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ABSTRACT

Large scale endeavor of research on spatial mechanists started about half a cen-
tury ago. Although significant research work has been done, the underlying framework
of the theory of spatial mechanisms still appears weak. In this thesis, a theoretical
foundation for the kinematic analysis and design of spatial mechanisms and robots has
been developed.

In the last twenty years, the matrix method and the spherical trigonometry
method have emerged as the most efficient ones among approximately ten other
different methods for the kinematic analysis of spatial mechanisms. In this thesis a
new method, the vector algebraic method, has been introduced. In comparison with
the two methods, the proposed method has shown advantages on its efficiency, unifor-
mity and simplicity.

The goal of this thesis is to enhance the education, research and application of
spatial mechanisms.
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NOMENCLATURE

the twist angle between the pair axes of i and i+1.

angular variable, which could be rotary or helix-angular variable.

output angle, the first angular variable to be determined.

auxiliary, the angular variable to be eliminated from simultaneous dis-
placement equations.

usually represents unit axial vector of constrained axis.

usually represents unit link vector.

§; is the offset corresponding to axial vector g, .

p; is the length of link i.

the input vector, the sum of those vectors in the loop of a mechanism
that are given or known at the beginning.

the output vector, the sum of the constant-magnitude vectors in the loop
of a mechanism that can be expressed as function of the output angle.
the sum of the input and output vecters, K=1+]J.

the auxiliary vector, the sum of those unknown constant-magnitude vec-
tors between the adjacent angular variables of the auxiliary that can be
expressed as function of the auxiliary (angle).

the floating vector; Dissecting a closed-loop into two serial linkages, we
obtain a ground linkage and a floating linkage. The sum of all the vec-
tors of the floating linkage is the floating vector.

small lambda, which is the total number of the angular variables of the
basic pair variables of a mechanism or robot.

big lambda, defined as A=2-8, where & is an adjusting parameter
which equals either one or zero.

the degree of complexity of mechanism or robot, e=A+A.
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GENERAL REVIEW

Linkage-mechanisms are a common sight in practical engineering. They can be
generally divided into two groups: one is planar linkage-mechanisms, the other the
spatial linkage-mechanisms. Human beings began to design and use linkage-
mechanisms long ago.

Compared to spatial mechanisms, planar mechanisms ar¢ much casier to analyze
and design; therefore, many senior scientists have done a great deal of systematic
research work on plarar mechanisms. The vast majority of linkage mechanisms in
engineering are plaror mechanisms. The theory of the Kinematics of planar mcchan-
isms is now very mature, and has been widely taught at the undergraduate level in
engineering schools.

In comparison with planar mechanisms, spatial mechanisms have their distinct
attributes. They can trace curves and transmit required motions and forces in 3-
dimensional space that are difficult or impossible for planar mechanisms to accom-
plish. Though more and more useful spatial mechanisms are invented and applied in
engineering, it is a pity, that the education on the theory of the kinematics of mechan-
isms and machines is basically still confined in 2-dimensional space. Less than ten
universities in the world have ever offered courses specifically devoted to the kinemat-
ics of spatial mechanisms, and most of them are only at introductory level.

The graphic method, an old-fashioned method for the analysis of mechanisms,
had alwz;'s been the favorite method for designers and scholars before the computer
age. In spite of its inaccuracy, it is visually intuitive and can be used to solve most of
the problems in the analysis, synthesis and design of planar mechanisms. However, it
becomes virtually impotent for tackling spatial mechanisms. Alternatively, the analyti-
cal method (or algebraic method) depends on obtaining numerical values from compli-
cated algebraic expressions, it is natural that this method had drawn little attention
until the difficulty of computation was overcome.

With the widespread application of digital computers since the '50s, the ancient

theory of mechanisms gained new vitality, and the extensive field of investigation,
design and application of spatial mechanisms was unfolded.

Following the well known pioneering works of the Russian scholar Dimentberg
[12] since 1948, a series of new analytical methods were appearing. In references
[12,13) Dimentberg successfully obtained analytical solutions for some 4-link and 5-
link spatial mechanisms using screw algebra and dual numbers (or dual vectors).

In 1947 and 1952 Dobrovolskii [14,15] investigated the method of spherical
representation in the theory of spatial mechanisms.
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In 1955 Denavit and Hartenberg published their milestone paper {10), in which a
clear description of the motion of spatial linkages containing lower-pairs by matrices
was proposed for the first time.

In 1962 Zhang [98] completed his milestone thesis in which substantial advances
were made and the direction cosine matrix method was developed. In the same year
Chace [6] creatively explored the application of vector mathematics for kinematic
analysis of some spatial mechanisms.

In 1963 Yang [82] studied the application of guaternion algebra and dual
numbers to the analysis of spatial mechanisms.

In 1964 Uicker, Denavit and Hartenberg [74] developed an iterative method
based on matrices for the analysis of spatial mechanisms. This is actually a numerical
method , which does not yield closed-form solutions.

In 1966 Suh [68] analyzed some 4-link spatial mechanisms using a combination
of vector and matrices to describe displacements. In the same year, Ho {38] analyzed
spatial 4-bar linkage by the rensor method, Beggs published his beautifully written
book [4] which significantly contributed to the application of matrices in the analysis
of 3-link and 4-link spatial mechanisms.

In 1968 Walla.c [75] analyzed two S-link spatial mechanisms (i.e. the general-
ized Tracta and Clemens couplings) using the geomerric-configuration method .

In 1969 Yang [84] investigated the R—CRCR mechanism using (3x3) matrices
with dual-number elements. A major event in 1969 was the emergence of Joseph
Duffy [17] who began to tackle spatial mechanisms using spherical trigonometry .

In 1970 Yuan [93] derived the solution of the R,-RCCR mechanism by the
method of line geometry and line coordinates .

In 1971 Yuan, Freudenstein and Woo [94] developed the screw coordinates
approach. In the same year Torfason and Crossley [71] exploited the simulation of
mechanical movements by electronic analog; and two years later Torfason and
Sharma [73] solved the displacement problem of the R,~RGRR mechanism by the
method of generated surfaces .

In 1973 Keen and Duffy [41] presented the matrix and vector technique .

In 1975 Litvin [S1] studied the technique to simplify the matrix method by
dissembling kinematic chain. The same idea can also be seen in Refs.[75-77] (Wallace
and Freudenstein).

In 1976 Hiroshi Makino [53] proposed the rotation transformation tensor
method for the analysis of manipulators, and this method was further developed by
Xie and Zheng ([78-80] 1979-82) on the analysis of spatial mechanisms.

In 1978 Hunt published his book [40], which is good in terms of its treatise on
some fundamentals and geometrical features of spatial mechanisms. It is helpful for
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the understanding of the motions of spatial mechanisms in general; however, this book
does not help the derivation of the displacement equations of spatial mechanisms.

The major events in 1980 were the pubdlication of two books on spatial mechan-
isms. The first one was Zhang's [106] which, largely based on his M.Sc. thesis [98]
completed in 1962, systematically introduced direction cosine matrix method. The
second one was Duffy’s [28] which summarized his significant research on spatial
mechanisms using the spherical trigonometry method since 1969.

In 1981 Liu [52] studied spatial mechanisms by the merhod of dual vector rota-
tion, which led to the publication of the book [111] by Zhu and Liu in 1986.

The major event in 1982 was also the publication of two books. One was
Angeles’ book [3], which made a significant contribution on probing the rationale
behind the methods of analysis, synthesis and optimization of linkages. Another one
was Yu's book {87], which was a comprehensive treatise on the application of vector
calculus and of the theory of screws to classical mechanics in general and to the
analysis of spatial mechanisms in particular. The book [87] yielded papers [88-92],
which significantly contributed to the application of the vectors in the analysis of spa-
tial mechanisms.

In 1984 Sandor and Kohli [64] analyzed some three-link spatial mechanisms
containing higher pairs using differential constraint method. In the same year Lee
completed his M.Sc. thesis [46] in which a new vector theory was developed, largely
based on Duffy’s spherical trigonometry method in addition to the traditional vector
analysis theory and dual-number aigebra. 1t was Ref.[46] that led to the conquering
of the famous 7R problem in 1986 by Lee and Liang and the work was published in
1988 [49].

In 1986 Zhou [107] began to investigate the application of vector mathematics
on the analysis of spatial mechanisms.

In 1987 Hiroshi Markino, Xie and Zheng published their book [54}, in which the
rotation transformation tensor method was systematically introduced.

In 1990 Raghavan and Roth [59,60] solved the 6R manipulator problem (or 7R
problem of spatial mechanism) using matrices; and two years later Kohli and Osvatic
[42,43] tackled the same problem using matrices from a slightly different approach.
Papers [42,43,59,60] have contributed to the development of the matrix method .

In 1991 Huang published his book [39], in which Duffy’s spherical trigonometry
method was adopted.

The latest important event was the publication of the milestonec book [29],
Modern Kinematics — Developments in the Last Forty Years, which included a
chapter entitled Spatial Linkages: Analysis and Synthesis (pp.137-230) and a
comprehensive listing of the published (English) literatures on spatial linkages.
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The common goal of all the analytical methods is to establish the relations of the
known input motional parameter, structural parameters and the unknown motional vari-
ables of linkage kinematic loop, and then to derive the input-output (algebraic) equa-
tions.

Of all the kinematicians in the field of spatial mechanisms, the following scholars,
in my opinion, have made the most significant contributions to the methodological
research on the kinematics of spatial mechanisms and robots.

e Prof. F. M. Dimentberg, Institute for Machine Design, Moscow, Russian;
Prof. J. Duffy, University of Florida, U.S.A.;

Prof. J. Denavit and Prof. R.S. Hartenberg, Northwestern Univ., U.S.A.;
Prof. Q.X. Zhang, Beijing Univ. of Aeronautics and Astronautics, China;
Prof. F. Freudenstein, Columbia University, U.S.A.

Prof. Dimentberg was a pioneer in tackling the kinematics of spatial mechanisms
using analytical approaches. His significant works [12,13] unfolded the new and excit-
ing research field which soon attracted the attention of many kinematicians.

Prof. Duffy developed spherical trigonometry method [17-28), which is unique
and mature, and has played a leading role in conquering most of the difficult kinematic
problems of spatial mechanisms in the last twenty years.

Prof. Denavit and Prof. Hartenberg developed a symbolic notation [10], the D-H
notation, which enabled the description of the kinematic properties of lower-pair
mechanisms using matrices. This laid the basis for studying lower-pair mechanisms by
means of matrix algebra. They demonstrated that a series of matrix multiplication
could lcad to a set of trigonometric algebraic equations, which could be further used to
derive the input-output displacement equations. In recent years, the matrix method,
sometimes called D-H method or homogeneous matrix transformation method, has
been introduced in most of the robotics books. In my opinion none of these literatures
can give the D-H method enough integrity as being a mature method. Prof. Denavit
and Prof. Hartenberg have just provided a basis for dealing with spatial mechanisms.
The basis is important; however, the systematic special techniques for tackling various
kinds of spatial mechanisms developed by Zhang [98-106]), Litvin [51], Raghavan
and Roth [59,60], and Kohli and Osvatic [42,43], etc. are also indispensable. Put
plainly, if you just read D-H’s papers and any one of the robotics books, except for
some simple mechanisms or the robots with special geometric conditions, you would
still find it very difficult to analyze most of the kinematic problems of spatial mechan-
isms and robots with general geometries by the means of matrix transformation.

Prof. Zhang creatively developed the direction cosine matrix method [98-106],
(or matrix method for short), which involves a series of techniques that are systematic
and mature for analyzing various kinds of spatial mechanisms. It is fair to say that the
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matrix method was first proposed by Prof. Denavit and Prof. Hartenberg in 1955,
and then further developed by Prof. Zhang and several other scholars.

Prof. Freudenstein is the one of the greatest educators in the area of mechanical
design in general and in the field of the kinematics of mechanisms in particular. There
are nearly 200 Ph.D. offspring in his academic family tree, and there is at least one-
fifth generation descendant researching and teaching kinematics ([29] Erdman, Page 2).
A large number of the members in this family tree are outstanding scholars. In the
last four decades, Prof. Freudenstein’s words of wisdom have inspired almost all the
kinematicians in the field of spatial mechanisms.

Of all the published books on spatial mechanisms, Prof. Zhang’s [106] and Prof.
Duffy’s [28] can be ranked as the best and the second-best, respectively. Prof. Zhang
and Prof. Duffy are such scholars whose effort has endowed the theory of the kinemat-
ics of spatial mechanisms with much integrity. The contents of the two books are sub-
stantial and comprehensive. They clearly demonstrate that the theory of the kinematics
of spatial mechanisms can stand up as an independent subject of knowledge.

Of all the methods listed above, the matrix method and Duffy’s spherical tri-
gonometry method have been widely acknowledged as the most efficient ones.

The publication of Makino, Xie and Zheng’s book [54] in 1987 symbolized the
maturation of the rozation transformation tensor method (RTT method). Essentially,
the RTT method can also be classified as matrix method. To a certain extent, the RTT
method has shown some advantages over the traditional matrix method, for the RTT
method uses not only matrices but also tensors and vectors, which simplifies the alge-
braic expressions. However, the techniques of the RTT method are very akin to those
in Zhang's book [106], and the simplification on algebraic expression is also limited.
Therefore, methodologically, the RTT method is not distinct enough to stand on its
own as a unique method.

All other approaches using quaternion algebra, dual-number quaternion, line-
coordinates , screw coordinates , dual-vector rotation, tensor, screw theory, geometric
configuration method, differential constraint method , electronic analog , the method of
generated surfaces, (2x2) dual matrices and (3x3) matrices with dual-number ele-
ments are unlikely to generate anything exciting. They are usually ad hoc and
become cumbersome in one way or another. In my opinion, there is not much room
left for these approaches to develop.

Why is the teaching of the kinematics of mechanisms is still basically confined to
2-dimensional space? The reasons are due to the complexity of the structure and
motion of spatial mechanisms, as well as the complexity of the methods being avail-
able for tackling them.
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Thc matrix method is conceptually elegant and conceptually easy to teach
without analyzing anything specific. This is why it was soon adopted by many scho-
lars after it came to the scene in 1955, and in the last twenty years, it has been widely
introduced in robotics books. However, when it comes to analyzing any specific prob-
lem of spatial mechanisms or robots, the matrix method often reguires laborious alge-
braic manipulation, and moreover, the process usually involves extraneous work and
is error prone (see the conclusion of chapt.9). Therefore, in reality, to teach the matrix
method in depth is difficult. This is why only the basic ideas of the matrix method
has been introduced in most of the robotics books. As to the techniques on how to
analyze various kinds of complex spatial mechanisms and robots, the authors of these
books have left them out.

In the last 20 years, the spherical trigonometry method has caught the spotlight in
the race to conquer many difficult kinematic problems of spatial mechanisms. Though
it has long been recognized as a powerful method, the users of this method have
always been few. This is largely due to the formal complexity of its algebraic sym-
bolic system, whose physical implication is not easy to perceive. And the rationale
behind the techniques for establishing the algebraic equations being used for deriving
the input-output equations is not easy to comprehend.

The vector mathematics, however, holds great potential as being a natural and
succinct language for describing the kinematics of spatial mechanisms. "Almost every
quantity involved in kinematics is a vector or magnitude of a vector. Angular quanti-
ties are exceptions, but all orders of their derivatives are vectors,” ([8] Chace, Page 1).

In this thesis, the vector algebraic method has been systematically introduced.
This is a new method for the kinematic analysis of spatial mechanisms.

The characteristics of the vector algebraic method are as follows,
e  The analysis steps and expressions are standardized;

Comparing the different sections of a same chapter, and comparing the different
chapters with each other, you will find that the analysis steps and the algebraic
expressions are identical. You may get the impression that there are a lot of
repetitions in the thesis. However, please be aware that this is exactly the man-
ifestation of the advantage of its uniformity of the vector algebraic method.
e The analysis steps and expressions are simple .

Representing the position of a point or the direction of a line in space, a single
bold face letter, for instance a or b, will do. It is clear that in terms of simpli-
city no other mathematics tool can beat the vector in this respect. Moreover, the
standardized approach is carefully developed in such a way that the required alge-
braic manipulation has been kept to its minimum.
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The mechanisms analyzed in this thesis are of coursc just a small portion of many
different kinds of spatial mechanisms. Since the purpose of the thesis is to introduce
the theory of spatial mechanisms and the analytical method, in most cases, 1 intention-
ally choose to analyze the mechanisms with the georretries of their structure in general
forms. By appropriately adjusting the geometrics of a mechanism, such as the length
of the links and the relative direction of the pairing ax¢:. we may obtain many special
cases. This is one of the most fascinating aspects of . ;a..al mechanisms. In fact, the
vast majority of the practical spatial mechanisms being used in engineering are special
cases of mechanisms. However, oiice you know how to kinematically analyze the
mechanisms with general geometries, you will know how to handle their special cases,
for it is easier.

In recent years, the rapid development of computer graphics technology has given
the kinematicians and mechanical engineers unparalleled convenience in analyzing,
synthesizing and designing spatial mechanisms. We are living in 3-dimensional space;
why should we leave out the teaching of the theory of spatial mechanisms, and confine
ourselves on 2-dimensional mechanisms? 1 believe that sooner or later the theory of
the kinematics of spatial mechanisms wil! be widely taught in engineering schools, for
this is not only desirable but also feasible.

Following is a summary of the related original work in this thesis:

e Developed a theoretical foundation and the vector algebraic method for spatial
mechanisms;

e Introduced more than 50 new concepts and terminologies conceming spatial
mechanisms;

e Amended and Re-defined 11 existing important concepts and terminologies;,

e Introduced 17 propositions and the~rems;

e Introduced the star product operation, *, simplifying the . ‘alysis of mechan-
isms;

o Classified spatial mechanisms on the bases of their kinematic features;

o Reformulated and analyzed the vector tetrahedron equations, and exploited their
applications;

e Analyzed more than 40 various representative spatial mechanisms and robots.
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CHAPTER 1. FUNDAMENTALS OF SPATIAL MECHANISMS

1.1. Introduction

This chapter lays a foundation for the theory of spatial mechanisms. It covers the
following areas: kinematic pairs are analyzed and divided into definite and indefinite
pairs; all practical and typical kinematic input pairs used in a single-loop spatial
mechanism (SSM) are classified using a new symbolic system; four basic groups of
SSMs are defined: and a series of new concepts and terminologies conceming spatial
mechanisms are introduced.

1.2. Kinematic Pairs

Kinematics is the mathematical theory of pure motion, irrespective of the causes
that generate the motion. A kinematic pair is two contacting bodies permitting a con-
strained motion of one body relative to the other. The bodies, the elements of
kinematic pairs, are connected together either by surface contact, forming a Lower
Pair, or point or line contact, forming a Higher Pair. In this thesis body refers to a
rigid-body, or a body that can be reasonably approximated as a rigid-body. Although
the bodies shown on Fig. 1.1 form a kinematic pair, we can also consider that the
kinematic pair is only constituted by the portions of the bodies participating in the con-
tact with each other. as shown in Fig. 1.1 by the (small) dashed circle.

Fig. 1.1

Definition. Contact Point-Set.
Let s, and s. represent all points on the surfaces of body 1 and body 2, respec-
tively. Let sycs, and syucs. If for any point of sy (or sp), there is at least
one point of s (or sy), such that the two points can be in contact with each
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other during the constrained relative motion of the two bodies, then sy, and sy
are the contact point-sets of pair &. Specifically. sy (i=1.2) is the contact point-
set of pair & on body i. A contact point-set can be either a single point, a line
or a surface.

Definition. Basic Contact Surfaces .

M.

(2).

(3).

There are three basic contact surfaces that are important in practical engineering:
the rotary , the rranslational and the helical surface .

Given a fixed straight line (reference) and a curve that are coplanar, let the curve
rotate about the fixed straight line. The surface obtained is a rotary or R-
surface.

Given a fixed straight line (reference) and a second straight line parallel to it, let
the second straight line move in space while it remains parallel to the fixed
straight line. The surface obtained is a ransiational or a T-surface

Given a fixed straight line and a curve segment that are coplanar, let the curve
segment simultaneously rotate about and slide along the straight line such that the
rotation angle e and the sliding distance x relates as x=4e, where & is a con-
stant. The surface obtained is a helical or H-surface and p (=2nk) is its pitch.

The word curve in the above definition also includes straight lines. Two curves

are coplanar, if a plane exists such that any point of the two curves is also a point of
the plane.

R-surface has two important special cases: the surface of a sphere or S-surface

and the surface of a cylinder or C-surface. The T-surface has one important special
case, the plane surface or E-surface.

Definition. Basic Contacts.

Single point, line, and surface contact between two bodies are defined as basic
contacts. These contacts can be obtained as follows:

Contact of a surface with a surface;
Single point contact: ¢ Contact of a surface with a line;
Contact of 2 line with a line.

Contact of & surface with a surface;
Line contact: Contact of a surface with a line;
Contact of a line with a line.

Surface contact: {Conucl of 8 surface with a surface.
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Surface contact is the best for avoiding large stress concentrations. In practice
only surface contacts exist. However, if we assume that the bodies are rigid, then if
the area of the contact region of two bodies is small enough, the contact region can be
considered as a (single) point. Similarly, if the contact region of two bodies is a strip
which is zhin enough, the contact region can be considered as a line. How small is
small enough, how rhin is thin enough, are difficult to specify quantitatively. How-
ever, it is generally easy to make a reasonable judgement intuitively for practical pur-
poses.

Let s, be the contact point-set of pair £ on body 1. If sy is a surface whose
area is very small compared to its physical size and motion range, then s; can be
regarded as a single point. The single point can then be replaced or simulated by the
surface of a small sphere whose radius approaches zero. This is the small sphere
approximation of Sy.

Definition. Basic Contact Lines.

The circular arc, the straight line and the helical line are the basic contact
lines , denoted as the R-line, the T-line and the H-lire, respectively.

Definition. Pair-Axis.
Let s;, and s;. be the contact point-sets of pair £ on bodies 1 and 2, respec-
tively. If
(1). s is a subset of a basic contact line or a basic contact surface; and

(2). s, is kinematically equivalent to its corresponding basic lines or surfaces
when s, is acting with sy,

then the corresponding (reference) straight line of the basic line or surface is the
pair-axis (of s, or body 1).

Specifically we have rorary, translational and helical axis, denoted as R, T and
H-axis respectively. The positions of rotary and helical axes relative to their
corresponding surfaces or lines are uniquely defined. while the position of a transla-
tional axis relative to its surface may not necessarily be unique, for any straight line
which is parallel to the reference straight line and itself is fixed to the T-surface, can
be chosen as a T-axis.

It is worth noting that if s, is a subset of and kinematically equivalent to an E-
surface, then, s, may have up to three independent pair-axes, i.e. two (non-parallel)
T-axes and one R-axis. The T-axes are parallel to and the R-axis is perpendicular to
the plane, see Fig. 1.2. If sy, is a subset of and kinematically equivalent to an S-
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surface, then s;, may have up to three independent (intersecting) R-axes, because the
existence of a pair-axis is determined by the mo bodies or the two contact point-sets
of a kinematic pair.

R-axis

T-axis

Fig. 1.2

It is also worth noting that if s;, is a subset of and kinematically equivalent to a
straight line, then the straight line itself is not only a T-axis but also an R-axis. Any
other straight line which is fixed to body 1 and parallel to the straight line of the con-
tact point-set can also be selected as a T-axis.

Let unit vector a, represents the direction of a pair-axis, then,  is the axis vec-
tor. It is useful to distinguish three types of axis vectors,

ap, - rolary axis vector;
axis vector a; = < ay - translational axis vector,
ay; - helical axis vector,;

Definition. I-axis.
An I-axis (of a pair) is the common "instantaneous” line of the two bodies such
that the relative instantaneous motion of the two bodies is either a rotation, a
translation or a helical (or screw) motion along this line.

There are three types of I-axes: rotary, translational and helical. The position and
direction of an I-axis relative to the two bodies of a kinematic pair can be either fixed
or variable. A kinematic pair must have at least one and can have no more than five
independent I-axes at any instant.

Let unit vector &, represent the direction of an I-axis; then, &, is an [-axis vec-
tor. It is useful to distinguish three types of I-axis vectors,
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&p; - rotary l-anis vector;
J-axis vector 8 — 1 &5 - translational l-axis vecior;

8 - helical l-axis vector,;

Definition. Bali-point.
A ball-point is the common point of three intersecting rotary I-axes of two
bodies. The position of a ball-point relative to the bodies can be either fixed or
variable. Two bodies may have either none or only one ball-point at any instant,
depending on the constraint condition between them.

Definition. R-point.
Let sy, and s: be the contact point-sets of pair : on bodies 1 and 2, respectively.
If (1). sy is a subset of an S-surface; and (2). s, is kinematically equivalent to
the S-surface when sy, is interacting with s;,, then, the - .--er of the sphere (of
the S-surface) is an R-point (of pair £ on body 1).

Here are several examples for ball-points and R-points: if two bodies make a
point contact with each other, the contact point is a ball-point. If a spherical surface
makes a line or surface contact with another body, the center of the sphere is not only
an R-point but also a ball-point. However, a spherical center, or the center of a
sphere, may not necessarily be a ball-point. This is illustrated on Fig. 1.3, where the
contact point of the sphere and the plane is a ball-point, whereas the center of the
sphere is an R-point instead of a ball-point. If contact point-set s, is a single point
(or simulated as a single point), then this point is both a ball-point and an R-point, due
to the small sphere approximation .

AN

)

Fig.1.3
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Definition. Link.
A link can be defined by either of the following two ways:
(1. A link is a body connecting two other bodies. i.e. if two bodies are connected

together by contacting the same intermediate body, then the middle body is the
common link of the wo bodies.

(2). A link is a body connecting two pairs, i.e. if two pairs are connected together by
a body, then this body is the common link of the nvo pairs.

A link is defined in terms of either three bodies or two pairs as illustrated on Fig.
1.4, where body 2 is the common link of bodies 1 and 3 and the common /link of
pairs £ and n.

body 3

pair §

Fig. 1.4

Definition. Definire and Indefinite Links .

Given two pairs & and n connected by link 2, and sy and s, are respectively
the two contact point-sets of pair £ and pair n on link 2. If both s, and s,, arc
single points or subsets of basic line or basic surface, then the distance between
the two pairs £ and n is definite, otherwise the distance is undefined. Accord-
ingly, a link of two pairs can be either a definite or an indefinite link .

Definition. Cenrral Line (of a definite Link) — Link Length .
Let body 2 be a definite link of pairs ¢ and n with contact point-sets sy, and
s.2, namely, each of sy and s, is a single point or a subset of a basic line or
basic surface, then the central line of link 2 is defined as the shortest linc
between either
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the two fixed ball-points of the two pairs or

the two R-points of the two pairs or

a fixed ball-point and an R-point of the two pairs or
a fixed ball-point and a pair-axis of the two pairs or
an R-point and a pair-axis of the two pairs or

the two pair-axes of the two pairs.

The length of a definite link is the length of its central line.

The central line is a straight line. Examples are shown in Fig. 1.5. Points m and
n of Fig. 1.5(a) are the two fixed ball-points or R-points of the two pairs connected by
the body, then the central line is the straight line connecting points m and ». Fig.
1.5(b) and Fig 1.5(c) are self evident.

Fig. 1.5(2) Fig. 1.5(b) Fig. 1.5(c)

Definition. Diamerer of a Kinematic Pair.

Given a pair ¢ composed of two contacting bodies 1 and 2, let s, and s; be the
contact point-sets of pair £. If sy (also sy) is a subset of a basic line or basic
surface, and if sy, (also sp.) is Kinematically equivalent to its corresponding basic
line or basic surface when sy, (also sy) is interacting with sy (also sy), then the
diameter of pair g is the shortess distance between either

the two fixed ball-points of s,, and sy, or

the two R-points of sy and sy, or

a fixed ball-point and an R-point of s; and sy, or
a fixed ball-point and a pair-axis of s;, and s or
an R-point and a pair-axis of sy, and sy or
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e the two pair-axes of sy and Sp.
The diameter of a kinematic pair can be either constant or variable.

Definition. Definite Pair and Indefinite Pair.

If the diameter of a kinematic pair is constant, then the kinematic pair is a definite
pair, otherwise it is an indefinite pair .

It is not difficult to perceive that a definite link may connect either
e two definite pairs; or

e one definite and one indefinite pairs; or

e two indefinite pairs.

We can also say something similarly for indefinite link , definite and indefinite pairs.

If a T-axis is a pair-axis of a definite link, although its position in general is not
unique, however, once it is specificd the length of the definite link is fixed accordingly.

If body 2 is a inderinite link of pair £ and pair y with contact point-sets s,, and
5.2, then at least one of s, and s,, has none of a fixed ball-point, an R-point and a
pair-axis. Therefore, one can not define the length of this link. Furthermore, the
length of an indefinite link is generally variable.

A pair of two surfaces making surface contact can only be a definite pair.
Indefinite pairs must involve either line or point contacts. There are many practical
examples for indefinite pairs in cam mechanisms.

Definition. Generalized Kinematic Pair.

Let body 2 be a definite link connecting to bodies 1 and 3 with pairs £ and n
respectively. If the length of the central line of body 2 is zero, and both the
diameters of the pairs £ and n are also zero, then bodies 1, 2 and 3 are defined
as a generalized kinematic pair. Moreover, let body 3 be a definite link con-
nected to bodies 2 and 4 with pairs n and 3, respectively. If the length of the
central line of body 3 is zero, and the diameter of pair ¢ is also zero, then bodies
1, 2, 3 and 4 are defined as a generalized kinematic pair. The word pair in the
above two cases actually refers to the first and the last body.

A generalized kinematic pair which involves either more than four bodies serially
connected or any indefinite link or indefinite pair is trivial. Three examples of
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generalized pairs are shown in Fig. 1.6(a-c), which can be denoted as (xP), (RR) and
(RRR), respectively. The (rp) pair of Fig. 1.6(a) can also be denoted as (Pr). The (RR)
pair of Fig. 1.6(b) is kinematically equivalent to the Torus (pair) shown in Fig. 1.7.
The former pair has a bigger motion range, is easier to design and it is more heavy
duty; naturally it is more widely used in engineering as compared to the latter. If
s-8.,=0 (i=1,2.3) in Fig. 1.6(b), the well known Hook joint is obtained. The (rrR) pair
of Fig. 1.6(c) is kinematically equivalent to a spherical pair. It is worth noting that the
center of a spherical pair is both a ball-point and an R-point, whereas the center or the
common intersecting point of the three rotary axes of the (Rrr) pair is a ball-point
rather than an R-point of the two links « and », as shown in Fig. 1.6(c).

a
Fig. 1.6(2) 7 Fig. 1.6(b)

Fig. 1.6(c) Fig. 1.7

We now introduce some notations. The pair type, or the type of a kinematic
pair, is a three-digit number (Vx¥;N,) representing the numbers of possible independent
rotary, translational and helical (screw) motion of one body relative to another of the
pair as Ma. Ny and Ny, respectively. The Degree of Freedom of a Kinematic Pair is the
number of independent coordinates needed to specify the relative position and
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orientation of the two bodies of a pair, ie. it is the sum of the numbers of a pair's
independent rotary. translational and helical freedoms. i.c. (Ny + Ny +Np).

All typical definite kinematic pairs are listed in Table 1.1. This table was
developed on the basis of Table 2 of [36])(Harrisberger, 1965). The eight pairs men-
tioned in [3 ] which physically do not exist or are not typical are not included here in
Table 1.1. Pair 7, (Torus-helix) is also excluded. for it is a generalized Kinematic
pair. However, we introduced an additional Kinematic pair, a round-bar making point
contact with a round-bar and we adopted "8," as its symbol.

The three pairs, R, P and H pairs, of class I (in Table 1.1) are the most important
kinematic pairs. Each of the other pairs of class Il to V in Table 1.1 are kinematically
equivalent to a combination of R, P and H pairs. For example, a C pair is equivalent
to two co-axial pairs, i.c. one R and one P pair; An S pair is equivalent to three (axi-
ally) intersecting R pairs; etc.

Proposition 1.1. Definite Pairs.

The necessary and sufficient condition for a kinematic pair of Dor 22 10 be a
definite pair is that it is kinematically equivalent to a combination of R, P and H
pairs.

1.3. Mechanisms
Definition. Serial Linkage .

A serial linkage is a system of bodies {8,} (i =1-», »22) interconnected in such a
way that except for two bodies, which contact only one body each, every body of
{8,;} contacts two and only two bodies, see Fig. 1.8.

Definition. Single-loop Linkage.

A single-loop linkage is a system of bodies {8;} (i=1-n, »22) interconnected in
such a way that each of the bodies connects two and only two kinematic pairs,
see Fi_. 1.9.

Definition. Linkage .

A linkage is a system of bodies {8} (+=1-n, n22) interconnected in such a way
that for any two bodies of the system, B,, B; € {8 ), there is a subsystem {s8,’} C
{8,}, (j=1-m, 2sm <n) such that

(1). B, B € {8,); and
(2). {8,’} (j=1-m, 2sm<n) is a serial linkage .
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Table 1.1. Kinematic pairs
Class Type Type
Class | DoF | symbol | (NaNrNy) | symbol Name
100 R Revolute
1 1 P 010 P Prism
001 H Helix
1 2 110 C Cylinder
P2 200 |°T Torus
300 S Sphere
I 3 120 E Plane
Ps 210 Ssc Sphere-slotted cylinder
201 Ssu Sphere-siotied helix
310 S Sphere-groove
v 4 Pa 220 Cr Cylinder-plane
301 Sci Sphere-grooved helix
320 Sr S:phere-plane
VIS Ps 320 B, Rar-bar
Ia

fa

Fig. 1.8
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2

It is clear that serial linkage and single-loop linkage are special cases of linkage .

Definition: Mechanism .
A mechanism is a linkage device that

e physically, it is a system of bodies connected together by pairs or a system of
pairs connected together by bodies

o functionally, it can be used to generate required motion and force.

In general, a mechanism is either a planar or a spatial mechanism. Given a
mechanism, if a plane exists such that the distance from any point of thc moving
bodies of the mechanism to the plane is constant, then the mechanism is a planar
mechanism; otherwise, it is a spatial mechanism . If a point o exists such that the dis-
tance from any point of the moving bodies of a mechanism to the point o is constant,
then the mechanism is a spherical mechanism and point o is its center. Spherical
mechanisms are spatial mechanisms.

Definition. The Dimension of a Mechanism.

If the position of any point of the mechanism can be specified by % (1sks3)
independent coordinates {4 } (i =1-x) that are independent of the mechanism, then
the dimension of the mechanism is .

A planar mechanism could be either one or two-dimension mechanism; a spatial
mechanism could be either two or three-dimension mechanism. For instance, a spheri-
cal mechanism is a spatial mechanism, though its dimension is two instead of three.
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Definition. Definite and Indefinite Mechanism .

If a mechanism contains an indefinite link or an indefinite pair, it is an indefinite
mechanism , otherwise it is a definite mechanism .

Proposition 1.2,

The displacement equations of any definite mechanism can be expressed by alge-
braic equations, whereas for indefinite mechanisms this is usually impossible.

Note a body performing unconstrained spatial motion has six degrees of freedom,

namely, translations in three non-coplanar directions and rotations about three mutually
perpendicular axes. Therefore

Theorem 1.1. End-effector DoF .

Given a serial linkage composed of »+! bodies, i.e. {8,} (i=0-n, n21), as shown
in Fig. 1.8. Denote f=Yf;, where f,=(Nj+Nj+A4) (j=1-n) is the DoF of pair ;.
Let p, be the DoF of body » relative to body o. It follows:

(1). If 726, then, 1<D, <6;

(2). If r<e, then, 1sD,sf.

Most industrial robots are serial linkages with one end fixed to the ground and the

other end acting as a "hand", called end-effector, moving in space. The proof for
theorem 1.1 is easy and it is omitted here.

Definition. DoF of a Linkage .

Given a linkage composed of »+1 bodies, {8;} (i=0-n, n21), and = pairs. The
total DoF of the pairs of the linkage is f =31, ., whete f, (j=1-m) is the DoF

j=1
of pair j. The DoF of the linkage, F, is the number of the independent coordi-
nates needed to specify the relative position and orientation of all bodies of the
linkage.

The lower and upper limit of the number of pairs, m, for a linkage for »+1 (»21)

bodies is » -1sm <2n. The proof is straightforward and we do not display it here.

Theorem 1.2. Abour f & F.
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The relationship between the total DoF of the pairs of a linkage (i.c. f) and the
DoF of the linkage (i.e. F) is as follows:

(1). For a serial linkage: F=s:
(2). For a single-loop linkage:
@). If r27,then, f-6<Fsf-1I.
(d). If 2sr<6,then, 0sFsf-1.
Proof :
(1). For a serial linkage, F=s and s >1 are self-evident;

(2). For a single-loop linkage s>7 means that there are s DoF to contribute to the
position and orientation of body », see Fig. 1.8. Since body » can only have a
maximum DoF of six, of the s (27) DoF there can only be a maximum of six
independent DoF that completely determine the position and orientation of body
n. Accordingly, there will be at least s-6 DoF of the serial linkage whose
existence is independent of body » or whose existence do not affect body .
Now let’s fix body » to the ground, i.e. let bodics » and 0 become one body,
this means that the DoF of body » becomes zero, namely a maximum of six DoF
of the pairs of the (original) serial linkage are eliminated by body », thus there
will be at least f-6 DoF left in the (newly-obtained) single-loop linkage, i.e.
F2s -6, Again, from theorem 1.1, body » must have at least one DoF relative to
body o. This means there will be at least one DoF of s which contributes to or
completely determines the position and orientation of body ». Obviously after
body » is fixed to body o, there can be a maximum of 7s-1 DoF left in the
(newly-obtained) single-loop linkage, i.e. Fsys-1. Therefore, f-6sFss-1. The
proof for the case of 2sf <6 can be similarly performed.

A body performing either unconstrained planar or spherical motion has only three
degrees of freedom. For planar motion, they are translations in two non-parallel direc-
tions and rotation about an axis perpendicular to the plane of motion; For spherical
motion, they are rotations about three mutually perpendicular axes passing through the
center of the sphere. Note if the three rotary axes of the spherical motion is non-
coplanar instead of mutually perpendicular, the domain of spherical motion will cover
only part of a sphere. Moreover, the resultant of three rotations is a rotation, hence,
any spherical motion is a rotation, whose axis, being passing through the center of the
sphere, could be either fixed or instantaneous. Although theorems 1.1 and 1.2 arc
applicable to planar and spherical linkages. we have the following three theorems
which better describe the two groups of linkages.
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Theorem 1.3. End-effector DoF for Planar and Spherical Linkages
Given a planar or spherical serial linkage composed of »+1 bodies, i.e. {8;}
(i=0-n, n21). as shown in Fig. 1.8. Denote r=Y7,, where 7, (j=1-n) is the DoF
of pair j. Let b, be the DoF of body » relative to body o. It follows:

(1). If 723, then, 1sD,<3;
(2). If r<3, then, 1sD,sf.

It is clear that only rotary and translational freedom can generate planar motion,
whereas helical freedom always renders non-planar motion. Specifically, only the
rotary freedom whose axis is perpendicular to the plane of motion and the translational
freedom whose axis is coplanar with the plane of motion contribute to the planar
motion.

Theorem 1.4. About f & F for Planar Linkages .

The relationship between the rotal DoF of the pairs of a planar linkage (i.e. f)
and the DoF of the planar linkage (i.e. F) is as follows:

(1). For a planar serial linkage: F=1;
(2). For a planar single-loop linkage, let us denote

F=F, +Fq
f=li+]o
f|=r + I

So=ro+1p

where F, is the number of the planar DoF of the linkage, F, is the number of the
DoF of the linkage which renders motion deviating from the plane of motion; r
and r, are the numbers of the rotary axes perpendicular to and not perpendicular
to the plane of motion, respectively, whereas r and ¢, are the numbers of the
transiational axes coplanar with and perpendicular to the plane of motion, respec-
tively; Now the implications of f, and f, are obvious: they are the numbers of
the DoF of the pairs tivat contribute to the planar motion and contribute to the
motion deviating from the plane of motion, respectively. We have conclusions:

@). If f,24, then, f,-3sF;sf;-1;
(b). If f,s3, then, 0sF,sf,-1;

(c). If either of the following two conditions is true, then F,=0; otherwise
Fo.=0, which renders freedom deviating from the plane of motion.
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e Condition 1: rys1, ros1;

e Condition 2: r,22 and there is no coaxial couple among the r, rotary
freedoms.

It is clear that only the rotary freedom whose axis passes through the center of a
spherical linkage contributes te the spherical motion of the spherical linkage. whereas
translational freedom may exist and helical freedom can never exist in the pairs of a
spherical linkage, for the latter always renders non-spherical motion.

Theorem 1.5. Abour f & F for Spherical Linkages .
The relationship between the total DoF of the pairs of a spherical linkage (i.e.
7 ) and the DoF of the spherical linkage (i.c. F) is as follows:
(1). For a spherical serial linkage: F=f, and all the pairs must be & pairs;
(2). For a spherical single-loop linkage, let us denote

F=F,+F,
f=r+1+2s

where F, is the number of the spherical DoF of the spherical linkage, and £, is
the number of the DoF of the spherical linkage that renders non-spherical motion;
r is the number of the rotary freedoms whose axes pass through the center of the
spherical linkage; 1 is the number of the translational freedom of the pairs of the
spherical linkage; and finally, s is the number of the spherical pair of the spheri-
cal linkage. We have the conclusions:

@). If r=z4, then, Fy=r-3;
(). If 2<r <3, then, F,=0;
(c). If ss<1, then F,=0; otherwise, F,»0, which renders non-spherical motion.

Although, theoretically, the translational freedom whose axis passes through the
center of the spherical linkage aoes not affect the spherical motion of the spheri-
cal linkage, it is a good practice to let 1<1, in order to strengthen the function of
the linkage.

The validation of Theorem 1.3 is quite obvious. The proofs for Theorems 1.4
and 1.5 can be performed in a way similar to the proof of Theorem 1.2.

1.4. The Input Kinematic Pairs
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The actuator of the input kinematic pair of an SSM controls a certain number of
rotary, translational and helical motions of the input pair. The following notations will
now be introduced. A three-digit number (N, N;N, ), defined as the 3-Digit Input Con-
trol Number, will be used to specify ithe numbers of independent rotary, translational
and helical motions of the input pair controlled by the actuator, ¥,, ~; and W, respec-
tively. The sum of A,, N; and A, is the Controlled DoF (of a kinematic pair). The
3-Digit Number of Active DoF of a pair is the three-digit number (V2NyAy) such that
Ny =Ny -Np, Ny=N;-N; and ANy =Ny -Ny. The sum of N,, N; and A~y is the Active DoF
of a pair. The combination of the 3-digit number of active DoF and the 3-digit input
control number fully specifies the input pair. It is the Resuwliant Input Type of the
input pair and denoted as X5 5 5, ¥, 7,7,

Table 1.2. Classification of input kinematic pairs

2 3 4
110|200 101 ] 020 2101 120 ] 201 | 300 | 310 | 220 | 301 320
Cl T | Tw| “|Sxc] B |Sw] S| So| Cr |SanSr.s
R S]] S |Sw]| E Se |l Cr | Sl - o |S5p.B,
P E | S} - -« VG . v { 8¢ |50.Bs
m‘ H T” e ve e s" . ve 'Y o e Sm
1101 ¢ See | E . Gl Sa e . 15p.8y
3 2008 T S IS | SswlSa| - {Su] Cr o 1508,
101 Ty Sov . . .o SGII
m . E .. .. c'
_ —*—
210 Ssc | So | Cr | - |50.Bs
3 2l E G| | -] - |58
201§ Sor | Scu
s S Remarks:
2% o Lo (1) Controlied DoF ;
310 Se | - |58 (2) The 3-Digit Input Control Number ;
4 | 20} Cr 508 (3) Input Pair ;
R (4) Active DoF ;
301§ Sox (5) The 3-Digit Number of Active DoF .
5 | 3205,8,

For example, Romuions Cuoonoron Cooniom OF  Soaoooims €1C. Tepresent different input
pairs. The 3-digit input control number may be omitted and the notation of X g hphyyr OF

X, .%,.4,, Can be used to represent general cases. For instance, x,, represents an
input that has a 3-digit number of active DoF of (100), its 3-digit input control number
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could be any one of the thirteen cases comesponding to (N, AyNy) = (100) as shown in
Table 1.2. x, and x, symbolically represent those input pairs whose active DoF are
1 and 2, respectively, while the symbol x., denotes an input pair where he subscript i
is the active and j is the controlled DoF of the pair.

Table 1.2 shows the classification of the input kinematic pairs. The empty spaces
in Table 1.2 imply that either no such kinematic pair exists or that these input pairs are
not typical or can not be expressed by any pairs of Table 1.1. An example is given
below for those input pairs which can not be expressed by any pairs of Table 1.1.

Let Fig. 1.1 represent an input kinematic pair. Link 2 is comnected to the
kinematic chain and link 1 is either a fixed or a moving body, and its position and
orientation relative to the frame (ground) can be determined.

'Fig. 1.10

Multi-loop spatial mechanisms are composed of two or more single-loop spatial
mechanisms. For example, the mechanism shown in Fig. 1.10 is a two-loop spatial
mechanism. The input and output-pairs of the first loop ( 0-a-b-c-d-0) are a and d
and the input and output-pairs of the second loop ( d-e-f-g-h-i-d ) are d and h respec-
tively. The first loop can have either of the following two Resultant Input Types:
Cooxsoy, OF Cuooworo 1N the first case, the 100p iS Cuonico~RSR (OF Co-RSR) and in the
second case it iS Cioomoi~RSR (OF C,~RSR). The second loop is R.oowiw~RSRP (OF
Rooo~RSRP  OT Ro~RSRP).

However, if we study another two-loop spatial mechanism shown in Fig. 1.11(a),
we will find that the second loop can not simply be ( d-c-e-f-g-h-i-d ) and denoted
using the conventional notation as rsrkskp. First of all, the total number of the active
DoF of the pairs in xsrskp is ten, which exceeds the limit for an independent single-
loop spatial mechanism which is free of idle degrees of freedom, according to theorem
1.1. Secondly, the first two pairs Rs of &skskp, which determine the motion of the
kinematic chain of ( e-f-g-h ), are not a unique group of pairs. As a matter of fact,
we can also consider the mechanism as the combination of the first loop and loop ( o-
a-b-e-f-g-h-i-o ). In this case, the second loop can be denoted conventionally as
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Fig. 1.11(a)

Fig. 1.11(b)

CRRsRP. Apparently the first two pairs ¢k of crrsrp and the first two pairs rs of
RSRSRP are kinematically equivalent as far as the remaining kinematic chain, ( e-f-g-h )
i.e. Rsrp, is concemed, thus uncertainty emerges. Obviously, it is desirable to intro-
duce a new way to define and describe precisely the second loop of the mechanism of
Fig. 1.11(a). According to the structure of the mechanism, we can see that the first
loop (0-a-b-c-d-o0) as a whole can be reasonably regarded as the "input-pair" for loop
(e-f-g-h-i-e). This "input-pa‘-" can not be expressed by using any specific kinematic
pair listed in Table 1.1. However, it can be replaced by an imaginary kinematic pair
with two links (link t and link n) as shown in Fig. 1.11(b). Link & could either be a
fixed or a moving body, as long as its position and orientation can be determined at
any instant. The relative position and orientation of link n to link £ are completely
controlled by the "actuator” of the "input-pair". We introduce x, to represent this
"input-pair"’ and consider the second loop as re-f-g-h-i-e) and represent it symbolically
as x-Rskp. The advantage of defining and representing the second loop in such a way
is that, not considering the first loop, the structure of the remaining kinematic chain
(e-f-g-h) is such that the possible maximum number of assembly configuration can be
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completely determined by itself (i.e. for x.-rskp) and it is entirely indcpendent of the
first kinematic loop.

