Western University Scholarship@Western

Digitized Theses

Digitized Special Collections

1995

Climate Forcing: Observations From Chinese Loess Plateau And A Perspective Of The Influence Of Ocean-ridge Processes

Jingtai Han

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation

Han, Jingtai, "Climate Forcing: Observations From Chinese Loess Plateau And A Perspective Of The Influence Of Ocean-ridge Processes" (1995). *Digitized Theses*. 2555.

https://ir.lib.uwo.ca/digitizedtheses/2555

This Dissertation is brought to you for free and open access by the Digitized Special Collections at Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca, wlswadmin@uwo.ca.

Acquisitions and Bibliographic Services Branch

395 Wellington Street Ottawa, Ontario K1A 0N4 Bibliothèque nationale du Canada

Direction des acquisitions et des services bibliographiques

395, rue Wellington Ottawa (Ontano) K1A 0N4

Your file Volre référence

Our lile Notre référence

NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

AVIS

If pages are missing, contact the university which granted the degree.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, . C-30, et ses amendements subséquents.

献给我的母亲

Dedicated to my mother who passed away during this study

Acquisitions and Bibliographic Services Branch

395 Wellington Street Ottawa, Ontario K1A 0N4 Bibliothèque nationale du Canada

Direction des acquisitions et des services bibliographiques

395, rue Wallington Ottawa (Ontario) K1A 0N4

Your file Votre référence

Our file Notre référence

THE AUTHOR HAS GRANTED AN IRREVOCABLE NON-EXCLUSIVE LICENCE ALLOWING THE NATIONAL LIBRARY OF CANADA TO REPRODUCE, LOAN, DISTRIBUTE OR SELL COPIES OF HIS/HER THESIS BY ANY MEANS AND IN ANY FORM OR FORMAT, MAKING THIS THESIS AVAILABLE TO INTERESTED PERSONS.

L'AUTEUR A ACCORDE UNE LICENCE IRREVOCABLE ET NON EXCLUSIVE PERMETTANT A LA BIBLIOTHEQUE NATIONALE DU CANADA DE REPRODUIRE, PRETER, DISTRIBUER OU VENDRE DES COPIES DE SA THESE DE QUELQUE MANIERE ET SOUS QUELQUE FORME QUE CE SOIT POUR METTRE DES EXEMPLAIRES DE CETTE THESE A LA DISPOSITION DES PERSONNE INTERESSEES.

THE AUTHOR RETAINS OWNERSHIP OF THE COPYRIGHT IN HIS/HER THESIS. NEITHER THE THESIS NOR SUBSTANTIAL EXTRACTS FROM IT MAY BE PRINTED OR OTHERWISE REPRODUCED WITHOUT HIS/HER PERMISSION.

L'AUTEUR CONSERVE LA PROPRIETE DU DROIT D'AUTEUR QUI PROTEGE SA THESE. NI LA THESE NI DES EXTRAITS SUBSTANTIELS DE CELLE-CI NE DOIVENT ETRE IMPRIMES OU AUTREMENT REPRODUITS SANS SON AUTORISATION.

ISBN 0-612-03456-9

Name JINGTAI

Dissertation Abstracts International is arranged by broad, general subject categories. Please select the one subject which most nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided. $G + c \log g$

0352

0311

SUBJECT CODE

SUBJECT TERM

Subject Categories

THE HUMANITIES AND SOCIAL SCIENCES

COMMUNICATIONS AND THE	ARTS
Architecture	072
Art History	03/.
Cinema Dance	037
Fine Arts	035
Fine Arts Information Science	072
Jaumaliem	039
Journalism Library Science Mass Communications Maric Speech Communication Theater	039
Mass Communications	0/0
Sarach Communication	U41.
Theories	046

ESUCATION General Administration Adult and Continuing Agricultural	
General	0515
Administration	0514
Adult and Continuing	0516
Agricultural	0517
Art Bitingual and Multicultural Business Community College Curriculum and Instruction	0283
Business	OAR
Community College	0275
Curriculum and Instruction	0727
CO17 CINCIDOS	VJ I 6
Elementary	0524
Pinance	02//
Finance Guidance and Counseling Health Higher	∪⊃۱? ^ ≏ λ∩
Hickor	074
History of	0520
Mome Economics	0278
Industrial	0531
Industrial Language and Literature Mathematics	0279
Mathematics	0280
Music Philosophy of	0522
гоноворпу от	UYYU
Physical	

December 1	AFAE
Kannan	0232
Psychology	
Raligious	0477
St noss Se. undary Social Sciences	0714
32 1088	
Sa water	0433
A	
Control Cuttoners	0824
3000 300 000 mm.	
Sociology of	00.40
Seciology of	
Special	กรวง
Teacher Training	0630
1000 TOWN 1100 TOWN 100 TOWN 1	
• I I	0710
Technology	W/10
Tests and Measurements	CT2RR
The state of the s	
Vocational	2747
V C	
LANGUAGE, LITERATURE A	100
LANGUAGE, LITERATURE A LINGUISTICS Language General	0679
LANGUAGE, LITERATURE A LINGUISTICS Language General	0679
LANGUAGE, LITERATURE A LINGUISTICS Language General	0679
LANGUAGE, LITERATURE A LINGUISTICS Language General Ancient	0679 0289
LANGUAGE, LITERATURE A LINGUISTICS Language General Ancient Linguistics Modern	0679 0289
LANGUAGE, LITERATURE A LINGUISTICS Language General Ancient Linguistics Modern	0679 0289
LANGUAGE, LITERATURE A LINGUISTICS Language General Ancient Linguistics Modern Literature	0679 0289 0290 0291
LANGUAGE, LITERATURE A LINGUISTICS Language General Ancient Linguistics Modern Literature	0679 0289 0290 0291
LANGUAGE, LITERATURE A LINGUISTICS Language General Ancient Linguistics Modern Literature	0679 0289 0290 0291
LANGUAGE, LITERATURE A LINGUISTICS Language General Ancient Linguistics Modern	0679 0289 0291 0401

Asian Canadian (English) Canadian (French)

Middle Eastern

Philosophy	PHILOSOPHY, RELIGION AND THEOLOGY	•
History of 0320	Chilerenhy	0422
History of 0320	General	0318
Philosophy of U322 Theology	History of	0320
American Studies	Philosophy of	0322
Anthropology Anchaeology Archaeology Archaeology O326 Physical Business Administration General Accounting O272 Banking O770 Management Marketing O388 Canadian Studies Canadian Studies General O501 Agricultural O503 Commerce-Business O505 Finance History Labor O510 Theory O511 Theory O366 Geography O366 Geography O366 Geography O367	American Shuling	0323
Physical 0327	Anthropology Archaeology	0324
Business Administration General 0310	Physical	
Banking	Business Administration General	0310
Management 0454 Marketing 0338 Canadian Studies 0385 Economics 0501 Agricultural 0503 Commerce-Business 0505 Finance 0508 History 0509 Labor 0510 Theory 0511 Folklore 0358 Geography 0366 Geography 0351 History 0351	Bankina	0770
Economics General	Management	0454
Agricultural 0503 Commerce-Business 0505 Finance 0508 History 0509 Labor 0510 Theory 0511 Folklore 0358 Geography 0366 Gerontology 0351	Fennanies	
Finance 0.508 History 0.509 Lobor 0.510 Theory 0.511 Folklore 0.358 Geography 0.366 Gerontology 0.351	Agricultural	0503
Lobor 0510 Theory 0511 Folklore 0358 Geography 0366 Gerontology 0351	Finance	.0508
Folklore 0358 Geography 0366 Gerontology 0351 History	labar	20510
Gerontology	Folklore	0358 0366
	Gerontology	
General 0578	General	0578

Ancient	057
Modern	059
Block	. 0321
African	. 033
Asia, Australia and Oceania	033
Canadian	0334
Latin American	033
Middle Eastern	.0333
United States	.0337
History of Science	0585
General	0615
International Law and	
Relations	0616
Public Administration	0617
Recreation	0453
General Criminology and Penology Demography Ethnic and Racial Studies	0626
Criminology and Penalogy	0627
Demography	393 7
Individual and Family	203
Studies	0628
Industriai and Labor	
Relations Public and Social Welfore	0629
Public and Social Welfare Social Structure and	0630
Development	0700
Development	0344
Transportation	0709
Urban and Regional Planning	0999
Women's Studies	0453

THE SCIENCES AND ENGINEERING

THE CONTRACTOR	
MOLOGICAL SCIENCES	
Agriculture	
General	0473
Agronomy	0285
Animal Culture and	
Nutrition	0475
Animal Pathology	0474
Food Science and	04/6
Food Science and	
Technology Forestry and Wildlife	0359
forestry and Wildlife	0478
Plant Culture Plant Pathology Plant Physiology	0479
Plant Pathology	0480
Plant Physiology	0817
Poses Monagement	0 777
Range Management Wood Technology	0777
**************************************	0/40
Biology	
General	0306
Anatomy	0287
Biostatistics	0308
Botony	0300
Call	0370
Earles.	0377
Ecology	
Ecology Entomology	0353
	UJO7
Limnology Microbiology	07 9 3
Microbiology	0410
Molecular	0307
Neuroscience	0317
Oceanography	0410
Physiology	0433
Radiation	0821
Vateringry Science	0778
Zoology '	0472
Zoology Biophysics General	
Canand	0784
Medical	0740
//ISSIGGI	07 60

EARTH SCIENCES	
Biogeochemistry	0425

Geodesy Geology Geophysics Hydrology Mineralogy Paleobotary Paleocology Paleonology Paleozoology Palynology Palynology Physical Geography Physical Oceanogra	0372 0373 0388 0411 0345
HEALTH AND ENVIR	OMMENTAL
SCIENCES Environmental Science	nes 0768
Audiology	0566 0300 0992
Dentistry	
Hospital Manage Human Develops	
Medicine and Su Mental Health	
	0569 0570 ynecology 0380 oith and 0354 0381
Occupational He Therapy	olth and 0354
Ophthalmology Pathology	0381 0571
Pharmacology	0419
Physical Therapy Public Health	0382 0573
Radiology Recreation	0574

Speech Pathology Taxicology Home Economics	0460 0383 0386
PHYSICAL SCIENCES	
Pure Sciences	
Chemistry General.	0485
Agricultural	0749
Analytical .	0486
Biochemistry	.048/
Nuclear	0738
Organic	.0490
Analytical Biochemistry Inorganic Nuclear Organic Pharmaceutical Physical Polymer Polymer Polymer	0491
Polysical	0494
Radiation	0754
Radiation Mathematics	0754 0405
Acoustics	0003
General	
Astrophysics	0606
Atomic Science	0749
Astronomy and Astrophysics Atmospheric Science Atomic Electronics and Electricity Elementary Particles and High Enemy	3507
Elementary Particles and	
High Energy	0798
Fluid and Plasma Mulecular Nuclear Optics	0609
Nuclear	0610
Optics	0752
Radiation	U/ 30
Statistics	.0463
Applied Sciences	
Applied Mechanics	0346
Applied Mechanics	. 0984

Engineering	
General Aerospace Agricultural Automotive Biomedical	0537
Aerosocce	.0538
Agricultural	0539
Automotive	0540
Biomedical ,	0541
Chemical	0542
Civil	0543
Chemical Civil Electronics and Electrical Heat and Thermodynamics Hydraulic Industrial Marine Materials Science Methodical	. 0544
Heat and Thermodynamics	0348
Hydraulic	0545
Industrial	.0546
Marine	. 0547
Materials Science	0794
Mechanical	0548
Methanical	0743
Mining	0551
Nuclear	0552
Mining	0549
Petroleum	.0765
Petrology Sonitory and Municipal System Science Geotechnology Operations Research	. 0554
System Science	. 0790
Geolechnology	0428
Operations Research	0796
FRISHES PECTURORUMY	U/ 7
Textile Technology	0994
PSYCHOLOGY	
SI CIÓMAI	
General	. 0021
Citationi	0384
Clinical	. 0024
Developmentor	0020
Experimentol	0023
Passanalit.	. 0024
benaviora: Clinical Developmental Euperimental Industrial Personality Physiological Psychobiology Psychopiology	0023
Production	. 0767
Prochamatic	0347
1 2 y C 1 1 2 1 1 1 C 2 1 1 1 1 1 1 1 1 1 1 1	
Social	

ABSTRACT

This study involves improving knowledge of the climatic and environmental changes during the past 3 million years in the region of the Chinese Loess Plateau and the forcing mechanisms of global glacial-interglacial climate oscillations during the Quaternary. Loess sections consisting of loess-paleosol sequence, fluviolacustrine sequence, and the red clay formation were selected for detailed study. Laboratory methods used included analyses of paleomagnetism, ¹⁴C dating, bulk sample mineralogy, grain-size distribution, clay mineralogy, major and trace element geochemistry, iron geochemistry, stable carbon-isotopes, carbonate content, organic matter content, pollen and pedo-micromorphology by photomicroscopy and SEM.

The fluviolacustrine sequence in the Shijiawan section was deposited between 3.05 and 1.9 Ma B.P. with a dominant alluvial facies. The red clay formation was developed under a constant warm-dry climate 2.7 Ma ago. The paleovegetation in the southern Guanzhong basin was of typical sage steppe type during the period of 3.0-2.7 Ma B.P. Evidence suggests that the red clay was derived from the northwest deserts by aeolian transport, indicating dust deposition started long before the major loess accumulation. The dustfall rate in the late Pliocene is much lower than in the Quaternary, implying that the Siberian cold high was abruptly intensified 2.6 Ma B.P. Pollen evidence, pedological studies and dustfall rate indicate that a profound climatic change and regional climate regime replacement were coincident with the advent of the first Quaternary glaciation. As demonstrated, the Quaternary climate in the loess plateau responded strongly to the

world glacial-interglacial signals which are related to the sea level-coastal positionprecipitation linkage.

As has been suggested by many workers, the last and rapid deglaciation must be linked to major changes in ocean circulation. It is difficult to explain this change by changes in solar insolation alone. In fact, the albedo changes might have worked to maintain the ice age. A first attempt has been made to examine if ice loading could have contributed to asthenosphere flow and intensified ocean ridge volcanism which in turn could perturb ocean circulation patterns and increase atmospheric CO₂. The first modeling results suggest that the process could be of quantitative significance.

ACKNOWLEDGEMENTS

First, I am grateful to my supervisor, Dr. Williams S. Fyfe for his instructions, encouragement and financial support throughout my study. It is his generosity and humanity that fostered my long journey of thinking on the frustrating questions faced in my study. Under extremely difficult financial situations, he still took full responsibility to support me. He shared my feelings and gave me a thorough understanding whenever I met any kinds of difficulty and provided inspiration for further endeavour. His broad knowledge enlightened me when I was in darkness. His constructive comments and patient proof reading led to completion of the thesis. Behind each line of the thesis lie his untiring work and precious time. What he did for me is far beyond my words of appreciation. For this, I am deeply indebted to him for the rest of life.

I would like to thank Dr. H.C. Palmer for help with paleomagnetic measurements, Dr. Fred Longstaffe for carbon isotope analysis, and Dr. Stephen Hicock for help in experiments of grain-size and carbonate concentration and for the free access to his lab.

Special thanks are conveyed to Dr. Weiming Liu for his great help in computer modelling. He spent numerous hours on the model establishment and generously allowed the use of his computer program. Without this help, the modelling could not have been realized for the thesis.

I would like to thank Dr. Chales Wu for XRF and iron geochemistry analyses, Y. Cheng for XRD analysis, P. Middlestead for carbon isotope analysis, Prof. Terasmae and Fuhua Yan for pollen analysis, W. Logan for organic matter analysis, John Forth and

G. Wood for preparation of thin sections of paleosols.

I would also like to thank Dr. Mike Powell and Ms. M. McMahon who provided much help whenever needed.

I especially thank Kim Law who made great efforts on proof reading of the entire manuscript, and Fagan Roxane who read through some chapters.

My Chinese colleagues, Dr. Jiaqi Liu, Jiakuan Huang, Zhonglin Qi and Zhongli Ding are gratefully acknowledged for facilitating my study and field work. Dr. D.W. Mo provided the literature I needed for checking plant nomenclature and some plant samples.

I wish to express my deep appreciation to my former supervisor, Dr. Liu Tungsheng for his encouragement.

I am grateful to Dr. Michael Anketell of Manchester who helped me find a great supervisor, Prof. Williams S. Fyfe.

This study was supported by NSERC grants to W.S. Fyfe and a China NSF grant to the author.

Lastly, I would appreciate my family for creating a good environment for the thesis writting.

献给我的母亲

Dedicated to my mother who passed away during this study

TABLE OF CONTENTS

CERTIFICATE OF EXAMINATION	
ABSTRACT	
ACKNOWLEDGEMENTS	v
TABLE OF CONTENTS	viii
LIST OF PHOTOGRAPHIC PLATES	xi
LIST OF TABLES	xi
LIST OF FIGURES	xii
CHAPTER 1: INTRODUCTION	
1.1 Purpose	1
1.2Methods	1
1.3 Organization	2
1.4 General Physiography and Geologic Setting	3
1.5 Previous Studies of the Cenczoic Paleoclimate	
in the Chinese Loess Plateau	13
1.6 An Overview on the Forcing Mechanisms of	
the Quaternary Glacial Cycle	21
1.7Summary	29
•	
CHAPTER 2: STRATIGRAPHY AND THE CHRONOLOGY	
2.1 General Features of the Cenozoic Strata	30
2.2 Study Sections for Paleomagnetic Dating	
2.3 Paleomagnetic Measurement and Results	
2.4 Discussion	43
2.5 Stratigraphic Correlations	50
CHAPTER 3: 813C SIGNATURES OF REGIONAL VEGETATION AND	
RELATED SOILS	
3.1 Introduction	53
3.2 Regional Vegetation and Related Soils	52
3.3 Sampling and Laboratory Methods	56
3.4 Results and Discussion	57
J. T Nesuls wire ly isoussivii	
CHAPTER 4: CLIMATE FACTORS AND THE BEST DEVELOPED	
PALEOSOL IN THE LOESS SEQUENCE	
I ALLOGOL III IIIL LOLGO GLQOLIGO	
4.1 Introduction	69
4.2 Field-Observation Features of S5	71
4.3 Methods	
T,_J171ULIURIJ,,	,

4.4 Results and Discussion	
4.6 δ^{13} C Signatures of Organic Matter and Paleovegetation	
CHAPTER 5: CLIMATIC CHANGE IN THE PERIOD OF	
LATE PLIOCENE-EARLY PLEISTOCENE	
5.1 Introduction	
5.2 Sedimentary Analysis of the Fluviolacustrine Sequence	105
5.3 Palynological Analysis	
5.4 Stable Carbon-Isotope Analysis	
5.5 Paleovegetation and Paleoclimatic Interpretation	117
5.6 Later Pliocene Red Clay and Climatic Implication	
5.7 Environmental Change during the Period of 3.0-1.9 Ma B.P.	135
CHAPTER 6: CLIMATE CHANGE IN THE LOESS PLATEAU DURIN PAST 3 MILLION YEARS: THE GLOBAL SIGNIFICANO	
6.1 Introduction	
6.2 Linkage between Climate of North China and Sea Level Change	
6.3 Relationship between the Summer Monsoon and the Winter Monsoon	153
6.4 Correlations of Climatic Records between the Loess Plateau and	
Deep Sea Cores	
6.5 A Rapid Transition of Climate Regime between 2.7 and 2.5 Ma	159
CHAPTER 7: POSSIBLE INFLUENCE OF OCEAN RIDGE PROCESSE SECULAR CLIMATE CHANGE	S ON
7.1 Introduction	
7.2 Earth model Construction and Assumptions	
7.3 Methods	
7.4 Modeling Results	182
7.5 Displacement at Global Mid-Ocean Ridge System Induced by the Ice Sheet Loads	183
7.6 Topography of the World Mid-Ocean Ridges and	
the Ice Sheet Waning and Waxing	193
7.7 Magma Output at Mid-Ocean Ridges	
7.8 Effects on Rapid Deglaciation and Global Warming	
7.9 Fluctuations in Spreading Rates at the Ocean Ridges and	
Glacial-InterglacialOscillations	205
7.10 Possible Link between Ocean Ridge Process and	
Ocean 87Sr/86Sr Changes on Glacial Cycle Scale	207

7.11 Support from Geologic Evidence	210
7.12 Comments on the Mid-Ocean Ridge Process-Link of the Quaternary Glacial Cyclicity	214
the Quaternary Gracial Cyclicity	214
CHAPTER 8: CONCLUSIONS AND FUTURE WORK	
8.1 Conclusions	221
8.2 Future Work	226
APPENDIX I. DISPLACEMENT OF THE MID-OCEAN RIDGE SYSTEM	
CALCULATED BY MODEL CRUST 3-1	227
APPENDIX II. FINITE ELEMENT NODE COORDINATES	234
APPENDIX III. FINITE ELEMENTS, LITHOSPHERIC THICKNESSES	
AND ICE SHEET INPUT	246
REFERENCES	278
VITA	303

LIST OF PLATES

Plate 1-1 Distant views of the Guanzhong basin and a working section
Plate 2-1 Contacts of the loess and the red clay42
Plate 4-1 Paleosol S5 profiles
Plate 5-1 Distribution pattern of the carbonate nodules
in the red clay formation141
LIST OF TABLES
Table 3-1 δ^{13} C values of major plants in Yanyu and Ziwu
Table 3-2 δ^{13} C values of soil organic matter in the Yanyu and Ziwu profiles60
Table 4-1 Field observation of S5 in the Shijiawan section
Table 4-2 Grain-size distribution of S5
Table 4-3 Major element composition of \$5
Table 4-4 Major element composition of S5 after removal of CaCO ₃ 89
Table 4-5 Trace elements of S5 in the Shijiawan section
Table 4-6 CIA /alues through S5 profiles94
Table 5-1 Field observation of the red clay formation
Table 5-2 Grain-size distribution of the red clay
Table 5-3 Major element composition of the red clay
Table 5-4 Major element composition of red clay after removal of CaCO ₃
Table 5-5 Dustfall rates in the Chinese Loess Plateau during the past 3.4 Ma138

Table 7-1 Parameters and their values used in the model	172
Table 7-2 Quasi-instantaneous magma output at ocean ridges	200
LIST OF FIGURES	
Figure 1-1 Distribution of the Chinese Loess Plateau	5
Figure 1-2 Annual precipitation in the Loess Plateau	8
Figure 1-3 Map of the study area	9
Figure 1-4 Yanyu-Shijiawan cross section	12
Figure 1-5 Duanjiapo-Shijiawan cross section	15
Figure 2-1 The Shijiawan Section	34
Figure 2-2 The Yanyu section	37
Figure 2-3 Systematic demagnetization curves	40
Figure 2-4 Magnetostratigraphy of the Shijiawan section	45
Figure 2-5 Magnetostratigraphy of the lower part of the Yanyu section	47
Figure 2-6 Stratigraphic correlations of the regional strata	52
Figure 3-1 δ^{13} C values in the Ziwu profile	62
Figure 3-2 δ ¹³ C values in the Yanyu profile	64
Figure 4-1 XRD spectra of bulk samples of S5 in Shijiawan	80
Figure 4-2 XRD spectra of bulk samples of S5 in Chang'an	82
Figure 4-3 XRD spectra of clay minerals of S5 in Shijiawan	84
Figure 4-4 XRD spectra of clay minerals of S5 in Chang'an	86

Figure 4-5 Variations of various pedogenic indices through profiles96
Figure 4-6 δ ¹³ C signatures and organic matter content of S5100
Figure 5-1 Lithologic column of the lower part of the Shijiawan section107
Figure 5-2 Pollen spectra and δ ¹³ C signatures of
the fluviolacustrine sequence
Figure 5-3 XRD spectra of clay minerals of the red clay formation
in the Yanyu and Luochuan sections127
Figure 5-4 Variations of various pedogenic indices
through red clay profiles132
Figure 6-1 Annual precipitation in China and the summer monsoon
Figure 6-2 Time series of paleoenvironmental parameters
since 18 000 yr B.P149
Figure 6-3 Reconstructed paleoprecipitation map at 18 000 yr B.P
Figure 6-4 Comparison of the past 3 Ma climatic records from
loess sequence and marine sediments
Figure 7-1 A spheric shell model of the Earth
Figure 7-2 A finite element mesh of the northern hemisphere
Figure 7-3 A finite element mesh of the southern hemisphere
Figure 7-4 A finite element mesh from 50°N to 50°S
Figure 7-5 A finite element mesh from 35°N to 30°S
Figure 7-6 Displacement of mid-ocean ridges, north hemisphere sector

Figure 7-7 Displacement of mid-ocean ridges,	
southern Indian-Pacific Ocean sector	187
Figure 7-8 Displacement of mid-ocean ridges,	
Mid Atlantic-southern Indian Ocean sector	189
Figure 7-9 The global mid-ocean ridge system	192
Figure 7-10 Ice sheet loading and ocean ridge	
processes: Ridge high type	194
Figure 7-11 Ice sheet loading and ocean ridge	
processes: Ridge low type	198
Figure 7-12 Seawater 87Sr/86Sr variation of the past	
half million years	209
Figure 7-13 Deep ocean temperature change for the last glacial cycle	213
Figure 7-14 Mid-ocean ridge processes and	
the Quaternary glacial-interglacial oscillations	220

The author of this thesis has granted The University of Western Ontario a non-exclusive license to reproduce and distribute copies of this thesis to users of Western Libraries. Copyright remains with the author.

Electronic theses and dissertations available in The University of Western Ontario's institutional repository (Scholarship@Western) are solely for the purpose of private study and research. They may not be copied or reproduced, except as permitted by copyright laws, without written authority of the copyright owner. Any commercial use or publication is strictly prohibited.

The original copyright license attesting to these terms and signed by the author of this thesis may be found in the original print version of the thesis, held by Western Libraries.

The thesis approval page signed by the examining committee may also be found in the original print version of the thesis held in Western Libraries.

Please contact Western Libraries for further information:

E-mail: <u>libadmin@uwo.ca</u>

Telephone: (519) 661-2111 Ext. 84796

Web site: http://www.lib.uwo.ca/

CHAPTER 1

INTRODUCTION

1.1. Purpose of this Study

This study is designed to document the paleoclimatic changes over the past 3 million years of the Chinese Loess Plateau and in particular, to address the following issues:

- 1. Genesis of the Red Clay formation and the related environment;
- 2. The amplitudes of climatic variations in the central Loess Plateau during the Quaternary period;
 - 3. The temporal trend of the climate in the region since late Pliocene;
 - 4. The linkage of climate change between North China and global systems;
- 5. The forcing mechanism of the global glacial climate oscillations during the Pleistocene.

1.2. Methods

A wide-scale field investigation was conducted throughout the loess plateau, and several sections were selected for detailed study (see Figures 1-1 and 1-3). The Shijiawan section, composed of a loess-paleosol sequence and an underlying fluviolacustrine sedimentary sequence, was targeted to document the transitional processes of climatic shift from the late Pliocene to the early Pleistocene, to reconstruct the climatic conditions in the late Pliocene, and to estimate the climate conditions implied by the best developed

paleosol layer "S5" in the Chinese loess sequences. The Chang'an section was chosen for the paleosol S5 study. The Yanyu primary section and Luochuan section (Fig. 1-1), consisting of a red clay formation and a loess-paleosol sequence, were studied to extract climatic information contained in the red clay formations. The Ziwu and another Yanyu site were chosen for stable carbon-isotopic studies of modern vegetation and related soils to establish the criterion for interpretation of isotopic signatures in paleosols.

Field observations and systematic sampling were followed by a variety of laboratory analyses, and paleomagnetism and radio-carbon dating were used for chronostratigraphy. To obtain environmental and climatic information, analyses including stable carbon-isotopes of organic matter, grain-size distribution, clastic mineralogy and clay mineralogy by XRD, XRF, and REEs, titrations for carbonates, iron-valence ratios and organic matter content, micromorphology of soil by photomicroscopy and scanning electron microscopy, and pollen analysis were conducted. To test the idea that the midocean ridge processes could have played a leading role in pacing the Quaternary glacial cycles, a computer-based finite-element elastic model of the Earth was established to investigate the climatic influence of pulsative magmatism at mid-ocean ridges induced by the Earth's surface loading with ice sheets during glacial periods. Descriptions of the techniques employed will be given in related chapters where necessary.

1.3. Organization

Chapter 1 describes the physical character of the study area and summarizes previous work done on both the regional topics and general issues, climate forcing of the Quaternary glacial-interglacial oscillations. Chapter 2 includes descriptions of the selected

working sections and determinations of their ages. The stable carbon-isotope signatures of modern vegetation and organic matter in related soils are discussed in Chapter 3, providing the basis for paleoclimatic interpretation. In Chapter 4, the climate conditions of the best developed paleosol in the Chinese loess sequences is evaluated. Chapter 5 focuses on the climate reconstructions of the late Pliocene from the fluvio-lacustrine sequence and the red clay formations. The origin of the red clay is also discussed. Temporal variations of climate in the Chinese Loess Plateau through the past 3 million years and a linkage between the regional and global climate change on a glacial cycle scale is proposed in Chapter 6. In Chapter 7, the possible influence of mid-ocean ridge processes on glacial cyclicity is investigated with a finite-element elastic spheric model of the Earth. Chapter 8 is comprised of conclusions and future work.

1.4. General Physiography and Geologic Setting

The Chinese Loess Plateau is located in central to western China, with an area of about 440,000 km² (Liu et al., 1985). The Qilian Mountains and the Qinling Mountains form the southern boundaries of the loess plateau, while the Taihang Mountains (a natural obstacle for northwesterly winds), form the east border of the plateau. In the northwestern regions the loess plateau links up with the deserts of northwestern China. The main body of the plateau is distributed within the area between 35-40°N and 100-115°E, comprising a loess belt extending NWW-SEE (Figure 1-1). Presently, the climate in this region varies from semi-humid in the southeast to semi-arid in the northwest, a climatic transition regime between humid and arid zones. The mean annual precipitation in the southernmost region is 600 to 700 mm and decreases to about 250 mm in the

Figure 1-1. Distribution of the Chinese Loess Plateau. Locations of the important sections mentioned in the thesis are indicated. The outlined square denotes the major study area and is shown in Figure 1-3. (from Liu et al., 1989).

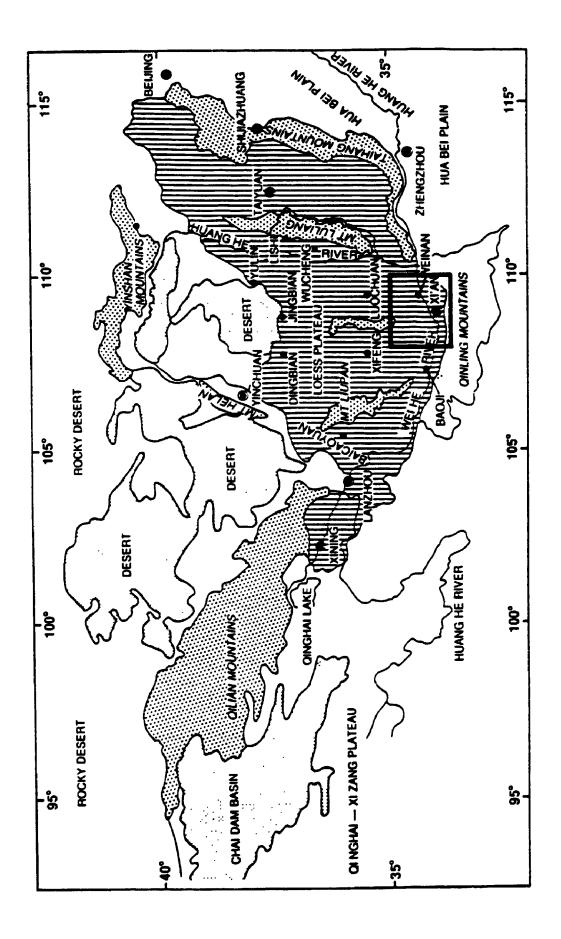


Figure 1-2. Distribution of the mean annual rainfall (mm) in the Loess Plateau. (from Liu et al., 1989).

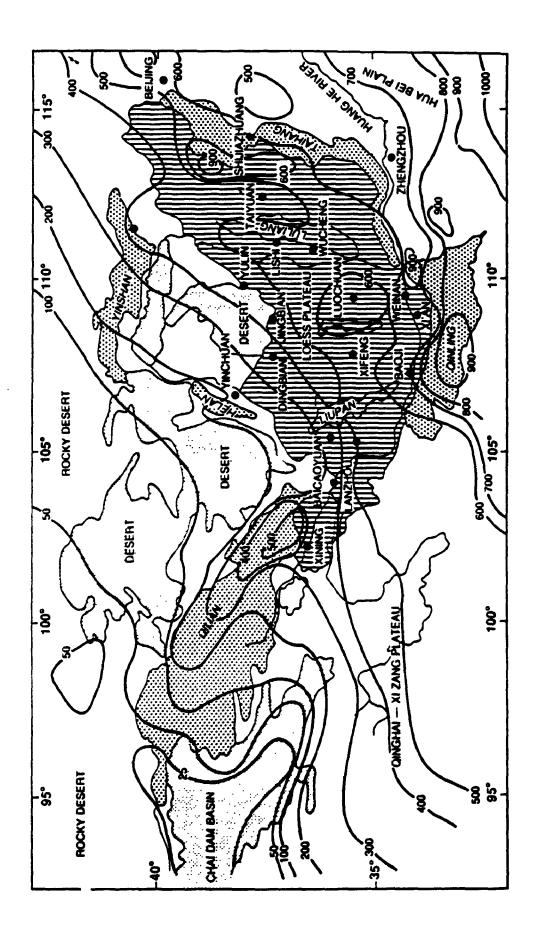
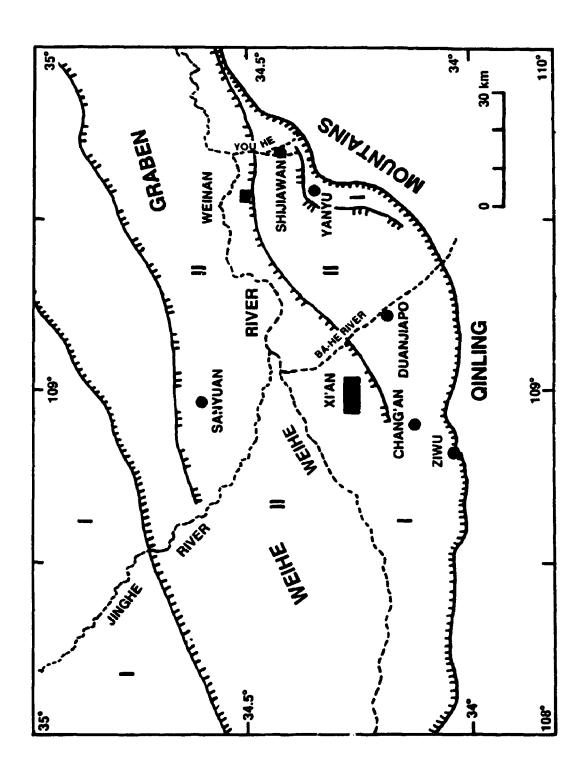
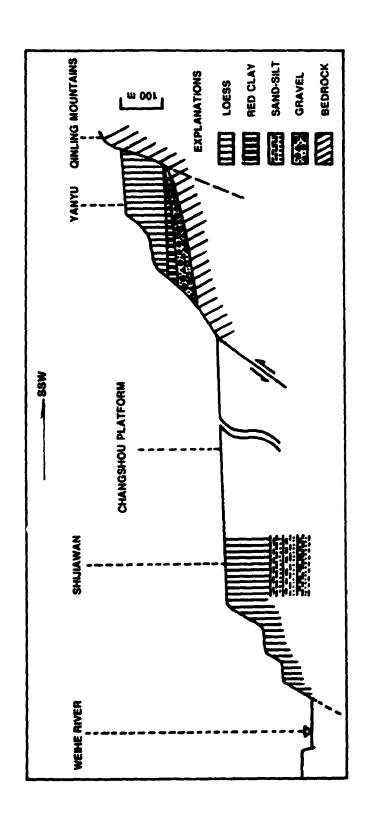



Figure 1-3. Map of the major study area showing locations of the Qinling Mountains and the Guanzhong Basin. The ticked lines show the normal faults defining the margins of the Weihe Graben (Guanzhong Basin). Symbol I, distribution areas of the red clay formation; symbol II, distribution areas of late Pliocene fluviolacustrine sequences. (produced from satellite images of 1975 and China Map Press, 1984).



northwestern regions near the deserts (see Figure 1-2). The change in annual temperature is similar to the change in precipitation, decreasing northwestwards across the loess plateau.

The major study area is in the southern part of the central loess plateau, the Weihe basin (Guanzhong Basin). The Weihe river lies in a median line of the basin from west to east (Figure 1-3) and links to the Huanghe (Yellow) river as a first grade major tributary (see Figure 1-1). The basin is characterized by wide and smooth terraces mainly composed of reworked loess. On the north side of the river, mega-terraces constitute the major body of the Guanzhong Plain, and each terrace is about 10 km in width. On the south side, the basin is segmented by tributaries of the Weihe river and divided into platform belts (see Plate 1-1).

The Weihe graben was formed in the early Cenozoic (Chinese Academy of Geology, 1974), but a faulting event along the Ba-he river can be speculated to have occuria about 5 million years ago (cf. Zheng et al., 1991). This is manifested by the difference in lithostratigraphy between both sides of the river. On the western side, the bedrock is overlain by the red clay formation and subsequently covered with a loess sequence. On the eastern side, the red clay is absent. Instead, a fluviolacustrine sequence was developed until early Pleistocene as indicated by the Shijiawan section. The graben lake disappeared for the most part during the period of 1.5-1.8 million years B.P., and then loess was deposited on the fluviolacustrine sequence. Presently, the entire basin is covered with thick loess and interbedded paleosols. The Qinling mountains, the southern margin of the basin, also delineates the southernmost limit for loess deposition (Figure 1-3). The spatial distribution of the Cenozoic strata is illustrated in Figures 1-3, 1-4 and

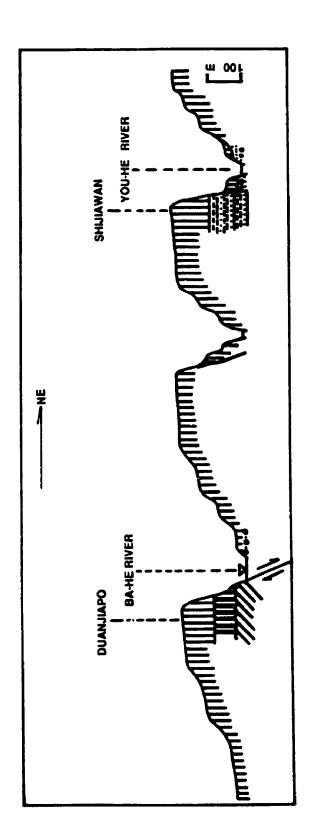
Figure 1-4. Sketch of a cross section from Yanyu to Shijiawan. See locations in Figure 1-3.

1-5. Due to differential uplift within the graben basin, loess platforms developed on the south side of the Weihe river. These provided abundant natural outcrops for detailed geological studies.

1.5. Previous Studies of the Cenozoic Paleoclimate in the Chinese Loess Plateau

1.5.1. Loess Deposits

Through the work of many generations, the investigation of the Chinese loess has achieved significant progress. Over one hundred years ago, the German scholar F.V. Richthofen (1877, 1882) first proposed an aeolian origin of the Chinese loess (subaerial deposit). In the 1930's, Obruchev (cf. Liu, 1965) developed the idea of wind-blown deposition of the Chinese loess after his observations in Europe, central Asia and China. From the 1930's to 1950's, the Cenozoic strata in the Chinese Loess Plateau and subdivided based on field observations and vertebrate fossils (eg., Teilhard de Chardin and Young, 1930, 1931; Young, 1934; Masukenkichi and Todatatsu, 1944). Systematic studies were initiated in the late 1950's by T.S. Liu and his research team. The major accomplishments of their first decade of study were compiled in three monographs, The Loess along the Middle Reaches of the Huanghe River (Liu, 1964), The Loess Deposits of China (Liu, 1965), and The Composition and Texture of Loess (Liu, 1966). Wide-scale field observations and laboratory analyses indicated that loess of all ages is very similar in mineralogical composition and grain-size. Over a wide spatial range, systematic variations in thickness and grain-size composition have been found, both decreasing from northwest to southeast. These characteristics lead to a convincing Figure 1-5. Sketch of a cross section from Duanjiapo to Shijiawan. For explanations of the symbols see Figure 1-4 and for locations see Figure 1-3.



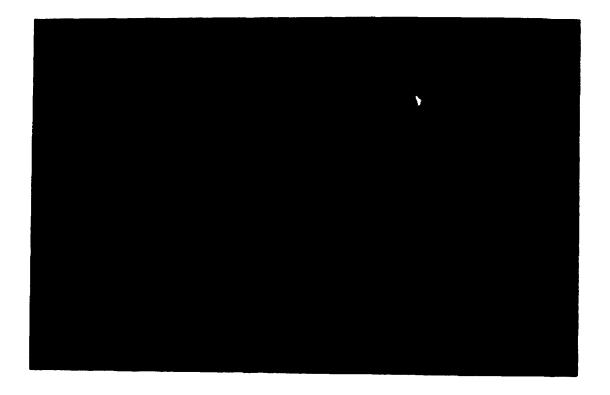


Plate 1-1. Photographs showing the south side of the Weihe (Guanzhong) Basin. The upper-plate was taken at Yanyu village near the northern margin of the Qinling Mountains (on the upper-right corner). The Yanyu section is shown at lower-right corner. Multiple loess platforms of the southern Guanzhong Basin constitute the southernmost area of the Chinese Loess Plateau. The lower plate is a distant view of the Changshou Yuan (platform). The Shijiawan section is located in a short valley cutting the platform.

conclusion that loess in the Chinese Loess Plateau is an aeolian deposit originating from the deserts.

Since the 1970's, Chinese loess research has concentrated on individual sections, and great interest has been given to temporal changes in various profiles. During this period, three major topics have been stressed: 1) chronostratigraphy of the loess-paleosol sequences; 2) environmental and climatic implications of the loess-paleosol sequences; and 3) comparison of the climatic record in the loess-paleosol sequences with global climate change documented from deep sea sediments. The books *Loess and the Environment* (Liu, 1985) and *The Recent Research of Loess in China* (Sasajima and Wang, 1984) represent the major achievements obtained in 1970s. After an international workshop on loess research in Xi'an in 1985, research on the Chinese loess-paleosol sequences was rejuvenated and characterized by global cooperation (Liu, 1987, 1991). The key sections with detailed studies are at Luochuan (Heimugou), Xifeng, Xi'an (Liujiapo) and Baoji (locations shown in Figure 1.1). The main conclusions were:

- 1. The accumulation of the Chinese loess sequence started at about 2.4 Ma B.P. in the Luochuan section (Heller and Liu, 1982) and at approximately 2.5 Ma B.P. in other sections (Sun et al., 1985, Ding et al., 1990);
- 2. The climatic fluctuations recorded in the loess-paleosol sequences are indicated by mineralogy, grain-size and chemical compositions (Liu and Yuan, 1987) and also by pedogenic studies. The loess layers and paleosols represent cold-dry and warm-wet climate episodes respectively (Liu, 1985; Ding, 1988; Guo, et al., 1991). The amplitude of the climatic fluctuations are manifested by variations of magnetic susceptibility along loess profiles (Heller and Liu, 1986; Liu et al., 1988, 1991; Wang et al., 1990; Maher

and Thompson, 1991, 1992).

3. The climatic oscillations recorded in the loess-paleosol sequences are well correlated with the variations of δ^{18} O values in deep sea sediments (Liu and Yuan, 1987; Liu, 1988, 1991; Heller et al., 1987; Kukla, 1987; Ding et al., 1991; An et al., 1991; Maher and Thompson, 1992), suggesting that the Chinese loess-paleosol sequences completely reflect the climate changes throughout the past 2.5 million years and indicate a global significance of the regional climate oscillations.

1.5.2. Red Clay Formations and Fluviolacustrine Sequences

In the early part of the century, the red clay formations in North China were subdivided according to field observations and vertebrate fossils (Anderson, 1923; Teilhard de Chardin and Young, 1930, 1931; Young, 1934a). The pink-red clay was named the Jingle Formation and ascribed as late Pliocene in age. Meanwhile, another red clay formation was identified as the Baode formation, which differed from the Jingle Formation by its dark-red colour, and was considered to be early Pliocene in age.

These red clay formations were interpreted to have been formed in a rather warm and humid climate and were thought to be fluviolacustrine in origin or formed by oxidation of lacustrine sediments. Similar conclusions were obtained by later studies (eg., Pei et al., 1963; Li et al., 1984; Mo and Derbyshire, 1991; Chen, 1994), though the origin remains controversial (Liu et al., 1988; Mo and Derbyshire, 1991). Recent magnetostratigraphic studies indicate that the red clay deposition ended with the advent of the loess deposition (Zheng et al., 1991; Tedford et al., 1991; Chen, 1994).

The widely exposed fluviolacustrine sequences in the Guanzhong Basin were of

great interest, especially paleontologically, in the middle of the century (eg., Young, 1934b; Pei and Huang, 1959; Cao et al., 1966). The Sanmen Series (sequence) in the literature is, in actuality, the sedimentary sequence in the lower part of the Shijiawan section. Abundant vertebrate fossils have been exhumed from the silt layers throughout the sequences and a standard fauna named the You-he Fauna was established for the Cenozoic biostratigraphic correlations in North China (Xue, 1981). Chronostratigraphic work on this sequence started only after the paleomagnetic dating method became available. At this time, there was no constraint on the lower boundary of the sequence. The oldest stratum reached is about 3.2 million years at Sanmen Gorge (He et al., 1984). The age of the upper boundaries was reported to vary with locations, indicating a diachronous disappearance of the lake. The retreat of the graben lake began from west to east and from the south margin to the center (Sun, 1987).

In summary, although these have been some detailed insights into the regional climate and environmental changes through the past 3 million years, there are still some major questions unanswered, namely:

- 1. The origin of the red clay formations and their climatic implications.
- 2. The transitional change of the climate from late Pliocene to early Pleistocene.
- 3. The amplitude of the climatic oscillations in the Chinese Loess Plateau-- a more convincing estimation of the climate extremes, the worst and the best states.
- 4. The relationship of secular climate oscillations between the regional loess deposits and deep sea sediment reco...

1.6.1. The Dominant Theories of the Ice Ages

The driving mechanisms of Quaternary glaciation have attracted great interest in a broad scientific community. Over 120 years ago, astronomical forcing of glaciation was first postulated by French astronomical scientists (cf. Imbrie and Imbrie, 1979). Following this idea, Croll (1875) calculated variations of insolation caused by orbital parameters, eccentricity, obliquity and precession, and speculated that the glaciations should have occurred repeatedly. But modern astronomical theory of the ice ages has been attributed to Milankovitch because of the accurate physical description for the related parameters he employed and the precise mathematical approach (Milankovitch, 1941). A real renaissance of the astronomical theory of glaciation, however, began only after the first stable oxygen-isotope data from deep sea sediments were published (Emiliani, 1955) and the relationship between the variations in marine δ^{18} O and the continental ice volume were confirmed by Shackleton (1967) and Shackleton and Opdyke (1973). The modern Milankovitch theory was essentially established by the work of Hays et al. (1976), Berger (1976), Imbrie and Imbrie (1979, 1980), CLIMAP Project Members (1981), and Berger et al. (1984). Later research concentrated on the linkage between the orbital theory and glacial cycles by tuning the periodic signals of insolation dominated by 41 and 23/19 kyr at high north latitudes to fit the geological observations of the 100 kyr cycle, and on the transmission of the regional signal of the northern hemisphere into global significance in the models (Weertman, 1976; Oerlemans, 1980; Birchfield et al., 1981: Birchfield, 1985: Denton et al., 1986; Peltier, 1987). More recently, an oceancirculation mode switch mechanism was proposed targeting the rapidity and global synchroneity of the last deglaciation (Broecker and Denton, 1989) with a rapid increase in geological findings (e.g., Bond et al., 1992; Lehman and Keigwin, 1992; Broecker, 1994). These theories are reviewed below and shown, with geologic evidence, that they have failed to explain many fundamental problems.

Milankovitch (1941) emphasized the ice-climate link by postulating that summer insolation anomalies near 65°N controlled ice-sheet oscillations. However, a severe difficulty with a simple linear relation emerged from the power spectra of orbital variations and the marine oxygen-isotope record (Hays et al., 1976). The orbital variations show the strongest power at the 41,000-year tilt and 23,000/19,000-year precession periods, and comparatively little power at the eccentricity periods near 94,000 and 125,000 years at 65°N latitude (Hays et al., 1976; Imbrie et al., 1984; Peltier, 1987). On the other hand, the marine oxygen-isotope records consistently show dominant power at 100,000 years and less power at the 41,000-year and 23,000/19,000-year periods (Imbrie, 1985). The 100,000-year dominant cycle in late Quaternary glaciations is characterized by a long period of ice-sheet growth with some fluctuations and sudden deglaciations spaced at about 100,000 years apart marking glaciation terminations (Broecker and van Donk, 1970). Hence, a puzzle facing the theory is that the dominant and asymmetric 100,000-year rhythm revealed by fluctuations of the late Quaternary ice sheets is not predicted by the Milankovitch hypothesis.

Time-dependent ice-sheet models can test whether this enigma is resolved by nonlinear ice-sheet response to summer insolation forcing at about 65°N latitude (Weertman, 1976; Pollard et al., 1980; Oerlemans, 1980; Birchfield et al., 1981; Pollard,

1982, 1983; Peltier and Hyde, 1984; Hyde and Peltier, 1985; Peltier, 1987). These icesheet models have many similarities. They consider a north-south profile along a typical flowline through a Northern Hemisphere ice sheet and neglect east-west flow. The northern ice-sheet margin is fixed at the edge of a polar sea. The southern margin and ice thickness are allowed to vary. Changes in accumulation and ablation that determine mass balance on the ice-sheet surface are strongly elevation dependent. The ice-sheet model is coupled with a geophysical model of glacial isostatic adjustments that strongly influence surface ice elevations and, in turn, ice-sheet extent, because accumulation and ablation rates are elevation dependent. Model input is summer insolation anomalies that are superimposed on the ice sheet by north-south migration of the climate point, hence changing mass balance. Model output is expressed in terms of ice-volume changes that lag insolation forcing. Experiment (model) success is measured by the degree to which ice-volume output simulates marine oxygen-isotope curves, taken to represent the actual ice-sheet fluctuations during glacial cycles.

In early experiments, the model ice sheet responded linearly to insolation forcing caused almost entirely by precession (23,000/19,000 year) and obliquity (41,000 year); response at the 100,000-year frequency was negligible (Weertman, 1976; Pollard et al., 1980). The results of subsequent experiments more closely simulated the marine oxygen-isotope record, largely because a time lag for isostatic deformation caused amplification of some ice-sheet retreat phases (Oerlemans, 1980; Birchfield et al., 1981). But even these modeling experiments showed differing results that depend on the time scale of isostatic adjustment (Peltier, 1982). Some of the existing weaknesses (not enough 100,000-year spectral power and incomplete ice-sheet recession during interglaciations)

were rectified by adding a calving term that accentuated rapid retreat each 100,000 years (Pollard, 1982, 1983, 1984; Birchfield, 1985).

The most recent version of the ice-sheet model emphasizes the role of glacial isostasy in producing glacial terminations (Peltier and Hyde, 1984; Hyde and Peltier. 1985; Peltier, 1987). With a new description of glacial isostatic adjustment that is particularly sensitive to the choice of mantle viscosity, this version gives an adequate replication of the marine oxygen-isotope record (Peltier and Hyde, 1984; Peltier, 1987). The actual mechanism that produces terminations depends critically on accentuated isostatic sinking beneath maximum ice-sheet loads. Once this situation is achieved, a positive summer insolation anomaly forces the southern margin of the ice sheet to retreat into the low-elevation depression that is maintained by delayed isostatic response. This causes a sharply negative mass balance because of the strong dependence of ablation on elevation. The resulting steeper ice slope caused by enhanced ablation induces southward ice flow greatly. Hence, northern ice is transferred into a low southern depression, where it melts rapidly. By this mechanism, the ice-sheet model produces a sawtoothed 100,000year cycle of glaciation from higher-frequency Milankovitch summer forcing at 65°N latitude.

The ice-sheet model addresses only terrestrial ice sheets, despite the probable existence of marine ice-sheet components at the last glacial maximum. To overcome this shortcoming, Denton and Hughes (1983) and Denton et al. (1986) suggested a conceptual model of global ice sheets that incorporates marine mechanisms along with terrestrial dynamics. Sea-level changes initiated by the variations of terrestrial ice sheets were a critical interlocking mechanism among marine ice-sheet components in both polar

hemispheres. Hence, these marine components fluctuated in phase with Northern Hemisphere terrestrial components. An important result of this addition to the terrestrial model is that the Antarctic Ice Sheet fluctuates in accord with Northern Hemisphere ice sheets through a sea-level linkage.

While the last glaciation in the southern hemisphere was as severe as in the northern hemisphere, even for mountain glaciers in the tropical regions, and the deglaciations are globally synchronous (Porter, 1981a,b, 1988; Suggate, 1978; Skinner and Porter, 1987; Mercer, 1984; Nelson et al., 1985), which have been confirmed by studies of Antarctic and Greenland ice cores (Royer et al., 1983; Jouzel et al., 1987, 1989: Hammer et al., 1985; Lorius et al., 1990). Therefore, changes in the southern hemisphere paleo-atmosphere have to be incorporated into any explanation of the 100 kyr cycle. In the case of the ice-sheet-climate link, this requires that the Northern Hemisphere ice sheets drive global climate through a thermal impact on the atmosphere. In other words, for the model to correctly explain ice-age climate, Northern Hemisphere ice sheets must have transmitted regional Milankovitch summer half-year insolation variations near 65°N latitude into a global climate signal. Herein lie the difficulties of the ice-climate link. A general circulation model of the atmosphere coupled with a static mixed-layer ocean (Manabe and Broccoli, 1985) demonstrated that the climatic influence of large North American and Eurasian ice sheets was restricted to the Northern Hemisphere, and that expansion of the Antarctic Ice Sheet was not large enough to significantly influence the Southern Hemisphere's climate. The observation that the beginning of the last glacial termination is registered nearly simultaneously in both hemispheres including polar ice cores, argues against the ice-climate link, for it does not allow the time lag necessary for Northern Hemisphere ice-sheet shrinkage to cause the rapid Southern Hemisphere warming recorded by the collapse of alpine glaciers. As well, the climate record denies that Milankovitch summer insolation anomalies directly caused ice recession of the last deglaciation because of nearly identical timing and severity of the onset of the last termination in both hemispheres where summer insolation anomalies are opposite. Furthermore, unlike North American ice sheets, Southern Hemisphere alpine glaciers collapsed under opposite insolation forcing with little or no role played by delayed isostatic sinking, but both collapses were simultaneous.

To overcome these difficulties, an ocean-circulation mode switch mechanism was postulated (Broecker and Denton, 1989). This concept is based on the studies of paleoocean nutrient distribution patterns traced from foraminiferal tests which had inhabited the ocean at various depths. It is revealed that the vertical distribution patterns during the last glacial period are quite different from today (Boyle and Keigwin, 1987; Duplessy et al., 1988). Therefore, this study reached the conclusion that deepwater circulation of the North Atlantic Ocean was probably shut down or greatly reduced during glacial periods. This is confirmed by the most recent studies (Bond et al., 1992, 1993; Lehman et al., 1994; Blanchon and Shaw, 1995), though a controversy on the intensity of the circulation has arisen (Venum et al., 1992; Lehman and Keigwin, 1992; Fichefet et al., 1994; Rahmstorf, 1994). The ocean-circulation-climate linkage emphasizes the importance of North Atlantic deep water circulation in maintaining the climate of the region and adjacent areas, and its critical role in the fluctuations of North American and European ice sheets. It is suggested that massive meltwater from North American ice sheets discharged into the ocean, diluted the salinity of the surface water and interrupted

Atlantic deep water production thus causing the Atlantic conveyor belt to shut down, which is exemplified by the Younger Dryas cold event. In this situation, the Atlantic deep water circulation led the regional climate to global significance through energy balance in the sea and influence on the atmosphere (Blanchon and Shaw, 1995).

1.6.2. Critical Problems

Although orbital parameters have largely been accepted as the primary forcing in the Quaternary glacial-interglacial climate oscillations, this theory is challenged by many critical problems. The ocean circulation mode switch model adequately explains global synchroneity and rapidity of deglaciation, which greatly enhanced our understanding of climate change. Some problems, however, still remain.

The secular variations of insolation induced by orbital parameters have no significant difference in amplitude and manner throughout the last 5 million years (Berger and Loutre, 1991), but world-wide glaciation occurred at about 2.5 Ma B.P. The dominant glacial cycle shifted from 40 ka before, to 100 ka after the Brunhes/Matuyama boundary (Ruddiman and Raymo, 1988; Kukla and An, 1989).

The glacial cycles did not follow the most powerful periodicity of the orbital forcing (Imbrie et al., 1984; Ruddiman, 1987) and were out of phase with the insolation variations (Broecker and Denton, 1989; Winograd et al., 1992; Crowley and Kim, 1994).

According to the ocean circulation mode switch model, the "Atlantic conveyor belt" probably closed down (or was greatly weakened) during glaciation periods. This would increase the temperature gradient polarwards and keep tropical regions warmer because the main pathway of surface heat transport in the ocean was locked. However,

this is probably not the case as documented by observations of similar cooling from tropical to polar regions during glaciations (e.g., Porter, 1981, 1988).

Studies of polar ice cores have revealed that the concentration of atmospheric CO₂ always changed in phase with temperature (Jouzel et al., 1989; Chappellaz et al., 1990; Lorius et al., 1990) and no time lag has been distinguished at present (Ruddiman, 1987). The positive contribution of enhancement of atmospheric CO₂ is undoubtedly accepted, but how could it rise so rapidly during a postglacial period? The biological pump mechanism does not adequately explain this phenomenon (Boyle and Keigwin, 1985, 1986; Boyle, 1988a).

I am of the opinion that one aspect has been ignored in previous searching for the forcing mechanisms of Quaternary glacial cyclicity. The heat flux at mid-ocean ridges from the earth's interior might play an important role in secular climate change. During the last glacial maximum, the global sea level dropped about 130 to 170 m (Hughes et al., 1981; Chappell and Shackleton, 1986; Shackleton, 1988), and most of this water was loaded on the northern hemisphere. Estimated thickness of the Laurentide and Fennoscandian ice sheets are on the order of 3500-4000 m (CLIMAP, 1981: Denton and Hughes, 1981). The effect of the massive ice sheet load depressing the crust can still be detected by gravity anomalies (Peltier, 1987). The rebounding uplift in central ice sheets (e.g., the Hudson Bay) reaches about 300 m (cf. Peltier, 1985; Begin et al., 1993). This implies that the massive load shift of the ice sheets between ocean and continents has profound effects on the global stress field and deformations of the earth's crust, and in turn on the magma output at mid-ocean ridges. Unfortunately, this has not received any serious considerations (see Chapter 7).

1.7. Summary

Previous work both on regional climate change of the Chinese Loess Plateau and on forcing mechanisms of global glaciations during the late Cenozoic provides the basis for this study, but also leaves many unsolved problems for further research. My thesis is dedicated to this task.

CHAPTER 2

STRATIGRAPHY AND THE CHRONOLOGY

2.1. General Features of the Cenozoic strata

The Cenozoic strata in the Chinese Loess Plateau include the loess-paleosol sequence, the red clay formation, the fluviolacustrine sequence and a cemented sandstone. The cemented sandstone is an early Tertiary sediment and is not included in this study. The nature of the contact between these sequences can be classified as two major types. The first contact type is that of the red clay formation, which is deposited on the cemented sandstone, and is overlain by the loess-paleosol sequence. It is exposed in Yanyu, Duanjiapo and Baoji areas in the Guanzhong Basin (see Figure 1-1, 1-3, Area I, the distribution area of the Red Clay formation) as well as in the central part of the Loess Plateau with various bedrocks (eg., Luochuan, Xifeng, etc.). This type of sequence covers most of the loess plateau. The second type is characterized by the loess-paleosol sequence which is underlain by a fluviolacustrine sequence without exposure of cemented bedrocks. It can be found in the central Guanzhong Basin as observed in the Shijiawan section, and is also common in many graben basins in the Shanxi province.

On a large scale, the thickness of the loess-paleosol sequence and the number of interbedded paleosols differ from one place to another. In the central part of the loess plateau, the thickness is about 170 m in Xifeng (Liu et al., 1987), 140 m in Luochuan (Liu, 1985), and 160 m in Baoji (Ding, 1988).

Large scale field observations indicate that there are some loess and paleosol units

characteristic of all sections. Thus they have been used as markers for stratigraphic correlation. The ninth and fifteenth loess-units (counted from top to bottom) are remarkably coarser and thicker, and are referred to as the first sandy loess and second sandy loess, respectively (Liu, 1985). The S5 (the fifth paleosol unit) is the best developed paleosol complex in the Chinese loess sequence and is a very useful marker layer. It contains three pedons with two thin interbedded loess layers. In most sections, the two lower pedons are truncated and slightly less-developed than in the upper one. Using these marker layers and magnetostratigraphic constraints, Ding et al. (1991) made a correlation of the loess-paleosol sequences distributed in the major Loess Plateau. Field observations for the present study indicated that pedogenic intensities and preservations of the loess and paleosol layers vary with location. Detailed stratigraphic correlations of the loess-paleosol sequences on a large scale must involve individual dating of each section and at least some independent age-controls are needed.

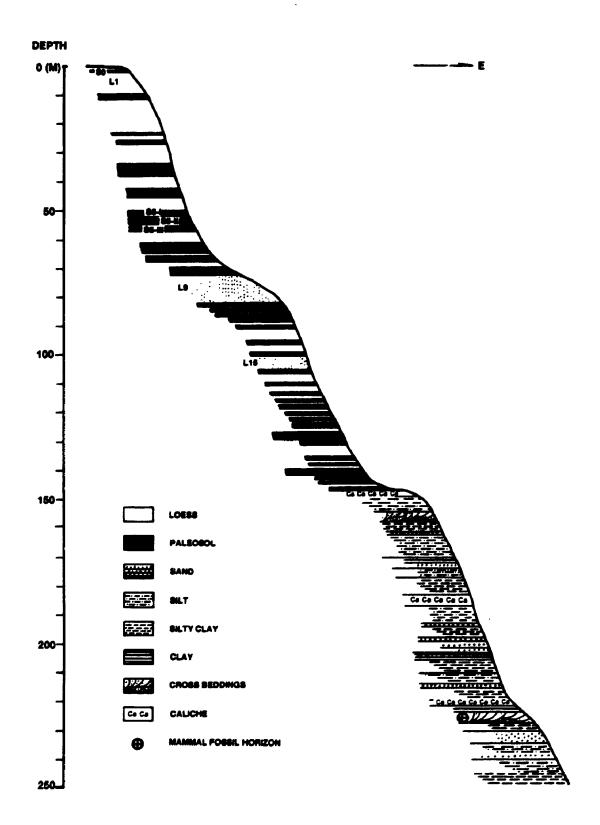
The loess/red clay boundary has been dated at about 2.4 to 2.5 Ma B.P. by paleomagnetic studies (Heller and Liu, 1982; Liu et al., 1987; Ding et al., 1991; Zheng et al., 1991). This age marks the end of the red clay accumulation and the beginning of the loess deposition. The boundary of the Matuyama and Gauss magneto-stratigraphic chrons occurs at the top of the red clay formations in Luochuan and Xifeng, whereas it is detected in the bottom loess layer in the Guanzhong Basin (eg., Baoji, Xi'an, Duanjiapo, and Yanyu). This discrepancy in timing of the loess/red clay boundary could be attributed to erosion or disturbance which may have occurred during the transitional period, as indicated by a sharp contact of the loess and the red clay or a thin sand/gravel layer existing between them.

Like that of the loess-paleosol sequence, the thickness of the red clay formation changes from site to site. It is about 60 m thick in the Lantian section (Zheng et al., 1991), 30 m in the Baoji section (Ding, 1988) and 10 m in the Yanyu section. In the central part of the major loess plateau, the lower boundary of the red clay is either not exposed (eg., in the Xifeng section) or poorly exposed as in the Luochuan section.

The fluviolacustrine sequence in the Guanzhong graben is characterized by alternations of silty clay and sand layers. The thickness varies from area to area, depending on natural outcrops. The age of the upper boundary is paleomagnetically determined as 1.8 Ma in the western margin and 1.2 Ma in the centre, as is summarized in Chapter 1. Therefore, the boundary-age in my study section, the Shijiawan section, still needs to be determined.

In this chapter, the study sections are briefly described, the dating methods and results are presented and discussed, and a regional stratigraphic comparison and correlation are attempted.

2.2. Study Sections for Paleomagnetic Dating


2.2.1. Shijiawan Section

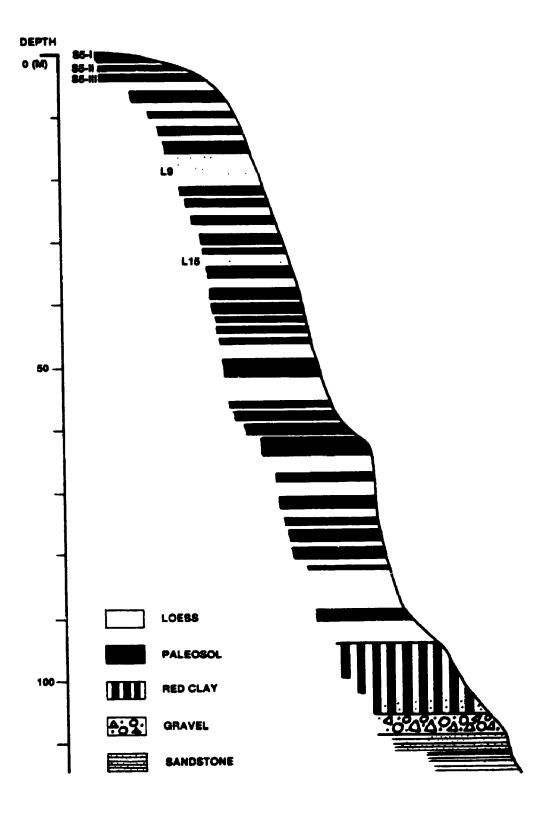
Shijiawan viilage is situated approximately 20 km southeast of the Weinan city, 70 km east of Xi'an (see Figure 1-3). The Shijiawan section is 300 m northwest of the village in a deep valley at the margin of the Changshou Platform.

The section consists of a loess-paleosol sequence (in the upper part) and a fluviolacustrine sequence (in the lower part). The thickness of the whole section is about 250 m (see Figure 2-1). The loess-paleosol sequence contains 36 paleosol layers with a

Figure 2-1. The Shijiawan section, consisting of loess-paleosol sequence and fluviolacustrine sequence.

. –

total thickness of 148 m. The "S5" in this section includes three paleosol layers separated by two interbedded loess layers. L9 (the first sandy layer) and L15 are characterized by loose texture, coarse grain-size and great thickness, and are easily identified. A rough comparison with other sections using the marker layers indicates that the loess and paleosol layers are notably thicker, but the lower part of the loess-paleosol sequence is not complete. The bottom layer would conventionally be classified as L27. The fluviolacustrine sequence is composed of silty clay and sand beds with a total thickness of about 100 m.


Samples were generally taken in 50 cm intervals for paleomagnetic analysis and in 20 cm intervals in horizons suspected of containing magnetic polarity reversals. A total of 486 vertically oriented specimens were collected from the whole section.

2.2.2. Yanyu Section

Yanyu village is 30 km south of Weinan city. The Yanyu section is located in the southeastern valley. 200 m from the village, and about 5 km from the northern slope of the Qinling Mountains. The local relief is featured as a mountain front hill. This section is comprised of a loess-paleosol sequence, a red clay formation, a sand-gravel complex and a cemented sandstone and mudstone.

The loess-paleosol sequence in this section is 94 m in thickness. Compared with other sections, the top layers above S5 are missing. The lower boundary smoothly contacts the red clay formation (see Figure 2-2, Plate 2-1). The red clay formation thickness ranges from 7 to 12 m (thickens from upstream in the south to downstream northwards). The underlying gravel layer, consisting of poorly-rounded and poorly-sorted

Figure 2-2. The Yanyu section, consisting of loess-paleosol sequence and the red clay formation.

gravels, is about 5 m thick, but transforms into a sand-gravel sequence downstream. At the mouth of the valley, it reaches approximately 40 m in thickness.

Beneath the gravel layer lie the cemented sandstone and mudstone which are believed to be early Tertiary deposits (Chinese Academy of Geology, 1973).

The visible difference between the loess-paleosol sequence and the red clay formation is in their different background colours. In contrast to the yellowish loess, the red clay formation is always pink-red or dark red through profiles (Plate 2-1).

This section has been studied magnetostratigraphically (e.g., Ding, 1988). The purpose of the paleomagnetic measurements was to confirm the position of the Matuyama/Gauss Boundary and to obtain the lower boundary age of the red clay formation in this profile. Some 32 vertically oriented samples were collected from the lower horizon of L32 down to the red clay in 30 cm intervals for the loess and top of the red clay formation, and 50 cm interval for the rest of the exposure.

2.3. Paleomagnetic Measurement and Results

The vertically oriented samples are shaped as cylinders which are 2 cm in diameter and length. Measurements were conducted in the former Geophysics Department by Dr. Palmer with a spinner magnetometer. The natural remanent magnetization of all spicimens were triply measured by placing them up-side down for one week after each series of measurements. All specimens were progressively thermo-demagnetized in intervals of 50 °C from 200 °C to 665 °C or up to their measurable limit for the instrument in order to obtain a stable characteristic remanent magnetization (ChRM) as shown in Figure 2-3.

Figure 2-3. Orthogonal projections of natural remanent Magnetization vector paths of paleosol and fluviolacustrine sediment specimens with progressive thermal demagnetization.

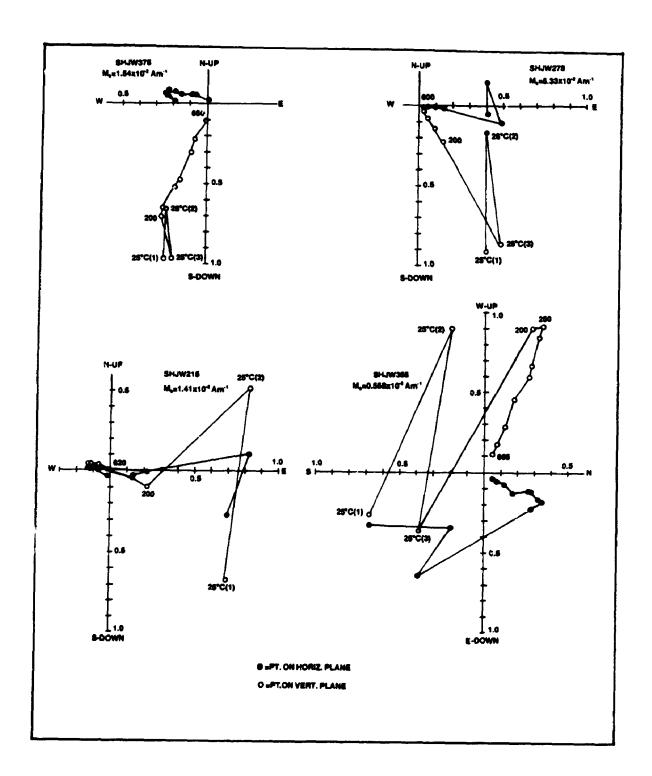
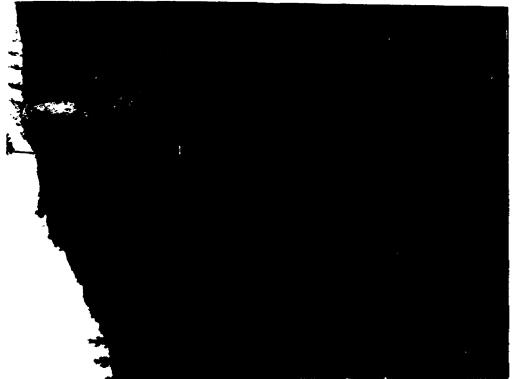



Plate 2-1. Photos showing a smooth contact of loess with the underlying red clay formation. Left, taken from Longhua, Shanxi province, east part of the Chinese Loess Plateau. Right, The lower part of the Yanyu section. The loess/red clay boundaries in both sites are pointed by black arrows. Above the boundaries are the loess-paleosol sequences and below the boundaries is the Red Clay Formation.

The ChRM polarity (inclination) is defined by progressive thermal demagnetization and plotted against depth (Figures 2-4, 2-5).

2.4. Discussion

2.4.1. The Brunhes/Matuyama Boundary

As shown in Figure 2-4, the first magnetic polarity reversal occurred in the upper horizon of the paleosol unit S8 in the Shijiawan section. This is consistent with the results from the Luochuan sections (Heller and Liu, 1982, 1984; Heller et al., 1987). Some studies on other sections show the boundary in the loess unit L8, just above S8 (Liu et al., 1987; Ding, 1988; Zheng et al., 1991). Heller et al. (1987) attributed the discrepancy to deviations of variable stratigraphic recording techniques applied by the individuals. This could not be the case because the loess bed L8 and the paleosol S8 are very distinct in colour and texture in most profiles. Field observations show that a short period of erosion is very common during the transition from paleosol to loess deposition as indicated by truncated paleosol layers. Therefore, very short events like the magnetic polarity reversals, could not be expected to have been recorded in exactly the same horizon in the whole loess plateau, and small differences are to be expected.

2.4.2. The Jaramillo Subchron

From S11 to L15 (between 90 and 106 m in depth), variations in the ChRM inclinations show a complicated pattern (see Figure 2-4). A similar phenomenon has been reported in the Xifeng section (cf. Liu et al., 1987). To avoid erroneous measurement, more samples were added and investigated. It was found that these unexpected polarity

Figure 2-4. The lithology and magnetostratigraphy of the Shijiawan section.

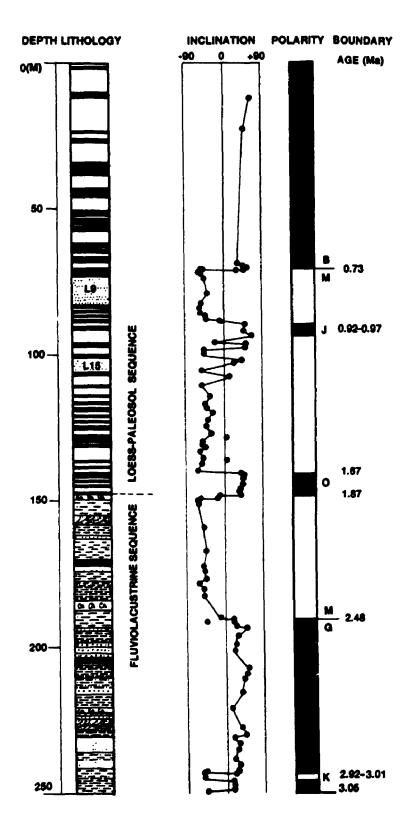
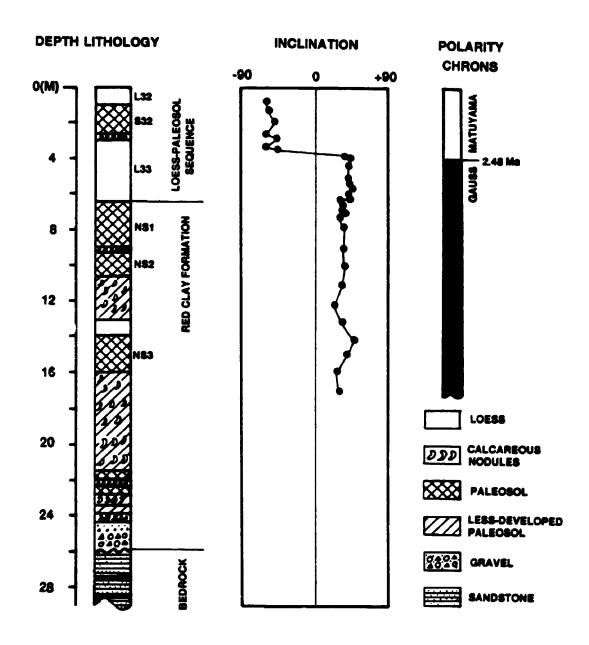



Figure 2-5. Lithology and magnetostratigraphy of the lower part of the Yanyu section for defining the horizon of the M/G boundary.

changes are not the result of mis-orientation of the specimens. The fact is that the remanent magnetization intensities decrease very sharply when heated at 300 °C and soon down to the noise level when further heated during progressive thermal demagnetization. The reason behind this is not clear. As the Jaramillo subchron has a time-interval of 70,000 years, it should not span more than two loess-paleosol cycles. Therefore, it is reasonable to match this event to the normal polarity stage between the top of the L12 and the bottom of the L13 (Figure 2-4).

