers.

As shown in table 7.7 the response time and rise time were much better with the NLGPC

and GPC controllers ( 1300 seconds and 90 seconds respectively for both cases).
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It is clear that the predictive controllers outperformed the self-tuning PID and the

GMV controllers in controlling the non-linear reactor system. Again because of the wide

range and severe non-linearities here, the NLGPC has an advantage over the GPC which,

nevertheless, does an admirable job.

Table 7.5: 30 °C Setpoint Tracking

Controller Max. Overshoot | Response Rise Time | Controller
°C) Time (Sec.) (Sec.) Activity
NLGPC 8 850 270 Moderate
GPC 10 850 270 Moderate
GMYV 9 7200 1800 Moderate
STPID 5 9000 2250 Moderate
Table 7.6: 60°C Setpoint Tracking
Controller | Max. Response Rise Time Controller
Overshoot (°C) | Time (Sec) (Sec.) Activity

NLGPC 18 1500 350 Moderate
GPC 18 1550 400 High

GMV 18 4500 1350 High

STPID 26 9900 900 Moderate

18




Table 7.7: 40°C Setpoint Tracking

Controller | Max. Response Rise Time Controller Activity
Undershoot (°C) | Time (Sec.) | (°C)

NLGPC |17 1300 90 Moderate

GPC 18 1300 90 Moderate

GMV 9 3600 1350 Moderate

STPID 3600 1350 Moderate

Table 7.8: Controllers tested and their inial conditions

Controller Parameter Settings

NLGPC N1=2, N2=4, Nu=1, d=1,
A=9.6, At=90 sec.

GPC N1=2, N2=4 Nu=l,d=1,
A=0.181, A1=90 sec.

GMYV delay b=1, number of a-
par=4, number of -par=4,
cont. weig §=1 ff=0.9-1
exp., At=90 sec.

STPID delay b=1, cont. Weig. §=1,
ff=0.9~1( exp.), At=90 sec.
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7.8 CONCLUSIONS

Despite the nonlinear and time-varying characteristic of the reactor, good control
with differing degrees was obtained for 2 wide operating range using the NLGPC, GPC,
GMV and STPID control stratepies. All these controllers were able to identify the
process on-line and excellent convergence of parameters was obtained for each case. The
controllers proved to be robust and perform reasonably well under noisy conditions and
changing system parameters. In spite of this good average control performance, the two
model predictive schemes, GPC and NLGPC. showed distinctive advantages over the
simpler schemes. Closed-loop system response and settling was significantly improved.
It was also easier to choose reasonable guesses for the controller parameters such as
prediction and control horizons. The limitations of the linear based GPC were also
apparent for this high' non-linear system. This allowed the NLGPC to further improve
the control performance and provide the most suitable control run. Note that in the
experimental setup one cannot increase the severity of the non-linear nature of the
controlled process beyond a certain point, that way, the GPC and all the other linear
controllers did not fail as was the case with simulation where process non-linearity could

easily be varied.
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CHAPTER 8

CONCLUSIONS

8.1 GENERAL

A new non-linear generalized predictive control algorithm was developed based
on a class of non-linear dynamics that can be suitably modelled using Volterra and
Hammerstein structures. Non-linear Generalized Predictive Control (NLGPC) showed an
advantage over generalized predictive control (GPC) in that NLGPC controlled processes
with high non-linearity in input signal very well. A number of simulation runs were used
to demonstrate the performance of the NLGPC and compare it with a GPC. The NLGPC
performed very well when used to control an adiabatic continuous stirred-tank reactor
(CSTR) through simulation.

Analytical expressions for the gradient matrix and the Hessian matrix were also
obtained for the optimal control solution using a second order NLGPC algorithm. The
results allow for reduction in on-line calculational load. Typical computation time is
reduced by 50% compared to the case where a purely numerical approach is taken. An

additional issue of the choice of penalization in the objective function is considered. The
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performance of two NLGPC algorithms based on different criterion functions were
evaluated using a number of simulation runs. The first algorithm was based on a quadratic
cost function with penaity on the input signal. For the second algorithm the ‘pseudo’ input
was penalised which in turn contains the manipulated variable. It was shown through
simulation that selection of control weighting style is very important in determining the
controller performance.

