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ABSTRACT

This thesis describes the microscopic, quantum mechanical theory of
exchange-dominated spin waves in Heisenberg ferromagnetic and
antiferromagnetic thin films including the effects of nonuniaxial
single-ion anisotropy. The results constitute a generalization of
previous theoretical studies on spin waves in thin films with uniaxial
anisotropy and in semi-infinite ferromagnets with nonuniaxial

anisectropy.

A spin Hamiltonian containing nearest-neighbour exchange terms, Zeeman
terms, and single-ion anisotropy terms is used. The films may be
asymmetric with respect to surface exchange and anisotropy parameters
which are also assumed to be perturbed from the bulk values. The
results apply both tc cases in which the nonuniaxial anisotropy is an
intrinsic aspect of the material and where it arises only at the
surfaces as a consequence of lowered symmetry for those sites. Low
temperatures are assumed where the linear spin-wave approximation 1is
valid. The formalism 1is developed for arbitrary film thickness,
arbitrary quantum spin number S, and perpendicular magnetization. Simple
cubic (001) ferromagnetic systems and body-centered tetragonal (C01)
antiferromagnetic systems are specifically examined with extensions to

other _ituations outlined.

A theoretical approach based on the equation-of-motion method is used to
find Green functions which provide expressions for the dispersion

relations for surface and quantized bulk spin waves, the associated

.i.



spectral intensities, transverse spin correlation functions, and the
dynamic response of the system in, for example, light scattering and
spin wave resonance experiments. Representative numerical examples are
provided for the dispersion relation results, some thermodynamic
properties related to the mean-squared amplitude and ellipticity of spin
precession, and the static magnetization. The use of the Green function
results in calculating the light scattering cross-sections and
absorption strength in spin wave resonance is outlined. Procedures
developed to manage the increased mathematical complication associated

with the nonuniaxial anisotropy are described.

iv
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CHAPTER 1

INTRODUCTION

Magnetic thin films and related structures such as superlattices are
currently the focus of a great deal of theoretical and experimental
study. This interest is motivated in part by the commercial potential
of applications in, for example, the magnetic recording industry. These
so-called nano-scale structures exhibit some novel properties which have
no analogue in bulk samples, cne example  being the gilant
magnetoresistance effect (Baibich et al 1988, Binasch et al 1989).
Falicov et al (1990) review the field of thin film magnetism, addressing
the topics of fabrication, characterization, and applications while a
speclal issue of Physics Today (1995) highlights recent developments in

thin film magnetoelectronics.

In this thesis we are concerned with ferromagnets and antiferromagnets,
materials which spontaneously order below some critical temperature.
Far from the critical point, where there is a high degree of long-range
order, magnetic properties can be understood in terms of the low-lying
magnetic excitations which are spin waves. In Helsenberg ferromagnetic
and antiferromagnetic thin films there are localized surface spin waves
and standing bulk spin waves, excitations not occurring in effectively
infinite samples. The microscopic quantum-mechanical theory of such
spin waves has been reviewed by Puszkarski (1970, 1972), Wolfram and
DeWames (1972) and more recently by Cottam and Slavin (1994). Cottam
and Kontos (1980) have employed a Green-function approach to study spin

waves in thin ferromagnetic films using a Heisenberg Hamiltonian in



Heisenberg Hamiltonian in which uniaxial single-ion anisotropy is
included and the dipole-dipole interactions are assumed to be

negligible.

The present project extends such calculations to the more complicated
case of nonuniaxial single-ion anisotropy in which a preferred plane for
the magnetization vector exists, rather than a preferred axis. It
occurs as a bulk et.ect in, for example, ferromagnets such as CrBr3 and
antiferromagnets such as NiO, Nin. and KéFeF( Also, De Jongh and
Miedema (1974) catalogue many other nonuniaxial magnetic compounds
including KaCUFa' RbZCuCl‘, CoClz'GHZO, CoBrZ-GHZO, CrC13, CsMnClB-ZHZO,
and AgCrSez This type of anisotropy has previously been considered
theoretically in the case of effectively infinite (bulk) ferromagnets
(e.g. see Kitaev et al 1974, Cottam and Latiff-Awang 1977, and Balucani
et al 1980 (a) for microscopic Green-function treatments). An extension
to semi-infinite ferromagnets was made by Gopalan and Cottam (1990), who
found that the spectrum consists of (at most) one surface mode and a

continuum of buik modes.

In this thesis, by contrast, we find for a nonuniaxial thin film that
there may be additional surface modes (up to two) and a series of
discrete standing bulk modes, instead of a bulk continuum. Also we show
that the inclusion of nonuniaxial anisotropy leads to a spin wave
spectrum which differs quantitatively from that found by Cottam and
Kontos (1980) for a uniaxial filan. In addition, the spin precession
(corresponding to the semi-classical depiction of a spin wave) is found

to be elliptical as 1is characteristic of nonuniaxial systems, rather




than circular as for the simple uniaxial crse (e.g. see Phillips and

Rosenberg 1966).

In our calculations we allow for surface anisotropy or surface pinning
(Kittel 1958). In brief, lowered symmetry of the local environment for
spins on the surface may result in anisotropy effects which are
different from those found in bulk samples (e.g. see Néel 1954, Rado
1982, 1989, Heinrich and Cochran 1993). In some cases the anisotropy
coefficients at the surface may simply be modified in value while in
other cases new anisotropy terms may be allowed. An important example
for the present study is found in single-crystal (110) Fe films in which
the surface exhibits nonuniaxial anisotropy while the bulk does not
(Prinz et al 1982 and Gradmann et al 1986). Early observations of giant
magnetoresistance occurred in Fe-Cr-Fe systems (Binasch et al 1989) in
which these films form the ferromagnetic layers. Mills (1989) and
Gopalan and Cottam (1990) have made theoretical studies of surface spin
waves in such a case in semi-infinite systems. Falicov et al (1990)
describe the significance of surface anisotropy for potential
applications. For examp’'e, the ability to manipulate anisotropy though
the combination of bulk and surface (or interface) effects has
implications for the in’.oduction of magnetic films into integrated

circuit devices and for magneto-optical recording media.

Another surface-related aspect of films is the perturbation at the
surface of parameters relating to exchange and any uniaxial anisotropies
(e.g. see Lévy 1981). Generally both the number and type of surface

spin wave modes are sensitive to the ratio of surface ‘and bulk



parameters (e.g. see Wolfram and Dewames 1972). A magnetic film on a
(nonmagnetic) substrate may be asymmetric if the conditions on the two
surfaces are different as is the case in many experimental situations.
For example the film may have one free surface; the substrate and an
overlayer may be of different species; or there may be growth-dependent
effects. Previous studies on uniaxial films (e.g. see Puszkarski 1972,
Kontos 1985) have shown that asymmetric boundary conditions affect both
the bulk and surface spin wave modes. We bhave included this possibility
in our theoretical model in order to model realistic thin film

situations.

Nonuniaxial anisotropy 1in both semi-infinite antiferromagnets and
finite-thickness antiferromagnetic films is also studied here, extending
previous calculations on uniaxial semi-infinite systems {see e.g.
Wolfram and DeWames 1972). Nonuniaxial effects in infinite
antiferromagnets have previously been studied wusing Green function

methods by Cottam and Latiff-Awang (1979) (a).

In this introductory chapter we will discuss the nature of the model
chosen to represent these magnets, the particular magnetic properties of
interest, and the methodology to be used. In particular some pertinent
background material on spin waves is supplied. Relevant experimental
techniques are also briefly reviewed. The thesis contents are outlined
below where we establish the scope of the project, including some

limitations.




1.1 Outline of the Thesis

The choice of Hamiltonian is a central, defining issue in a microscopic
quantum-mechanical study such as that described in this thesis. We
include Heisenberg exchange and Zeeman terms as well as the single-ion
anisotropy terms. The ferromagnetic Hamiltonian is discussed in detail
in Section 1.2 while the analogous antiferromagnetic Hamiltonian is
presented later in Chapter 5. As In the studies of Cottam and Kontos
(1980) and Gopalan and Cottam (1990) the classical magnetic
dipole-dipole interaction is not considered here. In most materials it
is at once much weaker and much longer range than the exchange
interaction which typically affects near neighbours only (e.g. see
Wolfram and DeWames 1972). The dipole-dipole interaction 1is the
dominant one for long-wavelength spin waves (magnetostatic modes) and is
important for experimental techniques which probe this region. However
such excitations comprise only a very small part of the Brillouin zone
(typically for wavevectors less than about 106 cm-l compared with a zone
boundary around 10°® cm”) and at most temperatures they have little
contribution to the static magnetic and thermodynamic properties (see
e.g. Wolfram and DeWames 1972). Cottam and Slavin (1994) review
spin-wave theory in thin films for cases in which dipole-dipole

interactions are included in place of or in addition to exchange.

We have restricted our attention to low temperatures compared with the
magnetic transition temperature where, as we have notzd, the excitatlions
are spin waves. Hence critical phenomena, spin-wave linteractions and

other non-linear effects may be neglected (see e.g Phillips and

Rosenberg 1966, Keffer 1966, and Callaway 1991). Spin waves in




ferromagnets are discussed briefly in Section 1.4. Chapter S contains

the corresponding discussion of spin waves in antiferromagnets.

In this thesis the films are considered to be infinite in extent in two
dimensionc (the x and y directions) and composed of N layers in the z
direction. The films may have as few as three layers for ultrathin
samples but we have developed the theory for arbitrary N =2 3. A static
applied magnetic field in the positive z direction is assumed. In the
case of ferromagnets the calculations are carried out explicitly for a
simple cubic (001) film with the crystal axes coinciding with the x, y
and z axes. Other crystal symmetries and surface orientations may be
assumed using the same general formalism and a prescription for doing so
is provided in Appendix I. Section 1.3 contains a detailed description
of the model of the thin film and the general assumptions made
concerning the relative values of exchange and anisotropy parameters for

various sites within the film.

In this thesis we make use of standard many-body theorv techniques such
as the operator equation-of-motion method and the Green function
eqguation-of-motion method, both of which are briefly described in
Section 1.5. The Green-function method is used here to determine
spin-spin correlation functions and provides a powerful means of
investigating the spin fluctuations in the system. We are therefore
able, in principle, to study dynamic properties such as light scattering
which are not accessible using simple approximations such as molecular

field theory (also known as mean field or effective field theory) which

neglect fluctuations (see e.g. Kittel 1987, Callaway 1991). We may also




readily calculate static properties such as magnetization which are
affected by fluctuations. Finally, Section 1.6 contains a brlef
discussion of some relevant experimental techniques for studying spin

waves in thin films.

The application of the operator equation-of-motion method to
ferromagnetic thin films with nonuniaxial anisotropy is described in
Chapter 2. A number of special cases are considered and formal results
for spin-wave frequencies are derived. Comparisons with previous
calculations are made where appropriate. In Chapter 3 the numerical
evaluation of spin wave dispersion relations wusing the formal
expressions of Chapter 2 is discussed and results for some specific
examples are presented. These results are used to illustrate the
effects of film thickness, film asymmetry and relative strength of the

anisotropy parameters, etc., on the spin-wave energies.

In Chapter 4 the Green function equation-of-motion method is used to
find spin-wave contributions to the spectral intensities and correlation
functions. The Green functions also give the dispersion relations which
are shown to be identical to those of Chapters 2 and 3. Some static
properties (e.g. mean-squarec amplitude of transverse spin components)
are calculated as a function of distance from the surface. Again,
comparison with previous results is made where possible and the effects
of film thickness and anisotropy parameters etc. on the spin-wave

intensities are illustrated with specific numerical examples.



General discussion of the anisotropic antiferromagnets appears in
Chapter 5 in which the Green function technique is applied in the case
of semi-infinite systems. Numerical dispersion relation and amplitude
results for some speclal cases are presented. The corresponding study

of finite-thickness models is the subject of Chapter 6.

Discussion and conclusions follow in Chapter 7. A number of appendices

are included. As mentioned above, modifications of the approach to
include different crystal lattices, anlisotropic exchange, etc., are
discusted in Appendix 1. Other appendices deal with calculational
details.

1.2 The Ferromagnetic Hamiltonian with Single-lon Anisotropy
The Hamiltonian used is a generalized Heisenberg Hamiltonian divided,

for convenience, into two parts H = RH + R‘

]

kL

1
“ -guanoy_js‘-—): J S-S
1)

e 2 1y 1 Ty
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RA ? D‘(S! f Fil\Si) (Si) ] (1.2.1)

where the first part contains the Zeeman and exchange terms, and the
second contains the single-ion anisotropy terms. In the Zeeman term g

is the Landé g-factor, uB is the Bohr magneton, and HO is an applied

z

field along the positive z axis (i.e. parallel to the film normal). Si

is the 2z component of the spin at site i, which may assume the
eigenvalues S, S - 1,..-5. Our formalism applies to general S. However
for S = 1/2 RA reduces to a constant and so single-ion anisotropy only
occurs for systems where S =2 1. Orbital angular momentum is considered

to be quenched (see e.g Bleaney and Stevens 1953, Caspers 1989) and so



does not appear explicitly in the Hamiltonian. The 2Zeeman term
describes the energy advantage of the independent alignment of each spin
with the applied field so that here the thermal average <S*> with
respect to RH tends to S in the limit that T - 0. The simple extension
to the case where h'o and the static magnetization are parallel to the

surface is discussed in Appendix I.

In the exchange coupling term in (1.2.1) the indices i and j range over
all lattice sites, and hence the factor of 1/2 is included to avoid
double counting of spin pairs. Jij is the exchange constant (or
exchange integral) for the interaction between the spins at sites i and
J. If J‘J is positive for all 1,j then parallel spin alignment is
favoured and the material is ferromagnetic. If Jij is negative for
nearest neighbours then an antiparallel arrangement is favoured and the
material is antiferromagnetic. A simple antiferromagnetic material is
generally described in terms of two or more inter-penetrating

sublattices (see Chapter S) which usually contain spins of different

orientation so that nearest neighbours are antiparallel.

The excnange interaction is of quantum mechecnical origin and is related
to overlap integrals between the electronic wavefunctions of
neighbouring spins. A brief account may be found in many standard
texts, e.g. Callaway (1991). Several different types of exchange occur.
In insulators (e.g. many ferromagnets and most antiferromagnets) the
mechanism is direct exchange or, more usually, superexchange (or
indirect exchange) both of which are well described by the Heisenberg

Hamiltonian. Anderson (1963) provides a detalled discussion of exchange



in insulators. Magnetic metals contain non-localized =lectrons as wel!
as (possibly) lccalized electrons. This mcre comp®icated situa’ ‘on is
usually described in terms of itlinerant theories r7 exchange as reviewed
by Herring (1966). Therefore for the description of some features of
metallic ferromagnets (e.g. electrical conductivity) the use of the
localized-moment model is inappropriate. However for the study of spin
waves in many metals (e.g. Fe) an effective Heisenberg Hamiltonian is
used successfully in a phenomenological sense with the exchange
constants generally derived from experimental results (e.g. see Keffer

1966).

The Hamiltonian .R‘ in (1.2.1) contains magnetocrystalline anisotropy
terms in which the energy depends on the orientation of the spins
relative to the crystal field. The origin of these terms will not be
discussed in detail here but the reader is directed to, e.g., Bleaney
and Stevens (1953) and Stevens (1963). In brief, in a crystal la.tice
the electrons (whose spins give rise to the magnetic moments) may have
their orbital wave-functions infiuenced by the electric fields of
neighbouring ions. The symmetry properties of the local environment are
then communicatéd to the spins via the spin-orbit coupling. The energy
associated with this may be calculated using perturbation theory in
terms of the spin-orbit interaction. This effect may be significant
despite near quenching of orbital moments (see e.g. Van Vleck 1937).
The exact theory 1is sufficiently complicated that in practice an
effective spin Hamiltonian is used in which the anisotropy energy is
represented by an expansion in powers of the spin operators (arising

from the spin-orbit interaction) with higher order terms neglected (see

10



e.g. Akhiezer et al 1968). Symmetry arguments, which may be diff-rent
for surface and bulk sites, are then used to eliminate various lower
order terms. For example, 1Iin cases of purely cubic symmetry,
fourth-order terms are the only ones which remain. For situations of
lower symmetry (e.g. tetragonal or hexagonal) terms 1like those in
{(1.2.1) occur in lowest order. The first of these is the uniaxial term.
It is sometimes also referred to as the easy-axis term since, for Dl >
0, it describes the energy advantage for each 1individual spin of
alignment along the z axis, in either direction. The minimum energy is
achieved when Sz = #S. As mentioned above, systems with such anisotropy
have been considered in some previous Green-function theories for thin
films (e.g. Cottam and Kontos 1980). Uniaxial anisotropy is frequently
represented by an effective field, but this approximation will not be

necessary for the calculations we perform.

The second term in RA deals with anisotropy in the plane perpendicular
to the magnetization. For Fi > 0 the x axis is preferred over the y
axis. The result of combining the two terms in R‘ is a preference for
the xz plane. This is known as easy-plane or nonuniaxial anisotropy.
In some experimental accounts and in macroscopic theory the anisotropy
energy is represented by an equivalent expansion in direction cosines of
the magnetization vector (e.g. see Prinz 1992) or approximately by

effective anisotropy fields (e.g. see De Jongh and Miedema 1974).

Although we have assumed for simplicity in many of the calculations that
the arrangement of magnetic ions is cubic, it is important to note that

the overall symmetry of the system may be non-cubic due, for example, to
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the presence of non-magnetic lons in a magnetic compound. Also, as
mentioned earlier, the lowered symmetry at a surface and/or interface
may allow terms in the anisotropy expansion which do not occur in the

bulk.

Magnetocrystalline effects are only one source of anisotropy. Another
significant one for thin films arises from the anisotropiz dipole-dipole
int:raction which (among other things) leads to the so-called shape
anisotropy. We may include this static anisotropy in the spin
Hamiltonian in the form cf an effective (demagnetizing) field acting in
addition to the applied field Ho (e.g. see Lévy 1981, Prinz 1992). The
exchange coupling may also be anisotropic as in the case of the
Hamiltonian

TJI sxs (1.2.2)
0y iy "1 j

(see Dzialoshinski 1958, Moriya 1960) which is nonuniaxial. This
exchange interaction is important in materials such as FeBOa, CoCO3 and
several rare-earth orthoferrites. The methods of the present study may
be straightforwardly applied to this Hamiltonian, as described in

Appendix I.

1.3 Model of an Anisotropic Ferromagnetic Thin Film

The Hamiltonian (1.2.1) is written in a general form that allows for
different exchange and anisotropy constants at every site within the
magnet and for exchange interactions to exist between every pair of

spins. This situation is overly complicated and some simplifications
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are needed in order to make the problem solvable. The resulting model

is realistic and legitimate comparisons with real systems can be made.

The first such simplification is achlieved by insisting that the x and y
dimensions of the sample be effectively infinite so that translational
invariance in the xy plane may be assumed. This condition is easily
satisfied, as the films will be considered to have thicknesses on the
order of 10 layers (a few nm) or more while thelr x and y dimensions
will be macroscopically large (e.g. 1 mm or more). We may therefore
assume that all magnetic sites in a given layer are equivalent and that
a single value of each constant (e.g. Dn and Fn where n = 1,2..,N is the

layer index) will suffice to describe the anisotropy at each.

We further assume that the exchange and anisotropy parameters may be
modified, compared with the bulk values, only at the surfaces (layers 1
and N).u since this is where the wavefunctions are most appreciably
perturbed. We therefore assign values of DS and FS (or Ds' and FS,) to
spins in layer 1 (or N) and D and F for layers in the bulk. The factors
which affect the presence or degree of anisotropy result f{rom the
crystal field which may be perturbed at the surface as mentioned above.

Specifically we assume that
( D, if i is in layer 1
D =3 D, if i1 is in layer N

D otherwise

( F, if 1 1is in layer 1
F =4 F, if 1 is in layer N (i.3.1)

F otherwise.

This modification somewhat limits the applicability of the results and a
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prescription for changing this condition (e.g. to assume perturbed
values on the layers adjacent to the surfaces as well) is given in
Appendix I. Furthermore, throughout the study we have assumed a single
species of magnetic ion in a given film but the methods may be extended
to consider ferrimagnets (in which the sublattices contain oppositely
oriented spins of different species} in much the same way that

antiferromagnets are dealt with in Chapter S.

Another simplification concerns the exchange interaction which is, as
noted earlier, short-ranged. For simplicity we assume coupling between
nearest neighbours only, although next-nearest neighbour pairs could be
considered as shown in Appendix I. By analogy with the anisotropy
constants we will consider that only those pairs on a surface have their
exchange parameter modified from the bulk value. We will therefore
consider that if both spins are located in layer 1 (or N) the exchange

constant will be JS {or Js,) and otherwise the value wiil be J.

Specifically
Js if i and j are both in layer 1
0y = Js’ if 1 and j are both in layer N. (1.3.2)
J othervise

The simple cubic film is depicted in figure 1.1.

The calculations are carried out for several special cases of the above
model. We classify these cases according to whether the nonuniaxial
term is non-zero for every site in the film (case A) or non-zero for
sites on the surfaces only (case R). The latter case therefore

describes the situation in the Fe films mentioned above.
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Figure 1.1 Model of the sc (001) ferromagnetic film

nearest-neighbour exchange constants.

showing
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1.4 Spin Waves
A Heisenberg ferromagnet in the absence of single-ion anisotropy

(described by (1.2.1) with Jl > 0 and RA = 0) has a ground state in

which all spins are in the state where g? S so that the net spin
alignment is along the z direction. For ferromagnets with R‘ # 0, the
problem of determining the exact ground state becomes more complicated,
particularly if the nonuniaxial component is large. Here we assume that

Di > Fi > 0 and that the net spin alignment is along the z axis. The

spin alignment in antiferromagnets is discussed in Chapter S.

The magnetization of the ferromagnet is proportional to the thermal and
spatial average of the z component of spin, <SZ>. At temperatures above
absolute zero this quantity decreases from its saturation value of S as
thermal effects compete with ordering effects. There 1is a phase
transition to a paramagnetic state (at a temperature known as the Curie
temperature Tc for ferromagnets) where long-range magnetic order, in the

absence of an applied field, vanishes as illustrated in figure 1.2.

The molecular field theory of Weiss (1907) was the first theory of
ferromagnetism to predict spontaneous magnetization and the existence of
the phase transition. Molecular field theory assumes the spins are
coupled through a Zeeman-like term to an effective field proportional to
the magnetization itself. With the development of the Heisenberg
exchange Hamiltonian (Heisenberg 1928) came an explanation for the
origin and magnitude of the effective field. Molecular field theory

remains a useful means of modelling static properties at any temperature
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Figure 1.2 Temperature dependence of the spontaneous magnetization Ms
(relative to the saturation value at absolute zero Mso) for a
ferromagnet. Triangles represent experimental data for metallic Ni with

T} = 631 K (after Blakemore 198S).
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in many different magnetic systems 1including antiferromagnets and
ferrimagnets (e.g. see Callaway 1991, Smart 1966}. The Heisenberg
theory of exchange led to the development of spin wave theory, initially
proposed by Bloch (1930). Unlike molecular field theory, spin wave
theory includes dynamic effects and correctly accounts for the observed

3

T2 dependence of the magnetization at low temperatures in ferromagnets

(e.g. see Phillips and Rosenberg 1966, Keffer 1966).

According to the spin wave theory, the low-lying eigenstates of the
Heisenberg Hamiltonian are wave-like excitations associated with the
transverse components of spin (s* and SY) and involve a collective
deviation from the ground state. A single quantum of spin deviation can
be shared among the spins at a lower energy cost than if a single spin
deviated by the same amount. The spin waves are quantized with the term
magnon being used for a quantum in analogy with the use of the term
phonon for quantized lattice vibrations. In a useful semi-classical
description (Heller and Kramers 1934, Phillips and Rosenberg 1966) the
spins are considered to precess about their z axes as illustrated in
figure 1.3. The x and y components of spin are governed by travelling
wave functions of frequency w and wavevector k hence, hence the name
spin wave. The quantum mechanical picture is of correlations between
the transverse components of spin at different sites. The
interpretation of spin waves in antiferromagnets is discussed in Chapter
S. The existence of spin waves has long been accepted on the basis of
experimental results (e.g. see Keffer 1966, Phillips and Rosenberg 1966,
Puszkarski 1970, Cottam and Lockwood 1986, Borovik~Romanov and Sinha

1988, Cottam 1994).



(a)

CPPITIOE

(c)

0O OG-0 -

Figure 1.3 Semi-classical depiction of a spin wave. The ground state is
represented in (a). In (b) a perspective view and in (c) a top view of

spin precession are shown.
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1.4.1 Spin Waves in Infinite Ferromagnets

Spin waves are not exact normal modes for the system and in general the
interactions among them must be considered (e.g. see Phillips and
Rosenberg 1966). We will, however, be restricting our attention to
those temperatures, well below TC, where the magnetic state may be
approximated as a superposition of non-interacting (linear) spin waves.
In this limit the energy eigenvalues for the bulk (i.e. effectively
infinite) isotropic Heisenberg ferromagnet are found to be (e.g. see

Phillips and Rosenberg 1966, Kittel 1987)

E = EO + E n, wik) (1.4.1)

where Eo is a constant, n, is the number of spin waves of wavevector k
and w(k) is the energy of such a spin-wave in units such that h = 1.
The dependence of the energy on the wavevector, w(k), is the dis =-sion
relation. The determination of such relations for anisotropic 1. _netic
thin films was a major goal of this project. For the isotropic bulk
magnet with spin S, and applied field HO we have
w(k) = guBHO + S{J(0) - J(k)] (1.4.2)
where
J(k) = 2[cos(kxao) + cos(kyao) + cos(kzao)l (1.4.3)
for a simple cubic ferromagnet of lattice parameter a,- We see that as
|k| increases the energy increases monotonically from the value guBHO at
the centre of the Brillocuin zone (where |k| = 0) and for small k is
approxXimately quadratic. There is a single branch to the dispersion
relation, illustrated in figure 1.4. The different bulk spin-wave

spectrum for antiferromagnets is discussed in Chapter 5.
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Figure 1.4 Schematic depiction of the ferromagnetic dispersion relation
for infinite systems.




1.4.2 Spin Waves in Thin Films

In semi-infinite or thin film systems there may arise spin waves that
are localized near the surface(s) in addition to the usual bulk modes
{(e.g see Wolfram and DeWames 1972, Cottam and Tilley 1989). In these
surface spin waves the transverse spin components have a decaying
(usually exponential) dependence on the distance in the direction normal
to the surface (z) characterized by a reciprocal attenuation length As
and a travelling-wave-like variation in the the xy plane characterized
by a wavevector k" = (kx.ky). For very thin fiilms the exponential tails
of the modes associated with each surface may in fact overlap leading to
an alteration of the surface mode characteristics. As film thickness
decreases the surface contributions to properties such as specific heat

and susceptibility become relatively more important.

Simple symmetry arguments based on Bloch’'s Theorem can be used to show
how the localized modes occur as well as the more usual non-localized

modes (see e.g. Cottam and Tilley 1989). Briefly, in infinite media,
the full three-dimensional (3-D) translational symmetry leads to the
spin-dependent part of the wavefunctions being periodic. The position
dependence can be described bty exp(ik:-r) where k is a 3-D wavevector.
In contrast, in a semi-infinite or thin film system there is
translational symmetry in the xy plane only and the wavefunctions are
found to have position dependence of the form exp(ik"-r“)u(z) where k"
is an above-mentioned 2-D wavevector. This is the 2-D analogue of
Bloch’s theorem. Depending on the boundary conditions the function u(z)

is often found to have solutions of the form exp(tksz) where As is real.
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Solutions of the form u(z) = exp(ikzz) are also admitted and lead to the
usual non-localized excitations. We note that the solution exp(ASz),
corresponding to a mode which grows exponentially in amplitude with
distance, 1is prohibited in a semi-infinite medium but may occur in a

thin film.

In the case where the film is of finite thickness boundary conditions at
each surface must be accommodated. In particular the allowed values of
kz are restricted and thus the bulk modes in a thin film are quantized
and are in fact standing wave modes of the system as we show later. In
addition, bulk spin waves are generally found to have modified
amplitudes in the vicinity of a surface. In ferromagnetic films the
total number of surface and quantized bulk spin-wave branches is equal

to the number of layers, N.