Not all input pairs listed in Table 1.2 have the same frequency of application.
The most frequently used input pair iS Rwoxon (i.€. Roy OF Ro).
The symnbols xa x ) and x; (i=0-5) are quite general. They cover any

number of resultant input pairs whose 3-digit number of active DoF are equal to
(e NrNy) and whose active DoF are equal to i , respectively. For instance, x, covers
any number of resultant input pairs of zero active DoF which can not be expressed by
a specific kinematic pair. In addition, it also covers some of those input pairs which
are expressed by kinematic pairs such as &, P, and c,, et al.

1.5. Basic SSM Groups

Fig. 1.12

1 -0 n

Fig. 1.12 represents the abstract model of an n-pair single-loop spatial mechan-
ism. The total active DoF of the pairs of the mechanism is

=X/ =S (Na+Nr+Ny) . (2<n<7) (1.1)

i=1

where the superscript i denotes the sequential position of the pair in the kinematic
loop. It is possible that two or more input pairs actuate a single kinematic loop.
Therefore, theoretically the number of pairs in the chain, #, can be any integer number
equal to or greater than two, as long as i< f <6. However, we focus only on the basic
groups of mechanisms defined by the following conditions:

(@) Only one pair of the kinematic loop is actuated. Consequently, 2<a<7. The
actuated pair is the input pair of the loop and the loop is composed of the pairs
listed in Table 1.1.

(b) The input pair. without any loss of generality, is denoted as the first pair of the
loop. The second, third, etc. pairs are labeled consecutively along the kincmatic
chain, and the last pair is fixed to the ground. The first pair could be a
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moving pair as long as the position and orientation of at least one of its elements
rclative to the frame can be determined.

It is apparent that condition (b) confines the input pair to be adjacent to the pa -
fixed to the ground. On the basis of condition (a) and (b), we can define four basic
groups of SSMs as follows.

Definition. Regular Mechanism (i.e. RM).
An SSM which complies with the following three conditions is a regular mechan-
ism:
(1) Conditions (a) and (b) above;

(2) 2¢5n<7.  f=6;

(3) ¥y 19,', =0.
i=)
Definition. Over-constrained Regular Mechanism (i.e. ORM).

An SSM which complies with the following three conditions is an over-
constrained regular mechanism:

(1) Conditions {a) and (b) above;

(2) 25n 6. 1sf<5;
(3) S_::IN,",.-.O.

It is useful to introduce the symbol of o,rRM, where i=(-s) is the number of
over-constraints of the kinematic loop. Since 1ss<5. hence 1si=(6-s)ss.

Definition. Helical Mechanism (i.e. HM).
An SSM which complies with the following three conditions is a helical mechan-
ism;
(1) Conditions (a) and (b) above;

(2) 2¢ns7.  f=6;

3 lSiﬁ'},Sé.
iz}

Similarly, we can introduce the symbol of # M, where j=£ﬁ,‘, is the total

is}

number of the active h:lical freedoms of kinematic loop.
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Definition. Over-constrained Helical Mechanism (i.c. OHM).

An SSM which complies with the following three conditions is an over-
constrained helical mechanism:

(1) Conditions (a) and (b) above;
(2) 2sns<6. 15155,

3 15}":&,‘,55.

i=)

Now there is no difficulty to understand the implication of o,m,m, where

1Si=(6-£)<S, j=Y Ny and (2si+js6).

ix])

Proposition 1.3. Kinematic Features of Spatial Mechanisms .

The differences between the four basic groups of mechanisms on the basis of
their kinematic features are as follows:

RM

ORM

HM

OHM

e Generally these mechanisms are capable of motion;

e The input-output displacement equations can always be expressed by poly-
nomials.

e Generally these are structures and can not move. Under special geometric
conditions they may become movable mechanisms;

e The input-output displacement (or structure) equations can always be
expressed by polynomials.

e Generally these mechanisms are capable of motion;

e Generally they are more difficult to analyze than their corresponding RM,
derived by assuming that all the pitches of the helical freedoms of the HM
equal zero. Most input-output displacement equations corresponding to helical
angular freedoms can not be transformed into polynomials.

e Generally these are immovable structures. Under special geometric condi-
tions they may become movable mechanisms;

o Generally they are more difficult to analyze than their corresponding ORM,
derived by assuming that all the pitches of the helical freedoms of the OHM
equal zero. Most input-output displacement equations corresponding to helical
angular freedoms can not be transformed into polynomials.

The rationale for classifying SSMs into four basic groups is based on whether or
not a mechanism is over constrained and whether a mechanism involves a helical free-
dom or not. A helical pair (H) is a very special pair. When the pitch of its screw
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motion is equal to zero it becomes a revolute pair (R): when the pitch of its screw is
cqual to infinity, it becomes a prismatic pair (P).

Because of conditions (a) and (b) above, for the pairs of any single loop of the
four basic groups of spatial mechanisms the following is true:

o e . (NaNyNy) = (NeNyRy).  for an input pair;
(NgNiNy) = (NaNzNy). for any other pair.

1.6. Central Vector Polygon
If the total active DoF of all the pairs of a mechanism is equal to or greater than

seven, i.e. f=Y(\2+N;+Ny)27, then the mechanism will have at least (s -6) idle
ix]

degrees of freedom (IDoF).

Definition. Idle Degree of Freedom (IDoF).
The idle degree of freedom of a single-loop mechanism is the unconstrained
degree of freedom, in addition to the DoF controlled by the actuator of the input
pair, between the two contacting bodies of any pair in the mechanism. The word
unconstrained implies that the DoF is independant of the effeci of the actuator.

Definition. The Number of IDoF .
The number of IDoF of a single-loop mechanism is the number of the indepen-
dent constraints, in addition to the number of DoF controlled by the actuator of
the input pair, that is required to fully specify the relative position and orientation
of all the bodies of the mechanism.

In the following we will distinguish several kinds of IDoF. But first we need to
introduce the concept of the central vector polygon of an SSM.

Definition. The Central Vector Polygon.

For any definite singic-loop mechanism, along the central lines of its links, the
pair-axes and the diameters of the pairs, we can construct a spatial polygon which
is the central vector polygon of the mechanism.

Central vector polygon is a concept of vital importance in the theory of mechan-
isms. It exposes the very essence of the structural and kinematical features of spatial
mechanisms. In fact, the kinematic analyses of spatial mechanisms and serial robots
is, in most cases, simply the analyses of the configurations of their central vector
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polygons.

Definition. IDoF-1 and IDoF-2.

If an IDoF does not affect the configuration of the central vector polygon of a
mechanism. the IDoF is the IDoF of the first kind. If an IDoF affects the
configuration of the central vector polygon of a mechanism, the IDOF is then the
IDoF of the second kind. For short, they are denoted as IDoF-1 and IDofF-2,
respectively.

Fig. 1.13

From the diagram of an arbitrary spatial polygon as shown in Fig. 1.13 we can
easily see that an IDoF-2 will make either the direction or the length or both cf at least
two edges of the spatial polygon undeterminable. On the contrary, an IDoF-1 does not
alter the configuration of the spatial polygon of the mechanism. The best known
mechanism with an IDOF-1 is Rs-sskR (and its variant mechanism r.-gss). Tae 1DoF
of this mechanism can produce a rotation of the coupler about the axis joining the two
s pairs, but this has no effect on the configuration of the spatial polygon of the
mechanism. The IDoF-1 is more common than the IDoF-2. Generally an IDoF-2
renders the mechanism useless. However, some useful mechanisms with IDoF-2 may
exist, provided that the influence of the IDoF upon the mechanism is negligible.

We can easily further distinguish three kinds of /DoF-2s.

Definition. R-IDoF-2, T-IDoF-2 and H-IDoF-2.

If an IDoF-2 affects only the direction of the edges of the central vector polygon
of the mechanism, it is an rorary IDoF of the second kind and denoted as R-
IDoF-2; If an IDoF-2 affects only the length of the edges of the central vector
polygon of the mechanism, it is the transiational IDoF of the second kind and
denoted as T-IDoF-2 ; If an IDoOF simultaneously affects the direction ¢ and the
length x of the edges of the vector polygon of the mechanism and 1 =6, the
IDOF is then an helical IDoF of the second kind and denoted as H-IDoF-2
where & is a constant.
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We do not consider the SSMs of s27 as an independent basic group of mechan-
isms. The reasons are as follows: (a) the IDoF-1 of a mechanism can always be elim-
inated, i.e. for any mechanism with an IDoF-1, we can always find a corresponding
mechanism from the four basic groups such that the motions of the central vector
polygons of the two mechanisms are exactly the same; for instance, replacing any one
of the two S pairs of R-ssk by a Hook pair, the IDoF-1 of Rq-ssk is eliminated.
(b) If a mechanism with an IDoF-2 is a useful mechanism, its mission can always be
performed satisfactorily by a mechanism from the four basic groups; (c) There are too
many SSMs of s27to list. We can only say that the number of the "mechanisms" in
this group is infinite; however, a vast maiority of them can not stand firmly, i.e. they
are just loose linkages.

1.7. Symbolic Representation of SSMs
Given, for instance, an input pair x,» and four pairs: one P, one C and two R
pairs, we can obtain 12 different RMs by positioning the four pairs differently, i.e.

Xywo-RRPC X ,00-RPCR X 50~PRRC
X10o-RRCP X 00~-RCPR X ,x~CRRP
X100-RPRC X100-PRCR X ,00—~PCRR
X00-RCRP X,00-CRPR X ,~CPRR

(1.2)

Without considering the relative position of the four pairs, we can denote the 12
mechanisms of (1.2) as

X j0—-2R~C ~P (1.3)

(1.3) can also be replaced by any one of the following five expressions,

{X.w—ZR-P—C Xiwo-P-C-2R X ,0—~P-2R-C

X1w00~C-2R-P X 10~C~P-2R (1.3a)

The difference between (1.2) and (1.3) is obvious. There is no dash between the
different pairs in (1.2), indicating that the relative sequential position of the pairs in the
kinematic loop is specified. The dashes between the different type of pairs in (1.3)
imply that the relative position of these pairs are not specified.

Definition. Variant Mechanism .

Every two mechanisms of (1.2) are variant mechanisms of each other, each of
the mechanisms of (1.2) has a total of 11 variant mechanisms; the expression of
(1.3), x,n-2rR-c-P, represents a total of 12 variant mechanisms .
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If a single-loop spatial mechanism contains one of each of the three types of pairs
of Class I (see Table 1.1), then another pair, and only one, can be chosen from Class
H or 1II in order not to violate the total DOF constraint. s <6, therefore,

Without counting the input pair, any SSM of the four basic groups (RM, ORM,

HM and OHM) must be composed of less than or equal to 4 different tvpes of

pairs (listed in Table 1).

Let 1, (i=1-4) represent four different types of pairs, and let their numbers in a
kinematic loop be «. B, v and x, respectively, then the number of variant mechanisms
for four possible situations can be obtained easily by combinatorial analysis.

.\'(,;.‘;.r,;.")-al‘, —= m=Cg =1
X iyiry i~ aT1= BTy - m=C2pCf s
) 1.
X‘g.‘,;.r,;,”)-al‘,-Bl‘,-yr, -+ m= C:,,_,Cf,.,c;' (1.9
x',;.',;,r,;.”,-ur,-sr,-yr,—xr. = m=Cl g gk Choyon CFon €
.
where 1s@+B+y+x)s6, (dueto 1sf<6), and
'
= R . - (1'5)

q'(p-g)

Although the formulae of (1.4) are conceptually easy to comprehend, they can be
further simplified by using (1.5):

x(ﬁ',i'rﬂ”;'a r - m=]
X‘ﬁ,ﬁrﬁ”,-url-ﬂfz - m=(@+p/(u'p) 16
x;&,ﬁrﬁ",-al‘,—ﬂr;-yr, - m=@+B+y)/(a! Py K

xt;.'g,r,;,”)-ul',-Bl‘z-'yl';—xl‘. -~ m=(a+p+y+x)/(a!Ply )
As an example, the fact that the expression of (1.3) represents a total of 12 vari-
ant mechanisms can also be derived directly from the third formula of (1.4) or (1.6):

m=(@+p+y)/(a'Bly)
=Q4+1+DV/Q 1NN =4121= 12
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CHAPTER 2. VECTOR ALGEBRAIC METHOD

2.1. Introduction

Vector mathematics was developed in 1881 by Gibbs [30), based on Hamiltion
and Grassmann’s Quaternion {34,35,31](1843-44), in response to the need for a natural
and succinct language for describing the problems of science and engineering.

"It seems inevitable that kinematic analysis should be pursued by vector methods.
Almost every quantity involved in kinematics is a vector or magnitude of a vector.
Angular quantities are exceptions, but all orders of their derivatives are vectors. Most
kinematic problems can be formulated as single or simultaneous vector equations, and
these equations can usually be solved through use of vector operations."[8](Chace,
Page 1, 1964).

It is generally considered that Chace ([6-9] 1962-65) is the representative in the
early stage who adopted the tool of vector mathematics to perform the analysis of spa-
tial mechanisms.

The development of vector method had completely stagnated for almost twenty
years since 1964. Although the vector approach proposed by Chace has been recog-
nized as a method, it has not been popularized in practical use and has even been
widely considered not to be an effective method as compared to other methods. The
reasons are twofold. The first reason is that the way Chace dealt with vectors did not
highlight the succinctness of vector expression and operation. In his approach, vectors
were expressed in terms of spherical coordinates, which inevitably complicates the
vector expression and geometrical visualization. The second reason is that Chace had
been able to analyze only some simple mechanisms.

The structural simplicity of the mechanisms analyzed by Chace can b2 measused
by the values of Big A of these mechanisms: As2, and generally the bigger the A
(0sAss), the more complex the mechanism. The Big A will be discussed in Chapter
14,

It is necessary to point out that in spite of the limitations the work of M.A. Chace
is still very significant in the history of applying vector mathematics to the analysis of
spatial linkage mechanisms.

Early in the eighties, Yu ([87-91] 1982-83) broke out the stagnant state in the
application of vector mathematics to the analysis of spatial mechanisms. He obtained
vectorial solutions for several 4-link spatial mechanisms of A=2 and for one 4-link




-34.

spatial mechanism (i.e. R-sCr) of A=3, and his approach is different from Chace’s [6-
9]. The main advancements of the works [87-91] as compared to [6-9)(Chace) are the
abandoning of the use of spherical coordinates and that the pure vector opcration was
emphasized. However, Yu advocated the use of pure vector expressions, instead of
incorporating any trigonometry algebra and expression in the procedure of analysis;
this hindered his approach from analyzing the more complex mechanisms.

In 1986, Zhou [109] presented an approach using vector mathematics to tackle the
more complex spatial mechanisms of A<4 and the approach is different from [6-9, 87-
91]. The crucial factors that rendered the improvement of [109] as compared to [87-
91](Yu) are the giving up of pure vector expression and the employment of a proper
combination of vector and trigonometry expressions.

In 1987, Lee and Liang [47-49] proposed an approach called vector theory which
was developed on the basis of spherical trigonometry method ([28) Duffy, 1980) and
dual-number quaternion algebra method ([83] Yang and Freudenstein, 1964). Papers
[47,49] analyzed the general forms of RMs (i.e. Regular Mechanisms) whose A=s5
such as RsSR-P and R,k mechanisms. Paper [49] marked a new stage that the
input-output displacement equations free of extraneous roots for all the RMs can be
derived.

Essentially, there are three kinds of methods for the displacement analysis of
SLMs. They are geometric (or graphic) methods, numerical methods and algebraic
methods. Formally, however, there have been about ten different methods or theories
developed following the well known pioneering work of Dimentberg since 1948,

Of the three essential kinds of methods, algebraic methods (sometimes called
analytical methods ) are the most powerful and majority of the presently available
methods belong to this group. The common objective of the various algebraic
methods is to establish the relations of the given input motional parameters, structural
parameters and the unknown motional variables of linkage kinematic loop, and then to
deduce the input-output displacement equations. In this way, one can not only get the
result with excellent accuracy, but can also associate the problems of design, optimiza-
tion and synthesis of spatial linkage mechanisms.

The Vector algebraic method (VAM) presented in this chapter is developed on
the basis of [12], [19] and [20]. The core contents and the attributes of this method
are as follows:

e Several important vectors related to the loops of spatial linkage mechanisms are
introduced; thus the vector loop equation is no longer merely the summation of
every individual vector in the loop of a mechanism, and the internal structural
relationship of all the vectors in a kinematic loop becomes clear;
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e Standardized analysis steps and expressions are developed, and the kinematic
analysis for mechanisms becomes an easy routine procedure which can be

expressed in a very compact form.

Although it is narrated on the basis of analyzing RM (i.e. Regular Mechanisms)
and ORM (i.e. Over-constrained Regular Mechanisms), the main ideas of VAM are
also applicable to the analyses of HM (i.e. Helical Mechanisms) and OHM (i.e. Over-
constrained Helical Mechanisms).

2.2. The input-output displacement equation

Definition. Pair Variable .
For any definite pair , its pair variables are the variables corresponding to its pair
type (NeNyNy). There are three Kinds of pair variables, ie. {6,.x;.6,} or
{0s.xr. x4 }, Wwhere 6, and x, are linearly correlated.

o, and e, are angular variables (of kinematic pairs); whereas x, and x, are rec-
tilinear variables. Specifically, o, is rotary variable, ey is helix-angular variable,
xr is translational variable and xr is helix-rectilinear variable .

Definition. Degree of Angular Freedom .
The sum of ~, and ~, is the degree of angular freedom of a kinematic pair. It
is denoted as N, =N, +N,. From the angular freedom point of view, we have four
different kinds of pairs:
(1) O-angular-freedom pair, N,=0;
(2) 1-angular-freedom pair, N,=1;
(3) 2-angular-freedom pair, ~,=2;
(4) 3-angular-freedom pair, N,=3 or 4

Definition. Degree of Active Angular Freedom .

The sum of the active rotary freedoms A, and the active helical freedoms ~, is
the degree of active angular freedom of a kinematic pair. It is denoted as
N, =Ny +Ny. From the acrive angular-freedom point of view, similarly, we also
have four different kinds of pairs.

Definition. Unconstrained Rotary Freedom .

If the direction of the axis of a rotary freedom of a kinematic pair can be arbi-
trary chosen, then the rotary freedom is defined as an unconstrained rotary free-
dom. Of all the definite pairs shown in Table 1.1, the five pairs s, S5, Sov, S
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and B, (whose N, =3) possess unconstrained rotary freedoms. 1t is worth noting
that unconstrained rotary freedom always occurs triplely in a kinematic pair.

Definition. Constrained Axis .

If the axis of a freedom of a kinematic pair is fixed to either one of the two con-
tacting bodies. then the axis is a constraired axis of the kinematic pair. Except
the uncontained rotary axes, all other axes of kinematic pairs are constrained
axes .

The axes of all generalized pairs are constrained axes. Although the directions
of the three axes of the pair (rrr) is not fixed to the two bodies of both ends,
each of them is fixed to its corresponding two contacting bodies.

Let unit vectors q, (i=1-n) be representing the directions of the central lines of
the links of a kinematic loop. We call q a link vector, a unit vector attached to link
i and associated with the link length p,. Generally q, (1<isa-1) is directed from
the first pair along the kinematic chain to the last pair.

Fig. 2.1 represents an abstract model of a kinematic pair. If the pair in Fig. 2.1 is
a 0-angular-freedom pair, then, once the direction and orientation of link /i is given,
the direction and orientation of link i+1 is also determined; If the pair in Fig. 2.1 is a
j-angular-freedom pair (j=1.2.3), then, once the direction and orientation of link i is
given, the direction and orientation of link i+1 can also be determined in terms of j
angular variables.

Cemnal lineélink i+l

\ o
Link {+1] v

Link i
Central h\n{ of link 1

Fig. 2.1
Fig. 2.1(s)
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Suppose Fig. 2.1 is the pair of a single-loop mechanism that contains uncon-
strained rotary freedoms. In this case, it is quite awkward to specify the relative
direction and orientation of link i+1 to link : in terms of three angular variables, for
the number of the feasible set of the three angles adopted to represent the relative
direction and orientation of the two links is infinite.

As a matter of fact, once the pair variables comresponding to other pairs of the
mechanism are determined, the relative direction and orientation of the two links of the
pair containing wunconstrained rotary freedoms are also specified and can be deter-
mined very easily. Though, it is useful to introduce only one angle o describing the
relative direction (angle) of the two link vectors q, and gq;.,, as shown in Fig. 2.1(a).

Definition. Basic Variables (of Mechanisms)
Given a single-loop spatial linkage mechanism, denoting as 8= (NxN;N,) the 3-
digit input control number , and
e assigning to each constrained rotary and helical axis one angular variable;
e assigning to each constrained translational axis one (scalar) variable;
e assigning to each pair containing a triple of unconstrained rotary axes one
angular variable,

then, we obtain a set of angular variables {#;} and a set of translational variables
{1} along the kinematic chain as follows,

{8,)=(0,, 8, ---,8,) (0srs6) 2.1

{%)=(%, %5, ---. % ) (0s156) 2.2

where (tsa+r<6). The variables (& .x)} of (2.1) and (2.2) are basic pair
variables of the mechanism, or basic variables for short.

It is worth noting that a basic pair variable may not necessarily be a pair vari-
able and vice versa. For instance, Spherical pair has three pair variables correspond-
ing to its three rotary freedoms, however, it has only one basic pair variable, which is
the angle specifying the relative direction (instead of orientation) of the two contacting
pair-elements.

The angular variables of (2.1) can be divided into three kinds:

dn ~ Rotary variable;
8m - Helix-angulas variable;

- rolary varisble corresponding to
the triple of Unconstrained rotary freedoms.

(2.3)




Definition. Displacement Equation .
Any algebraic equation,
SUB ) {5 ). 8)=0
(where (8,}c{8;) ()i

derived from the mechanism which includes at least two unknown basic variables,
is a displacement equation of the mechanism.

Definition. /O Equation.
The algebraic equations,

f(éi-a)=o bie(él)
[(%.8)=0 X e{x)

derived from the mechanism and each of them includes only one unknown basic
variable, are defined as the input-output displacement equations of the mechan-
ism, or I/0O equations for short.

An VO equation is a special case of displacement equation.

Definition. Small .

For any spatial mechanism of the four basic groups {rRM, ORM, HM, OHM }, ils
Small » is defined as the total number of the angular variables of its basic pair
variables

Small » is a very useful parameter. It can facilitate the understanding of
kinematic features of spatial mechanisms.

2.3. On the loop of spatial mechanisms

Fig. 2.2 represents the abstract model of an n-pair (2<n<7) single-loop spatial
mechanism.

Without any loss of generality the input pair is designated as the first pair of the
loop, the second, third, etc. pairs are labeled in a consccutive manner along the
kinematic chain, and the last pair is fixed to the ground.

Definition. Central Vector Loop Equation .



Fig. 2.2

1 7Ty n

For any single-loop spatial mechanism, the sum of all the vectors corresponding
to every edges of its central vector polygon is the central vector loop equation
of the mechanism. It can be called vector loop equation or loop equation .

Definition. Inputr Vector. G.e. 1)

In the course of deriving the VO equation the 3-digit input control number
8=(N;N;Ny) can always be assumed as known invariable. Then the sum of all
those known vectors of the kinematic loop (or the known edges of the vector
polygon) is the input vector of the kinematic loop, which is denoted by 1.

For a given mechanism, suppose all the individual known vectors of the
kinematic loop are {wu,. ---.u«u;}, where {u;} (i=1-/) are known unit vectors and
{«;} (i=1-1) are known scalars, then we have I=(vu,+---+uu) due to the definition
above. However, we will also adopt 1 to represent the set {wu;}, i.e. I={xu)}
(i=1-1). The vectors J and L, (i=1,2) to be introduced also have similar properties.

For the convenience of narrating, we introduce the following concept.
Definition. Adjacent Angular Variable .

The relative position of the angular variables {8 ) of (2.1) along the kinematic
loop can be described by Fig. 2.3. If 7.=1 as shown in Fig. 2.3(b), then &, has
no adjacent angular variable. f =2 as shown in Fig. 2.3(a), & and &, are
adjacent angular variables of each other. If 123, every angular variable of the
loop has two adjacent angular variables. In Fig. 2.3, 8, and @, are adjacent
angular variables of 8,; &, and §,., are adjacent angular variables of 8,, etc.

Definition. Ourput Vector. (ie. 3)

Let @ be an angular variable, @e(8,), (i=1-3, 1s1s6), the displacment equation
f®©.3=0 is to be determined. Then the owspur vector J is the sum of all those




Fig. 2.3(a) Fig.2.3(b)

Fig23

unknown constant-magnitude vectors of the kincmatic loop between 's adjacent
angular variables such that (1). 1nJ=@ (i.e. empty set); (2). if the number of this
kind of vectors is equal to or greater than two, the relative angle of cvery two
such vectors must be either constant or completely determined by e. We call o
output angle.

In general, it is always feasible and more convenient for the first step to derive at
least one of those f(9..8)=0, where {8,)c(8 ) (i=1-1) arc rotary variables
corresponding to constrained axes .

After the first VO equation for any mechanism is obtained, generally, the deriva-
tion of the /O equations corresponding to other pair variables of the mechanism
becomes much easier. Therefore, we focus only on the dcrivation of the first /O
equation.

For certain mechanisms, it is very difficult and even impossible to derive the I/0
equations directly; instead, it is feasible to first develop a sct of simultancous equa-
tions, namely the displacement equations , which contains the input and output quanti-
tics as well as one or more "intermediate" variables. In this case, it is quite clear that
the next step should be to eliminate the "intermediate" variables from the displacement
equations, in order to obtain the VO equation. The so-called "intermediate” variables
could be angular or translational variables. Here we will pay more attention on angu-
lar variables which will be defined as either auxiliary angle or subauxiliary angle .

Definition. Auxiliary Angle .

Given a mechanism, let @ be an angular variable, i.e. @< (8} (i=1-2, 1226,
the YO equation f(®.8)=0 is to be determined. Suppose it is very difficult or
impossible to derive f(©.8)=0 directly, and a set of displacement cquations is
obtained instead:



...... (2.4)
f“(e'a-ﬂl-"‘.ﬂ.)=0

where {B.}c{(®, )}, (k=l-m, i=1-%a, 1<m<a<6). If {B)} (k=1-m) can all be
eliminated from (2.4) simultaneously in a single operation and the resultant is
the /O equation f(.®)=0, then each B, *=1-m) is dcfined as an aquxiliary
angle , or auxiliary for short.

Proposition 2.1.

In the course of deriving the /O equations for any RM (i.e. Regular Mechanism)
by the algebraic method, we have the following conclusions based on the value of

Small .,

(1) if A<a4. no auxiliary is needed;

(2) if x=4 and there is no special geometric condition imposed, then. one aux-
iliary is needed;

(3) if a>a and there is no special geometric condition imposed, then, two
auxiliaries are needed;

If there do exist special geometric condition in the length of the links or the rela-

tive direction of the pair axes, the required number of auxiliary in conclusions (2)

and (3) could be smaller.

Proposition 2.2.
In the course of deriving the /O equations for ORM (i.e. Over-constrained Reg-
ular Mechanism by algebraic method, according to the value of Small ., we have
the following conclusions,
(1) if x<s. no auxiliary is needed;
(2) if »=s5 and there is no special geometric condition imposed, then, one aux-
iliary is needed; otherwise, no auxiliary is needed.

Propositions 2.1 and 2.2 are summarized from the results of many published
research papers and author’ extensive review of the unanalyzed mechanisms as well as
those analyzed mechanisms.

Definition. Subauxiliary Angle .
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If more angular variables are involved in the course of deriving a set of (simul-
tancous) displacement equations which contains only the required number of auxi-
liaries, then each of those extra angular variables involved is defined as an
ubauxiliary angle , or subauxiliary for short.

For any mechanism which needs auxiliary in the course of deriving its VO equa-
tion, suppose an output angle has been designated. now one needs to know how to
choose an auxiliary v,e®,). Here is the principle: v, can be any one of the remain-
ing angular variables except the angular variable corresponding to the triple of uncon-
strained rotary axes. It is always feasible and, in most cases, more convenient for
derivation to choose v, from ©’s two adjacent angular variables.

Definition. Auxiliary Vector. (ie. i,)

Let v, be an auxiliary angle, v,e(®:), (i=1-2, 4<i<6). The auxiliary vector is
the sum of all those unknown constant-magnitude vectors of the kinematic loop
between v,’s adjacent angular variables such that (1). L,naud=2; (2). if the
number of this kind vector is equal to or greater than two, the relative angle of
every two such vectors must be either constant or completely determined by v,.

If a second auxiliary is needed, it can be chosen from any one of the remaining
angular variables. However, it is generally more convenient for detivation to choose
v: from e or v,’s adjacent angular variables.

The second Auxiliary Vector is defined similarly as follow.

Definition. Auxiliary Vector. (ie. L;)

Let v, be the second auxiliary angle, v,e{®,), (1=1-3, Ssas6). The seccond aux-
iliary vector is the sum of all those unknown constant-magnitude vectors of the
kinematic loop between ,’s adjacent angular variables such that, (1).
L:n(IuJuly)=2; (2). if the number of this kind vector is equal to or greater than
two. the relative angle of every twc such vectors must be either constant or com-
pletely determined by ..

Definition. Floating Vector and Ground Vector .

For any given spatial linkage mechanism, after the output angle o and (if » =k z4)
all the required auxiliary angles {v;} are chosen, we can imagine that & and v,
are all "marked" with a paint brush respectively, then three possible situations
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arc as follows:

(1) If a=3, and there is no special geometric conditions imposed on the structure of
the meckanism, then, generally there should be rwo unmarked angular variables
left. Suppose 6, and e, are the two unmarked angular variables as shown in
Fig. 2.4(a), dissembling the loop at the two unmarked pairs (at « an? »), we
get two separate parts (chains) of the loop as shown in Fig. 2.4(b), where b'na’
is the part connecting with the ground and a«2» is the floating part. Points a
and o« (points » and ») are coincident when the two parts of the loop are re-
assembled together. Now the vector loop equation can be considered as being
composed of two parts,

R, +R, =0 2.5)
R, =Ry e
{R, =R (2.5a)

where R, excludes (whereas R, includes) the vector components corresponding
to translational variables at both ends « and ». The subscripts g and s of
(2.5) refer to "ground" and "floating”, respectively. We define the floating vec-
tor F=-R, and call R, (=Ry..) ground vector, and then rewrite the loop equa-
tion as

R,=F (2.6)

LA

Fig.2.4(a)

Fig. 2.4(b)

(2) If a=3, and there is special geometric condition imposed, then, there should be at
least two unmarked angular variables left. we define the floating vector F=-R,
on the condition that except e, and e, all other unmarked angular variables, if
any, are on the floating chain. In this case the loop equation can be written in



the same form as (2.6).

(3) If ac<2, then. there will be none (for a<1) or only one (for a=2) unmarked
angular variable o, left, in this case, there is no floating vector cxists. However,
it is useful to assume that F=0.

For a given mechanism, the couple of floating vector and ground vector may not
be unique. It is determined by how one chooses the (first) output angle and its related
auxiliary angles from {8} of (2.1).

Definition. End-axis Vector.

Suppose the unmarked angular variable 6, is not a basic pair variable corrcspond-
ing to a triple of unconstrained rotary axes; then, the (angular) axis vector a,
corresponding to e, is an end-axis vector (of the ground vector or floating vec-
tor). The same applies to e,, (there exists a second unmarked angular variable, if
a23 and there is no unconstrained rotary axis coniained in the mechanism).

Fig. 2.5

Let F=rf, where f is a unit vector. It is necessary to point out that sometimes
r exists and there are two end-axis vectors associated with f, but r=0, thus F=o0.
This can be illustrated by Fig. 2.5, where f=(a,a,)/laxa,l, F=0 and {a,. s} arc the
two end-axis vectors of r.

2.4. Four basic operations

For virtually all practical kinematic problems of spatial mechanisms, the displace-
ment analysis can be accomplished by just one or two of the four basic operations as
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follows.

28.
.

(2).

For any mechanism, the vector loop equation (2.6) can be written as

Yxa;+{ - }=F Q.7

Three cases:
Case (I). There exist two end-axis vectors:
(a) if ¥ A;=0, use operations (1) and (4);
(b) if ¥A,=0, use (1), (2) and (3).
Case (II). There exists only one end-axis vector:
(a) if F=o0, use (2) and (3);
(b) if »=0, trivial, [use (4)].
Case (III). There exists no end-axis vector:
(a) if XAy =0, use (4);
(b) if ¥ N;=0, trivial.

Four basic operations:

(1) (s,a)=(as,), Where a, and a, are the two end-axis vectors and the two
sides of the identity are calculated from the floating and the ground part of
the loop. respectively.

(2) Square both sides of (2.7);

(3) »,(2.7), where a, is an end-axis vector.

(4) In order to eliminate one or two or more elements of {xa} from (2.7), use
an appropriate vector to dot product both sides of (2.7);

Fundamentals of vector mathematics

Let a,.a and q be three unit vectors, and qa,=0, qa,=0 and ay=(2n-a;;) as
shown in Fig. 2.6, then we have

8)X8; = qsinay;
q =a,xarcsca;;  (if ayay= 1) (2.8)
8; = COSC;2 8; + $inCL;2 gxa,
{m 2 COSclyg @y — $iNCL; XAz (2-9)

Let ¢,.¢, and ¢, be a positive triple of mutually perpendicular unit vectors; s, b, ¢
and d are four arbitrary vectors, then
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a=Y(a¢)e
=Y @)
ab=Y (ae)be)
a'b = lalibl cos(ab)

(2.10)

ax(bxc) = (ac)b - (a-b)c
{ (axb)xc = (a-c)b - (bc)a (2.1 1)

(axb)(cxd) = (a-cXbd) - (a-d)(bc)
(a-b)c-d) = (axc)y (bxd) + (a-d)}b-c) 2.12)
(a'b)(c-d) = (axd) (bxc) + (ac)bd)

@€, + (aes)’ = (axe3)? (2.13)

(3). The quantity of a-(xc) changes sign if the cyclic order of their vectors is changed.
Otherwise, its value is unaffected by interchange of vectors or by the exchange of
dot and cross product.

(4). Any three vectors of dimension two in two-dimension space are linear correla-
tion; Any four vectors of dimension three in three-dimension space are linear
correlation.

The four items above are important mathematical prerequisites.

The formula in Eq.(2.13) might be a new one, for the author has never seen such
an identity elsewhere before. Following is the proof.

Using the first equation of Eq.(2.12), the right-hand side of Eq.(2.13) can be
transformed as follow,

(axesY = (axe;) (8xes) = 8° - (€3 (2.14)
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Considering Eq.(2.14) and the second equation of Eq.(2.10), the validity of
Eq.(2.13) is clear.

2.6. Four vector equations and their solutions

From sections 2.6.1 to 2.6.4, four typical vector equations are introduced and
analyzed in detail. These equations are evolved from mechanisms, and they are very
important because the vast majority of the practically existing kinematic problems of
spatial linkage mechanisms can be transformed into the solution of one of the four

equations.

2.6.1. The first vector equation

f:x;l; =M (2.15)

i
Given: M and unit vector set {a ), (i=1-k, 1<k<6), where a a; 221, (io=jo),
ae(a) and a; efs); Unknown: {x}, (i=1-k, 1<k<é6).
Solution:
(1). If x=1, from the scalar product of a, with both sides of (2.15) we get
x) = (a8,;M) (2.16)

(2). If k22 and any three-element subset of {a;} (i=1-k) is linear correlation,
from the scalar product of a, (j=1.2) with both sides of (6.1) we obtain

2
T % (3;9) = (8;:N) (j=1.2) 2.17)
i=xf
M (f k=2)
N ={M’-(X3Ig+ e 4+ 8y) (lf k23). (2‘173)

Solving (2.17) yields

{x; = [(ayN) = (8,828 N)}/ [1 = (ar#n)’] (2.18)

x3 = [(82N) - (8;8:X3'N)}/[1 - (a,82)*)

(3). If x23 and {a )} (i=1-%) has at least one three-element subset which is not
linear correlation. Without loss of generality, we suppose that the three-element subset
is {a;. 8;.8,), then we have (s;xaya;)=0.

The scalar product of a; (j=1-3) with both sides of (2.15) yields

3

T oxmon)=(@,W) (j=1.23) (2.19)

inl
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M Gf k=23
w ={M-(xaﬂa+ coxm) GE k24), (2.19a)

Solving (2.19) yields

x 1 e @ap | [@w)
xa|={(aya) 1 (arsy)| {(a:W) (2.20)
X3 (ara;) (ayay) 1 (ay W)

The physical meaning relating to a mechanism for #23 in (2.17a) is that the
mechanism has at least (k-2) T-IDoF-2, (Translational Idle Degree of Freedom of the
second kind), whereas for k=24 in (2.19a) is that the mechanism has at least (x-3)
T-IDoF-2 .

2.6.2. The second vector equation

Uq=V )
{q:e,cos6+e2sine ) (2'2”
Given: {U.V.e.e: ), Unknown: {e.q).
Solution:
Substituting (2.21-2) into (2.21-1) yields

Acos® + Bsin® =C (2.22)
A= U'C;
B =Ue (2.22a)
C=V

Let y =un(©/2), then we have

{cose=(1 -y +yY

5in® = 2y /(1 + ¥ (2.23)
Substituting (2.23) into (2.22) yields
A+C)y*=2By +(C~A)=0 (2.24)
Solving (2.24) yields y, then @=2wn'y, i.e.
8 =2tan'((BtVAZ+B7-C")/(A +C)) (2.25)

Substituting (2.25) into (2.21-2) yields ¢ .
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2.6.3. The third vector equation

(U-q + (UyqUy@) + W) +V =0 (1)
{q = ¢, c0sO + e5in0@ 2 (2.26)

Given: {U.U,.U;, W, V. e,. ey}, Unknown: {e. q}.
Solution:
Substituting (2.26-2) into {2.26-1) yields

1,620 + 1y 570 + Py cOSO + 1y cO + ysO + g =0 2.27)

[ n = U-e + (U, e Uyey)

2 = (U-er) + (UyeaXUrer)

M3 = 2(U-e))(U-€x) + (U ¢ XLrer)

4 + (Uye,XU;ey) (2.27a)
e = (Weey)

Bs = (W-ep)

. ‘l‘ = V

Let y=1an(9/2), then we have cos@=(1-y?/(1+y%), sin@=2y/(1+y?, from (2.27)
we get

4
'Zov, yi=0 (2.28)
Vo =}
vi=-24
$ Vi =21+ 4y - B+ B (2.28a)
Vi =23+ 2,
Vi =+ Mg+ M

Solving (2.28) yields y, then €=2un"'y; From (2.26-2) we get q.

2.6.4. The fourth vector equation

ugq=V )
vqg=V 7)) (2.29)
q=cosOe, +sinBe; (3)

Where u, L, v and v are all linear in cos®@ and sin@. Substituting (2.29-3)
into (2.29-1) and (2.29-2) yields

A(©@)cosy + B(O)siny = C(O)
{A' (@) cosy +B’ (0)siny = C’' (0) (2.30)
A (O) = l:‘G,
B(6) =L, (2.30a)

CO)=V
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A'(©) = U'¢,
B'(8) = U'es (2.30b)
C@®)=V

where the expressions for A, B, C, A’, B’ and C’ all have the same form as follow,
T(O) = 1,c080 + 155inO + 14 (2.3%)

Given: {a.b.ci.a’. b ¢}, (i=1,2,3); Unknown: {y, ). The major requirement
is to eliminate v from (2.30) and solve e.

Solution:
From (2.30) we get

{COSV=-QI/Q:

siny = 0,/ 0, (2.32)

:=(AC -CA')
Q:=(BC -CB) (2.32a)
Qs=(AB -BA")

From cos’@+sin°®0=1 and (2.32) we get
Q7 +0f =03 (2.33)
Let y=wun®/2), then we have

{cose=(1-y=)/(l+y2)

sin@ =2y /(1 +y?) (2.34)

Substituting (2.34) into (2.31), then substituting (2.31) into (2.32a), and then sub-
stituting (2.32a) into (2.33) we get

i 5; y.'i =0 (2.35)
8 =-ko
8:=2ks— 2k
48y = aky - 4ks - 2ko (2.35a)

5; =8k2+6k4" st—Zkt
8e= 16k, + 8k,

.

.
8538k2+6k4+ 8k°+2k|

5°=4k3+ 4kq+ 2ko

1 57 - 2k4 + st (2.353)
Sy = ks + ko

3
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k= (B} -EH)+ (v - n) - (47 - &)

ky= 2(E Ea- BB )+ 2(M M- M) - 2(51 54— 528)

{ky=(E -EF + EF + 28, &) (2.35b)
+(nd-ni+nd +20Ms) - (LF-55+ 38+28,8s)

ko= 2(EEy+EaEs )+ 2(MmaMa+MeMis ) - 2( 5283+ 8uls)

.

ks = (EF+Ef+EH+ (i +nd+nd) - (Li+55+8D)

ke=2(EE+mm-55)
{ kr=2(E:E+EE)+2(Mm+mend) - 2(5: 5+ 8:84) (2.35b)
ky = 2(E2Es+E3ED)+2(MaMs + MM ) - 2( 328+ 53 84)

ko = 2(EsEs + mans + 53 ds)

Ei=(a3¢cy —c2a)) - (a1¢y - c1a)’)
Ey=(ajcy’ +aze) - (cia7’ + c2a)")
{Es=(a,cy +asc))- (a5 + ¢3a)") (2.35¢)
Ei = (a2¢5 + asey’) - (¢1a3 + 63ay")
Es=(ascy - cyay’ )+ (ayc) - c1ay’)

.

M =(bacy = caby’) = (bycy' —c1by')
M =(bjcy + bycy) = (e bs" + c2B))
S M=(bycy +bycy’) = (c by + c3by') (2.35d)
M= (bacy’ + bycy’) - (1 by’ + e3b))
L'ﬂs= (bscy’ = c3by )+ (bycy —c1b))

Gi=(azby —bay) - (a,by - bya))
Sa=(a,by’ +a1by’) - (b,ay’ + baay’)
1 8s=(a\bs" +a3b)) - (b1ay + byay’) (2.35¢e)
Ca=(a2by’ + a3by’) - (bay’ + bya)’)

8s=(a3by’ - byay’) +(a, by - biay’)

Solving (2.35) yields y, then e=2un"'y. v can be determined from (2.32).

Special Case :

For some mechanisms (A=5, A=4, the definition for Big A will be introduced in
Chapter 14), the expressions for {@,), (i=1.2.3), can be simplified and
transformed into expressions linear in cos® and sin@ as follow,

Q; = X,c080 + Y300 + Z; (i=1.2.3) (2.36)
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Substituting (2.36) into (2.33) yields

1C3O + 13570 + PO SO + O + PsO + g = 0 (2.37)

m=Xx{+XxX3-x3§

=Y +Yi-ri

|l3=2X|Y|+2X3Yz—2x_:Y3

1 he=2X,2, +2X225 - 2X:2, (2.37a)
Ps=2Y,2, +2Y,2, - 2Y, 2,

pe=2Z% +23 -23

The solution of (2.37) is similar to that of (2.27). From (2.37) we get e, then
from (2.32) we get .

From the results of the above derivations, we can see that the four equations are
all tumed into polynomials afterwards. The orders of these polynomials are one, two,
four and eight, respectively.

The motions of the general forms of those mechanisms whose A=s are govemned
by 16th order polynomials. Although the vector algebraic method is applicable to the
analysis of the mechanisms of A=5 with general geometries using the eliminating tech-
nique developed by Lee and Liang ([47,49] 1987-1988), we do not discuss the deriva-
tion of these 16th order polynomials here for the following reasons, (1) it is a tedious
task; (2) the mechanisms governed by 16th order polynommials can hardly have any
practical usefulness; and (3) the number of these mechanisms is smaii. Of the 191 dis-
tinct core-loops (to be introduced in Chapt.14) of all RMs and ORMs rhere are only 3
distinct core-loops whose A=5 (i.e. aR-C, SR-P and 6r). Interested readers are referred
to references [47-49])(Lee and Liang, 1987-88), [59,60](Raghavan and Roth, 1990) and
[42,43)(Kohli and Osvatic, 1992).

It is worth noting that the orders of the polynomials of some of the RMs whose
A=4 and A=5 may reduce from 8 to 6 and from 16 to 12, respectively, due to certain
special geometric conditions of the mechanisms ([120.121] Mavroidis and Roth, 1992).

2.7. Conclusion

The vector algebraic method is easy to leam and easy to use. Its analysis pro-
cedure is direct, succinct and standardized. In comparison with any other analytical
method, the proposed method has shown advantages on its efficiency, uniformity and
simplicity. Chapters 4 to 13 will be devoted to the demonstration of these advantages.
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CHAPTER 3. VECTOR TETRAHEDRON EQUATIONS

3.1. Introduction

A large number of displacement analysis problems in spatial mechanisms and
serial robots can be formulated by the following vector tetrahedron equation (i.c.
VTE):

r+s+t+C=0 3.1

Fig. 3.1(a) Fig. 3.1(b)

where r.s and ¢ are unknown vectors, and ¢ is a known vector. Let us draw an arbi-
trary spatial closed-polyline of four edges (line-segments) a-b-c-d-a as shown in Fig.
3.1(a) and connect oc and ud, then a tetrahedron is obtained as shown in Fig. 3.1(b),
this is how equation (3.1) gained its name. M.A. Chace([8,9] 1964) was the first who
systematically analyzed the vector tetrahedron equation. In his approach, vectors r,s
and ¢ are expressed in spherical coordinates, measured from known right-hand Carte-
sian reference frames %,.4,.49,; 4,.4,.9,; and 4, p,. 9. For instance,

r = r {sing, [cosd, &, + 5in6, Q] + (cose, )9, ) (3.2)

In a given problem any three of the nine quantities r.e,.¢,; 5.9,.9,; and .0, ¢,
may be unknown. Thus nine distinct problems may exist.

However, instead of decomposing each vector into three components, we found
that the vector tetrahedron equation problem can be fcrmulated as a set of simultane-
ous equations, which may include in addition to the vector tetrahedron equation certain
constraint equations. The advantages of the new formulation are twofold: (1) it better
represents actual problems in the kinematic analysis of mechanisms and serial robots,
directly expressed by a vector loop equation and a set of structural constraint equa-
tions; (2) the new formulation can make the analysis intuitively more direct and
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computationally easier.

In the following a new systematic analysis procedure for solving vector
tetrahedron equations is presented.

3.2. The conventional and the new formulations

Any four vectors of dimension three can be expresscd in terms of three non-
coplanar vectors. Let us assume that there are three arbitrarily given non-coplanar unit
vectors {e,, e, e}, then any vector Q=pq (where p=1Ql and q=Q/IQ!) can be written
as,

Q=xe +ye; +zen (3.3)

Fig. 3.2 Fig.33

Vector Q@ is shown in Fig. 3.2, where {x,y.z} are the lengths of the three
edges of the (inclined) parallelepiped. From (3.3) it is clear that in the given reference
frame {e,. e 3}, vector Q can be defined in terms of three scalars:

Q: (x,y.,z) (3.49)

If {i.j. x) represent a Cartesian reference frame and two angles {e, ¢} are intro-
duced as shown in Fig. 3.3, then Q can also be expressed as,

Q = p {sin¢fcosd 1 + 5in8 j) + (cose) k) (3.5)

From (3.4) it follows that in a Cartesian reference frame any vector Q can be
defined in terms of another set of three scalars:

Q: {p.0.9¢) (3.6)

Comparing (3.3) with (3.5), we can see that the spherical coordinate system com-
plicates the vector expression and operations; moreover, the physical meaning of the
spherical coordinate system is not as direct and intuitively obvious as the expression
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given in (3.3).
In the new formulation, instead of using the spherical coordinate system, the for-
mulation of (3.3) will be used.