2.4.3. The Olduvai Subchron

The results clearly show that the ChRM normal polarity occurs again at 142 m in depth. It continues to 148.2 m in the paleosol layer, just above the lithologic boundary between the loess-paleosol sequence and the fluviolacustrine sequence. This normal polarity interval covers four loess-paleosol alternations. Thus, in this section, the Olduvai event defines the end of the fluviolacustrine deposition and the beginning of loess accumulation at about 1.9 Ma B.P.

2.4.4. The Matuyama/Gauss Boundary

In the Shijiawan section, the M/G (Matuyama/Gauss) boundary occurs in a sandy silt bed of the fluviolacustrine sequence (Figure 2-4). In the Yanyu section, the M/G boundary is detected in the bottom loess layer (correlated to the L33 in the Baoji section, Ding et al., 1991) above the red clay formation (Figure 2-5). This is consistent with the results from Baoji (Ding, 1988) and Duanjiapo (Zheng et al., 1991) in the Guanzhong Basin, but slightly different from the central part of the major Loess Plateau where the

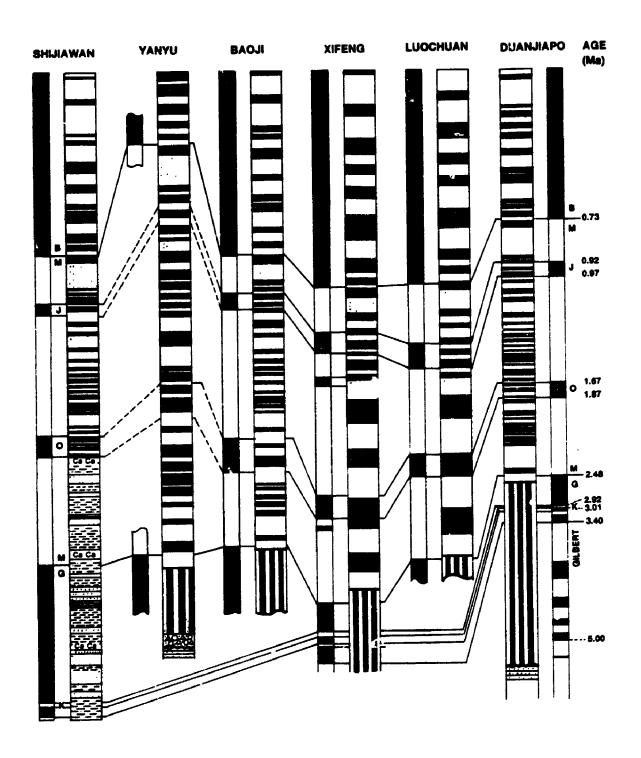
M/G boundary is in the upper horizon of the red clay formation (Heller and Liu, 1982, 1984; Liu et al., 1987). A possible explanation would be that the central part of the loess plateau was subjected to a redeposition by water flowing during the period between loess and red clay, which is indicated by the erosion surface or a mixing layer of red clay with loess on the top of the red clay formation. Therefore, the present results lead to the conclusion that the loess deposit was initiated about 2.5 million years ago, a little earlier than the M/G boundary.

The question remaining is the timing of the end of red clay accumulation. Although the answer cannot directly be found from paleomagnetic results, field observations provide assistance in approaching this problem. As shown in Plate 2-1, the overlying loess is smoothly deposited on red clay as it successively followed the paleosols in the loess-paleosol sequence. There is no evidence indicating a large hiatus between them. Paleomagnetic results from the Lantian section show a 9 m thickness of red clay accumulated during the interval of 2.92-2.5 Ma B.P. (Zheng et al., 1991), similar to the Xifeng section (Liu et al., 1987). Therefore, 2.5 Ma B.P. has been chosen as the commencement of the Chinese loess accumulation and the end timing of the red clay formation.

2.4.5. The Kaena Subchron

Approximately 48 m below the M/G boundary in the Shijiawan section, an abnormal polarity zone is clearly demonstrated close to the bottom, which can be correlated with the Kaena subzone. It indicates that the oldest age of the fluviolacustrine sequence in the Shijiawan section is about 3.05 Ma according to the polarity time scale

of Mankinen and Dalrymple (1979).


In the Yanyu section, the Kaena subchron cannot be detected. Though it cannot be concluded that the entire red clay of this section was deposited within the interval from 2.92 to 2.5 Ma B.P., for our sampling did not reach the bottom due to loose texture, the upper 6 m seems to have formed in this time-interval.

2.5. Stratigraphic correlations

A framework of stratigraphic correlation for the Cenozoic in the Chinese Loess Plateau is shown in Figure 2-6. The following points are stressed.

- 1. The Shijiawan section, representing the last 3 million years, accumulated continuously in terms of secular climate change. The lithologic boundary between the fluviolacustrine sediments and the overlying loess is dated at about 1.9 Ma B.P. Thus the fluviolacustrine sequence has the potential to provide the information for the climate transition from late Pliocene to early Pleistocene.
- 2. The Chinese loess-paleosol sequence follows the end of the red clay accumulation at about 2.5 Ma B.P. without any significant interruption. Erosion of the red clay formation before loess deposition is only a local phenomenon.
- 3. The loess-paleosol sequence in the Brunhes chron can clearly be correlated for all the established sections. The best developed paleosol unit, S5, consists of either one complex of multiple layers or a combination of three separate pedons, and can be identified without confusion.
- 4. As in Figure 2-6, the discrepancies in the magnetic polarity boundaries suggest different accumulation-erosion histories between individual localities.

Figure 2-6. Correlation of litho-, magneto- and chrono-stratigraphy of the Cenozoic strata in various locations of the Chinese Loess Plateau. Lithologic symbols seen in other figures of this chapter. Data from Heller and Liu (1982) for the Luochan section, X.M. Liu et al. (1987) for the Xifeng section, Ding (1988) for the Baoji section. and Zheng et al. (1991) for the Duanjiapo section.

CHAPTER 3

δ³C SIGNATURES OF REGIONAL VEGETATION AND RELATED SOILS

3.1 Introduction

Plants can be classified into three groups based on their photosynthetic pathways: C3, C4 and CAM. C3 plants, including virtually all trees, most shrubs, herbs and coolseason grasses, have δ^{13} C values ranging from -23 to -35 permil and average about -27 permil (Deines, 1980). C4 plants, mainly composed of warm-season grasses and sedges (Bender, 1971), are characterized by a narrow δ^{13} C range from -10 to -14 permil, averaging about -13 permil (Deines, 1980; O'Leary, 1988). CAM plants, of which the most abundant are succulent plants which grow mainly in conditions under water and CO₂ stress (Bender et al., 1973), have a wide range in δ^{13} C values that covers C3 and C4 plants. When plant tissues fall into soil or are deposited in sediments, they experience decomposition and the organic composition will change. But the δ^{13} C values of organic matter generally remain close to that of the vegetation from which it is derived (Deines, 1980; DeLaune, 1986; Balesdent et al., 1987; Martin et al., 1990; Ambrose and Sikes, 1991). If vegetation is a mixture of C3 and C4 plants, the carbon isotope signature of the soil organic matter reflects the proportion of C3 and C4 plants in the total biomass influx. Therefore, the stable carbon isotope composition of organic matter from sediments has been extensively used for tracing paleovegetation and related climate (Krishnamarthy et al., 1982; Schwartz et al., 1986; Dorn et al., 1987; Guillet et al., 1988; Goodfriend, 1990; Ambrose and Sikes, 1991; Cerling et al., 1993; Sukumar et al., 1993). These results, however, have shown that the ecological and climatic significance of the organic carbon isotope signature can vary from region to region.

Previous studies on the upper part of the loess-paleosol sequence in the Chinese Loess Plateau have been reported by Lin et al. (1991) and An et al. (1993). But the relationship of the δ^{13} C between vegetation and its related soil organic matter in the region has not received detailed investigation. Therefore, it is necessary to elucidate this relation if δ^{13} C signatures of organic matter are intended to be used for paleoecological and paleoclimatic reconstructions of the region.

This chapter focuses on the organic carbon isotope componitions of modern plants and related soils in the Guanzhong basin, the southernmost part of the central Chinese Loess Plateau. In particular, the relationship between vegetation and related soils in organic carbon- isotope composition will be described, and the climatic significance of C4 plant-abundance in this region will be discussed.

3.7 Regional Vegetation and Related Soils

The modern natural vegetation in the Guanzhong basin is represented mainly by two types, the semi-arid steppe and the semi-humid grass-forest. Today they have been destroyed in most areas due to long-period cultivation. Two floras minimally influenced by human activities were selected for this study.

3.2.1 Steppe vegetation and its soil

This type of vegetation is found close to Yanyu village in the Weinan District of

Shaanxi Province (109°33', 34°20', see Figure 1-3). The local relief is characterized by rugged loess hills. Annual rainfall and annual mean temperature are about 580 mm and 13.3 °C, respectively (Sun, 1989). The main floral components are herbs and grasses, mainly Artemisia sacrorum, Artemisia giraldi and Stipa bungeana, and shrubs, Zizyphus spinosa, Vitex chinensis, and Lespedeza bicolor. These are also the common species in the loess plateau as well as in north China (Institute of Botany, Academia Sinica, 1960; China Map Press, 1984; Liu et al., 1985).

Underneath the steppe cover, the modern soil is developed from silty loess. Pedogenic features are not strongly developed, with only A and C horizons present. Carbonates are only weakly leached and can be detected at about 10 cm below the surface. Scattered small calcareous nodules are formed at depths of approximately 20 to 40 cm (see Figure 3-2).

3.2.2 Grass-Shrub Mixed Forest and the Soil

The grass-shrub mixed forest flora is found on the piedmont of the Qinling Mountains, south of Ziwu village, 20 km south of Xi'an (108°53'E, 34°0'N, see Figure 1-3). Because of its altitude and topography, the annual mean precipitation in this area is about 200 mm more than the adjacent plain. Trees are the dominant plants, forming about 70% of the total cover. The major species are *Populus davidiana*, *Platycladus orientalis*, *Juniperus chinensis* and *Pyrus ussuriensis*. *Robinia pseudocacia* is a human-planted species. Shrubs (mainly including *Vitex chinensis*, *Zizyphus spinosus* and *Lespedeza bicolor*), herbs (*Artemisia sacrorum*, *Artemisia giraldi*) and grasses (*Bothriochloa isochaemum*, *Bromus japonicus*) grow in open patches and only make up

a minor portion of the vegetation.

The soil profile in this site contains horizons A, Bw and C (the definitions of the soil horizons from Catt, 1990). The parent materials are slope-wash from weathered granites. Carbonates have not been detected in this profile. Clay particles have accumulated in the Bw horizon to some extent. In the C horizon, the parent materials contain a large amount of coarse sand and angular gravels. The total pedogenic thickness is about 50 cm.

3.3 Sampling and Laboratory Methods

Plant samples were air dried, and different organs (leaves, stems, roots etc.) were separated. Each sample was then treated with 5% HCl for 2 hours to remove carbonate, rinsed with tapwater, then dried at 80°C. After drying, the plant samples were ground into powder. Soil samples were treated somewhat differently. After removal of plant debris, the sample was ground and passed through a 100-mesh sieve. The sample was then treated with 20% HCl to remove carbonate and then washed with distilled water (the solution was centrifuged before being decanted). This process was repeated until the sample solution became neutral. The sample was then dried and re-ground. Tests using carbonate-free soil samples showed that treatment with 20% HCl did not affect the organic matter content or its carbon isotopic composition.

Acidified samples were mixed with pure CuO (plus Pt wire) and transferred into quartz sample tubes for combustion. CO₂ produced by the combustion was purified with cold-traps and then further purified by exposure to a sulphur scrubber. Its isotopic composition was measured using a Fisons OPTIMA dual inlet, gas-source mass

spectrometer. Results are reported using the standard δ -notation as permil (‰) relative to the PDB standard (Craig, 1957). Standards (NBS#21, Carbon Rod) were reproducible to better than $\pm 0.05\%$, and the average value obtained for NBS#21 (-28.09‰) compares well with the accepted value (-28.1‰). The reproducibility for duplicate samples of plant tissues and soils was normally better than $\pm 0.04\%$ and $\pm 0.20\%$, respectively. The larger error, obtained for soil materials mainly reflects the heterogeneity of samples with low organic matter content.

3.4 Results and Discussion

3.4.1 δ^{13} C Values of the Floras and Related Top Soils

The results listed in Table 3-1 show that all tree species have δ^{13} C values between -28.9 and -24.6%. The *Robinia pseudoacacia L*. leaf has the lowest δ^{12} C value whereas the *Juniperus chinensis* twig has the highest. Different tissues from the same plant have similar δ^{13} C values. Leaves are usually enriched in 12 C by about 1 permil relative to woody tissue such as twigs and roots, a result that is consistent with previous studies (Deines, 1980; O'Leary, 1981; Leavit and Long, 1982). All shrub plants in the two sites have relatively low δ^{13} C values, ranging from -27.0 to -27.9%. The difference in δ^{13} C values between plant organs is very small. Most herb plants in both sites are of the C3 variety. Their δ^{13} C values range from -25.7 to -28.6%. Only one species of the major plants appears to be a C4 plant with a δ^{13} C value -16.0 (see Table 3-1).

The δ^{13} C values of top soil samples reflect the carbon isotopic composition of the modern vegetation (see Table 3-2). In order to understand how the δ^{13} C values of soil organic matter are close to the source flora, it was assumed that each major plant species

Table 3-1. δ^{13} C values of major plants in Yanyu and Ziwu areas.

Plant Species	Tissues δ	13C (%) PDB T	ype/Abund.(%)
	Plants in Y	lanyu	
Zizyphus spinosus	Twig + Root	-27.92	shrub/20
Lespedeza bicolor	Root	-27.03	shrub/20
	Twig	-27.14	
Artemisia giraldi	Stem	-27.09	herb/ 30
	Root	-27.30	
Stipa bungeana	Whole Plant	-25.66	herb/ 25
	Plants in	Ziwu	
Plalycladus orient <mark>alis</mark>	Leaf	-27.51	tree/ 10
	Twig	-26.49	
Robinia pseudoacacia L	. Leaf	-28.82	tree/ 5
	Twig	-28.03	
Juniperus chinensis	Leaf	-25.83	tree/ 20
	Twig	-24.58	
	Root	-24.73	
Populus davidiana	Root	-26.75	tree/ 20
Pyrus ussuriensis	Leaf	-27.86	tree/ 5
	Twig	-27.66	
Vitex chinensis	Root	-27.30	shrub/10
	Stem + Leaf	-27.33	
Artemisia sacrorum	Root	-28.10	herb/ 10
	Stem	-28.40	
Themeda triadra var.			
japonica	Whole	-15.99	herb/ 10
Bothriochloa is <mark>chaemum</mark>	Whole	-28.64	herb/ 10
Maj	or tree species :	in North Chi	na
Quercus liaotungensis	Leaf + Twig	-26.49	tree
	Leaf + Twig	-27.16	tree

contributed its organic matter coverage-proportionally to the surface horizon, and the δ^{13} C values of the surface horizon for the Ziwu and Yanyu sites was calculated using the following equation

$$\delta^{i3}C_{s,h} = \sum P^{i}_{coverage} \times \frac{1}{2} (\delta^{i3}C^{i}_{leaf} + \delta^{i3}C^{i}_{root or twig})$$

Here $\delta^{13}C_{s,h}$ represents the $\delta^{13}C$ value of organic matter in the surface horizon and $P^{i}_{coverage}$ means the coverage (see Table 3-1) for the ith plant species in the sampling site; the term $\frac{1}{2}(\delta^{13}C^{i}_{leaf} + \delta^{13}C^{i}_{root\ or\ twig})$ means that the $\delta^{13}C$ value of the ith plant species is a mean value contributed equally by its leaves and other organs (roots and/or twigs).

As a result, the difference in δ^{13} C values of the organic matter between the measured and the calculated for surface horizon is less than 1 permil. Therefore, it indicates that the δ^{13} C signatures of soil organic matter precisely reflect the source vegetation.

3.4.2 & Signatures in the Grass-Mixed Forest Soil Profile

The δ^{13} C values of the modern soil profile in Ziwu are plotted in Figures 3-1 (also see Table 3-2). The δ^{13} C values along the Ziwu profile change from -26.7 at the top to -24.0% in the upper 10 cm, and then decrease slightly with depth. This variation could be explained by the fact that herb plant roots, especially of the C4 grasses, penetrate to shallower depths and that their residuals are mainly distributed in the upper horizons of the soil profile. Tree and shrub plants (all of C3 type) can reach much deeper horizons, and thus contribute a major portion to the organic carbon in lower soil horizons.

Table 3-2. δ^{13} C values of soil organic matter in the Ziwu and Yanyu profiles.

Sample Number	Depth (cm)	δ ¹³ C (%) PDB
Ziwu Soil		
ZW0	0-5	-26.71
ZWl	10-15	-24.03
ZW2	25-30	-24.37
ZW3	40-45	-25.38
Yanyu Soil		
YYO	0-5	-27.09
YY1	10-15	-25.86
YY2	30-35	-24.51
YY3	45-50	-18.81

Figure 3-1. δ^{13} C values of organic matter in the Ziwu soil profile. Modern vegetation in this site is a grass-shrub mixed forest. The lower horizontal scale indicates the equivalent percentage of C4 flora, assuming a +1 per mil enrichment in soil relative to plant δ^{13} C values. The end point δ^{13} C values are set at -26 per mil for 100% C3 (typical forest) and -15 per mil (according to the local C4 plant δ^{13} C value) for 100% C4 (typical grassland).

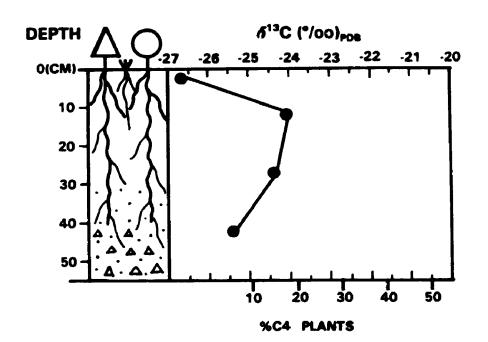
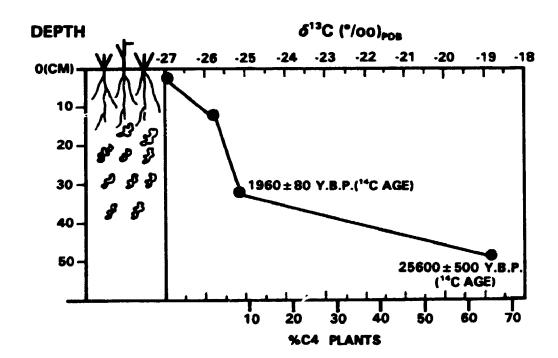



Figure 3-2. δ^{13} C values of organic matter in the Yanyu soil profile. Modern vegetation in this site is shrub mixed steppe. The radiocarbon dating was conducted by University of Waterloo Isotope Lab. Explanation for the lower horizontal scale is the same as that in Figure 3-1.

Therefore, such patterns could be typical for δ^{13} C variations of organic matter along a soil profile on which a grass-mixed forest vegetation (containing some C4 plant species) exists.

3.4.3 δ^{13} C variation through the steppe soil profile

The Yanyu soil is vegetated by shrub-mixed steppe type. The δ^{13} C values increase with depth, from -27.1 at the top to -19.8‰ at the bottom of the profile (see Fig. 3-2). As shown by Table 3-1, all major plants of this site today have δ^{13} C values less than -25‰.

The change in the δ^{13} C value of organic matter in the deeper soil horizons cannot be derived from the modern native vegetation, as the soil organic matter may only be expected to have +1 to +3 per mil of enrichment in δ^{13} C values relative to those plants according to the discussion in last section and other studies (cf. Ladyman and Harkness, 1980; Becker-Heidmann and Scharpenseel, 1986). To explain these high values, C4 plants must have contributed a considerable proportion to the total organic matter at depth. For the Yanyu site, the C4 plant materials at depth could only come either from transport with loess materials or from native vegetation replacement.

The loess parent materials of the soil in Yanyu may have included some organic matter. The amount of organic matter transported is very low, normally bellow 0.02% as measured in loess samples. As the soils have a minimum of 0.5% organic matter, the high δ^{13} C value cannot be explained by such inclusion.

Radiocarbon dating indicates that the organic matter in different horizons of the profile does not have the same age (see Figure 3-2), which would suggest that variations

of δ^{13} C values in the Yanyu soil profile may have originated from vegetational change. As shown in Figure 3-2, C4 plants contribute over 60% of the organic matter at the 45 to 50 cm levels (about 25,000 years B.P.), about 10% at the 30 to 35 cm levels (about 2000 years B.P.), and very little at surface horizon (0 to 5 cm). This shift pattern of the δ^{13} C values has been found in the Holocene soils elsewhere in the Chinese Loess Plateau (cf. Lin et al., 1991, Fig.2,3). This suggest that it is a regional rather than a local phenomenon.

3.4.4 Abundance of C4 plants and climate

Studies indicate that the abundance of C4 plants is closely related to either the minimum temperature or water supply during the growing seasons (e.g., Teeri and Stowe, 1976; Tieszen et al., 1979; Livingstone and Clayton, 1980; Young and Young, 1983; Cerling and Hay, 1986; Hattersley, 1983). In most cases, warner and drier climates favour colonization of tropic or subtropic species, which generally includes more C4 plants. The climate over the Chinese Loess Plateau is strongly controlled by the east Asian monsoon, which simultaneously provides major rainfall and additional heat to the affected regions (Lin, 1981). Therefore, in contrast to areas controlled by the Indian monsoon, a warmer climate in the Chinese Loess Plateau means wetter rather than drier conditions. Thus, the definite climatic meaning of the abundance of C4 plants in this region, should be investigated with care.

As C4 plants occur usually as minor components in the modern floras of steppe and forest in the region, it is difficult to directly constrain the climatic meaning of a C4 plant-dominated flora. C4 species in this region mainly are Gramineae, Chenopodeaceae

and Compositae etc. They are more commonly observed on unstable ground surfaces as pioneer species, which suggests that these C4 plants are more resistant to harsh weather. The C4 dominant flora colonized about 25,000 years ago which is close to the time of the last glacial maximum, should imply a cold-dry climate. Recent detailed chronological study indicates that that period is marked by typical loess-accumulation (Liu et al., 1994). Pedogenic studies have indicated a north temperate dry-grassland soil developed during that time (Guo et al., 1994), under a climate much colder and drier than today. The C4-dominant flora may also correlate to a low level of atmospheric CO₂ of the last glacial (Barnola et al., 1987) which could have promoted C4 expansion (cf. Moor, 1994; Robinson, 1994). Therefore, abundant C4 plants in the Chinese loess Plateau suggest drier and colder climatic conditions, not drier and warmer.

3.4.5 Concluding Notes

A stable carbon-isotope study on the modern vegetation and related soils in the southern Chinese Loess Plateau leads to the following conclusions.

- 1) Most modern plants in southern Chinese Loess Plateau are C3 verieties. The δ^{13} C values in the top soil horizon of the two site investigated (Ziwu and Yanyu) are around -26 per mil, corresponding to the combined biomass flux of all plants in the local floras.
- 2) Apparent differences in the major contribution depth of plant roots between trees and grasses have been observed in the field and revealed in the stable carbon isotope data. The ¹⁴C dating suggests the major contribution depth of modern grasses and herbs is restricted to within about 10 to 15 cm in the Yanyu profile, and this depth is similar

in the Ziwu soil profile.

- 3) The maximum value (about -24‰) of the δ^{13} C in the Ziwu profile is found at about 10 cm in depth. This reflects the greatest contribution of C4 plants to the soil organic matter. The upper and lower horizons of the profile basically reflect C3 plant features with δ^{13} C values around -26‰. This δ^{13} C curve (Figure 3-1) should be typical for a grass-mixed forest soil profile.
- 4) The presence of abundant C4 vegetation in the Chinese Loess Plateau implies that the climatic conditions were drier and colder, rather than drier and warmer in the past.

CHAPTER 4

CLIMATIC FACTORS AND THE BEST DEVELOPED PALEOSOL IN THE LOESS SEQUENCE

4.1. Introduction

Chinese studies on modern large-scale dust storm events suggest that loess materials are dust, sorted and transported from the western inland deserts by northwesterly winds which are principally controlled by the Siberian cold-high pressure regime (Liu, 1985, Liu et al., 1981, 1989). The loess deposition rate was much higher during cold periods when the Cold-High was stronger, and formed the loess beds in the loess-paleosol sequence. Evidence shows that deposition was greatly reduced or nil when the climate was dominated by the summer monsoon (the winter cold-high is relatively weak) during interglacial episodes (Liu et al., 1981, 1985, 1989; An et al., 1993), and the surface loess was subjected to weathering and pedogenesis. Therefore, the loess and paleosol alternations of the past 2.5 million years show cold and warm climate fluctuations of great interest to Quaternary paleoclimatic studies.

Based on field observations, early studies of the Chinese loess confirmed that the "red bands" interbedded in loess successions in the loess plateau are buried soils (Zhu, 1958; Shi, 1958; Liu et al., 1959). Later, Liu et al. (1964) and Zhu (1965) showed that the loess has been deposited under dry-cold climatic periods whereas the buried soils formed during warm and slightly more humid climatic episodes than today. They showed that the paleosols could be classified into modern soil types which are typical of the

south. An early study of the paleosols and their microfabrics was conducted by H.Z. Zhu (1963), who found illuvial features (oriented clay) in the B horizons. Aiming at documenting paleoclimatic implications of the loess and paleosols, Lu and An (1979) first classified the middle Pleistocene paleosols (from \$1 to \$14) in the Luochuan section into five types based on carbonate content, SiO₂/Al₂O₃ ratios and micromorphology. An and Wei (1980) and Tang (1981) were among the first who applied and emphasized soil micromorphological features. They focused on the paleosol S5 and interpreted it as brown cinnamon soil (in Luochuan) or as a brown forest soil (in Wugong of the Guanzhong Basin). More systematic studies of the paleosols were made by Liu et al. (1985). They estimated the climatic conditions according to comparison of their pedogenetic features in micromorphology and multiple geochemical and mineralogical indices with modern soils. Stressing pedogenic diagnostic horizons, Ding (1988) modified the criteria for the paleosol classification and climatic factors for each paleosol layer in the Baoji section. Guo et al. (1991) investigated the climatic implications of the paleosols in the Xifeng section and reached the conclusion that a short period of forest development had occurred in Xifeng which is located in a warm temperate semi-arid to semi-humid grassland zone today. Overall, the previous studies of the paleosols employed similar methodologies (comparison of the paleosols with modern soil orders), and obtained similar conclusions, which is that the S5 was developed under a typical forest in the Guanzhong Basin. Though the later studies pointed out some fundamental problems in the earlier studies, they are still questionable. The following problems exist in the studies to date.

1) Climatic interpretations of the paleosols are based on analogy, but it is not known whether the Holocene/modern soils have reached a state which adequately reflects

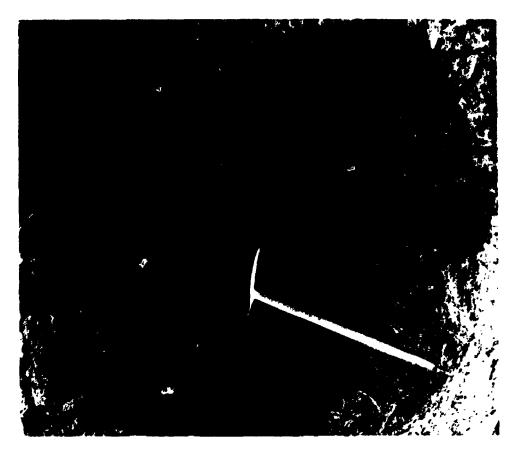
the modern climate.

- 2) For soils formed in short periods, many pedogenic features are largely a reflection of parent materials, which means it is not appropriate to compare paleosols to modern soils which developed from different parent materials.
- 3) Even for the paleosols developed from loess, it is difficult to compare them until the pedogenic duration is determined; chemical weathering processes depend on both climate and time, even if other factors are similar.
- 4) Palynological studies failed to provide evidence supporting the conclusion obtained from the Luochuan section (cf. Liu et al., 1985). Thus re-evaluation of paleoclimate of the loess-paleosol sequence is still necessary.

Considering the climatic change in the Chinese Loess Plateau, our interest is in the oscillation amplitudes during the Quaternary period, emphasizing the best climatic conditions which had ever existed in this region during the Quaternary. For this purpose, the best developed paleosol S5 of the loess sequence was chosen in our study. This chapter presents evidence for its pedogenic features from field observation and detailed laboratory analyses of grain size, mineralogy, clay mineralogy, chemistry and carbon isotopes of organic matter for two S5 profiles, the Shijiawan section and the Chang'an section, and then considers the climatic implications.

4.2. Field-Observation Features of S5

Both profiles of the paleosol S5 from Shijiawan and Chang'an (see Figures 1-1 and 1-3) contain three pedons which are separated by two interbedded loess layers. Only the upper pedon has an A horizon, while the others were truncated, leaving the Bt and


Table 4-1. Field observations of the S5 in the Shijiawan section.

Subdivision of S5	Pedogenic Horizon	Thickness (cm)	Description
	A	50	Dark brown clayey loam, friable, medium granular structure; abundant pseudomycelia in the upper part that decreased downward; diffuse smooth boundary.
	Bt1	50	Reddish brown silty clay; friable, very strong fine- subangular blocky structure; bright red, continuous thick clay coating and black Fe-Mn film; smooth boundary.
s5 - I	Bt2	80	Reddish brown clay loam, dense, firm, weak medium- coarse subangular blocky structure; medium-thick clay coatings without Fe-Mn film; wavy boundary.
	CCa	40	Grey to dark yellow loam; dense, firm. Large calcareous nodules cemented together. The individual size can exceed 40 cm with irregular shapes.
	Clw	40	Light tan loam; firm with light-coloured calcic pseudomycelia.
	2Bt1	55	Reddish brown clayey loam, strong, medium-sized angular blocky structure; medium clay coating with some Fe-Mn films; well-developed large cracks with white carbonate precipitates; diffuse boundary.
s5-II	2Bt2	130	Dark-brown clayey loam, strong-fine subangular blocky structure; bright-red thick clay coating with Fe-Mn film; progressively changes into coarse blocky structure.
	C2w	60	Reddish brown loam; dense, firm, weak subangular- blocky structure; intermittent thin clay coatings; diffuse boundary.
	3Bt1	95	Reddish brown clayey loam, strong medium-fine subangular blocky structure; bright-red thick clay coatings with abundant black Fe-Mn films; smooth oundary.
S5-III	3Bt 2	70	Reddish brown clayey loam; dense, firm, weak, coarse- subangular blocky structure; discontinuous thin clay coatings. In the bottom, colour shifts to light-brown; wavy boundary.
	C3Ca	95	Grey-yellow loam matrix with large carbonate nodules cemented together; diffuse boundary.
L6	С3	310	Grey-yellow silt loam; dense, firm with Jattered large carbonate nodules.

C horizons. Compared with the S5 in Luochuan, these profiles are notably thicker (cf. Liu et al., 1985). The pedogenic horizons of each pedon have been subdivided according to pedogenic features and are described in Table 4-1. The best developed paleosol layer of the S5 unit is the upper pedon (S5-I, see Plate 4-1) whose Bt horizons have the thickest clay coatings and the most abundant Fe-Mn film in the two profiles.

4.3. Methods

Bulk samples were taken from all pedogenic horizons of the S5 in the Shijiawan and Chang'an sections. Grain-size determinations were made by the hydrometer method (cf. Catt, 1990). Mineralogy of the bulk samples were determined by X-ray diffraction spectrometry (XRD) and thin section microscopy. The samples were gently ground and reacted with 10% HCl to remove carbonate cement before attempting a clay mineralogical study. Clay fractions ($<2 \mu m$) were separated in a dispersing solution (5% sodium hexametaphosphate) according to Stokes' Law (assuming mean particle density of 2.65 g/cm³). The separated clay fractions were saturated with Mg²⁺ by shaking for 2 hours with 100 ml of 1 N MgCl₂ solution, a procedure described by Catt (1990). The clay minerals were identified by X-ray diffraction on oriented slides. The chemical composition of bulk samples was analyzed by an X-ray fluorescence spectrometer. Trace elements were analyzed by Bondar-Clegg Geochemical Lab in Toronto. The ferrous iron content was determined by a titration method. Samples were dissolved in cold HF in the presence of a known amount of ammonium metavanadate (AMV), an oxidising agent. The ferrous iron present in the sample was oxidised quantitatively by the pentavalent vanadium, and the excess V5+ was titrated against standardized ferrous ammonium Plate 4-1. Photos showing the paleosol S5-I. Left, the Chang'an section. Right, the Shijiawan section.

sulphate (FAS). The method is described in detail by Wu (1984). The organic matter was determined by a modified Walkley-Black method. The stable carbon-isotope composition of organic matter was measured using the procedures described in Chapter 3. The carbonate content was determined with the Chittick apparatus (Dreimanis, 1962).

4.4. Results and Discussion

In this section, the analytical data for both the Shijiawan and Chang'an profiles are presented. In order to avoid confusion, discussions are focused on the Shijiawan profile.

4.4.1. Grain-size Distribution

Granulometric analyses of S5 in the Shijiawan and Chang'an sections are listed in Table 4-2. Silt (4-9φ, equivalent to 0.063-0.002 mm) is the major component and clay (>9φ, i.e. <0.002 mm) the second major component in all the samples throughout the profiles. Sand (0-4φ, 1-0.063 mm) makes a negligible contribution. The obvious variations of the grain-size composition along the profiles are found in the clay-sized fraction. In the Shijiawan section (samples W27 to 31), clay-sized particles increase with depth and reach maximum proportion in the Bt horizon (W29), then decrease downwards and reach the minimum at the C horizon (W31). In contrast, the coarser grains (<4φ, >0.063 mm) are enriched in upper horizons. In the Chang'an section, the minimum clay content occurs in the A horizon. This implies that a profound clay fraction was intensively eluviated from the A horizon during pedogenesis and the post-pedogenic deposition of loess was mixed with the top soil layer.

Table 4-2. Grain-size distribution of S5 in the Shijiawan and Chang'an sections.

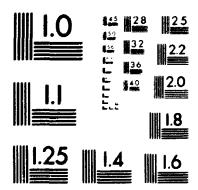
Sample#	horizon	<30	3-4 ¢	4-5 ¢	5 - 6 	6-7 ¢	7 - 8 ¢	8 - 9 	9-10ф	>10¢
W27	A		0.4	6.0	17.6	17.0	16.0	8.0	6.0	29.0
W28	A-Bt1		0.4	4.6	20.0	22.5	7.5	7.0	6.5	31.5
W29	Bt1		0.1	10.9	10.0	15.0	14.0	5.5	5.5	39.0
w30	Bt2		0.1	8.4	11.5	17.	15.7	6.8	6.0	34.0
W31	Cw		<0.1	9.9	20.0	22.5	9.5	8.5	9.5	20.0
CHA1	A		0.2	18.3	16.5	18.0	11.0	8.0	4.0	23.0
CHA2	Α		0.4	9.6	17.0	23.0	12.0	10.0	6.0	27.0
CHA3	Btl		0.4	5.1	22.5	14.0	13.0	8.0	7.0	30.0
CHA4	Bt1		0.4	3.6	14.0	21.0	14.0	7.0	6.0	34.0
CHA5	Bt1		0.4	5.6	14.0	16.0	13.0	6.0	6.0	39.0
CHA6	Bt2		0.3	4.2	14.5	18.0	14.0	7.0	7.0	35.0
CHA7	Cw		0.2	4.8	18.0	17.0	14.0	7.0	6.0	31.0

4.4.2. Whole-rock Mineralogy

In general, whole-rock mineralogy of the S5 paleosol in both profiles is quite uniform with major minerals such as quartz, feldspit, and mica present (Figures 4-1 and 4-2). Calcite is the most mobile constituent among all the minerals throughout the profiles, but it was not detected in the Bt horizons. Total amounts of chlorite and kaolinite (indicated by the height of the 7 Å peak) reached the lowest values in the Bt1 horizons (samples W29 and CHA5 in the Shijiawan and Chang'an sections, respectively).

4.4.3. Clay Mineralogy

Separated clay fractions were analyzed by X-ray diffraction and data are presented in Figures 4-3 and 4-4. The major clay mineral present in the profiles is illite, as indicated by peaks at 3.34, 4.98 and 10.05 Å. The minor minerals are chlorite, kaolinite, smectite and irregularly interstratified minerals.


Chlorite (the peaks 3.56, 4.72 and 14.25 Å in un-treated samples) decreased from the A horizon (W27) to the Bt1 horizon (W29), and then increased with depth. The presence of kaolinite throughout the profile, and also in the loess sample (Y01), was indicated by a decrease in the 14.1 Å peak in the heated samples (equivalent to the peak of about 14.2 Å in the unheated samples). It is evident that in the sample W29, a 7.1 Å peak still exists but the peaks around 1.4 Å are hardly seen.

In the Bt horizon (W29), a notable amount of vermiculite exists as evidenced by the 4.46 Å peak in the untreated sample and the 4.51 Å peak in the glycol-saturated sample. The existence of smectite is revealed by the peaks around 17 Å in glycol-treated samples and a rather stable peak at 14.2 Å in the untreated samples in which chlorite

Figure 4-1. XRD spectra of bulk samples of the S5-I from the Shijiawan section.

PM-1 3½"x4" PHOTOGRAPHIC MICROCOPY TARGET NBS 1010a ANSI/ISO #2 EQUIVALENT

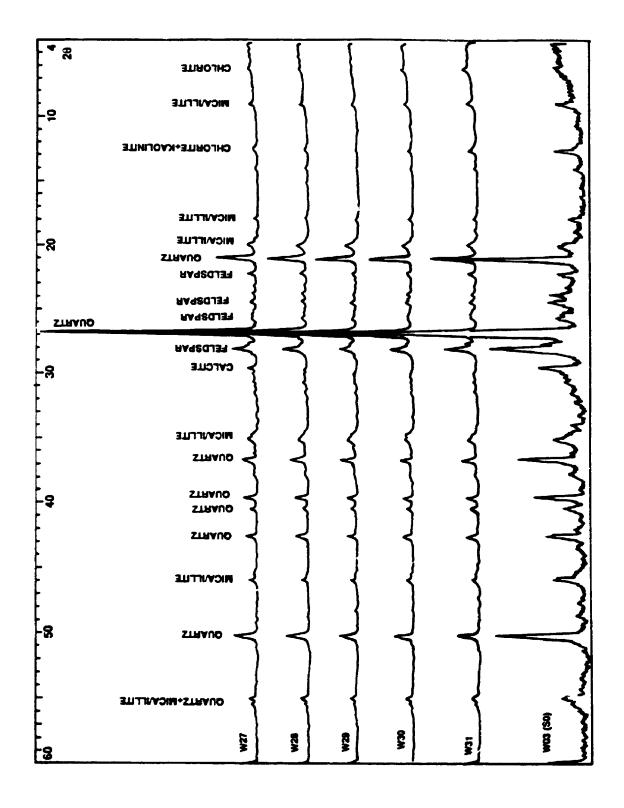


Figure 4-2. XRD spectra of bulk samples of the S5-I from the Chang'an section.

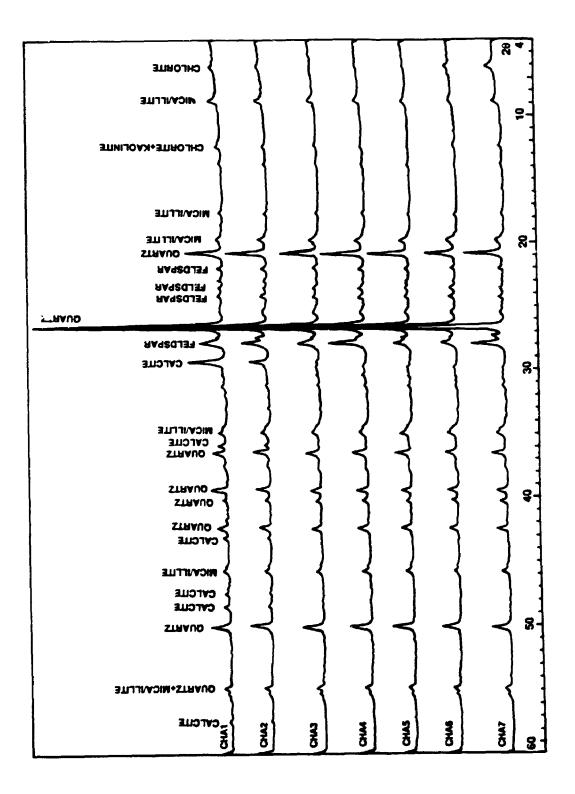


Figure 4-3. XRD spectra of clay minerals in paleosol S5-I from the Shijiawan section. A, untreated oriented samples. B, glycol-treated samples. C, samples heated at 560°C for 4 hours. Sample Y01 taken from a loess layer.

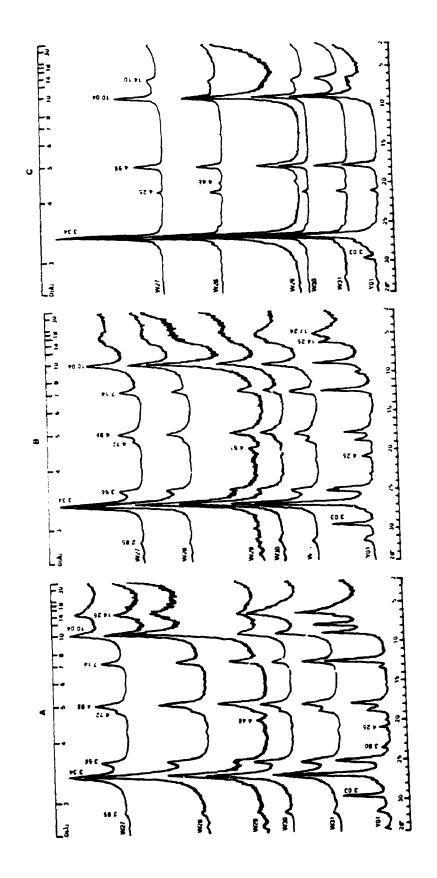
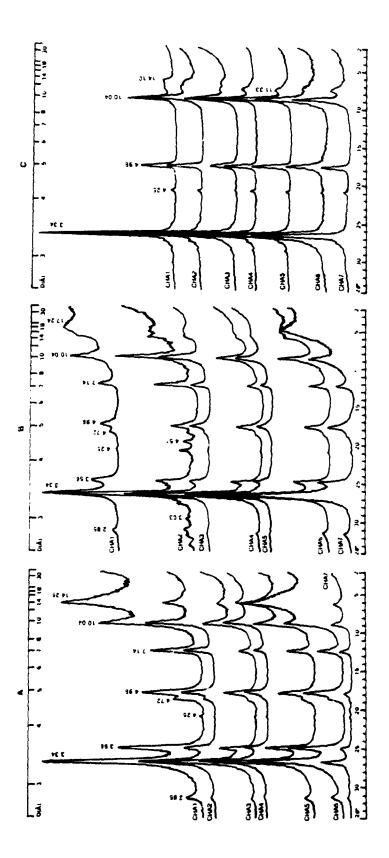



Figure 4-4. XRD spectra of clay minerals in paleosol S5-I from the Chang'an section. A, untreated oriented samples. B, glycol-treated samples. C, heated samples at 560°C for 4 hours.

barely exists. Irregularly interstratified minerals which were shown by a wide range of peaks between 14 and 30 Å in glycol-saturated samples increased with depth from the A to Bt1 horizon (W27 to W29 in the Shijiawan section and CHA1 to CHA5 in the Chang'an section). Very small amounts of quartz and calcite present in some samples were detected with peaks at 3.03, 4.25 and 2.85 Å.

4.4.4. Bulk Chemical Composition

Chemical analyses of the S5 paleosol for the two sections are presented in Table 4-3. In concordance with the mineralogical assemblage, the chemical composition throughout the profiles is dominated by SiO₂ and Al₂O₃, while CaO is the most variable. The highest concentrations of CaO occur in the A and C horizons, while the lowest concentrations occur in the Bt horizon. The total iron slightly increased from the A horizon to the Bt horizon and then decreased with depth. The variation of Al₂O₃ through the profiles has a similar pattern to that of total iron, and attains the highest value in the Bt horizon. The total loss of weight during ignition (LOI) depends mainly on the amount of organic matter, carbonate and swelling clay minerals present. For discussion of chemical weathering of the major elements through profile, carbonate concentration in each sample was determined, and the major chemical constituents were subsequently recalculated and listed in Table 4-4. The maximum concentration of organic matter in both sections is less than 0.2% (see Figure 4-5) and was neglected in the calculation. In the Shijiawan section, the variation of LOI percentage does not follow the pattern of the carbonate, implying that the clay minerals containing interlayer water are more abundant in the Bt horizon.

Table 4-3. Major chemical constituents of S5 in the Shijiawan and Chang'an sections.

Sample#	Horizon	SiO ₂	TiO ₂	A120,	Fe ₂ 0,	MnQ	MgO	CaO	K³O	P205	Na ₂ O	ro:
W27	Α	63.4	0.8	14.6	5.7	0.1	2.2	2.1	2.9	0.08	U.9	6.8
W28	A-Btl	64.0	0.8	14.7	5.8	0.1	2.0	1.6	2.9	0.29	1.1	6.5
W29	Btl	62.0	0.7	15.7	6.4	0.1	2.1	1.0	3.0	0.07	0.7	7.7
W30	Bt2	62.9	0.8	15.3	6.2	0.1	2.2	0.8	2.9	0.06	0.9	6.8
W31	Clw	63.9	0.8	14.6	5.8	0.1	2.3	1.2	2.9	0.14	1.0	6.2
W32	2Bt1 .	63.2	0.8	15.0	5.8	0.1	2.2	1.5	3.0	0.07	1.1	6.5
w33	2Bt2	63.9	0.8	15.2	6.0	0.1	2.1	0.9	2.9	0.09	0.9	6.5
W34	C2w	65.4	0.8	14.4	5.5	0.1	2.2	1.4	2.8	0.12	1.2	6.0
W35	3Bt1	64.2	0.8	14.6	5.9	0.1	2.0	1.2	2.9	0.08	1.0	6.2
W36	33t2	64.6	0.7	14.7	5.6	0.1	2.3	1.3	2.9	0.14	1.3	6.0
W3 7	C3	5 8.5	0.7	13.0	5.0	0.1	2.2	7.2	2.5	0.13	1.4	9.6
132	Loess	5 6.6	0.7	13.1	5.1	0.1	2.2	7.7	2.5	0.12	0.9	10.6
CHA1	A	58.4	0.7	13.1	5.1	0.1	2.1	7.0	2.5	0.13	1.2	9.0
CHA2	A	63.0	0.8	13.7	5.3	0.1	1.9	3.7	2.7	0.10	1.1	6.5
CHA3	3t1	65.2	¢.8	15.1	5.9	0.1	2.0	1.1	2.9	0.10	1.1	5.0
CHA4	3t1	65.9	0.9	14.9	5.8	0.1	1.8	0.9	2.9	0.08	:.:	5.4
CHA5	Bt1	66.2	0.9	15.6	6.2	0.1	1.7	0.8	2.9	0.10	1.1	4.8
CHA6	312	63.4	0.8	16.0	6.4	0.1	2.1	0.9	2.9	0.11	0.9	5.4
CHA7	СЭ	64.0	0.8	15.6	6.2	0.1	2.3	1.0	2.7	0.11	1.1	5.3
CHAS	CB	64.3	0.8	15.3	6.0	0.1	2.1	8.C	2.9	0.10	1.0	6.3
YGSO	Α	62.7	0.7	15.1	5 .9	0.1	1.8	1.4	2.7	0.09	1.0	7.4

Table 4-4. Major chemical constituents of the S5 in the S1.ijiawan and Chang'an sections after removal of carbonates.

Sample# /Horizon	-	TiO ₂	Al ₂ O ₃	Fe ₂ O,	MnO	MgO	CaO	K ₂ O	P ₂ O ₅	Na ₂ O	LOI	CaCO,
W27/A	64.46	0.77	14.86	5.76	0.11	2.21	1.45	2.92	0.08	0.93	6.41	1.15
W28/A-B	64.71	0.79	14.87	5.84	0.11	2.01	0.85	2.89	0.29	1.06	5.79	0.77
W29/Bt1	62.22	0.74	15.79	6.46	0.11	2.10	0.74	2.98	0.07	0.65	7.54	0.41
W30/Bt2	62.98	0.76	15.31	6.16	0.10	2.19	0.72	2.87	0.06	0.94	6.75	0.16
W31/CW	64.26	0.75	14.70	5.85	0.09	2.34	0.93	2.77	0.14	1.01	5.99	0.50
CA1/Aup	66.04	0.80	14.85	5.81	0.10	2.33	0.61	2.78	0.15	1.31	4.45	11.52
CA2/A _{lo}	66.82	0.88	14.58	5.57	0.12	1.98	0.50	2.86	0.11	1.12	4.24	5.73
CA3/Bt1	65.67	0.82	15.22	5.89	0.11	1.97	0.69	2.94	0.10	1.11	4.72	0.74
CA4/Bt1	66.10	0.87	14.98	5.77	0.12	1.82	0.71	2.91	0.08	1.13	5.23	0.33
CA5/Btl	66.24	0.87	15.60	6.11	0.12	1.74	0.69	2.93	0.10	1.06	4.76	0.12
CA6/Bt2	63.48	0.76	16.03	6.36	0.11	2.06	0.84	2.87	0.11	0.88	5.38	0.12
CA7/CW	64.22	0.77	15.66	6.18	0.10	2.26	0.85	2.74	0.11	1.12	5.20	0.14
CA8/Cw	64.50	0.77	15.33	5.99	0.14	2.05	0.67	2.94	0.10	1.02	5.92	0.12
LCS5/Bt	64.35	0.76	15.24	5.97	0.10	2.19	0.63	2.89	0.08	0.80	6.37	0.16

4.4.5. Trace Elements

Some 32 trace elements were analyzed for S5 from the Shijiawan section by the neutron activation method and data are listed in Table 4-5. Major changes through the profile occur with Mo, Ni, Co, Zn, As, Sb, Ba, Cr, Cs, La, Ce, Sm, Sc, Lu, The, U, Br, and Rb Based on their behaviours through the profile, the elements can be classified into three groups.

Like ferrous iron, Zn, Ni, Co, La, Ce, Sc, and Rb have the highest concentrations in the A horizon and the lowest concentrations in the CCa (Ca accumulation) horizon, reflecting that they reside mainly in the primary clastic minerals. The second group, including As, Sb, Cr, W, Cs, Th, U, and Br, reach the maximum concentrations in the best developed Bt horizon and the minimum concentrations in the CCa horizon, exhibiting a clear relationship with clay content. For the third group, involving noble metals like Au, Ir, Ag, etc., no obvious trend has been found through the profile. Barium behaves very similarly to calcium, indicating a close relation to carbonate.

4.5. Pedogenic Processes

4.5.1. Clay Translocation and Transformation

Grain-size analyses show that clay content increases with depth and reaches the highest value in the Bt horizon, which is consistent with the presence of the thickest clay coatings and suggests that the major process associated with the clay concentration is illuviation rather than argillation (Birkeland, 1974). The migration of clay minerals reflects the pedogenic conditions with a pH of no more than 7. This process can only

Table 4-5. Trace elements in S5 in the Shijiawan section

Sample#/	Au	Ir	Ag	Zn	Мо	Ni	Co	Cd	X =	c L	· ·	m.
Horizon -	ppb	ppb	bbw	ppm	ppm	ppm	ppm	ppm ca	As ppm	Sb ppm	Se ppm	Te ppm
W27/A	<2	<50	<2	190	2	59	25	<5	17.0	1.8	<5	<10
W28/AB	6	<50	<2	200	1	39	17	<5	18.0	1.8	<5	<10
W29/Bt	<2	<50	<2	140	<1	25	21	<5	20.0	2.0	<5	<10
W30/CCa	<2	<50	<2	110	2	<10	<5	<5	4.1	0.5	<5	<10
W31/Cw	<2	<50	<2	140	<1	50	19	<5	15.0	1.7	<5	23
W32/2Bt1	3	<50	<2	160	<1	47	20	<5	19.0	1.9	<5	<10
W33/2Bt2	<2	<50	<2	200	1	64	18	<5	19.0	2.0	<5	<10
W34/2BC	<2	<50	<2	190	<1	29	17	<5	16.0	1.9	<5	<10
W35/3Bt1	<2	<50	<2	160	<1	25	19	<5	17.0	1.8	<5	<10
W37/3C	<2	<50	<2	200	<1	38	15	<5	16.0	1.7	<5	<10
Sample#/	За	Cr	Sn	W	Cs	La	Ce	Sm	Eu	Tb	Υb	Lu
Horizon	ррт	ppm -	ppm	ppm 	ppm	ppm	ppm	ppm o	ppm	ppm	ppm	ppm
W27/A	630	120	<100	2	9.1	50	110	6.5	3	0.9	5	0.6
W28/AB	660	130	<100	3	9.5	43	100	6.1	<1	1.1	4	0.3
W29/Bt	580	100	<100	4	11.0	43	90	6.6	2	0.9	4	0.4
W30/CCa	5000	34	<100	<1	2.3	11	21	1.9	<1	<0.5	<2	<0.2
W31/Cw	550	87	<100	3	9.2	40	83	6.4	2	1.2	4	0.4
W32/2Bt1	590	92	<100	3	10.0	40	89	6.4	<1	0.9	3	0.3
W33/2Bt2	610	110	<100	2	11.0	47	100	7.5	4 *	1.2	5	0.5
W34/2BC	600	100	<100	3	10.0	43	85	6.9	<1	1.1	4	0.4
W35/3Bt1	570	90	<100	2	9.2	41	87	6.9	1	1.2	4	0.5
W37/3C	550	95	<100	1	7.7	37	81	6.3	<1	0.9	4	<0.2
Sample#/	Şc	Hf	Ta	Th	บ	Br	Rb	Zr				
Horizon	ppm	ppm	pp m	bbw	bb w	bbw	bbw	bb w				
W27/A	18.0	8	1.7	15.0	3.1	<0.5	200	<200				
W28/AB	16.0	8	1.5	16.0	3.5	0.6	190	<200				
W29/Bt	17.0	6	1.5	16.0	3.2	3.4	190	<200				
W30/CCa	4.2	3	<0.5	3.9	1.3	<0.5	38	<200				
W31/Cw	14.0	7	1.5	15.0	2.9	<0.5	180	<200				
W32/2Bt1	16.0	7	1.3	16.0		<0.5	190	<200				
W33/2Bt2	16.0	7	1.2	17.0		<0.5	210	<200				
W34/2BC	14.0	6	1.3	16.0	3.3	<0.5	180	490				
W35/3Bt1	14.0	7	1.4	15.0		<0.5	170	<200				
W37/3C	13.0	6	1.2	14.0	3.1	<0.5	170	<200				

occur when carbonate is completely leached out.

The downward decrease of chlorite, and occurrence of vermiculite in the Bt horizon (W29) implies that the clay minerals have been subjected to transformation. Vermiculite is most likely of pedogenic origin (Tan. 1994). According to previous studies, vermiculite may be derived from chlorite and micas (cf. Yatsu. 1988; Evans. 1992), and micas are readily altered to vermiculite by the extraction of potassium, and chlorite by oxidation of Fe²⁺ (Ross, 1975; Ross and Kodama, 1976). Our chemical data, however, show that potassium increased and magnesium decreased in the Bt horizon, which seems to favour a chlorite-alteration, as is suggested by the clay mineralogical study. A pH value less than 7 is necessary for the transformation of chlorite into vermiculite (Birkeland, 1974).

The XRD spectra of ethylene glycol-treated samples demonstrate that smectite exists in all horizons but is less abundant in the Bt horizon, and irregular interstratified minerals make up a notable portion in the Bt horizon. The possibility of a decreased smectite signal resulting from alteration of smectite into kaolinite needs to be further confirmed. Regardless of the pathways, the pH values required by the process must be in the range of 5-7 (Birkeland, 1974; Yatsu, 1988), similar to that of the chlorite-vermiculite transformation.

Overall, the following alterations may have occurred.

Chlorite - Mg^{2+} , $Fe^{2+} \rightarrow Vermiculite + interstratified material;$

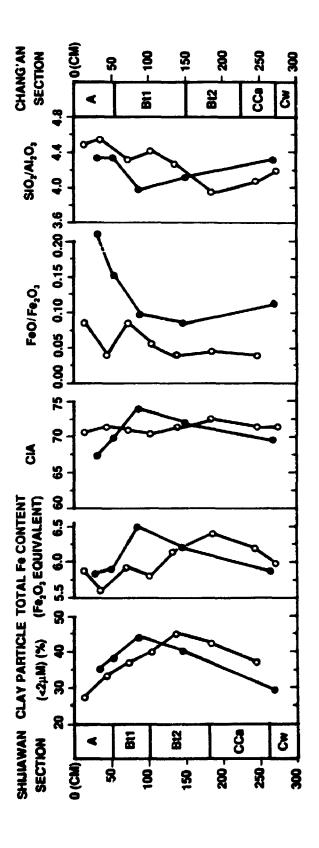
Illite - $K^+ \rightarrow Vermiculite + interstratified material;$

Smectite - $H_4SiO_4 \rightarrow Kaolinite$.

4.5.2. Variations of the Major Chemical Constituents

Carbonate analyses indicate that the Bt horizon has experienced complete decalcification, and secondary carbonate accumulation has occurred in the CCa horizon at 1.9-2.6 m depths below the S5 surface as observed in the field. The carbonate depletion in the Bt horizon is consistent with the clay mineralogical data. The presence of carbonate in the upper horizons as indicated by chemical data is due to post-pedogenic carbonate leaching from overlying loess, which is suggested by the fact that the carbonate in the A horizon exists as white coatings or pseudomycelia on the cracks.

Besides CaCO₃, SiO₂ and Al₂O₃ are the second most pronounced labile constituents. SiO₂ decreases with illuviation whereas Al₂O₃ varies inversely to SiO₂. Microscopic study of the clastic minerals revealed that quartz and feldspars did not suffer serious alteration. The chemical data also indicate that potassium, magnesium and sodium are incorporated in the silicates (see Table 4-4) with only a slight change. Therefore, a higher SiO₂/Al₂O₃ ratio in the Bt horizon is mainly the result of clay translocation. To evaluate the degree of chemical weathering, the chemical index of alteration (CIA) was calculated as proposed by Nesbit and Young (1982). It is presented by using molecular proportions:


$$CIA = \langle A12O3/(A12O3 + CaO + Na2O + K2O) \rangle \times 100^{\circ}$$

where CaO is the amount of CaO incorporated in the silicate minerals. Here the CaO content used is from the data after removal of carbonates as shown in Table 4-4. Variations can be seen from Table 4-6 and Figure 4-5.

Table 4-6. CIA values of S5-I in the Shijiawan and Chang'an sections.

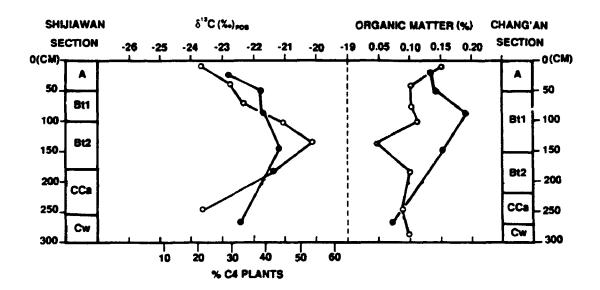
Shijiawan	Section	Chang'an Section						
Horizon	CIA	Horizon	CIA					
A	66.96	A	70.30					
AB	69.86	А	71.45					
Bt1	73.68	Bt1	70.85					
Bt2	71.96	Bt1	70.39					
См	69.82	Bt1	71.64					
		Bt?	72.48					
		Bu 2	71.18					
		Cw	71.59					

Figure 4-5. Graphic illustrations of variations in clay-sized fraction and some chemical factors through paleosol S5-I. Solid circles represent samples from the Shijiawan section, open circles represent samples from the Chang'an section.

It is demonstrated that the CIAs for all horizons are slightly different. The highest value found in the Bt horizons and the lowest in the A horizon of the Shijiawan section suggest that the chemical variations have resulted mainly from mechanical translocation of clay-size particles, and that chemical weathering in the S5 is slight. In fact, similar results of chemical composition between loess and paleosols have been shown by previous studies with large number of samples (e.g., Liu et al., 1985). Unfortunately, these were not taken into consideration in their paleoclimatic interpretation, probably because these data do not favour their impression in terms of the presumed contrast between loess and paleosols as is visualized in colour (for dada refer to Liu et al., 1985, p240-243).

The variable trend of the CIA through the Chang'an profile does not follow the pattern observed in the Shijiawan section, and may be attributed to other factors (eg., drainage conditions, aggradation etc.) associated with the relatively low altitude of the river-terrace when the S5 was developing.

The total iron content varies in a trend similar to that of Al₂O₃ and the clay content (see Table 4-4 and Figure 4-5). Compared with parent loess, the total iron is slightly concentrated with highest value in the most-developed illuvial horizon, while the highest concentration of FeO is found in the A horizon. Magnetic susceptibility measurements indicate the highest values in the A horizon. This coincidence implies that FeO is principally concentrated in magnetite, suggesting a weak chemical alteration and leaching process experienced by the S5 in Shijiawan, although it may largely have been comminuted during pedogenesis. Higher concentrations of Fe₂O₃ resulted from fine hematite translocated with clay migration and in situ oxidation of magnetite.


Fe-Mn films in the Bt horizon were observed in the field and confirmed by SEM

analysis. It will be argued that it is an indicator of leaching conditions rather than gleying or pseudogleying conditions (seasonally over-saturated with water). Further discussion will be given in Chapter 5.

4.6. δ^{13} C signatures of Organic Matter and Paleovegetation

The stable carbon-isotope composition of organic matter in S5-I was determined and presented graphically in Figure 4-6. Obviously, C4 plants constituted a pronounced portion of the paleovegetation. The isotopic signatures changed notably along the profiles, and these variations follow a similar pattern in both sections. The highest δ^{13} C values occur in the Bt horizon and lowest values occur in the top and bottom horizons. Measurements of the organic matter content in the two sections (see Figure 4-6) indicate that the highest concentration occurred at depths around 1.0 m in Shijiawan, which is consistent with clay illuviation. This may be partly attributed to migration of organic matter, but the pronounced difference in δ^{13} C values between the A and Bt horizons can only be explained by a pedogenic history with both vegetational change and loess deposition. Therefore he leaching processes seem to have a minor vertical mixing influence on organic matter distribution. Gradual decrease of organic matter content in the Shijiawan section from 1.0 m to the bottom suggests that below the depth of about 1 m, there is no other pedogenic A horizon buried. The δ^{13} C variation in this depth range could be explained by the difference in organic matter contribution depths between C3 and C4 plants. Above 1.0 m depth, it most likely reflects a progressive floral change. For the Chang'an section, two separate vegetation histories are suggested according to changes in organic matter concentration.

Figure 4-6. δ^{13} C signatures of organic matter in paleosol S5-I from the Shijiawan and Chang'an sections. Solid circles represent the samples from Shijiawan, and open circles represent the samples from Chang'an. The equivalent percentage of C4 plants is explained in Figure 3-1.

Overall, the stable carbon-isotope evidence reveals that during the S5-I development, the regional vegetation experienced a profound change, from a flora with about 50% C4 plants to floras with about 20% C4 plants, at least indicating that a typical forest never stood for an identifiable period. A very short depth range for C3-dominated δ^{13} C signatures in the upper horizon is demonstrated in both sections. If these low δ^{13} C values were derived from a forest, such low values should have been maintained for a much longer depth range, because tree roots are commonly distributed over 1 m in depth in this region as observed today, and their contributions to δ^{13} C value could not be masked by C4 grasses of the minor floral constituents especially at greater depth. Therefore, the occurrence of C3-dominated δ^{13} C signatures in the upper horizon in the both sections does not seem to reflect a forest flora, because many herbs and grasses in this region are C3 as discussed in Chapter 3 (referred to Figure 3-1). In the Shijiawan section, relatively stable δ^{13} C values (reflecting about 40% C4 plants) would suggest that the paleovegetation of the S5-I was dominated by grassland with a minor portion of trees. In Chang'an, a grassland with more than 50% C4 plants is clearly indicated by the δ^{13} C record (see Figure 4-6).

4.7. Climatic Evaluation

Most previous paleoclimatic studies on the loess-paleosol sequences have estimated paleoclimate by the correlation of pedogenic features of paleosols with modern soils and by analogy with the climatic conditions (mean annual temperature and rainfall). As previously mentioned, the methodology employed is quite questionable, because it is very difficult to constrain the effects of parent material and pedogenic duration which cannot

be neglected in climatic interpretation. For example, consider two soils (A and B) with the same parent material, relief and complete decalcification, if A is just half of B in pedogenic duration, it must be double B in leaching-effective rainfall. But an equal precipitation might be estimated without consideration of time-effect.

The magnetic susceptibility (MS) record in the Chinese loess-paleosol sequence provides another approach to the paleoprecipitation. Heller et al. (1993), Maher et al. (1994), and Liu et al. (1995) statistically demonstrated a good relationship between MS of modern soils and annual precipitation in the regions of the Chinese Loess Plateau. Using such relations, the MS signals in the loess-paleosol sequences were interpreted in terms of paleorainfalls. In fact, the mechanism behind this relation is still poorly understood, although the MS of the loess and paleosols is convincingly demonstrated to be greatly enhanced by pedogenesis (Heller and Liu, 1984; Zhou et al., 1990; Maher and Thompson, 1991; Zheng et al., 1991; Verosub et al., 1993). Our measurement of the MS indicated that the most intensively pedogenic paleosol (S5-I) in the Shijiawan section does not possess the highest MS, in agreement with the Baoji section which is also located in the Guanzhong basin (cf. Wang et al., 1990). When a soil achieves complete decalcification, high precipitation will lead to oxidation of superparamagnetic grains of magnetite, the major MS contributor for the loess and paleosols (Maher and Taylor, 1988; Verosub et al., 1993), and hence to a decrease of the MS. Therefore, a steady state of MS for pedogenic origin suggested by Maher et al. (1994) is very limited in terms of consideration of climatic conditions and time-length of pedogenesis. A large discrepancy of MS-interpreted paleoprecipitation for the S1 in Xifeng between Heller et al. (1993) and Maher et al. (1994) (Maher- about 150-200 mm more than today without consideration of pedogenic duration; Heller- equal or slightly less than today with consideration of the pedogenic duration) indicates that the pedogenic enhancement of MS is time-dependent. Furthermore, it has been found by this study that the MS enhancement is also affected by the organic matter content and leaching state. Therefore, a proper interpretation of paleoclimatological significance of the MS signatures and its climofunction validity needs additional work.

As approximated by Kukla et al. (1988), Kukla and An (1989) and Ding et al. (1991), the pedogenic duration of the S5-I is about 40-50 ka. Assuming 10% of calcite in the parent loess and 1.7g/cm³ of the specific weight (Liu et al., 1966) at 25°C and 3.5x10⁻³ atm. of pCO₂ in the subsoil zone with a saturate solubility about 0.2g/litre (cf. Richardson and Mcsween, 1989), 2.55x10⁵ cm of the leaching-effective rainfall was calculated to be necessary for a 3 m column of loess to be completely decalcified. A calibration of the effectiveness of regional rainfall for carbonate leaching based on a Holocene soil indicates the effectiveness of the annual precipitation is about 15%, i.e., the total amount of natural rainfall is about 6.7 times as much as the calculated effective rainfall required for complete decalcification. For S5-I in the Shijiawan section, if about 600 mm of today's local rainfall is used in the calculation, the complete decalcification would be acquired after 27 ka, a time-length far less than the actual duration. Our chemical analyses show other labile constituents (e.g., MgO, Na₂O, K₂O, etc.) with little significant change, indicating no obvious advance of chemical leaching other than decalcification. As is observed today, the annual rainfall in this region is concentrated in July, August, September and October, and a seasonal water-saturated state can be expected. Once a complete decalcification in the upper horizon is achieved, clay mineral migration takes place readily. Therefore, the climatic conditions reflected by S5-I in Shijiawan and Chang'an, as well as the whole Guanzhong basin are at best similar to, or even drier than today. The vegetation during that period was dense grassland-dominant, which is necessary for the formation of the well-developed clay coatings and later Fe-Mn films.

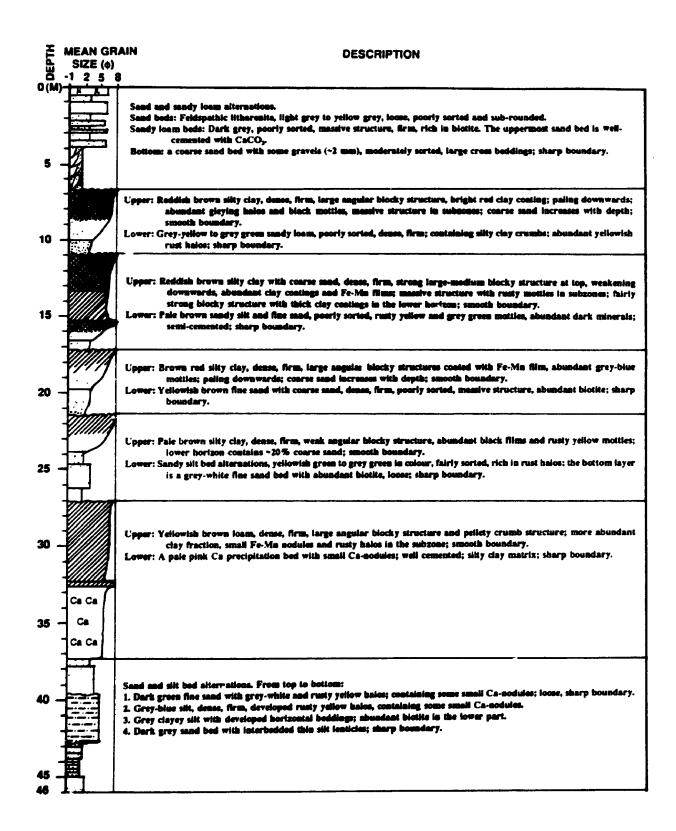
A further discussion on the amplitudes of the Pleistocene climate oscillations in the Chinese Loess Plateau will be given in Chapter 6.

CHAPTER 5

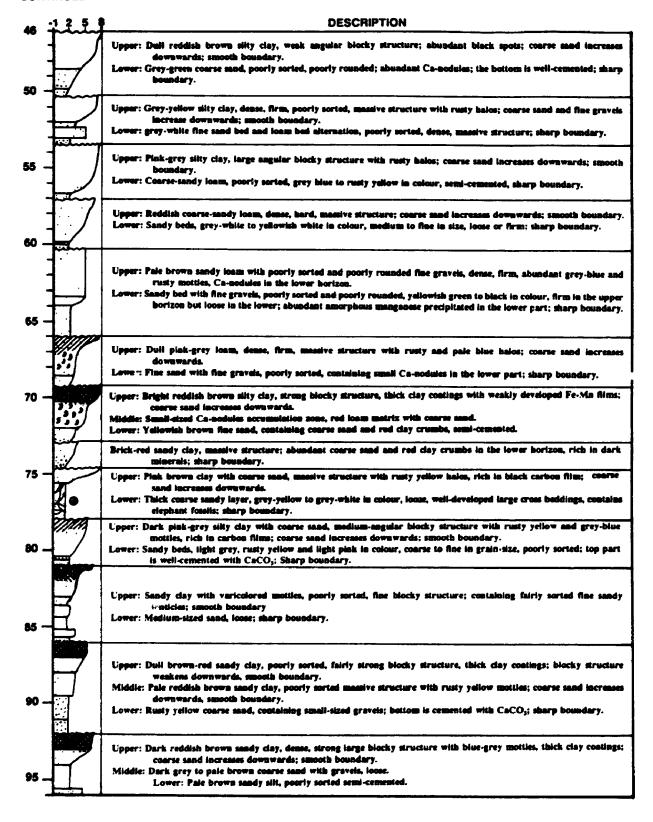
CLIMATIC CHANGE IN THE PERIOD OF LATE PLIOCENE-EARLY PLEISTOCENE

5.1. Introduction

From the data of Chapter 2, it has been 'own that the fluviolacustrine sequence in the lower part of the Shijiawan section was formed during a period from 3.05 to 1.9 Ma B.P., and the upper red clay formation in the Yanyu section was formed in the interval 2.9-2.5 Ma. In this chapter, the intention is to discuss the climatic reconstruction of the period from late Pliocene to early Pleistocene (3.0 to 1.9 Ma) based on sedimentary and palynological analyses, and stable carbon-isotopes of organic matter. Through laboratory analyses of grain-size distribution, major chemical composition, clay mineralogy and other pedogenic studies, the provenance of the red clay and its paleoclimatic implications are discussed.


5.2. Sedimentary Analysis of the Fluviolacustrine Sequence

5.2.1. Major Sedimentary Features


The lithologic features of the fluviolacustrine sequence in the Shijiawan section (Figure 5-1) are summarized as follows.

1. The grain zize data of the sequence indicates deposition with strong rhythms and sedimentary cycles. Each cycle starts with a coarse sand bed and then switches to a poorly sorted loam or silty clay bed. The top layer of most of the sedimentary cycles is

Figure 5-1. A lithologic column with descriptions of the fluviolacustrine sequence shown in the lower part of the Shijiawan section.

CONTINUED

characterized by relatively pure fine sediments. Approximately 20 cycles exist in the Shijiawan section.

- 2. Except for the middle part of the section (the interval from 40 m to 66 m in depth), each cycle was succeeded by a pedogenic period, which is manifested by occurrences of a Bt horizon with clay coatings and black Fe-Mn films, strongly developed blocky structure of the B horizon, and a carbonate accumulation horizon CCa.
- 3. Most of the beds are poorly sorted and exhibit massive structure. Sedimentary bedding is rarely found. With the exception of the sand layers, most beds show a bimodal size distribution. High frequencies of the grain-size distribution show coarse sand (about 1 mm) and fire silt or clay (<0.01 mm) fractions.
- 4. Most sedimentary beds are not stable in spatial extension and change their facies on a scale of hundreds of meters.
- 5. In the upper part of the sequence (0-66 m in depth), the fine-grained layers have a yellowish colour, very similar to that of the loess, and there is no difference from the loess of the region in the grain-size distribution pattern. In the lower part of the sequence (66-102 m), the fine-grained beds have reddish colour with a bimodal size distribution pattern, and the fine-size fraction is similar to that of the red clay. Therefore, this suggests that the major portion fine-grained sediments in the upper part of the sequence are reworked loess, and in the lower part are reworked red clay. According to grain-size composition and colour, the first typical reworked loess occurs at 61 m in depth and the last typical reworked red clay occurs at about 70 m.

5.2.2. Depositional Process

From the major sedimentary features discussed above, the fluviolacustrine sequence in the Shijiawan section shows a typical alluvial origin. Each sedimentary cycle contains coarse sand and silty layers, reflecting a hydraulic rhythm which is mainly controlled by paleohydrology. Obviously, the poorly sorted beds reflect a different hydraulic condition and suggest that they were formed by flooding. The coarse sand beds, especially those with abundant large cross-bedding, represent river-channel deposition. During flooding events, large amounts of fine-grained material were eroded from loessor red clay-covered ground surface by rainwater discharged into river and deposited, which forced the river channel to shift. Combined with channel sediments, the flood deposition forms the binary structure of the sequence. Once the floodplain was high enough and acquired a stable surface, pedogenesis could take place. With evolution of the graben, a new sedimentary episode terminated the previous cycle. In this scenario, the sedimentary beds fluctuated from coarse can el sand to poorly sorted flood material (sand-mixed loam or silty clay). The thick and pure fine-grained top horizon of each cycle suggests that the post-depositional pedogenesis was accompanied by red clay or loess accumulation under subareal conditions. The deeper continuous carbonate accumulation zones reflects the paleo- groundwater table.