1.5 Theoretical Methods

The principal calculational methods used in this thesis are introduced
in this section. They are the operator equation-of-motion method and
the Green function equation-of-motion method. Of the two the Green
function method, while more useful and more comprehensive, is more
difficult to apply. The operator method is therefore utilized first, in
Chapter 2. The results of the operator method are contained within
those of the Green-function method so that the dispersion relations of
Chapters 2 and 3 provide a means of checking the later Green function
calculations. The operator method also serves as an example of an
alternative theoretical approach to finding dispersion relations which

is seen in the literature. In addition, much of the matrix formalism
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necessary for the Green function analysis can be developed first for the
operator method. The Green function method yields spectral functions
and therefore both static properties (such as magnetization) and dynamic
properties can be calculated as well as the dispersion relations. The
application of the Green function method to the ferromagnetic thin films

is the subject of Chapter 4.

Alternative techniques, which will not be used here, include the
diagrammatic perturbation method for calculating the Green functions
(see e.g. Parry 1973, Rickayzen 1980). This technique cannot be applied
directly to spin operators and therefore a transformation, such as the
drone-fermion representation (see e.g. Parry 1973), must be used. The
results of this method are equivalent to those of the equation-of-motion
method in the linear approximation (e.g. see Cottam 1976 for an
application to the semi-infinite isotropic ferromagnet). it has the
advantage of permitting, In a more methodical way, the extension to
higher order terms in the Hamiltonian, (i.e. to consider interactions
between the spin waves). However, unless these interactions are the
subject of the study the equation-of-motion apprcach has the advantage

of relative simplicty.

In much of the literature on spin waves (see e.g. Cottam and Slavin
1994) a semi-classical macroscopic (or continuum) approach is used which
works well for long wavelength modes which are typically those most
easily detected experimentally. The microscopic methods used here,
however, have the advantage of applying throughout the entire Brillouin

zone.
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Although we have presented the Hamiltonian in terms of spin operators we
will be using boson creation and annihjlation operators throughout the
thesis. The transformation from spin operators to the boson operators
following the method of Holstein and Primakoff (1940) is presented in

Chapter 2.

1.5.1 The Operator Equation-of Motion Method
The operator equation-of-motion method is based on the standard quantum
mechanical result for any ©operator A within the Heisenberg

representation (e.g. see Cohen-Tannoudji 1977)

A= i[), A) (1.5.1)

n.ln.
ad

wherein the operators are assumed to be time-dependent while the
wavefunctions are not. Here the square brackets denote a commutator and
we are using units where h = 1. In principle, we can find a
differential equation for any one of our site- and time-labelled boson
operators. We then Fourier transform from the time representation to a
frequency representation. The resulting equation may contain the boson
operators for neighbouring sites which are also described by an equation
of the form (1.5.1). We may exploit the symmetry in the xy plane to
Fourier transform from site labels to a representation involving the
in-plane wavevector ku. We find a set of coupled equations involving
boson operators, labelled by the layer index n, which are coupled to
those of the adjacent layers, n+t and n-1. Ultimately the operator
equations may be rewritten in the form of a homogeneous matrix equation.

The condition for the existence of a solution then generally requires
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that the determinant be equal to zero. This existence condition can be
used to find a relationship between the spin-wave energies (or
frequencies) and wavevectors (hence yielding the dispersion relation) as

shown in later chapters.

1.5.2 The Green Function Equation-of-Motion Method

We here outline the derivation of the corresponding Green function
equation-of-motion by first defining double-time Green functions in
terms of correlation functions between operators according to Zubarev
(1960). We then describe the relationship between correlation functions
and spectral Iintensities contained in the fluctuation-dissipation
theorem and demonstrate how the Green functions can be used to find
both. The static and dynamic properties of the system can be determined
once the correlation functions are known as will be seen in Chapter 4.
What follows is a brief summary of the major points of the Green
function theory and the equation-of-motion method. For more details the

reader is referred to Zubarev (1960), Parry (1973), or Rickayzen (1980).

The retarded commutator Green function for arbitrary operators A and B
is defined as
<<A(t);B(t’)>> = -jo(t - t’)}<[A(t),B(t")]> {1.5.2)

where @(t) is the unit step function

e(t)s{l t>o0 (1.5.3)
0O t < 0.

Also, [A(t),B(t‘)) is the commutator for the operators in the Heisenberg
representation and <..> denotes a thermal average with respect to the

Hamiltonian of the system. It is possible to define other similar Green
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functions, namely the advanced and causal Green functions. However, we
will not be using these here, The equation of motlon 1is found by

differentiating the Green function with respect to time:

d ’ - - d - ’ ’
It <<A(t);B(t’)>> = fat“‘t t)<[A(L),B(t ) ]>
+ <<9A(t);B(t’)>> (1.5.4)
at : . . 5.
Using (1.5.3) we can write
d [} - - [}

From the above, together with (1.5.1) we find

a% <<A(t);B(t’)>> = -ia(t-t’)<[A(t),B(t’)]>
+ i<<[C(t)]);B(t’)>> (1.5.6)
where C = [M,A] and a new Green function has been introduced. The

equation of motion for this new Green function is found in the same way,
and so on. If the result is not a closed set of coupled equations a
decoupling scheme is needed although this is not the case in this
particular study. The set of coupled equations is solved in a manner
analogous to that described above for operators, except that here we
have to solve an inhomogeneous (rather than homogeneous) set of

equations.

The definition of the Green function contains the correlation functions
<A(t)B(t’)> and <B(t’)A(t)>. The corresponding spectral intensities (or

spectral functions), §{w) and §’ (w), are defined as follows

<B(t’)A(t)> = J €(w)expl-iw(t-t’)ldw

o
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<A(t)B(t’')> = I €' (wexpl-iw(t-t’)]dw. (1.5.7)

o

It may be shown that (Z2ubarev 1960)

£ (w) = €(w)explBw] (1.5.8)
where B = l/kaT, kB is the Boltzmann constant and T the temperature.
This result allows us to calculate both correlation functions from a

single spectral intensity.

The Green functions have Fourier transforms
(]

Glw) = 5% [G(t-t')expliwt]dt (1.5.9)

“~®

where the notation G(t-t’) = <<A(t);B(t‘)>> has been introduced. The
Green function and the spectral function are related by the

fluctuation-dissipation theorem (Z2ubarev 1960)

..2 .
E(U) = mr_—l Im G(w + ic) (1.5.10)
where £ is a real, positive and infinitesimal quantity. The Green

functions G(w) that we find will have poles related to the spin-wave
frequencies. In simpler cases (such as isotropic or uniaxial
ferromagnets) the Green-function denominators can be written in the
explicit form (w - wo) where «° is a spin-wave frequency. In such a
case we can make the analytic continuation w » w + ie and make use of
(1.5.10) to find the spectral functions and hence the correlation
functions via (1.5.7) and (1.5.8). The imaginary parts of G(w + ie) are

extracted using the operator identity (see e.g. Parry 1973)

X + ie

[_1__) = p[_;_] - ind(x) (1.5.11)

where P signifies the principal value in an integration over any real



variable x. In the more complicated cases which are the subject of this

thesis the analysis 1is slightly less direct, as explained in Chapter 4.

In the study of spin waves the operators A and B are generally spin
operators (e.g. S', S° and S®) or the corresponding boson operators
related to them by e.g. the Holstein-Primakoff (1940) transformation.
Thermodynamic quantities such as magnetization, magnetic susceptibility
and specific heat can all be calculated from correlation functions
involving these operators as can cross-sections for light scattering and

absorption strengths for magnetic resonance as described in Chapter 4.

1.6 Experimental Methods for Studying Spin Waves

In this section we briefly review some experimental methods which are
relevant to this theslis. Among the methods currently avallable for
studying spin waves in thin films, the most useful are inelastic light

scattering and spin wave resonance.

The inelastic scattering of light by spin waves 1ls the subject of a bngk
(Cottam and Lockwood 1986) which deals with a number of different types
of magnetic systems including thin films. Several detaliled reviews
(e.g. Demokritov and Tsymbal 1994 and Dutcher 1994) deal with recent
results for the case of thin magnetic films. Raman scattering and
Brillouin light scattering (BLS) are principally distinguished by the
means of detecting the scattered light e.g. a grating spectrometer for
Raman scattering experiments or a Fabry-Perot interferometer for BLS.

From the standpoint of theory, however they are the same.
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In brief, incident light may be scattered with a change in energy due to
the creation or annihilation of a spin wave (or spin waves). The
wavevector of the spin wave is closely related to the wavevectors

associated with visible light so that |k| = 10° cm .

Light scattering
experiments therefore primarily study spin waves near the centre of the
Brillouin zone. Depending on the actual light source and the scattering
geometry it is generally possible to detect dipole~dominated meodes,
dipole-exchange modes or exchange-dominated modes. The mechanism is
summarized as follows. Thermally excited magnetic fluctuations (spin
waves) in the scattering material give rise to modulations in the
electric susceptibilty through which the electric field vector of the
incident photon interacts with the target medium and is scattered.
Cottam and Lockwood (1986) show how the scattering cross section is
constructed from correlation functions involving elements of the
susceptibilty tensor. These elements can be in turn represented by
expansions in powers of spin operators with coefficents known as
magneto-optical coupling constants. In Chapter 4 we will show how this
calculation can be performed using spin correlation functions derived
from our Green function results. Conservation of energy and momentum
allow the deduction of the energy and wavevector of the spin wave
involved in the scattering. In addition to the dispersion relations the
light scattering spectra are a source of information about spin-wave
lifetimes, the type of magneto-optic coupling, surface anisotropy, etc.
This type of information may have some relevance for the development of

magneto-optic recording media (e.g. see Falicov et al 1990).
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In spin wave resonance (SWR) a spin wave is excited by the resonant
absorption of energy from a transverse oscillating rf field. The spin
waves can either be surface modes with k“ = 0 or standing bulk modes.
This latter case is therefore also referred to as standing spin wave
resonance or SSWR. In the case of symmetric films only those standing
modes which are symmetric with respect to the film centre are excited by
the spatially uniform rf field. In practice only acoustic (il.e. low
frequency) surface modes are excited. The thin film SWR experiment is
generally performed with a static applied field perpendicular to the
oscillating field. The oscillating field frequency W, is fixed while
the static field is varied and resonant absorption occurs when w
matches the frequency of a spin wave mode. In this way the dispersion
relation is determined. The resonant absorption strength can be
calculated from an appropriate set of spin correlation functions (e.g.
see Moul and Cottam 1983). Other information available from the SwWR
spectrum is similar to that for the light scattering spectrum. SWR,
first predicted by Kittel (1958), is reviewed by Puszkarski (1979).

Dutcher (1994) reviews recent results for thin films.

The interaction of neutron spins with atomic spins provides a powerful
means of studying magnetic structure through elastic scattering, and
spin wave dispersion, chiefly in bulk materials, through 1inelastic
scattering. For the study of surface spin waves, neutron scattering has
not, however, been as useful since in most materials neutrons penetrate
deeply and therefore scattering experiments are not particularly surface
sensitive. In contrast, in light scattering experiments it is often the

case that the target material is opaque (e.g. metallic) and therefore
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the incident light interacts preferentially with excitations in the
vicinity of the surface, or it may be possible to choose a wavelength of
incident light for which the material is optically absorptive. The
development of neutron scattering techniques with enhanced surface
sensitivity includes work with grazing incidence and the use of
multilayers as targets so that the scattering volume contains a number
of surfaces (or interfaces) (e.g. see Felcher 1985). Advances have
chiefly been in the important area of magnetic structure measurements
(i.e. surface magnetism) whereas progress in the study of surface
dynamics, such as scattering from surface spin waves, seems to be more
elusive. The range of de Broglie wavelengths of thermal neutrons
generally allows the study of bulk spin wave dispersion throughout the
Brillouin zone. Therefore it is possible that the adaptation to surface
spin waves could extend knowledge gained using the techniques mentioned
above (BLS, SWR) which are restricted to the vicinity of the 2one
centre. The extensive literature on neutron scattering includes the
standard works by Marshall and Lovesey (1971) and Lovesey (1984).
Recent progress, of particular relevance to surface studies is
documented in, for example, the Proceedings of the Conference on

Neutrons and X-rays in Magnetism (1993).

Other experimental techniques relevant to this project include those
whereby anisotropies, particularly surface anisotropies, are explored.
These include torsion magnetometry (e.g. see Gradmann 1986), Mdssbauer
spectroscopy (e.g. see Gradmann et al 1986), surface magneto-optic Kerr
effect (SMOKE) (e.g. see Bader 1992) and ferromagnetic resonance (FMR),

which is similar to SWR except that the uniform (k = 0) mode is excited
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results for Fe (110) films.
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CHAPTER 2

OPERATOR METHOD FOR FERROMAGNETIC THIN FILMS

In this chapter the operator equation-of-motion method is used to study
spin waves in anisotropic ferromagnetic thin films. As mentioned in
Section 1.3, the formalism is different in detail for some special cases
identified among these systems, namely we shall refer to case A (where
the nonuniaxial anisotropy parameter is non-zero throughout the film
although it may take different values at the surfaces) and case B (where
it is non-zero at the surfaces only). The operator equation-of-motion
method is described first for a general situation and continued for
cases A and B separately. Case A is further subdivided according to
film symmetry and the relative strerngth of the surface and bulk
nonuniaxial parameters while case B is subdivided according to whether
or not both surfaces are nonuniaxial. The formal results for the
spin-wave dispersion relations are obtained as a series of polynomials.
The numerical techniques used to derive spin-wave frequencies from these
polynomials are discussed in Chapter 3 where we also present a number of
representative examples of dispersion relations. The Green-function
method is presented in Chapter 4 for the same cases. As a preliminary
step the Holstein-Primakoff transformation from spin operat to boson

operators is described.

2.1 The Holstein-Primakoff Transformation

The spin Hamiltonian for the most general case was discussed in detail

in Section 1.2. It contains two parts X = RH + NA. where RH is the

34




35

usual Heisenberg Hamiltonian containing exchange and Zeeman terms and N‘

describes the anisotropy (see (1.2.1)).

Following the method of Holstein and Primakoff (1940) we transform to
boson operators in order to make use of the standard many-body theory
methods established for such operators which do not apply directly to
spin operators. The spin operators S* and S¥ are first written in terms
of S* and S™ as follows (e.g. see Cohen-Tannoudji et al, 1977):

s* = s* & ig’. (2.1.1)

Then the operators S; .S; and S: for site jJ are written as

172

+ 172 L 4
= -bb /
SJ (2S) [1 Ly (ZS)] bj

n
—
I

172
- = (25)V2 b:[l - b: b, / (25)]

*
s =S -bb 1.
) L3 (2.1.2)

where b: and bJ are the usual boson creation and annihilation operators
obeying the following commutation relations (e.g. see Cohen-Tannoudji et

al 1977):

*

*, _ _ + _
[bl'bj] - 6 [ [bi'bj] - [b!le] - O- (2.1.3)

1)
We make the near-saturation approximation which holds at 1low
temperatures (T « Tc) where <Sf> xS, Treating b:bj/s as a small

quantity we can expand as follows:

So
J

(25)”2[1 - b';bj / (4S) + ...]bj

s = (2s)172 b:[i - b:bj / (4S) + ]

s =S -b'b. (2.1.4)
j )




Performing the transformation on (1.2.1) we eventually find (apart from

constant terms)

+ \ +
J(H z - “L‘jJU(bibj- blbl) + guBHo ? bxbx (2.1.5)
and
K =2Sn T Db'b-Sn'EF(bb +bbh) (2.1.6)
A ;o R 1 T
where the symbols 5 = 1 - :’1‘.—5_ and 0’ = n“z have been introduced (see

Appendix II). For S = 1/2 these constants vanish and therefore H‘ has
no effect, as expected. Terms of quartic or higher order in the
operators are neglected so that the interactions between spin waves,
which may play an important role at higher temperatures, are thereby
ignored. This is the "linear spin-wave approximation". As seen above
this approximation 1is wvalid provided that <$*> does nct differ
significantly from its saturation value. This condition is met over a
fairly wide range of temperatures due to the relatively slow variation

of <S°> with T at low temperatures (see figure 1.1).

We note that if the equation-of-motion method is used for the spin
raising and lowering operators s’ and S~ (rather than the boson
operators defined above) then the linearizing approximation takes a
different form (e.g. it involves the so-called Random Phase

Approximation), but it leads to the same results for T « Tc.

2.2 General Formalism
The boson operators obey the following equations of motion (see

(1.5.1)):
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Q-IQ-
s

b: = [b:,?f]. (2.2.1)

Evaluating the commutators leads to:

d *

] = + 2S - ’ - -

1dtbj g“s”obj 2 'nDjbJ 2Sn FjbJ S EJJU(bl bj)

d ¢+ + + + +

iz=b =-gulHb -25S9Db +250Fb +S¥YJ (b -b). . 2.
dat Bo ) mDb -+ 25n°F b, LN ;) (2.2.2)

13
The coupling of the operators bj and b: through the nonuniaxial term

leads to some of the distinctive physical features of the nonuniaxial
case, e.g. elliptical spin precession, as well as a greater degree of

mathematical complication relative to the uniaxial case.

In order to solve the coupled differential equations (2.2.2) we Fourier
transform from the time representation to the frequency representation

as follows:

(-]

bj(t) = I bJ(w)e—’wtdw
- 00

+ o + -iWt

bj(t) = ij(w)e g, (2.2.3)
-

and (2.2.2) becomes:

- - Y
[w - guah'o - ZDJS‘I) - S }E Ju]bj(w) + S § Jljbi(w) = ZFJSn bj(w)

[w + guHi_ + 2D Sn + S )E Ju]b:(w) -s )1: Jubr(w) = 2F Sn'b ().  (2.2.4)
According to the general model established in Section 1.3 each of the ¥
sites in a particular layer is equivalent. The resulting translational
symmetry in the xy plane allows the following 2-D Fourier transform to
the wavevector representation:

_ 172 e
bl(w) = N Z bn(k“,w) exp( 1k“ r.)

kIl
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+ e Ve + .
b (w) = A an(k“.w) exp(ik,r ) (2.2.5)
kII
where n is the layer index for site i and k" = (kx.ky) is the wavevector
parallel to the xy plane. The spin waves will propagate in the

direction defined by k“ and can be either the localized surtace type or
the non-localized bulk type, according to the dependence on n (and

therefore z) as described in Chapter 1.

We use (1.3.1) and (1.3.2) to assign values to the anisotropy and

exchange parameters according to the layer number. The following two
sets of N finite-difference equations result (for n=1,2,..,N):
[w - ngHO - ZDHSn - Sun(O) - Svn(O) - Svn_l(O) + Sun(k“)]bn(—k",w)
+Sv (k)b (-k,,w) + Sv (k)b _{-k,,w) = -2F Sn’b’ (-k,,w)  (2.2.6)
-1 7" Tn-1 ] n " "ne1 l n n I
¥
[é + guBHO + ZDnSn + Sun(O) + Svn(O) + vaq(O) - Sun(k")]bn(k",wl
+ t ‘ -
Svn_l(k")bn_l(k".w) - Svn(k")bn*l(k".w) = ZFnSn bn( k“,w). (2.2.7)
Here we have introduced the sums
un(k") =¥ J‘j exp[xk"-all
S
1
v (k) =¢ Ji) explik, -3 ] (2.2.8)
S
2

where 61 and 62 are vectors connecting any site i in layer n with its
neighbours in layers n and n+l respectively. Assuming, as described in
Chapter 1, that JU is non-zero for nearest neighbours only and

described by (1.3.2), we write for the sc (001) film:
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Js7(k") n=1
un(k") = Jr(ku) n=2,3,..N-1
Js,w(k“) n=N
v.(k) = J n=1,2,..N"1
0 otherwise (2.2.9)
with
1(k") =Y exp[ik"-(r1 - rj)] (2.2.10)

1

where the sum is over those nearest neighbours of site j which lie in
the same plane. For the sc systems (of lattice parameter ao) assumed

here we have
7(k ) = 2cos(k a ) + 2cos(k a ). (2.2.11)
] x O y O
For other lattice types and surface orientations the evaluation of the

exchange sums is discussed in Appendix I.

Equations (2.2.6) and (2.2.7) may be written more compactly in matrix

form as follows:

(-1 + A)b =

o}
o

(L + Ab'= £ b (2.2.12)
where E* and b are 1xN matrices whose elements are the boson operators
b:(k".w) and t%(-k".w) defined as in (2.2.5), I is the NxN identity

matrix, and f and A are the following NxN matrices:

-

[f, 0 0.
o f 0
f=10 0 f... (2.2.13)

- O O-*-



é = |0 -1 a -1 ... . (2.2.14)
a -1 0
=1 a -1

0 -1 a_,
s -

L

The following dimensionless quantities have been defined for the sc
lattice using (1.3.1)

R =w/ (S))

a, = [guBHo + ZDSSn + S(4Js + J) - Ssz(k")] /7 (SJ)

a = [guBHO + 2DSn + S(6J) - SJw(k")] /7 (SJ)
as,= [guBHo + ZDS,Sn + S(4Js, + J) - SJS,w(k")] /7 (S])
fs = ZFSSn / (SJ)
f = 2FSqn’ 7/ (SJ)
fs,= ZFS,Sn’ /7 (8J). (2.2.15)

The tridiagonal matrix A may be rewritten as (DeWames and Wolfram 1969,

Cottam 1976)

A=A + 4 (2.2.16)
where
[a -1 0 0 ]
-1 a -1 0
A =10 -1 a -1 ... (2.2.17)
—0 . . . . . . .
a -1 0
-1 a -1
- 0 -1 a-
A o -
s
é = |0 (2.2.18)




with As = a - a and As, E a - a. Note that we have effectively

s s’

separated the bulk and surface properties into the matrices éo and A
respectively. The inverse of a finite-dimensional tridiagonal matrix

such as éo is known (e.g. see Cottam and Kontos 1980) to have elements

" ML IR S L R 2 S1E RS L 2Me2-li-gl
(éo )U = T = (2.2.19)
(1 -x ) (x = x )
where x is a complex variable such that |x| s 1 and x + x™' = a. This

property of the inverse is used frequently in the calculations described

in the remainder of this thesis.

The nature of the matrix f appearing in (2.2.12) determines how the
matrix equations are to be solved. As mentioned earlier two special
cases for f arise depending on whether the anisotropy i. nonuniaxial
throughout the film (case A) or just on the surface(s) (case B). These
cases present different problems for solving the matrix equations and
for eventual numerical extraction of dispersion relations. Each of

these situations is treated in a separate section.

2.3. Case A : The Anisotropy is Nonuniaxial Throughout The Film
In this instance the matrix f may be written as fy where v is an
invertible matrix which differs from the unit matrix only in the 1,1 and

N,N elements which are fs/f and fs,/f respectively:
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'fs/f o o...
o 1 0...
v = 9 9 }... o . (2.3.1)
. . . 5 6
1 O
i .- 0 fs,/f_
For convenience, the present case may be further subdivided. In case

A.1 we consider the nonuniaxial parameter F to have the sa.e value
everywhere, and we see that v reduces to the unit matrix. In case A.2
we have FS 2 F = FS, (2 0) in general and no such simplification occurs.
In either situation v is an invertible matrix and {(2.2.12) is solved

analytically as shown below.

2.3.1 Case A.1: The Nonuniaxial Parameter F is the Same Throughout the
Film
In the present case where FS = F = Fs’ (or fs = f = fs,), v is simply

the unit matrix, and the matrix equations (2.2.12) become

(-a1 + A, + &)b = £b"
+
(Q1 + A+ A)b = fb. (2.3.2)
These lead to
[((Q1 + A +4) (-QI + A +4) - f2Il b=0
— -0 = - -0 Jone - -
2 t_
“Ql“éo*ﬁ)ml*ﬁo*é)‘fl]?.’o (2.3.3)
or
(A +48) (A, +8)b=0
(A, + 8) (A +8) b'=0. (2.3.4)

Here we have defined él and ﬁz as follows:
A=A -Vof+f?l
-1 -0 -
A
—0

A +vV o+ 2L (2.3.5)

-2 _
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The matrices 51 and éz are tridiagonal with inverses therefore given by
(2.2.19) in terms of the complex variables X, and x, respectively
(analogous to the complex x in (2.2.19)). These variables therefore

have the following definitions:

x +x'=a-vVa®+r?
x +x'=a+vVa®+ gl (2.3.6)

with |x | s 1 and x| s 1.

From (2.3.4) we can see that non-trivial solutions exist (for both b and

E*) if either of the conditions

det (I + A'A)

det (I + AJ'A) =0 (2.3.7)
are satisfied. We can write the first of these conditions in terms of
X (as shown in detail below). The zeroes of this function (a
polynomial of order ~ N) are related to the set of spin-wave frequencies
(a°) by the definitions in (2.3.6). The roots must be found
numericatly, however, in all but the most simple cases. Finding the
roots and the corresponding spin-wave frequencies is the subject of
Chapter 3. It will be shown that the second determinantal condition

(which leads to a polynomial in xz) is redundant in that it does not

give rise to any new physical modes.

Although the nonuniaxial parameter is assumed at present to have the
same value throughout the material it 1is possible that the other
constants (DI and Jlj) do not. We consider separately the cases in

which the fllm surfaces are symmetric and asymmetric with respect to

these parameters.
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In the symmetric case, where D, = D, and J = Js" the matrix A has

identical 1,1 and N,N elements: AS = a_ - a. We consider at present the

det(I + ﬁ;le) = 0 condition. The matrix Q = A “! has the following

general symmetry properties (as can be seen from (2.2.19)):

Q, = Qw QU

Using these properties the matrix (I + QA) = P can be written in

= Qn' Qm = Qm-nnx etc.

partitioned form as:

P 0 P
1 3
P = P, I P (2.3.8)
P 0 P
3 1
where P1 = QuAs + 1, P3 = QlNAs' and EZ and E—s are 1x(N-2) column
matrices. The determinant of E can be written as follows:
det P = P° - P2
— 1 3
= (QuAs + 1 - QmAs) (Q“AS + 1 + anAs)' (2.3.9)

The spin-wave frequencies are reluted to the roots of these expressions.
The right-hand side of (2.3.9) can be written in terms of X using

(2.2.19) as y‘lu ()-(l)y;l (xl)/(l - xf"’z). We define the functions

Al _
Y, (xl) = g(xl)AS + r(xl)
Al _
Y, (xl) = h(xl)As + s(xl) (2.3.10)
where
N
g(xl) =% X
hix ) = x. + x"
1 1
rix)=1- :;(“01
1 1
s(x ) =1+ x':“. (2.3.11)

Identical expression in terms of X, arise from the factor (I + A 'a).
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In Chapter 3 these equations will be used to extract the surface and

bulk spin-wave freguencies.

To demonstrate that our results are consistent with those of some
earlier studies we examine some special cases at this point. In the
limit of thick films, where N is very large and therefore x: -+ 0, each
of the functions y‘: and ygl above has roots where x1 = -1/As which,
along with {(2.3.6), is the result found previously for semi-infinite
systems having the same nonuniaxial parameter throughout (Gopalan and
Cottam 1990). The thick-film limit may be thought of as a film in which
the surfaces are far enough apart to be isolated from one another. We
expect that each surface would then resemble the single surface of a
"semi-infinite" system. The criteria for this limit are discussed in

Chapter 3.

We not:: also that the expressions (2.3.10) and (2.3.11) are formally the
same as those derived for the uniaxial thin film (Cottam and Kontos
1980). However here we have defined X, and X, differently so that they
involve a nonuniaxial parameter f (2.3.6). In Chapter 3 we will show
that the nonuniaxial dispersion relations are shifted (downwards) in
frequency relative to those for uniaxial films. For the spin-wave
frequencies we recover the uniaxial thin-film result by simply setting f

equal to zero in (2.3.6). The uniaxial 1limit is discussed in more

detail in Chapters 3 and 4.

Semi-infinite uniaxial or isotropic systems have been treated by several

authors (e.g. see review by Wolfram and DeWames 1972). In the formalism
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employed here the spin-wave solution can be expressed as x, = —l/AS (see
e.g. Cottam 1976) with As depending on the specific assumptions made
regarding uniaxial aniscotropy (if any) and exchange. Our solution, as
noted above, is distinguished by the inclusion of f in the definition of
X . By taking the 1limit that N » « and setting f equal to zero in

1

{(2.3.6) we recover the results of these earlier studies.

A more general case is that in which the films are not symmetric with
repect to their surface parameters and the matrices P and A do not have
the symmetry properties mentioned above. This situation may occur if,
for example, the film is prepared with an overlayer (if any) and

substrate of different species. Generalizing (2.3.8), we have

P . 0 P
1 6
E = Ez 1 : 55 . (2.3.12)
P . 0 P
3 4
It follows that
det P=PP - PP
- 14 3 6
= (Q“AS + 1) (QxlAs' + 1) - (anAs) (QluAs’)' (2.3.13)

The numerator of this expression can be written as

Ala -
y (xl) = g(xl)h(xi)AsAs, + q(xl)(As + As,) + r(xl)s(xl) (2.3.14)
where
_ _ 2N+l
q(xl) = x, X (2.3.15)
and g(xl), h(xl). r(xl) and s(xl) are defined as in (2.3.11). The

superscript refers to the asymmetric case of model A.1.