Formulations of the VTE problems .

Chace’s approach in formulating the VTE problems is summarized in a table of
[4], which is displayed here as Table 3.1 for comparison.

In the proposed new approach, the VTE problems is formulated as the solution of
a set nf simultaneous equations which contains the VTE and certain constraint equa-
tions as shown in Table 3.2.

Comparing Table 3.1 with 3.2, it is clear that in Chace’s approach the unknowns
are lengths and angles, whereas in the new approach the unknowns are lengths and
unit vectors.

An important vector identity and its proof.
The following vector identity will be repeatedly used in this chapter,

a-bxc = £ Va‘d*c - (b-c)*a’ - (¢:a)*b* - (a-b) ¢ + 2(a-b)b-cXca) 3 .7)

where a. b or ¢ can be any vector (i.e. not necessarily unit vectors).
Proof (The first method):
From

ax(bxc) = (a-c)b - (ab)c. (3.8)

we can obtain the Jacobian identity:

ax(bxc) + bx(cxa) + ox(axb) = 0 (3.9)
The scalar product of (bxe) and (3.9) yields

(bxcya - [(bxc)a](bxe) + [(bxe)exa)]b + [(bxc)Xaxb))c = O (3.10)

and the scalar product of vector a and (3.10) gives (3.7).

Proof (The second method):
Suppose bxC=0, then b, ¢ and bxc are three non-coplanar vectors, hence vector
s can be expressed as,

a=xb+yc+:bxe 3.11)
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Table 3.1. Chace’s modelings of VTE problems.
VTE: r+s+t+C=0
Degree of
Known
Case Unknowa Polynomial
Number Vector | Unit Vector Scalar Solution
1 r.0,, ¢, C 1
22 |r.0;s C |§.0 L 2 2
2> |r@,;6, C |6,.06, $.5.4 4
p/ 0.¢.:s C |§ r 2
2d {6,.¢.:6, C |o, r.s. ¢, 2
3a |risis C |£.5.¢ 1
3b |r.s:6, C |Fr.£.0, 1. ¢ 2
3 |r:96,;6, C |7.0,.0, |5.0: 1,9 4
3d op;o.;ol C orvaa'al "’r; LI
e 8

Remarks: (1). Unit veciors &,, @,, @, are the known directions
from which the known angles §,, ¢, and ¢, are measured. (2).
Whenever any of the vectors r, 8 and ¢t are completely known
they are summed into the single constam C.

Table 3.2. New modelings of VTE problems.

VIE piqi+paqr+piqs=1 Degree of

NuC:;r Unknown Constraints P:dm“
1 P none |
2 Fi%. P2 qru=m 2
3 P19 @ qru=m, QvY=n 4
4 P @2 none 2
5 g, Q2 gru=m 7
6 P1 P2 p3 | none 1
? Py P2 @ qyu=m 2
8 P G2 Q qru=m, gyv=n 4
9 % G B :;::';' wy=n 8

Remarks: All parameters (veciors or scalars) in each of the
VTE problems are known, except for those indicsted as unk-
nowns. Whenever any of the vectors (p1q;). (P29 or
(Pq3) sre known st the beginning, they are summed into the
smple constant L (u, v, w, q;) are unit vectors,
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The scalar product of {[cx@xc)], [®xepd], (bxe)} with (3.11) yields
x = [(ab)? - (ca)b0))/ [be* - (be))

y = [(ca) b~ (ab)b-c))/ [b*c*~ (bc)] (3.11a)
2 = [w(®xc))/ [bPc? - (be))

The scalar product of a and (3.10) yields
8% = x (a'b) +y (c:a)+ z {a'(bXc)) 3.12)

Substituting (3.11) into (3.12) yields (3.7).
If bxc=0, then (3.7) becomes 0=o0.

3.3. Solutions of the VTEs
33.1. If {x.q,} are the unknowns and {1 } is known, the problem reduces to:
xq =1 (3.13)
Solution:
This case is trivial. From (3.13)
x=
{q, =110 (3.14)

3.3.2. If {x.y.q,} are the unknowns and {q,. 1w, m} are known, the problem becomes:

xq+yq=I (1)
{ Qu=m @ (3.15)
Solution;
The scalar product of u and (3.15-1) yields
mx +(wq)y = (ul) (316)
Rearranging (3.15-1) and squaring both sides yields
xl=y? - 2(lq)y + P 3.17
From (3.16) and (3.17) we obtain
koy*+ kiy +k2=0 (3.18)
ko = (wqa)® ~ m?
ki = 2[(I-q)m?~(uT)(wq) (3.18a)
k; = (Ii n - MZ'I
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From (3.18) we have
y=hk + VAT - akok;)1(2ko)

Substituting (3.19) into (3.16) yields x, then from (3.15) we obtain

q = [((I-yq)/x]

Special case: if m=0,
From (3.16) we get

y =(wD/(aqy)

(3.19)

(3.20)

(3.21)

From (3.15-1) we get =xq=(-yq». and squaring both sides of the equation

yields

{x = |l—yq,|={l’—2y(i—qz)+y’
q=(1-yq)ix

(3.22)

It is clear that if m =0, equation (3.15) has two distinct solutions; If m =0, equa-

tion (3.15) has only one solution.

333. If {x.q.c ) are the unknowns and {p; L m.n.u v} are known, the probiem

becomes:
xq+pga=1 (I)
qru=m (¢3]
qv=r 3
Solution:

The scalar product of {u, v, uxv} and (3.23-1) yields
xm +pafeq)=(wDh
x[vq)=(D-pain

X quxv + paqruxv = (T-uxy)

Equation (3.7) and taking into account of (3.23) yields

gruxv=21y 1 -m?=(0-v)’-[v-q,)*-2m(u-v)[v-q,]
quxvety1-nT=(avy-[v-q)*~2n(uv)vq]

From (3.25) and (3.24) we obtain

(v =(vI-psn)/x
Wfvad=(mx -uD/p;

(3.23)

(3.29)
(3.25)
(3.26)

(3.26a)

(3.27)
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Substituting (3.27) into (3.26a) yields

quxv=1% (Ja,x!-bb.x +0))!x
quxy =1 (Jc;x! +byx +¢3)/pa

where

a;=1-m?-(@v)
by=-2m(uv)vi-pm)
cy==(vl-pn)?

¢z=-nlz

b2=2m [(wD—pan(uv))
cz=pi1-n?-(uv)]
—(uDiD-2p;a(uv)]

Substitutin> (3.28) into (3.26) yields

tV¥a, x*+bix+c), 2 Varx*+b3x +c3 = (Tuxv)

Squaring both sides of (3.29) yields

+2¥(a,x*+ b, x + ¢ ) Xazx* + bax +¢3)
= —(a,+a)2 = (b +b)x —(cy+c)+(Tuxy)

Squaring both sides of (3.29) yields

4
zk‘xl-l =0

=0

where

ko=(a; - a;f

ky=2(a, ~aXb, - b3)

J ky=2(a, - azXc, - c3)
-2(a\+aXTuxv)+(b;, - b,

ky=2(by = byXcy = c3)~2(b)+byXTuxv)

ky=[(c, - ¢ - @uxv))?

3

Solving equation (3.31) the value of x can be determined. Now let

q=fu+nv+fuxv

The scalar product of {vx(ux), (wwvixu, 1 } and (3.32) yields

(3.28)

(3.28a)

(3.28b)

(3.29)

(3.30)

(3.31)

(3.31a)

(3.32)




E={m-(uv)vq))/{1-(uv)?)
n = {(vq)-(wv)m}/ {1-(uv)) (3.32a)
§ = {{kq)) - IEu + nv)) 7 (Fuxy)
From (3.23-1) we obtain (p,q))*=@~xq,)*, Which yields
{(Fqul = (pf - x* - F)s(2x) (3.33)

Substituting (3.23-1) and (3.33) into (3.32a), and then substituting (3.32a) into
(3.32) yields q,; From (3.23-1) we can obtain

Q= (1-xq)/ps 3.39

3.34. If {x, ¢} are the unknowns and {p,, q.. 1} are known, the problem becomes
xq+piqa=1 (3.35)
Solution:
Rearranging (3.35) yields
Paa=1-xq, (3.36)
Squaring both sides of (3.36) yields

x2=2(q)x + (P ~pd)=0 (3.37)
From (3.37) we obtain
x =(1q) £ VEqI- @ - pD) (3.38)
From (3.36) we get
Q= (1-xq)/p; (3.39)

3.3.5. If {q: q} are the unknowns and {p,. p1, L u. m } are known, then

P +paqa=1 (1)
{qul =m ey (3.40)
Solution:
Let
q=Eu+nl+fuxd (3.41)

The scalar product of {Ix(uxv), (uxh)xu, uxi} and (3.41) yields
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E=[mP-(wDXq: D)/ (P~ (D)
n=lqD-@hm)/ [F-(uD (3.41a)
{ = (wd-q)/ (P~ (1))

Using (3.7) we obtain

(ux1-q) =t V= (w-m- (q; D’- 2m (uI)Xq; ) (3.42)
From (3.40-1) we obtain (1-p,q.)*=(p2q)* , Which yields
@D=(P+pl -pd)r2py) (3.43)

Substituting {(3.42), (3.43)} into (3.41a), and then q, can be obtained from
(3.41); From (3.40-1) we can get

Q=0-p1q))/p2 (3.44)

3.3.6. If {x.y.z) are the unknowns and {q,. q,. q,. I} are known.

X tyq+iqa=1 (3.45)

Solution:
The scalar product of {qg:xqs. q:xq;. q;xq;} and (3.45) yields
x = (q:xqyD) / (qixq2qy)

y = {q>qrD) / (g1%q;qs) (3.46)
z = (qixqx1) / (qi%qaqs)

3.3.7. If {x.y.q,)} are the unknowns and {q.. q2. ps. 1. u. m } are known, then

{ A (3.47)
Solution:
The scalar product of « and (3.47-1) yields
x(wq) +y(wgy) = (wh - pym (3.48)
Rearranging (3.47-1) we get
P3qr=(1-xq,-yqi) (3.49)

Squaring both sides of (3.49) yields

x34+y%+2(qrq)x y ~2(kqy)x -2(qa)y +(F-p3)=0 (3.50)
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If (uqp=0, from (3.48) we obtain

y=ax+b 35D
a=-(q)/(vq)
{b = [(Il'l) - P!"'] ! (“'Qﬂ (3.513)
Substituting (3.51) into (3.50) yields
kox*+ kyx +k3=0 (3.52)

where

ko=1+a*+2a(qrq)
ky=2[ab +a@q) +b(qra) - Iq)) (3.52a)
ky=b?-2b(kq) + (1P - p})

From (3.52) we get x; from (3.51) we have y: and from (3.49) obtain q;.

If (ugp=0, and (uq;)=0, then from (3.48) we get x; from (3.50) we get y;
and from (3.49) we obtain g,.

If (wq»=0, and (uq,)=0, then we can derive neither x nor y from (3.48).
We need to adopt another approach. The scalar product of {q. q.1} and (3.47-1)
yields

x +y(qrg)+{pilarq:l-Tq)) =0
x(Qrq) + y +{pslarqs)-(1q)) =0 (3.53)
x(q) +y@q)+ {psllq)-1} =0

Because the vector (x,y, =0, (3.53) yields

1 (grq) {p3lqrqs)-(Tqy)}
qq) 1} {pilgrqs)-(Iq)} | =0 (3.54)
aq) @q) {p:llq]-F)

Expanding (3.54) yields
Uqy=V (3.55)

{ U =p3{(qiXq2)* 1+ (q:Xq2) (q2x1) q; + (1 %q2)-(Ixqy) @z}

Vv =p;itul (3.55a)

q: is the only unknown (vector) in equation (3.55) which can be used to d ter-
mine one scalar unknown. On account of the fact that g, is a unit vector and con-
strained by the scalar equation (3.47-2), it is clear that q, has only one scalar unk-
nown yet to be determined, namely, q; can be expressed by one unknown scalar vari-
able and the known vectors, Let
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@ =Eu +nq, +Luxq,
The scalar product of v and (3.56) yields E=m .
From (3.56) we can derive
(mqi+{uxq))’ = (qy—mu)?
ie. N+ 3= T-my
From (3.57) we obtain

{11=vll-m’cose
{=V1-misin®

Substituting (3.57a) and E=m into (3.56) yields

QG=muy +V l-m!coseq, +V l—m’sinﬂ(uxg.)

Substituting (3.58) into (3.55) yields

Acosd + Bsiné=C

B =V1-m*(U-uxq,)

A =VI-m*Uq)
=-(U'U)+V

Let Q=uwn(6/2), then we have

cos® = (1-0%)/(1+Q%
sin® =20/ (1+0%

Substituting (3.60) into (3.59) yields

A+C)Q*-2BQ+(C-A)=0

From (3.61) we get Q, then e=2un'Q, i.e.

0 =2t '[(B1VAI+BI-CH/ (A +C)]

Substituting (3.62) into (3.58) yields q,. Now from (3.47-1) we obtain

XQ+yq2= s~ p3qs)
The scalar product of {q.xL. g} and (3.63) yields

{x = (I-p3 @) (@:xD) / [gy(q:xD)
y = (-piqsy(1xq,) / [q)(q:xD)]

(3.56)

3.57)

(3.57a)

(3.58)

(3.59)

(3.59a)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)




- 64 -

3.3.8. If {x.q.q;) are the unknowns and {q,.p:, ps.1, u.m, v, n } are known, then

xq+p2@+paqy=1 (1)
Qu=m Q)
Qv=n 3

Solution:
The scalar product of {u, v. uxv} and (3.65-1) yields
x(uq) + pslwqs] =D -p2m
x(vq) +palvql =wvD - pin
x(uxv-qy)+pa [uxv-ga] + p3 [uxv-qs) = (uxv-T)

Using (3.7) we can obtain

fuxv-qu}=1 v 1 —m’~ (0 vy~ [v-q}* -2 m(u-v)[v-q)
[uxv-qs) =2V 1 —a’—(u-v)’~ [wqs}*~2 n (uv){u-q,)

From (3.66) and (3.67) we have

[vql=aix+b, (1)
[vq) =azx +b; (2

where

ar=-(vq)/ p;
az=-(vq;)/p;
by=[(vD)-psn}/p:
by=[(vD-pim])/p,

Substituting (3.69) into (3.68a) yields

[I’XV‘qzl =t‘lt'| ~dx —a.’xz

{wvqy) =t ey —dyx - af x*

where

cr=1-mi=bf -(uvP-2mb,(uv)
cr=1=-n*-b} -(uvP-2nbi(uv)
dy=2a,[b;+m(uv)]
di=2az{by+n(uv))

Substituting (3.70) into (3.68) yields

(3.65)

(3.66)
3.67)
(3.68)

(3.68a)

(3.69)

(3.69a)

(3.70)

(3.70a)
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tpave,-dix-ai x*tpyves-dyx-af x¥
= (uxv-I) — x(uxv-q,)

3.1)

From (3.71) we can obtain

T kxti =0 G.72)
=0

where

ko= (a,a2)* - B}
k,=(d,af +dyal)+2B,B,
{ k2= (d1d2 - c1af ~c2a) — (B} + 2B:By) (3.72a)
ky=~(c1d3+ cad)) + 2B: By
ky=cyca— B}

and

By = [(wxv-q,)* + pf af + pf af]/ (2p1py)
B: = [p# dy+p$ dy-2 (wxv-Duxv-q,)]/(2p2p3) (3.72b)
By = [(wxv-D) ~ pf ¢, - pd €2) / (2p2p3)

Solving (3.72) we can determine x. Now let

q;=Eu +nv+ uxy (3.73)

The scalar product of {vx(uxv), (uxv)xu, @-xq,)} and (3.73) yields

E=[m~(uvXvq)}/[1-(uwv)}?)
n = [(vg)-@vIm) / {1-(wv)) (3.73a)
C=d-xq)y@-TA-xq)y(Eu+nv))/[1-(uv))

From (3.65-1) we have
(1-xq)-p1q)’=(psa)
i.e.
(I-xq)q=[(1-xq) +pd - p§)/(2p2) (3.74)

Substituting {(3.69-1), (3.74)} into (3.73a), and then substituting (3.7.a) into
(3.73) we get q;; From (3.65-1) we obtain

@ =(I-xq,-p2q3)/ p3 (3.75)

3.39. If {q.q,. q;} are the unknowns and {p..p2 ps. I, u.v, o, m,n, i} are known, then




s tp2@+pigi=1 (1)

qu=m )
Qv = 3 (3.76)

Qw=1! )
Solution:
The scalar product of v and (3.76-1) yields
(Pv)>q) == (psv)yqy — (kv = pra) 3.9
From (3.76-1) we have
(P2@ Y =(1-p1qi - p3a;)
i.e.
(271(Ps@-Dai=(2ps D3+ (pf ~pi -pi -F) (3.78)
Let
q =xu+yuxl+z uwx(uxh (3.79)
The scalar product of u and (3.79) yields
x=m (3.80)
Squaring both sides of (3.79) yields
yrez2=r2 (3.81)

r=@Wi-m?)/ VE-(uIy (3.81a)

It is clear from (3.81) that we can write

y =rcosy
{zz,m (3.82)

Substituting (3.80) and (3.82) into (3.79) yields

q; =m u + r cosywd + r simy we(uxl) (3.83)

Similarly,
qs = ! w + pcos®wxl + psin® wx(wxl) (3.84)
p=(I1-12)/ VP=(wip (3.84a)

Substituting {(3.93), (3.84)} into {(3.77), (3.78)) yields

{Acow+Bsinv-C

A’ cosy + B’ siny=C’ (3.85)
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where the expressions for {A, B, C, A’, B’, C’} all have the same form:

T(0) = #,c080 + 11800 + 15 (3.85a)
a)= 0
a;=0 (3.85b)
ay = p,r v-(uxl)
bl =0
by=0 (3.85C)

by = pyr v-[ux(uxD)]

ey = — pypv(wxl)
€1=— p3pv-[wx(wxD) (3.85d)
cy=-p3l(vw)-pm(vu)-(vI-pyn)

ay =2p, pyrp (uxiy(wxl)
ay’ =2p, pyrp (uxI)y[wx(wxD) (3.85¢)
ay = 2P;p;: I (uxDyw

by’ = 2p, par p[ux(uxd))-(wxl)
by’ = 2py p3rp lux(wdD)}-[wx(wxI)) (3.856)
by = 2ppyri [ux(uxD}w + 2p, r(wd)?

cy =2p3p(A-pymu)(wxl)
¢’ =2p3p(I1-p,mu)[wx(wxl)]

ey =2p3l{I~p,muyw+2p,m (I-u) (3.85g)
+(pi-pi-pi-P
From (3.85) we have
cosy =~ 0,/Q;
{“W"QHQ: (3.86)
Qy=(AC' -CA")
Q:=(BC -CB’) (3.86a)

Q3 = (AP’ - BA')

From cos’v+sinty=1 and (3.86a) we obtain
et +0f =0} (3.87)




Let y=wn(8/2), then we have

{cose =(i=y)/ (1+y) 3.88)

sin® =2y / (1+y%)

Substituting (3.88) into (3.85a), then further substituting the expressions for A,

B. C, A’, B' and C’ into (3.86a), and finally substituting (3.86a) into (3.87) we
obtain

$ 8y4 =0 (3.89)

The coefficients {5} (i=1-8) of (3.89) are the same as shown from Eq.(2.35a) to
(2.35e). Solving (3.89) we get y, then e=zun'y. v can be determined from (3.86).
From (3.83) and (3.84) we can get q, and q,, then q, can be determined from
(3.76-1).

3.4. Applications
3.4.1. Analysis of a closed-loop robot structure Rrss

Fig. 3.4

The diagram of the RRSS robot is shown in Fig. 3.4. Angle e, is the input
angle controlled by an actu-‘or. When e, varies, point P (the center of the robot
hand) moves along a spatial curve. It is required to find the function of the trajectory
of point P, i.e. R=R(o,).

Once the input angle e, is given, vectors p,q, and sa; are also determined.
In order to find Re)), i.e.

RO)=piq; ~5S8:+p231 Q2+ PsQs (3.90)
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it is necessary to determine q, first. As for vector g, its direction relative to q, and
a, are constant, hence it is also determined after q, is found.

Now the problem can be modeled as follows. The unknowns are {q.q,}; and
{p2=(pu+p2, p> u: 1} are known.

Pru+tpx=1 (1)
{‘h‘lz =0 @ (3.91)

It is clear that (3.91) is the fifth case of VTE when m=0 as shown in (3.40).
Here 1 is a function of e:

1=Sm-piqi=-Si-pse (3.92)

q =c8;q+s50,mp0
a =cps; +sa)qxa,; (3.928)
=cCp@+56)50),Q4—c0,50,28,%Xq,

Substituting (3.92a) into (3.92) yields
1=18)) = k8, + kaqs + k32;Xqe (3.93)
where

k= (S2ca2-- Sy)
ky= (51521258, -p,c8,-p,) (3.93a)
k;= —(stalzcﬂl-p,sﬁx)

Vector qs can be expressed in terms of a, and q:

s = P18 + P2qz + PraXq; (3.94)
The scalar product of {a;, 4 a;xq;} and (3.94) yields

P1 = (87qs)
P2 =(9295) (3.94a)
P3 = (8%qyqs)

Using the results of §3.3.5 we obtain

Q: = By az + B 1 + Byayxi (3.95)

where

Bi = - (arIXqyT) / (I - (8]
B: = (g:D / [P-(ayT) (3.95a)
Bs = (apxd-qy) / [FF-(ar 1)
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f (apxl-q) =12 vE-(@axD’- (@1
(@D = (P+pi -p}) 1 (2p)

and

(arD =82- 8¢~ pesOsay,
B=S?+pl+Si+p}-25S:cuyp
—2P43130|3012“2P|P.CG|

Substituting (3.93) and (3.94) into (3.95) yields

QG=m 8 +maqQ,+ MmyaXq,

my =Bicap+Brk,+B3(k3s0,+k:08))say;
my=P150,s0;+B2k;~PBs(k,c8,5a+k3c0;)
my==P,c6,sa;+PBk;+PBy(kyca;-k,58;sa)y)

Substituting (3.92a) and (3.96) into (3.94) yields
Qs =18, + N3G + R3NXG,

ny=pyctp+pam+py(mys8+mycd;)say;
ny=p) 50 5@ +prma—piim,cOsaz+myca;)

m=—pcOsap+prmi+py(maca;—m,;50,50,)
Substituting (3.92a), (3.96) and (3.97) into (3.90) yields
R= r 85+ r2qQe+ raagxqe
ry=-S¢c02+pym+psn

r3=pc8; -850, sap+pymy+psn;
ry=p;56,+5;¢0,5Q3+pyma+psny

3.4.2. Analysis of an R,-rsc mechanism

(3.95b)

(3.95¢)

(3.96)

(3.96a)

(3.97)

(3.97a)

(3.98)

(>.98a)

The diagram of the R-Rsc mechanism is shown in Fig. 3.5. Angle o, is the
input angle controlled by an actuator. When e, varics, an output of translation and
rotation is obtained at the cylindrical pair. It is required to find the displacement rela-

tionship, i.e. output in terms of the input.

The problem can be modeled as follows. The unknowns are {x.q. ¢}, and

{Plvph a1, '2} are known.

Pz +pyp+xa;=l
qzra:=0
qya; =0

(3.99)



Fig. 3.5
where
I=58-p1G—5181-P Qs (3.100)
and

(3.100a)

; = COs)28; + sina,; qixa,;
q; = cos6, g, + sind, 8;xq,

Clearly (3.99) is just a special version of the eighth case of VTE when m=n=o0,
as shown in (3.65).

3.4.3. Inverse kinem. ‘ic analysis of an RRPRRR robot

Fig. 3.6

The diagram of the RRPRRR robot is shown in Fig. 3.6. Given (a) the location
of the robot and (b) the position and orientation of the end-effector, it is required to
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determine the configuration of the robot arm.

The problem can be formulated as follows. The unknowns are {m;, 25, &, a);
and {s.. 1, Ss,, S, a, R} are known.

Sy +xymy=1 m)
{lr-;.. =0 (i=1.234) @ (3.101)
where
e (3.102)

1 is measured from < to » and (s.) from » t0 ¢, as shown in Fig. 3.6.

One vector equation is equivalent to three scalar equations, so (3.101) is
equivalent to a total of 7 scalar equations, which is just the necessary number of
equations to solve for the one unknown scalar x, and the three unknown unit vectors
{s2, 8, 2.}, for each unknown unit vector can be defined in terms of two unknown
scalars. Because aya;=0, the three vectors of (3.101-1) constitute a right-angled trian-

gle.

Equation (3.101) has no exact corresponding equivalence in the nine cases of
VTE. However, the vector tetrahedron equation (3.101-1) is obviously the same as
(3.23-1); the difference of the two sets of equations (3.23) and (3.101) are their con-
straint equations.

Squaring both sides of (3.101-1) yields
x3=VF=5 (3.103)

The minus sign in front of the square root is omitted, for it is obviously unreason-
able according to the structure of the robot as shown in Fig. 3.6.

Vectors 1 and a; are known vectors and Ixs,=0. Let

a;=§]+n-,+§lxn. (3.104)

From the scalar product of {(e,x(Ixa,)], [(Ixa;xd], (Ixa;)} With both sides of (3.104),
and considering that (Ia;)=s;, we obtain

E=5/[F-a))
N = ~(1a,)S;/ (P -1Ta,)) (3.104a)
G = [ay(Ixa))/ [IF-(Ta,)!)

(ay(xa;y) oOf (3.104a) is unknown. Using (3.7) we get

(8y(Axa)) =T —SF - (Fa,)° (3.104b)
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Substituting (3.104b) into (3.104a) yields {t n.¢}, and from (3.104) we obtain
2.

From (3.101-1) we have
2 = (1-5;87)/ x5 (3.105)

From (3.101-2) or directly from the diagram of the robot we can see that
=+ ayXas (3.106)

If o and a, arc coaxial, i.e. layasi=1, then a, can be any direction perpendic-
ular to s,, namely

a, = (apce)/ layxel (3.107)
where e can be any vector.

3.4.4. Inverse kinematic analysis of a 6R robot

Fig. 3.7

The diagram of the 6R robot is shown in Fig. 3.7. Given (a) the robot location
and (b) the position and orientation of the end-effector, it is required to determine the
configuration of the robot arm.

The problem can be formulated as follows: the unknowns are {a; s;, s, a}; and
{ss. 55 La. 2} are known.

S35+ Ssas =1 (1)
8ye=0 2)
aya; =0 3
aras=0 (4) (3’108)
a5 =0 ®
| ag®; =0 (6)

The relationship of (3.108) and (3.40) is similar to the relationship of <3.97) and
(3.23).
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Let s, be any fixed unit vector perpendicular to a,, then a; can be expressed
as,

8 = CO8(80.87) o + Si(80.87)8,X8p (3.109)

where (ass;) is the right hand rotation angle from a, to = about a,. Taking the
* scalar product of a. and (3.108-1) yields

Ia,=0 (3.110)
Substituting (3.109) into (3.110) yields
(m0:8;) = tan” (= (I-80)/ (F-n,xa0)] 3.111)

Substituting (3.111) into (3.109) yields ;.

Fig.3.7(a)

Geometrically, the relationship of a, *o elements of (3.108-1) can be shown in
Fig. 3.7(a), where vectors a,, a; and I are coplanar and a, is perpendicular to the
plane. Let

as=x1+yaxd (3.112)

From the scalar product of 1 and (3.112), and squaring both sides of (3.112)
yields

{x=(-,~nn= 3.112
y =t P @ TR AP - DI} (3.112a)

@yD of (3.112a) is unknown, however, it can be determined easily. From
(3.108-1) we have

(I - S:837 = (Ssmy)?
ie.

(8D = B+5§ -53)/(259) (3.113)
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Substituting (3.113) into (3.112a), and further substituting (3.112a) into (3.112)
yields . From (3.108-1) we have

a,:(l-—S;a;)lS, (3.114)

From (3.108-5) and (3.108-6), or from the figure of the robot we can see that
as=(asxa;)/ lagxasl, namely

8 = (85X87)/ [1 = (85 ®)*) (3.115)

3.5. Conclusion
In this chapter, a series of systematic analysis steps were developed for solving
the VTEs problems.

The advantages of the new modelings, as compared to previous modelings ([9]
Chace), have been stated at the beginning of this chapter. From the above analysis,
one additional conclusion can be drawn: to solve the VTE problems, what matters is
the direct relationship between the vectors within the system, and each vector within
the system can be directly related to the others. . “us the complication of carefully
choosing proper (right-angled) Cartesian reference frames, in order to Gefine the vec-
tors using spherical coordinates, is avoided. The actual directions of all the vectors of
a system relative to an extemal fixed reference frame is unimportant.
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CHAPTER 4. PLANAR MECHANISMS

4.1. Introduction

Some planar mechanisms are analyzed using vector algebraic method. As com-
pared to other methods, the approach in this chapter is more flexible and simpler.

4.2. Vector triangle equations
A large number of displacement analysis problems in planar mechanisms can be
formulated by the following vector triangle equation

Pra1+paqa=1 (4.1)

A planar vector equation is equivalent to two scalar equations. In a given prob-
lem, any two of the four quantities {p. q.p: q:} may be unknown. Thus four dis-
tinct problems may exist. Namely

Case 1. {p.. q,} are unknown;
Case 2. {p. p,} are unknown;
Case 3. {p. q:} are unknown;
Case 4. {q,. q.} are unknown.

4.2.1. The solution for case 1
If {x.q)} are unknown and {1 }is known

x=1 (4.2)
Solution:
This case is trivial. From (4.2) we can directly obtain
x =1
{q. =1/ (4.3)

4.2.2. The solution for case 2.
If {(x.y) are unknown and {q,. q;. 1} arc known.

xqiryq=I (4.4)



Solution (The first approach):
The scalar product of {q,, q;} With both sides of (4.4) yields

x+(qr@)y=(qyD
{(qrq:)x +y=(qy]) (4.5)
Solving (4.5) yields
{ x=[(@rD-@rqXe D)/ {1-(9rq2)?) 46
y =l@rD-(@raXa DV [1- @] (4.6)
Solution (The second approach):

Suppose o is a unit vector that is perpendicular to the plane of the vector trian-
gle. Dot product exq, with both sides of (4.4) yields

x=(uxq; D)/ (nxqrq)) 4.7)
Dot product nxq, wiih both sides of (4.4) yields
y =(exq,I)/ (nxq:q2) (4.8)

4.2.3. The solution for case 3
If {x, q;} are unknown and {q,. p,. 1} are known.

xq +pa=1I 4.9)
Solution:
Rearranging (4.9),
xq-1=-pyg (4.10)
Squaring both sides of (4.10) yields
x*-2(qrDx +(PP-p?)=0 4.11)
Solving (4.11) yields
x =DV @ -(F-pD) (4.12)

Substituting (4.12) into (4.10) yields

@=(1-xq,)/p2 4.13)

4.24. The solution for case 4
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If {q. ¢} are unknown and {p.. p.. 1} are known.
P +pqa=1 (4.149)

Solution (The first approach):

n2 Adh

)

V\ﬁ

3,

Denote 1=7/i. Let o, be the angle between 1 and q; as shown in Fig. 4.1, then
the vector q, can be expressed as

Q=c63i+50;nxi (4.15)
Rearranging (4.14),
I-p2q: = p\G (4.16)
Squaring both sides of (4.16) yields
(Fqn) = (P+pf -p})(2pD (4.17)

Substituting (4.15) into (4.17) yields

A cos8;+B sin@; = C (4.18)
A=l
B=0 (4.18a)
C =(P+pi-p})
From (4.18) we obtain
85 =cos {(C/A)=cos™' Z4pd-pf)i) (4.19)

Substituting (4.19) into (4.15) yields q,. Then from (4.14) we obtain

q =(1-p2q2)/p, (4.20)

Solution (The second approach):
Let

Q= x,l+x;,04 (4.21)



-79-

Dot product i with both sides of (4.21) yields
x; = (qrf) (4.22)

Squaring both sides of (4.21) yields

xp=tV1-xf (4.23)
Rearranging (4.14)
I-pq=p2¢a (4.24)
Squaring both sides of (4.24) yields
@) = (pf -p! -1)1(21 p)) (4.25)

Substituting (4.25) into (4.22) yields x,, then from (4.23) we get x,, thus q, is
determined from (4.21). Finally, q. is obtained from (4.14)

Q= (I-pq1)/p2 (4.26)

4.3.1. Analysis of the p,-Pp mechanism

Fig. 4.2

13

The diagram of the P,-Pp mechanism is shown in Fig. 4.2, where the input and
the output are translational motions at « and », respectively. We can formulate the
problem as follow: the unknowns are {x,y}; and {q; ¢, I} are known,

xq+tyq=l 4.27)
I==(R+p,qp) (4.27a)

Solution:

This is the second of the vector triangle equation. Using q and q, to dot pro-
duct both sides of (1) yields

{x +(qrq)y = (@D

(@q)s +y = (@D (4.28)
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Solving (4.28) yields

x = [(@2D-(gzq4:Xqy D)/ (1 - (qrqs)’)
{ 2T Sy (4.29)

y = [(Q@yD-(9rq:Xq D)/ {1 - (qr @)’}

4.3.2. Analysis of the r,~rP)» mechanism

Fig.4.3

The diagram of the Rr,~<rP)» mechanism is shown in Fig. 4.3, where the input
and the output are rotational and translational motions at « and 5, respectively. We
can formulate the problem as follow: the unknowns are {x.y)}; and {0..p.q. q.. q:. R}
are known.

*aty =1 (4.30)
=-(prq1+R)
{‘h = cos0; r + 5in, nxr (4.30a)

Obviously this problem is identical to the one in section 4.3.1.

4.3.3. Analysis of the cam mechanism r.(rP)r

The diagram of the cam (mechanism) r~®P)P is shown in Fig. 4.4, where the
input and the ortput are rotational and translational motions at « and », respec-
tively. We can formulate the problem as follow: the unknowns are {x.y}; and
{6, 7,91 P2%. @3, 9 R} are known.

xqQ+yqe=1 (4.31)

{!s-(p.q:+pz¢h+") (4.31a)

q; = cost, r -sin@, oxr



Fig. 4.4

Obviously this problem is also identical to the one in section 4.3.1.

4.4 Analysis of the r,-(zP)r mechanism

The diagram of the r~kP)R mechanism is shown in Fig. 4.5, where the input
and the output are translational and rotational motions at « and », respectively. We
can formulate the problem as follow: the unknowns are {x,6;); and {p.q; p2q: R} are
known.

sq=1 (4.32)

I=-p,q-(p2q2+R)
Qa=cOr+50;00r

(4.32a)
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Solution:

This is the first case of the vector triangle equation. Squaring both sides of
(4.32) yields

A =2V =tVp i +pF +R 4 2p p2(qrrq) + 2p R (1) + 2p2 R(qa 1) (4.33)

From (4.33) we obtain
g =l/x (4.34)

Substituting (4.34) into the second equation of (4.32a) yields
€6yr + s0,nxr = I/x (4.35)
The scalar product of {r.nxr} with both sides of (4.35) yields

cos8; = (rI)/x
sin6, = (nxrI)/x

(4.36)

4.5 Analysis of the R.—®(®P) mechanis:..

The diagram of the r.-kRP) mechanism is shown in Fig. 4.6, where the input is
o,. Let e,=0, be the output angle, the first rotary variable to be deterinined. Then the
vector loop equation of the mechanism can be written as

xq+I+J=0 (4.37)
J=p:q m
{,= pra+R @ (4.37a)

(4.37b)

Q3 =c63q;-5030 1 (1)
q=cO,r-s6,nxr (2)

Solution (The first approach):
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This is the third case of the vector triangle equation. The scalar product of r
with both sides of (4.37) yields
rJ= -(rD (4.38)

Substituting (4.37a-1) into (4.38) yields

Uq=V (4.52)
Us=p;r
{ D (4.39)

Substituting (4.37b-1) into (4.39) yields

A cosO, +B SiﬂO; =C (4.40)
A= U‘q; =0

B = Ugpa=-p; (4.40a)
C=V==(p;,c0,+R)

From (4.40) we obtain
0, = sin"(C /B) = sin” '[(p,c0,+R)/p3) (4.41)
The scalar product of q, with both sides of (4.37) yields
x =-qy(+)) (4.42)

Solution (The second approach):

Rearranging (4.37) yields
xq+l=~paqy (4-43)

Squaring both sides of (4.43) yields

x42(qsDx +@-pf)=0 (4.44)
Solving (4.44) yields
x = @DV (@ -T-p7) (4.45)
From (4.37) we obtain
Q@ =-(xq+0)/p2 (4.46)

4,6. Analysis of the Rr-RRr mechanism

The diagram of the R~RRR mechanism is shown in Fig. 4.7, where the input is
o, Let o,=8, be the output angle, then the vector loop equation of the mechanism
can be written as
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Fig. 4.7
J+1=F 4.47)
J=pias M)
I=p,q)+p4q Q) (4473)
F=-piqu

= . -inO., 1
{113 cotByqs-5inO,nxqs (1) (4.47b)

q) = cosh, q+sind nxqe  (2)
Solution:

This is the fourth case of the vector triangle equation. Squaring both sides of
(4.47) yields

21) = (F:-R-J®) (4.48)
Substituting (4.47a-1) into (4.48) yields
Ugy=V (4.49)
U=2psl1
{,, ) sz:v-, ; (4.49a)

Substituting (4.47b-1) into (4.49) yields

A c080,+B sin@, = C (4.50)
A=Uq,
B = Uqom (4.50a)
CaV

Let y=tan(9,/2), then we have

{me. =(1-y)y/(1+yh (4.51)

300 = 2y /(1 +y?)

Substituting (4.51) into (4.50) yields

(A+C)y?=2By+(C-A)=0 4.52)
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Solving (4.52) we get y; then 6.,=2un’'y, ie.
O, = 2un (B VA +BI-C1)/(A+C)) 4.53)

4.7. Analysis of a multi-loop planar mechanism

The diagram of the multi-loop planar mechanism is shown in Fig. 4.8, where the
i outis 6. Unknowns are {x.y, q Qs qs. gs}.

Fig.4.8

Solution:
Let us first consider the loop a-b-c-a. The vector loop equation is

XQtp2qa+piqi =0 (4.54)

It is 'eas that this is the third case of the vector triangle equation. Rearranging
(4.54) yields

XQ+pi1qi=-p21¢ (4.55)
Squaring both sides of (4.55) yields
+2p(qrg)x+(pf-pi)=0 (4.56)
Solving (4.56) yields
x = -para) tVpl @@y +pF -p1 (4.57)

Substituting (4.57) into (4.54) yields
G=-(xq4p1q))/p3 (4.58)

Since the links 5c, @ and &4 constitute a rigid body, the vectors q. and q, can
be obtained directly,
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Qe = €088, + 50624 BXQ:
{ (4.59)

qs = c088y5 Q) + 5inBys nXQ-

Now let us consider the loop -b-d-e—. The vector loop equation can be writ-

ten as
YG+peqstl=0 (4.60)

I=p1q;+psqs (4.60a)

Obviously this is also the third case of the vector triangle equation. Rearranging

the terms of (4.60) yields
Y @+ = -pege (4.61)

Squaring both sides of (4.61) yields

Y +2(0q)y +@-pd)=0 (4.62)
Solving (4.62) yields
y = @)tV @ gy -T-pd) (4.63)

Substituting (4.63) into (4.60) yields

gs=~(I-yq)/ps (4.64)

4.8. Conclusion

There are only a few books specifically addressing the kinematics of spatial
mechanisms. However, there are many books dealing with the kinematics of planar
mechanisms. Based on the analysis in this chapter, there is evidence that the majority
of the kinematics problems of planar mechanisms are simply covered by only four
cases of the vector triangle equation .

Comparing the mechanisms in Figures 4.4, 4.5 and 4.6, the physical differences
of the three planar mechanisms are quite obvious. However, the equations governing
the motions of the mechanisms, Eqs.(4.27), (4.30) and (4.31), respectively, are the
same. Consequently the analyses are also the same. Being able to expose the very
essence of the kinematic features of mechanisms is one of the advantages of the vector
algebraic method .
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CHAPTER 5. CERTAIN SPATIAL MECHANISMS CONTAINING HIGHER
PAIRS

5.1. Introduction

Kinematic pairs can be classified as lower or higher pairs. Those having surface
contact between the two elements of a pair are lower pairs, whereas those with line or
point contacts are higher pairs ([61] Reuleaux, 1876). Physically, a "lower pair can be
more heavily loaded and is considerably more wear-resistant”, whereas the advantage
of higher pairs is that "their line or point contact can result in lower frictional losses"
([33] Hain, 1961).

The degree of freedom (DoF) of a lower pair is 1sDoF <3, whereas that of a
higher pair is 3<DoF <s. Thus, from the kinematic point of view, higher pairs ar gen-
erally more complex than lower pairs. This is probably one of the reasons that the
overwhelming majority of the literature on spatial mechanisms has been devoied to the
study of mechanisms employing lower pairs.

In this chapter certain spatial mechanisms containing higher pairs, such as
Sc (Sphere-groove), B, (Bar-bar) and s, (Sphere-plane), are kinematically analyzed
using the vector algebraic method .

Other pertinent research dealing with spatial mechanisms containing higher pairs
include the (Direction Cosine) Matrix Method, developed by Denavit and Hartenberg
[10], and the Differential Constraint Method proposed by Sandor and Kohli [64].
Using the Matrix Method, Denavit [11] solved the displacement problem of the R,-B,%
mechanism by replacing the higher pair (8,) by three revolute amd @ prismatic pairs
using (22) dual matrices. Beggs [4](pp.136-141) analyzed the san.~ mwehanism using
(4x4) matrices and Zhang [106] examined the R-B,R, RS,k md &5 ® mechanisms
by using (3x3) matrices. Using the differential constraint conditions for the higher
pairs, Sandor and Kohli [64] studied the kinematic problems of the r.,s,k and
ReSpR mechanisms,

In order to utilize the homogeneous matrix transformation process using the
matrix method to find the input/output equations for spatial mechanisms containing
higher pairs, one must employ at least three Cartesian coordinate systems to specify
the relative position and orientation of elements of the higher pair. As a result, the
matrix analysis procedure becomes complex.




- 8§ -

The approach of utilizing the differential constraint conditions of the (higher)
pairs to analyze mechanisms is novel [64], but its applicability is limited. For the vast
majority of spatial mechanisms, this method may not work,

The new approach presented in this chapter is free of the limitations stated above.
It uses standardized vector expressions and operations. There is no need to specify the

relative orientation of elements of higher pairs for the purpose of the analysis. Conse-
quently, the new approach is more direct and much simpler than existing methods.

5.2, Standard analysis procedure

Using the vector algebraic method, the kinematic analysis problem can be formu-
lated as follows: (1). Draw a simplified vector loop diagram based on the original
diagram of the mechanism; (2). Find the input and the output vectors, then specify the
vector loop equation; (3). Specify the direction equations, based on the vector loop
diagram of the mechanism. At this point the problem is reduced to finding the solu-
tion of vector equations.

Before we carry out the detailed analysis for any specific mechanism, we will
develop the canonical descriptions and solutions for two vector equations.

(1). The first vector equation:
XM +xamixymel (5.1)
where {a,, »,, a;, I} are given and {x,, x,, x;} are unknown.

Solution:
Take the scalar product of Eq.(5.1) in tum with {a;xa,, a;xa;, a,xa;} t0 yield

xy = (8xar )/ (ay8yxmy) (5.2)

x) = (apxayD)/ (s)8:%8y)
x3 = (8,X871)/ (8,'8,%83)

(2). The second vector equation:

X8 +xz.;+l(-0 (5.3)
K=I+] (1)
{J T (5.3a)
8 = 8(q) (1)
{q mcosBe, +sin@e; (2) (5'3b)

where {e,, &, 1, »,} are given and {x,, x;, ®} are unknown.
Solution:
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(i). Displacement analysis .
The scalar product of Eq.(5.3) with axa, yields

2,xa;K =0 3.9
Substituting Eqs.(5.3a) and (5.3b) into (5.4) gives
Uq =V (5.5)

U = (a known vector )
{V = (a known scalar ) (5.58)

Here the step from Eq.5.4) to Eq.(5.5) may not seem clear, but for a real
mechanism this step is feasible and can be easily accomplished.

Substitutirg Eq.(5.3b-2) into (5.5) yields

Acos® + Bsin® = C (5.6)
A= U'G|
B =Ueg (5.68)
c=V

Let y =tan(072), we have
{coso = (1-y)/(1+y?)

$in® =2y /(1+y?) 5.7
Substituting Eq.(5.7) into (5.6) yields
(A+C)y*-2By+(C-A)=0 (5.8)
Solving Eq.(5.8) for y and substituting into @=2un"'y yields
0 =2un'[(BtVAT+BI-C?)/(A+C)] (5.9)

At this point, {x, x,} are the only unknowns in Eq.(5.3). In order to obtain the
solution we can use the scalar product of two known vectors with Eq.(5.3). Here, for
instance, we use the scalar products of s, and s, and obtain the solution as follows:

{x. = [(ar8:XK-2p) - (K'8,)] / [1 -(8;)%)

x3 = [0y 8K 8p) - (K9] / [1-(8y'8,] (5.10)
(ii). Velocity analysis. Unknowns: { x4 6 ).
From the time derivative of Eq.(5.6)
6 =(Acos® + B sin® - C)/(A sin@ - B cos®) (5.11)
A. .(J'Cl
B=Ue (5.11a)

C=v
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From the time derivative of Eq.(5.3)
e +xm+M=0 (5.12)

where M is a known vector:
M=x.i,+x;ig+k (5.123)

It is clear that Eq.(5.12) has the same form as Eq.(5.3). Thus, {x,x} can be
obtained by simply replacing K of Eq.(5.10) with M of Eq.(5.12a):

%) = [(aymXM-ag)~ (Map] / [1 - (2r8)’]

X3 = [(aya)XM-a,)-(Ma2)] / [1 ‘(lr'z)’] (5. 1 3)

Obviously, {x, x,} can also be obtained by differentiating Eq.(5.10).
(iii). Acceleration analysis. Unknowns; {,. i, ©}.
From the second derivative of Eq.(5.6)

o _ (A+280-40)cos0+(B-240-B6)sin@-C
® A'sin® - B cos® (5.149)

where
A. =ﬁ'¢|
i =i}'¢1 (5.143)
C=vV

Similarly, the second derivatives of Eqgs.(5.3) and (5.10) yield {x,, ¥.}.

For a real mechanism vector 1 of Eq.(5.3a) usually represents an input vector; it
is the sum of all known vectors at the very beginning. Vector J of Eq.(5.3a) is the
output vector; it is the sum of all those constant-magnitude vectors of the kinematic
loop of the mechanism that can be expressed as a function of the output angle .

§.3. The r,-s,c mechanism

The Ry-s,c mechanism is shown in Fig. 5.1(a), where ab, d» and s, are perpen-
dicular to each other and b5c and a, are co-planar. The input of the mechanism is the
rotation of ab around axis a,. The output is a translation and a rotation a! &, where
the rotation is an idle degree of freedom. To analyze the mechanism by using the vec-
tor algebraic method, the first step is to construct a vector loop diagram as shown in
Fig. 5.1(b). The loop is a-b—<-f—g-h-a, Where point s is the contact point of the
sphere and the plane and ¢ is the center of the sphere. It is clear from Fig. 5.1(b) that
if the input angle, o,, is given, wue only unknowns in the kinematic loop are {x;. x,. x¢).
For simplicity, we denote cas=cosa and sa=sina.
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Fig. 5.1(a). The R¢-SpC mechanism.

a

Fig. 5.1(b). The vector diagram of the Ry~-SpC mechanism.
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(i). Displacement analysis .
Given: {a,, a. 1}; Unknowns: {xj, x3, x}.

