Western University

Scholarship@Western

Digitized Theses Digitized Special Collections

1995

Syntax-directed Interpretation Of Visual Languages

Shane Denis Dunne

Follow this and additional works at: https://irlib.uwo.ca/digitizedtheses

Recommended Citation

Dunne, Shane Denis, "Syntax-directed Interpretation Of Visual Languages" (1995). Digitized Theses. 2549.
https://irlib.uwo.ca/digitizedtheses/2549

This Dissertation is brought to you for free and open access by the Digitized Special Collections at Scholarship@Western. It has been accepted for
inclusion in Digitized Theses by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca,
wlswadmin@uwo.ca.

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F2549&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F2549&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/disc?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F2549&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F2549&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/2549?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F2549&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tadam@uwo.ca,%20wlswadmin@uwo.ca
mailto:tadam@uwo.ca,%20wlswadmin@uwo.ca

l* National Library Bibliothéque nationale

of Canada du Canada

Yout ke Vol re..7: o ¢

O e Notres tlerénce

Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques
395 Well Street 395, rue W
Ottawa, mg‘o) mmmet':r‘g;m
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quaiity of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canadia

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec [l'université
qui a conféré le grade.

La qualité d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a Vaide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cutte microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

SYNTAX-DIRECTED INTERPRETATION
OF VisuAL LANGUAGES

by

Shane Dunne

Department of Computer Science

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

Faculty of Graduate Studies
The University of Western Ontario

London, Ontario
June 1995

© Shane Dunne 1995

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-03449-6

Canadid

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

SN
..........
3

3
wmm

mm% b

mmmmammmmmmm mmmwm mmwmmmm m«mmmmmww

ores S/ aytogibiopnby iy

Enter the corresponding

'’

N IE
by broad

DENS
Dissertation Absirachs inferational is arranged
nearly describes the content of your dissertation.

X

mmmmmmuﬁmﬁmm%m

SHIANT
C oMLt

Noms

ABSTRACT

Recent trends suggest that it will soon he practical to implement graphical user in-
terfaces wherein a large part of the communication between human and computer
will take the form of structured graphics, i.e., diagrams, notations, etc., which have
come to be called “visual languages™ in the literature. This thesis argues that im-
plementation of such interfaces will be greatly facilitated by the development and
use of syntax-directed translation methods for visual languages, and the embodiment
of such methods in automated tools for application development, as has been done
for compilers. An algebraic formalism to express syntax and semantics for visual
languages is developed, and compared with similar formalisms developed by others.
Tractability and algorithms for parsing are considered, and test implementations de-
scribed. Several examples are presented, showing how real notations may be captured
and parsed using the formalism. The design of interactive, visual language based ap-
plication programs is considered in some detail, with emphasis on notations such as

directed graph diagrams.

iii

ACKNOWLEDGEMENTS

Special thanks are due to Dr. Richard Helm of IBM Thomas J. Watson Rescarch
Laboratory, DDr. Kim Marriott of Monash University, Dr. Kent Wittenburg of Bell
Corporate Research, and Dr. Eric Golin of Brown University, for providing me with
pre-publication copies of their latest research reports. I should also like to thank
Mr. Joxan Jaffar of IBM Thomas J. Watson Research Laboratory for providing an
interpreter fcr the constraint logic programming language CLP(R), which greatly
facilitated my implementation experiments.

I am indebted to Dr. Dorothea Blostein of Queen’s University, who shared with
me her very considerable experience and insight into the problem of visual language
parsing. Furthermore, her assistance in locating research materials was invaluable.

Initial material support for this work was provided by the Government of Canada,
in the form of a scholarship from the Natural Sciences and Engineering Research
Council. Final completion of this dissertation was made possible through the flexibil-
ity afforded me by my employers at the John P. Robarts Research Institute, especiallv
my very patient supervisor Dr. Aaron Fenster. 1 should also like to express my per-
sonal thanks to Dr. Brian Rutt, also of the Institute, for his invaluable counsel during
a very difficult period.

I should like to th nk my advisor, Dr. Helmut Jiirgensen, who believed in me and
in this project from the very beginning, even at times when I did not.

Finally, [want to thank my wonderful wife and partner, Nancy Mucklow, whose

encouragement, cajoling, patient listening, and hard work cleared the way for me to

complete this dissertation.

iv

TABLE OF CONTENTS

CERTIFICATE OF EXAMINATION i
ABSTRACT iii
ACKNOWLEDGEMENTS iv
TABLE OF CONTENTS v
Cnapter 1 Introduction 1
1.1 Notations, notational systems, and visual languages 2
1.2 Notational systems and formal languages 2
1.3 The structureof notations 3
1.4 Notation processing systems,. 3
1.5 Visual editors, structure, cognitive overhead 6
1.6 Some noteson technology 7
1.7 The problem: a generic design for notation processing systems 9
1.8 Proposed solution: guided parsing within an editing paradigm 10
1.9 Thesis e e e e e e e 12
1.10 Plan of the dissertation 13
Chapter 2 Six Perspectives on Interactive Notation Processing 15
2.1 Perspectives on Interactive Notation Processing 19
2.2 The Pattern-Recognition Perspective 16
2.3 The Language Theory Perspective 19
2.4 The Artificial Intelligence Perspective 2
2.5 The Interactive Programming Environment Perspective 27
2.6 The Visual Languages Perspective 29
2.7 The Human-Computer Interaction Perspective 3i

2.8 Discussion and Summary 33

Chapter 3 Five Approaches Reviewed in Detail 36

1.1 Context-Free Grammars, Derivation, Parsing 36
3.2 Kojima and Myers: Graphic Functional Grammars 39
3.3 Wittenburg, Weitzman and Talley: Relational Languages 43
3.4 Golin and Reiss: Attributed Multiset Grammars 48
3.5 Helm and Marriott: Constraint Multiset Grammars 50
3.6 Najork and Kaplan: Conditional Set Rewrite Systems 52
3.7 Observations. e e e e e 55
Chapter 4 Attributed Sets, Languages, and Grammars 58
4.1 Algebraic preliminaries and notation 58
4.1.1 Sets, relations and functions 58
4.1.2 Atomic alphabets, strings, string languages 60
4.1.3 Boolean values and operations, predicates 60
414 Families e 61

415 Classesandinstances 61

4.2 Attributed words and languages 62
4.2.1 Attributed alphabets and symbols 62
4.2.2 Attributed words and languages 63
4.2.3 Comparison with ordinary formal language theory 64
424 Termsystemsuv.... 65
4.2.5 Assigninents, extended classes and alphabets 66

4.3 Semantics L. e e e e 69
4.3.1 Procedural interpretation of ground words 69

4.3.2 Functional interpretation: A formal semantics of ground words 70

433 Nonmgroundwords 73
434 Constraints e 74
4.3.5 Interpretation of non-ground words via constraints 75
4.3.6 Solvable, over- and under-constrained systems 78
4.4 Attributedset grammars L L ... L. 81
4.4.1 Attributed set rewriting 82
4.4.2 Attributed set grammars 84
44.3 ASG vs.other formalisms 87
4.5 Modelling with attributed setsand ASGs 88

4.5.1 Semanticsof modelling 88

4.6

4.5.2 Characterstrings

4.53 Directedgraphs o o 0o
454 Binarytrees e e e e
4.5.5 Binary tree diagrams with layout constraints
456 Contextdependency
Parsing with ASGs

4.6.1 The membership problem, acceptance and parsing of ASLs .
4.6.2 Monotonic ASGs, decidability of the membership problem
4.6.3 A simple bottom-u’. parserinProlog

Chapter 5 Parsing Attributed Set Languages

3.1

5.2

5.3
5.4

5.5
3.6
5.7

Implementation 1: 1991-1992
5.1.1 Environmentandgoals
5.1.2 Design of the input notation
5.1.3 Technique: parse forest and stepwise parsing
5.1.4 Handling reduce-reduceconflict
5.1.5 Example: parsingacgraph.
5.1.6 Commentson implementationl
Implementation 2: 1994-1995
5.2.1 From acceptortoparser
5.2.2 Integrating constraint testing
Data structures for ASG-based parsing

Handling reduce-reduce conflict and ambiguity in ASG-based parsing
5.4.1 Reduce-reduceconflict
542 Ambiguity Lo L
5.4.3 Dealing with reduce-reduce conflict and ambiguity
Parsing in an interactivecontext
Guidedparsing

Summary and Conclusions

Chapter 8 A Generic Design for Interactive Notation Processors

6.1
6.2
6.3
6.4

INPs and concept of a genericdesign
Development of a genericdesign
The proposed generic INPdesign

Customizing the genericdesign

vii

89
94
99
103
108
108
108
109
110

6.5 Some user interfaceissues L e e e e e e e

Chapter 7 Conclusions and Future Work

7.1 Conclusions
7.2 Future Work

................................

................................

Appendix A Listings of programs, input and output files

REFERENCES

VITA .

viii

154
154
135

158

185

201

The author of this thesis has granted The University of Western Ontario a non-exclusive
license to reproduce and distribute copies of this thesis to users of Western Libraries.
Copyright remains with the author.

Electronic theses and dissertations available in The University of Western Ontario’s
institutional repository (Scholarship@Western) are solely for the purpose of private study
and research. They may not be copied or reproduced, except as permitted by copyright
laws, without written authority of the copyright owner. Any commercial use or
publication is strictly prohibited.

The original copyright license attesting to these terms and signed by the author of this
thesis may be found in the original print version of the thesis, held by Western Libraries.

The thesis approval page signed by the examining committee may also be found in the
original print version of the thesis held in Western Libraries.

Please contact Western Libraries for further information:
E-mail: libadmin@uwo.ca

Telephone: (519) 661-2111 Ext. 84796

Web site: http://www.lib.uwo.ca/

Chapter 1

Introduction

The computer can be many things, but above all it is a tool for human communication,
primarily written communication.

But human writing takes many forms, from the nutnerous scripts used for record-
ing written speech, which can collectively be called tert, to the many specialized
notations used in rathematics, engineering, science and the arts. 'The term -
sual languages has recently been coined to refer to these forms of writing, together
with non-traditional, computer-specific forms such as visual programming languages
(where pictures are used to specify computations).

Most of today’s commercial word processors handle only text in European alpha-
bets, though some support limited forms of mathematical notation, and support for
Asian, Middle Eastern and other scripts is beginning to appear. Interactive draw-
ing programs and computer aided design (CAD) systems provide limited support for
other notational forms, but most cannot enforce subtle rules of layout and are hence
clumsy; CAD systems for electronics and music composition and printing systems are
important exceptions. Qutside the commercial realin, a great deal of effort is being
expended in attempts to exiend the power of the computer to non-textual writing
forms, e.g., Knuth’s TEX [82] addresses mathematical notation, and many experimen-
tal systems have been developed for music, chemical notation, and other notations.
(See [38, 39, 42] for references.)

These developments suggest that people desire the means to process non-textual
notations as easily as they now deal with text. Given that this desire exists, it is
appropriate to consider how we ought to design “notation processing systems”. ‘That

is the subject of this dissertation.

1.1 Notations, notational systems, and visual languages

Let us define a notation as a collection of marks on paper or a display screen, having
meaning Lo a person according to some set of established conventions, collectively
called a notational system. E.g., an electronic circuit diagram is a notation; electronic
circuit diagrams in general constitute a notational system.

The various script systems used for writing human spoken languages are of course
notational systems, collectively called tert. This dissertation deals primarily with

notational systems other than text, such as
e standard positional mathematical notation
e chemical structure notation
e music and dance notation
e electrical and logic schematic diagrams
e diagrams of Petri nets, finite automata, and the like.

Notational systems are characterized by well-defined rules governing what ar-
rangements of marks constitute valid notations, and the meaning of valid notations.
Hence rough sketches and entirely ad hoc abbreviations do not qualify as notations,
and neither do paintings or photographs.

The existence of rules governing validity (syntax) and meaning (semantics) makes
notational systems akin to languages. Indeed, the term “visual languages” has re-
cently ccme into u: ‘n the computer science literature, but its use is not entirely
synonymous with the definition of notational systems given above. The differences

are discussed in Chapter 2.

1.2 Notational systems and formal languages

It is beyond the scope of this dissertation to discuss whether or not notational systems
are “languages” in the linguistic sense. Central to my thesis, however, is the notion
that formal languages can be used to model those aspects of notational systems which
are important for computation. My review of the literature, presented in Chapters 2

and 3, revealed that this notion is becoming widely accepted.

Established formal language theory does not provide adequate algebraic models
to capture the syntax of notations, and a major contribution of this dissertation is

the development of a new theoretical formalism. given in Chapter 4.

1.3 The structure of notations

We have defined a notation as a collection of marks, e.g. on paper, but we can be a
bit less general than that. Most notational systems define certain very specific marks
which are usually called symbols, and notations are two-dimensional arrangements
of symbols. Many notational systems call for syr-bols to be connected e.g. by line
segments; whether or not one chooses also to call the line segments “symbols” is
largely a matter of taste.

Meaning in notations is conveyed by the symbols which are present, and by certain
visually apparent relationships among them. Helm ef al. [70] identify the following

three classes of relationships:

1. Network: Lines, arrows, etc. connect related elements.

2. Topological: Relationships are indicated by containment, intersection and touch-
ing.

3. Geometric: Relationships are indicated by relative proximity, orientation, or

size.

Most notations involve more than one class of relationship. For example, electrical
schematic diagrams use network relationships to express how components are inter-
connected and geometric relationships to relate part numbers, voltage readings, ctc.
used as labels to the components, nodes, etc. they describe. Musical notation uses
network relationships to indicate phrasing (beamed note-groups), topological relation-
ships to denote pitch (intersections between note-heads and staff lincs), and geometric
relationships to associate ancillary matter (phrase marks, stylistic indications, lyrics)
with notes. Venn diagramns are an exception, using topological relationships almost

exclusively.

1.4 Notation processing systems

This dissertation is concerned with the design of interactive nolation processing sys-

tems, i.e., interactive hardware/software systems which support input, processing, and

oulput of notations. The primary focus is on non-textual notations.
e [nput in the interactive context means

1. editing, normally visual editing (see below), and

2. capturing aspects of notation structure and meaning in suitable data struc-

tures.
¢ Processing has two aspects:

1. Structural or cosmetic processing, aimed at producing superior-looking

output, e.g. automatic formatting.

2. Semantic processing, which is concerned primarily with the meaning of
the input notations, e.g. analysis, simulations, interpretation of notations

as programs or data.
o Output can be a product or a process, depending on one’s point of view.

— Output as a product can be many things; for the purposes of this disser-

tation it means printed output, either on paper or a screen.

— Output as a process means the process of creating appropriate data struc-
tures and/or communicating with operating system services to ensure that
printed output will be available, either immediately (e.g. talking directly
to a printer) or at some indefinite time in the future (e.g. by creating a

data file in a standard format such as PostScript).

My M.Sc. thesis [39] addressed structural processing (automatic formatting) and out-
put of notations. This dissertation concentrates on the input problem.

Of course, there are many notational systems, and one would prefer not to have
to redo the entire design and implementation process for every one individually. By
modelling notational systems as formal languages, we can abstract to a higher level
and devise a generic design for a notation processing system, which can be customized
for any notational system. This has not really been done for CAD systems, which
tend to be purpose-built, one at a time. It has been done, however, for programming
language compilers, on the basis of modelling programming languages as (augmented

context-free) formal languages.

The standard design for a compiler involves three phases of processing:

1. The lezical phase identifies the low-level structures of the input program, yield-

ing a representation which very much reflects the formal model of the language.

2. The syntactic or parsing phase develops the higher-level structure of the pro-
gram, in terms of a derivation under the grammar which defines the formal
model.

3. The semantic phase produces some kind of data structure which represents the

meaning of the input program.

My thesis is essentially the proposal that a similar three-phase design can be used
for notation processing. Since my interest is in interactive systems, my design bears
more resemblance to an interactive programming environment (see below) than to an

ordinary compiler, but the essential concept is the same. That is,

e A formal language model is chosen, which is sufficiently expressive to capture
the essential characteristics of a wide variety of languages (in this case notational

systems).

® A generic design for language (notation) processors is developed, based around

a parsing algorithm for the formal language model.

e Specific systems are implemented by customizing the design. Language-specific
(notational system-specific) details are determined according to the formal spec-

ification of the formal model.

This notion of generic design is not sufficiently well developed that I can make
major claims about it, but it is important in that it represents the conceptual con-
text of my work on formal language representations. It is discussed throughout this

introductory chapter, and again in more detail in Chapter 6.

1.5 Visual editors, structure, cognitive overhead

In interactive systems, the issue of input develops into the somewhat more complex
issue of editing. In the modern setting this involves the use of a visual editor. A visual

editor is a program'! which
¢ maintains some kind of data structure(s)

® presents one or more visual representations (called views) of the data struc-

ture(s) to a user

e interprets a language of commands (called its command language), which are

user actions mediated by input devices and software

e permits the user to effect, via commands, incremental changes to the struc-

ture(s), which are reflected in (usually) visible changes to the view(s).

e is nearly always used in conjunction with (or is part of) other software (operating

systems, compilers, document processors, CAD systems).

Using a visual editing system comprised of a visual editor, related software, and
the necessary computing and I/O hardware, is vastly more complex than writing with
pen and paper. The complexity arises because the user, while trying to concentrate

on what he or she is trying to write, must remain aware of
1. at least some aspects of the data structure being edited

2. the nature of the relationship between the data structure and its visual repre-

sentation(s) which appear in the view(s)

3. the incremental mar~‘nulations which the editor supports, and the commands

required to effect them

4. aspects of the system environment, e.g. the fact that a mouse click in a certain

screen region will cause a switch to an entirely different program.

Let us call these the cognitive overhead involved in using an editing system.
Cognitive overhead is something of a necessary evil in software design. Systems
with low cognitive overhead tend to be lacking in features, while feature-rich systems

lor part of a program. Throughout this dissertation the word “program” is used in this generic

way.

tend to have high cognitive overhead. The basic problem is that nothing is achieved
without communication between human and computer, and that communication takes
the form of views and commands, whose form is strongly influenced by aspects of the
data structures and the system environment.

My generic design for interactive notation processing systems promotes low cog-

nitive overhead, for the following reasons:

o High-level (syntactic) structure is inferred automatically via parsing techniques.
This allows the user to work with a flat mental model of the editor data struc-

ture, i.e., the individual marks of which notations are composed.

o The parsing technique is “lazy” in the sense that the user must identify groups
of marks to be parsed. Furth-rmore parsing decisions may be retracted, either
automatically when marks are deleted, or manually upon request of the user.
These methods put the user in control of the parsing process, allowing him
or her to alternate between unencumbered creative work (writing) and more

formalized interaction (driving the parser).

e The proposed approach encourages uniformity of data structure, views, and
command languages among multiple applications, which reduces cognitive over-

head across entire integrated systems.

1.6 Some notes on technology

When I first began considering the issue of notation processing in 1988, I believed that
the technology now called “pen-based computing” would be an important component
of any notation processing system. I still believe this, but the matter of 1/O technology
is no longer central to my thesis as it was in my original proposal. Nonethcless, it is
worth spending a few moments considering the kinds of technology which might, in
the near future, be used to realize the ideas presented in this dissertation.
Historically, the ability of computers to process the many forms of human writing
was severely limited by available hardware. The first computers had such small reg-
isters and memories that efficient bit-packing was a critical issue; the result was that
even the distinction between upper and lower-case letters had to be ignored. When
CPU and memory capacity increased, generations of successively higher-resolution

raster printers and bit-mapped CR1 displays gradually provided for case and even font

-3

distinctions, and eventually proportional character spacing and WYSIWYG (“what
you see is what you get”) interactive displays.

Today’s computer workstation, featuring a high-resolution CRT display, laser
or ink-jet printer, keyboard and mouse, is highly unbalanced. Its graphical output
capabilities extend to multiple fonts, international script systems, and graphical ren-
derings whose quality approaches the photographic, but its input capabilities are
nowhere near as sophisticated. The keyboard, a superb input device for touch-typing
of European text is clumsy when used for mathematics or Asian scripts. The mouse,
very good for pointing and selecting displayed objects, is clumsy for drawing and
useless for writing.

Grapliics tablets are devices which continuously sample and report the position
of a pen-like stylus on a flat drawing surface. Any tablet which can track stylus
movement sufficiently quickly and accurately can in theory be used as an input device
for handwriting and sketching. Since the first tablets were introduced in the 1960’s,
automatic handwriting recognition has been an attractive, but so far elusive goal.
Recently, interactive tablets have been developed, in which a flat-panel liquid crystal
display (LCD) is integrated into the writing surface. These devices are even better
suited to handwriting and drawing, because it is possible to leave a trail of “ink”
(1lluminated pixels) behind the pen on the writing surface.

Interactive tablets (and complete “pen-based computers” incorporating them) are
today limited to niche markets because of high cost, low display resolution and com-
puting capacity, and the lack of acceptable handwriting recognition software, but this
situation is changing. Display resolution and computing power are improving incre-
mentally for interactive tablets just as for other kinds of computers. Some techniques
for automatic handwriting and symbol-recognition have been devised (see [139]), but
require significant computing power; these will have to wait until such power is avail-
able. In the meantime, more expedient methods which require users to learn and use
a simplified input alphabet have become widely accepted.

In light of these developments, it would appear that excellent hardware is now or
will soon be available to support interactive notation processing. Our ability to take
advantage of such hardware, however, will depend critically on appropriate software

designs; hence the motivation for my research.

1.7 The problem: a generic design for notatin. processing systems

To summarize, my thesis concerns the design of interactive systems for processing
notations other than text. The key issues 1 have considered are:

e Development of a generic design for such systems, which can be customized for
any notational system, in order to focus attention on major design issues and

to encourage code re-use.

e Elaboration of a formal model capable of capturing the structure of notations,

upon which to base the generic design.
o Designing for interactivity.

o Designing for emerging graphical input and display technologies such as inter-

active tablets.

Having investigated all of these aspects in some detail, I chose to focus primarily
on the second issue—the lack of an appropriate formalism. When I began my research,
very little had been published on this question, and hence I decided to propose a new
formalism, presented in Chapter 4. Recently, however, several formal models for visual
languages have been proposed (see Chapter 3), which suggests that | was correct to
focus on this aspeci of the problem.

I have also considered parsing with the proposed formalism, which is discussed in
Chapter 5, and designing complete interactive notation processing systems, which is

examined in Chapter 6.

1.8 Proposed solution: guided parsing within an editing paradigm

I suggest that, given an appropriate grammar formalism, notations can indeed be

parsed like computer programs, and that it should be possible to

o achieve modularity in design and implementation by separating processing into

lexical, syntactic and semantic phases.

o understand (visual, notational) language classes and their complexity, and on
the basis of that understanding make informed choices about what kinds of

grammars to use and parsers to build.

¢ develop tools to systematize and partially automate the process of implementing

notation processors (customizing the generic design), such as parser generators.

These goals have already been realized in the field of compilers, and a good generic
design for compilers has already been developed.? To develop a generic design for
interactive notation-processing systems, however, inspiration comes not from com-
pilers per se, but rather from interactive programming environments or IPE’s. An
IPE is an interactive software system which facilitates development of programs in
some programming language, providing the functions of editing, compilation, and
execution/debugging, integrated to a greater or lesser degree.
To date, three essentially different styles of IPE’s have been developed.

1. The traditional, non-integrated IPE, ranging from environments such as the
UNIX operating system to “Turbo Pascal” (Borland, Inc., Scotts Valley, CA)
and its derivatives, combines a conventional visual text editor and batch-mode
compiler, with convenient ways to switch between what are really independent

editing and compilation phases.

2. A syntaz-directed program editor such as the Cornell Program Synthesizer [140],
uses a program’s parse tree, rather than its text, as its basic data structure,
and provides commands which effect transformations on the parse tree. Some
systems of this type don’t need to do any parsing at all; the user in effect
specifies the derivation of the program in terms of its grammar, via a sequence
of commands which transform an initially empty parse tree into the parse tree
for the desired program.

2See any text on compiler design theory, such as [1).

10

3. A textually-oriented program editor permits the user to modify the program
text directly, like a conventional text editor, but also applies parsing to build
up a forest of partial parse trees as an auxiliary data structure, and maintains

consistency between the two structures as editing proceeds.

The first approach is by far the easiest to implement, and hence the most common,
but also offers the least number of advanced features. The second approach has
failed in practice, essentially because of cognitive overhead; programming is difficult
enough without having to think about syntactic structure before one’s program is even
complete. The third approach has been defended by Lee [86] as the most intuitive,
largely because it obviates this cognitive overhead, but it is by far the most difficult
to implement.

These three styles or approaches to IPE design can be applied to interactive

notation processing systems.

1. A batch-mode parser can be constructed, entirely independent of any editing
capability. This is the approach I took in some early experiments. described in
Chapter 5, and which has also been taken in recent work at IBM {70].

2. A syntaz-directed notation editor would manipulate some kind of syntax de-
scription as its basic data structure while presenting notations in its views.
This approach has been tried by Géttler [61].

3. A graphically-oriented diagram editor would handle simple geometric primitives
such as line segments, etc. in its basic data structure, but attempt to parse
these into a parallel syntactic description. This approach has been tried by
Wittenburg [154] at MCC, and most recently at MIT [149] (see Chapter 3).

The first approach fails as soon as the first parsing error, or ambiguous situation
arises. In an interactive setting, the user could perhaps be alerted to the problem
and asked to either modify the input or choose between parsing alternatives, but if
such requests come too frequently, or are too repetitive, they will constitute cognitive
overhead.

The second approach will have the same drawbacks in the domain of notations
as it has in the domain of programming. Forcing users to think about syntax, when
what they are most concerned with is meaning, is unacceptable cognitive overhead.

The third approach, which I believe to be ultimately the most useful, can be
seen as a middle ground between the first and second approaches. The first approach

11

tries to do everything with parsing, while the second approach doesn’t do any parsing
at all. In the third approach, the system parses what it can and waits for further
information concerning the rest. In Chapter 5 I consider ways in which the parsing
might be managed so as to avoid badgering the user with requests for clarifying
information. Chief among these is the notion of guided parsing, where the user is

able to direct the parsing process so as to avoid most ambiguity entirely. Note also

that a system built according to the third approach, because it maintains a (partial)
syntactic description of the input, can in theory offer the kinds of syntactic operations
(automatic selection and manipulation of syntactic units) which are the main strength

of the second approach.

1.9 Thesis

I am concerned with the design of interactive notation processors—interactive software
systems where the communication between human and computer mainly takes the
form of notations, as defined above. My thesis is that notations can be processed in
ways reminiscent of the translation and interpretation of programs. The paradigm
of textually oriented program editors can be adapted for notations, in which case we

speak of “graphically oriented notation editors™. I claim the following:

1. Many notational systems can be modelled using a variant of formal languages,
which I call attributed set languages (ASL’s) and define in Chapter 4. These

languages are defined by grammars, called attributed set grammars (ASG’s).

2. Attributed set encodings of notations are natural and intuitive, and well-suited

to automatic graphical interpretation.

3. ASGs can be used both to generate and recognize (parse) attributed set encod-

ings of notations.

4. Practical problems in ASG-based parsing, such as cognitive overhead due to
too-frequent requests to the user for clarification, and combinatorial explosion
of options to be considered in parsing, can be managed by adopting a guided

parsing approach, which gives the user control over the parsing process.

5. The proposed notation processing paradigm is implementable, in 2 manner con-

sistent with good software engineering practice.

Attributed set languages and their grammars are defined in Chapter 4. Directed
graphs and trees (and tree diagrams) are used as key examples to illustrate the facility
with which complex notational systems can be modelled by attributed set languages
defined by ASG’s, in contrast to other formalisms reviewed in Chapters 2 and 3.
Chapter 4 addresses not only syntactic but also semantic aspects of the attributed
set formalism, in order to show how ASG’s can be used to generate representations
of notations.

Chapter 5 discusses ASG-based parsing. Building on the directed graph and tree
examples developed in Chapter 4, I show how the attributed set languages used to
model these notations can be parsed according to the grammars for those languages.
The parsing algorithm is not particularly efficient; in fact it requires time exponential
in the size of the input. However in the interactive setting this inefliciency is not
critical; I suggest a technique of interactively guiding the parsing process which of-
fectively “tames” the exponential complexity by reducing the amount of input which
the parser must handle at one time.

The ideal evidence for a claim of implementability would be a full, working im-
plementation, but in my case this is impractical. I have, however, implemented a few
key aspects of the paradigm, in tk .- form of parsing programs in the logic program-
ming language CLP(R) [67, 68]. These are discussed in Chapters 4 and 5. Software
engineering issues such as code re-usability and development tools are discussed in
Chapter 6, in which I suggest a generic design for interactive notation processing

systems.

1.10 Plan of the dissertation

This dissertation consists of seven chapters. The first is this introduction, which mo-
tivates and defines the problem of designing interactive notation processors, outlines
my proposed approach to the problem, and presents the statement of my thesis along
with a summary of the arguments to follow.

Chapter 2 presents a general review of related work. Five distinct perspectives
on the subject are identified: pattern recognition, language theory, interactive pro-
gramming environments, visual languages, and computer-human interaction. The
chapter reviews the literature in each of these areas, and concludes with a summary
of relevant contributions from each.

Chapter 3 reviews five specific published visual language formalisms in some de-

13

tail. ‘These are Graphic Functional Grammars (due to Kojima and Myers), Relational
Grammars (due to Wittenburg et al.), Attributed Multiset Grammars (due to Golin
and Reiss), Constraint Multiset Grammars (due to Marriott et al.), and Conditional
Set Rewrite Systems (due to Najork and Kaplan). The chapter concludes with an
discussion of the strengths and weaknesses of the various approaches.

My own formalism is introduced in Chapter 4. I define attributed sets, and develop
a formal semantics for their interpretation as e.g. graphics. I then define the notion
of an attributed set grammar (ASG), which generates sets (languages) of attributed
sets. | show how attributed set languages (ASLs) can be used to model algebraic
and notational structures, including strings, directed graphs, binary trees and tree
diagrams with layout constraints, and in each case give an ASG which g .ierates the
appropriate ASL. I identify a class of monotonic ASGs, in which rewriting according
to productions always adds new symbols or introduces terminal symbols, and show
that the membership problem for languages of such ASGs is solvable. 1 suggest a
simple parsing algorithm with exponential time complexity, and present a working
implementation in Prolog.

Chapter 5 discusses ASG parsing. It begins with an account of some early im-
plementation experiments, which I performed before having fully developed the ASG
formalism. This is followed by a discussion of the parsing algorithm introduced at
the end of Chapter 4, which is actually much simpler than the approach used in the
first experiements. | show how constraint testing may be directly integrated into
the algorithm, and give working examples implemented in CLP(R). The question of
reduce/reduce conflict (when more than one grammar production might be applied
in a given context in a bottom-up parser) is then considered. Finally, I discuss how
the parsing technique can be adapted for use in an interactive setting where parsing
should be done incrementally, and it is necessary to adjust to changes in the input
due to the user’s editing actions.

Chapter 6 deals with design of interactive notation processing systems, based on
extension of the notion of syntax-directed program editing to the domain of visual
rather than textual languages, using the ASG formalism developed in Chapter 4 and
the parsing methods discussed in Chapter 5.

The final chapter contains a discussion of the proposed approach, conclusions,

and suggestions for future work.

Chapter 2

Six Perspectives on Interactive Notation Processing

In this chapter I present a broad survey of work related to issues arising 1i interac-
tive notation processing. Due to the large number of works cited, the coverage in
this chapter is broad and shallow. The following chapter contains a more in-depth

examination of five specific research initiatives. My aim in these chapters is to:
1. present a historical review of the entire field of notation processing.
2. distill some general principles and “lessons” from others’ experience.

3. distinguish the focus of my own work.

2.1 Perspectives on Interactive Notation Processing

To the best of my knowledge, there are as yet no books on “notation processing”.
The notion of notation processing as a distinct focus of study appears to be emerging
slowly, as developments in computing hardware (graphical 1/O devices, memory ca-
pacity and CPU power) begin to make interactive processing of non-textual symbolic
data appear potentially practical [70, 92, 154]. A great deal of relevant work has been
published in several research disciplines, each of which has its own perspective, i.c.,
its own historical tradition of approach, goals, and methodology. I have identified six

distinct perspectives within the literature:

15

16

1. the paltern-recognition perspective, which focusses on the problem of engineer-

ing machines to .ecognize notations;

2. the language theory perspective, which sees notational systems as a class of
formal languages, and aims to apply methods and results from the theory of

formal languages to the problem of defining and parsing notations;

3. the artificial intelligence perspective, which includes natural language process-

ing and methods of automatic logical inference;

4. the interactive programming environments perspective, which addresses the
problem of processing complex programming language structures within an in-

teractive context;

the visual languages perspective, which posits that pictures might profitably be

[]
.

used to represent computations and other well-defined processes or structures,

and considers the problems involved in doing this practically;

6. the computer-human interaction perspective, which considers the design of in-

teractive graphics applicaticas in general.

2.2 The Pattern-Recognition Perspective

‘tne idea that computers might be used to recognize and process human notations
was first explored seriously within the field of pattern recognition, notably by the
late K. S. Fu at Purdue University, whose 1974 book “Syntactic Methods in Pattern
Recognition” [53] introduced some notions from formal language theory to a discipline
then dominated by statistical methods, suggesting that these ideas might provide a
good basis for a new kind of pattern recognition, involving hierarchical composition
(parsing) of lower-level recognition results to yield a high-level pattern description.

Today, the pattern recognition field recognizes three main approaches:

I. The statistical or decision-theoretic approach is based on the idea of capturing
salient aspects of inputs in the form of a vector of numeric “features” and iden-
tifying which of several predefined pattern classes it belongs to, by comparing
the input feature vector against so-called template vectors which are exemplary
of each class and choosing the class whose template matches best. This is the
oldest approach, and vhe one which is best supported by mathematical theory

(predominantly statistics, specifically Bayesian reasoning).

2. The structural approach is based on the idea of combining the results of low-
level recognition processes, each of which deals with part of an input pattern,
to obtain a structured description of the input. Syntactic methods are but one

kind of structural composition technique.

3. The connectionist or neural-network approach has at its heart the concept of
a “learning machine” which obviates the need for analysis of specific pattern-
classification applications by being able to “learn” the desired classification
behaviour based on a training process in which patterns are presented to the

machine together with their correct classification.

A good summary of the field is given in [123]. Of course, the various approaches may
profitably be combined; hybrid methods are described in [11].

The pattern recognition literature reflects a strong engineering orientation. On
the whole, the work in the field has been directed toward building machines (with or
without a software component) to function in real-world environments, rather than
developing a theory of such machines. Matsushima et al. [93], for example, describe a
robot system which reads pages of printed music seen through a television camera and
plays them on an electronic keyboard with mechanical hands and feet. Most works are
more modest, focussing on one or two techniques applied to one notation. In music
recognition, techniques applied iriclude syntactic methods for high-level structure [5],
and the use of domain-specific knowledge [80]. Other applications studied include
handwritten letters and numbers [51, 74] (see also [139]), dimensions in technical
drawings [24, 33], and electrical circuit symbols [87].

The pattern recognition field emphasizes the importance of recognizing patterns
(whatever that may mean in specific applications) despite the presence of an ex-
pected amount of variation, both random (“noise”) and sys.ematic (varying image
size, orientation, etc.). In decision-thearetic methods this is handled by introducing
continuous measures of classification, and reasoning according to statistical theory,
or more recently using fuzzy-logic methods; see {155]. In structural and syntactic
methods, the usual approach is to try to build some flexibility into the underlying
matching mechanism or into the grammar itself. With respect to the former, Wang
and Pavlidis [145] discuss optimal inexact matching of strings, and Blostein and Haken
[7] give a more applied example concerning inexact matching of rhythin templates in
music analysis. With respect to the latter, there has been much interest in stochastic

grammars. Fu [53] devotes two chapters to them, and see [19] for a recent example

17

involving mathematical equation recognition.
Another important approach to dealing with input variability is some kind of

preprocessing step, which has three aims:

1. Reduce or eliminate the (usually random) variation, e.g. see [90] for a method

to reduce noise in pen-strokes captured by a digitizing tablet.

2. Reduce the sheer bulk of data involved to simplify the ensuing computations,

e.g. see [101, 97] for curve encoding methods.

3. Perform a transformation to a different domain of representation, wherein the
key computations required for recognition are simpler, and/or where systematic
input variations are collapsed. See [105, 97] for methods of encoding curves

which are inveriant under common geometric transformations.

- The references given in this list are ones I believe to be specifically relevant to notation
processing, especially processing of hand-drawn notations captured on a tablet, but
discussions of techniques of noise reduction, data reduction and transforms abound
in the pattern-recognition literature.

Much of the pattern-recognition research which is relevant to notation processing
is aimed at developing systems for document image processing, i.e., systems which
can “read” paper documents and produce some kind of data structure representation
of their contents with minimal human intervention. Recent surveys of the document
image processing literature are [78], which presents an overview, [146], which focusses
on recognizing the structure of text, and [79], which examines techniques for graphics.
Two bibliographies focussing on music document recognition are [130] and [6)].

As might be expected, this literature is dominated by the problem of segmenta-
tion, i.e., determining where the relevant structures are within vast pixel arrays. The
survey of graphics recognition techiques mentioned above [79] for example devotes
twenty-six pages to preprocessing and segmentation issues but only seven pages to
“graphics recognition and interpretation”.! A 1993 paper entitled “MUSER: A pro-
totype musical score recognition system using mathematical morphology” [96] says

much about segmentation but very little about recognition of structure.

'Furthermore, syntactic methods are not even mentioned in these seven pages. Syntactic tech-
niques do not appear to be popular in the pattern recognition field, probably because they are not
yet adequately developed; see [77] for a critique of the limitations of the syntactic approach.

An aspect of the machine-orientation of the pattern-recognition field is dominance
of fully automatic “hands-off” mechanisms as opposed to semi-automatic, human-
assisted methods. The result is that few ideas relevant to the design of interactive
systems are to be found in the pattern-recognition literature.

Another dominant idea in pattern recognition is the idea of inference, i.e., that a
pattern-recognition system ought to be able to infer the basis for its proper operation
from exposure to a training set of input patterns paired with the expected output.
This is most apparent in the neural-network approach, but Fu [53] devotes a chapter
to automatic inference of grammars in the syntactic approach. Some progress appears

to have been rmade on grammar inference; see [123, page 200] for some references.

2.3 The Language Theory Perspective

Algebraic formal language theory, introduced by the linguist Noam Chomsky in a
1956 paper [18], was quickly adopted by computer scientists and expanded to yield a
powerful theoretical basis for the design of programming languzges and their trans-
lators (interpreters and compilers). The idea that similar success might be possible
in notation processing has occurred to many people; I call this idea the “language
theory perspective”.

Traditiuvnal formal language theory deals with strings—sequ. us of atomic sym-
bols drawn from fixed, finite alphabets—which are essentially perfect models for
computer languages composed of e.g. ASCll-coded characters. However for visual
languages, and pictures in general, it is not at all obvieus what kind of mathematical
model should be used. The history of the language theory perspective until very
recently could be summed up as a search for appropriate models.

The earliest efforts to apply formal language methods to pictorial data involved

attempts to model visual structures using strings. These fall into two categories:
1. using characters to encode segments of the boundary of a two-dimensional shape

2. using one alphabet to encode primitive shapes, and a second one to encode

(geometric, topological) relationships between sub-pictures

The first approach is based on the observation that any shape in two dimensions
has an outline which is one-dimensional. A start point on the outline may be chosen
arbitrarily, and the outline may be “walked” from there in an arbitrarily-chosen direc-

tion until the start point is reached again. (Shapes with holes can either be defined

19

by multiple outlines or by using a contour-walking algorithm which may cross the
interior of the shape in certain cases as described in [136)].) In practice the outline is
walked in a discrete fashion, thus defining distinct segments which may be encoded
as characters in some alphabet.?

A popular encoding technique is chain coding [50), where the unit of division is
the distance between 8-connected points on a regular Cartesian grid (e.g. adjacent
pixels) and the 8 possible line segment orientations are encoded as octal digits. This
encoding has been studied in some detail; Tou [141] discusses topological aspects while
Siromoney et al. [134] examine the application to syntactic pattern recognition. A
generalized form of chain coding does not require a grid, but splits object outlines
at corner points and encodes the orientation of the resulting line segments using the
same 8 standard codes; Stallings [136] uses such a method to encode Chinese character
shapes. Yet another encoding technique is to divide outlines into approximately equal-
length segments and encode each segment’s curvature, rather than orientation; this
method has been used [53, Appendix A} to encode chromosome shapes.

One of the earliest examples of the second approach is Shaw’s “picture description
language” (PDL) [131], which encodes pictures composed of “primitives” possessing
two attachment points called “head” and “tail”. The primitives themselves may be
anything; from a structural point of view they may be treated like arcs in a directed
graph. PDL encodes each primitive using a different letter; sequences of such letters
encode chain graphs, which as a whole have one head and one tail. Also provided
are five “operators”, one being a unary prefix operator which reverses the head/tail
orientation of its operand, the other five being binary infix operators which encode
various ways of attaching its two operands. The logical structure of a PDL-encoded
picture is a directed acyclic graph (DAG) which has one distinguished initial node
(tail) and one distinguished terminal node (head).

3Choosing a different starting point corresponds to a circular permutation of the resulting code
word. Changing the walk direction corresponds to reversal of the code word.

20

A similar approach has been used more recently in computer graphics, to interpret
strings generated by L systems as branching structures such as plants. L systems were
first proposed by the late Aristid Lindenmayer in 1968 [88] as an algebraic formalism
to model development of living organisms at the cellular level. They are similar to

conventional string grammars, except that:
1. no distinction between terminal and nonterminal symbols is made.

2. the entire sequence of words produced during a derivation (which may be infi-

nite) is important.
3. at each derivation step, all symbols in a word are rewritten in parallel.

Alvy Ray Smith of Lucasfilm first proposed the use of L systems to generate
realistic image sequences illustrating growing plants and trees [135]. Further work in
this area has been done by Prusinkiewicz [111, 112], Hanan [66], and Jirgensen and
Chien [16].3

Briefly, the encodings used with L systems are similar to those of PDL but their
logical structure is trees rather than DAGs.

Recall the 3-way taxonomy of relationships (network, topological, geometric) due
to Helm et al. mentioned in the previous chapter. In PDL and the various L-
system languages, the “operator” characters encode what Helm ef al. would call
network relationships. The same approach has also been used to encode geometric
relationships, the earliest example being Anderson’s 1968 Ph.D. thesis [53, Appendix
C) on syntactic recognition of two-dimensional mathematical expressions. In 1989,
Chou [19, 20] applied advanced stochastic parsing techniques to the same problem,
using essentially the same encoding. Recently (1993) Salter [122] has given examples
where topological relationships are encoded.

Since I began my research, many papers have been published which further explore
the use of special symbols to represent relations in string encodings of shapes; for
lack of a standard term I call this approach relation coding. [72, 27, 47, 25] focus
on efficient parsing, [155] integrates fuzzy-logic methods into the parser to deal with
input variations, and [26] discusses automatic generation of efficient parsers via a
parser generator. While these certainly represent important contributions, they are

not directly relevant to notation processing because their underlying assumptions

3A more complete account of the history of L systems applied to graphics, with additional refer-
ences, is given by Jiirgensen and Chien in [16].

21

about visual language structure, arising from a determination to use string encodings,

are too restricted.

Recognizing the limitations of string encodings, language theorists sought to ex-
tend the classical definitions of string-generating grammars (and string-recognizing
automata) to more complex structures. One of the first such extensions involved gen-
eralizing from strings to (n-dimensional) arrays [119, 118, 117, 102]. As with relation
coding, the array paradigm is simply not suitable for the kinds of notations I am inter-
ested in. [123] discusses generalization from strings to trees, which is really nothing
new since relation coding provides a natural encoding for tree structures based on
inorder (preorder, postorder) traversal using infix (prefix, postfix) relation operators.