The determinaticn of spin-wave frequencies from (2.3.14) 1is also

discussed in Chapter 3 with examples of numerical results for various
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values of the exchange and anisotropy parameters provided. We note that

if the surfaces are symmetric then As = As' and (2.3.14) factorizes to
give the functions in (2.3.10). These results for the more general
asymmetric case therefore incorporate those of the special symmetric
case, as expected. In the 1limit that N » » we find that (2.3.14)
reduces to (xxAs + 1)(X:As’ + 1). Each of these factors corresponds to

the semi-infinite result for a different surface, as expected.

2.3.2 Case A.2: The Nonuniaxial Parameter is Modified on the Surfaces

In this more general case the surface nonuniaxial parameters FS and FS,
may have different values than the bulk value F (which is still
non-zero). We write the matrix f defined in (2.2.13) as fv where v is

given by (2.3.1), and (2.2.12) becomes:

(-91 + A)b = fvb'

(@1 + A)b'= fub. (2.3.16)

We use the ‘nvertibility of v to find

[(Ql + é)g-i(-ﬂl + A) - fzg]g =0

[(-0_1_ +avi@r + A - fzg]t_:’= 0. (2.3.17)

In order to simplify these expressions we rewrite the diagonal matrix v

as v = 1 + ¢ and the diagonal matrix g'l as v = I + v where ¢ and v

are non-zero only in their 1,1 and N,N elements. Using (2.2.16) and the

above definitions we can rewrite (2.3.17) as

[(m + A+ B) (1 +V)(-RL + A+ ) - £2(1 + g)]p_ =0
[(-91 + A+ 81+ V)L + A B) - £2(1 4 g)]g*= 0 (2.3.18)

or
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48
[ - @+ 51 +
_o -

I Ao =0
[gf; - (@ + £9)1 4 /_\']g*= 0 (2.3.19)

where ﬁo and A are defined as in (2.2.17) and (2.2.18), and

+
AT =AA+ DA +8°-0% - f£% + QuA< QAU
= —0 = - - —0 = —o—
+ Quh ¥ QAuv + A vA - AuA + AvA + A VA . (2.3.20)
— — -0 —0 — —0—0

+
The NxN matrices é' have only a few non-zero elements:

b4

A =
11
+

A =
12
+

where we denote

Defining él and

which implies

For operator b

1 2 2, -1

2 - 2.
(a + A) v a Q (vs 1) f v, 1)

sl - 1) +a- (a+ )]

s 5
- -1 -1
¥ Q(vs 1) + a {a + A) v,

v -1
s

-1

=p, -1

S

iﬂ(v;f - 1) +a- (a+A4) v;}

-1 -1
tQ(vs, 1) + a (a + A) v,

(a + a)2 v;: - a® - Qz(v;f - 1) - fz(vs, - 1) (2.3.21)

v =f/fandv, = f ,/f.
s S s s
éz as in (2.3.5) we can rewrite (2.3.19) as

[AA +Alb=0 (2.3.22)

Alb = 0. (2.3.23)

the condition for a non-trivial solution to exist is

det[I + _A_;lé:f] = 0. This condition can be used to find the spin-wave

frequencies.

The matrix [I + ATATIA*] = M may be written in



partitioned form as

M 0 M

-1 -6
M= M .1 P (2.3.24)
- -2 I - . -s

M . 0 M

-3 —a

where !1’ !3. !4 and !6 are 2x2 matrices and therefore the determinant

of M is given by

(2.3.25)

.........

which will have more terms than det P defined above. In addition we note
that this determinant will be expressed in terms of both x1 and xz, and
so this expression is more complicated than that found in case A.1. The
procedures for extracting numerical results, together with examples, are
discussed in Chapter 3. We note at this point that if FS = FS, = F then
Qt is greatly simplified and we recover the results for case A.1, as

expected.

2.4 Case B: The Anisotrcpy is Nonuniaxial on the Surfaces Only

Two cases which are of interest arise here, that in which the
nonuniaxial term is non-zero on both surfaces and that in which it is
non-zero on one surface only. These cases, called B.1 and B.Z2
respectively, are the subjects of Sectlions 2.4.1 and 2.4.2. In either
case the bulk nonuniaxial parameter F is zero and the matrix f, defined

in (2.2.13), is not invertible.

2.4.1 Case B.1: The Nonuniaxial Parameter is Non-zero on Both Surfaces
We assume, for simplicity, that the nonuniaxial parameter has the same

value on each surface (i.e. Fs = Fs,) to write f = fsg where:
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1 0 0
0 0
v=10o 0 o (2.4.1)
The coupled matrix equations (2.2.12) are written as
(-Q1 + A+ 8) b= fub'
(QI + A + A) b*= f vb (2.4.2)
— -0 -5 = S—
or
+
(A +4) b=1f b
1-
(A, + 8) b= fub. (2.4.3)

Here we have used (2.2.16) and have modified the definitions of 51 and

52 in (2.3.6) to become

A A - QI
—1 —0 —

A, = A + QL (2.4.4)

The matrices ﬁl and éa ere tridiagonal and can be inverted as described

before in (2.2.19) so that now we define

a-0

%
+
x
[

1l -a+nq (2.4.5)

X
+
x
]

with |xl| < 1 and |x2| < 1 as before.

We straightforwardly solve (2.4.3) finding
2 -1, ,=1,-1 -1, ,-1,-1 _
[1- 20+ o7 - o l]e = 0

[1 - £2(1 + A7) AT 4 A"A)"A"v]b"= 0. (2.4.6)
s = 2= =2-=- =1- =1-

As usual we must find the zeroes of the determinants of these matrices
in order to evaluate the spin-wave frequencies. We first introduce

simpler notation where é;l £ Q, 6;1 £S, (I1 +Q4) =P and (1 +SA) =R,
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Writing P in block form as in (2.3.12) it then follows that

1 6
_1-....:....:...
X3 0 X‘

where (e.g. see Cottam and Kontos 1980):

-1 1. . -1.-1
Xl = -(Pa. P3 - Ps Pl) P6

- _ppl S T | 1y plp y-1p-1
PsPs *25(5522 Pspx)(PA Py P5P1) Py

|
N

_ -1 -1 -1, _ polg y-1-1
x3 = P6 + P6 P1(P4 P3 P6 Pl) P6
X =-p'p (P P - PI'P)7 P}
4 6 1 4 3 6 1 4
_ “15, _ -1 -1 _ p-lp y=15-1
X = E5(25 P, - P PP P, - P PI P,
_ -1 _ plp y-1p-1
X6 = (P‘ P3 P6 Px) P‘ . (2.4.8)
Similar expressions exist for the matrix 5'1. If, for the sake of

simplicity, we assume that the surfaces are identical in their DS and JS
parameters, so that As = As" then we can make use of the corresponding
symmetry properties described above to write )(4 = x1 and )(6 = Xa.

Considering the case of b at present, we can write E'IQVR'lgg = T where

T 0 T
1 3
T =|T .0 . T (2.4.9)
- -2 . . -8
T .0 T
3 1
with the result that
2 _ _ g2 _ ¢2 _ 2 2
det[l st] = (1 fsTx fsTs)(l fsT1 + fsTa)' (2.4.10)

The existence condition for a non-trivial solution will be related to
the zeroes of (2.4.10). Explicitly the numerators of these expressions

can be written as

yi (x,x ) = [g(x DA, + r(x)g(x )8 + rix,)] - £ glx )g(x,)

N VN

B1 _
Y, (xl,xz) lh(xi)AS + s(xl)l(h{xz)As + s(xz)] f h(xl)h(xz) (2.4.11)
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where g(x), h(x), r(x), and s(x) are defined as in (2.3.11). We note
that in this case the solutions depend directly on the nonuniaxial
parameter fs while in case A.1 the dependence was via the definitions of
x1 and xz. Furthermore, here the expressions (2.4.11) do not reduce to
separate, equivalent conditlions on x1 and X, Identical expressions
result from considering the condition on 2*. The extraction of

spin-wave frequencies is discussed in Chapter 3.

At this point we note that in the thick-film limit where N » o the
B1 B1
functions Y, and y2 each reduce to
B1 B1

= _e2
y, =y, = (xlAS + 1)(x2AS + 1) fsxlxz. (2.4.12)

Upon defining a new complex variable o = X X where |a| = 1, and using

(2.4.5) to write

-1 -1 _
X, + X + X, + x, = 2a (2.4.13)
(2.4.12) becomes
Bl _ Bl _ 2 .2 2 2 _ 2
v, =Y, x (AS fs) + m(As fs) + ZamAs + 1 +a. (2.4.14)

This is the same expression found previously (Gopalan and Cottam 1990)
for a semi-infinite system where the anisotropy is nonuniaxial on the

surface but not in the bulk.

If, on the other hand we let fs = 0 in (2.4.11) we recover the uniaxial,
finite~-thickr.ess result (Cottam and Kontos 1980) in which the solutions
for b are then determined by (2.3.10). The roots of the corresponding
expressions in terms of x, are associated with E*. In the uniaxial,
thick-film limit (2.4.12) becomes

B1 B1

Yy, =Y, = (xlAs + 1)(XZAS + 1). (2.4.15)

The solutions x1 = -l/As and x2 = -l/As are then associated with E and
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9* respectively in a semi-infinite uniaxial (or isotropic) system. The

uniaxial limit 1s discussed in more detail in Chapters 3 and 4.

2.4.2 Case B.2: The Anisotropy is Nonuniaxia! on One Surface Only
In the second variation of case B, where the anisotropy is nonuniaxial

at one surface only, v is

1 o o0... ]
0O 0 O
v=|0 0o o... (2.4.16)
0o o
0 0 O
0O 0 o

For convenience the surfaces are assumed to be symmetric with respect to

exchange and other parameters. The matrix T defined in (2.4.9) becomes

T .0 0
1
T=T, 10 .0 (2.4.17)
T o0 0
3
with
det[I - £2T) =1 - £2T (2.4.18)
= S— s'1’ )

We write the numerator of this factor as
sz(xl.xz) = lg(xl)As + r(xl)]lh(xl)As + s(xl)]

x lglx)a_ + r(xz)l[h(xzmS + s(x )]

- £21g(x Ih(x )A  + q(x )1[g(x Ih(x,)A_ + q(x,)] (2.4.19)
where g(x), h(x), r(x) and s(x) are defined as in (2.3.11) and q(x) is
defined in (2.3.15). The uniaxial limit (fs 5 0) is the same as that
for case B.1. In the thick-film limit sz can be factorized to

2
(XIAS + 1)(x2AS + I)I(XIAS + 1)(XZAS +1) - fsx1x2] (2.4.20)
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The first two factors arise in the uniaxial semi-infinite case and are
therefore related to the surface (n = N) where fs = 0. The second
factor is found in the semi-inf nite 1imit for case B.1 and is therefore
associated with the surface (n = 1) where fs = 0. The strategy for
finding numerical results from (2.4.19) is similar to that used for

(2.4.11) as discussed, with numerical examples, in Chapter 3.

2.5 Discussion

We have treated a number of variations of our general model wherein the
exchange, uniaxial and nonuniaxial anisotropy parameters may be modified
at the surfaces of a finite-thickness film. We have considered both
symmetric and asymmetric films and systems wherein the anisotropy is
nonuniaxial for every site and those in which this type of anisotropy
arises only at the surface(s). We have shown that in the limit that N
is large we recover the previous results for semi-infinite systzms and
that, if N is finite but the nonuniaxial parameter is zero then we
recover the results for uniaxial films. In all cases but one (case A.2)
we have found conditions for the existence of spin-wave solutions
expressed in terms of polynomials in the complex variables X, and/or X,
These expressions (labelled y" or y: and y:. where the superscript m
identifies the particular special case, e.g. A.1, etc.) are found in
(2.3.10), (2.3.14), (2.4.11) and (2.4.19). The extraction of explicit
dispersion relations, including numerical examples, from these formal
expressions is the subject of Chapter 3. Also in Chapter 3 a different
procedure is devised for the analysis of case A.2 where the formal

result is given by (2.3.25).
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CHAPTER 3
DISPERSION RELATIONS FOR FERROMAGNETIC THIN FILMS

The operator equation-of-motion method has been used to find a set of
existence conditions for spin waves for several variations of our
general model, as described in Chapter 2. For cases A.1, B.1 and B.2
(as defined earlier) these conditions involve finding the zeroes of a
set of functions summarized in (2.3.10), (2.3.14), (2.4.11) and (2.4.19)
while for case A.2 the result is given formally by (2.3.25). In the
former cases the functions are polynomials (in the complex variables X,
and/or xz) which contain surface and bulk parameters describing the
exchange, anisotropy, applied field, and the wavevector k". The roots
of these polynomials can be related to the spin-wave frequencies (in
terms of the dimensionless quantity Q £ w/(SJ)) by the definition of the
variables X, and X, The dispersion relations, which describe the

dependence of spin-wave frequency (or energy) on the in-plane wavevector

k are thereby extracted.

"
In the much simpler case of semi-infinite uniaxial systems we have xl =
-1/AS for the surface spin-wave mode (Cottam 1976) and so explicit
solutions exist. in our more complicated expressions the surface and
quantized bulk dispersion relations must be determined numerically or
graphically, except in some limiting cases. The distinction between
(localized) surface and (non-localized) bulk modes has been discussed in
Chapter 1. In Sections 3.1 and 3.2 we describe the procedure for

determining the dispersion relation for cases A and B respectively. We



discuss the number of surface modes which occur under various conditions

and present some numerical results for surface and bulk modes.

3.1 Case A: The Anisotropy is Nonuniaxial Throughout the Film

The condition for the existence of spin-wave solutions is different for
cases A.1 (where the nonunjaxial parameter is the same throughout the
film) and A.2 (where it is modified on the surfaces). In case A.1 we
obtain identical polynomial expressions in terms of either X, or x,
(see 2.3.10). Such a simplification is not possible for case A.2 (see

(2.3.25)) which will therefore be treated separately.

3.1.1 Case A.1: The Nonuniaxial Parameter is the Same Throughout the
Film

The nonuniaxial parameter is assumed to be non-zero throughout the film
and, in addition, to have the same value everywhere. The surfaces may
be symmetric or asymmetric with respect to exchange and wuniaxial
anisotropy parameters. In- this case we are able to factor the
determinant into separate ancd identical expressions for x1 and X, As
shown below we need only consider one such factor to find the entire set

of spin-wave frequencies. We consider only X, here.

We recall that x is a complex variable with |x |=1.  Surface modes
correspond to those wvalues of X, which are real and inside the unit
circle (-1 < X < 1) while bulk modes correspond to those values which
are on the unit circle (|x1| = 1) (see also Appendix III). For surface
modes we can write x, = exp(¢) where ¢ = -Asao (for 0 < x, < 1) or ¢ =

in - Asao (for -1 < X, < 0) corresponding to optic and acoustic modes



respectively. For optic modes the frequency is greaterr than that of the
bulk modes (of the same k“) while for acoustic modes it is less. The
precession of spins on adjacent layers 1is in phase in the case of
acoustic modes while it is out of phase In the case of optic modes
(figure 3.1). For bulk modes we can write x = exp(ikzao) where k_ is a
real wave-vector component with kza0 € [O,n]. The attenuation 1‘.gth of
a surface mode in the semi-infinite limit, L = I/AS. can be found by

noting that

|xl| exp(-A_a ) (3.1.1)

so that

n

L/a

o = ~17In(]x |). (3.1.2)

In the present case of finite-thickness films this quantity can provide
a measure of the attenuation length in films in which the overlap

between the surface modes 1s not too pronounced.

We consider in turn the cases of symmetric films and asymmetric films.

Some numerical results for both cases are presented in Section 3.1.2.

The existence condition for a solution (representing either a bulk or a
surface mode) in the symmetric case is (2.3.10). When X, is real,
corresponding to surface modes, the two terms in (2.3.10) may each be
solved using standard numerical methods, limiting the variable X to the
interval (-1,1) of physical interest. The technique that we have
employed is equivalent to the graphical one depicted in figure 3.2.
Zeroes are identified by looking for changes in sign of the function on
the interval of interest. The frequencies {€°} can then be calculated

from the solutions for x1 as follows. We recall that x1 is defined as
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Figure 3.1 Semi-classical representation of surface spin waves showing
the spin precession and decreasing amplitude in adjacent layers for

acoustic (a) and optic (b) modes.
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-1.0 -0.5 0.0 0.

Figure 3.2 Schematic 1llustration of the graphical method of locating
the roots of y:’(x‘) and y:’(x‘), defined in (2.3.10), on the interval
-1 < x <1 for case A.1. The roots are indicated by arrows. Here we
have chosen N = 3 and As = -1.785.
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in (2.3.6) so that the surface-mode frequency is

S 1 2
)

- 2,172
Q == [(xl + x1 - a ] .

- f (3.1.3)

We note that both positive- and negative-frequency solutions are derived
from each root. We will discuss the significance of this occurrence,
not seen in the theory for uniaxial systems, with reference to the Green
function results in Chapter 4. Expressions identical to (2.3.10) and
(3.1.3) exist for x, and therefore either variable may be used to find

the entire set of surface modes.

Depending on the values of As and N we find that zero, one or two
positive-frequency surface modes exist. Surface modes may only occur if
|a_| > 1 which is the condition for finding a solution of (2.3.10) which

satisfies |x1| < 1. The parameter As may be written as
As = Zn[DS - Dl/7J + [4 - w(k“)][JS -Jlzs7) -1 (3.1.4)

using (2.2.15). If Ds = D and Js = J then we have the limiting case of
AS = -1 corresponding to x = *¥1 (which define the boundaries of the
bulk-mode region). Previous studies on the sc (001) system have shown
that if the exchange couples nearest neighbours only then the existence
of surface mocdes cepends on the perturbation of exchange and/or uniaxial
parameters at the surface(s) (e.g. see Filipov 1967, Wallis et al 1967,
Dobrzynski and Mills 1969, DeWames and Wolfram 1969, Wolfram and DeWames
1972). Kittel (1958) introduced the idea of surface pinning and
established that the e¢xistence of a localized mode is contingeni upon
surface conditions. In the context of spin wave resonance Puszkarski

(1979) reviews the number of surface modes possible under various

conditions of surface pinning. Using a similar formalism as in the
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present project (but for uniaxial systems) Cottam and Kontos (1980)
conclude that one surface mode occurs if 1 < |AS| < (1 + &), two if [As|
> (1 + 8) and zero otherwise, where the parameter 8 = 2 / (N - 1).
These simple conclusions do not, however, extend to cases A.2, B.1 and

B.2 below.

The bulk modes are identified by evaluating (2.3.9) using x = exp(i6)

with 8 = kéao and using standard identities for complex exponentials.
We find
vi'(e) = g(e)a_ + r(e)
ya (8) = h(e)a_ + s(e) (3.1.5)
where
f Y
g@) =sin|¥ =@
\ 2 J
r -
h(e) = cos|¥ =2 9W
\ 2 J
3
r(e) =sin[f2le
\ 2 J
N o+ 1 ) '"
s(8) = cos el. (3.1.96)
\ 2 J

The numerical technique is analogous to that used for the surface modes
except that now the appropriate interval is 6 € (0,n]. The bulk-mode

frequencies are

ﬂB = tV/(Z cosO - a)2 - fz) . (3.1.7)

Again we derive both positive- and negative-frequency modes from each
root. Expression (3.1.7) is formally identical to the bulk dispersion
relation in the cases of effectively infinite or semi-infinite samples
(where 6 = kzao is unrestricted and the bulk modes form a continuum).
In contrast, here a discrete set of values of kz is obtained,

corresponding to "quantization" of the bulk modes in a film. The values
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of kza0 = 0 and kzao = n, corresponding to the Brillouin zone centre and.
boundary respectively, provide lower and upper bounds for the bulk-mode

frequencies for a given k".

In the case of an asymmetric film the spin-wave frequencies are related
co the zeroes of (2.3.14). The surface-mode frequencies are then
determined as for the symmetric films discussed above. For bulk modes
we evaluate (2.3.13) using x = exp(iB) to find

y*?(0) = g(e)h(e)a s, + q(e)(a_ + 8_,) + r(e)s(e) (3.1.8)

with g(e), h(8), r(e) and s(8) as in (3.1.6) and
q(e) = sin(Ne). (3.1.9)
The same method is used to find the roots of these equations as in the

case of symmetric films.

3.1.2 Numerical Results for Case A.1

The principal numerical results are dispersion relations. Figures 3.3
through 3.8 show plots of frequency (in terms of the dimensionless
quantity Q@ = w/SJ) as a function of wavevector |k“ao| for wvarious
choices of exchange and anisotropy parameters. As noted above both the
bulk and surface spin-wave spectra are symmetric about Q = 0, therefore

we have chosen to show only the positive-frequency branches.

The general features of the dispersion relations in ultrathin films are
illustrated by figure 3.3 where we have chosen the spin quantum number S
=1, D/J = 1.5, gthO/(SJ) = 0.3, and k“ is in the [100] direction, as
in all subsequent figures in this chapter. The number of modes is seen

to equal the number of layers, three in this case. For various values
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Ikya,

Figure 3.3 The spin-wave frequencies (in units of SJ) plotted against

|k, a,| for a symmetric case A.1 ferromagnetic film. Here we have chosen

N=3, J/)=1J,/1=05 D/D=D,/D=20.5 and F/J =F /) =F_,/J =
s s s s s s

0. s.
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Figure 3.4 The spin-wave frequencies (in units of SJ) plotted against
lk"aol for a symmetric case A.1 ferromagnetic film. Here we have chosen

N = 4, and all other parameters as in figure 3.3.
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Figure 3.5 The spin-wave frequencies (in units of SJ) plotted against
lk“ao| for a symmetric case A.1 ferromagnetic film. Here we have chosen

N = 8 and all other parameters as in figure 3.3.
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Figure 3.6 The spin-wave frequencies (in units of SJ) plotted against
|k“a°| for a uniaxial symmetric ferromagnetic flilm.
N=3, F=F =F_,

Here we have chosen
s s

= 0, and all other parameters as in figure 3.3.



Figure 3.7 The spin-wave frequencies (in units of SJ) plotted against
|k.a°| for an asymmetric case A.1 ferromagnetic film. Here we have
chosen N = 3, J/J = 0.5, J.,/J = 0.75, D/D = 0.5, D.,/D = 0.75, and
F/) =F /) =F_/] =0.5.
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1%y3,!
Figure 3.8 The spin-wave frequencies (in units of SJ) plotted against
an asymmetric case A.1 ferromagnetic f{ilm. Here we have

Ik,a | for
chosen N = 8, Js/J = 0.5, Js,/J = 2.0, DS/D = 1.5, DS,ID = 0.5, and F/J

= Fs/J = Fs,/J = 0.75.



of Ik“a°| there are one or two surface modes. These modes are acoustic,
appearing below the bulk region, which 1is bounded by dotted lines.
Othe: examples showing acoustic surface modes are given in figures 3.4
through 3.7. By contrast, in figure 3.8 an optic mode appears above the
bulk-mode region for large values of Ik"aol. The appearance of a
truncated optic mode is related to the surface exchange parameter Js'
exceeding the bulk value J by analogy with the case of wunjaxial
ferromagnets (e.g. see Wolfram and DeWames 1972). The frequency of each
mode increases as lk“a0| increases (or the wavelength decreases). All
of these plots are distinguished from those of the semi-infinite case by
the possible presence of two surface modes and the finite number of bulk
modes. The attenuation length L, calculated using (3.1.2), for the
surface modes of figure 3.8 is plotted (in units where a, = 1) against
|k“a0 in figure 3.9. Where a surface mode frequency approaches the
bulk mode region we find L - . The bulk modes, being non-localized,
may be considered to have an unlimited penetration depth. The surface

modes farther away in frequency from the bulk region have shorter

attenuvation lengths.

As noted above the total number of modes is equal to the number of
layers, N. As the film thickness increases so does the number of bulk
modes, the greater number of layers permitting more values of ki
Eventually the discrete nature of the spectrum is obscured as the
frequencies merge into a continuum. In the case of symmetric films the
frequencies of the two surface modes are very nearly degenerate when the
film is relatively thick (N = 8, figure 3.5) and split when the film is

relatively thin (N = 3, figure 3.3). In simple terms this splitting may
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|k.a°|

Figure 3.9 The surface spin-wave attenuation length L (in units of ao)
plotted against |k.a°] for an asymmetric case A.1 fila. All parameters
are chosen as in figure 3.7.




viewed as a consequence of overlap between the exponential tails of the
respective modes. This feature is also illustrated in figures 3.10 (a)
and (b) which depict the surface spin-wave frequency variation with film
thickuess (at k" = 0) for a symmetric film and an asymmetric film
respec:tively. It is seen that as the number of layers increases the
frequencies approach the values obtained from the semi-~infinite result

where x = -1/4A_.
1 3

Spin wave dispersion in asymmetric films is illustrated by figures 3.7
and 3.8. In figure 3.7 we note that the surface modes are more
dissimilar than in figure 3.3. In figure 3.8, as noted above, for
various values of |k“ao| there are two acoustic surface modes, one
acoustic mode, or one acoustic and one optic mode. For semi-infinite
systems a surface having Js < I will give rise to an acoustic mode while
a surface having Js > J will give rise to a mode which is acoustic for
long wavelengths but optic for short wavelengths (e.g. see Wolfram and
DeWames 1972). Here we have one surface with each of these

characteristics.

Some of the effects of including the nonuniaxial term in the Hamiltonian

can be seen by comparing figur " and 3.6 for three-layer nonuniaxial
and uniaxial films respectively. The two plots are qualitatively
similar. The frequencies are lower in the nonuniaxial case, most

noticeably for the long-wavelength acoustic surface modes near the
centre of the Brillouin zone. In these excitations the neighbouring
spins are nearly parallel and the nonuniaxial anisotropy energy may be

large relative to the exchange energy. The higher energy bulk modes are
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less affected, as are the shorter wavelength surface modes away from the

Zone centire.

The lowering of spin-wave energies in the presence of nonuniaxial
anisotropy has some further implications. It is possible that for some
value of F the energy of the iowest-lying excitation may be reduced to
zero, as 1illustrated in figures 3.11 (=) &nd (b). This occurrence
signifies an instability and indicates at the ground state involves
spin alignment in some different direction than along the positive
z-axis. In such a situation we may adapt our calculations by
relabelling this new direction as the new z-axis. If, however, we are
interested in perpendicular magnetization in the presence of large
nonuniaxial anisotropy we may simply introduce a larger applied field to
align the spins along the z axis. Alternatively, the film thickness may
be varied since figure 3.11 shows that for larger N ground-state
ordering along the z—-axis may be assumed over a wider range of values of
the nonuriaxial parameter. We also note that the number of surface
modes is unaffected by F, it is determined solely by the criteria

described in Chapter 2.

3.1.3 Case A.2: the Nonuniaxial Parameter is Perturbed on the Surfaces

In this c'se the existence condition for the modes is given formally oy
{2.3.25), a complicated function which contains both X and X, One
possible method for extracting numerical results from the expression for
b is to calculate numerically the matrix elements of A", A_', A" and

the determinant of M = [1 + Q‘li.ﬁ:é*] for a series of values of x, on

the interval appropriate for either surface or bulk modes. The variable
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x, may be considered to be a function of X, according to (2.4.13). The

determinant as a function of x1 is therefore known and solutions for x1

(and hence the spin-wave energies) may be found as in case A.1. The
condition on gf yields an identical spin-wave spectrum, as expected on

physical grounds.

For surface modes x, and x, are each real and satisfy |x1|<1 and lx2‘<1

(see Appendix III). For surface modes (2.4.13) leads to

--(x1 + x;l - 2a) [(x1 + x;l - 2a)% - )2
x2 = (3.1.10)
2

where only those values of x, which satlisfy the localization condition

|x2|<1 are considered. For bulk modes x, is complex and x, is real or
vice versa (see Appendix I1I). If X, is considered to be complex so
that x = exp(if) then we find X, using

1172, (3.1.11)

X, = -(cos® - a) * [(cos® - a)® - 1
We have not jproduced numerical results for the bulk spir-wave
frequencies in this case because of the considerable complexity. The
results are unlikely to differ much from those of case A.1. Instead we

concentrate on the more interesting case of the surface spin waves,

since these are likely to be more sensitive to the surface anisotropy.

