Western University

Scholarship@Western

Digitized Theses Digitized Special Collections

1995

Commercial Integrity, Roles And Object-

orientation

Matunda Nyanchama

Follow this and additional works at: https://irlib.uwo.ca/digitizedtheses

Recommended Citation

Nyanchama, Matunda, "Commercial Integrity, Roles And Object-orientation" (1995). Digitized Theses. 2503.
https://irlib.uwo.ca/digitizedtheses/2503

This Dissertation is brought to you for free and open access by the Digitized Special Collections at Scholarship@Western. It has been accepted for
inclusion in Digitized Theses by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca,
wlswadmin@uwo.ca.

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F2503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F2503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/disc?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F2503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F2503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/2503?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F2503&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tadam@uwo.ca,%20wlswadmin@uwo.ca
mailto:tadam@uwo.ca,%20wlswadmin@uwo.ca

COMMERCIAL INTEGRITY, ROLES

AND
OBJECT ORIENTATION

by

Matunda NYANCHAMA

Department of Computer Science

Submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy

Faculty of Graduate Studies
The University of Western Ontario

London, Ontario
September 1994

© Matunda NYANCHAMA 1994

Ly I QuCanada. e

ions and Diection des isitions et

305 Welingion Sireet 285, rue Weingion
KA ON4 m Yow S Voire
Owr Mg Nowe iverce

THE AUTHOR HAS GRANTED AN L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE NON-EXCLUSIVE IRREVOCABLE ET NON EXCLUSIVE
LICENCE ALLOWING THE NATIONAL PERMETTANT A LA BIBLIOTHEQUE
LIBRARY OF CANADA TO NATIONALE DU CANADA DE
REPRODUCE, LOAN, DISTRIBUTE OR REPRODUIRE, PRETER, DISTRIBUER
SELL COPIES OF HIS/HER THESIS BY OU VENDRE DES COPIES DE SA
ANY MEANS AND IN ANY FORM OR THESE DE QUELQUE MANIERE ET

FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

SOUS QUELQUE FORME QUE CE SOIT

POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D’AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
C1 NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-315-99271-9

ABSTRACT

This thesis presents a study of realizing commercial security, as defined in the Clark
and Wilson Model [CW87], using Object-Oriented (0-O) concepts. Roles, being an
integral component of the this security model, form a substantial component of this
work.

Commercial security is concerned more with integrity than secrecy, unlike in mil-
itary systems where botl. secrecy and integrity are of equal concern. In commercial
security, there is a designated set of operations on data which uniquely determine
the relationships between data objects and the operations which update their state.
Effectively, no operation, other than those assured to leave data objects in a correct
state, are allowed. Authorization to data objects is achieved via user authorization
to opcrations on the objects and hence determines user-object relationships. In exe-
cuting the operations, the system must assure not only authorization, but also ensure
separation of duty.

Role-based security is implied in the Clark and Wilson model in which specified
operations are grouped to compose roles. This approach to protection is suitable
for applications involving large numbers of users with overlapping user requirements
and/or where there is a large number of objects. It presents a flexible (hence adaptive)
means for enforcing differing ranges of security policies. It enforces the principle of
least privilege, hence minimizing the risk of Trojan horse attacks.

Consequently, in part, this work focuses on role-based protection, formalizes the
role concept and proposes a model for role organization and administration. This
model, intended to ease access righis administration, is defined by a set of properties.
Algorithms for role administration are presented. These guarantee the: properties of
the role organization model. Ruie-based protection is also studied with respect to
traditional protection schemes. One aspect of this enquiry focuses on information
flow analysis in role-based security systems; the other addresses the realization of
mandatory access control using role-based protection. This involves the imposition of
acyclic information flows and rules that ensure secrecy. It demonstrates the strength
of the role-based protection approach.

A role is a named collection of responsibilities and functions which we term priv-
ileges. Execution of one or more privileges of a role facilitates access to information
available via the role. Access to information is realized both via user authorization

oia

to the role and the role’s privilege list. A role exists as a separate entity from the
role-holder and/or the role administrator. In determining role organization, role re-
lationships are used based on privilege sharing. This results in an acyclic role graph
with roles being nodes and edges being role relationships. These relationships help
us infer those privileges of a role that are implicitly defined. Analysis of this model
indicates that it can simulate lattice-like models, hierarchical structures and privilege
graphs.

Principles from the O-O paradigm are utilized to impose segmented access to
object information. This approach uses methods to “window” an object’s interface to
facilitate segmented access to object data through different roles, and hence different
users. By defining these methods to suit the intended functionality and associating
them with specific roles, we in effect distribute the ohject interface to different roles
and users. An object model is proposed as the basis of O-O executions. Further,
in order to impose the well-formed transaction (WFTs) requirement, a transaction
model is proposed that imposes transactional properties on method executions. By
use of transaction scripts we can design executions to realize desirable outcomes.

Separation ot duty is another major requirement in the Clark and Wilson model.
It requires object history for its enforcement. Our proposal ensures that objects track
their history. Moreover, every execution on an object utilizes the object history to
determine access and updates the history with any attempted access.

Finally, to demonstrate that we actually realize commercial security protection,
we go through each of the properties in the Clark and Wilson model to show how it
is realized.

iv

However tight the lips
However tight the locks

However smart the traps

However smart the designers
However rigorous the specification

However accurate the routines

Remember
Between two exists no secret
A secret is among three, though

With two dead, one senile

ACKNOWLEDGEMENTS

My sincere thanks go to my supervisor, Dr. Osborn, for her studious guidance,
encouragement and support throughout my entire period of this study. She not only
proved a willing and selfless scholar but also offered her best in the administration
of my programme. Dr. Mullin acted as my de facto supervisor in the absence of
Dr Osborn. 1 feel deeply indebted. Like Sylvia, he too supported me beyond the
academics and administrivia. I held fruitful discussions with Dr Hanan Lutfiyya at
the preliminary stage of this research. Sheila Lindslay, in attempting an implemen-
tation of the graph algorithms of Chapter 5, uncovered a some errors in the original
algorithms.

I would not have been in this programme without the initial support from my
former employer the Kenya Posts & Telecommunications Corporation (KP&TC), the
Kenyan Government and CIDA. The KP&TC supported me in my application for
scholarship and kindly extended my study leave way beyond the originally agreed du-
ration. The Kenyan Government, through the Directorate of Personnel Management,
offered me the scholarship whose funding came from CIDA through the bilateral Gen-
eral Training Fund arrangement. Despite mid-way withdrawal of financial support, I
had already set foot in it.

In the search for extra funds towards completion, Sylvia Osborn, Jim Mullin and
Mike Bauer tried their best, in vain though, to have my CIDA funding reinstated. 1
found great support from the University through the offices of the President, Student
Awards, Graduate Studies and the International Students. Dr Pedersen gave my
wife and I a good listening, expressed understanding and referred us to Chuck Hill
of the Student Awards where we got some bursary support. The Graduate Studies
office, through Drs Steele and Peterson, was most useful in pointing us to other
possibilities. Sandy of the International Students’ Office was most understanding
and managed to push my application for further bursary support. My department
nominated me for the Special University Scholarship (SUS), an Ontario fee waiver,
offered me Teaching Assistantship and, later, recommended me for the University
Graduate Research Scholarship. The fees office, in turn, displayed patience with me
by allowing the deferment of fees payment beyond set deadlines. Sandy Alfs and the
Office staff in Department of Computer Science helped a lot in administrative matters.
I owe plenty of gratitude to Sandy who, through her office, was instrumental in

vi

I, otherwise, wouldn’t have known about. In the often times of desperate financial
quagmire, my brother Osumo Nyanchama generously stepped in to help. I am most
grateful for his support.

This turned out to be what we call Harambee (let’s pull together) in my country
which beca: 1e possible only with collective effort of these many goodwilling people.
As the wise say in Kiswahili, akufaaye kwa dhiki, ndiye rafiki (a friend in need, is a
friend indeed).

My wife, son and daughter bore the brunt of the difficulties encountered in the
course of this study. Not only did I sacrifice their time and pleasure, but overcoming
the stress occasioned by my long absence from home was not a mean task. I hope
better times will come to justify these sacrifices. I sincerely hope that this experience
and achievement will bring positive happenings to our lives in the future. For my
son Kerara and daughter and “magokoro” (grandmother) Kemunto, I hope you will
have an example from the persistence of your father in trying to achieve something
for himself and the young family.

For my family (mother, father, brothers and sisters) in Kenya, I am most grateful
for their understanding regarding my absence from home. Perhaps 1 would have
helped more were I at home. But I hope my stay here would serve us all better in
the time to come. My lessons are immense which I am sure will benefit all of us in
the future when we unite under the Gusii skies in the land of our ancestors, the land
of Gutmwanda rigoti ri’egechure otaminyoke oikere.

This appreciation would be incomplete without mentioning the many friends that
gave me encouragement when the rough goings on appeared unbearable. The kenya-
net cyberspace community of Kenyans and other East Africans created a home atmo-
sphere and kept away potential loneliness in these distant foreign lands. Quite often,
in times of stagnation in this work, this forum filled in the void and hence provided
needed break from the monotony of this scientific study. I owe it to this Kenyan
cyberspace family for helping forestall burnout.

This work I dedicate to my children Kerara Agata Matunda und Kemunto
Nyakerario “9grandma” Aiatunda. May you blossom like the flowers in

the spring and live to accomplish what your heads prescribe as good for
yourselves and your people.

CONTENTS

CERTIFICATE OF EXAMINATION
ABSTRACT
ACKNOWLEDGEMENTS
CONTENTS
LIST OF ILLUSTRATIONS
LIST OF TABLES

CHAPTER 1 INTRODUCTION, GOALS & THESIS SCOPE

1.1
1.2
1.3
1.4

Introduction e e e
Motivation e e e
Thesis Goals & Scope
Thesis Organization0.00iiuu.n
141 ChapterTwo
142 ChapterThree
143 ChapterFourc000v.ou..
144 ChapterFive,
145 ChapterSix o v vt et et e e
146 ChapterSeven.t
147 ChapterEight

CHAPTER 2 COMMERCIAL DATABASE SECURITY

2.1
2.2
2.3
24

Intreduction L e e e e
Secrecy & Integrity: A Distinction
Why Commercial Security?
TheClark & WilsonModel
2.4.1 Well-Formed Transactions
242 SeparationofDuty0.0....

..

n
eoe
111

viit
xiii

© B =1 = B o e

[
W W N - O

243 ModelProperties, 23
2.5 Related Work

............................... 25
26 SummAary e e e e e e e e 27
CHAPTFR 8 AN OBJECT MODEL 28
3.1 Imtroductiont 28
3.2 Some O-O Basics & Rationale for O-O Choice 30
33 AnObjectModel 32
331 CoreTypes& Classes 33

332 ComplexObjects K7

333 Types& Classes0... 38

334 Extensibility & Types 40

3.3.5 Encapsulation, Messages & Methods 42

34 Summary & KeyContributions 48
CHAPTER 4 TRANSACTION MODEL 80
4.1 Introduction e 50
4.2 Operating Environment 52
4.3 Transaction TheoryOverview 55
43.1 TransactionsBasics 55

4.3.2 Shortcomings of TraditionalModels, 56

433 ExtendedModels 58

44 Our TransactionModel 58
4.5 Transaction Model Properties 63
46 RumningExample 68
46.1 TheProcessing 69

46.2 TheObjects e, 70

4.6.3 Cheque & Voucher Scripts 74

4.7 Summary & Key Contributions 75
CHAPTER 5§ ROLE-BASED PROTECTION (44
5.1 Introductiont 77
5.2 Implicit Authorizations & Roles 18
53 Roles: Informally 80
5.4 Roles, Capabilities & Privileges: Definitions 82

ix

5.5 Roles & Information Flow i i i i v i ... 86

5.5.1 Information FlowBasics 87

5.5.2 Information Flov & Security 88

5.5.3 Information Flow: Policy & Implementation Consistency . . . 90

554 Roles& InformationFlow 93
5.5.4.1 Privileges & InformationFlow 93

5.54.2 Roles & Information Contexts 95

5.5.4.3 Roles, Contexts & Information Flow 97

5.5.5 Roles & Information Flow in Role-Based Systems 100

5.6 Roles & Mandatory AccessControl 104
5.7 Summary & Key Contributions 110
CHAPTER 6 ROLE ORGANIZATION 112
6.1 Introduction 112
6.2 Role Organizing Structures 114
6.2.1 Role Organizing Structures: Similarities & Differences 114
6.2.2 Role Organization Structures & Their Properties 116

6.3 Roles & Access Rights Administration 117
6.4 Modeling Role Organization 119
6.4.1 Role Relationships: TheBasics 121
6.4.1.1 Two-Role Relationships 121

6.4.1.2 Beyond Two-Role Relationships 124

6.4.2 The Concepts of Minimum Privilege Sets 126
6.4.3 The Concept of Maximum Privilege Set 126
6.44 CombiningtheConcepts 126

6.5 A Role Graph Model for Role Organization 128
651 TheModel: Informally 129
6.5.2 The Role Organization Model: Formally 130
6.5.3 The Role Graph & Privilege Distribution 133
6.5.4 Role Organization Model & Operator Semantics 136
6.5.5 TheModel Properties 136
6.5.6 Other Role Graph Characterizations 137

6.6 The Role Graph & Privilege Administration 140
6.7 The Role Graph & Role Administration 143
6.7.1 Role Addition & Deletion 144

X

672 RolePartition
6.7.3 Correctness of the Graph Algorithms

6.8 Comparison with Hierarchies, Privilege Craphs & Others
6.9 Summary

CHAPTER 7 REALIZING COMMERCIAL INTEGRITY
71 Imtroduction i i e e
7.2 Rolesand theObject Model
7.2.1 Roles, Privileges £ O-O Interfaces.
7.2.2 0-O Roles & Object Information Windowing
7.3 Roles & The TransactionModel
7.3.1 Roles & Transaction Executions
7.3.2 Transaction Execution Well-Formedness
7.4 Users, Roles & Authorizations
7.4.1 User-Role Authorizations.
7.4.2 Roles, Explicit & Implicit Privileges
7.5 Roles & Separationof Duty
7.5.1 Separation of Duty & The O-O Paradigm
7.5.2 Separation of Duty & Object Histories
7.5.3 Separation of Duty & The Role Graph
7.6 Conflict of Interest & The RoleGraph
7.6.1 Roles & Conflictof Interest
7.6.2 The Role Graph & Conflict of Interest
7.7 Satisfying Commercial Security Requirements
7.7.1 Meeting Model Requirements
7.7.2 Security Information Management
7.8 Summary & Conclusions

CHAPTER 8 Summary, Contributions & Future Directions
8.1 Introduction v i i v i ittt e e e
8.2 SUMMALY i i it ettt e o oot it i
83 KeyContributions
84 FutureDirections,

Xi

APPENDIX A Related Work

A.l Inmtroduction e e e e e e e e e

A.2 Roles & Role Organization

A2.1 Roles & Commercial Database Integrity
A.22 Roles & O-O Design Environment
A.2.3 Roles in a Medical Delivery System
A.24 Roles as Named Protection Domains

A3 Capabilities & Commercial Integrity

A.4 Mandatory Integrity & Commercial Security

REFERENCES
VITA

xii

211
218

LIST OF ILLUSTRATIONS

3.1 Basic Object Model Hierarchy 32
3.2 A MethodInvocationTree 44
4.1 A Transaction Execution Tree 59
4.2 Depicting Script Execution 62
4.3 Inventory Management System Procedures 7l
5.1 An Example of Role Organization 80
5.2 User-Role-Resource Relationships 81
5.3 Method Invocation Information Flow 94
5.4 Information Partition ViaRoles 96
5.5 Policy & Context Information Flow 97
5.6 Category-Context Relationships 93
5.7 Role Definition Information Flow Algorithm 103
5.8 Information Flow Across Read & Update Scopes 106
5.9 Unidirectional Information Flowin Roles 107
6.1 Three Kinds of Authorizations 118
6.2 PrivilegeGraph, 120
6.3 Three Kinds of Two-Role Relationships 122
6.4 Different Forms of Role Organization 127
6.5 An Example of Role Organization 130
6.6 Another Example of Role Organization 132
6.7 Role Graph with Privileges 134
6.8 Different Levels Coupling Role Graphs 138
6.9 Algorithn for Role Addition 145
6.10 RoleAddition 146
6.11 RoleDeletion, 146

6.12 Algorithm for Role Deletion 148

6.13 Vertical & Horizontal Role Split 149
6.14 Algorithm for Vertical Partition 150
6.15 Algorithm for Horizontal Partition 151
7.1 Object Interface Distribution Over Roles 166
7.2 Distribution of Object Interface 180
7.3 Conflict of Interest Algorithm 184

Xiv

6.1 Table of Privileges

LIST OF TABLES

xv

CHAPTER 1

INTRODUCTION, GOALS & THESIS SCOPE

1.1 Introduction

Database security aims at preserving the secrecy and integrity of database informa-
tion while preventing denial of service. Research in this area has focused mainly on
government and military-like systems in an effort to emulate the paper world mainly
in the military tradition. These research efforts have culminated in well documented
models such as those of Bell and LaPadula [BL75] and Denning’s information flow
lat:ice model [Den76]. The United States Department of Defence’s evaluation criteria
for secure computer systems are set forth in the orange book [0D85] and its related
network interpretation [0D87]. Others include the Government of Canada’s product
evaluation criteria [0C93].

Secrecy ensures that database information is available to only those authorized.
It assures the confidentiality of the information. Integrity, on the other hand,
ensures that system data are modified by trusted subjects and that the modifications
are accurate and valid. Integrity assures the reliability of the information. Guard-
ing against denial of service ensures that system data/information is available to
authorized subjects when required. Excessively elaborate security mechanisms may
result in denial of service. We do not address denial of service further in this thesis.

Despite the fact that results from military security can be applied to commercial
environments (see for example Lee’s mandatory categories [Lee88]), a distinction must
be made between the different concerns of these two environments. While secrecy and
integrity are emphasized in military environments, integrity is the overriding concern
in commercial settings. Knowing military secrets such as attack plans can jeopardize
a military mission just as altering the accuracy of this information. However, an

1

2

employee’s knowledge of a manager’s salary may not be as serious as modifying the
value of this salary: here integrity of the database is considered more important than
the secrecy of the data it holds. The Clark and Wilson model [CW87] for commercial
security recognizes these distinctions. It will be cent 1l to our study.

The other key concern in a commercial establist .ewut is separation of duty [CWB8T,
Tho91, San91, Kar88, Lee88]. It is common to have some task (say a cheque issuing
process) subdivided into subtasks which are then carried out by different personnel.
Separation of duty is enforced by ensuring that no single individual can perform more
than (say) one of the subtasks that make up the task. For example, most establish-
ments require that no one person can authorize both a voucher and the cheque based
on that voucher. Barring collusion, separation of duty ensures that the rules speci-
fying the manner of accomplishing a task are adhered to. Military security has no
ezplicit provision for ensuring separation of duty. Despite the fact that it is possible
(see for example Lee’s [Lee88] realization using mandatory integrity categories) to
specify constraints to enforce this principle, *'ie task is not a straightforward one. For
that reason, work such as [CW87, Tho91, San91, Lee88] and (Kar88] have resulted.
Central to the Clark & Wilson Model (CWM) for commercial security [CW87] are
the issues of integrity and separatioa of duty.

The interest shown in O-O database systems [AH90, ABD*90, BCG*87, Dit90,
K86, Kim90, LVV88, MS90, FKMT91, Osb89b, Osb89a, Cat94, LAC*94] suggests
that they have a future in modeling. O-O databases also have attractive features
(types, classes, methods, inheritance, polymorphism, etc.) which we find useful for
modeling complex applications. Of particular concern is the ability to specify the
object interface and apportion it. From an authorization poin- view, this enables
us to base object information access on object interface partitions with different
users/groups/etc. being authorized to different partitions. Since our focus is on
database integrity, and given that database object transformations are based on meth-
ods (the object interface) in the O-O paradigm, our work associates authorizations
to the object interface. This leads to object interface distribution among different
users and different partitions facilitating access to the associated information. It is
for these reasons that we propose an object model within whose framework we do our
modeling.

The transactional nature in the commercial world is also an important component
of our work. Indeed, the Clark & Wilson models suggests use of of well-formed
transactions (WFTs) for information transformation. In our formulation, operations

that perform database inforination transformation are constrained to be transactional
in nature. Accordingly, we formulate a transaction modei to provide a framework for
such transactional transformations.

The role concept is implied in the Clark & Wilson model. A role is a collection
of privileges, where a privilege facilitates access to database information. It is a unit
of access rights administration. Once specified, a role is then authorized as a unit
to users/groups/etc. Defining a role this way enables us to administer any number
of privileges as a single unit for purposes of authorization. This makes the role con-
cept central to this work. Hence we propose a generalized role modeling paradigm
for role definition, organization and management. Starting from the basics of roie
relationships based on privilege sharing, we formulate the basis for role organization.
The resulting structure is an acyclic graph with roles along a path having a mono-
tonically increasing privilege set. We will demonstrate that this organization can
simulate other structures such as lattices [RWK88, RWBK91], Ntrees [San88, San89],
hierazchies [TDH92] and privilege graphs [Bal90].

Role-based protection brings several advantages (flexibility, least privilege, etc.)
to access rights administration. However, without providing a similar level of security
as traditional protection approaches, this approach to security would be unattractive.
To demonstrate its strength with respect to traditional protection schemes, we ex-
plore role-based protection with respect to traditional protection approaches. Using
information flow analysis techniques, we propose a means of determining the consis-
tency of a given role-based scheme with respect to a security policy. This involves the
use of subgraph isomorphism where a given role definition scheme is consistent with
(and hence secure with respect to) a given security policy, if the graph of its informa-
tion flows is a subgraph of the graph of information flows due to the security policy.
With the use of matrix analysis the performance of this process is O(n?), where n is
the number of roles. Further, using similar information flow analysis techniques, we
demonstrate that we can emulate mandatory access control using role-based security.
This involves imposing conditions that realize secrecy and acyclic information flows
on a given role scheme.

Using the proposed object model, transactiou model and role organizing frame-
work, we propose a formulation of the Clark and Wilson model. In particular, we show
how to model concepts of constrained data items (CDIs), transformation procedures
(TPs), well-formed transactions (WFTs), integrity verification procedures (IVPs) and
separation of duty.

The rest of this chapter provides further insight into this work. In section 1.2 we
discuss the motivation for this study. Section 1.3 offers the scope of this work. We
discuss the organization of this thesis in section 1.4 and offer a summary of what, in
our view, is the contribution of this study in section 1.5.

1.2 Motivation

This work aims at exploring security issues in non-military/non-government applica-
tions where integrity is the key security requirement. The Clark and Wilson model
[CW8T] offers requirements that are suitable for application in such environments.
Such environments emphasize integrity more than they do secrecy. Indeed, a key dif-
ference between the two application environments is the difference in emphasis placed
on the two. As more and more commercial organizations computerize, it is our view
that greater emphasis will be placed on information integrity as opposed to secrecy.

A second motivation arises from the observation that roles offer a “natural” ap-
proach to distribute and administer responsibilities and obligations in organizations.
It is our view that we shall see greater tendencies in this direction given the search for
different paradigms of modeling the administration of access rights in organizations.
Consequently, we are driven to search for ways of defining, organizing and adminis-
tering roles. Further, given the central nature that the issue of security plays in the
real world, it is only appropriate to study the implications of role-based protection.
As such, we study role-based security in the light of information flow approaches and
mandatory access control.

A third consideration is that the O-O paradigm offers a semantically rich approach
to modeling real world entities. Since organizations and their data, like any real world
entities, are likely to be complex, models such as the relationa! database model are
not likely to be expressive enough to capture this complexity. It is our view that O-
O systems provide such expressive power for specification and manipulation of such
complex entities. Our work will exploit this inherent expressive power of the O-O
paradigm.

1.3 Thesis Goals & Scope

The following offers a summary of the goals we intend to achieve and hence the scope
of this thesis:

1. The term role has been used extensively in the literature (see for example
[CW8T, DM89, San91, Tho91, KM92] and others). Invariably, its meaning de-
pends on the context in which it is applied, prompting Baldwin [Bal90] to opt
for the term named protection domain (NPD) instead. The problem lies with
the lack of a formal definition for the concept. Hence in order to use the term
role meaningfully, we need a formal definition for it. Part of this work focuses
on realizing a formal definition for the role concept. In doing so, we view a role
as a unit control that helps realize some system functionality. It can be seen as
a collections of functions that help achieve some duty requirements. Moreover,
these functions themselves must be formally defined. This work aims at formal-
izing the functions that constitute a role and hence yield a formal definition for
the term role.

2. Role-based protection is implied in the Clark and Wilson model [CW87]. Al-
though aimed at meeting security and integrity requirements in commercial en-
vironments, role-based protection can be applied in various environments other
than those proposed by in the model (see for example Ting et al. [TDH92]).
Thus the second goal of this thesis is to explore some theoretical properties of
role-based protection as it relates to known security principles such as infor-
mation flow and access control. By viewing roles as providing access to some
information context, and considering any implicit information flows due to role
definitions, one can determine whether a given role definition scheme is consis-
tent with a given information flow policy. Another interesting tangent of this
exploration is the examination of what access control schemes are suitable for
role-based protection and any theoretical properties they may have. An obvious
investigation is how, for instance, mandatory access control could be achieved
via role protection strategies.