Of greater interest in the context of notation processing are graph grammars,
which have been the subject of annual international conferences since 1983.4 Fahmy
and Blostein {45, 44] have investigated applications to recognition of musical score
structures, Gottler [61] has investigated syntax-directed diagram editors based on
graph grammars (specifically programmed, attributed graph grammars), Pfeiffer [106)
considers the use of graph-grammar techniques to replace pointers in programming
languages, and Schiirr [127, 126] presents very recent work related to visual program-
ming (see later in this chapter).

Devising a graph grammar formalism which is simple, powerful, and useful in
applications has proved difficult. The earliest proposals, which defined productions
as rewriting subgraphs of a graph, resorted to cumbersome formulations to deal with
the embedding problem, i.e., specifying exactly how connections to the rest of the
graph (the parts not being rewritten) were to be preserved through the rewriting
step. A key step toward solving this problem was the NLC (node label controlled)
rewriting approach introduced by Rozenberg in 1986 [120].

The NLC formalism, while compact and powerful, had the disadvantage that
many basic questions concerning NLC graph grammars turned out to be undecidable.
A more fruitful approach was introduced the following year by Habel and Kreowski
[64], involving a generalization from graphs to hypergraphs. In a hypergraph, edges
are generalized to hyperedges having several incoming and outgoing “tentacles” (the
ordinary edge with one each is then a special case). Hyperedge Replacement Systems
(HRS) are hypergraph-generating grammars in which hyperedges are replaced by

4See the various Proceedings published by Springer-Verlag, in the Lecture Notes in Computer
Science series, volumes 73 (1979), 153 (1985), 291 (1987), and 532 (1991). Each proceedings volume
bears the title Graph Grammars and their Application to Computer Science.

hypergraphs. The embedding problem is dealt with by requiring that productions

specify the exact correspondence between tentacles of the hyperedge being replaced
and nodes of the hypergraph which replaces it; these nodes are not actually included in
the rewriting, but stand as placeholders representing the nodes to which the rewritten
hyperedge was attached.

Many results on HRS have been published in a 1992 book by Habel [63] and since
then, further results concerning parsing algorithms and complexity have been pub-
lished by Drewes [34, 35, 36]. A rigorous mathematical treatment of graph rewriting
systems, including both graph and hypergraph formalisms, is given by Courcelle {29].

A number of interesting formalisms predated the recent unifying developments in
(hyper)graph grammars. Two of the most important are web grammars introduced by
Rosenfeld in 1969 [109] and plez grammars introduced by Feder in 1971 [46]; both are
summarized in [53]. Web grammars, which generate labelled directed graphs (“webs”)
are mostly of historical significance; Rozenberg [120] credits them as having originated
the area of graph grammars. Plex grammars generate “plex structures” consisting of
so-called NAPEs (n attaching-point entities). What is particularly interesting about
plex structures is that connections are specified explicitly, rather than implicitly as in
graphs. For use in modelling notations, this feature is intuitive; we have a notion of
symbols (modelled by NAPEs) and a distinct specification of their interconnections.
Feder’s original paper gave examples of modelling chemical structures, logic circuit
diagrams, and program flowcharts. Interest in plex languages for pattern recognition
persisted [12] until the introduction of HRS. [63] proves that HRS and plex grammars
are essentially equivalent.

Hypergraphs are quite expressive for modelling notations, but they are inadequate
for my purposes because they model only the connectivity structure of notations,
not dimensions, orientation, or layout. Hence while hypergraphs might be a good
choice for modelling electronic circuit diagrams, they would be poor choices for Venn

diagrams, mathematical formulae, or music notation.

In order to model dimensions, orientation and layout of notations, we require
representations which can carry metric information. Atomic objects like vertices and
hyperedges need to be augmented with attributes. Attributed grammars for strings
(28, 37] have been studied for some time, and applied with great success to compiler
design [1]. Attributed representations and related grammar formalisms are discussed
in Chapter 3. chapter 4 introduces the attributed set formalism, which is essentially

an attributed version of hypergraphs and HRS.

2.4 The Artificial Intelligence Perspective

Notations are human languages, which happen to be visual rather than spoken. With
the exception of new notations designed specifically for computer processing (see
next section), notations arose specifically because the human cognitive apparatus
is capable of processing them. Hence, the field of artificial intelligence (AI), which
seeks to understand and emulate human cognition, also constitutes an important
perspective on the problems of notation processing. It is not my intention to survey
the vast field of Al here. Rather I will concentrate on two key developments:

1. progress in natural language understanding, especially new grammatical for-

malisms and associated parsing algorithms.

2. the use of formal logic to describe, reason about, and even implement compu-

tations (logic programming).

While in computer science the main goal of research into language formalisms
has been efficient parsing, in natural language understanding (NLU) the focus has
been on erpressive power, the main problem being to capture the subtleties of natural
languages whose design makes no allowances for the limitations of known computer
processing techniques. To this end, a variety of very general language formalisms and
associated parsing algorithms have been developed for NLU (3].

Two of the most powerful language formalisms developed for NLU are definite
clause grammars (DCG) [108], also called logic grammars, and unification grammars

(132]. Both are closely related to developments in logic programming.

24

A DCG is a description of a language expressed in the “definite clause subset”
of first-order logic, and can be interpreted as a Prolog program, which is a parser for
the language. DCGs extend the usual context-free string grammar formalism in three

ways:
1. DCGs provide for context-dependency.

2. A DCG parser can build arbitrary tree structures as it works, which can be

used to represent the meaning of the input string.

3. Since a DCG is a Prolog program, it may perform any amount of auxiliary pro-
cessing in addition to parsing. Most importantly, reduction of input structures

can be made conditional, according to the outcome of auxiliary processing,.

It should be noted, however, that although a DCG description of a language is an
executable parser for that language when interpreted as a Prolog program, it inay
not be an efficient one:
Normally a substantial transformation wuld be necessary to turn a DCG
conceived as a theoretical description of a language into a practical imple-
mentation. It is an interesting problem for future research to see whether
such transformations can be performed systematically, possibly by gener-

alising known results on parsing with context-free grammars. [108, page
270]

The DCG formalism has been applied to syntactic pattern recognition of gene
structures (expressed as base sequences in one dimension), sailboat structure (ex-
pressed as sets of line segments forming outline drawings in two dimensions), and
postal bar codes (one-dimensional bit strings, with possible multi-bit errors) by Searls
and Leibowitz [129]. The work of Helm and Marriott at IBM [70], discussed further in
the next chapter, could also be characterized as a generalization of the DCG formal-
ism. The ASG formalism, described in chapter 4, is most conveniently implemented
in a constraint logic programming environment, and hence is also related to the DCG
formalism.

Unification grammars are described succinctly by Pulman [113] as follows:

The prototypical unification grammar consists of a context-free skeleton,
enriched with a set of feature + value specifications on the grammatical
symbols in the rules and associated lexicon. These feature specifications
may involve variables, and may be recursive (i.e., the values may be inter-
preted as referring to a whole category). Whereas parsing and generating

25

sentences using grammars with atomic grammatical labels involves a test
for equality between symbols in a rule and those in a tree, in unifica-
tion grammars the test is whether two non-atomic descriptions “unify,”
i.e., can be made identical by appropriate mutual substitutions of terms.
(Emphasis in original.)

Unification grammars have been used by Wittenburg [154] for describing and
parsing notations such as simple mathematical expressions and flowcharts. To deal
with two-dimensional geometric relationships which are part of the specification of
notations, Wittenburg extends the unification principle to incorporate general func-
tion evaluation, according to the method proposed by Ait-Kaci and Nasr [2]. The
extensions allow the unification of variables with applicative functional expressions,
with mechanisms to delay actual evaluation of the expressions until all required data
are available. The result is a general mechanism for reasoning with constraints. Wit-
tenburg’s work is described further in the next chapter.

The notion that graphical structures can be succinctly described as a set of at-
tributed primitives or “marks” together with a set of inequalities or constraints on
their attributes has a long history in computer graphics, beginning with Sutherland’s
highly influential SketchPad system [138]. The central notion of in [39] was that the
structure of notations, for typesetting purposes, is best expressed in terms of marks
and constraints. The central notion of this work is that the same idea holds for
recognition purposes as well.

Solving systems of constraints, and more generally, reasoning with constraints,
has been studied extenmsively in Al, culminating in the development of constraint
logic programming (CLP) systems [76, 67]. CLP is a general scheme for implementing
logic programming languages in which the basic operation of unification of atoms
with the head of a rule is replaced by a more general constraint solving procedure.
The scheme is “instantiated” to yield a specific CLP language by implementing a
constraint solving procedure for a chosen domain; an example is the language CLP(R)
[68], which handles constraints in the domain of real numbers. As with the integration
of logic and functional programming [2], implementations usually include some kind
of lazy evaluation to delay ev~ .ion of functional expressions until all argument
values are known.

In [69], Helm and Marriott proposed use of constraints in formal specification of
visual language syntax. This led to work on automatic parsing of visual languages

70], elaboration of a grammatical formalism [92] which is discussed further in the next

chapter, and most recently to the development of a visual language parser generator
[17]. Most of Helm and Marriott’s implementations have been done in CLP(R).

Further developments in logic programming will undoubtedly be significant for
interactive notation processing. For example, a key problem in notation parsing is to
deal with partial information and ambiguity, which may be easier to express in terms
of modal logic rather than ordinary first-order logic. Scherl [52} proposes methods
for automated modal theorem proving, which might form the basis for future modal

logic programming systems.

2.5 The Interactive Programming Environment Perspective
I envisage interactive notation processing systems comprised of

o a visual editor which allows the user to manipulate a notation as a 2-dimensional
arrangement of symbols

e a parser which infers the presence of higher-level structures bearing meaning,
and

e one or more systems for interpreting that meaning.

This general design has much in common with an interactive programming environ-
ment, and hence the approaches taken in the design of such environments constitute
another perspective on the problem of designing notation processors.

Traditional programming environments consisting of a*text editor, compiler and
runtime system (and/or interactive symbolic debugger) lead by their very nature to
the familiar “edit-compile-run” development cycle. If any phase of compilation or
execution runs into trouble, one cannot simply fix the mistake in the program and
continue processing from where it left off; it is always necessary to begin the entire
cycle again. Development systems based around an interpreter (e.g. LISP and Pro-
log systems) avoid the problem by eliminating the compilation phase entirely, but it
should be noted that little production code is written for purely interpretive environ-
ments; to ensure fast program execution there is usually some kind of preprocessing
(compilation) step.

The inefficiency—in terms of CPU time and users’ time-—inherent in the edit-
(compile)-run cycle led in the late 1970’s to an interest in more tightly-coupled pro-

gram development systems. The essential argument was as follows: Most iterations

[]

-7

of the cycle involve small editing changes, whose effects are highly local. Hence by
applying suitable caching techniques, it should be possible to avoid re-doing the ma-
jority of the work whose outcnme would not change. (See [86] for a more detailed

discussion of the issues and early developments.)

Much of the work done on “integrated programming environments” was aimed
at caching intermediate parsing results. Two basic approaches were tried. In the
syntaz directed editing approach epitomized by the Cornell Program Synthesizer (see
(140, 62], and also [94], and [14]), the editor’s data structure was made to reflect the
parse tree of the program being edited, and editing commands operated on syntactic
units. In the less common tertually oriented program editing approach advocated
by Lee and some others (see [86]), the editor operated primarily on text but also
maintained a parse tree, and attempted to maintain consistency between the two
data structures at all times.

As one might guess, the syntax-directed editing approach was much easier to im-
plement than the textually-oriented approach and hence was more successful. Even-
tually, syntax directed editor generator tools (similar to compiler generators) were
developed [116]. Associated with the syntax-directed editing approach was the no-
tion of top-down refinement proposed in 1981 by Denning [31], by which new program
Ltext was entered using a template-filling strategy. This obviated the need for a conven-
tional parser, because the sequence of the user’s input commands essentially “spelled
out” the derivation of the new program material from its highest-level nonterminal.
However it also made entry of common program structures such as arithmetic ex-
pressions unacceptably complex [147); this problem was addressed in latcr systems
by allowing small syntactic units to be selected, edited as text, and re-parsed [143].

The apparent success of both approaches led to suggestions that notations might
be handled similarly. Géttler [61] implemented some syntax directed notation editors
using top-down refinement as the inpui strategy. Wittenburg et al. implemented sim-
ple editors for mathematical expressions and flowcharts, using an incremental parsing
strategy more closely related to the textually-oriented editing approach [154], and
more recently has applied the same strategy in the domain of interactive document
design [149).

The notion of integrated programming environments appears to have remained
an intellectual exercise; neither of the two main approaches has (to my knowledge)
been adopted in any commercial product of significance. The work of Géttler and

Wittenburg suggests, however, that conceptually similar approaches may yet be ap-
propriate for interactive notation processing. Integrated editor/parsers for program-
ming seemed like a good idea in contrast to the tedious batch compilation methods
in use at the time; today much of the tedium has been eliminated by faster CPlI’s,
separate compilation of small program units, and integrated development systems
where the compiler gives up at the first syntax error and instantly reactivates the
editor with the cursor near the error. Results obtained by Marriott [92] (see next
chapter), suggest that notation parsing is likely to have much worse con:putational
complexity— nrobably exponential in the size of the input—than program parsing,
meaning that incremental methods will remain preferable even as machine perfor-

mance improves.

2.6 The Visual Languages Perspective

The notion of graphical, or visual, programming—using pictures instead of text to rep-
resent programs, ideally with greater clarity and ease of learning-—has a long history.
In a review of the field, Myers [98] mentions a visual programming system developed
at MIT’s Lincoln Laboratory described in a 1963 Ph.D. thesis. For overviews of the
many developments since then, see [15, 98, 99, 133]; most of the seminal papers in
the field are collected in [54).

Sometime around 1990 the term “visual languages” came into vogue, as a general
descriptive label covering graphical programming and a variety of related research
areas. There is now a Journal of Visual Languages and Computing (JVLC, published
by Academic Press since 1990) and annual Workshops on Visual Languages organized
by the IEEE Computer Society. Despite the fact that there appears to be no precise
definition of the term “visual language”, there is quite definitely a community of
researchers who identify with it, and who read and publish in the JVLC and the
IEEE Workshop proceedings. The opinions and efforts of these researchers collectively
constitute a very important perspective on not=tion processing.

The field now called “visual languages” is s.ill defining itself, as evidenced by the
large number of “taxonomies” which have been published to date {15, 98, 9%, 133].
The primary goals of the field appear to be:

o Visual programming, the idea of interpreting pictures as computer programs.

e Program visualization, the use of automatically-generated graphics (sometimes

&

with animation) to enhance human understanding of program (or algorithm, or

data) structure and function.

o Programming by exzample (PBE), the notion that programming per se might be
avoided if computers were capable of abstracting functional, etc. specifications

from user-supplied examples, often expressed graphically.

Work in graphical programming is relevant to interactive notation processing, because
graphical programming environments are interactive notation processing applications.
The other two areas are beyond the scope of my present work.

The inherent assumption in visual programming is that programs might usefully
be represented pictorially rather than as text. Although outsiders have expressed
considerable skepticism (see {114]) about how realistic this notion is, it remains a
do. *inant the 1e in research. Shu [133] observes that while traditional programming
languages will probably remain the norm for “...large software systems on the serial
machines where the program efficiency is a primary concern”, visual methods might
be more appropriate for end-users who are not professional programmers. Myers [99],
pointing to the success of spreadsheets, argues that given a less imposing paradigm,
non-programiners can and do create nontrivial “programs”, and suggests that pictorial
paradigms may be similarly successful.

One of the first visual programming environments was Pascal/HSD, which was
an attempt to express Pascal control structures such as if-then-else, vrhile, etc. in
diagram form. Other systems in the same vein include Pict [55] and Iconic PICL
[32]. This approach has met with limited success, and researchers have begun to
propose new control structures which are as powerful as the conventional ones but
which are more amenable to visual representation. Examples include the languages
PROGRAPH (30], which has become commercially available for Macintosh systems,
and Hyperflow [81], a research system designed specifically for pen-based computers.

Pictorial representations are especially attractive in applications where there is in-
herent concurrency or parallelism. Reader [115] describes a system for functional pro-
gramming, which is naturally expressed by directed acyclic graph-structured diagrams
with nodes representing functions and arcs representing data streams, and where there
is a natural mapping onto data-flow type parallel processing architectures. In 1990,
I designed a graphicsl programming system for specifying non-trivial arrangements
of communicating processes under the UNIX operating system, expressed pictorially

using boxes (representing processes) connected by arrows (representing data flow).

30

The system wus implemented in two consecutive senior undergraduate programming
projects [9, 137].

Although descriptions of complete research systems are still common in the visual
language (VL) literature, since about 1990 there has been a trend toward papers

focussing on particular sub-problems, such as:
o Visual editing, and graphical user interfaces in general [22, 56]

¢ Visual Language theory: language formalisms, and theoretical and algorithmic

results obtained using them. Sub-areas include

— preprocessing [90] and lexical processing [21]
~ grammar formalisms [110, 95]
— parsing algorithms [110, 70, 151]

— data structures to support efficient parsing [71, 4]
o design of new visual languages [114]

e automatic layout of computer-generated diagrams [91]

Of greatest relevance to interactive notation processing are works on grammar

formalisms and parsing algorithms, which are discussed in detail in the next chapter.

2.7 The Human-Computer Interaction Perspective

Primary concerns in the field of human-computer interaction (HCI) include:

1. ergonomics, i.e., approaches to design of interactive computer systems informed

by understanding of human cognitive and motor capabilities.
2. user interface management systems and their standardization.

3. interaction techniques, especially graphical techniques e.g. menus, direct ma-

nipulation, etc.

The first two are not relevant to interactive notation processing, except in the general
sense that research results in these areas have become identified with good practice
in the design and implementation of interactive systems,

Use of syntactic techniques for preprocessing of graphical input was proposed
in 1984 by Hamlin [65], but appears to have met with little interest. Vlissides and

31

Linton [144] describe a general approach to building graphical editors in which the
user’s manipulations of views are interpreted appropriately as modifications of some
underlying “domain-specific” data structure. Their approach, though not syntactic
in nature, would be applicable to the editing component of notation processors.

The advent of pen-based computer systems has prompted the development of
pen-based operating systems {13}, renewed interest in handwriting recognition [139],
and “gestural” input techniques where specific pen movements are interpreted as
commands [148]. (Weber’s approach [148] uses syntactic techniques, based on inter-
pretation of input gestures as strings.)

Within the HCI field much work has been done on the design and implementation
of visual editors, including editors for graphics. Van der Vegt [142] proposes a user
interface for editing hierarchically structured drawings, wherein one’s current position
in the hierarchy is always indicated via highlighting of all objects at or below the
current node; In Chapter 4 I describe how similar methods might be used in notation
processors.

Kurlander and Feiner [84] describe search and replace techniques for graphical
editors where both the search specification and some aspects of the replacement are
specified graphically, using constraints. Although such techniques might profitably
be applied in interactive notation editors, I suspect that methods based on notation
semantics would ultimately be more useful. For example, in a music notation editor,
rather than searching for a specified arrangement of musical symbols, it would likely

be preferable to search for a given harmonic or rhythmic structure, perhaps specified

via a user-supplied example notation.

32

2.8 Discussion and Summary

Notation-oriented projects reported in the pattern-recognition literature have tended
to be ambitious but also to fall far short of the ultimate goal. The focus of effort
in these projects has usually been preprocessing and segmentation, with little time
left over for higher-level structure analysis. I have attempted to avoid this pitfall
by concentrating entirely on high-level analysis, and hence [have found the pattern-
recognition literature interesting but not directly relevant.

On the other hand, the pattern-recognition approach emphasizes noise-tolerance
and general robustness, as well as automatic inference. These aspects are beyond
the scope of this dissertation, but would be extremely important for future work in
refinement and implementation of the designs proposed here.

Somewhat surprisingly, the language-theory literature contains few proposed for-
malisms for language structures other than strings. Essentially only two other struc-
tures have been studied: arrays and hypergraphs (with trees and ordinary graphs as
special cases). These appear to have been chosen because their properties were well
understood, rather than because they were particularly well-suited for modeiling e.g.
notations.

I contend that the hardest part of applying syntactic methods to notation pro-
cessing is not the development of appropriate grammars, but rather the choice of a
truly appropriate representation upon which formalisms such as grammars can be
based. One of the major contributions of this thesis is the attributed set formalism
proposed in Chapter 4, which I believe to be appropriate for modelling notations.

The string encodings discussed above in the section on the language theoretic
perspective, are rather clumsy as representations of two-dimensional structures. At-
tributed encodings, on the other hand, are quite appealing in that attributes provide
a means to capture metric parameters such as line segme. :ngths. Plex structures
and hypergraph representations are also interesting, in that they represent symbols
and their relationships separately. The attributed set formalism proposed in Chapter
4 also distinguishes symbols and their relationships.

I have suggested that notations are a kind of natural language, and hence that
syntactic analysis of notations will bear a greater resemblance to natural language
understanding (NLU) than to parsing of, say, programming languages. Kent Witten-
burg evidently thought so too, when he chose to apply NLU tools such as unification

grammars to notation parsing (see next chapter). The Al approach of constraint-

33

based programming is also highly applicable to notations; augmenting an attributed
representation with constraints provides a natural way to represent geometric rela-
tionships. All of the approaches discussed in Chapter 3 make use of attributes and
constraints.

Combining definite clause grammars with constraint logic programming essen-
tially yields the approach of Marriott (see next chapter).

New methods for reasoning with partial and/or uncertain information, now being
developed in Al, while beyond the scope of this dissertation, will definitely be useful
in the refinement and implementation of the designs proposed here.

The generic design | propose for interactive notation processing systems, dis-
cussed in Chapter 6, has much in common with interactive programming environments
(IPE). The big debate in IPE during the 1980’s concerned syntax-directed editing vs.
textually-oriented editing. The former is easier to implement but harder to use, the
latter is much harder to implement but potentially easier to use. I believe that the
arguments in favour of the textually-oriented program editing approach, based on
the cognitive overhead inherent in the syntax-directed approach, remain as strong as
ever, and hence a similar approach should be pursued for notations. A graphically-
ori. nted notation editor would operate on a database of graphical primitives, such
as geometric primitives or strokes in a pen-based system, and infer the presence of
higher-level structures automatically by incremental parsing.

The field formerly called “graphical programming” has undergone a gradual change
of name, first to “visual programming” and now to “visual languages”. This reflects
not only a broadening of the field beyond programming into areas such as VL design,
but also the gradual adoption of a view of visual inter>ction as a language-processing
problem. The VL field is still to some degree in the same state as syntactic pattern
recognition—numerous grammar formalisms and associated parsing algorithms have
been proposed, but the question of appropriate underlying representations has re-
ceived little attention. Much attention has been devoted to parsing efficiency, which
I believe is premature given the lack of good representations.

My own priorities have been different. I have devoted considerable effort to elab-
orating what [consider to be an appropriate representation for notation structures,
and much less to issues of parsing efficiency. In interactive environments, where pars-
ing is performed in arbitrarily small increments, efficiency is unimportant. In fairness,

however, 1 must note that most work in the VL field deals with artificial languages,

34

35

e.g. visual programming languages, rather than notations which predate computer-
ization. The proposed representations may indeed be adequate in such cases, and
efficient parsing (or computation of any kind) is always a worthy goal.
Computer-human interaction research has produced a steady stream of results
which have, sooner or later, become synonymous with good practice in design and

implementation of interactive systems. Interactive notation processing systems will

be no exception.

Chapter 3

Five Approaches Reviewed in Detail

The previous chapter presented a general discussion of previous work related to the
problem of notation processing. In this chapter I focus on five specific research efforts

which are similar enough to my own that a more detailed review is called for.

3.1 Context-Free Grammars, Derivation, Parsing

All of the formalisms discussed in this chapter are extensions of the well-known
context-free grammar formalism. To establish a vocabulary for the discussion to
follow, it is necessary to recall some definitions from formal language theory, and in

some cases to choose specific terms among several in common usage.

NOTE: Some of the terms used in this chapter, e.g. “sentence” and “string”,
are used or defined in ways inconsistent with convention. This has been
done in order to be able to provide a consistent terminology with which to

describe substantially differing formalisms.

An alphabet is a finite, nonempty set, the elements of which are usually called
symbols. In the simplest formalisms, symbols are atomic entities; in more elaborate
ones, they may have associated atiributes. A language is a set of sentences; For
the purposes of this chapter I define a “sentence” very broadly as a collection of
symbols. In traditional formal language theory, sentences are sequences of symbols;
1 call these strings. In most of the formalisms discussed in this chapter, sentences
are unordered collections of some kind, such as sets or multisets. A multiset is an

unordered collection of elements whose elements need not be distinct.?

YA pocketful of coins is a good example of a multiset. Multiset construction never “collapses”
the way set construction can, i.e., if A and B are multisets, we can be sure that |[AU B| = |A|+|B|,
whereas if they are sets all we cau say is |AU B| < |A| 4- |B|.

36

A contert-free grammar (CFG) is a formalism initially devised for describing lan-
guages of strings, but which has been extended in ways described below to deal with
set and multiset languages as well. A CFG has the form (N, T, P,s) where N and T

are alphabets (called the nonterminal and terminal alphabets respectively), s € N is

called the start symbol, and P is a set of productions having the form Xy — X, ... X,
where Xp € N, X;... X, € NUT; X, is called the head of the production, Xy... X,
the body.? A sentence (string, set, multiset) consisting only of terminal symbols is
called a terminal sentence.

Productions are templates which indicate how parts of sentences may be rewrit-
ten. Every formalism has its own definition of how these templates are matched, but
generally each symbol X; in the production is matched with one symbol in the sen-
tence under consideration. Rewriting according to a production is called applying the
production, and may be done in one of two ways. If one symbol is matched with the
head of the production and rewritten as a group of symbols which match with those
in the body, this is called a derivation step. If a group of symbols are matched with
the body and rewritten by a single symbol which matches the head, this is called a
reduction step.

CFG derivations can always be represented as trees, since every derivation (reduc-
tion) step expands (reduces to) a single symbol; these are called parse trees. Trees,
however, are not sufficient to capture the structure of certain objects, directed graphs
being the most important example. Hence some of the formalisms discussed in this
chapter use representations more complex than trees for parse structures; the most
common is a directed acyclic graph.

The language of a CFG G = (N, T, P, s), denoted L(G), is that set of terminal
strings obtainable by performing a sequence of valid derivation steps starting with
the one-letter string consisting only of the start symbol s. The sequezce which yields
a given string w is called the derivation of w under (;. By generalizing from a one-
letter string to a single-symbol sentence in a manner appropriate to cach CFG-related
formalism—Ilet us call this a start sentence for G—we can generalize the notions of
the language of a grammar and derivation of a sentence.

Given an element S of some set L, we might in general ask whether or not S € 1;

this is called the membership problem for L. More importantly, we might ask whether

21t is common to say “left side” and “right side”, but this can be confusing because in some cases
production are written the other way around e.g. X, ... X, — Xo.

the membership problem is decidable in general for sets L = L(G) defined by (some
type of) grammar G. For CFG’s the membership problem is decidable and the result
may be computed in polynomial time. Marriott ([92], see section 3.5 below) provides
interesting results concerning more general grammar formalisms.

Given a sentence S € L(G), one might perform a sequence of reduction steps
which is exactly the reverse of the derivation of S under G, to obtain a start sentence
for . Based on this observation we can imagine an algorithm which takes a terminal
sentence S as input, applies reductions in a systematic manner, and outputs “yes” if
S € L(G) and “no” otherwise. Such an algorithm is called a recognition algorithm
for L((5). A recognition algorithm which, in the “yes” case, reports the derivation of
S is called a parsing algorithm or parser.

Work on the theoretical basis of compiler design has yielded some useful extensions
of the CFG formalism [1]. In an attribute grammar [28), each grammar symbol has
an associated set of attributes, and each production has an associated set of semantic
rules of the form b — f(ey,...,c), indicating how an attribute b of some symbol
represented in the production is computed as a function of attributes ¢;,...,cx of
symbols represented in the production. If b is an attribute of the head symbol and
the ¢; are attributes of the body symbols, b is called a synthesized attribute. If b is an
attribute of one of the body symbols, it is called an inherited attribute.® In compilers,
attributes are useful for semantic processing (e.g. code generation) and to allow for
slight context-dependencies (e.g. verifying that variables are declared before being
used). In systems for processing notations, attributes are desirable because notations
themselves are parametrized in terms of attributes relating to graphical variables such
as position, size and orientation.

Even more powerful grammar formalisms have been developed in the course of
work in natural language understanding (see section 2.4). When the assignments
b — f(c1,...,ci) in an attribute grammar’s semantic rules are replaced by equa-
tional constraints b = f(cy,...,cx), and the matching process involved in applying
productions is changed from simple variable binding to unification, the result is a
unification grammar [132]. A unification grammar expressed in the definite clause
subset of first-order logic is called a definite clause grammar (DCG) [108). DCGs

are of particular interest because they can be interpreted as logic programs; a DCG

3n [1]. a related formalism called syntaz-directed definition is defined. A syntax-directed def-
inition is like an attribute grammar, but the “functions” f in semantic rules need not be pure

functions—they may have side effects.

38

interpreted as a logic program is a recognition algorithm for the language it describes.

CFGs, attribute grammars, and unification grammars are all string-generating
grammar formalisms. The formalisins discussed below, with the exception of the
first one, are attempts to adapt ideas from these formalisms to the generation of
set or multiset languages. All make use of attributes. In considering each proposed

formalism, I have attempted to answer the following questions:
1. Representation: What is the structure of sentences?

(a) What form do symbols take?

(b) What kinds (types) of attributes are used?

(c) What auxiliary structures (if any) are used, e.g. relations?
(d) How are sentences formed, e.g. sets or multisets?

(e) How are sentences used to encode the structures of notations?
2. Matching: How are productions matched with parts of sentences?

(a) How are attributes matched, e.g. simple binding of values to symbolic

variables, unification of expressions, etc.?

(b) When expressions are involved, are there any limits on their power?

3. Parse structure: Can derivations be represented as trees or is something more

general (e.g. directed acyclic graph) required?
4. Ezrpressive power: Are there languages which the formalism cannot describe?
5. Symmetry: Can the formalism be used for both derivation and parsing?

6. Rigour: When examples are given, there is an implicit claim that a given gram-
mar G defines a given language L. Are both (i and L adequately defined, and
is it proved that L(G) = L?

3.2 Kojima and Myers: Graphic Functional Grammars

The work of Keiji Kojima and Brad Myers {83] serves as strong evidence that se-
quential representations are not adequate for notations. They begin by observing

that in modern computerized document-processing systems, documents containing

picture structures such as charts, tables, and diagrams are represented as sequences

39

of procedure calls in languages such as PostScript. This suggests that it might be
possible for a computer to analyze such sequences so as to re-generate a high-level
specification of the meaning of pictures. To this end, Kojima and Myers devised a

grammar formalism called graphic functional grammars (GFG) wherein sentences are
sequences of procedure calls.

The GFG formalism is based on the following definitions. A graphic function is
a procedure whose execution “draws some geometrical figures in a multi-dimensional
space” [83, page 111]. A graphic vocabulary (GV) is a finite set of graphic functions.
A graphic sentence is a finite sequence of graphic function calls.* A GFG is a tuple
G = (Vn, Vr, S, P) where Vy is a GV of nonterminal functions, Vr is a GV of terminal
functions, $ is a start function, and P is a set of “production rules”. Each production

rule has the form

a(-’h---a“'p) - ,Bl(ylla---vqu)a---sﬂn(ynle--wynq)
' 7(21,...,37).

« is the head symbol, the j3; are the body symbols; these are of conr<e procedures. The
r; and y;, denote expressions corresponding to the formal parameters. 4(zy,...,z,)
represents “...constraints which are denoted as a formula of first-order ,redicate
logic™ [83, page 112]. The process of matching rules to graphic sentences is not
entirely clear; the initial definition suggests a simple binding of formal to actual
parameters, but later unification is mentioned. In a GFG derivation step, a procedure
call matching the rule head can be rewritten as a sequence of calls matching the
rule body, provided the constraint 4(zy,..., 2,) is satisfied under the involved binding
(unification). The language L(G) of a GFG G is that set of terminal graphic sentences
(graphic sentences consisting only of calls to functions in the GV Vr) obtained by
“...repeatedly applying rules to the start function” [83, page 112]; based on examples
given this seems to mean applying rules to a cell of the start function, with associated
actual parameters.

The fact that GFG derivations proceed from a call of the start symbol with actual
parameters, together with the fact that the formalism appears to permit expressions

of entirely arbitrary power in rules, allows a GFG for directed graph diagrams to be

4+, .afinite sequence of graphic functions. . . where actual parametets are assigned to their formal

parameters.” {83, page 112].

written very simply:

Vv = {graph(p),node(p),arc(p)}

5
i

{ circle(z.y), arrow(z,, ys, Te. ye)}

graph(p)

P = ({graph(p) — node(p)arc(p),

node(p) — circle(z, y) node(p’) [p = p' U {(r,)},
node(p) = ¢|p=0,

W
]

arc(p) — arrow(x,, ¥, Iy, ye) arc(p) [P 2 {(rsye)s (Tes9e))
arc(p) = ¢ }

Let us call this GFG Ggaph. The trick which allows Ggrapn to generate graph struc-
tures is, clearly. the parameter p whose value is a set of points in the plane (the centres
of circles representing graph nodes) and the constraints involving set union and con-
tainment operators. Derivation of a graphic sentence representing a graph diagram
proceeds from a start sentence consisting of a single call to the start function graph,
whose p parameter must already be assigned an appropriate value. (If the graph is to
have, say, four vertices, p must be a set of four points in the plane, which furthermore
should be chosen so that the generated diagram will have a suitable layout.)

It is easily verified that Gigapn can generate any graph, that is, that any graph
diagram can be encoded as a sequence of calls to the terminal functions cirele and
arrow, which is in the language of that GFG. Kojima and Myers note, however, that
G graph generates only sentences in which all the circle calls precede all the arrow calls,
but it is conceivable that in the output of a computerized publishing system, the calls

might appear in any order. They go on to make the following observations:

e Reformulating a GFG such that its language is closed under permutation is

perhaps possible but is difficult even for a small example such as Ggaph.

e One could transform input sentences to acceptable forms before parsing. (For
Ggraph this would be trivial.)

e Not all graphic languages are such that all permutations of a graphic sentence
give rise to the same graphic output. They call languages which do have this
property commutative. Non-commutativity is due to side effects situations
where the execution of one function changes a global variable, which affects the

execution of functions called subsequently.

e Commutative languages could be pa:sed using a generate-and-test method, gen-
erating all permutations of an input sentence and passing each to the parser, but
this would naturally yield exponential time complexity. An alternative would

be a parsing method which is order-independent.

‘They prove that every graphic language can be effectively translated to an equivalent
commutative language; the practical usefulness of this proof, however, is limited.®
They also give a GFG parsing algorithm for commutative languages which, by using
constraints in production rules to determine the order in which procedure calis are
processed, is capable of accepting input in any order.®

Kojima and Myers started with a sequence-based formalism and ended up devising
a parsing algorithm which essentially ignores input order. Their experience illustrates
convincingly that sequence-based representations are not appropriate for graphical

structures.

5The method used is analogous to the “Z-buffer” technique used in computer graphics, wherein
surface primitives defined in 3-dimensional space can be rendered in any order to a 2-dimensional
pixel array, with occlusion dealt with on a per-pixel basis by associating a depth variable with
every pixel, and permitting pixel values to be changed only if the new primitive being rendered
has a lesser depth than has so far been recorded for that pixel. Whenever a pixel is actually
modified, the corresponding depth variable is also updated. The algorithm given by Kojima and
Myers for transforming a sequence S of procedure calls to an equivalent set of procedure calls whose
execution-—in any order—will generate the same output, involves the addition of one guard variable
to every global variable and the encoding, in new actual parameters added to every procedure call,
the ordinal position of the corresponding procedure call in the input sequence and the values of every
global variable expected when that call is about 1o be executed in the input sequence. The procedure
definitions are modified to compare their ordinal position argument against the current value of the
guard variable for each global. modifying the global (and updating the guard) only if the current
guard value is less than the ordinal value. This approach will clearly only be practical when the
number of bits required for all of the global variables involved is small, but in raster graphics systems
the entire frame buffer is global. Kojima and Myers give an interesting example, however, where
instead of encoding the initial values of all globals as actual parameters, the required values are
computed when needed by variants of the basic primitive-drawing functions.

$This algorithm, which involves unification, constraint solving, and backtracking, is difficult to
analyze. The algorithms given by Wittenburg, Golin and Marriott (see below in this chapter) are
more carefully presented.

42

3.3 Wittenburg, Weitzman and Talley: Relational Languages

The approach to notation processing defined by Kent Wittenburg and his collabo-
rators Louis Weitzman and Jim Talley, has come to be called Relational Languages
or RL [152, 151]. The RL approach was developed initially for natural language
processing, and then applied in the course of research on automatic recognition of
hand-sketched graphic input (i.e., interactive notation proces.ing) at the Microclec:
tronics and Computer Technology Corporation in Austin, Texas. (See [153] for a
discussion of the history and motivations of the approach.) The focus of these re.
search efforts has been on parsing, and perhaps more specifically on parsing efliciency.
In [154], Wittenburg states that the utility of the RL grammar formalisin for language
generation remains an open question.

An RL is a set of RL expressions, each of which is a set S of objects which may
have associated attributes plus a set of n-ary relations on the powerset of 8.7 For
example, the character string “abba” could be modelled in the RL formalism as the
set S = {ci(a), c2(b), ca(b), ca(a)} and the relation left-of = {({c,}, {e2}), ({2}, {ea}).
({3}, {c4})}. The elements of S in this case represent the individual characters of
the string; each carries an attribute indicating the letter which actually appears in
the corresponding character position.

By explicitly specifying relations among objects, RL expressions can capture quite
complex structures. [154] gives examples including flow charts and positional mathe-
matical notation, which rely on relations such as “left-of”, “above”, “centered-in-X"
etc. RL expressions are hence a generalization of strings, which encode only one
kind of relation (left-to-right concatenation), encoded implicitly via juxtaposition of
symbols.

The RL approach is based on the PATR-H unification grammar formalism pro-
posed by Shieber [132]. Unification grammars were developed within the field of
computational linguistics to describe and characterize natural languages. Briefly, a

unification grammar is like a context-free grammar but

1. symbols have associated attributes called features, each of which has acts like
a pointer to a value which may be blank (i.e., variable), a constant (e.g. “noun

phrase”, “singular”, etc.) or another set of features (called a feature structure).

"The papers by Wittenburg et al. do not actually give an explicit mathematical definition of the
RL formalism. I have synthesized the definitions given here based on what [have read.

3

. the feature structures associated with terminal symbols are listed explicitly; the

list is called the lericon of the grammar.

. when a production, called a rule, is applied (either in parsing or generation),

the matching of feature structures is done via unification, a bi-directional sub-

stitution process much like term unification in Prolog.

. productions are augmented with a set of constraints which usually declare pairs

of features equivalent.

The details of unification grammars are intricate and beyond the scope of this disser-
tation. See [132] for more information.

Shieber's PATR-1I formalism describes languages of strings, and hence the order
of symbols in the body of rules is significant, indicating the order of concatenation of
the related language elements. The only kind of constraint allowed is equation of two
features. Wittenburg has proposed a formalism called F-PATR [150], which extends

Shieber’s PATR-II formalism in two ways:

1. The symbols in the body of a rule are treated as a set rather than as a sequence;

their order is thus irrelevant.

. The unification method is extended to allow use of functional expressions in
constraints, following the approach of Ait-Kaci and Nasr [2]. Functional con-

straints may involve variables, and may take one of two forms:

(a) A variable may be set equal to any functional expression.
(b) Functional expressions which reiurn a Boolean result may be used directly

as constraints.

The former are used to propagate and transform feature values, as in attribute

grammars [28]. The latter are used to set conditions on successful unification.

Following is an example of a rule in an F-PATR grammar for mathematical no-

tation, somewhat simplified from [154].

Example 1: Vertical infix division

The rule which defines fraction structures consisting of two formulae, one
above the other, separated by a horizontal line, begins with a context-
free basis production. The nonterminal (called the rule head) appears on
the right side rather than the left as is customary for ordinary context-
free grammars; the expansion of that nonterminal (called the rule body)

appears on the left.
HorizLine Numerator Denominator — Fraction

This is followed by several constraints. The first group ensures that the

symbols involved have the correct syntactic categories.

(HorizLine syntax) = vert-infix-divide
(Numerator syntax) = formula
(Denominator syntax) = formula

(Fraction syntax) = formula

The expressions in angle brackets are called paths, and are derived from
the PATR-II formalism. In these examples, the first entry identifies a
symbol and the second names one of that symbol’s features. (In cases
where feature values are themselves feature structures, paths may contain

more than two entries.)

The next constraint illustrates how semantics may be captured within the
F-PATR formalism. Note that this is a type-a functional constraint (as

defined above); Lisp syntax is used for functional expressions.

(Fraction semantics) =

(divide (Numerator semantics) {(Denominator semantics))

The next constraint defines the propagation of cover features. The cover
of a grammar symbol is the subset of the objects in the RL expression for

which that symbol stands. Again a type-a functio. al constraint is used.

(Fraction cover) =

(union (HorizLine cover) (Numerator cover) (Denominator

cover))

The next group of constraints are type-b. In parsing, these define condi-
tions under which this production may be applied. The italicized relations
below and above are distinguished as ezxpander relations, discussed below.

(below (HorizLine cover) (Numerator cover))
(above {HorizLine cover) {Denominator cover))
(wider-than (HorizLine cover) (Numerator cover))

(wider-than (HorizLine cover) (Denominator cover))

In [154], Wittenburg et al. define a parsing algorithm for RL grammars, which is
a variant of chart parsing (see [3]) a bottom-up technique normally used for parsing
strings. A chart parser works by repeatedly looking for matches between substrings
of the input and production bodies, keeps track of partial matches in a data structure
called a chart, and repeatedly attempts to extend partial matches until all elements
of the production body are matched, at which point it can infer the presence of the
nonterminal in the head of the production. In notation parsing there is no predefined
order in which to match the symbols in rule bodies; Wittenburg’s approach solves this
problem by requiring that certain binary type-b constraints called ezpander relations
be present in all rules, which collectively define a total order on the symbols in the
rule body. When the chart parser has matched the first symbol in this total order, it
can use the expander relations to search for suitable candidates to match the second
symbol, and so on.®

The chart parsing algorithm works bottom-up, processes input incrementally, and
will return the correct result irrespective of the order in which it looks at the input
symbols. These are important advantages for interactive parsing: parsing can begin
as soon as the user enters the first symbol, there is no need to enter symbols in any
particular order, and editing changes (inserting, deleting, and moving symbols) can
be handled with ease.®

®The searches are performed via database operations, and can be highly efficient. The parsing
algorithm is flexible enough to deal with cases where the search returns more than one candidate.
The requirement on expander relations in rules ensures, however, that there will always be at least
one.

®Insertion is trivial because the parser works incrementally—there is simply one more symbol in
the database among many which the parser has not yet seen. Cover attributes, which are represented
in the chart, play a key role in handling deletion—following deletion of a symbol, all active arcs
containing that symbol in their cover are deleted from the chart. A move operation is implemented
as deletion followed by insertion of the appropriately modified symbol.