A representative plot of the surface spin-wave dispersion for a
four-layer symmetric (F‘s = FS,) film appears in figure 3.12 which is
seen to be qualitatively similar to that in which the nonuniaxial
parameter is unperturbed at the surface (e.g. see figure 3.4 for N = 4).
For the particular case of a symmetric film in which the exchange and

uniaxial parameters are unperturbed at the surface (figure 3.13) a
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Figure 3.12 The surface s-in-wave frequencies (in units of SJ) plotted
against jkuaol for a symmetric ferromagnetic case A.2 film. Here we
have chosen N = &, F/J = 1.0, Fs/J = Fs,/J = 1.5, and all other

parameters as in figure 3.3.
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Figure 3.13 The surface spin-wave frequencles (in units of SJ) plotted
against fkuaol for a symmetric ferromagnetic case A.2 film. Here we
have chosen N = 8, Js = J = Js" Ds =D = Ds' F7J = 1.0, and Fs/J =

Fs,/J = 1.5,
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weakly-localized surface mode occurs which is seen to be become nearly
degenerate with the lower edge of the bulk region as the wavelength
decreases and the anisotropy energy becomes relatively less important
than that due to exchange. From the numerical study of (2.3.25) we
conclude that FS > F seems to be a sufficient condition for the
appearance of a suriace mode. This conclusion is consistent with the

following analysis of the case B systems.

3.2 Case B: The Anisotropy is Nonuniaxial on the Surfaces Only

Physically this situation may be considered to be an extreme case of the
surface nonuniaxial parameter differing from the bulk value. We assume
for convenience that the surfaces are symmetric with respect to the
parameters DS and JS. The condition for existence of a solution for the
spin waves was found to be (2.4.11) for case B.1 or (2.4.19) for case
B.2. These expressions may not be factored into separate conditions on
X, and X, and therefore the numerical solution 1is relatively more
complicated than for case A.1l. There are, however, several possible
strategies here. As in case A.2 we may exploit the relationship between
X, and x, to consider, for example, x, as a function of X, and “hen look
for zeroes on the interval -1<|x |[<1. For surface modes we sample x on
the interval (-1,1) and use (3.1.9) to find the corresponding value of
X, which is real and satisfies the additional localization condition
|x2|51. The functions y?i and yzz may have two roots, one related to +Q
the other to -2, or they may have no roots. Therefore for both b and E*
we again find a spin-wave spectrum that is symmetric about Q = O. For

bulk modes we consider X, to be complex so that X, = exp(i@). We sample

® on the interval (0,n) and use (3.1.11) to find the corresponding real
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value of X, Numerical results achleved by this method for cases B.1

and B.2 are presented below.

An alternative method is an extension of that applied by Gopalan and
Cottam (1990) to the semi-infinite case. As shown in Chapter 2 in the
discussion of the thick-film limit of case B.1, the expressions can be
rewritten in terms of a new complex variable « = X X, using (2.4.13) so
that X, + X, = 2ax/(1 + a«). This technique is not as straightforwardly
applicable here as our equations contain terms such as xf + x: which
must first be expressed in terms of xlx2 and X + X, and then in terms
of «. This is relatively easily achieved for specific values of N (see
Appendix III} provided that they are not too larg (e.g. less than about
10). The surface modes are then readily extracted by considering the
interval -1 < a < 1. However, the bulk modes present an additional
complication because, as mentioned above one of the variables X, and X,
is real and the other is complex and therefore & is complex and is only
restricted to be ~n or within the unit circle. There is no simple way

to sample this region looking for zeroes of our equations and therefore

our method described above is preferred for bulk modes.

3.2.1 Case B.1: The Nonuniaxial Parameter is the Same on Both Surfaces
In this case the nonuniaxial parameter is zero in the bulk and has the
value Fs on each surface. The appropriate expression for finding the

surface spin-wave frequencies is (2.4.11) while for bulk modes we have

B1 _ - £2
y, = [g(e)As + r(G)][g(xz)As + r(xz)] fs g(e)g(xz)
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Bl _ _ e2
y, = [h(8)a, + s(@))[hi(x,)a  + s(x,)] - f_ h(8)h(x) (3.2.1)

with g(8), h(e), r(e) and s(@8) as in (3.1.5).

Dispersion relations are presented 1in figures 3.14 and 3.15.
Qualitatively they differ little from those of case A.1. In figure 3.14
it is seen that the long-wavelength surface modes have frequencies
slightly higher than those in figure 3.4 for a case A.1 film. In the
present case the anisotropy is nonuniaxial for only a small fraction of
the spins and therefore the behaviour resembles that of a wuniaxial
material more than in case A.1. In figure 3.14 the surface modes are

nearly degenerate, reflecting the film thickness and symmetry.

In figure 3.15 we see that there are two surface modes throughout the
Brillouin zone in contrast to figure 3.3 for a case A.1 film. The
variation of the number of surface modes and their frequencies with Fs
is depicted in figure 3.16 where it is also seen that the bulk modes are
relatively unaffected by the surface nonuniaxial anisotropy. Comparing
figures 3.16 (a) and (b) with figures 3.11 (a) and (b} for case A.1 we
see that in the present case of surface nonuniaxial anisotropy only, the
assumption of ground state ordering along the positive z-axis is more
easily justified. We also note that in case A.1 the number of surface
modes is not affected by the nonuniaxial parameter whereas here, for the
three-layer film, we may find one or two zone-centre acoustic surface
modes, depending on the value of FS. We see that in the present case
the existenc» of a localized solution for IAsi = 1 is not ruled out in

(2.4.11). However, unlike the earlier case (A.1), this expression does
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Figure 3.14 The spin-wave frequencies (in units of SJ) plotted against
|k.a°| for a symmetric ferromagnetic case B.1 film. Here we have chosen
N = 8, Js/J = Js'/J = 0.5, D;/D = D;,/D = 0.5, F/J = 0, and F;/J = Fs,/J

= 0.5.
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Figure 3.15 The spin-wave frequencies (in units of SJ) plotted against
|k“ao| for a symmetric ferromagnetic case B.1 film. Here we have chosen
N = 3 and all other parameters as in figure 3.14.
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not lead straightforwardly to more general predictions concerning the
number of surface modes. From the numerical studies it seems that
surface nonuniaxial anisotropy 1is a sufficient condition for the
existence of a surface mode as was noted in the discussion of case A.2
(see figure 3.13). Such a mode appears in figure 3.17 where the

exchange and uniaxial parameters are unperturbed at the surface.

3.2.2 Case B.2: The Nonuniaxial Parameter is Non-zero on one Surface
Only
In this case the anisotropy is nonuniaxal on one surface and uniaxial on
the other as well as in the bulk. The surfaces are taken to be
symmetric with respect to the uniaxial and exchange parameters, Ds and
JS. The expression which must be solved to find surface modes is
(2.4.19) while for bulk modes we must find the roots of
y*2(8,x,) = [g(8)a_ + r(8)!(h(6)a_ + 510))
x ig(xz)AS + r(xz)][h(xz)AS + s(xz)]
- £2g(8)n(0)8_ + q(8))lglx Ih(x )8 + q(x )] (3.2.2)

with all functions as defined above.

Some representative dispersion relations are shown in figures 3.18 and
3.19. Ir contrast to the corresponding case B.1 plots here the film is
asymmetric and therefore tnhe surface-mode frequencies are dissimilar
even for large N. Figure 3.20 shows the variation of spin-wave
frequency with Fs. It is seen that one surface mode is influenced by FS
while all other modes are relatively unaffected. In figure 3.20 (a) ihe
number of surface excitations is seen to depend on Fs’ as in cases A.2

and B.1.
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Figure 3.17 The spin-wave frequencies (in units of SJ) plotted against
lk'aol for a symmetric feri omagnetic case B.1 film. Here we have chosen
N=4, J =J, =J, D, =D, =D, ¥/J =0 and Fg/d = F.,/J = 0.5.
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Figure 3.18 The spin-wave frequenclies (in units of SJ) plotted against
ikuaol for an asymmetric ferromagmetic case B.2 filnm. Here we have
chosen N = 8, Fs/J = 1.0, Fs,/J = F/J = 0, and all other parameters as
in figure 3.3.
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Figure 3.19 The spin-wave frequencies (in units of SJ) plotted against
ik“ao| for an asymmetric ferromagnetic case B.2 film. Here we have

chosen N = 3 and all other parameters as in figure 3.18.
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3.3 Discussion

Numerical dispersion relations have been generatied in all of the cases
we have studied. These include films in which the anisotropy is
uniformly nonuniaxial and where it has nonuniaxial parameters perturbed
at the surface(s) relative to the bulk value, which is possibly zero.
We have examined the variation of surface and bulk spin-wave frejuency
with anisotropy constants and film thickness thoughout the Brillouin
zone. The results of our numerical calculations are all well understood
on physical grounds. Our results are in accord with previous studies on
uniaxial films and nonuniaxial semi-infinite systems as limiting cases

of our general theory.

The major conclusions are summarised as follows. For the nonuniaxial
films each of the coupled operators b and E* leads to spin-wave
dispersion relations which are symmetric about Q = O. The spin-wave
frequencies (energies) decrease as the nonuniaxial parameter increases,
most noticeably in the region where {k”aol is small. The greatest
effect is seen in films where all sites have Fi # 0. In all cases there
is a spin-wave instability for sufficiently large nonuniaxial
anisotropy, indicated by 1e frequency of a mode becoming zero. The
number of surface modes is determined by the surface features. In
particular, for cases in which no surface mode would occur for uniaxial
films (e.g. |AS| = 1) the condition that F_ and/or F_, > F (including
when F = 0) is sufficient for the existence of such a mode. Where FS *
F then the number of surface modes in general depends on Fs {(and/or
F_,). The intensities associated with the spin waves will be examined

S

in Chapter 4 using a Green function analysis.
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CHAPTER 4

GREEN FUNCTION METHOD FOR FERROMAGNETIC THIN FILMS

In this chapter we study spin waves in anisotropic ferromagnetic thin
films using the Green function equation-of-motion method. We have
already determined the dispersion relations for spin waves in some
special cases of these films in Chapters 2 and 3 using the operator
equation-of-motion method. The Green functions allow us to also
calculate the spectral intensities associated with the spin waves.
These intensities represent the relative weighting attached to the
various possible spin-wave modes in a calculation of an experimentally

observable quantity.

In Section 4.1 we present the general formalism of the
equation-of-motion approach and determine the spin Green functions in
the special cases defined earlier. The similarity between the Green
function and operator methods allows us to refer frequently to equations
appearing in Chapters 2 and 3 and we will verify that the Green function
method leads to the same dispersion relations found there. Here we
concentrate on films in which the anisotropy is uniformly nonuniaxial
throughout (case A.1), or is nonuniaxial on the surface(s) (cases B.1
and B.2). For most real films that have some degree of nonuniaxial
anisotropy the major features can be understood with reference to one of
these three models. We have therefore not included any discussion of

the most general, but also mathematically most complicated situation,
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namely case A.2. Comparisons of our results with those of earlier

studies on uniaxial and semi-infinite systems are made when possible.

Once we have determined the Green functions for our systems we may
proceed with the calculation of the spectral intensities as c¢escribed in
detail for special case A.1 in Section 4.2 where we also present more
briefly the results for cases B.1. and B.2. From the intensities we can
derive spin correlation functions as shown in Section 4.3 where we use
equal-time correlation functions to evaluate some static magnetic
properties. In particular we present numerical results for the
amplitude and ellipticity of the spin precession in each layer of the
film. We also discuss the evaluation of the static magnetization. In
Section 4.4 we describe how spin correlation functions can be used in
other applications e.g. to calculate the cross-section for light
scattering. We recall that in Section 1.5 we presented general
information on Green functions and the equation-of-motion method, and

these results will be referred to frequently here.

4.1 General Formalism

As in the case of the operator equation-of-motion approach we work with
the boson operators b and b* related to the spin operators s*, s” and S°
by the Holstein-Primakoff (1940) representation. Because spin waves are
excitations associated with the transverse components of spin we are
interested in correlation functions such as <bi(t)b:(t‘)> and
<br(t)bj(t’)>. We therefore introduce the corresponding commutator

Green function <<bi(t);bj(t’)>> which, according to (1.5.6), obeys the
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following equation of motion:

g? <<bl(t);b:(t‘)>> = -is(t - t')<[bi,b:]> + i<<C(t);b:(t’)>> (4.1.1)
where C = [H,bi]. From (2.1.3) we see that [bi.b:] = au. The

commutator [H.bi] may be evaluated using the linearized Hamiltonian in
the ferm (2.1.5) and (2.1.6). We find

= [ _ _ . +
(#,b ] = [-gnH - 2DSn -SLJ Jbo +SELJ b +250Fb (4.1.2)

where m and all other variables are defined as in Chapter 2. The

equation of motion can therefore be written as

d +
)- ‘ = i -t
3t <<bi(t,,bj(t )>> is(t t )tSU
. P
+ il guH - 2DSn - S E Jm]<<bi(t).bj(t )>>
. t,..., . . L t ..,
+ iy Jmi<<bm(t);bj(t )>> + i2Syq F1<<bl(t);bj(t 1>>. (4.1.3)

We see that the Green function <<bi(t);b:(t’)>> is coupled tv the Green
function <<b:(t);b:(t’)>> through the nonuniaxial term. According to

(1.5.6) the new function has the following equation of motion-

+ trer s toovnt s
<<b‘(t),bj(t. )>> = i [guBH0 + ZDiSn +SY Jm]<<b1(t),bj(t )>>

D-,Q.
pored

1T 3 <<bT);pt (b )>> - i2Sn'F <<b (t);b' (£ )>>. (4.1.4)
mi m J] i i J

In order to solve the coupled differential equations (4.1.3) and
(4.1.4), which form a closed set, we perform the frequency Fourier
transform of <<bl(t);b:(t')>> and <<br(t);bj(t’)>> to G”(w) and G;J(w)
respectively, as defined in (1.5.7), and also make use of the integral

representation

8(t - t’') = %Jexp[-iw(t - t')]dw. (4.1.5)
o
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The coupled equations (4.1.3) and ‘4.1.4) become

im mj

[-w + ngHO + 2DiSn + S E Jim]Gij(w) -£¥yYJ G (w)

1 2 o2
= > 6lj + ZFiSn GU(w) (4.1.6)

[w + ngHO + 2DiSn + S E JI]G”(w) - S EJmej(w)
= ZFiSn'GU(w). (4.1.7)

As in Chapter 2 we use the translational invariance in the xy plane to
perform a further Fourier transform from site labels to the in-plane

wavevector representation defining

_1 o _
G”(w) = ; )X exp[1k" (ri rj)] G . (k“.w)
k
i
’ — 1 : . - ’
Gij(w) = ;—Z exp[lk" (rl rj)! Gnn,(k“.w) (4.1.8)
k

where n and n’ are the layer indices of sites i and j respectively and
k" is the 2-d wavevector defined . in Chapter 1. From (4.1.6) we find

the following set of coupled equations for G o and G; ‘
ni n

w+ guH +2DSn + Su (0) + Sv (0) + Sv (0)IG , - Su (k)G ,
B O n n n n-1 nn n " "nn

-sv (k)G , -Sv(k)C ,=-—8 , +2FSynGC , (4.1.9)
n-1 " "n-1n n " nein 2  nn n nn

- 1., _ ,
[ w + guBHo + ZDnSn + Sun(O) + Svn(O) + Svn_l(O)JGnn, Sun(k")Gnn,

- Sv (k)G , - Sv (k )G’ , =2FsSn’'G , (4.1.10)
n-1 WI" n-1n n " nein n nn

where tL summations un(k") and vn(k“) are defined in (2.2.8) and we

have abbreviated Gm, (k“,w) as Gn,. We introduce G =nd G’ as NxN
ni

matrices whnse elements are the Green functions G , and G’

’
an nn

respectively and write the above coupled equations as
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(-QI + A)G = pl + {G’

(Ql + A)G’'= fG. (4.1.11)
Here Q and the matrices f and A are defined as in (2.2.13), (2.2.14) and
(2.2.15). The constant u = 1/(2nSJ). We note that (4.1.11) and
(2.2.12) are similar except for the inclusion of an inhomogeneous term
in the present case. As in the operator equation-of-motion method the
manner in which (4.1.11) is solved depends on the way in which the

matrix f is defined for the various special cases.

4.1.1 Green Functions for Case A.1
We recall that in this case the nonuniaxial parameter has the same value
for every site in the film i.e. FS =F = FS,. As in Section 2.3.1 we

use this fact to write the matrix f as fI. Using (2.2.16), (2.2.17),

(2.2.18), and (2.3.5) we formally solve (4.1.11) as follows:

-3, =1,-1 -1,.,-1,~1
G =u(l+A"8) A'(I+ A L) A (QL + A)
. -1, .-1,-1 -1, ,-1,-1
G’ = uf(l + ﬁz Q) 51 (1 + fé é) éz (4.1.12)
which we can rewrite as

poadj(I + A”'A)Atady(1 + AZ'maZt@r + A
c = - -1 -2 - =2 ="=2 - =

det(I + A'A) det(I + A '4)

uf adj(1 + AT'A)A Madi(1 + AZ'AIAT
G’'= — < - . (4.1.13)
det(I + A "A) det(I + A 'A)

The Green functions have poles which represent the frequer.cies of the
spin waves where det(I + Q;IQ) and/or det(l + Q:Q) = Q. We have
therefore recovered the same result for these frequencies as derived in
Section 2.3.1 using the operator equation-of-motion method. We observe

that in the present nonuniaxial case the spin waves are represented in
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the Green functions by poles on both the positive and negative real axes
in the frequency plane. This mathematical feature of the Green
functions will be seen to have some implications in the calculation of
physical properties. To recover the Green function results of the
uniaxial case we set f = 0 in the definitions of X and x, and find that
(Q1 + A) = (A_ + A). Therefore (4.1.13) becomes

p adj(I + AT'a)A”?
C = A =gl |

det(I + A7'8)
G'=0 (4.1.14)
as expected (Cottam and Kontos 1980). A comparison of (4.1.14) and
(4.1.13) shows that the present nonuniaxial case is considerably more

complicated.

Using the results for det(I + 5;19) derived in Chapter 2 (e.g. (2.3.10))

we may rewrite the Green function matrix G in terms of X, and x, as

follows:
M \_J“(xl.n) V“(X1)
Al
y (x )
1
where
Al . -1 -1 . -1 -1
E = adJ(l + 51 e)él ad)(l + ﬁz é)ﬁz (Ql + é). (4.1.16)

For films which are symmetric with respect to surface exchange and
anisotropy constants, we have
y* (x ) = [g(x )8 + r(x2}{h(x )8  + s(x )]
x [g(xz)As + r*()-:z)][h(x‘_’:)As + s(xz)]
vMix ) = rix)sx Ir(x)s(x). (4.1.17)
Here g(x), h(x), r(x) and s{(x) are defined in (2.3.11). For the set of

quantized bulk modes X, is complex and ‘re have written it as x =
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exp(i6) as discussed in Chapter 2. It is therefore more appropriate to
express the results in terms of @ as
y''(e) = [g(e)a, + r(e)1ln(e)a_ + s(8)]
x [g(xz)AS + r(xz)][h(xz)AS + s(xz)]
v (8) = r(e)s(e)r(x,)s(x,). (4.1.18)

with g(0), h(8), r(e) and s(8) defined as in (3.1.4).

In the case of asymmetric A.1 films we have formally the same expression
for G as (4.1.15) but we use (2.3.14) to write
Ala -
y (xl) = [g(xl)h(xl)AsAs, + q(xI)(As + AS,) + r(xi)s(xl)]
x [g(xz)h(xz)AsAs’ + q(xz)(As + AS,) + r(xz)s(xz)]

Ala _
v = r(xl)s(xl)r(xz)s(xa) (4.1.19)

where g(x) etc. are defined in (2.3.11) and (2.3.15). For the set of
quantized bulk modes we write (4.1.19) in the form

y'%() = [g(e)n(e)a A, + q(8)(A  + A,) + r(e)s(e)]

x [g(xz)h(xZJAsAs, + q(xz)(As + As,) + r(xz)s(xz)]

vi2(g) = r(0)s(8)r(x,)s(x,). (4.1.20)

4.1.3 Green Functions for Case B

In this section we solve (4.1.11) for films in which the nonuniaxial
parameter may be non-zero on both surfaces (case B.1) or only one

surface (case B.2) and write the results in terms of x1 and X,

The case B.1 films have a nonuniaxial parameter which is non-zero on
both surfaces and zero in the bulk. As in Chapter 2, we further assume,

for convenience, that that the films are symmetric with respect to all
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surface parameters FS. DS and JS. We agaln write f as fsg with v as in

(2.4.1). From (4.1.11) we find the formal solutions

- _ 2 -1 -1,-1 -1 -1_-1 -1 -1 -1,.~-1
6 = uf1 - 20 T 0T e A,

. _ e2 -1, ,-1,-1 -1, ,-1,-1 _]-1
o= ui[1 - £200+ ATD7A v - AT

-1, ,-1,-1 -1, .-1,-1
x (I + 51 a) 51 (I + 52 A) 52 (4.1.21)
where ﬁi and 52 are defined as in (2.4.4). We rewrite (4.1.21) as

poadjll - £201 + A7) 'a7he(r + aA7'a) AT ) adj(r + AT'a)A?
G = ~ R T e T e

1 1

2 -1,,-1,~ -1, .,~1,~- -1
det[l = £2(I + A'A)Y AT W(I + AZTA)TTATIV] det(1 + A7)

2 -1 -1,-1 -1 -1,-1
ue g adjll - £2(1 + A7) AT (T + AT A )

G'=

2 -1, .,~1,-1 -1, .-1.-1
det(l - f2(1 « A®)'ATw(1 + ATTA) A D)

adj(1 + A'8)ATad3(L + A'MIA
x - = (4.1.22)
det(I + ﬁl 4) det(l + éz 4)

As in case A.1 we simplify the expression for G using the results for

the determinants derived in Chapter 2. We write
u EBI vBi(xl)

G = - (4.1.23)
y (x )
1
where
Wil = adj[I - 201 + A7) AT+ A"A)"A"v]
- ~ s~ =-1- -1~ 2= 2=
x adj(l + A'A)A" (4.1.24)
and

yBi(xl.xz) [[g(xI)AS + rix )]l )A_ + r(x )] - f:g(xl)g(xz)]

x [[H(xi)As + s(xl)][h(xz)AS + s(xz)l - fzh(xl)h(xz)]

vBl(xi,xz) [g(x,)8_ + r(x)]Ih(x,)8_ + s(x,)]r(x )s(x ). (4.1.25)

The functions g(x), h(x), r(x), and s(x) are defined in (2.3.11). The




Green function poles corresponding to the zeroes of sz(xl.xz) represent
the spin-wave frequencies which have already been discussed in Chapters
2 and 3. For the set of quantized bulk modes we have x, = exp(i®) and

x2 real and we use

yB‘(a,xz) = [[g(B)AS + r(@]lglx)a, + rix)] - fzg(e)g(xz)]
x [[h(O)AS + s(e)][h(xz)AS + s(xz)] - f:h(e)h(xz)]
vB‘(e,xz) = [g(x,)8_ + rix,)1[h(x,)a_ + s(x,)Ir(8)s(e) (4.1.26)

where g{(8), h(8), r(0) and s(8) are given in (3.1.6).

We note that if fs = 0 in (4.1.24) and (4.1.25) then we find only the
expected poles at [g(xl)AS + r(xl)] = 0 and [h(xl)As + s(xl)] = 0. We
have also G’ = 0 and the uniaxial result, formally given by (4.1.14), is

thereby recovered.

The case B.2 films have a nonuniaxial parameter which is non-zero on one
surface and zero everywhere else. We consider, as in Chapter 2 that the
surfaces are otherwise symmetric. In this case we write the matrix f
appearing in (4.1.11) as fsg with v now defined as in (2.4.16). We
solve (4.1.11) to find the s;me formal expressions as in (4.1.21) and
(4.1.22). However we write the denominator of the Green function in

terms of X, and X, using (2.4.19) and (2.3.10) as

B2
y T(x.,.x)) [g(xi)As + r(xl)l[g(xz)As + r(xz)}

X [h(xi)As + s(xi)][h(xz)As + s(xz)]

fz[g(xi)h(xl)As + qx )1[g(x )h(x, )8 + qlx,)]

B2
v (xi.xz) [g(xz)AS + r(xz)l[h(xz)AS + s(xz)]r(xi)s(xi) (4.1.27)

where g(x), hi(x), r(x) and s(x) are defined in (2.3.11) and q(x) is



defined in (2.3.15). For the set of quantized bulk modes we use

sz(e,xa) [g(8)a_ + r(8))lg(x,)A  + r(x,)]

x [h(G)AS + S(B)][h(xa)As + s(xz)l .

2
- fs[g(e)h(B)As + q(e)][g(xz)h(xz)AS + q(xz)l

VBZ(B,X )
2

[g(xZ)A5 + r(xz)l[h\xz)AS + s(lelr(e)s(e). (4.1.28)
Again we see that in the limit that fs = 0, then G’ =-7 while G has the

expected poles at [g(xl)AS + r(xlll = 0 and/or lh(xl)AS + s(xl)l = 0.

We now have expressions for the spin Green functions in each of the

cases of interest from which to derive spectral intensities.

4.2 Spectral Intensities

As ve have mentioned the Green functions are a rich source of
information concerning the spin-wave states beyond simply delivering the
dispersion relations. In the linear spin-wave approximation the state
of the system is described as a superposition of thermally excited spin
waves. The Green functions allow us to examine the roie played by these
excitations both in determining equilibrium properties and the response
of the system to an external stimulus such as the photons or neutrons
etc. in a scattering experiment, or the RF field in SWR. The first step
in modelling these types of physical behaviour 1is calculating the

spectral intensities.

The general procedure for determining the spectral intensities has been
discussed in Section 1.5 and can be outlined as follows. We know the

denominator of G to be a function of Q through the Q-dependent variables
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X and xz appearing there. We make the analytic continuation of Q to
the complex value Q + ie (where € is a real, positive, infinitesimal
quantity) and then extract the imaginary parts of G. Due to the
translational symmetry parallel to the surfaces we continue to use a
representation in terms of the in-plane wave-vector k". and for the
perpendicular direction we choose to examine elements of G where n = n’.
This will evenrtually allow us to evaluate equal-site correlation
functions. The fluctuation-dissipation theorem (1.5.10) is used to to

find €n(k f2), which represents the spectral intensity in layer n, from

the diagonal Green tunction ijk“,n) (where we use the dimensionless
frequency Q). We present the calculation in detail for special case

A.1. The analogous case B results are quoted later.

An immediate difficulty is that, unlike some earlier cases to which the
equation-of-motion method has been applied (e.g. the semi-infinite film
in Gopalan and Cottam 1990), here the variable Q does not appear
explicitly in our matrix Green function denominator. We must therefore
consider the effect of the analytic continuation on xl and xz and then
on the function y"b%,xz) appearing in (4.1.15). Therefore there are
several intervening steps required before we can extract the imaginary
parts of Gka",Q+ie). We exploit the relationship between X, and X,
described in Chapters 2 and 3 to consider X, to be a function of X,
Therefore yAl is a function of X alone which is in turn a function of
2. For illustration we will first consider the case of films which are

symmetric with respect to surface exchange and anisotropy constants.
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This case is treated in detail and provides a model for the calculations

relating to the other cases.

In order to determine the effect of the substitution Q -  + ie on the
denominator function y (where for simplicity we have dropped the
superscript label) we make the approximations

xI(Q + ig) = xl(Q) + x;(Q)ie. (4.2.1)
and
y[xl(n) + x;(Q)je] = y(xl) + y'(xl)x;(ﬂ)ic. (4.2.2)

For (4.1.15) we then have

u W v(xl)
G = . (4.2.3)
[q(xl) + iely (xl)xl(Q)
where
y(xl)
q(xl) = (4.2.4)

y'(xl)x;(n)
The effect of the approximations (4.2.1) and (4.2.2) is negligipble in
the limit € » 0. In the special case of a semi-infinite system (Gopalan
and Cottam 1990) the Green function denominator can be written
explicitly in the form (Q - 2°)(R + 2°) and extraction of the imaginary
part of the Green function follows immediately wupon the analytic
continuation. The result is the same as that of our general approach

outlined above.