3. Role organization is also an important component of role management. There
are various role organizing structures such as lattices [RWK88, RWBK91]}, hi-
erarchies [TDH92], Ntrees [San88, San89), privilege graphs {Bal90], etc. We
intend to provide a generalized framework for role organization and manage-
ment which captures the key properties of these role organization structures and
facilitates the ease of administration of access rights in a system. By investi-
gating these key properties, we crystallize them for use in our formulation. The
proposed role organization model is a graph where the nodes and edges of the

6

graph are roles and privilege relationships between the roles, respectively. Role
relationships are derived from privilege sharing. Further, we shall propose role
administration algorithms that preserve the role organization properties. We
shall demonstrate that the model simulates other role organization structures.
This forms our third goal of this work.

4. Given the advantages that roles bring to protection and those due to the 0-O
approach to modeling, our fourth goal is to exploit the advantages of this com-
bination to formulate a protection scheme. In an O-O system, operations on
objects determine object information manipulation. Hence it makes sense to of-
fer information protection at the operations level. By associating methods with
the role privileges, we are able to offer segmented access to object information.
A role can be seen as a collection of interface segments of some objects.

5. Given our aims are to offer a role-based 0-O model for commercial security,
our fifth goal is to demonstrate the realization of properties of the Clark and
Wilson model. To do so, we define database objects (at least those whose
integrity must be maintained) as constrained data items (CDIs) and operations
(methods) as Well-Formed Transactions (WFTs)!. Our approach is to associate
with every execution process some assertions which must be satisfied before
execution can take place. Since our formulation is based on O-O pr’~ciples, we
modify a<sociated method executions with assertions about their executions.
This imposes WFT requirement on executions. The transactional execution
requirement is governed by a transaction model.

Separation of duty is a major requirement of the Clark and Wilson model. En-
forcing separation of duty requires audit information pertaining to the object
being accessed. Thus it is important to investigate how to capture audit infor-
mation pertaining to a given object. The object history concept provides a way
out. It requires that an O-O model provide a means of capturing object history
within the object state.

18oth Transformation Procedutes (TPs) and Integrity Verification Procedures (1VPs) are termed
WFTs.

1.4 Thesis Organization

This section offers a brief outline of the organization of the body of this thesis. Ref-
erences to the appendices will be made if and when necessary.

1.4.1 Chapter Two

In chapter 2 we offer an overview of commercial database security [CW87] and dis-
tinguish it from government/military security. The fundamental distinction is the
difference in emphasis placed upon secrecy and integrity. In military type security
confidentiality and integrity of information are paramount. In modeling security,
e.g. using the Bell & LaPadula model [BL75] the rules governing information access
results in a conflict between secrecy and integrity. For instance subjects can write
information that they cannot view (i.e. information of }';* -r clearance than sub-
jects' clearances). This leads to polyinstantiation which is a major research issue in
computer security (see for example [JS90, JS91a, LH91, SW92, CY92b]).

In commercial security in general, and with the Clark & Wilson model in partic-
ular, the integrity of information is given higher priority than its secrecy. Thus the
correctness (accuracy) of transformation procedures, the correctness of the transfor-
mations themselves and the validity of the state of database objects (the information
bearing entities) are given emphasis. Hence all transformations on object state must
ensure that they take in data in a consistent state and transform it into another consis-
tent state. They must also ensure that any inconsistent input into a transformation
procedure, if acted upon, would result in a consistent output state; otherwise the
transformation will be rejected. Yet another important requirement is maintaining
the correctness of the transformation such that it is well protected from tampering.
All these provisions are aimed at preserving information integrity.

As mentioned in section 1.1, separation of duty is a component requirement of
commercial security as espoused in the Clark and Wilson model. The concept aims
at distributing the responsibility, authority and obligation across different individuals
in a system. Thus a subject responsible for approving a voucher should not approve
the associated cheque; where two signatures are required, no single individual should
execute both. Accordingly, the model requires that we not only keep track of indi-
vidual authorizations but also object history {Kar88, NO93a).

As well, authorization assignments must be such that it is possible to associate
subjects with transformation procedures, transformation procedures with data items

8

and ensure that these relationships are not violated. Authorization to a data item
then depends on this authorization information as well as object history, commonly
known as audit information. What we present in chapter 2 is a summary of the Clark
& Wilson model. For more details the interested reader is referred to [CW87, Kar88,
Lee88] which offer extended expositions.

1.4.2 Chapter Three

Our intention is to utilize O-O concepts for commercial integrity modeling. This is
the subject of chapter 3. The beauty of the O-O paradigm is that its concepts map
almost naturally to our intended task. For instance, with the class concept we can
define specific object types with specific structure and behaviour. Methods, being the
only means of object state manipulation, provide a means of segmenting the object
interface. These partitions can then be authorized to different users/groups/etc.
based on need. Inheritance facilitates incremental reuse of behaviour and structure
(both definitions and implementations). Others concepts like polymorphism are also
suitable in that we can send the same message to different objects with the responses
depending on the message receiver.

Accordingly, we propose an object model in chapter 3 which has many concepts
in common with others such as [AH90, ABD*+90, BCG*87, Dit90, Kim90, LVV88,
MS90, FKMT91, Osb89a, Cat94, LAC*94]. We recognize that the task of espousing
a whole model in the sense of O-O models, would itself be onerous. Indeed, with
controversies still raging on what should constitute a model and how certain concepts
should be modeled, we feel that such a task would be beyond the scope of this work.
Consequently, what we present in this chapter are some skeletal aspects which have
a bearing on our modeling. They can be viewed as concepts which can be specialized
for and built into any O-O model.

Unlike these models we do not propose a query language for the reason that all
accesses to database objects is via transactions. Hence our model takes the concept
of method access to objects and clothes it in a transactional paradigm. This choice
is based on 1eal life observations in the commercial world where access to objects
(such as cheques, vouchers, audit trail, etc.) are transactional in nature as required
by commercial security. We impose a restriction that all object transformations must
be transactional. Thus methods must themselves be transactional or act within some
transactional operation.

We define cbject interface partition as a subset of the methods associated with
an object. Authorization to object information is associated with authorization to
some interface partition. Making all transformations transactional means that object
interface partitions are “wrapped” in some transactional executions.

An important extension in this model is the addition of the notion of object history.
Object history (or audit information) is important for the enforcement of separation
of duty. In our model, this history is a comporent of the object state, where the
object state is determined by the values of its attributes. An object state can thus
be partitioned into history and non-history components, H_state and N H_state, re-
spectively. The former tracks required audit information while the latter keeps the
rest of the object state. Along with this concept of H_state is the update constraint
that requires that the object history be updated every time the object is accessed
or when there is an attempt at such access. Updating the NH _state, on the other
hand, de: =nds on whether or not the associated transaction commits or aborts. The
updated N H _state takes effect only on commit.

The O-O model proposed in chapter 3 formally presents the concept of object
history and demonstrates its incorporation into O-O modeling. History is defined as
a series of events where an eent, as a unit of object history, captures the nature
of audit information required for separation duty. This generalized definition of the
term event is attractive as it allows for specialization to suit a given application.

1.4.3 Chapter Four

The Clark and Wilson model requires operations to be well-formed transactions.
Therefore, operations in our envisioned application environment must be transac-
tional. Consequently, we propose a transaction model in chapter 4 for this purpose.
This formulation builds on the traditional transaction model properties: atomicity,
consistency, isolation and durability. Unlike the traditional model, we allow nesting
where a transaction can have several child transactions and propose rules governing
commit/abort actions for parent/child transactions. Another important feature of
this model, the compensating transaction, is intended to cater for recovery. For every
transaction defined, we need a compensating transaction to undo its effects in case of
a failure or an abort.

The script [WR92] is yet another feature of our transaction model. A script is a
specificatioa of the order of execution of one or more transactions. Scripts use serial,

10

parallel and iterative operators to prescribe a desired order. It is shown that any
ordering of transaction executions using these operators realizes a transaction itself.
Scripts are designed with particular resuits in mind which are determined by the
specified order in which its transactions execute.

1.4.4 Chapter Five

An important requirement in any organization with many people accessing shared
information, yet with differing privileges, is some organizing framework that would
reduce the burden of specifying and managing authorizations while assuring infor-
mation security. In multilevel security, MLS (which implements mancatory access
control, MAC), information is classified while users are assigned clearances similar to
the information classes. The task of authorization is thus reduced to that of determin-
ing what clearance should be given to what users. Administration of authorization
is reduced to the task of ensuring that users (subjects or processes acting on their
behalf) are cleared for the information they access. Ensuring security becomes the
task of making sure that users access information according to the simple security
and *-properties of the Bell and LaPadula [BL75] model according to their classifi-
cation/clearance attributes. As well, information security guards against tampering
with authorization information. In discretionary access control (DAC), users have
the authority to determine what other users can access information under their own-
ership. There exist schemes such as owner, group, other (for operating systems) that
also group users into user groups. Access to information depends on the access rights
of the group(s) a given user belongs to.

In commercial security and with the Clark & Wilson model in particular, the
concept of roles is implied. This is the subject of chapter 5. A role is a collection of
privileges where a privilege determines an authorized user’s access to the associated
object. Besides acting as privilege (access rights, obligations, etc.) holders, roles have
relationships with other roles. In a nutshell, in our formulation, a role captures both
the function [DM89] (actions, rights, obligations, etc.) and structure ([DM89] (role
composition and relationships with other roles) in a system. A role is authorized to
a user/group as a single unit and allows such a user/group to exercise the privileges
specified by the role. In role-based protection, the tasks include specifying what roles
exist, what privileges constitute a role and which users are authorized to the roles.
Once specified, determination of user access to information reduces to ensuring that

11

a user is authorized to the role and that the privilege being executed exists in the
role’s privilege set.

The advantage with roles is the flezibility they bring to access rights administra-
tion. This flexibity is mainly due to the fact that a role exists separately from both
the user and the resource {object, etc.) accessed via the role. User and resource
relationships lie outside the role function and structure. The challenge for an au-
thorization scheme designer is to maintain desired role structure and functionality,
maintain user relationships (if any) as well as maintain resource relationships (if any).
“Disturbing” any of the specified relationships is a security violation.

Role-based protection can accommodates wide-ranging security policies. While
our intention is to realize the Clark and Wilson model concepts, an interesting study
focuses on the application of traditional security concepts to roles. Thus information
flow analysis techniques are used for the analysis of secure role-based protection de-
signs. This involves the comparison of information flows inferred from both a given
policy and a given design {or implementation). A role definition scheme is consistent,
hence secure, with respect to a given policy if the graph of its information flows is a
subgraph of the graph of information flows due to the security policy.

Another important tangent is to determine whether we can realize mandatory
access control using role-based protection schemes. In doing so we impose both the
secrecy requirement in authorization and acyclicity of information flows. Thus we
demonstrate that we can achieve a level of protection equivalent to what is achievable
via mandatory access control.

1.4.5 Chapter Six

Once roles are defined, there is a need for a role organizing framework to facilitate their
administration and management. Chapter 6 presents such an organizing framework
for roles. By exploring the the basic relationship among roles, we extract the key
relationships that form the foundations for this organization. These include partial,
common and augmented privilege sharing. Partial privilege sharing refers to a junior-
senior relationship between roles in which the privilege set of the junior role is a subset
of that of the senior role. Common privilege sharing is the case where two roles have
the same junior role while augmented privilege sharing refers the case where two
roles have a common superior. Other important concepts are those of minimum and
mazimum privileges. These enable us to ease the administration of role access rights.

12

The result is an acyclic structure for role organization based on privilege sharing with
a monotonically increasing privilege relationship for roles in a given path.

The model is intended to ease access rights administration in a system. To that
effect it maintains key properties such as acyclicity and role uniqueness based on role
privilege sets. To facilitate role manipulation, algorithms are given that ensure the
retention of the model properties.

Various structures have been proposed for role organization. These include hier-
archies [TDH92], Ntrees [San88, San89}, Domain Definition Tables (DTTs) [Tho91},
Lattices [RWK88, RWBK91] or privilege graphs [Bal90]. Whatever the form, what
results is a structure that defines both the role function and structure. Indeed, except
for DDTs, these structures capture both these role specifications. The overall struc-
ture, which we term the authority structure, determines the distribution and exercise
of authority in the system.

We show that our formulation can simulate these other structures. Hence we claim
that it offers a more generalized form for role organization than those mentioned
above. The proposed structure is formally defined using various operators with their
appropriate semantics. Since the operators specify role relationships, they, in effect,
determine the distribution and sharing of syster.. privileges.

1.4.6 Chapter Seven

Chapter 7 utilizes the object, transaction and role models of chapters 3, 4 and 5 to
formulate the properties of the Clark and Wilson model. In the ot‘ect model, object
manipulations are transactional. These are authorized to the roles hence effectively
distributing the object interface among roles. Since object access is transactional,
privileges are defined as transactions. Role relationships (hence role structure) is
capture] by the role graph model. Defining privileges as well-formed transactions
and objects as constrained data items, we show how the Clark & Wilson model
properties are satisfied. As well, we demonstrate how to enforce separation of duty
within the role graph model.

This chapter also addresses the issue of conflict of interest. The most common
conflict is when a user is authorized both the administrative and execution privileges
of a given role. Imposing a conflicting relationship on a given set of roles partitions
roles into groups. We show that such a relationship partitions a role organization
graph into independent roles.

13

1.4.7 Chapter Eight

In the last chapter we recap the work covered in this thesis. Here we offer a summary
of our work and what, in our view, constitute the key contributions and achievements
of this work to research in computer security.

1.5 Summary & Thesis Contribution

In this chapter we have outlined the motivations for this work which include the recog-
nition of the advantage of utilizing role modeling and adapting it for role protection.
Moreover, given that our key concerns are with information protection, understand-
ing the use of role-based protection is important. As well, the choice of commercial
security criteria is based on the observation that applications, other than military
ones, will consider such concerns paramount. The choice of the O-O approach is dve
to its rich semantics that eases the task of data modeliny.

We also outlined the goals of this thesis. Among them: exploring and developing
theoretical notions for role-based security, studying role-based protection in the light
of traditional security approaches (information flow and mandatory access control),
modeling role organization, application of the role organization in modeling commer-
cial security. A further goal is to use O-O principles to specify and manage access to
objects in our model.

We have also outlined the scope of this which includes studying role-based protec-
tion approaches, marrying role-based protection with O-O principles and formulating
a means of satisfying principles of the Clark and Wilson model.

We regard the following as the major contributions of this work:

1. Formalizing the Role Concept

This study explore the basis of role-based protection and formalizes the the role
concept. Starting with a formal definition of privilege, it is possible to define a
role as a collection of privileges. At the beginning of this study, we could not
find a fcrmal definition of the term role. Indeed, some, notably [Bal90], eschew
the use of the term role arguing that it means different things to different people.
Our work shows that we can narrow this spread of meaning through formalizing
the concept.

2. Modeling Role Organization and Administration:

14

Role administration, and by extension access rights administration, can be a
very complex process in role-based security systems. The desire to have a madel
to ease this task requires the development a model and associated algorithms for
role-administration. Using basic role relationships, this model realizes a formal
framework for role administration. Role relationships themselves depend on
shared privileges. Analyzing these relationships forms the basis for derivation
of the role organization model. To demonstrate the expressive power of our
formulation, we show how to simulate other role organizing frameworks.

Suggested operations on the model are meant to preserve model properties. The
proposed operations facilitate tasks such as role addition, deletion and partition.
These operations which are intended to ease access rights administration are
presented in the form of algorithms.

. Roles, Information Flow & Mandatory Access Control:

The question of information flow in role-based protection is studied as well. In
particular, we study the application of information flow analysis principles to
the definition of role-based protection schemes. Taking a system information
flow policy and considering a role scheme as an implementation, we propose a
methodology for ensuring that a given implementation does not violate system
security policy. Using graph theory concepts we demonstrate how to represent
policy and implementation information flows as two graphs. Applying the con-
cepts of subgraph isomorphism, we define implementation consistency to be the
case where an implementation information flow graph is a subgraph of the pol-
icy information flow graph. Consistency, thus, can be used as the criterion for
security of a given scheme with respect to a given policy.

With respect to mandatory access control (MAC) our study focuses on demon-
strating that MAC:-like protection can be realized using role-based protection
schemes. Our analysis follows from the application of information flow prin-
ciples. Imposing the restriction that information flow must be unidirectional
and acyclic, we can realize similar protection with roles as can be achieved by
multilevel security.

. Realizing Principles of Clark & Wilson Model:

Using the role concept and O-O approaches we demonstrate the realization of
the principles of the Clark and Wilson model for commercial security. In par-

13

ticular, we introduce the concept of interface partition and distribution among
roles. Object histories are also introduced for use in enforcing separation of
duty. By defining the interfaces as WFTs and the objects as the CDIs, we
guarantee the realization of principles of the Clark and Wilson model.

5. Using O-O Principles To Track Audit Information:

We propose an object model which incorporates commercial integrity require-
ments. We thus have objects which track their histories, object histories that
are updated whenever the object is accessed, object method executions depen-
dent on the object history, etc. While we demonstrate that the histories can
be modeled as object attributes, this is not the only manner of keeping track
of such histories. The important thing is the abstract concept of object history
and the requirement to keep track of it as part of the object state.

6. Script-Based Nested Transaction Model:

We also propose a script-based nested transaction model. The script prescribes
the order of execution of operation in a given type/class of objects. Each such
script has a compensating script which compensates for the actions of the script.
We allow for arbitrary commit of children transactions but consider a transac-
tion committed when the parent and all its children have committed.

As a matter of information we observe that many of the concepts that this work
addresses are not new. For example the role concept has been around for a while as
has been others like the 0-O approaches, information flow analysis and its application
to security. However, this work brings together these known ideas and weaves them
together in a manner that realizes the requirements of the Clark and Wilson model
for security. This then, in a way, summarizes the key contributions of our work.

An a matter of information, parts of this work have been published variously as
references [NO93a, NO93b, NO94c, Nya93a, Nya93b] and [NO94b]. The PhD research
proposal [Nya93b] formed the basis and set the scope of this work.

CHAPTER 2

COMMERCIAL DATABASE SECURITY

2.1 Introduction

Computer security, in general, is concerned with unauthorized users. It is in‘ended
to safeguard the secrecy and integrity of information while guarding against denial of
service. Database security focuses on database information and aims to ensvre the
secrecy and integrity of the data and guard against denial of service for authorized
access to the data.

Secrecy aims at keeping information confidential while making it available to
authorized users. Integrity aims at keeping information accurate and consistent by
guarding against unauthorized modifications (accidental or otherwise) and ensuring
the correctness of the information. Preventing denial of service, on the other hand,
aims at ensuring that authorized users have access to information when and in the
form required.

Depending on the application, different emphasis can be placed on secrecy and
integrity. For instance in military security, secrecy is just as important as is integrity.
Unlike military systems, commercial environments emphasize information integrity
more than its secrecy. The risk associated with information modification (e.g. a bank
account balance) is much higher than that associated with knowledge of (say) the
value of the same bank balance. In a nutshell, secrecy is not as critical a consideration
in such a case as it would otherwise be in a military situation. However, this is not
to say that commercial systems do not require secrecy (e.g. proprietary information
is usually critical to a company’s success) but to drive home the point that in some
applications, integrity may be given greater consideration that secrecy or vice versa.
This distinction in the emphasis of security requirements for military and commercial
environments has led to the terms: “military” and “commercial” security. In the

16 !

17

former, both secrecy and integrity are just as important. For instance revelation
of secret information pertaining to some project can place the project in as much
jeopardy as the modification of the information. In the latter, the overriding concern
is the integrity of the information. Hence key concerns revolve around the validity of
the data and the accuracy of the transformations which act on the data. Additional
concerns inclucie conflict of interest and separation of duty. The distinction between
the latter terrns will be clear as we proceed.

This chapter presents an overview of the differences between secrecy and integrity,
summarizes commercial security requirements as propounded by Clark and Wilson
[CWS8T] and offers a summary of related work. In addressing related work, references
are made to roles, which are implied in the Clark and Wilson model, and role or-
ganization. The distinction between secrecy and integrity is given in section 2.2. In
section 2.3 we discuss the differences between approaches in military and commercial
environments. This distinction is important for it forms the basis for enunciation
of the Clark and Wilson model which is the subject of section 2.4. The key issues
discussed here focus on the basic principles underlying the model and the properties
a system must sctisfy in order to meet said commercial security requirements. This
section offers only an overview of the model. Detailed aspects of commercial security
can be found in [CW87, Tho91, San91, Lee88, Kar88]. In section 2.5 we briefly outline
some related work. A more detailed brief is given in appendix A. Section 2.6 is a
summary of the discussion covered in this chapter.

2.2 Secrecy & Integrity: A Distinction

Database security distinguishes subjects and objects. Subjects are the active entities
that manipulate database information. Subjects can be users and /or processes acting
on their behalf. Objects are the information bearing receptacles.

A central concern of database security is the aecrécy of the database information.
Secrecy is the ability to keep database information confidential. It is the ability
to ensure that information is available only to authorized subjects. Violation of
confidentiality is a security breach. Such violation can take various forms. It can
occur via direct leakage, where a system security’s retinue may be weak. It can
be indirect leakage via Trojan horse attacks, inference ~r covert channels. Covert
channels exist where information inadvertently leaks either via storage or timing.
The former involve leakage of information into some storage channel as in the case

18

where a process, executing legally, inadvertently writes information into a storage
device such as a file. The latter, on the other hand, pertains to signalling via process
behaviour; observation of such behaviour effectively leaks information. Inference,
on the other hand, involves the aggregation of “legally” accessible facts to deduce
unauthorized facts. Aggregation and inferences are major study issues in database
security research (see for example [Hin88, Lun89, Lin91, Wis90, MHT92)).

Another important database security concern is integrity of database information.
It aims at preventing inadvertent modification of database objects, accidental or oth-
erwise. It ensures that authorized subjects transform data and that such modifications
leave the information in a valid state. Essentially, database integrity deals with au-
thorized modifications and the accuracy of the modifications. Accurate modifications
ensure that database information is valid. Preserving the integrity of information, in
turn, assures information reliability. To be reliable, the information must be accurate,
hence correct. Preserving integrity involves the correct and legal modification of the
information. This can be done by ensuring that the subjects authorized to carry out
modifications do so correctly. Such correctness is set out in the security policy from
which the correctness criteria are derived.

Secrecy and integrity are different, although both are desirable for database pro-
tection. While secrecy is concerned with keeping information confidential, integrity is
concerned with ensuring that such information is not only accurate, but also correct
and valid, where correctness and validity are specified based on defined criteria. While
secrecy deals with unauthorized access, integrity is concerned with both unauthorized
access (such as masquerades, accidents, etc.) and authorized access (such inconsistent
modifications). In the latter case, integrity is concerned with the accuracy and cor-
rectness of database information by ensuring that any modifications meet the system
integrity constraints. Generally, this form of integrity is referred to as consistency
integrity [SD87). As Date [Dat83] demonstrates, it is concerned with the concepts
of accuracy, correciness and validity of database information and the operations on
the information [Dat83]. System integrity requirements ensure that the data are not
exposed to accidental and/or malicious modifications and/or destruction. Our work
focuses on both authorized and unauthorized access. We are concerned with the
integrity of transformations as well as the ability to forestall unauthorized modifica-
tions.

Other forms of integrity exist including data integrity, entity integrity, label in-
tegrity, system integrity, referential integrity, etc. To ensure database integrity in

19

trusted systems, the DBMS must enforce integrity control by: checking whether
given modifications are authorized and whether such modifications result in infor-
mation that is consistent and correct (based on some criteria). One such application
of integrity control is in concurrency control where many transactions can have con-
current access to shared data. When the effect of such transactions is to modify the
data, a correctness criterion is required to ensure that the database remains in a con-
sistent state after completion of executions. In most applications, the serializability
criterion is used as the correctness criterion in situations of concurrency control.

It is not easy to meet the requirements of both secrecy and integrity. This then
leads to conflict due to the need to satisfy both of these requirements. For exam-
ple in the Bell and LaPadula model, which enforces multilevel security, subjects can
write to levels equal to or higher than their clearance while they can read infor-
mation at levels equal to or lower than their clearance. Consequently, subjects can
create/modify information that they cannot view which leads to the possibility of
creating objects with the same names as objects already in existence. The result
is that there can be many objects with the same name(s) but created by subjects
with different security clearances and which may have differennt classifications; this
is termed polyinstantiation. In order to reconcile and determine which of the mul-
tiple instantiations should be utilized requires intervention outside the model mech-

anisms. Polyinstantiation remains a major research concern in computer security
[LSS*88, JS90, JS91a, JS91b, LHI1, CY92a, SW92].

2.3 Why Commercial Security?

Integrity and secrecy carry similar weight in government and military environments.
Violation of confidentiality may be as much of security violation as is violation of
integrity. The knowledge of a certain piece of information may be as serious as the
modification of the same or another piece of information.

The same cannot be said for a commercial environment where knowledge of a
certain piece of information may not be as disastrous as modification of the same or
a different piece. Emphasis here tends to weigh on the integrity (hence reliability)
of information in contrast with the emphasis in a military setting. As an example, a
company may publish the salaries of its executives and may make it accessible to all
employees while barring alteration of this figure to all other employees except some.
Integrity is of higher concern than confidentiality in the commercial world.