The loop equation is

X3t +x3Mmy+xa-I=0 (5.15)
I=-(pq+r+l (1)
{'0" Sem—paqu-S13 (2) (5.15a)
The direction equations are
[ a3 = AXq (0}
2; = (a8 +5ApaXe,)
=cU) 8-S 2q) . (2)
1r= (yxmy) = ~canq-sa;a; (3) (5.15b)
Q1 =0, qe+50,a,xq “@
L 8) = C Oy B4+ Oy Gaxay &)

The direction equations of Eq.(5.15b) specify the relationship (i.e. relative direc-
tion) of every unit vector in the kinematic loop relative to its neighboring unit vectors.
They can be obtained directly from the simplified vector loop diagram, using Eqgs.
(2.8) and (2.9). Here in Eq.(5.15a) the input vector 1, which is divided into two parts
(p.ai+rr), is a function of the input angle o, and I, is a constant vector.

The vector loop equation, Eq.(5.15), has the same form as Eq.(5.1). Therefore,
according to Eq.(5.2)

x2 = (mxasl)/ (apaysy) (1)

x3= (s D)/ (axazmy)  (2) (5.16)
xo= (mxayl)/ (axayay)  (3)

Eq.(5.16) is based on the condition that (axasa)=0. If (a,xays)=0, then
{x.. x3. x,} have infinite solutions. At this point, the displacement analysis is complete.
If we require numerical solutions for a specific mechanism, the vector expressions of
Eq.(5.16) need to be transformed into scalar exprescions. For this analysis, it is best to
separately scalarize the numerators and the denominators of Eq.(5.16) as follows. (As
an example, the detailed derivation of Eq.(5.17) is given in Appendix 5.A.)

The numerator of Eq.(5.16-1) is

(oa,) = (Uyq+V )= ayc0+a250,+a; (5.17)

where

(5.17a)

Up=(Sy~rsap)a—picoqqe
Vi=(rcap=-p;)caqy
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a;=(Uyqd=-picay
ar=(Uraxgd=(S)—7 san)say
ay=V;=(rca;—2,jcq

The numer2tor of Eq.(5.16-2) is

(axmz D) = (Uyq+V2) = bc8,+b:50,+b,
where

{ Us=(7 = p1c @iz~ 515012) S 01 Qo+ PSR 12 QB

VizmepsQqcdy;

by=(Uyqd=(r ~picap-S sa;)say,
by=(UyaXq)=—p(cq sty
by=Vi=—pesaycap

The numerator of Eq.(5.16-3) is

(ap@ayD) = Uyqy +V3) =c1c0,+c250,+¢c3
where

Us=ca;(pagqe—Scay)
Vi=(8)-Sscay)sa34(pycap-r)

ci=(Uyq)=psca)z

3= (UyaXge)=—S450qcay2
cy=V3=(51-Scay)sap+(picap-r)

Finally, the denominator is
(mxmya)=d;s0,+d,
where

dy=-saycap
dy=-ctysap

(5.17b)

(5.18)

(5.18a)

(5.18b)

(5.19)

(5.19a)

(5.19b)

(5.20)

(5.20a)

U; and v, (i=1.2,3) of Egs. (5.17), (5.18) and (5.19) are respectively constant vec-
tors and constant scalars, whereas q, is a vector function of the input angle o, as

shown in Fig. 5.1(b) and Eq.(5.15b-4).

Substituting Egs. (5.17), (5.18), (5.19) and (5.20) into Eq.(5.16) yields

x3=(a;c0;+a3350,+4a4)/(d350,+d,)
x3=(b,c0,+b250,+by)/(d259,+d)y)
xa={(c, COH‘CQIG, +C;)/(d189|+d3)

(5.21)
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(ii). Velocity analysis. Unknowns: {x,. 1,. i.}.
Differentiating Eq.(5.21) yields
[i, =0,[(8:d,-03d1)c0,-0,d,30,~a,ds)/ (d330, +d,)?

2y=0,[(51dy~b3d)c0,-b,dy30,~b,d1)/(d150, +d,) (5.22)
Iy= 6. [(c3ds~c3d1)c® ~c,dy3s0,~c,d:)/ (d130,+dy)?

(iii). Acceleration analysis. Unknowns: {i,. i., ¥.).
{&,. %, i) can be obtained by differentiating Eq.(5.22).

5.6. The r,-s.c mechanism

The R,~-S;c mechanism is shown in Fig. 5.2(a). The simplified vector loop
diagram of this mechanism is given in Fig. 5.2(b). The input pair is at point a. The
input angle is e, and the output angle is o,, i.e. 8,=0,.
(i). Displacement analysis .

Given: {s,.a.1); Unknowns: {x;, x.. 8;}.

The loop equation is
x30~x,0,+K=0 (523)
K=1+) 4
J= S;n*pq 2 (5.233)

I=p\q+(S8,4p3q) (3)

The direction equations are

83 = COyly = 305,GX8, (1
@ = c010,q; - 5in0axq; (2)
8 =cape) +5¢,;3q9,Xs, (3)
q =c8,q +59,3,xq (4)

(5.23b)

The scalar product of syxa, with Eq.(5.23) and considering Eq.(5.23a-1) yields
axagd = - apxasl (5.24)

Substituting Eq.(5.23a-2) into Eq.(5.24) and considering Eq.(5.23b-1) results in

U'Q;SV (5.25)
U=piaxe,-S;5aus;
{V --’-;'.,x.‘ e : (5.258)

U and v of Eq.(5.25) are respectively a vector function and a scalar function of
the input angle o,. q is a function of the output angle e;.




-95.

Fig. 5.2(a). The Rg-SgC mechanism.

Fig. 5.2(b). The vector diagram cf the R¢-SgC mechanism.
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Substituting Eq.(5.23b-2) into (5.25) yields

Acos®; + Bsin®; = C (5.26)
A=Uq
B = Uqyxa, (5.26a)
C=V
From Eq.(5.26) we have
0; =2 an (B +VAT+BT-C2)/(A +C)] .5.27)

Now {5 z.)} are the only unknowns in Eq.(5.23). From the scalar product of
{qs a1} with Eq.(5.23)

x; =—qy(K)/(qr8y)
{XA = qr(K)/(qrad (5.28)
(ii). Velocity analysis. Unknowns: {x,, i. ©).
Differentiating Eq.(5.26) yields
©,=(A c0s0,+B 3in@;~C)/(A 5in®;—B cos®;) (5.29)
A. 80@;
j 80'61 (5.29a)
C=V
The derivative of Eq.(5.23) is
Eang-k20 = (K+x38) (5.30)
The scalar product of {q. q,} with Eq.(5.30) yields
i3 =—qy(K+x28)/ (gra)
{i. = qr(K+x282)/(qrag) (.31

(iii). Acceleration analysis. Unknowns: {3, i, 6)}.

The second derivative of Eq.(5.26) yields e,, which is a similar expression to
Eq.(5.14) and
A 'ﬁ“h
B =U-gyxa, (5.32a)
C=V

The second derivative of Eq.(5.23) yields

iy m=qu(K+ %20+ 2x382/(qr8)

Sem qr(K+i30;+2x282)/(qrn0) (5.33)
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The kinematic analysis is now complete. If numerical analysis is required for a
mechanism, then Eqs. (5.26a), (5.28), (5.29a), (5.31), (5.32a) and (5.33) should be
transformed into scalar expressions. For instance, the scalerized form of Eq.(5.26a) is

as follows:

B = blcos0|+b;sin9.+bg

A = a,cosh,+a;35in0, +a;
C= c,cosG,+c;sin0.+c,

where {a;, b, ¢; } (i=1-3) are constants:

@) =—pCQy Ay
ay=S3sQysay

a3 =—pi13Qy €Qyy

by=Sicaysazsay
by =pysa;

by=—Sysqqcasay

€1 =(p15QyCca~pyctysa);)

[Cz =-§13Qq 350y,

€3y=(P1CCysAp-p3stycay)

Eq.(5.28) can be expressed as,

Xy (S3503,56024+p2c034p,c0,+p3)/(30,503)
x4 (S3P)+p2P2+tp1+p3c8;)/ (504 38))

{m =(c0;c0;-501568;cay)

P2 =(c050;+58,c0:004) s U+ (s015a4))

(5.34)

(5.34a)

(5.34b)

(5.34¢c)

(5.35)

(5.35a)

The scalarized form of Eq.(5.29a) can be obtained from the derivative of

Eq.(5.34),

A. = (-ﬂ|liﬂ°|+0100‘ol)é;
B‘ = (—b,sine,-rb;cosol)él
c -(-c,sine,+c;cooﬂ,)é'

(5.36)

The scalarized form of Eqs. (5.31), (5.32a) and (5.33) can be similarly obtained,

although they are not displayed here.
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§.5. The r,s,k mechanism

The »,- s,k mechanism is shown in Fig. 5.3(a) and the corresponding vector
diagram is shown in Fig. 5.3(b). The input pair is located at point a. {a; a.r} are
three mutually perpendicular unit vectors. Point b is the center of the sphere. Point ¢

is the contact point of the sphere and the plane.
(i). Displacement analysis .
Given: {a,. a..1}; Unknowns: {x:, x5, ©;}.
The loop equation is

xm+x383+K=0

K=I+] m
J=rr ¢3]
I=pyq -k 3)

L=53-psqy+S.a (4

The direction equations are

8; = €080, q, - 5in0, a%q, (1))

83 = C Oy Re— S CygBX0g (¥4

r=(8X83) = ¢ Qay B:XBe+5 Oy (3)

q, = cosd, q,+sind, a)xq, Q)
The scala product of r with Eq.(5.37) yields

rKk=0

From Eq.(5.38) we have

rK=r(l+))
sp(+rr)
=prl+r
= (COy By + 5Cua)l +r
== (cOulxagys + [sau(la)+7])=0

and from Eq.(5.39)

U'Iz =V

U= caylxa,
Veasay(la)+r

Substituting Eq.(5.37b-1) into Eq.(5.40) yields

Acos®; + Biin@; = C

(5.37)

(5.37a)

(5.37b)

(5.38)

(5.39)

3.40)

(5.402)

(5.41)




Fig. 5.3(a). The R¢-SpR mechanism.

Fig. 5.3(b). The vector diagram of the Rg-SpR mechanism.
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A =(Uq)
8 = (Uqpuay (5.41a)
C=V
From Eq.(5.41)
0, = 2un (B :VAT+87-C* )i +C)) (5.42)

The scalar product of Eq.(5.37) with q, and », yields

x;=- (K-8
{x’ - (K8y) (5.43)

The displacement analysis is now complete. If we need to calculate numerical
values of these variables, we can expand Egs. (5.41a) and (5.43) as follows:

A =a350,4ay
= ‘. ch, 4“3 (5.41 b)

C =c380,4¢3

F‘a"h"ﬂucﬂa

ay= 5,005,380,

) by=p cay

by =pycayn

€3S p1cQysly

[ €3 = S)canusaq+r~S,

(5.41¢c)

Xy = 30u[(P1c0ay50,+5,504)cO, (5.43a)

x38=(p1c0,+p3)c0;4(p,c0y30,45,5a,)10,
+(P1c0,+p3)30;)—carp(p 504,350, -5,cay -5

(ii). Velocity analysis .
Unknowns: {(i,. 1,. 6,).
From the derivative of Eq.(5.41) we have

O:=(A c080;+ B 3in®; - C )/ (A 5in0; - B cos®;3) (5.44)
A=),
B =(8,50,)(-b)) (5.44a)
é = (‘1“!"-‘3

Differentiating Eq.(5.43a) yields
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X3 =P 0,[50,c03+cayc0,50;)
+0[(p1c0,+p3)sOrt (p1c 050, + 515040y

X3 = p;é.[snus 0,39;~5Q3,c04;¢0,00;- cQysay c8]
+02503[p16030,45,504)50;~(p1c8,+p3)¢B;)

(5.45)

(iii). Acceleration analysis .

Unknowns: {i.. ;. 6;}

The second dewuvative of Eq.(5.41) yields @, where {A.B.¢) can be obtained
from the derivative oi Eq.(5.44a).

X = (6,(:0.—6,2:0,)0;
i = (6.30.4»6,::'9.)(—!’.) (5.468)
C = (6,c0,-0}50))c,

The derivative of Eq.(5.45) yields {x,, x,).

5.6. The Rr,-B;k mechanism

The R-B,8 mechanism is shown in Fig. 5.4(a) and Fig.5.4(b). The input pair is
at point a. The radii of the two round bars of pair B, are r, and r,, respectively.
Denote 7 =(r,+ry).

(i). Displacement analysis .
Given: {a, a.. 1}; Unknowns: {x,, x, €:}.
The loop equation is

x1m+x;m+K=0 (5.47)
K=J+1I )
J=rr+piq, (3]
1=pia+1o o) (5.472)

L=Sa+p:1q:+ 5,8, (4

The direction equations are

,

r = (8,%X8;)/ n;xa| m
8= COyBy =~ SAyG¥ny  (2)
{ q2 = cos0, q - 5in@38.xq; (3) (5.47b)

8;=cqp;8 +50,;9,X8,  (4)
Q1 =c0;q;+56,8)xq) (5)

.

The scalar product of s, with Eq.(5.47) yields
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Fig. 5.4(a). The R-ByR mechanism.

Fig. 5.4(b). The vector diagram of the R~BsR mechanism.
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IzXIa'K =0

Approximate solution. (r=0)

(5.48)

If r is very small as compared to the geometrical size of the mechanism, then we

can let r =0.

Substituting Eqs. (5.47a-1) and (5.47b-2) into Eq.(5.48) yields

Ug.=V

{U = 5Ql(0 2. )+ prcauaa,
V = casnl(ixa)a) ~ p2sau(aray)
Substituting Eq.\5.47b-3) into Eq.(5.49) yields
A c0s®; + B 5in®; = C
A=Uq

B = U-qyxa,
cC=V

From Eq.(5.50) we have
0, =2un (B tVAT+BI-C2)/(A +C))

(5.49)

(5.49a)

(5.50)

(5.50a)

(5.51)

From the scalar product of {a a;} with Eq.(5.47) we can obtain {x; x;}. The
velocity and acceleration analysis procedures are similar to (ii) and (iii) of sections 5.2

and 5.3.
Accurate solution. (r#0)
From Eq.(5.48) we get

axay(r —.i.’—drp;qrfl) =0

Iagxaal
ie.
[(pam2yasxqa+(Ixayyay] = —r | axasl
Squaring Eq.(5.52) yie'ds
[(Pa#2yaxqz+(Ixaya; P = ri{ 1~ (ay0,)]
Let
((p282)8xqy + (Ixaz) 2] = Uyga+V

U =prcagmxa,~saysx(lxs;)
V) =-pasaisyas+cy(aslxay)

(5.52)

(5.53)

(5.54)

(5.54a)




(arsy) =Uyq+V, (5.55)

U, =sdyaxXa,
Vi=ca(ara)d

(5.55a)

Substituting Eqgs. (5.54) and (5.55) into Eq.(5.53) yields
Urq) +72 Ur g’ + Weqa+ V3 = 0 (5.56)

{w:av.u.nﬂv,uz

Vy=Vi+(Vi-1)r? (5.56a)

Vector q, is the only unknown in (5.56) and it is a function of the output angle
9,. Substituting Eq.(5.47b-3) inio Eq.(5.56) yields

16207 + 1135707 + 3€O250; + PacO; + PssO; + P =0 (5.57)

M = (U;qf +r2(Urqsf
1y = Uy goa)? +r2 (Urgoa?
Im= 2(Uyr XUy gsxas)+ 2 ri(Uz q;XUzr gsxay)
e = (W-q5)
s = (W-qaxa,)
M=V,

(5.57a)

9

Let y =un(8,/2), then, from Eq.(5.57) we get

T vyt =0 (5.58)
=0

Vo=l

vi==2p

dv = =20+ 44~ Pet e (5.58a)
Vi =234+ 2

Vi =+ PatHe

From Eq.(5.58) we obtain y, then @.=2utn’'y. At this point, {x; x,} are the only
unknowns in Eq.(5.47), and they can be obtained by considering the scalar product of
s, and s, with both sides of Eq.(5.47).

8.7. Conclusion

From sections 5.4, 5.5 and 5.6 we can see that, using the vector algebraic method,
the analysis procedures for the R~SsC, RS,k and R.8,8 mechanisms are just a
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matter of routine and are almost identical. Only the accurate solution procedure for
Re-ByR is somewhat different, but the basic idea is still the same.

From Fig. 5.1(b) and section 5.3 we can see that before we proceed to the
detailed analysis, there is no need to specify the relative direction of vectors r and a,.
The same applies to vectors {a,. »;} of Fig.2(b), vectors {q, r} of Fig. 5.3(b) and vec-
tors {s a,} of Fig. 5.4(b). The determination of the relative direction of these vector
couples is a "by-product”, namely, after we determine other variables, the relative
directions of these vector couples become known. However, if the Matrix Method is
used, at least three Cartesian coordinate systems are required, specifying the relative
directions of each of the vector couples of the higher pair, in order to perform the
matrix transformation.

The diagram of the R,-B,R mechanism shown in Fig. 5.5 comes from Begg’s
book [4](Page 137), in which the kinematic analysis of the mechanism was carried out
by the matrix method, which required 9 pages of algebraic manipulation. But here we
required less than two and a half pages. Comparing Fig. 5.4(b) with Fig. 5.5, it is
clear that "a picture says one thousand words!"

The mechanisms analyzed in this chapter are all three-link mechanisms. Since
the DoF of higher pairs is 3<DoF ss, the number of links, »;, of a mechanism contain-
ing higher pairs can only be 2<~§,<4. From the diagrams of the mechanisms discussed
in this chapter, it is not difficult to perceive that these mechanisms are all very com-
pact structurally, due to their small number of links. In fact, compact structure is an
attribute of spatial mechanisms containing higher pairs.

L)

Fig. 5.5
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Appendix 5.A. The Detailed Derivation of Eq.(5.17).

Since
(@xa,D=(a,xq xacl=[(ag0)) Qi - (acqi)a )} -p1g - re+ L)
=lcanqi-(aeq)a}[—p 1@ +7 cO;3Q+7 5028, +S484—p a5 1ai]
= [cagq - (¢q) 8} [(r cap-p )+ (rsan-5)a,+S.a-pqd
=[(S1-r s@)8—pac R QJ Qi +(r cAn—p1)caa
Hence

(ayxasD) = Upq, + V) (A.1)

Uy=(S|—7 s02) 84~ pacGai Qs
Viz(reap-pi)cay

Substituting Eq.(5.15b-4) into Eq.(A.1) yields
(8yxasl) =a,c0,+a;50,+a, (A.2)

where a,, a; and a, are given in Eq.(5.17b).
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CHAPTER 6. THE X,-R-C-S MECHANISM

6.1. Introduction

In this chapter the R,kR-Cc-s mechanisms are kinematically analyzed using the
vector algebraic method. The VO equations are obtained as fourth order polynomials.

6.2. Analysis of the rR,~csk mechanism

The diagram of the R,-csk mechanism is shown in Fig. 6.1. The input angle is
e,; the output angle is e,, i.e. 0,=6,. The vector loop equation and the direction

equations can be written as,

-xm+K=F
K=J+1
I=prqs
I=p,q)+ (S8 +puege—-Simy)
F=-pq

@ = c080; q, - $inOy 85%q4
G = cosd, q, + 3in8, 8,xq,
1 82 = cosayz 8 + 5ing;; q, X4,
q = cos8, q, + 5in®; 8,Xq,
8;%X8) = qysinay,

Squaring both sides of (6.1) yields

x2=2[ayK])x + (K = F?

)
@
(€))
@
£

¢
@
&)
Q)

(6.1)

(6.1a)

(6.1b)

(6.2)
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The scalar product of a, with both sides of (6.1) yields
x = [87K] 6.3)

Substituting (6.3) into (6.2) yields
- (8 KP + [K] = F (6.9)

Substituting (6.1a-1), (6.1a-2) and (6.1a-4) into (6.4) yields

(Uql +{W-qs}+V =0 (6.5)
U=psay

W = 2p,{(Is)s; - 1) (6.52)
v =(l'lz)1—lz+pf -p}

Substituting (6.1b-1) into (6.5) yields
11203+ 115203+ Py c 03503+ e O3+ 15503 + g = O (6.6)

r

W = (U-q)?

Kz = (U-agxqq)?
Jm=-20e0 20
My = (W-q)

By = —(W-axqy)
He=V

(6.6a)

Let y=tm(®,/2), then we have

cos8; = (1-y1)/(1+5%)
{ $in@; =2y /(14 y?) 6.7)

Substituting (6.7) into (6.6) yields

4
z v y"' =0 (6.8)

is0
Vo=

vy= =2y

fvim =2 44— pyt+pig (6.8a)
vim 242,

Vo= J+ e+ ile

Solving (6.8) we get y; then ©;s2tan'y.
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6.3. Analysis of the r,sck mechanism

h #

Fig. 6.2

The diagram of the RrR,sck mechanism is shown in Fig. 6.2. The input angle is
e,; the output angle is e,, i.e. 6,=0,. The vector loop equation and the direction

equations can be written as,

-xm+K=F
K=J+1 1)
J=psqs 1))
I=p1qi+(Si18+paqu—-513) (3
F=-p)q 4

Gy = cosB; q; — sinb mxq; (1)
8 = COSAn By ~ SiDGn GyXay  (2)
1 @ =c0s03q, - 5inO;83xq,  (3)
G =cosB, q, +5ind,axq,  (4)
X8 = Q4300 (5)

-

Squaring both sides of (6.9) yields
x? = 2{0yK)x + [KPP = F
The scalar product of a, with both sides of (6.9) yields
x = [87K)
Substituting (6.11) into (6.10) yields

~ 87K} + K} = F?

(6.9)

(6.9a)

(6.9b)

(6.10)

6.11)

(6.12)

Substituting (6.9a-1), (6.9a-2), (6.9a-4) and (6.9b-2) into (6.12) yields

UgP+ Wgq)+V =0

(6.13)
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U= suz,lxn,
W = 2{cansas (Iay) Ixay - p31) (6.133)
V =clan@e) -F +pi - p}

The remaining derivation is identical to the one given in section 6.2.

6.4. Analysis of the r,-src mechanism

Fig. 6.3

The diagram of the r,src mechanism is shown in Fig. 6.3. The input angle is
e,; the output angle is o,, i.e. 0,=0,. The vector loop equation and the direction
equations can be written as,

~xa +tK=F 6.14)
K=J+1 )
J=psqgy - S )
1=p1q,+(5:8,+paqs) (3 (6.14a)
F=-p:q )

Q = cos0:q; — sinB2mxq; (1)
8 = COsay 8y ~ sinAn qixe;  (2)

1 @ =c0s0@,q, - 5inO383xqs  (3) (6.14b)
q; = cos®; q +5ind, a;xq,  (4)
a3Xa; = Q,sinay; (63

.

Squaring both sides of (6.14) yields
2= 2(8yK)x + [KP? = F? (6.15)
The scalar product of s; with both sides of (6.14) yields
xcOy = [87K) (6.16)
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Substituting (6.16) into (6.15) yields

(82K - 2can(ayKNarK] + c2an [K) - c*anF =0

Substituting (6.14a-1), (6.14a-2) and (6.14b-2) into (6.17) yields

Uql+ Wql+V =0

U = sayIxe,
W= 2(p3c’nnlz - S;suulxn;)

V = ${ +clan(P- T+ (ps-F-53))

6.5. Analysis of the rR,-rRsc mechanism

6.17)

(6.18)

(6.18a)

The diagram of the ®r,~#sc mechanism is shown in Fig. 6.4. The input angle is
e,; the output angle is e,, i.e. @,=0,. The vector loop equation and the direction

equations can be written as,

—Xl3+K=F
K=J+I
d=pqy
I=piqi—S28:+ (5:8, + peqs)
F=-piq

q = c080,q, ~ 5in0; 83xq,
@ = cosB; q, + $ind; 8,%q,;

1 91 =cosB; g, + 3ind, 8;Xqs
8 = COS02) 8; + $iDAy; G XN,
8yx8; = g, sinay,

-

Squaring both sides of (6.19) yields

M
¥3)
3
4)
(5)

1
@
€]
O}

(6.19)

(6.19a)

(6.19b)
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x2=2(ayK)x + [KP = F?
The scalar product of a, with both sides of (6.19) yields
x (aymy) = [a7K])
Substituting (6.21) into (6.20) yields
[87KP - 2(ay m:Xay K)oz K] + (885)? [K] - (8;8,)'F2 = 0
Substituting (6.19a-1) and (6.192a-2) into (6.22) yields
U+ Wq)+V =0

U=pym,;
W = 2p3{(Ixas)(arxaz)a; + (88 1)

V = (I'sy) - 2(arsyXI-a3)T-ay)
+ @y (P+pd -F

6.6. Analysis of the R,-rcs mechanism

(6.20)

(6.21)

(6.22)

(6.23)

(6.23a)

The diagram of the R~kcs mechanism is shown in Fig. 6.5. The inpit angle is
o,; the output angle is e,, i.e. e6,=8,, The vector loop equation and the direction

equations can be written as,

~xa+K=F

K=J)+1 n
J=prqy (03]
I=piq—S:8;4(S18,+pq0) (3
F=-pq )

(6.24)

(6.24a)
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Q@ =cosbyqy +3inBymyxq: (1)
8y = Can M + SAnEXay 2)
{ @2 =cos0,q, +sin@;mxq, (3) (6.24b)
8y = COSQy, 8 + Sinay, Qe (4)
L‘ll =cush; qq +5in0)a,xq,  (5)

Squaring both sides of (6.24) yields
x?-2[8yK]x + [K)? = F (6.25)
The scalar product of a, with both sides of (6.24) yields
x = [8yK) (6.26)
Substituting (6.26) into (6.25) yields
- [KasP + KPR =F (6.27)
Substituting (6.24a-1), (6.24a-2) and (6.24b-2) into (6.27) yields

(Uq + [Wql+V =0 (6.28)
U= Saz;l;)d
W = 200435 Ogy (1-83) apx1 = 2p4 1 (6.28a)

V =clan(a; 1P - (P+pi -pd)

6.7. Analysis of the R.-rcs mechanism

The diagram of the r,-Rcs mechanism is shown in Fig. 6.6. The input angle is
e,; the output angle is e,, i.e. 0,=8,. The vector loop equation and the direction
equations can be written as,

1=F (6.29)

I=(piq - S18) + (518, +peqs) (1)
{“-pmﬂ-:-mq: 2 (6.29a)

r‘b'mﬂh*’iﬂeiw (0))
8y = cOnly + 507 XN, )
1 92 = cosB; q; + sin6;myxq,  (3) (6.29b)
82 = COB0ly; B + sindly; g;x8;  (4)
q, =cosd, g, +3in0,axq, (5)

Squaring both sides of (6.29) yields
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Fig. 6.6
P=p? +pf +x2+2paprcosO, (6.30)
The scalar product of s; with both sides of (6.29) yields
(031) = x cOy — p3 30 sin0, (6.31)
From (6.30) and (6.31) we obtain
cos@y = (1~ pd - p§) - x%) /1 (2p2py)
{ $in®) = [x caxp - (ayD) / (pssan) (6.32)
From cos’0; + sin’@, =1 and (6.32) we get
x4 k;x’ + k;x + k4 =0 (6.33)

ky = - 8p# coraycscon (ayl) (6.33a)

k2= (2pscotany — 2(P-p? -p})
k= [2picscan(myDP+(P-pf -piy - (2p2ps)?

From (6.33) we obtain x; From (6.32) we obtain @,; Substituting (6.29b-1) and
(6.29b-2) into (6.29a-2), then substituting (6.29a-2) into (6.29) yields

P1Gz + P2Gax8z = (1 - p38y) (6.34)

Pr=—(P1+picOy
P2 =(sanx + p3caynsO)) (6.34a)
p3 = (canx - p3503356;)

The scalar product of {1, (xs;} with both sides of (6.34) yields

{(p.l + paapd)yqy = (P-pyarD)

[pilxaz + pa#x(Ixar)}q; = O - (6.35)
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Substituting (6.29b-3) into (6.35) yields

A cosB; + B sin®, = C
{A' €00, + B’ 5in@, = 0 (6.36)

A =(011+ prapd)q

8 = (p 1+ pyapd)(82q))

{C =(B-paryD (6.36a)
A" = [p1Ixe; + prap(Ixar))q,

LB’ = [p1 Ixaz + pray(Ixay)}(s:4q))

From (6.36) we obtain e, :

cosBy = CB’ / (AB’ — BA’)
{ 5indy = CA’ / (A'B — B'A) (6.37)

6.8. Conclusion

Comparing the analyses procedures in Sections 6.2, 6.3, 6.4, 6.5 and 6.6, the uni-
formity of the vector algebraic method is apparant. In Section 6.7 a slightly different
approach is adopted, for showing the flexibility of using the method.
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CHAPTER 7. THE R,-3R-E MECHANISM

7.1. Introduction

The tracta coupling mechanism is a useful engineering device applied as a
constant-velocity universal joint for nonparallel, intersecting shafts ([75] Wallace and
Freudenstein, 1970). There exist several different versions of tracta coupling mechan-
isms. One of them is composed of four R pairs and one E pair with E pair sitting at
the middle, R—RERR.

The displacement analysis of the generalized tracta coupling RRERR was first
performed by Wallace and Freudenstein ([75] 1968, [76] 1970). They successfully
obtained a fourth-order polynomial displacement equation using the geometric
configuration method, by first disassembling the linkage into two configurations and
then reassembled it under appropriate geometric constraints.

The variant mechanisms of the generalized tracta coupling are RERRR, R,—RRER
and RRRRE. Mechanism R.-ERRrR has been analyzed by Duffy and Keen ([22] 1972)
using the spherical trigonometry method by simulating the £ pair (as shown in Fig.
7.1) with pPrP and pPr joint arrangements (Fig. 7.2), and the mechanism was con-
sidered a special case of the spatial seven-link r,-PPRRRR and R,~-PRPRRR mechanisms.

Fig. 7.1 Plane Pair (E)

In 1980, Duffy ([28] pp.129-131, pp.369-384) introduced three more forms of
simulations of E pair, i.e. PR, RRP and R-R-R combinations, and analyzed R-RERR
mechanism by simulating the £ pair with R-R-r joint arrangement, i.e. three-parallel-
revolute-pair combination.

The geometric configuration method can solve the symmetric R~-RERR mechan-
ism but it does not work for unsymmetric cases: R~ERRR, RoRRER and Ro-RRRE.
The spherical trigonometry method, by simulating the E pair with prp, PPR joint
arrangement, solved the R~ERRR mechanism, however, it becomes awkward for the
symmetric case R,RERR, for "the formation of the required second equation has
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b 4
7
© ><}—O)
\/
a M a “
Fig. 7.2(a) Fig. 7.2(b)

proved to be a most difficult problem," (Duffy and Keen, [22} p213, 1972).

The geometric configuration method is not a general method. In the vast domain
of spatial mechanisms, its applicability is quite limited. It can only be used to solve a
small number of simple mechanisms or the mechanisms with special geometric condi-
tions, such as symmetry, etc.

Spherical trigonometry method is a general method, but its way of tackling those
mechanisms with an E pair appears rather tortuous. The E pair is simple as shown in
Fig. 7.1. Its simulations are complex, as shown in Fig. 7.2. As a matter of fact,
kinematically, the simulation models of E pair are not entirely equivalent to E pair.
Equivalence holds only within certain motion ranges.

Now the following questions naturally arise:

(1). Is it possible to develop a technique which is equally applicable for analyzing all

the four mechanisms R~ERRR, RRERR, R~RRER and R,RRRE? Moreover, can
we make it not only equally applicable but also methodologically simple ?

(2). Using the geometric configuration method, the "algebra involved in carrying out
this procedure is formidable, but feasible''([76] Wallace and Freudenstein, p.719,
1970). Is it possible to make the algebraic operation not only feasible, but also
simple ?

(3). What if we perform the analysis directly using the E pair, instead of using the
complex simulated models?

(4). Is it possible to develop not only standardized analysis steps but also standardized
algebraic expressions, so as to permit the analysis of different mechanisms using
the same routine — not only methodologically but also the appearance of the
algebraic operations and expressions?
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In this chapter, the generalized tracta coupling and its variant mechanisms are all

kinematically analyzed by vector algebraic method. Of the four mechanisms, R,-RRRE
and R.-RRER have not been analyzed before. It is demonstrated that the new method
successfully answers the questions posed above. The new approach presented in this
chapter is much simpler than previous approaches.

(a).

®).

(©).

(d).

Following is a brief summary of the analysis steps of the new approach:

Write down the vector loop equation and constraint equations, based on the struc-
ture of the mechanism;

Derive the first equation relating the input, output and auxiliary angles using a
vector, which is perpendicular to the plane of the E pair, to dot product both sides
of the vector loop equation;

Derive the second equation relating the input, output and auxiliary angle using the
property s;-a;=a-a;, , Where one side of the identity is calculated from one part of
the mechanism loop, another side of the identity is calculated from the other part
of the loop.

Eliminate the auxiliary angle from the two equations derived in steps (b) and (c)
to obtain the desired input-output displacement equation.

7.2. Analysis of the Generalized Tracta Coupling R,-RERR
(1). Configuration analysis.




Mechanism Ro-RERR i8 shown in Fig. 7.3. When the input angle o, is given, unk-
nowns to be determined are {xz, x3, 8 & 8 a,). Let o, be the output angle, 6. be the

auxiliary angle, i.c. 8s=©s, 8,=v;, s shown in Fig. 7.3(a). The vector loop equation
can be written as:

x;q;+x,q,+l( =0 (7.1)

K=J3+1 m
J=paqs—Sass )
1=(p1q+Sam)+ 1o (%)) (7.1a)
L= Ssas+psQstS1™ 'O

G = B XBYC X34 o
A, = CCasBs = S CasQaX8s P}
Qe = COs03 Qs — $inO5 XG5 3

8y = Oy + $OnB*M O]
@ = cosy2 Gy + SiDV2 8% )
8; = COy38) + 3G 12Q1%8) )
Q) = c0;qs + £0,8,%Xqs M

(7.1b)

where 1 is the sum of those vectors in the kinematic loop which are known at the
very beginning. I is called input vector; I is the sum of those unknown constant-
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magnitude vectors of the kinematic loop which can be directly expressed in terms of
the output angle, ©, as in this case. J is called output vector. The more strict

definitions of 1, J are given in chapter 2.
(i). Derivation of first equation relating o,, 05 and v..
The scalar product of s, with both sides of (7.1) yields

Kay=0
Substituting (7.1b-4) into (7.2) yields
Uq=V

U = saz (8;xK)
V =-canmK)

Substituting (7.1b-5) into (7.3) yields

Acosyy + Bsiny, =C
A = (Uq)
B = (Uayq))
C=V

(ii). Derivation of a second equation relating o,, ®; and v,.

According to the structure of the mechanism, we can write:

8501, 1) ayOs) = c a3,
Substituting (7.1b-4) into (7.5) yields
U"q: = V:

U’ = sazn(axay
V' == cOn(@rag) +cay

Substituting (7.1b-5) into (7.6) yields
A’ cosyy + B sinv; =
A = (U"q)
B = (U-sxq;)
C' =V
(iii). Derivation of the input-outpus displacement equations .
From (7.4) and (7.7) we get

{Wx'—QzIQ:
siny;=Q,/Q;

(7.2)

(7.3)

(7.3a)

(7.4)

(7.4a)

(7.5)

(7.6)

(7.62)

(1.7)

(7.7a)

(7.8)
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Q.= (AC -AC)
0:=(BC -B'C) (7.8a)
Q= (AB'-A'B)

From cosy+sindy=1 and (7.8) we obtain
of +0? =0} 19

0= Uq)V - U-q)V
= s az c an{l(qxm)xm] (@xK)) + saz ca (qixa)yK
1 =-(sancanq)(ayK) + (sancanq)K (7.92)
Q3= sancan(qm)(aoK) + (sapcang)kK

Q23 = - s*anar(aaK)

Because (aK) and K are linear in sin®@;, and cos®;,, we can see from (7.9a) that
Q. 0, and @, are also linear in sin®; and cos®;. Hence, we can obtain a fourth-order
polynomial displacement equation from (7.9).

Substituting (7.1a) into (7.9a) yields

@) = (W qe+2)) = (Wyqs)cosOs+ (W) qsxas) sin@; + Z,
Q31 = (Wrqe+Z;) = (Wrqs)cosOs + (Wrqsxas) sin@s + Z, (7.10)
Q3 = (Wyqe+Z3) = (Wy'qs)cos®s+ (Wi qexas) sind; + Z,

W) = sancan{sas(esq)l + sau(asDg, + p)casnsxq,)
+ $ag3c Ay P 4qiX8y + So35045qsx(qix83))

1 W2 = 5a0000{pac s (qiXa)Xas— 5 Qes (GiXarss) ] (7.10a)
—says(T'a5) g xm)+ sancay {pa; + SesAsnsxq,)

W; = s2an (picausnsxm + s (0ra) I + say (I8s) ;)

.

Z, = sancan{psas(asgg;) — cag(nslxq))
+ 50200 {(Fq;X8) — S4c Qs (85q,%X83))
Zy = 50130 Gns{ € Qs (QiX82) (8sXT) — Pius Cas (QiXn'8s)) (7.10a)
+ a0 {lq) ~ Sicau(asq))
2y = 52y (pas Qs (85m)) + cOgs (m5]xar)}

A

>

Substituting (7.10) into (7.9) yields

181 O8O + 12 50’05 + 1y SINOs COBO5 + 1 COID 5 + 15 50O + pig = O (7.11)




By = (Wyiqsl + (Wrqe)? - (Wyg)
My = (Wyqexas)? + (Wrgeas)? = (Wygsxas)?
] o= 2(WirgsXWygoxag) +2 (Wr @sXWrqeaqs) - 2(WyqsXWiqsxqs)
He = 2(Wy'qe)Z; + 2(Wrqs)Z; - 2(Wyqy)Z,s
By = 2(Wy'qexes) Z, + 2(Wyqeag) Z; — 2(Wyqsxas) Zy
ue=2Z} +2¢ - 2%

(7.11a)

Let y=tun(©,/2), then cos@s=(1-y})/(1+y%), sin®@=2y/(1+y?). From (7.11) we get

T vyt =0 (71.12)
=0
1
Vo =
vi=-—2,
dvam—20 +4)y - B+ g (7-123)
viE2p+2p,
Vo= + e+ K
.

Solving (7.12) yields y, then 6;=2uny; From (7.8) we get v, namely 6,; To
this stage, {x,.x,)} are the only unknowns in (7.1). The scalar products of s, and »,
with both sides of (7.1) yield

(e .13
From the structure of the mechanism, we can write:

€080, q; + sind;8:q; = q3 (7.14)

cosdyqs + 5inB,a.xqs = Qs (7.15)

The scalar product of q, with both sides of (7.14) and the scalar product of syxq;
with both sides of (7.14) yield o,:

{00093 =qrqy

(26, = sy (7.16)

The scalar product of g, with both sides of (7.15) and the scalar product of
axqs Wwith boh sides of (7.15) yield o,
{co-o.-qrqc

$sind, = gy q (7.17)

To this stage, theoretical displacement analysis for the generalized tracta coupling
is complete. If we need to calculate numerical values for a specific generalized tracta
coupling, we can ecasily expand (7.10a) by substituting the related identities of (7.1a)
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and (7.1b). For instance, w, and z, can be expressed as,

W) = w); Qs + Wiy + w3 Qexay (7.18)

[ w1y = sagycanl Py s0ussas s8)+P;50sc0,-p) cagcas s8))
+sancaulpdBrcas, ~B,say))

wia = 30 cOn[20;5Qesan$0))

1 (7.18a)
+sancyulpasas +Sesayscay) 6 sa)

Wiy = SAnCOn [ 5Qu 505 50, P2 3Qsc 0y 58 -pycaycB)

+sancay-pacas +Sisaesay)

Z; =307, 00 [ PeS e 3Ty 58, —c Ogg( P; ¢ 0y 56, + 0y ¢ 8y)]
+sancaulpi(Brcas -Bisasn)] (7.19)
+35ancQu|{30,5a)(P2505—Pyc sy - Sec Ol sQy)]

where o, and B, are given as follow:

I=p,qs + P25 + PsqsXas (7.20)

P1=5139,5Q24p1c0,+p;
P2 = 5B, +p,505,50,+5,ca5 +S; (7.20a)
py = S2B2-p1cas 50,4+ 8,505

Bi = (cascapy~sas sapcod;)
{Bz = (sa5, cQy+c 05 5Q53¢0,) (7.200)
W, W,, 2z, and z, can be similarly expanded. It is clear that
(Wi'qs) =
{(w:‘ms;r"n (i=1,2.3) (7.21)

Substitute (7.21) and z into (7.11a), {u} (k=1-6) can be easily solved.

Velocity and acceleration analysis.
From %(7.11) we get

il,cu’ﬂ,+ﬁ;s’m’0,+ﬁgsin0,cono,+ ﬁ.m,#l‘l’m’-ﬁ‘“
(11— 12) 5i(205) ~ i3 €08(205) + piy 8105 - 415 cOWOs

G} (i =1-6) of (7.22) can be calculated from (7.11a) and (7.10a).
From .;7}(7.11) we obtain &,.

Os=

(7.22)

Other velocity variables {i,. is. 6. 6,.0,} and the corresponding acceleration vari-
ables can also be easil, determined. Here we only write out the expression of é,, for
it is the most important one among all the velocity and acceleration variables.
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7.3. Displacement analysis of the R,ERRR mechanism

Fig. 7.4

Mechanism R.-ERRR is shown in Fig. 7.4. When the input angle e, is given, unk-
nowns to be determined are {x,. x,, 6, 65, 6, 65). Let s be the output angle, o, be the
auxiliary angle, i.e. o;=0,, 6,=v.. The vector loop equation can be written as:

nq+x;+K+L=0 (1.23)
L=p;3q;— 5,3, (4))
K=J+I Q@
J=paGe~ Sets 3) (7.23a)

I=Ssa5+psqs+ 5,8 (4)

Q@ = 8783 C5¢0y ¢))
8) = COy 0, = SUy GyXay @
{ @ = cosw,q, - sioveaxqs  (3) (7.23b)

B¢ = COG B — SUys QXBs )]
qy = co305q; - 5in@;8,%q;  (5)

.

8= ca;e +sapqxe;  (6)
Q1 =c08,qs +56,8,%Xqs Q) (7.23b)
Qs = B5XB; C3CQy, 8)
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where L is defined as the sum of those unknown constant-magnitude vectors of the
kinematic loop which can be expressed in terms of the auxiliary angle, e, as in this
case. L is called auxiliary vector. The strict definition of L is given in chapter 2.

(i). Derivation of first equation relating e,, 6 and v..
The scalar product of a, with both sides of (7.23) yields

oL =-nK (1.24)
Substituting (7.23a-1) into (7.24) yields

Ug=V (1.25)
U =pya; + Sysaz(axe)
{ V = (0K) + S anara) (7.253)
Substituting (7.23b-3) into (7.25) yields
A cosy, + B siny, = C (7.26)
A =Uqq)
B = (U-qexay) (7.26a)
C=V
(ii). Derivation of a second equation relating o,, ©; and v..
From the structure of the mechanism, we can write:
80,2305, vi) = can (7.27)
Substituting (7.23b-2) into (7.27) yields
U-qy =V’ (7.28)
U’ = sy (s)xs)
{ V'e-cQyu(ara) +can (7.283)
Substituting (7.23b-3) into (7.28) yields
A’ cosy, + B sinyg= C’ (7.29)
A =)
B = (U qoay) (7.29a)
C=V

(iii). Derivation of the input-output displacement equation relating ©;.
From (7.26) and (7.29) we can get

0 + 01 =0} ' (7.30)
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Q:=(AC’ -AC)
Q3= (BC’ -BC)
Q3= (AB’'-A'B)

Q1 = - pycOy(8ryQayay) — sy (aryK)eyqomy)
+ pican(erqy + Sycansay(arqomy)
1 Q2= - pyc Oy (8rqom(eray) + sasy (8 K)82rq)
+ P1cOn (8o — S3C 0y 5G4 (8rq)
Q1 = p3sasu{(®@ra)’ + (8790w} = pysas(l - (aya’)

\

Substituting (7.30b) into (7.30) * e get

P} (880~ cancayu) +s’asn{@rK)~Sycan)-pisiansiay = 0

{(ara) - cancay} = Wyq,+ 2,

= (W)"qs)cosO; + (W' qsxas) sin®s + Z,
{(a7K) - Sscan) = Wrqs + 2,

= (WyQqs)cos®; + (Wyqsxay) sin®; + Z,

W = sy (8205)

W3 = poa; + Sisas(asxe;)

Z) = cOqs(8r85) ~ cApC Oy

Zy= (I'sy) — Secogs(ags;) — Sican

Substituting (7.31a) into (7.31) yields
11 CO?O s+ 12 $in 705 + 113 50O 10805 + iy COSOs + s 31003 + g = O

1y = pf (Wrgsl + s34 (Wyqy)?

m = pd (WigoxasP + s2as (Wrqsxas)?

b= 2P (Wi qsXWy-qsxas) + 25703, (WagsXWaqsxas)
e =2pF (Wyqs)Z, + 25703 (Wrqs)Z,

Bs = 2p§ (W qsxa5)Z, + 25703 (WrqsxasZ;

e =pi Zt +s’aszZf - pf s*apsias

-

Let y=1un(@,/2), then from (7.32) we have

4
2 v "" =0
in0

(7.30a)

(7.30b)

(7.31)

(7.31a)

(7.31b)

(7.32)

(7.32a)

(7.33)
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Vo= I,

vy=— 2

{Va= -2+~ g+ 4 (7.33a)
Vi=2py+ 2y

VaE R+ R+

.-

Solving (7.33) we get y, then @,=2un'y; Other displacement variables can also
be easily determined and the procedure is similar to that of section 7.2.