The matrix Green function in (4.2.3) is now in a form from which we can

easily extract the imaginary part of G;n(k N+ie) (denoted below simply

"
as Gnn) using (1.5.11). For layer n (when 1 = n = N) we find:



-un W vix_ )3ly(x )]
ImnG = nn 1 LI (4.2.5)
o y’ (x )x! (R)

We use a standard identity (e.g. see Parry 1973) to write

8lx_(Q) - x]
a[q(xl)l = }Z S (4.2.6)
= lq'(xl)l
where the sum is over the roots of g(xl). These roots constitute the

set of discrete spin-wave modes, here labelled s. In the present case
(A) the roots of xi(Q) - xf occur in pairs (denoted as +0° and -0°) due
to the dependence of X, on o® in (2.3.6). We can therefore again use

the identity to write

S S
slx (@) - 571 = Z 8(a - ‘_3 ) , 8@ ‘S’ ). (4.2.7)
|x; (+27)] x| (-27)|

S

We can now rewrite (4.2.5) as

In(G ) = “Hr W vix)) Z 1 s -a%) , 8a -+ Q°)
nn

’ ’ 1 1S PR P S
y* (x )x!(R) s|q (x| Lix* (@) |x* (-a])|

]. (4.2.8)

By examining the functions q(xl), q’(xi) and x;(n) we can simplify this
expression. First we note that when X, is real (e.g. for surface modes)

the definition in (2.3.6) leads to the following derivative:

Q a+ (QF + £2)172
xxl(n) = 2 2,172 12 2 2.1/2,2 1/2 (4.2.9)
2(Q° + f7) fa+ (@ + ) 17 - 4)
and therefore x;(Q) = -x;(~n), a relation which also applies in the case
of bulk modes, when x, = exp(iQ). In addition we have, according to
(4.2.4),
s y’(x?) y(xf)y"(xf)
q,(xl) = - (4.2.10)

’ S ’ S ’ Sy.., 5, .2
y (xl)xi(n ) ly (xi)xl(n )]

Since xf represents a root of y(xl). we find
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— {(4.2.11)
fx: (27|

PP -
|4 (xl)| =

The imaginary part of the Green function cam may therefore be written

more simply as

-un W v(xl) s s
Im(G ) = ne Z (38(Q - Q%) + &(a + Q7)) (4.2.12)
nn
y’ (x )x: (@)

Finally, we can use (1.5.10) to find the spectral intensity in layer n
for the spin wave modes at wavevector k“. At any given temperature we
write this quantity in terms of the dimensionless frequency 2 = w/SJ

using Bw = a2 where a = 8SJ » 1 for the low temperature regime 7T « Tc'

We obtain

2ru W v(xl) S S
£ (k,,Q) = no Z [8(0 - &%) + 62 + 7). (4.2.13)
" [exp(af) - 11y’ (x )x;(R) ]

We note that the poles in the Green function at -0° and +0Q° have each

contributed a d-function component in the intensity.

A similar procedure applied to G’ leads to the spectral intensity

E;(k",Q). Using (1.5.7) and (1.5.8) we can find the correlation

functions <bn(t)b:(t’)> and <b:(t’)bn(t)> from (4.2.13). We can

k k,

find the correlation function <b:(t)b:(t’)> from £;(k Q) and,

k, "

similarly, <bn(t)bn(t’)>k". As we have mentioned these correlation
functions provide a link between the microscopic theory and
experimentally observable quantities. We first give the corresponding
case B spectral intensity results and then demonstrate the use of the

correlation functions mentioned above in the calculation of some

thermodynamic properties.
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In case B, as in case A, we find that both positive- and
negative-frequency branches of the spin-wave spectrum contribute to the
spectral intensities for G and G’. However, unlike case A.1, here the
degenerate modes are not related to the same value of X, - This leads to
minor changes in the calculation of the spectral functions, e.g. the

derivative of x1 is now

1 = a+a (4.2.14)

[a + Q1% - 2)'?

, _1
)(1 Q) = 5

Otherwise the development follows closely that for case A.1 and the

results are

2nu W v(xl) s
€ (k,,Q) = el Z s(q -~ q°) (4.2.15)
" lexp(af) - 11y’ (x )x; (@)

with the definitions of the various matrix elements and derivatives
appropriate to either case B.1 or B.2. In this case the sum over s must

be taken over all positive- and negative-frequency spin-wave solutions.

4.3 Spin-Wave Correlation Functions and Static Magnetic Properties

The spectral intensities determined in Section 4.2 can now be used to
find the correlation functions which relate to the particular Green
function. The correlation functions, as in the case of the dispersion
relations, must be evaluated numerically. Equal-time correlation
functions (t = t’) can be used to calculate properties such as the
mean-squared amplitude of spin precession and its degree of ellipticity.
The significance of these quantitities is seen in the discussion of the

related figures. To facilitate comparisons the numerical results for



cases A.1, B.1 and B.2 are presented together in Section 4.3.2. Also
contributions to the static magnetization may be obtained as discussed

in Section 4. 3. 3.

4.3.1 Equal-Time Correlation “unctions and Spin-Wave Amplitudes

The mean-squared amplitude of spin precession in layer n and at
wave-vector k“ may be written in terms of the boson operators as
follows:

<52 + (s)%. =S[(<b'b>. +<bb > ] (4.3.1)
n n k" nn &" nn k“

using (2.1.2) and (2.1.1). We denote this thermally-averaged quantity
as A:(k") below. The ellipticity of the spin precession in layer n and

at wave-vector k" can be expressed in terms of the quantity defined as

<(s®)2 - ()%, = S[<bb>  + <b'b'> 1. (4.3.2)
n n k" nn k“ nn k"
denoted by A;(k") below. In uniaxial (or isotropic) systems with

magnetization along the z axis there is no distinction between the x and
y components of spin and the thermally averaged quantity in (4.3.2) will
be identically equal to zero. Non-zero ellipticity 1is therefore

characteristic of nonuniaxial anisotropy.

We consider first the case A.1 films. In order to find equal-time
correlation functions from the spectral intensity in (4.2.13) we use
{(1.5.7) and (1.5.8) and set t = t’. We note that this quantity is
independent of t since these correlation functions in general depend on
t - t' (as seen in (1.5.7)). Specifically, in terms of the

dimensionless frequency £ we have
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+@
+ 1
<bb > T — £ (k, Q) explafd) dAQ (4.3.3)
nn ky SJ n |
-

The integral is easily evaluated due to the 8-functions in En(k",n). We
find
. v(x:) W (x5,x3,0%) exp(an®)
<b b >k = E: s S — S
il £ q'(xl)x;(n ) [exp(af?®) - 1]
W (x?,xi,-ﬂs) exp(-ans)
- = ~ (4.3.4)
[exp(-af2”) - 1]

We use (1.5.7) to derive <b:bn> from (4.2.13) and substitute it, along

Ky
with (4.3.4), into (4.3.1). We find

s
vix®)
A'(k,) =S E 1 coth[m—SJ [W (xs,xs,Qs) + U (xs,xs,-ns)].
n | 1 .54 ¢S 2 nn 12 nn 1’72

o Y (xl)xl(Q )

(4.3.5)

The correlation functions <bfb+> and <b b > can similarly be
nnk" nnku

derived. For example, from the matrix Green function G’ in (4.1.13) we

find

<'b'>

s -1 s -1
nPn’k, [(exp(a?)-1) =~ (exp(-af2”)-1) ']

- Z Zm(xf.x:,ns)v(xf)
=y (x))x (@)
(4.3.6)
where Z is a diagonal element of [adj(I + é;lé)ﬁzladj(l + Q;IQ)_A_:].
To obtain a measure of the ellipticity we have

S S S
vix?)Z (x;,x )
A (k,) = 2fS E 1 oo 12 coth[ggﬁ] (4.3.7)
n |l 4 7.8\ s ¢S 2

y” (x))x (27)

S

where we have noted that, unlike W, the quantity Z depends on 2 only

through X, and X, It is evident that this quantity vanishes in the




limit that f 5 O where th= spin precession is {ii. semi-clasvical terms)

circular.

A similar procedure is used for the case B films. Instead of (4.3.4) we

eventually find

(4.3.8)

s S _S s s
+ 2: wnn(xl,xz,ﬂ ) v(xl) exp(af2”)

[exp(a®) - 11y;(xf)x' (%)

where the sum over s incorporates all positive- and negative-frequency

bulk and surface modes of wavevector kI We derive the correlation

function <bfb > from G also. The functions <bfbf> and <b b > are
nnk" nnk" nnk“

found similarly. Here we obtain

s s s
vixTIW (x7,x7) 5

A+(k" ) = S 1 nn 1 2 coth [___G.Sf]

n Z F(xS)x’ (@°) 2

s y 1
5 s s

_ v(xi)znn(xl.xz) a
A (k,) =f S cothj—|. (4.3.9)

n | s 2

y‘(xf)x’(ns)

Again the ellipticity-dependent quantity is seen to vanish as fs > 0.

4.3.2 Numerical Results

In this section we present numerical results for the layer-dependent
mean-squared amplitudes A:(k“) and A;(k") in cases A.1, B.1 and B.2.
The expressions in (4.3.5) and (4.3.7) for case A.1 or (4.3.9) for cases
B.1 and B.2 are evaluated for the <cet of appropriate spin-wave
frequencies determined wusing the methods of Chapters 2 and 3.
Appropriate expressions for the derivatives y'(xl) and x;(Q) are easily

obtained for both the surface and quantized bulk modes. We have chosen
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to plot the contributions of the set of surface modes and the set of
bulk modes separately. A few figures show the relative contributions
due to the Green function poles at -0° and +Q°. The significance of the
non-zero contributions at —ﬂs will be seen in the discussion of the
static magnetization below. In all figures the temperature is such that

kBT/SJ = 0.1.

For symmetric case A.1 films, numerical examples of A;(k“) and A;(k") at
|k"ao| = 0 appear in figures 4.1 (a) and 4.2 (a) for the films with
dispersion relations depicted in figures 3.3 and 3.5 respectively. The
surface mode amplitude (represented by closed circles) is seen to decay
with distance from either surface. In figure 4.2 (a) for an eight-layer
film this quantity is reduced to almost zero in the middle of the slab.
By contrast, the contributions of the bulk modes (open circles) are seen
to be comparable across the entire film thickness, having a maximum in
the film centre in these examples. Figures 4.1 (b) and 4.2 (b) contain
plots of ellipticity as a function of layer number for surface modes
(closed squares) and quantized bulk modes (open squares). As discussed
earlier, this quantity vanishes in the limit that f - O. Figure 4.3
shows the relative contributions at positive and negative frequencies to
A;(k") of one of the k" = 0 surface modes in figure 3.3. The

contribution at —QS is smaller than that at +QS and can be shown

numerically to tend to zero in the uniaxial limit, as expected.

For asymmetric case A.1 films representative plots of A;(k“) and A;(k“)

versus layer number for |k"ao] = nm appear in figures 4.4 (a) and (b)
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n
Figure 4.3 Contributions to A;(k“) (at k" = 0) of an acoustic surface

mode at positive (upright triangles) and negative (inverted triangles)
frequencies . All parameters as in figure 4.2.
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respectively for a film with the dispersion relation of figure 3.8. The
asymmetry of these plots reflects that of the film. In the dispersion
relation plot in flgure 3.8 the surface mode which is acoustic for all
|k,a,| is mainly associated with the n = 1 surface and its behaviour
resembles those in figures 3.5 and 4.2 (a). 1In comparing figure 4.4 (a)
with 4.2 (a) we see that amplitude decays more rapidly near tk= zone
edge tnan at the zone centre. In figure 4.4 (b) we see that the
ellipticity for both surface and bulk modes is less pronounced here than
in figure 4.2 (b), because the higher energy zone-centre modes are
relatively less influenced by the nonuniaxial anisotropy. This 1is
particularly true in the vicinity of the n = N surface where the optic

mode is mainly localized.

For case B.1 a representative plot of A:(k") at k" = 0 for surface and
quantized bulk modes as a function of layer number is provided in figure
4.5 (a). For the most part the features are the same as for the
symmetric films in case A.1l. The e’lipticity is seen to decay more
rapidly than in figure 4.2 (b), reflecting the fact that here only the

surface spins have nonuniaxial anisotropy.

Finally, for case B.2, examples of numerical results for A;(k") and
A;(k“) appear in figures 4.6 (a) and (b) respectively. The asymmetry of
the film is evident in the asymmetry of the plots. In particular the
ellipticity is seen to be zero on the n = N surface and non-zero on the
other (n = 1). Figures 4.7 (a) and (b) depict the contributions to

A;(k") of the lower and higher energy surface modes respectively. In
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figure 4.7 (a) it is seen that for the mode which is localized near the
nonuniaxial (n = 1) surface, there are non-zero contributions due to
both -R° {inverted triangles) and +0° (upright triangles) whereas in
figure 4.7 (b) it is seen that for the mode localized near the uniaxial

(n = N surface there is non-zero intensity due to +QS only.

4.3.3 The Static Magnetization
Other thermodynamic quantities, such as the static magnetization and the
specific heat, can be determined using the equal-time correlation
functions above. The static magnetization, proportional to <Sz>, may be
non-uniform in a thin film, particularly in the vicinity of a surface.
We are therefore interested in calculating <S:> or deviation of this
quantity from the maximum value S. The average spin deviation in layer
n as

AS = S - <S§%>. (4. 10)

n n
Using (2.1.4), and expleciting the in-layer translational invariance we
can write this in terms of the boson operators for site i (in layer n)
as
1.
ASn = <b1(t)bl(t)> (4.3.11)

which is, according to (4.1.8), simply

AS =

n

nnk"

1y ' > (4.3.12)
¥
Ky

The correlation functions in (4.3.12) can be calculated for any k" in

the manner described above. Specifically, we use (1.5.8) to write
+ 0

sJ
N

AS =

n

I En(k",m dn (4.3.13)
K

H -e0
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where En(k“,ﬂ) is given by (4.2.13) for case A.1 or (4.2.15) for cases
B.1 and B.2. The integral over Q 1is accomplished easily using

properties of the 8-functions in En(k Q) at {(#0°). The thermal factors

[

associated with {+Q°) are of the form [exp(—a[Qsl) - 11

which vanish
in the limit that T > 0 (or @ 5 w}. In contrast, for {—Qs}, the thermal

"1 5 -1 in the limit that T > O so that for a

factors [exp(-a|Q®|) - 1]
nonuniaxial system ASn is non-zero even at T = 0 (e.g. see Mills 1989).
This is analogous to the zero-point magnetization in bulk
antiferromagnets (e.g. see Kittel 1987) where the frequency spectrum
also has positive and negative branches. We recall that the ground
state of the Hamiltonian in (1.2.1) with F # O is only approximately the
same as that found in uniaxial ferromagnets (where F = 0) and the
Zero-temperzture deviation from perfect order is therefore expected. We

observe that the appearance of Green function poles at both positive and

negative frequencies has some (indirect) physical meaning.

Due to the macroscopically large x and y dimensions of the film the
allowed values of k“ effectively constitute a continuum and we may

therefore write the sum over the 2-D Brillouin zone as

2
a

as = -2 | «w'b > d%k (4.3.14)
n 2 nnk I
an ]

or

s a L <«b'b >
2 nn

k"d(kxao)d(kyao) (4.3.15)

A
O e A
O ——— A

where we have used the four-fold symmetry of the Brillouin zone to
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restrict our attention to the first quadrant. The integral in (4.3.15)
is evaluated numerically as follows. We divide the 2-D Brillouin zone

into nz square elements, each labelled k, and consider the finite sum

2
AS zl—{[f] B (4.3.16)
n 2 n nk
N N [a]

wh2re the value of <b:bn>k for each element k is denoted by Bnk. The
1

value of n, required for reasonable accuracy depends on factors such as

the temperature etc. Here we found that for n, = 10 the results

converged well.

The surface mode contributions to ASn are plotted against n in figure
4.8 for T = O. The results for F/J = 0.5 are represented by open
circles while the smaller values corresponding to F/J = 0.4 are
represented by open squares. At T = 0, in the limit that F - 0 we find
that ASn > 0. The bulk modes will have some contribution to ASn;
however we are chiefly interested in the variation with distance from
the surface, which we expect to be largely dictated by the surface mode
contributions. Numerically the temperature-dependent part of ASn is
dominated by the acoustic surface modes near the zone-centre as these

have the lowest energy.

4.4 Other Applications of the Green Function Results

In this section we outline how the spin Green functions can be used to
find the differential cross-section for inelastic light scattering from
spin-waves, following Cottam and Lockwood (1986) and Moul and Cottam

(1983). More briefly we discuss some other applications such as spin
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Figure 4.8 The surface spin wave contribution to the average spin
deviation ASn (in units of S) plotted against layer index n for a
symmetric case A.1 film with the dispersion relation of figure 3.5.
Here n, = 10 and T & 0, F/J = 0.5 (circles) and F/J = 0.4 (squares).
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wave resonance.

We assume that incident (I) light of frequency W, is scattered by

creating or destroying a spin wave of frequency w. The scattered (S)
light beam has frequency W, =W - W by conservation of energy. In
addition to the peak due to elastic scattering (w = 0) the 1light

scattering spectrum will generally have sets of peaks due to Stokes (w >
0) and anti-Stokes scattering (w < 0). The wavevectors of the incident
and scattered light are denoted by kI and ks' respectively, while that

of the spin-wave is k = (k sz The component K is real for bulk

"
modes or complex (usually purely imaginary) for surface modes. For
films we have conservation of momentum in the direction parallel to the
surface and therefore ks," = kx,“ - k".

We assume a typical thin-film scattering geometry wherein the incident
and scattered light beams (which enter and leave the same surface) are
at angles 91 and es, respectively, to the z axis and may be in different
vertical planes. The components of the polarization P of the target

material at position r and time t may be written as

Phir ) = e T 0E (r, 0 (4.4.1)
v

where Co is the permittivity of free space, x is the susceptibilty
tensor and EI is the electric field vector of the incident light. The
electric field vector of the resultant scattered 1light, ES. may be
written in terms of the polarization P using Maxwell’'s equations. We
define the differential cross-section for scattering into the elementary

solid angle df? with frequency between W, and w, *+ dws as
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T
de _ 1 (4.4.2)
T

where Tg and TI are the cycle-averaged intensities of the scattered and
incident light beams respectively, which are proportional to the square
of the electric field vectors. Eventually we may write the
cross-section in terms of Green functions following the procedure of
Camley et al (1981) and Moul and Cottam (1983). A convenient form of

the expression is

2
de _ _ _ -1 i o,
e = (1 - exp(-Bw)] ~ Im [ Z ’exp( iB nao)exp(iBn ao)
S n,n
’ ’ Hv ., ’V'
X z Flv,u,v’',u’) <<(xn ) ,x"n, >>k"]' (4.4.3)
v,u, v’ u

Here n and n’ refer to summations over the layer indices of the film and
v, 4, v, and 4’ are Cartesian indices. The exponential factors arise
due to the variation of light intensity as a function of depth into the
film, where B is a complex wavevector (with Im B > 0) describing the
light propagation in the absorptive medium. The function F depends on
the magneto-optical coupling, the scattering geometry. and optical
transmission coefficents. The cross-section contains Green functions
involving the components of the susceptibilty tensor x, where a 2D
Fourier transform to wavevector k" has been made (as before) and the
position in the film is indicated by the layer index. As mentioned in
Chapter 1 spin waves lead to periodic modulations in the susceptibility
and thereby affect the polarization of the target material and hence the
scattered light. The susceptibilty components can be expressed, in a

phenomenological manner, as an expansion in terms of powers of the spin
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operators S*, S’ and S° with appropriate magneto-optical coefficents.
Linear magneto-optic coupling 1leads to terms in s and SY while
gquadratic magneto-optic coupling leads to terms proportional to s*s® +
s*s* and sYs* + s*sV. Equivalently these components may be written as
an expansion in terms of s’, S” and S® and hence the boson operators b
and b* we have been using, with appropriately modified coefficients.
For systems with nonuniaxial anisotropy it follows that (e.g. see Cottam
and Latiff-Awang 1977 for the infinite case) the required Green

functions are those that we have already calculated, e.g. Gnn,(k w) =

n

G ,(k, w)= <<h*;b*,>> etc.
n n

*
<L . >>
bn'bn' kK, " “nn "’ k,,w

In the case of 180° backscattering (eI = —es = @), assuming polarization
of the incident and scattered light tc be e = {cose, 0, sin6) and e, =
{0, 1, 0}, we may write the cross-section as follows:

2 Kw'u3coszesin29

deo - - 2 = [1 - exp(-Bw)]™ |£7g"Y|
dewS 8n c

L J
x Im [ nz;,exp(~18 nao)exp(an ao) {M1<<bn;bn'>>

k",w

+ M <<b ;bf,>
2 n n

t t .t
>k“.w + M3<<bn.bn,>>k"’w + M4<<bn’bn’>>ku.w}] (4.4.4)

where A is the area of the film surface through which the scattered beam
emerges, and f and g are coefficients for the transmission of the
incident beam and scattered beams, respectively, through the upper
surface of the film. The coefficients of the Green functions are

L ] »
M = |K|® + 2iSG K - 2iSGK + 4S%|G|?

1

M
2

]

|K|? + 2iSG K + 2iSGK - 452|G|?



L ] L ]

M, = |K|? - 2iSG K - 2is6K - 4s°|6|*

2 * . 2, ~(2
M‘ = |K| - 2iSG K + 2iSGK + 45°|G| (4.4.5)
where K and G are the linear and quadratic magneto-optic coupling
constants respectively. Similar expressions may be derived for other
geometries and polarizations. We have described earlier how to find the
imaginary part of the Green functions. The quantity in (4.4.5) may be
evaluated numerically for the set of spin-wave frequencies determined by

the methods of Chapter 2 and 3.

We can also use the spin Green functions we have derived to calculate
the absorption strength for spin wave resonance. As mentioned in
Chapter 1, spin wave modes can be excited by a transverse oscillating
field provided there is a frequency match between the spin wave and the
applied RF field. We follow Moul and Cottam (1983) and assume a field
l{wexp(-iut) applied along the y axis. The energy associated with the
interaction between HTF and the spins is

where the sum is over all sites. The SWR absorption strength A(w) at

frequency w is given by

»
Alw) o« =2 Im <<W ;W>> (4.4.7)
2n @

where we can use (4.4.7) to write these Green functions in terms of spin
operators. We write the spatially depmendent part of the RF field as
OA .
H" = b4 explicy.p, Jexp(iQna ) (4.4.8)

where Gy is the unit vector in the y direction, Q" and Q are wavevector

components, and p = (xl.y’). We can eventually write
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which represents a generalization to nonuniaxial systems of the results
of Moul and Cottam (1983) for uniaxial systems. The imaginary parts of
these Green functions and hence the absorption strength contain a series
of 3-functions at surface and bulk spin-wave frequencies. If the RF
field is applied along the x axis an expression similar to (4.4.10)
results. However, in a nonuniaxial material the x and y directions are
(by definition) not equivalent and therefore the absorption strengths
will be slightly different (involving a combination of the same Green

functions but with different weighting factors).

For other experiments involving dynamical processes, e.g. inelastic
neutron s~attering, the appropriate cross-sections may be similarly

calculated using our basic spin Green functions.

4.5 Discussion

In this chapter we have derived spin Green functions for the anisotropic
ferromagnetic films and verified that the resulting spin-wave dispersion
relations are the same as those derived in Chapters 2 and 3 using the
operator method. We have compared our results with previous
calculations on semi-infinite and/or uniaxial systems and conclude that
our study represents a generalization of earlier work. We have derived

the spectral intensities, describing our strategy for dealing with the
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difficulties posed by the complicated Green-function denominators. The
use of correlation functions extracted from the intensities to calculate
thermodynamic properties has been described and illustrative numerical
examples provided. We have also shown how our Green functions could be

used 0o find the light-scattering cross-section and SWR absorption

strength.

The numerical examples of the mean-squared amplitude and ellipticity
have been dliscussed and the distinctive features of the nonuniaxial
systems ldentified, notably the elliptical spin precession. We have
seen that the correct caiculation of magnetic properties involves Green
function poles at both positive and negative frequencies for each spin
wave mode. Uniaxial (or isotropic) systems, in contrast, ha.e circular
spin precession and the physical description is achieved using Green
functions where each spin wave mode is associated with a pole at
positive frequency only. Such systems have been seen to be a special
case of our more general one. The figures can also be used to
jllustrate features of spin waves which are common to nonuniaxial and
uniaxial (or isotropic) systems e.g. the localization of surface modes.
If the film thickness is large compared with the attenuation length of
the surface modes then we see that the film resembles a system in which
two surfaces are effectively lsolated from one another. At this point
we recover the results of previous studies on "semi-infinite"” systems.
In the case of systems with uniform nonuniaxial anisotropy (A.1) we have
calculated the static magnetization on each layer in the film and

illustrated the zero-temperature spin deviation.
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CHAPTER S

GREEN FUNCTION METHOD FOR SEMI-INFINITE ANTIFERROMAGNETS

The second major object of this thesis is the study of spin waves in
antiferromagnetic films with nonuniaxial single-ion anisotropy. As
mentioned in Chapter 1, antiferromagnetic ordering involves oppositeiy
oriented spins occupying different sublattices in the material with the
result that the Green function formalism is somewhat modified here. The
main focus of this thesis is on single-ion anisotropy effects which, as
we explain below, are particularly significant in antiferromagnetic
materials. In addition, antiferromagnets are generally insulators and
therefore well described by the Heisenberg local moment model that we
employ. Spin waves in antiferromagnets have been extensively studied by
means of light scattering experiments, mainly in bulk samples (e.g. see
Cottam and Lockwood 1986). Our Green function results may be used to
calculate the appropriate cross sections for thin films, as was shown in

Chapter 4.

Spin waves in semi-infinite systems with uniaxial single-ion anisotropy
have been thoroughly studied theoretically. Wolfram and DeWames (1972)
review spin-wave frequencies while Cottam (1978) provides a microscopic
Green-function treatment. The uniaxial thin fi m case has been studied
using Green functions for S = 1/2 by Diep (1991). Nonuniaxial
single-ion anisotropy occurs in antiferromagnets such as NiO and KZFeF4.
We extend previous studies on infinite (or bulk) systems (e.g. see

Cottam and Latiff-Awang 1979 (a), Balucani et al 1980 (b)) to
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semi-infinite systems in the present chapter and in Chapter 6 generalize
the results to thin films. In general, as in the case of ferromagnets,
we consider several different models for the relative surface and bulk
nonuniaxial parameters. However here we emphasize the case of surface
nonuniaxial anisotropy (while the bulk is uniaxial) since the theory is

more tractable.

Section S.1 contains general background material for the
antiferromagnetic systems which 21so pertains to Chapter 6. The fuil
spin Hami. onian 1 presented in Section 5.1 along with a brief
discussion of spin waves in antiferromagnets. We concentrate on the
body-centred tetragonal (bct) lattice, seen in such antiferromagnets as
MnF2 and the nonuniaxial system NiFZ. A description of the particular
assumptions we have made appears in Section 5.1.3. The
Holstein-Primakoff transformation for the two-sublattice antiferromagnet
is presented in Section 5.2. In Section 5.3 the equation-of-motion
method is used to find coupled Green functions for the semi-infinite
systems which are then solved for particular special cases in Sections
5.4 and 5.5. Examples of numerical results for dispersion relations are
included. As well, the mean-squared amplitude of spin precession for
surface modes is calculated as in Chapter 4 and numerical examples are

used to illustrate some of the features of spin waves in

antiferromagnets.

Much of the theoretical approach will be similar to that employed in

previous chapters and we 1include fewer details here, referring to




earlier equations whenever possible. The sublattice structure makes it
somewhat more difficult to find the Green functions explicitly here than
in the ferromagnetic case. However once these functions have been
determined then the extraction of dispersion relations, intensities, and
correlation functions etc., is straightforward. No discussion of the
operator equation-of-motion method is found here since we go directly to

the Green-function formalism.

5.1 Basic Theory for Anisotropic Heisenberg Antiferromagnets

The Heisenberg exchange Hamiltonian }ﬁm = -J”Si-sj for a pair of spins
i and ) can be used with Jl’ > 0 to describe ferromagnets and with Jlj <
0O to describe antiferromagnets. The interaction leads to the parallel
spin alignment seen in ferromagnets and the antiparallel alignment seen
in antiferromagnets. As mentioned above, an antiferromagnet can usually
be described as being composed of two interpenetrating sublattices
("spin-up" and "spin-down") which contain spins of opposite orientation
so that the nearest neighbours of a spin on one sublattice typically lie
on the other sublattice. In the absence of an applied magnetic field
the net magnetization is zero. The net magnetization of each sublattice
is non-zero for temperatures below the Néel temperature (TN) at which
long-range order vanishes. Other types of antiferromagnet, such as
those involving more than two sublattices or those involving frustration
of the antiparallel alignment due tc geometric limitations will not be

considered here.