20

These distinctions require the investigation of environment-spr-ific concerns to
build models that address these concerns. While models like that of Bell & La-
Padula (BL75] and Denning’s lattice model [Den76] may be tailored to meet certain
requirements in commercial applications (for example, see Lee’s {Lee88] mandatory
categories), they fail to do so0 in some circumstances {see [NP90]). Traditional models
are thus unsuitable for modeling commercial security requirements. An example of
such a drawback relates to muitilevel security (M LS) that is common in military type
security modeis. Here, there are partially ordered security levels (as in Denning’s lat-
tice model [Den76)) and the security mechanisms prevent the flow of information from
higher to lower security levels. Such a scheme has no “natural® mapping to specifi-
cations in commercial applications where there can be multidirectional information
flows.

To formulate and enforce commercial security requires a specification of roles
required for the processing environment. A role will be equipped with sufficient
“capabilities” to meet duty requirements. Having defined roles, users are authorized
to act in specified roles. Depending on the requirements of a given application, a
user can be authorized different roles. For instance, a manager can perform the roles
of both manager and clerk. For ease of management, there can be specified a role
organization structure for the administration of roles. For example, they can be
ordered to yield a role lattice [RWK88, RWBK91}, hierarchy [TDH92] or some other
suitable structure with specific rules governing the role relationships. In general,
the rules governing information processing will specify and regulate the relationships
between the different roles. As well, they govern the relationships between individuals
and defined roles. Application of these rules can be mandatory in that they are
system-defined and cannot be altered in the course of processing, nor can they be
modified by the individuals to whom they apply.

In military situations, clearance is central to information access and manipulation.
Once users have a certain clearance, the rules on what they can do are clear, e.g. the
Bell and LaPadula model the no write-up and no read-down rules [BL75] govern ac-
cess. A need-to-know requirement may also be imposed to limit subjects accessing all
information at any one security level. A combination of mandatory and discretionary
access control realizes this [oD85].

These reasons provide the motivating force behind Clark & Wilson’s model (CWM)
[CW87]. Its emphasis, as said in the foregoing paragraphs, lies in commercial secu-
rity concerns as opposed to those of the military. Clark & Wilson contend that in

21

a commercial environment, integrity is of greater concern than is secrecy. Indeed,
the accuracy and correctness of mechanisms in a commercial environment override

concerns for revelation of information.

2.4 The Clark & Wilson Model

Our work addresses the concerns of integrity in commercial environments. In partic-
ular, we focus on security requirements as specified in the Clark and Wilson model
[CW8T]. This section will be an overview of the basic principles of the model which
form the basis for commercial security.

To achieve the desirable commercial security, the model enunciates an idea based
on two properties, viz: Well-formed Transactions (WFTs) and Separation of duty. A
WFT can be seen as a programme which assures the integrity of the data it manip-
ulates [Tho91). Separation of duty, on the other hand requires that different users
execute different subtasks of a given major task. We will explain these in turn in the
following sections. The model properties which assure these key principles will be
addressed as well.

The enforcement of the model policies is regarded as mandatory: given users’
access to information is based on user authorization to execute system-defined oper-
ations. Further, rser access rights cannot be transferred to third parties. Moreover,
users cannot exercise administrative rights over their own access rights. As in tra-
ditional MAC, this case requires that subjects’ and objects’ attributes are the only
basis for granting authorization according to specified rules.

In general, the Clark and Wilson model can be seen as specifying system behaviour
a priori. This behaviour is determined by the operations defined on the data objects.
User-operation relationships govern the execution of the operations and hence the
exhibition of the specified behaviour. Clearly, this makes the model static.

2.4.1 Well-Formed Transactions

A well-formed transaction (WFT) is a program that has been certified to perform:
a specific operation that preserves or introduces integrity policies [Tho91]. A WFT
constrains a user from using accessible data in ways other than those specified. Pre-
sumably these specified ways must have been certified to preserve and/or ensure the
integrity of the data. WFTs are suitable for the preservation of data integrity in
cases that would otherwise be difficult to handle with a generalized security policy.

22

They can also be used to ensure that a given piece of code contains no Trojan horse
[Tho91]. They can be certified to be correct, a task whose extensiveness andJ expense
would depend on how stringent the security requirements are.

A WFT also ensures that the database is consistent once the WFT execution is
over. This happens in that each WFT execution starts with a correct and consistent
database state. Given that it must execute correctly, then it must, at the end of
the execution, leave the database in a correct state. Each transaction involves a
certification procedure that ascertains that the database is in a consistent state before
start of execution. Should the certification step fail, the transaction will abort.

In the formal Clark & Wilson model, WFTs are either Integrity Verification Pro-
cedures (IVPs) or Transformation Procedures (TPs). Both act on database objecis
referred to as Constrained Data Items (CDlIs).

There is key difference between TPs and IVPs [AAL+93]. TPs act on database
objects transforming their state and hence changing the database state. They are the
main agents of database information transformation in the model. TPs transform
CDI states while assuring the validity of the objects. They are designed to take a
correct input CDI state to another correct output CD state. IVPs, on the other
hand, ensure the integrity of both the data and the effects of the TPs. IVPs can
be seen as confirming that the integrity of CDIs is maintained. They act more like
“auditing” procedures that assure CDI integrity. In other words, even when the TPs’
effects may be correct based on the definition of state validity, their integrity may be
compromised. For example, in double-entry book keeping, a debit entry in one place
must be accompanied by a credit entry in another. A double-entry IVP procedure
would ensure that TPs carrying such a double-entry process actually honours the
credit-debit book entry requirement. This audit program will be designed in a manner
that ensures that the accounting books balance.

CDIs are the data items whose integrity the system must maintain. These must
be identified and labeled as such. Desired integrity polices are then enforced via IVPs
and TPs. IVPs confirm that all CDIs conform to the integrity specification whenever
an IVP is executed. On the other hand, TPs enforce the WFT concept and are
responsible for transforming CDIs (rom one valid state to another valid state. I1VPs
and TPs must themselves be certified with respect to some integrity policy. Such
certification is the responsibility of the system security function (e.g. the system
security officer, SSO, or some system security privileges authorized such an SSO)
and could be done either manually or automnatically. This certification and proper

23

enforcement of the integrity policy by the system assures system integrity.

2.4.2 Separation of Duty

Separation of duty is applied where several people are required to perform a given
task. Such a task may then be broken down into subparts and different people
assigned these different subtasks. This ensures that the responsibility associated
with the performance of a given task is distributed among different individuals. It
is aimed at forestalling iraud, barring any chance of collusion. It is applied where
several individuals (or processes acting on their behalf) are required to perform a given
task. The task is then broken into subparts which are assigned to different people.
Every individual is then required to perform (say) only one of the subtasks with the
restriction that none of the individuals can perform more than a given number or all
of the subtasks. An example is the check-voucher process where a voucher initiator
cannot authorize the writing of a cheque nor sign the cheque.

In specifying separation of duty, the Clark and Wilson model requires that the
system maintain user-TP and TP-CDI relations. From these can be derived user-
CDI relations which specify user authorization to manipulate CDIs in the manner
specified in the TP-CDI relationship. Consequently, in executing the subtasks of a
given processing of a CDI, we can keep track of the user identities that have been
involved in the execution in order to enforce separation of duty. Therefore, separation
of duty requires that we track CDI execution history.

Using the notion of roles, it is possible to realize a separation of duty system that
assures that an individual performs roles as specified in the rules governing them.
Such rules may include the requirement that an individual cannot perform more than
one role in the processing of some task. The Clark & Wilson model is suitable for
roles. In the cheque-voucher example, different subtasks may be assigned different
roles in the system. Ensuring that no single person performs more than one of the
assigned roles ensures that no single person can initiate, authorize and sign a cheque.

2.4.3 Model Propertics

To accomplish the foregoing, the model lays out desirable properties of the system
that would assure incegrity. These properties fall into two categories: certification
and enforcement.

Certification properties serve to assure that before any executions ~ommence, all

24

the constraints pertaining to such executions are met. These include whether or not
all the data is in a valid state, whether or not the procedures that operate on these
data are valid, whether or not the procedures produce valid transformations on the
data, etc. Among the certification properties in the CWM model are [CW87]:

1. IVPs must ensure that all CDIs are in a valid state whenever an IVP is run.
This is similar to validating the state of instantiated input parameters. Input
parameters assume values from certain domains. The domains themselves have
constraints that must be met by the instantiated parameters. The validation
process ensures that the parameters belong to their appropriate domains and
their values meet the constraints specified for the domains.

2. certification that all TPs are valid and that any such transformation must take
the input CDIs to a valid final state. The system (or more appropriately the
SSO) must specify the relation between a TP and the CDIs it takes as input.
The task is to verify that the TPs execute correctly, i.e. they meet their spec-
ifications. In other words, given a correct input state of a CDI, the CDI will
be in a valid final state after TP execution. For the output state of TPIs to be
valid, the relationship between TPs and CDIs must hold.

3. all relations between a user and a TP must must be certified to ensure separation
of duty as specified in the desired policy.

4. All TPs must be certified to write to an append only CDI (e.g. an audit log)
all necessary information to enable reconstruction of the operation. This is
of particular importance in commercial establishments where a high level of
accountability is required. Without the ability to reconstruct the actions of
TPs, retracing the operation sequence will be a difficult (if not an impossible)
task.

5. Any TP that takes an unconstrained data item (UDI) must be certified to
perform only valid transformations for any possible value of the UDI. Such a
transformation must take the UDI input and transform it into a CDI or reject
the operation. This helps prevent valid manipulations of UDIs that yield UDIs
hence invalidating the whole operation.

On the other hand, the enforcement properties assure the maintenance of rela-
tionships between TPs and CDIs. These include [CW87]:

25

1. The system must maintain the specified list of relations specified between TPs
and CDIs and ensure that CDIs are manipulated only by TPs according to these
relations. Any TP operation on a CDI must be according to some specified
relation. Hence ihere must be no operation on a CDI except by a TP and

according to some relation.

2. The system must maintain a list of relaticns between system users and TPs of
the form: (usid,(TP;(CDI,, CDL,---)) \:at associate a system user and a
TP in the system. It must ensure that the only executions that occur are those
described in the relations.

3. A user attempting to execute a TP must be authenticated before execution
proceeds. Such authentication must include the user identity as well as the
authorization to execute the given TP.

4. Only agents with permission to certify entities may change the list of such
entities associated with other entities and specifically associated with a TP.
Entities with certification permission on an entity may not have execute rights
on the same entity. This imposes separation in that entities with execution
rights on an another entity are not at the same time responsible for determining
these rights.

To meet the requirements of commercial integrity as specified in the Clark and
Wilson model, a system must meet the certification and enforcement requirements.

2.5 Related Work

The Clark & Wilson model, the basis for commercial security, requires that data of
interest be modified only by authorized well-formed transactions (WFTs) with the
concept of separation of duty determining who can perform what transactions and
make what alterations [Lee88]. In doing so essential roles are identified, users are
authorized to non-conflicting roles and specific kinds of data items are modified by
authorized transactions acting on behzlf of users acting in appropriately authorized
roles [LeeB8).

The seminal work in this area was done by Clark and Wilson [CW87] although
there had been an earlier recognition of the different security requirements in dif-
ferent environments (see for example Lipner's [Lip82] paper on realizing the same

26

using a lattice model or Chalmers [Cha86] on the differences between military and
private sector security concerns). Since then several works have attempted to meet
the specified commercial integrity requirements as specitied in the Clark and Wilson
model.

Lee [Lee88] proposes the realization of the Clark & Wilson model using manda-
tory categories and the concept of partially trusted subjects. Lee’s approach is to
extend traditional models (such as Bell & LaPadula’s) to enforce the requirements
of commercial security in which mandatory categories control unauthorized modifica-
tions while partially trusted subjects control unauthorized transactions. Along with a
given set of rules, it is shown that the requirements of commercial security as specified
in [CW87)] are met. (Appendix A offers further details.)

Karger’s [Kar88) work aims at realizing separation of duty using secure capabilities
to enforce integrity. In this formulation, each data item of interest carries with it the
audit information necessary . enforce separation of duty. Making an object’s audit
information part of its secure capability makes this information readily available This
strategy facilitates performance improvement given that the same information does
not have to be extracted from the audit trail.

Sandhu [San91] discusses automated separation of duties with the use of roles
and transactional expressions. Imposing constraints on these expressions facilitates
ensuring separation of duty. An important extension of this is to allow for substitution
of attribution, something not incorporated in the original model.

Thomsen’s [Tho91] work models roles using type theory and enforcement in the
design and implementation of a medical delivery system. Domain definition tables
are used to associate users and their roles.

The association of O-O principles and roles has been done by Ting et. al. [TDH92].
The idea is to offer segmented object access via method authorizations. The effect is
the distribution of object interface among different users accessing object information.

Concerning role organization, several different organization structures have been
suggested. Rabitti et al. [RWK88, RWBK91] propose a lattice organization. Sandhu
[San91] suggests use of Ntrees [San88, San89] while Ting et al. [TDH92] proposed a
hierarchical organization. Using a hierarchical organization of roles, it is possible to
analyse role capabilities after the instantiation of the hierarchy. Baldwin {Bal90] who
refers to roles as named protection domains (NPDs) proposes privilege graphs for role
organization.

27

2.6 Summary

In summary, there are different security requirements between different environments
which may result in differirg emphasis placed on confidentiality, integrity or both.
In military systems, these requirements are driven both by the need for secrecy and
integrity whereas in commercial applications, they are integrity-driven. The Clark and
Wilson model is an attempt to meet the commercial-specific concerns for information
security. In doing so, the model prescribes a series of properties that must be satisfied
in the definition and processing of data and operations in a database environment
aimed at meeting these specifications.

To meet commercial integrity requirements, in the words of Lee [Lee88], requires
that we identify the required roles in a system, distinguish which of those roles are
conflicting, and ensure that no use executes more than one role from a conflicting class.
Specific kinds of data (referred to as constrained data items, CDIs) are modified by
specified transformations acting on behalf of some user acting in some authorized
role. These transformations (TPs and IVPs) are designed to ensure CDI integrity.
Moreover, execution of these transformations must preserve the principle of separation
of duty.

Roles form an important component of the Clark & Wilson model, hence they form
a substantial element for investigations that address commercial security. Roles, their
definition and management are important for realizing that the model properties are
met.

CHAPTER 3

AN OBJECT MODEL

3.1 Introduction

Our formulation uses Object-Oriented (O-O) principles to model entities in the pro-
cessing environment. Therefore, we need an O-O framework within which to oper-
ate. This chapter presents some O-O concepts which, in our view, can be incor-
porated within any O-O model. This is necessitated by the fact that there exists
no standard O-O model. Although there are efforts aiming at such standardization
[FKMT91, LAC*94, Cat94], realizing a standard (e.g. ANSI, ISO, etc.) still appears
distant.

It is not our intention to specify an O-O model fully, for such a task would be
another thesis by itself. We realize that to enunciate such a model to completeness
requires more than its conceptual form. Therefore, such a task is beyond the scope
of this thesis. Moreover, given that O-O modeling is not the focus of this work, we
believe that a conceptual “model”, with emphasis on the abstract concepts of concern,
will suffice. Hence our task here becomes the presentation of a conceptual framework
and properties important to our modeling. In true O-O modeling, this framework
may not qualify as a model. However, for purposes of this thesis, use of the term
“model” shonld be understood to refer to the framework presented here.

Our model incorporates key properties from the O-O world such as types/classes,
complex objects, aggregation, inheritance, encapsulation, message sending, methods
as the only m.eans to manipulate objects, etc. In addition, we introduce the concept
of object history as part of an object state. This keeps track of object manipulation
information. Object history is necessary where audit information is required for
processing. We will define object history formally and demonstrate its incorporation
into the object state. With respect to executions, we distinguish between two forms:

28

29

ordinary and transactional. The former are executions as usually defined in the
0-0 models, while the latter incorporate transactional properties. Transactional
executions are required in commercial security environments.

At this point, we must point out that we aim at introducing certain concepts
that will be of use in our formulation of commercial integrity. Therefore, although
we propose a manner of incorporating proposed concepts into O-O modeling, these
proposals need not be seen as prescriptive. As abstract concepts, the designer of
an application would adapt them to suit the application. For example, although we
propose that object history (see section 3.3.2) be considered a component of the object
state, there is no reason why it cannot be modeled in another form. For example, in
our proposal, a history attribute, which is updated every time the object is accessed,
keeps track of this history. The same concept of history can be realized by defining an
object as a quadruple (identifier, type, state, history). Therefore, ours need not be the
only manner of modeling and capturing notions suggested here. What is important
is that, using some approach that is consistent with O-O principles, we capture the
abstract meaning of the concepts proposed herein.

In the next section we present some O-O basics and the rationale for the choice
of an O-O modeling approach. The principles discussed here have generally been
accepted in the manner in which they are defined. While there is no standard object
model, definition of concepts as used here seem to have been accepted (see for example
[Dit90, Kim90, LAC*94, Cat94]) in the O-O modeling world.

In section 3.3 we formally present our O-O model with features similar to many
others in the literature (see for example [LVV88, Osb89b, Dit90, Kim90, ABD*90,
FKMT91, LAC*94, Cat94]) but tailored to suit our envisioned application environ-
ment: commercial database security. We present the concept of object history and its
relationship to object state. The object state itself is determined by object value which
is determined by the values of an object’s attributes. Object history, as defined here,
is intended to capture audit information associated with an object’s manipulation.
It is important where object access and processing is dependent on past history or
where there is perindic system audit to ensure the correctness of executions on ob-
jects. Further, distinction is made between bounded and unbounded object histories.
Bounded histories have finite length and pertain to objects with finite processing (e.g.
cheques, vouchers, etc.) while unbounded histories have infinite length (e.g. audit
trails, bank accounts, etc.).

Another important inclusion is the concept of transactional executions on ob-

30

ject state. There is salient agreement that object state manipulation takes place via
operation executions. However, there is no requirement that such executions be trans-
actional. In our formulation, we introduce the possibility that such executions can
have transaction properties. Transactional executions are necessary in our anticipated
processing environment which requires well-formed transactions executing on objects.
Hence the operations that manipulate objects must be transactions themselves. Al-
ternatively, they could be invoked within some transactional operation. Chapter 4
develops this concept further.

Section 3.4 presents the summary and what we view as key contributions of this
chapter.

3.2 Some O0-0 Basics & Rationale for O-O Choice

Object Oriented (O-O) database systems have evolved in an attempt to approximate
the modeling of real world entities. They offer a major advantage over traditional
relational systems as they capture more real world semantics, a fact that makes them
better at modeling complex entities. They find applications in complex modeling en-
vironments such as computer aided design/manufacturing (CAD/CAM), geographic
information systems (GIS), very large scale integration (VLSI), etc. Modeling power
comes at a price though. It is more difficult to specify a clean, well-defined and
universally acceptable model [POS92).

0-0 databases support conventional database functionalities such a3 persistence,
concurrency control, recovery, some form of storage management that includes index-
ing, an ad hoc query facility, a provision for schema definition and evolution, etc. 0-O
databases also incorporate concepts from O-O programming which include complex
objects and aggregation, types/classes and extensibility, inheritance and class/type
hierarchies, and encapsulation and polymorphism [Dit90, Kim90, ABD*90, FKMT91,
POS92]. In general, these concepts fall into two key orthogonal categories, namely:
structure and behaviour [DHP89, POS92, FKMT91].

In O-O systems each entity is modeled as an object with a unique identifier. An
object has an identifier, behaviour and state. The identifier uniquely distinguishes an
object from all other objects in a system. The behaviour and state are determined by
the type to which the object belongs [POS92, Cat94, LAC*94). The object state, in
turn, depends on the values of a set of properties (e.g. attributes) [Cat94, LAC*94]

,

31

which determine the state characteristics. Object state characteristics are inherently
related to object structure. Behaviour, on the other hand, is determined by the
operations that can be executed on the object.

The type specifies the characteristics of its instances. These include the behaviour
and the nature of state. Behaviour, as seen above, is determined by the operations on
the instances while the state depends on the values of the properties of the instances.
The class concept is related to the type. However, as Loomis et al. [LAC*94] point
out, the class connotes an implementation while a type specifies the abstract aspects
pertaining to objects. A type can have many implementations and hence more than
one class [LAC*94, Cat94].

A type defines the structure and behaviour of its objects. Objects of a given type
are referred to as instances of the type. The structure is defined by type attributes
and their domains. This definition allows for complex instances since the domains
of attributes can be coi.plex or simple. In general, complex attributes have complex
domains while simple attributes have simple domains.! The behaviour is defined to
meet its specification in the type and is determined by the methods specified in a
class. Methods operate on the instances or their properties on being invoked by
corresponding messages sent to an object.

In general, the set of messages that a type responds to defines its interface.? 0-O
databases allow for eztensibility which ensures that user-defined types and classes are
handled in the same manner as system-defined ones [Weg90]. Extensibility allows for
modification of existing structure, behaviour and associated constraints; it permits the
rearrangement of existing instances with possible re-assignment to new classes/types
[FKMT91].

0-0 databases facilitate incremental development by allowing for reusc of existing
definitions and code through specialization and aggregation [SS77]. The former facil-
itates creation of new types from existing ones via the inheritance mechanism which
uses definitions of existing types and extends and/or redefines them. The new type is
said to inkerit the said properties (attributes, operations and relationships) from the
existing type. Aggregation allows the composition of existing type to form new ones.

T A simple attribute has simple values such as a number, string, or any other value specified as
simple. A complex attribute can assume complex values such as another object or an aggregate of

such objects or structures.
2Loomis et al. [LAC*94] include type relationships, operations and attributes of which programs

can get and set values in their interface. While we have no problem with this approach, we are
interested ir: the interface as determined by the operations on the objects of a given type.

32

Atomic Literal ""‘eit*
ter
| SAan
_LObject -~ -
Lm Literal
_Object 1| e
AL SR FREEEEY
o E
L D.Object Tollecton
Object Boot Structured Object Taucture
Dt (Conswained ham) 3
—Attribute
Property
| Relationship
Characiernitic
~Operaton

Figure 3.1: Basic Object Model Hierarchy

As new types are created via the inheritance mechanism, a hierarchy of database
types results which is a directed acyclic graph. Depending on whether generalization
is allowed, the hierarchy can grow in either direction of the graph. Just as we have
inheritance hierarchies, so also can we have aggregation hierarchies.

All communication between objects in the database is via messages. Messages
invoke methods which manipulate the objects as defined in the type hence provid-
ing encapsulation: we cannot access the representation other than through the class
method interface. To ensure Polymorphism, instances of different types can receive
the same message but respond differently depending on the type of the receiver of the
message.

3.3 An Object Model

Since there exists no standard O-O database model (see for example [ABD*90, Kim$90,
Dit90, FKM7191, LAC*94, Cat94]), we need to specify a framework for our formu-
lations. While the concepts incorporated here are similar to many other models,
notably [AH90, LVV88, Kim90, LAC*94, Cat94, P6592] and others, this specifica-
tion will put into clear context both the model and its properties in our conceptual
framework.

33

We have tried to keep the model simple presenting mainly those concerns unique
to our intended application. These include the nature of objects and their uniqueness
(section 3.3.2); classes, types and the manner of their administration and utilization
(section 3.3.3); extensibility and its bearing on database extension (section 3.3.4);
methods, their nature and effect on database objects (section 3.3.5). Others include
message passing, encapsulation, polymorphism and persistence.

Our application environment anticipates transactional operations; hence methods,
the only change agents, have been formulated in a manner suitable for the incorpo-
ration of transactional properties. What we do not present here is a query facility
for the model. It is our contention that it is beyond the scope of this work. Not that
querying would not be necessary, but that it is possible to incorporate (in the context
of the application) a suitable query facility should need arise. However, it suffices to
note that the transaction formalisms could be extended in such a manner that every
query is handled as a message.

3.3.1 Core Types & Classes

The model we propose has a lot in common with models proposed in [POS92, LAC*94,
Cat94]. Its core types are discussed in this section and figure 3.1 (adopted from
[Cat94, LAC*94]) merely demonstrates how these concepts can be incorporated in
a given model hierarchy. For purposes of this work, Cattel et al.’s model [Cat94]
provides the framework for our formulation. The classes include Object_Root, as
root of the hierarchy. The Object_Root type defines all the basic properties and
operations available for all types in the type hierarchy. It has two key subtypes,
namely, characterisiic [LAC*94] and object [LAC*+94]. The former represents factors
that determine the state and behaviour of objects. These include the operations and
attributes that may be associated with objects in the database. The characteristic
type thus has two subtypes, viz: property and operation.

The object subtype, on the hand, represents the kind of objects that can be
found in the database. The object type has two subtypes: D_.object and L_object.
The D.Object has two subtypes: atomic object and structured object. The L.object
subtype also has two subtypes: atomic literal and structured literal. Of major interest
to us is the structured object type. This type has three key subtypes: collections,
structure an. constrained data item (CDI).

The atomic literal type is a subtype of the L_Object. This type, along with its

34

subtypes represent properties of pre-defined atomic types which are used as “building”
blocks for the construction of new types. Subtypes of the atomic literal type include
literals, integers, floats, Boolean, etc. There is also the structured literal under
which user-defined atomic types can fall.

The D.Object type has two subtypes: atomic odject and structured object. The
former has three instantiable subtypes, namely, type, ezception and iterator [LAC*94].
The Structured Object type provides basic properties for structured objects and
instances of its subtypes. Like the atomic type, the instances of this type and its
subtypes have attributes with domains from any valid type within the system. The
Collection type is a subtype of the structured object type and it specifies the prop-
erties and operations necessary for instances of collections. Such collections can be
sets, bags, lists, sequences, etc. [LAC*94, Cat94).