46

In a recent paper [151], Wittenburg pursues the matter of parsing efficiency still
further, defining a subclass of RL grammars called fringe RL grammars and shows
how a predictive parsing algorithm based on the method of Earley [43] can be applied
to these grammars. The efficiency issue is important because, if the parser has no
clues as to how the input may be ordered, the se .rch for the “next” input element
matching a rule symbol can range over the entire input, and hence the time complexity
of the parsing problem becomes exponential in the size of the input.

The key to the RL parsing approaches is the use of expander relations, which
define an implicit order on input symbols. This allows algorithms developed for
parsing strings to be adapted to non-sequential structures including notations and
databases. This approach is a more sophisticated version of that discussed in section
2.3, wherein special operators are used to represent spatial relationships within a
string representation of a two-dimensional structure. The difference is that Witten-
burg et al. have broken entirely out of the string representation paradigm, choosing
a set-based representation where objects and their relationships are represented sep-
arately and explicitly. Moreover, they have explored the nature of the relationships
in detail, finding that certain of them (expander relations) can under the right condi-
tions be used to “drive the parse” through a potentially exponential range of possible
paths.

The RL approach also has limitations. Since derivations are represented as trees,
directed graphs cannot be described by RL grammars. Since RL grammars have to
date been used only for parsing, their generative properties have not been explored.
Hence although Wittenburg et al. have presented a few examples of notations and
corresponding RL grammars, they do not prove that the given grammmar actually

generates the correct language.

7

3.4 Golin and Reiss: Attributed Multiset Grammars

In his 1990 Ph.D. thesis, Eric Golin proposed a formalism called attributed multiset

grammar (AMG), derived from conventional context-free grammars as follows:
e Symbols carry attributes, e.g. graphical coordinates.
e The body of each production is a multiset instead of a sequence.
o Each production is augmented with

1. A semantic function which defines how the attributes of the head symbol

are computed from the attributes of the symbols in the body.

2. A constraint which is a Boolean function of the attributes of the body sym-
bols. When actual symbols (bearing actual attribute values) are matched
with the production body, a reduction step may be performed only if the

constraint is satisfied.

Language elements are multisets of symbols bearing attributes which are normally
real numbers or symbolic constants (e.g. “solid” for a line style attribute). Attributes
are represented by symbolic identifiers (variables) in productions, and the matching
process involves a consistent assignment of these variables to the actual attributes,
much like formal/actual parameter assignment in a procedural programming lan-
guage. The semantic function and constraint are sornewhat analogous to functional
constraints in the Wittenburg’s RL formalism, but in an RL grammar there is no
clear distinction made between constraints which serve to propagate attributes and
those which set conditions on applicability of rewriting steps.

In [59, 60}, Golin and Reiss define picture layout grammars (PLG) according to

the following definitions:

® a picture element is a graphical primitive such as a line segment, text string, or
“shape” (any complex graphical object such as an ellipse, characterized by its

XY extent or bounding box).
® a picture is a set of picture elements arranged on a plane.
o a wvisual language is a set of pictures.

e a PLG is an AMG in which the productions correspond to picture composition

operators.

48

Hence, a PLG describes the syntax of a visual language by defining how its pictures
are logically composed from sub-pictures, down to the level of termir:al symbols which
correspond to primitive picture elements.

Golin discusses parsing with PLG’s in his Ph.D. thesis and a subsequent paper
[57]). In later work [58], he introduces a closely related formalism called object ori-
ented PLG’s (OOPLG) involving notions such as classes, inheritance and methods
taken from object-oriented programming, and describes a visual language compiler
generator which, given an OOPLG specification, generates a C++ program which
parses the corresponding visual language by applying his pzrsing algorithm. These
are very significant achievements, but the essential aspects of Golin’s approach are
contained within the earlier and simpler PLG formalism.

In a PLG, every grammar symbol has four attributes lr, by, rr,ty. For line seg-
ments these denote the endpoints (lz, by) and (rz,ty); for other shapes they denote
the X-extent [lz,rz] and Y-extent [by,ty]. Writing productions is simplified by a
macro facility called production operators, which automatically generate the semantic
function and constraint according to one of many standard templates. For example,
the short form A — over(B,C) describes a situation where structure 13 is situated
atop structure C, and may be reduced to a single structure A; it generates the pro-
duction A — BC, a constraint which ensures that the extent of B is centred above
and does not overlap the extent of C, and a semantic function which defines the
extent of A as encompassing the extents of B and C.

The AMG and PLG formalisms also include one very important feature, added
specifically to permit description of directed graph structures. Symbols in the body
of any production may be marked as remote, meaning that during parsing, they must
match with some symbol in the parse tree, but that “remote” symbol is not actually
rewritten in the course of a reduction step. The following pair of productions therefore

suffice to describe directed graphs:
1. ARC — points-to (LABELLED-ARROW, NODE)
2. NODE — points-from (ARC, NODE)

The underlining in the first production indicates a remote symbol. Labelled arrows
are first rewritten according to the first production as LABELLED-ARROW non-
terminals. The production specifies that each arrow must point to some NODE,

but since this is flagged remote, it is not actually rewritten in the reduction. Once

19

LABELLED-ARROWs have been reduced to ARCs in this way, they may be fur-
ther reduced along with the NODE from which they emanate by production 2, which
rewrites the NODE as itself; eventually a single NODE remains after all ARCs have
been reduced.

Reductions involving remote symbols add non-tree arcs to the parse representa-
tion; the AMG/PLG parse structure is a directed acyclic graph. I used essentially
the same technique in my early experiments with implementation of visual language
parsers, described in [41] and also in chapter 5 of this dissertation. The remote sym-
bol technique adds significant expressive power to the formalism, but makes it less
amenable to analysis.

Golin’s papers do not formally define the language of an AMG/PLG, and hence
there are no proofs that a given grammar indeed generates or recognizes a given lan-
guage. Unlike Wittenburg, Golin does not discuss the issues of parsing incrementally;

his parsing algorithm operates as a batch procedure only.

3.5 Helm and Marriott: Constraint Multiset Grammars

The work of Richard Helm and Kim Marriott of IBM T. J. Watson Research Center
and Monash University constitutes probably the strongest single influence on my
own research. Their approach, now called constraint multicet grammars (CMG) was
first described in a 1991 paper [70], which gave examples of the CMG formalism but
unfortunately no details of the elegant mathematical development underlying it. The
details given below are taken from two 1994 papers [92, 17] sent to me by Dr. Marriott.

The CMG formalism is in many ways a refinement of Golin’s AMG. That is, a
CMG is a context-free grammar where symbols have attributes, production bodies
are multisets, constraints specify the relationships among attributes of symbols in
productions, and productions may refer to symbols which they do not actually rewrite.
The major difference between the CMG and AMG approaches is that the former rests
on a firmer mathematical foundation, based on the semantics of constraint logic.

In the CMG formalism, grammar symbols are typed. Each type defines the num-
ber, names and types of attributes for symbols of that type. The term symbol is
actually reserved to refer to symbols in productions, which as in AMG have vari-
able attributes. Instances of a given symbol type, with specific values assigned to
attributes, are called tokens. The language of a CMG is a set of sentences, each of

which is a multiset of tokens.

50

CMG productions have the form

T(Z) « Ti(T))...Tu(Ts)
where exist T,(1})... T, (F)

where CC and F=F.

The ellipses (...) represent multisets. The first line is the underlying context-free
production; the 7; are symbol types, the &; are symbolic references to vectors of
attributes. The T are called eristentially quantified symbols; these must be matched
against tokens, but they are not actually rewritten when the production is applied.
These are analogous to remote symbols in Golin’s formalism. (" denotes a conjunction
of constraints over &y,...,%n,&y,..., & and F denotes a function of Fy,..., T, and
Z},...,I,, Note that the expression £ = F, which is analogous to the Golin's semantic
function, is actually just one more constraint. (The semantics of the equal sign
is assertion of equality as in algebra, not one-way assignment as in a procedural
programming language such as C.)

Productions are used to rewrite sub-muitisets of multisets of tokens in derivation
or recognition. Matching of symbols to tokens is done as in AMG, by constructing
an appropriate (partial) assignment from the variables 7, 7,,...,,,#,...,, to the
actual attribute values in the tokens. It is implicit in the formalism that distinct

symbols in a production are always matched with distinct tokens. Hence a production

like

arc(p,q) < arrow(p1,p2)
where exist state(p;), state(p})
where py = pj A p; = pj and (p,q) = (p1,p2)
in a CMG for finite-state automaton diagrams, could be used to describe the situation
of two distinct states (at locations p{ and p}) linked by an arrow, but not the situation
of an arrow going from a state to itself; a different production would be required for
the latter.

Marriott [92] gives a rigorous formal semantics of CMGs (building on ideas pub-
lished earlier in [69]), the details of which are beyond the scope of this review. Briefly,
the full definition of a CMG includes a specification of a computational domain 1)
with an associated domain theory Tp, being the first-order theory which axiomatizes
D and functions over D (including constraints, which are Boolean functions). No-

tions such as derivation and the language of a CMG are then defined by treating the

sets of constraints in productions as constraint logic programs, whose semantics are
well-defined.

Marriott also gives some important decidability and complexity results concern-
ing the membership problem for CMGs, i.e. deciding whether or not a given multiset
of tokens is in the language of a given CMG. For entirely arbitrary CMGs the problem
is undecidable, even if no attributes are involved. The basic problem turns out to
he productions which rewrite a nonterminal as another nonterminal, potentially in-
troducing cycles into derivations. Marriott defines a class of cycle-free CMGs, proves
that the membership problem for these is NP-complete, and presents an incremental
parsing algorithm for cycle-free CMGs. In an even more recent paper (17}, Chok
and Marriott define a slightly more restrictive class of stratifiable CMGs which allows
the use of negative constraints (of the form “not exist T{...T."), and describe an
automatic parser generator.

As mentioned above, CMG is essentially a refinement of Golin’s AMG, and hence
the two formalisms can describe essentially the same class of visual languages, which
includes directed graphs. The major difference is that, because the semantics of
CMGs are rigorously defined, the CMG formalism can be used for generation as well
as recognition. Helm and Marriott have reported practical success with the former as
early as 1990 [69]. A major consequence is that it is possible to define the language
of a CMG, and hence to prove that a given CMG generates (recognizes) a given

language.

3.8 Najork and Kaplan: Conditional Set Rewrite Systems

The formalisms discussed so far have the common property that they are based on
“context-free” rewriting rules having a single symbol at the head. To express lan-
guages involving some context dependency (such as directed graph structures), both
Golin et al. and Marriott et al. provided a mechanism of “remote” or “existentially
quantified” symbols which, while not actually rewritten during application of a pro-
duction, are nonetheless required to be present. Marc Najork and Simon Kaplan
[100] on the other hand, chose to allow arbitrary numbers of symbols in the head of
productions, in their formalism called conditional set rewrite systems (CSRS). Here

is their very concise description of the formalism:

32

Informally, a CSRS consists of an ordered sequence of rewrite rules, which
are guarded by a condition. Conditions are predicate applications, closed
over conjunction and disjunction. Predicates are defined through Horn
clauses. The syntax o’ CSRS is as follows:

t = rik(ty, -, ta) (term)

o : P(ty,- -, t0)|01 A b2l V ¢, (formula)

6 u= P(ti, -, tn)E o (pred. def.)
p : FYEREI S AR A |) (rule)

Y o= (prePpmy 610 6,) (system)

A term is either a variable or a constructor applied to some terms. A
formula is either a predicate symbol applied to some terms, or the con-
Junction or disjunction of two formulas. A predicate definition defines
P(t;,---,t,) to hold if the formula ¢ holds. A rewrite rule replaces the
terms ty,---,t, in a set & by terms #],- -, if ¢ holds. A conditional set
rewrite system consists of an ordered sequence of rewrite rules, and a set
of predicate definitions.

Given a set of terms o and a rewrite rule ¢,---,t,, — t},---,t) if ¢,
the rule is applicable if o contains terms matching ¢;,---,1,,, and ¢ holds.
Applying an applicable rewrite rule means replacing t,,---,¢, in o by
t},---,t,. A rewritestep o — o’ results from applying the first applicable
rewrite rule to ¢. We say that o rewrites to o, (dp —. d,) if there is
a sequence of rewrite steps g9 = 0y — --- — 0,. We say that o is in
normal form if there is not ¢’ s.t. ¢ — o'.

We allow for two notational simplifications: First, instead of P(¢,,---,t,) <«
true, we simply write P(t,,--,t,) (and similar for ¢y,---,t,, — t},---, 1,
if true). Second, we allow an argument to be a simple function application
instead of a term. For instance, we allow ¢{(n) — ¢(n + 1), which could be
expanded to t(n) — t(n’) if plus(n,1,n’).

A few clarifications need to be added:

1. The definition of a term given above describes occurrences of terms in rewrite
rules. A CSRS defines permissible rewritings of (subsets of) sets of terms where
the variables are replaced by actual values. For lack of other terminology, let

us call the former formal terms and the latter actual terms.

2. The matching of actual terms in a set o to formal terms in a rule head involves
an assignment or binding from variables to actual values. The same assignment
is applied to variables in the condition part of the rule, and the semantics of

predicates applied to determine whether or not the condition is satisfied. If it is

53

satisfied, the same assignment is again applied to the formal terms in the rule
body, yielding the actual terms which are substituted for the originally matched

actual terms in o.

3. A CSRS defines only valid rewriting steps. To define a language of sets of actual
terms, one specifies a set w of formal terms and states that a set o is in the
language if it can be rewritten to a set ¢’ matching w. An elegant approach is
to include a rule of the form w — @ and state that a set o is in the language if

it can be rewritten to the empty set.

Najork and Kaplan give examples to illustrate that, like other formalisms, CSRSs
can be ambiguous: a given input may be rewritten in several ways, which may lead to
the same or different normal forms. They note that although algorithms are known
which can determine whether or not a given string CFG is ambiguous, the same
cannot be said of CSRS or the formalisms of Golin or Helm and Marriott. They
outline proofs that CSRSs are at least as powerful as string CFGs, Golin’s PLGs and
Helm and Marriott’s CMGs,!° showing how each of these formalisms can be expressed
in CSRS form. They give an example showing how a CSRS may be used to translate
a set representation of a visual language into a sequential text language, and claim
that this capability is unique to the CSRS formalism.!!

The CSRS formalism is elegant and powerful. The associated definition of the
language of a CSRS, involving rewriting of sentences to a specified normal form, seems
oriented more toward recognition than generation. However, the definition is rigorous
enough that even though Najork and Kaplan did not provide proofs that the CSRSs
in their examples indeed generated the languages involved, it is straightforward to
envisage the form such proofs would take. Najork and Kaplan do not provide a parsing
algorithm; this is in keeping with their stated objective of proposing a mechanism for

“describing the syntax of multidimensional languages”.

1°Actually they show that CSRSs are more powerful than Helm and Marriott’s formalism, but
they cite an earlier (1991) paper which did not include existential quantification of symbols.

M(CMGs as defined most recently by Marriott [92} should be capable of such translations. CMGs
are essentially programs in the constraint logic language CLP(R), and as such have the computing
power of Turing machines. Furthermore, CLP(R) programs operate on terms whose definition
exactly parallels Najork and Kaplan’s.

54

3.7 Observations

Let us return to the points of comparison which I gave in the first section of this
chapter.

1. Representation:

¢ Clearly, choice of representation is important in defining grammar for-
malisms for pictures. All of the researchers cited above believed, as do 1,
that attributes are essential to the formulation of natural grammar for-
malisms for visual languages (VLs), basically because the pictures one

would call “VL sentences” are composed of parametrized marks.

o Early efforts to define VL grammars attempted to build upon results es-
tablished with strings, and hence tried to force VLs into sequential repre-
sentations. It is instructive that Kojima and Myers, who did not even try
to define a new sequential representation for pictures but instecad chose a
well-established one (procedure call sequences), became entangled in issues
related to order.

o When order is eliminated, we have either sets or multisets. Both Golin
and Reiss and Helm and Marriott chose multisets, but neither gave rea-
sons. When one is accustomed to string grammar formalisms such as
CFGs, multisets are attractive because they preserve cardinality. For ex-
ample, when the CFG production A — BC rewrites the string BAC to
BBCC, the string’s length increases by one. The multiset analogue is
straightforward: the number of symbols involved increases by one. In the
set analogue, however, set construction causes the result to collapse to
{B,C}; the cardinality actually decreases. However, the extra complexity
of multiset representations buys nothing. In attributed set representations,
it is the attribute values which distinguish symbols. Consider a multiset of
attributed symbols representing parametrized marks, which could be inter-
preted as procedure calls to draw the miarks. What does the multiplicity
of symbols express? Drawing one or a hundred identical copies of a mark

at the identical position, orientation, etc. yields the same result.

2. Matching:

o All of the formalisms discussed in this chapter allow powerful expressions
to be used in attribute computations. Even Kojima and Myers’s GFG
formalism, which is context-free in form and does not include existential
quantification of symbols, can in a sense generate directed graph structures

because its rewriting steps are capable of building and dismantling sets.!?

e Most of the formalisms make the applicability of rewriting steps contingent
on the outcome of constraints, and some (most notably Helm and Miar-
riott’s CMG) assume a powerful simultaneous constraint-solving capability

within the rewriting formalism itself.

o The solving of constraints is in general not even limited in scope to in-
dividual rewriting steps—the constraint-based formalisms also make use
of unification, augmented to support expression evaluation, as a means of
propagating constraints into expanded contexts until they become evalu-

able.

o These techniques essentially give the grammar formalisms computing power
equivalent to a Turing machine. (If there are no limits on expressions, they
might as well be Turing machine computations.) The result is that tremen-
dous generative power is bought at the expense of analyzability and, as

Marriott [92] has shown, decidability of the membership problem.
3. Parse structure:

o Several of the authors appear to favour tree-like parse structures. This
is intimately related to the nearly universal practice of defining rewriting
rules based on context-free basis productions having a single symbol at the

head.

® Tree structures are familiar (from established work in string parsing with
CFGs and attribute grammars). Aside from that I see little advantage in

them.

12] say “in a sense” because the rewriting process itself does not generate the set of graph nodes,
but rather “transcribes” a set (of (£,y) coordinates of node positions) supplied as an attribute of
the start symbol. Hence the set-generating capability of the GFG formalism is inherent in the
instantiation of the start symbol, not 1 the rewriting process.

4. Ezxpressive power:

o I consider the ability to generate arbitrary directed graph structures to
be a minimum requirement for a visual grammar formalism. With the
exception of Najork and Kaplan's CSRS, most formalisms resort to “tricks”

to achieve this.

e There is also the question of context dependency in derivations. 1 conjec-
ture that “context sensitive” grammar formalisins which permit an arbi-
tvary number of symbols in the head of a production are inherently more
powerful than “context free” formalisms which permit only one head sym-

bol. So far, however, I have been unable to prove this.
5. Symmetry, Rigour:

e Not all of the formalisms discussed above can be used in both generation

and recognition (parsing) of languages.

e Although parsing of visual languages is the practical goal (in order to
realize interactive notation-processing systems), if a formalism cannot he
used for generation it is diffi-ult to specify precisely what language a given

instance of that formalism actually defines.

e Without a definition of the language of a gramunar (G, we cannot prove

that a parser based on G will actually recognize the language we expect.

A final observation links the last of these points to the first. Any grammar formalisms,
grammars, parsing algorithms, etc. we devise will operate not on notations, but on
their 1epresentations in a computer’s memory. Before we roceed to write gramimars,
prove them correct with respect to the language of representations, and so on, we
must be satisfied tha* our chosen representation scheme captures the salient features

of notations. This is outside the realm of mathematical proof.

o1]

Chapter 4

Attributed Sets, Languages, and Grammars

In this chapter I propose that a specific algebraic structure—the attributed set—can
be used to model multidimensional objects including notations. I consider the se-
mantics of interpreting attributed set models, especially as graphics. I then develop a
grammar formalism-—attributed set grammar or ASG—in order to have finite descrip-
tions of potentially infinite sets of such models, which I call attributed languages. 1
present several examples to illustrate the use of attributed sets and ASGs in modelling
algebraic and notation structures. Finally, I consider the use of ASGs in syntactic
analysis (parsing) of attributed sets. I show that the membership problem is decid-
able for a certain class of attributed set languages, and present a working ‘ributed

set acceptor program in Prolog.

4.1 Algebraic preliminaries and notation

In this section I clarify my interpretations of some conventional mathematical notions,
and define “classes” and “instance,” which are generalizations of the conventional

notions of ('artesian product and tuple, respectively.

4.1.1 Sets, relations and functions

Let us accept as needing no definition the standard mathematical notions of set
and relation. including all related operations such as powerset (denotel e.g. P (A)),
Cartesian product of sets (denoted e.g. A '« B), domain and range of a relation
(denoted e.g. D(R) and R (R) respectively), and composition of relations (denoted
e.g. R o 8). General subset (superset) relationship is denoted e.g. A C B (A 2 B);
morcover when it is certain that A # B we write A C B (A D B) instead. Set
difference is denoted e.g. A\ B (interpretation: (A\ B)U (AN B) = A).

5

Sets are herein denoted primarily by uppercase italic letters e.g. A, B, etc., with

the following exceptions:
e standard designators are used where appropriate, e.g.

~ @ denotes the empty set.

— N denotes the set of natural numbers {1,2,3,...}.
— Np denotes NU {0}.

— Z denotes the set of irtegers.

R denotes the set of real numbers.

B denotes the set {0,1}.
e uppercase bold letters e.g. A, B, etc. denote sets of sets.

e uppercase roman and Greek letters e.g. R, S, ¥ denote relations of all kinds.

Underscoring is added to denote a class (defined below, e.g.).

Let us denote the (possibly infinite) union of the members of a set of sets X =
{X1,X2,...} as UX,ie.,UX =X, UX;U:--.

A relation F C A x B is called a partial function from A to Biff Va € A, b,c € B,
(a,b),(a,c) € F implies b = ¢. Furthermore,

o If D(F) = A, F is called a total function. Every total function is als: a partial

function.
o If R(F) = B, F is called surjective.

o IfVa,b€ A, c€ B, (a,c),(b,c) € F implies a = b, F is called injective, and the

inverse telation F~' : B — A is also a partial function.

o If F is both injective and surjective, it is called bijective or “a bijection,” and

its inverse is also a bijection.

e If F is a bijective total function, then |A| = |B| and R(F™') = A. H F is
bijective but not total, |[A| > [B| and R(F~') C A.

Let us extend the usual functional notation to permit subsets of a (partial) func-
tion’s domain as arguments, i.e.let F: X = Y and Z C D(F). Then F(Z) denotes
the set {F(2z) |z € Z}. Note that for any function F, F(D(F)) = R(F).

Let us also allow the notation of functions to be used with ger.eral relations. Let
A and B be sets and R C A x B. The notation R(x) whe = z € A denotes the
set {y | (z,y) € R} if z € D(R) or O otherwise. This is extended to subsets of the
relation’s domain as defined above for functions, i.e., the notation R(X) where X C A

denotes the set U.ex R(2).

4.1.2 Atomic alphabets, strings, string languages

In this chapter I define algebraic structures which I call “attributed alphabets”, “at-
tributed words”, and “attributed languages”. For the sake of “revity, the prefix
“attributed” is often omitted. On the few occasions when I need to refer to the
conventional meanings of the terms “alphabet”, “word”, and “language”, I use the
terms “atomic alphabet”, “string”, and “string language” (respectively) instead. For
completeness, | now define these terms and some associated notation.

An atomic alphabet is a finite, non-empt: set. The elements of the set may be
called letters, and are generally treated as atomic objects -*‘hout internal structure.
Let A be an atomic alphabet. A string over A is a finite sequence of letters which are
elements of A. E.g., let A = {a,b,c}. Strings over A include a, abbc, and the empty
string, which contains no letters. The empty string (over any atomic alphabet) is
denoted by . The set of all strings over an antomic alphabet A is denoted A*. (Note
€ € A for any atomic alphabet A.) Most discussions of formal language theory do
not istinguish between the letter a € A and the one-letter string a € A®. A string

language over A is any subset of A*.

4.1.3 Boolean values and operations, predicates

Let us denote the the Boolean set {0,1} by B. The Boolean operations “AND” and

“OR” are denoted by the two-place infix operators A and V, rzspectively, defined over

{ 1, fr=y=1;
TAy= .
0, otherwise.

0, fz=y=0
rVy= .
1, otherwise.

B as follows:

Any function whose range is B is called a predicate.

60

4.1.4 Families

Let S be aset. A family of elements from S is a total function from a set I, called the
index set of F,to S, e.g. F : I = S. The elements of R (F) are called the members
of the family. Given i € I, member F(i) is called the ith member, or the member
indexed by :.

The notion of family is a generalization of the notion of tuple or sequence; indeed
a sequence can be considered as a family indexed by an initial subset of N. This
motivates an alternative notation for families, wherein the elements are subscripted by
their corresponding indices and written between parentheses, e.g. (ay, 32, a3). Ellipses
may be used, e.g. (s1,82,...,3;) in the finite case or (s;,s,,...) in the infinite case.
The shorter form (s;),c, may also be used, with s; referring to the ith element in a
generic sense.

The notations (a;,b,) and (b,,a;) specify the same family, much as the notations
{z,y} and {y,x} specify the same set. However, if the index set has been written
explicitly in some order, e.g. I = {z,y}, it is most natural to write families indexed

by I in the same order, e.g. (a,,b,).

4.1.5 Classes and instances

The Cartesian product provides a simple way of constructing or specifying sets of
tuples, i.e. the notation A x B x C where A, B, and (' are sets, specifies the set
{(a,b,¢) | a € A,b € B,c € C}. In this section I define an analogous notion for
families, which I call the class.!

A class is a family of sets, i.e., a family whose members are sets, Classes will
usually be denoted by underscored roman capital letters. A instance of a class C :
I — S is afamily F : I — US such that Vi € I, F(z) € C(i). The set of all instances
of a class C is denoted instances (C).

The members of a class are called sorts. The range of a class C is denoted
sorts (C).

When a class has been written explicitly in parenthesized form, e.g. (R, R,), it
is most natural to write its instances with their members listed in the same order,
e.g. (1.2;,-3.7,). The subscripts appearing in the instances are then redundant, and

may be omitted without loss of clarity.

1My usage of the terms class and instance is analogous to the similarly-named notions in object-
oriented systems. It is unrelated to the set-theoretic concept of “class”.

61

62

Example 2: Modelling some geometric objects

Let us define classes to model some geometric objects defined in the plane,

using Cartesian coordinates.

A point has two real-valued coordinates = and y; this can be captured by
a class such as

Q = (R:n Ry)-

An instance of C could be written e.g. (—2.1;,4.5,). Since C has been
explicitly written above with the zth member first and the yth member

second, we might as well write simply (—2.1, 4.5).
A line segment is defined by its two endpoints P = (z;,y,) and Q =
(2, y2); this can be captured by a class
D = (R},R)).
or alternatively,
E =(R;,,R,,R;,,R,,)

The line segment from P = (1,2) to Q = (10,20) could be represented
either as the D-instance ((1,2), (10,20)). or as the E-instance (1, 2, 10, 20).

Note that either D-instances or E-instances could also be used to model
rectangles aligned with the coordinate axes, if we interpret point P as the

upper-left corner and @ as the lower-right corner.

4.2 Attributed words and languages

In conventional formal language theory, symbols (also called letters) are atomic and

words are sequences of symbols. In this section I develop an analogous formalism in

which symbols have associated attributes, and words are sets, rather than4sequences,

of such attributed symbols. The motivation for doing so is that the notion of at-

tributed word captures the structure of notations in a w 11s both natural
amenable to computation.

4.2.1 Attributed alphabets and symbols

An attributed alphabet is a family (Cadiey of classes. The indices k¥ € K are called

class names.

Let A = (Cy)ieq be an attributed alphabet. An attributed symbol of class k.
drawn from A is a pair (k,¢) where k € K and ¢ is an instance of class Cy. The set
of all attributed symbols of class k drawn from A, i.e., {(k,¢) | ¢« € instances (C})} is
denoted symbols, (A). The set kg’_ symbols, (A) is denoted symbols(A).

The parenthesized notation for families is extended to attributed symbols (k,)
by writing the class name to the left of the parenthesized notation for . 'This is
illustrated in the example below.

We extend the definition of the operator sorts to attributed alphabets thus: for
A = (Ci)rens kleJkgth_g(Qk) is denoted sorts (A).

Example 3: Geometric objects, continued

Recall from Example 2 the objective of modelling points, line segments,
and rectangles aligned with the coordinate axes, and the classes C and D

defined for the purpose.

Let K = {point,lineseg, rectbox} be a set of class names, and define
an attributed alphabet A = (Cy)iep = (onim,_l_)_nnms,_l),mbux). Rather

than modelling the point (1,2), say, as just the C-instance (1,2), we model
it as an attributed symbol of class “point”, i.e., peint(1,2). We have in
effect added a label (class name) to the representation which clarifies its

interpretation.

Both the representations of line segments and those of rectangular boxes
involve instances of the class D. However we can now clearly distinguish
between representations of line segments and rectangles, by modelling the
former as attributed symbols of class lineseg, e.g. lineseg((1,3), (—2.4,3)),

and the latter as attributed symbols of class rectbor, e.g. recthox((1,3), (4, 5)).

1.2.2 Attributed words and languages

Let A be an attributed alphabet. An attributed word over A is any finite subset
of symbols(A). The set of all attributed words over A is denoted words (A). An
attribuigd language over A is any subset of words(A). The adjective “attributed”

may be omitted where no confusion would result.

63

Example 4: Geometric interpretation of words and languages

Recall the attributed alphabet A defined in the previous example. The

attributed word
T = {lineseg((—1,0),(0,2)), lineseg((0,2),(1,0)), lineseg((1,0),(—1,0)) }

could be used to represent a triangle with vertices (—1,0), (0,2), and
(1,0). The infinite set

L = {{lineseg(p, ps), lineseg(pz, po), lineseg(ps, p1)} | p1, P2, Pa € R}

could be called a language of representations of triangles. L contains a

representation for every triangle in the plane.?

4.2.3 Comparison with ordinary formal language theory

When drawing comparisons with ordinary formal language theory, I use the term
string in place of the term “word”.

Note that an attributed word is a set, while a string is a sequence; this is why 1 call
this formalism the “attributed set” formalism. Strings may contain repeated symbols;
attributed words can not. An attributed word may, however, contain multiple symbols
of the same class, but with different attributes.

By defining and interpreting attributes appropriately, we can use them to model
many kinds of relationships among symbols. In this dissertation I am most concerned
with geometric relationships in the plane, but as the following example shows we can

also express left-to-right sequence (concatenation) using attributes.

Example 5: Modelling strings with attributed words

Let X = {a,b} be an (ordinary, non-attributed) alphabet. One way
to encode strings over X as attributed words is to use the letters a,b
as class names and let each symbol have one attribute identifying the
position of the corresponding letter in the string. That is, define C =
(Npos) and A = (C,,C;). The string abba would be encoded as the word

2Jt. does not, however, contain every representation. The triangle with vertices p;, pz, and p3
could also be represented by a word of the form {lineseg(p;, p;), lineseg(p1, pa), lineseg(p2, p3)}. That
is why I call L a language of representations of triangles, rather than the language of all triangle

representations.

64

{a(1),b(2),b(3),a(4)}. The empty string would be encoded as the empty
wo-1 0.

Of course, many words over A are not valid encodings of strings over X.

We can define a language L C words (A) which consists entirely of valid

encodings of strings over X, as the set of all W € words (A) such that

1. V(kl, tl), (kz, t2) eEW, ¢ =0 implies ky = k.
2. V(ki, 1) € W, either ¢;(pos) = 1 or 3(k3, 13) € W such that y(pos) =
ti(pos) — 1.
Condition 1 guarantees that there are no two letters occupy the same

position in the string. Condition 2 ensures that the positions are always

numbered consecutively starting with 1.

The issue of valid vs. invalid encodings is considered later in section 4.5.1.

4.2.4 Term systems

A many-sorted term system is a bijection ¥ : V — S where
1. V={W,Va,...,V,} is a finite set of sets which are pairwise disjoint.
2. 8 ={51,52,...,5,} is a finite set of sets.
3. (UV) N (US) = 0.

Condition 2 implies that a term system is a class; in keeping with class terminology
the elements of the range S are called sorts and we write sorts (£) = S. The clements
of each sort S; are called constants of sort S; under ¥. (The “under " can be omitted
when no confusion would result.) The elements V; of V are called variable domains,
and the elements v € V; of each V, € V are called variables of sort ¥(V,) under 3.
Since ¥ is a bijection, and since as stated in condition 1, the V, are pairwise disjoint,
each variable is of exactly one sort under X. (Note that no such restriction holds for

constants.) Constants and variables under ¥ are collectively called terms under ¥,

or Y-terms.

6

)

66

Let ¥ : V — S be a term system. We define:

constants (X) = US
variables (¥X) = UV
sorty : variables (£) — sorts (¥) where
VV,eV, VveV, sortg(v) = E(V))
termsy : S — P (USUUV) where
VS €8, termsg(S;) = S;UX™(S)

Given any variable under £, operator sorty returns its sort. Given any sort of ¥,

operator termsy returns the union of that sort and the -ariable domain of that sort,

i.e., for any S; € S, elements of termss(S;) are all terms of sort S;.

Example 6: Term systems

Let V= {UW}, U = {uy,uy,...}, W = {wy,w,,...}, S = {Z,R}, and
¥ = (Zu,Rw). We have sorts (¥) = {Z,R}, constants(X) = (ZUR) =R,
and variables (¥)=UUW.

1, 2, 3, etc. are constants of sort Z and sort R. 1.2 is a constant of sort R
only. uy, uy, etc. are variables of sort Z, e.g. sorte(u;) = sortg(ugs) = 2.

wy, wy, etc. are variables of sort R, e.g. sorty(wse) = sorty(wieen) = R.

1, 1.5, 3, uy, and wyg are examples of E-terms. termsy(Z) = ZU U.
termse(R) = RUW.

4.2.5 Assignments, extended classes and alphabets

Let ¥ : V. — S be a term system. A X-assignment is a partial function a :
variables (¥) — constants (X) which preserves sortedness, i.e., Yv € D(a), a(v) €
sorty(v).

Let C: 1 — S be a class with sorts(C) = S = sorts(X). Define the eztended
class C* : I — termsy(S) where Vi € I, CE(i) = termsy (C(¢)). This simply means

that instances of the extended class may have either constant or variable attributes,

with sortedness preserved.

Lemma 1 Vi€ I, CE(i) N constants () = C(¢).

Proof: In the following, : € D(C). C(¢) is a sort of C: it contains only constants.
By the definition above, C%(i) = termsy (C(i)). which contains all constants and all
variables of sort C(i). constants () consists of all constants under ¥, and no variables

under X, which are not also constants.®> Hence the intersection removes all variables
from CE(i), leaving C(i). O

Lemma 2 instances(C) C instances (_Qs). The inclusion is proper unless UV = §.

Proof: The inclusion is a consequence of Lemma 1. If UV = §, i.e. there are no
variables, then Vi € D (C), termsy C(2) = C(¢) and instances (') = instances (g_“:).
Suppose UV # @ and let v € UV. Let ¢ be any instance of C containing an attribute

a of the same sort as v. Substituting v in place of a in ¢ yields an instance of CE
which is not an instance of C. O

Given ¢ € instances (Qz) and a Y-assignment a, define the operation of substitu-
tion in ¢ according to a as replacing every variable v € D (a) which appears in ¢ by its

image a(v). The result is denoted ¢|., and in the general case, 1|, € instances ((_32).

Lemma 3 Let variables(¢) denote the set of variables appearing in t.

1. variables(t|,) C variables(¢) and the inclusion is proper iff variables (¢)ND (o) #
9.

2. t|o € instances(C) iff variables(:) C D(a).

Proof 1: The construction of ¢|, replaces variables by constants; hence the inclusion.
As the replacement takes place for every occurrence in ¢ of a variable in D (a), the
inclusion is proper if and only if at least one variable in D(a) occurs in¢. O
Proof 2: If all variables occurring in ¢ are in D (a), then variables(¢|,) = @ and
hence, t|, € instances (C). Conversely, if ¢|, € instances (C), then variables (¢],) = @
and, consequently, every variable occurring in ¢ is replaced by a constant; that is,
variables (¢) C D(a). O

Let A = (Cy)iex be an attributed alphabet. Define the ectended alphabel A =

(Q‘”‘:)ke K wherein each class is extended as above. The notion of substitution can now

3Normally, we will want constants and variables to be distinct, but this is not required by the
definition of a term system.

67

be extended to attributed words in the obvious way. First note that an attributed
symbol & = (k,¢) drawn from A% is such that ¢ € instances (Qf), and hence we can
define o, = (k,¢|,). In general o}, € symbols, (Az).
Lemma 4 Let variaebles(o) denote the set of variables appearing in o.

1. variables(o|,) C variables(o) and the inclusion is proper iff variables(o) N

D(a) #0.

2. 0|, € symbols, (A) iff variables(a) C D (a).

Proof: Analogous to the proof of Lemma 3. 0

Now let W € words (AS), and define W|, = {o|, | ¢ € W}. In general W|, €
words (AE).

Lemma 5 Let variables(W) denote the set of variables appearing in W.

1. variables(W|,) C varigbles (W) and the inclusion is proper iff variables(W)N
D(a) # 0.
2. Wl € words(A) iff variables(W) C D (a).
Proof: Analogous to the proof of Lemma 3. O
Substitution in an instance ; (symbol o, word W) normally reduces the number of
variables present (item 1 in the three preceding lemmas). When no variables remain

after substitution (item 2 in the lemmas), ¢|, (0]a, Wla) is called ground and « is

called a grounding assignment for « (¢, W). Alternatively we say a grounds ¢ (o, W).

Example 7: Geometric interpretation of symbols with variables

Let C = (R.,R;) and A = (_on;,,t). Words over A can be interpreted as

sets of points in the plane.

Now let V = {v,v,,...} and £ = (Ry). The following are all attributed

symbols drawn: from A%:
¢ point(—5.1,4.2) is ground; it represents the specific single point whose
coordinates are (-5.1,4.2).

e point(—5.1, vg99) potentially represents any single point on the line
r = -3.1.

® point(vy, r7) is coustant-free; it potentially represents any single point

in the plane.

68

Example 8: Geometric interpretation of attributed words with
variables

Recall the language of representations of triangles given in Example 4,
and the corresponding definitions relating to the alphabet A. Let P =
{p1,p2,...} and ¥ = (R%). {lineseg(pi, p2). lineseg(p,, ps). lineseg(pa, 1)}
is a word over AE, which potentially represents any triangle with vertices

in the plane.

Let a be any X-assignment which assigns a(p;) = (—1,0), a(p;) = (0,2).
and a(p3) = (1,0). Note that W|, is precisely the (ground) word 7' given
in Example 4.

4.3 Semantics

Several examples above have suggested how attributed words can be interpreted
graphically. In this section I define two levels of formal semantics. The first level
applies to ground words only, and involves well-defined mappings from attributed
symbols to elements of some chosen set. The second level introduces constraints

mappings from attributed symbols to predicates—and the mechanism of constraind
satisfaction which, under the right circumstances, determines a grounding assignment

automatically.

4.3.1 Procedural interpretation of ground words

The following example suggests a possible mechanism for graphical interpretation of
ground words, which gives an intuitive motivation for the formal sem. ties to be

introduced.

Example 9: Procedural interpretation
Consider the following Pascal procedure declarations.

procedure dot (real z,y);
begin

...draw a circular dot at location (z,y) on output device. ..
end;

procedure lineseg (real z,,y,,z2,y.);
begin

...draw a line segment with endpoints (i;,y;) and (z2,32). ..
end;

69

70

0.0 1.0 2.0

Figure 4.1: Simple unlabelled graph

Let € = (Re,R,), E = (ReysRyyoReyyRy,), and A = (Caorr Etineseg): Sym-

bols drawn from A, such as dot(0,1) or lineseg(1,1,1,0), look a lot like
Pascal procedure calls. Indeed, the word W = {dot(0,1),dot(1,1),dot(2, 1),
dot(1,0), lineseg(0,1,1,1), lineseg(1, 1,2, 1), lineseg(1, 1, 1,0), lineseg(1,0,2,1)},
interpreted as a set of calls to the two procedures above, would give rise

to a picture like that shown in Figure 4.1.

The above example is not quite complete. We have to ensure that:

1. The initial conditions are defined, i.e. before any procedures are executed, the

~utput device should be blank.

2. The order of calls doesn’t matter. Since an attributed word is a set rather than
a sequence, we could conceivably issue the procedure calls in any order (or even

in parallel); the resulting picture should be the same in any case.

The functional interpretation defined in the next section eliminates these difficulties.

4.3.2 Functional interpret=+ion: A formal semantics of ground words

Let A = (Ci)iex be an attri. .d aiphabet. An interpretation scheme for Ais a
quadruple (S, &, s, F') where

e (S,®.13) is a commutative monoid, i.e.,

— S is a set.

— (P is an associative, commutative binary operator on S, under which § is

closed.

— 1s is an identity elenient, j.e.,Vs€ S lsPs=sDls = 3.

® F = (fi)iex is a family of partial functions such that Vi € K. D(fi) =
instances (C;) and R (fi) = S.

Let A be an attributed alphabet, and let » = (S.¢. 1,. F') be an interpretation

scheme for A. Define the partial function ||, : words (A) — & as follows:

1s, if W =0:;
lo(W) = { g fi(e). otherwise.
(ka)eW

This function defines at most one interpretation of a word over A as an clement of

the set S. By analogy to substitution, we write W||, instead of || (11") from here on.
Lemma 6 ||, is total iff all the fi are total.

Proof: Let W € words(A). W consists of symbols (k.1) w!ere ¢ € instances (Cy).
If all fi are total then fi(¢) is defined for all k anda ¢; hence ||, is total. Conversely, if
I, is total, then fi(¢) must be defined for all & and ¢; hence all the fi are total. 0

Lemma 7 YW;, W, € words(A), W[, & Wall, = (W1 UWa)|l,.

Proof: The result follows by substitution into the definition of ||, above. 0O

Suppose a word W can be partitioned into two subwords (subsets) W; and W,
and suppose W;||, = ls. Substituting into the equation of Lemma 7, we get W||, =
(W1 UW,)||o, meaning that the inter_:etation of W = W, UW; is the same as that of
just W;. A practical application of this notion is that if we want attributed symbols of
a certain class k to have no effect on the interpretation of words, we can simply define
the associated interpretation function f; as total wiih range {l1s}. An interpretation
function of this kind is called a null inferpretation for symbols of class k under ¢.
Use > null interpretations is discussed in Section 4.3.5 below.

The purpose of defining the semantics of attributed words in this way is that it
allows us to deal with unordered collections of attributed symbols, while remaining
consistent with our intuition concerning sequences of procedure calls. Hence we choose
to define the interpretations of attributed words as elements of a coinmutative imonoid
S whose operatcr @ combines the results of functions independently of the order in
which those results might be computed. The identity element 14 serves two purposes:

it defines the interpretation of the empty word, and a',o us to define interpretation

schemes in which certain symbols have no effect on the irterpretation of words.

Uiements of S can be thought of as images on overhead transparencies. The oper-
ator 4, is like placing a stack of transparencies on th. projector: the image projected
will 1.0t change if the transparencies are stacked in a different order (commutativity),
or if any part of the stack is replaced by a single transparency containing the appro-
priate composite image (associativity). The projector still produces an image (albeit
a simple one) even when all the transparencies are removed; this image is analogous
to lg, the interpretation of the empty word.

The next example suggests a more practical scenario, illustrating how functional
interpretations of attributed words migt* be evaluated in a computer system and

peripherals.