Overall, the conventionally called fluviolacustrine sequence in the Shijiawan section was mainly of fluvial deposition, and little seems to be of lacustrine origin. Variations in grain-size composition reflect cyclic deposition. Approximately 20 depositional cycles in the Shijiawan section started with channel sand deposition and ended with poorly sorted fine flood materials which are mainly reworked loess or reworked red clay. Most cycles involve a post-depositional pedogenic period. The first

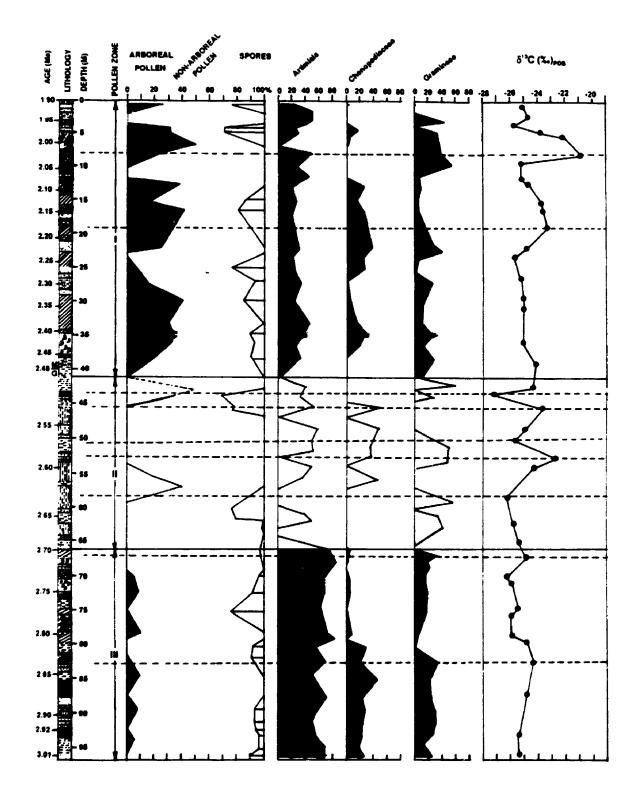
bed of reworked loess occurs at 56 m in depth, about 16 m below the Matuyama/ Gauss boundary, marking the beginning of loess deposition in this region. The cyclicity of the deposition reflects the river-channel shift, which could be caused by episodic tectonics or climatic fluctuations or both. More work is needed to confirm such a relationship.

5.2.3. Deposition Rate

With paleomagnetic dating constraints and an assumption of constant tectonic depression, the deposition rate can be estimated. The whole fluviolacustrine sequence in the Shijiawan section was dated in the period of 3.0 to 1.9 Ma B.P (see Chapter 2). The upper part (above the M/G boundary, from 2.48 to 1.9 Ma) has a thickness of about 40 m. Thus the mean deposition rate is approximately 6.9 cm/10³ yr. The lower part (between the M/G boundary and the Kaena event, a period from 2.92 to 2.48 Ma B.P.) is 54 m in thickness, with an average deposition rate of 12 cm/10³ yr. Using these data, a chronological framework of the sequence was constructed and is shown in Figure 5-2.

5.3. Palynological Data and Stable Carbon-Isotope Analysis

Some 57 samples through the sequence (excluding coarse sand beds) were taken for pollen analysis, and processed with laboratory methods for clastic sediments which are described as follows.


Samples were treated with 10% HCl to remove carbonate, passed through a 150 μ m sieve, and then treated with HF to digest silica. The samples were then washed with distilled water and sieved through a 7 μ m screen to remove silica gel and fine particles, and dehydrated with glacial acetic acid. A mixed acid (acetolysis and sulphuric acid at

a ratio of 8:1) was added to remove organic material. Samples were washed, centrifuged, and mounted in silicon oil. Pilot samples were examined in the Microfossil Lab of Brock University, and the major analysis of pollen was conducted in the Pollen Laboratory of the Geological Institute, State Seismological Bureau of China. The results are presented in Figure 5-2.

All of the samples contain low concentrations of pollen, which may reflect a high depositional rate as suggested by its sedimentary environment (floodplain). Based on pollen concentration and assemblage, the whole sequence in the Shijiawan section is divided into three pollen zones, which is coincident with lithological subdivisions. The upper zone (Zone I) is 0-40 m in depth, just covering the interval between the beginning of the Olduvai subchron and the Matuyama/Gauss boundary. In this zone, each sedimentary cycle involves a thick developed pedogenic layer in a reworked loess bed. The middle zone (Zone II) refers to the interval from 40 to 66 m in depth, i.e. from the M/G boundary to the depth of 26 m below the boundary, covering a period from 2.48 to 2.7 Ma B.P. In this stage, no obvious indications of pedogenesis have been found. The lower zone (Zone III) includes the interval from 66 m to the bottom of the sequence of this section, and indicates a duration from 2.7 to 3.05 Ma B.P. The lower zone coincides the range of reworked red clay.

The upper pollen zone (1.90-2.48 Ma B.P.) is dominated by non-arboreal species. Some arboreal pollen has been found in most samples, and constitutes a notable portion (the highest ratio is near 50%) in some horizons. *Pinus* (Pine) is the major arboreal species in all the samples which contain arboreal pollen. *Quercus, Juglans, Ulmus, Rhus* and *Betula* are found in some samples, but constitute only a minor fraction.

Figure 5-2. Diagrams showing pollen spectra and δ^{13} C variations along the fluviolacustrine profile in the Shijiawan section. Chronological data were obtained by interpolations using age-constraints of paleomagnetic boundaries (details seen in the text). The pollen zone II, represented by open unshaded area in the pollen spectra, indicates a low concentration (usually <20 grains/10 gram).

Euphorbiaceae, Abies, Castanea, Salix, Leguminosae, Engelhardtia, Solanaceae and Cypressaceae are present in only a few samples. The major non-arboreal pollen types are Artemisia, Chenopodiaceae and Gramineae. Humulus and Compositae occur in some beds, and a few shrub taxa (Corylus and Ericaceae) were detected in some samples. In the lower part of this zone, some of spores commonly exist with taxa of Selaginella, Polypodiaceae, Polypodium and Filicales. Compared with the lower pollen zone, non-arboreal pollen in the upper zone has proportionataly more Gramineae and Chenopodiaceae but less Artemisia.

The middle zone (2.48-2.70 Ma B.P.) is characterized by very low pollen concentrations. There is very little diversity among the existing pollen taxa. Arboreal pollen and spores are rarely found. Except *for Artemisia* and Chenopodiaceae, the presence of the other species is negligible.

In the lower zone (2.7-3.0 Ma B.P.), non-arboreal species dominate all samples. The major taxa are *Artimisia*, Chenopodiaceae and Gramineae. Compositae commonly occur through the lower zone. As a minor constituent, *Selaginella* (spores) are also commonly present. These non-arboreal species constitute over 90% of the total pollen. Arboreal pollen present consists essentially of a single genus, *Pinus*, with very few *Salix* and *Betula* pollen grains in the lower bed and the uppermost bed of this zone. Generally, the lower zone shows a constant pollen concentration, exclusively dominated by non-arboreal species with narrow diversity.

5.4. Stable Carbon-Isotope Analysis

Some 40 samples were chosen for stable carbon-isotope analysis of organic matter

(see methods described in Chapter 3). Due to low concentration of organic matter (0.022-0.067%) and thus higher heterogeneity, the reproducibility of δ^{13} C values is between 0.5 and 1.2 permil. The results obtained are presented in Figure 5-2. As discussed in Chapter 3, the δ^{13} C signature of organic matter depends on the source material and reflects a ratio of C3/C4 plants in the organic matter. As the sedimentary material was mainly derived from the pathways (floodplain sediments), the organic matter is a mixture of local vegetation, and should be identical to that of pollen in the sediments. Although more negative δ^{13} C values (around -26 permil) do not necessarily imply a forest flora (as is demonstrated by organic carbon-isotope study on modern vegetation and related soils in this region), it is useful for examining the validity of the conclusion from pollen analysis.

The variations in δ^{13} C signatures show good agreement with the pollen assemblage throughout the sequence (see Figure 5-2). In the lower zone, δ^{13} C values are close to -25 permil with a narrow range between -24 to -26, which is consistent with the pollen results that *Artemisia* (a C3 species) persistently exists as a dominant species throughout the interval. In contrast, Chenopodiaceae and Gramineae (C4 species) are only a minor component. A notably higher value of -24 permil coincides with a relative abundance of C4 plants. In the middle zone, the δ^{13} C signature fluctuated from a high value of -22 to a low of -27.5 permil and these data agree with the pollen data that the ratio of C3/C4 species (but all are non-arboreal plants) varies drastically. The lowest value corresponds to an abundance of *Artemisia* and the highest corresponds to abundant C4 species, Chenopodiaceae and/or Gramineae. In the upper zone, a pronounced δ^{13} C high was detected in an intensive pedogenic layer, corresponding to a large proportion of C4 plants as indicated by pollen spectra.

5.5. Paleovegetation and Paleoclimatic Interpretation

The fact that stable carbon-isotope signatures show agreement with pollen results indicates the pollen assemblage obtained from each bed is representative of the paleovegetation.

The pollen data (see Figure 5-2) indicate that the evolution of vegetation in this region experienced three major stages during the period from 3.05 to 1.9 Ma B.P. as suggested by the three pollen zones. From 3.0 to about 2.7 Ma., the vegetation was characterized by a typical steppe which was dominated by a dry-resistant species, *Artemisia*. Furthermore, the few arboreal pollen grains found are restricted to pine species, which seem to be from a remote source because of their high propagational capacity (cf. Færi and Iverson, 1989). Obviously, the vegetation represented by this period is of a relatively dry steppe type, substantially without trees. Consistency in the species assemblage and proportions of each species suggests that such a steppe flora lasted through the period of 3.0-2.7 Ma B.P. without any significant change, implying that the climate during that period was persistently dry. As indicated by the lithologic study, this stage coincides with reworked red-clay deposition. Therefore, the lower pollen zone substantially reflects the floral features and climate of the red clay formation.

The upper pollen zone (2.48-1.9 Ma B.P.) shows that a pronounced arboreal component existed, although its abundance varied largely. The arboreal pollen contains a large diversity including some thermophilous genera such as *Juglans*, *Ulmus* etc. The non-arboreal pollen also includes a variety of species. Pollen of Gramineae and some fern species are more abundant in the upper zone than in the lower zone. These observations indicate that the early Pleistocene flora was mainly forest-grassland, reflecting a climate

that was significantly wetter than the late Pliocene (the lower zone, the reworked red clay stage). It should be noted that the abundance of the arboreal component fluctuated frequently and significantly with a dominant amplitude from zero to about 45%. At least three large cycles are demonstrated. Although they cannot be correlated to regional climatic episodes due to uncertainty in the climatic significance of the sedimentary cycles, the floral variations indicate that the climate has periodically changed in the early Pleistocene, which is characteristic of the ice ages.

Pollen analysis indicates that the middle zone (2.7-2.48 Ma B.P.) has the lowest concentration of both pollen and organic matter. The absence of arboreal pollen in this zone indicates the paleovegetation was probably related to a grassland. Interestingly, sedimentary facies analysis indicates the flood plains experienced little pedogenesis, which is the most distinct teature of the other zones. This could suggest that erosion-deposition processes were more active than in other periods, implying a poorly vegetated ground surface in the region. The δ^{13} C signatures show large fluctuations in the middle zone, suggesting that the species in a sparse steppe vegetation altered frequently, and that the climate was unstable. These features indicate that the climate was in a transition period from a relative stable state in the late Pliocene to glacial-interglacial fluctuations in the Pleistocene.

5.6. Late Pliocene Red Clay and Climatic Implication

5.6.1. Description of the Red Clay Profiles

The reddish colour is the most distinctive feature of the red clay formation throughout the profiles, although it varies between dark red and light red (Plate 2-1).

Detailed descriptions of the Yanyu section (Figure 2-5) are presented in Table 5-1. The lithologic units of N2S1 through N2S4 in Table 5-1 belong to red clay formation. The overlying strata L32 and S32 are the lowermost part of the loess-paleosol sequence.

Besides a reddish background colour, the red clay has the following features. Similar to the loess-paleosol sequence, the red clay formation comprises multiple soil layers which implies periodic pedogenesis, but the pedogenic intensity appears stronger in the red clay formation as suggested by thicker B horizons and abundantly thick clay coatings and Fe-Mn films. Carbonate nodules are usually scattered in very thick bands with small scorious shapes rather than in a precipitated bed (see Plate 5-1), and are commonly nucleated on small red clay chunks with black Fe-Mn films. This suggests that the red clay experienced multiple pedogenic periods with carbonate addition.

5.6.2. Grain-size Analysis

Grain-size analysis was conducted on the lowest loess-paleosol cycle and the upper part of the red clay formation in the Yanyu and the Luochuan sections. The results are presented in Table 5-2.

The sand (>0.063 mm) fraction constitutes a negligible proportion but shows a slightly higher concentration in the upper horizon of each pedogenic cycle in the Yanyu section. It can also be noted that this fraction increases downwards through the section. In the Luochuan section, no sand-sized grains were detected in any of the samples. This is attributed to the fact that the Yanyu section is situated in a basin margin close to the Qinling Mountains, while the Luochuan section is in a central basin.

The clay fraction (<0.002 mm) is more abundant in the red clay than in loess,

Table 5-1. Field description of the red clay formation in the lower part of the Yanyu section.

Lithologic Subdivision	Pedogenic Horizon	Thickness (cm)	Description
L32	C/Yl	320	Yellow-brown loam; dense and firm.
s 32	A/Y2	40	Yellow-brown clayey loam; spongy structure.
	Bt/Y3,4,5	120	Bright brown-red silty clay; very strong blocky structure; thick and continuous clay coatings and Fe-Mn films but decreased downward.
	CCa	45	Yellowish grey calcareous nodules; Hard and dense; large size (diameter: 10-30 cm).
	C/Y6,7	320	Yellow-brown loam, dense, reddened at bottom; smooth boundary.
N2S1	A/Y8	35	Brow: silty clay with little coarse sand; granular structure; small amount of pseudocellia; smooth boundary.
	Bt/Y9,10,11	. 180	Bright dark red clay; very strong fine blocky structure; thick clay coatings and black-brown Fe-Mn coatings (dark blue fresh fracturing surface); large blocky structure in the middle; colour becomes dull dark red; structure weakened downward; thick clay coatings through the horizon; blue clay spots occur in the lower horizon.
	CCa/Y12	20	Grey red-brown clay with small marbonate nodules containing large amount of grey clay chunks rich in Fe-Mr films; smooth boundary.
N2S2	Bt. Y13,14	120	Bright dark red clay with coarse sand; very strong blocky structure; abundant dark blue clay chunks; thick clay coatings with Fe-Mn films; dull dark reddishbrown colour in the lower horizon.
	CCa/Y15,16	250	Pale reddish brown carbonate rodules with clay matrix; small size with scorious snapes in the upper 2.05 m; clay chunks with Fe-Mn film as nuclei; large-sized nodules in the lower 45 cm.
	C/¥17	100	Reddish brown silty clay; dense; small to medium sized calcarious nodules scattered through the horizon; smooth boundary.
N253	A, Y18	50	Brown red silty clay; dense, medium-granular structure; possessing Fe-Mn film; smooth poundary.
	Bt/Y19,20	120	Bright reddish brown clay; strong blocky structure; thick Fe-Mn coating and clay coating; very abundant blue clay chunks and small calcareous nodules in the bottom level.
	cca/ Y21-26	550	Pale reddish brown silty clay with abundant scattered small calcareous nodules; high proportion of the matrix silty clay in the nodules; clay chunks with thick Fe-Mn film and Clay coating are common nuclei; most are voidal with large calcite crystals in the interior; matrix with loose structure.
N2S4	Bt/Y27	40	Dark reddish brown clay with large amount of sand and silt; strong blocky ctructure; firm and friable; abundant pseudocellia covering very developed black Fe-Mn coatings; smooth boundary.
	cca/ Y28-30	200	Alternations of brown red sandy loam and yellow brown nodules; nodules connected together forming carbonate beds; very abundant Fe-Mn films in the carbonate beds; largegravels commonly occur through the interval; diminishedupstream and thickened downstream.
Gravel laye	r sasement	120	Poorly sorted and poorly rounded gravel layer with sandymatrix; various thicknesses; unconformity with the underlying bedrock.

Table 5-2. Grain-size distribution of red clay formation in the Yanyu and Luochuan sections.

Sampl	le# horizor	<3 ф	3-40	4-5ф	5 -6	6 - 7 \$	7−8ф	8−9ф	9 - 10 ¢	>10¢
YANYU	J									
Y01	L32		0.3	6.2	28.5	13.5	11.5	11.0	10.5	18.5
¥02	\$32-A		0.4	5.1	16.1	16.0	15.2	9.8	8.8	28.2
Y03	S32-B		0.5	14.5	9.0	11.0	11.0	6.0	6.0	42.0
¥04	S32-B		0.5	8.0	13.5	22.0	8.0	7.0	6.2	34.8
¥05	S32-B		0.4	7.6	23.0	14.5	11.5	9.0	7.2	26.8
¥07	L33		1.1	5.9	17.0	18.0	13.0	11.2	10.8	23.0
¥08	N2S1-A	1.5	0.7	15.8	13.0	11.0	11.0	9.0	7.0	31.0
Y09	N2\$1-B	2.8	1.2	6.0	13.0	16.0	9.0	7.0	7.0	38.0
Y 10	N2S1-B	1.0	0.3	4.7	9.5	10.5	12.0	5.0	4.0	53.0
Y11	N2S1-B		1.1	16.9	8.0	10.0	10.0	10.0	6.0	40.0
Y12	N2S1-C		1.2	7.8	12.0	8.0	9.0	9.0	9.0	43.0
Y13	N2S2-B	3.5	1.5	6.0	9.0	13.0	11.0	8.0	7.5	40.5
Y14	N2S2-B	3.5	1.5	7.0	8.0	12.0	8.0	7.0	6.0	47.0
Y15	N2S2-C		0.8	3.2	9.0	11.0	14.0	9.0	9.0	44.0
Y16	N252-C		1.5	4.0	8.5	11.0	10.0	10.0	9.0	46.0
LUOCH	UAN SECTIO	N								
LCH4	S32-B		0.1	2.4	19.5	12.0	14.0	10.0	8.0	34.0
LCH5	L33		0.2	8.8	28.0	17.0	12.0	6.0	5.0	23.0
LCH6	N2\$1-B		0.2	5.3	16.5	13.0	12.0	6.0	7.0	40.0
LCH8	N2S1-B		0.2	3.8	19.2	9.8	10.0	8.0	8.0	41.0

and reaches the highest concentrations in the best-developed Bt horizons. Compared with the loess-paleosol sequence, the variation of the clay fraction in the profile is less, which can be explained by the fact that the red clay experienced multi-pedogenic processes as indicated by clay coatings and Fe-Mn films even in the CCa horizon.

5.6.3. Major Chemical Constituents

As shown in Tables 5-3 and 5-4, CaO appeared to be the most mobile constituent with a low value of 0.91% and a high value of 16.59%. For insight into the chemical change which is masked by carbonate leaching, the carbonate concentration in each sample was determined. After removal of carbonate, the major element concentrations were recalculated and listed in Table 5-4.

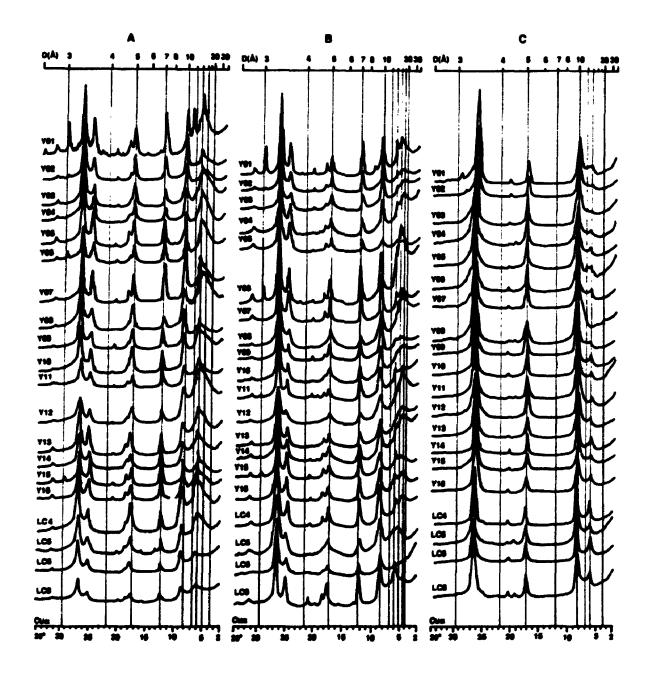
From the adjusted results listed in Table 5-4, it is clear that the major element composition of the red clay formation is substantially uniform through each section and between the Yanyu and Luochuan sections, and very similar to the loess. As with the paleosols interbedded in loess, SiO₂ reaches the lowest value in the best clay-illuvial horizon, while Al₂O₃ changes inversely to SiO₂. Compared with paleosols in loess, these changes are notably small. All samples of the red clay have concentrations of SiO₂ and Al₂O₃ similar to that of the overlying paleosols. Total iron (Fe₂O₃ equivalent) shows a relatively higher concentration in the red clay formation than in the loess-paleosol sequence, and is slightly enriched in the Bt horizon but does not exceed the value obtained in the overlying paleosol (sample Y03-S32-Bt: 6.71% in loess sequence; sample Y10-NS1-Bt: 6.67% in red clay). Therefore, the chemical change caused by pedogenesis in the red clay seems no more intensive than in the overlying paleosols.

Table 5-3. Major chemical constituents of the red clay formation in the Yanyu and Luochuan sections.

Sampl	.e# Horizon	SiO ₂	TiO2	Al ₂ O ₃	Fe ₂ O,	MnO	MgO	CaO	K*0	P205	Na ₂ O	LOI
YO1	L32	56.6	0.7	13.1	5.1	0.1	2.2	7.7	2.5	0.12	0.9	10.6
Y02	S32-A	62.3	0.8	14.6	5.7	0.1	2.1	2.3	3.C	0.07	0.8	7.5
Y03	S32-B	61.6	0.7	16.1	6.7	0.1	2.1	0.9	3.1	0.07	0.3	7.8
Y04	S32-B	63.6	0.7	15.3	6.1	0.1	2.3	0.9	3.0	0.07	0.5	7.1
Y05	S32-B	64.2	C.7	14.9	5.8	0.1	2.4	1.4	2.8	0.11	0.5	6.9
Y06	L33	60.0	0.7	12.8	4.9	0.1	2.1	6.0	2.4	0.12	1.0	9.0
Y07	L33	61.7	0.8	14.6	5.9	0.1	2.2	2.2	2.9	0.12	0.7	7.8
YO8	N2S1-A	63.8	0.8	14.9	5.8	0.1	2.0	1.4	3.2	0.07	0.6	6.7
YO 9	N2S1-B	63.2	0.8	15.1	6.0	0.1	1.9	1.1	3.C	0.06	0.5	7.1
Y10	N251-B	60.9	0.7	16.5	6.7	0.1	2.3	1.0	3.1	0.08	0.1	8.4
Y11	N2S1-B	62.5	0.8	15.7	6.2	0.1	2.2	1.0	2.9	0.08	0.3	7.6
Y12	N2S1-C	58.9	0.7	14.5	5.8	0.1	2.1	4.4	2.7	0.09	0.3	9.4
Y13	N2S2-B	61.3	0.8	15.4	6.0	0.1	2.5	1.4	3.0	0.10	0.2	8.4
Y14	N2S2-B	59.7	0.7	15.9	6.3	0.1	2.4	1.7	2.9	0.05	0.1	9.4
Y15	N2\$2-C	44.1	0.6	11.1	4.5	0.1	1.8	16.6	2.0	0.16	0.0	17.6
Y16	N2S2-C	61.9	0.8	15.4	6.1	0.1	2.3	2.2	3.0	0.11	0.4	7.8
LCH4	S32-3	63.1	0.8	15.9	6.3	0.1	2.6	1.0	3.0	0.06	0.6	6.2
LCH5	133	58.9	0.7	13.6	5.3	0.1	2.4	6.2	2.6	0.14	0.7	8.9
LCH6	N2S1-B	61.6	0.8	15.7	6.3	0.1	2.2	2.2	2.9	0.06	0.4	6.9
LCH7	N2S1-9	61.8	0.8	15.9	6.4	0.1	2.3	1.9	3.0	0.07	0.3	6.7
LCH8	N251-B	60.8	0.8	16.0	6.4	0.1	2.5	2.5	3.0	0.08	0.3	7.7

Table 5-4. Major chemical constituents of the red clay in the Yanyu and Luochuan sections after removal of carbonates.

Sample# /Horizon	SiO ₂	TiO ₂	A1 ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	K20	P20,	Na ₂ O	toi	CaCO,
Y01/L32	62.89	0.75	14.52	5.72	0.10	2.44	2.26	2.78	0.13	0.96	6.87	10.08
Y02/S32A	63.54	0.78	14.89	5.85	0.11	2.16	1.23	3.02	0.07	0.83	6.78	1.98
Y03/S32B	61.77	0.73	16.18	6.71	0.10	2.13	0.72	3.12	0.07	0.33	7.69	0.25
Y04/S32B	63.76	0.74	15.33	6.12	0.09	2.29	0.75	2.96	0.07	0.54	7.00	0.16
Y05/S32B	65.07	0.75	15.04	5.88	0.09	2.37	0.95	2.83	0.11	0.51	6.61	0.75
Y06/L33	65.73	0.75	13.99	5.39	0.08	2.32	1.15	2.64	3.13	1.05	5.58	8.80
Y07/L33	62.55	J.77	14.84	5.95	0.10	2.23	1.40	2.91	0.12	0.73	7.32	1.37
Y08/NSIA	64.40	0.82	15.00	5.89	0.11	1.99	0.85	3.20	3.37	0.60	€.32	1.00
Y09/NS13	63.65	0.80	15.16	5.99	0.11	1.94	0.73	3.05	0.06	0.46	6.82	0.66
Y10/NSIB	60.93	0.71	16.53	6.67	0.10	2.25	0.87	3.07	0.08	0.14	8.38	9.10
Y11/NS1B	62.46	0.79	15.74	6.19	0.11	2.19	0.91	2.87	0.08	0.27	7.58	0.00
Y12/NS1C	62.02	3.77	15.29	6.10	0.10	2.19	1.63	2.86	7.09	0.35	7.55	5.06
Y13/NS2B	62.14	0.77	15.59	6.12	0.11	2.57	0.68	3.01	0.10	0.19	7.95	1.28
Y14/NS2B	60.56	0.72	16.16	6.42	0.09	2.40	0.89	2.94	0.05	0.14	8.87	1.37
Y15/NS2C	61.36	0.78	15.38	6.23	0.10	2.53	1.21	2.71	0.22	3.30	7.33	28.08
Y16/NS20	63.69	0.79	15.81	6.30	0.10	2.40	0.62	3.09	3.11	0.45	6.77	2.81
LC4/S32B	63.40	3.75	15.09	6.33	0.11	2.56	0.71	3.06	0.06	0.63	6.49	0.50
LC5/L33	eu.40	3.78	15.08	5.90	0.09	2.62	0.74	2.83	0.16	0.82	5.04	9.93
LC6/NS13	62.96	3.79	16.06	6.43	0.10	2.26	0.92	3.01	0.06	0.40	6.10	2.23
LC7/NS1B	62.25	0.80	16.31	6.57	0.11	2.32	0.62	3.07	0.07	0.35	5.83	2.32
LC8/NS1B	62.53	3.77	16.50	6.62	0.11	2.55	3.88	3.06	0.08	0.30	6.58	2.98


TiO₂, MnO, K₂O and even MgO show little change in concentration throughout the profiles. Na₂O appears depleted in the red clay formation relative to the loess-paleosol sequence.

5.6.4. Clay Mineralogy

The XRD spectra of the clays present in the red clay formation from the Yanyu section and the Luochuan section are shown in Figure 5-3. Basically, the clay mineralogy of the red clay is very similar to that in the loess. The major constituents are illite (peaks 3.34, 4.98 and 10.05 Å), chlorite (peaks 3.56, 4.72 and 14.2 Å), smectite (peak 17.2 Å in glycol-treated samples) and irregularly interstratified material (wide peak band between 14 and 18 Å or more in glycol-treated samples). Incomplete collapse of smectite and interstratified clays (indicated by peaks between 10 and 14 Å in the heated samples) suggest that these minerals contain some interlayer hydroxyl aluminium or iron (cf. Catt, 1990). The presence of kaolinite is indicated by the relatively stable intensity (peak height) of the 7.1 Å peak when chlorite content decreases (see sample Y09). Small amounts of quartz (4.25 Å peak) and calcite (2.85 and 3.03 Å) exist in some samples. The presence of vermiculite cannot be confirmed, but at most it constitutes a negligible part, if any, because chlorite exists in fairly constant amounts in most samples.

In the best developed B horizon (sample Y10 in the Yanyu section), there is significant enrichment of irregularly interstratified clays and depletion of chlorite and smectite. The changes in the combination of clay minerals through pedogenic horizons in the red clay formation show a similar trend as in the overlying paleosols in the loess sequence, more abundant chlorite and smectite in the C horizons and depleted chlorite

Figure 5-3. XRD spectra of clay minerals. Samples Y01-Y16 are from the Yanyu section and LC4-LC8 from the Luochuan section. A, untreated oriented samples; B, glycol-treated samples; C, samples heated at 560°C for 4 hrs.

in the A horizon (compare the pedogenic cycle represented by samples Y08 to Y12 in the red clay with paleosol S32 represented by samples Y02 through Y07). The major clay mineralogical difference between the red clay formation and the overlying loess sequence is the presence of abundant interstratified clays in all the red clay horizons as indicated by the glycol-treated samples (which is correlated with the high percentages of the loss on ignition (L.O.I.) in the chemical analytic data, (see Table 5-4)). This may reflect the multiple pedogenic processes which occur in the red clay formation. Another distinct feature of clay mineralogy in the red clay is that chlorite is present in significant proportions, but disappears in the loess-derived paleosol S5 in the Shijiawan section as has been shown in Chapter 4.

5.6.5. Provenance of the Red Clay

As briefly mentioned in Chapter 1, the origin of the red clay formation remains controversial.

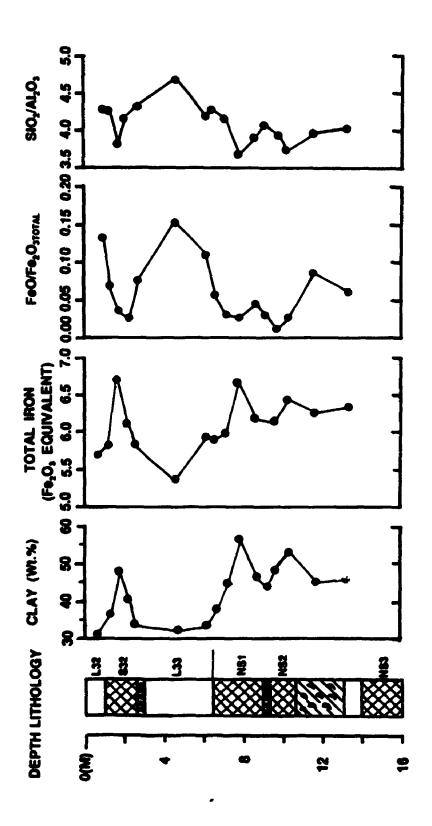
Field observations indicate that the red clay formations overlie a large variety of bedrocks with various topography in a large range of altitudes. It occurs as the basement of the loess-paleosol sequence in basins (e.g., Luochuan, Xifeng in Shaanxi Province, and many graben basins in Shanxi Province), or as rugged hills extensively exposed near deserts in the western provinces (such as north Shaanxi, south Ningxia, east Gansu etc.).

The occurrence of the red clay formation with a vast distribution range is consistent with the range of the loess, from the desert margin in west and northwest China to the North China Plain in the east. Great thicknesses were observed in the regions close to the deserts, and they exceed 100 m in South Ningxia. In the Guanzhong

basin, a 61.5 m thick red clay section was reported (Zheng et al., 1991), but commonly it is between 10 and 50 m. That means a thickness gradient from the northwest desert to the southeast regions exists.

Grain-size distribution patterns of the red clay in the studied sections follow that of the loess, they are restricted to sizes less than 0.063 mm, and uniform between sections, even though there is a 300 km distance between the Yanyu section and the Luochuan section, supporting an aeolian origin.

The chemical composition of the red clay in the two distantly separated sections all show a large amount of calcite, indicating slight chemical weathering during pedogenesis. Furthermore, the two identical sections in terms of mineralogy and grain-size with different bedrocks, deny a local provenance of the red clay from bedrock weathering. The fact that these analyses demonstrate no significant difference in chemical composition between the red clay and the loess suggests a similar source, both derived from deserts in the northwest. Massive structure characterizes the red clay formation, as observed in loess, also suggesting the same transport agent.


It should be stressed that faunal and floral fossils are good environmental indicators for a period of pedogenesis or deposition, but they cannot provide the evidence of the material source as was suggested by previous studies (e.g., Anderson, 1923; Chen, 1994). In some regions the red clay has been reworked and shows some hydrogenic features. However, it is not representative of the general case, nor the indicator of primary origin.

5.6.6. Pedogenic Processes and Climatic Implications

Thick clay coatings are commonly observed throughout the red clay profiles and have been confirmed by photomicroscopy. As discussed in Chapter 4, their development requires a temporarily water-saturated pedoclimate and a fixed ground surface, thus suggesting a dense vegetation cover. Calcareous nodules in the red clay formation are commonly nucleated on clay chunks with Fe-Mn films, implying that the horizons in which these nodules accumulated had been thoroughly decalcified and then later received renewed carbonate leaching from pedogenic processes. Scorious shaped nodules randomly scattered in a rather thick band (see Plate 5-I) suggest that the post-pedogenic carbonate leaching occurred continuously throughout the red clay formation. This requires the dustfall rate to be relatively constant (no obvious episodes of fast and low deposition as implied by loess and paleosols), and slow enough (relative to the pedogenic rate) to allow the new material to achieve thorough decalcification and the previously formed nodules to be leached to some extent to obtain the scorious shapes observed. Therefore, a stable pedoclimate and constant low dustfall rate required by the red clay formation can be suggested.

Clay mineralogical studies show a pronounced depletion of smectite and enrichment of irregularly interstratified material in the B horizon. Unlike the paleosol S5 in the Shijiawan section and the overlying paleosol S32 in the Yanyu section, significant amounts of chlorite exist in all the horizons in the red clay formation, and a decrease was only observed in the best developed Bt horizons (see figure 5-4). Furthermore, the presence of vermiculite is clearly demonstrated in the Bt horizon of the S5 in the Shijiawan section which is situated about 30 km away from the Yanyu section in the same

Figure 5-4. Graphic illustrations of variations in the clay-sized fraction and some chemical factors through the lower part of the Yanyu section. The interval from L32 to L33 belongs to the loess-paleosol sequence, and the interval from NS1 to the bottom is for the red clay formation.

basin. It is evident that clay mineral transformations and/or alterations in the red clay are less intensive than in the S5, implying a drier pedoclimate during the formation of the red clay. This provides an argument against the widely held opinion that the red clay formation reflects a humid subtropic climate.

Chemical analyses indicate little change in MnO, MgO and K₂O through the red clay profile. This is comparable with the overlying loess, indicating only slight chemical alteration during pedogenesis, which may suggest low precipitation.

The uppermost horizon of calcareous nodules with small size occurs at 180 cm in depth, similar to the leaching depth of the overlying paleosol S32. As has been mentioned previously, the nodules in the red clay were precipitated on a former clay illuvial horizon. This suggests carbonate saturation was caused entirely by water loss. On the other hand, the carbonate saturation as indicated by calcareous nodule formation in loess was favoured by both the original detrital calcite content and water loss. In this aspect, the formation depth in the red clay would be notably greater than in the loess-derived paleosols if the pedoclimate is the same. Therefore, it seems to reflect a drier climate during the red clay development than during the formation of the overlying paleosol in the Quaternary loess sequence.

As shown in Figure 5-4, the total iron content reaches its highest value in the B horizon, similar to the value in the overlying paleosol S32. Clay content shows a similar variation, suggesting that this process was mainly caused by mechanical translocation of fine particles. An inverse change in SiO₂ is attributable to clay mineral migration, because quartz is dominant in the silt fraction, while depleted in clay-sized fraction. Compared with the loess-paleosol cycles in the Quaternary, smaller variations in FeO/Fe₂O₃,

SiO₂/Al₂O₃, total iron and clay content throughout the red clay profile provide further evidence for a climatic interpretation that the red clay formation was developed under a rather stable and drier pedoclimate with a low dustfall rate.

Compared with the overlying paleosol, the red clay contains slightly but systematically less Na₂O and a larger clay sized fraction in both sections (see Table 5-4). This could be a function of in situ weathering or a difference in source materials. As Na₂O in the red clay mainly resides in silt-sized albite, clay particle-enriched material should be depleted in Na₂O. It is suggested that a low dustfall rate implies weak wind strength and a larger clay-sized fraction in the dust.

The dominant feature of the red clay is its colour, which can lead to a tropic or subtropic climatic interpretation. Previous studies on soil rubefication (reddening) show that it is related to an increase in hematite (Kemp, 1985; Barron and Torrent, 1986). Guillet and Souchier (1982) stress the importance of almost neutral pH and a strong seasonal climate with hot-dry summers. Schwertmann et al. (1982) show that the rubefication of the soils on silt or clayey moraines in southern Germany positively correlates with an increase in mean annual temperature and inversely correlates to an increase in mean annual precipitation. But it was also suggested that relatively high humidity is necessary for rubefication (Gardner and Pye, 1981). Birkeland (1974) considers that the rubefication is largely related to age.

For understanding the factors related to reddening, and to avoid the aging factor, the paleosol S5-I in the Shijiawan and Chang'an sections was selected. The S5 in the Chang'an section has a more reddish colour, a greater clay fraction, a lower FeO/Fe₂O₃ ratio and a lower concentration of organic matter than the Shijiawan S5. Therefore,

rubefication in the loess seems to be related to fine hematite (in clay fractions), organic matter decomposition and ferrous iron oxidation. The required pedogenic conditions do not imply high precipitation as required by a forest environment.

It should be stressed that the abundant Fe-Mn films observed in the red clay and paleosols in loess (as confirmed by scanning electron microscopy) do not indicate a seasonal water-oversaturated pedo-condition, because the occurrence of the Fe-Mn films is restricted to the clay coated surface. If a water over-saturated condition was achieved and the water stagnated, the reducing condition should have been obtained for the horizons between the water table and the impervious layer, and the ferrous iron should have been observed in the soil matrix of the stagnating zone. Obviously, the well developed fine-blocky structure would collapse. Furthermore, there is no evidence of diffusion or migrating triotubules of ferrous iron in the matrix or in cracks as described by Pipujol and Buurman (1994). Therefore, the climatic implication of the Fe-Mn films in the red clay and in loess-derived paleosols is similar to clay coatings. It is also possible that microorganisms are an important factor.

5.7. Environmental Change During the Period of 3.0-1.9 Ma B.P.

5.7.1. Climate Change

Evidence obtained from fluviolacustrine sediments and red clay indicates a profound and drastic change in climate during the period from 3.0 to 1.9 Ma B.P. This change is marked by three distinct periods.

1) 3.05-2.7 Ma B.P. Climate in this period was characterized by being constant, warm and dry. Pollen data demonstrate a prolonged sage vegetation with a narrow

Quaternary interglacials and conditions present today. Although a pollen flora of subtropic to warm temperate forest-grasslands was reported from a section located in the eastern central Guanzhong basin (Sun et al., 1987), this study shows no species typical of the subtropics, consistent with the study in the Jingle basin (Mo and Derbyshire, 1991) which is also located in a warm temperate zone. The occurrence of elephant fossils in the thick sand bed (about 2.8 Ma) in the Shijiawan section seem to indicate the later Pliocene climate could be warmer than today.

- 2). 2.7-2.48 Ma B.P. Palynological study, stable carbon isotope analysis and sedimentary facies analysis indicate that this period is characterized by scanty vegetation with frequent substitutions in plant taxa (all are non-arboreal C3 and C4 species) and intensive erosion, which implies a harsh and capricious climate. These characteristics probably reflect a climatic transition from a stable warm Pliocene condition to large warm-cold fluctuations in the Pleistocene. Sedimentary analyses indicate that this period includes the final stage (2.7-2.61 Ma B.P.) of the red clay formation and the early stage of loess deposition (2.61-2.48 Ma B.P.).
- 3). 2.48-1.9 Ma B.P. The climate fluctuated with large amplitudes, which is revealed by pollen combinations, especially by arboreal constituents, and variations in the sedimentary cycles. These features are more clearly visualized by the loess-paleosol alternations and have been discussed in numerous publications. Nevertheless, this study directly demonstrates the biological sponse. Floras fluctuated between forest grasslands with a wide diversity and sparse dry-steppe types with a few non-arboreal species, reflecting a climate which oscillated between varmer-wetter and cold-dry episodes. But

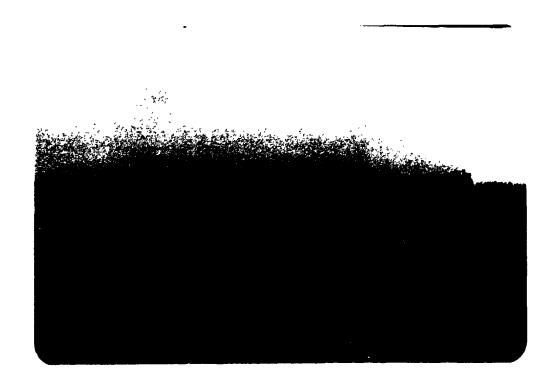
it does not seem to be of the warm-dry fashion as occurred in the Pliocene.

5.7.2. Changes in the Aeolian Deposition Rate

As has been discussed above, the red clay and loess were all derived from deserts in the west and northwest. Using the data from the Lantian section which is well dated by Zheng et al. (1991), the 14 m red clay column formed in the Gauss Chron (from 3.4 to 2.48 Ma B.P.) implies a 1.56 cm/10³ yr accumulation rate, a similar value to that obtained from the Baoji section (1.5 cm/10³ yr) by Evans et al. (1990). During the Matuyama Chron (2.48-0.73 Ma B.p.), an 83.5 m column of loess-paleosols with a 4.64 cm/10³ yr accumulation rate exists. In the same way, a 7.14 cm/ 10³ yr rate is obtained for the Brunhes period. For comparison of dustfall rates in different periods, we express these data as a ratio of weight/cm².10³ yr following the method used by Liu et al. (1985) with neglect of mass loss after deposition. The mean specific weight of each period is also adopted from Liu et al. (1985). Calculations show that the dustfall rates of the periods of 3.4-2.50 Ma, 2.50-0.73 Ma and 0.73-0 Ma B.P. are 3.10, 8.35 and 11.78 g/cm².10³ yr, respectively. These rates are consistent with those obtained from the Luochuan section (see Table 5-5).

It is evident that the dustfall rate of the red clay formation is much lower than that of the loess-paleosol sequence. Such a remarkable change in dustfall rate implies an abrupt and great strengthening of the Siberian cold-high pressure center at about 2.5-2.7 Ma B.P., because the strength of the northwest winds in China is controlled by this cold-high (Liu et al., 1981, 1985; An at al., 1993). Furthermore, a warmer and drier climatic pattern in the later Pliocene period cannot be explained by the modern east Asian

Table 5-5 Dustfall rates through the past 3.4 Ma.


Periods	Lantian Section	Luochuan Section	Mean
(Ma B.P.)	(g/cm ² .10 ³ yr)	(g/cm².10³ yr)	Specific Weight (g/cm³)
0-0.73	12.64	12.32	1.77
0.73-0.97		16.79	1.87
0.97-1.87		8.68	1.92
1.87-2.48		8.68	1.98
0.73-2.50	8.96	9.83	1.93
2.50-3.40	3.10		1.99

monsoon. Therefore, a profound change in the climate regime must have occurred.

Plate 5-I. Upper: A photo showing that the carbonate nodules in the red clay are scattered through a thick band. Scorious shapes suggest post-pedogenic leaching.

Lower: Loess deposits derived from marine sediments when seawater retreated from the region. Photo shows a loess section in Dalian, on the north margin of the Bohai Gulf (see text Chapter 6).

CHAPTER 6

CLIMATIC CHANGE IN THE LOESS PLATEAU DURING THE PAST THREE MILLION YEARS:

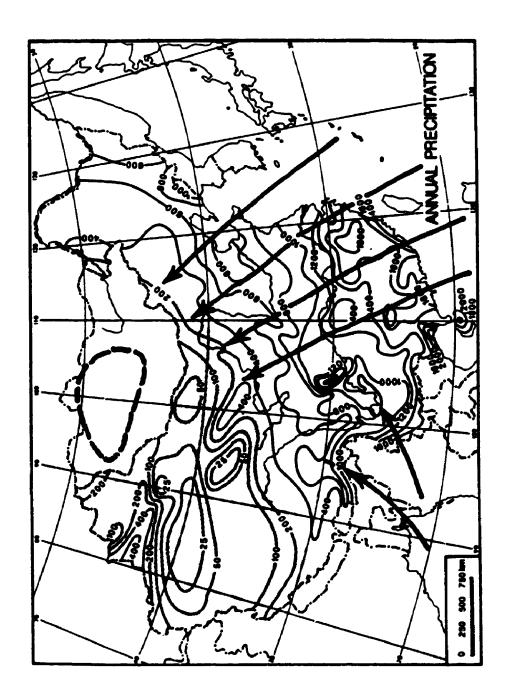
THE GLOBAL SIGNIFICANCE

6.1. Introduction

Studies on the fluviolacustrine sequences, the red clay formation and the loesspaleosol sequences, demonstrate that the climate in the loess plateau has been subjected to profound changes during the past 3 million years, which include fluctuation in response to glacial-interglacial oscillations and an irreversible change marking a revolution in the climate regime. A relatively stationary warm and dry climate in the late Pliocene was replaced by oscillations between cold-dry and warm-wetter periods in the Quaternary. Many of the previous studies emphasize the influence of the Siberian cold-high air pressure cell on dust transport and loess accumulation and suggest that the Siberian High must have been greatly strengthened during glacial periods with an associated weakening of the southeast Asia monsoon (it is assumed that they compete against each other). Comparison of climatic records from the loess-paleosol sequences and deep sea sediments shows good agreement (Heller and Liu, 1984; Liu et al., 1985; X.M. Liu, 1987; Kukla, 1987; Ding et al., 1991; Heller and Evans, 1995), even for some rather short period cold events (An et al., 1991, 1993; Porter and An, 1995). However, the linkage between the regional record and global climatic signals is still under discussion. In this chapter, we will demonstrate a mechanism of sea level-precipitation interlock which transmitted

global glacial-interglacial climate signals into central China.

As noted in field observations and confirmed by this study, a sharp change in sedimentary environment from "red clay" formation to loess accumulation suggests an abrupt shift of the regional climate pattern or a rapid reorganization of the environmental system at 2.5 Ma B.P. Early studies stressed the importance of the Tibetan Plateau uplift in the formation of the modern east Asia monsoon climate and the development of the desert-loess plateau coupled system (Zhang, 1981; Liu and Han, 1988; Ding et al., 1992). New evidence from the fluviolacustrine sequence and the red clay formation (see Chapter 5) indicates that the climatic transition from a Pliocene pattern to the modern east Asia monsoon was completed in a period of about 100 ka. This requires that any explanation must take the rapidity of the transition into serious consideration before it invokes an orogenic forcing for such a climate regime revolution. This time factor was ignored in previous studies (e.g., Ruddiman and Raymo, 1988; Ruddiman and Kutzbach, 1991; Liu and Han, 1988; Ding et al., 1992). Furthermore, the altitude of the Tibetan Plateau at 2.5 Ma is quite controversial (Harrison et al., 1992; Burbank et al., 1993; Coleman and Hodges, 1995). If the Tibetan plateau achieved its present height some 8 million years ago, its climatic significance in the worldwide glaciation (Ruddiman and Raymo, 1988; Ruddiman and Kutzbach, 1991) will be critically challenged and the timing of the reorganization of the east Asian physiological system and the forcing mechanism must be reconsidered. In this chapter, the role of the Tibetan Plateau uplift in the Quaternary global glaciation is considered with emphasis on the timing.


6.2. Linkage Between Climate of North China and Sea Level Change

Modern climate in most of China is dominated by two high pressure centres in different seasons, the south Pacific high pressure cell in summer and the Mongolian/Siberian high pressure cell in winter. The Indian oceanic monsoon only influences a small area in southwestern China. Therefore, the southeast monsoon is the major source of precipitation for most of the country and brings additional heat to those regions (cf., Lin, 1984). The winter monsoon, which is cold and dry, greatly influences the climate in winter and spring, especially in North China. Therefore, climatic conditions substantially reflect the intensities of the summer monsoon (east Pacific oceanic high) and the winter monsoon (Siberian cold-dry high).

The distribution patterns of mean annual temperature and precipitation in China show that the climatic conditions strongly relate to the distance from the east coast (the west Pacific margin). As shown by Figure 6-1, the precipitation decreases nearly linearly with distance away from the coastline. This relationship is evident for the past 18,000 years.

During the last glacial maximum, the sea level dropped 130-150 m in the East China Sea and 100-120 m in the South China Sea (Zhao, 1982; Wang, 1992). The east coast migrated seawards more than 600 km on average (and even over 1000 km for some regions) away from the present position (Winkler and Wang, 1993; Wang, 1995; cf., First Institute of Oceanography, State Oceanic Administration, 1984). The Bohai Gulf was exposed and subjected to deflation which resulted in thick loess deposition (Plate 5-1) in the coastal regions (Han, 1987). These types of sea shelf deserts occurred in a large area of the west Pacific margin, including the whole Bohai Gulf, the Yellow Sea, the East China Sea, the northern part of the South China Sea (Qin and Zhao, 1991), and even the

Figure 6-1. Modern mean annual precipitation (mm) in China (modified from Winkler and Wang, 1993). Areas which receive less than 300 mm are stippled and essentially coincide with areas where the aridity index is greater than 2. Arrows indicate the precipitation gradient and the summer monsoon directions. The broken line circle denotes the Siberian (Mongolian) cold high cell in winter. Data from Lin, 1984.

Java Sea. Japan, Taiwan and the Hainan Island were connected to the continent (see Figure 6-3). Bulcella frigida, a cold-water foraminifer, shifted 5° southward in latitude and grew in the East China Sea, and spruce and fir forests covered most of Japan and expanded in China (Winkler and Wang, 1993). These forests grew at least 1200 m lower than at present in both the eastern and western mountain ranges of China, while frozen steppe covered large regions in the northern half of the country (Hou, 1979; Teachers College of northwest China, 1984; Ren et al., 1985).

In North China, a high stand of sea level was registered by a widespread transgression 6000 years B.P. It reached a position in the Beijing lowlands of the North China Plain as far as 100 km from the present margin (Zhao et al., 1980, 1982; Zhao and Zhang, 1985; Zhao and Qin, 1982), a view which is supported by Japanese studies (Matsushima, 1976). This is coincident with a major wetter episode during that time. Evidence indicates that most of China was warmer and wetter than at present and lake levels were higher throughout most of the country (see Figure 6-2). Therefore, it strongly suggests that the intensity of the summer monsoon in China is strictly interlocked to the west Pacific margin which is controlled by eustatic sea level change. By this linkage, the world glacial climate signals were transmitted into the regional climatic regime.

Taking today's precipitation gradient versus the distance from the west Pacific margin and the 200 mm mean annual isopluvial line as the southeast margin of the deserts as observed at present, the desert margin at 18 000 year B.P. should be roughly overlapping the modern 700 mm isopluvial line. That means, the whole loess plateau lay in a desert climate zone (see Figure 6-2), and the Guanzhong basin, the warmest and wettest region in the loess plateau could only have received 100 mm of annual rainfall.

Figure 6-2. Time series of paleoenvironmental parameters and paleoclimate in east Asia since the last glacial maximum (from Winkler and Wang, 1993). The locations indicated in the diagram include "north of 35 N" (the Coastal regions with latitudes higher than 35 °N). "south of 35 N (the coastal regions with latitudes lower than 35 °N). "loess plateau" (the Chinese Loess Plateau), "northeast" (Northeast China), "west" (west China), "south" (South China), "Q-X" (Qinghai-Xizang Plateau, The Tibetan Plateau). "Q-X & X" (Tiben Plateau and Xinjiang), and Japan.

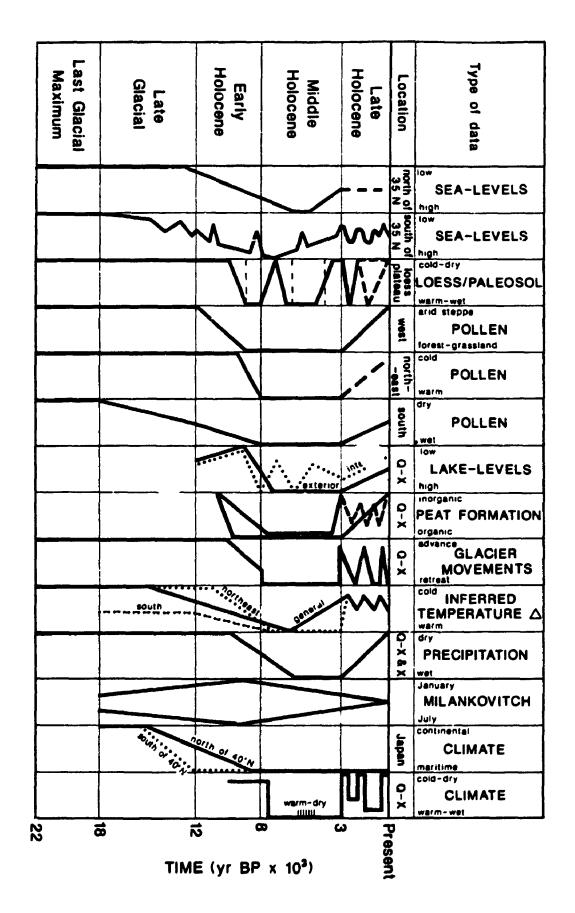
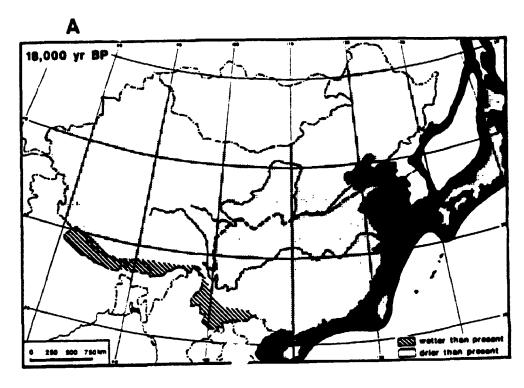
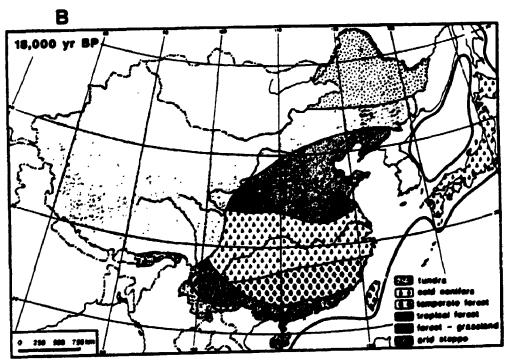




Figure 6-3. A, relative paleoprecipitation map (modified from Winkler and Wang, 1993) at 18,000 year B.P. (showing areas wetter than, drier than, or the same as at present) constructed from biogeologic evidence (Ren et al., 1985). Black areas are the exposed shallow sea or continental shelves caused by sea level lowering at the last glacial maximum. The broken line is a 200 mm isopluvial line postulated by the distance from west pacific margin as suggested by a sea level-interlocked precipitation hypothesis (see text for explanation). B, Paleovegetation map at 18,000 year B.P. (from Winkler and Wang, 1993) constructed from the pollen and macrofossil evidence. Note the western China was totally vegetated by arid steppe. The heavy lines in the ocean denote the regions which became continental deserts matching the black areas shown in map A.

This is why the detrital calcite in the loess layers are preserved with little eluviation.

The inferred change in summer monsoon intensity actually results from the regional influence of the southeast Pacific high pressure cell. In other words, it is a combined result caused by changes in the distance from the coast and the absolute intensity of the southeast Pacific high. In fact, the Pacific High is affected by the sea surface temperature (SST). Higher SST causes greater evaporation and thus favours intensification of the southeast Asia monsoon. At the last glacial maximum, the SST in the south China Sea dropped 2-5 °C in mean annual values and 0.9-3.0 °C in summer (Wang, 1995). A 10-20% decrease in evaporation could be expected (cf. Lamb, 1972). This could have reduced the strength of the summer monsoon and further reduced the estimated paleoprecipitation during glacial periods. For individual locations and short periods, however, it is difficult to confirm such a relation. As observed in west Africa, the air humidity in drought years can be even higher than normal years (Blumenthal, 1990). The relations between SST and the summer monsoon intensity are more complicated than a simple linear relationship over a small time-scale, as observed by Barnett et al. (1991) and Ni and Qian (1991). This implies that errors on small scale localities may exist in the reconstructions.

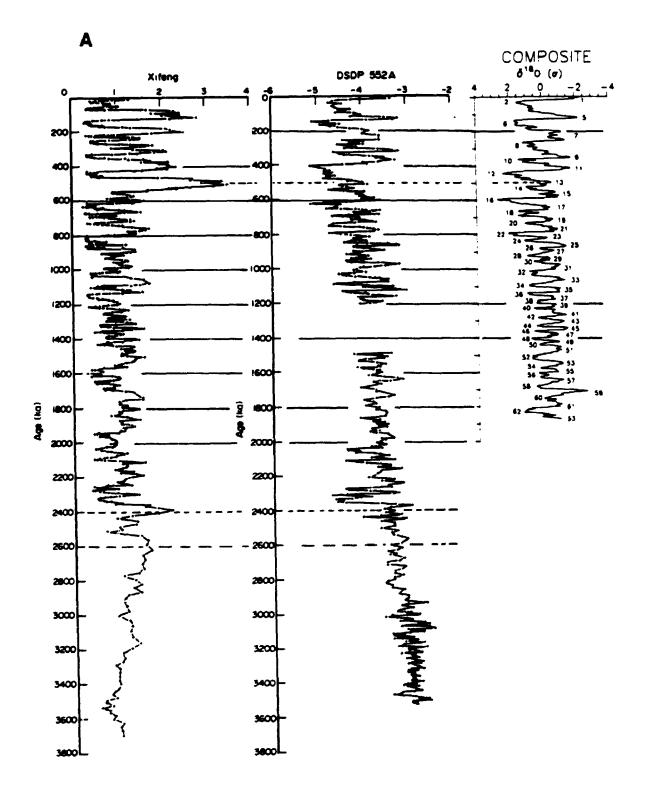
As well, the proposed sea level-precipitation linkage cannot be used to estimate the climatic harshness which is governed by the northwest winter monsoon. The climatic harshness controller is the Siberian cold high. The winter monsoon intensity is expressed by the loess deposition rate and the grain-size distribution, whereas the summer monsoon influence is in the pedogenic intensity after deposition which modifies the depositional appearance. Caution must be taken in the interpretation of various parameters, for

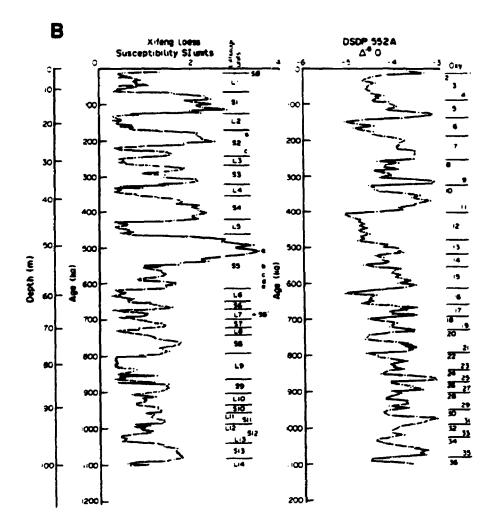
example, grain-size distribution, clay content, and mobile chemical constituents etc.

6.3. Relationship between the Summer Monsoon and the Winter Monsoon

higher than in the paleosols (Shen et al., 1992, 1994; Beer et al., 1993), suggesting the different influences of the summer and winter monsoons. The simulated results of the winter global air temperature and pressure fields by Kutzbach et al. (1993) show 16-32 °C lower temperature and 8-16 mb higher air pressure in the high north of Asia during the last glacial maximum than at present, supporting a great intensification of the winter monsoon. The interbedded paleosol study of the loess sequence indicates a relatively stable ground surface necessary for clay coating development, which is consistent with a low dustfall rate. Therefore, such a competing relation between the summer and the winter monsoons is tenable on the glacial cycle time scale.

Study of the Younger Dryas cold event in the loess record suggests that both the summer monsoon and the winter monsoon were intensified during that period (An et al., 1991, 1993). Although the Younger Dryas event occurred at least as a hemispheric phenomenon (cf. Ruddiman and McIntyre, 1981; Dansgaard et al., 1989; Lindley and Thunell, 1990; Kudrass et al., 1991), global sea level had greatly risen since the last glacial maximum. Most areas of the west pacific margin were submerged, which must have greatly enhanced the influence of the southeast monsoon on inland China. On the other hand, this event is registered as a profound cooling. As observed by Huang et al. (1992), lower temperatures favour development of a blocking high over eastern Siberia and north China, lending support for the idea that the Siberian cold high could be


strengthened by this event. Therefore, the binary intensification of the summer monsoon and winter monsoon inferred from the Younger Dryas study of the loess provides additional evidence for the sea level linked climate model in the loess plateau.


6.4. Correlations of Climatic Records Between the Loess Plateau and Deep Sea Cores

In the early 1980's, Liu and Yuan (1982) systematically correlated the climatic record in the loess-paleosol sequence of the Luochuan section with the marine oxygen isotope record. Great success was obtained by Heller and Liu (1984) using the magnetic susceptibility signature with more reliable paleomagnetic dating constraints. Subsequent correlations were made in more detail with different loess sections and different deep sea cores (e.g., X.M. Liu et al., 1987; Kukla, 1987; Kukla and An. 1989; Ding et al., 1991; Heller and Evans, 1995). Great similarity of these two types of climatic records suggests a strong response of the loess plateau to global climatic forcing, and has led to a wide acceptance of the loess magnetic susceptibility signature as a proxy terrestrial climate record in the paleoclimatological community (e.g., Morley and Dworetsky, 1991; Crowley and North, 1991). The following is an overview of the previous studies, with a correlation presented in Figure 6-4.

1. The Quaternary climate change recorded in the loess sequences is consistent with global glacial-interglacial oscillations implied by marine oxygen isotope signatures, suggesting a faithful and sensitive response of the east Asian monsoon regime in the loess plateau. As discussed in the previous section, this response is driven by west Pacific marginal shifts which are closely correlated with sea level change. Therefore, the loess-paleosol sequence has registered global climate change in amplitudes and timing at least

Figure 6-4. A, Comparison of the magnetic susceptibility in the Xifeng section (see Figure 2-6) and marine oxygen isotope record of DSDP 552A in central North Atlantic (modified from Kukla, 1987). The composite marine oxygen-isotope record is from Williams et al., 1988. Note the first abrupt decrease in magnetic susceptibility in the loess-paleosol sequence and oxygen-isotope index in marine sediments (the middle column) occurred between 2600 and 2400 ka. B, detailed comparison of the first 1.1 Ma of record (from Kukla, 1987).

at glacial cycle time scale.

- 2. Both records show that a dramatic change in climatic pattern occurred 2.5 Ma ago (see Figure 6-4), from a stationary warm state to a style with frequent fluctuations, as is demonstrated by analyses of the fluviolacustrine sequence and the red clay formation discussed in Chapter 5.
- 3. Another profound change occurred at 600 kyr ago in that the glacial-interglacial oscillations shifted to a new manner with greater amplitude and for a longer period than before. This is clearly demonstrated by thicker loess layers and intensified pedogenesis (e.g., deeper B horizons, thicker clay coatings etc.).
- 4. Discrepancy between the two kinds of records lies in the relative amplitude. As suggested by the magnetic susceptibility in the Xifeng section, the S5 seems to reflect an interglacial climax throughout the Quaternary, but the corresponding oxygen isotope stage indicates a relatively weak interglacial period. The present study of S5 demonstrates that the S5 in the Guanzhong basin was vegetated by grassland-dominated flora, suggesting the climate was even drier than in the Holocene, and this is supported by the sea level-interlocked climate model. As pointed out earlier, the magnetic susceptibility enhancement and pedogenic features are greatly affected by factors such precipitation, pedogenic duration and dust deposition rate etc. Therefore, a final confirmation can be expected only when reliable and accurate dating results are available.
- 5. The magnetic susceptibility of the red clay formation in the Xifeng section shows relatively constant values, similar to the moderately developed paleosols in the loess sequence. Field observations of this section indicate that only the Bt horizon in the red clay formation possesses intermittent clay coatings. Therefore, the magnetic

susceptibility signals do suggest that the climatic conditions of the red clay are drier than that of S5. As revealed by this study, a typical grassland existed through the red clay development until 2.7 Ma ago.

6.5. A Rapid Transition of Climate Regime Between 2.7 and 2.6 Ma

6.5.1. Considerations from Modern Climate

The modern east Asian monsoon climate in China indicates that major rainfalls are closely related to the activities of both the southeast monsoon and the cool polar front which is maintained by the Siberian high pressure cell. The favourable condition for precipitation is in the intersection belt of the polar front and the southeast monsoon front. After winter, a long-term rain belt appears in South China in late April and May, showing that the southeast monsoon is restrained by the cold high. In late July and August, although dominated by the southeast monsoon, South China is characterised by hot-humid weather but with less precipitation, because the cold front retreats far from the region. In North China, most of annual precipitation is concentrated in July and August, which is attributed to active intrusions of both air fronts. Therefore, two conclusions can be reached. Firstly, that the southeast monsoon is necessary for large scale precipitation in this climate regime and secondly, that the cold high pressure centre is critical for setting the modern east Asian monsoon climate. The Pliocene long-period climate characteristic of warmer and drier than at present implies that either the cold high pressure centre was rather weak, or that the oceanic airmass could not reach the region, or both.

6.5.2. An Overview on the Uplift of the Tibetan Plateau

Many studies emphasize the importance of the Tibetan Plateau uplift in the Cenozoic (particularly since late Pliocene) for explaining the Quaternary glacial initiation (e.g., Ruddiman and Raymo, 1988; Ruddiman and Kutzbach, 1991) and the occurrence of the modern east Asian monsoon (e.g., Liu and Han; Ding et al., 1992). However, it can be pointed out that no consideration of the timing c₁ n be seen in the previous studies other than a postulated elevation threshold.

The evidence for the Tibetan Plateau uplift in the late Cenozoic will be summarized, and the critical challenge of timing to the orogenic forcing hypothesis of the Quaternary first glaciation will be shown in this section.

Bio-geologic evidence indicates that in late Pliocene, the Himalayan region was dominated by subtropical and warm deciduous flora (Hsu et al., 1973, Hsu, 1978; Li et al., 1979; Li, 1983, 1985; Han, 1988a). Well-developed karst and red lateritic weathering (with major clay mineral being kaolinite) also suggest a sustained wet subtropical climate in the Pliocene (Cui and Zheng, 1975; Han, 1988b). By comparison of the distribution elevation between the *Quercus semicarpifolia* fossil and modern flora nearby, 3000 m uplift of the Tibetan Plateau was suggested for the period since the late Pliocene (Hsu et al., 1973; Li et al., 1979). Mammalian fossils (*Hipparion* fauna) indicate that the Himalayas and Tibet were not an effective barrier to north-south faunal exchange until the late Pliocene (Li et al., 1979; Ji et al., 1981), supporting the conclusion obtained from fossil plants and pollen evidence. Accelerated uplift of the Tibetan Plateau since late Pliocene is suggested by earlier studies based on the following evidence. The lacustrine deposits containing *Hipparion* fauna in the Gyrong Basin are covered by the Gongbe

Conglomerate which belongs to the Matuyama chron (Wang and Li, 1985), suggesting an abrupt uplift-acceleration. Comprehensive studies in the Kashmir Valley conclude that the climatic pattern of Kashmir follows a global trend: the warming during the Pliocene, and the glacial-interglacial fluctuations during the Pleistocene (Agrawal, 1985; Agrawal et al., 1989). Conclusions of the accelerated uplift and climate shift in the late Pliocene are supported by the Siwalik Group studies (cf. Chaudhri, 1982; Bhatia and Kapoor, 1982).

Overall, evidence from inside the Tibetan Plateau and adjacent regions indicates a profound climate change and accelerated uplift of the Tibetan Plateau in the late Pliocene. The most important feature for this work is the timing of this change. Recently, the issue regarding the elevation of the Tibetan Plateau in the past 3 million years is strongly debated by Harrison et al. (1992) and Coleman and Hodges (1995). They argue that much of the present elevation of the Plateau was attained at least 8 million years ago. Obviously, this negates the hypothesis of tectonic forcing for the Quaternary glaciation initiation. The controversy about the dating will not be discussed in this thesis, however it must be stressed that the tectonic forcing hypothesis is still questionable even if the evidence employed is confirmed.

6.5.3 Challenge to the Hypothesis of Plateau-Uplift Forcing for Global Plio-Pleistocene Climate Change

Evidence from the fluviolacustrine sequence and the red clay formation indicates that the warm-dry climate lasted until 2.7 Ma, and was characterized by dry sage-grasslands and a low dust deposition rate. Some 100 ka later, it was replaced by a cold-

dry climate with a remarkably enhanced dust deposition rate as indicated by the first loess deposition 2.6 million years ago. This marked a great and abrupt intensification of the Siberian cold high pressure center, and the establishment of modern east Asian monsoon.

Taking 1 mm/year of the maximum mean uplift of the Tibetan Plateau in the past 3 million years, a 100 m increase in elevation could be suggested for a period of 100 ka. The tectonic forcing hypothesis stresses that a threshold height greatly influences the planetary waves thus promoting ice sheet growth in North America. It seems unlikely that a 100 m increase in altitude of the plateau could lead to a striking change in planetary atmospheric circulation, stimulate a remote ice sheet initiation and cause rapid global glaciation within a period of some 100 ka.

6.5.4. Main Points on the Forcing Mechanism of the Quaternary Climate Regime Emergence

A le ge amount of evidence indicates that the loess deposition and climatic deterioration in North China occurred in timing with the occurrence of global glaciation as recorded by marine oxygen isotopes. This strongly suggests that the great intensification of the Siberian cold high pressure centre was produced by a glacial climate. This relationship is unanimously supported by atmospheric general circulation modelling experiments (e.g., Manaba and Broccoli, 1985; Kutzbach and Guetter, 1986; Kutzbach et al., 1993).

As reviewed, the Tibetan Plateau and its adjacent areas experienced climate change with the global trend and timing. Adopting the conclusion that the mean elevation of the Tibetan Plateau was about 1500 m at 2.5 Ma. E.P., the principal high Himalayas

would have been 4000-4500 m above sea level. As observed, the modern snowline on the southern slope of southeast Tibetan Plateau is at 4500 m (Zhang, 1981). Therefore, it is reasonable to expect that ice caps and mountain glaciers existed on the high Himalayan ranges during the glacial period of the early Pleistocene, which would have greatly enhanced its blocking effect on the Indian oceanic airflow to the plateau and northward. With uplift of the plateau and global cooling, the ice caps on the high Himalayas became permanent and in versibly restrained the Indian monsoon across the mountain chains. Furthermore, a low pressure cell was formed in the Tibetan Plateau in summer due to its high elevation (thin air) and low thermo-capacity (dry), which induces the southeast Pacific monsoon to move deeper into inland China. By blocking the Indian monsoon and producing a summer low pressure cell, the Tibetan Plateau intensified the influence of the southeast monsoon and northwest monsoon on the inland China climate, which is consistent with modelling experiments (Manzba and Terpstra, 1974).

Questions, however, still remain. What caused the Quaternary worldwide glaciation? What controlled the timing of the glacial cycles? Possible solutions to these questions will be addressed in the following chapter.

CHAPTER 7

POSSIBLE INFLUENCE OF OCEAN RIDGE PROCESSES ON SECULAR CLIMATE CHANGE

7.1. Introduction

As has been discussed, available theories of the Quaternary glacial climate have failed to explain many fundamental problems as listed below (for details refer to Chapter 1):

- 1. The occurrence of the Quaternary glaciation (cf. Imbrie et al., 1984; Berger, 1991):
- 2. Deglaciations out of phase with the maximum insolation anomalies in either the northern or the southern hemisphere (cf. Broecker and Denton, 1990; Crowley and Kim, 1994);
- 3. The periodicity shift at the B/M paleomagnetic polarity boundary, from fast to slow oscillations (say from dominant 41 ka cycle to 100 ka cycle (cf. Ruddiman and Raymo, 1988));
- 4. Glacial cycles did not follow the most powerful periodicity of the orbital forcing (cf. CLIMAP members, 1981; Imbrie et al., 1984);
- 5. The ocean circulation mode switch theory could not explain the 2 milar severity of glaciation through tropics to polar regions and does not provide the mechanism of the mode flip-over (cf. Broecker and Denton, 1990, 1991);
 - 6. The synchroneity of the enhancement of the atmospheric CO₂ and global

warming at the transition from glaciation termination to interglacial period (cf. Barnola et al., 1987; Jouzel et al., 1989; Ruddiman, 1987)).

This study also stresses a vital problem which has never been explained: the budget for rapid global warming. During the glacial maximum, North America (with latitudes higher than 40°) was totally covered with ice or snow, and most areas of high latitude in the both hemispheres were under similar conditions even for those without ice sheets. Snow albedo can be as high as 80-90% for fresh snow or over 50% for old snow (cf. Dickinson, 1992; Lydolph, 1985). This means about 70% loss of the solar radiation in those areas. It is known that the maximum change of the total insolation of the earth is about 0.2% (cf. Crowley and North, 1991) which is induced by eccentricity. Given that the ice sheet collapse model is correct (cf. Hughes, 1987), the ice cover on the earth was not reduced but enlarged, because high ice sheets were transported to lowlands or discharged into oceans, which would make a pronounced negative effect on the solar radiation absorption (the average continental albedo is 30% or less and ocean near zero, but sea ice albedo is near 50% on average). Taking the ice cover in both polar spheres from 40 or 50 degree in latitude during the last glacial maximum and 30% of increase in albedo on average, the albedo changes could have caused 4-7% loss in solar energy receipt on the earth. Therefore, the 0.2% increase in solar insolation, if it coincided with deglaciation, must have been completely destroyed by the effect of the expansion of ice and snow cover. However, an abrupt temperature increase at the time of the last glaciation termination has been observed from all records (polar ice cores, marine secuments, etc.).

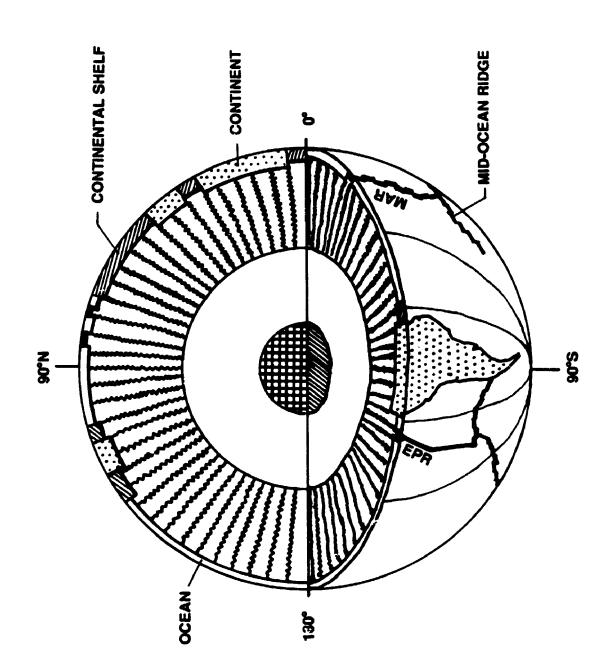
Instead of the orbital forcing of the Quaternary glacial oscillation, other

mechanisms must be explored. Mid-ocean ridge processes induced by ice sheet waning and waxing might be important in the forcing of the Glacial-interglacial cycles. During the last glacial maximum, great ice sheets on the surface of the earth would have had a great influence on the world's stress fields and have caused large deformation at the most vulnerable region of the earth in terms of mechanical strength, the world mid-ocean system, and have induced massive magma release from the deep earth. Once this process occurs, it could generate a rapid deglaciation and global warming by the following processes: (1) the evacuation of the space for the isostatic depression of the ice sheet loaded areas and thus complete collapse of the ice sheets, (2) direct heat release into the ocean, (3) stimulation of deep ocean circulation, and (4) driving CO₂ from ocean into the atmosphere. However, this subject has received little recognition in the ρast.