In extending Cattell et al.’s hierarchy, we add one type namely the constrained
data item (CDI) type which is of greater concern to us in our subsequent formulation.
The CDI type and its subtypes offer properties essential for objects ensuring object in-
tegrity as required by the Clark and Wilson model [CW87]. Termed constrained data
items (CDIs) [CW87, Tho91, San91], these objects and their operations are designed
such that operation execution on the objects assures object integrity. Essentially, the
key differences between this type and other types is that CDIs keep track of their his-
tories, they have transactional operations and, on execution, these operations update
the the history of the object they are operating on. The history, its manipulation and
the transactional properties of CDIs are essential for object processing and serve to
assure object integrity. We shall revisit this issue later in this and the next chapter.

3.3.2 Complex Objects

An object is the basic unit of access in our model. It is a unit of information which is
handled as an individual entity. It is the information bearing receptacle and its access
facilitates access to the information contained therein. An object is specified by its
unique identifier (identity), type (see section 3.3.3) and state. Object information
is held in its underlying object structure and is accessible only via its interface. An
object is specified by three components:

Definition 8.1 Object: An object (o) in our O-O model is a triple: object identi-
fier, its type and its state [LVV8S, KC86, POS92), i.e. o = (oid, type, state) where
oid is the unique identifier for the object, type is the type of which the object is an

35

instance and state is determined by the values of the object’s properties. oid and
type are drawn from countably infinite universes, ID and T, respectively. a

The identifier serves to distinguish an object from all others in a system, hence
the requirement for its uniqueness. There can be many objects belonging to the same
type (or even different types) with the same value. Objects that are instances of the
same class have the same structure. Hence it is the identity that distinguishes object
uniqueness. Identity is also used for testing for identity, equality and shallow equality
[KC86, Osb89a] of objects.

Identity is very important in our envisioned application environment. For instance,
no two cheques in the commercial world are the same. They may come from the same
company, authorized by the same personnel and even be of equal amounts payable to
same the payee. However, each one must be unique. Consequently, every entity must
be unique in our conceptual model.

Depending on the type structure, an object can be simple (e.g. the number 2), or
complex (e. g. a family object with attributes father, mother, children, etc. which
are themselves complex). It can also consist of distinct objects. In general, an object
can be atomic, simple (e.g. an integer), tuple structured (e.g. a person described by
distinct attributes) or collection structured (as in the case of (say) a group object
described by the set of identifiers of its members). Objects can be structured from
any valid types and their subtypes in a given system.

The state of an object is determined by the values of its properties (attributes
and relationships). While both attributes and relationships are important in the
determination of object state, our concern here focuses on attribute values as opposed
to relationships. For further reading on dealing with relationship values see [LAC*94,
Cat94]. Thus, in our formulation, the state of an object is determined by the value
of its attributes. Let attr and attrval be the attributes and their attribute values,
respectively. Object state is defined as the set of all attribute-value pairs of the object.
Formally:

Definition 3.2 Object State (O_state): The state of an object is determined by the
value of its attributes, i.e. O_state={(attr,attrval)}. o
Depending on the nature of an application, an object in a system can carry, within

its state, its history. Such an object will have a history and non-history components.
F r example, each CDI object in our model must maintain its history which records
operations and the nature of the effects they have on the object wheuever the object
is accessed. The history thus captures essential audit information for the object.

36

Since audit information varies from one application to another, its form is application
dependent and can be modelled in a manner the suits the application.

Since object history is part of the object state, we can partition the object state
into two components: history and non-history. Let {NH.attr} and {NH.attrval)
be the set of attributes and their corresponding values, respectively, of the of the
non-history attributes of an object. Further, let (NH.attr, NH._attrval) be some non-
history attribute-value pair while {(NH.attr, NH_attrval}} is the set of non-history
attribute-value pairs of a given object. Then the non-history state of an object is
defined as:

Definition 8.3 Non-History State: The non-history state of an object is the set of
non-history attributes together with their respective values, i.e.
NH_state={(NH_attr,NH_attrval)}. 0

Similarly, we can define the history state of an object using the set of the history
attributes {H_attr} together with their respective values {H_attrval}. Let (H.attr,
H.attrval) be some history attribute-value pair and let {(H_attr, H_attrval)} be the
set of history attribute-value pairs. Formally:

Definition 3.4 History State: The history state of an object is the set of history
attributes together with their respective values, i.e. H_state={(H_attr,H_attrval)}. O

The history state component represents the object history (we define the form of
this history shortly below) while the non-history component is the rest of the state

other than that corresponding to the history.
Hence object state can be defined as:

Definition 3.5 Object State: The state of an object O_state= H._state U NH_state
where H_state and NH_state represent history and non-history states, respectively. O

The value of the H._state of an object carries the object’s history. The number of
history attributes required for any given situation, and hence the nature of history
information carried in each attribute value, depends on an application and the appli-
cation designer. At the very minimum, we require at least one attribute to keep track
of the H_state. In this formulation, the history (other situations may choose different
abstract definitions of such history) itself is an ordered sequence of events where an
event itself is defined as:

Definition 3.6 Event: An event is a quadruple e = (evname, act,uid,time) where
evname is the event name, act is the nature of the action, uid is the identity of the

subject executing the event, and time is a chronological indicator of the time of the
event. Given two eventse,, e, we saye; precedes (X) e; if and only if e;.time < e;.time.
Q
Each event stores necessary audit information resulting from the occurrence of
the event. This is stored in the act component of the event. The exact nature of this
information is application dependent. Given all object histories, one can construct
the system audit record by ordering the events according to their time (e.time) of
ocrurrence and appending the object name or oid.
Consequently, object history is defined as:

Definition 3.7 History: A history H = (e, e3,€3,---), where each of the ¢;s is an
event. A bounded history is of the form H = (e,,e;,€3,---,e,) where n is finite. It
is unbounded otherwise. n and H are related via the size function, i.e. n = size(H).

a

The history state of an object is dependent on both the non-history and history
object states given that it records information pertaining to both the non-history and
history object states. The nature of history information is application dependent,
though.

From the foregoing definition of object history, it follows that the value of a
history attribute will be a sequence of events, i.e. every H_attrval will be of the form
(eive;,ex, - +).

Object history can be bounded or unbounded. For example, a cheque has bounded
history while an audit trail’s history is unbounded. This nature of object history par-
titions our object base into two distinct categories: those with bounded and those with
unbounded histories®. Objects with unbounded history must specify what “length”
(e.g. time interval, number of entries, etc.) of the history must be retained or made
visible/available to applications. For instance, the audit trail record in a firm may be
maintained over a period of one year or with so many entries. There is likely to be a
problem should the size of the history be left to grow indefinitely without continuous
or periodic sanitation.

All objects in our models are persistent an1 live beyond the applications that
create them. Object destruction must be carriec out ezxplicitly. Once an object is
destroyed, it cannot be accessed in the database any more and any references to it
must be updated. However, like any database operations, this destruction action

3 As we shall see in the next chapter, these are referred to as documents and accounts, respectively.

38

action must be recorded in the system audit trail. This requirement clearly conforms
te ‘hat in the real world where documents are destroyed once they outlive their useful
lives. However, some objects are immutable. They cannot be destroyed.

3.3.3 Types & Classes

A type specifies the form and behaviour of its instances. It is specified by its name,
structure and method list. Formally:

Definition 3.8 Type: A type T is a triple: (n, 8, m) where n is the name ot the
type, s, is its structure and m is the method list applicable to the type. n € N is
unique and drawn from a universe of infinitely many symbols N 0

The name identifies the type. It must be unique in a given system. While there
may be other means of uniquely identifying the type, such as some type identifier,
we do not address that matter here. We point out that a type must be uniquely
identifiable in a system. In our case, the name serves this function.

The structure determines the structuring of the instances of the type and their
values. It is composed of a list of instance variables and their domains. Domains can
be simple or complex, hence instances can be complex or simple depending on the
domains of the attributes. A type structure can take any of the three forms: simple,
tuple, set or sequence.

A type structure is defined by a list of name-domain pairs called instance variables.
The instance variable name must be unique within the structure while the domain
can be any legal type in the system. Instance variable name uniqueness ensures that
the instance variable can be accessed within the type without ambiguity.

Given some type with instance variables (ay,---,a,) and some instance o of the
type, we use the “dot” notation (e) to refer to the individual instance variables. Her.ce
o e a; will refer to the value of instance variable a; within object 0. Where object are
complex, use of the dot notation leads to path expressions.

Methods (see section 3.3.5) provide the only means to manipulate the state of
instances of a type. Methods can either update (alter) or read the state of an instance
via the attribute values. We denote the universal set of methods in the system by
M.

Note that different types can have the same structure but different method lists
just as different types can have the same method list but different type structures.

39
Moreover, since type definitions are treated as objects, it is possible to do identity
testing between two different types using object identity.

Example 3.1 A type definition according to definition 3.8, using the syntax of [Osb89a),
is of the form:

Name:
CHEQUE; /* The name of the Class n */
Structure: { /* Name-domain pair list of instance variables */
PAYEE: String,
PAYEE_ID: String,
AMOUNT: Currency,
SIGN_1: String,
SIGN_2: String
k
Methods: { /* Method list for manipulation of instances */
clerk supervisor
}

o

In our model, the type is a template for objects and defines the characteristics
of the objects of that type. A type definition can have either an empty structure or
an empty mcthod list. For instance objects that carry out computations, can have
just the method list while objects used merely for modeling that need no access, may
have an empty structure.

A class, according to [Cat94, LAC*94], connotes an implementation. Therefore,
we can have different classes realizing a given type definition. Suppose we have some
class implementing the type definition of example 3.1. Such a class specification will
exist separate from its eztension (instances of the type). Defined this way, a class is
a template of its instances. The class extension, on the other hand, is the collection
of instances of the class and exists only via the notion of instantiation of a class. An
undefined class cannot be instantiated; hence the existence of some instance presuraes
the existence of the class of which it is an instance. Consequently, no class extension
exists without the corresponding class definition.

Object creation takes place via its class and class extension; the class specifies the
object structure and behaviour while the extension facilitates instantiation. A class
extension while being a collection of objects differs from any arbitrary collection in
that it collects all instances of the same class. An arbitrary collection, on the other

hand, can collect instances of arbitrary classes. It follows that whereas an object

40

can be associated with different collections, it must be uniquely associated with some
class extension.

3.3.4 Extensibility & Types

Ezxtensibility allows for the addition of new types, redefinition of existing types and
re-assignment of instances to new types with which they were not associated before
[FKMT91]. Redefinition of existing types and additi~a of new types are elements of
schema evolution, while instance type re-assignment can be seen as instance evolution
[FKMT91]. With extensibility, newly defined types are treated as any system defined
ones.

New types are defined via specialization [SS77]. In specialization a new type
inherits properties (attributes and methods) of an existing type, adds more properties
and may redefine the inherited ones. The new type is a subtype of the old type and
with its properties being a superset of those of the old type.

Definition 3.9 Type-Subtype: A type X is a specialization (subtype) of another type
Y if the property set (attributes and methods) of Y is a subset of the property set of
X with the two being related via the inheritance mechanism. u]

Note that the implementations of properties in the type and subtype need not be
the same. It is not sufficient to have a subset property relationship between type for
specialization since types can have a shared interface. The two must be related via
the inheritance mechanism. Inheritance allows for redefinition of inherited properties.

Inheritance is a means of sharing type definitions and implementations via de-
fined/implemented structure and behaviour. It facilitates not only sharing of these
properties but allows their extension and/or redefinition. This allows for reuse and
supports incremental development. In the words of Krakowiak et al. [KMV*+90] “in-
heritance supports conceptual economy” via reuse. While shared behaviour and their
implementations are distinct issues, we do not make the distinction in our model.
This distinction, in our view, is more of a syntactic issue as opposed to semantic.

Our model allows for multiple inheritance in which an new type inherits properties
from more than one type. There can be name (both attribute and method name)
conflicts with multiple inheritance. To resolve such conflicts we suggest utilizing the
implementation and structures of the names in conflict. Where there is conflict be-
tween two properties with the same implementation, we suggest name selection based
the order of types in the inheritance list. Where there are different implementations

41

of properties, but with the same output result, the same strategy first-in-list conflict
resolution strategy is employed. However, where the different implementations pro-
duce different output results (as in the case of methods with similar names but with
different computations) we deier resolution by the user. A user can then choose one
or both of the properties in conflict. Renaming is necessary where retention of both
is required.

Inheritance results in an inheritance (specialization) hierarchy with the is-a rela-
tionship between types and subtypes. The hierarchy is a directed acyclic graph rooted
at some base type (see figure 3.1). Since we do not allow generalization, our type hi-
erarchy “grows” in one direction. Inheritance semantics emphasize self reference in
response to messages (see section 3.3.5), i.e. data and operation look-up starts at the
receiver.

0-0 databases facilitate incremental development by allowing for reuse of existing
definitions and code through specialization and aggregation [SS77). Specialization
facilitates creation of new types from existing ones via the inheritance mechanism
which uses definitions of existing types and extends and/or redefines them. The new
type is said to inherit the said properties (attributes and methods) from the existing
type.

Defining a type via the inheritance mechanism involves specifying its supertype.

Example 3.2 Example of a type definition using inheritance:

Name: '
PERSONAL_CHEQUE; /®* The name of the Class n */
Supertype: CHEQUE; /®* Name of supertype from which
to inherit properties */
Structure: { /* Name-domain pair list of instance
variables */
TAX_PID: String, /* Extra identifier for taxation */
DEPT.ACCTNUMBER: Integ¢® Account from which to pay */
b
Methods: { /® Method list for manipulation

of instances */
cashier
}
a]
The PERSONAL.CHEQUE type, aside from the properties in its type defini-
tion, will also have those from the type CHEQUE. On compiling type definitions,
these properties will be augmented.

42

As new types are created via the inheritance mechanism, a hierarchy of database
types results which is a directed acyclic graph. Just as we have inheritance hierarchies,
5o also can we have aggregation hierarchies.

3.3.5 Encapsulation, Messages & Methods

Our model implements the concept of encapsulation that allows information hid-
ing thus separating the public object interface from the implementation [FKMT91,
BKK88]. This facilitates the use of objects without knowing how they are imple-
mented as an interface can have different implementations. In this formulation, in-
terface connotes the means via which object object information is accessed or ma-
nipulated. Every type definition includes an interface specification. A class that
implements some type must ensure that its interface meets the type interface speci-
fication. Given a type specification, a user need only know what message to send to
cause the desired effect on an object.

Messages are the only means of communication between database objects. The
set of messages understood by an object constitutes its public interface which can be
seen as the object protocol [FKMT91]. This interface determines the behaviour of the
associated object. This work assumes that there exists a suitable mechanism (such
as signatures) which associates the implementation of an element of the interface to
the specification of the element in the type definition. Hence we do not worry what
constitutes this implementation as long as it meets the interface specification. Delving
into implementation details is beyond the scope of this work.

Methods implement abstract specifications defined in the associated type. These
operation specifications specify the abstract form to be realized by any method imple-
mentation. Each operation specification designates the operation signature, the name
of the operation, the name and type of input arguments, name and type of output
values as well as any exceptional conditions [LAC*94]. In the following sections we
use the terms operation and method alternately.

Definition 2.10 Object Interface: Gi-en an object o and the set of database mes-
sages (regarded as the message universe in the system) MS, the interface Ol(o) C
MS is the set of messages understood by o. (]

A subset of an object’s interface is called an interface partition or window. Any
subset of the messages an object responds to can be seen as a window into object
information.

43

Definition 3.11 Interface Partition: An interface partition part{CI{c)) of some ob-
ject o is a subset (any subset or nil) of the object interface Ol, i.e. part(Ol{o)) C
OI(0),. Given some interface OI(0), its partition part(QI(0)) € 29/, o
Messages sent to objects invoke methods. A message has a name (message iden-
tifier), a sender, a receiver and a parameter list. The message name is drawn from
a unique list of message identifiers, both sender and receiver are database objects,
the input parameter list forms the input list for the computation while the return
parameter list determines the result of the computation.
Example 3.3 A message is of the form: (sender, receiver, name(arguments)). For
example if 0; sends a message to o; it may appear as: (0,03, mi(z,y,---)). Here he

method selector m; takes arguments z.y, - - - and is a communication between objects o,
and o3.

u]
Messages are polymorphic, i.e. objects react to the same message individually
giving the associated respective response. On receipt of a message, a method with
the corresponding name is invoked. In our model the message name corresponds to
the method name. In the rest of this work, method invocation must be understood
in the context of message receipt and method invocation. As well, we do not outline
how this message sending paradigm is implemented.
Methc.ds manipulate the state of an object; they update (change) or merely return
information about the object state. In general, methods read object state, alter the
state, invoke other methods and/or create other objects. In our model, method

invocation is similar to that of [JK90]. It has the following modes of invocations:

1. a method can access object atiribute(s) directly with resultant effects that it
returns the value(s) and/or changes such value(s) of the attribute(s). We term
such an invocation simple for its action does not involve invocation of other
methods. Method invocations other than simple invocations are termed com-
pound, complez or composite invocations. Methods that return values of at-
tributes are referred to as read methods while those that alter the value of
attributes are termed write methods.*

2. a method can invoke other methods acting on the same object. In general, such
an invocation can have more than one level, which is generally termed complex.
Such an invocation will result in a sequence that, in its general form, is a tree®,

“The term transformation methods has been used as well.
SThe tree representation is essential to ensure that there is no chance of cyclic invocation.

4

Messaace __ -
--------- M1
M10 n
M100 M101 M102 Ml10
M1010 M1011 M1100 M1101 M1102

A Method Invocation Tree

Figure 3.2: A Method Invocation Tree

termed the method invocation tree [JK90] (see figure 3.2). To distinguish such a
case from the next one, we term it a simple method invocation tree in the sense
that it involves iuvocation of methods local to one object. A method invocation

tree is either simple or compound (see below).

3. a method may send messages to other objects. For instance if the computation
for a particular method requires inquiry from other objects, a message will be
generated. As in the previous case, such invocation can he represented as a tree
spanning methods of more than one object. We term such a tree a compound

method invocation tree.

4. a method may create new objects. This may be the case where on commit,
after processing involved within some object, the method creates a new object
(cf the cheque voucher system where the approval of a voucher, on receipt of all

requisite signatures, creates a new object called a cheque).

Definition 3.12 Method Definition: A method has name, body and message for-
mat. It can be represented as a triple (n, f, E). n is the method name which must be
unique in the type, f is the message format and is of the form Ay X A3 X --- x Ap —
{R1 x Rg x --- X Ry,ezy x exz x --- x ez,} while E is the executable code of the

45

method. A,, Ay, -, A, is the input argument list with p being the number of argu-
ments. Ry, R;,---, R, is the output argument list where ¢ is the number of outputs
of the method and any of the R;s could be: a method, object, message, or nil or
their combination (see above). ez, x ex; X - -- X ez, is the set if exceptions for the
particular method [LAC*94]. The ex; could be methods, messages, etc. tagged to
some exceptional condition.

Let M_ be the set of methods defined in a class ¢ and M be the set of all methods
in the database. Then M = |J. M.. (=]

The arguments specify their form and corresponding classes. The message for-
mat f can be seen as the method signature [KMV*90]. It specifies the nature
of the arguments (objects, messages, methods, etc.) and their form (e.g. class,
sender/recciver/message name, etc.). It also distinguishes input and output argu-

ments in the list.

Definition 3.13 Method Invocation Tree: A method invocation tree, T,,, for a method

m is a directed acyclic graph with methods as nodes. An edge (m;,m;) in T,, means
that m; invokes m;. m, the method associated with the tree, forms the roo. of the

tree. =]

Definition 3.14 Tree Path: A path between two nodes m; and m, is a sequence
(P1y-- - pn) with m; = py and my = pa. and (pj,pjs1) is ar. edge from the node
referenced by p; to the node referenced by p;4.1. o

The path is a total ordering of nodes. Given a path p then there exists another
path q such that p C ¢ and q has the root as a node. This implies that the method

invocation sequence can be represented as a tree.

Definition 3.15 Let “<” denote the precede relationship between two nodes in a
given path p. A node m, is said to be a descendant of another node m; if 3 path p =

(my,---,m) and m; < my in the path. m]

Example 3.4 Method Definition

Name:

CLERK;
Format:

UID x ACL x Object — Object x Audit Record
E

Pointer to Executable Code

46

o]
An important extension of this method definition is the incorporation of trans-

actional properties into their execution. These are the ACID properties that ensure
atomicity, consistency, isolation and durability of database executions. While we do
not specify the extensions here, it suffices to note that, in our envisioned application,
methods will execute as, or as part of, some transactional operation. This is due to

the requirement that each operation on the state of any object in the database must
be transactional in nature.

Definition 3.18 Transactional Operation: A transactional operation, in our model,

takes the object state from one consistent state to another consistent state and in
the process, permanently transforms the object state. It permanently transforms

the history component. Possibly, it also permanently transforms the non-history
component of the object state. (a]

In general, a transactional operation is of the form:

pre-conditions
IF preconditions then

BEGIN
{ Execute operations ensuring isolation }
IF commit conditions then

COMMIT { operations }

ELSE ABORT { operations }

END.

Let TE and NTE be the set of operations that execute as transaction and non-
transactions, respectively. We have that:

Definition 3.17 Tragsactional Executions: Given a method m with an associated
method invocation tree T,,, let my,.; be thr associated methods forming the nodes of
Tn. We say m; € my,e executes transactionally if:

(1) m; executes as a transaction, i.e. m; € TE

(2) or 3m; € my,., such that m; is a descendant of m; and m; executes transactionally.
In other words, m; € NTE and m; € TE and m; < m; in some path p of the method
invocation tree T,,. (s

47

A type in which all executions are transactional is a subset of the CDI type
(see figure 3.1) when all instances keep track of their histories as well. We have the
following constraint:

Constraint 3.1 Method [nvocation Constraint: Every method invocation in a CDI

type or its subtype must execute transactionally. o

Transaction atomicity ensures that all or none of an operation’s activities have a
lasting effect. This is taken care of by the transformation condition of the non-history
component of the object staie. However, given the requirement to update object
history every time an object is accessed, there must be a permanent transformation
of the history component. History component transformation must be consistent
with the effect on the non-history component. Where there there is commit, the
non-history component is transformed and commit information entered in the history
component. In case of abort, the non-history component is not transformed while
the history component records the abort information.

Example 3.5 Consider the type definition in example 3.1. Assume we have one at-
tribute HIST that keeps track of the history of the object, i.e. H_state = (HIST,val(HIST)).
The new type structure will be of the form:

Name:
CHEQUE;

Structure: {
PAYEE: String,
PAYEE_ID. String,
AMOUNT: Currency,
SIGN_1: String,
SIGN_2: String
HIST: SequencecfEvents
b

Methods; {
clerk supervisor
}

A transactional operation is bounded by BEGIN and END key words, i.e. anything
between these two keywords must be done in the context of a transaction. It will be
of the form:

BEGIN
on invocation of method /*® invoke some method, any method */
check:=false; /*® set the Boolean guard */

if check(UID,H _state) then /* Check for preconditions here */
execute method; /* Execute some code associated with NH _state */

48

commit /* Commit makes N H _state changes permanent */
else abort; /* Abort undoes changes on N H_state */
update(H _state) /* Update H _state accordingly */
END
=]

Other constraints are that such operations must be dependent on object history
and must update this history on completion of execution, regardless whether the
associated transaction commits or aborts. As well, when specified, the operation
must update system history (audit trail). Simply said: an operation on a database
object must update the object state. This because object history is part of the object
state. Hence, more precisely, an operation on a database object must update, at

the very least, the H_state of the object’s O_state. We shall revisit this matter in
chapter 4.

3.4 Summary & Key Contributions

In this chapter, we have outlined an object-based model that incorporates key O-
O concepts. As a conceptual framework our formulation incorporates known O-O
concepts such as complex objects, unique identity, types, type (inheritance) hierar-
chies, inheritance, subtypes, message passing, method invocations, encapsulation and,
polymorphism. In addition to these we introduced object histo: - s and transactional
ezecutions of methods.

An object interface in traditional O-O models is determined by the messages it
responds to. A message, in turn, activates the respective method associated with
the object. An important variation introduced in our model is the possibility of
method executions being transactional. Thus we introduced a type (CDI) in which
all executions have transaction pioperties and all instances keep track of their histo-
ries. Method of the CDI type and its subtypes are confined to execute within some
traasactional framework.

Issues of schema definition and management were not addressed. Although they
affect our intended formulation, it suffices to note that a schema is handled the same
way as an object. Hence it is sulject to similar regulations as other objects. Schema
information manipulation is similar to object information manipulation given that
schema integrity is as important as object information integrity. Others include data

49

manipulation and data definition languages which we consider to be beyond the scope
of this work.

The two key contributions presented in this chapter include the concepts of object
history and transactional executions, both of which are new to O-O modeling. The
former helps to keep track of audit information pertaining to objects. As well, history,
as we shall show later in this thesis, is important in the task of access control where
separation of duty is necessary. Transactional executions are also important in ensur-
ing that executions have the necessary properties that assure object and operation

integrity.