Despite the nonlinear and time-varying characteristic of the batch reactor system,
good control with differing degrees was obtained for a wide operating range using the
NLGPC, GPC, GMV and STPID control strategies. All these controllers were able to
identify the process on-line and excellent convergence of parameters was obtained for each
case. The controllers proved to be robust and perform reasonably well under noisy
conditions and changing system parameters. In spite of this average control performance,
the two model predictive schemes, GPC and NLGPC, showed distinctive advantages over
the simpler schemes. Closed-loop system response and settling was significantly
improved. It was also easier to choose reasonable guesses for the controller parameters
such as prediction and control horizons. The limitations of the linear based GPC were also
apparent for this highly non-lin.ar system. This allowed the NLGPC to further improve

the control performance and provi-'e the most suitable control run.
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8.2 SUGGESTIONS FOR FUTURE STUDIES

The NLGPC algorithm was extensively tested through simulation. However, only
one type of experiment was used to evaluate this controller on a laboratory scale.
Although the process chosen for the experiments was non-linear and exhibited non-
minimum phase properties, a number of other processes or types of experiments should
be tried to further explore the capabilities of this controller. Such experiments may
include control of concentration or pH in a reactor, control of biochemical processes and
control of bottoms or top product of a distillation column. The NLGPC should eventually
be applied to industrial processes to see whether or not the results can be extrapolated from
those obtained in the laboratory and simulation.

Although extensive simulation studies have been carried out to test the performance
of the NLGPC on non-linear processes, no stability or robustness proofs have been done.
It is therefore suggested that these proofs should be carried out and a design with
guaranteed stability be obtained.

Another approach which is very desirable for real processes is to consider
constraints while designing the NLGPC algorithm. This means that an optimal solution
should be obtained which does not violate constraints on both input and output variables.
This approach would be to add constraints to the objective function and solving the non-

linear problem numerically.Soft constraints, using lagrange multipliers would be the

simplest. Hard constraints would be more of a challenge.
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APPENDIX A

REAL-TIME CONTROL

A.1 INTRODUCTION

The very first uses of real-time computing were in military applications related to
missile firing and radar networks. The computers developed for this application were later
adapted for industrial use. However, the growth of real-time applications was held back
due to the high cost and need for alternative backup systems in case of computer failure.

The invention of the minicomputer was a major breakthrough in terms of the cost
of building real-time systems. Computers such as Digital Equipment corporation’s PDP
series of minicomputers found widespread application as a data acquisition and control
device in the laboratory. The 1960s and 1970s can be regarded as the era of
minicomputers in this field.

Another major breakthrough came with the arrival of the microprocessor. The

most important feature these microprocessor-based sysiems brought to real-time computing
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was the ability to distribute the computing tasks among many processors, thus increasing
the reliability of such systems. The use of large-scale integration (the ability to put a large
number of electronic circuits on small silicon wafers) led to decreasing costs.

One of the microcomputers (a computer based on microprocessor) that found
widespread application in the laboratory was the Apple 11 computer (Joseph, 1989). This
can be attributed to its low cost (from mass marketting), ease of use, and open
architecture. The latter allows easy interfacing of external (peripheral) devices to the
computer. Soon after the introduction of the Apple 11 computer, a number of companies
began to manufacture and market interface boards that allow easy connection between the
data acquisition and control signals and the computer. User-friendly software was also
available. The major drawback of the Apple 1l was the limited capability of its
microprocessor.

With the introduction of the IBM PC, microcomputers became as powerful as the
minicomputers of the past. Again, the open architecture of this system made it a very
popular candidate for use in data acquisition and control applications. Today, there are
a large number of companies that manufacture and market data acquisition and control
hardware and software for the IBM family of computers and compatibles.

In this chapter we describe the major components of a microcomputer-based data
acquisition and control batch reactor system available in our laboratory, Advanced Process
Contro; Research Laboratory, which are: the Personal Computer, the thermocouple

(sensor), valves (actuators), related instrumentation that provide a connection with the

reactor (A/D D/A converter) and the software (programs) that drives the microcomputer
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hardware.

A.2 HARDWARE

A.2.1 Data Acquisition and Control System

The computer system used in our simulation and experimental runs is a 486DX
IBM compatible PC. It offers sufficient power to monitor 10-100 sensors (we had only
one sensor, the thermocouple), high speed data acquistion, a fairly good amount of data
processing, and a large storage capacity. The computer monitor was used to display
graphical trends of the process variables in real time. The computer also sends control

signals to the reactor system via hardware interfacing.

A.2.2 Sensors and Actuators

The thermocouple (measurement sensor for the reactor system) generates an analog
signal. It uses a voltage generated by the junction of two metals at different temperatures
to generate an output signal. The signal generated is very weak and noisy, therefore, it
requires some amplification, level shifting and noise filtering which is referred to as signal
conditioning.