The first question to be raised is, could such a force be transmitted to the midocean ridges? This will be examined below. The earthquake data show very uniform
stress directions within individual plates (Tarling, 1981; Zoback, 1992). New evidence
from the KTB project indicates that the lithosphere is strong enough to transmit tectonic
force from plate boundaries (Zoback et al., 1993). The observed rebound in the glaciated
areas is obvious, for example, the Hudson Bay region has rebounded approximately 300
m in the last 8000 years (Peltier, 1987) and the Finoscandia over 100 m (Stacey, 1977),
clearly demonstrating the elastic properties of the lithosphere. Therefore, it should be
feasible to examine the influence of the great ice sheet loading on the deformation of the
ocean ridges by modelling the elastic response.

This chapter will present an elastic finite element spheric model, and then discuss the ocean ridge processes and the climate significance combined with the modelling results.

7.2. Earth Model Construction and Assumptions


To simulate the global deformation distribution of the crust caused by ice sheet loads, parameterization of the mechanical properties and structure of the solid earth must be assessed. Geophysical and seismological studies indicate that the solid earth is composed of multiple spheric layers with distinct mechanical properties. There are two major mechanical layers outside the core, the outermost lithosphere and the underlying asthenosphere. The mechanical properties of these two layers essentially control crustal deformation from surface loading. Many studies have shown that the lithosphere can be regarded as elastic material (e.g., Richardson et al., 1979; Erickson, 1993; Coblentz and Sardiford, 1994). Crustal isostasy depends on the viscous asthenosphere as suggested by earlier studies (Barell, 1919a,b; Haskell, 1935, 1936; McConnell, 1965; Peltier, 1982) and later seismological investigations.

In this computation, the solid earth is simplified as an elastic lithosphere over a viscous fluid, the asthenosphere. The structure in this model assumes that under steady-state conditions, the lithosphere is a closed spheric shell constituted by various types of plates with different thicknesses, and the asthenosphere is treated as a non-compressible fluid. Under such conditions, the gravitational isostasy with any load will not occur until the elastic lithospheric shell achieves its failure point. Before crustal failure, the crustal depression under ice sheet loading is elastic. In this case, all elastic deformation of the crust depends on the weight of the ice sheets and the strength of the elastic spheric shell. If the stress produced by ice sheet loads exceeds the elastic deformation range, the closed

continuum lithospheric-shell will break up and deep magma may tend to erupt. The contribution of the viscous asthenosphere to surface loading-forced deformation is principally expressed by its drag force on the lithosphere. This function is represented by the springs attached to the lithosphere from the outer core of the earth as illustrated in Figure 7-1. Before lithospheric failure, the viscosity of the asthenosphere protects the elastic shell against deformation. Once the stress exceeds a critical value for lithospheric failure, magma is forced to erupt (or to be exposed at a depth lower than seafloor if the magma reservoir does not have enough pressure) from the asthenosphere onto the solidearth's surface, which may cause collapse of the ice sheets. After the ice sheets are discharged, the viscosity of the asthenosphere helps the depressed crust to rebound. Therefore, by this mechanism, two major events might occur in the solid earth under ice sheet loads; (1) magma eruption (or exposure) and, (2) partial rebound of the crust because of the incomplete failure deformation protected by the drag force. This is supported by the fact that the 300 m of post-glacial rebound observed in the Hudson Bay area (Peltier, 1985; Begin et al., 1993) is much less than the expected value of 700 to 800 m (Flint, 1971).

Another important property of these viscous fluids is the duration of these processes. As observed, the isostatic process produced by the last deglaciation is still going on (cf. Peltier, 1982, 1988). In this study, interest is toward investigation of the deformations of the world mid-ocean ridges at the time of the last glacial maximum when the ice sheets achieved maximum loading on the earth's crust. Therefore, no time effect is involved in the model.

Figure 7-1. A spheric shell model of the planet Earth. The Earth's lithosphere is simplified into four typical plates with different thicknesses, continents, continental shelves, oceans and mid-ocean ridges. The centre of mass of the Earth is presumed to be fixed in its spatial position and thus is the Earth's core. Springs are attached on the lithosphere and the Earth's outer core along radius directions to simulate the viscous behaviour of the asthenosphere. (EPR = East Pacific Rise, and MAR = Mid-Atlantic Ridge)

7.3. Methods

The computer program SSIAP written by W.M. Liu (1990) is used to establish the finite element model and calculate elastic deformation. Computation was conducted by the Cyber system of the computing centre at the University of Western Ontario. Parameters used in the calculation are listed in Table 7-1. Coordinates of the discretized elements and nodes for the spheric shell earth are listed in Appendices II and III.

The entire earth's lithosphere is treated as a spherical shell with different elastic thickness corresponding to continents (105 km), continental shelves (75 km), oceans (70 km), and mid-ocean ridges (20 km). The plate boundaries and continental shelf configurations are based on the map of *Earth's Dynamic Crust* (Garrett, 1985) and the *World Continental Shelves* (Heezen and Tharp, 1970). The width of ocean ridges is assumed as 0.1 degree of latitude/longitude (equivalent to ~11 km at the equator and 5.5 km at 60° latitude) in order to facilitate the element discretization. The finite-element grid is generally about 5° both in latitude and longitude except for mid-ocean ridges and plate boundaries. The total discretized system of the earth's lithosphere is represented by an elastic spherical shell which consists of 2122 nodes and 2355 elements (see Figures 7-2, 7-3, 7-4, and 7-5).

The thin shell elements which was originally developed by Clough and Felippa (1968) is used to discretize the earth's lithosphere. It is a quadrilateral element composed from four LCCT-9 (Linear Curvature Compatible Triangle with 9 bending degrees of freedom) thin plate elements. A triangular element can also be specified by defining only the first three nodes. Within each triangle, linear curvature can be represented by the interpolation functions. The membrane part of the element is a constant strain triangle.

Table 7-1. Parameters used in the models

ymbols	Parameters' description	Values
R.	the Earth's radius	6371 km
R _{core}	the Earth's core radius	3471 km
hickness o	of the lithosphere	
h _{cont}	thickness of continents	105 km
h _{shlf}	thickness of continental shelves	75 km
h_{ocean}	thickness of ocean lithosphere	70 km
h _{ridg}	thickness of mid-ocean ridges	20 km
E	Young's modulus	1012 dyn/cm2
ρ_{ice}	density of the ice sheets	0.9 g/cm ³
Pasth	mean density of the asthenosphere	3.5 g/cm^3
$\mathbf{V_{ice}}$	volume of the ice sheets at LGM	58×10 ⁶ km ³
Δh_{***}	sea level lowering at LGM	146 m
Crock	specific heat of rocks	0.3 cal./g.°C
Cwater	specific heat of water	1.0 cal./g.°C
Twater	temperature of deep ocean water	2 °C
Tmagma	temperature of magma beneath ocean ridge	s 1200 °c
g	the Earth's gravitational acceleration	9.81 m/s^2

Figure 7-2. A finite-element mesh of the northern hemisphere of the Earth as viewed from the North Pole. The heavy lines are the combination of successive elements of mid-ocean ridges.

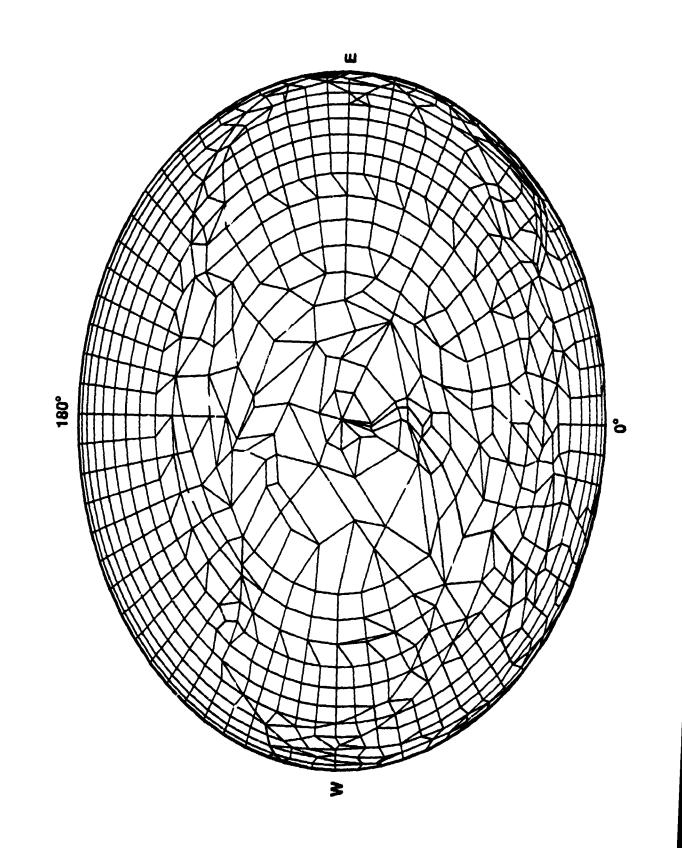
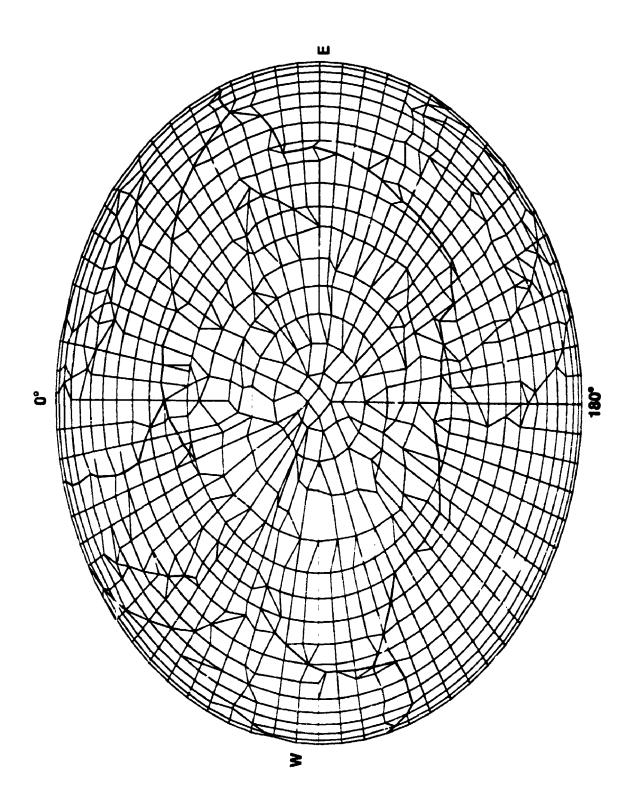



Figure 7-3. A finite-element mesh of the southern hemisphere of the Earth as viewed from the South Pole. And heavy lines are combinations of successive elements of mid-ocean ridges.

PM-1 31/2"x4" PHOTOGRAPHIC MICROCOPY TARGET NBS 1010a ANSI/ISO #2 EQUIVALENT

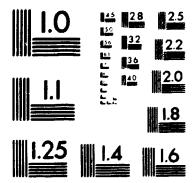


Figure 7-4. The finite-element mesh sector from 50°N to 50°S as viewed from 0° longitude, 0° latitude. The heavy lines are combinations of successive elements of midocean ridges.

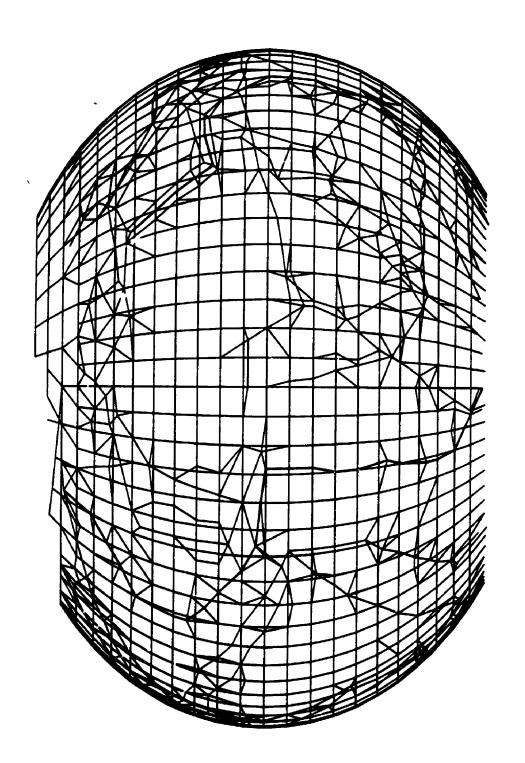
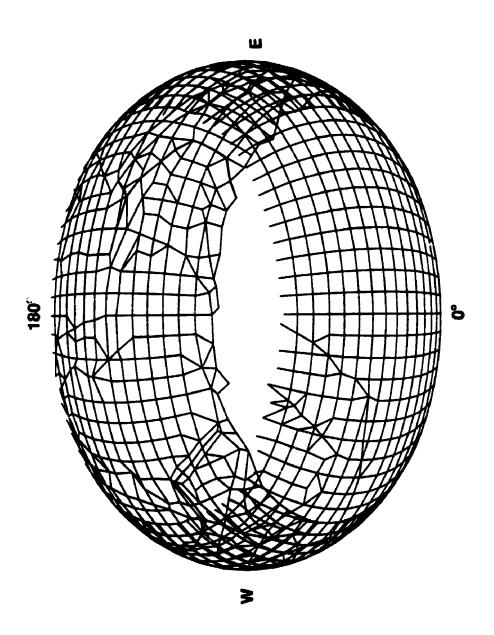



Figure 7-5. The finite-element mesh sector from 35°N to 30°S as viewed from 0° longitude, 45°N. The heavy lines are combinations of successive elements of mid-ocean ridges.

This element is a displace-based fully compatible element. Therefore, convergence is guaranteed when refining the mesh.

For modeling the displacements of the discretized lithosphere forced by the ice sheet loads in our elastic spherical model, a steady state is assumed, which means a condition of static equilibrium without ice sheet load. Therefore, the sum of all the forces (including gravity of the lithosphere, convection drag of the asthenosphere, Coriolis force etc.) acting on the lithosphere is zero. The distribution and size of the northern Hemisphere's ice sheets, as reconstructed by Denton and Hughes (1981, Fig.6-15) for the last glacial maximum has been applied to the model, and the effect of mountain glaciers and the Antarctic ice sheet has been neglected. Normal pressure loads representing the ice sheets are applied to each node of an element by averaging the total weight of ice on the element and distributing the weight equally to all the nodes of the element according to the equation

$$P_{\text{node}} = (1/n) \times \rho_{\text{ice}} \hat{H} \Delta S_{t}$$

where ρ_{ice} is the specific weight of the ice, \hat{H} the mean thickness of the ice on the element, ΔS_i , the area of element i in m² and n the number of nodes in the element. Here the ρ_{ice} adopted is 0.9 g/cm³ (cf. Schilling and Hollin, 1981).

The Young's modulus E of the lithosphere is assumed to be 10¹² dyne/cm², which is very close to the calculated value using the seismological data given by Anderson (1989) and others (eg., Erickson, 1993). We also assume that the mass geometric centre of the earth (the earth's core) is fixed in spatial position. Therefore, normal pressures

along the earth's radius all act on the earth's central point. To simulate the reaction force of the viscous asthenosphere, springs are attached to all the finite element nodes. The stiffness coefficients of these springs are in the range of 10-20% of the membrane stiffness of the earth's lithosphere. It may need to be pointed out that, the length of springs is a changeable parameter in the model runs. The outcore of the earth in the model is substantially a definition of the mechanical spheric shell (layer) which is assumed to be not deformed by the ice sheet loading. In addition, the effect of the length of the springs on mechanical response can be compensated by the change of the stiffness coefficient. Therefore, in the model, the radius value and meaning of the earth's outcore are somewhat different from the conventional meanings, and the top of the outcore in the model refers to a stable solid boundary of the asthenosphere.

7.4. Modeling Results

In order to simulate the displacement of the world mid-ocean ridge system with finite-element elastic spherical shell models, a number of cases were tested for comparison. In the cases with the condition that the elastic thicknesses of continental, continental shelf, oceanic and mid-ocean ridge lithospheres are 35, 20, 10, and 5 km respectively (their actual crustal thicknesses), the output values seem too large (the maximum absolute displacement at mid-ocean ridges is 340 m) even though the stiffness coefficient of the underneath springs was as high as 40%. When the thicknesses of the lithosphere are changed to values similar to those widely adopted (105 km for continents, 75 km for continental shelves, 70 km for ocean, and 20 km for mid-ocean ridges; cf. Richardson et al., 1979) and the stiffness coefficients of the springs are put in the 10-20%

range of the membrane stiffness of the lithosphere, the computed results of displacement are less than the expected value of isostatic rebound for the Hudson Bay region (the computed depression is close to 600 m; the expected complete rebound is 700-800 m, cf. Flint, 1971). From a conservative perspective, discussions in the following section are directed to the results obtained from the latter case with a high stiffness coefficient (20%) as presented in Figures 7-6, 7-7 and 7-8. The related data are given in Appendix I.

7.5. Displacement at Global Mid-Ocean Ridge Systems Induced by the Ice Sheet Loads

Results demonstrate that the most significant deformation effect of the ice-sheets load appears in the Northern Hemisphere (see Figures 7-6,7, and 8, Appendix I). Most regions of the mid-ocean ridges are forced to spread, especially at the high latitudes of the north Atlantic Ocean. The spreading magnitudes (displacements) decrease from the latitude of the central Laurentide ice sheet southwards, and are much less in the Southern Hemisphere than in the Northern Hemisphere. Furthermore, changes in the orientation of the displacement show a complicated pattern at some sections of ocean ridges. For a detailed investigation into the deformation effect of the ice sheet loads on the ocean ridge system, the ridge system has been divided into sectors and discussed separately.

In the north Atlantic region, the mid-ocean ridges are subjected to the largest deformation in the global ocean ridge system. The maximum absolute value of the relative displacement of node pairs occurs at the point around 9°W, 72°N, the end point of the transform fault east to the southeastern corner of Greenland and north to Iceland (see Figure 7-6). This displacement reaches approximately 100 m. In general, the displacement at ridges is tensile (toward spreading) with directions roughly perpendicular

Figure 7-6. Displacement of the world's mid-ocean ridges calculated by Model 3-1, northern hemisphere sector. Detailed data are shown in Appendix I. See text for explanation.

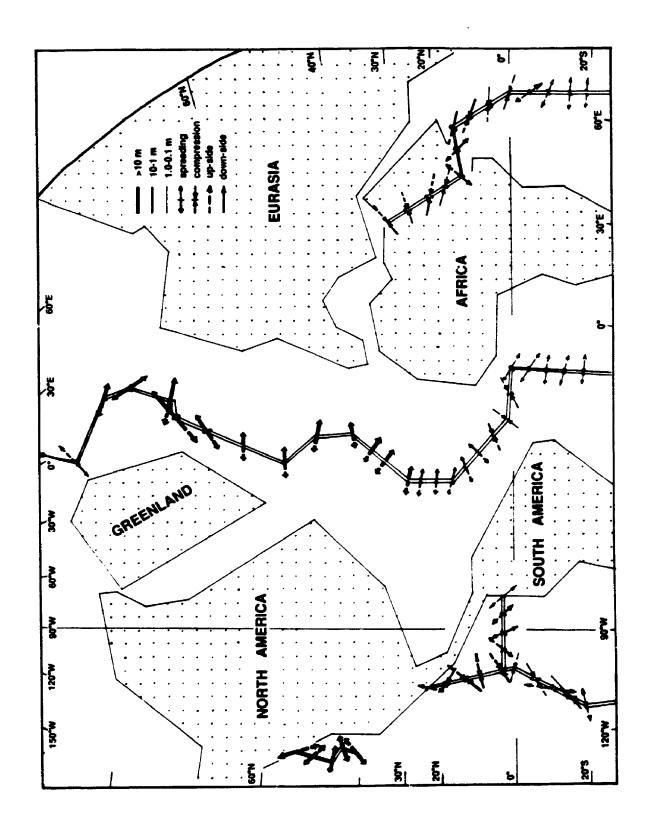


Figure 7-7. Displacement of the world's mid-ocean ridges calculated by Model 3-1, southern Indian-Pacific Ocean sector. All the relative displacements are in the range of 10-1 cm.

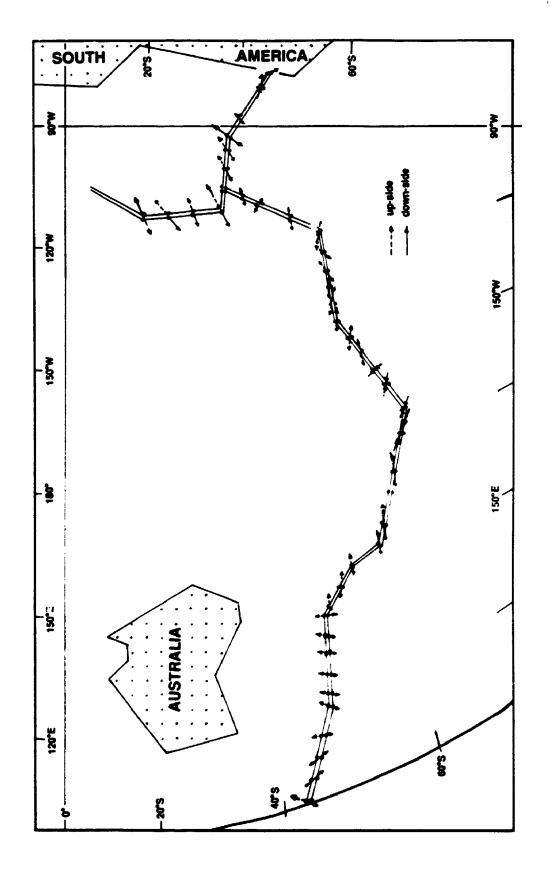
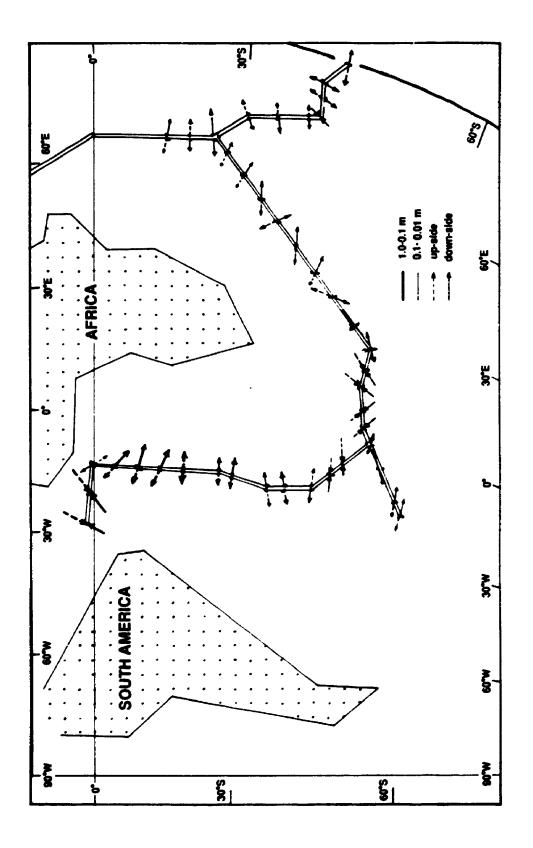
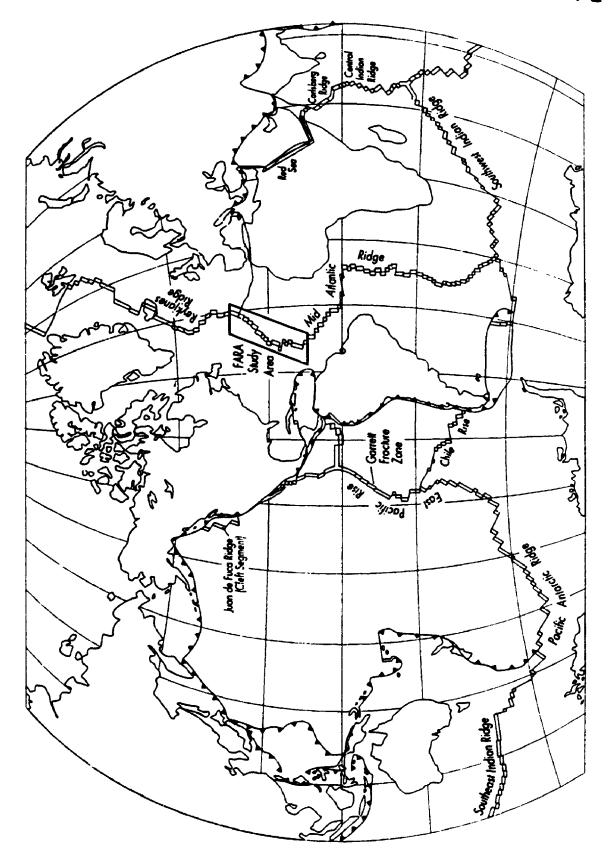



Figure 7-8. Displacement of the world's mid-ocean ridges calculated by Model 3-1, Mid Atlantic-southern Indian ocean sector.

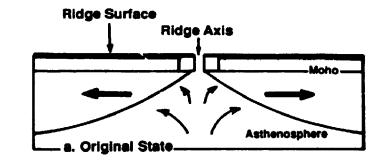

to the ridge axes. The spreading amplitudes smoothly decrease from near 70°N down to the tropical region. For some ridge sections, however, the displacement orientation appears unstable. At the transform fault sections (see Figure 7-9), the displacements are orientated nearly parallel to the fault. This is common for all transform faults in the Northern Hemisphere Atlantic Ocean (compare Figure 7-6 with Figure 7-9). But in our model the whole ridge system, including transform faults, are treated as of the same width and same thickness, and without any discrimination. This implies that the ice sheet loads in the Northern Hemisphere did not favour these faults to develop into a normal ocean ridge, but exerted a compressive force against their widening.

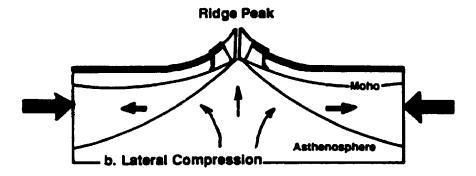
In the Juan de Fuca Ridge, the forced displacements appear mainly to spread away from the ridge axes, except for the middle section in our model (See Figure 7-6). The magnitude of the displacement on average is about 10 m for the north segment, and 7 m for the south part.

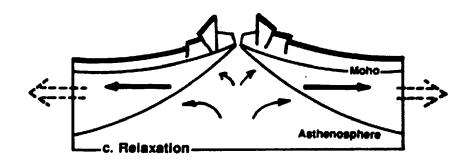
The East Pacific Rise shows a very complicated pattern of deformation. The longitudinal section (north of 20°S) is compressed, but the latitudinal sections are forced to spread and the directions vary from one part to another (Fig. 7.6).

Ocean ridges located in the Red Sea and in the central Indian Ocean show a minor deformation response to the ice sheet loading. The maximum horizontal translation is less than 1 m. The southeast Indian Ocean Ridge and the Pacific Antarctic Ridge received minimum influence of deformation. The magnitude of the displacements in these regions are all less than 10 cm. But their orientations might have certain implications and will be discussed further below.

Figure 7-9. The global mid-ocean ridge system (from RIDGE, 1994).


7.6. Topography of the World Mid-Ocean Ridges and the Ice Sheets Load Waning and Waxing


It is interesting to note that the modeling results (the calculated deformations) are coincident with the ridge styles. At the north Atlantic ridges, the ice sheet loads give the transform fault zones a compressive deformation which prohibits faults to spread in a perpendicular direction. Furthermore, in well-developed transform fault zones such as the section of Mid-Atlantic Ridge near the equator, the sections in the Pacific Antarctic Ridge and Southwest Indian Ridge, the deformation orientations are strongly altered (see Figures 7.6, 7.7, 7.8, 7.9). Similar features are also found at the Juan de Fuca Ridge and the East Pacific Rise. But as pointed out before in the model input, all the world's mid-ocean ridges are presented as continuous structures with uniform width and thickness. The coincidence of the ridge fashions with the ice sheet load forcing gives rise to an interesting question. Are the modern patterns of the world's mid-ocean ridge system markedly modified by repeated alternations of massive water loading on continents and ocean basins during the past ice ages?


In the modeling experiments, the East Pacific Rise suffered a compression with ice sheet loading in the northern hemisphere. This favours formation of positive topography of this ridge. Furthermore, because of the viscosity of the asthenosphere, the duration of isostatic rebound and relaxation are very much prolonged. As with the rebound resulting from the last ice sheet collapse, the relaxation will very likely still be acting at present, which should make a positive contribution to the faster spreading rate at the East Pacific Rise (see Figure 7-10).

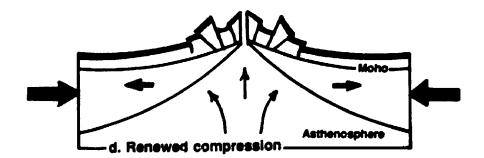
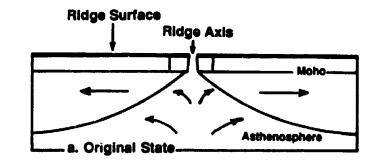
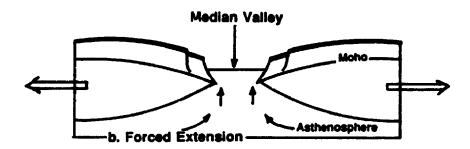
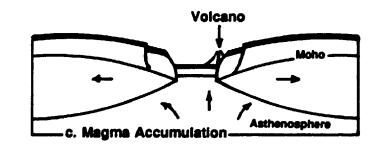

In contrast, the negative topography of the north Atlantic ridges is consistent with

Figure 7-10. A conceptual model showing the influence of ice sheet loads in the northern hemisphere's continents on mid-a ean process of the East Pacific Rise. a, A presumed original state in the Earth's surface conditions without the ice sheet. Spreading at a normal speed equilibrating with magma production and all forces in the ridge system. b, As the ice sheets load, a lateral compressive force acts on the ridge axis, which forces the ridge edges to uplift and decreases the spreading rate. High ridge peaks build up during this stage. c, A phase showing the ice sheets discharged into oceans. The lateral compression ceases, and the prolonged relaxation due to the viscous asthenosphere response enhances the spreading rate, as observed today. Because the pressure in the magma source decreases with time, the altitude of the central ridge is lowered until lateral compressions are re-established. d, A renewed compression phase features a new episode of high ridge-peaks build up.


the modeling results. Assuming the magma production rate to be nearly constant for periods of millions of years, the passive magma output forced by ice sheet stress largely exceeds its normal output rate (spreading rate) and thus exhausts the reservoir. Therefore, the magma output of the north Atlantic ridges in this scenario would not have enough pressure for upwelling onto the sea floor but to a depth lower than the sea floor, and form a new valley floor. Today, the observed topography at the north Atlantic ridges is characterized by a central deep valley and stepwise walls (cf. Mutter and Karson, 1992; Smith and Cann, 1993; Cannat, 1993; Tuchocky and Liu, 1994) This would most likely relate to the effect of multiple ice sheet loadings and discharges related to the glacial-interglacial fluctuations. Also, the slow spreading rate observed today at this ridge would have resulted from magma exhaustion due to the forced stretching, indicating that the magma reservoir underneath the north Atlantic ridge is still at the accumulation (recovery) stage. These relations are illustrated in Figure 7-11.


7.7. Magma Output at Mid-Ocean Ridges


7.7.1. Quasi-Instantaneous Output Related to Elastic Failure

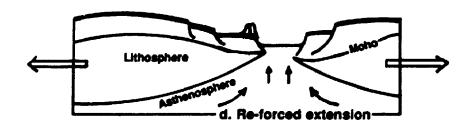

With great ice sheet loading, the ocean ridges attain various values of elastic deformation at individual node pairs. As has been discussed, this deformation occurs at the same time as the failure point, is achieved. Therefore, failure displacement will occur immediately. Because the calculated magnitudes are the resultants of all forces including the drag force, there is no extra force to protect against the deformation. In other words, all forces agree to such a magnitude of the deformation at a node pair, which implies that the calculated displacement will be attained nearly instantaneously.

Figure 7-11. A conceptual model showing the influence of the 'ce sheet loading on the Northern Hemisphere continents upon North Atlantic Ocean ridges. a, A presumed original state as in Figure 7-10a. b, The forced extension by ice sheet loading. As the required extension largely exceeds its automatic spreading, the output magma is at a certain depth equilibrating with its upwelling pressure. Thus a central valley of the ridge axis is created. c, After the stretching force disappears, large scale crustal accretion at the central rift ceases. In this stage, magma is produced in small chambers and intermittently erupts on the valley floor mainly along the marginal faults. d, A new episode of forced extension driven by the next ice sheet loading. A new central valley floor is formed and the previous one becomes a terrace wall at the side of a new valley.

Using the displacement results listed in Appendix I, a minimum instantaneous magma output at mid-ocean ridges forced by the ice sheet load can be estimated. As the major displacements are located in the northern hemisphere, estimation is focused on the ridges in this range.

In the first step, the ridges are divided into sections according to displacement features and geographic distribution patterns. Following this, the length of each section is calculated. The quasi-instantaneous magma output is estimated as a minimum value of the ridge-crustal accretion volume forced by the failure extension.

In the Atlantic Ocean, the principal trend of the ridge axes above 17°N is longitudinal except for the transform faults. Therefore, we use the "v" component, the partial values in the y coordinate of the displacement vector (relative latitudinal displacement, see Appendix I for explanation) to approach the spreading value in the normal direction neglecting longitudinal and vertical translations. For the ridge section between 2 and 17°N, horizontal displacement is calculated and then converted to the normal direction of the ridge axis because the true spreading values cannot be simplified by substitution of any partial component of the three coordinates. The mean value for each ridge section is obtained by averaging the normal direction spreading values of all node pairs in that section. As an estimate, a uniform thickness of 5 km has been assumed for the new accreting crust. With the same treatment, the magma output at Juan de Fuca Ridge has been estimated. The output of magma in transform fault sections has not been taken into account. The total budget of the quasi-instantaneous magma output induced by the ice sheets loading is listed in Table 7.2.

Table 7-2. Quasi-instantaneous minimum magma output at mid-ocean ridges of the Northern Hemisphere induced by ice sheet loading (resulting from the elastic failure only) estimated from Model 3-1.

Ridge	Sections	Latitude	Longitude	Length	Spreading	Magma
Α	to B	interval	interval	AB*	magnitude	output
A(long/lat)	B(long/lat)	Δθ(degree)	Δφ(degree)	(km)	mean (m)	(km³)
Atlantic	Ocean					
-10/83	10/77.6	5.6	20	783.990	(4.0)	(15.68)
10/77.6	9/75.4	2.2	1	246.107	20.5	25.23
9/75.4	-3/72	3.4	12	559.156	43.95	122.88
3/72	-9/72	0	6	206.074	(36)	(37.09)
9/72	-35/55	17	26	2531.347	33.1	415.96
35/55	-28/49	6	7	839.604	22.69	95.25
28/49	-30/41	8	2	904.819	16.57	74.96
30/41	-45/29	13	15	2052.708	7.065	72.51
45/29	-46/17	12	1	1337.908	2.701	18.07
46/17	-28/2	15	18	2603.325	0.6	7.81
Subtotal				9438.713		832.67
						(885.44)
Pacific	Ocean					
-129/54.5	-130/4 5.5	9	1	1004.580	10.52	53.95
-126/44	-127/40.5	3.5	1	400.881	7.40	14.83
Subtotal				1405.461		68.78
Total						901.45
						(954.22)

*Note:

$$AB = \frac{2\pi R}{360} \sqrt{\Delta\theta^2 + \Delta\phi^2 \left(\frac{\cos\theta_A + \cos\theta_B}{2}\right)^2}$$

7.7.2. Perturbation of the Episodic Magma Output Related to Asthenosphere Deformation Flow

It is easily understood that the failure extension must stimulate massive magmatic eruptions at places where melt reservoirs have achieved certain pressures. A tentative and coarse estimate is presented here by using the available isostatic data. The total episodic magma output induced by the ice sheet loading is estimated below.

The total mass of the ice sheets is 4.2×10^{22} grams, using the equation

$$M_{ice sheets} = \Delta LA \rho_{water}$$
.

Where the $M_{ice\ sheets}$ is the total mass of the world's ice sheets during the last glacial maximum. Taking the eustatic sea level lowering ΔL as 117 m (Denton and Hughes, 1981), the ocean area A as 361×10^6 km² (Judson et al., 1987), and the specific weight of water as 1.0 g/cm³.

The complete depression in the Hudson Bay region is calculated by:

$$H_{depression} = H_{ice sheet} \times \rho_{ice}/\rho_{upper mantle}$$

where $H_{ice sheet}$ (the ice sheet height) is about 4000 m on average (cf. Denton and Hughes, 1981), the specific weight of the ice sheet ρ_{ice} is 0.9 and the specific weight of the upper mantle, $\rho_{upper mantle}$ is 3.5 g/cm³. The complete depression for this region should be 1028 m.

The rebound value for the Hudson Bay region is observed to be about 300 m

during the past 8 000 years (Peltier, 1985; Begin et al., 1993). Another 300 m of rebound between 14 000 to 8000 years B.P. has been extrapolated according to the exponential decrease of the rebound rate (cf. Peltier, 1985, Fig. 2). Obviously, there is 428 m rebound still missing, which correlates to a 42% loss of the ice sheet mass. This equals 1.76×10^{22} grams ($\sim 5 \times 10^6$ km³) of magma output and 6.3×10^{24} calories of heat released to oceans.

To melt the total ice sheets (4.2x10²² grams), 3.36x10²⁴ calories would have been needed (80 cal./g of the fusion heat of water). That means 2.94x10²⁴ calories have been contributed to ocean warming. This amount is large enough to raise the seawater temperature about 2.2 °C assuming a modern ocean water volume of 1.32x10⁹ km³ (cf. Judson et al., 1987).

7.8. Effects on Rapid Deglaciation and Global Warming

The following sections emphasize that the pulsative spreading and instantaneous heat release could powerfully stimulate a rapid deglaciation (termination) and global climate warming.

7.8.1. Instantaneous Heat Release

As discussed in section 7.6.1 and Table 7-2, the minimum forced quasi-instantaneous output of magma at mid-ocean ridges in the northern hemisphere is about 900 km³. When exposed, the magma must cool and release heat to the ocean. The amount of the released heat is determined by the following equation with neglect of latent heat of crystallization:

where C is the specific heat of magma, about 0.3 cal./g.°C (cf. Anderson, 1989), ρ the density of solidified magma, assuming 3.5g/cm³, V the volume of magma output, and ΔT the temperature difference between magma and deep ocean water, which is approximately 1200°C. The estimated minimum heat released from the magma to ocean water is 1.14 x 10²¹ calories. This is equivalent to 5% of the yearly amount of sunlight absorbed by the troposphere and ocean in the northern Atlantic basin.

The warming effect is closely related to the rate of the heat liberation. From previous observation, faulting is a very common phenomenon in the median valley of the North Atlantic Ridge (Smith and Cann, 1993). This must greatly enhance the permeability of the ridge crust and deep hydrothermal circulation, and thus accelerate magma cooling. Nevertheless, its climatic influence is much more than direct heating.

7.8.2. Stimulation for Deep Water Circulation

Studies by Lowell and Germanovitch (1995) and others (e.g., Baker et al., 1987, 1989) have pointed out that even as small amount as 0.01 km³ of magma at an ocean ridge can generate a megaplume of ocean water mass in the order of 20 km in diameter. Over 800 km³ of magma output in the northern Atlantic basin forced by the ice sheet loading must have caused chaotic perturbation in the ocean temperature gradient and density gradient, and therefore caused vigorous deep water circulation. During such an event, the exposed magma along the mid-ocean ridge axes heats the deep water just above the ridges. The heated water could form superplumes upflowing to certain heights.

Following this, the ambient cold water will form downflows migrating towards the hot ridges due to density gradient forcing. Because large extension of mid-ocean rifts is predicted in the region from the tropical Atlantic to the Arctic circle, the superplumes of hot water would influence almost the entire northern hemispheric Atlantic Ocean. Therefore, the induced vigorous massive deep water circulation must involve the whole Atlantic.

Many studies indicate that during glacial periods the North Atlantic deep water circulation was greatly weakened or even thought to have shut down (Broecker and Denton, 1989; Boyle et al., 1987, 1990; Bond et al., 1992). The polar ice front in the North Atlantic Ocean reached as far south as 40-50°N (Ruddiman and McIntyre, 1981) during the last glacial maximum. The forced stretching of the mid-ocean ridges due to a critical volume of the ice sheets in the northern hemisphere, like a powerful engine, would have generated north Atlantic deep water circulation and forced world-wide ocean circulation. Possibly flipping over the ocean-operation mode from glacial to interglacial.

7.8.3. Contribution to the Enhancement of Atmospheric CO₂ Levels

Greenhouse gases are an important factor in global warming. Observations of polar ice cores in both hemispheres show that the atmospheric CO₂ and methane (CH₄) fluctuate in phase with temperature (Dansgaard and Oschger, 1989; Barnola et al., 1987). The climate forcing of the change in CO₂ from 200 to 280 ppm is believed to be about 1.75 °C and the combined forcing of CO₂ and CH₄ could account for a 2.3 °C warming (Chappellaz et al., 1990; Lorius et al., 1990). But the mechanism of the rapid rise of these gases still remains a puzzle.

Massive magmatism at mid-ocean ridges has a positive effect on the enhancement of atmospheric CO₂ levels. Ocean water warming caused by magma output at ocean ridges must lower CO₂ solubility and drive more CO₂ from cold ocean regimes into the atmosphere. During magma eruptions, certain quantities of greenhouse gases will be liberated from the deep earth. In addition, the temperature rise near the ocean floor will intensify decomposition of organic matter in ocean sediments to produce more greenhouse gases. Taking all of these factors together, the episodic ocean ridge accretion, driven by the ice sheet loading, could greatly raise the atmospheric CO₂ from glacial to interglacial level within a rather short period.

7.9. Fluctuations in Spreading Rates of the Ocean Ridges and Glacial-Interglacial Oscillations

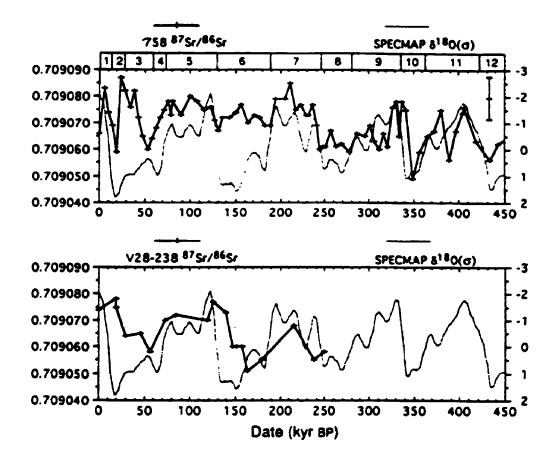
As illustrated in Figures 7-10 and 7-11, the mid-ocean ridge processes and the ice sheets are coupled together in the dynamic surficial environment of the planet Earth. In the previous section, the influence of ice sheet loading on ocean ridge process, and the spreading rate variation and topographic development was discussed. The following section will concentrate on how the mid-ocean ridge process might have an imprint on the pacing of secular climate change.

When the ice sheets reach a critical volume, enough to pass the elastic deformation threshold of the lithosphere at mid-ocean ridges, failure deformation must take place. Only massive magma output from mid-ocean ridges could provide the interior space to allow large scale isostatic depression of the crust underneath the ice sheets to occur, and hence lead to a complete collapse of the ice sheets by faulting and lowering

the elevation (because the atmospheric temperature in the troposphere declines with elevation). Interlocked by this mechanism, the pulsative magmatism of the world midocean ridges might in turn promote a complete deglaciation. Meanwhile, through direct heating, forcing deep ocean circulation and enhancing greenhouse gases levels of the atmosphere, the sudden exposure of a massive amount of magma from the mid-ocean ridges would lead to a world-ocean warming first and then a global climate warming, and force the climate into an interglacial period.

As mentioned above, the magma production in the deep earth is presumably constant on a time scale of millions of years. After excessive export of magma from the deep earth, the magma reservoir in these regions may become depleted. Therefore, the ocean ridges in the north Atlantic may have evolved into a relatively quiet stage of magma accumulation, during which small scale volcanism and slow spreading rates could only be observed. With less energy supplement from the earth's interior, the north Atlantic deep water circulation would decrease, and the global climate would become cooler and move into a glacial period of long-term ice-sheet growth.

The lithospheric thickness at mid-ocean ridge axes largely depends on magma flux, as indicated by the different thickness between the fast-spreading East Pacific Rise (Detrick et al., 1987; Harding et al., 1989; Vera et al., 1990) and the slow-spreading Mid-Atlantic Ridge (Huang et al., 1986; Bergman and Solomon, 1990; Kong et al., 1992). It is a direct expression of the ridge's thermal state, and should reflect the balance between heat loss through conductive and hydrothermal cooling, and heat supply from the asthenosphere (Cannat, 1993). Axial lithospheric thickening will enhance the strength of the ridge's lithosphere against ice-sheet- forced deformation and set up a new threshold


of maximum volume of the ice sheets. Once this threshold of the ice sheets volume is achieved (which is determined by the fragile part of the lithosphere), a new episode of ocean ridge extension and deglaciation would re-occur. In this scenario, the ice sheet loading and ocean ridge processes could be coupled to produce the glacial-interglacial oscillations. Therefore, the secular climate oscillations very likely reflect the balance of a self-sustained system involving the earth's interior and the earth's surface rather than other exotic forcing mechanisms in the Quaternary.

7.10. Possible Link between Ocean Ridge Process and Ocean ⁸⁷Sr/⁸⁶Sr Changes on Glacial Cycle Scale

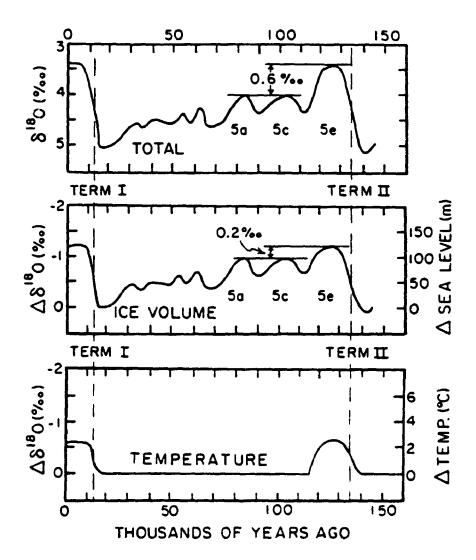
Strontium isotope studies in marine sediments indicate that ⁸⁷Sr/⁸⁶Sr ratios have been rising since the early Cenozoic (DePaolo and Ingram, 1985; Faure, 1986; Edmond, 1992; Paytan et al., 1993). This is attributed to plateau uplift, in particular of the (Ruddiman and Raymo, 1988; Ruddiman and Kutzbach, 1991; Raymo and Ruddiman, 1992; Edmond, 1992). It is believed that the Tibetan Plateau uplift has intensified the Indian monsoon and thus enhanced chemical weathering of the continental crust. However, this does not well explain the changes in ⁸⁷Sr/⁸⁶Sr ratios on the glacial cycle scale.

Short-term variations of the 87 Sr/ 86 Sr ratios in world oceans have been observed in recent years (Dia et al., 1992; Paytan et al., 1993; Clemens et al., 1993; Blum and Erel, 1995), but are not fully understood. As shown in Figure 7-12, Clemens et al. (1993) found that the 87 Sr/ 86 Sr variations follow a 100-kyr cycle more or less simultaneously with changes in ice volume (ocean δ^{18} O) in the equatorial Indian Ocean

Figure 7-12. Seawater 87 Sr/ 86 Sr records compared to the SPECMAP δ^{18} O record of global ice volume (from Clemens et al., 1993) Indian Ocean site 758 (top) and Pacific Ocean V28-238 (bottom). Oxygen isotopic stages are labelled at the top (even numbers represent glacial intervals).

(actually leading the global ice-volume signal by a short period), and some thousand years ahead in the equatorial Pacific at deglaciations (Dia et al., 1992; Clemens et al., 1993). These phenomena could be better explained by the episodic extension of mid-ocean ridges. These magmas from ocean ridges with a typically low ⁸⁷Sr/⁸⁶Sr ratio of 0.7030 (cf. Faure, 1986) could release a great amount of strontium to the ocean by alteration with sea water. The observed low values of ocean ⁸⁷Sr/⁸⁶Sr ratios during deglaciations could be related to the pulsatory ocean ridge process. The continuous increase in the ⁸⁷Sr/⁸⁶Sr ratios of Cenozoic marine sediments is not fully explained by weathering factors alone because the great enhancement began much earlier than the plateau uplift-intensified weathering.

It should be stressed here that magma influx at mid-ocean ridges may be an important factor for ocean ⁸⁷Sr/⁸⁶Sr ratio change in the Cenozoic. The ocean ⁸⁷Sr/⁸⁶Sr ratio can be considered as a mixture of three isotopic varieties of strontium derived from young volcanic rocks, old sialic rocks of continental crust and marine carbonate rocks of Phanerozoic age. Therefore, the ⁸⁷Sr/⁸⁶Sr ratio of seawater is an indirect indicator of the kinds of rocks that are exposed to chemical weathering on the surface of continents and in ocean basins. The low intensity of magmatism in the Cenozoic suggests a reduced influence to the ocean ⁸⁷Sr/⁸⁶Sr signal than previously. Even though the chemical weathering of continental crust does not increase, the ocean ⁸⁷Sr/⁸⁶Sr can still increase. Likewise, an increase of magmatism will decrease the ratio, as observed for early geologic time (cf. Faure, 1986; Larson, 1991).


7.11. Support from Geologic Evidence

Sturchio et al. (1993) suggest that the geothermal activity in the Kenya rift valley regions corresponds to periods of high lake levels. Studies of the Younger Toba Tuff in Indonesia indicate that massive volcanism occurred during a climatic transition period, which has been attributed to rapid ice growth and global sea level falling (Rampino and Self, 1992, 1993). Due to discrepancies between the ⁸⁷Sr/⁸⁶Sr ratio in calcite shells of planktonic foraminifera, and the estimated chemical weathering influx for the past half million years, the possibility of pulsations of the seafloor hydrothermal fluxes has been proposed for future exploration (Froelich, 1993; Clemens et al., 1993).

More convincing evidence lies in the deep water temperature changes through glacial cycles. As shown in Figure 7-13, the deep ocean water temperatures rise simultaneously and abruptly with global ice volume waning. With the ice and melt water discharge to the ocean, the ocean would have become cooler at least in the deglaciation period if no deep heating had occurred. Obviously, the observed greater than 2 °C abrupt increase in the deep ocean water temperature cannot be explained by either orbital forcing or the ocean circulation mode switch. Furthermore, the temperature of the deep ocean water deceases and then is characterized by a long period of stability after a positive pulse until next maximum ice volume. This occurs independent of whether the climate is warm or cold.

Numerous studies on mid-ocean ridge processes provide useful information for the interpretation of the modeling results. The axial topography of mid-ocean ridges in the Atlantic ocean indicates a pulsative style of ridge process, as suggested by median ridge valleys constituted by stepwise walls and flat platforms (Smith and Cann, 1993; Karson et al., 1987; Pockalny et al., 1988; Detrick et al., 1990; Tucholke and Lin, 1994).

Figure 7-13. The marine oxygen-isotope records for the last glacial cycle (adopted from Broecker and Denton, 1990). The upper panel shows a smoothed version of the oxygen-isotope record for benthic foraminifera from eastern equatorial Pacific core V19-30. The middle panel shows the record after correction of 0.4% for a warming of deep water during the interglacial peaks after termination II and termination I. This corrected record is believed to closely represent changes in ice volume. The lower panel shows the impact on the benthic isotope record of changes in the temperature of deep Pacific water. For specific interpretation of the lower panel refer to the text.

However, supporting evidence is still scanty for cyclicities at the 100 kyr scale. Possible explanations include the possibility that available bathymetric data do not have enough resolution power to detect these cycles because the calculated pulse extension is less than 100 m in width for most ridge sections. In addition, the topography of the ridges is complicated, highly developed normal faults are superimposed by multiple volcanic edifices and deformed by faulting segments between ridge domains. All of these factors greatly increase the difficulty for the use of bathymetric interpretation to identify the discontinuous and irregularly distributed extension in the order of about hundred meters or less. Therefore, more detailed measurements and systematic dating of central mid-ocean ridges are critical to support the hypothesis of this study and to provide substantial constraints for improving the existing models.

7.12. Comments on the Mid-Ocean Ridge Process-Link of the Quaternary Glacial Cyclicity

7.12.1. Magma Output and the Forced Mid-Ocean Ridge Extension

Under normal conditions, the output of magma at mid-ocean ridges represents a balance of the pressure in the melt chamber/ reservoir, the convection force of lower mantle, and the resistance of the plates against spreading. The axial high represents periods of waxing magmatism when crustal production rates exceed necking. The ridge troughs represent periods of waning magn. om when extensional tectonism is greater than constructional magmatism (Tuchocky and Liu, 1994). The latter case could be expected (from the modelling experiments) to occur most likely at the Atlantic ridges in

the northern hemisphere where ridge-axial valleys are observed. However, for ridges characterized by axial highs which imply magma-rich reservoirs underneath, the magmatic flux must be far greater than the calculated horizontal displacement. Particularly, for some regions with giant melt regimes, even a small extensional force produced by ice sheet loading can trigger massive magmatism.

If we assume that the variation in 87 Sr/ 86 Sr ratios in ocean water during the transition period from last glacial maximum to deglaciation have been caused by midocean ridge processing, it can be estimated that the magma output would cause the ratio to fall from 0.709087 to 0.709058 (cf. Clemens et al., 1993). The volume of ocean water during that period is obtained using today's value subtracting 130 m of sea level reduction. The riverine influx is neglected but compensated by using the modern ocean concentration of 7.7 ppm strontium. This manipulation is besed on: (1) the riverine fluxes were greatly reduced for most areas of the world during the glacial maximum; (2) the duration of the change is less than 10 ka; and (3) the ocean water strontium concentration of the past is lower than today (cf. Blum and Erel. 1995). If 0.7035 of 87 Sr/ 86 Sr and 772 $\mu g/g$ of Sr concentration are adopted for average mid-ocean ridge basalts, 20,000 km 3 of hydrothermally altered magma is necessary. This counts for 0.4% of the estimated value (5x10 6 km 3).

The ice volume reconstruction for the Antarctic ice sheet raises a big discrepancy (Andrews, 1992; Colhoun et al., 1992). The construction with raised beach altitudes suggests an ice sheet during the last glacial which is much smaller than expected, and leads to 25 meters of the world ocean water in thickness missing (the reconstructed contribution of the deglaciation in the Antarctic to sea level rise at most 2.5 meters). This

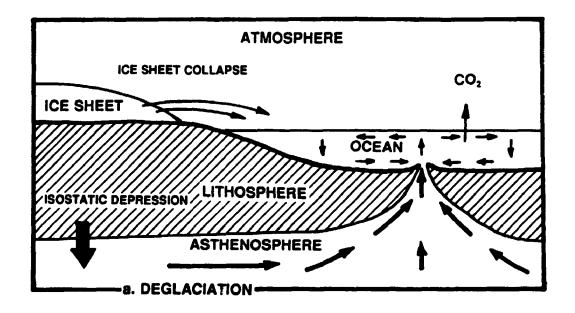
thesis proposes that it is possibly attributable to ocean ridge deformation and magma output induced by ice sheet loading. The amplitude of isostatic rebound could not be used for an estimate of ice sheet volume, but might provide a constraint for magma output from the world ocean ridge system.

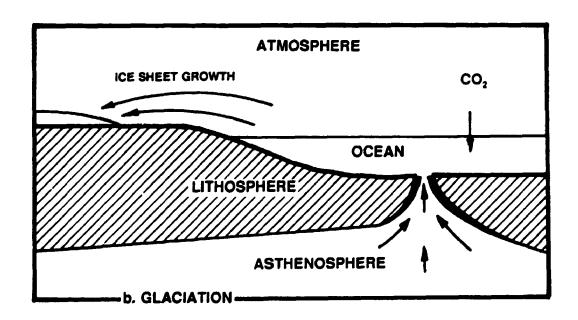
For more accurate insight into the deformation forced by ice sheet loading, a refinement of model constructions is needed with the addition of updated geologic findings. Also, an ice sheet load in the Antarctic may need to be added to the model.

7.12.2. Ridge Processing and the Earth's Internal Dynamics

Paleoclimatic records both in marine and terrestrial sediments have revealed that the dominant glacial cycles are constant in each geomagnetic polarity Chron but different from others in other polarity intervals (see Figure 6-4 and Ruddiman and Raymo, 1988). As has been suggested, magnetic reversals are related to global heat flow, and thus to the internal dynamics (Larson, 1991; Larson and Olson, 1991). Although it is in contrast to the expected relation by Larson and Olson (1991), the geomagnetic paleo-intensities do show an inverse relation to global magmatic intensity (cf. Pick and Tauxe, 1993). The average geomagnetic intensity in the Matuyama chron is lower than in the Brunhes (cf. Valet and Meynadier, 1993). If the relation between magmatic and geomagnetic intensities is confirmed, the polarity reversal between the Matuyama and Brunhes would imply a major change in mantle dynamics, which could cause a change in crustal thickness of mid-ocean ridges and their mechanical strength. Therefore, a thinner crust of ridge axes in the Matuyama can be expected, which must result in an earlier failure extension, and implies a lower threshold of the ice sheet volume. In this case, a shorter

periodicity of glacial cycle is produced. As observed in the Matuyama chron, the glacial cycles are obviously shorter than the 100 kyr cycle in the Brunhes.


7.12.3. Summary


Overall, evidence from a broad range of geo-observations and the modelling provide direct or indirect support for the hypothesis that the balance of exogenetic ice sheet growth and endogenetic dynamics through the most sensitive channel, the world mid-ocean ridge system, have paced the Quaternary glacial cycles. The mechanism was possibly first related to an amagmatic period which led to a global cooling, and thus the Quaternary glacial initiation. With ice sheet growth, magma accumulation, and the arrival of the ice volume threshold, failure deformation of the ocean ridges occurred, which induced massive magma output from the ridge system. Once this occurred, the massive magmatic process quickly destroyed the ice sheets through the evacuation of the earth's interior space for ice sheet depression which caused tectonic forcing on rapid collapse of the ice sheets (and also subjected the ice to high atmospheric temperature as mentioned earlier). By direct heating ocean water and the discharged ice, stimulating deep ocean circulation, and enhancing the atmospheric greenhouse gases levels, the massive magmatic process at ocean ridges produced a rapid global warming. After this process, the magma reservoirs became exhausted, the ocean ridges returned to a quiet stage with less magmatic activity, the world climate became cooler, and a new glacial period was resumed until another critical ice volume was attained (as illustrated in Figure 7-14).

It needs to be stressed that this study is just beginning. The establishment of the hypothesis must involve a large amount of additional work involving both collection of

geologic evidence and model improvement.

Figure 7-14. Mid-ocean processes and the Quaternary glacial-interglacial oscillation-- A self-sustained Earth surfacial system.

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1. Conclusions

The major contributions and conclusions of this study are presented below.

1) By paleomagnetic investigation, the fluviolacustrine sequence in the Shijiawan section was determined to be in the period between 3.05 and 1.9 Ma B.P. Sedimentary analyses indicate that this sequence is mainly derived from river channel sand beds and floodplain deposits, reflecting a typical alluvial environment. The fine sediment layers are dominantly reworked red clay and loess, as was suggested by comparison of grain-size distribution, mineralogy, texture and colour. The last typical reworked red clay bed and the first typical reworked loess layer are respectively 2.7 and 2.61 Ma in age. After 1.9 Ma B.P., fluviolacustrine deposition in the Shijiawan section was replaced by a loess-paleosol accumulation, which shows an earlier termination of the hydrogenic environment in this area than in the central basin.

The upper part of the red clay formation in the Yanyu section correlates with the Gauss Chron. The smooth contacts suggest there is no significant hiatus between the red clay and the overlying loess. Therefore, it is considered as a continuous depositional sequence from red clay to loess in the Yanyu section, a similar conclusion to that obtained from the Lantian section and the Baoji section in the Guanzhong basin.

2) Stable carbon isotope studies of organic matter from the modern system reveal that the major floral species are C3 in type for both open forest and sage steppe. Only

a few non-arboreal species are C4. The related soils have δ^{13} C values close to the source floras. Systematic analyses through the soil profiles indicate that steppe flora has a major distribution depth within the upper 20 cm, much shallower than for the forest where the major distribution depth is more than 50 cm, consistent with field observations. This study provides a basis necessary for paleovegetational interpretation of the δ^{13} C signatures in paleosol profiles in the region.

- 3) Studies of the S5 unit, the best-developed paleosol in the Loess-paleosol sequence, demonstrate that the major pedogenic processes are decalcification and mechanical translocation of fine particles (clay illuviation). Except for calcareous carbonate, little change in chemical and mineral composition occurred during pedogenesis, suggesting a climate with slightly less precipitation than today. Stable carbon-isotopic evidence indicates a pronounced proportion of C4 plants and suggests that grasslands dominated the paleovegetation. Overall, evidence obtained from this study is not in agreement with the conventional conclusion that the S5 in the Guanzhong basin reflects a typical forest environment. For a more solid interpretation, better age control is required.
- 4) The Pliocene red clay formation shows great similarity in grain-size distribution, mineralogy, clay mineralogy, and chemical composition throughout individual profiles and between the Yanyu and Luochuan sections which are located in different basins hundreds of miles apart. Furthermore, the red clay is nearly identical to the overlying loess--paleosol sequence in grain-size, mineralogy, chemical composition and texture. The geographic distribution of the red clay coincides with the range of the loess. Therefore, an aeolian origin of the red clay is strongly suggested. This implies that

dust deposition from the deserts in central China started long before loess accumulation.

- 5) Studies of the Shijiawan fluviolacustrine sequence and the red clay formation in the Yanyu and Luochuan sections indicate that a stationary warm-dry climate in the Pliocene lasted until 2.7 Ma B.P. During that period, paleovegetation in the southern Guanzhong basin was dominated by a typical sage flora with little variability, indicative of drier conditions than in the early Quaternary interglacials and the present. This contrasts with a widely held opinion that the red clay formation was developed during a hot-wet climate.
- 6) The modern east Asian Monsoon climate shows a close relation to the distance from the west Pacific margin, the mean annual precipitation decreases inversely with the distance. This is supported by the evidence from sea level change, marginal migrations, and paleovegetational constructions for the last 18,000 years. Via the sea level-linked coastal migration and thus the change in distance from the racific margin, the Quaternary global glacial-interglacial signals were transmitted into the regional climate. Therefore, climate change recorded in the loess-paleosol sequence faithfully reflects global glacial climate change. From the distance-precipitation linkage, the loess plateau was located totally in the areas with a mean annual precipitation less than 150 mm during the last glacial maximum. This explains why the detrital calcite in loess layers remains essentially unaffected as commonly observed in the Malan loess in most regions. Also, the sea level-interlocked climate mechanism helps in the understanding of the climatic interpretation of the S5 from this study.
- 7) Evidence indicates a rather slow dust deposition through the red clay formation, reflecting the weakness of the Siberian cold high pressure cell during the Pliocene. Later

it was greatly intensified and this transition was completed in no more than 100 ka, as is constrained by the last typical reworked red clay bed and the first typical loess layer from 2.7 to 2.6 Ma B.P. Studies show that both a replacement of the regional climate system (which shows the demise of the Pliocene climate and gave way to the modern east Asian monsoon), and the advent of the Quaternary glacial-interglacial oscillations appeared with the transition. The time constraints for both changes critically challenges the previous tectonic forcing hypothesis for the Quaternary glacial initiation.

Nevertheless, the importance of the Tibetan Plateau and its accelerated uplift since late Pliocene associated with global cooling in the establishment of the modern east Asian monsoon and intensification of the Siberian cold high pressure centre cannot be ignored. Instead of total control by plateau uplift, this study stresses that it is the first global glaciation of the Quaternary that greatly and rapidly enhanced the blocking effect of the high Himalayas on the Indian Oceanic monsoon by creation of ice caps (or snow mantle) and glaciers. In this aspect, future work should involve precise dating constraints from inside the Tibetan Plateau and solid evidence for the amplitude of the uplift. Additional atmospheric general circulation modelling with robust boundary conditions obtained from geological study (e.g., ice caps and size, snowline, surface conditions such as vegetation, moisture, topography etc., elevation change both for high Himalayas and major Plateau, etc.) will be needed.

8) A preliminary elastic finite-element spheric model of the earth was established with the target to simulate the influence of the ice sheet loads on the deformation of the world mid-ocean ridge system. The modelling results with various parameter values (crustal thickness and stiffness coefficient of the springs) show that the distribution

patterns (the geographic positions of typical rifts and transform faults) and topography of both ridge axial high at the East Pacific Rise and ridge axial valley at northern Atlantic Ridges are closely related to the ice sheet-induced deformation. This suggests an influence of the great ice-sheets waning and waxing on shaping the world mid-ocean ridge system during the Quaternary.

- 9) Failure deformation of the mid-ocean ridges implies pulsative and massive magma output, which correlates with isostatic depression and leads to a complete collapse of the ice sheets. The total magma output contributed by elastic failure stretching and episodic magmatism related to the ice-loading could force asthenosphere deformation flow and cause a few degree warming of the world ocean in the first 2-3 ka after deglaciation. Furthermore, the ice sheet-loading induced magmatism at ocean ridges could employ all the positive factors to destroy the ice sheets and to force a global warming (by heat release, enhancement of atmospheric greenhouse gas levels, stimulation of deep ocean circulation and facilitation of isostatic depression to lower the ice sheet elevation).
- 10) Modelling experiments indicate that the maximum displacement of the midocean ridges induced by the great ice sheets occurs in the northern North Atlantic ocean east of Greenland, with the magnitude slowly decreasing southward. This would suggest that the Atlantic Ocean ridges were more actively involved in the processes.
- 11) The pulsative magmatism (episodic spreading of the mid-ocean ridges) was first forced by massive ice sheet loading during glaciation. This in turn produced a decisive deglaciation and lead to an interglacial period. With the depletion of magma reservoirs underneath the ocean ridges after an massive episodic output, the mid-ocean ridge processing turned into an accumulation stage. With less heat supplement from the

Earth's interior, the world climate gradually entered into a long-term ice sheet build-up stage. Once a critical (maximum) volume of the ice sheets was attained, a failure deformation of the mid-ocean ridges occurred again, leading to a new episode of deglaciation and climate warming. By this mechanism, the world secular climate and the mid-ocean ridge processes coupled together, generating a self-sustained surfacial planet system. making a glacial-interglacial oscillated Quaternary climate.

8.2. Future Work

When the isostatic depression by ice sheet loading is considered as a critical factor for glaciation termination, the displacement at mid-ocean ridges should be at least equally taken into consideration, because the ocean ridge system is the most vulnerable part of the earth reflecting deformation. The primary modelling experiments show great potential for the examination of mid-ocean processes in the understanding of the Quaternary glacial-interglacial fluctuation. Future work will involve model refinement and geologic constraint. The former implies the need for extensive testing with large amounts of systematically various values of all the parameters employed. But it should be stressed, a substantial improvement depends largely on geoscience evidence. Episodic magmatism of the ridge processes at the glacial cycle scale (10⁴ ~ 10⁵ years) must be examined in the northern North Atlantic Ocean, which involves systematic sampling across the central rift in multiple ridge segments and accurate dating. In modern Quaternary studies, it has been evident that precise chronological dating is often decisive in resolving many of the major problems.

Appendix I

Displacements of the World Mid-Ocean Ridges Simulated by Model 3-1.

- 1) The coordinates x, y, and z are the radius of the earth, longitude, and latitude of the finite-element node, respectively. The longitudes are presented as 0 to 180° for 0-180°E, and 0 to -180° for 0-180°W. The latitudes are expressed as 0-90° for north latitude 0-90°N, and 0 to -90° for south latitudes 0-90°S.
- 2) The translations of each node along the x, y, and z axes are determined according to their original coordinates. The x, y, and z axes represent translations along longitudinal, latitudinal, and earth's radius directions respectively. The variables have been defined as x southwards, y eastwards, and z upwards as positive, and negative in their opposite directions. Values in the table are presented in metres.
- 3) u, v, and w are the 3 partial values of the displacement vector of each node pair in the x, y, and z coordinates, respectively. The node pairs are determined according to node positions in the finite-element network. A simple vector operation is employed for obtaining an absolute displacement. To calculate the absolute displacement of node A to node B for the node pair AB, for example, the following formulas are used:

$$u = x_A - x_B$$
, $v = y_A - y_B$, $w = z_A - z_B$,
 $ABS(u) = V(u^2 + v^2 + w^2)$

Where x, y, and z are the values of translations along x, y, and z coordinates, the denotations A and B indicate the values for nodes A and B respectively. The ABS(u) means absolute value of the vector displacement.