CHAPTER 4

TRANSACTION MODEL

4.1 Introduction

Commercial security [CW87] requires information bearing entities (objects) to be
constrained data items (CDIs)! which should be manipulated by transformation pro-
cedures (TPs). TPs themselves and their effects are verified by integrity verification
procedures (IVPs). Both TPs and IVPs are required to be well-formed transactions
(WFTs). The requirement of transactional nature of executions forms the basis for
formulation of a transaction model in this chapter. We use the Object-Oriented (O-
O) paradigm and the O-O model of chapter 3 to define both the CDIs and the WFTs
for manipulation of the CDIs. Due to the complexity of the envisaged processing
environment, the traditional transaction model will not be adequate, in our view.
It will be limited in its ability to handle the nature of operations in our applica-
tions. This is in the same light as in applications which require models which handle
complex operations, support long running activities, facilitate concurrent access to
complex objects, permit transaction nesting, etc. This chapter will discuss the said
shortcomings and propose a model which incorporates desirable features suitable for
our application.

The envisaged environment, while exploiting O-O principles, models executions as
transactions. Within each CDI type/subtype, we define transaction and transactional
executions (see page 46 in chapter 3) which may or may not be ordered. In theory,
these could be invoked independently of each other. However, one or more orders of
execution of these transactions could also be prescribed. Each of such specified orders
of execution is referred to as a script [WRS92]. A script specifies the nature of pro-

cessing associated with an object of the associated type. In any given type, one can

1At least those that require preservation of integrity.

50

31

have more than one script. Moreover, since all script executions will be transactions
themselves, along with each script, we must define a related compensating script. The
latter are defined such that they can undo the effects of the associated script. This
choice is due to the transaction nesting feature in our model in which child trans-
actions can commit independently of either the parent or other child transactions.
Compensating scripts undo the effects of such committed child transactions should
the parent abort.

This chapter is not a treatise on transactions execution per se, but rather an
emphasis on the manner transactions can be ordered to achieve a desired outcome.
Hence by defining transactions and transactional executions in a specified manner
based on desired outcome, we can ascertain the outcome a priori. Such execution
outcomes can be designed to ensure the database is left in a valid state. This then
provides a means of assuring that the transactions will leave the database in a valid
state. It can also be tailored to specific integrity requiremnents. Therefore, the focus
of this chapter can be seen as prescribing the manner of specifying execution orders
to achieve desired outcomes.

In section 4.2 we discuss further the nature of our operation environment and
the security requirements. In particular, we discuss concepts of IVPs, TPs, WI'Ts
and CDIs with the intention of crystallizing the transactional requirements of our
executions. We relate these to O-O modeling principles and distinguish between
ordinary objects in the database and those of the type CDI. Of the latter, we have
two types which we call documents and accounts. Documents have a finite history
while accounts can have unbounded histories.

Both of these are processed based on some script definition. Constraints specified
on the script take into account current history as well as other correctness constraints
that may be required. Since we utilize O-O concepts in defining our database objects,
we dwell for some time on the manner in which the CDI type is handled in our system.

Section 4.3 offers transaction theory overview. Here we discuss the traditional
transaction model, its shortcomings and summarize some approaches intended to
overcome these deficiencies. The key issues addressed, among other things, are the
concepts of nesting, handling complex operations and data, etc. Some approaches to
addressing some of these shortcomings will be covered in this section.

We present a transaction model in section 4.4. Given the complex nature of

operations and data in our envisaged operation environment, the model addresses the

shortcomings of the traditional model. It is based on the nested transaction model

52

[AA92] and uses the concept of sctipts [WR92) to specify the order of execution of the
associated transactional executions. A script specifies the order in which the TPs that
manipulate CDlIs are executed according to processing requirements. A CDI can have
more that one script, each one designed for a specific processing goal pertaining to the
CDL. Further, since the operations are transactional in nature, undoing their effects in
a database requires compensating actions. These are specified as compensating scripts
which are part of the definition of an object of a CDI type or its subtype. Generally, a
script defines the flow of control in processing objects of such a type. Having proposed
a transaction model, we demonstrate its ACID properties in section 4.5.

Section 4.6 offers a running example that we shall be using for the rest this work.
It is an illustration of a framework in which .ur modeling could be applied. It is based
on an inventory management situation in which information about the processing is
stored in constrained data items. We shall formally describe the environment, the
procedures involved as well as the object necessary for realizing the said processing.
Finally, we present a summary and the key contributions arising from this chapter’s
discussion in section 4.7.

4.2 Operating Environment

As mentioned in the introduction to this chapter, our operating environment assumes
requirements for commercial security. Among these are the specification of data
i‘ems (at least those whose integrity must be ensured) as constrained data items
(CDIs). These must always be in a correct state. Onez initialized, their manipulation
must ensure that it takes them froin oue correct state to another correct state. The
operations that access CDIs are called transformation procedures (TPs) and integrity
verification procedures (IVPs) which must be transactional in nature. Should the
input be in some incorrect state, they must ensure that the output CDI is in a correct
state; otherwise the operation is rejected. Indeed, the requirement in the Clark and
Wilson Model [CW87] is that if a TP takes in an unconstrained data item, UDI, its
output must be a CDI, or else the process is aborted. Both TPs and IVPs must be
well formed transactions in their execution.

The behaviour of IVPs, as specified by the Clark and Wilson model can be sub-
jected to different interpretations. For instance, it is possible to regard [VPs as
procedures that ensure th t the interaction betweer. TPs and associated CDIs will
guarantee the correctness of the state of the CDIs. Yet another view is that IVPs

33

play the role of an audit program [AAL*93] that ensures that TPs maintain the spec-
ified validity of the CDIs they manipulate. While both these interpretations may be
correct, the former could be overly costly given that IVPs will play a role of verifica-
tion which is itself a major area of study. In our environment, IVPs play the role of
audit programs that assure the correctness of the CDIs and hence serve to draw the
attention of system managers to any anomalies.

We assume the object model of chapter 3 in which the CDI type and its subtypes
impose integrity requirements as required for commercial integrity. We distinguish
two types of objects in our environment: documents and accounts. Both types of
objects are constrained data items (CDIs) as explained on pages 22 and 34. The
former include types such as vouchers, cheques, bank statements, orders, notes, etc.
These have a short processing life accomplished by 1 finite number of steps. Hence
their histories are finite. Subject to processing requirements, such as audit trail and
object history updates, this category of objects can be archived after the conclusion
of their processing. The duration of such archival periods will be a matter of system

policy.

Definition 4.1 Document Objects: A document object is an instance of the CDI

type or one of its subtypes with a finite history based on associated script(s). 3

Account type objects include bank accounts, audit logs, etc. These can be seen as
holding the “journal” of activities pertaining to document and account objects. They,
in some manner, capture histories associated with document objects in the system.
For instance, the audit trail could be a perfect example of such an account object
since it can be seen as a manifest of the processing in a system. It could be designed in
a manner that reflects the activities performed due to (say) cheques cashed, accounts
debited and credited, etc. Account objects have infinite history (such as the life of
a system) a finite length of which is retained by the system based on administration
policies and requitements. In account type objects, we are mainly concerned with the
current state which we either read or update, since the history of such objects can be
unbounded. The state of the object, however, depends on what size of this history is
retained.

Definition 4.2 Account Objects: An acconnt object is an instance of the CDI type

or one of its subtypes with an infinite history. It is read and updated according to

associated scripts. o

54

Actions on the state of instances of a particular CDI type are specified in an
associated script (see section 4.4). The actual processing of a particular object follows
a particular execution specified by the script along with the constraints on the script.
These constraints are intended to ensure correct script execution. Distinction must
be made between the manner of manipulation of ordinary and CDI objects in the
database.

The nature of manipulation of objects in our system depends on what type it
belongs to. We do not prescribe the form of execution for objects other than those
in the CDI type, except to note that such executions must be in accordance with
0O-O principles. Instances of CDI types and their subtypes, however, must obey
a prescribed order of execution. This is intended to assure their integrity. These
objects must be manipulated according to the scripts defined in their types. The
scripts themselves are defined in terms of transactions and transactional executions.

The effect of prescribing the order of execution a priori via script definition is to
constrain the behaviour of the CDI objects. Further restriction can be imposed to
ensure that all executions that affect the stat~ of the associated objects must occur
within the context of an associated script. V' ile there is no reason not to invoke
operations on the objects outside the script specification, it is, however, necessary
that update operations on CDIs be executed according to a given script in order to
assure a desirable outcome. This imposition is intended to guarantee the behaviour
of objects in the CDI types and their subtypes. CDIs in our formulation, can be seen
as objects with constrained behaviour, constraints imposed by an associated script.

Consequently, definition 3.8 is modified to incorporate this constrained behaviour
property. Hence:

Definition 4.3 A CDI type is an ordinary type with the addition of a script that
constrains the behaviour of instances of the type and whose structure has the ability
to track history. Formally: dtype = (n,s,m,scr) where n is that name of the type, s
is its structure, m is the method list and scr is the script for instances of this type.
(W]

Our processing environment assumes the object model of chapter 3. Hence con-
cepts such as inheritance of properties, message polymorphism, aggregation in object
composition and other related O-O concepts, hold. For all document objects, a spe-
cial Boolean attribute indicates whether or not the document has been completely
processed. A document is said to be processed once the effects of its script have

become permanent, i.e. on commit or abort. In other words, a document object is

53

considered processed when its script has executed either successfully or unsuccess-
fully. Scripts cannot be invoked on processed documents. However, retrieval of parts
of their histories can still take place. No updates are allowed on completely processed
objects such as a paid or cancelled bank cheque, a voucher whose cheque has been
paid, or a delivery note whose goods have been logged in an inventory. A system
designer would designate what detern..nes whether or not object processing is com-
plete. Undoing the effects of a completely processed object must be done by some
compensating process. For example, once a cheque is paid, its effects can only be
undone by another compensating credit.

The processing undergoes an initialization step in which preliminary settings are
made before actual document manipulation starts. This step involves the creation of a
copy (instantiation) of the specific document type to be processed. Such a copy would
have a unique identifier (such as a cheque/voucher number) that would distinguish it
from all other documents in the system. Guppose that we require the document type
voucher. We create a copy with the structure, behaviour and script for a voucher.
Execution is then triggered and it obeys the script and constraints therein. We discuss

scripts and their constraints in the next section.

4.3 Transaction Theory Overview

This section gives an overview of traditional transaction models, outlines their short-
comings with respect to our modeling requirements and proposes a transaction model
with desirable features. Traditional models are sui.able for simple operations such as
reads and writes on simple data. They face a major handicap for long-lived transac-
tions with or without complex operations on simple or complex data. Our proposed
model is script based [WR92], pertains to complex operations on complex data, allows
transactional nesting [AA92], permits independent commits of child transactions and
provides compensating scripts to facilitate the undoing of committed portions of a

transaction.

4.3.1 Transactions Basics

Transactions are characterized by atomicity, consistency, isolation and durability,
commonly known as the ACID properties [GR93]. Atomicity requires that a transac-
tion’s operations be treated as a single unit such that all of a transaction’s operations
take effect or none at all. Consistency requires that a transaction takes the database

56

from one consistent state to another consistent one. A transaction’s effects on the
database is the net effect of the executions of its committed operations. Such an
execution is correct if its operations execute correctly with respect to their semantics
and the execution takes the database from one consistent (valid) state to another. For
instance, in banking where transactions credit and debit accounts, a valid database
state may be defined as that where the account balances are at least equal to a
mandatory minimum deposit. The correctness criterion for such a transaction is the
correct execution of the operations that manipulate the account.

In real life, devoting a resource to one transaction at a time is not very useful,
hence transactions have their operations interleaved to facilitate concurrency. As
with the single transaction case, concurrent transactions must leave the database in a
consistent state. The correctness criterion is derived from that of a single transaction,
i.e. it must appear as if the individual transactions executed serially, one after the
other without interleaving. Termed serializability, this correctness criterion requires
that for any concurrent execution to be considered correct, it must be shown to be
equivalent to some serial execution of the interleaved transactions.

Isolation, on the other hand, is the requirement that a transaction, any transac-
tion, sees only a consistent database state(s). Since one transaction’s intermediate
results may put the database into some inconsistent state temporarily, this require-
ment ensures that such intermediate resuits are not visible to other transactions. The
use of locks facilitates this.

Finally, durability is the requirement that the effects of a committed transaction
have a permanent effect on the database even in case of system failure. Concurrency
control protocols ensure correctness of concurrent execution of transactions thus tak-
ing care of atomicity and correctness. Recovery protocols, on the other hand, ensure
isolation and durability of the transactions.

This forms the basis of the traditional transaction model. It assumes that the
operations on data will be simple reads and writes and that the data items themselves

are simple, such as in entries in a relational table.

4.3.2 Shortcomings of Traditional Models

Traditional transaction models handle ordered simple read and write operations on
simple data items. Examples include reading and updating simple data values such as

bank balances, deposits, etc. Given the assumption of simple data items, locking and

57

time stamping (for concurrency control) of the data items can be used without much
adverse impact on processing. As well, the assumed simple executions result in short-
lived transactions that are little impacted by the use of locks and/or time stamps.
With short-lived transactions, we can lock data items knowing well that the duration
for which locks are held will be short. As well, without short-lived transactions, time
stamp management would be prone to excessive rollbacks. In general, the traditional
model handles small transaction sizes with little attendant risk of deadlock, given that
deadlock frequency increases with the fourth power of the transaction size [ELMB92].
Hence simple transactions like banking, airline bookings, etc. are common users of the
traditional model. For concurrency, serializability is used as the correctness criterion
with little consideration of the semantics of the operations. Moreover, the assumption
of serial execution of transaction operations (acting on simple data items) leaves no
room for parallelizing the operations when such a cata item becomes complex.

There are problems of using the traditional model in environments with complex
data and long-lived or nested transactions. Where transactions access complex data
(as in CAD/CAM/OIS?), are long-lived or the database is distributed, the tradi-
tional model is clearly unsuitable [AA92]. We shall refer to models, other than the
traditional model, as extended models.

For complex data items where transactions access only parts of an object, locking
has inevitably a negative impact on concurrency. It may be preferable to lock only
those parts of the complex data items where there are operation conflicts (see for
example [RGN90]) while leaving other parts to be accessed by other operations. The
resultant impact is increased concurrency where non-conflicting operations on the
same object are parallelized. Locks and time stamps in environments with long-lived
activities [Day93, WR92] are clearly unsuitable. The overall impact in such cases
would be decreased concurrency and inevitable rollbacks and redos. Serializability,
in its traditional form may prove to be too strict a criterion for correctness; hence
the need for a definition of complex data serializability [RGN90] or semantics-based
serializability in which operation semantics are taken into account. For instance,
even when two write operations conflict, their semantics may help increase the level

of concurrercv (e.g. when one has two consecutive increments to a value).

2CAD: Computer Aided Design, CAM: Computer Aided Manufacturing, OIS: Office Information
Systems.

4.3.3 Extended Models

Transaction models such as the nested transaction model [AA92], the multilevel
model [WS92], the distributed model (ELMB92}, the cooperative model [NRZ92),
activity/transaction model [Day93], etc., are attempts at overcoming the shortcom-
ings of the traditional transaction model. These models allow long-lived or nested
transactions, facilitate cooperation among various activities within a transaction and
introduce parallelism or distribution into the processing. Failure handling is also im-
proved by limiting such failures to small portions of the transaction. This has the
overall effect of reducing the amount of rollback during the processing. Yet another
issue of interest, that has been addressed, is that of local autonomy in distributed
environments. Local autonomy offers the advantage of maximizing local processing
and reducing the overall communication costs between different sites.

The ACID properties of the traditional transaction model form the basis for many
of the extended models. They are nonetheless refined t- incorporate transaction se-
mantics, take into account their long-lived or nested nature, as well as allowing for
operations on complex data items. For instance, in the nested transaction model
[AA92], transaction isolation is defined within the top transaction which allows chil-
dren transactions to access their parent transaction’s data. Hence for concurrent
transactions, isolation is enforced among the top transactions. Commit protocols
also vary frot1 model to model. In some, the children transactions can commit in-
dependently of their parents in which case compensating transactions are defined to
undo their effects should the parent abort.

4.4 Our Transaction Model

The basic features of our transaction model include nesting [AA92)], scripts and com-
pensating scripts [WR92], among others. Essentially, each transaction in our system
can be nested to arbitrary levels (see figure 4.1). Hence each transaction can be
represented either by a tree or a node of a transaction execution tree. A further re-
quirement is that transaction executions on objects must execute within t!-e order
specified by the associated script. This script can be seen as a prescribed order of
execution, with ro transaction executing outside the order of this specified order.

Definition 4.4 Script: A script is a specification of the order of execution of trans-
actions pertaining to some object in the database. o

59

T100 Ti01 Ti02 T110

7N\

Ti010 T1011 Ti100 TilOL Tiio2

Transaction Execution
Figure 4.1: A Transaction Execution Tree

Our scheme takes into account the system processing environment and shares
many concepts with other nested models [AA92, WR92]. In particular, processing in
our model is guided by scripts which specify the order of execution of transactions
(nested or otherwise). Script specification allows for sequential, concurrent, choice
and iteration executions and can be defined to facilitate an event trigger situation for
invocation of other scripts based on some dependency relationship.

In other words, a script defines the control flow of execution in a . pecific kind
of processing. The prescribed order of execution can be subject to constraints which
may be associated with the script. The constraints regulate this control flow and serve
to ensure correct execution of context dependent situations. By attaching scripts to
object definition, we effectively constrain its behaviour. Like Wacher and Reuter’s
scripts [WR92], scripts in our model determine the course of execution and the strate-
gies of what may be long-lived activities. However, unlike in Wacher and Reuter’s
model, scripts in our model can be constrained by script specific constraints that may
take into account context and the hists »y of the execution. Of particular concern are
assertions that preserve integrity of the objects that are considered constrained data
items [CWB8T].

Constraints are used to enforce specific requirements in a particular type of pro-
cessing. They incorporate integrity requirements (integrity constraints), separations
of duty and fall back rules in the face of potential abort. Fall back rules are necessary
in cases where we have a failure and need to restart processing without the intention

60

of undoing all the script’s actions until that moment. For instance, in enforcing sep-
aration of duty, we may find that a manager who can sign in place of a clerk, needs
to undo the actions pertaining to the clerk’s role and revert it to a clerk once one
is available. The fall back rules would specify the undoing of the manager’s action
relating to the clerk, have a clerk perform that role before the manager can proceed
with the appropriate actions requiring the manager’s role. Such cases may require
roll forward where the script may follow a completely different execution [WR92).
The following notation will be used in the rest of this chapter:

1. T ={t1,---,ta} = {ti}: a set of transactions.

2. t; ~» t;: serial execution where ¢; executes followed by ¢;. Here ¢; must commit

before ¢, starts execution. A serial transaction execution for transactions ¢y - - - ¢,
is denoted as t; ~,--- ,~ t,,.

3. t;||t;: parallel execution of t, and ¢;. Both t; and t; execute independently
of each other. A parallel transaction execution for transactions t,,---,t, is
denoted as t]| - - - ||ta-

4. aft;): iterative execution of a transaction ;. This refers to such cases as when
the operation is applied to a set (collection) of objects. For example in a collec-

tion type, one can specify iteration of such an operation on the set of object(s)
of the type.

Defining a script involves specifying its well-formed transactions, {t,---,t.}, par-
ticipating in the script execution and the ordering of the execution. Chunks of the
script may be executed serially or in parallel with other chunks. The transactions,
{t:}, 2re themselves defined to be well-formed as defined in chapter 2. Clearly, a script
from this definition is composed of sub-transactions which can commit or abort in-
dividually. In the serial portion of a script, execution proceeds if and only if the
preceding portions of the execution have committed.

A script is a complex computation which determines the order of execution, hence
the flow of control, of a given set of well-formed transactions. In its simplest form, a
script is composed of one transaction (nested or otherwise). It can be composed of
several transactions whose order of execution could be serial, parallel, iterative (see
above) or a combination of these.

Portions of the script in which transactions execute serially, as in ¢; ~ ¢;, im-
ply that execution control passes from the first transaction to the second when the

61

first transaction completes execution. Hence ¢; must complete execution, or commit,
before t, takes over. The serial portion of a script, viewed in this light, defines the
dependency of the associated transaction. The effects of a script specified by serial
execution hold only if all the transactions in the serial execution commit; otherwise
their effects will be compensated for accordingly.

In a parallel execution of transactions, as in ¢;||t;, we do not care about the order
of execution. Any two or more parallel executions can be executed independently
of each other and hence they can be interleaved since a parallel execution can be
seen as being concurrent. The effects of a script specified by parallel execution hold
only if all the transactions in the execution commit; otherwise their effects will be
compensated for accordingly. The difference between a serial and parallel execution
is that in the former the commit point comes after the last transaction commits. In
the latter, there is a common commit point at which every transaction must commit.

An iterative execution repeats the same set of operations on some given set (col-
lection) of objects (e.g. instances of a type) or some collection object (e.g. an instance
of a collection type). For example in set types, iteration repeatedly applies the given
operation on the elements of the given set. For instance, if we have a specification
of the form a(t;) in a given type, it means that t; would be applied repeatedly on
e.~ “zuls of some set in that type until the set is exhausted. Since iteration does not
specify a dependency between one execution and another, it can be done in parallel,
where possible.

Serial, parallel and iterative executions need not involve just one or two scripts.
They could be defined to pertain to chunks of executions. For example we can have
a script specification as follows:

a(t; ~ t; ~ (tl|t)))

Should the script require to abort globally, then we must invoke its compensating
script to compensate for actions of the committed portions of the script.

Script execution can be seen as taking the database through a sequence of states
based on its execution. A method in a script execution can be viewed as being a
transition in database state that takes place upon method execution. For instance,
the execution of transactions {¢,,---,t,}, starting with Qo as the initial state, can
be represented as: Qo b, @1 kb, - - - 2, @n. The concern is that such transitions
cause the database state to change from a consistent state to another consistent state.
While the states Qo, -+, Q, may be valid database states, the document associated

62

T .T Serial Execution of t1 & t2
tl ©2
(o)
/\ tl & t2 execute in parsllel then
serially execute with t3
u 2 13
(®)

O Iteration of tl

tl
©
Figure 4.2: Depicting Script Execution

with the script will be said to have been successfully processed if state @, is attained.
Where a script execution aborts, there is the risk of having an invalid document and
inconsistent database state. The effect of the compensating transactions (script) is
to undo the effects of the aborted script. For example, all debits associated with an
incomplete (aborted) cheque will be compensated by corresponding credits, while all
credits associated with the same will have corresponding debits.

Compensating transactions restore the input state to its form before the execution
of the aborted transaction. Denote this state by Q and the resulting state just before
aborting as Q', and let Q I-,,, Q' represent the state transition due to the execution
of script sr;. Then the whole execution with the compensating transaction can be
represented as Q F,,, Q' F o Q, i.e. from an observer’s point of view, there is no
apparent change in state.

We use dependencies to specify the relationship between a script and its com-
pensating transactions (script). In general, a dependency exists bet veen two scrips
sr;,s7, €S denoted sr; ~+ sr;, if on commit, sr; triggers the execution of sr,. We say
sr; depends on sr; for invocation. For recovery after transaction abort, the depen-
dency relation enables us to specify recovery dependencies when transactions abort,
i.e. what compensating transaction is to be invoked when a given script aborts. The
effect of this compensating transaction is to undo the effects of the one aborted and

63

can be specified as: on abort sr; ~+ sr.. Considering definition 4.4 we have the
restriction that Vsr € SR, 3sr' € SR | Qo+, Q'+ o' Qo where the relation on abort
sr ~» sr is specified.

Unlike [WR92], our compensating transactions are automatically triggered rather
than requiring manual intervention. Based on the fact that to date we have saved the
context and history of the aborted transaction, it should be possible to enforce the
reverse process. Like other transactions, we can define a compensating transaction
on compensating transactions. However, we stand the risk of non-termination with
such specification. Hence we require that a compensating transaction, on abort, be
tried for only a finite number of times or for a finite length of time after which manua:
intervention will be necessary. Such manual intervention invocation can be specified
using the dependency relation as well.

Compensating actions of a dependent script must undo the effects of the script
on which it depends. For instance, the cancellation of a cheque must invalidate all
the effects of the voucher that trigg-red its processing. All objects accessed by the
voucher must be updated accordingly. In other words if we have voucher ~+ cheque
defined with compensating scripts voucher' and cheque’, respectively, we must have

4 ’
cheque ~» voucher .

Definition 4.8 A script specification is a script along with the constraints on the
script. 0

Given a set of scripts &, a set of methods M and a set of constrained objects
O, we have the relationship: § x O x M — O. A given script execution yields a
constrained object that may be subjected to further processing by other scripts.

New scripts can be specified by combining two or more existing scripts. For
instance, instead of having the voucher and cheque separately, we can have one cheque-
voucher script that uses (possibly with modifications) the existing cheque and voucher
scripts.

4.5 Transaction Model Properties

We also need to incorporate the ACID properties as well as their semantics in our
model. Unlike the traditional models, we redefine the semantics of these properties to
suit the processing in our environment. Atomicity must be managed by means other
than traditionally used. Consistency requires that ti ~ database be left in some valid

64

state. Isolation, on the other hand, requires considerations of the fact that objects can
be complex and locking a whole object may be detrimental to concurrency. Durability
requires that a transaction’s effects be permanent beyond the life of the execution.
We postulate that the script executions, as presented in this chapter, will preserve
the ACID properties of transactions. Our argument stems from the observation that
all scripts are composed of transactions and if every transaction preserves the ACID
properties, then the overall effect of script execution will preserve these properties.
The following demonstrates that scripts, by their nature, will not violate the ACID
properties of transactions from which the scripts are constituted. We take each of the

ACID properties in turn.