129




130

Experimental means of studying spin waves 1in antiferromagnets are
essentially the same as those mentioned in Section 1.6 for ferromagnets
and discussed in detail in the references given there. In the present
case the excitation of spin waves by a transverse oscillating field is
called antiferromagnetic resonance (AFMR) for the k = 0 mode and surface

antiferromagnetic resonance (SAFMR) for the surface k" = 0 mode.

5.1.1 Antiferromagnetic Hamiltonian with Single-ion Anisctropy
The general form of the spin Hamiltonian used here is ¥ = RH + RA where

£
H

A r4
?JJIJ sl sj gM'BHO ? Si guBHO § ?

X

_ 22_ Zy2 x.2 _ v.2
A )a:Di(S’) }J:DJ(? ) }l:Fi[(Sl) (Sl) ]

- ¥ F (5% - (sN)°]. (5.1.1)
J J J
J
The indices i and j refer to sites on the spin-up and spin-down

sublattices respectively. The first term in.HH describes the exchange
interaction which, as noted earlier, promotes antiparallel alignment of
neighbouring spins. Note that we have chosen the sign before the
exchange term so that the exchange constant JU is considered to be
positive. We also assume it to be non-zero only for nearest-neighbour

spin pairs on opposite sublattices for the bct lattices we consider

here.

The Zeeman terms in H‘ contain an applied field Hb along the positive z
axis which provides a direction for spin quantization. The applied
field has different energy implications for the spin-up and spin-down

sublattices. The effect of this asymmetry on spin waves ls discussed



below. In a large applied field the Zeeman terms will dominate and
there is a transition to the so-called spin-flop phase (e.g. see Wagner
1972, Keffer 1966) in which the spins are oriented approximately
perpendicular to the applied field, with spins on opposite sublattices
still in different directions. Figure 5.1 depicts the HO-T pPhase
diagram rfor a typical antiferromagnet. The single-ion anisotropy plays
an important role in determining the «critical field HsF for this
transition, which has no ferromagnetic analogue. In general our

calculations apply in the antiferromagnetic phase.

The anisotropy Hamiltonian RA contains terms identical to those which
occur in the ferromagnetic Hamiltonian in (1.2.1). The uniaxial
anisotropy serves to stabilize antiferromagnetic ordering along the
positive and negative z axis, particularly in the antiferromagnetic
phase. This anisotropy is frequently represented phenomenologically in
the 1literature by an effective anisotropy field which has the same
magnitude but opposite direction on each sublattice. We have used the
more accurate single-ion form in RA. As in the ferromagnetic case very
large nonuniaxial anisotropy can lead to a spin-wave instability and an
alteration in the net spin alignment. We have again restr’ *ed our
attention to values of F: for which the assumption of colinear ordering

along the z axis is valid.

5.1.2 Spin Waves in Antiferromagnets
In contrast to the ferromagetic case, the ground state of the Heisenberg

antiferromagnet is not known exactly. The Néel state, in which spins on
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Figure 5.1 Schematic Ho vs. T phase diagram for an antiferromagnet
showing the antiferromagnetic phase (AF), the spin-flop phase (SF), the

paramagnetic phase (P), and the critical fields for phase transitions.
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one sublattice have Sz = S and spins on the other have SZ = =-S5, is the
classical state of lowest energy, but it is not an eigenstate of Jgf
However, for cases such as we are considering here it serves as an
approximate ground state upon which theoretical descriptions of spin
waves may be based (e.g. see Wagner 1972, Mattis 1988, Keffer 1966).
The deviations from the Néel state at T = O can be estimated in a manner

similar to our calculation of ASn in Chapter 4.

Spin waves in bulk antiferromagnets are discussed in standard solid
state texts (e.g. see Kittel 1987) and magnetism texts (see e.g. Mattis
1988, Wagner 1972). Detailed reviews are found in Keffer (1966) and
Philips and Rosenberg (1966). The bulk antiferromagnetic dispersion
relation differs from that of bulk ferromagnets in the following ways.
In the case of wuniaxial antiferromagnets there are generally two
branches, one of positive frequency and one or negative frequency. The
branches are non-degenerate in magnitude in an applied field and, in
semi-classical terms, involve precession in opposite directions. In
contrast, a full physical description of the spin-wave frequencies in
uniaxial bulk ferromagnets is contained in a single branch. In
addition, in the isotropic limit the long-wavelength antiferromagnetic
spin waves vary approximately with |k| instead of |k|2 as in the
ferromagnetic case. Also, the antiferromagnetic spectrum features a gap
at k = 0 determined by both exchange and anisotropy factors (and the
applied field) while in ferromagnets the gap is independent of exchange.
In semi-classical terms (e.g. see Keffer et al 1953), a spin wave

involves different precessional amplitudes on each sublattice, as shown
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in figure 5.2. The positive-frequency (in our notation) spin waves have
greater precessional amplitude on the spin-up sublattice while the
negative-frequency modes have greater precessional amplitude on the
spin-down sublattice. In the absence of an applied field the two modes

are symmetric.

An applied field, if included, serves to raise the energy of the
positive-frequency modes and lower that of the negative-frequency modes.
This introduces the possibility of the energy of the lowest-lying
negative-frequency spin-wave being reduced to zero, an occurrence which
indicates an instability and marks the onset of the spin-flop transition

mentioned above.

In a semi-infinite or finite-thickness antiferromagnet there can be both
localized (surface) and non-localized (bulk) spin waves. In a thin film
the bulk modes are again quantized. The theory of surface spin waves in
antiferromagnets is reviewed in detail in Wolfram and DeWames (1972) and
Cottam and Lockwood (1986). As in the ferromagnetic case the number and
nature of the localized modes may depend on surface characteristics such
as the ratio of surface and bulk exchange constants. In addition, in
antiferromagnets the relationship of the surface to the sublattice
structure is of importance. For example, in the absence of an applied
field, bulk bct systems have two equivalent sublattices. A (001)
surface, however, (see figure 5.3) contains spins of only one sublattice
and removes the equivalence. As a result there may be two surface modes

(one each of positive- and negative-frequency) which are non-degenerate.
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SL1

SL2

Figure 5.2 Semi-classical depiction of antiferromagnetic spin waves

showing the different precession circles on the two sublattices (after
Keffer et al 1953).
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®)

Figure 5.3 Antiferromagnetic ordering in a semi-infinite body-centred
tetragonal (bct) (001) system showing the spin-up and spin-down
sublattices. In (a) a persepctive view, in (b) a side view showing

nearest-neighbour exchange constants.
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In contrast. for an sc antiferromagnet the (001) surface contains spins
of both sublattices so that the equivalence is not removed and the

surface modes are degenerate.

5.1.3 Model of an Anisotropic Antiferromagnet

We have chosen to study in detail the above-mentioned bct lattice with a
(001) surface. As well as being non-degenerate, the surface modes may
be well separated from the bulk region in the small k" regime 1in
contrast to the sc (001) case (see e.g. Wolfram and DeWames 1972). In
addition, in each layer in the bct (001) system all spins belong to the
same sublattice and have nearest neighbours located on the adjacent
layer (and other sublattice). This will simplify the theoretical

formalism.

As in the case of ferromagnetic systems, the particular model we have
studied involves some simplifications in the choice of exchange and
anisotropy parameters. For the semi-infinite systems (with the surface

layer labelled n = 1) we take

JS if 1 OR j is in layer 1
J =
Y J otherwise
D if i is in layer 1
p =4 °
! D otherwise
Fs if i is in layer 1
F‘ = (5.1.2)
F otherwise.

As for the ferromagnets the principal special cases will be that in

which Fs = F (case A) and that in which Fs # 0 but F = 0 (case B). The
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antiferromagnetic films which are the subject of Chapter 6 are also bct
(001) with similar assumptions made concerning the exchange and

anisotropy parameters.

5.2 The Holstein-Primakoff Transformation

The Holstein-Primakoff transformation from spin operators to boson
creation and annihilation operators is carried out in the case of
antiferromagnets in a similar manner as for ferromagnets (see Section
2.1) except that here we must accommodate different spin orientations on
the two sublattices. We refer to the spin-up and spin-down sublattices
as SL1 and SL2 respectively. For SL1 we introduce the boson operators b
and b* as before and the transformation is given by (2.1.2). For spins
on SL2 we introduce another set of boson operators, a and a2 , and the

transformation is

‘ 172
s* = (25)"2a’f1 - ata /(29)
Jl 17

- 1/2 + 172
S = (2S8) 1 - ajaj/(ZS) aJ

s7=-5+ araj. (5.2.1)
This transformation for SL2 spins is defined so that (in contrast to the
SL1 situation) the creation operator leads to deviations from the s =
~-S state. We again make the near-saturation approximation which holds
for T « T" and the two parts of the Hamiltonian are transformed to

* ¢ *

+ + +
Hﬁ xS Z Jlj[blaj * b‘a’ * b‘b‘ * aja ]+ 8“8”0 ? blbl g“B”D § aja

i3 ] J
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H, =25 L Dbb + 250 T Daja, ~-LFsn’ (b¥e! + b b ]
1 J i

+t ¢
J J

f
J

-YF Sn [a a

+aal (5.2.2)
) J

J

where the constants m and n’ are introduced in Section 2.1 and again all
constant and higher order terms are neglected. We note that (5.2.2)
contains terms like b‘aJ and b:a: which couple sites on different

sublattices through the exchange interaction.

5.3 Coupled Green Functions for Semi-infinite Antiferromagnets

As in the ferromagnetic case we anticipate some applications for Green
functions involving spins 1located in the same layer. We find,
therefore, that here we need a different set of Green functions for each

sublattice. We consider first spins on SL1 where the Green function of

primary interest is <<bi(t);b:(t‘)>> = G'(t,t’) (the superscript

denotes SL1). We use (1.5.6) and the Hamiltonian as written in (5.2.2)

to find the equation of motion for G::). As in the earlier

ferromagnetic case, additional Green functions are introduced to form a

closed set. In this case they are <<b:(t);b:(t')>> = G’(l)(t,t’),
t

<<a‘;(t);bk(t')>> = g (t,t') and <<aj(t);b:(t')>> = 5 (e,

Following the same prccedures as in Section 4.1 we find

a1
(w Sv (0) Svn_l(O) 8K H - 2D Sn]G = 579, ./
+ sv__ (K )g“’ o+ Sv (K, )g‘” - ZSn’FnG;"(‘f) n=1,3.5.. (5.3.1)
[w + Sv_(0) + Sv___(0)+ guHi_+ 2D Sulc’ '} = - sv (k)]

-sv (ks Y+ 289 Fc“’ n=1,3,5.. (5.3.2)
n |l n+in



(1) (1)

[w + Sv.(O) + Sv (O) - 8Hy H + 2D Sn]§ = - Sv (k )G--m
- sv_(k, )c‘“ ., + 2Sn'F g (1) m=246.. (5.3.3)
R BN
’ (l) , (1)
[w Sv.(O) Sv‘_l(O) + guBHo 2D Sn]g Sv-_i(k") —in’
+ Sv_(K, )a"“, - 2Sn'F, s‘” m=2,4,6.. (5.3.4)

(1) (1)

(w) is related to G

as in (1.5.9). G::)(

Here G (t,t’) by a frequency Fourier transform

w) is in turn related by a wavevector Fourier

(“(k w) (which we have abbreviated as

n
G;::). Similar transforms have been defined for the other three coupled

transform as in (4.1.8) to G

Green functions. The summations vn(k") are defined as in Chapter 2 (see

(2.2.8)). Here we have

Jsf(k") ifn=1
Valky) = (5.3.5)
Jw(k“) otherwise
with, for a bct lattice,
= 4 3
1(k") = 4 cos[zkxaol cos[zkyao]. (5.3.6)

We note that there is no summation corresponding to un(k") in (2.2.8) as

here the spins have no nearest neighbours in the same layer.

For SL2 the coupled equations analogous to (5.3.1) through (5.3.4) are

(2) _ 1 _
[w + Svn(O) + Sv o1 (0) g.u}l + 2D San = ﬁam
sv__ (K, )9‘2’ , - Sv (k8% ,+ 259F ¢ ‘¥ (5.3.7)
in n I nein n nn

s (2) - , (2)
[w - Svn(O) - Svn-1(0) + gu HO - ZDnSn}G ; = Svn_l(k“)ﬁ’n_m,

+ Sv_(k,)§’ ‘2"‘ - 2Sn'F_ G‘Z’ (5.3.8)
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2 _ 2)
{w - Svn(O) Svn_l(O) guBHO ZDnSnlgnn, = Svn_l(k“)c;_ln,
+ sv (k,)G'® ,- 259'F ' @ (5.3.9)
n " nein n 1n
2y , (2)
[w + Svn(O) + Svn—l(O) + ngHO + ZDnSnlgnn, = Svn_l(k")Gn_ln,

- sv_(k,)G’ ) o 259'F 52 (5.3.10)
n " nein n In

where we now employ superscript (2) and define <<ar(t);aj(t')>>

2) (2)
’ << s ‘£ )>> = ‘ ‘ << . ‘Y>>
Gij (t,.t’), a‘(t).aj(t ) GU (t,t’), bl(t),aj(t )

gff’(t,t’), and <<br(t);aj(t’)>> = 9;;2’(tvt’)-

We note that here, due to the sublattice structure, we have two systems
of four coupled equations each while in Chapter 4 for the ferromagnets
we had a single system of two coupled equations. In that case we wrote
the eguations in matrix form immediately. Here we take a slightly
different approach. We first make assumptions concerning the values of
the nonuniaxial constants. As mentioned above, we consider examples of
the special cases A and B corresponding to the anisotropy being
nonuniaxial throughout the syctem and only on the surface respectively.
For each of these models the sets of coupled equations are simplified
somewhat and we proceed to eliminate the Green functions § and &’ from
the equations for G and G’. We write the resulting equations for G and
G’ in matrix form and solve in a manner analogous to that used in
Chapter 4. Section 5.4 deals with case A while case B is presented in
Section S5.5. In addition, for convenience, we shall consider that the

applied field Ho = 0 in the following calculations.
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S.4 Case A: The Anisotropy is Nonuniaxial Throughout The System

For simplicity we now take Fi. Di and JU to have the bulk values (F, D

and J) everywhere including the vicinity of the surface. Considering
SL1 we use (5.3.1) through (5.3.4) and eliminate " and s 1) from the
(1) (D)
equations for G and G to find
(A + 6(”0)(;(“ = ol + 6“)(3 + V)G,(l)
—0 A - - B -0 -
(A + 3Pwe V=8B + )6 (5.4.1)
—0 c - P -0 -

where G(” and G’ ) are oxw matrices whose elements are the Green

functions G:‘: and G;:‘}) respectively. Also we have
[a -1 0 0...]
_ |1 a -1 0. ..
l_\0 = 0o -1 a -1... (5.4.2)
1 0 0 0...]
_ 0 0 o 0
v = 0 0 0 0 (S.4.3)

with Eo having the same tridiagonal form as 50 but with diagonal

elements b. The parameters are

[((Q+d+8)(R-d-8) + ]

a = - > -2
7(k")
2
b=[(Q+d+8)(Q-d—8)+f]_2 (5.4.4)
2
ar(k")
2
6:” =-4[(n+d+8)($‘2-d-—8)~!-f_]41

y’(k,)(@ - d - 8)

2
st _4al(e +d «»8)(Q—d-8)+f1+1

7°(k )R+ d + 8)

(1) _ f
(R -d - 8)
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6(” - -f
0 (Q+d + 8)
2
°_=-[(f22+d+8)(9-d-8)+f] (5.4.5)
7 (k")(ZnSJ)(ﬂ -d - 8)
with f and Q defined as in (2.2.15) and d = 2Dyn/J.
Rearranging (5.4.1) we find
¢t - ol1 6;1)6;132(1)-1QBR(1)—1991-15(1)-19
g (V) 6;”[1 _ 6;”6;”3“)'1QBP(”°IQ_B] 1—(1) 1QBP(1)-19 (5.4.6)
or
. o adjll - 5(“6;”5(”-19—-(“ IQB] adJP(“ Q
G =
det(1 - 5.3 'p" 'qBR "' 'qB] detp"!
W © au)adjli _ 6;”6; [fl)lQBP -1QB] ade(“ QB adjg“) Q
G’ =
det[I - 6;1) 5(1)-1Q (1)~ 1QB1 detR 1) detgcl)
(5.4.7)
where B = (§0 + v). Other matrices are
Eu) - u 1)92)
E(1) =1 1)92)
_ a1
Q = éo . (5.4.8)

The elements of Q are given by (Wax 1954, DeWames and Wolfram 1969)

_ yhpm ]

qu -1
X - %

(5.4.9)

which is the large N limit of the expression used to invert tridiagonal

matrices in Chapter 2.

and

Here x is a complex variable satisfying |x|

=

1

(5.4.10)
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5(1) can be written in partitioned form as
W, |P i 0
P = |.. .. ... (5.4.11)
(1) 1
_2 -
It follows that
(1)-1 x:l) 0
P = |0 i, (5.4.12)
(1)
X, 1
where
X(l) =1/ P(1)
1 1
xV = _pit? , p1), (5.4.13)

-2 —2 1

Similar expressions apply in the case of B(lt

(1) (1)-1 (1)-1

& (1)
B

)
D

P

QB] can in principle be used

The zeroes of det[l - QBR

to find the spin-wave frequencies using standard numerical techniques.

However, this function is very complicated and, for this reason no

numerical examples of dismersion relations are given in this case. We

note that in the limit that F = O then a;" = 0 and a;" 0 and we find

the formal uniaxial result (Cottam 1978)

(1)
ay _° 24P Q

G

1 + a(l)x
A
¢ V=0 (5.4.14)

This result is also discussed with reference to case B below.

5.5 Case B: The Anisotropy is Nonuniaxial on the Surface Only
Here the nonuniaxial parameter has the value FS for spins on the surface
and is zero otherwise. Other parameters are taken to be as in (5.1.2).

This case proves to be considerably simpler than case A above and we
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readily find numerical results. We first solve explicitly (5.3.1)

through (5.3.4) for SL1 and (5.3.7) through (5.3.10) for SL2. In
Section 5.5.2 we present the dispersion relation results and in Section

5.5.3 the spectral-intensity results.

5.5.1 Green Function Results

We first calculate the correlation functions associated with SL1 using

(5.3.1) through (5.3.4) with the above-mentioned modification in

nonuniaxial parameters. We again eliminate 6;;3 and ?;;}) from the
equations for Gﬁ:: and G;;}). Writing the result in matrix form we have
(A + 6(1)V)G(1) = ol + a(a)v G,(1)
-0 A - = B -
(1) L) (1) (Hn
(éo + Bc v)G = 50 v G (5.5.1)

where the matrices 50 and v are defined as in (5.4.2) and (5.4.3). The

parameters are redefined as

-2 - d - 8)(Q +d+8) + 297k )]/ 27 (k)]

a=
a:" =2-J/3+(@-d-8)Q+d+ 8 k)
2
- (2 - 43 /T - d)(R + AT /T + 4+ d )/ (57 (k)T /)
31 =2-3/14 @+ d+8)Q-d-8)/r7(Kk)]
2
(R + 4J /3 +d )R - 41/ - 4 - d )/ r%(k)I_/J)
(1) _ 2
s =f (2 +d 87 k]
(1 _ o 2
3t = -f (@ -d -8/ k,]
c=-(Q+d+ 8)/[2nSJ72(k“)l (5.5.2)

where fs is defined in (2.2.15) and ds = ZDSn/J. We note, in particular

that the parameters 8:1’ and aé" are analogous to the A’'s used in

earlier chapters as they reflect the perturbation at the surface of the

coordination number and the exchange and uniaxial parameters.
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Rearranging (5.5.1) we find

1) (1) (1) (1)-1

_ _ (1)-1
G = o‘[_I_ 63 ¢SD P QuR

—IE(I)-I

Q] Q

(l)a(l)R(l)-IQvP(ll—lel-IR(I)-IQVP(I)—IQ (5.5.3)

(1)
[ B D - - = = =_— =

¢'V=06 351 -5
D -_—

where all matrix definitions in Section 5.4 apply. We rewrite (5.5.3)

as
o - adj[_I_ _ a;1)6l;‘l)E(i)-IQvR(I)-IQ_V] ad,jg(“ g
G =
det[I - 6;“5;“2(“-1003(”-1(2_1{] det E(1)
o - aél)adj[l a 6;”6;“5“"1@;?“)'1@] adjgm Qv adjg(“ Q
G’ = —
det[l - 68“)5;”5(“-10”?“)-193] detl;\(“ detg(“

{5.5.4)
We use (S5.4.8) through (5.4.13) to write ¢" as

(1) (1) ,(1)-1 (1)-1

(1) (1)
o adjllI - 8 '8 P QvR Qv] adjP "'Q (1 + & 'x)
¢V = — 8 D - — - = c_ . (5.5.5)

(1) (1) (1) (1) 2
(1+6A x)(1+8c x) 58 GD X

The zeroes of

1
(1)5( )XZ

(1)
( B D

vy P(x,9) = (1 + 6:”x)(1 + Gé“x) -3 (5.5.6)

are therefore all we need consider to obtain the spin-wave frequencies.

The Green functions referring to SL2Z can similarly be found from
equations (5.3.7) through (5.3.10). The analogous result to (5.5.5) is

(2),(2),(2)-1 (2) -1

p adjl1 - 8¥5'2p2)-1g,8 vl adjP'@q (1 + 8¥x)
2) = 8 % = = =~ = = c
¢ = @) 2) (2).(2) 2 (5.5.7)
(1 +8“%x)(1+8 " x)-8 .} X
A (o] B D

in which all matrices have the same form as those defined above but with
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the following parameters:

Je Q+d +4) /7J)(1-d - 8)
52 -4 -8 s s
A 2 2
32 L@+ d, + a0 -d - 43 s0) + £
J] 4(Q - d - 8)
s
+ |1 - — >
J Y (k")
32 (Q-d -4aJ/))(Q +d + 8)
s -4 -5 s s
C 2 _ 2
2 lla+d, +a3s/n@-d - a3 /) + £
J 4(0 +d + 8)
I PR
J wz(k")
) J: (Q ~d - 8)
8% = fe = 2
B la+d + a3 /0@ -d_ - 483 /1) + £9]
S S S S S
0 Jz (Q +d + 8)
3 ' = -fs 3 2
2l d + a1 sn@-d - a3/ + £l
p=(R-d- 8)/[21!5.112(!&")]. (5.5.8)
We define y'Z(x,0Q) = (1 + Siz,x)(l + aéZ)x) - aéz’agz’xz.

At this point it is useful to consider the uniaxial 1limit. We see that
if F_ = O then a;”= 0 and a“)” = 0 and we find the expected uniaxial
Green function result (Cottam 1978) given in (5.4.14). Poles will occur

at x = -1/5'1
A

(the condition x = -1/6:2) leads to the same set of
frequencies). In cases where Ds # D and/or Js # J two non-degenerate
surface modes may be found. For the simple case where Js = J and DS =D

we find an analytic expression for the spin-wave frequencies vielding a

single surface branch which (in our notation) is positive in frequency.



In the present case Fs is non-zero, however, and if DS = D and Js = J
and we find that the surface spin waves are represented by poles at both
positive and negative frequencies. Each pole gives rise to a d-function
component in the spectral intensity, however the contributions of each
are unequal as can be seen by considering (5.5.5) for the SL1 Green
function matrix G(”. If Fs is small but non-zero then the root of y(”
associated with +Q° is very near the root of (1 + 6:1))() while that
associated with -§° is near the root of (1 + 6215<L The latter will
have a vanishingly small spectral function due to the presence of this

same factor in the Green-function numerator in (5.5.5). This is

illustrated numerically with mean-squared amplitude results below.

5.5.2 Numerical Dispersion Relation Results

Although the denominators of G'*’ and G'® are different analytic

) )

functions it can be shown numerically that y(1 and y(2 have the same
roots (for Q) as illustrated by figure 5.4. For simpler cases, such as
the uniaxial 1imit, this can easily be demonstrated analytically. We
can therefore use either of these functions to determine the dispersion
relations. This equivalence is expected because spin waves are

excitations of the whole system and not just of one sublattice.

The procedure for numerically evaluating the dispersion relations using

the function y‘'’(x) differs slightly from that used in Chapter 3. Here

(1)

c etc., all depend on Q (as does x through a)

the parameters 6:1% é
whereas in Chapter 3 all comparable parameters such as A etc. were

independent of Q. The variables x, 8:1’. etc., are all evaluated for a
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Figure S.4 Examples of functions y(”(ﬂ) and y(z’ (2) plotted against Q.
Equivalent roots are indicated by arrows.
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series of values of Q on an interval in which the localization condition
for surface modes 1is satisfled and are then used to calculate and

identify the roots of y''’(Q).

In addition to the surface modes a continuum of bulk modes is found.
The limits of the continuum are determined by x = #1 which implies
through (5.5.2) that a = *2. The upper and lower limits (QU and QL
respectively) at any value of k“ are given by

Q = 2(d + 8)

u

2 = tl(d+8)° - &fk1"? (5.5.9)
and are used to determine the intervals in which a surface mode might
occur e.g. an acoustic mode has 0 < Qs < QL. That the upper limit is

nondispersive is a clear difference from the ferromagnetic case.

Some representative numerical dispersion relation results for the
speclial case in which JS = J and Ds = D appear in figures 5.5 and 5.6
for FS/J = 0.5 and Fs = 0 respectively. In these figures we have chosen
s = 1, k" in the [100]) direction, and D/J = 0.5. The shaded area
represents the continuum of bulk modes. As noted above, in this case
for Fs # 0 we find a spin-wave frequency spectrum which is symmetric
about Q = 0. As Fs > 0 the frequencies of the acoustic surface modes
approach the uniaxial value given by x = -1/6‘. As anticipated by the
above discussion, for Fs = 0 the Green function will have a pole at +QS

only. For a surface on SL2 (i.e. the surface spins oriented along the

negative z axis) the single pole would occur at -°.
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Figure 5.5 The spin-wave frequencies (in units of SJ) plotted against
|k.ao| for a semi-infinite case B antiferromagnet. Here we have chosen
Fs/J = 0.5 and F/J = 0. Shaded region represents the bulk mode

continuum.
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Figure 5.6 The spin-wave frequencies (in units of SJ) plotted against
|k.a°| for a semi-infinite uniaxial antiferromagnet. Here we have

chosen F;/J = FsJ = 0.



5.5.3 Numerical Amplitude Results
The Green functions will be used here to calculate the mean-squared
amplitude of spin precession on successive layers as in Chapter 4. For

A while for

SL1 (e.g. layers 1,3,5..) we use the Green functions in G
SL2 (e.g. layers 2,4,6..) we use c'?. As in the ferromagnetic case
¢'" and 6’‘® can be used to find a measure of the ellipticity of

precession.

Following a similar procedure as that shown in detail in Chapter 4, we
can calculate the component of the mean-squared amplitude A;(k“)
(defined in (4.3.1)) due to the surface modes at any value of k". We

eventually find

. s W5 + aé“xs)
A'(k, ) = -S E o coth[—ans] n=1,3,5..
n |l (1), , S 2
= y Q)
. u(ns)ul‘j’(ns)u + aéa’xs)
A'(k,) = -S E coth[———ans] n=24,6.. (5.5.10)
n I (2), , -5 2
5 y Q7))

where y“)’(Q) and y(Z)'(Q) are derivatives with respect to Q and U:\’
and N;:)are diagonal elements of the matrices in the numerators of G(“
and G(Z’ respectively. The temperature-dependent variable a is defined
in Section 4. 3. The summations in (5.5.10) include both pesitive- and

negative-frequency spin-wave modes.

Some representative plots of A;(k“) versus n are found in figures 5.7

(FS/J = 0.5) and 5.8 (Fs 0). These plots illustrate the decaying

amplitude of the surface modes with distance into the crystal. Unlike
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Figure 5.7 A;(k.) for surface modes plotted against the layer index n
for a semi-infinite case B antiferromagnet. Here we have chosen F;/J =
0.5, F/J = 0 and |k“ao| = 0. Symbols explained in accompanying text.
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Figure 5.8 A;(k.) for surface modes plotted against the layer index n
for a semi-infinite uniaxial antiferromagnet. Here we have chosen Fs/J
= 0 and Ikﬂaol = 0.
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the ferromagnetic case, however, this decay is not purely exponential in
antiferromagnets due to the sublattice structure. In figure 5.9 we plot
the natural logarithm of the amplitudes from figure 5.8 as a function of
layer number. The plots pertaining to the two sublattices each have the
same slope and therefore a single decay length characterizes the mode.