Example 10: Functional interpretation

Let p, g € N be constants, and let S be the set of all p x ¢ binary matrices.
Let 4 be a binary operator over S such that, given any two p x ¢ binary
matrices X and Y, X @Y is defined to be the p x ¢ binary matrix whose
(1, 7)th element is the logical OR of the (¢, i)th elements of X and Y. Let
g be the p x ¢ binary matrix all of whose elements are zero. It is easily

verified that (S, @, 1s) is a commutative monoid.

Elements of S, represented in the form of px ¢ binary arrays in ¢ computer,
could be interpreted as black-and-white pictures by a device such as a laser

printer or CRT controller.

Recall the deiiuitions of C, E and A from Example 9. Define the family
I = (ddot, liineseg) such that d is a C-function into S and [is 2 E-function
into S, elements of R (d) would be rendered by some output device as
citcular dots, and elements of R (I) would be rendered as Jine segments.

@ = (5,4, 1,, F) is an interpretation scheme for A.

If d aud I are defined appropriately, any word W € words A) can be
interpreted as a picture composed of dots and line segments by sending
the representation of Wi|, to the output device. If W is the : necific word

given in Example 9, W||, should render as <hown in Figure 4.1.

The approach to interpretation described in the above example is basically the
one used by most modern cumputer graphics systems including TEX, PostScript, and
screen drawing libraries such as Xlib (X window system) and QuickDraw (Apple

Macintosh cosnputers).

72

It is impossible to be entirely formal in defining graphical semantics. All we have
just defined is a systematic method to interpret a given word as an element of some
set S, i.e., to interpret one kind of mathematical object as another kind. This is as
far as any system of formal semantics can go.

Informally, we could say “S is the set of all graphics”, but since “graphics”™ are
subjective phenomena, there can be no rigorous mathematical definition of them.
The example above appeals to the widely understood notion of a graphical output
device which can transform a mathematically defined object into a subjectively de-
fined graphic. This is far from rigorous, but for the purposes of the present discussion,

it is sufficient.

4.3.3 Non-ground words

The notion of grounding assignment provides the basis for graphical interpretation
of non-ground words, i.e., words having some variable attributes. Let A be an at-
tributed alphabet, p be an interpretation scheme for A, and ¥ be a term system
with sorts (A) = sorts (£). Let W be a non-ground word over A¥, and let o be a
¥-assignment which grounds W, i.e., W|, € words (A). Then, provided W1, is in the

domain of ||, it has an interpretation (W|,)|, € S as described above.

Example 11: Graphical interpretation via a grounding assign-

ment

Recall the definitions used in Example 10. Let V = {v;,v;,...} and
r =(Ry).

Let W’ = {vertex(v;, v2), dot(vz, v2), dot(vs, v2), dot(vg, vi), lineseg(uvy, vz, v, 0;),

lineseg(v,, vz, v3, v2), lineseg(v,, vz, vz, 11), lineseg(v,, vy, v3, v2) }.
Let a = {(v1,0),(vz,1),(v3,2)}. Note that W’|, is ground.

W'|, is exactly the word W given in Example 10; the chosen output device

should thus render (W'|,)||, as shown in Figure 4.1.

In this example. the grounding X-assignment can be interpreted as defining the
“environmer:t paramet~rs” for the diagram. In typesetting, for example, most aspects
of symbol placement are made according to environment parameters such as nage
width and margins.

Tn later examples, rather than explicitly giving a grounding assignment, and pro-

cedure definitions, I shall simply give a picture labelled using the variables from a

vi v2 v3
Figure 4.2: How W' might be realized

non-ground word, to suggest how such an assignment and procedures might be de-

fined. E.g., for W’ in the above example the picture might be as shown in Figure 4.2.

4.3.4 Constraints

The algebra (B, A,1) is a commutative monoid. Let A = (Ci),cx be an attributed
alphabet and Il = (mi),cx be a family of predicates. Then 8 = (B,A,1,11) is an
interpretation scheme for A, which I call a Boolean interpretation scheme. Given any
(ground) word W € words (A), W||s is a Boolean value (0 or 1).

Now let ¥ be a term system with sorts (¥) = sorts (A). Let W € words (AE), and
a be a ¥-assignment which grounds W. Then (W|,)|ls € B. (If a does not ground
W, (Wl.)|ls is undefined.)

If we want to have (W|,)||s = 1, the choice of assignment a is constrained by W.

Adding additional symbols to #* would, in general, constrain the choice still further.
Hence we call the symbols constraints and W a system of constraints. If (W/,)||s =1
holds, we call a a satisfying assignment for W under 3, or say that a satisfies W
under (3. (The “under 8" can be omitted if no confusion would result.)

Given W € A%, we might wish to have a sutisfying assignment computed au-
tomatically, if one exists. This process is called constraint satisfaction. Constraint

satisfaction algorithms are known for many predicate types.

Example 12: Constraints

Let E = (“avabsﬂcyarsny)s A = (Eﬂneq)s V = {I,y}, 2 = (Rv), a,nd
4 = (B.A,1,11) with Tl = (Myineq) and

1, fax+by=c
0, otherwise.

w((a,b,c,r,y)) = {

14

-3
&t

Under the Boolcan interpretation scheme 3, ground atributed symbols of
class lineq represent assertions about linear equations. For example, the
attributed symbol lineq(1, —1, 1,2, 1) represents the (true) assertion that
(2,1) is a solution to the equation r —y = 1. By making the r and y
attributes of such symbols be variables, we can represent linear equations

themselves. For example, the word
{lineq(0, 1,1, z,y), lineq(1,—1,1,x,y)}
represents the system of linear equations
y = 1
r—y = 1.

Any system of this general kind (where there are exactly as many equa-
tions as there are variables, and the equations are linearly independent)
can be solved using methods from linear algebra. In this case the system

is satisfied by the X-assignment a = {(z,2),(y,1)}. .

4.3.5 Interpretation of non-ground words via constraints

Section 4.3.2 introduced the notion of functional interpretation, by which we may
interpret ground words as elements of some set S, typically corresponding to graph-
ics. Section 4.3.4 introduced Boolean interpretation, by which we may interpret
non-ground words as systems of constraints and, given an appropriate constraint sat-
isfacticn algorithm, compute a grounding assignment automatically. Putting these
two ideas together, we have a systematic means to interpret non-ground words as,
e.g., graphics.

Let A = (Ci),ex be an attributed alphabet, ¥ be a term system with sorts (X)) =
sorts (A), ¢ = (S,®, 15, F) with F = (fi),ex be an interpretation scheme for A, and
B = (8,A,1,1I) with Il = (m4),cp be a Boolean interpretation scheme for A. Assume
there exists a constraint satisfaction algorithm for the predicates .

Given W € words (Az), we define the set Sy C 5 of interpretations of W as

Sw = {s € S | there exists a X-assignment «
which grounds W such that (W|,)|ls =1 and s = (Wi.)||,}
The ideal situation (for practical implementation) is that Sw contains exactly one
element, i.e., that the interpretation of the word W i unique. It could also arise that

Sw = 0@ or |Sw| > 1; these possibilities are discussed in Section 4.3.6 below.

Example 13: Graphical interpretation via constraints

Refer to Figure 4.3. Suppose we want to represent a triangle not by giving
the coordinates of its vertices, but rather by giving three line equations
which define the sides of the triangle, and stating the relationship these
bear to the vertices. We shall do this by defining an extended alphabet
with classes lineseg and lineq. As in Example 4, attributed symbols of
class lineseg will :epresent line segments defined by their endpoint coor-
dinates. As in Example 12, symbols of class lineq will represent linear

constraints.

The particular problem illustrated in Figure 4.3 is captured by six linear

equations:
4y = 1 from Lj
yn = 1 from L,
T—yr = 1 from L,

ra+y = 1 fiom L3
yz = 1 from L,

r3-ys = 1 from L,

‘I'he solution is (r1,y1) = (0,1), (z2,¥2) = (1,0), (r3,y3) = (2,1) as shown
in the figure.

Let E = (R;,,R,,,R;.R,,), F = (R;,Ry,R;,R;,R,), K = {lineseg, lineq},
A = (Esinesegs Flineq)» V = {z1,72,.. ., 91.92,...}, E = (Ry).

Let ¢ = (S, @, 1s, F'), where F = (fx)¢k be an interpretation scheme for
A. As in Example 10, elements of the set S are intended to be realized as
graphics by some device. The function fiineseg 18 €quivalent to the function
! in Example 10; it draws (creates the representations of} line segments.
The function flineq is total and maps its entire domain to 1s; it is a null

interpretation for symbols of class lineq under ¢.

let 3 = (B,A,1,11) where [l = (m),cx be a Boolean interpretation
scheme for A. The predicate i jipeseg 15 total and maps its entire domain
to 1; it is a null interpretation for symbols of class lineseg under 3. The
predicate Tiaeq is equivalent to the predicate = in Example 12; under 3

symbols of class lineq represent linear constraints.

76

The six linear equations above can be encoded as

Wineq = {lineq(1,1,1,z,,3),lineq(0,1,1, 21,31), lineq(1, =1, 1, r2,y2).
lineq(1, 1,1, r, ¥3), lineq(0,1, 1, x3,y3). lineq(1, —1, 1, x5, 43) }.

The three line segments forming the triangle can be encoded as

Wlineses = { lineseg(‘rla Y1, I3, .'/3)» lineseg(.rg, Yz, I2, y2)* lillCSt’g(."g, Y &) }‘

Consider the word W = Wipeq U Wiineseg: A constraint satisfaction al-
gorithm based oan Gaussian elimination would suffice to solve the equa-
tion (W|a)|lzg = 1, yielding the -assignment a = {(z1,0), (¥, 1),(x2, 1),
(y2,0),(x3,2), (y3,1)}. Note that because the interpretation of symbols of
class lineseg under 3 is null, (Wla)llsg = (Wiinegla)||5; the lineseg symbols
are effectively ignored by the constraint satisfaction algorithm. Substitut-

ing according to a, we obtain

Wla = {lineq(1,1,1,0,1),lineq(0,1,1,0,1),lineq(1,-1,1,1,0),
lineq(1,1,1,1,0), lineq(0, 1, 1,2, 1), lineq(1, —1, 1,2, 1),
lineseg(0, 1,2, 1), lineseg(2, 1, 1,0), lineseg(1,0,0,1) }.

Because the interpretation of lineq symbols under ¢ is null, the interpre
tation (W|,)}|, (an element of S, which we expect to be realized as a
picture similar to Figure 4.3) is the same as (Wiinesegla)|lo» 1-€., the lineq

symbols are effectively ignored by the functional interpretation.

Realization of the final interpretation by an output device would result
in a graphic consisting of the three heavy lines in Figure 4.3, forming a

triangle.

This approach formalizes the mark-setting techniques suggested in my M.Sc. the-
sis [39]. Symbols with non-null interpretation under ¢ give rise to visible output and
are thus called marksin that thesis; those with non-null interpretation under 3, which
are called constraints, determine the attributes of the visible marks, i.c. their position,
size, orientation, etc. These two sets of symbols may overlap, reflecting the fact that
some classes of mark may have intrinsic constraints, e.g. a “horizontal line” mark
class would by definition constrain its two endpoints to have the same y-coordinate.

The appearance of marks is fixed by the functions in the family F'. The semantics

of constraints is fixed by the predicates in the fa.nily Il. The syntax of both marks

-1
-3

. :
\\ (xLyl)=(0,1) /
/ : L (x3.y3)=(2.1)
' : 0

cy=1

—» X

\ (x252) = (1.0)

3: y=-x+1

Figure 4.3: A triangle defined by t' -ee line equations

and constraints is fixed by the attributed alphabet A; the term system T extends this

basic syntax to permit the use of variables.

4.3.6 Solvable, over- and under-constrained systems

Recall the definitions of A, X, ¢ and 3 in Section 4.3.5 above and let W € words (A).

If W has at least one satisfying assignment, it is called satisfiable.

A X-assignment a is minimal for W if D (a) = variables (W).

Lemma 8 [f W has at least one satisfying assignment, then it has at least one min-

imal satisfying assignment.

Proof: Let a be a X-assignment which satisfies W, Let o' be the restriction of a to
variables (W). Then o' also satisfies W and is minimal. O

If W has exactly one minimal satisfying assignment, it is called solvabie. Constraint-
satisfaction algorithms (called constraint solvers in my M.Sc. thesis) are easiest to
apply to solvable systems, because there is no need to choose among several (perhaps
infinitely many) candidate satisfying assignments.

The ideal situation is that we have a constraint solver capable of reasoning about
the predicates 11, and that W is solvable with minimal satisfying assignment a. The

-

constraint solver generates a automatically, and W|, follows.

78

Assuming the existence of an appropriate constraint solver, 1} may not be solvable

for one of two reasons:
1. W may be unsatisfiable.

2. W may be satisfiable but not solvable, i.e. it may admit multiple minimal sat-

isfying assignments.

In case 1 we say W is overconstrained; in case 2 we say it is underconstrained. 1f W
is overconstrained, it might possibly be made solvable by removing or modifying one
or more constraints; this possibility will not be considered further.*

If W is underconstrained, it may possibly be made solvable by adding constraints.
Without precise knowledge about the predicates II and their properties, we cannot
give an algorithm to determine which additional constraints should be added. We
can at least note, however, that symbols added to W should be pure constraints, i.e.,
they should have null interpretations under .

Practical graphics-generating software would typically produce underconstrained
representations, providing the minimal number of constraints required to express the
shape of the eventual output picture, but leaving certain aspects such as overall size
or orientation as variables. The additional constraints needed to produce a solvable
system would normally be determined by the environment, i.e. details such as page
size and margins, amount of space required by other graphics, etc. This is analogous to
the TEX typesetting system, in which subset: of the input define graphical units with
internal constraints (“boxes”), whose final position and size on the output page are
determined by constraints added in the final phase of processing (“output routine”).

To suramarize, graphical interpretation of the word W involves four phases:

1. Choose a set W’ of additional constraints, having null interpretation under ¢,
such that the system W U W/’ is solvable. (If W is already solvable, W’ = §.) If

there can be no such set W/, W is overconstrained —stop.
2. Solve (W U W/)[,)|ls = 1 to obtain a.
3. Substitute, letting W” = (W U W')|,.

£ Realize W”||, as a graphic by passing it to some output device.

4Overconstrained systems often arise with the TEX typesetting system; that is when it issues
warnings concerning “overfull (or underfull) boxes”.

Note that because the interpretatica of W’ under ¢ is null, we could say W in place
of (WU W') in phase 3.

Example 14: Interpretation with added constraints

Kefer to Figure 4.4. Suppose we want to represent the fact that a rectan-
gular box aligned with the coordinate axes consists of four line segments
joining the vertices, which are aligned horizontally and vertically as in the
figure. We shall do this by defining an extended alphabet with classes
lineseg and equal. As in Examples 4 and 13, attributed symbols of class
lineseg will represent line segments defined by their endpoint coordinates.
Symbols of class equal will represent equality constraints, e.g. equal(z, z2)

would mean z, = z,.

The representation of the box will look like this (details below):

W = {liﬂeseg(wlsyl,lz,yz),li"eseg(ﬂfz»yz,&ta,ys),
lineseg(z3, y3, 24, Y4), lineseg(z4, ¥4, 1, 1),

equal(ry,4),equal(z;, 3), equal(y1, y2), equal(ys, y4) }

This captures the rectangular shape of the box and its orientation with
respect to the coordinate axes, but there aren’t enough constraints to
determine the actual point coordinates. For this example we shall fix
the coordinates f the upper-left and lower-right vertices, by adding the

additional constraints
W' = { equal(x;,10), equal(y;, 30), equal(zs, 50), equal(ys, 10) }

Adding these constraints yields a solvable system (eight independent equa-

tions in eight unknowns). The solution is illustrated in Figure 4.4.

Let C = (R;,R;), E = (R,,R,,R,,,R,,), K = {lineseg.equal}, A =

(Etinesegs Cequat)s V. = {x1,72,....41,92....}, and & = (Ry). Let g =
(B.A. 1,11} with I = (7). be a Boolean interpretation scheme for A.
Let the ;. be total with

”lineug(-tpv Yps T 14 "q) = 1
{ I, fz=y;

Tequall T) .
caun(y 0, otherwise

Let ¢ = (S,8,1s,F) with F = (fi)ien be a functional interpretation
scheme for A, where elements of the set S can be realized as graphics by
some output device as in Example 10. Let the fi be total with fineseg
drawing line segments as in Example 10 and fequa((s,y)) = s for all
(r,y) € instances (C).

Let W be as above. The process of interpreting W occurs in four phases,

as follows.

Phase 1: We observe that W is satisfiable but not solvable. Let W’ be
as above, expressing additional constraints to fix the coordinates of

the up: er left and lower right vertices of the box. We have

W U W, = { lineseg(zhyhr% y2)’ lineseg(-“‘h Y2,L3, y.'i)s
iiﬂeseg(l'.’h Y3, T4, 94)» lineseg(.r,, Y4, L1, Y1)9
equal(r,, r4), equal(ry, x3), equal(y, ¥2), cqual(yz, 41),

equal(z, 10), equal(y,, 30), equal(rs, 30), equal(ys, 10) }
Phase 2: Solve (W UW’)|,)|ls =1 yielding assignment a:
a = {(z1,10), (y1,30), (2, 50), (y2, 30), (£3, 50), (y3, 10), (.£4, 10), (4, 10) }
Phase 3: Substitute to obtain

W"=(WuW')|, = {lineseg(10,30,50,30), lineseg(50,30, 50, 10),
lineseg(50, 10,10, 10), lineseg(10, 10, 10, 30),
equal(10, 10), equal(50, 50), equal(30, 30) }

Note that the set has become smaller. This is because the substitu-

tion makes several distinct symbols of class equal identical.

Phase 4: Send W”||, to the output device, yielding a picture as illus-
trated in Figure 4.4.

4.4 Attributed set grammars

Having developed attributed analogues of the conventional language-theoretic no-

tions of symbol, word, and language, 1 now develop a grammar formalism through

(x1,y1) = (10,30) (50,30) = (x2,y2)

(x4,y4) = (10,10) (50,10) = (x3,y3)
Figure 4.4: Rectangular box

which attributed languages may be generated and recognized. Since the elements
of attributed languages (attributed words) are themselves sets, I call the formalism
attributed set grammars.

The purpose of this section is to create a theoretical basis for the design of software
to generate and recognize notations. Hence I do not attempt to be rigorous in my
analysis of the new formalism, though I do investigate a few of its properties in
order to show its applicability to problems involving notations. Detailed theoretical
investigation of the formalism is beyond the scope of this dissertation, and is hence
left for the futurc.

4.4.1 Attributed set rewriting

Let A and B be attributed alphabets, and let ¥ be a term system with sorts (X¥) =
sorts (A UB). A (A,B,X) rewrite rule is a pair p = (X,Y) where X € words (AE)
and Y € words (BE). The word X is called the head of the rule, Y the body. A rewrite

rule p = ({z1,...,2m}, {¥15-- -, ¥n}) (Waere the z; and y; are attributed symbols) is

usually denoted p: z3,...,Zm = ¥1,...,Yn.
Let W € words(AUB), and p = (X,Y) be a (A,B,X) rewrite rule. A X-
assignment a is said to be admissible for p in context of W if the following conditions

hold:
1. variables(X UY) C D(a)
2. |Xlal = [X|
3. ¥l = Y]
4. YanN(W\X[a)=0

If such an a exists, and X|, C W, p is said to be applicable to W, and the process
of applying p to W under a rewrites the subset X|. of W as the set Y|,, yielding a

new word W' = W\ X|, UY|o. Wesay W rewrites to W' via p under a. denoted
w =:> w.

Condition 1 above simply requires that all variables occurring in a rule be bound
to values via the assignment. Hence the attributed set rewriting process cannot intro-
duce variables where none previously existed. As the following example illustrates,
conditions 2, 3, and 4 above ensure that |W’'| = |W| - |X| + |Y].

Example 15: attributed set rewriting

Let C = (Nu), A = (C,), B=(C,, (), V = {vy,v2,...} and ¥ = (Nv).
Consider the (A, B, X) rewrite rules

p: a(v)a(vy) = a(v)
p2: a(vi) — a(vi),a(v2)
Ps: a(vy) — a(vy),b(v;)

and the X-assignments

a = {(vlal)a(v%l)}
a; = {(v,1),(v2,2)}
a3 = {(U],l),(172,3)}-

Observe the following:

® a3 is admissible for p; in context of {a(1),a(2)}, and {a(1),a(2)} %
{a(1)}. If condition 2 (of the fom conditions of admissibility statezd
above) were not required, a; would also be admissible, the matching
of the head of p; would collapse, and we would have {a(1),«(2)} —-:':-'-"f
{a(1),a(2)}. The intent of p;—to turn two distinct symbols int,o

one—would thus be violated.

® a; is admissible for p; in context of {a(1)}, and {a(1)} Z:‘ {a(1),a(2)}.
If condition 3 were not required, a; would also be ad:nissiblc, the
matching of the tail of p, would collapse, and we would have {«(1)} —(-f—ia—
{a(1)}. The intent of p;—to turn one symbol into two diwtinrt1

symbols—would thus be violated.

® a; is admissible for p; in context of {a(1),a(2)}, and {«(1),a(2)} #:,

{a(1),a(2),a(3)}. If condition 4 were not required, a; would also

83

be admissible, the substitution would collapse, and we would have

{a(1),a(2)} =2 {a(1),e(2)}. Again the intent of p; would be vio-
a3z

lated.

® oy, a; and a3 are all admissible for p; .. context of {a(1)}, but in

context of {a(1),b(1)} only a; and a3 are admissible.

From the first three observations in the above example, we see that the purpose
of admissibility conditions 2, 3, and 4 is to ensure that cardinality is affected by
rewriting in a manner consistent with intuition. In string rewriting we speak of
“length-increasing” (preserving, decreasing) rules; in attributed set rewriting we have
the corresponding notion “cardinality-increasing” (preserving, decreasing).

The fourth observation in the example illustrates that, when an attribute variable
appears in the body of a rule, but not in the head, the value assigned to that vaiiable
is chosen freely, subject oniy to the conditions of admissibility. The distinct variables
v; and v, appearing in rule p3 need not be assigned distinct values in every case
(witness the case {a(1)} % {a(1),b(1)}), i.e., there is no inherent requirement that
adn...uble assignments be injective. The only requirement is that distinct symbols in

the rule correspond to distinct symbols in the words W and W",

4.4.2 Attributed set grammars

The preceding section defined rewrite rules for attributed sets in a very general way.
From now on we are concerned exclusively with rules of a certain form, called pro-
ductions. Let N and T be disjoint attributed alphabets, and £ be a term system
with sorts (X) = sorts(NUT). A (N, T, X)-productionis a (NUT,NUT,X) rewrite
rule X — Y whose head X contains at least one symbol drawn from NZ, i.e.,
X € words (NUT)® \ T).

An attributed set grammar or A3G is a tuple (T, N, £, W, P) where

1. T and N are disjoint attributed alphabets, called the terminal and nonterminal

alphabets rezpectively.
2. ¥ is a tarm system with

(a) sorts (¥) = sorts (TUN), i.e., the extended alphabets T* and NT are
defined.

84

(b) Usorts () {7 Uvariables () = 0. i.e., we can always tell constants and

variables apart.
3. W, € words (N) is the start word, which must consist of a single symbol.
4. P is a finite set of (N, T, X)-productions.

Attributed symbols drawn from T< are called “symbols of terminal class™, “tern-
nal symbols”, or “terminals”. Attributed symbols drawn from N* are called “symbols
of nonterminal class”, “nonterminal symbols”, or “nonterminals”. An ASG is a mech-
anism for generating (ground) words over T. The nonterminals are simply any other
symbols which may be needed in the generation process.

A sequence

Wow, 2 w5 ... 0,
11 N2 A \k
is an (n-step) derivation (of the word W,) in I. For any W;, W; with ¢ < j in such a
sequence, we say W; derives W; in j —i steps, denoted W; == W;. When the precise
uumber of steps is unimportant we write W; = W, meaning “W, derives W, in zero
or more steps.” If we know W; # W, we may write W; =t W, meaning “W, derives
W; in one or more steps.”
The language of the ASG T, denoted L (T), is defined to be

L(T) = {W € words(T) | Wo = W under I'}.

Example 16: ASG for non-empty sets

Let C = (N;q) be a class, and T = (C,) and N = (C,)) be (resp. terminal
and nonterminal) attributed alphabets. Words over T' (terminal words)
are comprised of 0 or more symbols of class ¢, distinguished only by their
“id” attribute. Words over N (nonterminal words) are comprised of 0 or

more symbols of class ¢, distinguished only by their “id” attril;ute.

Let V = {v,,v3,...} be a variable domain and £ = (Nv) be a term system.
Anv I-zssignment binds values in N to variables in V.

Consider the ASG Iy = (T, N, E, Wy, P) where Wy = {n(1)} and P

consists of the productions

P n(vy)) — n(vy),n(ve)

pz: n(v) — Hw).

PM-1 3'2"x4” PHOTOGRAPHIC MICROCOPY TARGET
NBS 1010a ANSL/ISO #2 EOUWALENT

III i

PRECISION®™ RESOLUTION TARGETS

EEER
EERER

FEEE

rEeRL

Consider the T-assignments a3 = {(1,1).(v2,6)} and a; = {(1.6)}. and

observe that
{n(1)} %‘3 {n(1),n(6)} %":- {t(1),n(6)} é’? {t(1),1(6)}

is a valid 3-step derivation of the word {t(1).{(6)} in [yes. It is easy to
verify that

L(Thes) = {W € words (T) | W # @ and n(l) € W}

In later examples, derivations are written vertically, set braces arc omitted, and
assignments are written beside the derivation arrows as lists of equations of the form
variable = value. For greater clarity, the symbol(s) in each word which are rewritten
at the next derivation step are underlined. For instance, the derivation in example
16 above would be written as

n(1)
nivn=1v,=6
n(1),n(6)
pzlvi=1
t(1),n(6)
pluvi=6
t(1),¢(6)

In example 16, all words in L (I') were bound to contain one symbol with the
attribute value 1, since that value appeared explicitly in the start word and neither
of the productions was capable of eliminating an attribute value. In contrast, in the
derivation above, the value 6 was chosen freely at the first step; any other value (except
1, which was already fixed) could have been chosen instead. The next example shows
how we can ensure that all attribute values are chosen freely, and also illustrates how

an ASG can generate the empty word §.

Example 17: free generation of sets

Recall the definitions of C, T, V and ¥ from example 16. Observe that
@ can be considered a class (whose index set is @), and hence can be a
member of an attributed alphabet just like any other class. Let us define
a new nonterminal alphabet N’ = (@,). The only symbol which can be

drawn from N’ has no attributes and is denoted n().

Consider the ASG T, = (T,N,E, W}, P') wheie Wy = {n()} and /'

contains the productions

P n() — 0
py: n() = n()t(vn).

It is easy to verify that L (I'y..) = words (T). I'..t can generate the empty

word @ via the 1-step derivation

n

)

(
ni

)
and words not containing {(1), e.g.

n{)
pRpln="7
n(),4(7)
py vy =8

n(),£(7), (8)
P {
¢(7),4(8)

4.4.3 ASG vs. other formalisms
Compare the ASG formalism with some of the formalisms described in chapter 3.
e Like all of the formalisms described in chapter 3, ASGs use attributes.

e Like all but Kojima and Myers’s GFG, the structures penerated by ASGs (at-

tributed sets) are inherently unordered.

e Unlike Golin’s AMG and Helm and Marriott’s CMG, ASGs geneiate sets rather

than multisets.?

5When elements are atomic, multisets are fundamentally different from sets. When symbols
are attributed, however, the extra information (element multiplicity) in multisets can always be
encoded in attributes. For example, we can add a distinguishing attribute to symbols as in example
16. Another possibility is to add a N-valued attribute to each class to represent elemnent multiplicity
directly.

87

e Like Najork and Kaplan's CSRS. ASGs permit any number of symbols in the
heads and bodies of productions. As will be shown in a later example, this
makes it very easy to define an ASG to generate representations of directed

graphs.

o Unlike all of the formalism ; described in chapter 3, ASGs do not use constraints,

and cannot compute new attribute values via expressions.

I do not claim that the ASG formalism is superior to more powerful formalisms
such as AMG, CMG, aud CSRS. I do believe, however, that the inherent simplicity
of the ASG formalism will facilitate analysis. Furthermore, I would hope that a
detailed analysis of the properties of ASGs might yield insight into the more complex
(multi)set-generating formalisms. The latter might be expected to inherit properties
of ASGs which inhere in the generation of sets rather than sequences, independent of

the computing power added by attribute expressions and constraints.

4.5 Moadelling with attributed sets and ASGs

I have already given a few very simple examples showing how attributed sets (i.e.,
attributed words) may be used to model structures such as character strings and
geometrical figures. In this section I present larger examples to show that attributed
sets may be used to represent or “model” useful algebraic and notational structures,
and that furthermore, ASGs may be defined to generate such representations. The
algebraic structure examples include strings, directed graphs, and binary trees. This

is followed by a notation example: binary tree diagrams layout constraints.

4.5.1 Semantics of modelling

The term model is often used to refer to an algebraic structure chosen to represent the
salient characteristics of an object, situation, process, etc. in human experience. For
the purposes of this discussion, however, I adopt a much more restricted definition. A
model is a algebraic structure, which serves as a convenient and (ideally) unambiguous
representation for some other algebraic structure, which I call an object. | restrict my
attention to finite models which are attributed words.

A completely rigorous definition of the notions of objects and models is beyond

the scope of this dissertation; 1 instead use examples to make my ideas clear. However

s
A

let me suggest that a rigorous definition of the notions would involve (at least) the

following;:
1. a well-defined class® O of objects, and an equivalence relation = on O.

2. an attributed alphabet T and a language Ly C words(T) whose elements
(which we shall call models) are to be interpreted as representations of objects

o€ 0.

3. a well-defined encoding relation M C O x Ly, and a well-defined decoding
relation R C Ly x O, such that

Yoe O, V(o ,W'),(o, W")e M, Y(W',0),(W",0")eR, o= d ="

The key point is that the encoding and decoding processes (captured mathematically
by the relations M and R) are unlikely to be one-to-one. and some information is
sure to be lost in encoding and/or decoding. Item 3 above formalizes the notion that
it should be possible to encode an object and subsequently decode it, such that no
significant information is lost. The notion of “significant information” is formalized
by the equivalence relation in item 1. Item 2 establishes that I am interested only in

finite attributed set encodings.

4.5.2 Character strings

Example 5 suggested a simple way to model strings using attributed sets, by aug-
menting each character with a single N-valued attribute indicating its ordinal position
in the string, starting with 1. We cannot define an ASG to generate such representa-
tions and nothing else, because in attributed set rewriting, attribute values are always
freely chosen (see section 4.4.1).

A different representation for strings, which is more amenable to generation by
an ASQG, is based on the familiar linked list data structure. To simulate pointers in
attributed sets, we can give each symbol two integer attributes self and nezt. The
value of self will be a unique identifier for the symbol and that of nezt will be a
copy of the unique identifier for the next symbol in the sequence. We also require
one special value-—analogous to a nil pointer—which must be different from all valid

®In this context, the word “class” is not used in the special sense introduced in this chapter, but
in the usual mathematical sense.

89

a |20]21 b[21]o M bﬁM#

Figure 4.5: A “linked list” model of the string abba

identifiers. Let us use the symbol § to denote this special value, and define the set
N! = N U {f} as the domain for self and nert attributes.

Let V be an atomic alphabet, and define the class C = (‘iem-r.Ng,",wa,‘,), and
the attributed alphabet T = (C;). We shall model strings over V" as attributed words
over T. Suppose V = {a,b}. The string abba could be represented by the word

{t(a,20,21), (b, 21,9), t(b,9, 100). t(a, 100, 1)}.

or indeed, any other word having the same structure. The absolute values of the
“pointer” attributes mean nothing; all that matters is that they encode the sequential
structure of the string being modelled. The pointer structure for this example is ecasier
tc understand when shown in diagram form, as in figure 4.5.

A shortcoming of this model representation is that it is not easy to tell which
symbol represents the first letter in the string.

Now suppose we want to model substring rewriting rules of the form py---p,, —
q1 * - * gm, directly on the model representation using attributed set rewriting rules. We
define two sets of variables L = {Po,P1s--.rqurqs,-..} and
U= {l,r,up,uy,...,v0,%1,...}, and a term system £ = (VL,N',’,). We can model

the substring rewriting rule p; - - p, = ¢1 - - - ¢y, as the (T, T', ¥) rewriting rule

t(Pl, Ia “l)at(P‘l, U],UQ), ey t(pruun—la 7') — t(ql- l, Ul)n t((h, 'l’],v'g), cee 7l(qna V-t ")-

The use of the distinguished variables ! and r takes care of pointer manipulations.
The use of the “u” variables in the head ensures that what is being replaced is indeed
the representation of a substring. The use of the “0” variables in the body ensures
that the replacement is also the representation of a substring. The use of completely
different variables in head and body ensure that new “pointer attribute” values are
always freely generated, and are guaranteed to be different from others already in
use.”

A more serious shortcoming of the model representation becomes apparent when

we consider modelling “erasing rules” of the form p, - - p, — €, because the pointer

"This is analogous to what happens in a Lisp system with automatic garbage coblection.

%0

#10]) ajljz bj2]3 bj3]4 al4|#

Figure 4.6: Revised linked list models of strings € and abba

manipulation required would involve modifying the nezt attribute of the symbol rep-
resenting the letter “to the left of p;”, i.e. the symbol whose next attribute value
equals the self attribute value for the symbol which represents py.

We can solve this problem by modifying our “linked list” representation to use
a “dummy link” at the beginning of the list. We define V* = V') {}, re-define C
as (V,ﬂm,, N o Nl...) (and re-define T and £ accordingly), and take steps to ensure
that, in the model representation of a string, there is always exactly one symbol whose
letter attribute is the special value §. Coincidentally, this also solves the problem of
finding the beginning of the string in the attributed set representation—we simply
look for this symbol and follow its next pointer.

Figure 4.6 illustrates the structure of the attributed sets {t(4,0,f)}, which is
a model of the empty string €, and {¢(§,0,1),¢(a,1,2),t(5,2,3),¢(b,3,4),t(a,4,1)},
which is a model of the string abba. I say “a model” rather than “the model” be-
cause the model representations are not unique. The exact values of the self and
nerl attributes are unimportant; only their relationships (which model the linked-list
structure) matter.

With the revised representation, the substring-erasing rule p; --- p, — ¢ can be

modelled by the (T, T, ¥) rewriting rule

t(po, l,uw), t(p1, uy, uz),. .., t(pna Up, 1') - t(PD’ 1,1‘).

Note that there are n + 1 symbols in the head of this rule, while there are only n
letvers in the head of the corresponding substring rule. The extra symbol (the first one
listed above) matches the attributed symbol which represents the letter immediately
preceding p; in the string, or the “dummy link” symbol if there is no such letter).
This symbol gets rewritten so as to maintain the proper pointer structure.

Suppose we are given a set L of strings to model, and we know that L C V* for

some atomic alphabet V. In terms of the semantics defined at the beginning of this

section, we can say the following about the encoding scheme just defined:

1. The object class O is the set L, and the equivalence relation = is ordinary

equality.

2. The model alphabet is T and the language L C words {'T') of valid models is

{VV € words (T) | In eN’, #(#.0,n) € W and VI, € VI Vi, €N, Viy €NE,

if t(ll,nl,ng) € W
then ny #n,; and (3l € V¥ 3nz € N, t(lp uy.n3) € W)
and either ny =4 or 3L, € V, Ins € NP, t(ly,n2,13) € H'}.

3. I shall not attempt to give a rigorous mathematical definition of the encoding
relation M C O x Ly and the decoding relation R C Las x O. However
the foregoing discussion of the encoding technique should suffice to suggest
that both relations are well-defined, and moreover, that encs ling followed by

decoding results in no information loss whatever.®

Now suppose that the set L of strings to be modelled is defined by a string-
generating grammar G (L = L(G)). 1 show that given (G we can, by a simple proce-

dure, define an ASG I'¢ which is equivalent to G in the sense that
Vs€ L(G), M(s)C L(I'¢)

and

YVWeL(I'c). R(IW)e L(G).

Before continuing let us briefly review the definition of a string-generating graminar;
I adapt the definition given by Salomaa [121, page 9].
A string-generating grammar (SGG) is a tuple (& = (Vy, Vi, Xy, F) where

e Vy is an atomic alphabet of nonterminal letters

e V7 is an atomic alphabet of terminal letters

8 M is ore-to-many; this is because there is infinite choice concerning the precise values of the
self and nezt attributes. However R is many-to-one, and in fact R o M is an identity. This is only
possible because the atomic alphabet V', which defines the entire range of possible ohjects, in used
in the definition of the model language L.

o Xy € Vy is the initial letler

e F'is a finite set of substring rewriting rules of the form py---pn = ¢1+--¢m
where p;,q; € VWUV, 1 <i<n,1<j<m, and at least one of the p; is an

element of Vy.

Let V = Vy U Vr. Given two strings s;,8; € V", we write sy =>¢g s if 5, =
Lpy - -pary and s3 = [pq, - - - gmrz Where Iy, vy, I, €V and py -+ pn — @1+ qm €
F. == is a relation on V*: its reflexive transitive closure is denoted =25. The
language 1.(G) of G is defined as L (G) = {s € V} | Xo = s}.

Given an SGG G = (Wn, V1, Xo, F), the main part of the work in defining the
equivalent ASG I'g = (T,N, X, W,, P) is converting the substring rewriting rules
to (N, T, X)-productions, which is done essentially according to the procedure just
described. To ensure exact compliance with the definition of an ASG, however, two
small modifications to the procedure are required.

The first change involves the start word W,. We cannot define Wy as a model of
the one-letter string Xo (Wp € M(Xy)), because in our linked-list representation such
a model would consist of two symbols (one representing Xy plus the dummy link), and
by definition |Wp| = 1. To get around this we introduce a new, nullary nonterminal
class s, let Wy = {s()}, and introduce one production of the form Wy — W where
W e M(Xy).

The second change involves maintaining, in I'g, the distinction between terminal
and nonterminal symbols as defined by G. The first step is to define the alphabets
T = (C,;) and N = (C,;). This complicates the translation of substring rewriting ruies

to productions in two ways:

1. We must now ensure that in productions, terminal letters are translated as

symbols of class ¢t and nonterminal letters are translated as symbols of class n.

2. Every substring rewriting rule of G must now be translated into two productions
in I'g, which are identical except that the “left-context” symbols are class ¢ in

one and class n in the other.

These ideas are illustrated in the following example.

93

Example 18: Modelling an SGG with an ASG

Let G = ({X},{a,8},X,{X — 5, X — aXb). Observe that L(() =
{a'b' |1 € Np}.?

Let N* = NU {t}, V¢ = {X,a,b,t}, L = {po.1,--- qa-q2...}, U =
{l,ryuo ur,y..vyv0,01,...}, S = (VEND), € = (0h e Nars Nbext)y T =
(C:), N =(0,,C,),and Wy = {s()}. Consider the ASG ' = (T.N, X, . P)
where P consists of the productions

Po: s() = t(f,vi,v2),n(X,02,8)

Pla : n(po,l,u1),n(X,uy,7v) — n(po,l,7)

P - t(po,l,), n(X,uq4,7} — t(po,l,1)

P2a : n(po,l,uy),n(X,u1,7) — n(po.l,1), t(a, vy, v2), n(X, vz, v3), 1, vy, 1)
P - t(po,l,uy),n(X,uy,7) — t(po,l,v1),t(a,vy,v2),n(X, vy, v3). 1(b, vy, 1)

Observe that the productions p € P maintain the pointer structure of our
model scheme, regardless of the actual values which are (freely) assigned

to self and nezt attribute values at each rewriting step. I claim that

1. Vs € L(G), M(s)C L(Tg).
2. VW € L(Tg), R(W) € L(G).

The proof of the first claim follows from observation that for every valid
derivation X =>¢ s in G, there is a valid derivation Wy == W in I';;
with corresponding rewriting steps, such that W € M(s). The only room
for variation is in the free assignment of self and nezxt attribute values,

which, as noted above, is unimportant. Vice versa for the second claim.

4.5.3 Directed graphs

In the conclusion of chapter 3 (section 3.7, page 57), | suggested that the ability
to generate arbitrary directed graph structures should bhe considered a minimum re-
quirement for a visual grammar formalism. In this section I define an attributed set
modelling scheme for directed graphs, and present a simple ASG which can generate
models of every directed graph in this scheme.

A directed graph or digraph is a pair (V, E) where V is a set of nodes and £ C V?

is a binary relation on V. Each pair (v1,12) € E is called an arc and is interpreted

°This example it vased on an SGG described by Salomaa; see [121, page 5,10] for details.

Figure 4.7: A simple directed graph diagram with node labels

as a one-way connection from node v, to node v;. If v; = v, the arc is called a loop.
Digraphs are typically notated as diagrams using dots or circles to represent nodes
(often with accompanying textual or numeric labels) and arrows to represent arcs as
shown in figure 4.7.

We choose to encode digraphs as attributed word models as follows:
e nodes are numbered, with arbitrary distinct elements of N.

e each node is represented by an attributed symbol of class node with one N-valued

attribute called self whose value is that node’s identifying number.

e arcs (14,r;) are represented by attributed symbols of class arc having two N-
valued attributes from and to, whose values are the identifying numbers of

nodes v, and vy, respectively.

For example, the digraph illustrated in figure 4.7 could be encoded as the model
{ node(1), arc(1,2), node(2), arc(2,2) }.

Note that, as in the preceding strings example, the exact attribu‘e values are un-
important—only their relationships matter. Qur models are thus words over an al-
phabet T = (Ciodes Darc) Where C = (Nyeir) and D = (Ngrom,Neo). Specifically, the
language of valid digraph models is

Lagpn = {W € words(T) |
Vr,y €N, arc(zr,y) € W implies node(z),node(y) € W}
That is, there may be zero or more node symbols, and zero or more arc symbols,

subject only to the requirement that the from and to attributes of every arc must

refer to some node.

Now let us formalize the encoding relation M and the decoding relation R for this
modelling scheme. Let DG be the class of all digraphs and, for every (V. E) € DG,
let

M({(V,E)) = {W € words(T) le : V= N, such that g is injective and
Vv € V, node(p(v)) € W and V(vy,v2) € E. arc(pu(in)., p1n)) € H'}.

For every model W € Lgigraph, let Z denote the set of self attribute values of node
symbols in W, and let

RW) = {(V.E)|V isaset, [V|=|Z|, ECV? and
33:Z =V, such that 3is a bijection and
Vny,ny €N, arc(n,,nz) € W implies (3(n,), 8(n2)) € la‘}.

Let ~ denote equivalence up to renaming of nodes; = is an equivalence relation on
DG. Given the above definitions of M and R, it should be apparent that

V(V,E) € DG,
Y((V,E),W'),((V,E),W") e M,
v (W', (V' E"),(W",(V", E")) € R,
(V,E) = (V',E') = (V" E").

That is, encoding a digraph (V, E) and subsequently decoding it will always yicld a
digraph equivalent to the first up to renaming of the vertices. The set V is lost in the
encoding,!® but upon decoding it will be replaced by some other set with the same
number of elements as V.