1. Atomicity:
Each script’s actions are considered atomic. An incompletely executed script
is allowed to proceed to completion or aborted. Aborting a script, no doubt,
requires rollback and compensation of its actions. A committed script gener-
ates an authentic legally binding document.® An aborted script generates a
document that cannot be honoured legally such as a cancelled cheque.

A script specifies the order of execution in our model. The comprnents of these
executions are transactions or transactional executions. Hence, individually,
these operations guarantee atomicity. However, the effects of a script are com-
mitted if and only if all its components commit. Failure to commit one or more
of the transactions of a script will cause the script to abort and trigger com-
pensating operations to undo the effects of those transactions that may have

committed already. Thus, extending this argument, we can state the following:

Conjecture 4.1 A script which is composed solely of transactions or transac-

tional executions will guarantee atomicity. o

To proof this statement i’ can be argued as follows:

Proof: Assume that a script does not guarantee atomicity. Then this would im-
ply that there exists some portion of the script which does not guarantee atomicity

30nce such a document has been generated, there is no way of undoing its effects within the
framework of our model. This can be seen in the same light as a mistakenly cashed cheque. Resolving
this situation must resort to other means. We do, however, assure the integrity of the processing as
well as the data involved in the processing.

65

which implies that the portion is not transactional. However, from the script defi-
nition, we know that all its components are transactional. Thus we must conclude
that our assumption was wrong. It then follows that the script must guarantee

atomicity, c

. Consistency:

Scripts are composed of transaction, an . transactional executions. Each such
execution has a specification that defnes its correct crecution and guarantees its
correctness. Therefore, each of th. .udividual executions preserves consistency.
Thus rearranging these executions in any manner (as may be done with the

associated operators) must assure database consistency.

We do not depend on locking items for isolation. Given our objects can be
complex, we can lock only parts of the object on which operation conflict can be
anticipated. Moreover, we also use semantic operai.on information to determine
locking (e.g. consecutive increments on a value that is not upper bounded
can commute). Thus like the arguments about atomicity and consistency, if
all executions within a script are transactional, the script itself must assure

isolation.

We note two types of conflicts, inter- and intra-script conflicts. The former occur
within a script while the latter happen between two or more scripts. Inter-
script conflicts occur when transactions specified within the script execution
conflict with each other, notably where there are parallel executions, there is
the possibility of such conflict. Intra-script conflicts, on the other hand, occur
when there is conflict between two scripts as described abcve. Both types of

conflicts must be handled like any transaction conflicts.

Locking, to facilitate isolation. can be applied to parts of an object where there
is likely to be conflict, i.e. where a transaction u, 'ites (say) an attribute of an
object. For example if we have a cheque that has . -en initialized with a cheque
number, payee, voucher number, etc. and requires signatures for approval, we
need not lock this information. However, we must lock the signature attributes
as signatures are executed to ensure that not more than one transaction does
the update. In undoing the effects of this signature, we may wisli to lock all the
information associated with the cheque until it has becn invalidated.

4.

66

Durability:

Each transaction or transactional execution that compose a script ensures the
permanence of its effects when executed. Consequently, when all the transac-
tions commit, the script’s effect must be permanent in the database. An aborted
script, due to the abort of one or more of the associated transactions, must undo
the effects of all those transactions that may have committed via compensating
actions. Therefore, a script’s effects on the database have a permanent effect

on commit.

Next, we must show that ordering the scripts using the serial, parallel and iterative

operators does not violate the ACID properties. However, before we demonstrate this,

we make the following observations:

1.

The transactions execute in an environment that facilitates the preservation of
ACID properties of the individual transactions. In other words, the environ-
ment provides for locks or timestamps that enforce isolation, commit protocols
that assure atomicity, correctness specifications that guarantee consistency, and
a means of assuring durability. We do not prescribe the manner of realization
of these prope. 'ies or the nature of mechanisms that realize them. For example,
whether a system uses simple or semantics locks, is a matter for that system de-
signer. All that is important in this respect is the guarantee of ACID properties
of the individual transactions.

From our formulation, every transaction ¢ has a compensating transaction ¢’
The latter compensates for any effects of the former should the former abort.
Given a serial execution of the form ¢, ~ ¢;, th compensation of this script will
be done in the order ¢; ~ t,’. For a parallel execution t]|¢;, the compensation

is of the order: ¢, ~ ¢,’.

The iteration operator a does not introduce any new transactions to a script. It
represents (say) n executions of transaction (say) ¢; on come collection object(s).
It can be viewed as transaction ¢; executing in parallel on different inputs, (e.g.
elements of a set object). It can also be regarded as a serial execution in which
the input to the operation changes at every invocation, e.g. t; ~» t, ~» - for
all ¢;s that constitute its input. Clearly then, in demonstrating the preservation
of ACID properties by the operators, we need only worry about the serial and
parallel executions.

67

We make the following claim and demonstrate that script execution of transac-
tions ordered by the three operators introduced so far will always yield transactions.
Formally:

Conjecture 4.2 Let T = {t,,---,1,} be a set of transactions. Let § = {a,~,||}
(iteration, serial and parallel operators, respectively) be a set of operators which
impose an order of execution on two or more {t;}s. Then every subset of T, ordered

by any subset of 8, will itself be a transaction. m]

Proof: The proof will first show that none of the operators violates transactional prop-
erties once it imposed an order of execution of one or more transactions. Next will be to
demonstrate the preservation of transactional properties using induction on the number
of transactions. Having showr that each of the operators preserves transactional prop-
erties ot a script composed of one transaction or more transactions, we extend this to
n transactions. From here we argue that extending the same argument to n + 1 trans-
actions does not affect the transactional properties since beyond the n transactions, the
extra transaction would have been introduced via one of the operators. Moreover, all we
need worry about are the senal or parallel operations since as shown above, the iterative
execution can be expressed in terms of either serial or parallel executions. This then will
establish the validity of conjecture 4.2
Let ¢;,¢; and t; be transactions from the set T.

1. t;,t; and t; are transactions and hence, individually, they have transactional prop-
erties. The ACID properties hold for the trivial case of a single transaction.

2. t; = t; ~ t; is a transaction since from the semantics of the serial operator, the
effects of t, hold if and only if ¢; commits to trigger ¢t; which in turn commits,
otherwise the effects of both transactions will be compensated for. Therefore ¢; will
be transactional.

3. t; = t,||t; is a transaction since from the semantics of the parallel operator, the
effects of ¢; hold if and only if both ¢; and ¢;, executing in parallel, commit, otherwise
the effects of both transactions will be compensated for. Therefore ¢; will be
transactional.

4. Now assume that the ACID properties hold for some script composed of n transac-
tions. This can be regarded as a complex transaction T,,. We then argue that the
same properties will hold for n + 1 transactions.

63

Let 7,41 be the script due to the n 4 1 transactions. The extra transaction in the
n + 1 transactions would have been added into the system ordered either by the
serial or parallel operators. Hence T,,,, can be expressed either as:

Tn-H =T~ thet
or

Tn+l = n”tn+l

The former is equivalent to the case shown in item 2 while the latter is the case of
item 3.

Conclusion: A set of transactions ordered by the serial, par.llel and iterative operators
is itself a transaction. o

Therefore script ordering of transactions, using a combination of the serial, par-
allel and iterative operators as prescribed in this transaction model, preserves the
ACID properties of the transactions. Clearly, it follows that scripts in our model are
themselves transaction.

4.6 Running Example

This section discusses an example of an environment in which our formulation can
be applied. This is an example of an inventory management system that services
some manufacturing concern. The inventory management function tracks all of the
activities pertaining to the inventory to ensure that it maintains an up to date status of
the inventory. It is an integrated inventory management with functions of meeting the
parts requirements, reordering to meet desirable inventory levels, accepting deliveries
and invoking payments for the deliveries. It is intended to meet requisition requests,
generate orders for stock (when necessary) and effect payment for deliveries made. We
abstract various processes necessary for realizing the inventory management function.
Associated with the processing necessary, we need a means of keeping track of what
has happened like the stock requisitioned, the status of the inventory, the type of
goods and quantities ordered, estc. We do this using objects (CDIs) which can be
updated in accordance with the handling of the CDI type. Hence only authorized
users can update (e.g. signing) the object and all such upcates will be logged both
in the object history and system log.

69

The first section addresses the procedures necessary in the envircnment while the
next one focuses on how to keep track of the information pertaining to the inventory

system.

4.6.1 The Processing

In meeting a requisition, the inventory is updated and if the quantity on hand goes
below the reorder levels, an appropriate order is generated and dispatched to an
appropriate supplier. The system also processes deliveries from suppliers as well as
payment for deliveries made (figure 4.3). In each of the processes, there is a validity
(verification) stage at which the authenticity of the process is determined. Validity
checking ensures that the process has been initiated by bona fide authorized users.
For instance, a requisition will have personnel authorized to generate them. This is
followed by the execution of the process and finally the signature for the authenticity
of the process.

1. Requisitions Servicing:
Requisitions are received from (say) the shop floor showing the parts and quan-
tities required. The requisitions procedure involves ensuring the validity of the
requisition, checking whether or not there are sufficient levels to meet the requi-
sition, and servicing the request. Once done, this invokes the inventory update

procedure that will ensure the current status is reflected.

2. Inventory Update:
This takes in the quantities of the requisition and updates the associated num-
bers in the inventory. Updates are intended to make sure that the inventory
tracks the current available stock and whatever is on order. An order procedure
is generated during the update whenever the reorder point of a given type of
stock is reached.

3. Orders Processing:
Whenever it is necessary to make an order, the order processing procedure is
invoked. This is done in such a manner that takes into account the consumption
rates of the type cf stock, the lead time necessary to ensure that s'cck will be
available when needed, and that current stock levels can meet the ¢.:1nand before

a delivery is made.

4. Delivery Processing:
The supplier meets a given order by making a delivery of the ordered parts
and their associated quantities. These are then entered into the inventory to
reflect new status. A completed delivery process could initiate invoicing. As
with requisitions, a delivery must trigger an inventory update. Deliveries are

also associated with the payment (voucher and cheque) process.

5. Invoice Processing:
Invoices are accepted with respect to deliveries made. The invoice process checks
for the validity of the voucher like ensuring that there has been a corresponding

delivery with respect to a given order. This is essentially a verification process

after which it is passed into the payment process.

6. Payment Processing:
This is a two stage process which is triggered by both the invoice and delivery

processes. The first stage is the voucher processing task which, when completed,
triggers the cheque processing task.

¢ Voucher Processing:
Here the deliveries and invoices are determined to be in order following
which a voucher is generated . Voucher prccessing proceeds with approval

for payment. A completed voucher process invokes the cheque process.

e Cheque Processing:
Like all other processes, cheque processing must verify that the voucher(s)
and other associated documents are in order before initiating a fresh cheque.
This is then signed by duly authorized personnel before being dispatched
to the payee (supplier, bank, etc.).

4.6.2 The Objects

In our formulation, we keep track of information pertaining to the above processes
using objects. Hence for each type of processing, we have objects that keep the
history of a given - >cess. Each object keeps the contractual information pertaining
to the process with which it is associated. It keeps track of the quantities, signatures,
verifications, ~tc. that ensure the validity and authenticity of the object. Within each

71

From Shop Floor ., From Suppliers
! i !
i L N
Requisitions Delivery Invoice
Processing Processing
lnvenl wl Voucher
u Processing
Payment
Processing
Orders Cheque
Processing Processing = J
To Suppliers To Payed

Figure 4.3: Inventory Managen:~. : System Procedures

object, there are associated transactional executions that manipulate its state. The
order of execution of these transactions is derived from the associated script.

Each object, in on:z formulation, is processed based on the script. Whenever a
new object is generated, there ir an initialization process specific to that object. For
instance, in the case of a voucher, it will be initialized with all the relevant information
necessary for its intended purpose. The initialization process of any of the objects can
be seen as an unfilled Llank form to which appropriate approved signatures will be
appended. For instance, in the case of a voucher, information like who the payment
is due to, the reason for payment (e.g. with respect to what order and delivery), and
signatures confirming that the necessary requirements and approving the pay . -ent
have been met.

The system must specify which roles (see chapter 5) are authorized to append sig-
natures to what objects where such signature executions will be specified as privileges
of that role. There may also be associated relationships among roles authorized for
given object transactions which could be subject to the role graph of the next chap-
ter. For example, we can have a case where a manager can play the roles of manager,
supervisor as well as clerk while th¢ supervisor can play the role of supervisor and
clerk. The clerk, in turn can only execute privileges associated with the clerical role.

Other processing requirements may include procedures that assure that assertions

72

associated with the object of that type, hold. For example in processing a voucher,
it would be good to ensure that not only is it a valid payment, but also that the
account from which the amount will be drawn has funds. Supplementary processing
may involve the request for more allocations should the funds have been depleted
below approved levels.

An object processing is considered completed once it is verified that all required
processing steps prescribed in the associated script have been accomplished. This
may be things like appending appropriate signatures to the document/account that
is being processed. Where completion of processing of some object triggers the start
of processing of another, control passes from tiie former to the latter. This is in the
case where a dependency is defined between two objects’ processing. In other words,
once one object is completely processed another one must be initiated. For example

completion of processing of a voucher can trigger the processing of a related cheque.
We abstract the following:

1. Requisitions: Requisition from the inventory is made via a requisitions note.
This is a document that must be generated and initialed by a clerk, and ap-
proved by a project leader and a project manager. Processing the requisition
order involves a validation process, confirmation that there is a sufficient stock
to meet the requisition, an update of stock levels (where there are sufficient sup-
plies), checking whether a reorder point has been reached and if so, generatiou

of a fresh order for restocking.

The validation process involves checking that the requisition docur~ent is in
order, i.e. that all signatures have been appended and that all the appended
signatures are valid.

Confirming whether or not sufficient stock levels exists involves checking that
the numbers in current inventory can meet the demand in the requisition. Once
this has been confirmed, the requisitioned quantities are used to update the
stock.

Stock | :vel updates involve the new stock levels taking into account the numbers
shown ir. the requisition. New update figures are then checked against reorder
levels to determine whether or not to make a fresh order for restocking. To
determine the quantities to go in the orders, one can incorporate the rate of
consumption and the delivery time to ensure that the orders will be delivered
before the stocks become nil.

73

. Orders: The orders document is generated (triggered) by a check on the stock
levels. It requires appending the signatures of the authorized orders clerk and
an approval from the officer in charge. This is then transmitted to the supplier
(electronically or otherwise). Once processed by the supplier, orders ir.formation
is used in the processing of an invoice and a delivery note.

. Delivery: Each delivery must be done with respect to scme order. The delivery
note must bear the order number and information pertaining to the subject that
appro.ed the order. Once received an order is used to update the inventory.

. Invoice: Receipt of an invoice triggers the payment process. The invoice is
validated both to ensure that an associated order was made and a delivery for
the order received. Signatures on the invoice are also checked to determine their

validity after which a payment process is initiated.

. Voucher: This is the cheque-voucher example. It is required that a payment,
in this context, be made only with respect to a given order and invoice. Receipt
of invoice triggers a validation mechanism intended tc verify that the invoice is
in order. To be in order, an invoice must have a valid order number, the order
and quantities billed must match. Moreover, it must have on its face a valid

signature from the supplier.

. Cheque: Once validated, the cheque process is initiated. A voucher is ini-
tialized with the invoice numbers, order numbers and any required information
before being sent for approval. Approval requires signatures (e.g. two signatures
by clerks and one by a supervisor). Once the voucher processing is processed,

it triggers the cheque mechanism.

. Inventory Log: The inventory log reflects that current status of the stock in
the inventory system at any one time. It shows the current available stock for all
types of stock items, the quantities on order, the time of order as well as expected
delivery dates. These numbers are updated when (1) a requisition is made for
stock (2) an order is generated and when (3) a delivery arrives/accepted.

The inventory log has an infinite history and hence is handled as an account

object.

. System Log: System activities in the system, authorized and unauthorized,
inust be logged in the system log. The choice of what to keep in the log and

74

what not to keep depends on what information is seen as necessary for system
audit. Like the inventory log, the system log is an account object.

4.6.3 Cheque & Voucher Scripts

Suppose in this example we have the following transactions associated with the cheque
and voucher.

VInit: which initializes the voucher. It generates a copy of the voucher object,
allocates it a voucher number, fills information pertaining to the payee ID, associated
invoice, the account of budget allocation, associated delivery note, etc.

VSIG1 and V_SIG2: The two signatures required for a voucher to be approved.
Once both V_SIG1 and V_SIG2 have been executed by duly authorized subjects,
the voucher becomes a legally binding document. We may also have a transaction
V_DISP which dispatches the voucher after it has been processed. We can have the
following specification of the script execution:

V_Init~ V_SIG1~ V_SIG2~ V_.DISP

or

V _Init ~ (V_SIG1||V _SIG2) ~» V_DISP

The former requires that V_SIG1 executes before V_.SIG12 while the latter does
not care about the order of their execution. In other words, V_SIG1 and V_SIG2
execute in parallel. In each case, V_DISP is invoked to dispatch the voucher.

For cheque processing we can have a similar process in which the following are
defined:

C Init: which initializes the cheque. It generates a copy of the structure (from the
type definition) of the cheque object, allocates it a cheque number, fills information
pertaining to the payee identity, associated voucher, the account on which it will be
drawn, etc.

CSIG1 and C_SIG2: The two signatures required to make the cheque legal, i.e.
once both C_SIG1 and C_SIG2 have been executed (with any associated constraints
such as separation of duty) by authorized subjects, the cheque becomes a legal doc-
ument. A transaction C_DISP takes a duly processed cheque and sends it off (say)
to the payee. The script execution can be similar to that of the one for voucher.

5

Note that the transactions involved could be complex in that they can have built
in accesses to data other than that of the associated object. Thus we may have (say)
the cheque transactions C_SIG1 and C_SIG2 checking that indeed the associated
account on which the cheque is drawn, has sufficient funds. They may also check
things like the authenticity of the associated voucher authorizations, the delivery
note numbers, etc. to ensure that the payment is a valid one before making the
cheque legal. Once all this is done, they may log the changes in the system log as
well as the associated object histories.

4.7 Summary & Key Contributions

This chapter has presented a transaction model for application in our formulation.
We have outlin.ed the requirements envisioned in our applications and explored the
shortcomings of the traditional transaction model to meet these requirements which
make it unsuitable for our application. This insight formed the basis of our model.
The proposed model recognizes that processing in our application environment is
based on prescribed ordered executions of processes of a transactional nature. This
gave rise to the proposition for the use of scripts which prescribe both the order of
execution as well as the compensating transactions for these executions. Scripts are
essentially nested transactions in which the nature of nesting is determined by the
order and nature of the transactions in the script. Each of these transactions in the
script has the ACID properties. Hence in case of abort of a parent transaction, a
compensating action undoes the effects of all the children of the aborted transaction.
Since we are operating in a commercial security environment we require that all
manipulations of the CDIs be done by TPs and IVPs which must be well-formed
transactions. Further, since we are using O-O approaches, the methods must be
made transactional and operate based on the principles of TPs. This required the
incorporation of these principles in the object model presented in the last chapter.
The concept of scripts used here came from Wacher and Reuter [WR92]. We
extended it to incorporate constraints like requiring all object updates to be effected
via the script execution. Moreover, we also proposed that the transactions in a
script could execute in a serial, parallel or iterative order. These specifications are
intended to ensure that all possible computations can be realized via our approach.
Transaction nesting is also discussed in [WR92, AA92, WS92, Day93] and [NRZ92].
The concept of finite and infinite histories comes from the recognition that processing

76

environments can be characterized as bounded or unbounded processing. For example
documents {cheques, vouchers, etc.) have a finite number of steps in their processing

while accounts (audit trails, bank accounts, inventory logs, etc.) are processed as
long as a given system lasts.

CHAPTER 5

ROLE-BASED PROTECTION

5.1 Introduction

Roles are implied in the Clark and Wilson model [CW87]. In Lee’s [Lee88] words,
the Clark and Wilson model essentially reduces to identifying the required roles in
a system, determining conflicting roles, ensuring that no user acts in two or more
conflicting roles, and letting each specific kind of application data be modified by
specific approved transactions acting on behalf of some user executing in an authorized
role. The aim of this chapter is to discuss the role concept, provide its formal definition
and give an insight into its application in role-based security systems. We shall
address the advantages of the role-based approach to system protection and explore its
relationship to traditional protection schemes. Consequently, we study the emulation
of information flow schemes using role-based protection. Although this thesis focuses
on integrity of data objects and operations, we find it prudent to address the issue
of secrecy (albeit briefly) when we utilize role-based approaches to realize protection
in the traditional sense, such as in mandatory access control. Hence a study of the
realization of mandatory access control using the role-based approach is presented.
In section 5.2 we discuss the basis of the role concept, i.e. implicit authorization.
Roles offer an organizing framework for access rights administration. These rights,
administered as privileges, are grouped into roles which are then authorized as single
units to users. By defining role relaticnships and the rules for inferring the access
rights based on these relationships, one effectively realizes implicit authorization. In
other words, the user’s access rights in a system are implicitly determined from the
authorized roles, the relationships with other roles in the system, and system infor-
mation. A user belonging to a group is implicitly authorized to the group’s access
rights. Moreover, when role inter-relationships are defined to reflect associated func-

77

8

tionalities, we can use these relationships to infer access rights that are not explicitly
assigned.

In section 5.3 we explain the role concept, its application to security and the
advantages of role-based protection. We discuss how roles are used for access rights
administration in role-based security systems. A role is a collection of privileges
pertaining to system objects and/or resources. It exists separately from both the user
and the object or resource it pertains to. A role simply defines what an authorized
user, executing in the role, is capable of of doing with system objects and resources.
The major advantage of role-based protection is the flexibility with which acceus rights
can be granted and revoked to system users. The key disadvantage of the approach is
the complexity of analysis 0" access rights distribution and the implication of access
rights assignment in the system.

Section 5.4 formally defines the term role. The role concept, as used in this thesis,
is based on the privilege concept. ‘L'he privilege itself is a looser form of the term
capability. A privilege specifies an object or resource and one or more modes of access.
Frcther, it can be subjected to wide ranging policies in the associated administration.
A capability, on the other hand, while specifying an object or resource and the mode
of access, must be unforgeable; it can be copied as many times as the authorized user
may deem necessary. A capability is more specific than a privilege. Viewed this way,
a capability is a special case of privilege. We make a distinction between these two
and use the privilege concept for role definition. A role, so defined, is a non-empty
collection of privileges.

Sections 5.5 and 5.6 present a discussion of rolz-based protection in the light of
traditional protection approaches, namely, information flow analysis and mandatory
access control. In section 5.5 we discuss information flow analysis and its application
in role-based systems. Section 5.6 presents a realization of mandatory access control
using a role-based approach. Section 5.7 offers a summary of this chapter and what

we deem to be the key contributions presented 1ere.

5.2 Implicit Authorizations & Roles

The concept of implicit authorization [RWBK91, RWK88] is closely related to the
use of roles for the admir.’~‘ration of access rights in a system. This is a point made
by Rabitti et al. [RWBK91, R\/K88] who propose a model for authorization for
object oriented database systems. The problem of authorization in an object oriented

Subjects
| 4
Q
[] ° °
Py P ° Comtaxt L, Contant M
™ L °
Database Information Partition Disjoint M‘:’mﬁon Contexts
(o)

Figure 5.4: Information Partition Via Roles

Notice that this is an inequality relationship, and not equality due to the principle
of aggregation [DS92]: the total information of a “whole” is greater than or equal to
the sum of the information from the individual parts that constitute the whole. For
a given role r, its window of information is defined as IN F(r).

Consequently, a role-based system can be seen as partitioning system information
and availing it via the windows defined by the roles, (see figure 5.4). The information
available via one such window can be seen as composing 2 “category” associated
with the role. Thus, a role definition can be seen as specifying a “category” (more
appropriately, a role-induced category) of information represented by its window.
Each of these role-induced categories is available to users via user authorization to the
role. For purposes of this thesis we shall refer to role-induced categories as contexts;
categories will be reserved for system-defined information “classes”. A role is said to
have an associated context of inforination determined by its privilege set. Formally:

Definition 5.9 Hole Information Context: A role’s information context is that part
of system information available via the role. 0

Note that system-defined categories need not coincide with role contexts. To
determine the context of a given role and its relationship with system-defined cate-
gories, we take each privilege and determine its subcontext and how it “straddles” the
system-defined ones (figure 5.5). In the most general case these subcontexts straddle

Manager
/

KA
R

Rabitti el al's "Lattice’

Figure 5.1: An Example of Role Organization

roles. In this way, privilege shari.g among related roles in a system is modeled.

This approach to the use of roles offers an organizing framework for system priv-
ileges. It reduces the task of specifying user authorization, and with the use of ap-
propriate rules, leaves the task of deducing the authorizations to the system. These
are major advantages for both system designers and administrators. For designers,
roles present a manner of understanding and testing the implications of their designs.
Thus after a design and applying the rules for deduction, designer. can understand the
implications of their dusign on the administration of privileges. Sor system adminis-
trators, role based analysis via the applications of rules for implicit deduction, offers a
chance to determine individual user and group privileges in the system [TDH92]. It is
this organizing framework of roles and the ability to implicitly deduce user privileges
that forms the strength of role based protection.

5.3 Roles: Informally

Roles are named groups of related capabilities and privileges pertaining to protection
objects or an information system [KM92]. The capabilities and privileges encapsu-
lated in a role are administered as a single unit. Granting a user access to a role
authorizes such a user to exercise the capabilities and privileges in the role. In sys-

User-Role Authorization Role-Resowurce Authorization

Figure 5.2: User-Role-Resource Relationships

tems where there are a large number of privileges and capabilities, the role approach
facilitates their ease of administration. It is more efficient to manage groups of these
capabilities and privileges than individual fragments of the same.