The positive-frequency mode has greater precessional amplitude on SL1
than on SL2. The converse is true for the negative-frequency mode.
This general feature of antiferromgnetic spin waves is mentioned in
Section 5.1. In addition we see that when Fs = 0 the contribution from

the negative mode vanishes which is the expected result discussed above.

An indicator of the ellipticity of precession is the quantity A;(k“)

defined in (4.3.2). Formally we write

S (1),(1) S
oc(Q7)s "2 (Q7)
A (k) = -S z D_nn coth[ans] n=1,23,5..

(1), S 2
S y )
) "(95)5;2)2(2)(95) .
A (k ) = -S no coth|=—| n = 2,4,6.. (5.5.11)
n I (2), ;A3 2
y Q)

s
where Z;;) and Z::) are the diagonal elements of the numerator matrices
in ¢’ and ¢ ¥ respectively. No numerical results are presented
here although it is clear that this quantity will be non-zero in general

for f_ = 0.
5

5.€ Discussion
Ia this chapter we have generalized previous calculations on spin waves

in semi-infinite antiferromagnets to include the effects of nonuniaxial
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Figure 5.9 The natural logarithm of A;(k") plotted against layer tndex

n for the surface modes in figure 5.7.
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anisotropy. We have found that the spin waves are characterized by
elliptical precession (in semi-classical t~rms). We have generated
numerical results for dispersion relations and mean-squared amplitudes
of precession in a special case where the anisotropy is nonuniaxial on
the surface only. In the case where the applied field is zero and the
exchange and uniaxial parameters are unperturbed in the vicinity of the
surface we have seen that the spectrum involves a single surface mode
with a frequency quantitatively different from that found in a uniaxial
system. The results of this chapter will provide a basis for
comparison, in the limit of large thickness, with the results of Chapter

6.

Other choices of crystal lattice and surface orientation can be
accommodated but not as straightforwardly as in the ferromagnetic case.
An example is the sc (001) system in which each layer will contain spins
of both sublattices. As a result a different set of Green functions is
required and there will be a substantially different set of coupled
equations than those which apply to the bct (001) system ((5.3.1)
through (5.3.4) and (5.3.7) through (5.3.10)). In contrast the change
of lattice type in ferromagnets involves, in many cases, a simple

substitution for the exchange summations vn(k") and un(k“).
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CHAPTER 6

GREEN FUNCTION METHOD FOR ANTIFERROMAGNETIC THIN FILMS

In this chapter we describe the application of the Green function
equation-of -motion method to the more general case of antiferromagnetic
films with N layers. The Hamiltonian and theoretical procedure are the
same as those used for the semi-infinite systems in Chapter 5. In
addition to the surface modes, the frequencies of the gquantized bulk
modes will also be studied. We simplify by assuming that the applied
field H0 = 0 and also that the intersublattice exchange and uniaxial
parameters are unperturbed in the vicinity of the surfaces i.e.
J =17 for all (nearest neighbour) i, j

4}

D1 =D for all i. (6.0.1)

Furthermore, we deal only with case B in which the anisotropy is

uniaxial in the bulk and nonuniaxial on the surface(s)

Fs if i is in layer 1
Fi = Fs’ if i is in layer N (6.0.2)
c otherwise

In particular we will consider separately case B.1 in which Fs = FS, and

case B.2 in which Fs # 0, Fs, = 0. We may also classify the films
according to whether N is odd or even. In the first case both surfaces
are associated with the same sublattice while in the second each surface
is associated with a different sublattice. The different symmetry
properties of these cases have consequences for the spin-wave spectra.
We note that each sublattice must have at least three layers in order

for the matrix algebra to be appropriate and therefore the lower limit

on N is six or seven layers. Spin waves in thinner films may be studied
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as special cases using the same equations of motion but have not been

considered explicitly here.

Films where N is odd are the subject of Section 6.1 while the
corresponding discussion of films where N is even is contained in
Section 6.2. In each case we generalize equations (5.1.3) through
(5.1.4) then solve for the Green functions and find expressions for the
dispersion relations. Spectral intensities are calculated in the same
manner as in Chapters 4 and 5 and we quote only the final results here.
In Section 6.3 we present numerical results for dispersion relations and
the mean-squared amplitude of spin precession A;(k“) for each of the
special cases. As mentioned in Chapter S5, the Green functions relating
to either sublattice may be used to find the dispersion relations.
Therefore, we include only the formalism for SL1 here, and for

simplicity we omit the superscripts (1) and (2) of Chapter 5.

6.1 Films with an Odd Total Number of Layers
For films where N is odd, both surfaces belong to SL1. Following the
same procedures as in Chapter 5 and using (6.0.1) and (6.0.2) we find

equations analogous to (5.1.3) through (5.1.4). They are

= 1 _ PR
[w - SvB(O) - ZDS"]GuJ = éiéin’ + SvB(k")gzn, 2Sn Fsc1n’
(n=1)
_1
[w - ZSVB(O) - ZDSn]GmV = éﬁann’ + sva(kﬂ)gn-nﬂ
+ SVB(k“)§n¢“¥ {n = 3,5,..N-2)
_ 1
([ ~ SvB(O) ZDSn]Ghn, = éﬁaﬂn’ + Sva(kﬂ)gn-1n’

- 257 FS'GNn' (n = N) (6.1.1)
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[w + ZSVB(O) + ZDSnlgnn, = - SVB(k“)qun, - Sva(k")G;’““
(n = 2,4,..N-1) {(6.1.2)
[w + SvB(O) + ZDSn]Gln, = - SvB(k")QZD, + 257 FsGuV
(n = 1)
o + ZSVB(O) + ZDSn]Gnn, = - Sva(kulﬁn_n“ - SvB(k")ﬁn’n“
{n = 3,5,..N-2)
(w + SvB(O) + ZDSn]G"n, = - SVB(k“)gﬂ-ln' + 2Sn Fs’Gun’
(n = N) (6.1.3)
[w - ZSVB(O) - ZDSnlgnn, = + Sva(k")Gn_““ + SVB(k“)Gn’““

(n = 2,4,..N-1) (6.1.4)

where the Green functions are the same as those defined in Chapter S for
SL1 (omitting the superscript (1) for convenience). Eliminating § and
%’ from the equations for G and G’ we find

(A + 8)G =0l + 6§G'

—0 A - -

(éo + §C)G = QDG. (6.1.5)
These coupled matrix equations are analogous to the Chapter S result for
case B semi-infinite systems (5.5.1). The number of layers in SL1 is

now M = (N+1)/2 and therefore we have MxM matrices here. 50 has the

tridiagonal form of (2.2.17). The matrix éA is given by
= °- (6.1.6)

and éB’ d and én have this same form. We can formally solve the
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coupled matrix equations in (6.1.5) to vrite

o adjiI - P"'Q5 R'Q5_] adjP Q
c = - - = = - =

det[I - P'Q5 R'Q5 ] detP

o adjlI - R7'Q3 P7'08 ] adJR Q & Q
G'= - - . (6.1.7)
det[I - R gfbg QEB] detR detP

Here we have Q = AY, P = (I + A'5), and R = (I + A'6). The
-0’ - - —0 —A - - ~0 —

elements of Q are calculated in the same way as for the ferromagnetic
films, using (2.2.19) with the complex variable x defined as in (5.4.10)
and substituting M for N. When N is odd and the surfaces are identical
with respect Lo all exchange and anisotropy parameters we find that GA =
6‘, and ac = ac, so that we may write §A = SAE and éc = BCZ where v is
defined as in (2.4.1). The matrix P = (I +6A_l_\;12) therefore has the
same symmetry as in (2.3.8) and its inverse, E-R is given by (2.4.7)
ana (2.4.8). Similar expressions apply to R. Some parameters are given
by

8, =1 -4(@+d+8)/[rk)]

o
]

1 +4(0 -d - 8)/[12(1:")]. (6.1.8)

Also we find

a=-[(R-d-8)0Q+d+8)+ 27k [r"(k)]

¢ = -(2+d+ 8)/[2nSI° (k)] (6.1.9)
Here quantities such as d and w(k“) have the same definitions as in

Chapter 5. We now proceed with cases B.1 and B.2 separately.

6.1.1 Case B.1: The Nornuniaxial Parameter has the Same Value on Both

Surfaces

In this section we consider films where N is odd and FS = Fs" In this
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case we find that 68 = 68, and GD = 60, and we can therefore write §B =
dvand 8 = 8 v. We have
B— =D D—

]
B

3
D

fs(n +d + 8)/[72(k")]

-£.( - d - 8)/[2°(k ). (6.1.10)
We note that the parameters 6‘. 63, etc. for this case are those defined
in (5.5.2) for case B semi-infinite systems with the simplifications of

(6.0.1) and (6.0.2). We can write (6.1.7) as

-1 -1 .
o adjl1 - 8.8 PT'QuR™'Qv] adjP Q

-1, -1
det[l - GBGDE QvR 0_,»_'] det P

o & adjll - 8,8 RGP 'Qu] adjR Q v adjP Q
G'= ——— . (6.1.11)
det(I - & 5 R'QuPT'Qu] det R det P

We rewrite G as

o adjl1 - 8.8 P 'QUR™'Qu] adjP Q v(x)
G = — (6.1.12)
y, (x)y, (x)

where

yl(x) = [r{x) + 6Ag(x)][r(x) + 6Cg(x)] - Gaﬁngz(x)

yz(x) = [s(x) + aAh(x)][s(x) + ach(x)] - Gaanhz(x)

vix) = [r(x) + écg(x)][s(x) + achlx)]r(x)s(x) (6.1.13)
The functions r(x), s(x), g(x) and h(x) are defined as in (2.3.11) with
M instead of N. We see that the spin-wave frequencies are related to
the zeroes of yl(x) and yz(x). A similar result can be found for SL2

but is not written here explicitly.

In addition to the surface modes (corresponding to x real with -1 < x <
1) there will be a set of quantized bulk modes. As in the case of

ferromagnetic films the bulk mode frequencies are related to those
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zeroes of the functions Y, and Y, for which x = exp(if) with 6 real and
satisfying 0 < 8 < m. We rewrite these functions in terms of 8 as in
Chapter 3. We consider @ to be a function of  according to (5.4.10)
which implies that 2cos(6) = a(Q). In order to find numerical results
we look for roots of yl(n) and yz(ﬂ) on the interval (ﬂi,nu) where QL
and Qh are the lower and upper boundaries, respectively, of the bulk
mode region. These are determined as in (5.5.9). Numerical dispersion
relation results for both surface and quantized bulk spin waves appear

in Section 6. 3.

At this point we consider some limiting cases of our formal results.
For the thick-film limit we take M » » and find
— - - 2
yl(x) = yz(x) (1 + 6Ax)(1 + Scx) aBan. (6.1.14)
The result of Section 5.5 is therefore recovered, as expected. For
finite M we take the uniaxial limit (F; = 0) and obtain

¢ adjP Q r(x)s(x)
G =

[r(x) + GAg(x)l[s(x) + aAh(x)]
G'=0 (6.1.15)
where the denominator of G leads to two surface branches, each with

positive frequency. Taking M 5 o and Fs 2> O simultaneously we find that

& adjpP Q
G = S E—
{1 + 6Ax]
G’ =0 (6.1.16)

which is the expected result for a uniaxial system with well-separated
surfaces both associated with the same sublattice and identical in other

respects (Cottam 1978).
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6.1.2 Case B.2: The Nonuniaxial Parameter is Non-zero on one Surface
Only

In the present case we take the anisotropy to be nonuniaxial on layer 1
only. We modify (6.1.1) through (6.1.4) by removing the terms involving
FS which appear in the equations for Ghn, and G;n,. Following the usual
procedure we find the same feormal expressions, (6.1.5) and (6.1.7), for

the Green functions as in case B.1l. However here 68, = 60, = 0 and we

]

can write §B = 632' and én 602’ where g’ is an MxM matrix whose sole

non-zero element |is v;l = 1. We can therefore write, instead of

{(6.1.11),

c adj[l - 686

Q
det[I - &3 P 'Qu'R'Qr’'] detP

o 8 adjll - 8 8 R

G'= D - b= g (6.1.17)
R?
D—

det[I - & &

We rewrite G as

o adjll - 8.8 P Qu'R7'Qv'] adjP Q v(x)
G = (6.1.18)
y(x)

with
y(x) = [r(x) + aAg(x)l[s(x) - aAh(x))[r(x) + écg(x)][s(x) + Sch(x)]

- éﬂan[q(x) + 6Ag(x)h(x)][q(x) + acg(x)h(x)] (6.1.19)
and v(x) as defined in (6.1.13). Again we use ‘2.3.11) (with M instead
of N) for r(x), s(x), g(x) and h(x) and (2.3.15) for q(x). Numerical
results for spin-wave frequencies determined from these expressions

appear in Section 6. 3.
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In the uniaxial limit (FS = 0 and 6B = 60 = 0) we find the same result
as for the case B.1 films, (6.1.15). Alternatively, taking M -5 o in
(6.1.18) we find

o adj[1 - b8P 'QUR™'Qu] adjP Q (1 + & x)

G = > (6.1.20)
[(1 + 6Ax)(1 + ch) - 6860x J(1 + 6Ax)

so that the denominator has poles relating to both the semi-infinite
nonuniaxial solution (5.5.6) and the semi-infinite uniaxial solution
(5.4.14). This is to be expected since here the films have one surface
of each type. The uniaxial limit for thick films is clearly (6.1.16) as

in case B.1.

6.2 Filmg with an Even Number of Layers

When N is even the films have one surface (layer 1) associated with SL1
and one surface (layer N) associated with SL2. The symmetry between the
two sublattices is not broken as it is in the case of films where N is
odd, but the two surfaces are no longer equivalent. The number of

layers in each sublattice is M = N/2. Instead of (6.1.1) through (6.1.4)

we now have

_ 1 _ p p
[o - Sv_(0) - 2DSnIG, , = 528, , + Sv_(k,)§ , - 2Sn'FG]
(n =1)
- _1
[w - ZSVB(O) - uDSn)]G;n, = iiénn’ + Svs(k")gn_““
+ Sv (k)5 , (n = 3,5,..N-1) (6.2.1)
8 " nein

[w + ZSVB(O) + ZDSnlgnn, = - SvB(k")G;_"{ - Svs(kﬂ)6;+nf

(n = 2,4,..N-2)
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+

(w + SVB(O) ZDSnlgun, Sva(kll)cu-m' + 2579 Fs'gun’

(n = N) (6.2.2)

[w + SvB(O) + ZDSanln, SvB(k")QZn, + 2Sq FSGm,

(h =1)
w + ZSVB(O) + ZDSn]Gnn, = - Sva(k")gn_““ Sva(k“)§n¢1n,

(n =3,5,..N-1) (6.2.3)
[w - ZSVB(O) - ZDSn]‘é’M, = Svs(k")G"\_m, + SVB(k")GMm,

(n = 2,4,..N-2)
[w - ZSVB(O) - ZDSn]§Nn, = SVB(k“)Gu_ln,- 2Sn Fs'gun"

(n = N) (6.2.4)

We eliminate ¥ and ¥’ from the equations for 6 and G’ and find formally
the same expressions for the Green functions as in the c(ase of N odd,
(6.1.5) and (6.1.7). In this case when the surfaces have the same
exchange and anisotropy constants we still find that 6‘ * GA, and ac *
5c,. Therefore the matrices P and R (defined formally as above) have

the symmetry of (2.3.12) and inverses given by (2.4.8). We now proceed

with cases B.1 and B.2 separately.

6.2.1 Case B.1: The Nonuniaxial Parameter has the Same Value on Both
Surfaces

In this case we have Fs = Fs,. however we still find that 63 #* 68, and
GD ® 6D, because they refer to different sublattices. The parameters

/’
appearing in the Green functions (given formally by (6.1.7)) are

_4(n +d + 8)
(k)

8 =1
A
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(Q-d-4)(Q +d + 8)
(Q-d-4)(Q+d+ 4) + f:

L a@ -d - 8)

6C =1 2
' 4 (k")
5 -1 (Q+d+ 4)(Q-d - 8)
¢ (Q-d-4)(Q+d + 4) + f:
63 - fs(n +zd + 8)
7 (k“)
8. = f, (R + d + 8) _
(@-d-4)@Q+d=+4a)+f
5 = -f, (Q -zd - 8)
' (k“)
§,=f @ -d - 8) (6.2.5)
1] S

(Q-d-4)(Q+d+ 4) + f:
with a and ¢ defined as in (6.1.9). We may write G as
o adjiI - P7'Q3 R7'Q3 1 adjP Q v(x)

G = . (6.2.6)
y{x)

The function y(x) appearing here is considerably more complicated than
in its counterparts in earlier cases (e.g. (6.1.19)) but may be written
explicitly as
y(x) = wl(x)wz(x) - wa(x)w‘(x) (6.2.7)
with
W (x) =[r2(x)s2(x)[r(x)s(x) + 18, +8,,)q(x) + 8,8 ,g(x)h(x)]
x [rix)s(x} + (8 + s .)alx) + Bréc,g(x)h(x)]]
—i‘an[lq(x)r(x)s(x) + Gqu(x) - BA,pa(x)]
x [q(x)r(x)s(x) + 8 a°(x) - 6C,pz(x)l]
-aa,an[lp(x)r(x)s(x) + (6A - aA,)p(x)q(x)]

x [qx)ri{x)s(x) + Gc,qz(x) - 6cp(x)q(x)]]
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W () =[r2(x)s2(x)[r(x)s(x) + (8, +8,,)q(x) + 5,35,,8(x)h(x)]

X

[r(x)s(x) + (sc + ac,)q(x) + acac,g(x)h(x)l]

GBGD,[[q(x)r(x)s(x) + GA,qz(x) - GAp(x)q(x)]

X

[p(x)r(x)s(x) + (ac - ac,)p(x)q(x)]]

63,60,[[q(x)r(x)s(x) + GA,qz(x) - a‘pz(x)]

x

[g{x)r(x)s(x) + 6c,q2(x) - acpz(x)]

— 3 2 -
w3(x) = GBSD[[q(x)r(x)s(x) +8,.q (x) 6Ap(x)q(x)]
x [qOx)Ir(x)s(x) + 3q°(x) - 8..p (x)]
+ SB,GD[[q(x)r(x)s(x) + 6‘,q2(x) - 6‘p2(x)]
x [q{x)r(x)s(x) + 8c,q2(x) - Scp(x)q(x)l]
w4(x) = GBGD,[[q(x)r(x)s(x) + a‘qz(x) - f‘,pz(x)l
x [p(x)r(x)s(x) + (ac - éc,)p(x)q(x)]]
+ 68,60,[[p(x)r(x)s(x) + (6A - BA.)p(x)q(x)}
x [q{x)ri(x)s(x) + éc,qz(x) - acpz(x)]] (6.2.8)
with
p(x) = x" - X2, (6.2.9)

We also have
vix) = r(x)s(x)[r(x)s(x) + (6A + 6A,)q(x) + 6‘6A,g(x)h(x)]
x [r(x)s(x) + (ac + 6c,)q(x) + ocac,g(x)h(x)]? {(6.2.10)
Numerical results of spin-wave frequencies determined from these

expressions appear in Section 6. 3.

In the uniaxial 1limit 63, 68,. BD and 6D, are each zero and we can write

o adjP Q r(x)s(x)
G =

rix)s{x) + (6‘ + GA,)q(x) + BAGA,g(JJh(x)

G'= 0. (6.2.11)
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In contrast to case B.1 for films with N odd, here *he denominator has
roots leading to one positive-frequency branch associated with layer 1
(SL1) and oune nega*ive-frequency branch associated with layer N (SL2).
The frequencies are non-degenerate in magnitude. In the 1limit that M -

» but FS # 0 then (6.2.6) can be rewritten using

2 2
y(x) [(1 + BA,x)(l + Bc,x) - GBGDX 1101 GA.)(I + acx) - GB,GD,x ]

vix) (1 + ch)(l + ac,x). (6.2.12)

Here there are two spin-wave branches, each resulting from expressions
which are similar to the semi-infinite case B result found in (5.5.6).

Taking both the thick-film and uniaxial limits we can write (6.2.6)

using
yix) = (1 + an)(l + aA,x). (6.2.13)

Here we find two surface spin-wave modes with frequencies opposite in
sign but degenerate in magnitude. This is the expected result for a

uniaxial system with isolated surfaces on opposite subiattices.

6.2.2 Case B.2: The Nonuniaxiai Parameter is Non-zero on one Surface
Only

In the present case we take one surface {(layer 1) to be nonuniaxial
while the other surface is uniaxial, e.g. Fs + 0, Fs' = 0. We use
(6.2.1) through (6.2.4), removing the terms involving Fs ‘n the
cquations for §Nn. and Qén,. We eliminate ¥ and §’ from the equations
for G and ' to again find formally the same expressions as in (6.1.5)
and (6.1.7). Here we have 68, = 0 and 60, = 0 and therefore we may
write §B = 692’ and §D = 802’ whrre v’ is the matrix defined earlier in

Section 6.1. The matrices QA and éc have the form given in (6.1.6).
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Parameters 6‘, Gc, 68, and 60 are defined as in (6.2.5). The others,

SA, and ac,, are redefined with fs’ = 0 as

5,, =1 - (Q +d + 8)
Q+d+ 4)

5., =1 (R -d-8) (6.2.14)
(Q-d - 4)

We may write the Green functions formally as in (6.1.17) and then G as
in (6.1.18). The functions y(x) and v(x) appearing there are now given

by

y(x) [r(x)s{x) + (6A + 6A,)q(x) + 6‘6A,h(x)g(x}l
x {r{x)s(x) + (ac + éc,)q(x) + GCBC,h(x)g(x)]

- asan[q(x) + aA,h(x)g(x)][q(x) + ac,h(x)g(x)l

vix) r(x)s(x)[r(x‘s(x) + (6C + 8 _,)q(x) + Bcéc,h(x)g(x)r(x)s(x)]
(6.2.14)
where g{x), hi(x), ri(x), s{x) and g(x) are defined as in (2.3.11) and

(2.3.15) with M instead of N. Numerical results are presented in

Section 6. 3.

In the wuniaxial 1limit we find for the Green functions the =eame
expression as for case B.1, (6.2.11), as expected. If we consider the
thick-film uniaxial limit we find (6.2.13), also as expected. However,
here the nonuniaxial thick-film 1imit for G is

o adjP Q (1 + bcw)

G = 5= (6.2.15)
(1 + SA,x)[(l + an)(l + acx) - asaox }

Where one of the denominator terms is related to the layer N uniaxial

surface and one is related to the layer 1 nonuniaxial surface.
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6.3 Numerical Results

In this section we present numerical results for examples of each of the
special cases we have considered above. These include dispersion
relations for both surface spin waves and (in most cases) quantized bulk
spin waves. As well, for surface modes, examples of the mean-squared
amplitude A;(k“) (as defined in (4.1.3)) versus the layer index n are

provided. In each case we have assumed S = 1.

6.3.1 Dispersion Relations

For films with an odd number of layers and nonuniaxial anisotropy on
both surfaces (case B.1), numerical examples of dispersion relations
appear in figures 6.1 and 6.2 for seven- and thirteen-layer films
respectively. These figures share some common features with those
relating to nonuniaxial ferromagnetic films. Specifically, we see that
the frequency spe~trum for the thicker film has a greater number of
branches and the two acoustic surface modes are nearly degenerate for
large N, as a consequence of film symmetry. Alsoc the frequency spectrum
is symmetric about Q = 0, containing N spin-wave branches on both the
positive- and negative-frequency side (although we have elected in
figure 6.2 to show only those with Q > 0). Finelly, comparing figures
6.1 and 6.3 for Fs # 0 and Fs = 0 respectively, we see that nonuniaxial
anisotropy leads to spin waves of lower energy. Figure 6.2 depicts the
asymmetric dispersion relation for a seven-layer uniaxial film which, in
contrast to» figure 6.1, has a total of N branches including two

positive-frequency surface modes. The number of branches with Q > 0 and
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0.0 0.5 1.0 1.8 2.0 2.5 3.0

Figure 6.1 The spin-wave frequencies (in units of SJ) plotted against
|k"a°| for a case B.1 antiferromagnetic film. Here we have chosen N =
7, F/J = F,,7/J = 0.5 and F/J = 0.
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10

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Iklaol

Figure 6.2 The spin-wave frequen~ies (in units of SJ) plotted against
Ikl’o' for a case B.1 antiferromagnetic fila. Here we have chosen N =
13 and all other parameters as in figure 6.1.




Figure 6.3 The spin-wave frequencies (in units of SJ) plotted against
!t.aol for a unlaxial antiferromagnetic film. Here we have chosen N = 7
and F,/J = Fs,/J =0=F/)=0.




Q < 0 correspond to the number of layers in the spin-up and spin-down

sublattices respectively.

For films with an odd number of layers and nonuniaxial anisotropy on one
surface only (case B.2) a numerical example of dispersion relation
results appears in figure 6.4 which is qualitatively similar to those
produced for case B.1 films above. We note that in the present case the
acoustic surface modes are less similar than in the case B.1 plots, a

consequence of the asymmetry of the case B.2 films.

For films with an even number of layers numerical -amples of dispersion
relation results appear in figure 6.5 (case B.1) and figure 6.6 (case
B.2). These plots yualitatively resemble those relating to films with
an odd number of layers. In the uniaxial 1limit, when Fs = 0, the
results for films with N odd and N even are not qualitatively similar as
seen in figures 6.7 (N even) and 6.3 (N odd). In the case of N even the
two sublattices are equivalent hence spin-wave frequency spectrum is

symmetric.

6. 3.2 Mean-Squared Amplitude Resulls

The Green functions for SL1 and SL2Z2 can be used to calculate the
spectral intensities and correlation functions as in Chapter 5. In
particular we have used equal-time correlation functions to calculate
the mean-squared amplitude A:(k") for each layer in the film using Green
functions for both SL1 and SL2. The formal results are the same as for

the semi-infinite case B systems, e.g. (5.5.10). We provide some
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Figure 6.4 The spin-wave frequencies (in units of SJ) plotted against

[ 8,| for a case B.Z antiferromagnetic fils. Here we have chosen N =
7, FS/J = 0.5 and Fs,/J = F/7J = 0.
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Figure 6.5 The spin-wave frequencies (in units of SJ) plotted against

|k.ao| for a case B.1 antiferromagnetic film.
6, F;/J = Fg,7J = 0.5 and F/J = 0.

5 3.0

Here we have chosen N =
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Figure 6.6 The surface spin-wave frequencies (in units of SJ) plotted

against |k.a°| for a case B.2 antiferromagnetic film. Here we have
chosen N = 6, F;/J = 0.5 and F;,/J = F/J = Q.

are omitted.

The quantized bulk modes

i?9
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10

Figure 6.7 The spin-wave frequencies (in units of SJ) plotted against
|k,a | for a uniaxial antiferromagnetic film with N = 6.




numerical examples for surface spin waves in order to illustrate some

features of these films.

We note that the appearance of "extra" branches in the nonuniaxial
frequency spectra is analogous to the situation with ferromagnetic films
which we have addressed in earlier chapters. In either case we find
that a spin-wave having energy proportional to |Qs[ is represented in
the Green functions by pnles at both +0° and -R°. In the uniaxial limit
for antiferromagnetic films where the sublattices are equivalent (N
even) we find this still to be the case. In contrast, in this limit for
films where the sublattices are not equivalent (N odd), each spin wave
will give rise to only one Green function pole, which may be at either
+QS or —QS. As in the earlier ferromagnetic case thase mathematical
properties of the Green functions are primarily of interest in that they

contribute to the correct prediction of physical behaviour.

We have mentioned that in a spin-wave state the (semi-classical)
amplitude of precession for spins on SL1 will differ from that on SL2
due to the necessity of maintaining constant phase relationships between
the adjacent spins. In the Green function theory this means that the
spectral intensities will be dictated by both the sublattice and layer

indices, as seen in the numerical results below.