NODE		γ.	Z-	X-	Y-	Z-	u	V	w	ABS(U)
NUMB					Translation	_	•	• .	•	~60(0)
					-31,-110,-110					
1	6.37E+06	· 0	90	-712.02	-825 26	-596.83				-
	6,37E+06	-10	-			-274.02	-7.3481	6.32	0,41	9 70
	6.37E+06	-9.9	_	-		-273,61	.,	0,00	•,	, ,,,,
	6 37E+06						4.07	20.63	-29.29	36,06
14	6.37E+06	10.1	_	_			.,			30,00
24	6,37E+06	9	75.4	1209.5		107.29	31.2	21 08	-3.04	37.78
	6.37E+06	9.1	75,4	1240,7	-160.07	104 25		-	- 0.5 .	
	6.37E+06	-9		399,91	-642,93	632,87	-63,36	66.6	-40.93	100 62
	6,37E+06	-17.667	66,333	-276.07		773,56	-26.79	33.62	-25.4	
	6.37E+06	-26,333	60,667	-401,12	-390,14	708.42	0,1	19.14	-10.4	
	6,37E+06		55	-373.32		694,52	-3,35	13,03	-1,86	-
	6.37E+06	-8,9	71,9	336,55				-,	. ,	
	6.37E+06		66,267		<u></u>					
	6.37E+06			-401.02		698,02			-	•
	6.37E+06	-34,9	55	-376,67	-	692.66		•		
	6.37E+06	-3	72			458,31	12,22	66,91	-19,47	70.75
	6.37E+06	-2.9	71,9			438,84		-,-•		
	6,37E+06				1182,1	832,21	43.7	4.5	-10,94	45 27
	6.37E+06	-129	54,5		1186,6	821,27				
170	6,37E+06						-3,56	-9.66	5,14	11 51
	6.37E+06	-28	49				'/'		-,	
	6.37E+06		50		754,51	720,85	-27,47	-16,32	-34.1	46.73
184	6,37E+06	-129,5	50	-161,81	738,19	686,75				•
-	6,37E+06	-130	45,5	-137,46	434,91	547,39	3,99	10,74	15.38	19,18
	6.37E+06	-127	•		262,75	494,21	-24,533	2.09	3.99	
	6.37E+06	-126		-77,898		635,68	4,615	12,71	18.64	را 23 د
	6.37E+06	-129,9		-133,47	445,65	562,77				
	6.37E+06			<u>-</u>	416,41	654,32		-		-
	6.37E+06			-80,831	264,84	498,2		•		
290	6 37E+06	-30	41	-79,061	-176,37	364	-2,647	6.91	-7.2	10,32
	6.37E+06		41	-81,708	-169,46	356,8				
	6.37E+06			-55,033	-112,14	256,26	1,714	4.78	-16,13	16,91
	6.37E+06		'			240,13				
	6.37E+06		-	-58,145			-5.009	-6.8	14 86	17,09
_	6,37E+06	-39		-63,154	-136,19	Times -				
	6.37E+06	-					5,59	9,77	-17,94	21,18
	6.37E+08	-34,8								-
	6.37E+06	32,1	31	-16,115			-0,315	1,018	-0,17	1.08
	6,37E+06			-16,43	-26,87	159,03				
	6.37E+06				72,674		-2,722	0,106	0,96	2,89
	6,37E+06		•							
	6.37E+06		-		-		-0.356	-0.142	6,01	6.02
	6.37E+06	•								
	6,37E+06						0,56	2.283	-3.52	4,23
	6,37E+06						0,647	1,964		
	6,37E+08				·	• •	- •			-
	6,37E+06									

612 6,37E+06	38	20	-7 5 998	-10,12	65 316	-0.0995	-0.466	0 918	1 03
613 6.37E+66	35	25	-15,184	-16 467	99.978	0.269	-0.739	0 722	1 07
614 6,37E+06	35,1	25	-14,915	-17,206	100,7				•
617 6 37E+06	38 ,1	20	-7.6993	-10. 586	66 234				
700 6.37E+06	-103,5	10	-19,005	19,183	108,71	0.089	-0.398	2,29	2 33
701 6.37E+06	-105	15	-29,013	31,861	159.88	0,516	-0.124	3 96	4.00
702 6,37E+08	-104,9	15	-28.497	31.737	163,84				
703 6,37E+06	-103,4	10	-18,916	18,785	111				
727 6.37E+06	-46	17	-14,773	-34.833	104,95	0,568	1,777	-0,67	1 98
728 6.37E+06	-45 ,9	17	-14,205	-33,056	104,28				
730 6.37E+06	-41,9·	13,1	-12.265	-23,09	75,417	-0 348	0.669	-2.92	3 02
731 6.37E+06	-42	13	-12.613	-22,421	72,497				
732_6,37E+06	-38	10_	-11,77	-16,147	59,067	-0.839	0,906	-2.094	2.43
733 6,37E+06	-37,9	10	-12, 609	-15,241	56,973				
766 6,37E+06	42_	12	-5 638 _	-5.3935_	38,679	-0.1935	0.1396	1,224	1 25
767 6.37E+06	42,1	12,1	-5 8315	-5 2539	39,903		•	-	
770 6.37E+06	40_	16	-2 8466	-7 227	48,411	-0 0118	0.0179	-0 528	0.53
771 6,37E+06_	39.9	16	-2.8584	-7 2091	47.883				
775 6.37E+06	. 50_	14	-7 3816	-7.3621	45 212	0.2533	0,4141	-2.27	2.32
776 6.37E+06	50	13.9	7.1283	6.948	42.942			• • •	
781 6 37E+06	56	14	-12,023	-7.8013	40.237	-0,465	-0.718	2,363	2.51
782 6.37E+06	56,1	14,1	-12,488	8 5193	42.6				
784 6 37E+06	60	10	-5,5715	-5,1 084	30.683	-0.0462	-0,343	1,285	1 33
785_6.37E+06_	60,1	10,1	-5,6177	-5,4518	31,968			•	
866 6 37E+06	-101	0	-8,8261	6,1821	52,708	-0,1358	0,1592	0.196	0 29
867 6.37E+06	-101.9	5	-6.9514 ₋	10,104	69.086	-0.0335	-0.252	2,685	2,70
868 6.37E+06	-102	5,1	-7,1338	10,525	69,952	0.1599	-0.212	3,438	3,45
869 6 37E+06	-101.8	5,1	-6.9739	10,313_	73,39				
870 6 37E+06	-101,7	5	-6.9849	9.8522	71,771				
871 6 37E+06	-100,9	0	-8 9619	6.3413	52,904				,
873 6 37E+06	-95	4	-16 977	5 1487	79.423	-0,23	0.234	1,999	2,03
874 6.37E+06	-95	_ 4,1_	-17 207	5,3827	81,422	-	·		
875 6.37E+06	-90	4,1	-16,84	1,9128	83.526	0.217	0,1117	-2.17	2.18
876 6.37E+06	-90	4	-16.623	2,0245	81.356				
879 6.37E+06	-85	3	-13,572	-2.0912	81,001	-0.167	-0 205	1,969	1.99
880 6.37E+06	-85	3,1	-13,739	-2,2966	82,97				
881 6.37E+06	-80	3,1	-18.031	-6.9 669	84.911	0,113	0,1199	-0.908	0.92
882 6.37E+06	-80	3	-17,918	6.847	84.003				
904 6.37E+06	-33	5	-5.3182	-8,307	39.078	0.343	-0,607	1.511	1.66
905 6.37E+06	-32.9	5,1	4.9752	-8,9142	40,589				
906 6,37E+06	-28	2,1	-6.9682	-5.9482	32,598	-0,3662	0,2797	-0.724	0,86
907 6 37E+06	-28	2	-7 3 344	-5, 6685	31,874			-	1
908 6,37E+06	-20	1	-8,7449	-3,9391	32,222	0,1171	-0,205	0.668	0,71
909 6,37E+08	-20	1,1	-8.6278	4.14421	32,89	······			
911 6,37E+06	-14	0	-9,1507	-3.3028	30,82	0.0623	0,0313	0.776	0,78
912 6.37E+06	-13,9	0,1	-9,0884	-3,2715	31,596				
944 6,37E+06	63	5	-3.6819	-3,1043	20,627	-0.0038	-0,1	0.246	0.27
945 6,37E+06	63,1	5	-3.6857	-3.2041	20,873				
947 8,37E+08	67	0	-2,5495	-1,9615	14,475	-0.0497	-0,011	0,192	0.20
948 6,37E+06	67,1	0	-2.5992	-1,9726	14,667				

1024 6.37E+06	-105	-5_	-7 2 96	4,1421	34,862 0,1935 -0,268 -0.835	0 90
1025 6,37E+08	-104.9	-5	-7,1025	3,8745	34,027	Į
1026 6.37E+06	-107	-10	4 0227	2.8802	24,302 -0,2178 0,0098 -0,307	0.38
1027 6.37E+06	-106.9	-10	4 2405	2,89	23. 995	
1065 6.37E+06	-14	-10	-2.9629	-1,3226	15,223 0,0406 0,1482 -0.039	0.16
1066 6 37E+06	-13.9	-10	-2.9223	-1,1744	15,184	i
1067 6.37E+06	-14	-5	-4,5855	-1,9177	21,525 0,1226 0 1563 -0.04	0 20
1068 6.37E+06	-13,9	-5	-4,4629	-1.7614	21,485	1
1099 6,37E+06	67	-5	-2.0783	-1,3181	10,291 0,1249 0,0858 -0.07	0 17
1100 6,37E+06	67,1	-5	-1.9534	-1,2323	10,221	1
1101 6,37E+06	67.5	-10	-1,6066	-0.99853	7,1724 0,0621 0,0837 -0,038	0.11
1102 6,37E+06	67,6	-10	-1.5445	-0.91484	7,1348	ı
1176 6.37E+08	-110	-15	-2,4706	2,3679	15,622: 0,0749: -0,059 -0,445	0.46
1177 6,37E+06	-110	-15.2	-2,3957	2.3092	15,177]
1178 6.37E+06	-112	-19	-2,2388	1,8393	11,905 -0,0384 0,089 -0.09	0.13
1179 6.37E+06		-19	-2.2772	1,9283	11.815	ŀ
1217 6,37E+06	-15	-15	-2.4063	-1,0584	10,867 0,0538 0,1309 -0,071	0 16
1218 6.37E+06	-14,9	-15	-2.3525	-0.92746	10,796	- 1
1219 6.37E+06	-15	-20	-1.8432	-0.85005	7,8668 0,0079 0,11 0.039	0.12
1220 6.37E+06	-14,9	-20	-1.8353	-0.74002	7.9056	1
1253 6,37E+06	66.5	-15	-0,90257	-0.81326	5,0081 0,01221 0.0746 -0,052	0.09
1254 6,37E+06	66,6	-15	-0.89036	-0,73864	4.9562	
1256 6.37E+06	67	-20	-0,54533	0.58288	3,4026 0,0068 0,0562 0,019	0.06
1257 6,37E+06	67,1	-20	0.53853	-0,52671	3,422	
1333 6,37E+06	-112	-25	-1,585	1,3614	7,7959 -0,0574 0,0825 0,083	0.13
1334 6,37E+06	-111.9	-25	1 6424	1,4439	7.8792	
1335 6,37E+06	-112	-30	-1,1602	1,0447	5,4257 -0,0178 0,0687 0,064	0.10
1336 6.37E+06	-111,9	-30	-1,178	1,1134	5,4896	
1372 6.37E+08	-14	-27	-1 2228	0,64866	4,9492 0,0065 0,08 0,022	0 08
1373 6.37E+06	-13,9	-27	-1,2163	-0.56864	4.9708	1
1374 6,37E+06	-15	-30	-0.87143	-0.63735	4,065 0,01469 0.067 -0.03	0.07
1375 6,37E+06	-14,9	-30	0.85674	-0.57038	4,0346	1
1405 6.37E+08	60	-30	-0.42755	-0,72478	2,2103 0,02088 0,053 -0,072	0.09
1406 6.37E+06	60.2	-30	-0.40667	-0,6718	2,1387	1
1408 6.37E+06	65	-26.6	-0.462491	-0,58056	2,274 -0,0101 -0,023 0.087	0 09
1409 6.37E+06	65 65	-26.5	-0.47255	-0.60317	2.3612	
1411 6.37E+08	68	-24,1	-0.18627	-0,46727	2,4594: -0,0199: 0,0835: 0,019	0.09
1412 6,37E+06	68,1	-24	0,20614	-0.38377	2,47791	
1412 6,37E+06	68.1	-24.2	-0,169	-0.40456	2,3692 -0,0283 0,0308 0,116	0.12
	68.2	-24,2	-0.19725	-0,3738	2,4851	-, .
1414 6,37E+06:	75	-30	-0,47452	-0.16728	1,9041: -0,0084: 0,0138: 0,045	0.05
1416 6,37E+06			-0.47432	-0,15344	1,9488	
1417 6,37E+06	75,1	-30	-0,81019	0,70984	3,4253 -0,0405 0,0759 0,134	0.16
1493 6.37E+06	-111.	-36,1	-0,85084	0,78572	3,5591	-,
1494 6,37E+06	-110.9	-36		0.7833	2,3396 -0,0117 0,0138 -0,012	0.02
1496 6,37E+06	-107	-40:	-0.40992	0,37833	2,3275	
1497 6,37E+06	-106,9	-40	-0,42162		2,8419: -0,0227: -0,048: -7E-04	0.05
1498 6,37E+06	-105,1	-37.2	-0,17149	0,54855	2,8412	
1499 6,37E+06	-104,9	-37.3	-0,1942	0,50019	3,2146 0,05801 -0.007 -0.042	0,07
1500 6,37E+06	-105	-37	-0.24423	0.59026		5,07
1501 6.37E+06	-104,9·	-37,1	-0,18822	0,58319	3,1723	

			_						
1504 6.376	+06 -10	0 -37 5	-0 44159	0 58169	3 5464	0.02238	-0 043	-0 193	0 20
1505 6.378	E +06 -10	0 -376	-0 41921	0 53838	3 35 36				
1508 6.378	E +06 -9:	5 -38.1	-0 59 968	0.49003	3 6037	-0 0453	0.0351	0,181	0 19
1509 6,378	E +06 -99	5 -38	-0.6 4498	0 52514	3 7851				- 1
1510 6.378	E +06 -9:	2 -38	-0 88893	0 50555	4 0058	0 05898	-0 044	-0 159	0 18
1511 6 378	E+06 -9:	2 -38,1	-0 82 995	0.46165	3 8467				
1514 6 371	E+06 -8	7 -40	-0.74468	0 46652	3 9126	-0.0028	0 0066	0 064	0 06
1515 6 378	E+06 -86°	9 -40	-0 74743	0.47309	3.9762				
1543 6 378	E+06 -10	6 -37	-0 66713	-0 52278	2.5586	-0 0076	0.0481	-0 023	0 05
1544 6 37	E+0615.	9 -37	-0 67473	-0,47472	2.5355				1
1545 6.371	E+06 -1	6 -40	-0 42171	-0.45 766	2.0467	-0 005	0 0385	-0,004	0 04
1546 6.37	E+06 -15	9 -40	-0.42671	-0 41913	2 0428				(
1571 6.371	E+06 4	5 -40	-0.29871	-0.63154	1 7054	0.00213	0 0234	-0.013	0 03
1572 6 371	E+06 45	140	-0 2 9658	-0.60817	1 692				1
1574 6.37	E+06 5	0 -36,1	-0 4382	-0.72944	1 92	-0.0176	-0 008	0.084	0 09
1575 6,371	E+06 5	0 -36	-0 45576	-0.73769	2,0036				1
1576 6.371	E+06 5	5 -33	-0,4017	-0,74952	2.091	0.00064	0 0236	-0 074	0 08
1577 6,371	E+06 5	5 -33,1	-0.40106	-0 7259	2,017				ì
1585 6 371	E+06 7	7 -35	-0 28422	-0.12 663	-	0.00573	0 0189	0 017	0 03
1586 6 371	E+06 77,	1 -35	-0 27849	-0 10774	1 298				1
1588 6.37	E+06_ 78.	5 -40	-0.11627	-0.09774	0 80861	-0.0013	0.0098	0.003	0 01]
1589 6 37	E+06 78.	6 -40	-0 11761	-0 087959	0 81184				
1596 6,37	E+06 9	5 -43	-0,10996	-0.059966	0.74862	0.0003	0 0019	-0 039	0 04
1597 6,370	E+06 9	5 -43,1	-0.10966	-0 058108	0 70996				
1600 6,37	E+06 10	0 -44 1	-0.13362	-0 05219	0.64932	-0.0019	-0.002	0 032	0 03
1601 6 37	E+06 _. 10	0 -44	-0.13554	-0.054346	0 68104				
1602 6.37	E+0610	545_	-0.16364	-0 0446 48	0 6861	0,00585	0.0045	-0,04	0 04
1603 6 37	E+06 _ 10	5 <u>:</u>	0.15779 __	-0.040176_	0 64614				
1606 6 37	E+06 _. 11	0 -46,1	-0 12675	-0 026938	0.55802	-0.0068	-0.002	0 031	0 03
1607 6,37	E+06 11	046	-0.13355		0 58877				
1609 6 37	-		-0.044632	-0.005992		0,00082	0 0005	-0.025	0 03
1610 6.37			-0.043811	-0 005445_	0 41386				
1613 637	-		-0 039808	-0 000898	0 40441		0 0006	0,023	0 02
1614 6 37			-0.043913		0.42693		1		
1617 637			-0.051489	0.013578		0.00289	-2E-04	0.029	0 03
1618 637	E+06 12	.548.4	-0,048601	0 013419	0 40005				
1621 6,37			-0.05 925	-	0 39384	-0 0029	0 0006	0.029	0 03
1622 6.37	E+06 13		-0 054776	0.02989	0.4231				
1625 6.37	•		-0.062762	0.04922		0.00358	-0,001	-0,03	0.03
1626 6,37		5 48.9		0.047873	0.3965				امما
1628_6,37		11 -50	-0.047121	0 082841		0.00043	0 0038	0.008	0 01
1629 6,37			-0.04669		0.38459			- 0.000	ا م
1630 6,37		10 -49.1	-0.07784	0.073286	0.39522		-5E-04	0.028	0 03
1631 6.37			•	0.072798	0.42342		- 5000	~~ à coe ·	ا م
1674 6,37				0 11375	1 162		0.0104	0 008_	0 01
1675 6.37					1,1543			- A AAA-	
1677 6,37		1044.1	-0.25883		1,8497		-0.009	0 029	0 03
1678 6.37			:	0.26966	1.8787				
1691_6,37		30 44.1		0.32643	3,2047		-0.018	0.147	0 15
1692 6.37	E+06	30 44	-0.47811	0 30795	3,3516)			

1693 6.37E-06							
1694 6.37E+06	1693 6,37E+06	-75.9	-46	-0,78815	0 26292	3.1263 0,03101 0,0016 -0.049	0 06
1721 6.37E+06	1694 6,37E+06	-76	-46,1	-0,75714	0.26451		
1721 6.37E+06	1729 6 37E+06	-15	-45,1	-0 35584	-0.32083	1.4357 0.00498 0,0359 0,017	0 04
1725 6.37E+06	1721 6,37E+06	-14.9	-45	-0.35086	-0 28493		
1726 6.37E+06	1724 6.37E+06	-10	-48,1	-0,15565	-0.15534	1.0378 -0.0038 -0.02 0.044	0 05
1728 6 37E+06	1725 6,37E+06		-48	-0.15944			•
1729 6.37E+06	1728 6 37E+06	-6.9	-50				0.08
1742 6 37E+06 30 -50 -0.13221 -0.24419 -1.0349 0.00348 -0.004 -0.041 0.04 1743 6.37E+06 35 -46,1 -0.2677 -0.39593 -1.3141 -0.0143 0.0056 0.059 0.06 1746 6.37E+06 35 -46,1 -0.2677 -0.39593 -1.3141 -0.0143 0.0056 0.059 0.06 1748 6.37E+06 -40 -43 -0.26785 -0.51862 1.5585 0.00307 0.0097 -0.061 0.06 0.069 0.06 0.069 0.06 0.069 0.06 0.069 0.06 0.069 0.06 0.069 0.06 0.069 0.06 0.069 0.06 0.069 0.06 0.069 0.06 0.069 0.06 0.069 0.06	1729 6.37E+06						-
1745 6,37E+06 30.1 50 -0.12873 -0.24776 0.99354 1746 6,37E+06 35 46.1 -0.2877 -0.39593 1 .3141 -0.0143 0.0056 0.059 0.06 1748 6,37E+08 40 43.1 -0.27378 0.50881 1.3728 1748 6,37E+08 40 43.1 -0.27378 0.50881 1.4979 1768 6,37E+08 79 42.1 -0.088422 -0.09368 0.67771 -0.0035 -0.002 0.023 0.02 1767 6,37E+06 79 42.1 -0.089422 -0.09368 0.67771 -0.0035 -0.002 0.023 0.02 1767 6,37E+06 79.1 42 -0.089696 -0.095018 0.67771 -0.0035 -0.002 0.023 0.02 1767 6,37E+08 85 42.1 -0.081085 0.09501 0.09421 -0.0034 0.0046 0.031 0.03 1773 6,37E+08 85 42 -0.084441 -0.060475 0.72519 1774 6,37E+08 88 41.5 -0.11408 -0.053789 0.78684 0.00718 -0.005 0.036 1775 6,37E+06 88 41.6 -0.1069 -0.083085 0.7501 1801 6,37E+06 150.1 5.39 -0.084345 0.14373 0.36449 1804 6,37E+06 150.1 5.39 -0.084345 0.11286 0.34453 -0.0001 0.007 0.016 0.02 1806 6,37E+06 150.1 5.39 -0.084345 0.11286 0.34453 -0.0001 0.007 0.016 0.02 1806 6,37E+06 150.1 5.39 -0.084345 0.11286 0.34453 -0.0001 0.007 0.016 0.02 1806 6,37E+06 150.1 5.99 -0.058472 0.11286 0.3453 -0.0001 0.007 0.016 0.02 1806 6,37E+06 150.8 60 -0.058799 0.13684 0.25512 1807 6,37E+06 150.8 60 -0.058799 0.13680 0.25512 1808 6,37E+06 150.8 60 -0.058799 0.13683 0.25512 1829 6,37E+06 150.8 60 -0.08300 -0.02377 0.55211 -0.0004 0.0009 0.008 0.01 1808 6,37E+06 150.8 60 -0.08300 -0.02377 0.55211 -0.0004 0.0009 0.008 0.01 1829 6,37E+06 150 -58 0.008022 0.13613 0.32285 1829 6,37E+06 150 -58 0.086819 0.0091908 0.55559 0.00147 0.0064 0.009 0.00 1833 6,37E+06 150 -58 0.096872 0.023757 0.55211 -0.0004 0.0009 0.008 0.01 1833 6,37E+06 150 -58 0.096861 0.0091908 0.55559 0.00147 0.0064 0.002 0.00 1848 6,37E+06 150 -58 0.096872 0.00821 0.0339 0.00193 0.0019 0.003 0.02 1848 6,37E+06 1-155 -56 0.096871 0.008516 0.53204 1848 6,37E+06 1-155 -55 0.086874 0.008281 0.63392 0.009681 0.0030 0.001 0.00 1848 6,37E+06 1-155 -55 0.086874 0.008281 0.63392 0.00096 0.0032 0.002 0.003 1853 6,37E+06 1-155 -55 0.086874 0.008281 0.00839 0.009681 0.0095 0.003 0.002 0.003 1855 6,37E+06 1-155 -555 0	1742 6.372+06	30					0.04
1746 6,37E+06 35 46,1 0,2877 0,39593 1,3141 0,0143 0,0056 0,059 0.06 1746 6,37E+06 35 46 0,28186 0,39031 1,3728 1,3728 1,3728 40 43 0,27685 0,51862 1,5585 0,00307 0,0097 0,061 0.06 1749 6,37E+06 40 43,1 0,27378 0,50888 1,4979 1,668 6,37E+06 79 42,1 0,086422 0,09368 0,67771 0,0035 0,002 0.023 0.02 1767 6,37E+06 85 42,1 0,086422 0,09368 0,67771 0,0035 0,002 0.023 0.02 1,773 6,37E+06 85 42,1 0,081056 0,085085 0,68421 0,0034 0,0046 0,031 0.03 1,774 6,37E+06 85 42,1 0,081056 0,085085 0,68421 0,0034 0,0046 0,031 0.03 1,774 6,37E+06 88 41,5 0,11408 0,05789 0,78664 0,00718 0,005 0,036 0,04 1,775 6,37E+06 88 41,6 0,1099 0,083339 0,78105 1,801 6,37E+06 150,1 53,9 0,08451 0,14373 0,38449 0,0046 6,37E+06 150,1 53,9 0,08435 0,14373 0,34449 0,001 0,007 0,016 0,02 1,805 6,37E+06 152,1 53,9 0,08429 0,11686 0,3843 0,0001 0,007 0,016 0,02 1,805 6,37E+06 152,1 53,9 0,08429 0,11686 0,3843 0,0001 0,007 0,016 0,02 1,805 6,37E+06 152,1 559 0,058472 0,11288 0,34453 0,0001 0,007 0,016 0,02 1,805 6,37E+06 159,8 60 0,089796 0,13223 0,31688 0,0004 0,0039 0,006 0,01 1,808 6,37E+08 159,8 60 0,082979 0,11686 0,25512 1,807 6,37E+08 159,8 60 0,082927 0,023757 0,51211 0,0004 0,0009 0,008 0,01 1,808 6,37E+08 155 60 0,082927 0,023757 0,51211 0,0004 0,0009 0,008 0,01 1,808 6,37E+08 1,55 60 0,082927 0,023757 0,51211 0,0004 0,0009 0,008 0,01 1,808 6,37E+08 1,55 60 0,082927 0,023757 0,51211 0,0004 0,0009 0,008 0,01 1,803 6,37E+08 1,55 9,0004 0,0009 0,008 0,01 1,803 6,37E+08 1,55 9,0004141 0,0083516 0,5540 0,0040 0,0039 0,006 0,01 1,804 6,37E+08 1,55 9,0004 0,0009 0,008 0,001 1,804 6,37E+08 1,55 9,0004 0,0009 0,008 0,000	1743 6.37E+06	30.1	-50				-,- '
1748 6.37E+06 35 48 -0.28198 -0.39031 1.3728 1.748 6.37E+06 40 43 -0.27885 -0.51862 1.5585 0.00307 0.0097 -0.061 0.06 1749 6.37E+06 40 43.1 -0.27378 0.50888 1.4979 1.766 6.37E+06 79 42.1 -0.086422 -0.09368 0.67771 -0.0035 -0.002 0.023 0.02 1767 6.37E+06 79.1 42 -0.098986 -0.096143 0.70088 1.772 6.37E+06 85 42.1 -0.081056 -0.086085 0.69421 -0.0034 0.0046 0.031 0.03 1.773 6.37E+08 85 42.1 -0.081056 -0.086085 0.69421 -0.0034 0.0046 0.031 0.03 1.773 6.37E+08 88 41.5 -0.11408 -0.05789 0.72519 1.774 6.37E+08 88 41.5 -0.11408 -0.05789 0.72519 1.775 6.37E+06 88 41.6 -0.1099 -0.083339 0.75105 1.801 6.37E+06 150 -54 -0.082089 0.13255 0.34563 -0.0023 0.0112 0.019 0.02 6.37E+06 150 -54 -0.082089 0.13255 0.34563 -0.0023 0.0112 0.019 0.02 1.802 6.37E+06 150.1 -53.9 -0.084345 0.14373 0.38449 1.805 6.37E+06 152.1 -59 -0.058472 0.12734 0.28845 4.3E-05 -0.01 -0.007 -0.016 0.02 1.806 6.37E+06 152.1 -59 -0.058472 0.12734 0.28845 4.3E-05 -0.01 -0.013 0.02 1.806 6.37E+06 152.1 -59 -0.058472 0.12734 0.28845 4.3E-05 -0.01 -0.013 0.02 1.806 6.37E+06 152.8 -69 -0.053798 0.13223 0.31689 -0.0004 0.0039 0.006 0.01 1.808 6.37E+06 150 -59 -0.058429 0.11698 0.25512 1.907 6.37E+08 159.8 -69 -0.053798 0.13223 0.31689 -0.0004 0.0039 0.006 0.01 1.808 6.37E+06 1-50 -56 -0.08297 0.023757 0.51211 -0.0004 0.0009 -0.008 0.01 1.808 6.37E+06 1-50 -56 -0.085972 0.032757 0.51211 -0.0004 0.0009 -0.008 0.01 1.833 6.37E+06 1-50 -56 -0.098572 0.03291 0.53204 1.837 6.37E+08 1-150 -56 -0.098572 0.03291 0.05225 1.814 6.37E+08 1-150 -56 -0.098572 0.03291 0.05225 1.814 6.37E+08 1-150 -56 -0.098572 0.03291 0.05225 1.814 6.37E+08 1-150 -56 -0.098572 0.03291 0.0225 1.814 6.37E+08 1-35 -55.6 0.086731 0.088012 0.05342 0.0007 0.0034 0.003 0.002 1.814 6.37E+08 1-35 -55.6 0.085731 0.088012 0.05342 0.0007 0.0034 0.003 0.002 1.814 6.37E+08 1-35 -55.5 0.0867231 0.088012 0.0038 0.0007 0.003 0.002 0.003 1.815 6.37E+08 1-35 -55.5			-46.1			t t t i am a man a calleger i a ser a	0.06
1748 6,37E+08 40 43 0,27685 0,51862 1,5585 0,00307 0,0097 -0,061 0 06 1749 6,37E+08 40 43.1 0,27378 0,50886 1,4979 1,4979 1,776 8,37E+08 79 42.1 0,086422 0,09369 0,67771 -0,0035 -0,002 0 023 0,02 1767 6,37E+08 85 42.1 0,086965 0,096143 0,70068 1,773 6,37E+08 85 42.1 0,081056 0,085065 0,69421 -0,0034 0,0046 0,031 0.03 1,773 6,37E+08 85 42.2 0,084414 -0,080475 0,72519 1,774 6,37E+08 88 41.5 0,11408 0,05789 0,78684 0,00718 -0,005 -0,036 0,04 1,775 6,37E+08 88 41.6 0,1099 -0,083339 0,75105 1,801 6,37E+08 150 54 0,08209 0,13255 0,34563 -0,0023 0,0112 0,019 0.02 1,802 6,37E+08 150 54 0,08209 0,13255 0,34563 -0,0023 0,0112 0,019 0.02 1,802 6,37E+08 150 54 0,08209 0,13255 0,34563 -0,0023 0,0112 0,019 0.02 1,802 6,37E+08 155 52.5 0,050874 0,11288 0,34453 -0,0001 -0,007 -0,016 0.02 1,805 6,37E+08 152 1.59 0,058472 0,12734 0,28845 4,3E-05 0,01 -0,013 0,02 1,806 6,37E+08 152 1.59 0,058472 0,12734 0,28845 4,3E-05 0,01 -0,013 0,02 1,806 6,37E+08 152 1.59 0,058472 0,12734 0,28845 4,3E-05 0,01 -0,013 0,02 1,808 6,37E+08 150 60 60 0,0802927 0,023757 0,51211 0,0004 0,0009 0,008 0,01 1,808 6,37E+08 150 60 60 0,0802927 0,023757 0,51211 0,0004 0,0009 0,008 0,01 1,808 6,37E+08 150 58 0,0464181 0,0083518 0,53204 1,833 6,37E+08 150 58 0,0464181 0,0083518 0,53204 1,833 6,37E+08 150 58 0,0464181 0,0083518 0,53204 1,833 6,37E+08 150 58 0,0464181 0,0083518 0,53204 1,834 6,37E+08 144 9 56 1 0,0007 0,0084 0,0099 0,008 0,01 1,830 6,37E+08 144 9 56 1 0,0007 0,0084 0,009 0,008 0,01 1,836 6,37E+08 144 9 56 1 0,0007 0,0084 0,009 0,008 0,001 1,836 6,37E+08 140 56 1 0,0007 0,0084 0,009 0,008 0,001 1,836 6,37E+08 140 56 1 0,0007 0,0084 0,009 0,008 0,001 1,836 6,37E+08 140 56 1 0,0007 0,0084 0,009 0,008 0,001 1,836 6,37E+08 140 56 1 0,0007 0,0084 0,009 0,008 0,000 0,	the contract of the contract o			-0.28196		The second secon	• • •
1748 6.37E+06 40 43.1 -0.27378 0.50888 1.4979 1768 6.37E+06 79 42.1 -0.086422 -0.09368 0.67771 -0.0035 -0.002 0.023 0.02 1772 6.37E+06 85 42.1 -0.081056 -0.085085 0.69421 0.0034 0.0046 0.031 0.03 1773 6.37E+06 85 42 -0.084441 -0.060475 0.72519 1774 6.37E+06 88 41.5 -0.11408 -0.05799 0.79684 0.00718 -0.005 0.036 0.04 1775 6.37E+06 88 41.6 -0.1069 -0.083339 0.75105 1801 6.37E+06 150 -54 -0.082089 0.13255 0.34503 -0.0023 0.0112 0.019 0.02 1802 6.37E+06 150.1 -53.9 -0.084345 0.14373 0.38449 1804 6.37E+06 155.1 -53.9 -0.084345 0.14373 0.38449 1804 6.37E+06 152.1 -59 -0.058472 0.11268 0.34453 -0.0001 -0.007 -0.016 0.02 1805 6.37E+06 152.1 -59 -0.058472 0.11268 0.34453 -0.0004 0.0039 0.001 0.001 0.007 0.016 0.02 1805 6.37E+06 152.5 -59.1 -0.058429 0.11698 0.25512 0.3560 0.0004 0.0039 0.006 0.01 1808 6.37E+06 155.8 -60 -0.082927 0.023757 0.51211 -0.0004 0.0039 0.006 0.01 1808 6.37E+08 155 -50 -0.062927 0.023757 0.51211 -0.0004 0.0009 -0.008 0.01 1833 6.37E+08 154.9 -60 -0.082927 0.023757 0.51211 -0.0004 0.0009 -0.008 0.01 1833 6.37E+08 154.9 -60 -0.083306 -0.022816 0.55403 0.0147 0.0064 -0.024 0.02 1834 6.37E+08 1-150 -58.1 -0.044181 0.0033516 0.53204 0.00147 0.0064 -0.024 0.02 1834 6.37E+08 1-150 -58.1 -0.044181 0.0033516 0.53204 0.00147 0.0064 -0.024 0.02 1838 6.37E+08 1-150 -58.1 -0.044181 0.0033516 0.53204 0.00147 0.0064 -0.024 0.02 1838 6.37E+08 1-150 -58.1 -0.044181 0.0033516 0.53204 0.00147 0.0064 0.003 0.02 1848 6.37E+08 1-150 -58.1 -0.044181 0.0033516 0.53204 0.00147 0.0064 0.003 0.02 1848 6.37E+08 1-150 -58.1 -0.044181 0.003516 0.53204 0.00147 0.0064 0.003 0.02 1848 6.37E+08 1-150 -58.1 -0.044181 0.003516 0.53204 0.00147 0.0064 0.003 0.02 1849 6.37E+08 1-150 -58.1 -0.044181 0.003516 0.53204 0.00147 0.0064 0.003 0.02 1849 6.37E+08 1-150 -58.1 -0.044181 0.003516 0.53204 0.00147 0.0064 0.003 0.0018							വ വട
1766 6.37E+06							"
1787 6.37E+06							0 02
1772 6,37E+06 85 42,1 0,081056 0,065085 0,69421 0,0034 0,0046 0,031 0 03 1773 6,37E+06 85 42 0,084441 0,060475 0,72519 1,774 6,37E+06 88 41,5 0,11408 0,05789 0,78684 0,00718 0,005 0,036 0,04 1775 6,37E+06 88 41,6 0,1069 0,083399 0,75105 1,001 0,0							U , U
1773 6,37E+06 85 42 0,084441 0,060475 0,72519 1774 6,37E+06 88 41,5 0,11408 0,05789 0,78664 0,00718 0,005 0,036 0,04 1775 6,37E+06 88 41,6 0,1089 0,083339 0,75105 1801 6,37E+06 150 54 0,082089 0,13255 0,34563 0,0023 0,0112 0,019 0,02 1802 6,37E+06 150,1 53,9 0,084345 0,14373 0,38449 1804 6,37E+06 155,1 53,9 0,084345 0,14373 0,38449 1805 6,37E+06 155,1 55,9 0,058474 0,11268 0,34453 0,0001 0,007 0,016 0,02 1805 6,37E+06 152 59,1 0,058429 0,11696 0,25512 1807 6,37E+06 159,8 60 0,058429 0,11696 0,25512 1807 6,37E+06 159,8 60 0,058796 0,13223 0,31688 0,0004 0,0039 0,006 0,01 1808 6,37E+08 159,8 60 0,08929 0,13263 0,32285 1829 6,37E+08 155,8 60 0,082927 0,023757 0,51211 0,0004 0,0009 0,008 0,01 1830 6,37E+08 1-155 60 0,08297 0,023816 0,50403 1833 6,37E+06 1-150 58, 0,045649 0,0019088 0,55559 0,00147 0,0064 0,024 0,02 1834 6,37E+06 1-150 58, 0,045649 0,0019088 0,55559 0,00147 0,0064 0,024 0,02 1834 6,37E+06 1-140 56 0,091743 0,084297 0,5993 0,00193 0,003 0,023 1838 6,37E+06 1-140 56 0,091743 0,084297 0,5993 0,00193 0,003 0,023 0,02 1846 6,37E+06 1-140 56 0,091743 0,084822 0,61248 0,0007 0,003 0,016 0,02 1846 6,37E+06 1-35 55,5 0,08574 0,08217 0,5983 0,0007 0,003 0,003 0,02 1846 6,37E+06 1-35 55,5 0,098572 0,03921 0,62253 1841 6,37E+06 1-35 55,5 0,098572 0,03921 0,62253 1848 6,37E+06 1-35 55,5 0,098572 0,03921 0,62253 1848 6,37E+06 1-35 55,5 0,098572 0,098612 0,63342 0,0007 0,003 0,003 0,02 1846 6,37E+06 1-35 55,5 0,086574 0,08261 0,63342 0,0007 0,003 0,009 0,02 1846 6,37E+06 1-35 55,5 0,086251 0,086012 0,6528 1848 6,37E+06 1-30 55,5 0,016109 0,095652 0,67085 0,0005				··			0.03
1774 6.37E+08 88 41.5 -0.11408 -0.05789 0.78684 0.00718 -0.005 -0.036 0.04 1775 6.37E+08 88 41.6 -0.1069 -0.083339 0.75105 1801 6.37E+08 150 -54 -0.082089 0.13255 0.34583 -0.0023 0.0112 0.019 0.02 1802 6.37E+08 150.1 -53.9 -0.084345 0.14373 0.38449 0.34453 -0.0001 -0.007 -0.016 0.02 1804 6.37E+08 152.1 -59 -0.058472 0.12734 0.26845 4.3E-05 -0.01 -0.013 0.02 1805 6.37E+08 152.1 -59 -0.058472 0.12734 0.26845 4.3E-05 -0.01 -0.013 0.02 1806 6.37E+08 152 -59.1 -0.058429 0.11696 0.25512 -0.058429 0.11696 0.25512 -0.058429 0.13613 0.32235 0.31688 -0.0004 0.0039 0.008 0.01 1808 6.37E+08 150 -60 -0.062927 -0.023757 0.51211 -0.0004 0.0009 0.008 0.01 1829 6.37E+08 -155 -50 -0.062927 -0.023757 0.51211 -0.0004 0.0009 -0.008 0.01 1833 6.37E+08 -155 -58.1 -0.0644181 0.0083516 0.53204 -0.05403 -0.							000
1775 6,37E+06 88				<u></u>			റ റച
1801 6,37E+06 150 -54 -0,082089 0,13255 0,34563 -0,0023 0,0112 0,019 0 02 1802 6,37E+06 1501 -53.9 -0,084345 0,14373 0,36449 -0,0007 -0,007 -0,016 0 02 1805 6,37E+06 145 -52.5 -0,050874 0,11268 0,34453 -0,0001 -0,007 -0,016 0 02 1805 6,37E+06 152 -59.1 -0,058429 0,11696 0,25512 -0,058429 0,11696 0,25512 -0,058429 0,11696 0,25512 -0,058429 0,11696 0,13223 0,31688 -0,0004 0,0039 0,006 0,01 1808 6,37E+06 159.8 -60 -0,069227 0,023757 0,51211 -0,0004 0,0009 -0,008 0,01 1829 6,37E+06 -155 -50 -0,063207 -0,023757 0,51211 -0,0004 0,0009 -0,008 0,01 1930 6,37E+06 -155 -58 -0,063227 -0,023757 0,51211 -0,0004 0,0009 -0,008 0,01 1833 6,37E+06 -150 -58 -0,045649 0,0019068 0,55559 0,00147 0,0064 -0,024 0,02 1834 6,37E+06 -144.9 -56.1 -0,045649 0,0019068 0,55559 0,00147 0,0064 -0,024 0,02 1838 6,37E+06 -144.9 -56.1 -0,1005 (0,42097 0,5993) 0,00193 -0,003 0,023 0,02 1842 6,37E+06 -140 -56 -0,098572 0,03921 0,62253 1841 6,37E+06 -140 -56 -0,098572 0,03921 0,62253 1844 6,37E+06 -140 -56 -0,098574 0,0082127 0,59839 0,00564 -0,003 0,016 0,02 1846 6,37E+06 -135 -55.6 -0,086574 0,0862127 0,59839 0,00564 -0,005 -0,023 0,02 1848 6,37E+06 -135 -55.5 -0,086574 0,086512 0,63342 -0,0007 0,0054 0,009 0,003 1855 6,37E+06 -125 -55.5 -0,18472 0,08535 0,06562 -0,00564 -0,005 -0,023 0,02 1853 6,37E+06 -125 -55.5 -0,18472 0,08535 0,00564 -0,005 0,0032 0,023 1855 6,37E+06 -125 -55.5 -0,18472 0,10853 0,7197 1854 6,37E+06 -125 -55.5 -0,16723 0,10853 0,7197 1854 6,37E+06 -125 -55.5 -0,16723 0,10853 0,7197 1855 6,37E+06 -125 -55.5 -0,16723 0,10853 0,7197 1855 6,37E+06 -125 -55.5 -0,16723 0,10853 0,7197 1855 6							0,04
1802 6,37E+06 150,1 -53,9 -0,084345 0,14373 0,36449 1804 6,37E+06 145 -52,5 -0,050874 0,11268 0,34453 -0,0001 -0,007 -0,016 0.02 1805 6,37E+06 152,1 -59 -0,058472 0,12734 0,26845 4,3E-05 -0,01 -0,013 0.02 1806 6,37E+06 152 -59,1 -0,058429 0,11696 0,25512 1807 6,37E+06 159,8 -60 -0,059796 0,13223 0,31688 -0,0004 0,0039 0,008 0,01 1808 6,37E+06 -155 -60 -0,062927 -0,023757 0,51211 -0,0004 0,0009 -0,008 0,01 1830 6,37E+06 -155 -60 -0,063306 -0,022816 0,55559 0,00147 0,004 -0,009 -0,008 0,01 1833 6,37E+06 -150 -58 -0,045649 0,0019088 0,55559 0,00147 0,004 -0,024 0,02 1834 6,37E+06 -144 9 -56,1 -0,104181 0,0083516 0,53204 0,53204 0,37E+06 -144 9 -56,1 -0,1005 0,04297 0,5993 0,00193 -0,003 0,023 0,02 1848 6,37E+06 -1440 -56,1 -0,092424 0,062127 0,59689 0,0007 -0,003 -0,016 0,02 0,04822 0,61248 -0,0007 -0,003 -0,016 0,02 0,04866 0,37E+06 -130 -56,1 -0,096574 0,08651 0,63342 -0,0007 0,0054 -0,019 0,02 0,04866 0,37E+06 -130 -55,5 -0,086574 0,086012 0,63342 -0,0007 0,0054 -0,003 0,02 0,02 0,0386 0,37E+06 -130 -55,5 -0,18590 0,0086012 0,63342 -0,0007 0,0054 -0,003 0,02 0,02 0,03 0,00 0,000							กักว
1804 6.37E+06 145 -52,5 -0.050874 0.11268 0.34453 -0.0001 -0.007 -0.016 0.02 1805 6.37E+06 152,1 -59 -0.058472 0.12734 0.26845 4.3E-05 -0.01 -0.013 0.02 1806 6.37E+06 152 -59,1 -0.058429 0.11696 0.25512 1807 6.37E+06 159.8 -60 -0.059796 0.13223 0.31688 -0.0004 0.0039 0.006 0.01 1808 6.37E+06 160 -60 -0.06022 0.13613 0.32285 1829 6.37E+06 1-155 -60 -0.062927 -0.023757 0.51211 -0.0004 0.0039 0.008 0.01 1830 6.37E+06 -155 -60 -0.063306 -0.022816 0.50403 1833 6.37E+06 -150 -58,1 -0.044181 0.0083516 0.55559 0.00147 0.0084 -0.024 0.02 1834 6.37E+06 -144.9 -56,1 -0.044181 0.0083516 0.55204 1837 6.37E+06 -144.9 -56,1 -0.044181 0.0083516 0.53204 1838 6.37E+06 -144.9 -56,1 -0.008572 0.03921 0.62253 1841 6.37E+06 -140 -56 0.091743 0.084822 0.61248 -0.0007 -0.003 0.023 0.02 1842 6.37E+06 -140 -56,1 -0.092424 0.082127 0.59689 1845 6.37E+06 -130 -55,5 -0.085731 0.088012 0.6253 1848 6.37E+06 -130 -55,5 -0.085731 0.088012 0.63342 -0.0007 0.0054 0.019 0.02 1846 6.37E+06 -130 -55,5 -0.085731 0.088012 0.63342 -0.0007 0.0054 0.019 0.02 1846 6.37E+06 -130 -55,5 -0.085731 0.088012 0.63342 -0.0007 0.0054 0.019 0.02 1849 6.37E+06 -130 -55,5 -0.085731 0.088012 0.6526 1848 -0.0007 0.0054 0.019 0.02 1849 6.37E+06 -120 -55,5 -0.085731 0.088012 0.6526 1853 6.37E+06 -125 -55,5 -0.087231 0.088012 0.65359 0.00584 -0.005 -0.023 0.02 1849 6.37E+06 -125 -55,5 -0.085731 0.088012 0.6526 1853 6.37E+06 -125 -55,5 -0.087231 0.088012 0.65359 0.00584 -0.005 -0.023 0.02 1853 6.37E+06 -125 -55,5 -0.087231 0.088012 0.0533 0.00584 -0.005 -0.003 0.003 0.0145 -0.007 0.03 1855 6.37E+06 -125 -55,5 -0.086397 0.10833 0.7197 1854 6.37E+06 -119,9 -55,1 -0.086397 0.10853 0.7197 1854 6.37E+06 -119,9 -55,1 -0.086397 0.10853 0.7197 1854 6.37E+06 -120 -55 -0.086397 0.10853 0.7197 1854 6.37E+06 -10 -57 -0.086397 0.01822 0.75183 1900 6.37E+06 -10 -57 -0.086397 0.01822 0.0533 0.0028 0.0075 -0.025 0.03 1904 6.37E+06 -5 -55,1 -0.04825 0.01824 0.08541 0.00584 0.0056 0.0055 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005							0 02
1805 6,37E+06 152,1 -59 -0,058472 0,12734 0,26845 4,3E-05 0,01 0,013 0,02 1806 6,37E+06 152 -59,1 -0,058429 0,11696 0,25512			. <u></u>				ດດວ່
1806 6,37E+06 152 -59,1 -0.058429 0,11696 0,25512 1807 6,37E+06 159,8 -60 -0.059796 0,13223 0,31688 0,0004 0,0039 0,006 0,01 1808 6,37E+06 160 -60 -0.06022 0,13613 0,32285 1829 6,37E+06 1-155 -60 -0.062927 -0.023757 0,51211 -0.0004 0,0009 -0.008 0,01 1830 6,37E+06 1-150 -58 -0.062927 -0.023757 0,51211 -0.0004 0,0009 -0.008 0,01 1833 6,37E+06 1-150 -58 -0.045649 0,0019088 0,55559 0,00147 0,0064 -0.024 0,02 1834 6,37E+06 -144 9 -56,1 -0.044181 0,0083516 0,53204 1837 6,37E+06 -144 9 -56,1 -0.1005 (042097 0,5993 0,00193 -0.003 0,023 0,02 1838 6,37E+06 -145 -56 -0.098572 0,03921 0,62253 1841 6,37E+06 -140 -56,1 -0.092424 0,082127 0,59689 1842 6,37E+06 -140 -56,1 -0.092424 0,082127 0,59689 1845 6,37E+06 -135 -55,6 -0.086574 0,08261 0,63342 -0.0007 0,003 -0.016 0,02 1848 6,37E+06 -135 -55,6 -0.087231 0,088012 0,6528 1849 6,37E+06 -130 -55,6 -0.12559 0,10029 0,69359 0,00564 -0.005 0,023 0,02 1849 6,37E+06 -125 -55,6 -0.16109 0,10533 0,69829 -0.0036 0,0032 0,023 0,02 1853 6,37E+06 -120 -55, -0.16723 0,1821 0,77824 0,003 0,0145 0,027 0,03 1855 6,37E+06 -120 -55, -0.16723 0,11821 0,77824 0,003 0,0145 0,027 0,03 1852 6,37E+06 -120 -55, -0.16723 0,11821 0,77824 0,003 0,0145 0,027 0,03 1852 6,37E+06 -119,9 -55,1 -0.16423 0,13272 0,75163 1882 6,37E+06 -119,9 -55,1 -0.16423 0,13272 0,75163 1882 6,37E+06 -119,9 -55,1 -0.16423 0,13272 0,75163 1882 6,37E+06 -10 -57 -0.086397 -0.16119 0,50362 1903 6,37E+06 -1 -0 -57 -0.086397 -0.16119 0,50362 1903 6,37E+06 -5 -55,0 0,48452 -0.1299 0,56253 -0.0028 0,0075 0,025 0,03 1904 6,37E+06 -5 -55,0 0,48452 -0.16199 0,56253 -0.0028 0,0075 0,025 0,03 1903 6,37E+06 -5 -55,0 0,48452 -0.16199 0,56253 -0.0028 0,0075 0,025 0,03 1904 6,37E+06 -5 -55,0 0,48452 -0.16199 0,56253 -0.0028 0,0075 0,025 0,03 1904 6,37E+06 -5 -55,0 0,48452 -0.16199 0,56253 -0.0028 0,0075 0,025 0,03 1904 6,37E+06 -5 -55,0 0,48452 -0.16199 0,56253 -0.0028 0,0075 0,025 0,03 1904 6,37E+06 -5 -55,0 0,48452 -0.16199 0,56253 -0.0028 0,0075 0,025 0,03 1908 6,37E+06 -5 -54,1							
1897 6.37E+06 159.8							0,02
1808 6,37E+08. 160: -60 -0.08022: 0.13613: 0.32285: 1829 6,37E+06: -155 -60: -0.062927: -0.023757: 0.51211 -0.0004: 0.0009: -0.008 0.01 1830 6,37E+08: -154.9: -60 -0.063306: -0.022816: 0.50403: 1833 6,37E+08: -150 -58: -0.045649: 0.0019088: 0.55559: 0.00147: 0.0084: -0.024 0.02 1834 6,37E+08: -150 -58: 10.044181: 0.0083516: 0.53204: 1837 6,37E+08: -144.9: -56: 10.1005: 0.042097: 0.5993: 0.00193: -0.003: 0.023 1838 6,37E+06: -144.9: -56: -0.098572: 0.03921: 0.62253: 1841 6,37E+06: -140: -56: -0.091743: 0.084822: 0.61248: -0.0007: -0.003: -0.016: 0.02 1842 6,37E+06: -140: -56: -0.092424: 0.082127: 0.59689: 1845 6,37E+06: -135: -55.6: -0.086574: 0.08261: 0.63342: -0.0007: -0.003: -0.016: 0.02 1848 6,37E+06: -135: -55.5: -0.086574: 0.08261: 0.63342: -0.0007: 0.0054: 0.019: 0.02 1849 6,37E+06: -135: -55.5: -0.086574: 0.08261: 0.63342: -0.0007: 0.0054: 0.019: 0.02 1849 6,37E+06: -130: -55.5: -0.16723: 0.10092: 0.69359: 0.00564: -C.005: -0.023: 0.02 1853 6,37E+06: -125: -55.6: -0.16109: 0.10533: 0.63069: -0.0036: 0.0032: 0.023: 0.02 1853 6,37E+06: -125: -55.6: -0.16109: 0.10533: 0.63069: -0.0036: 0.0032: 0.023: 0.02 1853 6,37E+06: -125: -55.6: -0.16472: 0.10853: 0.7197: 0.7824: 0.003: 0.0145: -0.027: 0.03 1855 6,37E+06: -120: -55: -0.16472: 0.10853: 0.7197: 0.7824: 0.003: 0.0145: -0.027: 0.03 1855 6,37E+06: -120: -55: -0.16423: 0.13272: 0.75163: 0.75163: 0.9006: 0.0032: 0.0006: 0.0032: 0.003: 0.0006: 0.0032: 0.003: 0.0006: 0.0032: 0.003: 0.0006: 0.0032: 0.0006:							0.01
1829 6,37E+06 -155 -60 -0,062927 -0,023757 0,51211 -0,0004 0,0009 -0,008 0,01 1930 6,37E+08 -154,9 -60 -0,083306 -0,022816 0,50403 1833 6,37E+06 -150 -58 -0,045649 0,0019088 0,55559 0,00147 0,0064 -0,024 0,02 1834 6,37E+06 -150 -58 -0,044181 0,0083516 0,53204 1837 6,37E+06 -144,9 -56,1 -0,1005 (042097 0,5993 0,00193 -0,003 0,023 0,02 1838 6,37E+06 -144 -56 -0,098572 0,03921 0,62253 0,60253 1841 6,37E+06 -140 -56 -0,091743 0,084822 0,61248 -0,0007 -0,003 -0,016 0,02 1842 6,37E+06 -140 -56,1 -0,092424 0,082127 0,59689 1845 6,37E+06 -135 -55,6 -0,086574 0,082127 0,63342 -0,0007 0,0054 0,019 0,02 1846 6,37E+06 -135 -55,5 -0,087231 0,088012 0,6528				'-'			<u>.</u> ,
1830 6.37E+38 -154.9							0.01
1833 6,37£+06: -150							0,01
1834 6.37E+06 -150 -58.1 -0.044181 0.0083516: 0.53204: 1837 6.37E+08 -144.9 -56.1 -0.1005 (.042097 0.5993 0.00193 -0.003 0.023 0.02 1838 6.37E+08 -145: -56 -0.098572 0.03921 0.62253 1841 6.37E+06 -140 -56 -0.091743 0.084822 0.61248 -0.0007 -0.003 -0.016 0.02 1842 6.37E+06 -140 -56.1 -0.092424 0.082127 0.59689 1845 6.37E+06 -135: -55.6 -0.086574 0.08261 0.63342 -0.0007 0.0054 0.019 0.02 1846 6.37E+06 -135: -55.5 -0.087231 0.088012 0.6528 1848 6.37E+06 -130: -55.5 -0.087231 0.088012 0.6528 1849 6.37E+06 -130: -55.5 -0.12559 0.10029: 0.69359 0.00564 -0.005 -0.023 0.02 1849 6.37E+06 -125: -55.6 -0.11995 0.095652 0.67085 1852 6.37E+06 -125: -55.6 -0.16109 0.10533 0.69629 -0.0036 0.0032 0.023 0.02 1853 6.37E+06 -125: -55.5 -0.16472 0.10853 0.7197 0.77824 0.003 0.0145 -0.027 0.03 1855 6.37E+06 -119.9 -55.1 -0.16423 0.13272 0.77824 0.003 0.0145 -0.027 0.03 1852 6.37E+06 -119.9 -55.1 -0.16423 0.13272 0.77824 0.003 0.0145 -0.027 0.03 1800 6.37E+08 -50 -60 -0.23117 -0.11222 1.1051 0.16477 -0.049 0.601 0.63 1900 6.37E+08 -50 -55.1 -0.066397 -0.16119 0.50362 0.0028 0.0075 -0.025 0.03 1904 6.37E+08 -5 -55.1 -0.049285 -0.16145 0.53791 0.60343 0.01564 -0.002 0.02 0.03 1908 6.37E+08 -0.1 -54.1 -0.082168 0.089121 0.6238							വ വാ
1837 6.37E+06 -144.9 -56.1 -0.1005							0,02
1838 6.37E+06	· ·						വ വാ
1841 6.37E+06 -140 -56 -0.091743 0.064822 0.61248 -0.0007 -0.003 -0.016 0.02 1842 6.37E+06 -140 -56,1 -0.092424 0.062127 0.59689 1845 6.37E+06 -135 -55,6 -0.086574 0.08281 0.63342 -0.0007 0.0054 0.019 0.02 1846 6.37E+06 -135 -55,5 -0.087231 0.088012 0.6528 1848 6.37E+06 -130 -55,5 -0.12559 0.10029 0.69359 0.00564 -0.005 -0.023 0.02 1849 6.37E+06 -130 -55,6 -0.11995 0.095652 0.67085 1852 6.37E+06 -125 -55,6 -0.16109 0.10533 0.69629 -0.0036 0.0032 0.023 1853 6.37E+06 -125 -55,5 -0.16472 0.10853 0.7197 1854 6.37E+06 -120 -55, -0.16723 0.11821 0.77824 0.003 0.0145 -0.027 0.03 1855 6.37E+06 -119,9 -55,1 -0.16423 0.13272 0.75163 1882 6.37E+06 -119,9 -55,1 -0.16423 0.13272 0.75163 1882 6.37E+08 -60 -60 -0.23117 -0.11222 1.1051 0.16477 -0.049 -0.601 0.63 1900 6.37E+08 -10 -57 -0.086397 -0.16119 0.50362 1903 6.37E+08 -5 -55,1 -0.049285 -0.11645 0.5379 1904 6.37E+08 -5 -55,1 -0.049285 -0.11645 0.5379 1907 6.37E+08 -5 -55,1 -0.049285 -0.11645 0.5379 1907 6.37E+08 -5 -55,1 -0.049285 -0.11645 0.5379 1907 6.37E+08 -5 -55,1 -0.049285 -0.11645 0.5379 1908 6.37E+08 -0.11 -54,1 -0.062168 -0.089121 0.6238 1	·						0,02
1842 6.37E+06 -140 -56,1 -0.092424 0.062127 0.59689 1845 6.37E+08 -135 -55,6 -0.086574 0.08281 0.63342 -0.0007 0.0054 0.019 0.02 1846 6.37E+06 -135 -55,5 -0.087231 0.088012 0.6526 1848 6.37E+06 -130 -55,5 -0.12559 0.10029 0.69359 0.00564 -0.005 -0.023 0.02 1849 6.37E+06 -130 -55,6 -0.11995 0.095652 0.67085 1852 6.37E+06 -125 -55,6 -0.16109 0.10533 0.69829 -0.0036 0.0032 0.023 1853 6.37E+06 -125 -55,5 -0.16472 0.10853 0.7197 1854 6.37E+06 -120 -55 -0.16723 0.11821 0.77824 0.003 0.0145 -0.027 0.03 1855 6.37E+06 -119,9 -55,1 -0.16423 0.13272 0.75163 1882 6.37E+06 -10 -57 -0.066397 -0.16119 0.50362 1903 6.37E+06 -10 -57 -0.066397 -0.16119 0.50362 1904 6.37E+06 -5 -55,1 -0.049285 -0.11645 0.5379 1907 6.37E+06 -5 -55,1 -0.049285 -0.11645 0.5379 1908 6.37E+06 -0.1 -54,1 -0.062166 -0.089121 0.6238							0 02
1845 6,37E+06 -135 -55,6! -0,086574 0,08261 0,63342 -0,0007 0,0054 0,019 0,02 1846 6,37E+06 -135 -55,5 -0,087231 0,088012 0,6526 1848 6,37E+06 -130 -55,5 -0,12559 0,10029 0,69359 0,00564 -0,005 -0,023 0,02 1849 6,37E+06 -130 -55,6 -0,11995 0,095652 0,67065 1852 6,37E+06 -125 -55,6 -0,16109 0,10533 0,69629 -0,0036 0,0032 0,023 0,02 1853 6,37E+06 -125 -55,5 -0,16723 0,10853 0,7197 1854 6,37E+06 -120 -55 -0,16723 0,11821 0,77824 0,003 0,0145 -0,027 0,03 1855 6,37E+06 -119,9 -55,1 -0,16423 0,13272 0,75163 1882 6,37E+06 -119,9 -55,1 -0,16423 0,13272 0,75163 1890 6,37E+06 -10 -57 -0,066397 -0,16119 0,50362 1903 6,37E+06 -5 -55,1 -0,049285 -0,11645 0,5379 1904 6,37E+06 -5 -55,1 -0,049285 -0,11645 0,5379 1907 6,37E+06 -5 -54,1 -0,062166 -0,089121 0,6238	\$					the state of the s	0.02
1846 6,37E+06 -135 -55,5 -0,087231 0,088012 0,6526 1848 6,37E+06 -130 -55,5 -0,12559 0,10029 0,69359 0,00564 -6,005 -0,023 0,02 1849 6,37E+06 -130 -55,6 -0,11995 0,095652 0,67085 1852 6,37E+06 -125 -55,6 -0,16109 0,10533 0,69829 -0,0036 0,0032 0,023 0,02 1853 6,37E+06 -125 -55,5 -0,16472 0,10853 0,7197 1854 6,37E+06 -120 -55 -0,16723 0,11821 0,77824 0,003 0,0145 -0,027 0,03 1855 6,37E+06 -119,9 -55,1 -0,16423 0,13272 0,75163 1882 6,37E+06 -60 -60 -0,23117 -0,11222 1,1051 0,16477 -0,049 -0,601 0,63 1900 6,37E+06 -10 -57 -0,066397 -0,16119 0,50362 1903 6,37E+06 -5 -55 -0,046452 -0,1239 0,56253 -0,0028 0,0075 -0,025 0,03 1904 6,37E+06 -5 -55,1 -0,049285 -0,11645 0,5379 1907 6,37E+06 -5 -55,1 -0,049285 -0,11645 0,5379 1908 6,37E+06 -0,1 -54,1 -0,062166 -0,089121 0,6238							വാ
1848 6.37E+06 -130 -55,5 -0,12559 0.10029 0.69359 0.00564 -6,005 -0,023 0.02 1849 6.37E+06 -130 -55,6 -0,11995 0.095652 0.67085 1852 6.37E+08 -125 -55,6 -0,16109 0.10533 0.69629 -0,0036 0.0032 0.023 0.02 1853 6.37E+06 -125 -55,5 -0.16472 0.10853 0.7197 1854 6.37E+06 -120 -55, -0.16723 0.11821 0.77824 0.003 0.0145 -0.027 0.03 1855 6.37E+06 -119,9 -55,1 -0.16423 0.13272 0.75163 1882 6.37E+06 -10 -55, -0.06423 0.13272 0.75163 1882 6.37E+06 -10 -57 -0.066397 -0.16119 0.50362 1903 6.37E+06 -5 -55,1 -0.046452 -0.1239 0.50362 1903 6.37E+06 -5 -55,1 -0.049285 -0.11645 0.5379 1904 6.37E+06 -5 -55,1 -0.049285 -0.11645 0.5379 1907 6.37E+06 -5 -55,1 -0.049285 -0.11645 0.5379 1907 6.37E+06 -5 -54,2 -0.077809 -0.087415 0.60343 0.01564 -0.002 0.02 0.03 1908 6.37E+06 -0.1 -54,1 -0.062166 -0.089121 0.6238							J,UZ
1849 6.37E+06 -130: -55,6 -0.11995 0.095652 0.67085 1852 6.37E+06 -125: -55,6 -0.16109 0.10533 0.69629 -0.0036 0.0032 0.023 0.02 1853 6.37E+06 -125: -55,5 -0.16472 0.10853 0.7197 1854 6.37E+06 -120 -55; -0.16723 0.11821 0.77824 0.003 0.0145 -0.027 0.03 1855 6.37E+06 -119,9 -55,1 -0.16423 0.13272 0.75163 1882 6.37E+06 -60 -60 -0.23117 -0.11222 1.1051 0.16477 -0.049 -0.601 0.63 1900 6.37E+06 -10 -57 -0.066397 -0.16119 0.50362 1903 6.37E+06 -5 -55 -0.046452 -0.1239 0.56253 -0.0028 0.0075 -0.025 0.03 1904 6.37E+06 -5 -55,1 -0.049285 -0.11645 0.5379 1907 6.37E+06 -5 -55,1 -0.049285 -0.11645 0.5379 1907 6.37E+06 -0.1 -54,1 -0.062166 -0.089121 0.6238 10.0028 0.0075 0.02 0.02							กักว
1852 6.37E+06 -125: -55.6 -0.16109 0.10533: 0.69629 -0.0036: 0.0032: 0.023 0.02 1853 6.37E+06 -125: -55.5 -0.16472: 0.10853 0.7197 1854 6.37E+06 -120 -55: -0.16723: 0.11821: 0.77824 0.003: 0.0145: -0.027 0.03 1855: 6.37E+06: -119.9 -55.1 -0.16423: 0.13272 0.75163: 0.751							J,UZ
1853 6.37E+06 -125 -55.5 -0.16472 0.10853 0.7197 1854 6.37E+08 -120 -55 -0.16723 0.11821 0.77824 0.003 0.0145 -0.027 0.03 1855 6.37E+08 -119.9 -55.1 -0.16423 0.13272 0.75163 1882 6.37E+08 -60 -60 -0.23117 -0.11222 1.1051 0.16477 -0.049 -0.601 0.63 1900 6.37E+08 -10 -57 -0.066397 -0.16119 0.50362 1903 6.37E+08 -5 -55 -0.046452 -0.1239 0.56253 -0.0028 0.0075 -0.025 0.03 1904 6.37E+08 -5 -55.1 -0.049285 -0.11645 0.5379 1907 6.37E+08 0 -54.2 -0.077809 -0.087415 0.60343 0.01564 -0.002 0.02 0.03 1908 6.37E+08 -0.1 -54.1 -0.062168 -0.089121 0.6238							0.02
1854 6,37E+06 -120 -55 -0,16723 0,11821 0,77824 0,003 0,0145 -0,027 0,03 1855 6,37E+06 -119,9 -55,1 -0,16423 0,13272 0,75163 1882 6,37E+06 -60 -60 -0,23117 -0,11222 1,1051 0,18477 -0,049 -0,601 0,63 1900 6,37E+06 -10 -57 -0,066397 -0,16119 0,50362 1903 6,37E+06 -5 -55 -0,046452 -0,1239 0,56253 -0,0028 0,0075 -0,025 0,03 1904 6,37E+06 -5 -55,1 -0,049285 -0,11645 0,5379 1907 6,37E+06 0 -54,2 -0,077809 -0,087415 0,60343 0,01564 -0,002 0,02 0,03 1908 6,37E+06 -0,1 -54,1 -0,062166 -0,089121 0,6238							J, UZ
1855 6,37E+06 -119,9 -55,1 -0,16423 0,13272 0,75163 1882 6,37E+06 -60 -60 -0,23117 -0,11222 1,1051 0,16477 -0,049 -0,601 0,63 1900 6,37E+06 -10 -57 -0,066397 -0,16119 0,50362 1903 6,37E+06 -5 -55 -0,046452 -0,1239 0,56253 -0,0028 0,0075 -0,025 0,03 1904 6,37E+06 -5 -55,1 -0,049285 -0,11645 0,5379 1907 6,37E+06 0 -54,2 -0,077809 -0,087415 0,60343 0,01564 -0,002 0,02 0,03 1908 6,37E+06 -0,1 -54,1 -0,062166 -0,089121 0,6238							กักจ
1882 6.37E+06							J, UJ
1900 6,37E+08 -10 -57 -0,086397 -0,16119 0,50362							0.63
1903 6,37E+08							2,03
1904 6 37E+06 -5 -55,1 -0,049285 -0,11645 0.5379 1907 6,37E+06 0 -54,2 -0,077809 -0,087415 0,60343 0,01564 -0,002 0.03 1908 6,37E+08 -0,1 -54,1 -0,062166 -0,089121 0,6238							0.02
1907 6,37E+06: 0 -54,2: -0,077809: -0,087415: 0,60343: 0,01564: -0,002: 0,02: 0,03: 1908 6,37E+06: -0,1: -54,1: -0,062166: -0,089121 0,6238:							0,03
1908 6,37E+06 -0,1 -54,1: -0,062166 -0,089121 0,6238							0.03
							0.03
1909 6.37E+08: 01 -54: -0,068204: -0,07954: -0,64854: -0,0166: -0,007: -0,035: -0,04							0.04
	1909 6.37E+06:	<u> </u>	-54	-0,068204	-0,07954	0,64854: -0,0166: -0,007: -0,033:	U, U4

1910	6.37E+06	0,1	-54.1	-0.084824	0.086903	0 61529				
1911	6.37E+06	5	-53	-0 20 807	-0 090884	0 76385	-0.0073	-0 007	-0.013	0.02
1912	6 37E+06	5	-5 3 .1	-0 2153 3	-0 097513	0 75 06				Ì
1916	6.37E+06	10	-53,1	-0 1525	-0 097113	0.78606	0.00515	0 004	0 014	0 02
1917	6,37E+06	10	-53	-0.14735	-0.093112	0 80051				ļ
1918	6.37E+06	15	-52	-0,14454	-0,10359	0 88443	-0.0078	0 0023	-0 021	0 02
1919	6 37E+06	15	-52.1	-0.15229	-0.10128	0 86377				l
1922	6 37E+06	20	-52,6	-0,16212	-0 10997	0 8346	0.00297	-0.005	0 025	0.03
1923	6 37E+06	20	-52.5	-0,15915	-0,11478	0 85918				}
1924	6.37E+06	26	-53	-0,13601	-0,1532	0.81683	-0,0054	0.0132	-0.047	0.05
1925	6,37E+06	26	-53,1	-0,14143	-0,14005	0.76953				
1953	6.37E+06	145	-52,6	-0.050992	0,10551	0.32897				ļ
1956	6.37E+06	-16,9	-59,1	-0.054993	-0,18347	0,48317	-0.0011	-0.004	0,009	0.01
1957	6,37E+06	-17	-59	-0.056138	-0,18771	0.49202]
1959	6.37E+06	-14	-58	-0.031352	0,17771	0.49221	0,00498	0,0106	-0 021	0.02
1960	6.37E+06	-14	-58,1	-0.026372	-0,16714	0.47104				
1963	6.37E+06	-10	-57.1	-0.063671	-0,1489	0.48189	0,01888	0,2767	-0,149	0 31
1981	6,37E+06_	165	61.5	-0.04479	0,12784_	0,33273				
1987	6,37E+06	170 ₂	-62.1	-0 035 946	0,10672	0,40044	4E-05	0.0206	0.014	0 02
1988	6,37E+06	170_	62	0.03 5983 _	0,1273	0,41417				_
1989	6,37E+06	180	-63	-0,24133	-0.032873	0,68778	-0,0033	0.008	-0 004	0.01
1990	6,37E+06	180_	-63,1	-0.24462	-0.040412	0.6837				
1995	6,37E+06	-173	-64.1	-0 3806	-0 096345	0.72684	0.00442	0.0113	0 008	0.01
1996	6,37E+06	-173	-64	-0,37618	-0.085077	0,73519		-		
1997	6.37E+06	-165	62.5	-0.033984	-0.055131	0,5211	-0,0019	-0,007	0.013	0 01
1995	6.37E+06	-165	-62.6	-0 035841	-0 064 2	0.50847				_
1999	6.37E+06	-160	-61	-0.054765	-0 024413	0,51194	-0.0009	0,0002	-0.015	0 01
2000	6.37E+06	-160	-61,1	-0.055703	-0 024229	0.49739				

Appendix II

Node Coordinates of the discretized finite elements.

Node#	Z-Coord.	X-Coord	. Y-Coord.	68	6371000	353	58	l 133	6371000	110	50
			(degree)	69	6371000	24	71	134	6371000	110	55
1		0	90	70	6371000	15	67	135	6371000	110	60
2		350	83.5	71	6371000	4	60.5	136	6371000	100	60
3 4	6371000 6371000		83.5	72	6371000	30	65	137	6371000	100	55
5	-	555 60	83.5 85	73 74	6371000		67 5	138	6371000	100	50
6		110	85	75	6371000 6371000	44	65 40	13"		90	50
7		170	85	76	6371000		69 65	140		80	50
8		230	85	77	6371000	∞	70	142		80 80	55 60
9	6371000	270	85	78	6371000	80	68	143		2 0	80
10		325	85	79	6371000	74	65	144		70	55
11		341	82	80	6371000	90	65	145		70	50
12		345	83	81	6371000	110	70	146	6371000	60	50
13 14		10 10.1	77.6 77.7	82	6371000	100	65	147		60	55
15		15.1	77.7 78	83 84	6371000 6371000	120 140	65 70	148	6371000		60
16		60	80	85	6371000	140	65	149 150		50	60
17		93	80	86	6371000	160	85	151		50 50	55 50
18		110	79	87	6371000	180	64	152		40	5 0
19		168	78	88	6371000	197	60.5	153		40	55
20		238	81	89	6371000	212	61	154		40	50
21		288	80	90	6371000	223	60	155		30	50
22			765	91	6371000	230	60	156		30	55
23 24			77 75 4	92	6371000	24C	68.5	157		30	60
2 5			75.4 75.4	93 94	6371000 6371000	240 250	60	158	6371000	20	60
26			75.3	95	6371000	250 260	60 60	159		20	55
27		-	70.5	96	6371000	270	60	160 161	6371000 6371000	20 10	50
28			75	97	6371000	290	67	162		10	50 55
29	6371000		76	98	6371000	280	60	163		10	8
30			70	99	6371000	297	60	164	6371000		55
31			705	100	6371000	300	55	165	6371000	Ö	50
32			75	101	6371000	290	60	166	6371000	357	55
33			66 5	102	6371000	290	55	167		350	50
34 35			65 68	103	6371000	280	55	168		350	55
36			745	104 105	6371000 6371000	270 260	55	169		339	50
37			72	106	6371000	250 250	55 55	1 70 1 7 1		332.1	49 1
38			72.5	107	6371000	240	55	172		332 320	49 46
39			70	108	6371000	231 2	543	173		311	45 42
40			725	109	6371000	231	545	174		305	50
41			695	110	6371000	229	56	175		300	50
42			68.5	111	6371000	220	56.5	176		290	50
43			73	112	6371000	210	56	177	6371000		50
44 45	6371000 3 6371000 3		69 5 59	113	6371000		56	178	6371000		50
46	6371000 3		715	114 115	6371000 6371000	190	55	179		260	50
47	6371000 3		75.5	116		1 80 1 80	60 53	180	6371000		50
48	6371000 3		725	117		167	58.5	181 182	6371000 6371000		50 50
49	6371000 3		68	118		170	50	183	6371000		50 50
50	6371000 3		62	119		158	58	184	6371000		50
51	6371000 3	111	52	120		158	54	185	6371000	220	54
52	6371000 3		72	121		160	49	186	6371000	220	50
55	6371000 3		55	122		149	60.5	187	6371000	210	53
56 50	6371000 3		71.9	123		140	60	188	6371000		50
59 60	6371000 3 6371000 3		56	124		138	55	189	6371000	200	52
61	6371000 3		72 71 9	125 126		145	53.5	190	6371000		50
62	6371000 4		70	120		145	46	191	6371000		51
63	6371000 3		70			130 130	50 55	192 193	6371000		50 50
64	6371000 3		65			130	80	194	6371000 6371000	142	50
65	6371000 3		60			120	80	195	6371000		48 60
66	6371000 3		54			120	56	196	6371000		55 55
67	6371000 3		6 ć		6371000		50	197	6371000		45
							•				-

198	6371000 95	40	1 263	6371000 255	45	328	6371000 75	45
199	6371000 100	45	264	6371000 260	45	329	6371000 75	40
200	6371000 100	40	265	6371000 260	40	330	6371000 80	40
201	6371000 105	40	266	6371000 265	40	331	6371000 80	45
202	6371000 105	45	267	6371000 265	45	332	6371000 85	45
203	6371000 110	45	268	6371000 270	45	333	6371000 85	40
204	6371000 110	40	269	6371000 270	40	334	6371000 90	40
205	6371000 115	40	270	6371000 275	45	335	6371000 90	45
206	6371000 115	45	271	6371000 275	40	336	6371000 95	35
207	6371000 120 6371000 120	45	272	6371000 280	40	337	6371000 95	30
208 209	6371000 120 6371000 130	40 45	273 274	6371000 280 6371000 285	45 45	338	6371000 100	35
210	6371000 127	40	275	6371000 285	40	339 340	6371000 100 6371000 105	30
211	6371000 135	40	276	6371000 291.5	40	341	6371000 105 6371000 105	30 35
212	6371000 137	44	277	6371000 290	45	342	6371000 110	35
213	6371000 140	40	278	6371000 295	45	343	6371000 110	30
214	6371000 145	40	279	6371000 295	43	344	6371000 115	30
215	6371000 150	45	280	6371000 295	40	345	6371000 115	35
216	6371000 150	40	281	6371000 300	40	346	6371000 120	35
217	6371000 155	40	282	6371000 300	46	347	6371000 120	30
218	6371000 155	45	283	6371000 305	45	348	6371000 123	30
219	6371000 160	45	284	6371000 306	40	349	6371000 125	35
220	6371000 160	40	285	6371000 310	40	350	6371000 130	35
221	6371000 165	40	286	6371000 315	40	351	6371000 129	30
222 223	6371000 165 6371000 170	45	287	6371000 320	40	352	6371000 135	30
223	6371000 170	45 40	288 289	6371000 325 6371000 325	44	353	6371000 135	35
225	6371000 175	40	290	6371000 325	40 41	354 355	6371000 140 6371000 140	35
226	6371000 175	45	291	6371000 330.1	41	356	6371000 145	30 30
227	6371000 180	45	292	6371000 335	40	357	6371000 145	35
228	6371000 180	40	293	6371000 340	45	358	6371000 150	35
229	6371000 185	40	294	6371000 342	40	359	6371000 150	30
230	6371000 185	45	295	6371000 345	40	360	6371000 155	30
231	6371000 190	45	296	6371000 345	45	361	6371000 155	35
232	6371000 190	4 C	297	6371000 350	45	362	6371000 160	35
233	6371000 195	40	298	6371000 352	41	363	6371000 160	30
234	6371000 195	45	299	6371000 355	45	364	6371000 165	30
235	6371000 200	45	300	6371000 355	40	365	6371000 165	35
236	6371000 200	40	301	6371000 0	45	366	6371000 170	35
237	6371000 205 6371000 205	45	302	6371000 1	40	367	6371000 170	30
238 239	6371000 205 6371000 210	40 40	303 304	6371000 3 6371000 12	43 45	368	6371000 175	30
240	6371000 210	45	305	6371000 12	40	369 370	6371000 175 6371000 180	35 35
241	6371000 215	45	306	6371000 19	42	371	6371000 180	30
242	6371000 215	40	307	6371000 20	45	372	6371000 185	30
243	6371000 220	45	308	6371000 25	45	373	6371000 185	35
244	6371000 220	40	307	6371000 25	40	374	6371000 190	35
245	6371000 225	40	310	6371000 30	40	375	6371000 190	30
246	6371000 225	45	311	6371000 30	45	376	6371000 195	30
247	6371000 230	45.5	312	6371000 35	45	377	6371000 195	35
248	6371000 230	40	313	6371000 35	40	378	6371000 200	35
249	6371000 233	40.6	314	6371000 40	40	379	6371000 200	30
250	6371000 234	44	315	6371000 40	45	380	6371000 205	30
251	6371000 230.1	45.5	316	6371000 45	45	381	6371000 205	35
252	6371000 234.1	44	317	6371000 45	40	382	6371000 210	35
253 254	6371000 233.1 6371000 238	40.5 35	318	6371000 50 6371000 50	40 45	383 384	6371000 210 6371000 215	30 30
254 255	6371000 238	35 46	319 320	6371000 55	45 45	385	6371000 215	30 35
256 256	6371000 237	46 45	321	6371000 55	40	386	6371000 213	35 35
257 257	6371000 240	40	322	6371000 60	40	387	6371000 220	30
258	6371000 245	40	323	6371000 60	46	388	6371000 225	30
259	6371000 245	45	324	6371000 66	45	389	6371900 225	35
260	6371000 250	45	325	6371000 65	40	390	6371000 230	35
261	6371000 250	40	326	6371000 70	40	391	6371000 230	30
262	6371000 255	40	327	6371000 70	45	392	6371000 235	35
			-			-		

393	6371000 235	30	458	6371000 32	! 1 31	1 500	4271000 100	
394	6371000 240	30	459	6371000 40	•	523	6371000 195	25
395	6371000 246	30	460	6371000 32		524	6371000 195	20
396	6371000 246	35	461	6371000 40		525	6371000 200	20
397	6371000 250	35	462	6371000 42		526	6371000 200	25
398	6371000 250	30	463	6371000 50		527	6371000 205	25
399	6371000 255	30	464	6371000 50		528	6371000 27.5	20
400	6371000 255	35	465	6371000 47		529	6371000 210	20
401	6371000 260	35	466	6371000 52		530	6371000 210	25
402	6371000 260	30	467	6371000 55		531	6371000 215	25
403	6371000 265	30	468	6371000 60		532	6371000 215	20
404	6371000 265	35	469	6371000 60		533	6371000, 220	20
405	6371000 270	35	470	6371000 65		534	6371003 220	25
406	6371000 270	30	471	6371000 65		535	6371000 225	25
407	6371000 275	32	472	6371000 70		536	6371000 225	20
408	6371000 275	35	473	6371000 70		537	6371000 230	20
409	6371000 275	30	474	6371000 75		538	6371000 230	25
410	6371000 280	30	475	6371000 75		539 540	6371000 235	25
411	6371000 280	34	476	6371000 80		_	6371000 235	20
412	6371000 284	34.5	477	6371000 80		541 542	6371000 240 6371000 240	20
413	6371000 285	30	478	6371000 85	30)		25
414	6371000 290	30	479	6371000 85	35	543	6371000 245	25
415	6371000 290	32 5	480	6371000 90	35 35	544	6371000 245	20
416	6371000 295	35	481	6371000 90	30 30	545 546	6371000 250 6371000 250	20
417	6371000 295	30	482	6371000 95	25			25
418	6371000 300	30	483	6371000 95	23 20	547 548	6371000 250 6371000 253	27
419	6371000 300	37	484	6371000 100		549		24
420	6371000 305	35	485	6371000 100		550	6371000 253.2	23 9
421	6371000 305	30	486	6371000 10		551	6371000 254 6371000 254.1	20
422	6371000 310	30	487	6371000 10				20
423	6371000 310	35	488	6371000 110		552 553		20
424	6371000 315	35	489	6371000 10		554	6371000 260	18
425	6371000 315	29 .1	490	6371000 114		555	6371000 264 6371000 262	19
426	6371000 315.1	29	491	6371000 117		556		23
427	6371000 321 2	33	492	6371000 115		557		27
428	6371000 325	30	493	6371000 115		558		28
429	6371000 321	33	494	6371000 120		559	6371 000 265 6371 000 270	25
430	6371000 325	36 5	495	6371000 123		560	6371000 270	20
431	6371000 325.2	36 5	496	6371000 125		561	6371000 270	2 5
432	6371000 330	35	497	6371000 130		562	6371000 277	22
433	6371000 330	30	498	6371000 130		563	6371000 277	20
434	6371000 335	30	499	6371000 135		564	6371000 278	25 27
435	6371000 335	35	500	6371000 135		565	6371000 280	27
436	6371000 343	36	501	6371000 140		566	6371000 286	19 17 5
437	6371000 344	33	502	6371000 140		567	6371000 285	_
438	6371000 345	30	503	6371000 145		568		25 25
439	6371000 350	30	504	6371000 145		569	6371000 290 6371000 290	25
440	6371000 350	35	506	6371000 150		570	6371000 295	20
441	6371000 352	36	506	6371000 150		571	6371000 295	20 25
442	6371000 354	34	507	6371000 155		572	6371000 293	25 26
443	6371000 355	30	508	6371000 155		573	6371000 300	25
444	6371000 0	30	509	6371000 160		574	6371000 306	20
445	6371000 0	35	510	6371000 160		575	6371000 305	20
446	6371000 358	37	511	6371000 165		576	6371000 300	2 5
447	6371000 8	35	512	6371000 165		577	6371000 310	25
448	6371000 5	30	513	6371000 170				20
449	6371000 14	31	514	6371000 170		578 579	6371000 314 6371000 3145	20
450	6371000 15	35	515	6371000 175		580	6371000 314.6	25 26
451	6371000 20	38	516	6371000 175		581		25
452	6371000 22	34	517	6371000 175		582	6371000 314.1	20
453	6371000 20	32.5	518	6371000 180			6371000 320	20
454	6371000 30	32	519	6371000 186		583	6371000 320	25
455	6371000 30	35 35	520	6371000 186		584	6371000 325	25
456	6371000 35	36	521	6371000 190		585	6371000 325	20
457	6371000 33	32	522	6371000 190		586	6371000 332	20
,		V-C	1 224	W/1000 190	, 25	587	6371000 332	25