Having defined the language Ljs of models of digraphs, we now define an ASG
Ldigraph With L (Tdigraph) = Ldigraph- Let U = {uy,uy,...} be a variable domain and
¥ = (Ny) be a term system. Consider the ASG Tgigraph = (T, N, X, Wy, F) where
T = (Caodes Darc) as above and N = (Daigraph; Ca)s Wo = {digraph()} and P consists
of the productions

Po: digraph() — @

Pr: digraph() — n(u,)

P2 n(u;) — node(u,)

p3 n(u1) — n(u1),n(uz)

Pa: n(uy) — n(u;),arc(uy,uy)

ps: n{u),n(uz) — n(u,),n(uz),arc(u,,uz)

191t must be, because we have no way of using V in the definition of the model language Laigraph-

R)

Before proving that L (T'gigraph) = Ldigraphs let us consider two examples of digraph

model derivation under T gigraph-

Example 19: Null digraph
The null digraph (@, 0) is modelled by the null word @, which has the

aerivation

digraph()
ni
9

In a practical implementation of this modelling scheme for digraphs, we
might not want to assign meaning to the empty word. An alternative is to
modify the encoding scheme to use an explicit non-empty model for the
null digraph. That is, we could define T’ = (Bemptys Cnodes Darc) and define
the ASG Iy oon = (T, N, X, Wo, P’) where P’ is identical to P except
that production py is replaced by

Po: digraph() — empty().

In this encoding scheme, the null digraph is modelled by the word {empty()},

which has the derivation
digraph()

ni
empty()

Example 20: Digraph as in figure 4.7

The digraph illustrated in figure 4.7 has a model representation

{node(1), node(2), arc(1,2),arc(2,2)}

which can be derived under Cg;graph as follows:

digraph()
nivn=1
n(1)
mivi=luy=2
pslog=1u=2
n(1).n(2),arc(1,2)
pad v =2
n_(_ﬂ, n(2),arc(1,2),arc(2,2)

plo=1

node(1),n(2), arc(1,2),arc(2,2)
pdv =2

node(1), node(2), arc(1, 2), arc(2, 2)

Lemma9 L (Tdigraph) C Liigraph-

Proof: Let W € L(Taigraph). Then W has a derivation Wy == W under I gigeapn. If
W contains no symbols of class arc, then W € Laigraph by definition.

Suppose the symbol arc(z,y) € W for some r,y € N, and consider the attributed
word sequence Wy, W, etc. within the derivation Wy => W, == ... = W.

If £ = y, the symbol must have been introduced in a derivation step W, £% W,,,,
implying that the symbol n(r) must have been an element of both W, and W, ;. Only
production p, can eliminate this symbol; it rewrites it as node(r). No production can
eliminate symbols of class node. We know that P2 must be applied at some point
later in the derivation, because we know W € L (Lgigraph) and hence W must contain

only terminal symbols. Hence the condition
Vz,y €N, arc(z,y) € W implies node(z),node(y) € W

is met and thus W € Lgigraph.

If z # y, the symbol arc(z,y) must have been introduced in a derivation step
W; = W4, implying that the symbols n(z) and n(y) must have been elements of
both W; and W;,,. By an argument similar to the one above, we have node(z) € W
and node(y) € W and again W € Lyigraph- O

99

Lemma 10 Ldigrnph Q L (Fdi;nph)-

Proof: Let W € Lyigraph. If W = § the result follows immediately. Otherwise W
consists of n symbols node(z,), node(z,),...,node(z,) and m symbols arc(f1,4),-..,
arc(fin,tm) subject to the conditions given in the definition of Laigraph. A derivation

for W in I'gigraph can be constructed as follows:

—

. Start with W,
2. Apply py once (with a E-assignment a such that a(u,) = z,) yielding {n(z,)}.

3. Apply ps n—1 times (with appropriate assignments) yielding {n(z,),...,n(z,)}.

-

. Apply py and/or ps as appropriate, for a total of m steps to generate the
arc(fi,t1),...,arc(fn, tm)-

. Apply p, n times to convert all the symbols of class n to symbols of class node.
0

w

Theorem 1 L (Faigraph) = Laigraph-

Proof: By lemmas 9 and 10 above. O

4.5.4 Binary trees

A binary free is a particular kind of digraph (V, E) which is either the null digraph
or for which all of the following conditions hold:

1. There is a distinguished node called the rootr € V, such that ~(3v € V, (v,7) €
E). (The root has in-degree 0.)

2. For every v € V' \ {r}, there exists exactly one ' € V such that (v/,v) € E.

(Every node except the root has in-degree 1.)

3. For every v € V, there exist at most two other nodes v’ € V such that (v, /) €
E. (Every node has out-degree 0, 1, or 2.)"

"“This is a simplified definition. More common definitions designate each subtree of a node as

either “left” or “right”.

100

A node with out-degree 0 in a binary tree is called a leaf. Nodes other than the root
and leaves are called interior nodes.

Since binary trees are digraphs, they can b modelled as described in section
4.5.3 above. That is to say, the language Lyt of models of binary trees is a subset of

Lgigraph, defined as follows:
Lpr = {W € Laigrapn | either W =@ or conditions 1-4 below hold }

1. node(l) € W.
2. -3i €N, arc(i,1) e W.

3. Vi € N\ {1}, node(i) € W implies that there exists exactly one j € N such
that node(j), arc(j,i) € W.

4. Vi € N\ {1}, node(i) € W implies that there exist at most two distinct j € N
such that arc(i,j) e W.

Note how in this encoding scheme, the assignment of attri.. ate values is not completely
free—the value 1 is reserved to identify the root node. The four conditions above are
of course obtained directly from the three conditions given above in the definition of
a binary tree.

Recall the following definitions from the digraph example above. U = {u,, u,, ...}
(a variable domain). ¥ = (Ny) (a term system). T = (Cuoder Darc) Where C = (Nyoir)
and D = (Ngrom, Neo)-

Let N’ = (C,) and consider the ASG I'sr = (T,N’, ¥, W, P’y where W =
{subtree(1)} and P’ consists of the productions

P subtree(u;) — node(u,)
ph: subtree(u;) — node(u,),subtree(uz),arc(u;,u;)

Pa: subtree(u;) -+ node(u,),subtree(u;),subtree(us),arc(uy,u,), arc(iy, us)
It should be obvious that L(I'st) = Lgr \ {#}.'* Note that

1. production pj creates leaf nodes.
2. production pj creates an interior node with one subtree,

3. production p} creates an interior node with two subtrees.

2For simplicity, I have omitted the extra mechanism (an extra nullary nonterminal symbo| class
and two extra productions) required to generate the empty word in this example. They can easily
be added following the digraph example.

4 5 6

Figure 4.8: Binary tree

4 4 5 6

Figure 4.9: Binary tree development: first three rewriting steps

Example 21: Binary tree generation

Consider the binary tree illustrated in figure 4.8. A model for this tree
(where the self attribute values correspond to the node labels in figure
4.8) is

{ node(1), node(2), node(3), node(4), node(5), node(6),
arc(l,2),arc(1,3),arc(2,4),arc(3,5),arc(3,6) }

This word has the following derivation in I'gt:

subtree(1)
phluy=lup=2uz =3
node(1), subtree(2), subtree(3), arc(1, 2}, arc(1,3)
ppdur=2uy =+
node(1), node(2), subtree(4), arc(2, 1),
subtree(3), arc(1,2),arc(1,3)
phlluy =3 uz=5,uz3 =6
node(1), node(2), subtree(4), arc(2, 1),
node(3), subtree(5), subtree(6), arc(3, 5), arc(3, 6), arc(1,2),arc(i,3)
plduw =1
node(1), node(2), node(4), arc(2,4),
node(3), subtree(5), subtree(6), arc(3, 5), arc(3, 6), arc(1, 2), arc(1, 3)
plum=5
node(1), node(2), node(4), arc(2, 4),
node(3), node(5), subtree(6), arc(3, 5), arc(3, 6),arc(1,2),arc(1,3)
pPplu=6
node(1), node(2), node(4), arc(2,4),
node(3), node(5), node(6), arc(3,5), arc(3,6),arc(1,2),arc(l,3)

If we interpret attributed symbols of class subtree graphically as dots, just
like those of class node, we can interpret all of the intermediate words
generated in the derivation graphically. Figure 4.9 illustrates the result
after each of the first three rewriting steps, which are the ones which

actually build the tree structure.

'The graphical interpretation of intermediate derivation results suggested in exam-
ple 21 suggests the intriguing possibility that ASGs might be used to model organic
development, in the same manner as Lindenmayer systems [88] (see section 2.3).
Looking at 'yt as a developmental system for modelling tree growth we have the

following “botanical” interpretations:
e Symbols of class sublree are analogous to buds.
e Production p} causes a bud to mature into a leaf.
e Production p), causes a bud to sprout into a stalk with a new bud at the end.

e Production pj causes a bud to branch into two stalks with a new bud at the

end of each,

4.5.5 Binary tree diagrams with layout constraints

The preceding examples have illustrated the use of attributed sets to model purely
algebraic structures. | now turn to graphical structures with geometric layout con-
straints, choosing to model binary tree diagrams such as figure 4.8, with constraints
to determine layout. 1 build on the earlier binary tree example, adding only what is

needed to model and generate appropriate layout constraints.

Formatting technique

Automatic formatting of tree diagrams has been considered by Briiggemann-Klein
and Wood [10], Luo {89)], and others.!> Luo presents a number of aesthetic rules
for tree diagram layout due to other authors, and one of her own.!* The method
discusv~d below adheres to some of these rules, but iny intent here is to illustrate
the ability of ASGs to generate constraint-based models, not to propose a realistic
formatting technique.

My formatting technique works for diagrams representing binary trees as de-
fined in section 4.5.4. The diagrams are constructed of dots representing nodes and
line segments representing arcs, as in figures 4.8 and 4.9, but without the node la-

bels. Associated with each subtree is its root node position (z,y coordinates) and

13Gee the references in these two works for additional citations.
14Sce [89, pages 5,6,10).

104

its horizontal extent (minimum and maximum node r-coordinates). The lavout is

constrained according to two rules:

1. When a node has one subtree, the root of the subtree is positioned directly

beneath it, a distance dy below.

2. When a node has two subtrees, they are arranged so that their roots are a
distance dy below and equidistant in r from the node. The horizontal separation
of the two subtrees is such that the minimum r-coordinate of the right subtree'®

is an amount dr greater than the maximnm z-coordinate of the left subtree.

Lexical representation: G, £

(Caodes Dares Cequals Eaums Emia) be an attributed alphabet. Let R = {dxr,dy,pr,py, lr,

rZL,T,ZT1,%2,...,Y,Y1,Y2,...} be a variable domain and ¥ = (Rg) be a term system.

Let C = (R;,R,j, D = (R;,,R,,,R.,,R,,), and E = (R,,R,R,) be classes, and G =

We shall model the structure and layout of binary tree diagrams as words over
GE. Symbols of class node and arc will be interpreted as marks with no inherent
constraints, and symbols of other classes will be interpreted as pure constraints, as

follows:
e node(z,y) represents a dot centred at point (z,y).
® arc(zy,y1,Z2,y2) represents a line segment from point (z;,3,) to point (r;,y2).
o equal(a, b) represents the constraint a = b.
e sum(a, b, c) represents the constraint a = b + c.
e mid(a, b, ¢) represents the constraint a = (b + c).

Words W € words (GE) can be interpreted as a diagram via a grounding Y-assignment,
as described section 4.3.5.

15Recall that the definition of binary tree given in scction 4.5.4 does not distinguish “left” and
“right” subtrees. By “right subtree” I mean the subtree which, in the diagram layout, happens to
have the greater r coordinate.

Syntactic representation: T, N, £

Let R = {lz,0z,vz,7r’ cx,cx’ éx", 2, %1, 2y - - - §s G1, ¥2,- - -} be a variable domain
and £ = (Rp) be a term system. We can think of a Y-assignment as a conversion
from the variable domain R to the variable domain R. Alternatively, we can say that
variables under ¥ are constants under £, but this is potentially confusing. Let us call
them literals.

Define the classes C = (R., R,), D = (R.,, Ry, Rz;, Ry,), E = (Ra, Ry, R.), and
the alphabet T = (Cpoger _[)_.,C,chud, Euums Emia)- Note that words (T) € words (GS).
That is, any word over T is also a word over GE, which happens not to contain any
attributes which are constants under ¥. We shall define an ASG which generates
words over T, treating attributes r € R (which we call literals in this context) as
constants for syntactic purposes. Once generated, such words can be given a semantic
interpretation as defined in section 4.5.5 above, where the attribute values are treated
as variables.

Let F = (R., Ry, R, R,) be a class, and N = (F, puree) be an attributed alphabet.
We can think of an attributed symbol subtree(z, ¥, min, Tmax) (Which will be a nonter-
minal in the ASG defined below) as representing a subtree of a binary tree diagram,
whose root node is located at point (z,y) and whose extent in the z-direction is given

by rmin and rpax.

An ASG for binary tree diagram models

We now define an ASG I'grp which generates words over T', which model the logical
structure and layout of binary tree diagrams as described in sections 4.5.5 and 4.5.5.
Let arp = (T, N, £, W, P) where W, = {subtree(pz, py,lz,rz)} and P consists
of the productions
pr: subtree(i.g,lr,rr) — node(.i',g),equal(:%,I:r),equal(l;r,r“.t)
P2 subtree(zf, §, Ir,Fr) — node(z, §), subtree(z, ¢y, lz, r'z),
arc(x,y, x,¢y),sum(cy, i1, dy)
ps: subtree(#,3,lr,r'r) — node(#,§),subtree(cz’,cy, Iz, rz’),
subtree(cr”, &y, lz’, rz),
arc(Z, j, cx', éy), arc(z, §, éz”, ¢y),
sum(cy, §,dy),sum(lz’, ', dz), mid(z, ¢r’, ¢z
Note the use of the literals px, py, Iz and rr in Wy, and dz, dy in the productions.

These literals will appear in every word generated under I'pp.

105

106

----- . - -— - .
y ' y f
!
1 di
[
1 - -
x=Ilx=rx &y - i
1
[
1
|
x=Ilx=rx
cx’ X cx”
1 I |
I '
Y- \
T .
dy :
| .
cy = -V=--

] A

' b

(| |

')

: ' '

[dx - :
rx

M o -

1

Figure 4.10: Geometric relationships in productions of I'grp

Compare the definition of I'gyp with that of I'gr in section 4.5.4. The productions
are exactly comparable. The difference is that instead of node and arc symbols being
distinguished by integer identifiers, they are now distinguished by (ir, y) coordinates,
and we simultaneously generate constraints to enforce the rules of layout defined
above. Tigure 4.10 illustrates the geometric relationships captured by each of the
three productions in I'stp.

Example 22: The binary tree diagram of figure 4.8

A model for the binary tree diagram shown in figure 4.8 (not including

the node labels), including all of its layout constraints as described above,

is in L(grp). Its derivation directly parallels the one given in example

21. Here is its derivation, in abbreviated form:

subtree(pz. py, lz, rz)

pal & =pz,§ =py,lz=lz,rz =rz,
- ~ ~ !
CcYy = Y, Cr = Iy, TT = I,

" = z3,lx' = 24

mUé:z,,g}:y,,l&::lw,rﬁt:xz

plz=z3,9=un,lr=x,rr=rz,
- A f ~ !
Cy = y3, CT = T5,TT = Tey

cr" =z’ = 3
mz=a,yg=ple=lr,fc=2x
MmUZ=1x59=yslz =247 =16

plE=a,8= ys. Iz = 25,7 =rz
node(pz, py), arc(pz, py, x1, 1), arc(pz, py, £3, y1),
node(x,, ¥), node(z,, y2), equal{x,, Iz), equal(lz, 2,), sum(yz, y1, dy),
node(zs, y1), arc(zy, y1, 21, y2), arc{z3, y1, T, y3). arc(T3, y1, 27, ¥3),
node(zs, y3), equal(zy, r¢), equallzs, z,4),
node(rs, y3), equal(zs, rz), equal(rs, zg),
sum(ys, y1, dy), mid(z3, s, £7), sum(rg, x¢, dr),

sum(y1, py, dy), mid(pz, £, x3), sum(z,, T2, dz)

In the semantic interpretation of this model as a word over GZ, there are a
total of seventeen variables (pr, py,dr,dy,lz,rz,z4,...,25,41,¥y2,¥3) and
thirteen constraints, the latter representing thirteen (linearly indepen-
dent) linear equations, Hence the system is under-constrained with four
remaining degrees of freedom. Graphically, these four degrees of freedom
correspond to the horizontal and vertical spacing constants dz and dy,

and the position of the entire diagram in the XY coordinate space.

To obtain a solution we can fix the “environment parameters” dz and dy,
to determine the spacing, and px and py, to locate the diagram by setting
the coordinates of its root node. Alternatively, we could leave pr and dz

107

free and set Ir and rx instead, e.g. to fit the resulting diagram into a
column of a given width.

Note that by putting the names of the variables which we consider to be
“environment variables” into the start word Wy and (in the case of dr and
dy) the productions as literals, we ensure that these variable names will

be used consistently in every word generated by the ASG.

4.5.6 Tontext dependency

The ASG for digraphs introduced in Section 4.5.3 involves some contert dependency,
expressed in the form of a production (ps) having more than one symbol in its head.
Each of the two symbols involved must be matched in the context of the other. By
contrast, the ASG for binary trees given in Section 4.5.4 has no context dependency.

I conjecture that only a context-dependent ASG can generate the language Lgigraph
defined in Section 4.5.3. Unfortunately, I have been unable to prove this conclusively.

Analysis of the generative power of ASGs is a promising area for future investi-

gation.

4.6 Parsing with ASGs

Having developed a grammar formalism, I now show that it can be used in syntactic

analysis (parsing) of one class of attributed set languages.

4.6.1 The membership problem, acceptance and parsing of ASLs

Let T be an attributed alphabet, and L C words (T) be an attributed set language
over T. Given an attributed word W € words (T), determination of whether or not
W € L is called the membership problem for L.

In practice we would like to have an algorithm which, given the word W, would at
least answer “yes” if W € L and “no” otherwise, and which would halt on all inputs,
i.e. not go into an infinite loop. Such an algorithm is called an acceptor for L. Even
more useful would be an algorithm which, instead of just answering “yes” for inputs
W € L, would report a derivation for W in an ASG I'y,, where L (I';,) = L. Such an

algorithm is called a parser.

108

4.6.7 Monotonic ASGs, decidability of the membership problem

I have not been able to prove whether or not the membership problem is decidable for
all ASLs. In this section I define a class of ASLs for which the membership problem
is decidable,

Let I' = (T,N, X, Wy, P) be an ASG. T is called monotonic if, for every production
X — Y € P, three conditions hold.

LX< Y]
2. if |X| = |Y|, Y must consist entirely of terminal symbols.

3. if X contains terminal symbols, ¥ must contain a greater number of terminal

symbols than X.

Lemma 11 The length of any derivation of a word W in a monotonic ASG can be
at most 2|W| — 1.

Proof: Let I' = (T,N, X, Wy, P) be a monotonic ASG, and let W € L(I'). Consider
a derivation of W in T,

Wo2o W) 2o Wy = - 22 W, S5 W.
1 2 n

apay

By definition of an attributed word, |W| is finite. By definition of an ASG, |Wy| = 1.
By definition of a monotonic ASG, [Wo| < |W;| < -+ € |Waoy| < |W| (condition 1
in the definition above). Furthermore since the only derivation steps which do not
add new symbols must by definition introduce terminal symbols (condition 2 above),
which cannot subsequently be rewritten (condition 3 above). Hence the number of
steps n in the derivation is bounded. In the worst case there will be at most |W| -1
steps which introduce no terminals (which by definition must add at least one new
symbol each) followed by |W/| steps, each of which rewrite one nonterminal symbol
by one terminal symbol. O

Theorem 2 The membership problem is decidable for any ASL described by a mono-
tonic ASG.

Proof: Let L be an ASL described by an ASG I'y = (T,N,Z,W,, P). We can
construct an acceptor algorithm for L using the productions P as follows. Given a
word W € words (T), the algorithm tries to build a derivation for W in I in reverse,

109

by matching the bodies of productions X — Y to subsets of W via T-assignments a
and rewriting these by the sets X|,. If it succeeds in constructing a derivation for W
(by rewriting W to W) it outputs “yes”. By Lemma 11, the algorithm can give up
once 2|W| — 1 steps have been tried, and there are can be no more than |P| choices
to try at each step. Hence the algorithm will halt for all finite inputs. If it exhausts
all possibilities without success, it outputs “no”. O

The acceptor algorithm suggested in the proof of Theorem 2 can easily be imple-
mented using back-tracking, and, since in “yes” cases it actually constructs a deriva-
tion of the input word W, it can easily be turned into a parser. This is discussed in
Chapter 5.

Theorem 3 The worst-case time complezity of the algorithm described in the proof
of Theorem 2 is O(2"), where n is the number of symbols in the input word W.

Proof: In effect, the algorithm searches a tree of possibilities to a maximum depth
of 2|W| — 1 levels, which branches as much as |P| ways at every node. The total

number of paths which must be searched is thus |P[*W!-!

. Each reverse application
of a production (which can be called a reduction step) requires matching all of the
variables in the body of the production to constants. This can be considered a
constant-time operation since it the number of variables in each production is fixed

and finite. Hence the worst-case time complexity of the algorithm is O(21"!). 0O

4.6.3 A simple bottom-up parser in Prolog

The algorithm suggested in the proof of Theorem 2 is eas''y implemented using back-
tracking. If a programming language such as Prolog or CLP(R) is used, there is
no need to program the back-tracking, and the matching/reduction mechanism is
almost trivial. Attributed symbols can be represented as compound terms, where the
functor is the class name and the arguments (which may be variables or constants)!®

Attributed sets can be represented as lists,!” provided we are careful to ensure that

161n both Prolog and CLP(R), constants may be numbers or character strings beginning with a
lower-case letter, while variables must begin with an upper-case letter or an underscore. A single
underscore, used as a variable, is called an anonymous variable and is occasionally used for stylistic
reasons. For details of Prolog syntax and semantics, see [23]; for CLP(R), see [68].

17The Prolog/CLP(R) syntax for lists uses square brackets e.g. [x(1) ,abc,a(b,c)]. The notation
[EIT], used in rules, instantiates variable H to the first element (head) of the list and T to the rest
(tail).

110

elements are not duplicated (or that duplicate elements are harmless). Furthermore,
the productions of the ASG under consideration can be expressed as rules as with
Definite Clause Grammars (see Chapter 2), obviating the need for a specialized data
structure to represent them.

Figure 4.11 gives the entire Prolog source code for an acceptor based on the ASG
I digraph defined in Section 4.5.3. Note that production po, which generates the empty
set, has not been included, so the language accepted by the program is actually (the
Prolog list representations of all words in) Laigraph \ {0}.!®

The program contains cuts, primarily to ensure that it does not go into infinite re-
cursion with uninstantiated variables. However these also allow for early termination
in some cascs; for example the main routine for act .pt cuts as soon as a complete
derivation is found.

The productions p; through ps of I'gigraph have been placed into the program in
reverse order. This is because, if there are two symbols of class n in the list at
some point, a reduction could be performed according to p3 or ps. (This situtation is
called a reduce/reduce conflict and is discussed further in chapter 5.) If a reduction
is performed according to p; when ps should have been used, an n symbol will be
incorrectly erased, and the result is that the program will go into infinite recursion.!?
Ordering the rules as shown will cause p; to be favoured over p;, because Prolog

always chooses rules in the order in which they appear.

'*This can be fixed by adding a rule of the form accept([1).
*This is not really serious. The prob..m is that this implementation does not prune the search
tree by giving up when a test derivation gets too long. This feature could of course be added.

111

% productions coded as prod(head,body)

prod([n(v1),n(v2)], [n(V1),n(V2) ,arc(Vi,v2)]). % pS
prod([n(v1)], [n(V1) ,arc(V1,V1)]). % pd
prod([n(v1)], (n(v1),n())]). % p3
prod([n(v1)], [node(V1)]). % p2
prod([digraph],[n(.)]). 4 p1
% acceptor
accept ([digraphl). % accept the start symbel
accept(W) :- % accept W if
prod(X,Y), % there is some production X->Y where Y matches W
match(Y,W,W1), % (W1 is unmatched part of W, this step grounds X)
union(X,W1,W2), % W2 is result after perforaing reduction
% keep reducing

accept(W2),
]

% match(A,B,C)
% A is a subset of

B, and C is its complement w.r.t. B

ma.tCh([] aBoB) Had

match([E|A]),B,C) :-
element (E,B,B1),
match(A,B1,C).

% element(+E,+S,-T)
% succeeds if E is an element of set S; T is S minus E

element(E, [FIR],R)

element(E, [XIS], [XIT]) :-

element(E,S,T).

% union(+X,+Y,?Z)

% Z is union of sets X and Y

union([],X,X).

union([XIR],Y,2) :-

element(X,Y,.),
union(R,Y,Z).

union([XIR],Y,[X12]) :-

union(R,Y,2Z).

Figure 4.11: Prolog acceptor for Lgigraph

Chapter 5

Parsing Attributed Set Languages

Chapter 4 ended by proving that, in theory at least, it is possible to parse attributed
sets. In this chapter I consider the matter of attributed set parsing in greater detail,
with particular emphasis on parsing attributed set encodings of notations. I describe
two experimental implementations, address the problems of reduce-reduce conflict
and ambiguity, discuss incremental parsing, and propose a guided parsing approach

useful in interactive applications.

5.1 Implementation 1: 1991-1992

In 1991 I made a first attempt at implementing a notation-processing system, which
I presented in a poster at the 1992 IEEE Workshop on Visual Languages in Seattle,
and also described in a departmental Technical Report [41]. My development of the
theory of attributed sets and grammars was strongly influenced by experience gained

with this early prototype.

5.1.1 Environment and goals

My goal in 1991 was to create a prototype of a complete notation processing system,
including a graphical editing capability, some kind of notation parser, and verifiable
semantic interpretation of the parser’s output. To save time and reduce the complex-
ity of the problem, I chose to sacrifice full integration and interactivity in the first
prototype. | developed a separate editor and parser, and chose as the interpreter a
graphical programming system developed by two senior undergraduate students at
the University of Western Ontario.

The graphical programming system, an “Iconic Shell Tool” (IST) for the UNIX
operatingy system [8], was written in C for the X Window System [124, 125, 104]. The
first version of IST was written in 1990 by Christin Boyd as her senior undergraduate

113

Figure 5.1: Appearance of the IST graphical programming system

project in Computer Science [9]. Corrections and enhancements were added in 1991
by Rodney Steensma, for his senior undergraduate project [137]. Both projects were
done under my supervision.’

IST is an interactive program with a highly graphical user interface. An example
of its on-screen appearance is shown 1n Figure 5.1. It allows interactive construction
and editing of a diagram called a cgraph (computation graph), consisting of labelled
icons linked by arrows. The icons may represent either files or programs; the arrows
represent data flow. At any time, the user may request that the cgraph be executed,
in which case it is first analyzed to determine that certain validity conditions are met.
If the cgraph is valid, IST opens the appropriate files, runs the appropriate programs
as separate processes, and establishes the necessary data flow connections using 1/0
redirection and/or pipes. It is also possible to save cgraphs in disk files and restore

them at a later session.

1Lest 1 be accused of manipulating two hapless undergraduates for my own ends, 1 should like to
mention that I conceived the IST concept, and supervised the first project, before [began my doectoral
studies. While working in an image processing laboratory, | had written a suite of programs for basic
image processing operations, which could be used in various combinations. Many of the researchers
in the laboratory had great difficulty using these programs because they found the standard UNIX
command-line interface too complex and unforgiving. | designed IST as an alternative,

14

Cgraphs can be thought of as directed graphs where each node (represented by
an icon’ is labelled and assigned one of eight types based on its label and its in- and

out-degree, according to the following scheme:
I. In-degree 0, out-degree 1, label is a command string: type is source.
2. In-degree 1, out-degree 0, label is a command string: type is sink.
3. In-degree 1, out-degree 1, label is a command string: type is filter.
4. In-degree 2, out-degree 1, label is a command string: type is merger.
5. In-degree 1, out-degree 2, label is a command string: type is splitter.
6. In-degree 0, out-degree 1, label is a file name: type is inputFile.
7. In-degree 1, out-degree 0, label is a file name: type is outputFile.

The two arcs coming into merger nodes, and the two arcs leaving splitter nodes,
are ordered; they are not interchangeable. In the IST display window, nodes are
represented by icons in the IST display, arcs as arrows. IST uses distinct icons
(selected by the user from an on-screen menu) to differentiate the different node
types. These icons have “handles” at which arrow endpoints may be attached. By
double-clicking with the mouse on a displayed icon, a window may be called up which
allows editing the associated label (file name or command string).

In IST, there is no need for any kind of parsing, because the cgra; h itself is not
the input to the program. The input is the sequence of mouse gestures made by
the user, which are interpreted in temporal and spatial context, yielding the cgraph
(manifested in IST’s internal data structures and as a picture on the screen) as a by-
product. This is a common graphical user interface (GUI) programming approach,
which is also used in computer-aided design (CAD) programs. An inherent problem
with this approach is that such GUIs must be purpose-built, and few automated tools
are available to make the programming easier. This is precisely the motivation for
this thesis, as was mentioned in Chapter 1 and as will be discussed further in Chapter
6.

My objective for the prototype notation processing system was to create a new
“front end” for IST, in which the input was purely graphical and syntactic distinctions
(e.g. between node types and concerning the ordering of incoming and outgoing arcs)

115

was determined via a parsing technique. Because | was greatly interested in pen-
based computer systems at the time, [decided to imnplement a graphical editor whose
input was in the form of a stream of pen-strokes from a graphics tablet.

The pen-stroke editor was implemented in C++ on a personal computer (P’C)
running the MS-DOS operating system. A Wacom SD-421E digitizing tablet was
used, connected to the PC via a high-speed serial link. The user could draw frechand
on the tablet; the resulting strokes appeared immediately on the PC screen. Facilities
for interactive selection of strokes were provided, with selected strokes displayed in
a distinctive colour. All currently-selected strokes could be deleted by pressing a
button. Pictures could be saved as disk files, and restored for further modification at
a later editing session.

The tablet, which was capable of sampling the pen position 205 times per sccond
with a resolution of about one one-thousandth of an inch, generated a prodigious
amount of data. Some of the preprocessing techniques I implemented to reduce it are
described in [41]. For the present discussion it suffices to say that the editor program
could produce, on demand, an output file consisting of a list of line segment descrip-
tions, each containing endpoint coordinates (z;,y1), (2,¥2). (This was distinct from

the files used to save and restore pictures, in which additional detail was retained.)

5.1.2 Design of the input notation

The job of the parser was to take the list of line segments produced by the editor,
and “compile” it into a cgraph, which it would output as a file in the format used
by IST to save and restore cgraphs. I did not attempt to deal with node labels in
cgraphs—the parser only had to recognize the graph structure as described above.
The notational system I chose for freehand drawing of cgraphs is illustrated in Figure

5.2, and characterized as follows:

1. Process nodes were represented by four line segments—-two horizontal and two

vertical—forming a rectangular box.

2. File nodes were also represented as rectangular boxes, with the addition of a

fifth line segment cutting diagonally across the top-left corner.

3. Arcs were represented by three line segments-- one long one for the shaft and

two short ones forming a vee for the arrowhead.

116

117

Process icon: 4 line segments which (nearly) meet at corners

File icon: box plus a diagonal slash

% ,2/,|7"

Arc: 3 line segments forming shaft + arrowhead

7 =2 >

Figure 5.2: Input notation for cgraphs

4. The distinction between node types (the eight types listed above) was deter-

mined contextually, according to the number of incoming and outgoing arrows.

5. For splitter and merger node types, the distinction between the two input or
output arcs was madc by comparing the appropriate arrow endpoint with the
endpoints of the appropriate vertical box side, and testing whether the point of

attachment was in the upper or the lower one-third of the box side.?
Important aspects of this notation are:
1. There is only one graphical primitive required—the line segment.

2. Icons and arrows can be recognized by finding groups of line segments which

meet simple alignment criteria.

3. Determination of icon type is more complex, requiring analysis of the context

(number of incoming and outgoing arrows) of each icon.

5.1.3 Technique: parse forest and stepwise parsing

The cgraph parser is written in the constraint logic programming language CLP(R)
[67, 76, 68]). The complete source code for the program is included in Appendix A,
along with a description of the CLP(R) programming language.

The parser works by manipulating a data structure called a parse forest, which is
a collection of parse trees. Each parse tree corresponds to part of the input picture,
i.e., a subset of the primitives composing it. The leaves of the trees correspond to
input primitives, which are line segments in the cgraph case. Trees (and subtrees)
correspond to identified configurations of input primitives, which for cgraphs include
arrowheads, arrows, boxes, file icons, and the various types of process icons. All nodes
carry attributes, as in a conventional attribute grammar [28, 1].

Initially, the parse forest consists of a set of isolated leaf nodes representing the
line segments forming a picture. The parser works in steps. At cach step, which is
called a reduction, two or more trees in the parse forest are combined to form a single

tree, as descendents of a new common root node. This is done according to one of

2In retrospect, this is too restrictive. It would have been better simply to distinguish which arc
was uppermost and which was below.

119

several reduction rules which have the general form

if there are root nodes R,,...,Rn and S;,...,S, in the
parse forest whose attributes satisfy a set C'4 of constraints
then create a new root node R (of the appropriate type) whose
immediate descendents are R;,..., R,, and whose attributes
are computed from those of Ry,...,R,, and S,,..., 5,
by solving the set Cp of constraints.

Jonstraints C4 are called the applicability constraints, because they d termine the
applicability of the reduction. Constraints Cp are called the propagation consiraints,
because they control the propagation of attributes up the parse trees. (In terms of
conventional attribute grammars, the cgraph parser uses synthesized attributes only.)

After such a reduction, the nodes Ry, ..., R,, are no longer classified as root nodes
in the parse forest, but nodes Sy, ..., S, still are. The nodes S,,..., S, represent the
contert in which the nodes R,,...,R,, are reduced to R. The S; in this parsing
method are essentially the same as “remote symbols” in Golin and Reiss’s AMG,
and “existentially quantified symbols” in Helm and Marriott’s CMG (see Chapter 3).
This element of context dependency is needed to enable determination of the type of

each icon in a cgraph, as described above.

The reduction rules were easily encoded as logic procedures in CLP(R). For exam-
ple, the procedure encoding how a tree representing an arrowhead and a (one-node)
tree representing a line segment (shaft of the arrow) are combined to yield a new
tree representing an arrow is shown in Figure 5.3. The first two lines (beginning
with extract) find candidate pairs of arrowhead and line-segment objects among the
roots of the current parse forest. The next two lines check that the length of the
line segment exceeds an empirically chosen threshold. The next line calls a function
arrov.match which succeeds (returns true) if the apex of the arrowhead meets one
end of the line segment to within an empirically chosen tolerance. The CLP(R) in-
terpreter repeatedly executes the procedure until an arrowhead and line segment are
found which meet all these conditions, or until all possibilities have been exhausted.
If a match is found, the last line of the procedure combines the two matched subtrees
under a new root node of type “arrow”.

The parser works by applying reductions repeatedly, until no more are applica-
ble. Hence its output is not necessarily a single parse tree; it is just another forest.
Moreover, note that the input forest need not consist entirely of isolated nodes. In
the most general sense, the parser takes one forest as input and, provided at least

#define SHAFT_LENGTH_MIN 200

8define HEAD_SHAFT_MEET_TOLERANCE 50

reduce(arrow,Li,Ni,Ri,Lo,No,Ro) :-
extract(arrovhead(Ahead,_,Ah) ,Ri,R1),
extract(lineseg(Shaft,[],S1,52),R1,R2),
length(Si,S2,LS),
LS >= SHAFT_LENGTH_MIN,
arrow_match(S1,S52,Ah,HEAD_SHAFT_MEET_TOLERANCE,T.H),
add_root(arrow(Li, [Ahead,Shaft},T,H),Li,Ni,R2,Lo,No,Ro).

Figure 5.3: Reduction rule for arrow

some reductions are applicable, produces as its output a new forest containing fewer
and higher trees than the input forest. (If no productions are applicable, the output

equals the input.)

5.1.4 Handling reduce-reduce conflict

The simplest kind of parser built according to this “tree-building” method would
simply apply reductions irrespective of order, and stop when none of the available
reduction rules are found to be applicable. Such an “unrestricted” parser would
work only if, at every step except the terminating one, exactly one of the reduction
rules was applicable. This was not tiie case for the cgraph notation as | defined it.
The situation where a bottom-up parser must choose among two or riore applicable
reductions is called reduce--educe conflict.

In some cases, reduce-reduce conflict can be eliminated by modifying the reduction
rules themselves. For example, if the rule for process icons looks for four line segments
forming a box, and the rule for file icons looks for five line segments, four of which
form a box while the fifth cuts diagonally across its top-left corner, obviously both
rules will be applicable when the input is a file icon. However, if the rules are changed
so that there is one which combines four line segments into a “box” and another which
looks for a box and another line segment to combine into a file icon, the reduce-reduce
conflict is eliminated.

However, there were other cases with the cgraph notation where I could not find
a way of formulating the reduction rules so as to eliminate all reduce-reduce conflicts.
For example, the rule for a filter node looked for a box in the context of one incoming

and one outgoing arrow, while the rule for a sink node looked only for an incoming

120

Figure 5.4: Cgraph as seen by parser

arrow. In both rules (and indeed all process node rules), the arrows had to be treated
as context symbols and were not rewritten; this was absolutely necessary because
each arrow has two ends, and therefore would have to be found a second time when
the box at its other end was being reduced. I dealt with this problem by changing the
parsing algorithm so as to impose an order on the reductions. For cgraphs it would

first try to find all boxes, then all file icons, then all arrowheads, and so on.

5.1.5 Example: parsing a cgraph

Figure 5.4 shows a cgraph as seen by the parser. The figure has been reconstructed
from an actual input file which was produced by the pen-stroke editor by reducing
(to a set of 34 line segments) a hand-drawn cgraph similar to the figure.® A listing of
the input file is included in Appendix A. In the list of line segments produced by the
pen-stroke editor for input to the parser, the segments are numbered in the order in
which they were input. In figure 5.4, these numbers are used to label the segments.
Note that segments which belong together were not necessarily input consecutively,
e.g. in two cases the shaft of an arrow was drawn much later than the arrowhead.
Figure 5.5 shows the parse forest produced by the parser from the input illustrated
in figure 5.4. Again, this figure has been reconstructed from the actual parser output
file (a listing of which is included in Appendix A). The parser actually produces two
output files. The second one is in the format expected by IST, and can be loaded

31 was unable to find a hard-copy of the hand-drawn picture. It would have been similar, except
that the lines would not be as straight, and the numeric labels would of course not be included.

51 icon: inputfile

40 file_icon

N

34 box

N

8

53 icon: source

35 box 36 box

49 icon: merger

52 icon: outputfile

39 file_icon

N

38 box

/INN

31 27 28 29 30

50 icon: filter

37 box

4 5 6 7 10 11 12 19 20 21 22
54 arc (34,36) 55 arc (35,36)
48 W 47 arrow
41 arrowhead 42 arrowhead
13 14 15 16 17 18
56 arc i36,37) 57 arc (37,38)
46 arrow 45 arrow
43 arrowhead 44 arr/o?cad
32 23 24 33 25 26

Figure 5.5: Parse forest produced for the cgraph

just like a saved IST cgraph file. It will appear with the proper icons and the same
layout as the hand-drawn cgraph, but the icon labels (file names, command strings)
will be blank. The latter can be added using IST, at which point the cgraph can be
executed normally.

5.1.6 Comments on implementation 1

The implementation described above was intended to be simple enough to be com-
pleted in a couple of months, yet realistic enough to engage some of the problems
which would be expected in a more elaborate implementation. In that respect, it was
a success. In particular it allowed me to get some experience with the problem of
reduce-reduce conflicts, which I discuss further in Section 5.4 below, and the problem
of context dependency.

In the first prototype I was able to consider nearly all aspects of notation pro-
cessing, including preprocessing (e.g. filtering of pen-stroke data), lexical processing
(forming the list of line segments), syntax analysis (parsing), and semantic interpre-
tation (importing the result into IST). The major limitation of the prototype was
that 1 made no attempt to integrate the various phases of processing, and to deal
with interactive operation. To do so would have involved a lot of programming, and
so, rather than pursuing this aspect in a second implementation, I chose to devote all
of my efforts to developing a formalism on which to base improved implementations.

I should also note that the “parser” in the first implementation was not really a
parser, because it was not based on a grammar formalism. Rather, it was a kind of
rewriting system, and in this respect was similar to Najork and Kaplan’s CSRS (see
Chapter 3).

5.2 Implementation 2: 1994-1995

At the end of Chapter 4 I presented a short Prolog program which implements the
ASG-based acceptor algorithm suggested in the proof of Theorem 2, using the ASG
from the digrar* example discussed in Section 4.5.3. In this section I discuss con-
verting tha. .eptor program into a parser, and adding support for constraints.

My implementation experiments were all done with CLP(R), which is in many
ways a superset of Prolog. When I say that a program is “in Prolog”, I mean that it is
written in the “Prolog subset” of CLP(R), i.e., that it does not use any of CLP(R)’s

constraint features. Such programs should execute in a true Prolog environment, but
I have not verified this.

5.2.1 From acceptor to parser

The entire Prolog source code for digraph parsing is given in Figure 5.6. Compare
this with Figure 4.11.4 An extra argument has been added to each of the prod pro-
cedures, specifying which production it encodes. The accept procedure has become
accept_print, which, after each reduction, prints the new word (bound to W2, en-
coded as a Prolog term list) and the production jusi applied, numbered and with its
variables replaced by the matched attribute values.

Note that accept._print prints its results during the unwinding of the recursion;
the result is that a derivation is printed in forward order, beginning with the start word
and progressing to the word which was input. The new procedure parse is intended
to be used as a goal. It calls accept_print and then completes the derivation by
printing the input word again.

Example 23: directed graph parsing

Figure 5.7 is a transcript of a run of the parser given in Figure 5.6. The
program itself is loaded when the CLP(R) system is started up. The
goal given following the prompt “1 ?=" is an attributed set model of the
digraph given in Example 20 on page 97. The program’s output is nearly
identical to the derivation given in Example 20; there is a small difference
in the order in which the productions are applied, which does not affect
the final result.

5.2.2 Integrating constraint testing

Section 4.3.5 introduced a formal semantics of attributed sets (words) involving con-
straints. Section 4.5.5 gave an example (tree diagrams with layout constraints) show-
ing how an ASG could generate such words, which could be “realized” through a
subsequent constraint-solving process.

In the generation of attributed sets involving constraints, the constraint syimbols

could be treated just like any other symbols; their interpretation as constraints was

“4For ease of comparison, all of the program listings included as figures are reproduced, together,
in Appendix A.

%4 productions coded as prod(number,head,body)
prod(5, [n(V1),n(v2)], [n(V1),n(V2),arc(V1,v2)]).
prod(4, [(n(v1)], [n(V1) ,arc(V1,V1)]).

prod(3, [n(V1)], [n(V1),n())]).

prod(2, [n(V1)],[node(V1)]).
prod(i,[n0],[n(0)]).

% parser as seen by user: prints derivation of W if one exists
parse(W) :-
nl,accept_print(W) ,writeln(W).

% internal parser: acceptor augmented with printing functions
accept_print([n0]).
accept_print(W) :-

prod(P,X,Y),

match(Y,W,W1),

union(X,W1,W2),

accept_print(w2),

vriteln(W2),

printf("p% : % -> %\n",[P,X,Y]),

[}

% match(A,B,C)
% A is a subset of B, and C is its complement w.r.t. B
match([],B,B) :- !.
match([EIA},B,C) :-
element(E,B,B1),
match(A,B1,C).

% element (+E,+S,-T)
% succeeds if E is an element of set S; T is S minus E
element (E, [EIR] ,R).
element (E, [X{S8], [XIT]) :-
element(E,S,T).

% union(+X,+Y,?2)

% Z is union of sets X and Y

union((],X,X).

union([(X|R],Y,2Z) :-
element(X,Y,.), !,
union(R,Y,2).

union([XIR],Y,[X12]) :-
union(R,Y,Z).