7.4. Displacement analysis of R,-RRER mechanism

Fig. 7.5

Mechanism R-RRER is shown in Fig. 7.5. When the input angle o, is given,
unknowns to be determined are {x,, x, 6,.0,. 6, 6,}. Let o, be the output angle, o, be
the auxiliary angle, i.e. 0;=05, 6,=y,. The vector loop equation can be written as:

XaQy+ X4qu+L+1=0 (7.34)
Lspiqg+ Siay 1)
I=(Pigi+S2m)-L (D (7.34a)

b=Ssa5+psqs+ 8,8 (3)
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Qs = 83XRCCqy, 10}

8 = cans; + SAngXe, @
{ @1 = coryaq, + siny2m%q,  (3) (7.34b)
az = CQy 8 + 3A 2 QA «)

q) =c8 g5 +506,8,Xq, )

’I4=Cﬂcls-3¢cms €
{ 94 = c0sO3qs - sin@smxqs  (7) (7.34b)
| @5 = 85%8, C3cQty) ®)

(i). Derivation of first equation relating o,, o, and ..
The scalar product »¢ o, with both sides of (7.34) yields
aL = - a1 (7.35)

Substituting (7.34a-1) into (7.35) yields

Uqy=V (7.36)
U =paa, + Sysan(apay)
{ V = - (Fag) - S5¢ 0 (80 (7.36a)
Substituting (7.34b-3) into (7.36) yields
A cosy; + B sinyy = C (7.37)
A =(Uq)
B = (U-ayxqy) (7.378)
C=V
(ii). Derivation of a second equation relating e,, ©; and v..
From the structure of the mechanism, we can write:
85(v2.0,)84(05) = cay (7.38)
Substituting (7.34b-2) into (7.38) yields
U-qy=V’ (.39
U’ = 5033 (8;%a)
{ V= - can(ara) + cay (7.39a)

Substituting (7.34b-3) into (7.39) yields

A’ cosy; + B’ siny; = C’ (7.40)
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A = (Uq)
B’ = (U ayxq)) (7.40a)
C=V

(iii). Derivation of the input-output displacement equation relating ;.
From (7.37) and (7.40) we get

et +0f =03 (7.41)
Q,=(AC -AC)
Qa=(BC -B'C) (7.41a)
Q3= (AB'-A'B)

0, = - prcan(qradaray) + sap{quaraiia,)
+ P26 03 (qray) + Sysancan(qxaray) .
{ Q1= pacan(qiara)(era) + sazx (qraXia) (7.41b)
= p2e O (qiXayay) + S3sancOu(qray)
Q3 = p2san{(qrad’+(qixera)) = pasan{l - (aya)’)

Substituting (7.41b) into (7.41) yields

P {(r80)—cOncasn) +s%an (F8)+S536a3) ~p2? sPans’as =0 (1.42)

Pai{(mra) - cancay) = W;q, + Z,

= (W) qs)cos®s + (W, qexas)sin®s + Z,
san{(a;K) + Sycay) = Wrqs+ 2,

= (WyQs)cos®s + (Wi qxa,)sin®; + 2,

(7.42a)

W, = pasays(n;xas)

W; = 50735 Gy (Ixas)

Z, = p3lcaes(asey) ~ cOzcaz
Zr=san[cag(asD) + Sycas)

(7.42b)

Substituting (7.42a) into (7.42) yields

1 CO8% 05 + 17 5in%O5 + 113 5inO5 O8O + g COSO s + 13 5O + P =0 (7.43)

My = (Wygs) + (Wyqs)?

My = (Wi-gsxas)? + (Wyqoxas)?

= 2(Wy qsX Wy goxas) + 2(Wags(Wagsxas)
Pe=2(Wyqs)Z; + 2(W2rqs)Z;

Mg = 2(Wyqoxas) Z; + 2(Wyqsxes)Z;

o= Z} + 2% - pi sPansas

(7.43a)

.

Let y=un(@,/2), then from (7.43) we obtain i;v, y*'=0, where {v,} (i=0-4)

i=0
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is the same as that of (7.12a) or (7.33a).

7.5. Displacement analysis of R-RRRE mechanism

Fig. 7.6

Mechanism RRRRe is shown in Fig. 7.6. This mechanism has never been
analyzed before. When the input angle e, is given, unknowns to be determined are
{xs x5.9,,0,,0,,0,}. Let o, be the output angle, e, be the auxiliary angle, i.e. 6,=0,,
8;=v;. The vector loop equation can be written as:

XeQa+x5qs+L+K=0 (71.44)
L=p3qs+ Say (n
K=J+1 2

1 =p2qz + S38 3 (7.44a)
I =(prqi+Sa)+ L (4)
Li=psqs+ 518 &)

(@ = cOsly + sCsqexa; (1)
G; = COsy; Gz + siny 8% (2)
Im=canm+sangxa; 3)
Q@ = co10:q; +5i00;8:%q; (4)
B =Cc08 + 50,3Q%Gs )
| Q1 = c8,q + 28,8;%qs ©

(7.44b)
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Qs = BXgecsc(as.qs) (D
Qe = g csc(qsn;)  (8) (7.44b)
(i). Derivation of first equation relating o,, ©, and v,.
The scalar product of a, with both sides of (7.44) yields
asL = - agK (7.45)
Substituting (7.44a-1) into (7.45) yields
U-(b =V (7-46)
U =pyag + S45ay,(0;:%a5)
{V =~ (asK) - Sqcap(nya;) (7.46a)
Substituting (7.44b-2) into (7.46) yields
A cosy; + B sinyy = C (7.47)
A =Uq)
B = (U-ayxqy) (7.47a)
C=V
(ii). Derivation of a second equation relating o,, ©, and .
From the structure of the mechanism, we can write:
84¥3,02,0,)85 = cay (7.48)
Substituting (7.44b-1) into (7.48) yields
U qy = V* (71.49)
U’ = sajq(myxas)
{ V= = cliy(8smy) + cQys (7'4%)
Substituting (7.44b-2) into (7.49) yields
A’ cosy, + B sinv; = (7.50)
A =(Uq)
B = (U axqy) (7.50a)
C=V
(iii). Derivation of the input-output displacement equation relating e,
From (7.47) and (7.50) we get
et +@f = @} (7.51)
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Q.= (AC ~AC)
Q1= (BC -B'C)
Q3= (AB’ ~A'B)

"
Q) =~ pycay(ay @)Xase)) + 3y (8yq:%q 0 )asK)
+P3c Qs (85qa) + S45Asctys (85qXmy)
{ 22 = prcasn(asgxmXasa;) + 50y (asq)asK)
= P3€ Qs (RyQ3X83) + 545 My c Qs (85q2)
Q3 = P35 osul(05q2) + (85 @) ) = p3s sl - (a58y)*)

Substituting (7.51b) into (7.51) yields

P3 {(asms) - cascas) +s%aul(asK) + Sscaes) - pf sPaus’as=0

Pl(asa;) - cayctg) = Wyiqy + 2,

= (Wyq;)cos8; + (Wyayxq,)sin®; + Z,
sau{(asK) + Sicae) = Wyqy + Z5

= (Wyq,)cos®; + (Wys;xq,)sin®; + Z;

W, = p3sas (s2xas)

Wy =saulpias + S3san(axas))
Z,=p3lcon(asny) — caycO)

2; = sy [ Sycan(aym) + (asD) + Secays)

Substituting (7.52a) into (7.52) yields

M; 08’05 + 12 5in*O5 + 13 $inO 5 0805 + 4 COSOs + s SINOs + s =0

»
B = (W;-q) + (Wrq)
M = (Wy-axq,) + (Wya;xq,)?
Hs = 2(Wrq XWiaxq) + 2(Wyq Wyayxq,)
Me=2(Wyq)Z; + 2(Wrqy)Z;
By = 2(Wyayxq,)Z, + 2(Wrasxq)Z;

=2t +23 -p} sy 50,

(7.51a)

(7.51b)

(71.52)

(7.52a)

(7.52b)

(7.53)

(7.53a)

Let y=1n(®,/2), then from (7.53) we obtain i‘,wy"‘-o, where {v,} (i=0-4)

i=0

is the same as that of (7.12a).

7.6. Conclusion

From the above analysis, it is clear that the generalized tracta coupling and its
variant mechanisms can all be analyzed directly; there is no need and also no advan-
tage to complicate the E pair by simulating it in various models for the purpose of
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analysis.

Using the simulated models of the E pair, even for the unsymmetric case
R~ERRR, the spherical trigonometry method required more than three pages of analysis
([22] Duffy and Keen, pp.215-218, 1972) to derive the second equation relating the
input, output and auxiliary angles. Using the new approach of this chapter, the same
derivation requires only a few lines as shown from equation (7.27) to (7.29). The
analysis for the symmetric case R,RERR in the new approach also shares the same
level of simplicity, as shown from equation (7.5) to (7.7).

The new vector algebraic approach presented in this chapter is free of the limita-
tions encountered by previous approaches. For any of the generalized tracta coupling
and its variant mechanisms, the analysis procedure is systematic and direct, resulting in
simple and compact expressions.
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CHAPTER 8. THE R,-3R-S MECHANISM

8.1. Introduction

The Generalized Clemens Coupling R.-RSRR and its variant mechanisms R,-SRRR,
R—RRSR and RRRRs are very useful S-link spatial mechanisms. They have already
had much practical application in engineering, especially in agricultural and textile
machines. The kinematic features of these mechanisms have been analyzed by some
researchers using various methods which include geometric method, Torfason and
Sharma ([73] 1973) (generated surfaces method), Wallace and Freudenstein ([77)]
1975) (geometric-configuration method); matrix method, Xie, Zheng and Ou ([79]
1980) (tensor rotaional transformation method), Zhang ([106] 1980), Youm and Huang
(f86) 1987) (direction cosine matrix method); spherical trigonometry method, Duffy
(28] pp.384-410, 1980); decompositions method, Alizade, Duffy and Azizov ([2]
1987); and so on.

In this chapter the generalized Clemens Coupling RRSRR and its variant
mechanisms R,SRRR, RRRSR and R,-RRRs are kinematically analyzed by using the
vector algebraic method. The closed-form input-output displacement equations of
those mechanisms are obtained as fourth order polynomials. The distinctiveness of the
new approach presented in this chapter lies in two aspects: the analysis procedure for
any one of the four mechanisms is identical; and the two unified steps and the pure
vector operation make the kinematic analysis procedure very compact and simple.

Following is a brief summary of the analysis steps of the new approach:

(2) Write down the vector loop equation and the direction equations, based on the
structure of the mechanism;

(b) Derive the first equation relating the input, output and auxiliary angle by squaring
both sides of the vector loop equation;

(c) Derive the second equation relating the input, output and auxiliary angle using the
end axis vector to scalar product both sides of the vector loop equation;

(d) Eliminate the auxiliary angle from the two equations derived in step (b) and (c) to
obtain the desired input-output displacement equation.

8.2. Analysis of the generalized Clemens coupling R-RSRR
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(1). Displacement analysis.

Fig. 8.1

Fig. 8.1(a)

Mechanism R.-&rsrRR is shown in Fig. 8.1. When the input angle ¢, is given, unk-
nowns to be determined are (e, 8,9,). Let o, be the output angle, 6, be the auxiliary
angle, i.e. 0,=0,, 6;=v;, as shown in Fig. 8.1(a). The vector loop equation of the
mechanism can now be written as:

K+L=F (8.1)
(L =p1q m
K=J+1 (2)
J=piqu-Simy 3)
I=(S:m+pqd+l (@ (8.1a)

=S8 +psqs-Sa4 (5
| F=-piqs ©)

1 is defined as the input vector of the mechanism. It is the sum of those vectors
in the loop of the mechanism which are given or known at the beginning. J is the
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output vector of the mechanism. It is the sum of those constant-magnitude vectors in
the loop of the mechanism that can be expressed as a function of the output angle (e,
in this case). L is the awxiliary vector. It is the sum of those constant-magnitude
vectors in the loop of the mechanism that can be expressed as a function of the auxili-
ary angle (v, in this case). F is the floating vector. Cutting off the loop at the two
ends of the floating vector, we get two separate chains, where one part is fixed on the
ground and the other part is floating. This is how floating vector was named. The
strict definition of these vectors are introduced in chapter 2.

The following set of vector equations is called direction equations, which
specifies the relative direction of any individual (unit) vector with its two adjacent
(unit) vectors on the vector loop.

(@a=cviq +svaeg )
8= cQ;s +3anqgpe;, ()
=c,qs + 30,8
{omctmshom @ ®.10)

8y = COuls ~ $C5Qoae  (5)
[ Qu=c0.qs -~ 20,002 (6)

(i). Derivation of the first equation relating o, ©, and v,
Squaring both sides of (8.1) yields
2(K-L)y= -K!+ (P - L) (8.2)

Substituting (8.1a-1) into (8.2) yields

Uqs=sV (8.3)
Us 2’3“
{V =-K}+(p} -pi) (8.3a)
Substituting (8.1b-1) into (8.3) yields

Acosyy + Bsiny;=sC (8.4)
A =Uq,
B = Uayq, (8.42)
CanV

Since v, is the auxiliary angle, the variable to be eliminated from simultaneous
equations, thus we transform (8.2) in to the standard form (8.3), where only ¢, is 2
function of v;. Equation (8.3) is a transition from (8.2) to (8.4).

(ii). Derivation of the second equation relating 0,, 8, and v,
We can see from Fig. 8.1 or 8.1(s) that s, is an axial vector between L and K.
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Dot product of a, with both sides of (8.1) yields
syL=-a3K (8.5)

Substituting (8.1a-1) into (8.5) yields

U-qu=V (8.6)

U'=paay
{V’ = - (ayK) (8.6a)

Substituting (8.1b-1) into (8.6) yields

A’ cosy; + B’ siny; = C’ (8.7)

A’ =U"q;
B’ = Ua)xq, (8.7a)

=V

(iii). Derivation of the input-output displacement equation relating e,

Since {a.B.c} and {a’. 5. c} of (8.4) and (8.7) contain only the input and out-
put angles, therefore, eliminating the auxiliary angle v, from the two equations, we
obtain the required input-output displacement equations.

Solving (8.4) and (8.7) yields

(8.8)

cosyy; =-Q2/Q,
siny; = @,/Q;

Q) = (AC -A'C)
Q.= (BC -BC) (8.8a)
Q3= (AB' -A'B)

From (8.8) and the identity cosy+siny=1 we get
et +of =04 8.9
Substituting (8.4a) and (8.7a) into (8.9a) yields
Q2,=(V'U-VU)q,

Q1= (V'U-VU)axq, (8.10)
Q3= UxU)a;

Substituting (8.3a) and (8.6a) into (8.10) we get

Q1= ~2p;(8yKXqyK)-p2(~K>+pf - pf Xayq)
= =2p3(8y (X+DNQ(1+ NI =pa[ - (143 +p - p Yayq))
=2p3(qxIy(apd)+p2(Biqi - 2B: D83 +(2p1p 4 S391) Qe+ 2P, S (8.11)
05 = 2pF ay(Kx2;)=2pF [(a;xT) 8~ 85 (83xJ))




B = (P+pf -p} +pd -5)
=SF+pt +25)(S 1ca+pssBsQ3-S(cOyc =50y SA2c8))]
+2p1(p1c0,- 5,504, 50)+ (S} +pf +53 -28,Sscay) (8.113)
B: = (@D =(p1+psch,-Sis0056))

Replacing q, by (sxq)) in @, of (8.11), we obtain the expression for Q..
Since (apJ), 8, and q. are linear in cos®, and sin@,, hence we can see from (8.11)
that ¢,, 0, and @, are also linear in cos8, and sin®,. This implies that we can derive
a fourth-order polynomial displacement equation relating o, from (8.9).

Substituting (8.1a-3) and (8.1b-0) into (8.11) we obtain

Q1=(Wyrq+2y)
0= Wyq.+2Zy)
Q3= (Wsqu+Zy)

A
W, = H(q,)

W, = H(a:xq,)

] Ws=2pi(say@xdia—picanaxa)
Z,= h(q)

Zy = h(a;xq,)

Z3=2pF [ cas(axTya +pasayusras)

-

H(x) = 2p3pac sy (XDXBs+p 15 Qs Bix—2BD)x0+2p2p oS3 %
h(x) =2p3pssts(@dyas+prcasu(Pix-2P:Iya,+2p, 53 x) (8.12b)

Substituting (8.12) into (8.9) yields
(Wyge + (Wrqaf - (Wyqo? +2(Z,(Wyq) + Z(W2rq) - Zs(Wyqd)+ (2] +25 -2$)=0  (8.13)

Substituting (8.1b-6) into (8.13) yields

K1 08’04+ 13 $in’O ¢ + 13 COSO SN0  + g 05O 4 + s 3inO 4 + 414 = 0 (8.14)
A
B = (Wigsl +(WyrgsP - (Wyqs)?
M2 = (Wygsxasf +(Wyqoa) —(Wygsxa,)
sy = 2(WrqsX Wi gsxa) +2 (WrqsXWzgoas) - 2(WyqsX Wy qsxay)
Me = 2(Wy'qs)Z,42(Wrqs) 23 -2(Wyqs) Zs
Hs = 2(W,'qsxa)Z 14 2(Wyqoay) Z-2 (Wyqoas) 2y
M= Zf +25 2%

\

Let y=un(@,/2), then cos@,=(1- 2/14y%), sin@,=2y/(1+y*. From (8.14) we get
4
Ty =0 (8.15)

i=0




Vo=

V=24

Vem = 244 ;- Hat g
vi= 2+,

Vo= i+t Rs

.

Solving (8.15) we obtain y, then ©,=2un'y; From (8.8) we get v;; Now the
vectors {K.L) can be determined from (8.1a) and (8.1b). From (8.1) and (8.1a-6) we

get
== (K+L)/p3 = cosBy gy —sinb; ayXqe (8.16)

Using q. and ayxa,, respectively, to dot product both sides of (8.16), we obtain e,:

{cose, =~ (K+Lyq/p,

sin@; = (K+LYyayq./p, 8.17)

To this stage, theoretical displacement analysis for the Generalized Clemens Cou-
pling is complete. If we want to calculate numerical values for a specific mechanism,
we need to scalarize (8.10a) and (8.14a). Since there are quite a few dot products of
W, (i=1-3) with qs and qxa, in (8.14a), respectively, it is convenient for calculation

{0 express W, as
w’ = w“q,i-w,-zq,)(l"kw;;l‘ (igl '3) (8.18)

Hence we have

W;-gs = w;
W;-qsxa, = w;;

(i=1-3) (8.19)

As an example, the scalarized z, and the coefficients of w, are as follows

Z,==2p3p4sQy(cO;p3+c0g50,0))+2p1 535y

+p2c03(Brsasys8,~2B2p5) (8.20)

Wi = 2P2paC (S50, p -0, 03)+pas s (Brcays8+2B2p)+2p2paS3c8;
Wiz = 2P3PaC (50450, P1+C 0y 50, P3)+P230s(Bic8,~2B2p)-2p1p4Sscagy s, (8.21)
Wi3 = 2P3PaC (5050, Py~3504¢0,p3)+2p:psS350450,

I=p1Qs+prq9@4+psag

P =5:50,5034p,¢0;+ps

P1= 51504 CQ12=pC04 58,45, 5ay

Pr=S3(cquycBi -850y 50;3¢8,)4p 130, 50,+5,cay -5,

(2). Velocity and acceleration analysis.
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Differentiating both sides of (8.14) yields

_ ﬁ.cm’9.+ﬁzsin’94+ﬁ,coso.sin64+ fl‘CWQ‘*"IgSiﬂe‘*l.k (8 22)
- (B1— M) $Sin(20,) - B3 €08(20 ) + iy SINO ¢~ s cO8B, ’

6.
{n ) (i =1-6) of (8.22) can be calculated from (8.14a).
From -;—2(8.14) we get @, Other velocity variables {é,.8,) and the correspond-

ing acceleration variables {6..6,} can also be easily determined. Here we only write
out the expression of 6,, for it is the most important one among all the velocity and
acceleration variables.

8.3. Displacement analysis of the R,-skrr  mechanism

Mechanism Rq-skrRr is shown in Fig. 8.2. When the input angle e, is given, unk-
nowns to ve determined are {o, e, 6,}. If the first displacement equation we want to
derive is r(0,. 8,)=0, we can let 6,=8,. In this case, the auxiliary angle can be chosen
between 8,and 05 If we choose o; as the auxiliary angle, the procedure of deriving
7@, 09)=0 will be quite similar to that of section 8.2. If we choose e, as the auxiliary
angle, the procedure of deriving s(,, 8)=0 will then be somewhat different from that
of section 8.2. Here we let o,=0, 6,=y, then, the vector loop equation of the
mechanism can be written as follow,

K=F (8.23)
K=1+] (1)
J=paqu- S3a, b))
I=p,qi+(S18+psas-Si8) (3) (8.23a)

Fa-(p:qgz-5:84p3qs) @
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'q. =c0,qs+50,a,xq )
R=CcV:Q-svamXqy  (2)
J 2= canay-sanqgxa, 3
@ =chq-s8axq, ()
M= CARMY—-SAyqexay (5
[ Q4= c0,qs-350,axqs  (6)

(8.23b)

(i). Derivation of the first equation relating o,, 8, and v..
Squaring both sides of (8.23) yields
K!=F (8.24)

Substituting (8.23a-4) into (8.24) yielas

cosyy = [K2-(p?+5F +p31/(2p1py) (8.25)

(ii). Derivation of the second equation relating e,, 0, and ..
We can see from Fig. 8.2 that a, is an axial vector between L and K.
Dot product a, with both sides of (8.23) yields

Kay=Fay (8.26)
Substituting (8.23a-4) into (8.26) we get
sinyz = [~ (K-a3)+ S3can)/(p1s Gp) (8.27)
(iii). Derivation of the input-output displacement equation relating e,
From (8.25), (8.27) and the identity cos’y,+siny;=1 we obtain
el+0f =0% (8.28)

Q1=sanKi-say(pf +53 +p})
Q2=-2p3(K:a3)+2p3S3can (8.28a)
Q3=2p:pysay

Q12 (Wirq)+Z, = (W, qs)cos@,+ (W, qexa,) sin@ 42, 8.28
Q2= (Wrgy)+Z; = (Wrqs)cos,+ (Wyqsxa,)sin@ +Z; (8.28b)
W = 2san(pd-Sysasaxl)
W, = 2p3sayaxl

(8.28¢)

Z;= -2S;saz,ca;4(l-a4)+sa¢;(lz+1’-p} -S} -p})
Zy=-2p3c0yu(la)+2p3(53+S1cas)

Substituting (8.28b) into (8.28) yields

11 CO5°0 4 + 117 50?0 4+ 115 O30 SN0 4 + 11y COSO  + 115 510 4 + g =0 (8.29)
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B = (W qsP +(Wayqs)
Bz = (W goa)? + (Wrgomy?
] 13 = 2(Wiqs)X(Wyqom) +2 (WygsXWageas)
Me=2(W,qs)Z; +2(Wyrqs) 2,
B = 2(Wygad Z,+2(Wrqsxa) Z;
Be =27 +2§ -Q3

(8.29a)

.

Let y=tn(8,/2), then cos®,=(1-y?)/(1 +y?), sin@,=2y/(1+y}). From (8.29) we obtain

z‘; vy =0 (8.30)
in
Vo =My
vi=-24,
{ va=— 21+ 4 M- Matbe (8.30a)
vi=2y+2p
Va=ih+ g+ Ng

Solving (8.30) we get y, then o,=2un"'y; From (8.25) and (8.27) we obtain e,;
Using q, and a,xq., respectively, to dot product both sides of (8.23) yields

A+rque=—(p2q2—S:8:+P3Q3)qs 8.31
(A+Jyapqe=—(p2q:—S28+p3q3)ya%q (8.31)
ie.
(1Q)+ps = —p2[ 620803~ c 133582 5in0,3] + S 2 5 X723 8in0; — p3 cO80; 8.31
(Fasxqd) = p2lc8:5indy+c iy 58,c088,) + S5z cosdy +ps 5inbs (8.31a)
ie.
=(p2c03+p3)cosBs+(pacans8+S515ay)5indy=(I-qd+p4 8.31b
(p2c 30+ S3501)c080y+(p2c0,+py)sind; = (I'a3xqy) (8.31b)
Solving (8.31b) yields e;:
(P20G23 803+ 83 50X10:3Xq)—(p2¢0:+p3)XTqa+pa)
cosBs = (P2¢02+p3P +(p3cAns0:+S150)
(8.32)

o (P260236:+S533a1X1'qa+Pa)+(p1c82+pi)XT83%Xq4)
(P2c0:+ps¥+(p2c 0564 S;3ay)

sin@ 3

To this stage, theoretical displacement analysis for mechanism R,-SRRR is com-
plete.

8.4. Displacement analysis of the R-rRrs mechanism
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Mechanism R,-RRRS is shown in Fig. 8.3. As far as we know, this mechanism
has never been analyzed before. When the input angle e, is given, unknowns to be
determined are {e,, 6;,8.}. Suppose s(e.9,)=0 is the first displacement equation to be
derived. Let e,=0,, 6,=v.. The vector loop equation of the mechanism can be written

as

K=1+)

J =(p2q:-533))
I=(-S:34p19)+(S,8+psas)
Fz~piqy+Si84~paQu

'q4 = cWaQa+sveng (1)
8= COum+sAuqEy (2)
Q3 =cO,qa+s03a%q;  (3)

{ = canm+sangXe; (4)

G = c02q,+50:8;%q; (5)

8= capm+sa;qpa; (6)

| D= cO,qs+s8,axqs (7)

(i). Derivation of the first equation relating e,, ©, and v,
Squaring both sides of (8.33) yields

KZ =F2

Substituting (8.33a-4) into (8.34) yields

)
e
3
)

cosy, = [K2~(pf +53 +p31/(2pspa)

(ii). Derivation of the second equation relating e,, @, and v.

(8.33)

(8.33a)

(8.33b)

(8.34)

(8.35)
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We can see from Fig. 8.3 that a, is an axial vector between L and K.
Dot product a, with both sides of (8.33) yields

Kay= F-a,

Substituting (8.33a-4) into (8.36) yields

sinv‘ = [—(K'I;)'fs‘t(ly]/(p‘l‘au)

(iii). Derivation of the input-output displacement equation relating ©,.
From (8.35), (8.37) and the identity cos’y,+sin?y.=1 we obtain
el +ef =03

Q) =sauKi-sas(p +5i +p)
Q2=-2p3(K-a3)+2p;3S,cay
Q3 =2pypasdy

{ Q= (W q)+Z, = (W;-q;)cos0,+ (W, a;xq,)sin0;+ Z, (8.38b)

Q3 = (Waq)+Z; = (Wyq,)cos@2+ (Wyaxq,)sin®;+2Z;

W, = 2503 (p21-53s0a38,xD)

W; = -2pysayaxl
Zy=~25cansoua)+sau(P+)-pt -5} -pi)
Zy=~2p3can(la))+2p1(S3+S4c0y)

Substituting (8.38b) into (8.38) yields

11 €080+ 3 5in*O; + 13 COSO; $iNO; + iy COSO3 + s $INO + g = O
n = (Wrq +(Wyq)
W = (Wyapxq, Y +(Wyapxq, )
3 s = 2(Wrqu X(Wiapxq,)+2 (Wrq:XWra;xq,)
He=2(W1'q))Z1+2(W2q)) 22
By = 2(Wya;xq,) Z,+2(Wrayxq,) Z;

e =2} +2% -0%

Let y =1an(0,/2), then cos®,=(1-y%/(1+y?), sin@,=2y/(1+y%. From (8.39) we get

4
2 v y"' =0 (8.40)

i=0




- 145 -

Vo =}

vy =21

{ve= =2+ dm -t (8.40a)
Vi=2p3+ 24

Vo= N +Rir g

.

Solving (8.40) we get y, then 6;=2wun'y; From (8.35) and (8.37) we obtain e,
Using q. and (axqy), respectively, to dot product both sides of (8.33) yiclds e,

_(P3+PacOXTQa+p2)+(Ses s+ pasBecarXlarxq;)
(P3+PacO) +(Ses A+ pesBqcasy)t
(S45Q3+pasOicarllq:+p2)—(pa+pscO)i-nxqy)
(P3+PacB P +{SeSAx+posOicay)

cosf; =

(8.41)

Sineg =

To this stage, theoretical displacement analysis for mechanism R,—RRRS is com-
plete.

8.5. Analysis of the r~rRrRSR mechanism

Pudty

Fig. 8.4

5@
¢+

Mechanism R.-RRSR is shown in Fig. 8.4. The main purpose of this section is to
show the flexibility of the vector algebraic method in the analysis of spatial mechan-
isms, therefore, details are not displayed.

(1). Suppose the first displacement equation we want to derive is s, 6;=0, then we
denote 6,=0,, the auxiliary angle can be chosen between 6, and 6,
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Casc 1. Let 0.=0, 8,=y,. The vector loop equation of the mechanisms can be
written as follow,

K+L=F (8.42)
(L= psq
K=1+]

1 1=P2@2-5m,
I=(-S:m+p1q)+1o
L=(Sa,+psqs—S,a)
(F=-Piqs

(8.42a)

Case 2. Let 8.=6,, 6,=v.. The vector loop equation is
K+L=F (8.43)

(L =Ppaqe

K=1+]

) J=p2qa-S1ay
I=(-S8+p1q)+L
L=(S1a1+psqs—Sia)
(F=-p3q

(8.43a)

(2). Suppose the first displacement equation we want to derive is s, 6,=0, then let
8,=0,, the auxiliary angle can be chosen between 6, and ..

Case 1. Let 6,20, 68,=v,.
I+L=F (8.44)

L =p2q;-Sy23,+p1qy
I=(~S8+p,q)+0

lo= (S181+p3as—Sene) (8.44a)
F=-piq
Case 2. Let 0;=0,, 8=y,
1+L=F (8.45)
L=piq,
I=(-5:84p1q))+(S 8, +psqs - Sany) (8.45a)

F=-(p1q:-5183+p1qy)

(3). Suppose the first displacement equation we want to derive is £(e,. 69)=0, then let
6,=08,, the auxiliary angle can be chosen between 6, and 6,.

Case 1. Let o,=0.. 8;=v..

K+L=F (8.46)
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(L = p2q2-S30,
K=1+])

) J=paqe
I=(-Sm+pi1q)+h
L=(Sia+psqs—Sia,)
(F=-p3q,

(R.462)

Case 2. Let 8,=0, 6;=v..

K=F (8.47)

K=1+J

J=paqs

$I=(-S::4p,q))+h (8.47a)
L=(S)a,+p;qs-S.a)

F=-(p2q:-51m3+p3qy)

.

8.6. Conclusion

Comparing the analyses presented in this chapter with those in Refs. {2, 28, 73,
77. 79. 106}, one will find that the vector algebraic approach is simpler than all previ-
ous rclated approaches.

Comparing the analysis proccdures of Scction 8.2 for the r.-kSkk  mechanism
and the previous chapter, what conclusion we can draw? It is clear that the analyses
procedures and the algebraic cxpressions are almost identical, though the mechanisms
are different.
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CHAPTER 9. THE R,-2R-2C MECHANISMS

9.1. Introduction

In this chapter the displacement problem of the R,-2r-2¢ mechanism is analyzed
using the vector aigebraic method. The /O (polynomial) displacement equations are
derived. Before listing the advantages of the new approach, let us briefly review pre-
vious related works.

There are a total of six variants for the R,~2R-2¢ mechanism: R,-CRCR,
ReRCRC, Ro-CCRR, Ro-RCCR, R~RRCC and Ry-CRRC. The RyRCCR and R~CRCR
mechanisms were first analyzed by Dimentberg [12] in 1948, using screw algebra.
The I/O displacement equations were obtained as 8th-order polynomials. In 1969
Yang [84] obtained a 4th-order polynomial for the R~CcrRCR mechanism, using (3x3)
matrices with dual-number elements. In 1970 Yuan [93,95] studied the R,rccr and
Ro~CRCR mechanisms, using the method of line coordinates, and verified corresponding
results obtained earlier by Dimentberg and Yang. In 1971 the R,RccrR mechanism
was studied by Soni and Pamidi[6], also using (3x3) matrices with dual-number ele-
ments. Duffy and Habib-Olahi [19-21] investigated the R,CRCR, R-RCRC and
R—CRRC mechanisms using spherical trigonometry. Lee and Bagci [50), using (3x3)
screw matrices and dual vectors, deduced a 16th-order polynomial equation for the
Ro—CRRC mechanism in 1975, where at least eight roots of the polynomial equation are
extraneous solutions. Using direction cosines and projections, Lakshminarayan [44,45)
derived solutions for the RCRCR, R~RCRC and R,-rRRcc mechanisms in 1976. Eight
years later, all the variants of mechanism of R-2rR-2¢ were, once again, systemati-
cally analyzed by Zhang [106], using the direction cosine matrix method.

Recently Raghvan and Roth [59,60), and Kohli and Osvatic {42,43] presented
new approaches for analyzing serial manipulators. Though the two papers do not
specifically address the problem of the R,-2r-2c mechanism, they are relevant.

The objective of the displacement analysis of spatial mechanisms is to determine
the relative position and orientation of all connected (rigid) bodies of the mechanism in
3-dimensional space. We will show in this chapter that we can use vector expression
and vector operations to perform the displacement analysis of spatial mechanisms. As
compared to previous works, the new approach is characterized by its standard analysis
steps, compact expressions and simplicity.
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9.2. Standard analysis procedure

The simplified vector loop diagram of the R,-28-2c mechanism is shown in Fig.
9.1, where {a.q;} (i=1-5) are unit vectors of pair axes and links, respectively. {e,}
(i=1-5) are joint angles. {a )} (i=1-5) are twist angles between the axes of joint i and
joint i+1, where o, is measured between a; and a. {pi. S} (i=1-5) are link lengths
and offsets, respectively. o, is the input angle of the mechanism.

Fig. 9.1

Let {a.a} (2sk<iss) be axial vectors of the two cylindrical pairs and {x.x}
are the corresponding variable offsets. Let 6,=0; be the "output angle", the first
rotary variable to be determined. Let 6,=v. be the "auxiliary angle", the variable to
be eliminated from simultaneous equations. The vector loop equation of the mechan-
ism can now be written as,

-t~y +K+L=F 9.1

L = L(y2)

K=1+]

3= 9.1a)
I=18,)

F=-p3q

A

.

1 is the input vector of the mechanism. It is the sum of those vectors in the loop
of the mechanism which are given or known at the beginning. J is the output vector
of the mechanism. It is the sum of those constant-magnitude vectors in the loop of the
mechanism that can be expressed as a function of the output angle (e, in this case). L
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is the auxiliary vector. It is the sum of those constant-magnitude vectors in the loop
of the mechanism that can be expressed as a function of the auxiliary angle (v in this
case). F is the floaring vector. Cutting the loop at the two ends of the floating vector,
we obtain two separate chains, where one is fixed to the ground and the other is floar-
ing . For detailed definitions of these vectors see Chapter 2.

For any given % and 1/, vectors I J,. K, L and F can be easily obtained from the
vector loop diagram of the mechanism. The following set of vector equations, called
direction equations, specify the relative direction of any individual (unit) vector with
respect to its two adjacent (unit) vectors in the vector loop.

(ay= cans, +sangm; (1)
Q2 = CY12q) + SV28:Xq 2
8= CO8; +S5ApqXa;  (3)
191=c6,qs + 56,8;xq, 1)) 9.1b)
Q3 = CSCOy, ByXB, (s)
By = CUys3 — SAsqexas  (6)
[ 9e=cO5q5 —5O5axqs ()

The set of vector equations in (9.1b) can also be expressed as a;xs;.,=gq; sina;;.
(i=1-4) and sxs, =qssina;,. However, representing the direction equations in the form of
(9.1b) is more convenient for use.

Step 1. Derivation of the first equation relating o,, 6, and w,.
Equating (sya,) for the fixed and floating parts of the vector loop, we get

85(¥2)'a(0;5) = caty, 9.2)

From Fig. 9.1 we can see that a, is a function of @,, i.e. a,=a,®;) and a, is a
function of . and e,. Since the input angle, o,, is given, we have a,=a\y,).

Substituting (9.1b-1) into (9.2) yields

U-qz =V (9.3)
U = U(O5) = sazyaxa:
{ V = V(0;) = can(sray) — coy (3.3a)
Substituting (9.1b-2) into (9.3) yields

A cony, + B sinyy = C 9.9

A=1q
B = U-ayxq, (9.4a)

C=V

Since v, is the auxiliary angle, the variable to be eliminated from the simultane-
ous equations, we transform (9.2) into the standard form (9.3), where only g, is a
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function of .. Eq.(9.3) is a transition from (9.2) to (9.4).
Step 2. Derivation of the second equation relating o, 0, and v,.
The scalar product of a,xa; with both sides of (9.1) yields

axa(K+L-F)=0 9.5)

Substituting the appropriate equations of (9.1a) and (9.1b) into (9.5) we can
obtain

Uqu=V (9‘6)
U =U"(®y)
{ v v (9.6a)

Substituting (9.1b-2) into (9.6) yields

A’ cosy, + B siny; = C’ 9.7)
A = U"ql
B’ = U ayxq, (9.7a)
c=v

Here the step from (9.5) to (9.6) may not seem clear, but for any given &+ and i
this step can be easily accomplished. The expressions for v* and v in (2.6a) and
(9.7a) are also determined by x and /. Since {4.8.c} of (9.4) and {a’.B,C) of
(9.7) are only functions of the input and output angles, by eliminating v, from (9.4)
and (9.7) we can obtain the input-output displacement equations. The elimination pro-
cedure is shown in Section 2.6.4.

After the VO displacement equation is obtained and the output angle is deter-
mined, finding the remaining angular variables and translational offsets becomes easy.

9.3. Analysis of the r~ccrrR mechanism

In this case, x=2 and !=3. This mechanism is shown n Fig. 9.2. The loop
equation is

-xamp-x3m+K+L=F (9.8)
L =L(ys) = p2q; M
K=1+]) v3)

4 J=J(Os)=p.qs~ Sin, 3 (9.8a)

I=18)=p,q;+(psqs—Sens-5,8)) (4)
F=-pihy 5

.
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'a;= canm +sangxa; (1)
Q =cv2q; +svaaxq,  (2)
a3 =capa +sapqxa;  (3)
§Hh=chqs+s0,axqs (4) (9.8b)
Q3 = CSCOy M3Xay (5)
8y = Clys By — SAysqoxas  (6)
Lq‘=¢.‘85(',5—.1'esl5xqs (7)

Pas

Fig. 9.2

Step 1. Derivation of the first equation relating o,, 6, and w,.
Equating (aya,) for the fixed and floating parts of the vector loop, we get

8(V2)au(Os) = cayy (9.9)

Substituting (9.8b-1) into (9.9) yields

Ugqy=V (9.10)
[V .. 9.108)
Substituting (9.8b-2) into (9.10) yields
A cosy; + B siny; = C 9.11)
A =Llgq,
B = Uayq, (9.11a)

C=V
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Step 2. Derivation of the second equation relating o, 8, and v..
The dot product of a,xs; with both sides of (9.8) yields

a3 (K +p2q2) = mxay(-p:qy) 9.12)

ie.
(Kx8,) 83 +(5@23.G2) (P2G2) = 8X8y(— p 1 CSCQRy, ByXay) (9.13)

ie.
(Kx.;)'lyfpzsﬂzg = PyCSCly By =~ p 1 CAyycol Uy (9.14)

Substituting (9.8b-1) into (9.14) yields
Utq;=V 9.15)

U’ =50xn K
{ (9.15a)

V' =picscay(aysV-ps;canpcoray-pasan

Substituting (9.8b-2) into (9.15) yields

A’ cosy, + B Si.an =C (9.16)
[a=vq
ip =U"axq, (9.16a)
C =V

Step 3. Derivation of the 1/0 displacement equation .
Expanding (9.11a) yields

A =a,c080, + a,8in0, + a;
B = blcosﬁg + bzsinO, + b; (9.17)
C =c¢,cos04 + 151004 + 3

where

a; =D(q,yqs
a; = D(q,)qsxas (9.17a)
ay=dq;

b, = D(a;%q,)qs
by = D(a;%q;) gsxas (9.17b)
by = d-m;xq,

c, =Gqs
c1=Gqoxas (9.17¢c)
Ccy= g
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r D(®) =533 50 (8:3P)xay
d = sapcag(asxa;)
G = caysag(aay)
g = cancys(aryas)—cas,

(9.17d)

Expanding (9.16a) yields
A’ =a) cosO; + ay’ 5in®; + ay’

B’ = b, cosO + by’sinO@; + by’ (9.18)
C =cy cosOy + ¢’ sinO@; + ¢y

where
ay =D(q)qs
ay’ = D'(q,)qsxas (9.18a)

ay =d"q,

b, = D(a;xq,)qs

by’ = D'(a;%q, ) qsXss (9.18b)
by = d"axq,
Cl' = Gr.q’
C;' = G"(bXIs (9.186)
c;l = 8,

P'(®) = pesan P+ Sisan s s (asxP)
d = Jazgl—s‘sancauls
G’ = p3cscay, s Qs (myXns)

8 = P3CsCU34CO04s(8285)—P3CA23C0I Ay =P25 U

(9.18d)

Solving (9.11) and (9.16) we can obtain the /O displacement equation s (8, 85)=0
and the solution for (@, v.), as shown from Eq.(2.30) to Eq.(2.35) in Section 2.6.4.
Then the vectors {K.L.F} can be determined from (9.8a) and (9.8b).

Rearranging (9.8) vields

xm+xym=(K+L-F) 9.19)
The scalar product of q, and q, with both sides of (9.19) yields

{x; = (K+L-Frq;/ (axqs)

x3=(K+L-Fyq;/ (8:q;) (9.20)



- 155 -

From the structure of the mechanism (Fig. 9.2) we can obtain
@ = cos8y q» + $in0;a3%q; 9.21)

Qe = €058, Q) + 5inBeaxq) 9.22)

Forming the scalar products of q. and (a;xq,) With both sides of (9.21) we get o,:

(9.23)

cosBy = qxqy
sin; = (a;xq;)q,

Forming the scalar products of q; and (axq;) with both sides of {9.21) we get o,:

{COSO‘ =qQyqs (9 24)

5inB, = (axqy)qq

The rationale for transforming (9.12) to (9.14) is as follows: (a) since we need
an equation in the form U.q,=v, we write a,xa;K=(Kxa)s;, Separating a,, a function
of q., from (Kxa:), a function of ¢, and e, (b) we can see from Fig. 9.2 that the
relative directions of a;, a3 and q, are fixed, thus the value of their scalar triple pro-
duct is constant. It is necessary to be able to perceive right away that a;xa,=q;sinaz
(or see the first equation of Eq.(2.8)); (c) q; is a function of {e.. .. 8,} or a function
of {es 6.}, however, q; is also a function of {a, a.}, i.c. if o, and a, are known, g,
can also be determined. Hence using q,=s;.a,cscay,, We can eliminate o, and o, for
», is a function of {e,,v;} and a, a function of e,.

The vectorial expressions of (9.17a-c), (9.18a-c), (9.20), (9.23) and (9.24) can be
easily transformed into scalar expressions. As an example, the scalarized (9.17a) is

a) = 5CnSAes(cC3c U 200 - sty 5ay9)
a3 =—5035Ays S A1388, (9.25)
ay= :a;;ca“(s a,,ca,;cﬂ, -—cu,,sau)

where a4, is derived as follows,

a; = D(qi) gs = [ 5 02y 5 Cas (85X, )%05]-gs
=S5035 Qs [(c )@y +50;; g Xay)Xq, ] *ayqs
= $0335 Qs [ (€012 8yXq) +50ty28,)%X85]°Gs
= $0335 Oles [ 12 (R B5) Q) =~ c Qy2(qy-Bs) @) +5 0112 X8s) s
= S S Oas[cO12C sy (QyGs) + 5Aj28,X85°Gs)
=sansdy{cacds c8 +sa;(~gssas)qs]
= S35 Olygs [ cflj3c Qs c9,~ SCyrss )

Here the procedure for deriving a, is displayed in detail. However, one can
easily skip some of the steps. It is worth mentioning that the scalarizing procedure is
quite flexible; for instance
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[(@:%q1)x8s) qs = (82Xq, ) (8sXqs)
= (8r85)(q1'qs) — (82 qsXqy'8s)
=(cy Q=5 5A12¢0,)c0; - (50, 50))(505,50))
=(cay c@2c0 -sag sa)

9.4. Analysis of the R~rRcck mechanism

Fig. 9.3

In this case, x=3 and /=4. The diagram of this mechanism is shown in Fig.
9.3. The loop equation is

-xymy-x,+K+L=F (9.26)
(L=prq O
K=1+] Q)
J=Priqu 3

15 (9.26a)

I=(piqi-5:ay)
+(psqs—Ssas~S,a) (4)
(F=-psq, (5)

83 = CcOnMy +sAngxa; (1)
Q=cv2q; +svamxq,  (2)
Qs = CSC0s 83X0 3) (9.26b)
Qs = cOsqs - sOsa5xqs  (4)
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The first equation, relating o, ©; and v, is exactly the same as (9.9) to
(9.11a).

Step 2. Derivation of the second equation relating o,. 8, and v,.
The scalar product of axa, with both sides of (9.26) yields

(K + Lyayxa, = F-a)xa, 9.27)

Substituting (9.26a-1) and (9.26b-1) into (9.27) yields

U-q=V 9.28)
U’ = sapax(@eK) + parcasy(sxay)

{ V =cansyaxK — pasayn(ara,) + pysay, (9~283)

Substituting (9.26b-2) into (9.28) yields
A’ cosy, + B’ siny, = C’ (9.29)

A' = U“q|

B’ = Urayxq, (9.29a)

C =V

The remaining derivation is identical to the one given in section 9.3.

9.5. Analysis of the r,-RrRcc mechanism

In this case, k=4 and /=s. The diagram of this mechanism is shown in Fig.
9.4. The loop equation is

- x48-xsas+K+L=F 9.30)
L= paq; ~ Sya 4}
K=1+] 2
{13= Peqs 3) (9.30a)
I=(pigi-S:a)+(psqs—5,a)) (4)
F=-piq (&)

r
H=caAndy+sangXa; (1)
G2 = cV2q; + sV28y%q, 2)
4 g3 = cscatyem5xa, 3) (9.30b)
84 = COYs 85— 5 Uys GuXids (4)
G = cO5qs— 5O a5%qs (5)

3

The first equation, relating e,, €, and v, is exactly the same as the results
derived and presented from (9.9) to (9.11a).
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Fig. 9.4

Step 2. Derivation of the second equation relating e, 6s; and ..
The scalar product of axas with both sides of (9.30) yields

axas(K + pyqy—Sia3) = axas(-paqs)
Substituting (9.30b-1) and (9.30b-3) into (9.31) yields

U"qz =V

U’ = pragxas~ 535 Q) 8X(8X85) — p3 5 (73 CSC0yy Xy
V' = K-agxas+ 53¢ 05 8y (a,xas)
+P3C 0 CSCU3 B2 83— P COf O3y C gy

Substituting (9.30b-2) into (9.32) yields
A’ cosyy + B’ sinyy = C’
A’ =L"q

B = U ayxq,
=V

The remaining derivation is identical to the one presented in section 9.3.

9.6. Analysis of the RCrrc mechanism

9.31)

9.32)

(9.32a)

(9.33)

(9.33a)




Fig. 9.5

&y

In this case, k=2 and 1=5. The diagram of this mecharism is shown in Fig.
9.5. The loop equation is

x84 —xsas+K+L=F (9.34)
L= p2q; - S;a n
K=1+] 2)

{3 = pigu-Sa 3) (9.34a)
I=prq+(psqs—-S,8) (9
=-piqs &)

-

8= cdpdy + sangxey (1)
J Q@ =cy,q +syamXxq  (2)
G = CSCQy 8, (3)
Qu=cOsqs - sOsa5xqs  (4)

(9.34b)

The first equation, relating e,, ©; and v,, is the same as the results derived and
presented from (9.7) to (9.11a).

Step 2. Derivation of the second equation relating o, 0, and wv,.
The scalar product of a;xa; with both sides of (9.34) yields

(K + Lyaxas = F-a:xas (9.35)
Substituting (9.34a-1) and (9.34b-1) into (9.35) yields
U"qz zV (9036)
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U’ = [pysancscy (82)+p: J(asxas)
+ Sys g (mXxas)xa; (9.36a)
V' = [pycancscay (aa,) — K](a;xa3)

Substituting (9.34b-2) into (9.36) yields

A’ cosy; + B’ sinyy = C° (9.37)
A= U"ql
B = U".qul (9.373)
C =V

The remaining derivation is identical to the one given in section 9.3.

9,7. Analysis of the rRcrckR mechanism
In this case, x=2 and /=4, The diagram of this mechanism is shown in Fig.
9.6. The loop equation is

~xm-x+K+L=F (9.38)
L= p2q;— 538 )
K=1+] )
{3 = pias )} (9.38a)
I= pqi+(psqs—Ssas—S,8;) (4)
F=~psqs )

B =cUpd +sanqxa; (1)
@ =cViq; + sy aXq, 1¢))]
1 Gy = ccaymXa, €)) (9.38b)
8y = CQysBs — SCsqexas  (4)
Qs =cO5q; - sOsaxqs  (5)

3

Step 1. Derivation of the first equation relating o,, ; and w..