Air to open control valves were used to manipulate steam flow and water flow.
The valves are connected to the I/P (Current to Pressure) transducers which receive a 4-

20mA analog signal from the computer.
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A.2.3 Analog Interface

We used a Data Translation DT2801 series board as the analog-to-digital (A/D)
digital-to-analog (D/A) converter to accept a thermocouple reading (analog input) and also
send a signal to the I/P transducers (analog output) which manipulate the steam and water
control valves. The signal generated by the thermocouple is conditioned by the DT board
signal conditioner with the voltage levels of -10 to + 10 range (bipolar). This signal is
then converted to digital form by the A/D converter. A/D converter is interfaced to the
microprocessor bus which transfers the data to the computer CPU for computation.

We setup a control algorithm through software (QBASIC and C/C+ +) which
computes the value of the control signal (digital value). This digital value is sent to the
D/A converter via a microprocessor bus which generates an analog voitage. The output
voltage is then converted to a 4-20mA analog signal which is received by the I/P

transducers which are responsible for the opening/closing of the steam and water valves.

A.3 SOFTWARE

For simulation, the software is needed to do the necessary numerical computation
to generate a response for a given process model driven by a controller output. The aim
of the controller is to keep the process response at a desired setpoint despite changes due
to disturbance or setpoint.

For real-time control the software serves similar purposes as in simulation except

that here we deal with the “real-world”. The following is the outline of the software driver
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for the reactor teperature control system:

(i)- Start the run and enter the necessary data (e.g. sampling interval, horizons, initial
guesses, etc.).

(ii)- Subroutine to read temperature (analog input).

(iii)- Subroutine to compute control moves (the control algorithm).

(iv)- Subroutine to send signal to I/P control valve transducers (analog output).

(v)- Subroutine to display temperature trend, control moves, etc.

(vi)- Subroutine for control menu (keyboard event handler, e.g. terminate program).

(vii)- Subroutine to trap errors.

A.3.1 Running a Matlab Simulation

A number of script files were written in Matlab to perform simulation and control
of different process models some of which were derived from energy and mass balances
and others obtained as statistical ARIMA, CARIMA, Box and Jenkin’s (BJ) or
Hammerstein/Volterra models.

Four different custom Matlab libraries are provided with the necessary files to run
simulations with four different controllers. It may be necessary for the user to edit the
data files or even the script files 10 make changes to the process models and controlier
parameters 1o suit their needs. There is no need to edit the function files called by the
script file.

The custom Matlab library calied STPID under the directory STPID provide the
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user with the necessary files to run simulations with a self-tuning PID controller. Once
under this directory one can perform simulations by typing “rispid” at the matlab prompt.
The program will then prompt the user to enter the necessary data or parameters. A
custom Matlab library to run simulations with the GMV controller is called GMV under
the direcory GMV. Once under this directory the user can perform simulations by typing
“rissim” at the matiab command line. The program will also querry the user (o enter the
necessary data or parameters. Another cusiom Matlab library to run simulations with the
GPC algorithm is called GPC and is provided under the directory GPC. By typing
“gpc_ex"” at the Matlab command line one can perform simulations under this directory.
It may be necessary for the user to edit the script file “GPC_EX.M" to make changes to
the process model and controller parameters. The script file contains a data table which
can easily be edited to suit one’s needs. Lastly, a custom Matlab library called NLGPC
under the directory NLGPC is provided with the necessary M-files to run simulations with
the NLGPC algorithm. Once under this directory the user can type “nlgpc_ex” at the
Matlab command line to perform the simulations. If there is a need to make changes to
the process model and controller parameters, the user can edit the script file
“NLGPC_EX.M". The script file contains the data in form of a table which can easily be
edited. If there is any need to make any further changes one can edit the major function

files “GPCSIM.M" and “NLGSIM.M" for the GPC and NLGPC algorithms respectively.

A.3.2 Setting up and Running a Simulink Simulation

Briefly described below is how the user may setup the simulink worksheet for use
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with three different types of control strategies, and how Simulink may be run.