588	6371000 332	28	653	6371000 135	15	1718	6371000 295	
589	6371000 338	25	654	6371000 140	15			15
590	6371000 338	20	655	6371000 140		719	6371000 301	14
591	6371000 343	20			10	720	6371000 296	10
	6371000 345		656	6371000 145	10	721	6371000 300	10
592		26	657	6371000 145	15	722	6371000 306	10
593	6371000 350	25	658	6371000 150	15	723	6371000 305	15
594	6371000 350	20	659	6371000 150	10	724	6371000 310	15
595	6371000 355	20	660	6371000 155	10	725	6371000 310	10
596	6371000 355	25	661	6371000 155	15	726	6371000 315	10
597	6371000 0	25	662	6371000 160	15	727	6371000 314	17
598	6371000 0	20	663	6371000 160	10	728	6371000 314.1	17
599	6371000 5	20	664	6371000 165	10	729	6371000 320	16
600	6371000 5	25	665	6371000 165	15	730	6371000 318.1	13.1
601	6371000 10	25	666	6371000 170	15	731	6371000 318	13.1
602	6371000 10	20	667	6371000 170	10	732	6371000 322	10
603	6371000 15	20	668	6371000 175	10	733	6371000 322.1	10
604	6371000 15	25	669	6371000 175	15	734	6371000 325	_
605	6371000 20	25	670	6371000 180	15	735		15
606	6371000 20	20	671	6371000 180	10	736		15
607	6371000 25	20	672	6371000 185			6371000 328	10
608	6371000 25	25 25	673		10	737	6371000 332	8
609	6371000 23	25 25			15	738	6371000 332	15
			674	6371000 190	15	739	6371000 336	15
610	6371000 30	20	675	6371000 190	10	740	6371000 336	10
611	6371000 36	20	676	6371000 195	10	741	6371000 341	10
612	6371000 38	20	677	6371000 195	15	742	6371000 342	15
613	6371000 35	25	678	6371000 200	15	743	6371000 346	15
614	6371000 35 1	25	679	6371000 200	10	744	6371000 345	10
615	6371000 37	25	680	6371000 205	10	745	6371000 350	10
616	6371000 40	25	681	6371000 205	15	746	6371000 350	15
617	6371000 38.1	20	682	6371000 210	15	747	6371000 355	15
618	6371000 40	20	683	6371000 210	10	748	6371000 355	10
619	6371000 45	20	684	6371000 215	10	749	6371000 0	10
620	6371000 45	25	685	6371000 215	15	750	6371000 0	15
621	6371000 50	27	686	6371000 220	15	751	6371000 5	15
622	6371000 50	20	687	6371000 220	10	752	6371000 5	10
623	6371000 58	20	688	6371000 225	10	753	6371000 10	10
624	6371000 60	26	689	6371000 225	15	754	6371000 10	15
625	6371000 65	26	690	6371000 230	15	755	6371000 15	15
626	6371000 65	20	691	6371000 230	10	756	6371000 15	
627	6371000 74	20	692	6371000 235	10	757		10
628	6371000 71	26	693				6371000 20	10
629	6371000 71	25	694	6371000 235	15	758	6371000 20	15
				6371000 240	15	759	6371000 25	15
630	6371000 80	25	695	6371000 240	10	760	6371000 25	10
631	6371000 80	20	696	6371000 245	10	761	6371000 30	10
632	6371000 85	25	697	6371000 245	15	762	6371000 30	15
633	6371000 86	20	698	6371000 250	15	763	6371000 35	15
634	6371000 88	23	699	6371000 250	10	764	6371000 35	10
635	6371000 90	20	700	6371000 256.5	10	765	6371000 41	11
636	6371000 90	25	701	6371000 255	15	766	6371000 42	12
637	6371000 95	13.5	702	6371000 255.1	15	767	6371000 421	12 !
638	6371000 95	10	703	6371000 256.6	10	768	6371000 43	14
639	6371000 99	8	704	63710UD 260	10	76 9	6371000 42	17
640	6371000 100	15	705	6371000 260	15	770	6371000 40	16
641	6371000 103.5	10	706	6371000 266	15	771	6371000 39.9	16
642	6371000 105	15	707	6371000 265	10	772	6371000 38	15
643	6371000 109	13	708	6371000 270	10	773	6371000 46	17
644	6371000 110	10	709	6371000 270	13	774	6371000 50	16
645	6371000 116	10	710	6371000 270	17	775	6371000 50	14
646	6371000 120	15	711	6371000 275	15	776	6371000 50	
647	6371000 120	10	712	6371000 276		777		13.9
648	6371000 125				10		6371000 50	12.5
		10	713	6371000 279	8	778	6371000 48	10
649	6371000 125	15	714	6371000 281	12	779	6371000 54	10
650	6371000 130	15	715	6371000 285	12	780	6371000 55	13
651	6371000 130	10	716	6371000 292	12	781	6371000 56	14
652	6371000 135	10	717	6371000 290	17	782	6371000 56.1	14.1

783	6371000 60	18	l 848	6371000 215	5	913	6371000 349	,
784	6371000 60	10	849	6371000 215	ŏ	_		1
785	6371000 60.1	10.1	1			914	6371000 350	5
		_	850	6371000 220	0	915	6371000 355	5
786	6371000 63.5	14	851	6371000 220	5	916	6371000 355	0
787	6371000 66	16	852	6371000 225	5	917	6371000 0	Ö
788	6371000 70	15	853	6371000 225	Ö	918	6371000 0	4
789	6371000 67	10	854	6371000 230	ŏ	919		
790	6371000 70	10	855	6371000 230			6371000 8	4
791					5	920	6371000 10	5
	6371000 75	10	856	6371000 235	5	921	6371000 10	0
792	6371000 77	15	857	6371000 235	0	922	6371000 15	0
793	6371000 80	15	858	6371000 240	0	923	6371000 15	5
794	6371000 80	10	859	6371000 240	5	924	6371000 20	5
795	6371000 83	15	860	6371000 245	5			5
796	6371000 90	15	861			925	6371000 20	٥
797				6371000 245	0	926	6371000 25	0
	6371000 90	12	862	6371000 250	0	927	6371000 25	5
798	6371000 92	10	863	6371000 250	5	928	6371000 30	5
7 99	6371000 85	6	864	6371000 255	5	929	6371000 30	ō
800	6371000 95	7	865	6371000 255	ā	930	6371000 35	õ
801	6371000 95	0	866	6371000 259	ŏ	931		٥
802	6371000 100	ŏ	867	6371000 2581			6371000 35	5
803	6371000 100				5	932	6371000 40	5
		4	868	6371000 258	51	933	6371000 40	0
804	6371000 105	5	869	6371000 258.2	5 .1	934	6371000 43	0
805	6371000 105	0	870	6371000 258.3	5	935	6371000 48	6
806	6371000 110	0	871	6371000 2591	0	936	6371000 50	5
807	6371000 110	5	872	6371000 265	ŏ	937		
808	6371000 118	•	873	6371000 265			6371000 48	0
809	6371000 115	á			4	938	6371000 50	0
		0	874	6371000 265	41	939	6371000 55	٥
810	6371000 120	0	875	6371000 270	41	940	6371000 55	5
811	6371000 120	6	876	6371000 270	4	941	6371000 60	5
812	6371000 125	5	877	6371000 270	0	942	6371000 60	ō
813	6371000 125	0	878	6371000 275	ō	943	6371000 63	
814	6371000 130	ō	879	6371000 275				0
815	6371000 130				3	944	6371000 63	5
		4	880	6371000 275	31	945	6371000 63.1	5
816	6371000 135	3	881	6371000 280	31	946	6371000 66	5
817	6371000 135	0	882	6371000 280	3	947	6371000 67	0
818	6371000 140	0	883	6371000 280	0	948	6371000 671	ŏ
819	6371000 140	2	884	6371000 285	ŏ	949	6371000 70	
820	6371000 145	5	885	6371000 285				o
821	6371000 145		1		4	950	6371000 71	6
		0	886	6371000 290	5	951	6371000 75	6
822	6371000 150	Ō	887	6371000 290	0	952	6371000 75	0
823	6371000 150	5	888	6371000 295	0	953	6371000 80	٥
824	6371000 155	5	889	6371000 295	5	954	6371000 80	6
825	6371000 155	0	890	6371000 300	7	955	6371000 85	
826	6371000 160	ŏ	891	6371000 300	4			0
827	6371000 160	5			4	956	6371000 90	٥
		9	892	6371000 300	Ū	957	6371000 90	5
828	6371000 165	5	893	6371000 306	0	958	6371000 95	-5
829	6371000 165	0	894	6371000 305	5	959	6371000 95	-10
830	6371000 170	0	895	6371000 310	7	960	6371000 100	-10
831	6371000 170	5	896	6371000 310	3	961	6371000 100	-5
832	6371000 175	5	897	6371000 310	Ö	962		
833	6371000 175	Ŏ	898				6371000 105	-5
				6371000 314	0	963	6371000 105	-10
834	6371000 180	0	899	6371000 315	5	964	6371000 110	-10
835	6371000 180	5	900	6371000 320	5	965	6371000 110	-5
836	6371000 185	5	901	6371000 325	5	966	6371000 115	4
837	6371000 185	Ó	902	6371000 322	Ŏ	967	6371000 115	-10
838	6371000 190	Ŏ	903	6371000 330				
					0	968	6371000 119	-9
839	6371000 190	5	904	6371000 327	5	969	6371000 120	-5
840	6371000 195	5	905	6371000 3271	5 .1	970	6371000 125	-5
841	6371000 195	0	906	6371000 332	2 .1	971	6371000 125	-10
842	6371000 200	O	907	6371000 332	2	972	6371000 130	-10
843	6371000 200	5	908	6371000 340	ī	973	6371000 130	
844	6371000 205	5	909					-5
				6371000 340	1.1	974	6371000 135	-5
845	6371000 205	0	910	6371000 340	5	975	6371000 135	-9.5
846	6371000 210	0	911	6371000 346	0	976	6371000 140	-10
847	6371000 210	5	912	6371000 346.1	0.1	977	6371000 140	-5
			•			•	· - -	-

978	6371000 145	-5	F1043	6371000 295	-10	151100	4371000 00	_
979	6371000 146	-10	1			F1108	6371000 80	-5
			F1044	6371000 295	-5	F1 109	6371000 85	-5
980	6371000 150	-10	F1045	6371000 300	-5	F1110	6371000 85	-10
981	6371000 150	-5	F1046	6371000 300	-10	FIIII	6371000 90	-10
982	6371000 150	-2	F1047	6371000 305	-10	F1112	6371000 90	-5
983	6371000 155	-3	F1048	6371000 305	-5	F1113	6371000 95	-15
984	6371000 155	-5	F1049	6371000 310	-5	F1114	6371000 95	-20
985	6371000 155	-10	F1050	6371000 310	-10	F1115	6371000 100	-20
986	6371000 160	-10	F1051	6371000 315	-10	F1116	6371000 100	-15
987	6371000 161	4	F1052	6371000 315	-5	F1117	6371000 105	
988	6371000 165	-5	F1053	6371000 320	3	F1118		-15
989	6371000 165	-10	F1064	6371000 320	• •		6371000 105	-20
990	6371000 170	-10	F1055			F1119	6371000 110	-20
991				6371000 320	-10	F1120	6371000 110	-15
	6371000 170	-5	F1056	6371000 326	- <u>1</u> 1	F1 121	6371000 115	-15
992	6371000 175	-5	F1057	6371000 325	-5	F1122	6371000 112	-22
993	6371000 175	-10	F1058	6371000 328	-3.5	F1123	6371000 115	-21.5
994	6371000 180	-10	F1059	6371000 331	-5	F1124	6371000 120	-20
995	6371000 180	-5	F1060	6371000 331	-10	F1125	6371000 120	-18
996	6371000 185	-5	F1061	6371000 335	-10	F1126	6371000 120	-14
997	6371000 185	-10	F1062	6371000 335	-5	F1127	6371000 125	-16
998	6371000 190	-10	F1063	6371000 340	-5	F1128	6371000 125	-20
999	6371000 190	-5	F1064	6371000 340	-10	F1129	6371000 130	-13
F1000	6371000 195	-5	F1065	6371000 346	-10	F1130	6371000 130	-20
F1001	6371000 195	-10	F1066	6371000 346.1	-10	F1131	6371000 135	
F1002	6371000 200	-10	F1067	6371000 346	-5			-20
F1003	6371000 200	-5	F1068		.5 .5	F1132		-15
						F1133	6371000 140	-14
F1004	6371000 205	-5	F1069	6371000 350	-5	F1134	6371000 140	-20
F1005	6371000 205	-10	F1070	6371000 350	-10	F1135	6371000 145	-20
F1006	6371000 210	-10	F1071	6371000 355	-10	F1136	6371000 144	-135
F1007	6371000 210	-5	F1072	6371000 355	· 5	F1137	6371000 150	-17
F1008	6371000 215	-5	F1073	6371000 1	-5	F1138	6371000 152	-20
F1009	6371000 215	-10	F1074	6371000 1.5	-10	F1139	6371000 155	-15
F1010	6371000 220	-10	F1075	6371000 5	-10	F1140	6371000 160	-15
F1011	6371000 220	-5	F1076	6371000 5	-5	F1141	6371000 160	-20
F1012	6371000 225	-5	F1077	6371000 10	-Š	F1142	6371000 165	-20
F1013	6371000 225	-10	F1078	6371000 10	-10	F1143	6371000 166	-15
F1014	6371000 230	-10	F1079	6371000 14	-10	F1144	6371000 170	-15 -15
F1015	6371000 230	-5	F1080	6371000 14	-8	F1145	6371000 170	
F1016	6371000 235	-5						-20
F1017			F1081	6371000 20	-5	F1146	6371000 175	-20
		-10	F1082	6371000 20	-10	F1147	6371000 175	-15
F1018	6371000 240	-10	F1083	6371000 25	-10	F1148	6371000 180	-15
F1019	6371000 240	-5	F1084	6371000 25	-5	F1149	6371000 180	-20
F1020	6371000 245	-5	F1085	6371000 30	-5	F1150	6371000 186	-20
F1021	6371000 245	-10	F1086	6371000 30	-10	F1151	6371000 185	-15
F1022	6371000 250	-10	F1087	6371000 35	-10	F1152	6371000 190	-15
F1023	6371000 250	-5	F1088	6371000 35	-5	F1153	6371000 190	-20
F1024	6371000 255	-5	F1089	6371000 38	-2	F1154	6371000 195	-20
F1025	6371000 255.1	-5	F1090	6371000 39	-10	F1155	6371000 195	-15
F1026	6371000 253	-10	F1091	6371000 46	-10	F1156	6371000 200	-15
F1027	6371000 253.1	-10	F1092	6371000 46.5	-5	F1157	6371000 200	-20
F1028	6371000 260	-10						
			F1093	6371000 50	-5 10	F1158	6371000 205	-20
F1029	6371000 260	-5	F1094	6371000 50	-10	F1159	6371000 205	-15
F1030	6371000 265	-5	F1095	6371000 55	-5	F1160	6371000 210	-15
F1031	6371000 265	-10	F1096	6371000 55	-10	F1 161	6371000 210	-20
F1032	6371000 270	-10	F1097	6371000 60	-10	F1162	6371000 215	-20
F1033	6371000 270	-5	F1098	6371000 60	-5	F1163	6371000 215	-15
F1034	6371000 275	-5	F1099	6371000 67	-5	F1164	6371000 220	-15
F1035	6371000 275	-10	F1100	6371000 67.1	-5	F1165	6371000 220	-20
F1036	6371000 280	-10	F1101	6371000 67.5	-10	F1166	6371000 225	-20
F1037	6371000 280	-8	F1102	6371000 67.6	-10	F1 167	6371000 225	-15
F1038	6371000 282	-10	F1103	6371000 70	-10	F1168	6371000 230	-15
F1039	6371000 286	-10	F1104	6371000 70	-, 5	F1169	6371000 230	-20
F1040	6371000 285	- ₁₀	F1106	6371000 75	-5 -5	F1170	6371000 235	
								-20
F1041	6371000 290	-5	F1106	6371000 75	-10	F1 171	6371000 235	-15
F1042	6371000 290	-10	F1 107	6371000 80	-10	F1172	6371000 240	-15

F1173	6371000	240 -20	F1238	6371000 30	-20	F1303	6371000 17	E 10
F1174	6371000	245 -20	F1239	6371000 35		F1304	6371000 17	
F1175	6371000	245 -15	F1240	6371000 35		F1305	6371000 18	
F1176	6371000		F1241	6371000 39		F1306	6371000 18	
F1177		250 -15		J371000 40		F1307	6371000 18	
F1178		248 -19	F1243	6371000 45		F1308	6371000 18	
F1179	6371000		F1244	6371000 45		F1309	6371000 19	
F1180	6371000		F1245	6371000 50		F1310	6371000 19	
F1181	6371000		F1246	6371000 50		F1311	6371000 19	
F1182	6371000		F1247	6371000 55		F1312	6371000 19	
F11 83		260 -20	F1248	6371000 55		F1313	6371000 20	
F1184	6371000		F1249	6371000 60		F1314	6371000 20	
F1185	6371000		F1250	6371000 60		F1315	6371000 20	
F1186	6371000		F1251	6371000 65		F1316	6371000 20	
F1187	6371000		F1252	6371000 64		F1317	6371000 21	
F1188	6371000		F1253	6371000 66		F1318	6371000 21	
F1189	6371000		F1254	6371000 66		F1319	6371000 21	
F1190	6371000 2		F1255	6371000 70	_	F1320	6371000 21	
F1 191		280 -20	F1256	6371000 67		F1321	6371000 22	
F1192	6371000 2		F1257	6371000 67		F1322	6371000 22	
F1193	6371000 2		F1258	6371000 70		F1323	6371000 22	
F1194	6371000 2	-18	F1259	6371000 75		F1324	6371000 22	
F1195		90 -20	F1260	6371000 75		F1325	6371000 23	
F1196	6371000 2		F1261	6371000 80		F1326	6371000 23	
F1197	6371000 2		F1262	6371000 80	_	F1327	6371000 23	
F1198	6371000 3	-15	F1263	6371000 85		F1328	6371000 23	
F1199		300 -20	F1264	6371000 85		F1329	6371000 24	
F1200	6371000 3	305 -20	F1265	6371000 90		F1330	6371000 24	
F1201	6371000 3	105 -15	F1266	6371000 90		F1331	6371000 24	
F1202	6371000 3		F1267	6371000 95		F1332	6371000 24	
F1203	6371000 3	10 -20	F1268	6371000 95		F1333	6371000 24	
F1204	6371000 3		F1269	6371000 10		F1334	6371000 24	
F1205	6371000 3		F1270	6371000 10		F1335	6371000 24	
F1206		20 -15	F1271	6371000 10		F1336	6371000 24	
F1207	6371000 3	20 -18	F1272	6371000 10		F1337	6371000 25	
F1208	6371000 3	23 -15	F1273	6371000 11		F1338	6371000 25	
F1209	6371000 3	25 -15	F1274	6371000 11		F1339	6371000 26	
F1210	6371000 3	25 -20	F1275	6371000 11		F1340	6371000 26	
F1211	6371000 3	31 -20	F1276	6371000 11		F1341	6371000 26	
F1212	6371000 3	31 -15	F1277	6371000 11	7 -30	F1342	6371000 26	
F1213	6371000 3	35 -15	F1278	6371000 11		F1343	6371000 27	
F1214	6371000 3	35 -20	F1279	6371000 12		F1344	6371000 27	
F1215	6371000 3	40 -20	F1280	6371000 12		F1345	6371000 27	
F1216	6371000 3	40 -15	F1281	6371000 12		F1346	6371000 27	
F1217	6371000 3	45 -15	F1282	6371000 12		F1347	6371000 28	
F1218	6371000 3	45.1 -15	F1283	6371000 13	0 -25	F1348	6371000 28	
F1219	6371000 3	45 -20	F1284	6371000 13		F1349	6371000 28	
F1220	6371000 3	45.1 -20	F1285	6371C00 13		F1350	6371000 28	
F1221	6371000 3	50 -20	F1286	6371000 13		F1351	6371000 28	
F1222	6371000 3	50 -15	F1287	6371000 14		F1352	6371000 29	
F1223	6371000 3	55 -15	F1288	6371000 14		F1353	6371000 29	5 -30
F1224	6371000 3	55 -20	F1289	6371000 14		F1354	6371000 30	
F1225	6371000 0		F1290	6371000 14		F1355	6371000 33	0 -25
F1226	6371000 3	-15	F1291	6371000 15		F1356	6371000 30	5 -25
F1227	6371000 4	-20	F1292	6371000 15		F1357	6371000 30	
F1228	6371000 6		F1293	6371000 15		F1358	6371000 31	
F1229	6371000 1		F1294	6371000 15		F1359	6371000 31	
F1230	6371000 1	0 -20	F1295	6371000 15		F1360	6371000 31	
F1231	6371000 1		F1296	6371000 15		F1361	6371000 31	
F1232	6371000 1	2 -17	F1297	6371000 16		F1362	6371000 32	
F1233	6371000 2	0 -15	F1298	6371000 16		F1363	6371000 32	
F1234	6371000 2		F1299	6371000 16		F1364	6371000 32	
F1235	6371000 2		F1300	6371000 16		F1365	6371000 32	
F1236	6371000 2		F1301	6371000 17		F1366	6371000 33	
F1237	6371000 3		F1302	6371000 17		F1367	6371000 32	
		· -				,		- 20

F1368	6371000	335	-25	F1433	6371000	110	-35	F1498	6371000	254 9	-37 2
F1369	6371000	335	-30	F1434	6371000	113	-34	F1499	6371000		-373
F1370	6371000	340	-30	F1435	6371000	115	-40	F1500	6371000	255	-37
F1371	6371000	340	-25	F1436	6371000	120	-40	F1501		255 1	-37 1
F1372	6371000	346	-27	F1437	6371000	117	-34	F1502		255	-35
F1373	6371000	346.1	-27	F1438	6371000	120	-33.5	F1503		260	-35
F1374	6371000		-30	F1439	6371000	125 -	-33	F1504		260	-375
F1375	6371000	345.1	-30	F1440	6371000	125	-36	F1505	6371000	260	-376
F1376	6371000	350	-30	F1441	6371000	125	-40	F1506	6371000	260	-40
F1377	6371000	350	-25	F1442	6371000	130	-40	F1507	6371000	265	-40
F1378		355	-25	F1443	6371000	130	-36	F1508	6371000	265	-38.1
F1379	6371000		-30	F1444	6371000	130	-32.5	F1509	6371000		-38
F1380	6371000		-30	F1445	6371000	133	-32	F1510	6371000	268	-38
F1381	6371000		-25	F1446	6371000	135	-36	F1511	6371000	268	-38.1
F1382	6371000	_	-28	F1447	6371000	135	-40	F1512	6371000		-35
F1383		5	-30	F1448	6371000	140	40	F1513		275	-35
F1384	6371000	10	-31	F1449	6371000	140	-34	F1514	6371000		-40
F1385		10	-25	F1450	6371000	144	-36	F1515	6371000		-40
F1386		16	-25	F1451	6371000	145	-40	F1516	6371000		-40
F1387		15	-30	F1452		150	-40	F1517	6371000		-35
F1388		19	-30	F1453	6371000	150	-36	F1518		287	-34
F1 389 F1 390		22	-30 25	F1454	6371000	155	-35	F1519		286	-40
F1390		20 25	-25 -25	F1455		155	40	F1520	6371000		-40
F1392		23 27	-25 -30	F1456 F1457		161	-40	F1521	6371000		-35
F1393		33	-30 -30	F1457	6371000 6371000	160 165	-37	F1522	6371000	295	-35
F1394		33	-30 -27	F1459		165	-35 -40	F1523		295	-40
F1395		30	-2 <i>1</i> -24	F1460		170	49	F1524 F1525	6371000 6371000	302 300	-40
F1396		37	-30	F1461	6371000	170	35	F1526	6371000		-35 -35
F1397		40	-30	F1462		177.5	-35	F1527		305	-35 -40
F1398		40	-25	F1463		175	-32 -40	F1528	6371000		40
F1399		45	-25	F1464	6371000	180	49	F1529	6371000		-35
F1400		45	-30	F1465	6371000	180	-37.5	F1530	6371000		-35
F1401		50	-30	F1466		180	-34	F1531	6371000		-40
F1402		50	-25	F1467		185	-35	F1532		318	40
F1403		55	-25	F1468	6371000	185	-40	F1533	6371000		-38
F1404		55	-30	F1469	6371000	190	-40	F1534	6371000		-34
F1405	6371000	60	-30	F1470	6371000	190	-35	F1535		323	-34
F1406	6371000	60.2	-30	F1471	6371000	195	-35	F1536	6371000		-40
F1407	6371000	65	-30	F1472	6371000	195	-40	F1537	6371000		-40
F1408	6371000	65	-26.6	F1473	6371000	200	-35	F1538		330	-35
F1409	6371000	65	-26.5	F1474	6371000	200	-40	F1539	6371000	335	-35
F1410	6371000	60	-25	F1475	6371000	205	-40	F1540	6371000	335	-40
F1411	6371000	68	-24.1	F1476	6371000	205	-35	F1541	6371000	340	40
F1412	6371000		-24	F1477		210	-35	F1542	6371000	340	-35
F1413	6371000		-24.2	F1478	6371000	210	-40	F1543	6371000	344	-37
F1414	6371000	68.2	-24.1	F1479	6371000		-40	F1544	6371000	344.1	-37
F1415	6371000		-30	F1480	6371000		-35	F1545			-40
F1416	6371000		-30	F1481	6371000		-35	F1546	6371000		-40
F1417	6371000		-30	F1482	6371000		-40	F1547	6371000		-40
F1418	6371000		-25	F1483	6371000		-40	F1548	6371000		-35
F1419	6371000		-25	F1484	6371000		-35	F1549	6371000		-35
F1420	6371000		-30	F1485	6371000		-35	F1550	6371000		-40
F1421	6371000		-30	F1486	6371000		-40	F1551	6371000		-40
F1422	6371000		-25	F1487	6371000		-40	F1552	6371000		-35
F1423	6371000		-25	F1488	6371000		-35	F1553	6372000		-35
F1424	6371000		-30	F1489	6371000		-35	F1554	6371000		-40
F1425	6371000		-22	F1490	6371000		-40	F1556	6371000		40
F1426	6371000		-35	F1491	6371000		-40	F1556	6371000		-35
F1427	6371000		40	F1492	6371000		-35	F1557		17	-36
F1428		100	-40	F1493	6371000		-36.1	F1558	6371000		-40
F1429		100	-35	F1494	6371000		-36	F1559	6371000		-40
F1430		105	-35	F1495	6371000		-40	F1560	6371000		-36
F1431		105	40	F1496	6371000		40	F1561	6371000		-33
F1432	6371000	110	-40	F1497	6371000	253.	-40	F1562	6371000	<i>1</i> 3	-36

										•	
F1563	6371000	25	-40	F1628	6371000	141	-50	F1693	6371000	284.1	-46
F1564	6371000	30	-40	F1629	6371000	141.1	-50	F1694	6371000	284	46.1
F1565	6371000	30	-35.5	F1630	6371000	140	-491	F1695	6371000	283	-50
F1566	6371000	34	-35	F1631	6371000	140.1	49	F1696	6371000	290	-50
F1567	6371000	35	-40	F1632	6371000	140	-45	F1697	6371000	290	-45
F1568	6371000	40	-40	F1633	6371000	145	-45	F1698	6371000	294	47
F1569	6371000	40	-35	F1634	6371000	145	-50	F1699	5371000	295	-50
F1570	6371000	45	-35	F1635	6371000	150	-50	F1700	637107	مد	-50
F1571	6371000	45	-40	F1636	6371000	150	-45	F1701	6371000	300	-45
F1572	6371000		-40	F1637		155	-45	F1702	6371000	306	-45
F1573		50	-40	F1638	6371000	155	-50	F1703	6371000	305	-50
F1574 F1575	6371000		-36.1	F1639	6371000	160	-50	F1704	6371000	310	-50
F1576	6371000 6371000	50 55	-36	F1640		160	-45	F1705		310	-45
F1577	_	55	-33 -33.1	F1641 F1642	6371000 6371000	162	-45	F1706		315	-44
F1578	6371000		40	F1643		164 165	-50	F1707		312	-46
F1579	6371000		79	F1644		170	45 45	F1708 F1709	6371000		-50
F1580	6371000		-35	F1645		170	-50	F1710	6371000		-5C
F1581	6371000		-35	F1646		175	.50 .50	F1711	6371000 6371000	320 320	-50 -45
F1582		65	-40	F1647		175	45	F1712	6371000	325	-45 -45
F1583		70	-40	F1648		180	45	F1713	6371000	325	-50
F1584	6371000	70	-35	F1649	6371000	180	-50	F1714	6371000	330	-50 -50
F1585	6371000	77	-35	F1650	6371000	186	-50	F1715	6371000	330	-45
F1586	6371000	77 1	-35	F1651	6371000	183	-45	F1716	6371000	335	-45
F1587	6371000		-40	F1652	6371000	190	-45	F1717	6371000	335	-50
F1588		78.5	-40	F1653		190	-50	F1718	6371000	340	-50
F1589		786	-40	F1654	6371000	195	-50	F1719	6371000	340	-45
F1590		80	-40	F1655	6371000	195	-45	F1720	6371000	345	-45 1
F1591	6371000	80	-35	F1656		200	-45	F1721	6371000		-45
F1 592 F1 593	6371000	85 85	-35	F1657		200	-50	F1722	6371000	345	-50
F1593	6371000 6371000	90 90	40 40	F1658			·50	F1723	6371000	350	-50
F1595		90	-35	F1659		205	45	F1724	6371000	350	-48 1
F1596	6371000	95	-33 -43	F1660 F1661		210 210	45	F1725	6371000	350	-48
F1597		95	43 1	F1662		215	-50 -50	F1726 F1727	6371000	350	-44
F1598	6371000		-50	F1663			45	F1728	6371000 6371000	355 353 1	-45
F1599	6371000	100	-50	F1664			45	F1729	6371000	353	-50 -50
F1600	6371000	100	-44 1	F1665			-50	F1730	6371000		-50
F1601	6371000	100	-44	F1666			-50	F1731	6371000		4 5
F1602	6371000	105	-45	F1667			-45	F1732	6371000		45
F1603	6371000	105	-45.1	F1668		230	-45	F1733	6371000		-50
F1604	6371000	105	-50	F1569	6371000	230	-50	F1734		10	-50
F1605	6371000		-50	F1670	6371000	235	-50	F1735	6371000	10	-45
F1606			-46.1	F1671			-45	F1736	6371000		-45
F1607			-46	F1672	6371000		-45	F1737	6371000	15	-50
F1608			45	F1673			-50	F1738		20	-50
F1609			-48	F1674			- <u>50</u>	F1739	6371000		-45
F1610	6371000		-48.1	F1675	6371000		-50	F1740	6371000		-45
F1611 F1612			-50	F1676	6371000		-50	F1741	6371000		-50
			-50	F1677			441	F1742	6371000		·50
F1613 F1614	6371000 6371000		-48.1	F1678			-44	F1743	6371000		-50
F1615			-48 -45	F1679			-45	F1744		35	-50
F1616			45	F1680 F1681			45	F1745	6371000 6371000		-46 1
F1617			483	F1682			-50	F1746			-46
F1618			48.4	F1683			-50 -45	F174 7 F174 8	6371000 6371000	30 40	-45 -43
F1619			-50	F1684			45	F1749	6371000		-43 -43.1
F1620			- 50	F1685			-50	F1750	6371000		-43.1 -50
F1621			-48.7	F1686	6371000		-50	F1751	6371000		-50 -50
F1622			48.6	F1687	6371000		45	F1752		45	-30 -45
F1623			-45	F1688	6371000		-45	F1753	6371000		-45
F1624			-45	F1689	6371000		-50	F1754	6371000		-50
F1625			-48.8	F1690	6371000		-50	F1755	6371000		-50
F1626	6371000	135	-48.9	F1691	6371000		-441	F1756	6371000		-45
F1627	6371000	135	-50	F1692	6371000		-44	F1757	6371000		-45
			•				•				-

							4	•
F1758	6371000 60	-50	1 F1823	6371000 185	-6 0	F1888	6371000 310	40
F1759	6371000 65	-50	F1824	6371000 190	. ~~	F1889	6371000 315	-60 -60
F1760	6371000 67	-47	F1825	6371000 195	, 60	F1890	6371000 313	-50 -56
F1761	6371000 65	-44	F1826	6371000 195	·55	F1891	6371000 320	·55
F1762	6371000 70	-45	F1827	6371000 200	-SS	F1892	6371000 320	-60
F1763	6371000 70	-50	F1828	6371000 200	-60	F1893	6371000 325	-60 -60
F1764	6371000 75	-50	F1829	6371000 205	-60	F1894	6371000 325	-55
F1765	6371000 75	-45	F1830	6371000 205.1	- 60	F1895	6371000 330	-55
F1766	6371000 79	-42.1	F1831	6371000 205	-55	F1896	6371000 330	
F1767	6371000 791	-42	F1832	6371000 210	-55	F1897	6371000 335	-60 -60
F1768	6371000 80	-45	F1833	6371000 210	-58	F1898	6371000 335	-55
F1769	6371000 80	-50	F1834	6371000 210	-58.1	F1899	6371000 340	-55
F1770	6371000 85	-50	F1835	6371000 210	-60	F1900	6371000 350	-55 -57
F1771	6371000 85	-45	F1836	6371000 215	- 60	F1901	6371000 350	-57 -54
F1772	6371000 85	-42.1	F1837	6371000 215.1	-56 .1	F1902	6371000 354	-54
F1773	6371000 85	-42	F1838	6371000 215	-56	F1903	6371000 355	-55
F1774	6371000 88	41.5	F1839	6371000 215	-53	F1904	6371000 355	-55.1
F1775	6371000 88	41.6	F1840	6371000 220	-53	F1905	6371000 355	-55.1 -60
F1776	6371000 90	-45	F1841	6371000 220	-56	F1906	6371000 0	- 60
F1777	6371000 90	-50	F1842	6371000 220	-56.1	F1907	6371000 0	-54 2
F1778	6371000 95	-55	F1843	6371000 220	-60	F1908	6371000 3599	-54 I
F1779	6371000 95	-59	F1844	6371000 225	- 60	F1909	6371000 0	-54
F1780	6371000 100	-59 5	F1845	6371000 225	-55 6	F1910	6371000 0 1	-54 1
F1781	6371000 100	-55	F1846	6371000 225	-55.5	F1911	6371000 5	-53
F1782	6371000 105	-55	F1847	6371000 225	-53	F1912	6371000 5	-53 I
F1783	6371000 105	-60	F1848	6371000 230	-55.5	F1913	6371000 5	٠ ٥٥ .
F1784	6371000 110	-60	F1849	6371000 230	-55 6	F1914	6371000 10	-60
F1785	6371000 110	-55	F1850	6371000 230	-60	F1915	6371000 12	-60
F1786	6371000 115	-55	F1851	6371000 235	-60	F1916	6371000 10	-53 I
F1787	6371000 115	-60	F1852	6371000 235	-55 6	F1917	6371000 10	-53
F1788	6371000 120	-60	F1853	6371000 235	-55.5	F1918-	6371000 15	-52
F1789	6371000 120	-55	F1854	6371000 240	-55	F1919	6371000 15	-52 1
F1790	6371000 125	-55	F1855	6371000 240.1	-55.1	F1920	6371000 15	-60
F1791	637100C 125	-59.5	F1856	6371000 240	-60	F1921	6371000 20	-60
F1792	6371000 130	-59	F1857	6371000 245	-60	F1922	6371000 20	-52 6
F1793	6371000 130	-55	F1858	6371000 245	-55	F1923	6371000 20	-52 5
F1794	6371000 135	-55	F1859	6371000 250	-55	F1924	6371000 26	-53
F1795	6371000 135	-60	F1860	6371000 250	-60	F1925	6371000 26	-53 1
F1796	6371000 140	-60	F1861	6371000 255	-60	F1926	6371000 25	-60
F1797	6371000 140	-55	F1862	6371000 256	-55	F1927	6371000 30	دَنَ
F1798	6371000 145	-55	F1863	6371000 260	-55	F1928	6371000 30	-55
F1799	6371000 145	-60	F1864	6371000 260	-60	F1929	6371000 35	-55
F1800	6371000 150	-60	F1865	6371000 265	-60	F1930	6371000 35	-60
F1801	6371000 150	-54	F1866	6371000 265	-55	F1931	6371000 40	-60
F1802	6371000 150.1	-53.9	F1867	6371000 270	-55	F1932	6371000 40	-55
F1803	6371000 155	-55	F1868	6371000 270	-60	F1933	6371000 45	·5 5
F1804	6371000 145	-52.5	F1869	6371000 275	-60	F1934	6371000 45	-60
F1805	6371000 152.1	-59	F1870	6371000 275	-55	F1935	6371000 50	-59 5
F1806	6371000 152	-59.1	F1871	6371000 280	-55	F1936	6371000 50	-55
F1807	6371000 159.8	-60	F1872	6371000 280	-60	F1937	6371000 55	-5 5
F1808	6371000 160	-60	F1873	6371000 2 85	-6 0	F1938	6371000 58	-59
F1809	6371000 160	-55	F1874	6371000 285	-55	F1939	6371000 60	-60
F1810	6371000 166	-55	F1875	6371000 290	-55	F1940	6371000 60	-56
F1811	6371000 167	-57	F1876	6371000 290	-60	F1941	6371000 65	-55
F1812	6371000 165	-6 0	F1877	6371000 295	-60	F1942	6371000 65	-60
F1813	6371000 170	-6 0	F1878	6371000 295	-57	F1943	6371000 70	-60
F1814	6371000 1 <i>7</i> 0	-57	F1879	6371000 295	-53	F1944	6371000 70	-55
F1815	6371000 1 <i>7</i> 0	-54	F1880	6371000 300	-53	F1945	6371000 75	-52 5
F1816	6371000 175	-55	F1881	6371000 300	-57	F1946	6371000 75	-55
F1817	6371000 175	-60	F1882	6371000 300	-60	F1947	6371000 75	-60
F1818	6371000 180	-60	F1883	6371000 306	-60	F1948	6371000 80	-60
F1819	6371000 180	-56	F1884	6371000 306	-57	F1949	6371000 80	-55
F1 820	6371000 180	-53	F1885	6371000 305	-53	F1950	6371000 85	-55
F1821	6371000 (85	-55	F1886	6371000 310	-53	F1951	6371000 90	-55
F1822	6371000 190	-55	F1887	6371000 310	-56.5	F1952	6371000 90	-59
	_				_	,	· -	-

F1953	6371000 145	-52.6	F2018	6371000 270	-66
F1954	6371000 340	-59	F2019	6371000 280	-66
F1955	6371000 340	-60	F2020	6371000 280	-75
F1956	6371000 343.1	-59.1			_
			F2021	6371000 289	-76
F1957	6371000 343	-59	F2022	6371000 292	-66
F1958	6371000 345	-55	F2023	6371000 296	-66
F1 959	6371000 346	-58	F2024	6371000 300	66
F1960	6371000 346	-58.1	F2025	6371000 300	-80
F1961	6371000 346	-60	F2026	6381000 310	-81
F1962	6371000 350	₩	F2027		
F1963	6371000 350	-57 I	50000	6371000 310	-66
			F2028	6371000 320	-65
F1964	6371000 95	-65	F2029	6371000 290	-70
F1965	6371000 98	-70	F2030	6371000 297.5	-70
F1966	6371000 99	-67	F2031	6371000 300	·72
F1967	6371000 110	-6 7	F2032	6371000 310	-72
F1968	6371000 110	-70	-2033	6371000 320	-72
F1969	6371000 120	-70	F2034	6371000 320	-81
F1970	6371000 120	-67			
			F2035	6371000 330	-81
F1971	6371000 130	-6 7	F2036	6371000 330	-73
F1972	6371000 130	-70	F2037	6371000 329	- 65
F1973	6371000 140	-70	F2038	6371000 340	-67
F1974	6371000 138.5	-66 5	F2039	6371000 340	-73
F1975	6371000 139	-64	F2040	6371000 339	-80
F1976	6371000 145	-65	F2041	6371000 350	- 75
F1977	6371000 145	-67	F2042		
				6371000 354	-72
F1978	6371000 150	-70	F2043	6371000 350	-6 7
F1979	6371000 150	-68 5	F2044	6371000 0	-63
F1980	6371000 150	- 65 5	F2045	6371000 0	-70
F1981	6371000 165	-61 5	F2046	6371000 8	-73
F1982	6371000 165	-616	F2047	6371000 10	-70
F1983	6371000 160	-66	F2048	6371000 10	-65
F1984	6371000 163	-70			
F1985			F2049	6371000 7	-62
	6371000 170	-71	F2050	6371000 20	-65
F1986	6371000 170	-67	F2051	6371000 20	-70
F1987	6371000 170	-62 1	F2052	6371000 20	-71 5
F1988	6371000 170	-62	F2053	6371000 33	-70
F1989	6371000 180	-63	F2054	6371000 30	-65
F1990	6371000 180	-63 1	F2055	6371000 40	-65
F1991	637100C 180	-68	F2056	6371000 40	-70
F1992	6371000 180	-71 5			
			F2057	6371000 44	-70
F1993	6371000 190	-73	F2058	6371000 55	-70
F1994	6371000 190	-69	F2059	6371000 52	-66
F1995	6371000 187	-64 1	F2060	6371000 60	-65
F1 996	6371000 187	-64	F2061	6371000 62	-70
F1997	6371000 195	-62 5	F2062	6371000 70	-70
F1998	6371000 195	-62 6	F2063	6371000 70	-65
F1999	6371000 200	-61	F2064	6371000 80	5
F2000	6371000 200	-61.1			
			F2065	6371000 80	-70
F2001	6371000 203	-70	F2066	6371000 90	-70
F2002	6371000 200	-75	F_J67	6371000 90	- 65
F2003	6371000 210	-74	F2068	6371000 346	-68
F2004	6371000 210	-68	F2069	6371000 95	-70
F2005	6371000 220	-65.5	F2070	6371000 135	-616
F2006	6371000 220	-73	F2071	6371000 100	-75
F2007	6371000 225	-64	F2072		
F2008	6371000 227	-72		6371000 110	·75
			F2073	6371000 120	-75
F2009	6371000 230	-70	F2074	6371000 130	-75
F2010	6371000 230	-64 5	F2075	6371000 140	-75
F2011	6371000 240	-65	F2076	6371000 150	-75
F2012	6371000 240	-7 3	F2077	6371000 160	-75
F2013	6371000 250	-73 5	F2078	6371000 170	-7 5
F2014	6371000 250	-65.5	F2079	6371000 180	-75 -75
F2015					_
	6371000 260	-66 74	F2080	6371000 190	-75
F2016	6371000 260	-74	F2081	6371000 200	-80
F 20 17	6371000 270	-75	F2082	6371000 210	-80

F2083 6371000 230 -80 F2084 6371000 250 -80 F2085 6371000 270 -80 F2086 6371000 290 -80 F2087 6371000 220 -75 F2088 6371000 0 -80 F2089 6371000 20 -80 F2090 6371000 10 -75 F2091 6371000 20 -75 F2092 6371000 30 -75 F2093 6371000 50 -75 F2094 6371000 40 -80 F2095 6371000 60 -80 F2096 6371000 55 -75 F2097 6371000 60 -75 F2098 6371000 70 -75 F2099 6371000 80 -75 F2100 6371000 80 -80 F2101 6371000 90 -75 F2102 6371000 100 -80 F2103 6371000 120 -80 F2104 6371000 140 -80 F2105 6371000 155 -80 F2106 6371000 155 -82 F2107 6371000 180 -85 F2108 6371000 180 -80 F2109 6371000 200 -83 F2110 6371000 220 -85 F2111 6371000 260 -85 F2112 6371000 300 -85 F2113 6371000 320 -85 F2114 6371000 340 -85 F2115 6371000 20 -85 F2116 6371000 60 -85 F2117 6371000 100 -85 F2118 6371000 140 -85 F2119 6371000 180 -875 F2120 6371000 270 -875 F2121 6371000 0 -875 F2122 6371000 90 875

Appendix III

Discretized Elements with Crustal Thickness and Ice Load (Presented in thickness (m)).

- 1) There are 15 groups and the elements are independently numbered in each group.
- 2) The elements include triangles (3 nodes) and quadrilaterals (4 nodes). In the triangle element entries the digits from the fifth columns should be moved forward to refer to their meanings. Abbreviations in the table are explained below:

Nod#/crust, node number or crustal thickness in this column; matrl/grad, the elastic properties in material mechanical classification; crust/thics, crustal thickness; ice/thics, mean ice sheet thickness in the element.

3) The crustal thicknesses were converted to lithospheric thicknesses during calculation, as exemplified in the following.

e.g.,

 $2.5 \text{ km} \rightarrow 20 \text{ km}$

 $5.0 \text{ km} \rightarrow 35 \text{ km}$

20 km \rightarrow 70 km

35 km \rightarrow 105 km.

						2 00E +03	1 50E+03	ľ	3.00E+03																															2 00E+03
2.00E+04	2 00E+04	200E+04	200E+04	5 00E+03	5.00E+03	2 00E+04	200E+04		3 50E+04	2.00E+03	2.00E+04	5.00E+03		0								2.00E+04		5.00E+03	5 00E+03	5 00E+03		5.00E+03	2 50E+03	2.50E+03	2 50E+03	2.50E+03	2 50E+03	5 00E+03	5 00E+03	5 00€+03	5 00E+03	5.00E+03	2 50E+03	2 00E+04
_	1	1	-	-	1	1	-	2.00E+04	1	3.50E+04	1	1		0							2.00E+04	1	2.00E+04	1	1	1	5.00E+03	-	_	-	-	1	1	-	-	-	1		2 00E+04	
37	39	41	88	\$	43	77	-	97	1	47			0		1	0	0	0	1		50	1	55	54	53	1	8	61	56	57	58	59	62	63	2	65	99	1	75	1
348	35.00	37 00	30 00 00 00	32 00	38 00	42 00	43.00	97.00	44.00	46.00	46.00	47.00	3.00	00.00		00.00			1		49.00	45.00	51.00	51.00	SO 00	49.00	52.00	\$200	60.00	2500	53.00	54.00	55.00	61.00	26.00	57.00	28 00	29 00	00 69	73.00
	32												1	2 94E+04				0			46	46	45	8	49	48	84	47	24	8	52	53	22	22	19	98	57	58	92	69
32	36	38	9	20	80	20	21	44	22	44	23	13	162	0	0.258	0	0	ō	0	47	48	49	\$	2	53	25	47	72	25	19	98	57	58	92	62	ස	29	65	27	27
31	32	33	ਲ	35	96	37	38	8	40	41	42	43	9	1	1 21E+11	0	0	0	0	1	2	3	7	9	9	7	8	6	10	11	12	13	14	15	91	17	18	19	8	21

							ice/thics.													2 50E+03	5 00E+03								2.50E+03					2 50E+03			2 00E+03		
			0				crst/thics.													0	0	2.00E+04	2.00E+04	2.00°.+04	2.00E+04	5 00E+03	2 00E+04	1 00E+03	3 50E+04	2 00E+04	5 00E+03	2.50E+03	5.00E+03	2 00E+04	2 50E+03	2 B0E+03	3.50E+04	2 00E +04	2 00E+04
			0				matrigra	-										2 00E+04		1	1	1	1	-	+		1	2 00E+04	-	-	-	1	1	1	2.00E+04	3 50E+04	-	1	1
		0		1	0	0	ncd#krrst		2.50E-03	5.00E+03	2.00E+04	2.00E+04	2.00E+04	5.00E+03	2.00E+04	2.30E+04	12	5.00E+03	14	15	16	17	18	19	8	21	1	22	ಬ	13	25	82	27	1	1	82	31	33	35
	-8	300	000		00.0	000	# apou		000	3.00	4.00	5.00	9.00	7.00	8.00	9.00	10 00	11.00	200	13.00	14.00	15 00	16.00	17.00	ઝ•લ્ટ	19.00	2000	2100	2100	22 00	2300	24 00	2500	36 00	27 00	28 00	2800	30.00	31 00
	0	1	2 94E+04		0	0	s epou		0	2	3	4	5	9	7	8	6	10	12	2	3	*	5	9	18	7	8	6	10	11	12	13	14	15	10	27	17	30	51
	0	43	0	0 258	0	0	900		0	1	1	1	1	1	I	-	1	1	1	3	4	5	9	7	7	8	6	10	11	12	2	14	15	16	17	17	18	19	8
	15(groups)	9	1	1 21E+11	0	0	elem.#		0	-	2	3	7	5	9	_	8	0	10	11	12	13	14	15	16	17	18	19	8	21	22	8	25	æ	8	27	82	æ	8

29 %	101		103 00	176	•	3505-04	
79	2	8		110			4.00E+03
3	102	103	177.0C	103	1	3 50 5 + 04	4 00E+03
99	96	96	104.00	176	1	3.50E+04	4.60E+03
29	103	104	178.00	104	1	3 50E+04	4 10E+03
89	96	88	105.00	178	1	3 50E+04	4 50E+03
69	Ş	105	179.00	105	1	3 50E+04	4.00E+03
02	8	3	106.00	173		3.50E+04	4.20E+03
112	100	106	180.00	106	-	3.50E+04	3.20E+03
22	8	83	107.00	180	1	3.50€+04	3.50E+03
દ્ય	106	107	181.00	107	1	3.50E+04	3.00E+03
P.L	8	16	110.00			3.50E+04	2.50E+03
75	107	110	109.00	181	3.50E+04	2.50E+03	
92	107	109	108.00	1		3.50E+04	2.50E+03
<u> </u>	181	108	182.00	-	3.50E+04	2.50E+03	
82	106	183	182.00	183	5.00E+03		
2	108	100	184.00	1	1	2 50E+03	
08	91	8	110.00	1	3.505+04		
18	8	111	110.00	109	2.00E+04		
82	110	111	185.00	184	1	5.00€+03	
83	109	185	186.00	111	1	5.00E+03	
84	8	88	112.00	185	1	2.00E+04	
88	111	112	187.00	186	1	5.00E+03	
98	185	187	188.00	1	1	5 00E+03	
87	88	88	113.00	1	3.50E+04		
88	8	113	112.00	187	2.00E+04		
68	117	113	189.00	188	1	5.00E+03	
%	1.37	180	190.00	66	1	5.00E+03	
16	ક	87	115.00	113	1	2.00E+04	
85	88	115	114.00	189	1	2.00E+04	
j u 6	113	114	191.00	190	1	5.00E+03	
75	169	191	192.00	1	1	5.00E+03	
38	67	98	117.00	1	3.50E+04		
•	87	117	115.00	116	2.00E+04		
9,1	115	117	118.00		1	200E+04	
86	114	115	116.00	191	2.00E+04		
86	114	116	193.00	1	1	5.00E+03	
100	191	193	192.00	1	5 00E+03		
101	116	118	193 00	117	5.00E+03		
102	88	122	11900	118	1	3.50E+04	
103	117	119	120.00	1	1	2.00E+04	

2	2.50E+03	L	4 3 50E+03	4 2.50E+03	4 2.00E+03	ପ	4 1 50E+03	3	╘	5	_	Ļ	3	0	0	0			0						7	4		4	4	4		4	•	•	4	•	•		
3.00E+0	3 50E	3 50E+04	3 50E+04	3 50E+04	3.50E+04	1.50E+03	3 50 6+04	3 50E+0	2.00E+0	2.00E	<u> </u>	Щ	2.00E+04	5.00E+03	2.50E+03	5.00E+03									3.50E+04	3.50€+04				3.50E+04		3 50E+04	3.50E+04	3 50€ +04	3 50E+04	3 50E+04	3 50E+04		
3.50E+04			_	1	1	3.50E+04			_	•		l .	1	1		l .	£.00€+03		0						1	1	3 50E+04	1	1	1	3 50E+04	1	1	1	1	1	1	3.50E+04	2.00E+04
156	155	158	159	160	1	162	161	191	165	166	 - 89	168	169	170	171	1		0		1	0	0	0	199	200	1	201	203	204	1	205	202	208	209	210	212	1	1	1
157 00	159.00	160 00	163 00	162.00	161 00	163.00	164 00	165 00	166.00	167 00	167.00	00 99	167 00	170.00	171.00	172.00	173 00	300	00'0		00.0	000	000	000	197 00	198 00	202.00	200.00	202.00	201.00	206.00	204.00	206 00	205 00	207.00	209 00	209.00	212 00	21100
158	158	159	92	163	162	11	11	191	68	991	168	99	691	99	99	51	51	1	2.94E+04		0	0	0	0	139	197	199	199	138	202	203	203	133	902	132	202	121	210	210
22	_	156	22	158	159	70	163	162	71	164	99	68	99	99	65	98	172	146	0	0 258	0	0	0	0	138	199	138	202	133	203	133	506	132	202	127	82	Ī	82	212
145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	191	162	9	1	121E+11	0	0	0	0	1	2	3	*	5	9	4	8	6	10	Ξ	12	13	14	15

	8		8		ş			ş	8	ş		+04	3	8	8	+04		+04	8	8	+04	±04	+04	8	ş		8	3	3	8	8	3	8	8		3	2	04 2 50E+03	2 00F+03
	3 50E+04		200E+04		200E+			3 50E+	3.50E+04	3.50E+		3 50E+	3.50E+04	3 50E+04	3 50E+04	3 50E		3.50E+	3 50E+04	3.50E+04	3 50E+	3 50E+	3.50E+		3.50E+		3 50E+0		3 50E+04			3 50E+04	3 50E+04	3 50E+04		3 50E+04	3 50E+04	3 50E+04	3 50E+04
2 00E+0		3 50E+04		5 00E +04		2 00E+04	3 505+04				3.50E+04			1	1	1	3.50E+04	1	1	•	1	1	1	-		3.50E+04							-	1	3 50E+04	-	•	1	
122	1	125	1	121	1	1	123	124	Ž	-	128	127	130	131	132	1	134	133	136	137	138	195	196	139	-	141	140	143	<u>₹</u>	145	148	147	146	1	150	151	152	153	154
121 00		124 00	124.00	120.00	126.00	126.00	194.00	129.00	128.00	127.00	129.00	131 00	132.00	135.00	134 00	133 00	135.00	137 00	138.00	195.00	196.00	139 00	142.00	141.00	140.00	142.00	141.00	145 00	148 00	147.00	146.00	149 00	150 00	151.00	149 00	153 00	154.00	157 00	156 12
120	85	123	122	125	125	2	124	83	128	82	130	130	131	28	135	134	136	136	137	8	195	196	æ	142	141	143	143	4	æ	- 8	147	74	149	150	152	152	153	72	157
118		122	119	611	120	125	125				83	128		8	130	131	85	135	134	82	136	137	08		1					143	-	92	148	147	1/2	149	150	74	153
Ş	105	901	107	901	601	110	111	112	113	114	911	116	117	118	119	120	121	155	123	124	125	126	127	128	129	130	131	132	133	52	135	136	137	138	139	140	141	142	143

_	\$	255	252	253.00	256	-	5.00E+03	
	65	18	182	Ш	1	-	3.50E+04	1 50E+03
	09	556	255	257.00	-	3.50E+04		
	19	181	952	<u>L</u>	258	6	5 00E+02	
	29	259	256		260		3.50E+04	
	ප	180	181	259.00	261	l l	3505+04	5 00E+02
	3	260	259	258.00	1	 	3 50E+04	
	99	180	260		262	3.50E+04	5.00E+02	
	99	263	92		78 2		3.50€+04	
Γ	29	Ĕ	± 8€	263.00	2	-	3.50E+04	5.00E+02
	89	264	983		-		3.50E+04	
	69	178	28	267.00	98	3.50E+04	3.00E+03	
	02	287	1 8	265.00	92	-	3.50E+04	5.00E+02
	71	178	178		88		3.50€+04	3.00E+03
•	22	892	267		-	_	3.50€+04	5 00E+02
	22	178	368		271	3.50E+04	3.50E+03	
	74	270	992	269.00	273	ļ	3.50E+04	2 50E+03
	75	1771	178	270.00	272	1	3.50E+04	3.50E+03
	9/	273	270	271.00	1	1	3.50€+04	2.50E+03
	44	1111	273		275	3.50E+04	3.50E+03	
	8/	274	273	272.00	277	1	3.50E+04	2.00E+03
	20	176	177	274.00	276	1	3.50E+04	3.50E+03
	96	277	274	275.00	1	1	3.50E+04	2.00E+03
	81	176	277	278.00	279	3.50E+04	3.00E+03	
	82	278	277	276.00	1	1	3.50E+04	1.50E+03
	63	279	276	280.00	282	2.00E+04		
	84	175	176		1	1	3.50E+04	3.00E+03
	85	282	278		281	3.50E+04	1.50E+03	
	98	282	279	280.00	1	1	2.00€+04	
	87	174	175		1	3 50E+04	1.50E+03	
	88	174	282		284	284 2.00E+04		
	68	283	282	281.00	173	1	2.00E+04	
	8	51	174	283.00	1	1	2 00E+04	
	16	173	283	284 00	1	2 00E+04		
	35	173	787	00 S8Z	1	1 5.00E+03		
	66	173	285	286.00	287	5.00E+03		
	35	172	173	286.00	1	1	5.00E+03	
	96	171	172	289.00	588	5.00E+03		
	96	286	172	287.00	290		5.00E+03	
	26	171	288		291	1	5.00E+03	
-	8	2	171	2000		•	250F±03	

2.00E+04	5.00E+03		5.00E+03	5 00E+03		5 00E+03		5.00E+03	5.00E+03	5.00E+03		5.00E+03	5.00E+03	5.00E+03		5.00E+03	5.00E+03	5.00E+03		5 00E+03	5.00E+03	5.00E+03		5.00E+03	5.00E+03	5.00E+03		5.00E+03	5.00E+03	5.00E+03		5.00E+03	5 00E+03	5 00E+03	5.00E+03	2 50E+03	8	2 50E+03		5 00F+03
-	1	5.00E+03	-	-	5.00E+03	1	5 00E+03	1	=	-	5.00E+03	1	1	1	5.00E+03	1	1	1	5.00E+03	1	1	1	5.00E+03	1	1	1	5.00E+03	-	1	1	5.00E+03	1	1	-	1	-	-	-	255 5.00E+03	-
214	1		217	•	220	1	122	223	722	1	225	727	228	1		231	232	1	233	235	536	1	238	240	239	1	242	243	244	1	245	247	248	249	251	252	253	1	255	257
212.00	213.00	216 00	215.00	216 00	219.00	217 00	222.00	220.00	222.00	221.00	226.00	224.00	226.00	225.00	230.00	228 00	230.00	229.00	234.00	232.00	234.00	233.00	237.00	236.00	237.00	238 00	241.00	239.00	241 00	242.00	246.00	244.00	246.00	245 00	248.00	247.00	250.00	249 00	251.00	252 m
\$	126	214	136	215	218	218	219	219	121	222	223	223	118	922	227	227	193	230	231	231	192	234	235	236	190	237	240	240	186	241	243	243	186	546	247	184	247	250	183	251
126	215	215	121	218	121	219	121	222	118	223	118	226	193	227	193	230	192	231	192	234	190	235	190	237	186	240	186	241	186	243	186	246	184	247	250	183	251	252	182	182
17	18	19	ଛ	12	22	R	24	22	92	22	92	82	30	31	35	æ	*	જ	98	37	98	8	\$	41	42	43	1	45	9#	47	48	64	05	51	25	83	75	55	95	2.5

141	140	331	332 00		3 50E+04	9.305.40
142	332	331	330.00	335	1	3 50E+04
143	139	140	332.00		1	
144	335	332	333 00		1	3 50E+04
145	681	335		198	3 50E+04	
146		335	334 00			3 50E+04
9	163	1	3.00	0		
-	0	2.94E+04	00.0		0	0
1.21E+11	0.258			1		
°	0	°	000	0		
0		°	000			
0	٥	°	8	0		
°		°	L	338		
-	336	337	ਲ		_	3 50E+04
2	8	8	336.00	ऋ		3.50E+04
3		8		340	1	3.50E+04
7	3	338	339.00	342	1	3.50E+04
9	ğ	ଛ			1	3.50E+04
9	342	25	340.00	SPE	ı	3.50E+04
7	æ	202			1	3.50E+04
8		342		346	1	3.50E+04
6	506	205		347	1	3.50E+04
10	346	345		349	1	3 50E+04
11		208		348	1	3 50E+04
12		346		1	1	3.50E+04
13	210	349	350.00		2.00E+04	
14	350	349		353	1	2.00E+04
15	211	210	350 00	1	1	2 00E+04
16	353	350		1	2.00E+04	
17	353	351	352.00	-	5 00E+03	
18	213	211			2.00E+04	
19	213	353	354.00		5.00E+03	
8	38	353	352.00		1	5 00€ +03
21	214	213	354.00	356	1	5 00E+03
22	357	354	355.00	358	1	5.00E+03
S	216	214	357.00		1	5 00E+03
24	358	357	356.00	361	1	5 00E+03
25	217	216			-	
8	361	358		362	_	5 00E +03

2
292 294.00
233 284
296 295 00
ш
_
165 301.00
301 300 00
303 304 00
305 306.00
160 307.00
307 306 00
308 311.00
308 309.00
311 31200
315 314.00
154 316 00
319 320.00
319 31800
320 321.00
<u>L</u>
327 328 00
L

3.50E+04	3 506+04	3.50€+04	3.50E+04	3 50E+04	3.50E+04	3.50E+04	3.50E+04		3.50E+04		2.00E+04	3.50E+04	2.00E+04				2 00E+04	5.00E+03		2.00E+04	5.00E+03			5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03		2.50E+03	5.00E+03	2.50E+03	5.00E+03		2.50E+03			5.00E+03
F	1		-	1	1	-	1	2.00E+04	ı	3.50€+04	1	ı	l	3.50E+04	2.00E+04	5.00E+03	1	1	2.00E+04	1	1	2.00E+04	5.00E+03	-	1	1	1	1	1	5.00E+03	-	1	1	1	5 00E +03	11	5.00E+03	5.00E+03	-
402	104	403	406	907	907	407	1	411	1		412	413	1	1	1	416	417	1	419	418	1	1	421	423	422	424	425	429	1	426	430	431	432	1	431	1	1	435	434
400.00	399.00	401.00	402.00	404.00	403.00	406.00	406.00	409.00	408.00	407.00	400.00	411.00	410.00	412.00	415.00	414.00	415.00	414.00	416.00	416.00	417.00	419.00	420.00	418.00	420.00	421.00	423.00	422.00	424.00	425.00	425.00	429.00	427.00	428.00	430.00	430.00	432.00	433.00	838
262	4 00	265	104	566	404	569	405	406	271	408	407	272	411	275	413	413	412	415	276	280	416	281	419	419	284	420	282	423	286	424	429	287	429	457	583	280	431	428	291
265	401	992	404	569	405	271	\$	407	272	411	411	275	412	276	412	415	276	416	280	281	419	284	284	420	285	423	286	424	287	429	427	588	430	431	280	162	291	432	262
69	2	71	72	22	74	75	9/	77	78	2	98	18	82	8	78	85	98	87	98	88	8	91	28	93	3	8	86	97	88	8	100	101	102	103	101	105	106	107	108

												İ																	i										
5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03		\$ 00E+03	5 00E+03	3.50E+04			3 50E+04	3 50E+04	3.50E+04
1	1	-	-	1	1	1	1	-	-	1	-	-	-	1	1	1	1	1	1	1	1	1	1	1	-	1	1	1	1	-	5.00E+03	1	1	1	3.50E+04	5.00E+03	1	1	1
365	364	998	367	369	368	370	371	373	372	374	375	377	376	378	379	381	380	382	383	385	384	386	387	389	38	98 86	391	392	383	1	752	394	386	1	1		398	400	380
360.00	362.00	363.00	365.00	364.00	366.00	367.00	369 00	368.00	370.00	371.00	373.00	372.00	374.00	375.00	377.00	376.00	378.00	379.00	381.03	380.00	382.00	383.00	385.00	364.00	386.00	387.00	389.00	386.00	380.00	391.00	305.00	392.00	393.00	254.00	395.00	395.00	396 00	385.00	397.00
361	83	362	122	365	224	366	225	389	228	370	229	373	232	374	233	377	236	378	238	381	239	385	242	365	77.	98	245	380	248	380	249	253	385	257	254	38	258	396	361
8	22	365	224	366	222	369	822	370	622	373	232	374	223	377	982	378	238	381	82	382	242	382	244	366	S	8	248	300	240	385	<u>g</u>	257	20	8 2	366	25	192	397	262
8	8	8	31	35	33	ह	38	98	37	38	8	40	41	42	€	7	45	46	47	\$	8	S	51	52	S	3	જ	95	57	8	8	8	19	23	ន	3	65	99	67

3 50E+04	3 50E+04	3 50E+04	3 50E+04	3 50E+04	3 50E+04	3 50E+04	3 50E+04	3.50E+04	3 50E+04	3 50€+04	3.50€+04	3.50E+04		0					_	3.50E+04	3.50E+04	3.50E+04	3.50E+04	3.50E+04	3 50E+04	3.50E+04	3 50E+04	2.00E+04	3.50E+04		2 00E+04			2.00E+04		5 00E+03	5.00E+03	5 00E+03	5.00E+03	5 00E+03
1	1	1	1	1	1	l	ı	ı	1	1	1	1		0						1	1	1	1	1	1	1	1	1	1	3 50E+04	1	5.00E+03	3 50E+04	1	5.00E+03	μ	1	1	1	-
472	473	475	474	476	477	479	478	480	481	336	337		0		1	0	0	0	484	485	486	487	486	489	493	492	491	494	1	495	1	1	495	1	497	499	200	205	501	503
469 00	471.00	470.00	47200	473.00	475.00	474.00	476.00	477.00	479.00	478.00	480.00	481.00	3.00	00.00		000	00.0	00.0	0.00	462.00	483.00	484.00	485 00	486.00	487.00	488.00	489.00	490.00	483.00	482.00	491.00	496.00	494.00	494.00	498 00	496.00	496 00	497.00	00 664	80 00 00 00 00 00 00 00 00 00 00 00 00 00
468	325	471	88	472	329	475	330	476	333	479	334	480	1	2.94E+04		0	0	0	0	337	485	339	181	340	486	343	488	687	344	493	492	491	347	348	495	88	351	496	352	8
471	326	472	329	475	330	476	333	479	334	490	196	336	170	0	0.258	٥	0	0	0	339	484	340	987	343	488	344	493	492	347	494	161	495	348	351	351	86	382	664	355	205
151	152	153	154	155	156	157	158	159	160	161	162	163	9	-	121E+11	0	0	0	0	1	2	3	7	2	9	7	8	6	0	11	12	13	7	15	91	17	<u>8</u> 2	6	8	12

5 00E+03	5 00E+03		2 00E+04		2 00E+04	2 00E+04	2 00E+04		3 50E+04		2 00E+04	3 50E+04		2.00E+04	3.50E+04				2 00E+04	2.00E+04			3 50E+04	2.00E+04		3 50E+04	2 00E+04	5.00E+03	3 50E+04	2 00E+04			3 50E+04		2 00E+04	3 50E+04	3 50E+04	3 50E+04	3 50E+04	3 50E+04
1	1	2 00E +04	1	2 00E +04	1	-	ı	3 50E+04	1	3.50E+04	1	1	2.00E+04	1	1	2 00E+04	2 00E+04	3 50E+04	1	1	2.00E+04	3.50E+04	1	1	3 50E+04	1	1	1	1	1	3 50E+04	3.50E+04	1	3 50E+04	1	1	+	1	1	•
437	1	440	1	439	441	442	1	446	1	445	444	1	447	448	1	1	1	451	452	1	1	455	454	1	456	457	458	462	461	1	-	463	1	465	467	466	468	69*	471	470
435 00	434 00	438.00	436.00	437.00	438 00	440 00	430,00	443 00	441.00	446.00	442 00	443.00	447.00	445 00	444 00	450 00	449.00	448 00	450.00	453.00	453.00	451.00	452 00	453 00	455 00	455.00	454 00	460 00	456.00	457.00	462.00	465.00	462 00	464.00	46100	463 00	464.00	467.00	466 00	466 00
262	435	434	294	436	437	282	044	430	298	300	177	442	305	9++	445	447	447	447	306	450	440	306	451	452	306	310	455	454	313	456	314	459	317	£62	3	318	463	321	467	322
762	436	437	596	440	440	862	441	442	300	305	446	445	306	305	447	306	450	449	306	451	450	300	300	455	310	313	456	457	314	462	317	19#	318	53	\$	321	467	322	2	333
110	111	112	113	114	115	911	211	118	119	021	121	2 21	123	124	125	126	121	128	129	130	131	132	133	134	SE1	136	137	138	139	0+1	141	142	143	7	145	146	147	<u>=</u>	\$	<u>S</u>

3	2	542	541.00	1	_	5 00€ +03
3	388	395	547.00	975	3.50E+0¢	Ĺ_
જ	547	395	543.00	SYS	-	5.00E+03
98	346	543	848		-	5 00E+03
. 67	300	398			-	3.50E+04
89	548	547	346.00	858	5.00E+03	
69	548	546	545.00	1	Ī	5 00E+03
20	402	399	256.00		3.506+04	
71	300	22	8.63.8	58		3.50E+04
72	3	548	L		_	2.50E+03
25	3	55	_	355	5.00E+0	٠
7.4	953	250	<u> </u>		_	3.50E+04
20	38	552	<u> </u>		_	3.50E+04
12	5	405	1_			3.50E+04
11	557	556	_			2.00E+04
2	88	555				2.00E+04
2	8	403	L	98	3.50€+04	
8	\$	587				2.00E+04
81	095	558		263	_	2.00E+04
28	604	406		-	_	2.00E+04
8	88	260	ட	ı	2.00E+04	
3	2 93	561		264	5.00E+03	
86	410	409	563.00	999		2.00E+04
98	795	563	562.00	•	1	5.00E+03
87	413	410		1	2.00E+04	
88	413	564	267.00	999	5.00E+03	
680	267	795	S65.00	895	l .	5.00E+03
8	717	413	267.00	695	l l	5.00E+03
16	999	267	566.00	571	1	
26	417	414	268.00	025	1	5.00E+03
83	571	568	269.00		1	5.00E+03
3	418	417	571.00	573	1	5.00E+03
8	572	571	570.00		1	5.00E+03
8	421	418	_	574	-	5.00E+03
26	575	572	573.00	576	-	5.00E+03
88	727	421		577	1	5.00E+03
66	576	575	574.00	579	1	5.00E+03
100	425	422	576.00	578	ı	5.00E+03
101	579	576	277.00	280	1	5.00E+03
102	426	425		581	1	2.50E+03
103	280	579	578.00		_	2 50€ +03
						·

٢				<u> </u>																																				
5 00E +03	5.00E+03	5.00E+03	5.00E+03	5 00E +03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	S 00E+03	5 00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5 00E+03	5 00E +03	5.00E+03	S 00E+03
-	1	-	-	-	-	-	-	-	=	-	=	1	ı	1	-	1	1	1	1	1	1	-	1	1	1	1	1	1	1	1	-	1	1	-	-	1	-	-	=	-
205	906	ş	28	33	510	8	511	512	514	513	515	916	518	217	519	220	522	521	523	524	925	525	527	929	530	828	531	235	534	533	535	929	238	537	538	240	242	SEI	25	244
502.00	501.00	203.00	8	8999	306.00	507.00	808 808	510.00	200.00	511.00	512.00	514.00	513.00	515.00	516.00	518.00	517.00	519.00	220.00	\$22.00	\$21.00	523.00	524.00	256.00	525.00	\$27.00	228.00	230.00	229.00	531.00	532.00	534.00	533.00	535.00	236.00	238.00	537 00	239 00	S40 80	542.00
355	205	356	203	88	905	360	202	363	510	364	511	367	514	368	515	371	518	372	519	375	225	376	523	379	526	380	527	383	530	364	531	387	534	88	535	391	538	393	83	394
938	503	320	908	<u>9</u>	202	363	510	364	511	367	514	368	515	371	518	372	519	375	225	376	523	379	226	380	527	383	530	384	531	387	534	386	535	301	236	383	623	384	242	386
22	ន	24	æ	92	27	8	29	8	31	32	೫	8	38	8	37	88	88	0+	41	45	43	7	45	46	47	48	6	32	51	2 5	S	75	55	8	22	8 2	88	8	19	35

465 618 618 620 350E+04 465 618 618 60 1 1 465 620 619 619 619 1 1 465 620 621 621 350E+04 1 1 465 620 621 622 350E+04 1 1 466 622 623 624 625 350E+04 1 466 622 623 624 625 350E+04 1 466 624 624 625 626 350E+04 1 466 624 624 625 626 1 1 470 468 624 626 626 626 626 1 470 470 628 627 628 627 628 1 1 470 471 628 627 628 627 628 627 628 628		3 50E+04	3.50E+04		3 50E+04		2 00E+04	2.00E+04		3.50E+04	2.00E+04	3.50E+04	2.00E+04	3.50E+04		3.50E+04	3.50E+04	3.50E+04	3.50E+04	3.50E+04					3.50E+04	3 50E+04		0						3 50E+04	3 50E+04		3 50E+04	3 50E+04	
616 618 618 620 465 618 618 600 465 618 618 600 465 621 621 621 465 621 621 621 466 621 621 621 466 621 622 623 466 621 623 621 466 621 623 621 470 466 624 623 470 466 624 623 623 624 623 628 477 477 629 627 629 627 629 627 628 629 627 629 629 629 630 630 631 632 632 631 632 632 632 632 632 632 632 632 632 632 632 632 6	SOFLOA	-	1 3.5	50E+04		50E+04	1 20	1 2.0	.50E+04	1 3.5	1 2.0	1 3.5	1 2.0	1 3.5	:50E+04		1 3.5	1 3.5	1 3.5	1 3.5	.50E+04	.50E+04	50E+04	00E+04	1 3.5	1 35		0		4				1 35	1 35	닠	1 35	_	
616 615 620 650 621 622 621 622 466 621 466 621 478 622 628 628 629 628 629 628 629 628 630 629 630 629 630 629 630 630 630 630 640 640 640 630 640 640 640	16.)	-		1		624	1		929	628	627	629	1		631	632	633	989	1		13	1[3		483		0		1	0	0	0	038	149	-		643	=	
616 616 617 617 617 617 617 617 617 617	ᆫ			L										l											636.00		3.00	000		00.00								641.00	ı
242423444	616	459	616	620	620	622	191	621	994	469	624	470	625	473	628	474	629	477	630	478	632	633	634	633	481	636	1	2.94E+04		0	0	0	0	483	637	83	485	079	
152 153 153 153 153 153 153 153 153 153 153	L		L																	187						Ĺ		0	9226					485	١.		487	642	
	146	146	147	148	6*1	051	151	152	153	151	155	156	157	158	159	160	191	791	163	191	165	166	191	168	169	2	9	1	121E+11	0	0	0	0	-	2	3	7	2	
	Γ	Τ	Γ																			Γ			ļ	Γ										Γ		Γ	_
	- 1	1		1	ŀ	•	ı	1	1			i i		1	•	ı	1											ı				1				1			