The derivation and results are exactly the same as from (9.7) to (9.11a).
Step 2. Derivation of the second equation relating o, 6; and v,.

The scalar product of a;xa, with both sides of (9.38) yields

8%ag (K +(p2qu—538))) = ayxa¢(~p3cscaznmxay) (9.39)
Substituting (9.38b-1) into (9.39) yields
Uqy= V' (9.40)




U’ = prmxa, + Sysay(aXa)xe;
V’ = pacscayn(cay(arad~cay] - apxackK

Substituting (9.38b-2) into (9.40) yields
A’ cosyz + B sinyy = C’
A = U"ql

B = U".}Xq|
C =V

Step 3. Derivation of the 1/O displacement equation .

From (9.11) and (9.41) we can obtain
{coﬂfz"'Qz’Qs
sinyy = Q,/Q,

Q1 =(AC -CA")
Q2= (BC' -CPB’)
Qs =(AB’-BA’)

Considering costy:+sin*y;=1 and (9.42) yields
Qf + Qi =0}

Fig. 9.6

(9.40a)

9.41)

(9.41a)

9.42)

(9.42a)

(9.43)
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The following derivation is different from the corresponding one given in previ-
ous sections; however, the basic ideas are the same.

Substituting (9.11a) and (9.41a) into (9.42a) we get

Q,=(V'U-VUyq,
Q2= (V'U-VU'yaxxq, (9.43a)
23 = (UxU)a,

Substituting (9.43a) into (9.43), and taking into account of the second equation of
Eq.(2.10), we obtain

(VU=-VUP-[(VU=-VU)P = UxU"s)? (9.44)

Checking the expressions for v and v in (9.10a) and (9.40a), respectively, we
can see that both u and v are perpendicular to a,, thus (9.44) becomes

(V' U-VU)? = (UxU"a,)? (9.45)

Expanding the left side of (9.45) yields
VUl viU2-2V V(U-U) = (UxUay)? (9.46)

Substituting (9.10a) and (9.40a) into (9.46), yields

(5anV =p2VP+(Sy50, V)i = 5§ sy =0 (9.47)
where
(o™ 0478
W, = s (p 18+ sanaxxa;

o

Z3=83000503¢ Qs (82°85)— S35CQ30C03

P1= P3SA23C08 Ay~ paSasCOl Uys
{ P1= P1C0= P3C02SALCITL— PosanCsitl (8r0s) 9.47¢)
Substituting (9.47a) into (9.47) yields

(Wi q)?+(Wrqu)?+22Z(Wyqe)+2Zx(Wrqe) 9.48)

+2F +23 -S¥s'an=0

where only q, is a function of the output angle e,. Substituting (9.38b-5) into (9.48)
yields

116205+ 11;8%05 4+ 11,0053 O3 + 1y c s+ g s Q54 gm0 (9.49)
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By = (W,-qs) + (Wyqs)?

W2 = (Wygoas)? + (Wrooas)?

By = 2(W,-qal(W-qpas) + 2(WrqsX(Wy-gqsxas)

1 He=2Z (W) q) +2Z(Wyqs) (9.49a)
My = 2Z (W qsxas) + 2Z2(Wy qsxas)

llg=2f +Z} -S}S‘dz;

L

Let y-=tan(®y/2), then from (9.49)

'éo vyt =0 (9.50)
A
Vo "+l
vi==2}
{vi=-2m +4m - n+ pe (9.50a)
Va=2M+ 24
LVA=M + e+ He

Solving (9.50) we obtain y, and then @,=2uny.

9.8. Analysis of the rR~cRckR mechanism

This mechanism has been analyzed in section 9.7. In the following we will
present a slightly different but simpler approach. The diagram of this mechanism is
shown in Fig. 9.7. In this case let 6,=y, be the auxiliary angle, the angle to be elim-
inated from the simultaneous equations. Thus the loop equation can be written as

-xm-xa+K=F 9.51)
K=1+]) m
3= pads 2)
I1=piqi+(psqs-Ssns—S,3) (3) (9.51a)
F=z-p1qa+ Samy-p3qs 4)

82 = COnMy ~sAngXay (1)

Q2= CcV3q3 — SV385%0 03]
{ 8= cosn -saugxa, (3) (9.51b)
84 %= COysBy ~ SAsGoiny  (4)
Qe =cO4qs — sO5m9%qQs (S)

.

Step 1. Derivation of the first equation relating o,, 6, and wv,.
Equating (sya,) for the floating and the fixed parts of the vector loop yields

(780)ly = (3;80le (9.52)




&

Substituting (9.51b-2) and (9.51b-3) into (9.51b-1), then substituting (9.5id-1)
into the left side of (9.52); at the same time, substituting (9.51b-4) into the right side
of (9.52), we get

€ 023C Ol3g— 3 U238 34 CW3 = B7( € s B3 — S s QaXA5) (9.53)

Rearranging (9.53) yields

cosys = Uyqe + V3 9.54)
U, = cacazy csccts s ays(8sXay)
{ V= C3C0l3 C8CQyy [ c A c Ay~ (!45(.5‘.1)} (9'546)

Step 2. Derivation of the second equation relating e, s and y,.
The scalar product of a;xa, with both sides of (9.51) yields sasK-F)=0, i.e.

X (I4+paqu+paqa~Symy+p3q3)=0 9.55)

ie.
8506 (144 Qe+ p2CSC02 M X813 53 85+ P 3 CEC T34 83X )= 0 (9.56)

ie.
(Dx@2) 84+ (P 7)Y ReXq+ P 7130023 ( € C3q ~ € Ops [87°8¢))
+ 53802350345V + 308003 ( €0~ Qs [820,])=0

9.57)




Rearranging (9.57) yields

Sisansayusys = {(pacotay + pycotay)e; — Ixa)ay

=~ (PaR2Y8Xqe—(P3C5CA2 € Qs+ p3c Ay CSCAyL)

Substituting (9.51b-4) into (9.58) yields

sinyy = Uy"qe + V'

Uy’ = (sagN — pacagay)xas
Vy = (cagN +prsaga)as
—cschy(pycy + p3cscasy)
N = (pscotaz; + pycotasy) 8y ~ Ixa,

Step 3. Derivation of the 1/O displacement equation .
Substituting (9.51b-5) into (9.54) yields

coSWY3 = ¢, cOSBs + C25inOs + ¢y

c1=Uyqs
c2 = Usqsxas
cy=Vy

Substituting (9.51b-5) into (9.59) yields

sinyy = ¢," cos@;s + ¢’ 5inOs + ¢y’

¢y = Uy qs
¢y’ = Uy-qoxas
c,’ = V;’

From (9.60), (9.61) and cos’y,+sin’y;=1 Wwe can get

B1 705+ Py 5705+ 13O s5 Ost Py c Os + s s Ot o= 0

wm=ct+c?
m=ct +cs?

M =2(cic1+ cy'c?)
Ba=2(cie34 cy’cy)
Bs = 2(c3c3 + ci'cy)
Me=cd +ey3 -1

3

(9.58)

(9.59)

(9.59a)

(9.60)

(9.60a)

9.61)

(9.61a)

(9.62)

(9.62a)

Let y=wun(85/2), then from (9.62) we can obtain a fourth order polynomial equa-

tion which is exactly the same as (9.63) and (9.63a).
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9.9. Analysis of the r,rRcrc mechanism
The analysis for this mechanism are similar to that for mechanism R,CRCR, as
shown in sections 9.7 and 9.8.

9.10. Conclusion

Of all methods mentioned at the beginning of this chapter, the matrix method is
the most popular one. In fact the methods used in references [84], [66], [50], {106],
[59], [60], [43] and [44] can all be considered as matrix methods, although there are
some differences between them. The matrix method and the spherical trigonometry
based method [19-21, 106} arc generally acknowledged to be the most efficient
methods.

Using the matrix m +:0d, one usually performs a series of matrix multiplications
(or matrix homogzneous transformations) and obtains a reiation of the form

ay ap ap ay by by by by
a3 ap apy an by by by b
= (9.63)
ay ay ay ay by by by by
00 0 1 L0 0 0 1
ie.
aj = by, (i=1-3, j=1-4) (9.64)

For the R.-2r-2c mechanism, each of the 12 equations in (9.63) contains at
least two unknown angular or translational variables, excluding the input angle. One
[84, 66] to six [43] of the 12 equations are then actually used for deriving the VO dis-
placement equations. The calculation for the other six to eleven equations in (9.63)
constitutes unavoidable extraneous work. However, using the approach presented in
this chapter, one can obtain exactly what is needed directly, without anything extrane-
ous attached to the procedure.

The matrix, in fact, is an “"expanded" form of vectors. A (kxk) matrix can be
regarded as being composed of k "expanded" vectors, or k vectors of k dimensions,
namely, k row vectors: r,=(r; r2 --- ra) OF k column vectors: c;=(cy ¢z - cy),
wkere (i=1-%). Using the matrix method, one has to "expand" everything from the
very beginning. The resulting algebraic manipulation process of the displacement
analysis is laborious and error prone.

Using the spherical trigonometry ised method, "the derivation of the input-
output equations for the inversions of the RcRCR® and RccrRR® mechanisms, namely
the (RRcrRc™, RCRRC™) and RRRCC® mechanisms is however further complicated, since
the spatial loop equation may not contain the required input and output angular




- 167 -

displacements, and it may contain more than one unwanted variable." [28](pp.227-
228). However, in the new approach, the analyses for the rcrck and Rrcrc
mechanisms (i.e. R.—CRCR and Rq-RCRC) are identical in terms of the analysis pro-
cedure and the amount of calculation. This also applies to the RCcrRR, Rcrrc and
RRRcc mechanisms, as shown in sections 9.3, 9.6 and 9.5, respectively. Moreover,
the two equations derived in the first two steps of the proposed method always contain
the desired input, output and (only one!) auxiliary angles.

Let us review section 3. In equations (9.10) and (9.15) everything unrelated to
¢, a function of the auxiliary angle v,, are included in {u.v} and {u'. v}, respec-
tively. Similarly, in equations (9.11) and (9.16) those terms unrelated to v, are also
collected into {a.B.c} and {a’. . ¢ }. Since we do not need to expand (i.e. scalarize)
everything at the beginning, we manipulate only those vectors directly relating to what
we need, i.e. q and wv,; thus, we are able to obtain .quations (9.11) and (9.16) by
only one transformation and a few lines of derivation, respectively. In the process of
expanding (9.11a) and (9.16a), once again, we do not need to expand everything right
away, and we simply manipulate those vectors dircctly relating to the output angle ..
This makes it possible to express the coefficients {a;.5.¢) and {a/". 5. ¢’} (i=1-3) of
(9.17) and (9.18) in standard compact forms, as shown in equations (9.17a-d) and
(9.18a-d), respectively. Comparing equations (9.11) to (9.12a) with equations (9.15) 10
(9.16a), and considering that the analyses for mechanisms in the other sections are
either identical or similar, the uniformity, symmetry and simplicity of the proposed
met!, d are readily apparent.

Since the analysis steps and expressions are standardized, the proposed method
offers a convenient way to write computer programs for these mechanisms.

"Polynomial displacement equations have been derivea for virtually all single-
loop spatial mechanisms. It remains to examine and to search for patterns in the
coefficients of the polynomials, such as symmetry, which could lead to simplification.
This recommendation is not original: it was suggested to me by Ferdinand Freuden-
stein some 20 years ago.” This rem rk was recently made by Professor Joseph Duffy
in Ref [29] (page 154). We believe that this chapter has offered a positive answer to
the 20 years old issue, for the ideas of the proposed approach are readily applicable to
all other spatial mechanisms.
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CHAPTER 10. THE Ry;-3R-P-C MECHANISM

10.1 Introduction

Yuan ([96], 1971) was the first to study one of the R3R-c-P mechanisms. He
obtained a 16th order polynomial displacement equation for the R.-PRCRR mechanism
by using the merhod of line coordinates. Since the correct order is eight, Yuan’s solu-
tion involves eight extraneous (or unwanted) roots.

In 1974 Duffy and Rooney [23] analyzed the R~CRPRR, R,~CRRPR and Ro~RRPCR
mechanisms using spherical trigonometry method. They stated, "the derivation of the
input-output displacement equation for each mechanism is different and, therefore,
warrants special attention. The most difficult result to obtain was the degree eight
equation for the spatial six-link RRRPCR mechanism"([23] page 706).

In 1980 Zhang [106] tackled the R,-RPRCR mechanism using direction cosine
matrix method. He expressed a similar viewpoint that the derivation of the input-
output displacement equations for the R,-PRRCR and R,-RRPCR mechanisms was
more complicated as compared to that for the R.-RPRCR mechanism ([106] page 263).

In this chapter the input-output displacement equations for spatial six-link
mechanisms RRRPCR, RRCRPR and R-RPRRC are derived as eighth order polyno-
mials by using vector algebraic method. The star product operation +* is intro-
duced, which is a supplement to the existing four basic operations, i.e. {+, -, x, - }, that
vectors may have. The star prodict operation can substantially simplify the vector
a.gebraic expressions in the analysis of complex mechanisms. As compared to previous
pertinent works, the proposed approach is that the derivation for any one of the 20
variant mechanisms of R,-3R-P-C is identical and, therefore, warrants no special
attention. Moreover, the proposed approach is characterized by its standardized
analysis steps and simplicity.

10.2. Star product operation

Star product operation is introduced to facilitate the vector algebraic derivation in
the analysis of complex spatial mechanisms. It is composed of the inseparable couple:
the star product, * , and the star product operator, ®. Their implication, function
and relation can be defined by the following three identities,

Qrgzasd=a (10-1)
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®*(axb) = (Oxa)sb (10.2)
®xa = - ax® (10.3)

where & and b are two arbitrary vectors.

In the displacement analysis of complex spatial mechanisms and serial robots, we
may often encounter mathematic expressions which are the sum of the following vec-
tor items,

q. axq, (bxgxc. [(gxd)xe]xf

The key point is that every item above contains the same vector q and can be
expressed as

q="=2+q
axq = ®+(axq) = (Oxa)*q

(xa)xe = [(x®bleq (10.4)
[(qxd)xe]xf = {dx[ex(x®)]}*q
For instance, we have the equation,
U = B, q+PB1axq + Bs(bxq)xc + B, [(gxd)xelxf (10.5)

where {B;} (i=1-4) are known scalar parameters. Then U can be re-expressed as fol-
lows by using (10.4),

U=D@® a (10.6)

D(®) = B; ®+P; (Dxa)+ B, (cxP)xb + By dx[ex(txD)) (10.6a)

Following is an important formula,

(D(®)*q)-k = D(kyq (10.7)

where k is an arbitrary vector.

Using the star product operation, the vector algebraic derivations in the analysis
of complex spatial mechanisms can be substantially simplified.

10.3. Analysiz of the r.RrRPCR mechanism

The structure diagram of the mechanism is shown in Fig.10.1. The input angle is
o,; Let o,=0, be the "output angle”, the first rotary variable to be determined. Let
8;=y; be the "auxiliary angle", the variable to be eliminated from simultaneous equa-
tions. The vector l1oop equation can now be written as,

-x.l.-x,.,+K+L=F (10-8)
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(L=L(‘Vz)= P2Ga - Samy 1))
K=J+1 @
J = J(O¢)= psqs 3
1=ia-s10+1 @) (10.82)
=—Sels + peQs — 518 )
(F==pP3qy+ SeB—Paqu + 5585 )
2 = CcAndy + SAn QXA §))
Q@ =cV;3q) +5V28Xq, 2)
a = copa +s5a;qixa; (3) (10.8b)
Qi =c0;qs+ 56,8,%q¢ )
85 = € OlggBg ~ S s QsXAg 5)
{‘ls = c0sqs ~ $Osae%qs ©) (10.8b)

1 is the input vector of the mechanism. It is the sum of those vectors in the loop
of the mechanism which are given or known at the beginning. J is the output vector
of the mechanism. It is the sum of those constant-magnitude vectors in the loop of the
mechanism that can be expressed as a function of the output angle (@, in this case). L
is the auxiliary vector. It is the sum of those constant-magnitude vectors in the loop
of the mechanism that can be expressed as a function of the auxiliary angle (y, in this
case). F is the floating vector. Cutting the loop at the two ends of the floating vector,
we obtain two separate chains, where one is fixed to the ground and the other is floar-
ing . For detailed definitions of these vectors see Chapter 2.

Fig. 10.1
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Vectors L J. K. L and F can be easily obtained from the vector loop diagram of
the mechanism. The vector equations in Eq.(10.8b), called direction equations,
specify the relative direction of any individual (unit) vector with respect to its two
adjacent (unit) vectors in the vector loop.

The set of Eq.(10.8b) can also be expressed as a;xa, =q sina;,, (i=1-5) and
aga;=qssinag;..  However, representing the direction equations in the form of Eq.(10.8b)
is more convenient for use.

(1). Derivation of the first equation relating e,, s and ..
From the structure of the mechanism we have

85(y2)a5(0¢) = (8yay) (10.9)

Substituting (10.8b-1) into (10.9) yields

Ug=V (10.10)
U = sanasxm _
{ V = caxn(asay) - (ayag) (10.103)

Substituting (10.8b-2) into (10.10) yields

A cosy; + B siny; = C (10.11)
A =Uq,
B = Uaxxq, (10] la)
C=V

Substituting (10.8b-5) wnto (10.103) yields

{U=D-q,+d

V=0Gq+g (10.]2)

D(®) = - 3235 Cgs8eX(8;%DP)
d = sayc o (ager)

G = - c g5 O (RX87)

8 = cUpncUs(aga;) - (ayas)

(10.12a)

Substituting (10.12) into (10.11a) yields

A = (D+q;)qs + (d'q)
B = (D*a;xq;)qs + (d'8;xq)) (10.13)
C=Gqs+g

Substituting (10.8b-6) into (10.13) yields
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A -a.cos9°+azsin9.+a;
B = b,cos®g + b15in@ + b, (10.14)
C = ¢ cos6¢ + ¢25i00¢ + 3

a; = D*q\)qs
a; = (D*q ) qexas (10.14a)
a; = (dq)

b, = (D*a;xq,)q¢
by = (D*a;%q,ygexas (10.14b)
by = (d'axq;)

= G'%
2 = Gqoag (10.14c)

=g

(2). Derivation of the second equation relating 6,, 8, and v,.

Since apas=qsina,, hence the scalar product of axas with both sides of (8) is
the same as the scalar product =' q, with both sides of (10.8),

(K + L) =qF (10.15)

Let
Qs = P183 + Pr85 + Py @yXas (10.16)

The scalar product of {asx(asxas), (a;xas)xs;, myxas} with both sides of (10.16)
yields

p1 = (8yq)N
P2 =—(8yq)(ayas)N (10.16a)
Pr=CsC0ys [c Oz~ c Qs (B3R5)] N

N = 1/[1 = (ayns)]
(83qe) = 5Q3450, (10.16b)

(By85)= C O340 O4s =S X3y 5 Qys Oy

Substituting {(10.16), (10.8a-1), (10.8a-6)} into (10.15) yields

(P2p285Y Q2+ (P K ~p2 5385+ py8sxXK)as

+ (P3p285y @@y = ~ Py (85 K) + (1 S3=p3cO4=py) (10.17)
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Substituting (10.8b-1) into (10.17) yields
U'q=V (10.18)

U= axX[ san(p K- p:S:85+p3axK)+p3p,c i)
V' =ay[-can(piK-p,Sias+p3a9&K) +psprsarnag) (10.18a)
= p2(85K) + (p)S3-p3¢64—py)

Substituting (10.8b-2) into (12.18) yields

A’ cosy, + B’ siny, = C’ (10.19)
A =Uq
B’ = Uaxy, (10.19a)
C =V

Expressing a;, and K of (10.18a) in terms of q, yields

{ U=Drq+d

V=Gt g (10.20)

D'(®) = (p2P250Cs68¢ + P1 PsSAna)XP
+ Py (DXag)Xdy + Py s A2y s Qss [(Oxag)xT]xa,
d’ = p2pacasmg + pi5a8xl
+ PsRgXaz ~ Py 5 Uy ¢ Qs [(PXag)xT)xa;

(10.20a)

G’ =pysagaxl - pypscana;
+ PefgXaz + P3 € Uy s Qs Bex(Ixa3)
g =-(picaxag’ pycanay)l
+ P18 8y~ Py C gy cOss (axT) 83+ (0 S3~-p3cB4~pJ)

(10.20a)

Ps=5023(P1S33Css+Pyps Csg)+P3p2Ctzyshss
Ps=5013(P253CAse+P3ps s Usg) = P3p2S A3 Uss
Ps = cAn (P S350s + P3Psc Csg)
Pr = cAn(PsS3clse + P3psS Asg)

(10.20b)

Substituting (10.20) into (10.19a) yields

A’ = (D'*q,)qs + (d"q,)
B’ = (D'*a;xq,)qs + (d"87%q,) (10.21)
C =Gy +§

Substituting (10.8b-6) into (10.21) yields
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A’ =a) cotBg + ay’ 5in0¢ + ay’
B’ = by’ cosOg + by’ 5in@¢ + by’ (10.22)
C’ =¢,¢c080¢ + ¢'3i00¢ + ¢y’

ay = (D'*q,)qs
a7’ = (D'*q,) goxas (10.22a)
ay = (d"q)

by = (D’*a;xq,)qs

by’ = (D'*a,7q,yqexas (10.22b)
by = (d"ayxq,)
¢ l' =G~ 9%
€1’ = G"qexag (10.22c)
c;’ = 8'

Solving (10.11) and (10.19) we can obtain the input-output equation £, €4=0
and the solution for {@,, v.), as shown in Section 2.6.4. The determination for other
variables is omitted here, for it is much easier.

10.4. Analysis of the r,-rcrPR mechanism

Fig. 10.2
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The structure diagram of the mechanism is shown in Fig. 10.2. The input angle
is o,; the output angle is o, i.e. 6,=8,; The auxiliary angle is o,, i.e. 8,=y,. The
vector loop equation can be written as,

-x3sy—x38s+K+L=F (10'23)
“‘= P2%2 (¢))
K=J+I Q@
J= psqQs+paqe-Sets 3

7

I=(pr1qi-Sam) + Lo (4) (10.23a)
=—Sehe +P6Qs — S1 4y {5)
| F=-pyqs 6)

a3 = cUAn &y + SAp QaXaz ¢))

@ = cV¥2q) + SV2mXq, 2

{ 8= capa, +sa;,;qxs, 3 (10.23b)
q1=c0,g,+508,2,xq¢ O]
Qs = cscazayxa, (5

.

,

8= cOyshs - sasqoas  (6)
] de=cOsqs - s85a5xqs )
8 = Cllgs g — SOyg JsXg ®)
Qs = ¢ qg — sOsaeXqs ¢)]

(10.23b)

(1). Derivation of the first equation relating o,, 8, and v,.
From the structure of the mechanism we can write,

83(W2)ay(B¢) = cazy (10.24)
Substituting (10.23b-1) into (10.24) yields
Uq;=V (10.25)

{ U= sazaoa; (10.25a)

V= CG;;(I;‘I;) - CQlyy

Substituting (10.23b-2) into (10.25) yields
A cosys + B sinya = C (10.26)
A =Uyq,

B = U-ayxq, (10.268)
C=V

Using (10.23b-6), (10.23b-7) and (10.23b-8) we can express s, in terms of g,
s and qoas as follow,
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& = 0145 + P2QsXig + Prag

Pr= SQysOy
P2 = CO4gS Qs+ SUys C s COs
P3 = COyClss — SO STUgsCc Oy

Substituting (10.27) into (10.25a) yields

U=D*qs+d
V=Gqs+g

D(®) = san(p)® + p; Oxagxa;
d = san(psadxe

G = can(pim; + pragxay)

8 = can(pragsy ~ cay

Substituting (10.28) into (10.26a) yields

A = (D*q,)qs + (dq))
B = (D*a;xq,)qs + (d'8;%q;)
C=Gqs+g

Substituting (10.23b-9) into (10.29) yields

A =a,c0s0, + a,8in0¢ + a;
B =b,c0606+b;sin8¢+bg
C =c|cm8°+c2$in96+c;,

a; = (D*q,)qs
a; = (D*q,yqexag
a3 = (dq))

by = (D*a;xq;)qs
by = (Dea;xq;)qexns
by = (dayxq,)

= G(k
€1 = Ggexas

Cy=g

(10.27)

(10.27a)

(10.28)

(10.28a)

(10.29)

(10.30)

(10.30a)

(10.30b)

(10.30¢c)
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(2). Derivation of the second equation relating e,, 8, and ..
The scalar product of a,xa; with both sides of (10.23) yields

ayas(K+L-F)=0 (10.31)

i.e.
sy (K +L-picscas, ape)=0 (10.31a)

ie.
a5 (a5xXK +p 3 colay 85) +(LXA3)y Ms= p S04 € Oy (10.31b)

Substituting (10.23a-1) and (10.23b-1) into (10.31b) yields

Uq=V (10.32)
U’ = M;xa,
V' = Mya; - pacscaycays (10-323)
M] = Sazjagxx +m;as
{ M; = canasxK + mya; (10'32b)
my = (p3sancoltyy + pacay)
{Mz = (P3¢ 020l — p2say) (10.32c)
Substituting (10.23b-1) into (10.32) yields
A’ cosy, + B’ sinyy = C’ (10.33)
A" =U"q
B =Uapq, (10.33a)
¢ =V
From (10.32b) we obtain
M, =Dysqs + d)
{ M, = Dysqs + d; (10.34)
D\(®) = san B, ® - s as (PxDxag + 0, Oxag
Dx®P) = can (B ® -5 0 (PxD)xae) + 0, Oxag
d) = 5033¢ s Xl + O3 (10.34a)
d; = cOycasagdd + O,
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Oy = m5Qs + Prsancag
0;= mysQss + Picancas,
Oy = M COg~ Pisansag

(10.34b)

C4 = MaCc0ge — B;CGDJG”

Substituting (10.34) into (10.32a), and then substituting (10.32a) into (10.33a),
yields ’
A’ = [Dy*axq))qs + dyazxq,

B’ = [D\*(-qy)}qs + dy(—q)) (10.35)
C =(Dy*a7)qs+ (dya;y) - p3cseas, c Ogs

Substituting (10.23b-9) into (10.35) yields

A’ =a)cosO¢ + a{sinOo + ay
B’ =b,'cosOq + b’ sin@ + by’ (10.36)
C =c¢\cosO¢ + Cz'Sin95 +cy

ay’ = (D;*a3;%q:yqs
ay’ = (D)*a;xq;) geXag (10.36a)
ay’ = (dyaxq;)

by = [D*(-q1)]'qs

by = [Dy*(-q)))-qexag (10.36b)
by =dy(~q)

ci’ = (Dy*a3)qs

€7’ = (Dy*a:y qexag (10.36¢)

€y’ = (dya)~p;ycscasc Oy

10.5. Analysis of the RrPrRRC mechanism

The structure diagram of the mechanism is shown in Fig.10.3. The input angle is
8,; the output angle is o, i.e. 8,=85; The auxiliary angle is e,, i.e. 8,=y,. The vector
loop equation can be written as,

-x383 -3¢0+ K+ L=F (10.37)




Fig. 10.3
(L= t2Q + P3Gy~ Sei n
K=J+1 (7))
J=psqs - Ssas ()]
1 I=(pyqy - S8)+ 1o 4) (10.37a)
Li=psqs — 518, )]
|F =—paqu=-picscagacas  (6)
'n4=cuua;+sa;.q3xa; (1)
Q3 =c01q; + s03m5xq, Q)
83 = cUnNy + SU3Q1%a; (3)
<
Q2 = cYq; + sY28y%XQ; 4) (10.37b)
9 =chpa; + sApgXe, 5)
L Q1 =8, g5+ 58,8,Xq 6)
B3 = CQsRg — SUgsGsXag @]
{‘ls =cOsqs ~ 5O agxqs ® (10.37b)
(1). Derivation of the first equation relating o,, 8, and wv,.
From the structure of the mechanism we can write,
84V as(8¢) = s (10.38)

Using (10.30b-1), (10.30b-2) and (10.31b-3) we can express a, in terms of q,
s, and qxs; as follow,

8= Py Qs + P10 + P38, (10.39)
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P = 58 50y,
P2 = SQpC Q3 + € Ozy S Ay By (10.392)
P = CAHRCA — SARS A O

, Substituting  (10.39) into (10.38) yields
2 Uq=V (10.40)

U = p as + pyapxas
V = -py(aras) + cag

(10.40a)

Substituting (10.37b-4) into (10.40) vields

ACW2+BSW1=C (10.4])

A =Uq
B = U'lzqu (10.413)
C=V

Substituting (10.37b-7) into (10.40a) yields

{U:th,+d

[D(O) = sas[ p) Oxag + p;a 6x(a:x9P))
a = cQs(p)8g + PrayXag)

G = satyspy (mexa7)

8 =—cOspP3(ReB) + cOys

(10.42a)

Substituting (10.42) into (10.41a) yields
A =(D2q,)qs - (d4y)
B = (D*apxq;)qs + (d'm;xq,) (10.43)
C=Gqs+g

Substituting (10.37b-8) into (10.43) yields

A =a,;cos8¢ + a15in0¢ + a;
B Sb,cos9,+bzsin6.+ by (10.44)
c sc.coseg-rc;sineu- [«

The expressions for {a;. 4. ¢} (i =1-3, are exactly the same as (10.14a-c).

(2). Derivation of the second equation relating ¢,, €, and v,.
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The scalar product of apa, with both sides of (10.37) yields

aag(K+L-F)=0 (10.45)
i.e.
ayag (K +L = p cscasagas)=0 (10.452a)
i.e.
(utl;::cm(:::c)au«-ﬂ,x-:-o):o “10.45b)
where

(83 85)(8g 8e) = (2y<8,)-(8XRg) + (By Bg X2 Bs)

= (CSC Q34 C5CUss Qs) Gy — (€ Qas Bg) My (10-45C)

Substituting (10.45¢) into (10.45b) and expressing s, ¢ and Lxa, in terms of
G yields
U-gy =+ (10.46)

U'=5 tgy 3:%(8eXK) + ¥, (0,qs + ¢ 0 3 65 gXa;)
+ T (nyxng) + Biag

V = —canar(eexXK)—- v (sa»s0;qsay) (10.46a)
+ Y3 (82 8e)+ Py C A CICAHC g

Y1 = P4CSCOy CSCUs CICTiss
¥ = B — p4sazcotlles (10.46b)
= ~Bi+picancotay

Bi=p2(5023c0;+505)+Sicdssas
Ba=can(pr+p3c03-5430;50:, (10.46¢)
B) = ‘%(SQSO;SG” —pzsan)

Substituting (10.37b-4) into (10.46) yields

A’ cosy; + B’ siny; = ¢’ (10.47)
A’ =U"q
B = U ayxq, (10.473)
C =V

From (10.46a) and expressing K in terms of qs Yyields

{U’-D’-q,+d’

VDo g (10.48)
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[ D'@)= 505 {ps(®xn)xRe— 553 Qs [(Prm;)xme]x04)
+ N (c0, D + canshaxd)
] 9 = sonaxXlag(I-Sxcasagl+ noxag+Bia
G’z ~can{psaxas—Sss Qs (BXng)Xag)

- ?1(3(!5893.1)
L &' = B(Br8e) + PacBCchscss

(10.48a)

Substituting (10.48) into (10.47a) yields

A’ = (D’'*q)qs + d"q
B’ = (D'*a;xq,)qs + d"a,xq, (10.49)
C=Gag+g

Substituting (10.37b-8) into (10.49) yields

A’ = ay cosOg + a1’ sinbg¢ + ay’
B’ = by cosO¢ + by sin@¢ + by (10.50)
C’ =c¢)cosOg + ¢’ sinOg + ¢y’

where the expressions for {a. b’, ¢’} (i=1-3) are the same as (10.22a-c).

10.6. Conclusion

The analysis steps of Duffy’s spherical trigonometry method in Ref.[23] can be

summarized as follows:

e The 1st step: Derive the equation containing pair variables {0, o,.6,};

» The 2nd step: Derive the first equation containing {e., 8;. 6, 6,};

e The 3rd step: Derive the second equation containing {0s. 6,. 81, 8,};

e The 4th step: Eliminate e, from the two equations in steps 2 and 3, the second
equation containing {e.. e,, 8;} is obtained;

e The 5th step: Eliminate e, from the two equations in steps 1 and 4, the input-
output displacement equation (e, 8,)=0 is obtained.
The analysis steps of Zhang’s direction cosine matrix method in Ref.[106] can be

summarized as follows:

e The Ist step: Derive the first equation containing pair variables {6, ;. 6, 6,};

e The 2nd step: Derive the second equation containing {8 ©,, 6;, 6,};

e The 3rd step: Derive the equation containing {6.. ;. 6.);

e The 4th step: Eliminate e, from the equation in step 2 by substituting the two

equations obtained in steps 1 and 3, the first equation containing {e, 6, 8,} is
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obtained;

e  The 5th step: Derive the second equation containing {6, 9,, 6.);

e The 6th step: Eliminate e, from the two e.uations in steps 4 and 5, the input-
output displacement equation /(8. 8,)=0 is obtained.

The analysis steps of the vector algebraic method in this paper can be summar-

ized as follows:

e The Ist step: The scalar product of a,xa, with both sides of the loop equation
yields the 1st equation containing {6, 9,. 6,);

e The 2nd step: Using a.-s,=const, we directly obtain the second equation con-
taining {e,. 6,. 8.);

o The 3rd step: Eliminate e, from the two equations obtained in steps 1 and 2,
the input-output displacement equation £(8s 8,)=0 is derived.
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CHAPTER 11. ANALYSIS OF TWO 6R INDUSTRIAL ROBOTS

11.1. Introduction

In the past ten years, significant progress has been made in the arca of Kinematic
analysis of serial robots. The most popular approaches use 4x4 homogeneous transfor-
mation matrices ([S8} Paul 1981) and 3x3 direction cosine matrices ([106] Zhang
1980), based on the Denavit-Hartenberg convention ([10] 1955). These matrices are
the combination of decomposed vectors. When using a matrix method, one has to
express any vector, such as the direction of a link or an axis, in terms of rhree or four
scalar elements. This expands and complicates the algebraic expressions; thus, labori-
ous algebraic manipulation is often requircd for deriving a solution and the process is
error prone. Even for a robot whose structure is of medium complexity, the analysis
procedure of the matrix methods becomes quite difficult.

This chapter presents the forward and inverse kinematic analysis of two 6R
robots, based on the vector algebraic method. The method uses only vector operations
and, as a result, the algebraic expressions are compact. In addition, the new analysis
procedure is standardized and straightforward, and it offers better geometric insight
into the problems than the matrix approach.

The first 6R robot analyzed in this chapter has a spherical wrist, i.e. the last three
joint axes intersecting at a point. The second 6R robot does not have a spherical wrist,
but has three consecutive parallel joint axes. Using the vector algebraic method, the
analysis procedures are almost the same for the twi rolsts.

11.2, Analysis of the first 68 robot
(1) The Forward Kinematic Analysis.

The configuration of the first 6R serial robot is shown in Fig. 11.1. where {a}
(i=0-8) are unit vectors and a,-a.=0. This robot has six degrecs of freedom
corresponding to six rotary controllable variables, denoted as o, (i=1.2.4.5.6.7), where
8 = (m.im.) (i=1-7) is the right-hand-rotation angle from a,, 10 a., about s. From
the geometry of the robot it is known that a:=a,, hence #;=0,

Now the problem can be stated as follows. Given: {a. s 5, §5. 55.52.9,}, (1=1-7);
Find: {as. a4 R}.

From Fig. 11.1, we can write the vector loop equation and the structure constraint
equations directly,




- 185 -

Fig. 11.1

R=5,8,+S:8;+ Ssas + S-2 (11.1)

;.1 = c0sB; &;_; + sin®; a;xa;, (i=1-7) (11.1a)

From (11.1a) and a,=s; we get

(8, = cos, 29 + sin0;axme (1)
a3 = cosP,a; + sinba,xa, 2)
ag = cosf s, + sind a;xa, 3)
4 8 = cosOs 8 + sinBsasxa; C)) (11.1b)
a7 = cosBg s + Sing agxas (8)

| 83 = 08078 + $inH, 8)Xxag ©

| a, axay and a, are fixed mutually perpendicular (unit) vectors, which are
chosen as reference. Vectors », and a specify the direction and orientation uf the
end-effector (or hand) and they can be obtained iteratively from equations (11.1a).
After a,, as and s, are determined, i.e. expressed in terms of s, a, and the known
parameters, R can be obtained from (11.1). The detailed calculation is as follow:

Substituting (11.1b-1) into (11.1b-2) yields

2, =50,50,8)~ cB;50,8, X8y + 0,8, (11.2)

Substituting {(11.2), (11.1b-1)} into (11.1b-3) yields

85 =8 8 + Bya,xa0 + 8y, o(11.3)

+ The equation number specified by a bullet o ) corresponds 1o solution.
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5 = sBl(.tO;cO. +¢0:350)
8; =—-c0,(50,¢0, + ¢9,50,) (11.3a)
8 = (cB:004 - 560,50,)

Substituting {(11.3), (11.1b-1)} into (11.1b-4) vyields
8 = Q89 + @2 XBy + Q38 (“04)
a; =¢0,c05 - 350,50,

03=30|003+8)C0|30, (11.43)
A3=8,50,584—8,¢c0,50,

Substituting {(11.3), (11.4)} into (11.1b-5) yields
8 = By ag + Baapag + Bsa, *“-5)
Bi=8,c0s+ (a8 ~ @3 8,)56

B2 =8;c05+ (38 — ;8550 (11.5a)
By =83c0s + (@, 8; ~ @28,)56;

Substituting {(11.4), (11.5)} into (11.1b-6) yields
a3 =018 + P28 XNy + Py, *”-6)

P1 =@ c0, + (Bra; - Brxy)s6,
P2 = @2c8; + (B, - Bay)s6, (11.6a)
Pr=0y3c8 + (Ba; - Brat))s6,

Substituting {(11.2), (11.3), (11.5)} into (11.1) yields

R = 0,80 + O28,X8 + 038, «11.7)

0;= 558, + 5P, + §350,50;
0= 558+ S:B; - S3¢0,56, (11.7a)
Oy = 5583 +S7bg +S,c0,+$,
(2) The Inverse Kinematic Analysis.
Given: (R, a. 8, 87, 8,020, 5;} (j=1.3,5,7); Find: { e}, (i=1.2.4,5,6,7).
Let o,=90, be the "output angle", the first rotational variable to be determined.
Then the vector loop equation (11.1) of the robot can be rewritten as,

1=F (11.8)

{1-s..,+s,-,-n 8]

Fouw(Sim+Ssas) () (11.8a)
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where 1 is defined as the input vector (of the robot loop). It is the summation
of those vectors on the robot loop which are given or known at the beginning. F is
the floating vector (of the robot loop).

The scalar product of a, with both sides of (3.8) yields
Ia;=0 (11.9)

Substituting (11.1b-1) into (11.9) yields

A.cosO.+B,sin0, =C, (]1.10)
[ A= (D
B, = (a;xag’T) (11.10a)
C|=0
From (11.10) we get
0, =tan'(-A,/B) o(11.11)

Squaring both sides of (11.8) and taking into account of (11.8a-2) yields

25,Ss(ayas) = P~ (5§ +53) (11.12)

Substituting (11.1b-3) into (11.12) yields

A.cosﬂ‘+B.sin9.= C‘ (11.]3)
A4= 23355
B.=0 (11.122°

Ci= [P~ (5% +52)

From (11.13) we get
0480(‘5-‘(CQ,A4) (]1.14)

At this point, e, and e, are known. From Fig. 11.1 we can see that both a,
and s can be expressed in terms of one unknown, ;. Consequently. we can say that
the loop equation (11.8) involves only one unknown, i.e. 6;. The scalar product of
{a. a;xa,} with both sides of (11.8) yields

(5385 + Ssasya; = ~(Ia))
{(S;n; + Ssagyaxa, = —(Iaxay) (11.15)
Substitutine (11.1b-3) into (11.15) yields
Uyay =V,
Uy sy =Vy (11.16)
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Uy=(S3+Ss)a;—Sss0,a:xa,
Uy’ =(Sy+Ss)apxm; + 5550,
Vy=—(kay)

Vy = —[Iaxa,)]

Substituting (11.1b-2) into (11.16) yields

Ajcos8; + Bsin®; = C,
Ay cosBy+ By’ sing,=Cy

Ay =Uys,
8; = Uyapa,
Cz = V2

Ay = Usay
B, = Uy a)xa,
Czl - V:'

Expanding (11.17a), namely, substituting (11.16a) into (11.17a) yields

Az=(83+S85c,)
By=~ 8550,
Ca=5:(ar87))+5, -0,

Ay=Ss50,

By= (53 + S5c0y)

Cy'=57(56,(8087)~cO; (a1xa0'®7)}
~(0,56,-0:¢0))

From (11.17) we obtain e,:

c0s8;=(C38;'-B1C2)/(A1B,'-B3A7)
$in@,=(A,C; - C3A4,)/(A; By -B;AY)

(11.16a)

(11.17)

(11.17a)

(11.17a)

(11.17b)

(11.17b)

o(11.18)

Because o,, 6, and e, have all been determined, a; can now be found from
equation (11.3). From Fig. 11.1 we can see that a is perpendicular to a,, i.e.

as8s)a; =0

(11.19)

where a; can be expressed in terms of e,. Substituting (11.1b-4) into (11.19) yields

Ascosbs + Bysin@s = C

As =8y
Bs = apxaysy
CQ‘O

(11.20)

(11.20a)
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From (11.20) we get
8 = tn'(~As/Bs) o(11.21)
The scalar product of {s. a.xa, } with both sides of (3.1b-i) (i=5.6) yields
ohl:

{coselol = 8°842

$ing; .y = 8;,1X8;°8;.2 (i=5.,6) «(11.22)

Because each of the angles ¢,, 6, and e; may have two solutions, as determined
from (11.11), (11.14) and (11.21), we can conclude that this robot can have a max-

imum of eight closures or inverse solutions.

11.3. Analysis of the second 6R robot

(1) The Forward Kinematic Analysis.

The configuration of the second 6R robot is shown in Fig. 11.2, where {a}
(i=0-9) are unit vectors and a;a,,;=0. Let 6, = (s,_;a.) (i=1-8), be the right handed
rotation from s, to ., abouts,. This robot has six rotary controllable variables, i.c.

o (+1=1,2,4,6,7,8)
8,=0 (j=3,5)

Now the forward analysis problem can be stated as follow. Given: {s 2, 8;,5:},
(i=1-8, x=1,3,5,7,8); Find: {s. 2. R).

From Fig. 11.2, we can write the vector loop equation and structure constraint
equations directly,
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R=S58;+ 583+ Ssas+ Sr87+ S8 (11.23)

a;,; = cosH; a;.) + 8ind; &, xa;_, (i=1-8) (l l .238)
From (11.23a) and considering that 6,=6,=0, i.c. (s;=a,=ay) We get

(8= c8 80 +50,8,x80 4))

a3 =c0,a; +36,a,xa, ()
) 85 =cO,m3 + 56,8y%a, 3)
& = cOsns + 50 mXuy C)]
8 = cOrm; + 56, 8:%n; )
| 8 = cO3my + 50y axmy )

(11.23b)

Substituting (11.23b-1) into (11.23b-2) yields
83 =30,50,80 - cO;50,8,X80 + Oy (11.24)
Substituting {(11.24), (11.23b-1)} into (11.23b-3) yields
85 = 8,8 + Syayxm0 + 838, (11.25)

8= 50,(50;c0,+c0,598,)
8;=-c0,(502c0,+c0,50,) (11.25a)
§3= (c0;c0,~ 0,50,

Substituting {(11.25), (11.23b-1)} into (11.23b-4) yields

8= 80 + Oz8,XRg + Q38 (11.26)

a) = 8; cO¢ + 8330|306
| a; =806~ 83¢0,50, (11.26a)
| ay=8;c05+(5,c0,-8,50;)56;

Substituting {(11.26). (11.23b-1)} into (11.23b-5) yields
8y = By ag + Ba;xag + Bsa, ‘11'27)

B.=c0;c0)-x;50,50,
B;=350,c07+ &390, (11.27a)
Pr=ct;50,50;-0c0,50,

Substituting {(11.26), (11.27)} into (11.23b-6) yields

8= Py 8o + P18,X80 + P38, o(11.28)
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P2=azc0s+ (Bya, -~ Biay)s6, (11.28a)

P1=a,¢0; + (Byay ~ Byay)s0,
Py =a3cOy + (Bia ~ Bacx))s 6,

Substituting {(11.24), (11.25), (11.26), (11.27)} into (11.23) yields

R= Oag + G128 X8g + O34, *11.29)

0y = SyB; + 510y + 558, - 53¢0,56, (11.29a)

Oy = Sy + 51a) + 558, + §350,50,
Oy = SyPBy + 5103 + 55834+ 51¢0,+5,

(2) The Inverse Kinematic Analysis.
Given: {R. .8, 8,8, 5} (i=1,3,5,7.8); Find: {9;}, (i=1,2,4,6.7,8).

Let o,=0, be the "output angle", the first rotary variable to be determined.
Then the vector loop equation of the robot can be rewritten as,

1=F (11.30)
I=(S\a;+ 5 ~-R) §))
{l' = ~(Symy+ Ssas + S187) (2) (11.30a)
b =cOuny-sOyaxay (1)
{u*cﬂ-m-somxag @ (11.30b)

From the scalar product of s, with both sides of (11.30) and the robot geometry
we have

Ia;=0 (11.31)
Substituting (11.23b-1) into (11.31) yields

A;co88, + B, sin®, = C, (11.32)
Ay =lay
B =Faxa, (11.32a)
C| =0
From (11.32) we get
€, =tan"'(~A,/B)) o(11.33)

From sem=0 and as=s; we have
aray=0 (11.34)
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Substituting (11.30b-1) into (11.34) yields

AgcosBy + Bysindy = C,
Ag = aray

By = ~2yayxay
C. =0

From (11.35) we get
6, = tan'(~Ag/By)
From (11.30b-2) and as=s; we get

83 = cOy8g — 5O ayXay

The scalar product of {s;. a;xa;) with both sides of (11.36) yields

(a28g) cO; — (aymyxag)s6,y = 1
(myXa;'85) 8, — (ByXm)'RyX0g) s 6,=0

Solving (11.37) yields o,:

cosBy = [(myXa;) (87%ag)}/ (81°27)
5in0; = [(m,xm2)a)/ (8;-27)

(11.35)

(11.35a)

o(11.36)

(11.36)

(11.37)

o(11.38)

Where a, is given by (11.30b-1) and (11.26). Now the vector loop equation of

(11.30) can be rearranged as:

5383+ Ssa5 = (14 Sya))

Squaring both sides of (11.39) yields

2S5;Ss(ayng)=(1+S,my - (S} +53)
Substituting (11.23b-3) into (11.39) yields
Aycos0,+ Bysin®=C,
rA‘ = 2S,S,

B‘ =0

Co= [(1+S727) (53 +53)]
From (11.41) we get

B,=con ' (C/AY

Substituting (11.23b-3) into (11.39) yields

(53455c0)8:45:50,8= ~-(1+5487)

(11.39)

(11.40)

(11.41)

(11.41a)

o(11.42)

(11.43)
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! The scalar product of {a;. s;xs,) Wwith both sides of (11.43) yields

(11.44)

U:‘l; = V,
Uyay = Vy'

) U= (S3+5sc0)a;,~55s0,ay%a;
U= (S3+Ss.0)8%0,+5556,8,
Vyz=—=(1+Sy8)n

VY =—(1+ S)m)yexs,

(11.443)

Substituting (11.23b-2) into (11.44) yields

{A,coso,+n,sino,-c,

Ay’ c0s8,+ By sin8,=C,' (11.45)

Az = Uysy
B3 = Uyayxa, (l 1.45a)
Ci=V;

Ay’ =Us"s
By = U amxa, (11.45a)
Cz' = vz'

From (11.45) we get o,:

{c“o,g (C2By~B1C1)/ (A1By' ~B1A) «(11.46)

$in0; = (A3C1'~C3A2)/ (A2By' —B2A3 .