Figure 5.6: Digraph parser in Prolog

125

CLP(R) Version 1.2

(c) Copyright International Business Machines Corporation

1989 (1991, 1992) All Rights Reserved
1 ?- parse([node(1),arc(1,2),node(2),arc(2,2)]).

(n0]

pl : [n0] -> [n(2)]

[(n(2)]

p3 : [n(2)] -> [n(2), n(1)]

(n(2), n(1)]

P4 : [3(2)] -> [n(z)’ arc(2, 2)]

[(n(1), n(2), arc(2, 2)]

p5s : [n(1), n(2)] -> [n(1), n(2), arc(1, 2)]
[n(2), n(1), arc(1, 2), arc(2, 2)]

p2 : [n(2)] -> [node(2)]

[n(1), arc(1, 2), node(2), arc(2, 2)]
p2 : [n(1)] -> [node(1)]

[node(1), arc(1, 2), node(2), arc(2, 2)]

»%% Yeas

Figure 5.7: Sample run of the Digraph parser

126

defined as a separate issue of semantics. In theory, the same is true for pars_..g. In
practice, however, a parser will have to work with a database produced by some kind
of graphical editor, which would normally contain only mark symbols with constant
attributes.® That is, the parser’s input will be comparable to a word which has been
generated by the ASG and subsequently realized as a ground word. Furthermore,
however, all the constraint symbols will have been stripped out of this ground word.

This does not greatly complicate the parsing process, however. The parser need
only test, before reducing according to a production X — Y, that all constraints
in Y are satisfied by the constant attributes of the input symbols matched with
Y. This was the approach used in my first implementation, and it works equally
well for the second one. In CLP(R), constraints can be used as goals, so we can
encode productions as rules where the rule head encodes the non-constraint aspects
and the rule body encodes the constraint aspect. In effect, this integrates constraint
testing into the parsing algorithm by making each reduction step conditional upon
successful satisfaction of the constraints. This is essentially the same technique used
by Wittenburg et al. in their Relational Language parsers, Golin and Reiss in their
AMG/PLG parser, and Helm and Marriott in their CMG parsers (see Chapter 3).

Figure 5.8 gives the CLP(R) code for a parser for the binary tree diagram language
given in Section 4.5.4, which integrates testing of constraints. Note that this listing
is incomplete; the procedures match, element, and union are unchanged from Figure
5.6 and have been omitted.

New rules have been added to represent the constraints equal, sum, and mid. The
encoding of productions via prod rules has been changed again, adding an argument
params by which the symbolic environment variables DX, DY, PX, and PY could be
bound to constants once and thereafter treated as global constants.® Corresponding
changes have been made to parse and accept.print. Note how the all of the con-
straint symbols from each production body have been placed into the body of the

corresponding prod rule, thereby becoming subgoals.

8Some kinds of graphical editors allow the user to specify alignment constraints for a picture.
These kinds of editors could conceivably supply a “higher-level” picture description to a parser.

SFor parsing, these are not really environment variables any more but true constants, analogous
to the empirically chosen constants in the first parser implementation. The constant values could
bave been placed directly into the prod rules, obviating the need for the new param argument. This
coding technique, however, is cleaner and facifitates experimental adjustm *~t of the constants.

127

% constraints
equal(A,B) :- A=B.
sum(A,B,C) :- A=B+C.
mid(A,B,C) :- A=(B+C)/2.

% productions coded as prod(number,params,head,body)
prod(3, [DX,DY],
[subtree(X,Y,LX,RX)],
[node(X,Y),subtree(CXP,CY,LX,RXP),subtree(CXDP,CY,LXP,RX),
arc(X,Y,CXP,CY),arc(X,Y,CXDP,CY)]
) :- sum(CY,Y,DY), sum(LXP,RXP,DX), mid(X,CXP,CXDP).
prod(2,[_,DY],
[subtree(X,Y,LX,RX)],
[node(X,Y),subtree(X,CY,LX,RX),arc(X,Y,X,CY)]
) :- sum(CY,Y,DY).
prod(1,[_,_],
[subtree(X,Y,LX,RX)],
[node(X,Y)]
) :- equal(X,LX), equal(LX,RX).

% parser as seen by user: prints derivation of W if one exists
parse(PARMS ,W) :-
nl,accept_print(PARMS,W) ,writeln(W).

% internal parser: acceptor augmented with printing functions
accept_print(_,[subtree(_,_,_,.)]).
accept_print (PARMS,W) :-

prod(P,PARMS,X,Y),

match(Y,W,W1),

union(X,W1,W2),

accept_print(PARMS,W2),

writeln(W2),

printf("p% : % -> %\n",[P,X,Y]),

. .

Figure 5.8: Integrating constraint testing into the parser

129

test :- PX=0, PY=0Q, DX=4, DY=4,
equal (X1,LX),equal(LX,X2),sun(Y2,Y1,DY),equal(X4,X6),
equal (X5,X4), equal(X8,RX),equal(X7,X8),sum(Y3,Y1,DY),
mid(X3,X5,X7),sumn(X8,X6,DX), sum(Y1,PY,DY),mid(PX,X1,X3),
sum(X4,X2,DX),
writeln([node(PX,PY),arc(PX,PY, X1,Y1),arc(PX,PY,X3,Y1),
node(X1,Y1),node(X1,Y2) ,node(X3,Y1),arc(X1,Y1,X1,Y2),
arc(X3,Y1,X5,Y3) ,arc(X3,Y1,X7,Y3) ,node(X5,Y3) ,node(X7,Y3)]).

go :~ parse({4,4],(
node(0, 0), arc(0, 0, -3, 4), arc(0, 0, 3, 4), node(-3, 4),
node(-3, 8), node(3, 4), arc(-3, 4, -3, 8), arc(3, 4, 1, 8),
arc(3, 4, 5, 8), node(1, 8), node(5, 8)
.

Figure 5.9: Constructing test input for the binary tree diagram parser

Example 24: Parsing a binary tree diagram

Figure 5.9 shows some CLP(R) code used to set up a test of the binary

tree diagram parser listed in Figure 5.8 above.

My objective was to test the parsing of the binary tree diagram illus-
trated in Figure 4.8 on page 101, represented by a ground version of the
attributed set model given in Example 22. Execution of the goal test
produces such a ground word (with no constraint symbols), by solving
the set of constraints taken from Example 22. Evaluation of test as a
goal yields the ground word (encoded in Prolog/CLP(R) list form) from
which the rule go was constructed. Evaluation of the goai go yields a

derivation very similar to that given in Example 22.

Figure 5.10 is a transcript of a CLP(R) session (edited by adding spaces
and line breaks to make it easier to read) showing execution of the goal go
in context of the program listed in Figure 5.8. The derivation produced is
similar to that given in Example 22; the only differences are in the order
of production applications, which do not affect the final result. (A more

complete transcript appears in Appendix A.)

The example above is contrived in the sense that I had to apply some programming

(the goal test) to construct an input word which the tree diagram parser would

130

2 7- go.
[subtree(0, 0, -3, 5)]

p3 : [subtree(0, 0, -3, 5)] -> [node(0, 0), subtree(-3, 4, -3, -3),
subtree(3, 4, 1, 5), arc(0, 0, -3, 4), arc(0, 0, 3, 4)]

[subtree(3, 4, 1, 5), subtree(-3, 4, -3, -3), node(0, 0),
arc(0, 0, -3, 4), arc(0, 0, 3, 4)]

p3 : [subtree(3, 4, 1, 5)] -> [node(3, 4), subtree(l, 8, 1, 1),
subtree(5, 8, 5, 5), arc(3, 4, 1, 8), arc(3, 4, 5, 8)]

[subtree(5, 8, 5, 5), subtree(i, 8, 1, 1), subtree(-3, 4, -3, -3),
node(0, 0), arc(0, 0, -3, 4), arc(0, 0, 3, 4), node(3, 4),
arc(3, 4, 1, 8), arc(3, 4, 5, 8)]

pl : [subtree(S, 8, 5, 56)]1 -> [node(5, 8)]

[(subtree(i, 8, 1, 1), subtree(-3, 4, -3, -3), node(0, 0),

arc(0, 0, -3, 4), arc(0, 0, 3, 4), node(3, 4), arc(3, 4, 1, 8),
arc(3, 4, 5, 8), node(5, 8)]

pl : [subtree(1, 8, 1, 1)] -> [node(1, 8)]

[subtree(-3, 4, -3, -3), node(0, 0), arc(0, 0, -3, 4),

arc(0, 0, 3, 4), node(3, 4), arc(3, 4, 1, 8), arc(3, 4, 5, 8),
node(1, 8), node(5, 8)]

p2 : [subtree(-3, 4, -3, -3)] > [node(-3, 4), subtree(-3, 8, -3, -3),
arc(-3, 4, -3, 8)]

[subtree(-3, 8, -3, -3), node(0, 0), arc(0, 0, -3, 4),

arc(0, 0, 3, 4), node(-3, 4), -~ "o(3, 4), arc(-3, 4, -3, 8),
arc(3, 4, 1, 8), arc(3, 4, 5, ¢,, node(1, 8), node(5, 8)]

pl : [subtree(-3, 8, -3, -3)] -> [node(-3, 8)]

[node(0, 0), arc(0, 0, -3, 4), arc(0, 0, 3, 4), node(-3, 4),
node(-3, 8), node(3, 4), arc(-3, 4, -3, 8), arc(3, 4, 1, 8),
arc(3, 4, 5, 8), node(1, 8), node(5, 8)])

x%x% Yes

Figure 5.10: Sample run of the tree diagram parser

accept. This is because the constraints in the tree diagram grammar of Section 4.5.5
were designed for generation, not for parsing, and hence are too unforgiving. I chose
to use this example as it is, however, because it is directly cqmparable to the ASG
and example given in Section 4.5.5.

For parsing in practice, we would use a slightly different set of productions in
which the constraints were relaxed, e.g. using inequality tests against empirically
chosen constants (as in Implementation 1 above) in place of exact equality testing.
Essentially this would involve changing the rules for goals equal, sum, and mid in the
program.’

This suggests an interesting application. Suppose we were to construct a pair of
ASG’s Tgen and I'paree for some notational system, identical except that the former
used tight constraints suitable for picture generation, while the latter used looser
constraints suitable for parsing. Given a rough sketch of a notation, we could parse
it according to I'pamse and then re-generate the notation by deriving it in Uy, by
applying the derivation sequence (of production numbers and assignments) found in
the parse. This would be a form of beautification [107] for notations.

5.3 Data structures for ASG-based parsing

In this section I consider some of the requirements of a data structure for parsing
attributed set languages defined by ASGs. A detailed treatment of this issue is
beyond the scope of this dissertation and is left for future study.

The principal data structure used in my first prototype notation parser was the
parse forest, described in Section 5.1.3 above. The parse forest is a set of parse
trees, which the parser merges by creating new root nodes. To apply the parse forest
concept to ASG-based parsing, we should first specify that the forest conmsists of
“partial” parse trees, whose root node need not represent a symbol of the start class,
i.e., the class of the single symbol in the start word of the ASG. It is worth noting at
this point that in notation parsing applications, the start class need not represent an
entire notation; the ASG could be defined so that the start class represents a symbol
or common sub-structure used in notations. This is discussed further in Section 5.5

below.

"This is not quite sufficient, because there are places in the grammar where duplication of a
variable in a production in effect implies an equality constraint, which would have to be reformulated
as a test for approximate equality for parsing.

The tree structure arises naturally for “context-free” reductions, where one or
more attributed symbols are rewritten as a single symbol. For “context-sensitive”
reductions, where one or more attributed symbols are rewritten as a single symbol
within a specified contezt, we can still use a tree structure (as 1 have done in the first
implementation), by allowing the newly-created root node to contain special pointers
to the nodes representing its context, but not making the context nodes children of
the new root node in the usual sense. (The distinction is that after the reduction is
performed, the context nodes are still roots, while the children of the newly-created
root node are not.) As mentioned earlier this is analogous to Golin’s notion of remote
symbols and to existentially quantified symbols in the work of Helm and Marriott.
Allowing the use of context pointers, in effect, turns a tree structure into a directed
acyclic graph.

For general reductions, e.g. a reduction which rewrites three symbols as two new
symbols, tree structures are inadequate. One approach is to generalize from a tree to
an acyclic hypergraph. A hypergraph is a generalization of a directed graph, where
the concept of an arc or “edge” is generalized to a “hyperedge” having arbitrarily
many incoming and outgoing “tentacles”, each of which can attach to a node. An
ordinary digraph arc is a special case of hyperedge, having exactly one incoming and
one outgoing tentacle. (For more details concerning hypergraphs, see [63] and [29].)

In the usual kind of parse tree, each arc represents a reduction. In a “parse
hypergraph”, each hyperedge would represent a reduction.® For incremental parsing,
we can generalize from a single parse hypergraph to a multli-component hypergraph),
i.e., a set of hypergraphs which the parser combines in a manner analogous to the
combining of trees in a parse forest. As in the forest case, certain nodes are considered
“roots” and are thus visible to the parser as candidates for combination via reductions.
Reductions always introduce one new hyperedge and cause the nodes pointed to by
its outgoing tentacles to no longer be considered roots. Unlike the forest case, a single
reduction may create more than one new root.

Either the forest or the multi-component acyclic hypergraph data structures can
be extended to keep track of multiple possibilities. This is discussed briefly in the
next section.

81t is worth noting that the dual of a parse hypergraph is an ordinary digraph whose nodes
represent reductions and whose arcs represent attributed symbols. This may be easier to represent
as a data structure.

132

5.4 Handling reduce-reduce conflict and ambiguity in ASG-based parsing

The parsing algorithm introduced in acceptor form at the end of Chapter 4, and
developed further in this chapter, uses backtracking to explore a tree of possible re-
duction sequences. Each path in the tree represents a different sequence of reductions;
those sequences which end in a word matching the start word of the ASG in question
qualify as derivations of the input word.

There would be no need for backtracking if, for any input, at most one reduction
were applicable at every stage of the rewriting process. The need for backtracking
arises because the ASG used by the parser may, in general, have one or both of the

following two properties:

1. When it is possible that the parser may find more than one reduction applicable
at some point in its rewriting process, we say the ASG has inherent reduce-

reduce conflict.

2. When more than one sequence of reductions terminates with a word matching
the start word of the ASG, we say the ASG is ambiguous.

Reduce-reduce conflict causes branching in the search tree. Ambiguity means that

some words in the language of the ASG have multiple derivations.

5.4.1 Reduce-reduce conflict

Reduce-reduce conflict primarily affects parsing efficiency. All it does is create more
paths in the search tree, which is explored exhaustively in the full backtracking algo-
rithm.

In the second prototype parser, [found it useful to order the prod rules represent-
ing productions in such a way that reductions which rewrote several symbols would
be favoured over those rewriting fewer symbols. This allowed quicker convergence to
a solution for input words in the language but had no effect on efficiency for words
outside the language.

In the first prototype, reduce-reduce conflict was more of a problem, as was de-
scribed above. This was mainly because the first prototype did not make very effective
use of backtracking. As already mentioned, the first prototype was not a true parser,
but simply a rewriting system. Because it was not based on a grammar formalism,
it had reduction rules but no start word. As a result the “parser” had no goal, and

could not backtrack because there was no criterion of success or failure.

133

This kind of situation is bound to occur in interactive applications, if we would
like to perform some reductions even when the input is incomplete, i.e., cannot yet
be reduced to the start word of the ASG. This is discussed further in Section 5.5.

5.4.2 Ambiguity

When a word has more than one derivation in an ASG, a full backtracking parser
will find them all. The second prototype is not a full backtracking parser, however,
because of the cut at the end of the accept print procedure.® Hence it will report
at most one derivation for any input.

Most of the ASGs used as examples in this dissertation are ambiguous. In the
examples in this chapter, the parser in every case reported a derivation which was
slightly different from the derivation given in the corresponding example in Chapter
4. The differences, however, were slight, nothing more than permutations of the
derivation steps.

In practical applications, ambiguity need not be a problem; it depends on how we
choose to interpret derivations. In the next chapter I suggest that interpretation be
done, as in compilers, via semantic actions associated with (certain) reductions. If the
ambiguity is such that all of the derivations of an input word are just permutations of
a common set of reductions, we may be able to ignore it if we can define the semantic
actions such that they are order-independent. Furthermore, if semantic actions are
associated only with certain key reductions, differences other than permutations might
also be ignored, assuming this were appropriate.

In an interactive context, multiple derivations of a given input might give rise to
different feedback to the user, who could then choose the most appropriate one. This
is discussed briefly below, and further in Chapter 6.

®The cut is used primarily to avoid infinite recursion with uninstantiated variables, which 1 now
realize could be eliminated by using the built-in ground predicate to fail in such situations. It does
greatly simplify the recovery of derivations, however.

134

5.4.3 Dealing with reduce-reduce conflict and ambiguity

I can suggest six ways to approach the problems of reduce-reduce conflict and ambi-

guity in practice:

1. Modify the grammar: In some cases ambiguity can be eliminated by changing

the grammar, e.g. by introducing a new nonterminal symbol.

2. Program the grammar: One can ensure that only certain programmed se-
quences of reductions will be applied. This is a powerful technique but cor-
responds in theory to programming the grammar, the effects of which may be
difficult to analyze (and which are certainly beyond the theory of ASGs as

developed in this dissertation).

3. Ask the user: In an interactive context, the user might be informed of the
ambiguity and asked to choose among the various possibilities, either by cycling

through them or by choosing from an auxiliary “menu”.

4. Search breadth-first: In an interactive application, if we want to perform some
reductions even when the input is not yet complete, we might use the user-query
method just mentioned. Replacing the usual depth-first search backtracking
strategy with a breadth-first one might present choices to the user in a more

appropriate order.

5. Track multiple possibilities: The user-query method will be unacceptable if too
many queries are generated. The parser would ideally keep track of a number of
possibilies, automatically rejecting those which, following editing changes made

by the user, are found to be untenable.

Tracking of multiple possibilies will require extensions to the parser’s primary
data structure, which might be a forest or a multi-component acyclic hypergraph
as described in the previous section. One possibility is to permit several arcs or
hyperedges representing possible reductions to be added,'° perhaps linked into a list
to indicate their relationship as a set of mutually-exclusive possibilities. 1 cannot at
this point suggest how these extra possibilities would be automatically deleted from

the structure; this will require experience and is an area for future investigation. In

1%In the forest case the forest becomes a multi-component directed acyclic graph. In the hyper-
graph case there is no change to the logical structure.

135

the next section I make some suggestions concerning how multiple possibilities might
be presented in the user interface.

5.5 Parsing in an interactive context

The two prototype parsers discussed above are batch parsers—they receive all of
their input at once. In interactive applications, where the user edits a notation over a
period of time, it may in some instances be useful to be able to begin parsing before
the notation is complete, perhaps even updating the result of the parse as editing
changes are made. This is called incremental parsing.

I envisage using ASG-based parsing, together with a simple graphics editing ca-
pability, as an input technique for notations. For example, in a computer-aided design
(CAD) system for electronics, the user might use a graphics tablet to sketch circuit
diagrams, rather than having to select component symbols from a large on-screen
palette as is common in CAD today. With incremental parsing, the user’s sketched
symbols might be recognized as soon as they were completed, and immediately re-
drawn to inform the user of their successful recognition.

Incremental parsing introduces three problems which are not present in batch
parsing:

1. The need to parse smaller units, e.g. individual component symbols instead of
complete circuits in the electronics CAD example, and later combine the results

of parsing in some way.

2. The need to handle deletions. When symbols are deleted from the input, the
parser must respond by retracting any parsing decisions which depend on those

symbols.

3. The need to back-track automatically when newly-added data are incompatible
with previous parsing decisions. E.g., in the cgraph example, four line segments
forming a box might be interpreted first as a process icon, but addition of a

diagonal slash would clarify the user’s intent to input a file icon.

The parse forest used in the first prototype was designed primarily to address the
problem of combining smaller parsed structures into larger ones. In designing this

structure | was strongly influenced by Lee’s work on incremental parsing of programs

136

[86)."" It is conceivable that the parse forest approach could be used interactively.
Newly-added input data would create new single-node trees in the forest (one per
graphical primitive). Re-application of the basic parsing algorithm (applying as many
reductions as possible) would then build up additional trees having these new nodes
as leaves.

Wittenburg [153) has proposed a straightforward approach to handling deletions.
His basic data structure is a table (called a chart) containing enties for input elements
plus constituents—entries indicating partially or completely matched reduction rules.
Each constituent entry has an attribute called its cover, which identifies the subset of
input primitives upon which it depends. When a primitive is deleted, all constituents
whose cover contains that primitive are deleted also. A similar approach could be
applied with a parse forest—deleting a leaf node would cause any nodes which were
ancestors of that leaf, or which pointed to it as context, to be deleted also.

The third problem is the most subtle. In the parse forest technique, the parser
looks only at the current set of roots in the parse forest. Once part of the input has
been parsed the corresponding nodes in the forest are no longer roots. For instance,
imagine that in the cgraph example suggested above, four line segments have been
reduced to a boz node, and this has been further reduc- 4 to some kind of process-icon
node. A diagonal slash is then added. The parser is unable to reduce this new object
because ti.» bozr node with which it might be reduced is no longer a root. The solution
is to delete the process-icon node, but how is the parser to know this? Faced with

new input which it cannot reduce, the parser could
1. discard all but the leaf nodes and re-build the parse forest, or

2. discard leaf nodes corresponding to parts of the input picture in the neighbor-
hood of the newly-added object, or

3. ask the user to identify which parts of the picture need to be re-parsed to
incorporate the added material.

The problems of incremental parsing are interesting, but it is not clear that they
will be worth solving for practical notation processing systems. Incremental parsing
techniques have been tried for interactive programming environments (see Section

1Lee’s approach, described in kis 1986 Master's thesis, was actually much more ambitious.
Whereas my first prototype allowed trees to be combined only by their roots, Lee suggested raech-
anisms which allowed more general merging of sub-trees.

137

2.5), but have not come into widespread use. Today, a typical programming envi-
ronment permits the user to edit program units as text, and at any time activate a
compiler, linker, etc. which operates as a batch process. Incremental techniques offer
little advantage in such systems for two reasons:

1. With the exception of very large programming projects, the turnaround time

for batch compilation is often acceptable.

2. The user has considerable control over turnaround time by choosing how large
programs are to be divided into separately-compilable units.

Similar conditions may prevail in notation processing The ASG-based batch
parsing algorithm discussed above has exponential time complexity, and hence is in-
herently less efficient than parsing algorithms used in compilers. However, notations
will typically be small compared with programs—perhaps a few hundred graphical
primitives as opposed to many thousands of lines of code. The guided parsing tech-
nique suggested in the next section would afford users the choice to divide the parsing
of a large notation into parts, which is analogous to separate compilation.

The applicability and value of incremental parsing may also depend to some
extent on the notational system used in an application. In some systems, such as
symbolic mathematics, notations (e.g. equations) have such a regular, recursively
defined structure that it makes sense to parse whole notations. In other systems, such
as music, the meaning of notations is determined much more by semantic aspects than
by syntax (structure). In such cases, it might be more appropriate to use parsing
to identify meaningful subunits of the input (e.g. clefs, notes, accidentals, etc. in
music), but leave the task of combining these subunits into a meaningful whole to the
semantic level of processing. This is discussed further in Chapter 6. For both kinds of
notational systems, incremental processing of some kind is required in an interactive
system. However, whether it is the parsing or the semantic interpretation (or both)

which is incremental might depend on the application.

5.6 Guided parsing

Parsing algorithms are often characterized as “top-down” or “bottom-up”. A top-

down parser attempts to construct a derivation for its input in forward order, by

138

repeatedly applying productions, beginning with the start word'? and continuing
until the entire input is reconstructed. A bottom-up parser attempts to construct a
derivation in reverse, by repeatedly applying reductions, beginning with the entire
input and continuing until only the start word remains. Both prototypes discussed in
this chapter are bottom-up parsers, and hereafter I restrict my attention to bottom-up
approaches.

‘These descriptions are adequate for batch parsing, but in an interactive context

other possibilities become apparent:

1. The user might be given control over how long a sequence of reduction steps is

applied, i.e., we clarify the meaning of the word “repeatedly”.

2. The user might choose a subset of the input for parsing, i.e., we relax the

absoluteness implied by the words “entire input”.

[use the term guided parsing to describe the use of both of these variations.

Graphical editor programs commonly provide a means for the user to select or
highlight a subset of the graphical primitives in a picture, in order to perform some
operation on that subset. In a notation processing application of the kind I envisage,
parsing would simply be one more operation which could be applied to the current
selection. Each reduction step might have associated user feedback, e.g. the user’s
roughly-sketched notational symbol might be replaced in the display by a neater-
looking one drawn by the computer. Changes of colour, line style, etc. could also be
employed.

Consider the cgraph notation, and imagine a fully integrated, interactive cgraph
processor application with a pen-stroke editor for input. Having sketched some
amount of new input, the user might use the editor’s selection mechanism to highlight
four line segments and activate the parser to perform one reduction step, yielding a
bor node in the parse forest and replacing the user’s four line segments with a neatly
drawn rectangle. A second activation of the parser might reduce the boz to a source,
filter, etc., and replace the rectangle with the appropriate icon. The question of which
applicable reduction to perform might at this point be put to the user; perhaps the

user might be able to cycle through the choices, seeing the various icons appear in

121 use the ASG term. For string-generating grammars one would say “start symbol” or “initial
letter™.

139

turn, or perhaps a menu containing all of the icons might be popped up, from which
the user would choose in one step.

The user might also be permitted to select an icon in the display and activate
an “un-parse” function to undo the appropriate reduction(s) and restore the origi-
nal four line segments. The parse/unparse operations are similar in concept to the
group/ungroup operations available in most graphics editors, and would probably be
as easy to use,

The two preceding paragraphs suggest that a guided parser would perform exactly
one reduction at a time, but this is not the only possibility. In the cgraph example,
there is no reason why, having selected four line segments forming a rectangle, the user
could not be presented immediately with a choice of icons. The fact that the gratimar
requires such a rewriting to be performed as two distinct reductions is immaterial.

Multi-reduction sequences might be defined in either of two ways:

1. Certain nonterminals in the ASG could be designated as “interesting”. The

parser would apply reductions until one or more “interesting” symbols were

obtained.

W

Certain sequences of reductions might be programmed into the parser. These
sequences could either be chosen by the system designer, or, potentially, learned

automatically by the system from observations of user behaviour.
The guided parsing approach offers four advantages:

1. The exponential time complexity of the backtracking ASG-based parsing algo-
rithm is “tamed”, because the user is allowed to choose how much of the input

is parsed at one time.

2. The user may add any amount of annotation, decoration, notes, ete. to nota-

tions, and simply never select their component input primitives for parsing.

3. Ambiguity and reduce-reduce conflict are less serious, because the guided pars-

ing technique allows the user to specify reduction choices in a natural way.

4. Cognitive overhead is reduced, because the user can defer parsing for as long
as is desired. The user can sketch and edit freely while concentrating only on
getting the input picture correct, and then spend a short time concentrating

only on getting the parsing right before continuing the creative work.

Some of the issues raised in this section are discussed further in Chapter 6.

1410

5.7 Summary and Conclusions

Attributed sets representing notations can indeed be parsed. 1 have demonstrated

two prototype attributed set parsers, one of which predated the ASG paradigm and
a second which is based upon it. Fully integrated, interactive implementations of
attributed set parsers would have to deal with reduce-reduce conflict and ambiguity
and, to some extent, would have to operate incrementally. The notion of guided
parsing provides a useful approach for dealing with all of these issues within an
integrated, interactive notation processing system. Data structures such as the multi-
component acyclic hypergraph may be useful in such implementations, but further
experience is needed to design suitable management techniques, especially to deal

with multiple candidate reductions.

Chapter 6

A Generic Design for Interactive Notation Processors

In this chapter I propose a generic design for interactive notation processing applica-
tions, which can be customized for particular notations and applications. 'T'he design

is based on concepts used and proven in interactive programming environments.

NOTE: The ideas presented in this chapter are far-reaching and will re-
quire much further development. [include them in this dissertation be-
cause they have guided my research and will provide directions for future

tnv-- ‘aation.

6.1 INPs and concept of a generic design

I am interested in designing interactive computer programs, where a substantial part
of the information communicated between user and computer takes the form of nota-
tions, as defined in Chapter 1. I call such programs “interactive notation processors”
(INPs). Examples of INPs (and their corresponding notational systems) include the

following:

e Computer-aided design (CAD) systems for electronic circuit design (standard

electrical ¢ rcuit diagrams, logic diagrams).

¢ Symbolic or numerical mathematics systems (positional mathematical notation,

equations and/or inequalities).

e Interactive systems for music - .iing, composition, andfor analysis (common

musical notation, percussion notations, other specialized music notations).

e Graphical programming systems (a graphical programming language).

142

o Technical document preparation systems (any notation which is to be pub-
lished).

In the past, systems of this kind have been constructed in one of two ways:

e A text encoding of the notation is devised, and the application accepts and

parses text files in this format.

e A special-purpose graphical user interface (GUI) is developed, permitting direct

manipulation of a notation on a display screen.

The first approach has many advantages, not least of which is the fact that until
tecently good quality, inexpensive, graphical I/O devices were rare. Perhaps the
biggest advantage is that a program accepting text input does not have to provide an
editing interface of its own; any standard text editor can be used. This simplifies the
task of creating new applications. It also frees users from the necessity to learn “yet
another editing command language”, but only by forcing them to learn “yet another
special-purpose input language”.

The second approach, used primarily for CAD systems, has the advantage that
it allows users to work with the notations they already know, but the cost in devel-
opment time is very high. Command languages for such systems also tend to be very
complex, primarily because the input to the system is in fact the sequence of editing
commands, interpreted in (various kinds of) context; the notation which appears on
the screen is produced as a by-product of the command processing.

In this chapter I propose a third approach, which combines the advantages of the
other two while avoiding their drawbacks. The ideas presented here are not specific
to any particular notational system or application. By considering features which will
be common to most INPs, I attempt to develop a generic INP design, which can be
customized or tailored to specific applications and notational systems.

A well thought-out generic design can simplify the process of developing new ap-
plications, and encourages the development of new tools and reusable program com-
ponents to streamline the instantiation process. Probably the most striking example
of a successful generic design is that of a compiler, which today is customized for
new programming languages and target systems using tools such as lexical-analyzer
generators, parser generators, and even code-generator generators. Other examples
of successful generic designs are filters under the UNIX operating system, and stan-

dardized GUIs which are being incorporated into all modern operating systems.

143

1

6.2 Development of a generic design

My proposal for a generic INP design is based on four observations. The first three
relate to program development systems, the fourth to standardized GUI management

systems.

1. A compiler translates one complex language to another using the method of
syntaz-directed translation, which breaks down into lerical, syntactic, and sc-
mantic processing phases. Most INPs will involve translation of an input nota-
tion into an internal data structure representing its meaning, and the concept

of syntax-directed translation can be applied to this kind of translation also.

2. Interactive programming environments (IPEs) make better use of programmers’
time, and are easier to use than batch-type systems. Hence an IPE is a better

model than a compiler, upon which to base a generic INP design.

3. IPEs based on tertually-oriented program editing are easier to understand and
use than those based on syntar-directed program editing. Hence the former,
suitably modified to graphically-oriented notation editing, is the better model

upon which to base a generic INP design.

4. In modern operating systems for workstation and personal computers, inter-
active programs requiring text input can make use of system-supplied visual
text editing facilities, thereby acquiring a powerful and widely-understood in-
put editing capability and advanced features such as cut and paste, without the

need for any special code.

The notion that translating a notation into a data structure which captures its
meaning is similar to compiling a prograin is at the heart of all of the research ini-
tiatives described in Chapter 3, as well as my own research. The three distinguished
phases of processing in a compiler have obvious analogues in notation translation, as

follows:

The lexical phase for notations is the conversion of graphical primitives into at-

tributed terminal symbols suitable for parsing.

The syntactic phase is parsing according to an ASG for the chosen attributed set

representation of the notation.

The semantic phase is construction of the data structure which captures the mean-

ing of the input notation.

Although the lexical phase is beyond the scope of this dissertation, I have con-
sidered some lexical aspects for notations in the course of my work-—see [41]."! This
dissertation concentrates primarily on the syntactic phase.

In a typical modern compiler, the grammar for the input language is augmented
with attributes which carry semantic information. Semantic processing takes place
under the control of semantic actions associated with each grammar production,
which are executed whenever a reduction is made according to that production (see
[1]). The ASG formalism already provides for attributes, and, as described in the
next section, semantic actions triggered by reductions can also be used for semantic
processing of notations.

If compilers represent a good paradigm upon which to base a generic design
for INPs, IPEs represent a better one. This is primarily because the compiler-like
aspects of INPs are less important (to the development of useful systems) than the
interaction aspects. As mentioned in Chapter 5, notations are likely to be small
compared with computer programs, and hence the complexity of parsing is not such
a pressing issue. But consider the INP applications suggested at the beginning of
this chapter. Each one is the kind of system which people would use extensively for
creative work. Hence interaction issues—primarily user productivity and cognitive
overhead—will be very important to the success of INPs. Implementing notation
editing, parsing and interpretation in anything but a tightly-integrated, seamless
interactive environment is simply out of the question.

The notion of extending the IPE paradigm to structures other than text and
conputer programs is not new. Fraser [48, 49] proposed a “generalized text editor”
for arbitrary data structures, Scofield [128] extended this concept to multiple editors,
cach associated with different classes in an object-oriented system, and Notkin [103]
described how an entire operating system could be built around the concept. All three
authors, however, were primarily concerned with textual encodings of data structures,
and syntax-directed editing.

In all truly integrated IPEs the primary GUI looks and behaves like a visual

editor. In almost all IPEs, this is a syntax-directed program editor, which can only

1The interested reader should also consult [21] for a perceptive overview of lexical aspects in
visual language processing.

145

manipulate programs (not arbitrary texts) and in which editing commands effect
syntactic transformations. This paradigm has been heavily criticized (see e.g. [147}),
mainly on the grounds of cognitive overhead. Briefly, the argument is that syntax-
oriented commands make common editing operations much harder to perform than
they would be under an ordinary text editor. The logical alternative is to create an
IPE whose program editor works like an ordinary text editor, and uses incremental
parsing techniques to update an internal representation of a program’s syntax as it
is edited. This approach is described in detail by Lee [86].

The argument against the syntax-directed approach is just as strong for notations
as it is for programs. Géttler [61] has described implementations of syntax-directed
diagram editors; to me they sound difficult to use. The alternative is to implement
INPs as graphically oriented notation editors, whose primary GUI is a fairly conven-
tional graphics editor, linked with a parsing capability which updates an internal
representation of a notation’s syntax as it is edited.

Syntax-directed editors do offer some useful features. For example, the user can
ask the system to insert a “template” for a given syntactic unit (e.g. program, pro-
cedure, expression) and then edit its particulars. Or, having selected some part
of the text, the user can request that the selection be expanded to encompass the
next-larger complete syntactic unit. Both of these features can easily be provided
in a textually-oriented program editor, however. Similarly, syntax-oriented editing
features for notations can be provided within a graphically oriented notation editor.

For pen-based computer systems, there is another compelling argument in favour
of the graphically-oriented approach: it is far easier to draw symbols and notation
structures than it is to specify them via syntax-oriented editing commands. At issue
is the question of how best to utilize the pen input device, which is coupled to the
inherent dexterity of the hand and fingers. Allowing the user to simply draw is
the obvious approach. In the early 1990s several papers were published concerning
“gestural” input techniques (see (73, 85]), involving detection and discrimination of
coordinated pen movements; such techniques have not come into widespread use.

Today’s operating systems offer reusable, standardized GUI components ranging
from simple buttons buttons, pop-up menus, etc. to text editing subwindows. The
latter greatly simplify the implementation of text-based applications. The generic INP
design described in the next section includes a standard graphics editor component,

which provides similar benefits for INP applications.

146

core
application

application
data

wﬁ,‘gf,w other (application-specific) windows
-
graphics
editor
—
parser
graphics parsing
data data
> lexical
analyzer

Figure 6.1: Schematic of the generic INP design

6.3 The proposed generic INP design

Figure 6.1 is a schematic diagram of my generic INP design, illustrating the major
software components and how they communicate. The INP presents one or more
windows on the screen. One window (or subwindow) looks and behaves as a simple
graphical editor; the others contain GUI components specific to the application. The
user may at any time select parts of the picture in the editor window and activate
parsing on them, using the guided parsing method as described in Chapter 5. When
certain reductions are performed, associated semantic actions cause messages to be
sent to the core application, which responds by updating its internal data structures

and/or sending return messages to the editor and/or the parser.

147

User interface issues for INPs are discussed in Section 6.5 below. 1 have addressed
detailed design of the graphics editor module in a 1992 report [10]; hence 1 mention
only a few key features here. The remainder of this section focusses on conumunication
among the various components of the generic design illustrated in Figure 6.1.

The graphics data component in Figure 6.1 is a database of graphical primitives
which together form one or more pictures. It should be possible to save the graphics
data for a picture into a disk file and later restore it, and also to import and ex-
port such data (from the edit window to another owned by the same or a different
application), under user control, via a cut and paste mechanism.

The parsing data component is the parser’s representation of the current picture
and its syntactic structure. Suggestions for appropriate data structures were made in
the previous chapter (Section 5.3). Maintaining the lowest-level parts of the parsing
data structure as editing changes are made, including appropriate foriat conversions,
is the job of the lezrical analyzer component, which is automatically activated very
time new objects are added to the graphics data base.

The lexical analyzer assigns unique identifiers, which I call handles, for nodes
it creates in the parsing data structure, and passes these back to the graphics data
structure as attributes of graphics objects. This mechanism allows the graphics editor
to identify its current selection to the parser, using the appropriate handles, and to
respond to commands from the parser to delete or modify graphics objects identified
by their corresponding handles.?

The application data component represents any data structures used by the core

application. These are maintained entirely by the core application. Like the graphics
data structure, the application data structures may contain references to objects in
the parsing data component, in the form of handles as just discussed. (Handles for the
lowest-level nodes in the parsing data structure are assigned by the lexical analyzer;
the parser assigns handles for the rest.) This allows the application to identify objects
in commands to both the parser and editor.

The edit window (which might be a sub-region of a larger window) presents, via
the graphics editor module, a graphical view of the picture(s) stored in the graphics

data module. User input associated with the edit window (and system input arising

2My first prototype used handles. The pen-stroke editor, when generating input for the parser
as a list of line segment objects, assigned each a unique numeric identifier which was sitnply a non-
negative integer. These integer handles actually reflected the order in which the segments were input
by the user.

148

from e.g. cut and paste commands) is interpreted by the editor, as commands to
navigate within the view, select objects, insert new objects and delete existing ones.
User commands relating to parsing, as discussed in Section 5.6, would be passed on
to the parser, along with appropriate parameters such as the current selection.

When the parser performs a reduction, a semantic action procedure associated
with that reduction may send a message to the core application, indicating that a
particular type of notational symbol has been recognized in the input. The message
contains the handle to the newly-created node in the parser data structure. The
core application responds to this “add object” message by updating its internal data
structures, and replies with a message to the graphics editor, parser, or both, to
arrange for appropriate user feedback, such as a change of colour or display style, or
substitution of the user’s sketched notational symbol with a neatly-drawn one from
a special font or library.

When the parser undoes a reduction (e.g. in response to an explicit user request
or because some input that reduction depends upon has been deleted), a second
associated semantic action procedure is performed, sending a “delete object” message
to the core application. The core application responds by updating its own data
structures, and sending messages to the editor to provide appropriate user feedback.

The core application performs verification tests on its internal data structures
after receiving each “add object” and “delete object” message. Verification following
addition can be used for semantic checking, as is done in compilers, allowing the
ASG used to construct the parser to define a somewhat larger language than the
core application will actually accept. Verification failure might present the user with
an error message, or send messages to the parser and/or editor to recover from the
error in some way, or both. Verification following deletion could be used to trigger
automatic unparsing of objects associated semantically with the deleted object.

As mentioned in the previous chapter, semantic validation also provides for a
large degree of flexibility in determining which aspects of notational structure will be
recognized syntactically (primarily by the parser), and which semantically (primarily
by the core application). E.g. for applications involving symbolic mathematics, entire
equations can be parsed, but systems of simultaneous equations are probably best
dealt with at the semantic level. By contrast, in music applications, individual notes,
chords, and other small notational structures could be parsed, but just about all other
structural aspects would probably be easier to analyze semantically.

149

6.4

Customizing the generic design

Customizing the generic design just proposed, i.e., developing a design for a patticular

INP application, involves the following:

1.

2.

Precise definition of the notational system.
Design of the GUI and user-computer dialogues.

Decisions concerning the divisions between lexical, syntactic, and semantic as-

pects of notations.

. Specification of the lexical analyzer component.

Writing an ASG for the parser component.

Design of the communication protocol for the system, including the message
formats, senders/recipients, and conditions under which each kind of message

will be sent.

Definition of semantic actions associated with (reduction according to) each
production in the ASG (one for doing the reduction and one for undoing it) in

terms of message sending.

Definition of how the editor, parser, and core application should respond to

received messages.

Definition of the remaining aspects of the core application, e.g. functionality,
data structures, algorithms.

The effort involved in implementing new INP applications can be greatly reduced

if appropriate tools and reusable components are developed. “Tools” are programs

such as automatic code generators, which can reduce development time by support-

ing programming at a very high and appropiiate level of abstraction. “Reusable

components” are libraries of source code and data structure declarations which can

be linked (possibly dynamically) into new INP applications, or provided within the

target operating environment as server processes.

150

A standard graphics editor could be provided in several ways, such as:

¢ Source code file(s) with documentation explaining how to add message sending

and receiving functionality.

e A standard “widget” within a standard GUI manager such as X Windows, with
a corresponding small library of interface routines and a documented application

programming interface (API).

The standard graphics editor should include appropriate data structure definitions
and routines to operate on graphics data, including hooks to interface with a user-
supplied lexical analyzer. It should also have features analogous to those of standard
text editing components, such as the ability to save graphics data to disk, read saved
disk files, and export and import graphics data under user control via the operating
system'’s cut and paste facility.

The complexity of lexical analysis depends very much on the types of objects
manipulated by the graphical editor. If the editor provides only well-defined graphic
object types such as line segments, rectangles, text strings, etc., lexical analysis is
largely a matter of format conversions, and a standard lexical analyzer could be
provided as part of the standard editor package. If the editor supports freehand
sketching, e.g. with a pen-based interface, and the application designer anticipates
the need for subtle interpretation of curve shapes, the lexical analyzer will necessarily
be much more complex. Even in such cases, however, standard analyzer components

could be provided, such as routines to:
e smooth and reduce the data requirements of strokes.

e reformat strokes as e.g. collections of line segments, using techniques such as

curvature analysis.
e recognize widely-used notational symbols such as letters and digits.

The application programmer would add his or her own routines to the system-supplied
ones, and would probably want to modify the lexical analyzer’s top-level control
algorithm.

The parser could be provided as a reusable component, taking specifications of the
ASG, semantic actions and response to received messages, as run-time parameters.

Language-specific parsers, however, would be more efficient, and could be generated

automatically via an ASG-based parser generator tool. Chok and Marriott [17] de-
scribe a parser generator based on the CMG formalism discussed in Chapter 3, which
generates parsers in C++ source code. Development of such a parser gencrator for
the ASG formalism is a logical next step for this research. Parsers generated by such
a tool would of course include all necessary rortines to establish and maintain the
parser’s data structures.

All that is left is the implementation of the core application. Even this could
be simplified to some degree by provision of a standard API and library routines for
message-passing, which the standard graphics editor and generated parser would also
use. It would be best if the message-passing system offered debugging facilities to

allow message-passing activity to be monitored during program development.