																								٦	1	Į						\neg								
	5 00E +03	5 00E +03		5 00E +03	5 00E+03	5 00E+03	5 00E +03		2 00E+04	2 00E+04	2 00E+04	2 00E+04			3 50E +04	3 50E+04	3 50E+04	3 50E+04	3 50E+04	3.50E+04	3 50E+04	3 50E+04	3.50E+04		3 50E+04	3 50E +04	3 50E+04	3 50E+04	3 50€+04		3 50E+04		5 00E+03	5.00E+03	2 50E +03	2 50E +03	5.00E+03	5 00E+03	3 50E+04	
5 00E+03	1	1	5 00E+03	1	-	1	1	5 00E +03	1	1	1	1	2 00E+04	3 50E+04	1	1	1	-	1	1	1	1	-	3.50E+04	-	7	-	-	1	3 50E+04	-	3.50E+04	-	1	-	-	=	1	-	3 50€+04
285	583	1	585	28	288	286	1	685	085	285	105	1	1	284	286	286	297	298	909	599	109	602	1	603	605	606	909	209	1	610	1	613	612	614	617	615	619	459	1	1
583 00	581 00	00 9Z Y	58480	282 00	428.00	587 00	285 00	288.00	587.00	296 296 200	289.00	280 00	285.00	203.00	501.00	593 00	594 00	296 00	295.00	597.00	298 00	600 00	200 00	604 00	602 00	604 00	00 C 29	00 S39	00.909	00 609	607.00	611.00	00.609	611.00	613 00	612 00	614.00	617 00	615 00	616.00
280	280	427	883	283	432	3	28	£33	98	287	157	88	864	285	285	439	593	443	965	777	587	48	009	109	109	449	604	453	88	909	909	610	23	8	\$	613	458	614	457	615
924	583	4 28	82	3	£33	£33	287	5	55	988	8 5	88	6 3	63	283	643	985	77	297	844	8	8	109	449	28	453	88	3	88	2	8	8	\$	613	2	614	457	615	194	3
101	\$	106	107	901	\$	100	111	112	113	-	115	91	117	18	=	2€	121	1221	123	₹.	22	25	127	22	129	130	131	132	133	5	38	8	137	82	8	3	5.	2	143	14

31	-	ş	Ş	इ	£0+:	Ş	ई	ş	ş	8	ई	छ	ED+	£0+	ਝ	ई	इ	ई		20+	Н	£03+		70+		£00+	Ş	10+		70 +	40+	70 +			ş	ई		ੜੇ	Ş
5.00E+03	5.00E+03	5.00E+03	500E+03	5 00E+03	5.00E+03	5 00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.002.+03	5.00E+03	5.00E+03	2.50E+03	2.50E+03	5.00E+03		5.00E+03	1	5.00E+03		3.50E+04			2.00E+04	3.50E+04		2.00E+04	3.50E+04	2.00E+04			2.00E+04	5.00E+03		5 00E+03	200E+04
		_			1					-			1	1			1		5.30E+03		5.00E+03		2.00E+04		3.50E+04	1			5.00E+03	1		1	3.50€+04	5.00E+03		-	2.00E+04	-	-
Ř	660	989	089	8	603	602	ş	8	188	8	98	9	10 2	8	702	8	702	1	Ş	1	707	1	706	1	708	711	712	1	714	713	715	1	1	716	718	-	719	82	-
3	8.8	686.00	687.00	680.00	666.00	00.009	801.00	683.00	882.00	8	985.00	697.00	00.969	608.00	00 009	201.00	700.00	551.00	205.00	703.00	206.00	704.00	710.00	563.00	709.00	707.00	710.00	200.00	706.00	711.00	712.00	714.00	713.00	717.00	715.00	717.00	716.00	718.00	716.00
3	88	533	989	236	689	537	069	S. 540	88	2	죵	544	289	545	989	250	701	552	702	2	3	8	554	252	902	9	88	710	8	262	711	265	714	995	98	88	717	28	718
3	8	236	689	537	8	540	6903	541	3	3	697	545	989	950	701	199	202	553	553	8	553	902	999	710	710	9	38	711	712	265	714	999	715	899	717	29	718	573	917
	5	82	53	2	अ	8	57	8	33	8	159	છ	ß	3	જ	99	29	88	8	8	7	22	ß	7	R	R	7	2	8	8	10	8	83	3	28	88	6	8	8
1	7											· · · · · ·					1		1					1		-,			- 1	-1					г-	T	T	ī	r-
		DE+03	DE+03	0€+03	6 +39	DE+03	DE+03	DE+03	E+30	DE+03	DE+03	DE+03	DE+03	DE+03	DE+03	0E+03	0E+03	0E+03	0E+03	DE+03	0E+03	0E+03	06+03	0E+03	0E+03	0E+03	0E+03	0E+03	0E+03	DE+03	0E+03	0E+03	0E+03	DE+03	0E+03	0E+03	0E+03	0E+03	DE+03
L	_	1 5 00E+03	1 5.00E+03	1 5.00E+03	1 5 00E +03	1 5.00E+03	1 5.00E+03	1 5.00E+03	1 5.00€+03	1 5.00E+03	1 5:00E+03	1 5.00E+03	1 5.00E+03	1 5.00E+03	1 5.00E+03	1 5.00E+03	1 5.00E+03	1 5.00E+03	1 5.00E+03	1 5.00E+03	1 5.00E+03	1 5.00E+03	1 5.00E+03	1 5.00E+03	1 5.00E+03	1 5.00E+03	1 5.00E+03	1 5.00€+03	1 5.00E+03	1 5.00E+03	1 5.00E+03	1 5 00E+03	1 5.00E+03						
	500±403	1 5 00E+03	-	-		=	-	1	1	1	1	-	=	=	1	1	ı	1	-	-	-	=	-	=	-	-	-	-	-	=	1	1	1	l	-	-	-	-	-
	500±403	=	-	-		653	652	1 29	1 939	1 1	656	658	659	361	1 099	1 299	1 (39)	1 599	- 799	999	1 299	- 899	1 899	670	671 1	673	672	674	1 5/29	677 1	676 1	678	679	189	089	1 288	1 289	- 2899	1 684
100 300	64/ 5.UDE+03	645.00 649 1	646.00 648 1	647.00 650 1	649.00 651 1	648.00 653 1	650.00 652 1	651.00 654 1	653.00 655	652.00 667 1	654.00 656 1	655.00 658 1	657.00 659 1	656.00 561 1	658.00 660 1	659.00 662 1	1 663 00.138	1 599 00 099	662.00 664	663.00 666 1	1 665.00 667 1	664.00 669 1	1 666.00	667.00 670 1	666.00 671 1	666.00 673 1	670.00 672 1	671.00 674 1	673.00 675 1	672.00 677 1	674.00 676 1	675.00 678 1	1 679 00.779	1 189 00:949	678.00 680 1	679.00 682 1	1 683 00189	1 685 00	00 289
200 3 200 300	64/ 5.UDE+03	645.00 649 1	646.00 648 1	647.00 650 1	649.00 651 1	648.00 653 1	650.00 652 1	651.00 654 1	653.00 655	652.00 667 1	654.00 656 1	655.00 658 1	657.00 659 1	656.00 561 1	658.00 660 1	659.00 662 1	1 663 00.138	1 599 00 099	662.00 664	663.00 666 1	1 299	664.00 669 1	1 666.00	667.00 670 1	666.00 671 1	666.00 673 1	670.00 672 1	671.00 674 1	1 5/29	672.00 677 1	676 1	675.00 678 1	1 679 00.779	1 189 00:949	678.00 680 1	679.00 682 1	1 289	1 685 00	682 00

3 50E+04	3 50E+04	3 50E+04	3 50E+04	3 50E+04		3 50E+04	S 00E+03	5 00E +03	2.50E+03	2.50E+03	5 00E+03	5.00E+03	3 50E +04	3.50E+04	5.00E+03	2.50E+03	5 00E +03		3 50E+04	3.50E+04	5 00E+03	2.50E+03	5.00E+03	2.00E+04	5 00E+03	2.50E+03					2.00E+04		2.00E+04	2.00E+04		2 00E+04		3 50E+04		3505.04
1	-	1	1	1	3.50E+04	1	1	1	1	1	1	1	ı	ı	-	1	=	2 00E+04	1	1	1	1	+	1	1	-	5 00E+03	5 00E+03	\$ 00E+03	2.00E+04	-	2 00E+04	=	-	2 00E+04	-	2.00E+04	-	3.50E+04	-
762	761	763	764	1	765	771	35 2	770	767	769	768	773	774	775	776	777	1	774	783	782	781	780	73	982	785	1	1	1	1	787	1	788	Ş	1	791	-	793	1	282	-
757 00	759.00	760.00	762.00	761.00	772.00	764.00	772.00	765.00	71.00	266.00	770.00	767.00	269 00	768.00	767.00	766.00	765.00	778.00	773.00	74.00	775.00	776.00	277.00	778 00	785.00	784.00	784 00	784 00	789 00	783.00	786.00	789.00	787.00	789.00	782 CJ	790.00	794.00	792.00	794 00	200
758	607	759	610	762	763	763	119	772	612	771	219	770	618	3 2	768	767	766	765	619	229	774	775	176	1111	782	781	780	82	785	623	783	786	929	787	788	788	ie.	627	792	3
75	610	762	611	763	611	772	612	1111	219	28	618	269	619	733	77.4	775	776	1111	622	623	783	782	781	8	783	782	781	8	386	923	923	787	627	788	627	795	782	153	8	18
132	133	134	135	136	137	138	139	140	=	142	143	1	145	146	147	148	149	150	151	152	153	2	155	351	157	35	156	3	191	162	163	2	165	991	167	891	95	5	171	[

																															1									
5 00E +03			5 00E +03	5 00E +03	5 00E +03	5 00E +03			2 50E+03	2 50E+03	2.50E+03	5.00E+03		5 00E+03	5 00E +03	5 00E +03	5 00E+03		5 00E +03	2.00E+04	2 00E +04	2 00E +04	2.00E+04		3	350E+04	3 50E + 04	3 50E +04	350E+04	3 50E+04	3 50E+04	3 50E+04	3 50E+04	3 50E +04	3 50E +04	3 50E+04	3 50E+04	3 50E +04	3 50E+04	7 50E+04
1	5 00E +03	2 00E +04	1	-	-	1	5 00E +03	5.00E+03	1	1	1	1	5 00E +03	1	-	1	=	5 00E +03	-	1	1	-	-	3506+04		7	-			7		-	-	-	-	-	-	-	=	=
1	1	724	725	727	282	-	1	728	730	233	720	1	734	733	735	736	1	737	739	740	742	741	-	75	746	745	2	28	750	749	751	752	754	753	755	756	758	757	759	260
719 00	722 00	721.00	23.00	222.00	248	25.00	731 00	732.00	727.00	731.00	732.00	728.00	730 00	729 00	730 00	734 00	733 00	738 00	736 00	738 00	737.00	739.00	740 00	743 00	218	743 00	24 8	246 00	745 00	747.00	748 00	750.00	749 00	751 00	752 00	754 80	753 00	755 00	256.00	758 00
573	719	719	574	23	577	724	922	726	578	121	731	581	728	285	729	285	734	735	735	286	738	280	739	742	742	501	743	594	746	286	747	208	250	200	751	209	25.	603	755	909
574	22	722	577	2	578	727	122	Ē	581	728	8	3	8	288	ş	286	33	286	738	8	738	Ē	742	35	743	3	746	596	747	200	8	85	152	8	Ž	8	155	8	25	8
16	8	8	3	88	8	26	8	83	100	101	\$	5	Ş	185	2	107	90	100	110	Ξ	112	113	114	115	911	111	118	611	<u>5</u>	121	122	123	124	135	128	127	22	82	5	131

5 00E+03	5 00E+03	5 00E+03	500F-03	5 00E+03	5.00E+03	5.00E+03	5 00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.30E+03	5 00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5 00E+03	5.00E+03	5 00E+03	5 00E+03	
-	-	-		-	-	-	-	-	-	-	-	-	-	-	1	1	1	1	1	1	-	1	11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	PE7 5 mc . mal
826	2	8	28	8	233	83	8	\$	82	537	8	838	940	120	843	842	778	945	847	946	848	649	199	920	862	653	855	158	929	857	928	958	960	1961	663	862	964	965	1	730
824.00	835 8	827.00	8368	828	888	831.00	830.00	835.00	633.00	836.00	834.8	836.00	837.00	839.00	838.00	840.00	841.00	843.00	842.00	844.00	845.00	847.00	946.00	848.00	849.00	851.00	850.00	862.00	BS3.00	855.00	854.00	856.00	957:30	859.00	858.00	960.00	961.00	963.00	962 00	000
099	824	38	827	3	82	299	28	89 9	832	671	923	672	836	675	839	929	840	679	843	089	3	683	847	789	878	289	158	989	852	169	855	269	958	989	850	969	098	669	963	738
663	827	3	8	667	128	639	832	1/9	836	672	9836	675	630	9/9	2	679	843	089	770	C89	144	793	848	289	158	999	238	168	865	685	988	989	659	969	960	009	863	200	198	Ę
27	88	8	8	31	33	33	16	38	98	37	36	30	9	41	75	43	77	45	94	47	48	\$	S	15	25	53	2	88	88	57	95	65	99	19	62	හ	3	99	99	63

	2.00E+04		2.00E+04		2 00E+04				0						2 00E+04	5.00E+03	2 00E+04			2.00E+04	2 00E+04	2.00E+04	2.00E+04	5.00E+03	2 00E+04	5.00E+03	2.00E+04	5.00E+03	2.00E+04	5.00E+03	2.00E+04	5.00E+03	2.00E+04	5 00E+03			5 00€+03	5 00E+03	5 00E+03	5 00E+03
3.50E+04	-	200E+04	-	2.00E+04	-	3 50E+04	2.00E+04		0						-	1	1	2 00E+04	20E+03	1	1	1	1	1	1	1	1	1	1	1	1	1	1	ı	5 00E +03	2.00E+04	ı	1	1	1
982	1	8	-	2		-		0		1	0	0	0	803	805	804	1		; 		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	8	811	810	812	813	815	814	816	817	818	818	820	1	1	823	822	824	825	827
20.00	888	8/2	8	878	82.00	637.00	838.8	8	8		000	00:0	0.00	0.00	800.00	80100	803.00	805.00	802.00	804 00	806.00	007.00	909	608.00	809.00	811.00	810.00	812.00	813.00	815.00	814 00	00.918	00.718	00.618	621.00	00 818	820.00	82100	823.00	822 00
E&	හෙ	8	8	982	982	635	28	1	2.94E.		0	0	0	٥	838	900	639	803	883	641	208	544	507	645	808	647	811	648	812	651	815	652	816	655	819	819	656	820	629	823
38	635	982	787	583	637	483	637	172	0	0.258	δ	ō	0	0	639	803	641	8	805	779	607	545	908	647	811	648	812	651	815	652	816	655	618	959	83	128	629	823	099	824
173	174	175	176	177	178	130	180	9	1	1.21E+11	0	ō	8	0	1	N	8	7	S	9	7	8	8	10	11	12	13	14	15	91	17	81	61	R	12	22	ઘ	54	52	æ

3	8	106	902 00	=	-	5 00E+03	
110	द्व	803	907.00	-	5 00E+03		
Ξ	200	203	00 806	906	5 OOE +03		
112	S	732	904 00	906	1	2 50E+03	
113	8	홄	00.709	737	l .	2 50E+03	
114	736	733	00 906	910	1	5 00E+03	
115	737	908	906.00	1	1	5 00E+03	
911	910	906	00 806	906	5.00E+03		
117	606	906	00.708	910	1	2 50E+03	
118	741	740	737.00	1		2.00E+04	
119	744	741	914.00	1	3.50E+04		
120	745	744	914.00	913	3.50E+04		
121	914	74;	910.00	912	1	2 00E+04	
122	913	910	00 606	911	1	5.00E+03	
133	912	606	00 906	915	1	2.50E+03	
124	748	745	00 116	916	1	3.50E+04	
125	915	914	913.00	918	1	2.00E+04	
126	749	748	915.00	917	1	3 50€+04	
127	918	915	916.00	919	1	2.00E+04	
128	752	749	918.00	921	1	3 50E+04	
129	919	918	917.00	920	1	2.00E+04	
130	753	752	919 00			3.50E+04	
131	920	919	851.00	83	3 50E+04		
132	756	753	920.00	822		3 50E+04	
133	923	920	851.00	924	1	3 50E+04	
134	757	756	923.00	8		岁	
135	924	923	922.00	927		3505.404	
136	760	757	924 00	926		350E+04	
137	927	927.	925.00	928	-	350E+04	
138	19/	92	927.00	929	1	350E+04	
£	828	927	00:926	931	_	20,00	
041	764	761	928 00	8		3000	
=	931	878	00 626	932	-	2 SOE +04	
142	765	764	93100	933	1	3 50E+04	
143	83	331	930 00	935	1	岁	
3	778	765	932 00	834	-	3.50E+04	
145	935	932	933 00	88	-	356.40	
146	770	778	935.00	937	-	200E+04	
147	936	935	93480		-	200E+04	
148	778	936	9000	88	5 00E +03		
149	3	906	938 00	=	-	500E+03	

																					٦	7																i		
\$ 00€ +03		2 50E +03	2 50E+03	2 50E +03		5 00E +03	2 50E +03	5 00E+03	\$ 00E+03	2 50E+03	5 00E+03	5 00E +03	2 50E +03	5 00E +03	5 00E+03	2 50E+03	2 50E+03	3 50E+04	3 50E+04		3 50E+04	3 50E+04	3 50E+04	3 50E+04		3 50E+04	3 50E+04	2 00E +04		3 50E+04		2 00E 104	3 50E+04	5 00E +03	2 00E+04		5 00E +03			5 00E +03
1	5 00E+03	1	-	1	5 00E +03	1	1	1	1	1	1	-	1	•	1	1	1	1	-	3 50E+04	1	-	-	= 	200E-04	-	-		3 50E +O4	١	5 00E +03	-	=	-	=	200.00	-	£ 00€ ±03	200E+04	=
1	698	020	1/8	1	874	12 B		875	876	677	980	878	878	188	682	883	885	884	1	986	687	888	888	1	99	895	\$	1	893		988	997	689	968	1	900	1			903
965 00	30 998	88 88 88	8678	00 998 00 998	00 698	00 698	87000	871.00	874.00	873.00	872.00	875.00	876 00	877 00	880 00	87900	878 00	00 188	88 2.00	983 00	985 00	884 00	986 00	887 00	990 00	989 00	00 888	00 068	00 169	882 00	895 00	994 00	983 00	995 00	00 968	00 969	00 668	902 00	00 969	90100
298	965	8	38	198	203	ğ	698	820	22	874	873	9 2	875	876	712	980	879	713	188	885	715	88 2	716	988	720	720	688	121	980	1691	722	222	768	222	986	268	726	668	3	8
88	1967	ğ	8	878	Ş	20	874	873	8	875	926	712	980	878	713	58	883	715	8885	8	216	98	82	688	121	088	108	722	ğ	78	*	38	988	25	8	98	22	8	8	22
88	8	8	7	22	E	74	22	92	111	82	2	8	16	88	83	2	28	88	48	8	28	8	16	82	83	3	8	88	46	8	8	2	101	102	551	2	\$	901	107	108

12		900	3	2/0	3 WE+W3	
13	813	810		971	1	2 00E+04
14	970	969	00.896	973	1	2.00E+04
15	118	813	00 0/6	972	1	2 00E+94
16		970	971.00	974	1	2 00E+04
17	817	814	973 00	975	1	2.00E+04
18	974	973	972.00	716	1	2.00E+04
19		817	974 00	976	1	2 00E+04
8		974	975.00	978	1	2 00E+04
21		818		979	1	2.00E+04
22	826	446	00'9/6	1	1	2.00€+∪4
23	822	128	_	8	5.00E+03	
2	88	821		86	-	2.00E+04
R		978	<u> </u>	883	-	2.00E+04
8	_	822	<u>L</u>	28	-	5.00E+03
27	L_{-}	88		988	-	2.00E+04
8	3	88	00 00 8	288	-	2.00E+04
R	826	825		1	1	5.00E+03
8	286	963		986	2.00E+04	
31		964		986	1	2.00E+04
32	628	928		1	1	5.00E+03
33	996	987	00.686		5.00E+03	
34	686	987	Ш	991	2.00E+04	
35	830	829		990	1	5.00E+03
36		988	_	242	1	5 00E+03
37	833	830		993	1	5.00E+03
38	266	991	990.00	995	1	5 00E+03
86	834	833	992.00	984	1	5.00E+03
40		365	00.566	966	1	5.00E+03
41	837	834	00.366	997	1	5 00E+03
42		995		666	1	5.00E+03
43	838	837	00 966	966	1	5.00E+03
44	666	966	00.768	1000	1	5.00E+03
45	178	838	00 666	1001	1	5.00E+03
46	0001	666	00 866	1003	1	5 00E +03
47	642	841	1000.00	1002	1	5.00E+03
48	1003	1000	1001 00	1004	1	5.00E+03
49	845	842	1003.00	1005	1	5 00E+03
8	-	1003		1007	1	5 00E+03
51	846	845	1004 00	1006	1	5 00E+03
5	ľ	2	1005 00	900	-	S OF LOS

	5.00E+03	5 00E+03		5.00E+33		2.50E+03	2.50E+03	5.00€+03			5.00E+03		2.00E+04	5.00E+03	2.00E+04	5.00E+03		5.00E+03	5 00E+03	5.00E+03		5.00E+03		0						5 00E+03	5 00E+03	5 00E+03	5.00E+03			5 00E+03	2.007-+04	5 00E+03	2 00E+04	
5 COE +03	1	-	5 00E+03	-	5.00E+03	1	1	1	5.00E+03	5.00E+03	-	200F+04	1	1	1	11	2.00E+04	1	1	1	5.00E+03	1		0						1	1	1	1	2.00E+04	5.00E+03	1	1	1	1	2 00E+04
24	942	1	943	-	945	948	946	1	-	949	-	158	3965	954	883	1	955	957	996	1	108		0		1	0	0	0	1961	096	362	E96	1	1	364	996	296	696	1	1
938 00	940.00	939 00	9448	875	947.00	944.00	947.00	945.00	948.00	950.00	948.00	950.00	950.00	949.00	951.00	952 00	799.00	963 W	289.00	965.00	800.00	356 00	3.00	0.00		000	000	000	0.00	958.00	969.00	961.00	00 096	965 00	965 00	963.00	00 36	964.00	00.996	00 896
937	779	340	2	इ	943	784	944	785	945	946	978	280	230	950	791	951	V36	954	767	6 52	957	957	1	2.94E+04		0	0	٥	0	108	828	805	196	908	88	362	908	38 5	808	996
936	784	176	784	र्ड	944	785	945	789	946	789	98	790	791	951	700	954	200	7	38	957	798	900	164	0	0.258	0	0	0	0	805	1961	805	296	908	8	365	608	8	810	696
150	151	152	153	25	155	150	157	158	159	160	161	162	163	164	165	166	167	168	1691	170	171	211	9	1	1.21E+11	0	0	0	0	1	2	3	4	9	9	7	80	6	10	11

		,																																						
3 50E+04	3 50E+04	3.50F.+04	3 50E+04	3 50E+04	2 00E+04	3 50E+04	3 50E+04		2.00E+04		3.50E+04	5 00E+03	2.00E+04		5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	2.50E+03	2.50E+03	5.00E+03	5 00E+03	5 00E+03	5.00E+03	5 00E+03	5.00E+03	2 00E+04	2.00E+04		2 00E+04			2 00E+04	3.50E+04	3.50E+04	3.50E+04	3.50E+04	3 50E+04	3 50E+04
1	-	-	-	1	1	-	1	5.00E+03	ı	3.50E+04	1	-	-	2.00E+04	-	-	1	-	-	-	-	-	-	-	-	=	-	=	-	2.00E+04	-	3.50E+04	2.00E+04	-	-	-	-	-	-	-
1049	1050	1052	1051	1053	1054	1055	1	1057	1	1056	1059	1056	1	1061	1063	1064	1067	1065	1068	1066	1069	1070	1072	1071	1073	1074	1076	1075	1	1078	-	-	1079	1001	1082	1064	1083	1085	1086	1068
1046 00	1048 00	1047.00	1049 00	1050.00	896.00	1052.00	1051.00	1058.00	1053.00	1054.00	1055.00	1058.00	1057.00	1060.00	1060.00	1062.00	1061.00	1063.00	1064.00	1067.00	1065.00	1068.00	1066.00	1069.0C	1070.00	1072.00	1071 00	1073.00	1074.00	1077 00	1075.00	1080.00	1080.00	1078.00	1080 00	1079 00	1081 00	1082.00	1064 00	1063.00
1045		1048	897	1049	868	838	1052	905	305	1053	1054	206	1058	1056	1059	206	1062	906	1063	911	1067	912	1068	913	1069	916	1072	917	1073	1076	1076	921	1077	1077	922	1080	925	1081	926	1084
1048	897	1049	968	1052	905	1053	<u>8</u>	903	1058	1057	1057	1062	1059	1059	1062	806	1063	911	1067	912	1068	913	1069	916	1072	917	1073	921	1076	921	1077	922	921	1080	925	1081	926	1064	929	1085
3	98	8	97	8	66	100	101	102	103	104	105	106	10;	10P	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134

1007 1006 00 849 1008 00 1008 1009 100 849 1008 00 1008 1008 00 1008 1008 1008 10	1 5	011 1 5 00E+03	010 1 5 00E +03	-	-	2	-	014 1 5 00E +03	016 1 5 00E+03	-	2010	1 5	018 1 5 00E+03	020 1 5 00E+03	021 1 5 00E+03	023 1 5 0 €+03	022 1 5 00E+03	024 1 5 00E+03	026 1 5.00E+03	1 1 5.00E+03	025 5 00E+03	027 1 2 50E+03	1 2.50E+03	028 2 50E+03	1	031 1 5 00E · 03	-	1 500€	-	-	037 1 5 00E+03	-		5.00E+03	1 3	-	042 1 3 50E+04	044 1 3 50E+04	043 1 3 50€ +04		1 3	1 3	1 1 3
& C & C & C & C & C & C & C & C & C & C & C & C & C & C & C & C & C & C		849 1008.00 1008 1009.00 850 1011 00 1011 1010.00 853 1012.00	1008 1009 00 850 1011 00 1011 1010 00 853 1012 00	850 1011 00 1011 1010 00 853 1012 00	1011 1010 00 853 1012 00 1012 1013 00	853 1012 00 1012 1013 00	1012 1013 00	1012 1013 00		064 1016 00	00 CIOL 9C8	1014 00	_		_		198	1020			865 1024 00 1025	998		1029.00 1028		128	1028 00	1030.00	1031 20	. 1033 30	1		1035 00	1038.00 1040			_	1039.00	883 887 1041 OC 1043	1044 1041 1042 00 1045	892 888 1044 00 1046	1045 1044 1043 00 1048	

5 00E+03	5 00E+03	5 00E+03	5.00E+03			2 00E+04	2.00E+04		2.00E+04	3.50E+04	2.00E+04	3.50E+04		3.50E+04	3.50E+04	3.50E+04		3.50E+04	3 50E+04	3.50E+04			2.00E+04		2.00E+04	2.00E+04	2.00E+04	2.30E+04	5.00E+03			5 00E+03	5 00E+03	5.00E+03	5 00E+03	5.00E+03	5.00E+03	5 00E+03	5 00E+03	5 00E+03
-	1	ı	-	5.00E+03	2.00E+04	1	1	5.00E+03	1	1	1	1	2.00E+04	1	1	1	2.00E+04	1	1	1	3.50E+04	2.00E+04	1	2.00E+04	ī	-	1	1	1	5.00E+03	2.00E+04	1	•	-	1	1	•	1	1	-
1119	1121	1122	1	1	1126	1125	1	1127	1128	1128	1130	1	1133	1131	1134	1	1136	1135	1137	1	1	1139	1	1140	1141	1143	1142	1144	1	1	1147	1146	1148	1149	1151	1150	1152	1153	1155	1154
1117.00	1118.00	1120.00	1119.00	1121.00	1123.00	1121.00	1123.00	1124.00	1125.00		1127.00	1128.00	1129.00	1132.00	1130.00	1131.00	1133.00	1133.00	1134.00	1135.00			1137.00	1138.00	1139 00	1130.00	1140.00	1141.00	1143.00	1145.00	1142.00	1144 00	1145 00	1147.00	1146.00	1148.00	1149.00	1151.00	1150 00	1152.00
963	1117	964	1120	967	1122	968	1121	1123	1126	1125	971	1127	972	1129	1129	1132	975	976	1133	1136	1135	979	980	1137	985	1139	986	1140	986	1143	1143	066	1144	566	1147	904	1148	997	1151	866
98	1120	296	1121	996	1121	971	1126	1125	971	1127	972	1129	975	975	1132	1133	976	979	1136	826	1137	980	386	1139	986	1140	686	1143	066	1144	1145	993	1147	ğ	1148	266	1151	965	1152	<u>8</u>
5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	8	21	22	æ	24	52	92	27	82	82	30	31	32	æ	3 6	38	98	37	88	8	04	17	45	64	44	45

5 00E+03	3 50E+04	3 50E+04	3 50E+04	3 50E+04	3 50E+04	3 50E+04	3 50E+04	3 50E+04	3 50E+04	3 50E +04	3 50E+04	3 50E+04	3.50E+04			2 00E+04	2 00E+04	2 0 JE + 04	\$ COE+03	5 00E+03	5.00E+03	5 00E+03	5 00E+03	5 00E+03	2 50E+03	2 50E+03	5 00E +03	5 00E+03	5 00E+03	5 00E+03	5.00E+03	5 00E+03	2 00E+04			2 00E+04	2 00E+04	장병수		3 50E+04
F	1	1	1	1	1	1	1	1	1	1	1	ı	1	3 50E+04	2.00E+04	1	1	1	1	ı	1	1	1	-	-	-	-	-	-	-	-	-	1	2 00E+04	5.00E+03	1	Ī	-	1	-
1197	1196	1198	1199	1201	1200	1202	1203	1205	1204	1206	1207	1208	-	1	1210	1212	1211	1213	1214	1216	1215	1217	1219	1218	1220	1222	1221	1223	1224	1226	1225	1228	1	1	1229	1230	1232	1231	1233	1234
1192.00	1194 00	1195 00	1197.00	1196 00	1198 00	1199.00	1201 00	1200.00	1202.00	1203.00	1205.00	1204.00	1206.00	1207.00	1209 00	1207.00	1209.00	1210.00	1212.00	1211.00	1213.00	1214.00	1216.00	121500	1217.00	1219.00	1218.00	1220 00	1222.00	1221 00	1223.00	1224.00	1226 00	1227.00	1227.00	1228.00	1227.00	1229.00	1230 00	1232 00
1193	1042	1194	1043	1197	1046	1198	1047	1201	1050	1202	1051	1205	1055	1206	1208	1208	1056	1209	1060	1212	1061	1213	1064	1216	1065	1217	1066	1218	1070	1222	10,11	1223	1074	1226	1225	1075	1228	1078	1229	1079
198	1043	1197	1046	1196	1047	1201	1050	1202	1051	1205	1055	1206	1056	1208	1056	1209	1060	1212	1061	1213	1064	1216	1065	1217	1066	1218	1070	1222	1071	1223	1074	1226	1075	1228	1226	1078	1229	1079	1232	1082
87	88	68	06	16	85	93	8	3 8	96	26	86	8	100	101	105	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	128	127

5 COE+03	5 00E+03	5 00E+03	5 00E+03	5 00E+03	5 00E+03	5 00E+03	5 00E+03	5 00E+03	5 00E+03	5.00E+33	5 00E+03	5 00€+03	5.00E+03	5.00E+03	5.00E+03	5 00E+03	5 00€+03	띯	2 50E+03		5 00E+03	5 00€+03	5 00E+03	5.00E+03	삥	5 00E+03	5007-403		3 50E+04											
-	1	1	1	Ŧ	1	1	1	1	1	1	1	1	1	1	1	-	1	-	,	-	1	1	-	-	5 00E+03	-	-	-	-	-	-	-	-	-	1	-	-	-	3 50E+04	-
1156	1157	1159	1158	1160	1161	1163	1162	1164	1165	1167	1166	1168	1169	1171	1170	1172	1173	1175	1174	1176	1178	1177	1179	1	1180	1182	1183	1185	1184	1186	1187	1189	1188	1190	1191	1193	1192	1	191	1195
1153 00	1155 00	1154.00	1156.00	1157 00	1159 00	1158 00	116000	1161 00	1163.00	1162.00	1164 00	1165 00	1167 00	1166 00	1168 00	1169.00	117100	117000	117200	117300	1175.00	1174 00	1176 00	1178 00	118100	117900	118100	1180 00	1182 00	118300	118500	1184 00	1186 00	1187 00	118900	1188 00	1190 00	1191.00	1193 00	1193 00
1152	1001	1155	1002	1156	1005	1159	1006	1160	1009	1163	1010	1164	1013	1167	1014	1168	1017	1171	1018	1172	1021	1175	1026	1176	1177	1177	1027	1181	1028	1182	1031	1185	1032	1186	1035	1189	1036	1190	1038	1039
1155	1002	1156	1005 2005	1159	1006	1160	1009	1163	1010	1164	1013	1167	1014	1168	1017	1171	1018	1172	1021	1175	1022	1176	1027	1177	1027	1181	1028	1182	1831	1185	:035	1186	1035	<u>=</u>	1036	190	1338	1193	1039	1042
94	47	3	64	S	15	ZS	S	3	S	95	25	83	95	99	19	29	အ	19	59	99	19	89	69	8	W	22	2	74	22	92	122	28	ድ	8	18	28	83	ಹ	88	88

		5 00E+03	5 00E+03	5 00E+03	5 00E+03	5.00E+03	5.00E+03	5 00E+03	5.00E+03	2.00E+04	2.00E+04	3.50E+04	3 50E+04	3 50E+04	3.50E+04	3.50E+04		3.50E+04	3 50E+04		2.00E+04		2 00E+04		2 00E+04	2.00E+04	2.00E+04	2.00E+04		2 00E+04										
		٦	-	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	-	3.50€+04	-	-	3.50E+04	-	2.00E+04	-	5 00E+03	1	-	1	1	2.00E+04	1	1305 5 00E+03
0	1270	1269	1271	1272	1274	1273	1275	1276	1278	1277	1279	1280	1282	1281	1283	1284	1286	1285	1287	1288	1290	1289	1291	1292	1	1296	1295	1	1297	1	1298	1	1300	1299	1301	1302	1	1303	1	1305
000	0.00	1267 00	1268.00	1270.00	1269.00	1271.00	1272.00	1274.00	1273.00	1275.00	1276.00	1278.00	1277.00	1279.00	1280.00	1282.00	1281.00	1283.00	1284.00	1286.00	1285.00	1287.00	1288.00	1290.00	1289.00	1138.00	1292.00	1293.00	1294.00	1296 00	1295.00	1294.00	1294.00	1297.00	1298.00	1300.00	1299.00	1304 00	1302.00	304 00
0	0	1114	1267	1115	1270	1118	1271	1119	1274	1122	1275	1123	1278	1124	1279	1128	1282	1130	1283	1131	1286	1134	1287	1135	1290	1291	1291	1292	1293	1138		1295	1293	1141	1297	1142	1300	1301	1301	1145
0	0	1115	1270	1118	1271	1119	1274	1122	1275	1123	1278	1124	1279	1128	1282	1130	1283	1131	1286	1134	1287	1135	1290	1137	1291	1137	1138	1286	1295	1141	1297	1297	1295	1142	1300	1145	1301	1145	1304	1146
0	0	1	2	3	4	8	9	7	8	6	10	11	12	13	14	15	16	17	18	19	8	21	22	23	24	22	92	27	28	8	30	31	32	33	75	35	96	37	9 8	88

2	2	1233	1231 00	1236	-	3.50F+04	
120	1083	1082		.235	-		
130	1236	1233	1234.00	1237	-	3 50€+04	
131	1086	1083	1236.00	1238	ı	3 50E+04	
132	1237	1236	1235.00	1240	1	3 50E+04	
133	1067	1086	1237.00	1239	1	3.50E+04	
134	1240	1237	1238.00	1241	+	3 50E+04	
135	1090	1087	1240.00	1	1	3.50€+04	
136	1241	1240	1239.00	1244	3.50E+04		
137		1090	1241.00	1243	1	2.00E+04	
138	1244	1241		1	1	2.00E+04	
130	1541	1239	1242.00	1245	2.00E+04		
140	100E	1001	1244.00	1246	1	5.00E+03	
141	1245	124	1243.00	1248	_	5.00E+03	
143	1096	202	1245.00	1247	_	5.00€+03	
143	1248	1245	1246.00	1249	1	5.00E+03	
144	1097	1096	1248.00	1250	1	5.00E+03	
145	1249	1248	1247.00	1252	1	5.00E+03	
146	1101	1001	1249.00	1251	1	5.00E+03	
147	1252	1249	1250.00	1	1	5 00E+03	
148	1101	1252	1253.00	1256	5.00E+03		
149	1253	1252	1251.00	1254	1	5 00E+03	
150	1102	1101	1253.00	1257	•	2.50E+03	
151	1254	1253	1256.00	1255	1	2.50E+03	
152	1103	1102		1258	1	5.00E+03	
153	1255	1254	1257.00	1260	_	5 00E+03	
154	1106	1103	1255.00	1253	1	5.00E+03	
156	1260	1255	1258.00	1261	1	5 00E+03	
156	1107	1106		1262	1	5.00E+03	
157	1261	1260	1259.00	1264	1	\$ 00E+03	
158	1110	1107	1261.00	1263	1	5 00E+03	
159	1264	1261		1265	1	5 00E+03	
160	1111	1110	1264 00	1266	1	5 00E+03	
161	1265	1264	1263.00	1113	į	5 00E+03	
162	696	1111	1255.00	1114	1	5 00E+03	
163	1113	1265	1266 00		1	S 00E+03	
9	173	1	3.00	0			
1	0	2.94E+04	00.0		0	0	
21E+11	0.258			1			
0		0	000	0			
•	0	0	000	0			

							1			_												L	L			1	┸			\mathbf{L}_{-}	\Box						
5 00E +03	5 00E +03	5 00E+03	5 00E+03	5 00E+03	5.00E+03	1000	3 50E+04	2000	3 50E+04	3.50E+04	3.50E+04	3 50€+04	3.50E+04	3 50E+04	3.50E+04					2.00E+04	2 00E+04	2 00F±04			5 00E +03	5 00E +03		5 00F 403	5 00E +03	5 00E +03	5 00E +03	2 50E +03	2 50E+03	5 00E +03	5 00E+03	5 00E +03	5 00E +03
11	1	1	-	1	1	5 00E+03	7		7	-	- †	-	-	-	-	3.50E+04	3 50E+04	2.00E+04	2.00E+04	=	-	-	2.00E+04	2.00E+04	-	-	5 00E+03	-	-	-	1	1	-	-	-	-	
3	1348	1350	1349	1351	1	1352	3	3	<u> </u>	1356	1357	1359	1358	1360	-	1	-		$\overline{}$	38	1365	3 -	-	1368	1369		1.221		1372	1374	1373	1375	1377	1376	1378	1379	1381
1343 1344 W	1346.00	1345.00	1347.00	1346.00	1350 00	1349 00	135100	3 3	1352.00	1353 00	1355.00	1354.00	1356 00	1357.00	1359.00	1359.00	1360 00	1361 00	1360 1363.00	1361.00	1363.00	210 1364 00	1367.00	1365.00	1425.00	136700	898	200	369.69	1371.00	1370.00	1372.00	1374 00	1373 00	1375.00	1377 00	1377 1376 00
1343	1188		1191								<u>2</u>	1355	1200	1356	1233	1359	1204	1358	1360	236	1207	1210	1367	1364			1367	1214	1368	1215	1371	1219	1372	1220	1373	1221	1377
346	1191	1347	1192	1350	1195		8 5	ŽĮ.	8	ळ	8	1356	1203	1359	1204	1360	1207	2	1207	1363	22	3 5	155	1367	1214	1368	8	1215	32 52	<u>6</u> 2	1372	1220	1373	1221	1377	1224	1378
_1	2	83	Z	જ	8	2	28 8	3 8	8	5	ន	Z	જ	8	97	8	8	8	5	2	멸:	<u> </u>	3 8	107	5	2	의:	= =	7 5	=	115	116	117	118	119	120	121
8	82								1													<u> </u> 				_		<u> </u>	<u> </u>		<u> </u>						
IOE +03			OE+03	0E +03	OE+03	0E+03	20 H03	OF +03	0E +03	0E+03	0E+03	IOE+03	IOE +03	10E+03	IOE +03	OE +03	OE+03	IOE+03	10E+03	0E+03	0E+03	204-100	OE+03	0E+03	OE+03	0E+03	0E+03	205-305	06+03	0E+03		0€ +03	OE+03	OF+03	06+03	DE +03	OE +03
5 00E +03	1 5 00€ +03		1 5 00E+03	1 5 00E+03	\vdash	_	_		4	_	1 5 00E +03	1 5 00E+03	1 5 00E+03	1 5 00E+03	1 5 00E+03	1 5 00 € +03	\rightarrow	1 5 00E+03	ightharpoonup	1 5 00E +03		5 00E+03	4	1 5.00E+03	1 5 00E+03	_	1 5 00E+03			┺		1 5 00E+03	1 5 00E+03	1 5 00E+03	1 5 006 +03	1 5 GDE+03	1 5 00€+03
1 5 00E +03	5 00E +03	5 00E +03	_	L		-	7	= :	=	=	-	-	_	1		-	-	-	-	-		-	-	_	-	-		-		-	5 00E +03	-				Ш	
1306 1 5 00E +03	1 5 00€ +03	1307 1 5 00E+03	-	1306 00 1310 1	1312	1311	1313	1314	1316	1315	1317	1318	•	1319	-	1322	1324	1323	1325 1	1326	1328	- -	1330	1	1331	1333	1335	13001		1337	1339 1 5 00E +03	1340	1	Ī	1343 1	1344	1
1306 1 5 00E+03	1308 1 5 00€+03	1305 00 1307 1 5 00E+03	1309	1310	1307 00 1312	1309.00 1311 1	1310 00 1313 1	1312.90	1311 00 1316 1	1313.00 1315 1	1317	1318	1320	1319	1321	1322	1319 00 1354 1	1321 00 1323 1	1322 00 1325 1	1324 00 1326 1	1323 00 1328 1	1320	1328 00 1330 1	1332	1331	1330 00 1333 1	1232 00 1335 1	1331 00 1334	1336	1334.00	1336 00 1339 1 5 00E+03	1338 00 1340 1	1342	1341	1	1344	1346 1
1304 00 1306 1 5 00E+03	1303 00 1308 1 5 00 5 + 03	1149 1305 00 1307 1 5 00E+03	1306 00 1309 1	1306 00 1310 1	1306/1307 00 1312	1153 1309.00 1311	1309 1310 00 1313 1	1154 1312:00	1312 1311 00 1316 1	1157 1313.00 1315 1	1314 00 1317 1	1316 00 1318	1315 00 1320 1	1 6161 00 2161	1318 00 1321	1320 00 1322 1	1320 1319 00 1324	1165 1321 00 1323 1	1321 1322 00 1325	1324 00 1326 1	1324 1323 00 1328	1355.00	11.70 1328 00 1330 1	1328 1327.00 1332 1	1329.00	1329 1330 00 1333 1	1174 1232 00 1335 1	1335 1331 00 1334	1335.00 1336 1	1179 1334 00 1337	1334 1336 00 1339 1 5 00E+03	1180 1338 00 1340 1	1337.00 1342 1	1339 00 1341 1	1340 00 1343 1	1342 00 1344 1	1341 00 1346 1

		1	i i									, ,				1 1											•		ı ı								
5.00E+03		5 00E+03	5.00E+03	5.00E+03	5 00F +03	5.00E+03	5.00E+03	5.00E+03	5.00E+03		0						5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	2.00E+04	5.00E+03	3.300+04	3.50E+04		5.00E+03	3.50E+04	5.00E+03	S 00E+03	3.50E+04	5 00E+03	5.00E+03	3.50E+04	
1	5.00E+03	-	-	=	-	-	-	=	-		0						1	1	-	7	7	- -	-	ţ	=	- 600	1 25 DUC +02	1441 5.00E+03	1	-	-	-	-	1		1	1448 5.00E+03
1	1419	1420	1422	1421	153	1424	1267	1268		0		1	0	0	0	1429	1428	1430	1431	1433	1432	1435	1437	1436	1438		-	1441	1444	1443	1442	1445	1446	1447	1449	-	1448
1414.00	1417.00	1418.00	1418 1417.00	1262 1419.00	2003	1422.00	1421.00	1266 1423.00	1424.00	3.00	0.00		0.00	000	0.00	000	1426.00	1427.00	1269 1429.00	1429 1428:00	1272 1430 00	1273 1433.00	1433 1432.00	1276 1434.00	1435.00	00.781.772	1280 1438.00	1438 1440.00	1438 1436.00	1281 1439.00	1439 1440.00	1441 00	1444.00	1443.00	1443 1442.00	1285 1445.00	1445 1446.00
1258	1414	1259	1418	1262	100	1363	1422	1266	1423	1	2.94E+04		0	0	0	0	1268	1426	1269	28	1272	1273	1433			//71	1280	1438	1438	1281	1439	1440	1284	1444	1443	1285	1445
1259	1418	1262	1419	1263	1422	8	2	114	1267	188	0	0.258	0	0	δ	0	1269	1428	1272	<u>\$</u>	1273	3 2	<u>ਤ</u>	1277	1437	300	퀽듩	8	14 044	1 <u>28</u> 2	1444	1443	1285	1445	1446	1288	1449
3	165	38	167	3	9	2 2	171	172	133	9	-	1 21E+11	0	0	0	0	-	2	6	4	জ		80	6	으:	= :	<u> </u>	=	15	16	17	18	19	82	21	22	R
												121										<u> </u>	<u> </u>												L		
5 00E+03	5.00E+03	5.00E+03	2.00E+04			2.00E+04	2.00E+04	3.50E+04	3.50E+04		3.50€+04	3.50E+04 121	3.50E+04	3.50E+04		3.50€+04	2.00E+04	2.00E+04				5.00F+03	5.00E+03	5.00E+03	5 00E+03	3 WE+W	5.00E+03		2.50E+03		5 00E+03	2.50E+03	5.00E+03	2 . JE+03	2.50E+03	2.50E+03	
1 5 00E+03	1 5.00E+03	1 5.00E+03	1 2.00E+04	2.00E+04		1-	1 2:00E+04	1 3.50€+04	1 3.50E+04	2.00E+04	1] 3.50E+04		1 3.50E+04	1 3.50E+04	2.00E+04	1 3.50€+04	1 2:00€+04	1; 2:00E+04	2.00E+04	5.00E+03	5.00E+03	1 5.005+03	1 5.00E+03	1 5.00€+03	-	֓֞֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֟֡֓֓֓֓֡֟֝	1 5.00€+03	5.00E+03		5.00E+03	-	1	ı		-	-	5.00E+03
1382 1 5 00E+03	1383 1 5.00E+03	-	1 2.00E+04	Ş	1396 5 00F + 03	-	-	1389 1 3.50E+04	1 1 3.50E+04	1391 2.00E+04	1	1 3.50E+04	1394 1 3.50E+04	1 1 3.50E+04	1394[2.00E+04]	1398 1 3.50E+04	1396 1 2.00E+04	1 1, 2:00E+04	1 2.00E+04	1 5:00E+03	5.00E+03	1401 1 5.00E+03	-	1404 1 5.00E+03	-	<u> </u>	1 5.00E+03	इ		1411 5.00E+03	1413 1 5 00E+03	1415 1 2.50E+03	1412 1 5.00E+03		1417 1 2.50E+03	-	1414[5:00E+03]
1379.00 1382 1	1381 00 1383 1	1380.00 1385 1	1382.00	1384.00 1 2.00E+04	1363.00	1385.00 1387 1	1384.00 1390 1	1386.00 1389 1	1388.00 1	1388.00 1391 2.00	1300.00	1389.00 1395 1 3.50E+04	1391.00 1394	1392.00	1383.00 1394 2.00	1395.00 1398 1	1394.00 1396 1	1393 00 1 1	1398.00	1397.00 1 5.00	1399.00 1400 5.00E+03	1389.00	1400.00	1402.00 1404 1	1407.00 1410 1	1403.00	1410.00	1405.00 1408 5.00E+03	1406.00	1407.00 1411 5.00	1409.00 1413 1	1408.00 1415 1	1407.00 1412 1	2 1 1414 00 1414	1413.00 1417 1	1416 00 1 1	1416 00 1414 5.00
1379.00 1382 1	1383	1380.00 1385 1	-	1384.00 1 2.00E+04	1363 00 1396 5 00	1385.00 1387 1	1384.00 1390 1	1389	1 1	1391 2.00	1385	1389.00 1395 1 3.50E+04	1394	1392.00 1 1	1394 2.00	1396	1386	1 1	1398.00 1 2.00	1397.00 1 5.00	1399.00 1400 5.00E+03	1401	1400.00	1402.00 1404 1	1 0191 00':091	1403.00	1408	1405.00 1408 5.00E+03	1	1411 5.00	1413 1	1415 1	1412 1	1414	1417	1	1415 1416 00 1414 5.00
13/8 13/9.00 1382 1	1381 00 1383 1	1381 1380.00 1385	1382.00	1382 1384.00 1 2.00E+04	1382 1363 00	1230 1385.00 1387 1	1384.00 1390 1	1386.00 1389 1	1386,1388.00	1367 1388.00 1391 2.00	1234 1390.00 1392	1390 1389.00 1395 1 3.50E+04	1391.00 1394	1391 1392.00 1 1	1383.00 1394 2.00	1395.00 1398 1	1394.00 1396 1	1393 00 1 1	1242 1398.00 1 2.00	1396 1397.00 1 5.00	1398 1399.00 1400 5.00E+03	1389.00	1399 1400.00 1403	1246 1402.00 1404 1	147.2 1401.00 1410 1	124/ 1403.00	1410.00	1410 1405.00 1408 5.00E+03	1405 1406.00 1 1	1407.00 1411 5.00	1409.00 1413 1	1408.00 1415 1	1407.00 1412 1	2 1 1414 00 1414	1413.00 1417 1	1413 1416 00 1 1 1	1416 00 1414 5.00

8	1327	1326	1485 00	1487		5 00E+03	
67	1488	1485	1486 00	1489	1	5 00E +03	
89	1330	1327	1488.00	1490	1	5 OOE +03	
69	1489	1488	1487.00	1492	1	S 00E 103	
20	1331	1330	1489.00	1491	1	£ 00€+03	
71	1492	1489	1490.00	1493	1	5.00E+03	
72	1335	1331	1492.00	1495	1	5.00E+03	
73	1493	1492	1491.00	1494	1	5.00E+03	
74	1336	1335	1493.00	1502	1	2 50E+03	
75	1337	1336	1494.00	1	1	5.00E+03	
9/	1502	1494	1500.00	1496	5.00E+03		
77	1500	1494	1493.00	1496	1	2.50E+03	
78	1496	1493	1495.00	1503	1	S 00E+03	
20	1340	1337	1502.00	1501	1	5.00€+03	
8	Ш	1502	1500.00	1499	1	S 00E+03	
18	1501	1500	1498.00	1497	1	2.50E+03	
82	1499	1498	1496.00	1	1	2 50E+03	
33	1503	1501	1504 00	1505	5.00E+03		
8	1504	1501	1499.00	1506	1	2.50E+03	
85	1505	1499	1497.00	1500	1	5.00E+03	
96	1341	1340	1503.00	1	1	5.00E+03	
87	1509	1503	1504.00	1508	5.00E+03		
98	1509	•	1505.00	1507	1	2 50E+03	
98	1508	1505	1506.00	1510	1	5.00E+03	
80	1344	1341	1509.00	1511	1	5.00E+03	
91	1510	1509	1508.00	1514	1	2.50E+03	
85	1511	1508	1507.00	1	1	5.00E+03	
83	1344	1510	1512.00	1513	5.00E+03		
3	1345	1344	1512.00	1515	1	5.00E+03	
98	1513	1512	1510.00	1514	1	5 00E +33	
98	1515	1510	1511.00	1517	1	2 50E+03	
97	1348	1345	1513.00	1516	1	5 00E+03	
88	1517	1513	1515.00	1518		5.00E+03	
8	1349	1348	1517.00	1519	1	5 00E +03	
5	1518	1517	1516 00	1	1	5.00E+03	
101	L_	1518	1521.00	1520	3 50E+04		
102	1521	1518	1519.00	1522	1	3 50E+04	
103			1521.00	1523	1	3.50E+04	
104	1522	1521	1520.00	1525	1	3 50E+04	
₹ 8		1353	1522 00	1524	1	3 50E+04	
185	Ш	1522	1523.00	1526	1	3.50E+04	

П																																								
3 50E+04	뜅	3 50E+04	5 00€ +03			5 00E+03		5.00E+J3		2.00E+04	2.00E+04	2.00E+04	2.00E+04	2.00E+04	2.00E+04			5 00E+03			5 00E+03	5 00E+03	5 00E+03	5.00E+03	뜅	5 00E+03	8	5.00E+03	5 00E +03	5.00E+03	5 00E+03	€ 00E+03	5 00E+03	5 00E+03	5 00E+03	5 00E+03	5 00E+03	5.00E+03	5 00E+03	5 00E+03
1	-	1	-	3 50E+04	5 00E+03	1	5 00E +03	1	2 00E+04	1	1	-	1	11	1	2 00E+04	2.00E+04	1	5.00E+03	5.00E+03	1	Ŧ	-	-	=	-	-	-	-	-	-	=	1.	1	-	-	-	-	1	1
1451	1453	1452	-	-	1455	1	1456	1	1458	1459	1461	1460	1462	1463	1	1	1466	1	l l	1467	1468	1470	1469	1471	1472	1473	1474	1476	1475	1477	1478	1480	1479	1481	1482	1484	1483	1485	1486	1488
1449 00	1448.00	1450 00	1451.00	145300	1454.00	1452.00	1457.00	1455.00	1457 00	1457.00	1456.00	1458 00	1459.00	1461 00	1460 00	1465 00	1464 00	1462.00	1465.00	1468.00	1466.00	1465 00	1467.00	1469.00	1470.00	1469.00	1471 00	1472 00	1473 30	1474.00	1476.00	1475 00	1477 00	1478 00	1480 00	1479 00	1481 00	1482.00i	1.84 00	1483.00
1288	1449	1289	1450	1292	1453	1453	1454	1454	1294	1286	1457	6.21	1458	1302	1461	1463	1463	1303	1462	1464	1306	1466	1307	1467	1310	1470	1311	1471	1314	1473	1315	1476	1318	1477	1319	1480	1322	1481	1323	184
1289	1450	1292	1453	82	1293	1521	<u>\$</u>	1457	288	<u>28</u>	1458	1302	1461	1303	1462	1462	3	1306	1466	1465	1307	1467	1310	1470	1311	1471	1314	1473	1315	1476	1318	1477	1319	- 1480	1322	1481	1323	1484	1326	- 595
82	92	27	22	83	8	31	35	33	8	ક્ષ	8	37	8	8	\$	4	2	5	3	\$	46	47	87	67	os	15	25	53	3	જ	98	25	83	38	8	19	239	B	3	65

		2 00E+04	5.00E+03	2 COE+04	5 00E+03	2 00E+04	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03		2.50E+03		5.00E+03	2.50E+03	5.00E+03		2.5CE+03		5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5 00E+03	5.00E+03		2.50E+03	2.50E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5 00E+03	5.00E+03	5.00E+03	
3 50E+04	3.50E+04	1	ı	1	1	1	1	1	l .	1	1	1	5.00E+03	1	5.00E+03	1	1	1	5.00E+03	1	5.00E+03	1	1	1	1	1	1	1	5.00E+03	1	1	1	Ī	1	1	1	1	-	1	
_	1562	1563	1565	1564	1566	1567	1569	1568	1570	1571	1575	1	1574	1	1576	1577	1578	1	1406	1	1579	1581	1582	1584	1563	1585	1587	1	1586	1589	1591	1590	1592	1593	1595	1594	1426	1427		O
1561.00	1561.00	1560.00		1562.00	_	1565.00	1564.00	1566.00	1567.00	1569.00	1568.00	1570.00	1571.00	1572.00	1573.00	1575.00	1574.00	1573.00	1576.00	1577.00	1580.00	1578.00	1580.00		1581.00	1582.00	1584.00	1583.00	1588.00	1585		1586.00	1509.00	1591.00	1590.00	1592.00	1593.00	1595.00	1594 00	300
1388	1389	1561	1560	1392	1562	1393	1565	1396	1566	1397	1569	1400	1570	1571	1572	1401	1575	1574	1404	1576	1577	1577	1406	1580	1407	1581	1415	1584	1587	1416	1585	1417	1586	1420	1591	1421	1592	1424	1595	1
1389	1392	1392	1562	1303	1565	1396	1566	1397	1569	1400	1570	1401	1575	1575	1574	1404	1576	1577	1405	1405	1406	1580	1407	1581	1415	1584	1416	1585	1585	1417	1586	1428	1591	1421	1592	1424	1595	1268	1426	2
149	150	151	152	153	154	155	156	157	158	150	160	191	162	පා	164	165	166	291	168	169	170	171	172	133	174	175	176	177	178	179	08 1	181	182	183	184	185	186	187	188	9

3 50E+04					2 00E+04	2 00E+04	2 00E+04		200E+04	2.00E+04	2.00E+04				5 COE +03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	2.50E+03	2.50E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03			5 00E+03	2.00E+04		5.00E+03
1	3 50E+04	3 50E+04	200E+04	2.00E+04	1	1	-	2.00E+04	- 	-	-	2.00E+04	5.00E+03	5.00E+03	1	1	1	1	1	1	1	-	1	1	Ĩ	-	1	-	-	-	-	-	1	1	2 00E+04	5.00E+03	1	J	2 00E+04	-
1	1	1	-	1528	1530	1531		1534	1533	1535	1	1	1	1538	1537	1539	1540	1542	1541	1543	1545	1544	1546	1548	1547	1549	1550	1552	1551	1553	1554	1556	1555	1	1	1558	1561	1	1559	1
1525 00	1524 00	1526.00	1527.00	1529.00	1527.00	1529.00	1528.00	1532.00	1530.00	1532.00	1534.00	1533.00	1536.00	1532.00	1535.00	1536.00	1538.00	1537.00	1539.00	1540.00	1542.00	1541.00	1543.00	1545.00	1544.00	1546.00	1548.00	1547.00	1549.00	1550.00	1552.00	1551.00	1553.00	1554.00	1557.00	1556 00	1555 JO	1557.00	1560.00	1558 00
1354	1525	1357	1524	1526	1526	1358	1529	1531	1361	1530	1362	1534	1533	1533	1365	1535	1366	1538	1369	1539	1370	1542	1374	1543	1375	154	1376	1548	1379	1549	1380	1552	1383	1553	1384	1384	1556	1387	1557	1557
1357	1526	1358	1526	1358	1529	1361	1530	1530	1362	1534	1365	1525	1535	1536	1366	1538	1369	1539	1370	1542	1374	1543	1375	1544	1376	15 18	1379	1549	1380	1552	1383	1553	1384	1556	1367	1557	1557	1363	1561	1363
107	5	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	3 5	127	128	128	130	131	132	133 133	2	135	38	137	- 136 - 136	130	2	141	142	143	144	145	146	147	148

	2.50E+03	5.00E+03	5 00E +03	5 00E+03	5 00E +03	5 00E+03	5 00E+03		5.00E+03	2.00E+04		2.00E+04	200E+04	2 00E+04	2.00E+04	2.00E+04	2.00E+04		2.00E+04		5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5 00E+03	5.00E+03	5 00E+03	5 00E +03	5 00E+03	5 00E+03	5.00E+03	5 00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5 00E+03	S 00E+03	5 00E+03
5 00E +03	1	1	1	1	1	1	-	5.00E+03	1	1	2.00E+04	ı	1	1	ı	1	1	2.00E+04	F	5.00E+03	ı	1	1	ı	1	1	•	1	-	-	-	-	1	1	1	1	1	1	1	-
1628	1636	1635	1637	1638	1640	1639	-	1642	1643	1	1644	1645	1647	1646	1648	1649	1	1650	1	1652	1653	1655	1654	1656	1657	1659	1658	1660	166	1663	1662	1664	1665	1667	1666	1668	1669	1671	1670	1672
1629 00	1630.00	1633.00	1634 OO	00'9E91	1635.00	1637.00	1638.00		1639.00	1641.00	1642.00	1643.00	1642.00	1644.00	1645.00	1647.00	1646.00	1651.00	1649.00	1651.00	1651.00	1650.00	1652.00	1653.00	1655.00	1654.00	1656.00	1657.00	1659.00	1658.00	1660.00	1661.00	1663.00	1662.00	1664 00	1665 00	1667.00	1666.00	1668 00	1669.00
1631	1631	1451	1633	1452	1636	1455	1637	1640	1640	1456	1641	1459	1643	1460	164	1463	1647	1648	1648	1464	1468	1651	1469	1652	1472	1655	1474	1656	1475	1659	1478	1660	1479	1663	1482	1664	1483	1667	1486	1668
1634	1629	1452	1636	1455	1637	1456	1640	1456	1641	1459	1643	1460	1644	1463	1647	1464	1648	1464	1651	1468	1469	1652	1472	1655		1656	1475	1659	1478	1660	143	1663	1482	1664	1483	1667	1486	1668	1487	1671
36	37	38	33	9	41	42	43	77	45	46	47	48	67	95	4	52	S	24	55	95	25	83	96	33	61	62	83	75	65	99	67	89	69	92	11	72	73	7.4	75	9/

0						5 00E+03	2 50E+03	5.00E+03	5.00E+03	2 52E+03	5 00E+03	5 00€+03	2.50E+03	5 00E+03	5 00E+03		2.50E+03	5 005+03	5 00E+03	5 00E+03	2.50E+03	5 00E+03	5.00E+03	5.00E+03	2.50E+03	5.00E+03	5 00E+03	5.00E+03	2 50E+03	5.00E+03	\$ 00E+03	5 00E+03	2 50E+03	5 00E+03	5 00E+03	5 00E+03	2 50E+03	5 00E+03	5 00E+03	5.00E+03
0						ı	1	1	ı	1	1	1	1	1	[1	5.00E+03	1	1	1	1	1	1		1	1	1	1	•	-	-	-	-	-	1	1	1	1	-	-	-
	1	0	0	0	1601	1600	1599	1602	1603	1604	1607	1606	1605	1608	1	1610	1611	1615	1614	1613	1612	1616	1617	1618	1619	1623	1622	1621	1620	1624	1625	1626	1627	1632	1631	1630	1628	1633	1634	<u> </u>
000		000	000	000	00.00	1596.CC	1597.00	1598 00	1601.00	1600.00	1599 00	1602.00	1603.00	1604.00	1607.00	1609 00	1606 00	1605 00	1608.00	1609 00	1610.00	1611 00	1615 00	1614.00	1613.00	161200	161600	1617.00	161800	1619.00	152300	1622 00	1621.00	1620 00	1624 00	1625 00	1626 00	1627.00	1632 00	1631 00
294E+04		0	0	0	0	1427	1596	1597	1428	1601	1600	1431	1602	1603	1432	1607	1607	1606	1435	1608	1609	1610	1436	1615	1614	1613	1441	1616	1617	1618	1442	1623	1622	1621	1447	1624	1625	1626	1448	1632
0	0 258	0	0	0	0	1428	1601	1600	1432	1602	1603	1432	1607	1606	1435	1608	1609	1610	1436	1615	1614	1613	1441	1616	1617	1616	1442	1623	1622	1621	1447	1624	1625	1626	1448	1632	1631	1630	1451	1633
[1	1 21E+11	0	0	0	0	1	2	6	7	\$	9	4	80	S	01	11	71	E1	7 1	51	91	۲۱	81	61	92	12	22	82	23	\$2	92	27	82	æ	90	31	æ	33	34	35

118	1706	1707	1708.00	1	1	5.00E+03	
9	1532	1706	1711.00	1710	5.00E+03		
8	1711	1706	1709.00	1712		5 00€+03	
121	1536	1532	1711.00	1713	1	5.00E+03	
22	1712	1711	1710.00	1715	1	5.00E+03	
123	1537	1536	1712.00	1714	1	5.00E+03	
124	1715	1712	1713.00	1716	1	5 00E+03	
8	1540	1537	1715.00	1717	1	5.00E+03	
8	1716	1715	1714.00	1719	1	5.00E+03	
127	1541	1540	1716.00	1718	1	5.00E+03	
128	1719	1716		1720	ı	5.00E+03	
8	1545	1541	1719.00	1722	Ī	5.00E+03	
8	1720	1719		1724	1	5.00E+03	
13	1720	1722		1721	1	5.00E+03	
ਲੁ	1546	1545	1720.00	1725	ı	2.50E+03	
ਲੁ	1221	1720	1724.00	1728	1	2.50E+03	
곮	1725	1724		1	1	2.50E+03	
8	1724	1723	1729.00	1726	5.00E+03		j
98	1547	1546	1721.00	1	1	5.00E+03	
137	1726	1721	1725.00	1727	5.00E+03		
138	1550	1547		1728	1	5.00E+03	
8	1727	1726	1725.00	1731	1	5.00E+03	
3	1551	1550		1730	1	5.00E+03	
Ξ		1727		1732	1	5.00E+03	
142	. :	1551	1731.00	1733	1	5.00E+03	
3	1732	1731	1730.00	1735	1	5.00E+03	
7	1555	1554	1732.00	1734	1	5.00E+03	
155	1735	1732	1733.00	1736	1	5.00E+03	
146		1555	1735.00	1737	1	5.00E+03	
147	1736	1735	1734.00	1739	1	5.00E+03	
148	1550	1558	1736.00	1738	1	5.00E+03	
149	1739	1736		1740	1	5.00E+03	
150	1563	1559	1739.00	1741	1	5.00E+03	
151	1740	1739	1738.00	1747	1	5,00E+03	
152	1564	1563	1740.00	1742	1	5.00E+03	
153	1747	1740	1741.00	1746	1	5.00E+03	
32	1567	1564	1747.00	1	1	5.00E+03	
3	1746	1747	1742.00	1745	5 00E+03		
156	1746	1742	1743.00	1	1	2.50E+03	
157	1745	1743	1744.00		5.00E+03		
88	1568	1567	1746.00	1749	1	5 00E+03	

5.00E+03	5 00E +03	5.00E+03	5.00E+03	5.00E+03			2.50E+03	2.50E+03		5.00E+03		5.00E+03		2.50E+03		5.00E+03	5.00E+03	2.50E+03	5 00E+03	3.50E+04	3.50E+04		3.50E+04	3.50E+04			2 00E+04	2 00E+04	2 00E+04	2.00E+04	2 00E+04	2.00E+04	-	2.00E+04						
1	1	1	1	1	5.00E+03	5.00E+03	1	1	5.00E+03	1	1	1	1	1	1	1	5.00E+03	1	5.00E+03	1	5.00E+03	-	1	1	-	1	1	3.50E+04	1	1	3.50E+04	2.00E+04	1	1	1	1	1	1	2 00E +04	1
1673	1679	1674	1678	1	1	1677	1675	1	1691	1683	1682	1684	1685	1687	1686	1	1689	,	1691	1	1690	1693	1681	1695	1697	1696	1	1698	1699	1	1	1700	1702	1703	1705	120	1706	1	1708	1709
1671.00	1670.00	1672.00	1673.00	1679.00	1674.00	1678.00	1678.00	1674.00	1680.00	1676.00	1680.00	1691.00	1683.00	1682.00	1684.00	1685.00	1688.00	1686.00	1692.00	1514.00	1688.00	1689.00	1692.00	1691.00	1690.00	1693.00	1694.00	1696.00	1697.00	1696.00	1698.00	1701.00	1699 00	1701.00	1700.00	1702.00	1703 00	1705.00	1707.00	1704.00
1487		1490	1672	1491	1679	1495	1496	1678	1677	1677	1497	1680	1506	1683	1507	1684	1687	1687	1515	1515	1514	1688	1516		<u>1</u>	1519	1693	1685	1520	1697	1523	1696	1696	1524	10/1	1527	1702	1528	1705	1705
1490	1672	1491	1679	1495	1678	1496	1497	1677	1497	1680	1506	1683	1507	1684	1514	1687	1514	1688	1516	1602	168)	<u>188</u>	1519	1693	1601	1520	1697	1684	1523	1698	1524	1524	1001	1527	1702	1528	<u>-</u>	1531	1706	1707
77	92	R	8	18	82	83	26	22	98	18	88	28	08	16	85	83	3	8	8	46	88	8	100	101	ş	100	10	105	106	107	108	100	110	111	112	113	=	115	116	117

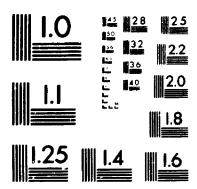
			5 00E+03	5 00E+03	5 00E+03	5 00E+03	5.00E+03	5.00E+03	5 00E+03	5.00E+03	5.00E+03	5.00E+03	5 00E+03	5.00E+03	5.00E+03	5 00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03		2.50E+03	5.00E+03	5.00E+03	5 00€+03	2.50E+03		5 00E+03	5.00E+03		2 50E+03		5.00E+03	5 00E+03	2 50E+03		5 00E+03	5.00E+03		2.00E+04
			1	1	1	1	1]	ı	I	ı	1	1	1	1	1	1]•	ı	1	5.00E+03	1	1	1	-	1	5 00E +03	1	1	5.00E+03	-	5 00E+03	1	1	1	5.00E+03	1	-	5 00E +03	1
0	0	1781	1780	1782	1783	1785	1784	1786	1787	1789	1786	i 780	1701	1793	1792	1794	1795	1797	1796	1	1953	1798	1799	1802	1801	1	1800	1803	1	1806	1	1809	1808	1807	1	1810	1811	1	1815	1814
000	000	00.00	1778.00	1779.00	1781 00	1780.00	1782.00	1783.00	1785.00	1784.00	1786.00	1787.00	1785.00	1786.00	1790.00	1791.00	1783.00	1792 00	1794 00	1795.00	1804 00	1628.00	1797.00	1796.00	1804.00	1953.00	1798.00	1200	1802.00	1805.00	1801.00	1800.00	1803.00	1805 00	1806.00	1800.00	1809.00	1808 00	1812 00	1810 00
0	0	0	1598	1778	1599	1781	1604	1782	1605	1785	1611	1786	1612	1789	1619	1790	1620	1793	1627	170	1629	1629	1628	1797	1634	1804	1963	1798	1635	1802	1802	1801	1638	1803	1805	1806	1639	1809	1808	1642
0	0	0	1599	1781	1604	1782	1605	1785	1611	1786	1612	1789	6191	1780	1620	1793	1627	1794	1628	1797	1634	1804	1963	1798	1635	1802	1801	1801	1636	1803	1805	1806	1639	1809	1808	1807	1642	1810	1811	1645 2
0	0	0	1	2	3	7	9	9	7	80	Ġ	10	11	12	13	41	15	91	41	18	19	8	21	22	23	24	52	92	27	8 2	83	8	112	32	33	8	35	98	37	8

																														1										
2 50E+03	5 00E+03		2.50E+03		5 00F+03	5 00E+03	5 00E+03	5.00E+03	5 00E+03	5.00E+03	5 00E+03	5.00E+03	5 00€ +03		5 00E+03	5.00E+03		5.00E+03	5.00E+03		S 00E+03	5 00E+03	2.50E+03		5.00E+03	2 50 +03	5.00E, 03	5 00E+03	5.00E+03	2 50E+03	5 00E+03	5 00E+03	5.00E+03	2 50E+03		5.00E+03		0		
1	1	5 00E+03	1	5 00E+03	1	1	1	1	1	1	1	1	1	5.00E+03	1	1	2 00E+04	-	1	5 00E +03	1	1	1	5.00E+03	1	•	-	1	1	-	-	-	-	1	5 00E +03	=		0		
1750	-	1572	1	1751	1753	1754	1756	1755	1757	1758	1921	1760	1	1762	1763	1	1765	1764	1	1768	1769	1767	1	1773	1772	1771	1770	1774	1775	1776	1777	1596	1597	1	1598		0		-	0
1745 00	1744 00	1748 00	1749.00	1752.00		1752.00	1751.00	1753 00	1754.00		1755.00	1757.00	1758 00	1759.00	1761.00	1760.00		1762.00		1766.00	1765.00	1764 00	1766 00	1767.00				1769.00		1772 00	177100	1770 00	1774.00	1775.00	00 9//1	1777.00	3 00	000		000
1746	1745	1568	1748	1749	1749	1572	1752	1573	1753	1578	1756	1570	127	1758	1582	1761	1759	1583	1762	1587	1587	1765	1588	1589	1590	1767	1765	1768	1593	1773	1772	1771	1594	1774	1775	1776	1	2.94E+04		0
1748	1749	1571	1571	1572	1752	1573	1753	1578	1756	1578	17571	1582	1761	1760	583	1762	<u>5</u>	1587	<u>-</u>	35	1786	- -	1589	1590	1503	1773	1772	1771	1594	1774	1775	1776	1427	1596	1567	1597	3	0	0 258	0
159	160	191	162	183	191	391	166	167	168	<u>8</u>	<u>8</u> -	171	221	173	17.1	175	176	121	178	2	180	181	182	183	181	185	981	187	186	189	190	161	192	193	<u>₹</u>	35	9	_	121E+11	0

Ī	3	8		200	_	5.00E+03
<u>=</u>	1673	1670		1855		5.00E+03
3	1854	1863	1852.00	1856	_	2.50E+03
83	1855	1852	1861.00	1	_	5.00E+03
2	1674	1673	1864.00	1675	5.00E+03	
88	1674	1854	1855 00 00	-		2.50E+03
98	1675	1855	1856.00	1857	5.00E+03	
18	1858	1855	1656.00	1850	1	5.00E+03
88	1676	1675	1858.00	1860	1	5.00E+03
88	1859	1858	1867.00	1862	1	5.00E+03
8	1681	1676	1859.00	1981	_	5.00E+03
5	1962	- 28 - 28	1960.00	1863		5.00E+03
8	1682	1681		1961	_	5.00E+03
8	1863	1862	1861.00	1866		5.00E+03
ਡ	1685	1682		1865	_	
8	1866	1863	1964.00	1867	1	5.00E+03
8	1686	1685		1868	-	_
6	1867	1866	1865.00	1870		5.00E+03
88	1689	1686		1869	1	5.00E+03
8	1870	1867	1868.00	1871	1	5 00E+03
100	1690	1689	1870.00	1872	1	5.00E+03
101	1871	1870	1869.00	1874	1	5.00E+03
102	1695	1690		1873	1	5.00E+03
183	1874	1871	1872.00	1	1	5.00E+03
Ş	1696	1695	1875.00	1	3.50E+04	
105	1875	1695	1874.00	1876	5.00E+03	
106	1875	1874	1873.00	1879	J	5.00E+07
107	1699	1696	1875.00	1	l .	3.50E+¢
106	1879	1875	1878.00	1877	3.50E+04	
8	1878	1875		1880	1	5 00E+03
110	1700	1609	1879.00	1881	1	2 00E+04
111	1880	1879	1878.00	1882	1	2.00E+04
112	1881	1878	1877.00	1885	1	5.00E+03
113	1703	1700	1880.00	1864	1	2 OVE+04
114	1885	1860	1881.00	1863	t	2.00E+04
115	1884	1881	1882.00	1886	1	5.00E+03
116	1704	1703	1885.00	1887	1	2.00E+04
117	1886	1885	1884.00	1886	1	2.00E+04
118	1887	1864	1883.00	1890	1	5.00E+03
119	1708	1704	1886.00	1		2 00E+04
Ī						

2.00E+04	5.00E+03	2.00E+04		5 00E+03	2.00E+04	5 00E+03		5.00E+03		5.00E+03	5.00E+03	5.00E+03	5.00F.+03	5.00E+03	2.50E+03		5.00E+03	5.00E+03	2.50E+03	5.00E+03	5.00E+03	5.00E+03	2 50E+03	\$ 00€+03	5.00E+03	5.00E+03	8	5 00E+03	5.00E+03		2.50E+03	5 00E+03	5.00E+03	2 50E+03						
F	1	1	2 00E+04	1	1	1	2.00E+04	1	5.00E+03	1	11	1	1	1	1	1	1	1	1	1	1	5.00E+03	1	-	1	gar.	1	1	1	+	1	1	1	1	1	5.00E+03	1	1	1	-
1813	1816	1	1817	1820	1819	1	1821	1	1823	1822	1824	1826	1825	1827	1828	1831	1829	1832	1833	1834	1	1839	1838	1837	1836	1840	1941	1842	1843	1847	1846	1845	1844	1848	1	1849	1850	1853	1852	1851
181100	1812.00	1815.00	1814.00	1813.00	1816.00	1817.00	1820.00	1819.00	1818.00	1918.00	1821.00	1823.00	1822.00	1824.00	1826.00	1825.00	18.77.00	1828.00	1831.00	1829.00		1835.00	1832.00		1834.00	1835.00		1838.00	1837.00	1836 00	1840.00	1841.00	1842.00	1843 00	1847.00	1848.00	1845.00	1844.00	1848.00	1849 00
1810	1811	1645	1815	1814	1646	1816	1649	1820	1817	1819	1650	1821	1653	1822	1654	1826	1657	1827	1658	1831	1829	1830	1661	1832	1833	1834	1662	16.39	1838	1337	1665	1840	1841	1642	1666	1846	1846	1845	1669	1848
1815	1814	1646	1816	1816	17.49	1620	1650	1650	1819	1821	1653	1822	1654	1826	1657	1627	1650	1631	1663	1832	1833	1834	1662	1830	1836	1837	1635	1840	1841	1842	1666	1847	1846	1645	1669	1847	1646	1849	1670	1853
8	9	41	2 }	C *	7	45	917	47	817	8	S	15	ফ	83	35	95	95	25	85	8 5	09	19	23	8	75	88	99	29	83	89	2	12	22	22	72	\$2	R	111	92	8