Roles exist separately from the users and the objects and/or resources whose access
they facilitate (see figure 5.2). In determining user or group privileges in a system,
authorization can be given to individual users, groups or roles. Authorization of
access for an individual to a role gives such an individual access to all the capabilities
and privilegs accessible via the role. The same applies to user groups. In effect,
role. ficilitate the ease of authorization and administration of individual user and
group privileges in database systems (see for example [RWBK91, RWK88, TDH92])
for they offer an easy way of assigning and analyzing user capabilities in a system
[TDH92]. They simplify the task of administration of system capabilities as well as
the ease of management of large numbers of users and user groups with differing ranks
(authorities or portfolios) in a system. By organizing users and groups in a suitable
manner, this task of system access rights administration is enhanced further.

Depending on the area of application, role authorization can be changed by grant-
ing and/or revoking user or user group access to a roie dynamically. Role administra-
tion is the task of managing roles in the system. It includes defining roles, granting
and revoking access privileges to roles for users and user groups, and ordering the
roles (where required). Role administration can be a system function or subject to
security policies which enforce separation of duty [CW87]. It requires mandatory

82

enforcement; hence it cannot be altered by users other than the system role adminis-
trators or system security offi-- (5SO). As we shall show later, even these privileged
users must be governed by a set of rules that enforce separatic » of duty if commercial
integrity requiremnents [CW87] have to be met.

A role can be seen as encapsulating the rights, responsibilities, obligations and
actions of the role holder. In an organization, the role so specified captures the
authority of the role holder and the accountability (liabilities) that goes with wielding
such authority. On the other hand, a role has relationships with other roles. For
instance, when exercising assigned authority, a subject in an organization must be
answerable to another subject acting in another role. These role relationships must be
captured by some role organizing structure that expresses these relationships. Role
organization to facilitate the ease of access rights administration is the subject of
chapter 6.

The main advantage of role-based protection is that it eases the administration
of a large number of system privileges. This can be enhanced further should users
themselves be grouped such that authorizations to roles are given to user groups
instead of individuals. Roles offer flexibility in the granting and revoking of privileges
by alteration of a role’s privilege list or user/group authorization to the role. Roles
implement least privilege [BB88, NO93b] ensuring that authorized users access only
the information necessary for performing desired tasks. To realize this, a role will
include only those privileges necessary to perform associated duties. As well, roles
can be designed at the application level which allows for integration of security related
application semantics.

The main disadvantage of roles is that the analysis of user privileges and their
distribution to various users/user groups can be a very complex process.

5.4 Roles, Capabilities & Privileges: Definitions

The concept of roles is closely related to capabilities [Lin76, BN79]. Capabilities,
on the other hand, are subtly related to the concept of privileges. In this section
we define capabilities, privileges and roles and discuss aspects of roles and privilege
management.

Role-based approaches use privileges to realize system protection. A privilege,
in this context, determines an object’s access rights which can be viewed as a token
whose possession confers access rights to the subject possessing it. A privilege is

83

specified by its name and a set of access modes that facilitate access to the associated

object. Defined this way, the term privilege carries meaning related to that of a
capability. First we define capability [Lin76] as:

Definition 5.1 Capability: A capability is a pair (x, m) where x refers to an object
(or object identifier) and m is a non-empty set of access modes for objc~t x. In is
unforgeable and can only be altered by the system security officer. o

In practice, x can be an object (e.g. object name, OID), object type/class (e.g.
in an O-O environment) or attribute name (also in an O-O environment). In systems
with simple access modes such as read, write, execute, etc. m is a subset of these
access modes. In complex systems, these access modes can be complex where a
complex mode of access can be composed of a series of reads, writes and executes. In
an 0-O environment, this set of access modes is a set of methods. In transactional
systems, m would be a set of transactions that manipulate x.

In capability-based protection systems, capability modification, except by the sys-
tem security officer or except to reduce (e.g. revoke a mode of access) its access rights
is not allowed [Lin76]. Capability owners are free to copy and distribute their capa-
bilities as they wish. However, the system has no way of managing the distribution
of these capabilities. This is a major shortcoming of capability-based systems.

The desire to enforce policies including those for capability-based systems, cre-
ates the need to facilitate modifications other than those allowed in capability-based
systems. For instance where discretionary access control (DAC) is enforced, admin-
istration of access rights associated with a certain object may be the task of that
object’s “owner”, while in mandatory access control (MAC) .ystems, only the system
security officer (SSO) may modify access rights. This mesws ‘oais to the concept we
term privilege which, for purposes of this thesis, is defified ax:

Definition 8.2 Privilege: A privilege is a pair (x, m) where x refers to an object (or
object identifier) and m is a non-empty set of access modes for object x. o

A given privilege definition can be seen as a computation pertaining to the speci-
fied object x and access modes m. Depending on the associated set of access modes,
a privilege execution can cause change, reveal or add to system information. It can
cause the creation or deletion of objects. It can cause the granting of other privileges,
creation or deletion of roles, etc. Given that the exact nature of the effects of a given
privilege will depend on the desired application, we shall leave the exact details for
the application designer. Since privileges are intended for security administration, the

84

security policy must specify how they are administered. In our case, the initialization
and modification of a privilege must be authorized. In general, privilege modifica-
tion will be defined in the form of privileges. Authorization to the execution of such
privileges realize such modification. We designate the universal set of privileges in a
system by PV.

From definitions 5.1 and 5.2 it is clear that a capability is a special case of a
privilege. A capability has « more restrictive security policy specific to capability
based systems. Conversely, a privilege is a more general form of capability; it can
be specialized to a wide range of security policies as may be necessary in any given
system.

There is a major difference between privileges and capabilities, however subtle it
may appear on the surface. In capability-based protection systems, the term capa-
bility connotes some token whose possession facilitates access to the object named
in the capability in the access mode specified. Capabilities are taken to be resilient
to attempts of forgery hence remain unforgeable once specified and assigned. In
capability-based systems, access rights administration via capability administration
(including assignment, revocation and modification) and definition is a system func-
tion; although capability owners can copy and distribute their capabilities as they
wish, they cannot alter them.

A privilege, on the other hand, can be seen as a capability when it conforms
to the requirements of the capability definition. However, privilege definition and
administration can be subjected to a variety of policies. Such policies can range from
ad hoc ones to formal ones like those for capability specification and administration.
Indeed, even the form of privileges can range from ad hoc to formal. Capability-based
policies are specific in that capability administration is a system function. Whereas
capability owners can copy and distribute the capability to any extent they desire,
they cannot alter it. Privilege administration, on the other hand, will depend on the
policies of the application. For instance where it conforms to capability definition,
privilege administration will be a system function. In other cases, as in commercial
security, privilege administration can itself be defined as a privilege or set of privileges.
The choice of this form of privilege definition is deliberate in that we wish to leave
the specific policies pertaining to its specification to be determined by system specific
requirements.

Privileges/capabilities in a system facilitate system resource access which allows
the performance of some function in the system. It is, at times, expedient to collect

}3

some functions and assign the collection as a single unit. This collection of privileges
is what we term a role which we formally define as:

Definition 5.3 Role: A role is a named collection of privileges. It is a pair (rname.rpset)
where rname is the role name and rpset is the privilege set. 0

For a given role r, r.rname and r.rpset refer to the name and privilege set of r,
respectively. From a computational point of view, a role specifies the set of computa-
tions (privileges) possible via authorization to the role. The effects of invoking these
computations would, at the least, be equal to the union of the effects caused by the
individual privileges in the role’s privilege set. We designate the universal set of roles
in a system by R.

A role, based on the privileges associated with it, exhibits a certain behaviour.
The role behaviour, on the other hand, is determined by its set of privileges. Since
it is intended that roles’ behaviour be unique in a system, no two roles should have
identical behaviour. Consequently, no two roles may have identical privilege sets.

Defined this way, a role captures functionality achievable via the role, what Dobson
and McDermid {DM89] term a functional role. Roles can also be related to each other
if they have overlapping (shared) privileges. This aspect of role definition is termed
structural; roles defined this way are referred to as structural roles [DM89]. As we
shall see in section 6.2, there are a number of structures (hierarchies [TDH92], lattices
[RWK88, RWBK91, NO93b), Ntrees [San88, San89]) that can be utilized to capture
the structural aspects of role definition.

Since roles are referred to by name, the rnames must be unique in a system
while the rpset can contain privileges relating to arbitrary objects, types, attributes
or indeed any system resource. The privilege set, rpset, associated with a role, is a
set-valued entity consisting of a set (ordered or otherwise) of privileges at the disposal
of the role in question. It can be empty. A role’s name, rname, serves as its identity
and given such a name, it must be possible to completely determine its associated
privileges.?

Ordering, of one kind or the other for privilege execution, is useful in determining
the processing steps executed in a particular role. Considering the role as a “process-
ing station” for some stage in some processing sequence, explains the picture more
clearly. In this respect, execution in the role can be viewed as having specific pro-
cedures that must be adhered to for correct processing. For instance, in an office

?For the moment we refer to those privileges directly specified in the role. However, as will be
seen later, with defined relationships among roles, a role can have privileges associated indirectly.

86

environment, such procedures may include the entry of a receipt (e.g. the origin of
the current receipt, document serial number, etc.) of the document being processed
into some log, actual processing and dispatch entry (e.g. dispatch by whom and to
what destination) into a dispatch log for some instance of the processing. Procedures
such as communication with the next stage in the processing can be built into these
routines and may include digital signatures, if required. In our formulation, the priv-
ilege set determines these procedures. The order of their execution in the related role
is determined by the associated script defined in the class of the associated object.

In our model, we assume generalized access modes. Procedures associated with a
given privilege set can be simple (such as reads/writes/etc.) or complex (e.g. method
invocation sequence or transactional invocations). Method and transactional invoca-
tions will adhere to the method and transactional invocation paradigms outlined in
chapters 3 and 4, respectively. Moreover, transactional executions can be defined in
terms of scripts, where such processing requirement exists.

Authorization to a role puts the role’s privileges at the disposal of the authorized
subject and thus confers the access rights (functionality [DM89]) encapsulated in the
role to the subject. Role authorization can be a system function (as in MAC) or can
be }-. ed on role ownership (in the case of DAC).

5.5 Roles & Information Flow

This section discusses role-based security from the point of view of information flow.
We apply the concepts of information flow to formulate rules for secure role-based
security systems. Information flow analysis relies on the operations on data. Informa-
tion flows from onc data object into another when a change in the first object causes
a change in the second one. An operation that causes such a change is said to cause
information flow.

Information flow analysis techniques have been applied in the design and analysis
of secure computer systems (see for example [Den76]). These techniques rely on
operations on objects and the changes caused in other objects. In order to apply
information flow analysis techniques for security systems, we must specify categories of
information that exist in the system; no other categories®, other than those specified,
exist. Further, we assign each object (objects are the information bearing entities) to

3Most literature uses the term classes. We opt to use the term category to avoid potential
confusion with the term class in O-O modeling.

87

at least one of these legal categories; every object must belong to some legal category.
A specification of allowable information flows between the categories is made. This
forms the basis of determination of a security violation; to preserve security in such
a system, no information flow, other than those specified by the legal flows should
be allowed. Consequently, every operation that causes information to flow from one
category to another, must be guaranteed to ensure that such a flow is legal. An illegal
flow is one that is not consistent with the security policy. A violation of security occurs
when there is an illegal information flow.

Categories (traditionally referred to as classes) of information specify the legal
“groupings” into which system objects belong [Den76]. A category can be seen as a
“container” of information, with its information held in the objects therein. Infor-
mation is allowed to flow freely within the category hence no distinction, in terms of
information, is made between the information held in objects in the same category.

The effect of defining roles in a system can be seen as inducing information con-
tezts. A context of information thus pertains to that part of system information ac-
cessible via a given role. Such a context can straddle more than one system category.
Further, defining a role scheme can cause information flows in a given system. These
information flows, termed role-induced flows, can occur between different system-
defined categories. In this section we will discuss the manner in which role definition
interacts with system categories, potential role-induced flows and how they impact
on system security.

5.5.1 Information Flow Basics

Information flow analysis relies on operations and their effects on data. Information is
said to flow from one data object into another when a change in the first object canses
a change in the second one. An operation that causes such a change is said to cause
information flow. Information flow analysis focuses on the inputs to operations and
the outputs of the operations to determine whether information in the inputs finds
its way to the outputs. The information flow problem can be stated thus [McH85):

Problem 5.1 The information Flow Problem: Given a program and its sets of input
and output variables, determine for each output variable, the subset of the input
variable set about which it might contain information after execution of the program.

a

Information is said to flow from the subset of inputs to the outputs which contain

88

information about this subset of inputs. Information flows can be explicit (as in
assignment) or implicit (as in co::ditional statements) [Liu80]. They can be due to
functional dependency (e.g. x depends on y, hence there is a flow from y to x) or
deductive (if knowing the value of x implies knowing the value of y, hence there is a
flow from y to x) [Mil81]. In general, information flows from x to y (denoted x—y)
when information stored in x flows to y or when it is used to derive information about
y [Liu80]. Implicit in this statement is the fact that, for there to be an information
flow, an input causes change in the output to which information flows. We have the
following information flow axiom [DD77, Liu80}:

Axiom 5.1 Basic [nformation Flow axiom: A flow x—y occurs only when the value
of y is updated. o

5.5.2 Information Flow & Security

Information flow analysis has been applied in the determination of the security of
information in a given system (see for example [Den76, DD77, Liu80, Mil81, McHS5,
Fol87, Fol91]). By analysing the flow of information occasioned by the execution
of some operation, it is possible to determine whether such a flow violates a given
security policy. Axiom 5.1 forms the basis of such analysis. In a given system, the
security policy will specify which flows are legal. Any flows, other than those specified,
would violate security. Legal flows can be seen as authorized flows while illegal flows
are unauthorized. In general, the security policy specifies categories of information
into which system objects belong and the permitted information flows between the
categories. A category can be seen as a “cluster” of information within which there

is no restriction of information flow among the objects.

Definition 5.4 Category: A category is a system-defined “class” of information within
which information can flow freely between objects. o
As part of such a security policy, we must specify the following:

1. The flow rules. In other words, what determines when there is an information
flow? As seen earlier, information flows from an input to an output when a
change in the input causes a change in the output. In this respect the basic
information flow axiom (see axiom 5.1) would form the basis of such flow rules.

89

2. The legal categories into which objects in the system are assigned. These com-
price the legal system information categories. No other categories will exist
outside of those specified here.

. Which objects belong to what categories? Each object must belong to at least
one such category and no object can belong to any other category other than
those specified in item 2. Object category assignment must not violate the
desired flow policy.

. The flow policy: what are the legal flows in the system? In other words, from
what category and into what category should information flow? Flows that are
explicitly specified in the flow policy are said to be direct flows. Direct flows can
result in indirect or implicit flows, i.e. those flows that can be inferred from the
direct flows. This is due to the fact that information flow is transitive. Hence
given three information categories X, Yand Z,if X — Y and Y — Z, it
follows that information flows from X to Z, i.e. X — Z [Den76, Liu80}.

Axiom 5.2 Information Flow Transitivity Axiom: Information flow is transi-
tive, i.e. giventhat X — YAY — Z =X — Z. 0

Specification of legal flows of information includes aspects of combining informa-
tion from two or more categories. A flow policy will specify into which category
such combined information will flow. In Denning’s lattice model [Den76], this
involves specifying the least upper bound (lub) for any two or more categories.
Similarly, the greatest lower bound (glb) for two or more categories depicts the
category that is the common source of information for the categories. The legal
flows in the system are those that are explicitly defined in the flow policy and
those resulting from the explicit specification of flows based on the transitivity
axiom. A security violation occurs when there is an illegal information flow.
Formally:

Definition 5.5 Security Violation: In a system with a specified set of legal

information flows, a security violation occurs when there is information flow
other than the legal flows. W)

Two things imply a legal information flow: (1) the information flow between

objects of the same category or (2) information flow between objects of different

categories but which flows are permitted by the security policy. Any other flow is
illegal.

90

5.5.3 Information Flow: Policy & Implementation Consis-
tency

In practice, the information flow policy of section 5.5.2 would form part of an overall
system security policy which any given realization must adhere to. An implementation
would aim at ensuring that all flows in the implementation are according to the stated
policy. Any flow in the implementation without a corresponding flow due to the flow
policy can be seen as illegal. Such a flow causes a security violation (definition 5.5).
It can be seen as unauthorized. A secure system must ensure that any such flows
confine information to its category. This is the basis of the confinement problem
[McH85, Liu80):

Problem 5.2 The Confinement Problem: Given a system with categories of autho-

rization, a copfinement problem exists where there are inputs and outputs in two
or more categories of authorization. A problem occurs when information flows from
input in one category to output in another category. o

The confinement problem merely recognizes that there can be information flow
from one category into another. Such a flow need not be a security violation. A
security violation occurs when there is a confinement problem where the resulting
flow contravenes the flow policy, i.e. there is confinement problem due to an illegal
information flow. Stated differently, “a program is secure if no execution of it can
result in an illegal information flow from some input x to another output y” [Liu80).

Items 1, 2, 3 and 4 above relating to flow policy and the confinement problem
(problem 5.2) can form the basis for specification of an information flow scheme that
ensures system security.

Let a system have information categories CO, associated operations OP and some
information flow scheme F based on some security policy P. Let the set of flows
F(P) be those flows resulting from the flow scheme and the policy P. Clearly, F(P)
contains both the explicit and implicit flows derived from the flow scheme and policy.
A function f enumerates all such flows, i.e. f: P x 29 x F x 297 ., F(P). F(P)
18 the set of all legal information flows.

An implementation, Z, would result in a set of information flows which may or
may not be equivalent (see definition 5.6) to F(P). Let such a set of flows be F(I)
which is the result of some subset of the operations and categories. Let the function
® enumerate all such flows: ¢ : P x 20 x T x 297 s F(I). F(Z) is the set of actual
flows in the system.

91

Denote the categories specified in the security policy and flow scheme by COp.
Define COr similarly for the implementation 7.

Definition 5.6 Information Flow Set Equivalence: Two sets of information fows,
F(P) and F(I) are equivalent, ie. F(P) = F(I), if and only if (1) they both
deal with the same set of categories of information, i.e. COp = CO7 and (2) for every

flow in F(P) there is an equivalent flow in F(TI) and vice versa. a]

Where F(P) and F(I) are equivalent, the information flows due to the implemen-
tation, I, are exactly those specified resuiting from the system security policy and
the given flow scheme. A system in which F(P) and F(T) are equivalent, is secure;
no flow due to the implementation contravenes any of the flows due to the security
policy and flow scheme.

It is possible to designate the flow set equivalence as the criterion for determining
whether a given implementation Z is secure with respect to some security policy P.
However, such a criterion is unnecessarily more strict than may be desirable for the
reason that the implementation need not realize all legal information flows. It is
sufficient that flows due to the implementation do not violate any of those resulting
from the flow policy and flow scheme. Where a flow set due to an implementation
does not violate any of those specified, we say the the former is consistent with the
latter.

Definition 5.7 Information Flow Set Consistency: A set of information flows, F(I),
is consistent with another set of information flows, ¥(P), if and only if (1) F(T)'s

categories are a subset of or equivalent F(P)’s categories, i.e. COy C COp and (2)
for every flow 1n F(I) there is an equivalent flow in ¥(P). In other words, F(I) is
consistent with F(P) if COz C COp and F (L) C F(P). O

In general, given a policy P and an implementation Z, we say that the iriplemen-
tation it flow consistent with the policy if and only if F(I) C F(P). This implies
that equivalence is a special case f consistency.

Flow consistency is important for system security. System security in this case is
determined by two key issues: (1) implementation flow consistency with respect to
the stated security policy and (2) user authorization to the implemented operations.
Clearly, wher: the implementation is flow consistent with the policy and the a user
executing some legal operation is authorized, the system is secure. Consequently, a
system is secure if and only if all operations are executed by authorized users and the

92

implementation is consistent with the system security policy. Flow consistency alone

does not guarantee system security.

Constraint 5.1 Information Consistency Constraint: A system is secure, with re-

spect to some security policy P, if the flows F(I) resulting from the system imple-
mentation are cousistent with the flows, F('P), specified by the policy. o

Constraint 5.1 forms the key criterion for assessinyg the security of an imnlemen-
tation I with respect to a given policy P. Given a policy P and an impler»ei.tation
Z, a natural question to ask is whether I is consistent with P. In other words, is the
implementation secure with respect to the policy? Formally:

Problem 5.8 Policy & Implementation Consistency Problem: Given a security pol-
icy P and an implementation I, is I secure with respect to P? (u]

To answer this question, we consider the information flows due to the security
policy and those due to the implementation. We then construct respective graphs of
both. To determine consistency, we use the subgraph isomorphism problem.

A subgraph of a graph G = (V, E) (where V represents the vertices and E the
edges) is defined as a graph H = (U, F) such that U C V and F C E [CLR90, Baa38,
Man89]. A set of flows F(P) can be represented by a directed graph F(P) = (CO,CF)
where CO is a set of categories (the nodes) and CF is a set of edges connecting the
categories. Information flows from one category co; to category co; if and only if we
have directed edge (co;,co;) € CF. Similatly, F(I) = (COz,CFz). Consequently,
F(Z) is consistent with F(P) if and only if, in their respective graphs, COz C CO
and C¥r C CF. Clearly, with this condition, the graph of ¥(Z) must be a subgraph
of the graph of F(P).

Example 5.1 Consider a system with categories A, B, C, D, B and F and a flow
scheme A—B, B— C, D-—E and D—F. The set of legal flows is #(P)={ A—B,
A—C, B—C, D—E, D—F}. Let some implementation result in flows A—B,
A—C, and D—F, bence F(I)={A—B, A—C, D—F). Clearly, ¥(I) C F(P). I
only authorizsed users invoke operations in the system and where the operations exe-
cute correctly, then the system will be secure. (u]

Determining whether a given flow set is equivalent to another, in the general case,
is not an easy problem as demonstrated by the following lemma.

Lemma 5.1 Given two sets of information flows F(I) and F(P), ¥(Z) is consistent
with F(P) if and only if ¥(I) is a subgraph of F(P). o

93

In the general case, determining whether F(I) is consistent with F(P) is NP-
complete. This follows from the reasoning that determination of F(ZI)'s consistency
with F(P) is to answer the question whether F(Z) is a subgraph of F(P). This is
the subgraph isomorphism problem [CLR90, Baa38, Man89]. We know that this
problem is NP-complete [CLR90), hence the consistency problem is NP-complete, in
the general case.

However, determining flow consistency is an instance of the subgraph isomorphism
problem in which the non-determinism has been resolved because the node mapping
is known. Category labels are the same in both cases. What remains is to match the
given nodes and edges of the two given flows. This can be done in polynomial time
O(n?) where n is the number of nodes in the graph.

We use matrix representation to solve this problem. A given set of flows F(X)
can be represented by an n x n matrix M in which M[i, j] = 1 whenever there is a
directed edge (co;,co;). The entry is 0, otherwise. Let matrices Mp and Mz be of the
form of M and represent flows ¥(P) and F(7I), respectively. We can answer whether
F(I) € F(P) by checking that whenever Mz has a 1 entry, there is a corresponding
1 entry in Mp. We say F(T) is inconsistent with F(P) if there at least one 1 entry in
Mz without a match in Mp. There is consistency if every 1 entry in the former has
a corresponding 1 entry in the latter.

5.5.4 Roles & Information Flow

A role facilitates access to information via its given set of privileges. Such information
can be seen as a contezrt available to users authorized to the role. This section examines
how these contexts arise by revisiting the privilege definition, and defines a context as
the union of the subcontezts of information accessible via each of the role’s privileges.
We then address the effect of these contexts on system-defined categories and propose
a methodology for determining whether a given role-based scheme violates system
security.

5.5.4.1 Privileges & Information Flow

A privilege has been defined as a pair (z,7n) with z being an object identifier and n
a set of valid access modes for z (definition 5.2). This definition prescribes that the
privilege execution will be guaranteed to get its input from named sources [GMP92],
in this case the object z and any of the associated parameters of the access modes.

(a)

Cc3
Cl1 c2 °

Corresponding Information Flow
(ol
(b)

Figure 5.3: Method Invocation Information Flow

This execution facilitates a potential transformation. It causes some information to
be .vailable via the execution and may cause information to flow in *he process.
Moreover, since the execution pertains to system information, it offers a form of
access to system information. Each privilege can thus be seen as a subcontert of
information access. The choice of the term subcontext is deliberate since even when
information is accessible via such a privilege, it must be accessed within some role.

Definition 5.8 Privilege Information Subcontext: Privilege information subcontext

is that piece of system information accessible via a given privilege. o

To explain this further, we consider O-O methods as the basis of privilege defini-
tion. Let z be the object identifier and m be a set of methods valid for z. The methods
may have parameters other than z and their execution may invoke other methods or
create new objects. In general, a method invocation sequence can be represented by a
tree (figures 3.2 and 5.3a) [JK90]. In figure 5.3 the m;s represent method invocations,
the C1,-- , a-e system-defined categories (those involved in the invocation) while the
;s stand for objects associated with a method invocation. The arrows in figure 5.3a
indicate those invocations which cross categories/objects while those in figure 5.3b
show the direction of information flow occasioned by the invocations.