The scalar product of {a;, a,;xa;) with both sides of (11.23b-4) yields eo:

{co-o‘ =a5m

0, = a8 (11.47)

Because each of the angles o,, 6, and e, may have two solutions, as determined
from (11.33), (11.36) and (11.42), we conclude that this robot has at most eight clo-
sures or inverse solutions.

11.4. Conclusion

It is demonstrated in the above analysis that simplicity is an intrinsic property of
the vector algebraic method.

The forward kinematic analysis is straightforward and warrants no additional
comments. As for the inverse kinematic analysis, after the first controllable variable is
determined, there is a lot of flexibility in deciding which variable is derermined next.
However, the analysis steps are similar and the expressions are standardized.
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Although the two robots considered here have special geometries, i.e. a spherical
wrist or three parallel axes, the method is general and can be utilized to analyze any
robot. The two robots considered in this chapter are frequently used in industry and
their matrix analyses have appeared in many textbooks on robotics. The reason they
were chosen for analysis in this chapter is to serve as a reference for comparison.
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CHAPTER 12. TWO ROBOTS RRPRRR AND RPRPRR

12.1. Introduction
Two six degree-of-freedom serial robots RRPRRR and RPRPRR are kinemati-
cally analyzed using vector algebraic method.

12.2. Analysis of the RRPRRR robot

Q). The Forward Kinematic Analysis.

The diagram of the robot RRPRRR are shown in Fig. 12.1, where {a} (i=1-6)
are all unit vectors. This robot has one translational and five rotational controllable
variables, which will be denoted as x, and e, (i=i-5), where o, =(@;_;a.) (i=1-5)
being measured by the right rotation of ., to a;, about a,.

%

Fig. 12.1

Now the problem can be stated as follow. Given: {w. s, $,. 53 S5, x5, 6, }, (i=1-5);
Unknown: {as. as. R},

From Fig. 12.1, we can write the vector loop equation and structure constraint
equations directly,

R=Sa,4+8:8+30,+ 58 (12.1)
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» = €080, a9 + 5in6, a\xay m
8y = cosh, 8, + sin;axa; ()
{ a = cosBya; + sinByaxa;  (3) (12.1a)
ag = cosBym; + sinb, axay O)
L‘t‘co‘es'«t* 5in0, ayxa, (s)

ao and a, are fixed (unit) vectors, which can be chosen as reference. Vectors a,
and a expressed in terms of a, and s, can be obtained directly from iterations of
the equations of (12.1a). After s; and s, are determined, i.e. expressed in terms of
2, », and the joint angle parameters, R cai be obtained from (12.1).

Substituting (12.1a-1) into (12.1a-2) yields
8;=350,50,80 ~ cO,56,8,x8 + 6,8 (12.2)
Substituting {(12.1a-1), (12.1a-2), (12.1a-3)} into (12.1a-4) yields
85 = B1ag + Bya;xag + B30, «(12.3)

Bi=30,(c0,203 +50)c0,00;) +50,58,c0,
Pr=30,(50,50, —c0,c0;c0,) - c0,58,c0, (12.3a)
Bs=c0:c0,- 30,c0,50,

Similarly,

8 = P18 + P28 X80 + P38, «(12.4)

,
P1=c05(c0,c8; - 30,c0,50,) + 59,50,50,564
~ c04305(c0;50; + 50,cB;c0,)
4 p3=mcOs(50,c0;+c0,c0,505) ~ c8,50,50,50, (12.48)
~0,504(50,50, - c0,c0:c8;)
= $04(c0250, + 897693094) +350;50,c04

Substituting {(12.1a-1), (12.2), (12.3)} into (12.1) yields
R=7y,80 + 1281X00 + 138 (12'5)
Y = S;cO. + X;SO|JO; + S,B,

Yom §3308; = x3¢0;50; + SsBs (12.53)
1;-5, +x;c93+ S,B;

(2). Inverse Kinematic Analysis.
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Given: {R. a.8,. 5. 8); Unknown: {x,. e}, (i=1-s).

Without any loss of generality, let o,=@,, i.c. o, is taken as the "output angle",
which is the first rotational variables to be determined. Then the vector loop equation
of the robot can be rewritten as,

xsas+14+)J=0 (12.6)
J=)(O))= S8, ¢))
{l =S +Sas-R () (12.62)

Where 1 is defined as the input vector (of the robot loop), it is the summation
of those vectors on the robot loop which are given or known at the very beginning. J
is defined as the output vector (of the robot loop), it is the summation of those vec-
tors on the robot loop which can be expressed in terms of the output angle, in this case
itis e,.
The scalar product of s, with both sides of (12.6) yields
8:(1+))=0 12.7)

Substituting (12.6a-1) into (12.7) yields
Tay=-§; (12.8)

Substituting (12.1a-1) into (12.8) yields

A €080, + B sin®, = C (12.9)
A =Tng
B =laxa, (12.93)
C=-8,

Let y =1n(®y2), then we have,

= (] = v? 3
(s 12.10)
Substituting (12.10) into (12.9) yields
(A+C)y*=-2By +(C -A)=0 (12.11)
Solving (12.11) yields y, then ,=2un"'y, i.e.
©,=2un'((B x VAT+BZ-CH /(A +C))} o(12.12)

Now x, and s, are the only unknowns in (12.6), from (12.6) =>
xsll+)isV(F+21)+ P o(12.13)
nme-(1+3)/x, (12.14)
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From Fig. 12.1 we can see clearly that,
a = (< ay) / lnpxasl (12.15)

Substituting (12.14) into (12.15) and

layxasl = v (ayxas)* = v 1 - (ayas)

we cbtain
ag =+ [(1+ Jas) /v x7 — (@ + Jyasl (12.16)

Now {a )} (i=1-6) are all known vectors, where s, s, and a, are given by
(12.1a-1), (12.14) and (12.16), respectively. {o;} (i=1-s) can be casily obtained from
(12.1a-2) to (12.1a-5).

The scalar product of {s;.,, a;xa_} with both sides of (12.1a-i), (i=2-5) yields
9;.

cos0; = (8;_1'%;,
{ V= -t (i=2.3.4,5) «12.17)

sin@; = (@;%Xn;_y'8;,))

Because o, and a, both have two solutions, this can be seen from (12.12) and
(12.16), therefore, we conclude that this robot has four closures.

12.3. Analysis of the RPRPRR robot
(1). The Forward Kinematic Analysis.

Fig. 122
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The diagram of the robot RPRPRR are shown in Fig. 12.2, where {s;)} (i=1-9)
are all unit vectors. Denote o, = (a,a;.1) (i=1-8) being measured by the right rotation
of a. t0 a., abouts. This robot has four rotational and two translational controll-
able variables, i.e.

] i=),4,7.8
{ G ) (12.18)

x; (i=2,6)
See Fig. 12.2, the following results relating the structure parameters are given:

6, = (8),83) = const.
0,=0

0s=3x/4
=314

(12.19)

Now the forward displacement problem can be stated as follow. Given:
{%.2,,0,,x;, 5}, (i=1-8, j=2,6, k=1,3,5.8); Unknown: {s. s R).
From Fig. 12.2, we can write the vector loop equation and structure constraint
equations directly,
R= Si8; 4+ x20; 4+ Sha3 + S,a, + Xe8g + Sgny (12.20)

By = €0s0; 8.y + sino; 8 X8 (i=1 ’8) (l2.20a)

From (12.20a) and considering (12.19) and (a,=a,=a;) we get

[(8; = cO, 80 + 58, 8,x8, (¢))
a;=c0,y0; + 50,8:X8, 2)

8= cOim + 350,8xmy 3

ag = mxas @ (12.20b)
Sy =cOi05+ 50, mxag  (5)
L 89 = cOym; + 305 8928 ()
Substituting (12.20b-1) into (12.20b-2) yields
832 50,5080 - c0,50;8,X8 + 038, (12.21)
Substituting {(12.20b-1), (12.20b-2)} into (12.20b-3) yields
8= 8,8 + 8;8,x8 + 538, (12.22)

8; = 20, (803694 +¢c0;50,)
8; 2 ~c0,(50;c0,+c0;50,) (12.22a)
8= (c8;c0,- 56,50,

Substituting {(12.22), (12.20b-1)} into (12.20b-4) yields

8= 8;50,8 — 8,008 + (8,0, - 8,20,)s, (12.23)
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Substituting  {12.23), {12.20b-1)} into (12.20b-5) yields

as = Biag + Brayxa + Bsa, (1224)
Pi= 50,(mcB;~ns6)
B; =—cO,(mcB; - ns0;) (12.24a)
By=—(ms0;+nchy)
m = (0400, - 50,36,)
n == {(c0,50,+56,c6,) (12'24b)

Substituting {(12.24), (12.20b-1)} into (12.20b-6) yields
8 =012 + Pr8)X%0 + Pa8y «(12.25)

p1= cO,c0q - B;SO|S°|
P2=350,c05+ P3cB,56; (12.25a)
p3=P136,505 — ;0,56

Substituting {(12.20b-1), (12.21), (12.22), (12.23), (12.24)} into (12.20) yields
R = 0,8 + G;8,X8¢ + 038, o(12.26)

o szcol + 85330,30, + 355| + 3583303 + S.B|
O3 = X750, = $300,50; + S8 ~ S50, + 53 B2 (12.26a)
Oy = 851+853¢0+ S35+ 56(87¢0,-3,56,) + S4B

(2). Inverse Kinematic Analysis.
Given: {R, a 8;, 35, 8 }; Unknown: {x, x¢, 6, }, (i=1.4,7,8).

Without any loss of generality, let e,=0, i.c. o, is taken as the "output angle”,
which is the first rotational variables to be determined. Then the vector loop equation
of the rchot can be rewritten as,

X3my+ xe+ Ssas+1+J=0 (12.27)
e
Fromm (sysy)=0 and as;=a, we get
oye;=0 (12.27)
Substituting (12.20b-1) into (12.28) we get
AycosB; + B,3in8, = C, (12.29)
Ay =gy
B) = a;xap8y (12.29a)

C,-O
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From (12.29) we get

o= l..l-'[-A|’B|] (12.30)
The scalar product of s, with both sides of (12.27) yields
x3+ap(I+])=0 (12.31)

Substituting {(12.27a), (12.20b-1)} into (12.31) yields
x3= (029 + 50,8,X80) (R — Sg89) o(12.32)
Now (12.27) can be written as,
X+ Ssag=M (12.33)
M=z-(x0+1+])) (12.33a)
where M is known vector. Squaring both sides of (12.33) yields
x¢=V(MZ =59 «(12.34)

Now s and a are the only unknowns in (12.33) and both of them can be
expressed in terms of e, and known vectors. Substituting (12.20b-3) into (12.20b-4)
yields

g = CO;.;X.; - 304.3 (12.35)
Substituting {(12.20b-3), (12.35)} into (12.33) yields

(x6C04+ S550,)8:%83 — (X6304 - Ssc0)a3 =M (12.36)

The scalar product of a, with both sides of (12.36) yields

Aqscos8, + B,sin0,=C, (12.37)
Ays= S,
Ba= -X6 (12.373)
Cy=(May)
The form of (12.37) is the same as (12.9), therefore, using (12.12) we have
O =2tan"'{[BtVAS +87 —C3 )/(As+BY)) o(12.38)
The scalar product of {as. s;xa) with both sides of (12.20b-5) yields o,:
€098, = (8s8y)
{-hoq- (axag20) «12.39)

The scalar product of {e;, asxs;) with both sides of (12.20b-6) yields e:

€00l = (8:'8y)
{M = (agxarsy) «(12.40)
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Because 8, and e, both have two solutions, as seen from (12.30) and (12.38),
we conclude that this robot also has four closures.

12.4. Conclusion

Most industrial robots have special geometric conditions, such as

e  The adjacent pair axes are parallel to each other; or

e The pair axes are perpendicularly intersecting with each other; (this situation

can also be statec as “zero link length", by the way, why?);

The special geometric conditions usually render a robot easy to analyze. Using
the vector algebraic method it is very easy to take such advantages. What we should
do is simply to check the diagram of the robot, identify the special geometric condi-
tions, and then use one of them to establish an algebraic displacement equation. There
is no rigid rule on which joint variable should be determined first and which one
should be the next. It is quite flexible!
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CHAPTER 13. ANALYSIS OF THE GENERAL 4R AND SR ROBOTS

13.1. Introduction

In order to arbitrarily position and orient a robot end effector in space, a robot
with at least 6 degrees of freedom (DoF) is required. However, for many industrial
tasks such as welding and assembly, robots with 4 or 5 DoF are sufficient. These
simpler robots have the advantages of being less expensive and easier to control.

Most industrial robots are designed with parallel and/or intersecting joint axes,
resulting in "special” kinematic cases which are relatively easy to analyze. The
kinematic analysis of the general case, in which all axes are skewed and nonintersect-
ing, is substantially more difficult. In this chapter, the general 4R and 5R robots (4
DoF and 5 DoF robots with rotary joints) are kinematically analyzed using vector alge-
braic method .

The general 4R robot was first analyzed by Manseur and Doty [55,56], using the
Denavit-Hartenberg matrix transformation method [10). The displacement equations
are obtained as first order polynomials for the general 4R robot, and as second order
polynomials for ten 4R robots with special geometries.

Using the Denavit-Hartenberg matrix method, the analysis consists of first per-
forming a series of matrix transformations, and then equating the corresponding matrix
elements. To this stage, a set of simultaneous equations containing 1 to 3 joint vari-
ables is obtained; these are then used to derive displacement equations containing only
one joint variable, Since less than half of the equations obtained in the second step are
useful, there is always some unavoidable extraneous work in the first step — this is
an intrinsic disadvantage of the matrix method. However, the vector algebraic method
is free of this drawback.

The general SR robot was first analyzed by Sugimoto and Duffy [67]. In their
analysis, they joined the end effector to the first or grounded link of the arm by a pair
of hypothetical joints and links, thus forming a hypothetical closed-loop spatial
mechanism with mobility one. Sugimoto and Duffy outlined the analysis procedure
for the resulting mechanism using the Spherical Trigonometry Method [28], but they
did not show the detailed analysis for the general SR robot. By introducing a pair of
hypothetical joints and links, the SR robot problem is transformed into 6R robot prob-
lem, which complicates the SR robot problem substantially. We will show that the SR
robot can be solved directly using the vector algebraic method, without the need for
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additional hypothetical links and joints.

By 1983, the best result obtained for the displacement equation of a 6R robot was
a 32nd order polynomial [27]. This solution was replaced by a better one, a 16th
order polynomial, in 1988 [49]. The order of the polynomial equation which could be
derived from Ref.[67] remains unknown.

The general 5R robot was recently re-analyzed by Manseur and Doty [57], and
solved numerically using the Newton-Raphson technique after first formulating the
problem using the Denavit-Hartenberg method. They did not derive the solution in
closed form, i.e., as polynomial displacement equations.

in this chapter, the displacement equations of the general 4R and SR robots are
obtained as first and eighth order polynomials, respectively. To our knowledge, this is
the first time an eighth order polynomial solution for the SR robot has been obtained.
The analysis for those 4R and SR robots with special geometries is omitted, for they
are easier to analyze than their corresponding general cases.

13.2, Several vector formulae

—————=F s

Fig. 13.1

1}\
»
\
\
s
\
L4

The vector algebraic method is described in detail in chapter 2. The method
makes extensive use of well known vector formulas. Of particular importance is the
representation of rotations. In Fig. 13.1, unit vector q is perpendicular to both unit
vectors s, and a;, and angle e is the right-hand rotation angle from s, t0 a,. The vec-
tor formulas representing this rotation are

8;X8; = qsind (13.1)
8; = cosd a,; + 5ind qxa, (13.2)

8; = cos0 8; - 5in® gxe; (13.3)
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Furthermore, extensive use is made of the following well known vector formulas,
which are listed below for convenience:

ax(bxc) = (a-c)b ~ (a-b)c (13.9)
(axb)xe = (a-c)b - (b-c)a (1..5)
(axb)-(cxd) = (a-c)b-d) - (a-d)brc) (13.6)

13.3. The forward kinematic analysis of the 4R robot

The configuration of the general 4R serial robot is shown in Fig. 13.2, where
{si.q;} (i=1-5; j=0-5) are all unit vectors. This robot has four degrees of freedom
comresponding to four rotary controllable variables, which will be denoted as o, (i=1-
4), where ¢, =(q_1q) (i=1-5) is the right-hand-rotation angle from q_, to ¢ about
s,. The perpendicular distance and twist angle between successive joint axes »; and s,
are p, and «,,, respectively. 7he mutual perpendicular distance (or offset) between
successive links piq and pi.q. - Jenoted by s;.

Fig. 13.2 General 4R Robot

Now the forward kinematic problem can be stated as follows: Given
{% 85 Pis Siate “Ud} (1 =] '4)’ awnnine (.50 Qs. R)’
From Fig. 13.2, we can write the vector loop equation directly.
R=pig~S:8:4p2q0=S38y4p3q ~SaM+psGa+ Ss8s (13.7)

Using (13.2), we can state the relative direction equations as
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(i=1-4)

8, = COS04 5, & + Sinoy ;.| q;xa;
Q. = c0s8; q; + sind; 8;,,xq;

(13.7a)

Using (3.7a) repeatedly, vectors g, a (i=1-5) can be expressed in terms of

{a1. 90, a;xq0} as follows

8 =x8,+Y G+ ZayXgo
(i=1-5)

Qi =4 8) +V;Go +w; 81XQp

ll|=0
v =8,

w, =350,

X=X C®igag+(HVi —yiw)say .,
Ya=Rctua+(xw ~zu)sa;, (i=1-4)
Gau=gcua+ (s — X% vi)sQia

Uiny = 8 €0y + (W Yias — Vi 211) 584,
Vit 2V €0y + (W 2y — Wi %544)80,, (i=1-4)

Wi = Wy €010+ (Vi X0y = 4 9141)5040

o(13.8)

(13.8a)

(13.8b)

(13.8¢)

(13.8d)

After {x.y, 2. w,vi,w} {i=1-5} are all calculated from (13.8a-d), the orientation
vectors s, qs are known. The end effector position is found by substituting (13.8) into

(13.7) to get

R=r;a +ryqp+ rysxq
.

4 4
ry= 2(}’; u,)-zs,x, + Ssxy
i=) i=2

A

3 .
ra= ¥ (piv)- 2:51 ¥ + Ssys
i=1 i

3 .
ra= X (pw)-X 854 +5ss
L i=} i=2

13.4. The inverse kinematic analysis of the 4R robot

The inverse kinematics problem can be stated as follows:

{R. 85, g5} and {p;. 5.1 0y, 05} (i =1-4), determine {9, )} (i =1-4).

t The equatira numbers indicated by bullets o ) correspond to solutions.

«(13.9)

(13.9a)

Given {q, %),
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Let o.=@, be the “output angle", the first rotational variable to be determined.
Let o,=v, be the "auxiliary angle", the variable to be eliminated from simultaneous
equations. Then the vector loop equation (13.7) of the robot can be rewritten as,

1+)=F (13.10)

1 is defined as the input vector of the robot loop. It is the sum of those vectors
in the robot loop which are given or known at the beginning. J is the output vector of
the robot loop. It is the sum of those vectors in the robot loop which can be expressed
as a function of the output angle (@, in this case). F is the floating vector. Cutting
off the loop at the two ends of the floating vector, we get two separate chains, where
one part is fixed on the ground and the other part is floating. This is how floating
vector was named. The strict definitions of the three vectors are given in chapter 2.

Given these definitions, the vectors 1, J, and F can be determined from

J=p3q3~538 )
I= ‘S.I.'f‘?g‘h'ﬁSglg"R (2) (l 3.103)

F=-p,q+S:0-p1n €)]

8 = COuR—SAxuqpag (1)
Q@ = c04q4-30,aq¢ )]

8 = COsBs—SAsqaxas  (3) (13.100)
Qs = cO5q5-30585xqs 4
Substituting (13.10a) into (13.10), we get
I+ (psq3-S385) =~p,q;+85:4-p2q, (13.10

The analysis proceeds by performing certain basic operations as defined in
chapter 2. For this type of mechanism, the basic operations are: (i). dot product s, and
s, with both sides of the vector loop equation; (ii). square both sides of the vector loop
equation; (iii). evaluate a,s, from the floating part and ground part of the loop equa-
tion,

The vector algebraic method leads to certain standard vector equations, which
have bezn solved in chapter 2.

In the first stage of the analysis that follows, we obtain two linear equations in
cos®, and sin®,, from which we can obtain e,. It is always possible to find two pairs of
equations in e, and one auxiliary variable v,. The necessary linear equations can then
be obtained by eliminating v..
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Step 1. Derivation of the first equation containing ..
Dot product s, with both sides of (13.10)’ to get

oI+ (p3a))y gy~ (S18))8 = S0 -p3s 125V, (13.an
Dot product a, with both sides of (13.10)’ to get
l'l;’—s;n = Szcdn—plsﬂnSVz (13.]2)

Eliminating v, from (13.11) and (13.12) we get

(Pipssanayqy—(piSasanm+prsa;Dra

= pisan(S;cay -8 N-prsap(S+S:can) (13.13)
Substituting (13.10b-1) into (13.13) we get
Ugy=" (13.149)

U= pipisana;+sansx(p,Sysans +pysa,l)
V = psan(Sica;p—arl) - prsa S3+S3can) (13.143)
+ cayag(p) Sisnina +pasapnl)

Substituting (13.10b-2) into (13.14) we get

A cosO, + B sin®, = C (13.15)
A =Ua,
C=V

Step 2. Derivation of the second equation containing @,.

Equating a,a, evaluated for the floating part and ground part of the vector loop,
we get

883 = €03 €0y~ S Oi3 S Ugs C Wy (13.16)
Squaring both sides of (13.10)’ we get

(P+pf +5§)+(2p;1yqs—(2S;1)y 0y

=(pt +pf +53)+2p,p2cwa (13.17)
Eliminating v, from (13.16) and (13.17) we get
(2pysasanlyg;+2(pip28,-Sssa35aslya, (13.18)

=2pp1cQyc0-30,50,(Bepl +58-pt-pi-S})
Substituting (13.10b-1) into (13.18) we get
U"q3 sV (13.19)
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U'=2pysapsapnl-2sayai(p prn,~S)sasanl)
V =2p ,prcanctn=-2¢cQyuds(pi1p28,-S3sasanl) (13.19a)
-sapsan(P-pf +5i -pf -pf-53)

Substituting (13.10b-2) into (13.19) we get

A’ cot®, + B’ 5in@, = C (13.20)
A =Ua,
B =Uqoa, (13.20a)
C =V

Step 3. Determination of e,.
Solving the two linear equations (13.15) and (13.20) we get

{COIOH'—Qz/Qs «1321)

sinG, = 0,/0Q;

Q1= (AC -AC)
Q:= (BC -BC) (13.21a)
Q3= (AB' -A'B)

Step 4. Determination of e,.
From (13.16) and (13.12) we get

{cogezz(cauca‘n-.l'.ﬁ,("aus%) *13.22)

$in8; = (S3+S1can-I83)/(p,say)

Since o, is known, a; of (4.13) is also known. Using (13.10b), s, can be
expressed in terms of {0.. a5, qs} and other known quantities as follows

8 = D)8 + P2qQs + Pr8qs (13.23)

P17 (C Qg Clgs =5 Q3 €045 Qlys)
P2 (€ Qg S Qs +8 03q €040 Ces) 5 05 +35 03g 50,40 85 (13.23a)

Prm(C Oy S+ 503y C0,C0s) 0550350430,

Step 5. Determination of e,.

We can express s, in terms of vnknown variable e, and known quantities e,, g,
s, etc. as follows,

83 = m, cos; + m,sinb; + B;l| (l 3.24)
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m; =P, go+ B2 goxa,
m;=B;q,- B goxa,
4 Bi=s6:san (13.24a)
&-laucaz)‘bt%c‘ausﬁg
Br=caycan-cbsa;san

Combining (13.24) and (13.23) we get
m, cosd, + m;5inb; =m (13.25)
m = 085+ P2Gs+ Py asxqs—Pa, (13.25a)
Taking the dot product of m, and m, with both sides of (13.25) we get

{cooo. = (mym)/ B3 +B5)

sin6, = (mym)/ (B7+ B «13.26)

Step 6. Determination of e..
From (13.7a) or directly from Fig. 13.2 we can write

@ =cB;q2+50;85%q, (13.27)
Taking the dot product of q, and ayxq, with both sides of (13.27) we get

cosd; = gy g2
{,M:, e «(13.28)
where q, and s, can be expressed as functions of e,, and q, can be expressed as a
function of e, and e,.

13.5. The inverse kinematic analysis of the 58 robot

The forward kinematic analysis of the general 5R robot is omitted, for it is
exactly the same as that of the 4R robot discussed in section 13.3. The configuration
of the general 5R serial robot is shown in Fig. 13.3. The symbolic system is similar to
that of Fig. 13.2.

The problem can be stated as follows: Given {q, ), (R e.q) and
{Pis Siots @igu1, 06} (£ =1-5), determine (g, } (i =1-5).

Now we would like to reformulate the problem slightly. After (R, a.q,} are
given, the position and orientation of the 5th joint are also specified. Therefore, solv-
ing the problem of Fig. 13.3 is equivalent to solving the problem of Fig. 13.4, which
can be formulated as follows: Given {a,.p;qs 8} and {p. 5. q, .. G5} (i=1-5, j=-4),
determine {o,} (i=1-5). Here in Fig. 13.4 the angles ¢, and e, are different from the
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Fig. 13.3 General SR Robot

.—"’

Fig. 13.4

corresponding ones shown in Fig. 13.3; however, their relationship can be easily deter-
mined.

Let o;=0, be the "output angle”, the first rotational variable to be determined.
Let o,=v, be the "auxiliary angle”, the variable to be eliminated from simultaneous
equations. Then the vector loop equation and the relative direction equations of the
robot can be written as,
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I+)J+L=F

(13.29)

where L is defined as auxiliary vector. It is the sum of those vectors in the robot
loop which can be expressed as a function of the au.iliary angle, which is v, in this
case. Using this definition, and the previously stated definition for 1, J and ¥, we

obtain

L=(p19:-5:8)=p1q,~ 5252, X85~ S2c Q28 (1)
J=(PaQu—S48)=paQut Se5Qsqexas—SscQuds (2)
I= -Ssn5+p5qs—-S)8, 3
F= <p;qa+S38,-p3qy @

8=Chy85—S Qs qoas (1)
Q=cO3qs-5O5a0qs (2)
{ m=capa +sapq;xa; (3)
Qi=c¥1Qs+sV 81X (4)
8 =C 05y 85+ 5 Qs gXag (5)

.

Step 1. Derivation of the first equation relating v, and 6,.
Dot product s, with both sides of (13.29) to get

8148 )-8 = S3c03—-p3sayns6,

Dot product a, with both sides of (13.29) to get
acl=-Si+asl = =prsay s+ Sycay
Eli- -’nating e, from (13.30) and (13.31) we get
(P3sanayL-prsay(I+lrm=(pssanlya+h,
hi=(Se+Sicy)prsan—(S1+S3can)prst

Substituting (13.29a-1) and (13.29b-3) into (13.32) we get
Uq=V

Umyi 84474~ 138X (1+])
{V-llll‘l"flllz‘(l'fl)'f’l;

Y =pi1prsay

Y = p1S515Q35Uz33Cas

1% = pisasay,

my= p;laz’l+s;cauianl|
W= pac@ns0Gys,

-

(13.29a)

(13.29b)

(13.30)

(13.31)

(13.32)
(13.32a)

(13.33)

(13.33a)

(13.33b)
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Substituting (13.29b-4) into (13.33) we get

A cosy, + Bsiny, =C

A =Ugqy
B = U-C.XQ,

C=V

Expanding (13.34a) we get

A= aleos05+agsin6,+a,
B = b,c080;+b;5inOs+ b,
C= C|M,+Cz'h03+c;

where

a2 = D(qsyqsxas

a; = D(qs)qs
ay=dqs

by = D(a;%qs)qs
bz = D(8)%qs) qs>as
by = d-a;xqs

cy = G‘q,

cy= Gq,xa,

cy=g

D(®) = v, 3 Ces OXas+ 9 P — 13 p 4 DX0| — 73 S 4 S Cas AgX(DXA))
d = YjcQs 85— Y S4c Qs s sy qs Va1

G = say(m-Sm)xas+p.m

g = cQes(mM-Symyas+myl+h,

Step 2. Derivation of the second equation reicting v, and @,.

(13.34)

(13.34a)

(13.35)

(13.35al)

(13.35a2)

(13.35a3)

(13.35b)

Equating aya, evaluated for the floating and ground parts of the vector loop, we

get
BBy ® €02 Cxy =5 A 30 c0;
Squaring both sides of (13.29) we get
2(A+JyL+(@A+JP+L? = pspsc03+(pf +S% +p?)
Eliminating e, from (13.36) and (13.37) we get

2501503 (I+JYL+ paprase; = (250535030 +h;

(13.36)

(13.37)

(13.38)
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h; = sansaul(p? +5§ +p$)
~(pt+53+53+pd +53 +p3 +52 +28,55cay))

Substituting (13.29a-1) and (13.29b-3) into (13.38) we get
u-q =V

Uz=pin-515Q800m+ p2p3s G128, X0
V = cap(S:8rn=-pipisra)-2sansayl-J+h;
n = 250350 (1+))

Substituting (13.29b-4) into (13.39) we get
A’ cosy, + B’ siyy = C°

A’ =U"qy
B =U"sxqs
C =V

Expanding (13.40a) we get

A’ 36{0039,4‘03'8“34'0;'
B = b,’cosﬂ,-l-bz'sine,-l-b,'
C’ = ¢y cos®s+cy 5i0O0s+cy’

where

ay =D'(qs)qs
ay =D (q,)q,xa,
ay =d"qs

by = D'(m%qs)qs
by’ = D(m,xqs)yqsxa
b;’ = d’-a,xg,

C,' = G'q,
¢y = G"q,XI,
cy=sg

(D/(®) = 110 + 1,00 — 138x(Pxa)
4 = 2s50p30[p | (1-Sscayns)+Sy50,;1xa;)
+ PPy 200458 XAy
16 = canstssas(25;5,5055a4+ p3p3)qs
+2p485300,38C2508;— 230335034(pel+ 545 0g85xI)
8 =2sansaylSicap(~Sicageay+arl)
+Sicaudsl)~ prpscapcaycas +h;

(13.38a)

(13.39)

(13.39a)

(13.40)

(13.40a)

(13.41)

(13.41al)

(13.41a2)

(13.41a3)

(13.41b)
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= 28%80u(p| SQSG‘;*p‘SzSGn) (13.4IC)

= 2500503 (p1pa-515450)330s)
Iy= papissSCys

Step 3. Derivation of the equation containing ;.

Equations (13.34) and (13.40) comprise a set of canonical equations for which a
standard solution has been derived in chapter 2. The analysis procedure is summarized
below.

Solving the linear equations (13.34) and (13.40) we get

{Wl"QzIQ: (13.42)

sinv; = Q, /03

Q:=(BC’ - CB’) (13.42a)

Q) = (AC" ~ CA’)
Q3 = (AB’ - BA’)

From cos’y, +sin’y, =1 and (13.42) we get
ef +0f =0 (13.43)

Letting y =tn(@5/2), we obtain

Y=l =-y)/ (1 +y°
{cots A-y)1A+y) (13.44)

sin®s = 2y / (1 + y?)

Substituting (13.44) into (13.35) and (13.41), then substituting into (13.42a) and
finally substituting into (13.43) we get an eighth order polynomial. The solutions has
already been derived in chapter 2, and it can be simply restated here as

T8, =0 o(13.45)

1=0

The coefficients {3 } (i=1-8) of (13.45) are the same as shown in Section 2.6.4
from Eq.(2.35a) to (2.35e).

We can obtain y from (13.45) using standard numerical techniques for finding
roots of polynomials. Since a 5R robot has a unique solution, only one of the eight
roots of (13.45) is a valid solution. Thus, each distinct real root must be tested by
substituting into @, =2un™'y and checking for consistency.
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v can be uniquely determined from (13.42). e, can be obtained uniquely from
{(13.30), (13.36)} or from {(13.31), (13.37)}). The other two joint angles can be
obtained in a way similar to step 5 and step 6 of section 13.4.

13.6. Conclusions

The forward k’nematic analysis is straightforward and warrants no more com-
ments. As for the inverse kinematic analysis, after the first controllable variable is
determined, there is a lot of flexibility in deciding which controllable variable should
be selected as the next one to be solved. However, the analysis steps are similar and
the expressions are standardized.

Since the general SR robot can be considered as an over-constrained mechanism
for the purpose of inverse kinematic analysis, there should be a single unigue solution,
i.e., the displacement equations should be first order polynomials. An eighth order
polynomial is much better than nothing, but the first order polynomial remains the ulti-
mate goal.
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CHAPTER 14. CLASSIFICATION OF SPATIAL MECHANISMS

14.1. Introduction

A single-loop spatial linkage mechanism is generally characterized by the total
number of its links, the number of its passive constraints, and the number and type of
its kinematic pairs used in the kinematic loop ([36]Harrisberger, 1965; [16]Dobrjansky;j
and Freudenstein, 1967; [1]Alizade, et al. 1985). These classifications are useful,
although they do not provide all the information needed about the mechanism. They
only disclose the number and type of kinematic pairs that constitute the mechanism
and whether or not the mechanism is over-constrained.

One of the main problems in designing spatial mechanisms is the kinematic
analysis and synthesis. Once the mechanism’s components (i.e. pairs) are specified, it
would be very desirable to determine the maximum number of possible configurations
such a kinematic loop can be assembled together for a proper set of input structural
parameters, and the maximum order of the algebraic equation representing the output
(displacement) of the mechanism, which is free of extraneous or unwanted roots. In
connection with this, the following questions arise: does the constitution of the com-
ponents of a spatial mechanism alone really provide sufficient information about some
general kinematic features of the output motion of its loop and can it help determine
how to derive the input-output displacement?

Rooney and Duffy ([62] 1972) analyzed the maximum number of closures of
some spatiai mechanisms by using a geometric approach and verified corresponding
results obtained by other authors using analytical approaches (i.e. algebraic methods).
However, a criterion disclosing the maximum number of closures of spatial mechan-
isms was not provided.

Duffy (|28} 1980, pp.141-144) proposed another idea by relating some of the spa-
tial mechanisms to certain models of spherical mechanisms. This work can be regarded
as the first attempt to classify spatial mechanisms from the kinematic point of view.
However, except for the group (1) mechanisms of [28], all other groups of mechanisms
are not kinematically equivalent to their corresponding spherical mechanisms. In addi-
tion, the four analogous models of spherical polygons cover only a portion of spatial
mechanisms. Therefore, the models proposed in [28] can not be used as a criterion to
predict the maximum number of closures of spatial mechanisms.
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In this chapter, a new scheme of classifying spatial mechanisms is proposed,
which provides a method to determine the maximum number of closures of the
mechanism and the maximum order of . input-output displacement equation, which
is free of extraneous roots, of spatial mechanisms.

14.2. On the closure of mechanisms

Let us see Fig. 14.1(a-b). When the robot hand reaches the object, there are two
distinct configurations for the robot arm relative to the frame (or ground). Similarly in
Fig. 14.2, for any given input e, there may exist two distinct configuration for the
mechanism, or two distinct solutions for the output angle e,. The number of closure is
a very important concept. It has been used in some literatures, however, its implication
has never been rationally defined before.

Robot

Obiject

% Fig. 14.1(a)

Fig. 14.1(b)

Definition. The Number of Closure of Mechanism .

For a given mechanism, let {¢, }={6,.6,. --- .6, }, (0sis6), be the angular vari-
ables of its basic pair variables. Then the number of closure of the mechanism
is the maximum number of the distinctive set of solution of {e.e, --- .¢,},
(0osass). If (o, })=2 (empty set), i.e. 2r=0. the number of closurc of the
mechanism is defined to be one.
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Fig. 14.2

Theorem 14.1. On the Closure of Planar and Spherical Mechanisms .

Let 7 be the number of the active rotary axes of a planar mechanism perpendicu-
lar to the plane of motion, and of a spherical mechanism passing through the cen-
tre of the sphere, we have the conclusions:

(1). If #<2, then, the number of closure is one;

(2). If F=3, then, the number of closure is two ;

(3). If 7=z4, then, the mechanism has (7,-3) R-IDoF-2 (i.e. Rotary Idle Degree
of Freedom of the second kind), which renders infinite number of closure.

Proposition 14.1. On the Closure of Spatial Mechanisms .
All RM and HMs (excluding those with sg, Or sg pairs) can be classified imo
six groups and all O,RM and o,HMs (i =1-5) (excluding those with sg, oOr sg, pairs)
can be classified into (6-:) groups as shown in Table 14.1 in terms of A,

5=

. o’

A=A-8 (14.1)
if one of the three conditions is true:
). iﬁ; =0, (2SnS7)

(). A=20r3,and A+3 Np)=Sf;
ial}
(éii). A=4, and one of the pair's (14.1a)
active DoF is (120) or (220).

Otherwise,

where f sz';(ﬁ,’,+ﬁ}+ﬁ,',). (258 <7).

i=)

The A of (14.1) is called big lambda. Table 14.1 also gives the maximum finite
number of closures a mechanism with a proper set of structure parameters can have.
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Proposition 14.2. On the Closure of Mechanisms (containing Sur OF Scw PAirs).

In order to classify mechanisms with s,, or sz, pairs and use the results presented
in Table 14.1, the following modifications must be imposed.

(1). for those mechanisms with an sy, pair, if the pair’s 3-digit number of active
DoF is (NxNyNy)=(201), then we must use (210) as its 3-digit number of active
DoF instead of (201) for calculating A and A, moreover, 3=1. i.e.

Sau: (NxNrNy)=(201) —» (210); 8=1 (14.2)

(2). for those mechanisms with an s pair if the pair’s 3-digit number of active
DoF is (N, N;Ny)=(301), then we must use (310) as its 3-digit number of active
DoF instead of (301) for calculating A and A, moreover, §=0. ie.

Sou: (NeNyNy)=(301) —» (310); 8=0 (14.3)

The results in Propositions 14.1 and 14.2 are summarized from an extensive
literature review and are also supported by exhaustive verification using vector alge-
braic method .

Fig. 14.3

N

The results in Table 14.1 showing the number of closures of HM or OHM based
on the above two propositions were obtained on the basis that the motion range of
each helical freedom is confined within one full period, i.e. the motion range of the
rotational part of the helical freedom is confined within a range of 2x, or the motion
range of the translational part of the helical freedom is confined within one full pitch.
The reason can be explained by an HM, Rr.-#sc, as shown in Fig. 14.3. Depending
on the initial assembly condition, the helical off-set, /, may have muitiple feasible
assembly lengths. However, once the mechanism is assembled together, within any
"one full period" of the helical pair, the maximura number of closure of the mechan-
ism is two.
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Definition. Degeneration of Closure .

Given a mechanism, if its maximum (finite) number of closure is derived, by
Theorems 14.1, 14.2 and Propositions 14.1 and 14.2, as &, but its actual number
of closure is smaller than &, then, this is called degeneration of closure. If the
closure of a mechanism is degenerated, then the mechanism is called a degen-
erated mechanism .

Degeneration of closure is usually caused by special geometric conditions of a

mechanism.

The generally held opinion that "with increasing of the number of links in spatial

mechanisms, the displacement analysis becomes more difficult" is not true. For
instance, the analyses for XCCT, X,-RRRS, X.-PRPRC and X.-PRPPRR become easier
with increased number of links.

Proposition 14.3. On the Degree of Complexity

The degree of complexity of linkage mechanisms is defined as the sum of the
Small » and the Big A:
matt » ancd e Zig A e=A+A (14.4)

Generally speaking, the bigger the €, the more complex the structure and the
motion of the mechanism. From the definitions of 1 and A, we have

A=A OF A+1; (A=0,1,2,3.4,5) (14.5)

therefore, there are 11 degrees of complexity, i.e. {e}={1,2.--- ., 11).

Proposition 14.4. On the Degree of Complexity of the Same Group of Mechanisms .

With increasing the value of the e defined in (14.4), the displacement analysis for
the mechanisms within each of the 13 groups {rM, orRM, H,M (j=1-6) and oM
(k=1-53 } of spatial mechanisms becomes more complicated.

For As2, the difference on the degree of complexity for the analyses of the

mechanisms corresponding to A=A+1 and A=A is not significant.

Proposition 14.5. On the Degree of Complexity of Different Groups of Mechanisms .

For an orm and an Rv of the same ¢, the ”v is more difficult to analyze, i.e.
the structure or the motion of the &m is more complex;

For an oH,m and an H;m of the same ¢ and j (j=1-5), the H,m is more difficult
to analyze;
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For an om;m and an o#;.m of the same ¢ and specified j (j=1-4), the on, M
is more difficult to analyze;

Fora H;M and a H;.M of the same e and specified j (j=1-5), the ;..M is more
difficult to analyze;

oM and HMm are more difficult to analyze than their corresponding ormM and
rM, which are obtained by assuming that the pitches of all the helical freedoms of
the oHm and HM are zero.

Generally speaking, the more the transiational axes involved in a mechanism, the

simpler the stucture and the motion of the mechanism. It is clear that if the number of
the translational axes exceeds certain limit or the directions of two translational axes
are parallel, the T-IDoF-2 will occur. Now we want to know the exact conditions that
render the T-IDoF-2. But first let us introduce a useful concept.

Definition. The Number of Parallel-couples .

The number of parallel-couple for the following three kinds of spatial line set is
respectively defined as

Pi=u=1; pizv; py=0.

(1). Given a set of spatial lines that are muturaily parallel, {a } (i=1-u;u23);

(2). Given a set of spatial lines, {b }={(d,.e;).(ds.€2). - (d1,.€2.)}, (i=1-
v;v21), where each of (d;.e) is an independent parallel-couple and (d,.d;)
(i=j) is not a paralle-couple;

(3). Given a set of spatial lines that contains no paraliel-couple,
{c; }={c1.e2, - .cu )

It is clear that any spatial line set {4 } is composed of the three kinds of line set.
Hence, the number of parallel-couple for any spaual line set can be expressed as

P=XPu+XPx "i('h'”"?": (14.5)

where m and n are the numbers of the 1st and the 2nd kind of line set.

Theorem 14.2. On the T-IDoF-2 of Mechanisms .
(1). For planar mechanism:

Let p be the number of the independant T-IDoF-2 that are coplanar with the
planc of motion; let f and 7, be the numbers of the active translational axes
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coplanar with and perpendicular to the plane of motion, respectively; and p be
the number of the parallel-couple of the active translational axes coplanar with
the plane of motion.

o If f,s1and fs2, then, p=p;
e If tosiand 23, then, (1-3sp s (F-1);

e If 7,22, the mechanism is no longer a planar mechanism, for there would
be (7,-1) T-IDoF-2 in the direction perpendicular to the plane of motion.

. For spatial mecha., ism;

Let p be the number of the independant T-IDoF-2 of the mechanism; let 7= T A5,
and p the number of the parallel-couple of the active translational axes.

e If 73, then, p=p;

o If r24, then, (f-4)sp s (f-1).

The proofs for Theorems 14.1 and 14.2 can be performed in a way similar to the
proof of Theorem 1.2.

Examples of application
Example 1.

Given the two-loop spatial mechanism shown in Fig. 1.10, the input pair is a C
pair at a; the actuator controls either a rotary or a translational motion along vector
e;. Describe the mechanism and study the structure of each loop.

Solution:

The first loop can be considered as (0-a-b-c-d-o) . The motion of the R pair at

d uniquely determines the position and direction of the axis of the R pair at e ,

which is the pair directly connected with the second loop; therefore, we can con-

sider the R pair at d as the input pair of the second loop which is then becomes
(d-e-f-g-h-i-d) .

The first loop if the actuator controls only a rotary motion:

o Symbolic representation: Cuoxi0-RSR OF Co10-RSK ;

® [ =Y (M+Nr+Ny)=6, Ty =0, s0 this is a regular mechanism (i.e. PM);

® A=3, A=(A-8)=3-0=3, accordingly th» maximum number of closures of the

first loop is 4. The maximum order of the input-output displacement equa;ion,

free of extraneous roots, for this loop is also 4. If there are special geometric
conditions involved in the length of the links or the relative direction of the pair
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axes, the number of closures and the order of the input-output displacement equa-
tion may decrease to 2 .

(2) The first loop if the actuator controls only a translational motion:
e Symbolic representation: Co-RSR ;
® f=6, TNy =0, sothisisanRM;
® Az4, 8=1 and A=Q@A-5=3, therefore, the number of closures and the
order of the input-output displacement equation are the same as above.
(3) The second loop:
e Symbolic representation: Rwo-RSRP OI RyRSRP;
e This is an RM ;
e i=3, A=3, the inference is the same as above for each input on the R pair at d.
Hence, for each input on the C pair at a, the second loop may have 4, 8 or 16
assembly configurations, depending on the geometric condition of the mechanism.
(4 Additional comments about the second loop:
There is nothing wrong in regarding the R pair at ¢ as the input pair of the
second loop. In this case, the second loop can be considered as (e-f-g-h-i-e)
and symbolically denoted as Xwo-SRP , Os Rumy-SRP OF R,-SRP . Symbol X0,

is more general as compared t0 Ruo). Yoo inCludes not Oily Rumy but also Ciom,
Tao €t al.

Example 2. Given a robot which is composed of five revolute pairs (5R), study its
structure and the number of closures.
Solution:
f=5<6 and YA, =0, so this robot can be regarded as an o,rm for the inverse
kinematic analysis. According to Proposition 14.1 and Y ¥,=0, we have 8=1, A«S
and A=4. We can now conclude that generally this robot has only one closure; for
special geometries, it may have either two or infinite closures. For instance, if the

axes of four consecutive R pairs are parallel, then the robot will have at least one A-
IDoF-2 which renders infinite solution for the configuration of the robot.

Example 3.
Determine the number of closures for an x,-sss, mechanism.
Solution:

f=6 and TAy=1, so this is a #,m. Because this mechanism contains an s,
pair and its 3-digit number of active DoF is (201), according to Proposition 14.2, 5=1
and we use (210) as the 3-digit number of active DoF for the s, pair and we have
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a=3 and &=1, which give A=2. Therefore, we conclude that the maximum number of
closures of the mechanism is 2.

14.3 Conclusion

All displacement analysis problems for orm and ”M can be solved satisfactorily
by algebraic methods (i.e. analytical methods). But this is not the case for onwm and
HM. We believe that it is worthwhile to pay more attention to this area.

The motion of an H pair with a short pitch is more practical mechanically than
that with a long pitch, because the friction torque arising from the two contacting sur-
faces of tie two clements of a short-pitch H pair is generally easier to be kept small
than that of a long-pitch H pair. Consequently, a short-pitch H pair is more popular
than a long-pitch H pair. It is necessary to point out that no matter how long the pitch
of the helix is we can classify HM and o,uM (i =1-5) respectively into six and (6-i)
groups, based on the value of A defined in theorem 1, however, care must be taken
when applying the results of Table 14.1 upon those HM and OHM with long-pitch H
pairs. The reason is quite obvious: the kinematic feature of a short-pitch H pair is
"close" to that of an R pair, whereas a long-pitch H pair is "close” to that of a P pair.
How long is too long is difficult to specify quantitatively, for it depends on the overall
geometrical size of the mechanism.