6.5 Some user interface issues

When I first began thinking about INPs in about 1989, I envisaged systems somewhat
similar to today’s pen-based “personal digital assistants” where notational symbols
would be recognized automatically as soon as they were entered by the user. In time
I realized that such an “eager” recognition strategy would not only be difficult to
implement (primarily due to parsing ambiguity), but would also probably confuse
the user. This led to the notion of guided parsing introduced in Chapter 5.

Another way in which my thinking about INP user interfaces has changed is
that a few years ago I envisaged that special auxiliary views might be provided, e.g. a
view displaying something like a parse forest, while today 1 think INPs should present
very simple GUIs which focus attention on notations. The conscious decision not to
present syntactic information directly in the user intetface has strongly affected my
formulation of the notion of guided parsing and of the generic INP design developed
in this chapter.

Syntactic information can be presented to the user indirectly using highlighting.
Having selected one or more graphical primitive objects in a notation, the user could
ask the system to expand the current selection to include all objects covered by the
next higher nonterminal in the parse structure. The four standard cursor-control keys
on a typical terminal could be used to control syntactic selection and navigation as

follows:

152

UP The up-arrow key expands the selection by moving to a higher syntactic level as
just described.

DOWN The down-arrow key shrinks the selection by moving to a lower syntactic
level. Most nonterminals would probably have more than one direct descendent

in the parse structure; the system would choose one arbitrarily.

LEFT and RIGHT The left- and right-arrow key. select the next and previous

sibling nonterminal at the same syntactic level.

This interface is similar to that proposed by van der Vegt [142] for editing drawings
having a hierarchical group structure. Indeed, as noted in Chapter 5, parse/unparse
operations are conceptually similar to group/ungroup, so it is not surprising that
similar interface strategies can be used with both.

A similar interface can be used to guide parsing. The user selects a group of
graphic objects and activates the parser, which attempts to apply a (sequence of)
reductions. The result is indicated by a change in the current selection (and probably
also by changes of colour and graphical style). At this point the cursor keys may be

used as follows:

UP The parser applies a further reduction (sequence), thus moving up a syntactic

level.

DOWN The most recently performed reduction is undone, thus moving down a

syntactic level.

LEFT and RIGHT When there is reduce-reduce conflict, the left- and right-arrow
keys select the next or previous candidate reduction, thus moving among choices

at the same syntactic level.

These are ideas | have considered for INP user interfaces. How useful they are
can only be determined through experience. In time, user interfaces for INPs might
become standardized to the extent that support for them could be incorporated into

the tools and reusable components for ~ustomizing the generic design.

153

Chapter 7

Conclusions and Future Work

In this dissertation I have described the goal of developing interactive notation pro-
cessing applications (INPs), according to a “graphically oriented notation editor”™
paradigm adapted from the “textually oriented program editor™ paradigm used in
interactive programming environments. | have developed specific techniques for this
purpose, including the attributed set representation, attributed set grammars (ASQ),

an ASG-based parsing algorithm, and a generic design for INPs.

7.1 Conclusions

I set out to prove that formal languages could be used to maodel structural aspects
of notations, in such a way as to allow them to be recognized by a computer using a
parsing technique, and I have succeeded in doing so. This required a reformulation the
standard notions of formal language, generalizing from sequences of atomic symbols
to sets of attributed symbols.

My hope was that notation recognition could be structured into three phases
lexical, syntactic, and semantic—like compilation of programming languages, but |
expected that interactive notation processing (INP) programs would be more like
complete interactive programming environments than just compilers. ‘The generic
INP design presented in Chapter 6 explains this expectation, which frames the specific
results of this thesis.

In Chapter 1 I made five specific claims concerning my techniques, which I now
briefly address:

1. ASGs can be used to model many notational systems. 1 have dealt with two
examples: directed graphs and tree diagrams. The former are similar to other

network-structured notational systems such as electrical circuit diagramns, logic

diagrams, and flow charts.! The latter are similar to recursively defined no-

tational systems having an underlying tree structure, such as mathematical

expressions. Detailed consideration of specific notations is an area for future

investigation.

. Altribuled set encodings of notations are nalural, intuitive, and well-suited for
compulation. Attributed set encodings, especially those involving constraints,
are much more natural and intuitive than encodings which have been attempted
in the past, such as string encodings. Their usefulness for computation is amply
illustrated by the ease with which ASG-based parsers are constructed.

. ASG's can be used to generate nnd parse encodings of notations. Generation has

been demonstrated in Chapter 4, parsing in Chapter 5.

. Practical problems with ASG-based parsing can be mitigated using guided pars-
ing. Chapter 5 explains the problems of reduce/reduce conflict, ambiguity, and
incremental parsing of incomplete input, and shows how the guided parsing

technique mitigates all three.

- The graphically-oriented notation editor paradi, ‘or INPs is implementable in
a manner consistent with good software engineering practice. 1 have demon-
strated ASG-based parsing via two batch-mode prototypes, discussed in Chap-
ter 5. In Chapter 6 I suggested concrete methods for implementation of other
aspects of the graphically-oriented notation editor paradigm, and suggested how
specialized development tools and reusable software components can reduce the

programming effort required to implemert INPs.

7.2 Future Work

In the future, | would like to continue the development of the ASG formalism. One of
my hopes for this dissertation was to present a formal proof that context-dependency
increases the generative yower of ASGs, using the digraph encoding languag: Ligraph
discussed in Section 4.5.3 as the principal example. I came very close to completing a
proof that no context-free ASG (one having only single symbols in production heads)

can generate Lgigraph, but ultimately gave up to concentrate on more pressing aspects

The “cgraph” notation discussed in Chapter 5 is defined by rewriting rules whick can easily be
encoded in an ASG.

of the dissertation. I conjecture that a strict hierarchy of generative power, very sim-
ilar to the Chomsky hierarchy of string-generating grammars, can be developed and
proven for ASGs. [would like very much to obtain results concerning the decidability
and (in decidable cases) computational complexity of the membership problem for
specific classes of attributed set languages.

The backtracking ASG-based parsing algorithm described in Chapter 5 has expo-
nential time complexity, which is at least manageable in practice, but I would also like
to explore alternatives. Wittenburg’s Relational Language approach, and Helm and
Marriott’s CMG approach, gain efficiency by making use of properties of relations to
guide the selection of symbols for parsing. I suspect that, for attributed set languages
involving constraints (which, in practice, will be most of them), similar techniques
can be applied in ASG-based parsing.

The question of which notational systems can adequately be modelled using at-
tributed sets and ASGs needs further exploration. I would like to try to develop
attributed set encodings and ASGs for a variety of notational systems such as elec-
trical schematic diagrams, logic diagrams, and perhaps music notation.

I should also like to explore applications of the ASG formalism outside notation
processing. Possibilities include developmental modelling systems as suggested in
Chapter 4, and notation beautification as suggested in Chapter 5. The proposed
approach for notation beautification bears some resemblance to interactive graphical
search and replace techniques proposed by Kurlander and Feiner [84]. Perhaps ASG-
based methods might be applicable to the graphical search problem as well. Other
potentially interesting applications of ASGs include modelling of three-dimensional
structures, and non-graphical structures such as music.

In Section 4.5.1, 1 have begun the process of developing a formal semantics of
attributed set modelling, but this needs further development in rder to be mathe-
matically rigorcus. This is another area which I would like to explore.

Of course, the most obvious next step is implementation of some INP applica-
tions. One of the most fascinating aspects of this work, in my opinion, is the issue
of how users can be shielded from thLe complexity inherent in the ASG-based, graph-
ically oricnted notation editor paradigm, and be given truly useful and usable INP
applications. Related to this is development of tools and reusable software compo-
nents to streamline the process of customizing the generic INP design, as discussed
in Chapter 6.

156

The one component in the generic desigi: which this dissertation leaves rather
poorly specified is the lexical analysis module. It is in this phase that techniques of
noise suppression, adapted from those developed in the field of pattern recognition,
can bhe applied. Real understanding of the lexical analysis phase will come only in
light of deeper understanding of the generative power of ASGs, and which kinds of
lexical processing can usefully extend the g erative power.

Finally, 1 chose not to address parsing uncertain input. My justification for this
decision was that one must first understand the problems of notation processing with-
out uncertairty, before one can properly deal with uncertainty (both in formalisms
and in implementations) in effective ways. However, I cannot deny that working with
forms of human writing, especially with technologies such as pen-based input systems
which capture many subtleties, will involve uncertainty. For this reason, exploration
of stochastic and fuzzy lexical and syntactic analysis techniques, and new develop-

ments in Al concerning r~asoning with partial and conditional information, remains

one of my long-term goals.

157

Appendix A

Listings of programs, input and output files

This Appendix collects some materials related to the prototype parser implementa-

tions and demonstrations of same presented in Chapter 5 of this dissertation.

A.1 Notes on the CLP(R) programming language

The code listings given here are written in the constraint logic programming language
CLP(R) {67, 76, 68]. Constraint logic programming (CLP) languages are a variant of
automatic theorem provers such as Prolog [23, 75], where unification is replaced by
a more general constraint-sclving mechanism. The symbol in parentheses identifies
the domain of computation in which constraints may be specified, e.g. in CLP(R) the
“R” refers to the real domain R.

In CLP(R) it is possible to match the terms £(Y,10) and £(X+7,X), for example,
giving rise to the pair of constraints Y = X + 7 and X = 10, which are immediately
solved so as to bind variable X to the value 10 and Y to the value 17. One may also

use constraints as goals, e.g., the goal
2X+Y=17, 8Y-3X=41.

would succeed with X bound to 5 and ¥ bound (o 7.

The CLP(R) system is capable of dealing with quite complex systems of con-
straints, including inequalities and nonlinear expressions such as exponentiation, tran-
scendental functions, and so on. Systems of lirear constraints are solved using the
Simplex algorithm. Evaluation of nonlinear constraints is automatically delayed until,

via substitutions of known values, they can be reduced to linear form.

159

The syntax of CLP(R) is nearly identical to that of Prolog. I have described some
programs included here as “in Prolog”, meaning that I implemented them in CLP(R),
but without using any of the constraint mechanisms. Hence these programs should
be executable by a standard Prolog interpreter with identical results, but I have not

tested this.

A.2 The first prototype parser

The CLP(R) source files here were processed by the UNIX C preprocessor, and hence

contain directives such as #define and #include familiar to C programmers.

A.2.1 File parse.clpr
This is the main file for the prototype parser.

#include "list.clpr"
#include "reduce.clpr"
#include “output.clpr"

/* restricted bottom-up parser: The first argument to restricted_parse
is a list of nonterminal classes to be reduced (by reduce_zll, whose
first argument is a single class) in order.

*/

reduce_all(Class,Li,Ni,Ri,Lo,No,Ro) :-

reduce(Class,Li,Ni,Ri,Lt,Nt ,Rt),
reduce_all(Class,Lt,Nt,Rt,Lo,No,Ro).
reduce_all(_,Li,Ni,Ri,Li,Ni,Ri).

restricted_parse([],Li,Ni,Ri,Li,Ni,Ri).

restricted_parse({H|T],Li,Ni,Ri,Lo,No,Ro) :-
reduce_all(H,Li,Ni,Ri,Lt ,Nt,Rt),
restricted_parse(T,Lt,Nt ,Rt,Lo,No,Ro).

restricted_parse([],Li,Ni,Ri,Li,Ni,Ri).

/* general bottom-up parser */

parse(Li,Ni,Ri,Lo,No,Ro) :~
reduce(_,Li,Ni,Ri,Lt,Nt,Rt),
parse(Lt Nt ,Rt,Lo,No,Ro).

parse(Li ,Ni,Ri,Li,Ni,Ri).

/* main program: batch parser */
:= dynamic(nodelist,2).
::= consult(seg_db). % establish nodelist/2
::- nodelist(Ni,Li),
restricted_parse(
[dot,box,file_icon,arrouhead,arrou,merger.splitter,filter,
inputfile,outputfile,source,sink,arc],
Li,Ni,Ni,Lo,No,Ro),
tell(parse_result),
convert_result(No,Ro),
told,
tell(parse_forest),
print_pf (Lo,No,Ro),
told.
::= halt.

A.2.2 File list.clpr

This file contains code to manipulate lists, and the routine print_pf used in the main
program to produce the output file parse forest (see later) which outputs a text

representation of the parse forest.

#ifndef LIST
#define LIST

/* member(X,List)

- true if X is a member of List

- modes: any

e.g. member(+X,+List) true if X in List

member(-X,+List) instantiates X to all members of List

*/
member(M, M | _1).
member(M, [_ | T]) :-

member(M, T).

/* extract(X,List1,List2)
- true if X is a member of Listl, List2 is result of deleting that
member from the list

- modes: any
e.g. extract(+X,+List,~Out) instantiates Out or fails
if X not in List

*/

extract(H, [H I T], T).

extract(M, [H | T], [H | T2]) :- extract(M, T, T2).

160

161

/* printlist(List)
- always true (unless arg not a list)
~ prints elements of List one per line
- modes: (+) is the only sensible one
*/
printlist([(]).
printlist([H | T]) :- print(H), nl, printlist(T).

/* print_pf(L,N,R)
- L,N,R form a parse forest
-~ prints forest as an indented list
- modes: (+,+,+) is the only sensible one
*/
print_pf(L,N,R) :-
printf("Parse forest () nodes):\n",[L]),
convert_rootlist(R,[],R_ids),
print_trees(N,R_ids,0).

/* convert a rootlist (1st arg) to a list of node id’s (3rd arg) */
convert_rootlist ([HIT],IDLi,IDLo) :-

arg(1,H,1d),

convert_rootlist(T, [Id|IDLi]),IDLo).
convert_rootlist([],IDLi,IDLi).

/* print all trees with nodes in nodelist N given list of
root node id’s =/

print_trees(N,[HIT] ,Indentlevel) :-
print_tree(N,H,Indentlevel),
print_trees(N,T,Indentlevel).

print_trees(_,[]1,.).

print_tree(N,Root_id,Indentlevel) :-
member (Root_node,N),
arg(1,Root_node,Root_id),
indent (Indentlevel),
print(Root_node) ,nl,
arg(2,Root_node,Children),
print_trees(N,Children,Indentlevel+1).

indent(Level) :-

Level > 0,
printf(" v,[1),
indent(Level-1).

indent (0).

/*p
n

»/

rint all nodes in a list, such that the principal functor of the
ode descriptor matches a given one

print_matching(Functor, [HIT]) :-

pPrin

print_if_match(Functor,H),!,
print_matching(Functor,T).
t_matching(_,[]).

print_if_match(Functor,Term) :-

functor(Term,Functor,_),
print(Term),nl.

print_if_match(_,_.).
#endif

A.2.

This

3 File reduce.clpr

file contains the various reduction (rewriting) rules of the parser, coded as

CLP(R) rules of type reduce.

#inc

lude "geometry.clpr”

/* add_root(New,Li,Ni,Ri,Lo,No,Ro)

x/
add_

New is a node (structured term)

<Li,Ni,Ri> is a parse forest

<Lo,No,Ro> is the parse forest when the node New is added to both
the nodelist Ni and rootlist Ri of <Li,Ni,Ri>

e.g. mode (+,+,+,+,-,-,-) add a nev root

This procedure is called at the end of all reduce/5 procedures

root (New,Li,Ni,Ri,Lo,No,Ro) :-
Lo=1Li + 1,

No = [New | Ni]l,

Ro = [New | Ri].

/* reduce/5 : (Class,Li,Ni,Ri,Lo,No,Ro)

<Li,Ni,Ri> is a parse forest
<Lo,No,Ro> is the parse forest which results after performing a
reduction on <Li,Ni,Ri>, yielding a new root of Class
intended modes:

(+,+,+4,-,-) apply a given production once

(-,+,+,-,-) apply any applicable production once
The textual order of reduce rules in this file imposes an order
of precedence among them: rules listed first have precedence.
Each of the following reduce declarations has a header comment

shoving the form of the node term which is added to the parse
forest.

*/

/* dot(_,_,P) : a very short lineseg, average location P
»/
#define DOT_TOLERANCE 10
reduce(dot ,Li,Ni,Ri,Lo,No,Ro) :~
extract(lineseg(Id, (], P1, P2), Ri, Rt),
close(P1,P2,DOT_TOLERANCE),
P = avg(P1,P2),
add_root(dot(Li, [1d],P),Li,Ni,Rt,Lo,No,Ro).

/* box(_,_,NW,NE,SW,SE) : a box and its four corners

*/

#define CORNER_TOLERANCE 50

#define MIN_SIDE_LENGTH 200

#define MAX_SIDE_DEVIATION 50

reduce(box,Li,Ni,Ri,Lo,No,Ro) :-
extract(lineseg(N, [J, P1, P2), Ri, R1),
horiz(Pl.P2,HIN_SIDE_LENGTH,HAX_SIDE_DEV,NH2,NE1),
extract(lineseg(E, (], P3, P4), R1, R2),
vert(P3.P4.HIN_SIDE_LENGTH,MAX-SIDE_DEV,NEZ,SEI),
close(NE1,NE2,CORNER_TOLERANCE),
extract(lineseg(s, (], P5, P6), R2, R3),
horiz(PS.PG,HIN_SIDE_LENGTH,HAX_SIDE-DEV,SHI,SE2),
close(SE1,SE2,CORNER_TOLERANCE),
extract(lineseg(W, (1, P7, P8), R3, R4),
vert(P7,PS,HIN_SIDE_LENGTH,HAX-SIDE_DEV,NHI,SH2),
close(SW1,SW2,CORNER_TOLERANCE),
close(NW1i,NW2,CORNER_TOLERANCE),
avg(NW1,NW2,NW),
avg(NE1,NE1,NE),
avg(SW1,SW2,SW),
avg(SE1,SE2,SE),
add_root(box(Li, [N,E,S,W], NW, NE, SW, SE),Li,Ni,R4,Lo,No,Ro).

164

/* file_icon(_,_,NW,NE,SW,SE) : as box but with a diagonal slash

*/

#define MEET_TOLERANCE 50

reduce(file_icon,Li,Ni,Ri,Lo,No,Ro) :-
extract {box(Box, ., NW, NE, SW, SE), Ri, R1),
extract(lineseg(Slash, [1, P1, P2), Ri, R2),
sort_lr(Pi,P2,PL,PR),
inbbox (PL ,NW,SW,MEET_TOLERANCE),
inbbox (PR,NW,NE ,MEET_TOLERANCE),
add_root(file_icon(Li, [Box,Slash] ,NW,NE,SW,SE),Li,Ni,R2,Lo,No,Ro).

/* arrowhead(_,_,P) : an arrowhead with vertex P

=/

#define AHEAD_VERTEX_TOLERANCE 30

#define AHEAD_LENGTH_MAX 100

reduce{arrovhead,Li,Ni,Ri,Lo,No,Ro0) :-
extract(lineseg(Sidet,[],P11,P12),Ri,R1),
length(Pll,PIZ,Ll),
L1 <= AHEAD_LENGTH, MAX,
extract(lineseg(Side2,[],P21,P22),R1,R2),
length(P21,P22,L2),
L2 <= AHEAD_LENGTH_MAX,
pick_vertex(P11.P12,P21,P22,ARBOH_VERTEX,TOLERANCE,P),
add_root(arrowhead(Li,[Side1,Side2] ,P),Li,Ni,R2,Lo,No,Ro).

/* arrow(_,_,T,H) : an arrow with tail at H, head at P
*/
#define SHAFT_LENGTH_MIN 200
#define HEAD_SHAFT_MEET_TOLERANCE 50
reduce(arrow,Li,Ni,Ri,Lo,No,Ro) :-
extract (arrovhead (Ahead,_,Ah) ,Ri,R1),
extract (lineseg(Shaft,(],S1,52),R1,R2),
length(St,S2,LS),
LS >= SHAFT_LENGTH_MIN,
arrow_match(S1,52,Ah,HEAD_SHAFT_MEET_TOLERANCE,T,H),
add_root (arrow(Li, [Ahead,Shaft],T,H),Li,Ni,R2,Lo,No,Ro).

/* The following productions are context-sensitive. Their purpose
is to reclassify box, file_icon and arrovw nodes as cgraph elements
based on context. In each case, more than one extract operation is
performed, but only the result of the first one is used to form the
post-reduction rootlist.

I have omitted negative constraints from the rules for filters,
mergers and splitters, to keep the rules simple. This means mergers
and splitters must be reduced before all other process icons.

All the icon nodes are represented as structured terms of the form
icon(<id>,[<child id>],<icon class name>,<child box id>,NW,NE,SW,SE)

vhere <id> is the usual node id, there is but one child in the child
list, <icon class name> is one of {splitter, merger, etc.}, <box id>
is the node id of the underlying box. This is important for later
conversion to IST format, because arcs (see below) also refer to box
id’s. The corner points NW,NE,SW,SE are as for the underlying box.

#define ARROW_BOX_MEET_TOLERANCE 50
/* icon(_,_,merger,boxid,NW,NE,SW,SE) : a merger icon

reduce(merger,Li,Ni,Ri,Lo,No,Ro) :-

extract (box(Box,_,NW,NE,SW,SE) ,Ri,R1),
extract(arrow(_,._,_,Aheadl) ,R1,R2),
inbbox(Ahead1,NW,SW,ARROW_BOX_MEET_TOLERANCE),
extract(arrow(_,.,_,Ahead2) ,R2,R3),

inbbox (Ahead2,NW,SW,ARROW_BOX_MEET_TOLERANCE),
extract(arrow(_,.,Atail,_),R3,.),
inbbox(Atail ,NE, SE, ARROW_BOX_MEET_TOLERANCE),
add_root(icon(Li, [Box] ,merger,Box,NW,NE,SW,SE) ,Li,Ni,R1,Lo,No,Ro).

/* icon(_,_,splitter,boxid,NW,NE,SW,SE) : a splitter icon

reduce(splitter,Li,Ni,Ri,Lo,No,Ro) :-

extract (box(Box,_,NW,NE,SW,SE) ,Ri,R1),
extract(arrow(_,_,_,Ahead) ,R1,R2),

inbbox (Ahead1 ,NW,SW,ARROW_BOX_MEET_TOLERANCE),
extract(arrow(_,_,Ataill,_) ,R2,R3),
inbbox(Ataili,NE,SE,ARROW_BOX_MEET_TOLERANCE),
extract(arrow(_,_,Atail2,_),R3,.),
inbbox(Atail2,NE,SE,ARROW_BOX_MEET_TOLERANCE),
add_root(icon(Li,[Box],splitter,Box,NW,NE,SW,SE),Li,Ni,R1,Lo,No,Ro).

165

/* icon(_,_,filter,boxid,NW,NE,SW,SE) : a filter icon

*/

reduce(filter,Li,Ni,Ri,Lo,No,Ro) :-
extract (box(Box,_,NW,NE,SW,SE) ,Ri,R1),
extract (arrow(_,_,Atail,_),R1,R2),
inbbox(Atail,NE,SE,ARBDH_BOX_HEET_TBLERANCE),
extract(arrow(_,_,_,Ahead) ,R2,R3),
inbbox(Ahead,NH.SH.ABBDH-BOX_HEET_TOLERANCE),
add_root(icon(Li, [Box] ,filter,Box,NW,NE,SW,SE),Li,Ni,R1,Lo,No,Ro).

/* icon(_,_,inputfile,boxid,NW,NE,SW,SE) : an input-file icon
*/
reduce(inputfile,Li,Ni,Ri,Lo,No,Ro) :-
extract(file_icon(Ficon, [Box,_],NW,NE,SW,SE) ,Ri,R1),
extract (arrow(_,_,Atail,_),R1,R2),
inbbox(Atail,NE.SE.ARROH-BDX-HEET-TOLERANCE),
not(
extract(arrow(_,_,_,Ahead) ,R2,.),
inbbox(Ahead,NU.S",ARRDH_BOX_HEET_TDLERANCE)
),
add_root(icon(Li, [Ficon],inputfile,Box,NW,NE,SW,SE),
Li,Ni,Ri,Lo,No,Ro).

/* icon(_,_,outputfile,boxid ,NW,NE,SW,SE) : an output-file icon
x/
reduce(outputfile,Li,Ni,Ri,Lo,No,Ro) :-
extract(file_icon(Ficon, [Box,_] ,NW,NE,SW,SE),Ri,R1),
extract (arrow(_,_,_,Ahead),R1,R2),
inbbox(Ahead,NH,SH,ARBOH_BOX_HEET_TOLERANCE),
not(
extract(arrow(_,_,Atail,_),R2,),
inbbox(Atail,NE,SE,ARRDH_BOX_HEET-TUI"RANCE)
),
add_root(icon(Li, [Ficon] ,outputfile,Box,NW,NE,SW,SE),
Li,Ni,R1,Lo,No,Ro).

/* icon(-.-.source,boxid,NH.NE.SH.SE) : a source icon
*/
reduce(source,Li,Ni,Ri,Lo,No,Ro) :-
extract (box(Box,_,NW,NE,SW,SE) ,Ri,R1),
extract(arrow(_,_,Atail,_),R1,R2),
irbhox(Atail,NE.SE.ARRO“_BOX_HEET_TOLERANCE),
not(
extract(arrow(_,_,_,Ahead),R2,_),
inbbox(Ahead,NH,SH,ARROH-BOX-HEET,TDLERANCE)
),
add_root (icon(Li, [Box],source,Box,NW,NE,SW,SE),
Li,Ni,Ri,Lo,No,Ro).

/* icon(_,_,sink,boxid,NW,NE,SW,SE) : a sink icon
74
reduce(sink,Li,Ni,Ri,Lo,No,Ro) :-
extract (box(Box,_,NW,NE,SW,SE) ,Ri,R1),
extract(arrow(_,_,_,Ahead),R1,R2),
inbbox(Ahead,NH.SH,ABBDH_BDX-HEET_TOLERANCE).
not (
extract(arrow(_,_,Atail,_),R2,.),
inbbox(Atail.NE,SE,ARROH-BOX_HEET-TOLERANCE)
),

add_root (icon(Li, [Box],sink,Box,NW,NE,SW,SE),
Li,Ni,Ri,Lo,No,Ro).

/* arc(_,_,src-id,src-nun.src-class,dest-id,dest-nul,dest-class)
An arc src->dest.
Both -id values are the id’s of the boxes underlying icons.
Both -num values are taken from the set {first,only,second}.
The -class values are the icon class (inputfile, sink, etc.)
at each end.
*/
reduce(arc,Li,Ni,Ri,Lo,No,Ro) :-
extrac* ‘~rrow(Arrow,_,Atail,Ahead),Ri,R1),
extr. ‘. ~/_,_,Sclass,Sid,_,TNE,_,TSE),R1,R2),
inbbox\ntail,TNE,TSE,ARRDH-BOX-HEET_TOLEBANCE),
con_num(Atail ,TNE,TSE,Snum),
oxtract(icon(-._.Dclass.Did,HNH._,HSH,,),R2,-),
inbbox(Ahead,HNH,HSH,ARBDH-BOX_HEET-TOLERANCE),
con_num(Ahead ,HNW,HSW,Dnunm) ,
add-root(arc(Li.[Arrow],Sid,Snun,Sclass,Did,Dnun,Dclass),
Li,Ni,R1,Lo,No,Ro).

168

A.2.4 File geometry.clpr

This file contains logic procedures for various kinds of geometric constraint tests,

#ifndef GEOMETRY
#define GEOMETRY

/* Each of the following predicate definitions is preceded by a comment
giving the principal functor name and symbolic names for the formal
parameters. Parameters beginning with a capital P are points, which
are 2-element lists [X,Y], where both X and Y are real. All other
parameters are real.

«/

/* close(P1,P2,Tolerance)
= true if P1,P2 differ in neither X nor Y by an amount greater than
Tolerance
- e.g. mode (+,+,+) test for closeness
=/
close([X1,Y1], [X2,Y2],Tolerance) :-
abs(X2-X1) < Tolorance,
abs(Y2-Y1) < Tolerance.

/* length(P1,P2,L)

- L is length of line segment from P1 to P2
*/
length([X1,Y1],[x2,Y2],L) :-

L= pow(por X2-X1,2)+pow(Y2-Y1,2),0.5).

/+ avg(P1,P2,P3)

- P3 is spatial average of P1,P2

- e.g. mode (+,+,-) compute average
*/
avg([X1,Y1],[x2,Y2],[X,Y]) :-

X = (X1+4X2)/2, Y = (Y1+4Y2)/2.

/* inbbox(P1,P2,P3,Tolerance)
- true if P1 falls witl .1 the bounding box with diagonally opposite
corners P2,P3, expanded by Tolerance in all 4 directioms.
*/
inbbox([X,Y], (X1,Y1], [X2,Y2] ,Tolerance) :-
sort(X1,X2,Xmin,Xmax),
sort(Y1,Y2,Ymin,Ymax),
X <= Xmax + Tolerance,
X >= Xmin - Tolerance,
Y <= 'max + Tolerance,
Y >= Ymin - Trler-.nce.

/* sort(X1,X2,Xmin,Xmax)
- Xmin,Xmax are X1,X2 sorted in increasing order
7
sort(X1,X2,Xmin,Xmax) :-
X2 < X1,
Xmin = X2,
Xmax = X1,

',
sort(X1,X2,X1,X2).

/* sort_l1r(P1,22,P1,Pr)
- P1,Pr are P1,P2 sorted in left-to-right order
- e.g. mode (+,+,-,-) sort two points
*/
sort_1r([X1,Y1],[x2,Y2],(x1,Y1], [Xr,¥Yr]) :-
X2 < X1,
X1l = X2, Y1 = Y2,
Xr = X1, Yr = Y1,
]

sort _lr(Pi1,P2,P1,P2).

/* sort_tb(P1,P2,P1,Pr)
- P1,Pr are P1,P2 sorted in top-to-bottom order
- e.g. mode (+,+,-,-) sort two points
*/
sort_tb({X1,Y1], (X2,Y2], [Xt,Yt], (Xb,Yb]) :~
Y2 < Y1,
Xt = X2, Yt = Y2,
Xb = X1, Yb = Y1,
',
sort_tb(P1,P2,P1,P2).

169

170

/* horiz(P1,P2,Wnin,Hmax,P1,Pr)
- if the bounding box given by opposite corners P1,P2 has
width >= Wmin and height <= Hmax, P1,Pr are P1,P2 sorted
left-to-right
- e.g. mode (+,+,4,+,-,-) test for horiz. line and sort endpoints
*/
horiz([X1,Y1], [X2,Y2],Wmin,Hmax, [X1,Y1], [Xr,¥Yr)]) :-
abs(X2-X1) >= Wmin,
abs(Y2-Y1) <= Hmax,
sort_lr([X1,Y1], [X2,Y2], [X1,Y1], [Xr,Yrl).

/* vert(P1,P2,Hmin,Wmax,P1,Pr)
- if the bounding box given by opposite corners P1,P2 has
width <= Wmax and height >= Hmin, P1,Pr are P1,P2 sorted
top-to-bottom
- e.g. mode (+,+,+,+,-,-) test for vert. line and sort endpoints
*/
vert([X1,Y1],[X2,Y2] ,Hmin,Wmax, [Xt,Yt], [Xb,Yb]) :-
abs(X2-X1) <= Wmax,
abs(Y2-Y1) >= Hmin,
sort_tb([X1,Y1],[X2,Y2], [Xt,Yt], [Xb,Ybl).

/* pick_vertex(P11,P12,P21,P22,Tolerance,P)

- if any pair of endpoints of the two line segments P11-P12 and
P21-P22 are close enough to meet the tolerance, set P to the
average of the two poiuts.

*/

pick_vertex(P11,P12,P21,P22,Tolerance,P) :
close(P11,P21,Tolerance),
avg(P11,P21,P).

pick_vertex(P11,P12,P21,P22,Tolerance,P) :
close(P11,P22,Tolerance),
avg(P11,P22,P).

pick_vertex(P11,P12,P21,P22,Tolerance,P) :
close(P12,P%. ,Tolerance),
avg(P12,P21,P).

pick_vertex(P11,P12,P21,P22,Tolerance,P) :
close(P12,P22,Tolerance),
avg(P12,P22,P).

171

/* arrow_match(PS1,PS2,PH,Tolerance,PST,PSH)

- PS1,PS2 are endpoints of a lineseg which may be the shaft of an
arrow. PH is the vertex of an arrowhead. If PH is close to
either PS1 or PS2 (within the Tolerance), set PSH to the average
of PH and the matching PSx point, PST to the other endpoint.

*/

arrow_match(PS1,PS2,PH,Tolerance,PST,PSH) :-
close(PS1,PH,Tolerance),
avg(PS1,PH,PSH),
PST = PS2.

arrow_match(PS1,PS2,PH,Tolerance,PST,PSH) :-
close(PS2,PH,Tolerance),
avg(PS2,PH,PSH),
PST = PS1.

/* con_num(PA,PT,PB,Num)
- PA is an arrow endpoint, PT,PB are the top and bottom vertices of
one of a box’s vertical sides. Set Num to
only, if PA falls in the middle third of the segment PT-PB
first, if PA is in the upper third
second, if PA is in the lower third.
- mode (+,+,+,-) is the only one I have considered
- the implementation assumes the segment PT-PB really is vertical,
and only considers Y coordinates.
*/
con_num([_,YA],[_,Ymin),[_,YMax],only) :-
YA <= (YMax-Ymin)*0.66 + Ymin,
YA >= (YMax-Ymin)*0.33 + Ymin.
con_num([_,YA],[_,Ymin],[_,YMax],first) :-
YA < (YMax-Ymin)*0.33 + Ymin,
YA >= Ymin.
con_num([_,YA],[_,Yminl, [_,YMax],second) :-
YA > (YMax-Ymin)*0.66 + Ymin,
YA <= YMax.

#endif

A.2.5 File output.clpr

This file contains routines used by the main program to produce the output file
parse_result, which is in the format required by the IST iconic shell tool application.
NOTE: the first printf line has been reformatted to fit the page margins for this

thesis.

#ifndef OUTPUT_CONV
#define OUTPUT_CONV

convert_result(N,R) :-
printf (" UAALAAAAGSTFILELLAA AL %A \n", (1),
convert_nodes(R),
printf ("' #-——-—mcmcccme e
------------------------------- *\n",[]),

convert_arcs(N,R).

convert_nodes([]).

convert_nodes([HIT]) :-
do_node(H),
convert_nodes(T).

do_node(icon(_,_,Class,Num, [X,Y],_,_,.)) :-
icon_type(Class,Itype),
printf ("% % %.0f %.0f \n",[Itype,Num,X/10,Y/10]),
print_slots(Class),
print_expecteds(Class).

do_node(_).

icon_type(source,0).
icon_type(sink,1).
icon_type(filter,2).
icon_.ype(merger,3).
icon_type(splitter,4).
icon_type(inputfile,5).
icon_type(outputfile,?).

print_slots(source) :- printf("00 0 0 1 0 \n",[]).
print_slots(sink) :- printf(*0 100 0 0 \n",(]).
print_slots(filter) :- printf(*01 00 1 0 \n",[]).
print_slots(merger) :- printf(“1 01 01 0 \n",[] .
print_slots(splitter) :- printf(*0 101 0 1 \n",{]).

print_slots(inputfile) :- printf(*0 0 00 1 0 \n",[]).
print_slots(outputfile) :- printf("0 1 0 0 0 0 \n",[]).

print_expecteds(source) :- printf("1 ! 1\n",[]).
print_expecteds(sink) :~ printf(“1 ! 1\n",[]).
print_expecteds(filter) :- printf("1 ' 1\n*,{]).
print_expecteds(merger) :- printf("1 1 ! 1\n",[]).
print_expecteds(splitter) :- printf("1 ! 1 1\n",[]).
print_expecteds(inputfile) :- printf("1 ! 1\n",[]).
print_expecteds(outputfile) :- printf("1 ! 1\n", [1).

convert_arcs(N,[HIT]) :-
do_arc(N,H),
convert_arcs(N,T).

convert_arcs(_,[]).

do_arc(N,arc(_,_,Sid,Snum,Sclass,Did Dnum,Dclass)) :-
conn_num{(Snum,Outnum),
conn_num{Dnum,Innum),
out_type(Sclass,Outtype),
in_type(Dclass,Intype),
out_coords(N,Sid,Snum,X1,Y1),
in_coords(N,Did,Dnum,X2,Y2),
printf("%h A % %A % % %.0f %.0€ %.0f %.0f\n",
(Sid,Outnum,Outtype,Did,Innum,Intype,X1,Y1,X2,Y2]).
do_arc(_,.).

conn_num{first,0).
conn_num(only,1).
conn_num(second,2).

out_type(source,3).
out_type(filter,3).
out_type(merger,3).
out_type(splitter,3).
out_type(inputfile,0).

in_type(sink,7).
in_type(filter,7).
in_type(merger,7).
in_type(aplitter,7).
in_type(outputfile,4).

out_coords(N,Boxid,Cnum,X,Y) :-
member (box(Boxid,_, [NWX,NWY],_,_,_),N),
locate_output (NWX,NWY,Cnum,X,Y).

173

#define INPUT_OFFSET_X O

#define OUTPUT_OFFSET_X 64

#define ONLY_OFFSET_Y 32

#define FIRST_OFFSET_Y 21

#define SECOND_OFFSET_Y 43

locate_output (NWX,NWY,only,NWX/10+0UTPUT_OFFSET_X,
NWY/10+0ONLY_OFFSET_Y).

locate_output (NWX,NWY,first ,NWX/10+QUTPUT_OFFSET_X,
NWY/10+FIRST_OFFSET_Y) .

locate_output (NWX,NWY,second ,NWX/10+0UTPUT OFFSET_X,
NWY/104+SECOND_OFFSET_Y) .

in_coords(N,Boxid,Cnum,X,Y) :-
member (box(Boxid,_, [NWX,NWY],_,_,.),N),
locate_input (NWX,NWY,Cnum,X,Y) .

locate_input (NWX,NWY,only,NWX/10+INPUT_OFFSET_X,
NWY/10+0ONLY_OFFSET_Y).

locate_input (NWX,NWY,first ,NWX/10+INPUT_OFFSET_X,
NWY/10+FIRST_OFFSET_Y).

locate_input (NWX,NWY,second ,NWX/10+INPUT_OFFSET_X,
NWY/10+SECOND_OFFSET_Y) .

#endif

A.3 First prototype demonstration

The demonstration of the first prototype parser given in Chapter 5 makes use of
graphical representations of the input and output files used in the actual demonstra-

tion. The latter are listed here.

A.3.1 Input file seg_db

This file, from which figure 5.4 was produced, was output by the pen-stroke editor.
It is a condensed and simplified representation of a picture drawn by hand on the
PC screen, produced by reducing the user’s pen-strokes to a small number of line
segments. The techniques involved, which include cluster analysis, low-pass filtering,

and curvature analysis, are described in [41].

174

175

nodelist ([
lineseg(0,(], [903,846],(930,1130]),
lineseg(1,[], [898,837],[1243,829)),
lineseg(2,[],[1241,836],[1247,1111]),
lineseg(3,[], [1247,1111],[944,1123]),
lineseg(4,[], [935,1506],[964,1769]),
lineseg(5, (], (935,1486], [1262,1466]),
lineseg(6, (], [1262,1466],[1279,1765]),
lineseg(7,[], [1279,1765], [958,1797]),
lineseg(8, (], [1041,842],[918,1021]),
lineseg(9,[], [2005,1133], [2036,1445]),
lineseg(10,[],[1997,1116],[2358,1124])),
lineseg(11,[],[2358,1124],(2371,1456]),
lineseg(12, [1,[2371,1456],[2038,1471]),
lineseg(13,{],[1250,967],[1999,1210]),
lineseg(14,[],[1957,1170],[1995,1216]),
lineseg(15,[],[1995,1216],[1943,1223)),
lineseg(16,[],[1272,1600],[2019,1391]),
lineseg(17, (], [1955,13771, [2002,138¢€]),
lineseg(i8,[],[2002,132 .,([1972,1427]),
lineseg(19,[], [2920,1152], [2933,1464]),
lineseg(20,[], [2925,1142],[3324,1146]),
lineseg(21,[],[3324,1146], [3334,1488)),
lineseg(22, (1, (3334, 1488], [2928,1477]),
lineseg(23,[], [2860,1277],[2908,1302]),
lineseg(24,[],[2908,1302],[2851,1330]),
lineseg(25, [1,[3681,1307],[3743,1332]),
lineseg(26,[],[3743,1332],[3693,1344]),
lineseg(27,[],[3738,1176], [3727,1522]),
lineseg(28, (], [3729,1169], [4094,1190]),
lineseg(29,[],[4094,1190], [4096,1517]),
lineseg(30, (], [4096,1517],[3736,1520]),
lineseg(31,[],[3878,1176], [3727,1381]),
lineseg(32,[], [2373,1283], [2893,1300]),
lineseg(33,[], [3350,1316], [3726,1328])
1, 34).

A.3.2 The output file parse result

This is the first output file produced by the main routine, which is an interpretation

of the roots of the final parse forest in the format of a saved IST cgraph file.

AUNGSTFILELLLY
35 94 150
00010
' 1
38 373 117
10000
11
34 90 84
00010
11
37 292 115
10010
11
36 200 112
01010
111

== W0, ONFEF OO, ONEFE OO

56 147 373 149
64 144 292 147
58 182 200 155
54 116 200 133

~N~N N
- A W

A.3.3 The output file parse forest

This is the second output file produced by the main program. It is a symbolic listing
of the final parse forest. Figure 5.5 was produced by careful analysis of this file. The
format is a nested list of lists. Elements of each list are indented to the same level.
Each sublist is further indented than the list which contains it. NOTE: Several lines
in this file are too long to fit the page margins of this thesis, and have been split so

that each continuation line is aligned at the left with the first line.