	٦																					T		T	T													٦
5.00E+03		5.00E+03	2.50€+03	5 00E+03	5.00E+03	2 50E+03	5 00E+03	5.00E+03	2.50E+03	5.00E+03		2.40E+03		5.00E+03	5 00E+03	5 00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5.00E+03	5 00E+03	5 00E +03	5.00E+03					2 00E+04	2 00E+04	2 00E+04		2 00E+04	2 00E +04	5 00E+03		2 00E +04	200E+04
-	5 00E+03	1	1	-	-	=	=	-	-	-	5.00E+03	_	5.00E+03	-	-	-	-	-	-	-	1	=	-	- -	500E+03	2.00E+04	5 00E+03	200E+04		=	_	500E+03	1	-		2.00E+04	-	=
=	1918	1919	1920	1923	1922	1921	1924	525 25	1926	-	1743			1929	00 <u>0</u>	1932	1831	1933	1934	-53e	1935	1837	88	3	-	1	-	T.	281	1,43		1946	1947	96	-	1948	8	=
191300	1915.00	1917.00	1916.00	1915.00	1737 1918.00	00010	1919, 1920,00	1923.00		1921.00	1924.00					1927.00	1929.00	1930 00	1932.00	818				3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1939.00	1758 1940.00		93000	81.8	1923	1945 00	1944 00	1943.00	1945.00	1949.00	1947.00	1949.00
1912	1914	1734	1917	1916	1737	1918	1919	1738	1923	1922	1741	1924	1925	1925	1743	1928	1744	1929	1750	1932	1751	1933	1754	175.6	1937	1938	1758	1940	1940	25	ž	1763	1763	194	1764	1946	1946	1769
1916	1916	1737	1918	1919	1738	1923	1922	1741	1924	1925	1742	1742	1743	1928	1744	1929	1750	1932	1731	1833	Ξ	8	2	3 2	3	<u>8</u>	255	1759	Ē	<u>-</u>	26	1764	285	1946	1769	1945	<u>2</u>	52
162	163	191	165	166	16.7	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	2	2	200	200	189	190	161	192	193	191	195	98-	197	196	199	200	201
5 WE +03	5 00E+03	5 00E+03		5 00E+03	5 OCE +03	5 00E+03	5 00E +03	5 00E +03	5 00E+03	5 001 +03	5 00E +03			5 00E+03		5.00E+03	5 00E +03	2 50E+03		5 00E +03	5 00E+03	2 50E+03	5 OCE +03	5 00E +03	2 50£ +03	5 00E+03			2 50E +03	5 00E +03	2 50E+03	2 50E+03	5 00E +03		5 00E +03	2 50E+03		5 00E +03
=	-	1_	6	=	1=					-	_	1	3		3	Ŧ	1	-	0	1	-	-	ᆰ	-1-	-1-	:=	8	9	-	-	=	=	1=	_	_	_	_	
			5 00E +03									5 00E+03	5.00E+03		5 00E+03				5 00E +03								5 00E+03	5 00E +03						5 00E+03			5 00E+03	
<u>1</u>	1892	-		1893	1895	1896	1898	1897	1890	1954	1	1 5 00E+0	1956 5.00E+0	1	1958 5 00E+0	1959	1960	ļ		1900	1963	1962	1902	203	5005	-	1 5 00€+(1907 5 00E+0	9061	1909	1910	1913	-		1912	-		19161
B87 1888 00 1891			18945	1891 00				1895.00			1897.00	15	1956 5.	1 000 9361	1958 5	1899.00	1967 00	967 1956 00 1	1961.00 1901.5	722 1958.00 1900	1959.00	1960.00	960 1961 00 1902	20100	200 1963 00 1905	1962 00	1908 00 1 5	1903 00 1907 5	1904 00	1905 00			1906 00	19115		1910 00	1913 00 1917 5	


| 121 | 1800 | 122 | 1700 | 123 | 1800 | 123 | 1800 | 123 | 1710 | 123 | 1800 | 123 | 1710 | 123 | 1800 | 123 | 1800 | 123 | 1800 | 123 | 1800 | 123 | 1800 | 123 | 1800 | 123 | 1800 | 123 | 13

57

of/de

PM-1 3½"x4" PHOTOGRAPHIC MICROCOPY TARGET NBS 1010a ANSI/ISO #2 EQUIVALENT

2 50E+03	5 00E+03	2 00E+04		5 00E+03	2 50E+03	5 00E+03	2 00E+04	5 00E+03	2 50E +03			5 00E+03	2 50E+03	5 00E+03	2 00E+04	5 00E+03	2 50E+03	5 00E+03	2 00E+04		2 50E+03		5 00E+03	2 00E+04	5 00E+03	2 00E+04		5 00E+03	2 00E+04	5 00E+03	2 00E+04		5 00E+03	2 00E+04		5 00E+03	2 00E+04		5 00E+03	2 00E+04
1	1	1	5 00E +03	1	1	1	J	ı	1	5 00E+03	5.00E+03	1	1	1	1	1	1	1	11	5.00E+03	1	5 00E +03	1	1	1	1	5 00E+03	1	1	1	1	5 00E+03	1	1	5 00E +03	1	1	5 00E +03	1	1
1986	1985	1	1989	1990	1991	1992	1996	1995	1	1	1997	1998	1934	1993	1999	2000	2001	2002	1	1830	1	2004	2003	2005	2006	1	2007	2008	2010	2009	1	2011	2012	1	2014	2013	1	2015	2016	-
1982 00	1983 00	1984 00	1989 00	1988 00	1987.00	1986.00	1985 00	1989 00	1990.00	1991 00	1996.00	1996.00	1995.00	1991.00	1992.00	1997 00	1998 00	1994.00	1993 00	1999 00	2000.00	2001.005	2001 00	2002.00	2004.00	2003 00	2005.00	2005.00	2006 00	2007.00	2008.00	201000	201000	2009 000	2011.00	201100	2012 00	2014 00	2014 00	2013 00
1961	1982	1983	1813	1817	1988	1987	1986	1818	1985	1990	1823	1824	1996	1995	1991	1825	1997	1988	1994	1828	1999	2000	1830	2001	1835	2004	1836	1843	2005	1844	2007	1850	1851	2010	1856	1857	2011	1860	1861	2014
1988	1987	1986	1817	1818	1989	1990	1991	1823	1996	1995	1824	1825	1997	1998	1994	1828	1999	2000	2002	1829	1829	1830	1835	2004	1836	2005	1843	1844	2002	1850	2010	1851	1856	2011	1857	1860	2014	1961	1964	2015
30	31	32	33	34	35	96	37	88	36	,0 4	4	42	43	4	45	46	47	48	49	ક્ર	51	25	53	54	55	95	57	85	85	9	19	29	63	3	65	93	29	3	69	2

	5 00E +03		5 00E +03	5 00E+03		o						2 00E+04	2 00E+04		2 00E +04	3 50E+04		2 00E+04	3 50E+04		2 00E+04	3 50E+04			5 00E+03	2 00E+04	3 50E+04	5 00E+03	2 00E+04		5 00E+03	2 00E+04	3 50E+04			2 50E+03	5 00E+03	2 00E+04		5 00E+03
2 00E +04	1	5 00E +03	1	1		0						1	1	2 00E+04	1	1	2 00E+04	1	1	2 00E+04	-	1	5 00E+03	2 00E+04	1	-	-	1	1	3 50E+04	1	1	1	5 00E+03	5 00E+03	1	-	1	3 50E+04	1
1951	1	1778	1779		0		1	0	0	0	1966	1965	1	1967	1968	1	1970	1969	1	1971	1972	1	1	1975	1974	1973	1976	1977	1	1980	1979	1978	1	1	1982	1983	1964	1	1988	1987
1952 00 ¹	1950 00	1952 00	1951 00	00 ::361	3 00	000		000	000	000	000	1964 00	00 69 0 Z	00 9961	00 9961	1965 00	1967 00	1967 00	00 8961	1970 00	1970 00	00 6961	2070 00	1971 00	2070 00	1971 00	1972 00	1975 00	1974 00	1973 00	1976 00	1977 00	1973 00	1980 00	1961 00	1807 00	1980 00	1979 00	1978 00	1981 00
1948	1770	1950	1771	1921	1	2 94E+04		0	0	0	0	1778	1964	1780	1783	1966	1784	1787	1961	1788	1791	1970	1792	1792	1795	2070	1971	1796	1975	1974	1799	1976	1977	1800	1808	1808	1807	1980	1979	1812
1949	17771	1981	- 506	1778	144	0	0 258	δ	0	0	0	1780	1966	1783	1784	1961	1787	1788	1970	1791	1792	1971	1796	2070	1796	1975	1974	1799	1976	11977	1800	<u>\$</u>	1979	1807	1812	1981	1982	1963	<u>8</u>	1813
82	204	505	902	202	9	1	1216+11	0	0	0	0	1	2	3	7	S	9	4	80	6	01	11	21	E1	71	51	91	21	18	61	02	12	22	23	24	92	92	22	8	83

٠١'	1914			88	-	5 00E+03
. 1	8		_	-		2 00E +04
	2049	2044	2048 00	2047	2 00E+04	
	2048	2044	2045.00	2046	1	2 COE +04
	2047	2045	2042.00	2050	1	2.00E+04
	1921	1920	2048 00	2051	1	2 00E +04
	2050	2048	2047.00	2062	1	2 00E+04
	2051	2047	2046.00	2054		2.00E+04
	1926		2050.00	2053	1	2.00E+04
	88	2050	2051.00	-	1	2.00E+04
L i	2083	1902	2052.00	1	2.00E+04	
	1927	1926	2054.00	1	2.00E+04	
	1930	1927	2054.00	2055	2.00E+04	
	1931	0661	2054.00	2056	I	2 00E+04
3	2055	2054	2063.00	1	1	2.00E+04
	1934		2055.00	2059	2 00E +04	
128	1935	1934	2055.00	2057		2.00E+04
129	2059	2065	2056.00	1	1	2.00E+04
130	1938	1935	2059.00	2060	2.00E+04	
131	1939	1938	2059.00	1	1	2.00E+04
132	2060	5059		1	2.00E+04	
133	2061	2059	2058.00	1	3.50E	
ह	8			2063	3.50E+04	
55	192			2062	1	2 00E +04
8	8			1		2 00E +04
137	1943	1942	2063.00	2064	2.00E+04	
138	1947	1943	2063 00	2065	1	2.00E+04
139	2064	2063	2062.00	1	1	2 00E+04
140	1948	1947		2067	2 00E+04	
141	1952	1948	2064.00	2066	1	2.00E+04
142	2067	2064	2065.00	1964	-	2 00E+04
143	1779	1952	2067.00	2069	1	2 00E +04
44	1964	2067	2066 00		1	2 00E+04
9	85	1	3.00	0		
-	0	2 94E +04	000		0	
11	0 258			1		
0	0	0	000	0		
0	0	0		0		
0	0	0	000	0		
0	0	0	000	1		
L	1005	6902	2071 00	2072	2072 3 50E+04	

2018 5.00F+03		-	2019 5 00E +03	2020 1 5 00E+03	1 2 00E+04	2022 5 00E +03	1 5 00E+03	2021 2 00E+04	2023 1 2.00E+04	2030 1 5 00E+03	ı	-	2031 1 5 00E+03	1 1 2 00€+04	1 2 00E+04	2027 5.00E+03	2032 1 5 00E+03	2026 1 2:00E+04	1 2:00E+04	2028 5.00E+03	-	2034 1 2.00E+04	5 00E +03	-	2035 1 2.00E+04	-	2038 5.00E+03	2039 1 5 00E+C3	2040 1 2 00E+04	2068 1 2 00E+04	2041 1 5 00E+03	2043 2 00E+04	2042 1 5 00E+03	-	-	2045 1 5 00E+03
1964 2015 001	_	2015 2016 00	1968 2018 00	1969 2018 00	2018 2017 00	1872 2019 00	1873 2019 00	2019 2029 00	2019 2020.00	1876 2022.00	2022 2029.00	2029 2021 00	1877 2023 00	2023 2030.00		1882 2024 00	1883 2024.00	2024 2031 00	2031 2025.00	1888 2027.00		2027 2032.00				2033 2034 00		1897 2037 00	2037 2036.00	2036 2035.00	1955 2038 00	2039 2040 00	1961 2068 00			1962 2043 00
71 1865	1	L	74 1869	75 1872	2019	77 1873	78 1876	79 2022	80 2029	1877	B2 2023		1882	85 2024	86 2031	87 1883	1688	89 2027	2032 08	91 1869	92 1892			_1			1897	Ш	101 2038	102 2039	1961 201	 105 2041	106 1962	1		108 1905

				İ																	l																		
	3 50E+04	3 50E+04				3 50E+04	3 50E+04		3 50E+04			3 50E+04	3 50E+04	3 50E+04		3 50E+04	3 50E+04		3 50E+04	3 50E+04	3 50E+04	3 50E+04	3 50E+04			3 50E+04	3.50E+04		3 50E+04		3 50E+04	3 50E+04		3 50E+04		3 50E+04	3 50E +04	3 50E+04	
3 50E+04	1	1	3 50E+04	3.50E+04	3 50E+04	1	1	3.50E+04	1	3 50E+04	3.50E+04	1	1	ı	3.50E+04	1	1	3 50E+04	1	-	1	1	1	3.50E+04	3 50E+04	-		3 50E+04	-	3 50E +04	-	-	3 50E+04	-	3 50E+04	1	1	-	3 50E+04
2086	2112	1	1	1	2113	2121	1	2114	1	1	2090	2088	2115	1	2091	2089	1	2092	2094	2116	2122	2093	1	1	88	2095	1	2097	1	2098	2100	1	2099	1	2101	2102	21:7	1	2071
2085 00	2085 00	2111 00	2120.00	2025.00	211200	211200	2120 00	2113 00	2113 00	2121.00	2114.00	2041 00	2040 00	2114.00	2121 00	2090.00	2088 00	2115.00	2091 00	2089 00	2115 00	2121 00	2092.00	2094 00	2093.00	2093.00	204 8	2116.00	2096.00	2095 00	2057 00	2095 00	2116 00	2098 00	2100.00	2099 00	2100 00	2116 00	2122 00
2017	2020	2085	2111	2086		2025	2112	2026	2034	2113	2035	2042	2041	2040	2114	2046	2090	2088	2025	2091	5083	2115	2053	2082	2056	2057	2093	2094	2058	5096	2061	2097	2095	2062	2098	2065	5099	2100	2116
2020	2021	2086	2112	2021	2025	2026	2113	2034	2035	2114	2040	2046	2090	2088	2115	2052	2091	5083	2053	2092	2094	2116	2056	2093	2057	2058	2086	2095	2061	<u> 209</u> ≟	2062	2098	2100	2065	6502	5066	2101	2102	2117
43	44	45	9	47	48	49	90	51	25	53	75	55	95	57	38	65	93	19	29	හ	3	83	99	29	89	69	02	71	72	6	74	75	76	11	78	£	88	<u>8</u>	82

2102 00
2188
2073 00
211700
2122.00
2074
2104
8
2104 00
211800
211900
2076 00
2105 00
2077 00
2105
2106 00
2078.00
2078 2108 00
1992 2079 00
2079 2108 00
2080 2002 00
2080 2108 00
2108 2107.0C
2081 00
2081 2109 00
2087
2003 2082 00
2082 2109 00
2109 2107 00
2006 2087 00
2883
2012 2083 00
211000
2110 2119 00
2013 2084
211100
2015 2005 00

	3.50E+04				
2122 3 50E+04	-			8 00E+14	
			0		
2102.00	2120 2121 00			80	
	П			0	0
2071	2119			0	0
\$	8	1		-	o

REFERENCES

- Agrawal, D.P. (1985) Cenozoic climatic changes in Kashmir: The multidisciplinary data. In: Climate and Geology of Kashmir (Agrawal, D.P., Kusumgar, S., and Krishnamurthy, R.V., eds.), Today and Tomorrow, New Delhi, 1-12.
- Agrawal, D.P., Dodia, B.S., Kottla, B.S., Razdan, H., and Sahni, A. (1989) The Plio-Pleistocene geologic and climatic record of the Kashmir valley, India: A review and new data. Palaeogeography, Palaeoclimatology, Palaeoecology 73, 267-286.
- Ambrose, S.H. and Sikes, N.E. (1991) Soil carbon isotope evidence for Holocene habitat change in the Kenya Rift Valley. Science 253, 1402-1405.
- An, Z.S. and Wei, L.Y. (1980) The fifth layer paleosol in the Lishi loess and its paleoclimatic significance. Acta Pedological Sinica 17, 1-12 (in Chinese).
- An, Z.S., Kukla, G.J., Porter, S.C., and Xiao, J.L. (1991) Magnetic susceptibility evidence of monsoon variation on the loess plateau of central China during the last 130,000 years. Quaternary Research 36, 29-36.
- An, Z.S., Porter, S.C., Zhou, W.J., Lu, Y.C., Donahue, D.J., Head, M.J., Wu, X.H., Ren, J.Z., and Zheng ¹I.B. (1993) Episode of strengthened summer monsoon climate of Younger Dryas age on the loess plateau of central China. Quaternary Research 39, 45-54.
- Anderson, D.L. (1989) Theory of the Earth. Blackwell Scientific Publications.
- Anderson, J.G. (1923) Essays on the Cenozoic of Northern China. Memoirs of Geological Survey of China Series A 3, 1-52.
- Andrews, J.T. (1992) A case of missing water. Nature 358, pp281.
- Bake, V.R. (1983) Late-Pleistocene fluvial system. In: Porter, S.C. (ed), Late Quaternary Environments of the United States, Minneapolis, University of Minnesota Press, 1, 115-129.
- Baker, E.T., Levelle, J.W., Feely, R.A., Massoth, G.J., Walker, S.L., and Lupton, J.E. (1989) Episodic venting of hydrothermal fluids from the Juan de Fuca Ridge. **Journal of Geophysical Research**, 94, 9237
- Balesdent, J., Mariotti, A., and Guillet, B. (1987) Natural ¹³C abundance as a tracer for studies of soil organic matter dynamics. Soil Biology and Biochemistry 19, 25-30.
- Barnett, T.P., Dumenil, L., Schlese, U., Roeckner, E., and Latif, M. (1991) The Asian snow cover-monsoon-ENSO connection. In: Teleconnections Linking Worldwide Climate Anomalies: Scientific Basis and Societal Impact. Cambridge University Press,

Barnola, J.M., Raynaud, D., Korotkevich, Y.S., and Lorius, C. (1987) Vostok ice core provides 160,000-year record of atmospheric CO². Nature, 329, 408-414.

Barrell, J. (1919a) The nature and bearings of isostasy. American Journal of Science, 48, 281-290.

Barrell, J. (1919b) The status of the theory of isostasy. American Journal of Science. 48, 291-338.

Barron, V. and Torrent, J. (1986) Use of the Kubelka-Munk theory to study the influence of iron oxides on soil colour. **Journal of Soil Science 37**, 499-510.

Becker-Heidmann, P. and Scharpenseel, H-W. (1986) Thin layer δ^{13} C and D¹⁴C monitoring of "lessive" soil profiles. **Radiocarbon 28**, 383-390.

Beer, J., Shen, C.D., Heller, F., Liu, T.S., Bonani, G., Dittrich, B., Suter, M., Kubik, P.W. (1993) ¹⁰Be and magnetic susceptibility in Chinese loess. Geophysical Research Letter 20, 57-60.

Begin, Y., Berube, D., and Gregoire, M. (1993) Downward migration of coastal conifers as a response to recent land emergence in east Hudson Bay, Quebec. Quaternary Research, 40, 81-88.

Bender, M.M. (1971) Variations in the ¹³C/¹²C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. **Photochemistry 10**, 1239-1244.

Bender, M.M., Rouhani, I., Vines, H.M., and Black, C.C. (1973) ¹³C/¹²C ratio changes in crassulacean acid metabolism. **Plant Physiology 52**, 427-430.

Berger, A.L. (1976) Obliquity and procession for the last 5,000,000 years. Astronomy and Astrophysics, 51, 127-135.

Berger, A.L. (1984) Accuracy and frequency stability of the earth's orbital elements during the Quaternary. In: Berger, A.L., Imbrie, J., Hays, J., Kukla, G. and Saltzman, B. (eds.), Milankovitch and Climate, Boston: D. Reidel, 3-39.

Berger, A. and Loutre, M.F. (1991) Insolation values for the climate of the last 10 million years. Quaternary Science Review, 10, 297-317.

Berger, A.L., Imbrie., J., Hays, J., Kukla, G., and Saltzman, B. (1984) Milankovitch and Climate (eds). Boston, D. Reidel.

Berger, W.H., Killingly, J.S. and Vincent, E. (1987) Time scale of the Wisconsin/Holocene transition: Oxygen isotope record in the western equatorial Pacific.

Bergman, E.A. and Solomon, S.C. (1990) Earthquake swarms on the Mid-Atlantic Ridge: Products of magmatism or extensional tectonics? Journal of Geophysical Research, 95, 4943-4965.

Finatia, T.T. and Kapoor, K.C. (1982) Petrographic and sedimentation of Siwalik Arenites of Panjab and Himachal Padesh. In: **Recent Researches of Geology 8** (Kupta, V.J., ed.), Hindustan Publishing Corp., 188-195.

Birchfield, G.E. (1985) Ice sheet dynamics and the Pleistocene ice ages. In: Nicolis, C. and Nicolis, G. (eds.), Irreversible Phenomena and Dynamical Systems Analysis in Geosciences, 381-398.

Birchfield, G.E., Weertman, J. and Lunde, A.T. (1981) A paleo-climate model of Northern Hemisphere ice sheets Quaternary Research, 15, 126-142.

Birkeland, P.W. (1974) **Pedology, Weathering, and Geomorphological Research**. Oxford University Press, Inc. 103-124.

Blanchon, P. and Shaw, J. (1995) Reef drowning during the last deglaciation: evidence for catastrophic sea-level rise and ice-sheet collapse. Geology, 23, 4-8.

Blum, J.D. and Erel, Y. (1995) A silicate weathering mechanism linking increases in marine ⁸⁷Sr/⁸⁶Sr with global glaciation. **Nature**, 373, 415-418.

Blumenthal, M.B. (1990) Effects on west African air humidity on Atlantic sea surface temperature. In: Greenhouse Effect, Sea Level and Drought, Klumer, 21-40.

Bond, G., Heinrich, H., Broecker, W., Labeyrie, L., McManus, J., Andrews, J., Huon, S., Jantschik, R., Clasen, S., Simet, C., Tedesco, K., Klas, M., Bonan, G., and Ivy, S. (1992) Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature, 360, 245-249.

Boyle, E.A. (1988) Cadmium chemical tracer of deepwater. Paleoceanography, 3(4), 471-489.

Boyle, E.A. (1988a) The role of vertical chemical fractionation in controlling late Quaternary atmospheric carbon dioxide. **Journal of Geophysical Research**, 93, 15701-15714.

Boyle, E.A. and Keigwin, L. (1985/1986) Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years: changes in deep ocean circulation and chemical inventories. Earth and Planetary Science Letters 76, 135-150.

Boyle, E.A. and Keigwin, L. (1987) North Atlantic thermohaline circulation during the

past 20,000 years linked to high latitude surface temperature. Nature, 330, 35-40.

Broccoli, A.J. and Manabe, S. (1987) The influence of continental ice, atmospheric CO₂ and land albedo on the climate of the last glacial maximum. Climate Dynamics, 1, 87-99.

Broecker, W.S. (1994) Massive iceberg discharges as triggers for global climate change. Nature, 372, 421-424.

Broecker, W.S. and van Donk. J. (1970) Insolation changes, ice volumes and the O¹⁸ record in deep-sea cores. Reviews of Geophysics and Space Physics 8, 169-197.

Broecker, W.S. and Denton, G.H. (1990) The role of ocean-atmosphere reorganizations in glacial cycles. Quaternary Science Reviews, 9, 305-341.

Broecker, W.S., Peng, T.-H., Jouzel, J. and Russell, G. (1990) The magnitude of global fresh-water transports of importance to ocean circulation. Climate Dynamics, 4, 73-79.

Browning, K. (1992) Clouding: The issue. Science and Present Affairs, Spring 1992, 35-42.

Burbank, D.W., Derry, L.A., and France-Lanord, C. (1993) Reduced Himalayan sediment production 8 Myr ago despite an intensified monsoon. Nature, 364, 48-50.

Calhoun, E.A. (1985) Glaciations of the West Coast Range, Tasmania. Quaternary Research, 24, 39-59.

Cannat, M. (1993) Emplacement of mantle rocks in the seafloor at mid-ocean ridges. Journal of Geophysical Research, 98(B3), 4163-4172

Cao, B.X., Liu, S.R., Zhao, B.Y., and Guan, K.N. (1966) A primary study of the Cenozoic in You-he region, Weinan, Shaanxi. In: **Proceedings of Symposium on the Cenozoic of Lantian, Shaanxi.** Science Press (in Chinese), 121-124.

Catt, J.A. (1990) Paleopedology manual, chapter 1. Quaternary International 6, 2-20.

Cerling, T.E. and Hay, R.L. (1986) An isotopic study of paleosol carbonates from Olduvai Gorge. Quaternary Research 25, 63-78.

Cerling, T.E., Quade, J., Wang, Y., and Bowman, J.R. (1989) Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators. Nature 341, 138-139.

Cerling, T.E., Wang, Y., and Quade, J. (1993) Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 361, 344-345.

Chappell, J. and Shackleton, N.J. (1986) Oxygen isotopes and sea level. Nature, 324,

Chappellaz, J., Barnola, J.M., Raynaud, D., Korotkevich, Y.S. and Lorius, C. (1990) Ice-core record of atmospheric methane over the past 160,000 years. Nature, 345, 127-131.

Chaudhri, R.S. (1982) Petrology of the Siwalik Group of Nepal Himalaya. In: Recent Researches of Geology 8 (Kupta, V.J., ed.), 424-468. Hindustan Publishing Corp.

Chen, X. (1994) Stratigraphy and large mammals of the "Jinglean" stage, Shanxi, China. Quaternary Sciences 1994 (4), 339-353.

China Map Press (1984) Vegetations in China. *In* "Atlas of the People's Republic of China", pp.15, China Map Press, Beijing, China (in Chinese).

Chinese Academy of Geology (1974) Atlas of Provincial Geological Map of the People's Republic of China. China Geological Map Press (in Chinese).

Clemens, S.C., Farrell, J.W., and Gromet, L.P. (1993) Synchronous changes in seawater strontium isotope composition and global climate. Nature, 363, 607-610.

CLIMAP Project Members (1981) Seasonal reconstruction of the Earth's surface at the last glacial maximum. Geological Society of America, Map and Chart Series 36.

Clough, R.W. and Filippa, C.A. (1968) A refined quadrilateral element for analysis of plate bending. Proc. 2nd Conf. on Matrix Methods in Structural Mechanics, Wright Patterson, AFB, OH.

Coblentz, D.D. and Sandiford, M. (1994) Tectonic stresses in the African plate: constraints on the ambient lithospheric stress state. Geology, 22, 831-834.

Coleman, M. and Hodges, K. (1995) Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east-west extension. Nature, 374, 49-52.

Colhoun, E.A., Mabin, M.C.G., Adamson, D.A., and Kirk, R.M. (1992) Antarctic ice volume and contribution to sea-level fall at 20,000 yr BP from raised beaches. Nature 358, 316-319.

Craig, H. (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta 12, 133-149.

Croll, J. (1875) Climate and Time. New York, Appleton and Co., 388p.

Crowley, T.J. and Kim, K.-Y. (1994) Milankovitch forcing of the 'st interglacial sea level. Science, 265, 1566-1568.

Cui, Z.J. and Zheng, B.X. (1975) Scientific Expedition Report on the Mt. Everest Region: Modern Glaciers and Geomorphology. 169-179. Science Press, Beijing.

Dansgaard, W. and Oeschger, H. (1985, Past Environmental long-term records from the Arctic. In: Oeschger, H. and Langway, C.C.Jr. (eds.), The Environmental Record in Glaciers and Ice Sheets, 287-318. John Wiley & Sons.

Dansgaard, W., White, J.W.C and Johnson, S.J. (1989) The abrupt termination of the Younger Dryas climate event. Nat: re, 339, 532-533.

De Decker, P., Correge, T. and Head, J. (1991) Late Pleistocene record of cyclic eolian activity from tropical Australia suggesting the Younger Dryas is not an unusual climatic event. Geology, 19, 602-605.

Deines, P. (1980) The isotopic composition of reduced organic carbon. *In* "Handbook of Environmental Isotope Geochemistry; 1. The Terrestrial Environment" (A.P. Fritz and J.Ch. Fontes, Eds.), Elsevier, Amsterdam, 329-406.

DeLaune, R.D. (1986) The use of δ^{13} C signature of C-3 and C-4 plants in determining past depositional environments in rapidly accreting marshes of the Mississippi river deltaic plain, Louisiana, U.S.A. Chemical Geology (Isotope Geoscience Section) 59, 315-320.

Denton, G.H. and Hughes, T.J. (1981) The Last Great Ice Sheets (eds.). John Wiley & Sons. New York.

Denton, G.H. and Hughes, T.J. (1983) Milankovitch theory of ice ages: Hypothesis of ice-sheet linkage between regional insolation and global climate. Quaternary Research, 20, 125-144.

Denton, G.H., Hughes, T.J. and Karlen, W. (1986) Global ice-sheet system interlocked by sea level. Quaternary Research, 26, 3-26.

Detrick, R.S., Buhl, P., Vera, E., Mutter, J., Orcutt, J., Madsen, J., and Brocher, T. (1987) Multichannel seismic imaging of a crustal magma chamber along the East Pacific Rise between 9°N and 13°N. Nature, 326, 35-41.

Detrick, R.S., Mutter, J.C., Buhl, P., and Kim, I.I. (1990) No evidence from multichannel reflection data for a crustal magma chamber in the MARK area on the Mid-Atlantic Ridge. Nature, 347, 61-63.

Dia, A.N., Cohen, A.S., O'Nions, R.K., and Shackleton, N.J. (1992) Seawater Sr isotope variation over the past 300 kyr and influence of global climate cycles. Nature, 356, 786-788.

Ding, Z.L. (1988) Investigation and division of pedostratigraphy and climatostratigraphy

on the China loess. Ph.D. Thesis. Institute of Geology, Chinese Academy of Sciences, Beijing.

Ding, Z.L., Liu, T.S., Liu, X.M., Chen, M.Y., and An, Z.S. (1990) Thirty-seven climatic cycles in the last 2.5 Ma. Chinese Science Bulletin 35, 667-671.

Ding, Z.L., Rutter, N., Liu, T.S., Evans, M.E., and Wang, Y. (1991) Climatic correlation between Chinese loess and deep-sea cores: A structural approach. In: Loess, Environment and Global Change (Liu, T.S., ed.), Science Press, Beijing, China. 168-186.

Ding, Z.L., Rutter, N., Han, J., and Liu, T.S. (1992) A coupled environmental system formed at about 2.5 Ma in East Asia. Palaeogeography, Palaeoclimatology, Palaeoecology 94, 223-242.

Dorn, R.I., DeNiro, M.J., and Ajie, H.O. (1987) Isotopic evidence for climatic influence on alluvial-fan development in Death Valley, California. Geology 15, 108-110.

Dreimanis, A. (1962) Quantitative gasometric determination of calcite and dolomite by using chittick apparatus. Journal of Sedimentary Petrology 32, 520-529.

Duplessy, J.C., Shackleton, N.J., Fairbank, R.G., Labeyrie, L., Oppo, D. and Kallel, N. (1988) Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. **Paleoceanography**, 3(3), 343-360.

Edmond, J.M. (1992) Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258, 1594-1597.

Emiliani, C. (1955) Pleistocene temperatures. Journal of Geology, 63, 538-578.

Erickson, S.G. (1993) Sedimentary loading, lithospheric flexure, and subduction initiation at passive margins. Geology, 21, 125-128.

Evans, L.J. (1992) Alteration products at the earth's surface-- the clay minerals. In: Weathering, Soils & Paleosols (Martini, I.P. and Chesworth, W. eds.), Chapter 5, Elsevier Science Publishers B.V., Amterdam. 107-125.

Evans, M.E., Wang, Y., Rutter, N., and Ding, Z. (1991) Preliminary magnetostratigraphy of the red clay underlying the loess sequence at Baoji, China. Geophysical Research Letters 18, 1409-1412.

Fægri, K. and Iversen, J. (1989) **Textbook of Pollen Analysis**, IV Edition. John Willey & Sons, Chichester. 1-163.

Faure, G. (1986) Principles of Isotope Geology, 2nd Ed. New York; Toronto, Wiley. 183-238.

Fichefet, T., Hovine, S., and Duplessy, J.C. (1994) A model study of the Atlantic thermohaline circulation during the last glacial maximum. Nature, 372, 252-255.

First Institute of Oceanography, State Oceanic Administration. (1984) Topographic Map of Bohai and Huanghai Seas, China Map Press, Shanghai.

Flint, R.F. (1971) Glacial and Quaternary Geology. John Wiley and Sons, New York.

Froelich, P.N. (1993) Ruling in the improbable. Nature, 363, 585-587.

Gardner, R and Pye, K. (1981) Nature, origin and paleoenvironmental significance of red coastal and desert dune sands. **Progress in Physical Geography 5**, 514-534.

Garrett, W.E. (1985) Earth's Dynamic Crust (ed.). The Cartographic Division, National Geographic Society, Washington, D.C.

Goodfriend, G.A. (1990) Rainfall in the Negev Desert during the middle Holocene, based on ¹³C of organic matter in land snail shells. Quaternary Research 34, 186-197.

Guillet, B. and Souchier, B. (1982) Amorphous and crystalline oxyhydroxides and oxides in soils (iron, aluminium, manganese, silicon). In: Bonneau, M. and Souchier, B. (eds.), Constituents and Properties of Soils (tran. Farmer, V.C.), Academic Press, London. 21-42.

Guillet, B., Faivre, P., Mariotti, A., and Khobzi, J. (1988) The ¹⁴C dates and ¹³C/¹²C ratios of soil organic matter as a means of studying the past vegetation in intertropical regions: examples from Colombia (South America). Palaeogeography, Palaeoclimatology, Palaeoecology 65, 51-58.

Guo, Z.T., Fedoroff, N., and An, Z.S. (1991) Genetic types of the Holocene soil and the Pleistocene paleosols in the Xifeng loess section in central China. In: Liu, T.S. (ed.) Loess, Environment and Global Change. 93-111. Science Press, Beijing, China.

Guo, Z.T., Liu, T.S., and An, Z.S. (1994) Paleosols of the last 0.15 Ma in the Weinan loess section and their paleoclimatic significance. Quaternary Sciences 1994(3), 256-269 (in Chinese with English abstract).

Hammer, C.U. Clausen, H.B., Dansgaard, W., Neftel, A., Kristinsdottir, P., and Johnson, E. (1985) Continuous impurity analysis along the Dye 3 deep core. In: Langway, C.C., Oeschger, H., and Dansgaard, W. (eds.), Greenland Ice Core: Geophysics, Geochemistry and the Environment, Amer. Geophys. Union Mon., 33, 90-94.

Han, J. (1987) A study of the loess in Penglai District, Shandong Province. In: Aspects of Loess Research (Liu, T.S., ed.), China Ocean Press, Beijing. 76-84.

- Han, J. (1988a) Sporopollen assemblage features of some sections in Mt. Naimona'nyi region and their paleogeographic significance. In: **Proceedings of Sino-Japanese Joint Scientific Symposium on Tibetan Plateau Vol.I** (Shidei, T., ed.), Kyoto, Japan. 23-37.
- Han, J. (1988b) A preliminary study on clay minerals of Quaternary sediments in Mt. Naimonan'yi region. In: **Proceedings of Sino-Japanese Joint Scientific Symposium on Tibetan Plateau Vol.I** (Shidei, T., ed.), Kyoto, Japan. 13-22.

Harding, A.J., Orcutt, J.A., Kappus, M.E., Vera, E.E., Mutter, J.C., Buhl, P., Detrick, R.S., and Brocher, T.M. (1989) Structure of young oceanic crust at 13°N on the East Pacific Rise from expanding spread profiles. **Journal of Geophysical Research**, 94, 12163-12196.

Harrison, T.M., Copeland, P., Kidd, W.S.F., and Yin, A. (1992) Raising Tibet. Science, 255, 1663-1670.

Haskell, N.A. (1935) The motion of a viscous fluid under a surface load. Physics, 6, 265-269.

Haskell, N.A. (1936) The motion of a viscous fluid under a surface load, 2. Physics, 7, 56-61.

Hattersley, P.W. (1983) The distribution of C3 and C4 grasses in Australia in relation to climate. Oecologia (Berlin) 57, 113-128.

Hays, J.D., Imbrie, J., and Shackleton, N.J. (1976) Variations in the Earth's orbit: pacemaker of the ice ages. Science, 194, 1121-1132.

He, P.Y., Liu, L.S., and Yu, Q.H. (1984) Approach on the age and environmental change of the "Sanmen Sequence" from the Dongpogou Section of Sanmen Gorge. Geological Reviews 30(2). (in Chinese).

Heezen. B.C. and Tharp, M. (1970) Major Topographic Division of the Continental Margins. Source of Data: Office of the Geographer, Department of State.

Heller, F. and Liu, T.S. (1982) Magnetostratigraphical dating of loess deposits in China. Nature, 300, 431-433.

Heller, F. and Liu, T.S. (1984) Magnetism of Chinese loess deposits. Geophysical Journal of the Royal Astronomical Society 77, 125-141.

Heller, F. and Liu, T.S. (1986) Paleoclimatic and sedimentary history from magnetic susceptibility of loess in China. Geophysical Research Letters 13, 1169-1172.

Heller, F., Meili, B., Wang, J.D., Li, H.M., and Liu, T.S. (1987) Magnetization and sedimentation history of loess in the central Loess Plateau of China. In: Aspects of Loess

- Research (Liu, T.S. ed.), China Ocean Press, Beijing. 147-163.
- Heller, F., Shen, C.D., Beer, J., Liu, X.M., Liu, T.S., Bronger, A., Suter, M., and Bonani, G. (1993) Quantitative estimates of pedogenic ferromagnetic mineral formation in Chinese loess and palaeoclimatic implications. Earth and Planetary Science Letters 114, 385-390.
- Heller, F. and Evans, M.E. (1995) Loess magnetism. Reviews of Geophysics 33(2), 211-240
- Hou, X.Y. (1979) Vegetation Map of China. Institute of Botany, Academia Sinica (ed.). Map Publisher of China, Beijing.
- Houghton, J. (1991) The predictability of weather and climate. Philosophical Transaction of the R. Society of London A 337, 521-572.
- Hsu, J. (1978) On the paleobotanical evidence for continental drift and Himalayan uplift. **Paleobotany 25**, 131-142.
- Hsu, J., Tao, J.Y., and Sun, X.J. (1973) On the discovery of *Quercus Semicarpifolia* bed in Mount Shisha Pangma and its significance in botany and geology. Acta Botanica Sinica 15(1), 103-119.
- Huang, P.Y., Solomon, S.C., Bergman, E.A., and Nabelek, J.L. (1986) Focal depths and mechanisms of Mid-Atlantic Ridge earthquakes from body waveform inversion. Journal of Geophysical Research, 91, 579-598.
- Huang, S.S., Yang, X.Q., and Xie, Q. (1992) the effects of the arctic sea ice on the variations of atmospheric general circulation and climate. Acta Meteorologica Sinica 6, 1-14.
- Hughes, T. (1987) Ice dynamics and deglaciation and deglaciation and the sheets collapsed. In Ruddiman, W.F., and Wright, H.E., Jr., (eds), North America and Adjacent Oceans during the Last Deglaciation, The Geology of North America, K-3, 183-220.
- Hughes, T.J., Denton, G.H., Andersen, B.G., Schilling, D.H., Fastook, J.L., and Lingle, G.S. (1981) The last great ice sheets: a global view. In: Denton, G.H. and Hughes, T.J. (eds.), The Last Great Ice Sheets, John Wiley & Sons, New York. 263-317.
- Hyde, W.T. and Peltier, W.R. (1985) Sensitivity experiments with a model of the ice age cycle: the response to harmonic forcing. **Journal of Atmospheric Science 42**, 2170-2188.
- Imbrie, J. (1985) A theoretical framework for the Pleistocene ice ages. Journal of Geological Society (London), 142, 417-432.

- Imbrie, J. and Imbrie, K.P. (1979) Ice Ages. Enslow Publishers, Short Hills, New Jersey, 61-161.
- Imbrie, J. and Imbrie, J.Z. (1980) Modelling the climatic response to orbital variations. Science, 207, 943-953.
- Imbrie, J., Hays, J.D., Martinson, D., McIntyre, A., Mix, A., Morley, J., Pisias, N., Prell, W., and Shackleton, N.J. (1984) The orbital theory of Pleistocene climate: support from a revised chronology of marine δ^{18} O record. In: Berger, A.L., Imbrie, J., Hays, J., Kukla, G. and Saltzman, B. (eds), Milankovitch and Climate, Boston, D. Reidel. 269-305.
- Institute of Botany, Academia Sinica (1960) Vegetational Distribution Divisions of China. Science Press, Beijing, (in Chinese). 7-55.
- Ji, H.X., Huang, W.P., Chen W.Y., Wu, Q.Q., and Zheng, S.H. (1981) The discovery of the Hipparion faunas in Tibet and its significance on the problem of the uplift of the Plateau. In: Studies on the Period, Amplitude and Type of the Uplift of the Tibetan Plateau (CSEQXP, Academia Sinica, eds.), 19-25. Science Press, Beijing.
- Jouzel, J., Barkov, N.I., Barnola, J.M., Genson, C., Korotkevitch, Y.S., Kotlyakov, V.M., Legrand, M., Lorius, C., Petit, J.P., Petrov, V.N., Raisbeck, G., Raynaud, D., Ritz, C. and Yiou, F. (1989) Global change over the last climatic cycle from the Vostok ice core record (Antarctica). Quaternary International, 2, 15-24.
- Jouzel, J., Lorius, C., Petit, J.R., Genthon, C., Barkov, N.I., Kotlyakov, V.M. and Petrov, ✓.M. (1987) Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160,000 years) Nature, 329, 403-408.
- Judson, S., Kauffman, M.E., and Leet, L.D. (1987) Physical Geology Seventh Edition, Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 1-484.
- Karson, J.A., Thompson, G., Humphries, S.E., Edmond, J.M., Bryan, W.B., Brown, J.R., Winters, A.T., Pockalny, R.A., Casey, J.F., Campbell, A.C., Klinkhammer, G., Palmer, M.R., Kinzler, R.J., and Sulanowska, M.M. (1987) Along axis variations in seafloor spreading in the MARK area. Nature, 328, 681-685.
- Keeling, C.D., Mook, W.G. and Tans, P.P. (1979) Recent trends in the ¹³C/¹²C ratio of atmospheric carbon dioxide. Nature 277, 121-123.
- Kemp, R.A. (1985) The cause of redness in some buried and non-buried soils in eastern England. **Journal of Soil Science 36**, 329-334.
- Kong, L.S., Solomon, S.C., and Purdy, G.M. (1992) Microearthquake characteristics of a mid-ocean ridge along-axis high. Journal of Geophysical Research, 97, 1659-1685.

Krishnamurthy, R.V., DeNiro, M.J., and Pant, R.K. (1982) Isotope evidence for Pleistocene climatic changes in Kashmir, India. Nature 298, 640-641.

Krishnamurthy, R.V. and Bhattacharya, S.K. (1989) Paleovegetational history in the Kashmir basin, India, derived from ¹³C/¹²C ratio in paleosols. Earth and Planetary Science Letters 95, 291-296.

Kudrass, R.H., Erlenkeuser, H., Vollbrech, R. and Weiss, W. (1991) Global nature of the Younger Dryas cooling event inferred from oxygen isotope data from Sulu Sea cores. Nature, 349, 406-408.

Kukla, G. (1987) Loess stratigraphy in central China. Quaternary Science Reviews 6, 191-219.

Kukla, G., Heller, F., Liu, X.M., Xu, T.C., Liu, T.C., and An, Z.S. (1988) Climates in China dated by magnetic susceptibility. Geology 16, 811-814.

Kukla, G. and An, Z. (1989) Loess stratigraphy in Central China. Paleogeography Paleoclimatology Paleoecology 72, 203-225.

Kutzbach, J.E. and Guetter, P.J. (1986) The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18,000 years. **Journal of Atmospheric Science 43**, 1726-1759.

Kutzbach, J.E., Guetter, P.J., Behling, P.J., and Selin, R. (1993) Simulated climatic changes: Results of the COHMAP climate-model experiments. In: Global Climates Since the Last Glacial Maximum (Wright, H.E.Jr., Kutzbach, J.E., Webb III, T., Ruddiman, W.F., Street-Perrott, F.A., and Bartlein. P.J., eds.), University of Minnesota Press. Minneapolis, London. 24-93.

Lamb, H.H. (1972) Climate: Present, Past and Future. Vol. 1. Methuan & Co., London.

Ladyman, S.J. and Harkness, D.D. (1980) Carbon isotope measurement as an index of soil development. Radiocarbon 22, 885-891.

Larson, R.L. (1991) Latest pulse of Earth: Evidence for a mid-Cretaceous superplume. **Geology**, 19, 547-550.

Larson, R.L. and Olson, P. (1991) Mantle plumes control magnetic reversal frequency. Earth and Planetary Science Letters, 107, 437-447.

Legrand, M.R., Delmas, R.J. and Charlson, R.J. (1988) Climate forcing implications from Vostok ice-core sulphate data. Nature, 334, 418-420.

Lehman, S.J. and Keigwin, L.D. (1992) Sudden changes in North Atlantic circulation

- during the last deglaciation. Nature, 356, 757-762.
- Leavitt, S.W., and Long, A. (1982) Evidence for ¹³C/¹²C fractionation between tree leaves and wood. Nature 298, 742-744.
- Li, C.K., Wu, W.Y., and Qiu, Z.D. (1984) A preliminary subdivision and comparison of the Neogene terrestrial deposits in China. Vertebrate Paleontology Sinica 22, 163-178. (in Chinese).
- Li, J.J., Wen, S.X., Zhang, Q.S., Wang, F.B., Zheng, B.X., and Li, B.Y. (1979) The age, amplitude and type of the Qinghai-Xizang Plateau uplift. Scientia Sinica 6, 608-616.
- Li, W.Y. (1983) Sporopollen assemblages from some localities of southern Qinghai-Xizang Plateau in the Pliocene and their paleogeographic significance. In: Quaternary Geology in Xizang (Tibet), Science Press, Beijing. 162-178.
- Li, W.Y. (1985) Studies on vegetation and paleogeography from late Tertiary to early Quaternary in China. Quaternaria Sinica 6(2), 77-82.
- Lin, B., Liu, R., and An, Z. (1991) Preliminary research on stable isotopic compositions of Chinese loess. *In* "Loess, Environment and Global Change" (Liu, T.S., Ed.), Science Press, Beijing, China. 124-131.
- Linsley, B.K. and Thunell, R.C. (1990) The record of deglaciation in the Sulu Sea: Evidence for the Younger Dryas event in the tropical western Pacific. **Paleoceanography** 5, 1025-1039.
- Liu, J.Q., Chen, T.M., Nie, G.Z., Song, C.Y., Guo, Z.T., Li, K., Gao, S.J., Qiao, Y.L., and Ma, Z.B. (1994) Datings and reconstruction of the high resolution time series in the Weinan loess section of the last 150000 years. Quaternary Sciences 1994(3), 193-202 (in Chinese with English Abstract).
- Liu, T.S. (1959) Younger loess and older loess. **Journal of Geology 5**, 22-25 (in Chinese).
- Liu, T.S. (1964) The Loess along the Middle Reaches of the Huanghe (Yellow) River. Science Press, Beijing (in Chinese).
- Liu, T.S. (1965) The Loess Deposits of China. Science Press, Beijing (in Chinese).
- Liu, T.S. (1966) The Composition and Texture of Loess. Science Press, Beijing (in Chinese).
- Liu, T.S. Chen, M.Y., and Li, X.F. (1981) A satellite images study on the dust storm at Beijing on April 17-21, 1980. In: Quaternary Geology and Environment of China (Liu, T.S. ed.). China Ocean Press, Beijing, 48-52.

- Liu, T.S. and Yuan, B.Y. (1982) Quaternary climatic fluctuation: A correlation of records in loess with that of deep sea core V28-238. In: Geological Research 1 (Institute of Geology, Academia Sinica ed.), Science Press, Beijing. 93-101.
- Liu, T.S. (1985) Loess and the Environment. China Science Press (in Chinese).
- Liu, T.S. (1987) Aspects of Loess Research (ed.). China Ocean Press, Beijing.
- Liu, T.S. and Yuan, B.Y. (1987) Paleoclimatic cycles in northern China: Luochuan loess section and its environmental implications. In: Aspects of Loess Research (Liu, T.S. ed.). China Ocean Press, Beijing. 3-26.
- Liu, T.S. and Han, J. (1988) The role of Qinghai-Xizang Plateau uplift in the shift of the monsoon patterns over China. In: **Proceedings of Sino-Japanese Joint Scientific Symposium on Tibetan Piateau Vol.I** (Shidei, T., ed.), Kyoto, Japan. 39-48.
- Liu, T.S. (1991) Loess, Environment and Global Change (ed.) Science Press, Beijing, China.
- Liu, T.S., Ding, Z.L., Chen, M.Y., and An, Z.S. (1989) The global surface energy system and the geological role of wind stress. Quaternary International, 2, 43-54.
- Liu, T.S., Ding, Z.L., Yu, Z., and Rutter, N. (1993) Susceptibility time series of the Baoji section and the bearings on paleoclimatic periodicities in the last 2.5 Ma. Quaternary International, 17, 33-38.
- Liu, W.M. (1990) SSIAP-A computer program for static and dynamic soil-structure interaction analysis. Unpublished technical report.
- Liu, X.M., Liu, T.S., Xu, T.C., Liu, C., and Chen, M.Y. (1988) The primary study on magnetostratigraphy of a loess profile in Xifeng area, Gansu province. Geophysical Journal of the Royal Astronomical Society 92, 345-348.
- Liu, X.M., Liu, T.S., Shaw, J., Heller, F., Xu, T.C., and Yuan, B.Y. (1991) Paleomagnetic and paleoclimatic studies of Chinese loess. In: Loess, Environment and Global Change (Liu, T.S., ed.). 61-81. Science Press, Beijing, China.
- Liu, X.M., Rolph, T., Bloemendal, J., Shaw, J., and Liu, T.S. (1995) Quantitative estimates of palaeoprecipitation at Xifeng, in the Loess Plateau of China. Palaeogeography, Palaeoclimatology, Palaeoecology 113, 243-248.
- Livingstone, D.A. and Clayton, W.D. (1980) An altitudinal cline in tropical African grass floras and its paleoecological significance. Quaternary Research 13, 392-402.
- Loper, D.E. (1992) On the correlation between mantle plume flux and the frequency of reversals of the geomagnetic field. Geophysical Research Letters, 19, 25-28.

Lorius, C., Jouzel, J., Raynaud, D., Hansen, J. and Le Treut, H. (1990) The ice-core record: climate sensitivity and future greenhouse warming. Nature, 347, 139-145.

Lowell, R.P. and Germanovich, L.N. (1995) Dike injection and the formation of megaplumes at ocean ridges. Science, 267, 1804-1807.

Lu, Y.C. and An, Z.S. (1979) The natural environment change of the Loess Plateau during about the last 700,000 years. Science Bulle'in 24, 221-224 (in Chinese).

Lydolph, P.E. (1985) The Climate of the Earth. Rowman & Allanheld. pp386.

Maher, B.A. and Taylor, R.M. (1988) Formation of ultrafine-grained magnetite in soils. Nature 336, 368-370.

Maher, B.A. and Thompson, R. (1991) Mineral magnetic record of the Chinese loess and paleosols. Geology 19, 3-6.

Maher, B.A. and Thompson, R. (1992) Paleoclimatic significance of the mineral magnetic record of the Chinese loess and paleosols. Quaternary Research 37, 155-170.

Maher, B.A., Thompson, R., and Zhou, L.P. (1994) Spatial and temporal reconstructions of changes in the Asian palaeomonsoon: A new mineral magnetic approach. Earth and Planetary Science Letters 125, 461-471.

Manaba, S. and Terpstra, T.B. (1974) The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. **Journal of Atmospheric Science 31**, 3-42.

Manaba, S. and Broccoli, A.J. (1985) The influence of continental ice sheets on the climate of an ice age. Journal of Geophysical Research 90, 2167-2190.

Manabe, S. and Stauffer, R.J. (1988) Two stable equilibria of a coupled ocean-atmosphere model. Journal of Climate, 1, 841-866.

Mankinen, E.A. and Darmple, G.B. (1979) Revised geomagnetic polarity time scales of the interval 0-5 m.y. B.P. Journal of Geophysical Research 84, 615-626.

Martin, A., Mariotti, A., Balesdent, J., Lavelle, P. and Vuattoux, R. (1990) Estimate of organic matter turnover rate in a savanna soil by ¹³C natural abundance measurements. **Soil Biology and Biochemistry 22**, 517-523.

Masukenkichi and Todatatsu (1944) Loess distribution in North China. In: Mongolic Institute of East Asia, 8 (in Japanese).

Matsushima, Y. (1976) the alluvial deposits in the southern part of the Miura Peninsula, Kanagawa Prefecture. Bulletin of Natural Science of the Kanagawa Prefectural

Museum 9, 87-162.

McConnell, R.K. (1965) Isostatic adjustment in a layered earth. Journal of Geophysical Research, 70, 5¹⁷1-5188.

Mercer, J.H. (1984) Simultaneous climatic change in both hemispheres and similar bipolar interglacial warning: evidence and implications. In: Hansen, H. and Takahashi, T. (eds.), Climate Process and Climate Sensitivity, Ewing, M. (ed.), American Geophysical Union Geophysical Monograph 5, 307-313.

Milankovitch, M.M. (1941) Canon of insolation and the ice-age problem. Royal serb. Acad. Spec. Publ., 133, Belgrade. English translation published in 1969 by Israel Program for Scientific Translations, U.S. Dept. of Commerce and Nat. Sci. Fdn., Washington, D.C.

Mix, A C. (1987) The oxygen-isotope record of glaciation. In Ruddiman, W.F., and Wright, H.E., Jr., (eds), North America and Adjacent Oceans during the Last Deglaciation, The Geology of North America, K-3, 111-136.

Mix, A.C. and Ruddiman, W.F. (1985) Structure and timing of the last deglaciation, Oxygen-isotope evidence. Quaternary Sci. Rev., 4, 58-108.

Mo, D.W. and Derbyshire, E. (1991) The depositional environment of the late Pliocene "red clay", Jing-Le basin, Shanxi Province, China. Sedimentary Geology 70, 33-40.

Moor, P.D. (1994) High hopes for C4 plants. Nature 367, 322-323.

Morley, J.J. and B.A. (1991) Evolving Pliocene-Pleistocene climate: A north Pacific perspective. Quaternary Science Reviews 10, 225-237.

Mutter, J.C. and Karson, J.A. (1992) Structural processes at slow-spreading ridges. Science, 257, 627-634.

Nelson, C.S., Hendy, C.H., Jarrett, G.R., and Cuthbertson, A.M. (1985) Near-synchroneity of New Zealand alpine glaciations and Northern Hemisphere continental glaciations during the past 750 kyr. Nature, 318, 361-363.

Nesbit, H.W. and Young, G.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715-717.

Ni, Y.Q. and Qian, Y.F. (1991) The effects of sea surface temperature anomalies over the mid-latitude western Pacific on the Asian summer monsoon. Acta Meteorologica Sinica 5, 28-39.

Oerlemans, J. (1980) Model experiments on the 100,000-yr glacial cycle. Nature, 287, 430-432.

O'Leary, M.H. (1981) Carbon isotope fractionation in plants. Photochemistry 20, 553-567.

O'Leary, M.H (1988) Carbon isotopes in photosynthesis. Bioscience 38, 325-326.

Paterson, W.S.B. and Hammer, C.U. (1987) Ice core and other glaciological data. In Ruddiman, W.F., and Wright, H.E., Jr., (eds), North America and Adjacent Oceans during the Last Deglaciation, The Geology of North America, K-3, 91-110.

Paytan, A., Kastner, M., Martin, E.E., Macdougall, J.D., and Herbert, T (1993) Marine barite as a monitor of seawater strontium isotope composition. Nature, 366, 445-449.

Pei, W.Z., Zhou, M.Z., and Zheng, J.J. (1963) Cenozoic of China. Science Press (in Chinese).

Pei, W.Z. and Huang W.P. (1959) Some opinions on the Sanmen Series. In: **Proceedings of the Symposium on Quaternary Geology of the Sanmen Gorge**. Science Press. 3-20 (in Chinese).

Peltier, W.R. (1982) Dynamics of the ice age Earth. Advances in Geophysics, 24, 1-146.

Peltier, W.R. (1985) relaxation oscillator model of the ice age cycle. In: Nicolis, C. and Nicolis, G. (eds.), Irreversible Phenomena and Dynamical Systems Analysis in Geosciences, 399-416.

Peltier, W.R. (1987) Glacial isostasy, mantle viscosity, and Pleistocene climatic change. In: Ruddiman, W.F., and Wright, H.E., Jr., (eds), North America and Adjacent Oceans during the Last Deglaciation, The Geology of North America, K-3, 155-182.

Peltier, W.R. (1988) Lithospheric thickness, Antarctic deglaciation history, and ocean basin discretization effects in a global model of postglacial sea level change: A summary of some sources of nonuniqueness. Quaternary Research 29, 93-112.

Peltier, W.R. and Hyde, W. (1984) A model of the ice age cycle. In: Berger, A.L., Imbrie, J., Hays, J., Kukla, G. and Saltzman, B. (eds), Milankovitch and Climate, Part II, 565-580.

Pick, T. and Tauxe, L. (1993) Geomagnetic palaeointensities during the Cretaceous normal superchron measured using submarine basaltic glass. Nature, 366, 238-242.

PiPujol, M.D. and Buurman, P. (1994) The distinction between ground-water gley and surface-water gley phenomena in Tertiary paleosols of the Ebro basin, NE Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 110, 103-113.

Pockalny, R.A., Detrick, R.S., and Fox, P.J. (1988) Morphology and tectonics of the Kane Transform from Sea Beam bathymetry data. **Journal of Geophysical Research**, 93, 3179-3193.

Pollard, D. (1982) A simple ice sheet model yields realistic 100 kyr Glacial cycles. Nature, 296, 334-338.

Pollard, D. (1983) Ice-age simulations with a calving ice-sheet model. Quaternary Research, 20, 30-48.

Pollard, D. (1984) Some ice-age aspects of a calving ice sheet model. In: Berger, A.L. et al. (eds.), Milankovitch and Climate, Boston, D. Reidel (NATO ASI Series). 564-591.

Pollard, D. Ingersoll, A.P. and Lockwood, J.G. (1980) Response of a zonal climate-ice sheet model to the orbital perturbations during the Quaternary ice ages. **Tellus**, 32, 301-319.

Porter, S.C. (1975) Equilibrium-line altitudes of late Quaternary glaciers in the Southern Alps, New Zealand. Quaternary Research, 5, 27-47.

Porter, S.C. (1981a) Pleistocene glaciation in the southern Lake District of Chile. Quaternary Research, 16, 263-292.

Porter, S.C. (1981b) Glaciation evidence of Holocene climatic change. In: Wigley, T.M., Ingram, M.J., and Farmere, G. (eds.), Climate and History, Cambridge University Press. 82-110.

Porter, S.C. (1988) Landscapes of the last ice age in North America. Americans Before Columbus (Carlise, R.C., ed.) Ethnology Mon., 12, dept. of Anthropology, University Pittsburgh. 1-24.

Porter, S.C. and An, Z.S. (1995) Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 375, 305-308.

Qin, Y.S. and Zhao, S.L. (1991) New progress in study of sedimentation model of Chinese shelf area. In: Quaternary Coastline Changes in China (Qin, Y.S. and Zhao, S.L., eds.), China Ocean Press, Beijing. 1-20.

Quade, J., Cerling, T.E., and Bowman, J.R. (1989) Systematic variations in the carbon and oxygen isotopic composition of pedogenic carbonate along elevation transects in the southern Great Basin, United States. Geological Society of America Bulletin 101, 464-475.

Rahmstorf, S. (1994) Rapid climate transitions in a coupled ocean-atmosphere model. Nature, 372, 82-85.

Rampino, M.R. and Self, S. (1992) Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature, 359, 50-52.

Rampino, M.R. and Self, S. (1993) Climate-volcanism feedback and the Toba eruption of ~74,000 years ago. Quaternary Research, 40, 269-280.

Raymo, M.E. and Ruddiman, W.F. (1992) Tectonic forcing of late Cenozoic climate. Nature, 359, 117-122.

Ren, M.E. (1985) An Outline of China's Physical Geography. China Knowledge Series. Foreign Languages Press, Beijing.

Richardson, R.M., Solomon, S.C., and Sleep, N.H. (1979) Tectonic stress in the plates. Reviews of Geophysics and Space Physics, 17, 981-1019.

Richardson, S.M. and McSween, H.Y., Jr. (1989) Geochemistry Pathways and Processes, Prentice Hall, Englewood Cliffs, New Jersey. 166-207.

Richthofen, F.V. (1877) China 1. Berlin.

Richthofen, F.V. (1882) On the mode of origin of the loess. Geological Magazine, 9 (ser. 2), 293-305.

Rind, D., Peteet, D. and Kukla, G. (1989) Can Milankovitch orbital variations initiate the growth of ice sheets in a general circulation model? **Journal of Geophysical Research**, 94, 12851-12871.

Robinson, J.M. (1994) Atmospheric CO₂ and plants. Nature 368, 105-106.

Ross, G.J. (1975) Experimental alteration of chlorites into vermiculites by chemical oxidation. Nature 255, 133-134.

Ross, G.J. and Kodama, H. (1970) Differential release of potassium from interstratified mica clay minerals as related to probable differences in their mica layer components. Clays and Clay Minerals 18, 151-156.

Ross, G.J. and Kodama, H. (1976) Experimental alteration of a chlorite into a regular interstratified chlorite-vermiculite by chemical oxidation. Clays and Clay Minerals 24, 183-190.

Royer, A., DeAngelis, M., and Petit, J.R. (1983) A 30,000 year record of physical and optical properties of microparticles from an East Antarctic ice core and implications for paleoclimate reconstruction models. Climatic Change, 5, 381-412.

Ruddiman, W.F. (1987) Synthesis: The ocean ice/sheet record. In: Ruddiman, W.F. and Wright, H.E. Jr. (eds), North America and Adjacent Oceans during the Last

Deglaciation. Geological Society of America, Geology of North America, K-3. 463-478.

Ruddiman, W.F. and McIntyre, A. (1981) The North Atlantic Ocean during the last deglaciation. Paleogeography Paleoclimatology Paleoecology 35, 145-214.

Ruddiman, W.F., Raymo, M., and McIntyre, A. (1986) Matuyama 41,000 years cycles: North Atlantic Ocean and Northern Hemisphere ice sheets. Earth and Planetary Science Letters, 80, 117-129.

Ruddiman, W.F. and Raymo, M.E. (1988) Northern Hemisphere climate regimes during the past 3 Ma: Possible tectonic connections. Philosophical Transaction of the Royal Society of London B 318, 411-430.

Ruddiman, W.F. an Kutzbach, J.E. (1991) Plateau uplift and climatic change. Scientific American, March, 1991, 66-75.

Salinger, M.J. (1990) New Zealand climate: Trends since the Last Glacial Maximum. In: Donnelly, T. and Wasson, R.J. (eds), Proceedings of the 3rd Symposium on Late Quaternary Climatic History of Australia (Melbourne University, November 28-29, 1987), Canberra, Commonwealth Scientific Research Organization, Water Resources, 100-106.

Sasajima, S. and Wang, Y. (1984) The Recent Research of Loess in China (eds.). Kyoto Institute of Natural History.

Schilling, D.H. and Hollin, J.T. (1981) Numerical reconstruction of valley glaciers and small ice caps. In: Denton, G.H. and Hughes, T.J. (eds.), The Last Great Ice Sheets, John Wiley & Sons, New York. 207-220.

Schwartz, D., Mariotti, A., Lanfranchi, R., and Guillet, B. (1986) ¹³C/¹²C ratios of soil organic matter as indicators of vegetation changes in the Congo. Geoderma 39, 97-103.

Schwertmann, U., Murad, E, and Schulze, D.G. (1982) Is there Holocene reddening (haematite formation) in soils of axenic temperate areas? Geoderma 27, 209-223.

Shackleton, N.J. (1967) Oxygen isotope analyses and Pleistocene temperatures, reassessed. Nature, 215, 15-17.

Shackleton, N.J. (1987) Oxygen isotope, ice volume and sea level. Quaternary Science **Reviews 6.** 183-190.

Shackleton, N.J. (1988) Oxygen isotopes, ice volume, and sea level. Quaternary Science Reviews 6, 183-190.

Shackleton, N.J. and Opdyke, N.D. (1973) Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes on a 10³ and 10⁶ year scale. Quaternary Research 3, 39-55.

Shackleton, N.J., Imbrie, J., and Piasias, N.G. (1988) The evolution of oceanic oxygen-isotopic variability in the North Atlantic over the past three million years. Philosophical Transaction of the Royal Society of London, B318, 679-688.

Shen, C.D., Beer, J., Liu, T.S., Oschger, H., Bonani, G., Suter, M., and Wolfli, W. (1992) ¹⁰Be in Chinese Loess. Earth and Planetary Science Letters 109, 169-177.

Shen, C.D., Yi, W.C., Liu, T.S., Beer, J., Heller, F., Bonani, G., Dittrich, B., Kubik, W., and Suter, M. (1994) ¹⁰Be-susceptibility model and the quantitative estimates of pedogenic ferromagnetic material flux in Chinese loess. Quaternary Sciences 1994(1), 75-86.

Shi, Y.C. (1958) Loess and its origin in western Shanxi Province. Quaternaria Sinica 1(1), 252-253 (in Chinese).

Skinner, B.J. and Porter, S.C. (1987) Physical Geology. J. Wiley & Sons.

Smith, B.N. and Epstein, S. (1971) Two categories of ¹³C/¹²C ratios for higher plants. **Plant Physiology 47**, 380-384.

Smith, D.K. and Cann, J.R. (1993) Building the crust at the Mid-Atlantic Ridge. Nature, 365, 707-715.

Stacey, F.D. (1977) Physics of the Earth, Second Edition. pp90, 292. John Willey & Sons, New York.

Sturchio, N.C., Dunkley, P.N., and Smith, M. (1993) Climate-driven variations in geothermal activity in the northern Kenya rift valley. Nature, 362, 233-234.

Suggate, R.P. (1978) The Geology of New Zealand, Volumes 1 and 2. E.C. Keating, Wellington.

Sukumar, R., Ramesh, R., Pant, R.K., and Rajagopalan, G. (1993) A δ^{13} C record of late Quaternary climate change from tropical peats in southern India. Nature 364, 703-706.

Sun, J.Z. (1987) New Paleomagnetic data on the Wujiapu section, Weinan, Shaanxi. In: The Collected Papers of the IV National Quaternary Meeting, 87'Beijing. (in Chinese).

Sun, J.Z., Zhao, J.B., Sun, X.Y., Wei, M.J., Li, H.M., and Zhou, Z.B. (1985) Loess even older in Liujiapo. In: **Proceedings of the International Symposium on Loess** Tesearch, Oct. 5-16, Xi'an, 14 pp.

Sun, X.J. (1989) Re-investigation on the late Pleistocene vegetation in Beizhuang of

Weinan, Shaanxi. Quaternary Sciences 1989(2), 177-190.

Tan, K.H. (1994) Environmental Soil Science. Marcel Dekker, Inc., New York, 43-44.

Tang, K.L. (1981) Micromorphology and genesis of the paleosols in loess, Wugong, Shaanxi. Science Bulletin 26, 177-179 (in Chinese).

Tarling, D.H. (1981) The crust of the earth. In: The Cambridge Encyclopedia of Earth Sciences (Smith, D.G., eds.), 164-188. Cambridge University Press, Cambridge, London.

Teachers College of Northwest China (1984) Maps of the Natural Geography of China. Special Publications Map Office, Beijing.

Tedford, R.H., Flynn, L.J., Qiu, Z.X., Opdyke, N.D., and Downs, W.R. (1991) Yushe Basin, China: Paleomagnetically calibrated mammalian biostratigraphic standard for the late Neogene of eastern Asia. Journal of Vertebrate Paleontology 11(4), 519-526.

Teeri, J. and Stowe, L.G. (1976) Climatic patterns and the distribution of C-4 grasses in North America. Oecologia 23, 1-12.

Teilhard de Chardin, P. and Young, C.C. (1930) Preliminary observations on the preloessic and post-Pontian formations in Western Shansi and Northern Shensi. Memoirs of Geological Survy of China Series A 8, 1-54.

Teilhard de Chardin, P. and Young, C.C. (1931) Fossil mammals from the late Cenozoic of northern China. Paleontologica Sinica Series C, 9, 1-42.

Teller, J.T. (1985) Glacial Lake Agassiz and its influence on the Great Lakes. In: Karrow, P.F. and Calkin, P.E. (eds), Quaternary Evolution of the Great Lakes, Geological Association Canada Special Papers 30, 1-16.

Tieszen, L.L., Senyimbia, M.M., Imbamra, S.K., and Troughton, J.H. (1979) The distribution of C-3 and C-4 grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya. Oecologia 37, 337-350.

Dikinson, R.E. (1992) Land surface. In: Climate System Modeling (Trenberth, K.E., ed.), Cambridge University Press, Butler & Tanner, Frome and London. 149-172.

Tucholke, B.E. and Lin, J. (1994) A geological model for the structure of ridge segments in slow spreading ocean crust. **Journal of Geophysical Research**, 99(B6) 11937-11958.

Valet, J.-P. and Meynadier, L. (1993) Geomagnetic field intensity and reversals during the past four million years. Nature, 366, 234-238.

Venum, T., Jansen, E., Arnold, M., Beyer, I., and Duplessy, J.-C. (1992) Water mass

- exchange between the North Atlantic and the Norwegian Sea during the past 28,000 years. Nature, 356, 783-785.
- Vera, E.E., Mutter, J.C., Buhl, P., Orcutt, J.A., Harding, A.J., Kappus, M.E., Detrick, R.S., and Brocher, T.M. (1990) The structure of 0- to 0.2-m.y.-old oceanic crust at 9°N on the East Pacific Rise from expanded spread profiles. Journal of Geophysical Research, 95, 15529-15556.
- Verosub, K.L., Fine, P., Singer, M.J., and Tenpas, J. (1993) Pedogenesis and paleoclimate: Interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences. Geology 21, 1011-1014.
- Wang, F.B. and Li, B.Y. (1985) The lower boundary of the Quaternary in the Himalaya region in China. In: Quaternary Geology and Environment of China (Liu, T.S., ed.), China Ocean Press, Beijing. 18-26.
- Wang, P.X. (1992) A paleoceanographic comparison of west Pacific marginal seas during the last glaciation. In: Paleoceanography of the South China Sea in the Late-Quaternary. Qingdao University of Oceanography Press, Qingdao. 308-321.
- Wang, P.X. (1995) The role of west Pacific marginal seas in glacial aridification of China: A preliminary study. Quaternary Sciences 1995(1), 32-42.
- Wang, Y., Evans, M.E., Rutter, N., and Ding, Z. (1990) Magnetic susceptibility of Chinese loess and its bearing on paleoclimate. Geophysical Research Letters 17 (12),2449-2451.
- Weertman, J. (1976) Milankovitch solar radiation variations and ice age ice sheet sizes. Nature. 261, 17-20.
- Williams, D.F., Thunell, R.C., Tappa, E., Rio, D., and Raffi, I. (1988) Chronology of the Pleistocene oxygen isotope record: 0-1.88 m.y. B.P. Palaeogeography, Palaeoclimatology, Palaeoecology 64, 221-240.
- Winkler, M.G. and Wang, P.K. (1993) The late-Quaternary vegetation and climate of China. In: Global Climates Since the Last Glacial Maximum (Wright, H.E.Jr., Kutzbach, J.E., Webb III, T., Ruddiman, W.F., Street-Perrott, F.A., and Bartlein. P.J., eds.). 221-261. University of Minnesota Press, Minneapolis, London.
- Winograd, I.J., Coplen, T.B., Landwehr, J.M., Riggs, A.C., Ludwig, K.R., Szabo, B.J., Kolesar, P.T., and Revesz, K.M. (1992) Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada. Science, 258, 255-260.
- Wu, T.-W. (1984) Geochemistry and Petrogenesis of Some Granitoids in the Grenville Province of Ontario and Their Tectonic Implications. Ph.D. Thesis (University of Western Ontario), 662pp.

- Xue, X.X. (1981) An early Pleistocene mammalian fauna and the stratohorizon in Weinan, Shaanxi Province. Vertebrate Paleontology and Paleoanthropology 19, 35-44. (in Chinese).
- Yatsu, E. (1988) The Nature of Weathering. Chapter 5: Mineral transformation in the weathering zone, 401-504. Sozosha, Tokyo.
- Young, C.C. (1934a) Introduction to the Hominid fossils and Cenozoic Geology of China. Bulletin of Geology Series B (5), 12-31 (in Chinese).
- Young, C.C. (1934b) A historic review of the Sanmen Series. Geological Reviews 1 (3), 323-330. (in Chinese).
- Young, H.J. and Young, T.P. (1983) Local distribution of C-3 and C-4 grasses in sites of overlap on Mount Kenya. Oecologia 58, 373-377.
- Zhang, L.Y. (1981) The influence of the Qinghai-Xizang Plateau on the Quaternary environmental evolution in China. Journal of Lanzhou University (Natural Sciences) 1981(3), 142-156.
- Zhao, S.L. and Qin, Y.S. (1982) Transgressions and sea level changes in the eastern coastal region of China in the last 300,000 years. In: Quaternary Geology and Environment of China (Liu, T.S., ed.), China Ocean Press, Beijing. 147-154.
- Zhao, X.T., Zhang, J., Jiao, W., and Li, G. (1980) Chenier ridges on the west coast of the Bohai Gulf. Science Bulletin Sinica 25, 243-247.
- Zhao, X.T., Gong, X.S., and Znang, J. (1982) Sea level changes in eastern China during the past 20 000 years. Acta Oceanologica Sinica 1(2), 248-258.
- Zhao, X.T. and Zhang, J. (1985) Basic characteristics of the Holocene sea level changes along the coastal areas in China. Quaternaria Sinica 6(2), 104-109.
- Zheng, H.B., An, Z.S., Shaw, J., and Liu, T.S. (1991a) A detailed terrestrial geomagnetic record for the interval 0-5.0 Ma. In: Liu, T.S. (ed.) Loess, Environment and Global Change, 147-156. Science Press, Beijing, China.
- Zheng, H., Oldfield, F., Yu, L. Shaw, J., and An, Z.S. (1991b) The magnetic properties of particle-sized samples from the Luo Chuan loess section: Evidence for pedogenesis. Physics of the Earth and Planetary Interiors 68, 250-258.
- Zhou, L.P., Oldfield, F., Wintle, A.G., Robinson, S.G., and Wang, J.T. (1990) Partly pedogenic origin of magnetic variations in Chinese loess. Nature 346, 737-739.
- Zhu, H.Z. (1963) Some characterristics of the grain size and texture of Malan loess in the middle reaches of the Yellow River. Scientia Geologica Sinica 2, 88-102 (in

Chinese).

Zhu, X.M. (1958) Discussion on the problems of red layers intercalated in the loess section. Quaternaria Sinica 1(1), 74-82 (in Chinese).

Zhu, X.M. (1965) Paleosols in loessic sediments of China. Quaternaria Sinica 4(1), 9-19 (in Chinese).

Zoback, M.L. (1992) First- and second-order patterns of stress in the lithosphere: The world stress map project. **Journal of Geophysical Research**, 97(B8), 11703-11728.

Zoback, M.D., Apel, R., Baumgartner, J., Brudy, M., Emmermann, R., Engeser, B., Fuches, K., Kessels, W., Rischmuller, H., Rummel, F., and Vernik, L. (1993) Uppercrustal strength inferred from stress measurements to 6 km depth in the KTB borehole. Nature 365, 633-635.