A.3.2.1 Setting up a Simulink Simulation

The custom Matlab libraries mentioned in section A.3.1 above are needed in order
to run the Simulink simulations involving blocks build for the self-tuning P1D, GPC and
NLGPC algo:ithms. This means that the directories leading to STPID, GPC, and NLGPC
libraries should be included in the Matlab path in the “STARTUP.M" file. Another
Simulink GPC simulator used is the one provided by Scokaert et al. (1995), Simulink
Predictive Control Environment (SPACE). The SPACE directory which leads to space
files is also included in the Matlab path. By typing “adaptall” a window containing all the
three controller blocks (STPID, GPC, NLGPC) is displayed. The user can now select any
block from here to connect to the process for simulation. Also typing “space” gives rise
to a window containing a constrained GPC controller block. Figures A.1, A.2, A.3 and
A.4 show sample simulation setup for simulation under self-tuning PID, GPC, NLGPC

and SPACE’s constrained GPC.
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A.3.2.2 Running a Simulink Simulation

The Simulink user’s guide details simulation parameters that must be adequately
set before running a simulation. Of particular interest are “Min Step Size” and “Max Step
Size” items in the simulation control dialog window. Setting both parameters to the
controller sampling interval results in a faster simulation than when the maximum step size
is smaller than the controller sampling interval. In the latter case, however, the inter-
sample behaviour of the process output is captured, which may be useful for analysis of
simulation results. Setting these parameters in a proper way can also be very useful if

simulink is used for real-time during which proper memory management is very vital,

A.3.3 Running a QBASIC or C/C+ + Programs for Real-Time Contrel

Real-time temperature control of a batch reactor can be achieved by running anyone
of the custom written software packages under the directory PRO. These packages include
PRO, PRO2, PRO3 (all written in QUICKBASIC) and REALGPC (written in C).

The PRO software package for real-time control with either Generalized Minimum
Variance (GMV) or conventional PID is envoked by typing “pro” at the DOS command
line. PRO2 package which is envoked by typing “pro2” at the DOS command line is
basically used to collect data for open-loop reactor identification. PRO3 package which
is also envoked at the DOS command line by typing “pro3” is a more complete package
which enables the user to select from three controliers: GMV, self-tuning PID and the
standard PID.

All these programs are stand-alone packages which can be run on any personal
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computers provided the necessary hardware interfacing is taken care of. The programs
could be used to control any processes with minor adjustments, if at all needed. A typical
screen display of PRO3 shows the trend of the process output ( controlled variable), the
trend of the process input (manipulated variable), control menu and other necessary
parameters.

REALGPC is also a stand-alone software package which enables the user to
implement a GPC algorithm on the process. By typing “realgpc” at the DOS command
line one can run this program. This program is not complete as some of the menu control

handlers are still being developed.

A.3.4 Setting up and Running Integrated Simulink and C/C+ +

Programs for Real-Time Control

One can have access to Matlab’s handy tooboxes / programs and simulink’s
worksheet by integrating C/C+ + programs with Matlab / Simulink environment. Here
real-time control is performed in Simuilink environment by making either DOS calis (if
using DOS-based driver) or windows calls (if using windows-based driver for external
1/0s). For our case we used DOS-based drivers (a windows-based driver is still being
developed) to control the temperature of a batch reactor with a Matlab-coded GPC

algorithm and a Matlab-coded NLGPC algorithm.

The drivers were developed as Simulink blocks (making DOS calls to C/C+ +
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written programs) which can be connected to the external process. Figure A.S shows the
connections without any controlier feedback. Under the directory EXPLINK, the files
ADDA.M, ADDAOX.M and APDAOX?2.M can be found. Figure A.6 was generated by
typing “adda” at the Matlab command line. One can generate figure A.6 by typing
“addaox” at the Matlab command line. This diagram illustrates the actual connection of
GPC ( from SPACE) to thereactor system making use of Matlab’s toolboxes in real-time.
Figure A.7 was generated by typing “addaox2" at the Matlab command line. Figure A.7
shows the connection of NLGPC to the reactor also making use of Matlab’s m-files and
toolboxes.

By clicking on the “Simulation” and then “Start” in Simulink worksheet for all the
above cxamples illustrated a real-time control of a batch reactor can be staried. Note that
parameter setting may be necessary, for example, sampling interval, cost and control

horizons, time delay and process model parameters.
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Figure A.S: Simulink Setup illustrating A/D D/A Connections to a Real Process without

a Controller
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JACOBIAN AND HESSIAN

APPENDIX B

EQUATIONS OF QUADRATIC NLGPC

The following is a matrix representation of the second partial derivative of J with

respect to u:
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First, obtain the second partial derivative of each of the elements in the above matrix
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Rearranging the above equation we get
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Substituting for the term in square brackets on the RHS using equation (4.75) we obtain
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Rearranging the above equation and differentiating through the RHS we have

ofas
ou\ on
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Again we use equation (4.75) for substitution in the above equation
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Multiplying through and collecting terms we get

a T T ;. T
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i J

Using equation (B7) and putting all elements in a matrix form we arrive at a second partial

derivative of J with respect to u:

&J . - ‘
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