Parse forest (58 nodes):

icon(49, [36], merger, 36. [2001, 1124.5], [2358, 1124], {2037, 1458],

(2371, 1456])

box(36, [10, 11, 12, 9], [2001, 1124.5], [2358, 1124], (2037, 1458],

[2371, 1456])

lineseg(10, [J, [1997, 1116], [2358, 1124])
lineseg(11, [1, [2358, 1124], [2371, 1456]1)
lineseg(12, [], [2371, 1456], [2038, 1471])
lineseg(9, (1, [2005, 1133], [2036, 1445])

176

icon(50, [37,;, filter, 37, [2922.5, 1147], [3324, 1146], [2930.5,
1470.5], [3334, 1488])
box(37, [20, 21, 22, 19], [2922.5, 1147], [3324, 11461, [2930.5,
1470.5), (3334, 1488))
lineseg(20, [1, [2925, 1142], (3324, 1146])
lineseg(21, []1, [3324, 11461, [3334, 1488])
lineseg(22, [], [3334, 1488], [2928, 1477])
lineseg(19, [1, [2920, 1152], [2933, 1464])
icon(51, [40], inputfile, 34, [900.5, 841.5], [1243, 829], [937,
1126.5], [1247, 1111])
file_icon(40, [34, 8], [900.5, 841.5], [1243, 829], [937, 1126.5],
(1247, 1111])
box(34, [1, 2, 3, 0], [900.5, 841.5], [1243, 829], [937,
1126.5], [1247, 1111])
lineseg(1, (1, (898, 8371, [1243, 829])
lineseg(2, [1, [1241, 836], (1247, 1111])
lineseg(3, [], [1247, 1111], (944, i123])
lineseg(0, (], [903, 8461, [930, 1130])
lineseg(8, [1, [1041, 84.], [918, 1021])
icon(52, [39], outputfile, 38, [3733.5, 1172.5), 14094, 1190],
[3731.5, 1521], (4096, 1517])
file_icon(39, (38, 31], [3733.5, 1172.51, [4094, 1190], [3731.5,
15211, [4096, 1517])
box(38, [28, 29, 30, 27], (3733.5, 1172.5], [4094, 1190],
(3731.5, 1521], [4096, 1517])
lineseg(28, [], [3729, 1169]), [4094, 1190]))
lineseg(29, [1, [4094, 1190], [4096, 1517])
lineseg(30, [1, [4096, 1517), (3736, 1520])
lineseg(27, (1, (3738, 1176], [3727, 1822])
lineseg(31, [], [3878, 1176}, [3727, 1381])
icon(53, [35), source, 35, [935, 1496], [1262, 1466], [961, 1783],
(1279, 1765])
box(35, [5, 6, 7, 4], [935, 14961, [1262, 1466], [961, 1783],
[1279, 1765])
lineseg(5, [1, [935, 14861, [1262, 1466])
lineseg(6, [], [1262, 14661, [1279, 1765])
lineseg(7, [1, [1279, 1765], [958, 1797])
linesng(4, [1, [935, 1506], [964, :769])
arc(54, (48], 34, only, inputfile, 36, first, merger)
arrow(48, [41, 13], [1250, 967], [1987.5, 1201.5])
arrovhead(41, [14, 15], [1976, 1193])
lineseg(14, [J, (1957, 1170), [1995, 1216])
lineseg(15, [J, [1995, 1216], [1943, 1223])
lineseg(:3, [], L1250, 967], (1999, 1210])

178

arc(55, [47]), 35, only, source, 36, second, nerger)
arrow(47, [42, 16], [1272, 1600), [1998.75, 1386.25])
arrovhead(42, [17, 18], [1978.5, 1381.5])
lineseg(17, [1, [1955, 1377], [2002, 1386])
lineseg(18, [1, [2002, 13861, [1972, 1427])
lineseg(16, [1, [1272, 1600], [2019, 1391])
arc(56, [46], 36, only, merger, 37, only, filter)
arrow(46, [43, 32], [2373, 1283], [2888.5, 1294.75))
arrovhead(43, [23, 24], (2884, 1289.5])
lineseg(23, [], [2860, 1277], [2908, 1302])
lineseg(24, [1, (2908, 1302], [2851, 1330])
lineseg(32, [1, (2373, 1283], [2893, 1300])
arc(57, [45], 37, only, filter, 38, only, outputfile)
arrow(45, [44, 33], [3350, 1316]), [3719, 1523.75])
arrovhead(44, [25, 26], [3712, 1319.5])
lineseg(25, [1, [3681, 1307], (3743, 1332])
lineseg(26, (1, [3743, 1332], [3693, 1344])
lineseg(33, [], [3350, 1316], [3726, 1328])

A.4 The Prolog acceptor for digraphs

This is a reproduction of the ASG-based acceptor for the digraph language, origi-
nally given in Figure 4.11 at the end of Chapter 4. It is presented here to facilitate

comparison with the parsers listed later.

% productions coded as prod(number,head,body)
prod(5,[n(v1),n(v2)], [n(V1) ,n(V2) ,arc(V1,v2)]).
prod{4,[n(v1)], [n(V1),arc(v1,v1)l).
prod(3,[n(v1)], [n(v1),n(L)]).

prod(2,[n(V1)], [node(V1)]).
prod(i,[n0],[n(0)]).

% acceptor
accept([n0]).
accept (W) :-
prod(_,X,Y),
match(Y,W,W1),
union(X,W1,W2),
accept(W2),
]

% match(A,B,C)
% A is a subset of B, and C is its complement w.r.t. B
match((],B,B) :- .
match({E|A],B,C) :-
element(E,B,B1),
match(A,B1,C).

% element(+E,+S,-T)
% succeeds if E is an element of set S; T is S minus E
element (E, [EIR],R).
element (E,[X1S],[%IT]) :-
element(E,S,T).

% union(+X,+Y,?Z)

% Z is union of sets X and Y

union([],X,X).

union([XIR}),Y,2) :-
element(X,Y,.), !,
union(R,Y,2).

union([XIR],Y,[X1Z]) :~
union(R,Y,2).

180

A.5 The second prototype (ASG-based) parsers

A.5.1 The digraph parser

Here is Jhe digraph parser presented as Figure 5.6 in Chapter 5. Note its similarity

to the acceptor listed above.

% productions coded as prod(number,head,body)
prod(5, [n(V1),n(v2)], [n(V1),n(V2) ,arc(v1,v2)]).
prod(4, [n(V1)], [n(V1),arc(V1,V1)]).

prod(3, [a(V1)], [n(Vv1),n()]).

prod(2, [n(V1)], [node(V1)]).
prod(1,[n0],[n(L)]).

% parser as seen by user: prints derivation of W if one exists
parse(W) :-
nl,accept_print(W),writeln(W).

% internal parser: acceptor augmented with printing functions
accept_print([n0])).
accept_print(W) :-

prod(P,X,Y),

match(Y,W,W1),

union(X,W1,W2),

accept_print(W2),

writeln(W2),

printf("p% : % -> %\n",(P,X,Y]),

'

% match(a,B,C)
% A is a subsat of b, and C is its complement w.r.t. B
match([],B,B) :- !.
match([E|A],B,C) :-
element(E,B,B1),
match(A,B1,C).

% clement(+E,+S,-T)
% succeeds if E is an element of set S; T is S minus E
element(E, [EIR],R).
element (E, [XIS], [XIT]) :-
element (E,S,T).

181

% union(+X,+Y,?2)

% 2 is union of sets X and Y

union([],X,X).

union([XIR],Y,Z) :-
element(X,Y,), !,
union(R,Y,Z).

union([XIR],Y,[X1Z]) :-
union(R,Y,Z).

A.5.2 Demonstration: digraph parsing

Here is a copy of the transcript of the test run of the digraph parser, originally given

as Figure 5.7 in Chapter 5.

CLP(R) Version 1.2
(c) Copyright International Business Machines Corporation
1989 (1991, 1992) All Rights Reserved

1 7- parse([node(1),arc(1,2),node(2),arc(2,2)]).

(no]

p1 : [n0] -> fa(2)]

[(n(2)]

p3 : [n(2)] -> [(n(2), n(1)]

(n(2), n(1)]

p4 : [n(2)] -> [n(2), arc(2, 2)]

[(n(1), n(2), arc(2, 2)]

ps : [n(1), n(2)] -> [n(1), a(2), arc(1, 2)]
[n(2), n(1), arc(i, 2), arc(2, 2)]

p2 : [n(2)] -> [node(2)]

[(n(1), arc(i, 2), node(2), arc(2, 2)]

p2 : [n(1)] -> [node(1)]

[node(1), arc(1, 2), node(2), arc(2, 2)]

% Yas

A.5.3 Binary tree parser with integrated constraint testing

Here is the complete linting of the parser for the binary tree diagram language, for
whicli a partial listing was givea as Figure 5.8 in Chapter 5. This is the ouly program
listed i this Appendix which is a true CLP(R) program, i.e., which makes use of
more than the Prolog subset of the CLP(R) language.

Note that the rule test was written first, and the result of its execution (which

can be seen in the transcript listed below) was used in the formulation of the rule go,

182

which actually performs the demonstration.

% constraints
equal(A,B) :- A=B.
sum(A,B,C) :- A=B+C.
mid(A,B,C) :- A=(B+C)/2.

% productions coded as prod(number,params,head,body)
prod (3, [DX,DY],

[subtree(X,Y,LX,RX}],

[node(X,Y),subtree(CXP,CY,LX,RXP) ,subtrece(CXDP,CY,LXP,RX),

arc(X,Y,CXP,CY) ,arc(X,Y,C%DP,CY)]

) :- sum(CY,Y,DY), sum(LXP,RXP,DX), mid(X,CXP,CXDP).
prod(2,[_,DY],

[(subtree(X,Y,LX,RX)],

[node(X,Y),subtree(X,CY,LX,RX) ,arc(X,Y,X,CY)]

) :- sum(CY,Y,DY).
prod(1,[_,_],

[subtree(X,Y,LX,RX)],

[node(X,Y)]

) :- equal(X,LX), equal(LX,RX).

% parser as seen by user: prints derivation of W if one exists
parse(PARMS,W) :-
nl,accept_print (PARMS,W) ,writeln(W).

% internal parser: acceptor augmented with printing functions
accept_print(_,[subtree(_,_,_,_)]).
accept_print (PARMS,W) :-

prod(P,PARMS,X,Y),

match(Y,W,W1),

union(X,W1,W2),

accept_print (PARMS,WZ),

writeln(W2),

printf("p¥% : %4 -> %\n",([P,X,Y]),

]

% match(A,B,C)
% A is a subset of B, and C is its complement w.r.t. B
match((],B,B) :- !.
match([E|A],B,C) :-
element(E,B,B1),
match(A,B1,C).

X I

A

o g

of /de

PM-1 3'2"x4” PHOTOGRAPHIC MICROCOPY TARGET
NBS 1010a ANSI/ISO #2 EQUIVALENT

e

;rrl'FI'l'l‘F
r

EEER
N o o =

PRECISIONS™ RESOLUTION TARGETS

% element (+E,+S,-T)
% succeeds if E is an element of set S; T is S minus E
element (E, [EIR] ,R).
element (E, [XIS], [XIT]) :-
element(E,S,T).

% union(+X,+Y,?2)

% Z is union of sets X and Y

union([],X,X).

union([XIR},Y,2) :-
element(X,Y,.), !,
union(R,Y,Z).

union([XIR],Y,[X|2]) :-
union(R,Y,Z).

test :- PX=0, PY=0, DX=4,6 DY=4,
equal(X1,LX),equal(LX,X2),sum(Y2,Y1,DY),equal(X4,X6),equal(X5,X4),
equal(XB,RX),equal(XT,XB),sum(Y3,Y1,DY),mid(XS,XS,X7),sum(XS,XG,DX),
sum(Y1,PY,DY) ,mid(PX,X1,X3),sum(X4,X2,DX),
writeln([node(PX,PY),arc(PX,PY,X1,Y1) ,arc(PX,PY,X3,Y1),
node(X1,Y1) ,node(X1,Y2) ,node(X3,Y1) ,arc(X1,Y1,X1,Y2),
arc(X3,Y1,X5,Y3) ,arc(X3,Y1,X7,Y3) ,node(X5,Y3) ,node(X7,Y3)]).

go :- parse([4,4],[
node(0, 0), arc(0, 0, -3, 4), arc(0, 0, 3, 4), node(-3, 4),
node(-3, 8), node(3, 4), arc(-3, 4, -3, 8), arc(3, 4, 1, 8),
arc(3, 4, 5, 8), node(1, 8), node(5, 8)
1.

A.5.4 Demonstration: binary tree diagram parsing

Here is a copy of the transcript of the test run of the binary tree diagram parser,
originally given as Figure 5.10 in Chapter 5. NOTE: Some of the lines in the original
transcript were too long to fit the page margins of this thesis, and have been split.
1 7~ test.

[node(0, 0), arc(o, 0, -3, 4), arc(0, 0, 3, 4), node(-3, 4),

node(-3, 8), node(3, 4), arc(-3, 4, -3, 8), arc(3, 4, 1, 8),
arc(3, 4, 5, 8), node(i, 8), node(5, 8)]

s%x%x Yes

2 7- go.
[subtree(0, 0, -3, 5)]

p3 : [subtree(0, 0, -3, 5)] -> [node(0, 0), subtree(-3, 4, -3, -3),
subtree(3, 4, 1, 5), arc(0, 0, -3, 4), arc(0, 0, 3, 4)]

[subtree(3, 4, 1, 5), subtree(-3, 4, -3, -3), node(0, 0),
arc(0, 0, -3, 4), arc(0, 0, 3, 4)]

p3 : [subtree(3, 4, 1, 5)] ~> [node(3, 4), subtree(i, 8, 1, 1),
subtree(5, 8, 5, 5), arc(3, 4, 1, 8), arc(3, 4, 5, 8)]

[subtree(5, 8, 5, 5), subtree(i, 8, 1, 1), subtree(~-3, 4, -3, -3),
node(d, 0), arc(0, 0, -3, 4), arc(0, 0, 3, 4), node(3, 4),
arc(3, 4, 1, 8), arc(3, 4, 5, 8)]

pl : [subtree(5, 8, 5, 5)] -> [node(5, 8)]

[subtree(1, 8, 1, 1), subtree(-3, 4, -3, -3), node(0, 0),
arc(0, 0, -3, 4), arc(0, 0, 3, 4), node(3, 4), arc(3, 4, 1, 8),
arc(3, 4, 5, 8), node(5, 8)]

pl : [subtree(1, 8, 1, 1)] -> [node(1, 8)]

(subtree(-3, 4, -3, ~3), node(0, 0), arc(0, 0, -3, 4),
arc(0, 0, 3, 4), node(3, 4), arc(3, 4, 1, 8), arc(3, 4, 5, 8),
node(1, 8), node(5, 8)]

p2 : (subtree(-3, 4, -3, -3)] -> [node(-3, 4), subtree(-3, 8, -3, -3),
arc(-3, 4, -3, 8)]

(subtree(-3, 8, -3, -3), node(0, 0), arc(0, 0, -3, 4), arc(0, 0, 3, 4),
node(-3, 4), node(3, 4), arc(-3, 4, -3, 8), arc(3, 4, 1, 8),
arc(3, 4, 5, 8), node(1, 8), node(5, 8)]

p1 : (subtree(-3, 8, -3, -3)] -> [node(~3, 8)]
(node(0, 0), arc(o, 0, -3, 4), arc(0, 0, 3, 4), node(-3, 4),

node(-3, 8), node(3, 4), arc(-3, 4, -3, 8), arc(3, 4, 1, 8),
arc(3, 4, 5, 8), node(1, 8), node(5, 8)]

=2+ Yeas

184

REFERENCES

[1] A.V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA, 1936.

[2] H. Ait-Kaci and R. Nasr. Integrating logic and functional programming. Lisp
and Symbolic Computation, 2:51-89, 1989.

[3] J. Allen. Natural Language Understanding. Benjamin/Cummings Pub. Co.,
Menlo Park, CA, 1987.

(4] J. L. Bentley. Multidimensional binary search trees used for associative search-
ing. Communicetions of the ACM, 18(9):509-516, September 1975.

{5] D. Blostein. Structural analysis of music notation. In Proceedings of SSPR90:
IAPR Workshop on Syntactic and Structural Patlern Recognition, Murray 1lill,
NJ, page 481. Intemational Association for Pattern Recognition, 1990.

[6] D. Blostein and H.Baird. A critical survey of musicimage analysis. In H. Baird,
H. Bunke, and K. Yamamoto, editors, Structured Document Image Analysis,
pages 405-434. Springer- Veriag, 1992.

[7] D. Blostein and L. Heken. Template matching for rhythmic analysis of mu-
sic keyboard input. In Proceedings of the Tenth International Conference on
Pattern Recognition, Atlantic City, NJ, pages 767-770, 1990.

[8] S. R. Bourne. The UNIX Systein. Addison-Wesley, Reading, MA, 1983,

[9] C. Boyd. A graphical shell tool. CS490y thesis final report, Computer Science
Dept., University of Western Ontario, 1990.

[10] A. Briiggemann-Klein and D. Wood. Drawing trees nicely with TEX. Research
Report CS-87-05, University of Waterloo, February 1987.

185

[11] H. Bunke. Hybrid pattern recognition methods. In H. Bunke and A. Sanfeliu,
editors, Syntactic and Structural Pattern Recognition: Theory and Applications,
pages 307 -347. World Scientific Publ. Co., 1990.

[12] H. Bunke and B. Haller. Syntactic analysis of context free plex languages for
pattern recognition. In Proceedings of SSPR90: IAPR Workshop on Syntactic
and Structural Pattern Recognition, Murray Hill, NJ, pages 57-77. International

issociation for Pattern Recognition, 1990.
[13] R. M. Carr. The point of the pen. Byte, pages 211-221, February 1991.

[14] R. Chandhok, D. Garlan, D. Goldenson, P. Miller, and M. Tucker. Program-
ming environments based on structure editing: the GNOME approach. In A. S.
Wojcik, editor, AFIPS Conference Proceedings: 1985 National Computer Con-
Jerence, pages 359-369. AFIPS Press, Reston, VA, 1985.

[15] S.-K. Chang. Visual languages: A tutorial and survey. IEEE Softw.. -, pages
29-39, January 1987.

[16] T. W. Chien and H. Jiirgensen. Parameterized L systems for modelling: Poten-
tial and limitations. In G. Rozenberg and A. Salomaa, editors, Lindenmayer
Systems: Impacts on Theoretical Computer Science, Computer Graphics, and

Developmental Biology, pages 213-229. Springer-Verlag, 1992.

[17] S.S. Chok and K. Marriott. Parsing visual languages. Technical Report 94/200,
Computer Science Dept., Monash University, 1994.

[18] N. Chomsky. Three models for the description of language. IRE Transactions
on Information Theory, IT-2:113-124, 1956.

(19] P. A. Chou. Recognition of equations using a two-dimensional stochastic
context-free grammar. In Visual Communications and Image Processing IV,

pages 852-863. Society of Photo Optical Instrumentation Engineers, 1989.

[20] P. A. Chou. A Cocke-Younger-Kasami parsing algorithm for high-dimensional
context-free grammars. In Proceedings of SSPR90: IAPR Workshop on Syntac-
tic and Structural Pattern Recognition, Murray Hill, NJ, page 483. International
Association for Pattern Recognition, 1990.

186

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

A. L. Chow and R. V. Rubin. Topological composition systems: Specitications
for lexical elements of visual languages. In Proceedings of the 1991 IEEE Work-
shop on Visual Languages, pages 118-124. IEEE Computer Society Press, Los
Alamitos, CA, 1991.

W. V. Citrin. Requirements for graphical front ends for visual languages. In
Proceedings of the 1993 IEEE Workshop on Visual Languages, pages 142 150.
IEEE Computer Society Press, Los Alamitos, CA, 1993.

W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag,
Berlin, fourth edition, 1994.

S. Collin and D. Colnet. Syntactical analysis of technical drawing dimensions.

In Advances in Syntactic and Structural Pattern Recognition, pages 280 289.
World Scientific Publ. Co., 1992.

G. Costagliola and S.-K. Chang. DR parsers: a generalization of LR parsers. In
Proceedings of the 1990 IEEE Workshop on Visual Languages, pages 174 -180.
IEEE Computer Society Press, Los Alamitos, CA, 1990.

G. Costagliola, S. Orefice, G. Polese, G. Tortora, and M. Tucci. Automatic
parser generation for pictorial languages. In Proceedings of the 1993 IEKE
Workshop on Visual Languages, pages 306-313. IEEE Computer Society Press,
Los Alamitos, CA, 1993.

G. Costagliola, M. Tomita, and S.-K. Chang. A generalized parser for 2-1)
languages. In Proceedings of the 1991 IEEE Workshop on .’isual Languages,
pages 98-104. IEEE Computer Society Press, Los Alamitos, CA, 1991.

B. Courcelle. Attribute grammars: Definitions, analysis of dependencies, proof
methods. In B. Lorho, editor, Methods and Tools for Compider Construction,

pages 81-102. Cambridge University Press, 1984,

B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, chap-
ter 5. Elsevier Science Publishers B.V., Amsterdam and MI'I' Press, Cambridge,
MA, 1990.

(30] P. T. Cox and T. Pietrzykowski. Using a pictorial representation to combine
dataflow and object-orientation in a language independent programming mech-
anism. In Proceedings International Computer Science Conference 1988. IEEE,

1988.

(31} P. J. Denning. Smart editors. Communications of the ACM, 24(8):491-493,
1981.

(32] V. Di Gesu and D. Tegolo. The iconic interface for the Plctorial C Language. In
Proceedings of the 1992 IEEE Workshop on Visual Languages, pages 119-124.
IEEE Computer Society Press, Los Alamitos, CA, 1992.

[33] D. Dori. Self structural syntax directed pattern recognition of dimensioning
components in engineering drawings. In Proceedings of SSPR90: IAPR Work-
shop on Syntactic and Structural Pattern Recognition, Murray Hill, NJ, pages

88-112. International Association for Pattern Recognition, 1990.

[34] F. Drewes. Parsing ordered graphs generated by hyperedge replacement. Tech-
nical Report 10/90, Fachbereich Mathematik und Informatik, Universitit Bre-
men, 1990,

[35] F. Drewes. NP-completeness of k-connected hyperedge-replacement languages
of order k. Information Processing Letters, 15:89-94, 1993.

[36] F. Drewes. Recognising k-connected hypergraphs in cubic time. Theoretical
Computer Science, 109:83-122, 1993.

(371 G. D. P. Dueck and G. V. Cormack. Modular attribute grammars. The Com-
puter Journal, 33(2):164-172, 1990.

(38] S. D. Dunne. Computer setting of music scores: Survey and problem analysis.
Technical Report 174, Computer Science Dept., University of Western Ontario,
1989.

[39] S. D. Dunne. A new paradigm for computer formatting of specialized notations.

Technical Report 227, Computer Science Dept., University of Western Ontario,
1989.

188

[40]

[41]

[42]

[43]

(44]

[45]

[46]
[47]

[48]

[49]

[50)

[51]

S. D. Dunne. Interactive pen-based editors as components of integrated writ-
ing and visual language processing systems. Term paper for course CS621b,
September 1992.

S. D. Dunne. Towards interactive pen input of visual languages. Technical

Report 325, Computer Science Dept., University of Western Ontario, 1992.

S. D. Dunne and H. Jirgensen. Foundations for a general mark-setting system
with applications to musical score formatting. Technical Report 171, Computer

Science Dept., University of Western Ontario, 1937.

J. Earley. An efficient context-free parsing algorithm. Communications of the
ACM, 13:94-102, 1970.

H. Fahmy. A graph-grammar approach to high-level music recognition. Techni-
cal Report 91-319, Department of Computing and Information Science, Queen’s
University, Kingston, Ontario, Canada, September 199i.

H. Fahmy and D. Blostein. A graph grammar programming style for recognition
of music notation. Machine Vision and Applications, 6(2-3):83-99, 1993.

J. Feder. Plex languages. Information Science, 3:225-241, 1971.

F. Ferrucci, G. Pacini, G. Tortora, and G. Vitiello. Efficient parsing of multi-
dimensional structures. In Proceedings of the 1991 IEEE Workshop on Visual
Languages, pages 105-110. IEEE Computer Society Press, Los Alamitos, CA,
1991.

C. W. Fraser. A generalized text editor. Communications of the ACM,
23(3):154-162, 1980.

C. W. Fraser and A. A. Lopez. Editing data structures. ACM Transactions on
Programming Languages and Systems, 3(2):115-125, 1981.

H. Freeman. On the encoding of arbitrary geometric configurations. IRE Trans-

actions on Elecironic Computers, June 1961.

R. Freund. Syntactical analysis of handwritten characters by using quasi-regular
programmed array grammars with attribute vectors. In Advances in Syntactic
and Structural Pattern Recognition, pages 310-319. World Scientific Publ. Co.,
1992.

189

[52] A. M. Frisch and R. B. Scherl. A general framework for modal deduction. In
J. A. Allen, R. Fikes, and E. Sandewall, editors, Principles of Knowledge Repre-
sentation and Reasoning: Proceedigns of the Second International Conference.

Morgan Kaufman, 1991.

[53) K.S. Fu. Syntactic Methods in Pattern Recognition, volume 112 of Mathematics

in Science and Engineering. Academic Press, New York, 1974.

[54] E. P. Glinert, editor. Visual Programming Environments. IEEE Computer
Society Press, Los Alamitos, CA, 1990. (in two volumes).

[55] E. P. Glinert and S. Tanimoto. Pict: an interactive graphical programming
environment. [EEE Computer, 17:7-25, 1984.

[56] E.J.Golin. Interaction diagrams: A visual language for controlling a visual pro-
gram editor. In Proceedings of the 1991 IEEE Workshop on Visual Languages,
pages 152-158. IEEE Computer Society Press, Los Alamitos, CA, 1991.

[57] E. J. Golin. Parsing visual languages with picture layout grammars. Journal
of Visual Languages and Computing, 2:371-393, 1991.

[58] E. J. Golin and T. Magliery. A compiler generator for visual language *. In
Proceedings of the 1993 IEEE Workshop on Visual Languages, pages 314-321.
IEEE Computer Society Press, Los Alamitos, CA, 1993.

[59) E. J. Goli* and S. P. Reiss. The specification of visual language syntax. In
Proceedings of the 1989 IEEE Workshop on Visual Languages, pages 105-110.
IEEE Computer Society Press, Los Alamitos, CA, 1989.

[60] E. J. Golin and S. P. Reiss. The specification of visual language syntax. Journal
of Visual Languages and Computing, 1:141-157, 1990.

[61] H. Gottler. Graph grammars and diagram editing. In H. Ehrig, M. Nagl,
G. Rozenberg. and A. Rosenfeld, editors. Graph Grammars and Their Applica-
tion to Computer Science, 3rd International Workshop, Warrenton, Virginia,
December 1986, pages 216-231, Berlin, 1987. Springer-Verlag.

[62) Susan H. and T. Teitelbaum. Generating editing environments based on re-

lations and attributes. ACM Transactions on Programming Languages and
Systems, 8(4):577--608, October 1986.

190

[63] A. Habel. Hyperedge Replacement: Grammars and Languages, volume 643 of

Lecture Notes in Computer Science. Springer-Verlag, 1992,

[64] A. Habel and H.-J. Kreowski. May we introduce to you: Hyperedge replace-
ment. In H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors. (sraph-
Grammars and their Application to Computer Science: 3rd International Work-

shop, pages 15-26. Springer-Verlag, 1986.

[65] G. Hamlin. Software for device-independent graphical input. In Graphics In-
terfacc ‘82, pages 23-27. Association for Computing Machinery, 1982.

[66) J. S. Hanan. Plantworks: A Software System for Realistic Plant Modelling.
PhD thesis, University of Regina, Canada, 1988.

[67] N. C. Heintze, J. Jaffar, C. Lassez, J.-L. Lassez, K. McAloon, S. Michaylov,
P. J. Stuckey, and R. H. C. Yap. Constraint logic programming: A reader.
Notes for Tutorial Session 3, Fourth IEEE Symposium on Logic Programming,
San Francisco, August 31 - September 4, 1987.

[68] N. C. Heintze, J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. 7The
CLP(R) Programmer’s Manual. IBM Thomas J. Watsou Research Center,
Yorktown Heights, NY, version 1.2 edition, September 1992,

[69] R. Helm and K. Marriott. Declarative specification of visual languages. In
Proceedings of the 1990 IEEE Workshop on Visual Languages, pages 98 103.
IEEE Computer Society Press, Los Alamitos, CA, 1990.

[70] R. Helm, K. Marriott, and M. Odersky. Building visual language parsers. In
Procedings of CHI 1991 (New Orleans, Louisiana). Association for Computing
Machinery, 1991.

[71] R. Helm, K. Marriott, and M. Odersky. Spatial query optimization: From
Boolean constraints to range queries. Research Report RC 17231 (#76325)
9/30/91, IBM Research Division, T. J. Watson Research Center, Yorktown
Heights, N.Y. 10598, 1991.

[72] T.C. Henderson and A. Samal. Table driven parsing for shape analysis. Pattern
Recognition, 19(4):279-288, 1986.

191

(73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

T. R. Henry, S. E. Hudson, and G. L. Newell. Integrating gesture and snapping
into a user interface toolkit. In UIST Proceedings of the ACM SIGGRAPH
Symposium on User Interface Software and Technology, Snowbird, Utah, pages
112-122. Association for Computing Machinery, 1990.

G. E. Hinton, C. K. Williams, and M. D. Revow. Adaptive elastic models
for hand-printed character recognition. In J. E. Moody, S. J. Hanson, and
R. P. Lippmann, editors, Advances in Neural Information Processing Systems
4. Morgan Kauffmann, San Mateo, CA, 1992.

C. J. Hogger. Introduction to Logic Programming. Academic Press, 1984.

J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proceedings of the
14th ACM Symposium on Principles of Procramming Languages, pages 111-
119. Association for Computing Machinery, 1987.

T. Kakuma and E. Tanaka. A pessimistic view of syntactic pattern recogni-
tion for graphics recognition. In Proceedings of SSPR90: IAPR Workshop on
Syntactic and Structural Pattern Recognition, Murray Hill, NJ, pages 165-181.

International Association for Pattern Recognition, 1990.

R. Kasturi and L. O’Gorman. Document image analysis: A bibliography. Ma-
chine Vision and Applications, 5:231-243, 1992.

R. Kasturi, R. Raman, C. Chennubhetla, and L. O’Gorman. Document image
analysis: An overview of techniques for graphics recognition. In Proceedings
of SSPR90: IAPR Workshop on Syntactic and Structural Pattern Recognition,
Murray Hill, NJ, pages 192-229. International Association for Pattern Recog-
nition, 1990.

H. Kato and S. Inokuchi. The recognition system for printed piano music using
musical knowledge and constraints. In Proceedings of SSPR90: IAPR Workshop
on Synfactic and Structural Pattern Recogniticn, Murray Hill, NJ, pages 231-
248. International Association for Patte.n Recognition, 1990.

T. D. Kimura. Hyperflow: A visual programming language for pen computers.
In Proceedings of the 1992 IEEE Workshop on Visual Languages, pages 125-
132. IEEE Computer Society Press, Los Alamitos, CA, 1992,

192

[82]

(83]

(84]

[85]

[86]

(87]

[88]

[89]

[90]

[91]

[92]

D. E. Knuth. The TEXbook. Addison-Wesley, 1986.

K. Kojima and B. A. Myers. Parsing graphic function sequences. In Proceed-
ings of the 1991 IEEE Workshop on Visual Languages, pages 111 117, IV EE
Computer Society Press, Los Alamitos, CA, 1991.

D. Kurlander and S. Feiner. Interactive constraint-based scarch and replace. In

Procedings of CHI 1992. Association for Computing Machinery, 1992,

G. Kurtenbach and W. Buxton. GEdit: 4 test bed for editing by contiguous
gestures. SIGCHI Bulletin, 23(2):22-26, 1991.

J. J. Lee. A model foi iextually-oriented program editing. Technical Report
151, Computer Science Dept., University of Western Ontario, 1956.

S.-W. Lee, J. H. Kim, and F. C. A. Groen. Translation-, rotation-, and scale-
invariant recognition of hand-drawn electrical circuit symbols with attributed
graph matching. In Proceedings of SSPR90: IAPR Workshop on Syntactic and
Structural Pattern Recognition, Murray Hill, NJ, pages 273 292. International

Association for Pattern Recognition, 1990.

A. Lindenmayer. Mathematical models for cellular interaction in development,
parts | and I1. Journal of Theoretical Biology, 18:290-315, 1968.

T. Luo. TreeDraw: A tree-drawing system. Master’s thesis, University of
Waterloo, Ontario, Canada, 1993. (Available as University of Western Ontario

Dept. of Computer Science technical report no. 396).

E. Mandler. Advanced preprocessing technigue for on-line recognition of hand-
printed symbols. In R. Plamondon, C. Y. Suen, and M. L. Simner, editors,
Computer Recognition and Human Production of Handwriting, pages 19 36.

World Scientific Publ. Co., 1989.

J. Marks. A syntax and semantics for network diagrams. In Proceedings of the
1990 IEEE Workshop on Visual Languages, pages 104 -110. IEEE Computer
Society Press, Los Alamitos, CA, 1990.

K. Marriott. Constraint multiset grammars. In Proceedings of the 1994 IEEE

Workshop on Visual Languages. IEEE Computer Society Press, Los Alamitos,
CA, 1994.

193

(93]

[94]

[95]

[96)

(97]

[98)

[99}

[100]

[101]

T. Matsushima, I. Sunomoto, T. Harada, K. Kanamori, ard S. Ohteru. Au-
tomated high speed recognition of printed music ("VABOT-2 vision system).
In '85 ICAR: International Conference on Advanced Robotics, September 9-10,
1985, Tokyo, Japan, pages 477-482, 1985.

. Medina-Mora and P. H. Feiler. An incremental programming environment.
IEEFE Transactions on Software Engineering, SE-7(5):472-482, September 1981.

B. Meyer. Pictures depicting pictures: On the specification of visual languages
by visual grammars. In Proceedings of the 1992 IEEE Workshop on Visual
Languages, pages 41-47. IEEE Computer Society Press, Los Alamitos, CA,
1992.

B. R. Modayer, V. Ramesh, R. M. Haralick, and L. G. Shapiro. MUSER: A
prototype musical score recognition system using mathematical morphology.
Machine Vision and Applications, 6(2-3):140-150, 1993.

F. Mokhtarian and A. Mackworth. Scale-based description and recognition
of planar curves and two-dimensional shapes. IFEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-8(1), January 1986.

B. A. Myers. Visual programming, programming by example and program
visualization: A taxonomy. In Conference Proceedings, CHI’86: Human Factors
in Compuling Systems, pages 59-66, New York, 1986. ACM Press.

B. A. Myers. Taxonomies of visual programming and program visualization.
Journal of Visual Languages and Computing, 1:97-123, 1990.

M. A. Najork and S. M. Kaplan. Specifying visual languages with conditional
set rewrite systems. In Proceedings of the 1993 IEEE Workshop on Visual
Languages, pages 12-18. IEEE Computer Society Press, Los Alamitos, CA,
1993.

H. Nishida and S. Mori. A structural description of curves by quasi-topological
features and singular points. In Proceedings of SSPR90: IAPR Workshop on
Syntactic and Structural Pattern Recognition, Murray Hill, NJ, pages 310-334.

International Association for Pattern Recognition, 1990.

194

[102] M. Nivat, A. Saoudi. and V. R. Dare. Parallel generaiion of £nite images. Inter-
national Journal of Pattern Recognition and Artificial Inielligenee, 3(3/4):279
204, 1989.

[102] D. Notkin. Interactice Structure-Oriented Computing. PhD thesis, Carnegie-
Mellon University, 1984.

[104] O’Reilly and Associates, Inc. The X Window System Scries. O Reilly and

Associates, Inc., Sebastopol, CA, 1990. (in seven volumes).

[105] J. O’Rourke and R. Washington. Curve similarity via signatures. In G. T.
Toussaint, editor, Computational Geometry, pages 295 317. Elsevier Science

Publishers B.V. (North-Holland), 1985.

[106] Joseph J. P. Jr. Using graph grammars for data structure manipulation. In
Proceedings of the 1990 IEFEE Workshop on Visual Languages, pages 12 A7,
IEEE Computer Society Press, Los Alamitos, CA. 1990.

[107] T. Pavlidis and C. J. van Wyck. An automatic beautifier for drawings and
illustrations. Computer Graphics, 19(3):225-234, July 1985.

[108] F. C. N. Pereira and D. H. D. Warren. Definite clause grammars for language
analysis: A survey of the formalism and a comparison with augmented transi-
tion networks. Artificial Intelligence, 13:231-278, 1980.

{109] J. L. Pfaltz and A. Rozenfeld. Web grammars. In Proceedings of the Ist In-
ternational Joint Conference on Artificial Intelligence, Washington, DC, pages
609-616, May 1969.

[110] J. J. Pfeiffer Jr. Parsing graphs representing two dimensional figures, In Pro-
ceedings of the 1992 IEEE Workshop on Visual Languages, pages 200 206. 1FEE
Computer Society Press, Los Alamitos, CA, 1992,

{111] P. Prusinkiewicz and J. Hanan. Lindenmayer Systems, Fractals, and Plants,
volume 29 of Lecture Notes in Biomatlhematics. Springer-Verlag, New York,
1989.

[112] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants.

Springer-Verlag, New York, 1990.

195

[113] S. Pulman. Unification and the new grammatism. In Yorick Wilks, editor,
Theoretical Issues in Natural Language Processing, chapter 2.2, pages 32-35.
Lawrence Erlbaum Associates, Hillsdale, NJ, 1989.

[114] D. R. Raymond. Characterizing visual languages. In Proceedings of the 1991
IEEE Workshop on Visual Languages (Kobe, Japan). IEEE Computer Society
Press, Los Alamitos, CA, 1991.

[115] G. Reader. Programming in Picture. PhD thesis, University of Southern Cali-
fornia, 1984.

[116] 'F. W. Reps and T. Teitelbaum. The Synthesizer Generator: a system for
constructing language-based editors. Springer-Verlag, New York, 1989.

[117] A. Rosenfeld. Isotonic grammars, parallel grammars, and picture grammars.
In B. Meltzer and D. Mitchie, editors, Machine Intelligence 6. University of

Edinburgh, 1971.

[118] A. Rosenfeld. Array grammar normal forms. Information and Control, 23:173-
182, 1973.

[119] A. Rosenfeld. Array grammars. In H. Ehrig, M. Nagl, G. Rozenberg, and
A. Rosenfeld, editors, Graph Grammars and Their Application to Computer
Science, 3rd International Workshop, Warrenton, Virginia, December 1986,
pages 67-70, Berlin, 1987. Springer-Verlag.

[120] G. Rozer'~rg. An introduction to the NLC way of rewriting graphs. In
H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors, Graph-Grammars
and their Application to Computer Science: 3rd International Workshop, pages
55-66. Springer-Verlag, 1986.

[121] A. Salomaa. Formal Languages. Academic Press, New York, 1973.

[122] L Salter. A framework for formally defining the syntax of visual languages. In
Proceedings of the 1993 IEEE Workshop on Visual Languages, pages 244-248.
IEEE Computer Society Press, Los Alamitos, CA, 1993.

[123] R. J. Schalkoff. Pattern Recognition: Statistical, Structural, and Neural Ap-
proaches. John Wiley and Sons, Inc., New York, 1992,

[124)

[125]

(126]

[127]

[128)

[129]

[130]

(131]

(132

(133]

(134]

R. W. Scheifler. X Window System Protocol. Version 11. MIT Press. 1986.

R. W. Scheifler. X Window System Protocol Encoding, Version 11. MI'T Press,
1987.

A. Schiirr. PROGRES, a visual language and environment for PROgranming
with Graph REwriting Systems. Aachener Informatik-Berichte AIB 94-11,
RWTH Aachen (Germany), 1994.

Andy Schiirr. Specification of graph translators with triple graph grammars.
Aachener Informatik-Berichte AIB 94-12, RWTH Aachen (Germany), 1994,

J. A. Scofield. Editing as a Paradigm for User Interaction. PhD thesis, Uni-
versity of Washington, 1985.

D. B. Searls and S. A. Leibowitz. Logic grammars as a vehicle for syntactic pat-
tern recognition. In Proceedings of SSPR90: IAPR Workshop on Syntactic and
Structural Pattern Recognition, Murray Hill, NJ, pages 402-422. nternational
Association for Pattern Recognition, 1990.

E. Selfridge-Field. Optical recognition of music notation: A survey of current
work. In W. Hewlett and E. Selfridge-Field, editors, Computing in Musicol-
ogy 9. Center for Computer-Assisted Research in the Humanities, Menlo Park,
California, 1993-4.

A. C. Shaw. A formal picture description scheme as a basis for picture process-

ing systems. Information and Control, 14:9-51, 1969.

S. M. Shieber. An Introduction to Unification-Based Approaches to Grammar.
CSLI Lecture Note Series no. 4. Center for the Study of Language and Infor-
mation, Stanford, CA, 1986.

N. C. Shu. Visual programming languages: A perspective and a dimensional
analysis. In S.-K. Chang, T. Ichikawa, and P. A. Ligomenides, editors, Visual
Languages, pages 11-34. Plenum Press, New York, 1986.

R. Siromoney, A. Huq, M. Chandrasakaran, and K. GG. Subramanian. Pattern
classification with equal matrix grammars. In Proceedings of SSPR90: IAPH

Workshop on Syntactic and Structural Pattern Recognition, Murray HHill, NJ,

pages 440-449. International Association for Pattern Recognition, 1990.

197

[135]

(136)

[137]

[138]

(139)

[140]

[141)

[142)

[143]

(144]

A. R. Smith. Plants, fractals, and formal languages. Computer Graphics,
18(3):1-10, 1984.

W. W. Stallings. Recognition of printed chinese characters by automatic pattern

analysis. Computer Graphics and Image Processing, 1:47-65, 1972.

R. Steensma. Enhancements to an iconic shell tool for UNIX. CS490y thesis
final report, Computer Science Dept., University of Western Ontario, 1992.

I. E. Sutherland. Sketchpad: A man-machine graphical communication system.
In AFIPS Conference Proceedings, Spring Joint Computer Conference, 1963.
Reprinted in [54], pp 198-215.

C. C. Tappert, C. Y. Suen, and T. Wakahara. The state of the art in on-line
handwriting recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12(8):787-808, 1990.

T. Teitelbaum and T. Reps. The Cornell Program Synthesizer: A syntax di-
rected programming environment. Communications of the ACM, 24(9):563-
573, 1981.

J. T. Tou. An approach to understanding geometrical configurations by com-
puter. International Journal of Computer and Information Sciences, 9(1),
February 1980.

J. van der Vegt. Editing objects of a hierarchical structured drawing. Tech-
nical Report CS-R9074, Centrum voor Wiskunde en Informatica, Amsterdam,
December 1990.

M. H. H. van Dijk and J. W. C. Koorn. GSE, a generic syntax-directed editor.
Technical Report CS-R9045, Centrum voor Wiskunde en Informatica, Amster-
dam, September 1990.

J. M. Vlissides and M. A. Linton. Unidraw: A framework for building domain-
specific graphical editors. In UIST Proceedings of the ACM SIGGRAPH Sym-
posium on User Interface Software and Technology, Williamsburg, VA, pages
159-167. Association for Computing Machinery, November 1989.

198

[145] Y. P. Wang and T. Pavlidis. Optimal correspondence of string subsequences.
In Proceedings of SSPR90: IAPR Workshop on Syntactic and Structural Pat-
tern Recognition, Murray Hill, NJ, pages 460-479. International Association for
Pattern Recognition, 1990.

[146] T. Watanabe, Q. Luo, and N. Sugie. Structure recognition methods for various
types of documents. Machine Vision and Applications, 6(2-3):163-176, 1993.

{147) R. C. Waters. Program editors should not abandon text oriented commands.
ACM SIGPLAN Notices, 17(7):39-46, July 1982,

[148] G. Weber. FINGER: A language for gesture recognition. In D. Diaper et.
al., editor, Human-Computer Interaction—INTERACT °90. Elsevier Science
Publishers B.V. (North-Holland), 1990.

[149] L. Weitzman and K. Wittenburg. Relational grammars for interactive design.
In Proceedings of the 1993 IEEE Workshop on Visual Languages, pages 4-11.
IEEE Computer Society Press, Los Alamitos, CA, 1993.

[150] K. Wittenburg. F-PATR: Functional constraints for unification grammars. Un-

published manuscript, Bellcore.

[151] K. Wittenburg. Earley-style parsing for relational grammars. In Proceedings of
the 1992 IEEE Workshop on Visual Languages, pages 192-199. IEEE Computer
Society Press, Los Alamitos, CA, 1992.

(152] K. Wittenburg. The relational language system. Technical Memorandum TM-
ARH-022353, Bellcore, Morristown, NJ, December 1992,

[153] K. Wittenburg and L. Weitzman. Visual grammars and incremental parsing
for interface languages. In Proceedings of the 1990 IEEE Workshop on Visual
Languages, pages 111-118. IEEE Computer Society Press, Los Alamitos, CA,
1990.

[154] K. Wittenburg, L. Weitzman, and J. Talley. Unification-based grammars and

tabular parsing for graphical languages. Journal of Visual Languages and Com-
puting, 2(4):347-370, 1991.

199

(155) B. Yu and S.-K. Chang. A fuzzy visual language compiler. In Proceedings of
the 1990 IEEE Workshop on Visual Languages, pages 162-167. IEEE Computer
Society Press, Los Alamitos, CA, 1990.

	Western University
	Scholarship@Western
	1995

	Syntax-directed Interpretation Of Visual Languages
	Shane Denis Dunne
	Recommended Citation

	tmp.1410235557.pdf.uXpVY