For case B.1 films with N odd, numerical examples for A;(k“) versus n
for surface modes at k" = 0 appear in figures 6.8 and 6.9. The layer

dependence of this quanlity is an irregular function (due to the
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A (k)

0.0 i 1 ! i 1
3

Figure 6.8 A:(k') at t' = 0 for surface modes plotted agairnst the layer
index n for a case B.1 antiferroxagnetic film with the dispersion
relation of figure 6.1.
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Figure 6.9 A'(k,) at k, = O for surface modes plotted against the layer
inde.. n for a case B.1 antiferromagnetic film. Here we have chosen N =
19 and other parameters as in figure 6.1. Contributions at Q > 0 and Q
< O are represented by upright and inverted triangles rerpectively.
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alternation of the sublattices) as it was in the semi-infinite cases of
Chapter 5. For a relatively thick film e.g. figure 6.9 for N = 19, on
each sublattice A;(k") is seen to decay in an exponential manner. In
figure 6.9 we see that for one of the surface modes the contributions at
positive (upright triangles! and negative frequencies (inverted
triangles) are non-zero. In contrast, in figure 6.10 for a uniaxial
film we see that there is a non-zero contribution at the positive
frequency only. [The result for the other (nearly degenerate) surface
mode is the same.] This uniaxial film has a dispersion relation
resembling figure 6.3 in which it 1is seen that there are no
negative-frequency surface modes. For case B.2 films with N odd, the
numerical rasvlts for A;(k") at k“ = 0 for the surface modes, seen in
figures 6.11 and 6.12, resemble those of case B.1 but reflect the film

asymmetry of case B.2.

For case B.1 films with N even, a numerical example of the mean-squared
amplitua: A;(k") for surface modes at k" = 0 appears in figure 6.13
which we can compare to figure 6.9 for a film with N odd. For a case

B.2 film with N even, figure 6.14 which depicts A;(k") versus n for the

surface modes at the zone centre, reflects the film asymmetry.

6.4 Discussion

In this chapter we have calculated Green functions relating to both
sublattices in a bct (001) antiferromagnetic film having surface
nonuniaxial anisotropy. We have treated several special cases. For

films with an odd number of layers we have seen that the surfaces have
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Figure 6.10 A;(k.) at k' = 0 for surface modes plotted against the layer
index n for a uniaxial antiferromagnetic film. Here we have chosen N =
19 and other parameters as in figure 6.1. Contributions at 2>0and Q
< 0 are represented by upright and inverted triangles respectively.
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Figure 6.11 A;(kl) at k' = 0 for surface modes plotted against the layer
index n case B.2 film with the dispersion relation of figure 6.4.
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Figure 6.12 A;(k') at k. = 0 for surface modes plotted against the layer
index n for a case B.2 antiferromagnetic film. Here we have chosen N =
19 and all other parameters as in figure 6.4.
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Figure 6.13 A;(k.) at k“ = 0 for surface modes plotted against the layer
index n for a case B.1 film with the dispersion relation of figure 6.5.
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Figure 6.14 A;(k.) at k, = O for surface modes plotted against the layer
index n for a case B.2 film with the dispersion relation of figure 6.6.
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similar properties as both are associated with the same sublattice while
in films with an even number of layers tuere is instead symmetry b tween
the two sublattices. All of the dispersion relations are symmetric
about Q = 0 for FS # 0 and we have used the mean-squared amplitude for
surface modes to illustrate the asymmetry in spectral intensities In
all cases we recover our results of Chapter 5 in the 1limit that the
number of layers is large. We recover the results of previous work on
dispersion relations in uniaxia®! systems if we take Fi = 0. The Green
functions for this limiting case represent a generalization of the
results of Diep (1991) to arbitrary S and films with an odd number of

layers.

The numerical results all refer to the special case in which DS = D and
JS = J. The case of DS = D and JS # J can be accommodated using the
more general definition of the surface parameters (6A etc.) as in
Chapter 5. The Green function results in this chapter may be used to
calculate experimentally observable quantities such as the

light-scattering cross-section and SWR absorption strength as shown in

Chapter 4.



CHAPTER 7

CONCLUSIONS

In this thesis we have presented new results for exchange-dominated
linear spin waves in ferromagnetic and antiferromagnetic thin films in
which nonuniaxial single-ion anisotropy is either an intrinsic feature
of the material or arises as a consequence of lowered local symmetry at
surface sites. Our Green function study provides a description of both
the frequencies and spectral intensities associated with the spin waves
and the relative numbers of surface and bulk modes which occur. We have
found both localized surface modes and a set of non-localized quantized
bulk modes, all of which have elliptical-precession character as a
consequence of the nonuniaxial nature of the systems. Two previous
theoretic=]l studies of note will be used as the principal basis for the
discussion of what is new in the present work, in terms of both results
and methods. Gopalan and Cottam (1990) have considered nonuniaxial
anisotropy but in the case of sem -infinite ferromagnetic systems only
while Cottam and Kontos (1980) considered ferromagnetic thin films but
with uniaxial anisotropy only. We show that the present study is a
generalization of these previous ones, encompassing the earlier results
for ferromagnets in the appropriate limits and including anlisotropic
antiferromagnetic systenms. Elsewhere 1in this chagpter we consider
possible means of experimental verification of our results and finally

we suggest some extensions to the present work.

The microscopic Green-function approach we have taken has the advantage
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of being applicable throughout the Brillouin 2zone unlike macroscopic
long-wavelength treatments. Our results apply at temperatures well
below the critical point where a high degree of long-range order |is
present and the near-saturation approximation is valid. In Chapter 1 we
reviewed basic material on spin waves, as well as theoretical and
experimental methods and establici.ed the context for the thesis. We
introduced the special cases and gave a detailed account of the

Hamiltonian we have chosen.

In Chapter 2 we applied the operator equation-of-motion method to the
case of ferromagnetic films, finding formal expressions for the
dispersion relations which were evaluated numerically for some special
cases in Chapter 3. We found the spin-wave dispersion for both the bulk
and surface modes to be sensitive to the nonuniaxial anisotropy in the
region where |k"a0| is small. Here the frequencies are generally lower
than those corresponding to the uniaxial case calculated by Cottam and
Kontos (1980). By setting the nonunlaxial parameter equal to zero we
recovered the results of that study. We also showed that a sufficient
condition for the appearance of a (weakly localized) surface mode is the
surface nonuniaxial parameter FS being greater in magnitude than the

bulk value F (including when F = 0).

A different numerical approach was developed to find, in particular, the
bulk dispersion relations in films where the nonuniaxial parameter is
non-zero on the surface(s) only. This case requires the location of the

roots of a polynomial (of order # 2N) in two variables, one of them real
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and inside the unit circle, the other complex and on the unit circle.
We showed how to deal with this by exploiting the fact that the two
variables are not independ-nt, a strategy which should prove helpful in
other similar situations, e.g. some of the extensions mentioned below.
Although the study by Gopalan and Cottam (1990) of semi-infinite systems
led similarly to an expression containing two variables, the continuum
of bulk modes found there obviated the need for numerical bulk
dispersion relation calculations. By ailowing the number of layers N in
our films to be large we have recovered the surface dispersion relation

results of that study.

In Chapter 4 we considered these same ferromagnetic films using the
Green function equation-of-motion method from which we determined spin
correlation functions and verified that the same dispersion relations as
found in Chapters 2 and 3 arise. We demonstrated the use of equal-time
correlation functions in finding some layer-dependent magnetic
properties. These were the expectation values associated with the
square of the amplitude of spin precession for spin waves at a
particular value of [k"ao|. In a special case we considered the static
magnetization and illustrated the zero-temperature spin deviation with a
numerical example. We also illustrated the elliptical nature of the
spin precession. In the limits that N 3 @« and/or F 5 0 we recovired the
results of previous studies. We described how the extraction of the
imaginary parts of the analytically continued Green function can be
achieved where, unlike the semi-infinite case of Gopalan and Cottam

(199n), the poles associated with spin wave frequencies do not appear
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explicitly in the denominator. This general approach should alsc prove

useful for some of the suggested extensions mentioned below.

In Chapter 5 we applied a similar Green function method to semi-infinite
antiferromagnets with some modifications to accommodate the swvblattice
structure. We found dispersion relations for the surface modes that
were symmetric about Q = 0 in contrast to the uniaxial case. In the
limit that F 5 O we recovered the results of previous studies on
uniaxial systems, e.g. Cottam (1978). We calculated the intensities
associated with these modes as a function of layer number and
illustrated that a single spin wave mode gives rise to different
(elliptical) precessional amplitudes on the two sublattices. We
generalized the results to thin films in Chapter 6 for the special case
in which nonuniaxial anisotropy is a feature of surface spins only and
calculated dispersion relations for surface and quantized bulk modes and
the related intensities. For thin films the Green function results in
the limiting case of uniaxial anisotropy also represent a generalization

of previous work by Diep (1991) on spin 1/2 systems with even numt.rs of

layers.

We have shown that our results may be understood in the context of other
theoretical efforts involving simpler systems and in fact constitute a
generalization of theose studies. Our results could also be evaluated
through comparison with experimental observations. To this end it would
be of interest to have light scattering experiments performed on thin

films of materials which are consistent with the spin Hamiltonian we
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have chosen. These experiments should be carried out in a 180
backscattering geometry from one of the surfaces of the film in order to
maximize the surface sensitivity. For a specific real material the
formal dispersion relations we have found can readily be used to produce
numerical data given appropriate experimentally determined constants for
the exchange and anisotropy etc. The spin-wave frequencies thus
predicted should coincide with the position of the peaks in the measured
inelastic light scattering spectrum. A good candidate for such a study
would be CrBr3 for which Brillouin light scattering measurements on bulk

samples are available, dating back to the pioneering work of Sandercock

(1974). In this system, where S = 3/2 and 'I'C = 33 K, the anisotropy
parameters F and D are comparable in magnitude and D/J = O0.006. The
hexagonal structure of CrBr3 could be accommodated in the formalism we
have developed with a redefj-~ition of some structure factors. Other
materials which have bulk nonuniaxial anisotropy and, by virtue of
strong magneto-optic coupling are good subjects for light scattering
studies, include the antiferromagnets NiO and KZFeF‘. Bulk exchange and
anisotropy parameters are provided by inelastic neutron scattering
experiments by Hutchings and Samuelson (1971) for NiO and Thurlings et
al (1980) for KZFeF4. Numerical results relating to the Fe (110) films,
in which the anisotropy is cubic in the bulk and nonuniaxial on the
surfaces, could also be generated using, for example, the anisotropy
constants listed by Heinrich and Cochran (1993) for ultrathin Fe films
grown on various substrates. In these films the orientation of the
magnetization relative to the surface is seen to depend on the film

thickness as a result of surface anisotropy effects (e.g. see Prinz et
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al 1982, Gradmann et al 1986). It would therefore Le of interest fto
con.ider the csituation in which the magnetization is parallel to the

surface (as described in Appendix 1) as well as perpendicular to the

surface.

Further comparisons with experimental measurements could be based on SWR
data, in which case the dispersion curves near the zone centre should
coincide with the frequencies at which resonant absorption occurs. With
an improvement in surface sensitivity, inelastic neutron scattering
could (in principle) provide experimental data for spin-wave energies
throughout the Brillouin =zone. In addition, the cross-sections for
light scattering or the absorption strength for SWR could be calculated
for the specific real materials as shown in Chapter 4. Finally, the
layer dependence of the static magnetization could be verified
experimentally by, for example, electron or positron scattering (Gicdley

et al 1982) or neutron scattering (Felcher 1981, 1993).

Straightforward extensions to this work include some of those mentioned
in Appendix 1, e.g. considering the nonuniaxial Dzialoshinski-~Moriya
exchange interaction. Further numerical results could be produced,
particularly in the antiferromagnetic thin film case where the
anisotropy is nonuniaxial throughout the system. Another possibility
would be the production of numerical examples of the above-mentioned
light scattering cross-sections or SWR absorptions, ideally in some
realistic case for which experimental data could readily be produced. A

more involved extension would be to consider higher temperatures where
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the linear spin-wave approximation does not hold. This could be done
using, perhaps, a diagrammatic perturbation method for calculating the
Green functions. Our present results would then compare with those
found in the first-order of that method. Dipolar interactions could be
included in our Hamiltonian in order to compare with results of

experiments aimed at very small values of |k"a0|.

For the antiferromagnetic films it would be of interest to include
larger applied fields and investigate the spin-flop phase as was done in
the case of (effectively) infinite systems by Cottam and Latiff-Awang
(1679) (b). In particular, it would be a straightforward matter to
examine the dependence of the critical field for this transition, ”sr'
on the anisotropy parameters and film thickness etc. by looking for
field-induced instabilities in the spin-wave spectrum. This procedure
resembles that we have used in the case of ferromagnetic films in which
instabilities provoked by increasing the nonuniaxial parameter were
linked to ground state reordering. In the examples we have studied the
lowest-lying spin excitations have been acoustic surface modes having
energies determined by a number of “"~ctors, the film thickness and the
value of the nonuniaxial parameter being of particular interest here.
The field required to reduce the enurgies to zero and bring about the
spin-flop transition will therefore also be dependent on these

quantities.

Extensions could also be made to some other materials or structures.

For instance, the calculations in Chapters S and 6 could be extended to
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include canted antiferromagnetic systems, such as Nin, in which the
nonuniaxial parameter has a different sign on each sublattice. The
approach taken with the antiferromagnets could also be applied
relatively straightforwardly to ferrimagnets in which the two
sublattices are occupied by spins of different species. The basic
methods described here could be used in the extension to bilayers,
multilayers and superlattices for which the results of the present study
could compare in the limit that the separation between magnetic layers
is large. The operator method has recently been applied to find
dispersion relations in nonuniaxial superlattices (Albuguerque and
Cottam 1994), whereas a Green function treatment would allow the
calculation of spin correlation functions, as we have shown here.
Finally, it would be of interest to incorporate the effects of surface
defects, such as Iimpurities or reconstruction, which may occur in

experimental situations.
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APPENDIX 1

Extensions to the Basic Model

Throughout the discussion of ferromagnetic films (Chapters 2 through 4)
the formalism has been described for the case of a simple cubic (001)
crystal with nearest-neighbour exchange interactions and perpendicular
magnetization. It has been stated several times in the text that
modifications to accommodate some other systems and other assumptions
are relatively straightforward. In this Appendix we describe how other
cubic crystal symmetries, surface orientations and magnetization
directions could be dealt with, how next-nearest-neighbour interactions
could be included and how perturbation of the exchange or anisotropy
parameters on layers adjacent to the surfaces could be considered. We
also consider the possibilty of anisotropic exchange. These
modifications may be important in applications to specific materials and
in many cases they may affect the number of surface spin-wave branches

(e.g. see Wolfram and DeWames 1972).

Other Cubic Crystal Symmetries

We have so far considered simple cubic symmetry with a (001) surface.
If we consider BCC or FCC crystals or even SC with a different choice of
surface (e.g. (011)) the effect is seen in the structure factors un(k")
and vn(k") defined in (2.2.9). A generalized definition of 1(k") in
(2.2.10) can be made (following Kontos 1985) with separate functions

7"(k“) and 7l(k") denoting the cases of summations over in-plane
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neighbours and out-of-plane neighbours respectively. Assuming that the

interactions are between nearest neighbours only and satisfy (1.2.2) we

have
szn(k") ifn =1
u(k, ) = Jy, (k. ) ifn =2,..N-1 (AI.1)
n I nn
Js,yn(k") ifn =N
and
Jr, (k) if n = 1,2,..N-1
v (k") = (A1.2)
n 0 if n=N

where the exact form of the structure factors 7“(k“) and 7¢(k“) are
summarized in Table AI.1 for various cubic crystals of lattice constant
a (Kontos 1985). The formal results for the dispersion relation
expressions described in Chapter 2 are unaffected by the choice of
lattice and it is necessary only to substitute the appropriate un(k“)

and v (k,).
n N

In the case of antiferromagnetic systems the presence of two sublattices
complicates the extension to systems with other symmetries. As
mentioned in Chapter S it may be necessary to define different Green
functions, if for example, each layer contains spins of both
sublattices. It is therefore simpler to treat different lattice types

on an individual basis.

Parallel Magnetization

The magnetization may be taken to be in the plane of the film (rather
than perpendicular as we have assumed in the main text) with little
difference to the the formalism. This is due to the isotropic nature of

the exchange Hamiltonian which involves the scalar product S;-Sf By
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contrast, this is not the case for magnetostatic modes (see e.g. Wolfram
and DeWames 1972) which have the lower symmetry characteristic of
dipole-dipcle interactions. If the applied field and the preferred axis
for the magnetocrystalline terms are assumed to be in-plane then all
that is needed is a simple redefinition of the coordinate axes relative
to the film surfaces. For example, we could use z and x axes in the

plane of the surface and the y axis normal to it.

Next-Nearest-Neighbour Exchange

The possibility of next-nearest-neighbour exchange also leads to a
different evaluation of the factors u(k“). v(k") and 1(k"). If we
consider an SC (001) structure and assume that the exchange constant is
modified only for spin pairs whereln both spins are in a surface layer

then we have

’Js if both spins are in layer 1
J?: = {J,, If both spins are in layer N (AI.3)
J otherwise
rjs if both spins are in layer 1
J:j" = 4js, if both spins are in layer N (AI.4)
(J otherwise.
We find
Jsvu(k") + jsrn(k") ifn=1
u (k, ) = Jy. (k) + jy (k) if n=2,..N-1 (AI.S5)
n | - n [ I |
Js,wn(k") + js,vu(k") if n=N
and
v (k") = (AI.6)
" o if n=N
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where 1“(k“) and VL(ku) are given in Table AI.1 and

7/(k,) = 4 cos(k a ) cos(k a )

o x o y o
7i(k,) = 7, (k). (AI.7)
As in the case of alternate choices of crystal lattice this
generalization does not lead to any further complexity on the formalism

of Chapter 2.

Exchange Parameter Perturbed in Near-Surface Layers

If we assume nearest-neighbour exchange only but allow that the
interaction may be perturbed if even one spin is in the surface layer
then we find additional terms in the matrix A. For symmetric SC (001)
films we have

J1 if 1 and j are both in layer 1 or N

J2 if 1 OR j is in layer 1 or N (A1.8)

J otherwise

Here we find

leu(k") ifn=1
u (k“) = Jr,. (k,) if n=2,..N-1 (A1.9)
n | B |
len(k“) if n=N
and
3,7, (k) if n =1 OR N-1
v (k) ={ Jy, (k) if n = 2,..N-2 (AI.10)
n | ]
0 if n=N

The factors 7"(k") and TL(kn) are as in Table AI.1. We then find,

instead of (2.2.18),
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(AI.11)

where the quantities Al, A2 and A3 depend on the difference between the

perturbed surface parameters and the bulk values.
this for evaluating the Green functions etc.

example in case A.1 the matrix P defined in

different block form.

are easy to see,

(2.3.8)

The implications of

for

will have a

The determinant and inverse of this matrix,

necessary for evaluating the dispersion relations and Green functions,

will be slightly more complicated.

Anisotropy Parameters Perturbed on Near-Surface Layers

If we allow the uniaxial parameter to be perturbed on layers 2 and N-1

as well as 1 and N we find additional diagonal
For the case of symmetric films we assume
D1 if 1 is in layer 1 or N
Dl = D if i is in layer 2 or N-1
D otherwise
and therefore
Al 0 0
0 4= 0 92' .
0 .A2 0
| ..0 .
where
A2 = 2D(D2/D - 1)/J.
As 1in the case of the exchange parameters being

terms in A.

(AI.12)

(A1.13)

(AI.14)

perturbed on



near-surface layers the inclusion of these diagor2l teirms will
complicate the evaluation of the determinant and numerical extraction of

frequencies etc.

Some different assumptions concerning the nonuniaxial parameters are
straightforwardly incorporated. Special cases A and B have been defined
to distinguish between two different situations involving the
nonuniaxial anisotropy and the slightly different formalism is required
to deal with them. If for example, th2 nonuniaxial parameter is
perturbed from its bulk value on layers 2 and N-1 as well as 1 and N) it
could be dealt with within the same formalism as case A.2 by a
redefinition of v in (2.3.1) which would lead to a different (and

probably more complicated) version of (2.3.70) through (2.3.25).

Anisotropic Exchange

The anisotropic exchange Hamiltonian of (1.2.2) (Dzialoshinski 1958,
Moriya 1960) involves products of the operators s*, s° and S* at
different sites. After the Holstein-Primakoff transformation is made as
before, there are bilinear terms such as blbj and b:b: with i = j.
These are similar to those appearing in the nonuniaxial part of the
anisotropy Hamiltonian (2.1.6) where the operators instead refer to the
same site. The Dzialoshinski-Moriya interaction therefore gives rise to
nonuniaxial anisotropy effects (e.g. elliptical precession of spins).
It is easily treated within the same formalism that we have used. For
example, when a 2-D Fourier transform is carried out as in Section 2.2,
coupled equations of the same form as (2.2.12) are obtained. However,

the definition of the matrix { would be modified.
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TABLE AlI.1 Structure Factors

structure vn(k ) 7, (k)
SC (001) 2[cos(k a )+cos(k a )] 1
x o y o
SC (011) 2cos(k a ) 2cos(k a /v2)
X o y o
SC (111) 0 exp[-i(kx/\/g + ky/\/i)aol
+ e}'p[ikxao\/rz_ﬁ)_ ]
BCC (001) 0 4cos(k a /2)cos(k a /2)
X o y o
BCC (011) 4cos(k a /2)cos(k a /V2) 2cos(k a /2)
X o y o X o
FCC (001) 4cos(k a /2)cos(k a /2) 2cos(k a /2)+2cos(k a /2)
X o ¥y o % o y o
FCC (111) 2cos(kya°/\/§) exp[i(kx/2|/€+ky/2f2_)aol

+ cosl (kx/\/ﬁi»ky)aolzﬁl

+ cosi( kx/ﬁ—ky)ao/zﬁ ]

+ expli (kx/Zfé'—ky/Zﬁ)aol
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APPENDIX II

The Holstein-Primakoff Transformation of the Anisotropy Hamiltonian

In Chapter 2 we rewrote the ferromagnetic Hamiltonian in terms of boson
creation and annihilation operators using the method of Holstein and
Primakoff (1940). We made the near-saturation approximation to arrive
at the Hamiltonian of (2.1.6) which is quadratic in the boson operators
and introduced the spin-dependent quantities » and »’ in RA. Here we
will discuss the procedure in more detail. First we use the identities
in (2.1.1) to rewrite the Hamiltonian, defined in (1.2.1), as
~Z

= . 1 =t zy _ z
.RH =-3 FJJlJ (SlSJ + :lSj) guBHO ? Sx

E
A

-:,; D (s - 2 ? F LSH® + (D7), (AII.1)
The spin operators can be written in terms of the boson operators bi and
bt according to (2.1.2). Upon making the near-saturation approximation
(<S*> = S) we expand (2.1.2) and find (2.1.4). For the Heisenberg part
of the Hamiltonian the procedure is straightforward. We substitute the
expressions for S, S” and S® into ¥, and find,

® = -S {_:JJU(b:bi - bib) + gul £ bTb . (AI1.2)

Here we have simply neglected constant terms and those of quartic or

higher order in the boson operators.

The procedure for the terms in the anisotropy Hamiltonian is slightly
more involved. Walker (1963) and Hutchings et al (1970) argue that
certain matrix elements should be preserved under the transformation.
For example we see that the factors n and n’ arise if this criterion is

applied to the operators for the wuniaxial and nonuniaxial terms
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respectively. The matrix elements of the operators 1/2[(5:)2 + (S:)zl

and Sn'[btb: + btbxl are found to be the same for some, but not all spin
states. Desplite the flaw, this scheme is entirely adequate for our

purposes.

We can also demonstrate how these factors arise as a consequence of the
expansion of the definiticns in (2.1.2). For the uniaxial part of the
anisotropy Hamiltonian we have
_ _ 2 _ + + +
Rn.u = ? D‘(S Zbebx + btblbib’). (AII. 3)

The commutation relations of the boson operators (2.1.3) allow us teo

write bib: as (1 + b:bl) and hence

o 2 _ ot t t
Ru,u = ? Di(S ZSbnbi + bx(l + b‘bl)b‘)
= 2S5 § D‘btb‘(l - 1/2S) (AII.4)
t
where we have again neglected constant and higher order terms. The

factor 1 - 1/2S is labelled 7. For the nonuniaxial term we can write

2 =-st[ - bb'bbsas - b'bbb /4SS - bb'bb'b b /3287 ..
A, N 1 1 111 1 1 14 i1 1 1 11

+ b’ - b’ b /45 - b b b'/as - bbb b'D b’/azsz...]. (AI1.5)
i 1 1 i 1 i1 i 11 31 11

Again we wvrite blb: as (1 + brbi) and find

+ ¢+
R, ,=-SLF [b‘b‘ - (1 +b'b )b b /a5 - bTb b b /a8
+ + 2 + + + f
- (1 +bb)(1 + bbb b /325%. .. + blb! bib blb /4s
- b:'b:(l + b:’b‘)ms - brbt(l + brb‘)(l . brbl)/azsz...] (AIL.6)

and so on. We neglect higher order terms in the operators to write
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_ _ 2
RA." -5 ? Fl [b‘b‘(l 1/4S 1/325%...)

+ brbr(i - 1/85 - 1/3252...)]. (AI1.7)

172 172 '

We note that (1 - 1/4S - 1/32S%...) = (1 - 1/25)*2 = »'2 = 3. We have

now the Hamiltonian as written in (2.1.6).
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Some Relationships Involving the Complex Variables x and x,

We recall that the complex variables x, and x, are defined by (2.3.7)
for case A or (2.4.5) for case B. In either case |x1| s 1 and |x2| s 1
and all of the parameters upon which they depend are real. We see that
(2.4.16)
-1 -2
X + X + %X + x° = 2a. (AIII.1)
1 1 2 2
applies for either case A or case B. iIf both x1 and x2 are real then
the left hand side of (AIII.3) is real and its value is unrestricted.
Therefore, regardless of the value of a, for any real X, wWe can use
{(2.3.7) or (2.4.5) to find a real X, which satisfies both (AIII.1) and
the localization condition (-1 < x2 < 1). Any combination of x1 and x2

(e.g. X X, or X + xz) will also be real and the spin waves will be

localized as shown below.

If on the other hand X, and x, are both complex and written as exp(i@)
and exp(ig) respectively then (AIIl.1) can be written as

2cos(8) + 2cos(p) = 2a. (AIIL.2)
The left hand side of which is real but restricted to the interval
[-4,4] so that no solution is possible for |a| > 2. However this real
variable, defined in (2.2.15), is not physically restricted and for many
of the examples we have considered we have |a| > 2. Therefore we must
have x = exp(i®) and X, real (or vice versa). The left hand side is
then real and unrestricted in magnitude. In addition, the quantities
X X_ etc. are complex and the spin waves will be non-localized as shown

172
below.
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Non-localized or bulk spin waves have spatial dependence terms which
have wavelike dependence on the 2z coordinate. The localization of
surface spin waves is due to the presence of spatial dependence terms
which are not wave-like but exponentially decaying in the z direction.
In Chapter 4 it is seen that the Green functions contains various
combinations of x, and x, through the matrices A;l etc. When X, and x,
are both real they may be written as x = exp(-Aiz) and x, = exp(—Azz)
as explained in Chapter 4. A combination of these variables such as

X X, may then be written as exp(—[?\1 + Azlz) which again shows the

exponential decay behaviour characteristic of surface modes. In
contrast, for bulk modes we have seen that we may have X, = exp(-ikzz)
and x, = exp(-az) (or vice versa) so that the wavelike beha\viour

associated with xl will be present in combinations of X, and X,

The method of Gopalan and Cottam (1990) for the semi-infinite
ferromagnet exploits the relationship between X, and x,. Here we
discuss the generalization of this method to thin films which have
non-zero nonuniaxial parameters on the surfaces only (case B.1). We
consider the case of N = 3 as an example. The approach is to define a
complex variable « such that
x = X X (AIII.3)
and using (2.4.5)
X +x, = 2ax / (1 + x). (AIII. Q)

We then rewrite (2.4.11) in terms of «. For N = 3 we have

Bl

2
y1,2 )

_ 3 2 2 2 _
(xl.xz) = [xlx2 + (xlxz) p 4 (xlxz)(x1 + xz)l(A fs
+ [(x1 - xz)(l + (xlxz)s) * (x: + x:)(l + xixa)lA

+ 1 + (xixz)“ p < (x:: + x:). (AIIL.S)
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Using the following relationships, we rewrite this expression in

terms of xlx2 and x1 + xz (and hence n terms of «):

. 2
(x2 + xz) = (x + % )2 - 2x % = [——23!——] - 2x (AIII.6)
1 2 1 2 172
(1 +y)
3 3, _ 3 _ 2 2, _ ..
(x1 + xz) = (x1 + xz) 3 X X, (xl + xz) 6xlx2
= (x1 + xz) 3 X X, [(x1 + xz) 2x1x2] 6x1x2
) 3 2
= [—%ﬂ] - 34:[[——‘395—] - 2a:] - 6. (AI11.7)
(1 + x) (1 + x)

We can then write (AIIl.S5) in terms of . To find the surface modes we
may lock for zeroes on the interval -1 < & < 1. The same approach can

be used for thicker films.
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