An open kinematic chain can be regarded as a closed kinematic loop for the pur-
pose of analysis. It is apparent that all serial robot arms with a degree of freedom less
than or equal to six can also be included in the four basic groups of SSMs. Therefore,
for any SSM of the four basic groups and also for any serial robot arms, we can easily
determine their maximum finite number of closures, and their maximum order of the
input-output displacement equations which is free of extraneous or unwanted roots.

As a convenient reference, all regular mechanisms (rv) and over-constrained reg-
ular mechanisms (o,RM) (i=1-5) are listed in Tables 14.2 - 14.7 and Tables 14.2(a) -
14.7(a) by class and type symbols of their kinematic pairs, respectively. Information
such as the number of variant mechanisms of each basic mechanism, the value of the
first structure criterion, a, and the value of the second structure criterion, A, are also
displayed. From Tables 14.2(b) - 14.7(b), we can see that the total numbers of ’M
and oRM (i=1-5) are 1121, 373, 120, 37, 10 and 2, respectively. The tables of
the m,m and o,H;m expressed by class and type symbols of their kinematic pairs can
be compiled similarly, although they are not displayed in this paper.

This chapter can serve as a general guideline in the search for and design of more
useful spatial mechanisms.
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Table 14.1. The relationship of A and the maximum number of closures

TS YNt re - t—— rpt—

A=0 | A=) | A=2 | An3 | A=4 | A=S
Maximum (finite) number of
closure of RM and HM
e in general => 1 1 2 4 8 16
e for special geometries => (0 ) T I 0 ) I ) 2O O ) T IO () IO I ¢ ¥3)
@1 ®
©
Maximum order of input-output
displacement equation free of
extraneous roots for RM & HM
o in general => 1 1 2 4 8 16
o for special geometries => Mmoo |]ea| e |
@i1®
) (6)
“)
Maximum (finite) number of
closure of O,RM and O,HM
(i=1-5),(0sASS5i)
o in general => 1 1 1 1 1
o for special geometries => mioH|l@a|e&o
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Table 14.2. All RM expressed by the class symbols of their kinematic pairs

Xro-1ps

Xam—-1ps

Xsoo-1ps

Xo~1ps-lps Xao~1ps Xye=1pa Xne-1Ps Xao-1pa
Xo-2ps Xen—1pe X130-1p3
Xe=2p1~1p4 Xsor-1p1=1p4 | Xan=121-1p3 | Xsee~1p1-1p2 | Xme-2p:
Xog-1p1=1p2-1p3 | Xese~1p1~1p4 | Xin—~1p1-1ps | X20~1p1~1p3 | X20~2p)
Xo-3p2 X100~-1p2-1p3 | Xow=1p1-1p3 | X120-1p1~1p2
Xaw-1p2-1p3 | Xase—2p2
X1o-2p2
Xon—2p2

Xo-3py-1py X100-3p1-1p3 | X230=2p1~1p2 | X300~3P)
Xo-2p)-2p2 Xoro~2p1=1p3 | X110=2p1-1p2 | Xne-3py
Xsw-1p1=3p2 | Xew-2p1-1p32 | X103
Xae-lp1-ip3
Xo—4p1-1p2 A100~-3p1=1p3 | X200—4py
Xare~Ip1-1p3 | X1se—4p,
Xou=ip)

Xo-bp, X100-5ps
Xo1o-5p1

Notes: The eleinents corresponding 0 the number ;i (i=2-6) of the first column
represent those RM loops that they have just / pairs whose Active DoF are
not equal 0 zero in every single loop; X; (j=0-5) represents the input pair
whose Active DoF equals j. p, represents the pairs whose DoF equals &.

Table 14.2(b). Statistical data of RM

of RM=1121

Notes: The number 201 (the second number of the second column) is the total
number of those RM loops that they have just 3 (the second number of the
first column) pairs whose Active DoF are not equal to zero in every single
loop. The data in this table come from Table 14.2(a).
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Table 14.3. All O,RM expressed by the class symbols of their kinematic pair

Xo

Xy

X3

Xy

X

Xs

| Xo~1p1=1ps | X10-1ps Xa0~-1ps Xs-1p3
{ Xo-1pa~1p3 | Xuelpe Xue-1ps Xue-lps | Xae-Ip
i Xow~1ps X120-1p3
| Xe~191-203 | Xieo-1p1-1p3 | Xase=1p1-1p2 | Xses~201
| Xo=2p1-1py | Xao~1p1-1ps | Xno-ipa=lp2 | Xne-2m
| Xy00-2p3 Xoo-1P1-1p2 | X120-27
; Xae—2p2
Xo-3p1-1p3 | Xsw-2p1-1p3 | Xam=3p:

4 | Xue~21-1P2 | X131
. Xen-3p)

s | Xo-5p1 Xio—4p)
1 Xoro=4p3

Notes: The elements corresponding to the number i (i=1-5) of the first column
represent those O,RM loops that they have just i pair whose active DoF
are not equal o 2ero in every single loop; X; (j=0-5) represents the input

pair whose active DoF equals ;.
equals &,

Table 14.3(b). Statistical data of O,RM

Pr represents the pairs whose DoF

Notes: The number 128 (the third number of the second column) is the total
number of those O0,RM loops that they have just 3 (the third number of the
first column) pairs whose active DoF are not equal to zero in every single
loop. The data in this table come from Table 14.3(s).
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Table 14.4. All 0,RM expressed by the class symbols of their kinematic pair

Xo Xy X Xy Xa Xs
1 Xo~1ps
Xo-Ip3 X100~1ps Xxe-1p2 Xsoo—1p1
2 Xao-1ps Xue-lpz | Xuo-i;

Xew-1pa Xy20-1p3
Xo-2p)-1p3 Xyoo-1p3-1p3 Xao-2p1

3 Xuo-ipr-lps Xye-2p)
X o291
4 Xo—p) Xy00-3p1
Xao-3p)

Table 14.4(b). Statistical data of O,RM

A=0 | A=1 | A=2 | A=3 | A=4 | A=S

1
2 34 0 24 3 2 0 0
3 52 1 ] 18 3 0 0
4 32 ) 20 ) 2 0 0

num 3 73 34 | 10 0 0

of 0,RM=120
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Table 14.5. All OyRM expressed by the class symbols of their kinematic pair

Xo X, X X X, X,
Xo-lpy
Xo-1p1~ip3 Xyoo-1p2 Xaan~1p)
2 Xue-1p3 Xyw-1ps
Xow—1p1
3 Xo=3p1 Xwo-2p1
Xae-29)

Table 14.5(b). Statistical data of O;RM
A=0 A=l A=2 A=3 Amd A=S

2 18 1 13 4 0 0 0
3 16 2 12 2 0 0
of 0ytM=37 3 6 0
Table 14.6. All O,RM expressed by the class symbols of their kinematic pair
Xeo Xy X3 Xy ) Xs
Xeo-1p32
2 Xo~2p3 X10-1ps
Xor0=1ps

Table 14.6(b). Statistical data of O.RM

of O.,RM=10

Table 14.7. All OsRM expressed by the class symbdols of their kinematic pair
Xo X3 X3 Xs X Xs
Xo=1py

Table 14.7(b). Statistical dsta of OsRM
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Table 14.2(a). Al RM expressed by the type symbols of their kinematic pair

PO

Loee- ng’t Mechanisms; 11—~ Number of the mechanisms;
i - A- 3N ¢ IV.— The valve of A.
L Lmiw X-P-See 2241 Xpe=2PSe 324 1 Xw=IR-C 4241
Xm~3C 162 4 Xg-R=C 342 4 Xue=M-C 442 4
(TWO) Xoe=2C 133 2 Xa-P-2C 3332 Xae=2R-P-C 12 33 2
Xiw=Ss 122 2 Xus~3C 124 1 XaoR=C 333 2 XqeR=-2P-C 12 24 1
Xoe=Sp 1331 Xm=2T 160 $ Xgo-P-3C 3241 Xge=3P-C 4151
! X0 122 2 X7 151 8 XuR2T 3608 Xo=M-T 460 S
Xea~Bs 113 3 X0 142 4 NPT 351 S Xo~R-P-T 1251 §
) Xou~So 1313 XppC-T 251 8 Xpe-2T 351 S X R=2P-T 12 42 4
Xise=Se 122 2 Xe=C-T 242 4 Xae=P-2T 3142 4 Xua=¥-T 4332
. Xeae-Se 1131 Xas=C-T 233 2 X RC-T 651 S Xaqe-R-T 451 §
: Xom=C» 142 3 Xom-R-C 231 3 Xu-PC-T 642 4 Xqe-2R-P-T 1242 4
. X1e=Co 133 2 Xs-P-C 222 2 Xue-R-C-T 642 4 Xao-R-2P-T 1233 2
: Xeu=C» 124 1 Xpg—R-C 242 4 Xue-P-C-T 633 2 Xoue-3P-T 4241
: eS¢ 1201 Xue=P-C 2332 X € 381 S Xao~4R 160 S
: Xy~$ 131 3 Xy R-C 233 2 XgyR-P-C 642 4 Xpo=MR-P 451 S
H XSt 122 2 X-P-C 2241 Xpg-2P-C 333 2 X-2R-2P 642 &
: Xou-Et 122 2 Xom-R-T 240 3 Xpo-20C 342 4 X R-3P 4332
XgnE 133 2 Xog~P-T 231 3 Xy R-P-C 633 2 X soo4P 1241
X.n-E 124 1 Xpg-R-T 281 S Xpe=2P-C- 3124 1 X, -4 151§
Xsw-Sxc 1313 XpaP-T 242 4 Xg-2R-C 3332 Xpe=M-P 442 4
X ppe=Sec 142 4 Xop-R=T 2423 XgRP-C 624 1 Xyo=2R=2P 633 2
Xom~Sec 133 2 Xau-P-T 233 2 Xg-2PC 318 1 XpeR=3P 424 1
XgeC 122 2 Xyy=2R 13513 Xpg=2R-T 360 S Xe—dP 1151
XsuC 133 2 Xpo-R=P 222 2 Xy R-P-T 651 § X 142 4
Xga~T 1313 Xog=2P 1131 Xog=2P~-T 3462 4 X gg=R-P 433 2
Xem=T 142 3 Xom2R 1423 Xpe=2R-T 351 8 Xar-iR-2P 624 1
Xon-R 122 2 Xp-R-P 2332 XigR-P-T 642 4 XgR-2P 4151
NP 113 1 X2l 1241 Xye=2P 3133 2 X a4 106 0
ol T 233 2 Xy=2R -5 3% 3 Xg-3R-T 343 4 Xy=4R-C $81 8
Xg-P-S, 213 1 XRP-Sq 623 2 XgeR-P-T 633 2 XyoIR-P-C 2042 4
Xy-R-B, 223 2 Xy=2P-S5y 3131 Xg=2P-T 3241 X-2R-2P-C 3033 2
Xy-P-8, 213 1 Xy=2R-C, 342 Xo=30 140 93 XeR-P-C 22024 1
Xe=C-Sq 222 2 XoR-P-C, 633 2 Xg-2R-P 331 3 X4P-C $31S 1
. Xe~C-C, 233 2 Xg=2P=Cp 324 1 XeR-2P 3222 Xy-AR-T $60 S
X=T=S, 2313 XyRC-S 631 3 p JnnieY J 1331 X-R-P-T 2081 §
Xe=T-Cp 242 3 XgoPC-S 622 2 Xne=IR 1851 58 Xy=2R=2P-T 3042 4
Xg-25¢ 130 1 XeR-T-S 640 3 Xpe=2R-P 342 4 Xy R-3P=T 2033 2
X285 134 1 XeP-T-§ 631 3 XpeR-2P 333 2 Xo~4P-T $24 1
Xo=255 142 4 XgR-C-E 633 2 Xpug=3 124 1
Xe-S-Et 222 2 XeP-C-£ 624 1 Xi= 142 3 (SIX)
; Xg=S=Sgc 231 3 XyR-T-E 642 3 Xn-2R-F 333 2 Xin=5R 160 S
Xo~E=Ss 253 2 X~P-T-E 633 2 XR-2P 3241 X-R-p $81 S
XgRC=Sye 642 4 Xin=3 1881 X-M-2P 1042 4
(THREE) XePC-Se 633 2 Xo=3R-$ 440 3 Xye=2R=3P 1033 2
s 231 3 XR-T-Se 651 8 X=2R-P-S 1231 3 XggR~4P $24 1
Xsa~P-So 2222 Xg=P=T-5¢ 642 4 XeR=2W=§ 1222 2 X =3P 118 1
Xou~R=S¢ 222 2 Xo-3C 133 2 X-3P=S 413 1 e | 181 S
Xue=P~So 213 1) Xo=3C=T 342 4 Xo~WR=-E 442 3 X o=~ 542 4
Xi~R~C, 242 3 Xo~C-2T 381 S X~2R-P-£ 1233 2 Xas-R-2F 1033 2
Xa=P=C)p 253 2 Xe=3T 160 § XeR=2-£ 1224 ) Xae=2R-3P 1024 )
Xous~R~C, 233 2 X-AP-E 415 1 Xue 4P 5181
Xoa=l=C)» 224 1 ) Xe=IR=Sy 451 3 Xao=S 106 0
XoR=S 240 3 X, u~2R-S 340 3 Xy2R-P=Sy 12 42 4 X,-6n 160 S
Xs~P~S 2313 X R-P~S 631 3 Xy R=2=5¢ 1233 2 Xo-SR-P 651 S
Xypg=R=S 231 3 X u~2P=$ 3222 Xe-AP=Se 424 1 Xe4R-2P 1542 4
X 90=P=5 2232 2 Xoae=2R =S 331 3 Xo=2R=2C 642 4 Xe=IR=3P 2033 2
Xgg~R=S 223 2 Xae-R-P-S 622 2 Xy R=P-2C 1233 2 X=2R-4P 1S 24 |}
XS 219 1 Xgg-2P =S 313 1 Xg2P-€ 624 1 XoR=SP 618 1
Xom=RE 242 2 Xg=2R-£ 342 ) Xe=2R-2T 660 X6 106 0
Xog~P-£ 233 2 Xg-RP-E 633 2 XpR=P=2T 1251 5
Xe £ 233 2 Xg=2P-E 324 1 Xy-2P-2T 6432 4
Xyo-P-£ 224 1 Xqy-2R-E 333 2 Xe~2RC-T 1231 § Note: Thers will always be
X R-E 224 1 XggRP-E 624 } Xy RAPC-T 24 42 4 s IDoF ineachof the §
Xea-P-E 218 1 XaoeP-£ 3181 Xe-2P-C-T 1233 2 mechanisms specified by ¢.
Xog-R=See 251 8 Xa=2R 281 8
XogP-Se 242 4 XgR-P=Sx 643 4 {FIVE)
Xipg~R=Sg 242 4 Xig=2P-Sg 333 2 Xy~ 451 5
XeP-Se 333 2 X~ 342 4 Xig=RP=C 12432 4
X R-Se 2332 XaeR-P~S 633 2 X R-2P-C 1233 2



Table 14.3(2)-14.7(a). AR O;RM (i=1-5) expressed by the type symbols of their kinematic pair

L oo v
Table 14.3(n)
(O\RM - 1)
XSy 112 1
Xo=bp 112 1
0|lul°2
X\n~So 121 2
Xae—Sa 112 1
X\m=C, 132 2
w~Cr 123 1
Xm=S 130 2
X8 121 2
p 112 1
Xom-E 132 2
Xin~E 123 1
Xen—E 114 1
Xaaa=Sac 141 4
Xyy=Sec 132 2
Xee~Ssc 123 1
Xsa=C 121 2
Xpe=C 132 2
Xi=C 123 1
Xon=T 130 2
Xae=T 14] 4
Xia=T 1352 2
Xk 121 2
Xl 112 1
Xo=R 13%2 2
Xa—P 123 1
Xg=R=Sg 221 2
Xo-P~Sq 212 12
Xo=R~=C, 232 2
Xo=P=C, 223 1
Xo=C~§ 221 2
Xoy-C~E 223 1
Xg=C=Ssc 232 2
Xo=T=S 230 2
Xo-T-E 232 2
Xo=T =Sy 241 4
(ORM - 3)
X =-R=S 230 2
Xig=P~S 221 2
Xuo—R-S 221 2
Xoe=l~S 2121
XigR-E 232 2
Xue—R-E 223 1
Xou-P-£ 214 1
XiwR-Se 241 4
XiwP-Se 232 2
Xoa=R=See 232 2
XoeP~Sx 223 1
X 1=2C 132 2
Xoa=2C 123 1
X..-IT 1 5-0 4
Xee—2T 141 4
Xg=C~T 245 4
Xus~€C-T 232 2
Xs=R~C 24] 4
X~P~C 232 2
XiwR=C 23%2 2
Xiw=P-C 223 1
X-R-C 2231
Xe=P-€ 214 1
Xse=R=T 250 4
Xl =T 241 4
Xipo-R~T 241 4
Xin~P-T 232 2

1 O.RM (i=1-5%
m.--A-3Nr :

Xan—R-T 232
Xg~P-T 223
Xom—2R 130
Xygg-R~P 221
X spo-2P 112
Xpy-2R 141
Xpg-R-P 232
Xog-2P 123
X=2R 132
Xin~R-P 223
X2l 114
XR=-2C 332
X-P-2C 322
Xy R=C=T 6 41
X~P-C-T 632
Xo-R=2T 3 so
Xo-P-2T 34l
Xo-2R-S 30
Xy R=P-8§ 6 21
Xo-2P-S 312
Xo=-R-E 332
XeR-P-£ 623
Xo-2P-E 314
Xg-dR=Spe 3 41
Xy R=P=See 632
X2l -Sg 323
(ORM - 4)

X ~2R 3 41
X R-P-C 632
Xyg=2P-C 329
Xue=2R-C 332
Xage-R-P-C 623
Xy=2P-C 314
X2~ 350
Xg-R=P=-T 6 &1
Xyg=2-T 332
Xar-R-T 341
Xge-R-P-T 632
Xge=2P-T 323
Xam=3R 130
X2 3 &)
Xe-R-2F 332
Xou=3P 123
Xue~R 141
Xue=2R~F 332
Xy~R=2F 323
Xar-IR 132
Xa=2R-P 323
Xgg-R-2P 314
Xon=3P 105
Xoe-M-C 441
Xg-R~-P-C 12 32

Xo-R-2-C 12 23
X380 -C 414
Xo=R=T 4590
Xe=R=P-T 12 41
X R-2P-T 12 3-2
Xe=3-T 423

(ORM - 5)

X.rﬂ 150
Xsu~MR=P 44}
a3 i
X 4P 1 14
X ugdR 1 4]
Xagr-M=P 432
Xug=2R=2P 6 2.3
XasR=3P 414
Xl 105
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Xig-R=2F 322
X3P 113
Xag-3R 131
Xaqg=2R-P 322
X..-R-?P 3 l',
Xae=3 104
Xo-4R 140
Xe-M-P 431
Xy=2R-2P 622
XoR-3P 413
Xo—4r 104
20000Pee e . 60

Table 14.5(a)
(OsRM -1)
Xe=S 110
XoE 112
Xo=Spc 121
(OsRM -2)
XgC 124
Xay=C 112
Xiu=T 130
Xae=T 1218
Xy R 130
Xyl 1218
X ypoR 121
Xl 112
Xas R 112
X 103
X R-C 221
X-P-C 212
XeR=T 130
Xo~P-T 223
(ORM -3)

w2k 130
X g-R=P 2249
Xg-2P 1132
Xus-2R 121
XqeR-P 212
Xue—2l 103
Xo-3R 130
Xo-2R=-P 31
Xy-R-2P 312
X3P 103
00000000 * 900

Table 14.6(a)
(O.RM - 1)
Xo-C i1
Xo-T 120
(ORM -2)
X iR 120
X s 131
Xus R 1141
Xaus~P 1032
Xo=2R 120
Xe-R-P 21
Xe-2F 102
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Xe=? 10
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CHAPTER 15. CORE-LOOPS OF SPATIAL MECHANISMS AND ROBOTS

15.1. Introduction

The concept of inversion, proposed by Reuleaux ([61) 1875) has long been con-
sidered a very important concept in the theory of mechanisms. It has been extensively
used in the analysis of mechanisms. However, in reality, inversion only associates
certain physically seemingly different mechanisms. As to the interrelationship of
kinematic features among the associated mechanisms, this concept is often misleading.
In addition, inversion is not a clearly defined concept. Its implication is vague and
different scholars have different comprehension on what is really inversion.

Instead, a new concept, core-loops of spatial mechanisms and serial robots, is
introduced in this chapter. It is proved to be a more useful concept in revealing the
structural and the kinematical features of mechanisms and robots. Moreover, it pro-
vides a rational basis in counting the exact minimum number of the kinematically dis-
tinct structures of spatial mechanisms and serial robots.

18.2, Review on the concept of inversion

According to Shigley ([65] 1959, page 115), "Inversion is the fixing or grounding
of a different link to the frame or earth. There are as many inversions as there are
links in a mechanism." This definition is similar to the one given by Hartenberg and
Denavit ([37) 1964, page 55), "A mechanism is derived from a closed kinematic chain
by making one of its links stationary: by choosing different links as the stationary link
or frame, the same closed chain will yield as many distinct mechanisms as it has
links." "The process of fixing different links of a chain to create different mect iisms
is called kinematic inversion ."

According to Hartenberg in the discussion attached to [36) (Harrisberger, page
219, 1967), "rR-R-c-s and R-s-R-c are not only two different chains but that, from
each, four different mechanisms can be formed by inversion." It can be easily inferred
that the four different mechanisms derived from the chain x-gk-c-s are as follow,

RRCS, RCSR, RSCR, RRSC; (15.1)

However, for chain R-s-z-c, we can find, in term of symbolic representation, only
two distinct mechanisms,

RSRC  RCRS. (15.2)
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Then why Hartenberg claimed that four different mechanisms can be derived
from chain r-s-r-c? Let’s see Fig. 15.1, if we fix link 4 and take the R pair at a as
input pair, then we get an ®src; if we fix link 3 and take the R pair at ¢ as input pair,
we also get an Rskc. Similarly, if we fix link 1 and link 3 respectively, we get two
Rcrs mechanisms. What is the difference of the two Rsrc mechanisms, what is the
difference of the two rcrs? Obviously, it’s their geometries.

Fig. 15.1

We agree that there is nothing wrong to claim the two RskRc mechanisms are
different. But what we would like to do here is to question the benefit we can get
from emphasizing the difference of the two rskc mechanisms. Based on the same
rationale, we can make the following statements:

Given a mechanism Rsrc as shown in Fig. 15.1, we can get infinite number of
different mechanisms by adjusting the geometries (such as the length of the links
and the relative direction of the adjacent pair axes) of the mechanism.

From chain r-s-r-c, only two "different” rsrc mechanisms can be obtained by
the method of inversion; however, by the method of adjusting the geometries of the
mechanism, we can get infinite number of "different” xskc mechanisms from chain
R-s-R-c. Which method is more significant? There is no need to comment on the
method of inversion, we can just say that the method of adjusting the geometries of
mechanisms in order to get "different” mechanisms is meaningless, for it is self-
evident.

According to Duffy ([28] p138, 1980), "in general, for any specified sequence of
pairs a number of distinct mechanisms can be obtained by choosing various links as
the frame. This process is known as kinematic inversions and the various mechanisms
so obtained are simply inversions of one another”. "For instance, the spatial five-link
RRCRC® and RCRRC® mechanisms a e inversions of the spatial RcrRcr® mechanism”. It
is a well known fact that, for general geometries, the order of the algebraic equations
(i.e. polynomials) goveming the motions of the mechanisms RRcrc and RcrRcr is
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four, whereas the order of the algebraic equation for Rcrrc is eight ({84] Yang 1969,
[95] Yuan 1971, [21] Duffy 1972, [110) Zhcu, Buchal and Fenton, 1994). This obvi-
ously suggests that kinematically the mechanism Rrcr.:c is different from both Rcrcr
and rercrc. The kinematic features of a mechanism is determined by the structure of
the mechanism. If the kinematic features of two mechanisms are different, it is quite
natural for us to question the similarity or connection between the structures of the two
mechanisms.

From the several scholars’ treatments on inversion above , we can see that only
revolute pair, i.e. R pair, has been chosen as input pair for those mechanisms. How-
ever, R pair is not the only pair usable for input pair. If the input pair is a ¢ pair, the
actuator of the input pair controls only the translational motion of the ¢ pair, ie. the
input pair is ¢, being denoted by the new symbolic system introduced in chapter 1,
then, how to define the inversion of the mechanism, say, for mechanism C,-HTHR?
This is a five link mechanism; how can we find five inversions of the mechanism? We
can easily find many such examples where the concept of inversion appears awkward
to apply.

Now the following questions naturally arise: given a closed kinematic chain or a
mechanism, is there a clearly stated convention on which inversions of the chain or
the mechanism can be derived? Since the number of inversions is not equal to the
number of links of the chain or mechanism, then, how can we count the number of
inversion of a chain or mechanism? Finally, what exactly is inversion? These are all
unanswered questions. In our opinion, inversion is a concept which lacks rational
basis and thus can never be clearly defined. Nevertheless, a new concept, the core-
loops of spatial mechanisms and serial robots, can clarify all the confusion caused by
the concept of inversion.

153. Core-loop

Given a mechanism R,—cRRC as shown in Fig. 15.2, where the input is an angle
o, the unknown variables are {6, 9,0, 6sx;55). For the same mechanism, let’s
replace the input pair, the ® pair, by a p pair, to obtain P~CrRRC as shown in Fig.
15.3. The input now becomes a length s, and the unknown variables are still the
same. Without even proceeding to further detailed analysis, it is not difficult to per-
ceive that the kinematic analysis for the two mechanisms can be expected to be the
same. Why? Let’s «~w the common perpendicular line of s, and a, in Fig. 15.2 or
Fig. 15.3, and disregard the other vector components related to the input pair, we get
Fig. 15.4, where p, and angle ass;, being measured by a right rotation of s t0 a,
about g, are fu:ctions of the controllable input. Since the controllable input can
always be considered as fixed or invariable for the purpose of analysis, as a resuit p,
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Fig. 152

Fig. 15.3

1
" |

L]

and angle (asa; can also be considered as known invariable. Now it becomes clear
that the configuration analyses for both mechanisms of Fig. 15.2 and Fig. 15.3 are
equivalent to the analysis of the structure of Fig. 15.4. Moreover, since the relative
distance and direction of every two adjacent pair axes along the loop of Fig. 15.4 is
fixed, i.e. the quantities {ps. ps. pa. pe. 53 Se. @z, ase. ass. a3} are known and independent
of the Earth (or the Sun) reference. Therefore, as long as the relative order (or posi-
tion) of the four active pairs along the loop of Fig. 15.4 is unchanged, the analysis
should be the same, i.e. the analysis for the four structures CRRC, RRCC, RCCR and




Fig. 15.4

ccrr should all be the same. This inference actually has been proved in chapter 9. If
we add input pairs to the four structures, we can get various kinds of mechanisms such
as Xg-CRRC, X¢-RRCC, X ~RCC, X\o~-RCCR and X,,-CRR, etc. where x, can be replaced
by Ro, Po, Ho, and C,, €IC.; X100 can be replaced by C.w, £, €tC. The key point of all
the five concrete mechanisms is that they all share the same structure of Fig. 15.4,
which can be symbolically represented by any of the four forms:

CRRC, RRCC, RCCR, CCRR (15.3)

If we change the relative order (or position) of the four (active) pairs, we can get
another distinct structure which symbolically can only be denoted by any of the two
forms:

CRCR, RCRC (15.9)

Kinematically, the four structures of (15.3) are equivalent to each other, the two
structures of (15.4) are also equivalent to each other. Now we have the following
important concept:

Definition. Core-loop.

For any mechanism, if we disregard the controllable input, and count only the
active pairs, we can get a loop which is composed of only active pairs. The loop
so obtained is defined as the core-loop of the mechanism.
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Any mechanism has one and only one core-loop; it is unique in terms of the
arrangements of the relative order (or position) of the active pairs along the loop. By
symbolical representation, it may appear in different forms, such as the two core-loops
shown in (15.3) and (15.4), respectively. Therefore, it is possible that many seemingly
different mechanisms or serial robots can be kinematically grouped together because of
the same core-loop shared by each of them. As another example, let 4, B, ¢ and D
be four different types of kinematic pairs, the core-loop of a mechanism is denoted as
aBcD as shown in Fig. 15.5, then the different representations of the same core-loop
are as follow,

ABCD = BCDA = CDAB = DABC S
= ADCB = BADC = CBAD = DCBA (15.5)

N
NI

By changing the relative position of the four pairs, we can easily find that there
exist two more distinct core-loops, i.e. aBbc and apcs, and each of them may have
other equivalent representations, similar to the way of (15.5).

Using the concept of core-loop, we can easily find out that it’s not a surprise that
the order of the displacement equations goveming the mechanism R.-CRrC is different
from that of R—CRCR and Ry-RCRC.

15.4. Conclusion

As a convenient reference, the core-loops of all {av.orm} and {#,m,0,HM}
(j=1-6) are listed in Tables 15.1 - 15.7 and Tables 15.1(a) - 15.7(a) by class and type
symbols of their kinematic pairs, respectively, where (2si+;<6). Information such as
the number of permutation of each core-loop, the values of the Small A and the Big
A are also displayed.

The number of the distinct core-loops of the &M, o,rRM, H,M and oHm are
displayed in Tables 15.1(b:) - 15.6(b;) and 15.7(b), respectively. And the results are
in tum be summarized in Tables 15.8. Reviewing the literatures on spatial
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mechanisms, we can often come across the following statements and its likes, "there
are many spatial mechanisms" or "many thousands of spatial mechanisms, depending
upon the type and arrangement of the pairing between links". How many? Nobody
knew. This has always been a vague concept. Now adding all the numbers in Table
15.8 together, we get the total number of the distinct core-loops of spatial mechanisms,
which is 560 !

Given a group of mechanisms: Rq2r-2cC, using the formulae in Eq.(1.6), we can
easily find out that there is a total of 6 variant mechanisms. The number 6 is deter-
mined by 2-2, which is called the pattern of the mechanisms. Now can we ask how
many distinct core-loops this group of mechanisms has? Obviously it is also deter-
mined by the pattern: 2-2. In Table 15.9, the numbers of the distinct core-loops
corresponding to all possible patterns are displayed, from whicih we can see that the
R-2rR-2c mechanisms have just 2 distinct core-loops.

This chapter can also serve as a general guideline for searching for and designing
more useful . mechanisms.
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Table 15.1. All the core-loops of RiM and O.RM (i =1 - 5) expressed by

the class symbols of kinematic pairs
4 S ¢

RM 1p:=1p2-1p3s | 221-2p2 | 4p:-lps | 6P,

1px-1ps | 2p2-1ps Ip\-1ps
O.RM Ips | 1pa-1ps 1p2=2ps 3p:-1p2 | S/

! 1p3-1ps | 2p:-1ps

0.RM Ipa | 1p-1p1 | 29-1pa 4p,

2p;
ORM |l 1ps | 1pv-1ps | 3p,
OBRM || 1p3 | 2py
o ,RH l’g

Notes: The number i (i=1-6) in the first row means that the core-loops in
column i are all composed of i active pairs. p, represents the pairs
whose DoF equals &.

Table 15.2. All the core-loops of H,M and O ,M (i =1 -5) expressed by
H, Sgiy Son 8nd the class symbols of kinematic pairs

H-1ps | H=1py-1ps | H<-1p,-2p; | H=3p\~1p; | H-3p,
HM | Saw-1ps | H=1ps=1ps | H=2p\~1ps
! | Ssr-1ps | Sawr2py :

| Vo | Sow-1ps-1p2

3 H-1py |H-2p, H=2p,~1p; | H-4p,
O\H\M | Sau—1py | H-1p,~1ps

| Sor-1p3 | Sur2ps
o’”l“ % sal ”-!" ”'IPI'IPS ”-3’1

.! Su-1p3
OH\M 3 Ssw | H-1p3 H-2p,
OQH;“ } ”"l’,
OHM | H

Notes: The number i (i=1-6) in the first row means that the core-loops in
column i are all composed of i active pairs.
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Table 15.3. All the core-loops of H,M and O,H 1M (i=1-4) expressed by
H, Sty Son and the class symbols of kinematic pairs

: 2H-2p,
HM  § H~Sou—1p, | 2H-1p,-1ps
H-Sur1p3 | H-Sur2p,

H-San | 2H-1ps 2H-1p,-1p3 | 2H-3p,

0:H:M | H-Sw—1p,
Ol | | H=Sw | 2H-1p; | 2H -39,
OyH M | 2H -1p,

OH M | 2H

Table 154. All the core-loops of H;M and O ;M (i=1-3) expressed by
H, Sens Scu and the class symbols of kinematic pairs

0 1 2 3 4 5 6
H.M 2H-Son 3H-1p,~1p; | 3H-3p,
01”’“ 2”"3“ 3”-1” 3”-”1
OsH M 3H-1p,

O3H M 3H

I Table 15.5. All the core-loops of H M and OH M (i=1-2) expressed by
H, S and the class symbols of kinematic pairs

0 1 2 3 4 5 [ ]
HM 3H ~Sgy 4l -1py 4H -2p,
OH M 4H-1p,

O3 M 4o

Table 15.6. All the core-loops of HsM and O,H M expressed by
H and the class symbols of kinematic pairs

0 1 2 3 4 5 6
”’M SH-'lpg
O H M SH

Table 15.7. All the core-loops of H M expressed by H
0 1 2 3 4 5 []
HM 6
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[I.-~ Number of permutation;

IV.--- The value of A.
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Table 15.Xa). All H,M and OH,M core-loops expressed by the type symbols of kinematic pair
L Corg-loops; I Number of permutation;
HL-2-3Nr i 1y The vaive of A.
L oo H=-2R-$, 281 4 Oy M -2)
H-R—P3iy 343 3 (O, H M- 3) HSe 139 2
UM -2 H-2P-Sy 233 2 24 130 2
o 142 2H -5 132 2 O,H,M-3)
HaM- 9 M-S, 161 4 e 139 2
HM-3) M-C 651 S HRS, 1413 W-T 140 3
=S¢ 131 3 WH-2R-T 660 $ HP-Sg 132 2
2H-Cy 142 3 H-R-P-C 642 & (3,"2‘1-‘)
H-R<Sqy 131 3 H-R-P-T 651 $ O HyM -4 - 240 3
H-P-Soy 123 2 WM-22-C 633 2 W-B-C 261 4 W-R-P 231 2
HC-Sq 1423 AH-2P-T 642 4 H-R-T 280 4 2 -2P 232 1
H-T-Ssy 151 ¢ WM-P-C 232 2
w’”w.q 2H -P-T 241 4 000000000 * s00 o
H,M -0 ~4R 360 S
-2C 242 4 2H-R-P €31 S (zo',ll -3)
2H-C-T 281 S 2H-2R-2P 11 42 4 g'll +8) 1%0 2
-2r 260 S W-R-IP 633 2 - 250 o H-P 1211
2H-R-$ 240 3 2H 4P 324 1 WM-R=-P 64&] 4
2H-R-E 242 3 WM-R-2P 633 12 ssessonsss o see &
WHR~See 251 § sssstessee o ot o M- 223 1
2H-P-§ 231 3 O M-
2H-P-E 233 2 S?.ll,u.z) ssvsesessee o oan o 2 120 1)
2H-P-Syr 242 4 -Saw 121 2

Table 15.4(a)-15.7(s). Al H,M and OHM (i=3- 6) core-loops expressed by the type symbdols of kinematic pair

L--— Corg-loops; 11.--- Number of permutation;
M- A- 3Ny 3
1L}

IV.--- The value of A.
L 1m (O, HM-3) (O3H M 4)
ul-s’: 1 41 3 Toble 1SS HM.OHM & e 3
@M -4 ¢l -0
Table 15.4(s). H,M 3 1 41 4 S, 181 s
o - Hs W-T 1 50 w.u:) Table 15.6(s). H,M ., OH,M
) .
21~ 1 31 3 0,HaM - ) H-C 1 81 s U M-6
o G 5 50 aH-T 1 60 § S’ 160 S
g:,u.a H=-R-P 2 &l 4 SH-P 1 81 S
-R-C 2 51 & 3H-2» 232 2 H M &
3".‘.1' 2 60 s ‘”-” 3 &0 [ ] 0200008000 LY .
WL ez 4 e ot 0 WA L L ommes
- 2 $1 P, .
M -0 s’ 3 ‘
M - 6) 1 40 3 vesoossses o o8e .
e 260 H-P R
IH-2R-P 6 S0 § (0,H M 5
W-R-2P 6 4z & sesessesce o ees o prise 1 50 4 Teble 15.7(s). H,M
3H-3P 233 3 =P 141 e

Oyl sM -3 . zr,u-o)

S
[ ]

“
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Table 15.1(b1). Data on the core-loops of ARM

Notes: The number 37 (the third number of the second column) is the total
number of those RM core-loops that they have just 4 (the third number
of the first column) active pairs. The data in this table come frc Table
15.1(s).

Table 15.1(b2). Data on the core-loops of O, RM
A=0 | A=l A=2 | A=) A=4 A=5

2 10 0 3 [ 610 I

3 15 0 5 | 610 A |0

r 12 0 4 4 ) 4 0

s g ] 3 | 2 | 0 2 | 0
num

'a" = ! 1 | I 8| 0o | n | o

Table 15.1(b3). Dats on the core-loops of 0,RM
A=0 | A=1 | A=2 | A=3 | A=4 | A=S

&l WiN]
— -l OIO

W W O
W il N
(-8 [—]K—1%-]
[~ [~ K-1k~-]

W Hom] pmt] pme

14
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Table 15.1(b4). Data on the core-loops of O ,RM
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Table 15.2(b1). Data on the core-loops of H; M

A=0 | A=1 A=2 | A=3 A=4 | A=S

2 7 s 2 0 0

3 14 0 1 5 6 2 0

4 35 0 2 9 s 10 9

] 32 0 2 8 0 12 10
nam

108 0 9 33 13 30 23

Notes: The number 35 (the third number of the second column) is the total
number of those H,M core-loops thet they have just 4 (the third number
of the first column) active pairs. The data in this table come from Table

15.2(a).

Table 15.2(b2). Data on the core-loops of O,H .M

A=0 A=] A=2 A=3 Am=4 Am=§
1
3 12 0 2 [ 1 3 0
4 14 0 2 s 0 7 0
[ 9 0 3 3 0 3 0
4";“" 0 8 18 2 13 0
Table 15.2(b3). Data on the core-loops of O H M
A=0 | A=l | A=2 | A=3 | Am4 | A=S
2 [ 0 3 2 0 0 0
3 4 0 1 2 1 0 0
4 [ 0 3 2 1 0 0
num
16 0 8 6 2 0 0
Tavle 15.2(b4). Data on the core-loops of O H M
A=Q | A=] A=2 | n=3 A=4 | A=S
1 1 1
2 2 0 1 1 0 0 0
3 3 0 2 1 0 0 0
num
6 4 2 0
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Table 15.2(b5). Data on the core-loops of O H M
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Tabile 15.3(b1). Data on the core-loops of H ;M

Notes: ‘The number 25 (the third number of the second column) is the total
number of those M ; M core-loops that they have just 4 (the third number
of the first column) active pairs.

Table 15.3(b2). Data on the core-loops of O,H .M

A=0 | A=1 | A=2 | A=3 | A=4 | A=S
1 1
3 5 0 0 3 1 1 0
4 8 0 0 2 0 6 0
5 16 0 2 6 0 8 0
nom
30 0 2 12 1 15 0

Table 15.3(b3). Data on the con-loops of OH M
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Table 15.4(b1). Data on the core-loops of MM

~ Notes: The number 16 (the third number of the second column) is the total
‘ number of those H,M core-loops that they have just ¢ “the third number
! of the first column) active pairs.

Table 15.4(b2). Data on the core-loops of O, H M

A=0 | A=1 | A=2 | A=3 | A=4 | A=S

1
4 2 0 0 0 0 2 0
s 6 0 0 2 0 0
- |
Total num
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Table 15.5(b1). Data on the core-loops of H M

A=0 | A=] A=2 | A=3 | A=4 | A=S
4 1 1
s 2 0 0 0 0 0 2
6 9 0 0 0 0 3 6
num 0 4

12

Notes: The number 9 (the third number of the second column) is the total
number of those H M core-loops that they have just 6 (the third number
of the first column) active pairs.

Table 15.5(b2). Data on the core-loops of O, H M
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Table 15.6(b1). Data on the core-loops of HsM

Notes: The number 2 (the first number of the second column) is the total
number of those H, M core-loops that they have just 6 (the third number
of the first column) active pairs.

Table 15.6(b2). Data on the core-loops of O, H M
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Table 15.8. Summary of the data in Tables 15.i (bj), (i=1-S, j=1-6).

RM O.RM O,RM O,RM O.RM OsRM
103 47 23 1 5 2
H.M 0.H.\M O.H,M O,H,M O M OsH .M
108 41 16 6 2 1
H.M 0,H .M 0,H,M OsHM O.H M

97 30 9 2 1
HyM 0,HsM O, HM O3H M

25 .9 2 1
HM O \HM O H.M

12 2 1
HsM O\HsM

2 1
HM

1

Notes: The number 103 (located at the 15t row and the 1st column) represents
the total number of the distinct core-loops of Regular Mechanisms.
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t Table 15.9. Core-loop pattern & the No. of distinct core-loops.

Numberof the | Patterns of Number of the
! active pairs core-loops | distinct core-loops
' 1 1 1

2 2 1
1-1 1

3 1

3 2-1 1
1-1-1 1

4 1

3-1 1

4 2-2 2
2-1-1 2

1-1-1-1 3

5 1

14 1

1] 2-3 2
1-1-3 2

1-2-2 3

6 1

p 1-5 1
24 3

3-3 2
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GENERAL CONCLUSIONS

The theoretical framework developed in this thesis offered a new basis for
kincmatic analysis, synthesis and design of spatial mechanisms and robots.

The author belicves that the vector algebraic method presented in this thesis will
eventually replace the dominant status of the marrix method and the spherical tri-
gonometry method .

It is natural that some readers may doubt the author’s claim. In respect to this,
the author’s suggestion is that "try it and compare it yourself*, for this is probably the
best way to appreciate the difference.

The author also believes that eventually the Theory of Spatial Mechanisms will
be widely taught in engineering schools, for this is not only desirable but also feasible.




- 256 -

SUGGESTIONS FOR FURTHER RESEARCH

The following research areas are worthy to be given more attention: Mobility
analysis of spatial mechanisms; Force, torque and dynamic analysis of spatial mechan-
isms; Computer-aided design of spatial mechanisms; Computer-aided tcaching of spa-
tial mechanisms; Trajectory analysis of spatial mechanisms; Analysis of helical and
over-constrained helical mechanisms; Analysis and design of multi-loop spatial
mechanisms; etc.

There are many spatial mechanisms being used in engincering. It is certainly
desirable to publish a book containing the figures of all these practical spatial mechan-
isms.

A comprehensive book should be written under the title: Synthesis of Spatial
Mechanisms. Hartenberg and Denavit’s book ({371 1964), Kinematic Synthesis of
Linkages, deals only with planar mechanisms. Zhang’s book ([106] 1980), Analysis
and Synthesis of Spatial Mechanisms (Volume 1), does not contain any content on
synthesis of spatial mechanisms. 1 visited Professor Zhang in Beijing in August 1993,
He told me that he had intended to write a book (i.e. Volume 2) dealing with the syn-
thesis of spatial mechanisms. However, he had not been able to have the time and the
mood to carry out this undertaking. Zhu and Liu’s book ([111]) 1986), Analysis and
Synthesis of Spatial Linkage Mechanisms, contains 9 pages on synthesis. Angcles’
book ([3] 1982), Spatial Kinematic Chain: Analysis, Synthesis, Optimization, is prob-
ably so far the best (book) reference on synthesis, for it contains 2 chapters (about 120
pages) on synthesis and optima: synthesis of spatial linkages. However, the content of
Professor Angeles’ book on synthesis is still at introductory level.
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APPENDIX : NEW TERMINOLOGIES

PART 1: The followings are new terminologics intreduced in this thesis.

3-digit input control number Gencralized Kinematic pair
3-digit number of active DoF Ground vector
' Adjacent angular variable Helical mechanism
\ Auxiliary angle
i Auxiliary vector I-axis
i Idle Degree of Freedom (i.c. IDoF)
, Basic contacts IDOF of the first kind
; Basic contact lines IDoF of the sccond kind
Basic contact surfaces R-IDoF-2
Basic variable T-1DoF-2
Ball-point H-IDoF-2
Big A Indefinite link
Indefinite pair
Central line Inderinite mechanism
i Central vector polygon Input vector
' Central vector loop cquation Number of paraliel-couple
Constrained axis, freedom Output vector
N Contact point-set Over-constraincd helical mechanism
" Core-loop Over-constrained regular mechanism
Definite link
Definise pair R-point
Definite mechanism Regular mechanism
Degeneration of closure Resultant input type
Degree of angular freedom
Degree of active angular frcedom Small a
Degree of complexity of mechanism  Small sphere approximation
Diameter of pair Star product operation
Dimension of mechanism Subauxiliary angle
End axis vector Unconstrained rotary axis, freedom
Floating vector Variant mechanisin

PART 2: The followings are existing terminologies and their implications have been
re-defined or amended in this thesis.

Closure Mechanism
Displacement equation Pair axis
Input-output displacement equation  Pair variablc

Link Serial linkage

Link length Single-loop linkage
Linkage
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3-digit input control number 23
3-digit number of active DoF 23

Adjacent angular variable 39
Auxiliary angle 40
Auxiliary vector 42

Basic contacts 9
single point contact 9
line contact 9
surface contact 9
Basic contact lines 10
R-line 10
T-line 10
H-line .9
Basic contact surfaces 9
rotary or R-surface 9
translational or T-surface 9
helical or H-surface 9
Basic (pair) variable 37
Ball-point 12
Big A 219

Central line 13

Central vector polygon 29
Central vector loop equation 38
Constrained axis/freedom 36
Closure 218

Contact point-set 8

Core-loop 233

Definite link 13

Definitc pair 15

Definite mechanism 19
Degeneration of closure 221
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INDEX

Degree of angular freedom 3,
Degree of active angular freedom 35

Degree of complexity of mechanism 221
Diameter of pair 14

Dimension of mechanism 18
Displacement cquation 38

DoF of kinematic pair 16

DoF of linkage 19

End axis vector 44
End-effector 19

Floating vector 42
Four basic operations 45

Generalized kinematic pair 15
Generalized tracta coupling 116

Generalized clemens coupling 134
Ground vector 42

Helical mechanism 27
Higi..r pair 8

l-axis 11
idle Degree of Freedom (i.e. IDoF) 29
IDoF-1 30
IDoF-2 30
R-IDoF-2 30
T-IDoF-2 30
H-IDoF-2 30
Indefinite link 13
Indefinite pair 15
Indefinite mechanism 19
Input-output displacement equation 3%
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Input vector 39 angular variable 35
Inversion 233 rectilinear variable 35

Planar mechanism 18
Kinematic pair &

Kinematics 8 R-point 12
Regular mechanism 27

] Link 13 Resultant input type 23
Link length 13
Linkage 17 Serial linkage 17

Single-loop linkage 17
Lower pair 8 Small 1+ 38
Small sphere approximation 10
Spatial mechanism 18
Spherical mechanism 18

Mechanism 18

Number of parallel-couple 222
. Star product operation 168

Output vector 39 Subauxiliary angle 41

Over-constrained helical mechanism 28

Over-constrained regular mechanism 27 Unconstrained rotary axis/frecedom 35
Variant mechanism 31

Pair axis 10 Vector tetrahedron cquation 53

Pair type 16 Vector triangle cquation 76

Pair variable 35
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