Such invocations can facilitate access to information in the different categories in-
volved in the invocations. The information accessible from a category via an invoca-

95

tion will be no greater than the information contained in the categorv. An invocation
such as that of figure 5.3 yields access to more that one category and hence a fragment
of information from each of the categories in question. A subcontext of an invocation
is the aggregate of all information fragments from the individual categories involved
in the invocation. In our case, the aggregate of information fragments accessed in
categories C1,---,C5 constitute the subcontext of m. These fragments of informa-
tion, in turn, are associated with the objects involved in the invocation. Therefore,
the subcontext of m would contain the fragments of information pertaining to the z,s
in the figure.

The method in this case can be seen as a mini-w.ndow into system information
pertaining to all the objects “touched” Ly the invocation. It is the information avail-
able via this mini-window that we call a subcontext for the given privilege. The
associated potential information flow is depicted in figure 5.3b. Note that we call this
potential flows because we assumed that all invocations cause some changes. Hence in
the case that all such invocations are associated with changes, we shall expect these
flows. In practice, however, some invocations may not cause any changes and hence
may not cause information flow (see axiom 5.1).

5.5.4.2 Roles & Information Contexts

A role facilitates access to a given set of objects using the specified modes of access
in the associated privilege set. Seen this way a role acts as a window to system
information. Info.mation available via the role window is determined by the role’s
privilege set. It is, at the least, the union of all the information available via the
individual privileges in its privilege set.

Given some role r € R with an associated privilege set r.rpset, let INF(t) rep-
resent the “quantity” (of some measure of information) of information accessible via
some role or privilege t. Where some pv is in some role r’s privilege set, it is true
that:

INF(pv) < INF(r)
In other words, the measure of information in a privilege cannot exceed that in
its associated role. Yet, the “sum” of all information in a role’s privileges is always
less than or equal to the information available via the role. It follows that:

INFiry2 U INF(pv)

puv€r.rpeet

Subjects

P

Q
[] ° °
. ° . Comtent L, Contant M
.) | O O

Database Information Partition Disjoint lnf@om-ﬁon Contexts
(»)

Figure 5.4: Information Partition Via Roles

Notice that this is an inequality relationship, and not equality due to the principle
of aggregation [DS92): the total information of a “whole” is greater than or equal to
the sum of the information from the individual parts that constitute the whole. For
a given role r, its window of information is defined as INF(r).

Consequently, a role-based system can be seen as partitioning system information
and availing it via the windows defined by the roles, (see figure 5.4). The information
available via one such window can be seen as composing 2 “category” associated
with the role. Thus, a role definition can be seen as specifying a “category” (more
appropriately, a role-induced category) of information represented by its window.
Each of these role-induced categories is available to users via user authorization to the
role. For purposes of this thesis we shall refer to role-induced categories as contexts;
categories will be reserved for system-defined information “classes”. A role is said to
have an assoctated context of inforination determined by its privilege set. Formally:

Definition 5.9 Role Information Context: A role’s information context is that part
of system information available via the role. o

Note that system-defined categories need not coincide with role contexts. To
determine the context of a given role and its relationship with system-defined cate-
gories, we take each privilege and determine its subcontext and how it “straddles” the
system-defined ones (figure 5.5). In the most general case these subcontexts straddle

97

.,-.‘._.m con

/ Context 1

c1 c1 '

Context 3

O System-Defined Categories

4
.0"‘-.‘.

S

e . Flowrs duse t0 policy
i oeeceeeeree Flows due to context definition

Figure 5.5: Policy & Context Information Flow

more that one system-defined category. It is possible that several categories belong to
one context. Moreover, several contexts can belong to one category (see figure 5.6).

Different relationships can exist between contexts induced by role definition. They
may or may not overlap. A context can be a proper subset of another context or
indeed, a context can be equivalent to another one when they are associated with
roles with equivalent privilege sets.

5.5.4.3 Roles, Contexts & Information Flow

Role executions may cause changes across system-defined information categories, just
as they can cause such flows across role-induced contexts. In other words, execution
of one role can cause change in information in different system specified categories.
Moreover, such changes could involve information accessible via another role. There
is bound to be information flow across system defined categories as well as across
role-induced contexts. By examining these overlaps and the nature of the operations
involved, we can carry out information flow analysis to determine the impact of these
information flows on system security. This is important in order to determine whether
a given role scheme preserv.'s system security.

We start with the basic observation from the confinement property (see prop-
erty 5.2) which implies that information flows within a category (definition 5.4). In

Awmml(d‘z”m.

Figure 5.6: Category-Context Relationships

other words for two objects in some category ¢ € C, information can flow from one
object to the other, i.e. Vo,, 0; € ¢, flows of the form o; «—— o; are legal.

To analyze information flows from one category to another, one must analyze the
operations involved. In particular we have the the basic irformation flow axiom (see
axiom 5.1) which holds that there is information flow when there are updates. Two
kinds of operations can be found in systems: read operations which do not alter the
state of the associated objects and update operations which do alter/update/write
states of the associated objects. An operation that does reads and updates can be
seen as causing information to flow from the inputs that are read to the outputs that
are updated.

Update operations within a role-induced context can be seen as defining the con-
text’s update scope. It is via these operations that information associated with a
context is altered. It is via such operations that update effects of the operations can
be felt in other categories. Hence it is via the same operations that information can
flow from one context to another context. In a similar manner, we can specify the
read scopes of roles. A role’s read scope facilitates access to information via the role
without causing any side effects. We designate the read and update scopes by r_scope
and u.scope, respectively. Hence for some role r € R, r.scope(r) and uscope(r) refer
to the read and update scopes of r, respectively.

9

From the basic information flow axiom we can make some general statements
about information flows using the read and update scopes for a given role. Clearly.
an operation that does both read and update would cause information to flow from
the role’s read scope to its wriie scope. Moreover, for an operation that does multiple
updates, information flows from wichin the update. We have the following general-
izations for a given role r € R v.." r_scope(r) and u_scope(r):

1. r_scope(r) — u_scope(r) for some r € R. This implies there is information

flow within a role, i.e. r — r which is in agreement with the confinement
problem.

2. u_scope(r) — u_sccpe(r) for some r € R. This kind of flow, like the one before
is in agreement with the confinement problem.

3. r_scope(r;) /— r._scope(r;) for r;,r; € R, i.e. there is no information flow across
read scopex of two different roles.

4. Where there is overiapping of scopes of different roles we can expect infor-
mation to flow between the two associated contexts. Consider two roles r,
and r; with the following scopes: r_scope(r;)={x.y,z}, uscope(r;)={p,q} and
r.scope(r;)={a,b,c}, uscope(r;)={d,e,f} for role r; and r;, respectively. From
itern 1 above we have: {x,y.z}—{p,q} and {a,b,c}— {d,e,f} which are infor-
mation flows due to r; and r,, respectively.

Information flows from r; to r,, i.e. r, — ;4 if and only if the updates due to
r; are accessible via r;. In other words, in the above example, either p or q or
both belong to r;’s scope. Hence if we b ve r; — r; then either uscope(r;) N

rscope(r;)# @ or uscope(r,) N uscope(r;)# 0.

Given two roles, information can flow from one into the other and vice versa.
For examnle, with roles r; and r,, we have a bidirectional information flow if
information flows from ; to r; and vice versa, i.e. we have both r; — r, and
rj — r;. Bidirectional information flow is designated as r; « r;. We can
also have multidirectional flows where we have more than one role.

A unidirectional information flow can be either r; — r; or r, — r;, but not
both. Suppose it is required that we have r; — r,, it follows that uscope(r,) N

‘More precisely, information flows from the context of #; to that of r;, denoted contezt(r;) —
contezt(r;). The notation r; — r; is used here as a shorthand notation for convenience.

100

rscope(r,)# @ or u_scope(r;) N u_scope(r,)# @ and u_scope(r;) N rscope(r;)= @
or uscope(r;) N uscope(r;)= 9.
A subsumed flow is where informatior. flows from a context into exactly one

context. Formally:

Definition 5.10 Subsumed [nformation Flow: A subsumed information flow is

one in which all flows from one context flows into exactlx one context. o

Suppose such a flow is of the form r; — r;. Then the conditions for such a
flow are: either u_scope(r;) C r_scope(r;) or uscope(r;) C u.scope(r;).

5.5.5 Roles & Information Flow in Role-Based Svstems

In the foregoing sections we defined the meaning of information flow across contexts
associated with given roles. In this section we use the results to discuss the man-
agement of information flows using role-based protection schemes. Consequently, we
present an outline for designing role-based security schemes using information flow
concepts.

In an information flow role-based protection system, we must:

1. specify what categories of information are to be handled by the system. For
each information bearing entity/object/resource, we specify into which of the
categories it belongs. We say such categories C(P) are created based on the
security policy P. Thus we have that Yo € O, 3¢(p) € C(P)lo € c(p).

2. specify the legal information flows allowed in the system. These flows and those
inferred using the axioms 5.1 and 5.2 from their specification we refer to as
F(P) since they result from the security policy P.

This can be seen as specifying constraints on information flow among ob-
jects/resources/etc. For instance we could explicitly say that there is necessary
flow of information between a voucher object to a cheque object. This lays
down the information flow policy and allowable information flows.

3. specify intended roles. The intended roles yield lows which can be termed the
explicit flows due to the implementation. Roles are specified by the objects they
are associated with and some operations on the objects.

In general, we end =~ with series of information flows among defined categories
which result due to both role definition and explicit specification associated

101

with roles and their contexts. Call these contexts and flows due to contexts,
CO' and F(CO'), respectively.

Once defined, roles determine information contexts in the system. As seen
earlier, there is necessarily a flow of information within an information context
if there are any updates involved. It is important that neither the implicit nor
the explicit information flows violate the constraints specified in item 2 above.

F(CO') must now be mapped to the system-defined categories to determine
what flow they cause across these categories. To do so involves the superimpo-
sition of categories on the objects associated with F(CO') (see figure 5.3). The
result of this process yields flows F(CO) pertaining to categories CO.

4. Reconcile flows in items 2 and 3. There is a contradiction of the security policy
if there are flows in 3 without corresponding flows in 2. We say the two flow
schemes in 2 and 3 are policy consistent if and only if none of them is contra-
dicted. Definition 5.7 requires that F(CO) C F(P) for there to be consistency.
Since F(CO) is the set of flows due to a realization, it is equivalent to F(ZI) of
constraint 5.1.

For a system to be secure, the implementation must be consistent with the
policy. (Note that completeness need not imply consistency, unless there °

equivalence (definition 5.6).) As seen elsewhere consistency is a sufficient con-
dition for security. It need not be complete.

An interesting investigation of this is to consider a set of roles R, a set of au-
thorizations specifying the privileges pussible via the roles PV (with resultant infor-
mation flows F(CO)) and a set of legal information flow specifications F(P) (where
fl € F(P) is of the form r; — r, with the arrow indicating the direction of infor-
mation flow) between roles and ask the question whether there will be a security
violation.

Problem 5.4 Given an arbitrary collection of privileges PV, an arbitrary collection
of roles R (or role definition scheme) and an arbitrary collection of system-defined
categories CO with flows F(P) among them (this represents the system flow policy),
is there an illegal information flow? In other words, do the roles cause information
flows not permitted by the system security policy? Or is there a flow fl that is not
in F(P). o

102

To solve this problem we use graphical analysis to determine whether information
flows resulting from role definition are consistent (definition 5.7) with (). Hence we
construct a graph G, = (W, E,) to represent the system-specified information flows.
The nodes V, are the system-defined categories while an edge (co;, co;) € E, whenever
there exists a flow from category co; to co; in F(P). The graph G} represents the
system-defined information flows and hence the system flow policy.

Next we construct another graph G = (Vz, E2) where the nodes V; are the role
contexts and the edges E; are the information flows between contexts resulting from
role definition (see description below). Hence we have an edge {contezt(r;), contezt(r;))
whenever there is an information flow from the context associated with role r; to an-
other context associated with role r;. The graph G, represents the information flows
due to role definition and hence an implementation.

To determine whether or not flows in G, are consistent with those in G,, we
must superimpose the system categories on G2. Thus from G2 we derive a another
graph G, = (V,, E;) where the nodes are system-defined categories and the edges are
derived from G (see description below). Hence we have an edge (co;,co;") € E, if
and only if there is an information flow from category co;’ to category co;’ derived
from the edges E; of Ga.

Then using matrix analysis (see page 93), this problem can be solved in O(n?)
time where n is the number of system-defined categories.

Construction of Implementation Graph G;:
G, is the information flow graph derived from a role definition scheme and can

be constructed statically for purposes of analysis. This is possible because privileges
and roles are defined a priori since their effects are intended to be predictable. It is
therefore possible, given a role definition scheme, to map out all potential flows that
can be caused by execution of role privileges.

In constructing Gj, all operations in the role definition scheme must be analyzed
(see figure 5.3). With the use of the basic information flow axiom (axiom 5.1}, we
consider all the operations defined by the role definition scheme that cause change
in their parameters. Firther, we consider all secondary invocations and side effects
resulting from the invocation of the operation. These side effects in general include
invocation of other cperations, creation of objects, etc. according to the method
invocation tree (cce figure 3.2) of chapter 3.

This task of analysis may not be trivial. For each role, this analysis involves

103

Algorithm 5.1 Execution Invocation Analysis

For each role do
For each privilege do
For each mode do Analyze_Operation;
end;
Analyze_Operation:
Switch Arguments;
Case Arguments of:
parameter: do if update, include flow from source
created object: insert correct flow
invocation: Analyze_Operation
ond; /* Case */

Figure 5.7: Role Definition Information Flow Algorithm

examining each privilege and considering the information flow(s), if any, it causes.
We obtain G'; by applying this analysis to all roles in the system and augmenting the
flows caused by individual roles. G, is the information flow graph capturing flows
across roles and their contexts. The edges in G; are the information flows while the
nodes are the role contexts.

Central to this analysis is the nature of the operations involved. This analysis
must not only determine whether an operation causes information flow but also es-
tablish the direction of the flow. Given the complex nature of operations possible
in our formulation, such as O-O method invocations, this analysis must be applied
recursively to all side effects, directly or indirectly, arising from a some operation
invocation. Therefore, for a given operation involving a particular object. we must
consid:- the effect of the operation on (1) the object; (2) the input and output pa-
rameters; (3) the operations it invokes (if any) and their subsequent effects; (4) the
objects it creates, if any, plus the categories to which they belong, etc. In the most
general sense, this analysis must consider all the paths in the operation invocation
tree (similar to O-O method invocation tree of chapter 3).

The algorithm 5.1 of figure 5.7 outlines the form of the analysis.

Construction of Implementation Graph G;:
The graph G} is derived from G by superimposing the system defined categories

104

on the role contexts. This involves taking all objects involved in G, and grouping
them into their respective system-defined categories (see figure 5.5). Having done so,
we must then analyze what flows take place from one category into another. Suppose
we have objects a and b in category A and objects x and y in category X. Further,
suppose that the flows discerned from G, show that z — a and y — b. It follows
that there exists a flow X — A.

This category by category analysis yields an information flow graph G, with
system-defined categories as nodes and flows between them as edges.

Notice that it is necessary for the graphs to be acyclic where secrecy is required.
This is the case with the Bell and LaPadula model [BL75] and Denning's Lattice
model {Den76]). However, in cases where secrecy is not a priority, what is important
is that the legal information flows are “honoured” and the appropriate permissions
executed accurately and correctly.

5.6 Roles & Mandatory Access Control

The basis of mandatory access control is that a subject’s access to an object is based
solely on the subject’s and object’s attributes. Neither subjects nor objects can
alter their security relevant attributes. Moreover, only authorized subjects (such as a
system security officer) can alter this information. Security in this sense is mandatory
in the sense that meeting the criteria based on attributes is system-enforced. There,
at times, arises confusion when talking of mandatory access control which some take
to be analogous to multilevel security. Hence, for purpose of this work, we define

mandatory access control as follows:

Definition 5.11 Mandatory Access Control (MAC): MAC is access control where
subject access to objects/information is determined by both subject and object at-

tributes only. Access is determined by the system which specifies access information
and which forms the sole basis of access. o

As discus: 2d in section 5.5, roles offer segmented access to database information.
Information accessed via a role this defines its context. We say that the roles parti-
tion information into contexts. Each context of information is accessible via subject
authorization to the role associated with the context. Further, for each role, there
is a subset of information accessible via the role that forms its read scope (read-set)
and another subset that forms its update scope (write-set) (see figure 5.8).

105

To enforce MAC using roles, the contexts of information accessible via each role
must be regarded as distinct categories of information (see figures 5.4 and 5.9). Using
concepts of information flow discussed in the previous section we can then specify
the legal information flows between these contexts of information. This ensures that
subject authorization to a role does not violate the specified legal information flows.
This is important given that the “invention” of MAC was due to the need to “tame”
(confine) Trojan horse attacks. Trojan horse attacks involve updates and subsequent
read access. A Trojan horse can encode information in one context, and then transfer
it to another context where another subject is able to read it. This transfer of in-
formation violates security when it is not an authorized information flow. Moreover,
since every execution in a system must be authorized, the Trojan horse action violates
security.

Figure 5.8b illustrates a case where we have information confinement which meets
the requirements of item 4 on page 100.

Another important consideration is that of user authorization. A user autho-
rization scheme must ensure that user access to information does not cause illegal
information flows. For example, a user authorized to two or more roles can cause
information flow as in the case where the user reads information via one role and

updates information in another role.

Axiom 5.3 A user-role authorization scheme is correct if it is consistent with the
specified flow policy. o

In the Bell & LaPadula Model [BL75], information is allowed to flow up in the
classification levels. The *-property bars write-downs while the simple security prop-
erty bars read-up. This property ensures that a Trojan horse encoding information
at high security level and trying to write it down to a lower level will not succeed.
The *-property governs the direction of information flow and aims at ensuring that
no Trojan horse program can downgrade information. Hence we have a unidirectional
information flow. An important emphasis of this model is secrecy.

Unidirectional flows are necessarily acyclic. Indeed, this is the case with Den-
ning’s [Den76] lattice model, where categories of information and specified legal flows
determine the category into which information from one or more categories can flow.
The result is a partially ordered set of categories with a flow relationship between
them. Attempts to impose a flow that is illegal are rejected.

With these two models we end up with multilevel security which is the most

common realization of mandatory access control. Subject and object security levels

106

Read Scope J ‘:i j Update Scope J
(a)
Read Scope J Scope J

Read Scope

(b)
Figure 5.8: Information Flow Across Read & Update Scopes

are the relevant security attributes used to determine information access. In both
models, the simple security and *-properties are used as the basis for information
access. Moreover, both models depend on read and write operators.

To emulate mandatory access control in role-based protection systems, we must
ensure that the sy.tem mandatory access function relies solely on the facts that a
subject has authorization to a role, that the role contains an associated privilege
specifying the mode of access to the object, that the subject access is via thic legal
mode. and that the access does not violate the specified flow policy. Legal access of
the object must be cnforced, too, to ensure that the object is accessed in no modes
other than those specified in the role as well as any other constraints specified on such
access. Also, a flow policy must be observed since it is the criterion that determines
security.

To ensure secrecy in onr model, the information flow graphs of our role-based
schemes must be acyclic. Where there are cycles, the set of all the roles/scopes
in the cycle must necessarily be in the same context. Imposing the subsumed flow
restriction creates a stricter information flow control. To limit the effect of Trojan
horse attacks, we must formulate an equivalent of the *-property to govern our role-
based protection schemes. Moreover we determine what security attributes govern
information authorization.

107

read scopes write scopes
A
y
read_i _i u_t
&
oo
u_zl read _j 1 ,4_—m__| b2
i f’ """" T 0
il Jead k write_k |}
i3 -
i S ettt o
[}
]

Role Context

Direction of Information Flow
Figure 5.9: Unidirectional Information Flow in Roles

Further it must be specified what subject and object attributes would govern
access of subjects to objects. Since a role facilitates subject access to objects or
resources via the role, we can use this fact to specify MAC. In doing so we use two
key subject /object attributes: user authorization to a role and object accessibility via
a role.

Constraint 5.2 Mandatory Authorization Constraint: A subject can only access an

object via an authorized role in the mode specified in the associated privilege in the
role. 0

Authorization to a role is specified in the role’s access control list. Let UID be the
set of all user identifiers, and §ID the set of all group identifiers; ID = UID U GID.

Definition 5.12 Role Access Control List: A role access control list (racl) is of the

form: [idy,- -+ ,id,), where id; € ID. 0
In a secure system all roles must have access control lists, i.e. Vr € R, 3 r.racl =

[---,id;,---]. We call a role with an associated access control list, secure.

Definition 5.13 Secure Role: A secure role is a named collection of privileges along
with its access control list. It is a triple (rname,rpset,racl), where rname is the role
name, rpset is its privilege set and racl is its access control list. 8]

108

Determining whether there is authorized access for a given user to some object in
some access mode is a two stage process. First we ensure there is user-role authoriza-
tion, i.e. the user’s/group’s identifier is in the role’s access control list. Secondly, we
ensure that the desired access mode to the object specified exists in the privilege set.
The latter can be termed role-privilege authorization.

This implies a two stage process to confirm authorization: that the subject is
authorized to a role and the role contains the associated privilege for access to the
object. The latter is termed object accessibility via a role. The mode of access specified
in the associated privilege is referred to as the legal mode of access via the role.

User authorization to a role means that the user can access objects accessible
via the role via the specified (legal) modes of access to these objects. But user
authorization alone is not sufficient to guarantee both secrecy and integrity of the
information. It must be ensured that no such authorization will result in illegal
information flow.

Constraint 5.2 itself is not sufficient to guarantee secrecy. Indeed, while determi-
nation of authorization is a system function, vve must ensure that secrecy cannot be
violated due to overlapping scopes. Hence the following constraint:

Constraint 5.3 Read (Secrecy) Access Constraint: Given two users, u; and u,, and

two roles, r; and r;, let u, have access to both read scopes and u; have access to the
read scope of r;. Then r.scope(r;) must be a subset of r_scope(r;), i.e. r_scope(r;) G
r.scope(r;). o

Recall that information flows from a role’s read scope into its update scope,
ie. r.scope(r;) — uscope(r;) and r_scope(r;) — u._scope(r;). Suppose that
r.scope(r;) € rscope(r;). Then it means that there is information in r _scope(r;) out-
side r_scope(r;). But given that u, is authorized to both r_scope(r;) and r_scope(r;),
we can have r_scope(r;) — u.scope(r;). Hence if r_scope(r;) € r_scoye(r;) then
there is information in r_scope(r;) that is not guaranteed to flow into u_scope(r;). In
other words, u; has access about r; that can be made to flow elsewhere, unless this
information is a subset of r;’s read scope.

In specifying legal information flows and user authorizations, we must ensure that
the read and write operations performed via different roles do not violate the specified
flow policy. In other words, it should not be possible for a Trojan horse acting legally
(via authorized writes) to leak information to an unauthorized context. The following
two constraints are intended to guard against Trojan horse attacks:

109

Constraint 5.4 Update Access Constraint: A subject cagnot access one role’s read
scope and update another’s update scope if there are no defined legal flows fiom the
first role to the second. 8]

The purpose of constraint 5.4 is to ensure that an information flow is defined in
the direction of the update. This is due to the basic information flow axioms which
say that information flows when there are updates.

Constraint 5.5 Read/Update Constraint: A subject can access one role’s read scope
and update another’s update scope if and only if the read scope of the s.ond role
contains the read scope of the first one. 0

In other words, given two roles r; and r;, subjects can write via r; what other
subjects in r; can read if and only if there is defined a legal information flow (directly
or indirectly) from the information context specified via Contezi,r;) to that specified
via Contezi(r;).

Given that we have information of the form: r, — r,, the need for secrecy
requires that r;'s read scope contain r;'s read scope.

From the foregoing, we couclude that MAC-like protection can be realized using
role-based security if role definition and user-role authorization obey constraints 5.1,
5.2, 5.4 and 5.5. These constraints ensure an implementation with respect to a
given policy, they govern user-role autk >rization a= well as the nature of access to
information via the authorized roles.

Our result is similar to that of Thomsen [Tho91). While ours focused solely on
general emulation of MAC in role-based protection by considering information flow,
Thomsen's approach is with respect to well-formed transactions (WFTs) [CW87] and
the read and write sets of roles and their relationships. A role’s write-set (read-set)
is the context of objects (information) in which can be written (read) by subjects
authorized to the role. The proposed Role-Based Security Property states:

Property 8.1 The Role-Based Security Property (RSP) [Tho91]: Given two roles
r1 and r;, subjects can write via r; what other subjects in r, can read if:

1. a subject i.1 r; can read any entity that ry can read

2. ry can only use WFTs to write entities readable by r;, or

3. r; can only use WFTs to read entities written by r,. o
In the absence of WFTs (see property 5.1), only the first item is useful here. This

is a formulation we define based on the concept of information flow.

110

5.7 Summary & Key Contributions

This chapter presented the concept of roles and its basis, the privilege. Consequently,
we defined the terms privilege and role. We outlined the role-based protection ap-
proach, its advantages and its shortcomings.

A privilege is defined by two items: an object name and at least one of its access
modes. A privilege defines what kina of access an authorized user can have to the
associated object via the associated privilege. It is a collection of objects and some of
their associated access modes. A role is a collection of privileges. It determines what
kind of access an authorized user can have to the associated objects via the role.

Roles can be used as the basis for system protection in which case users are
authorized to specific roles. The main advantage with roles is the flexibility with which
system access rights can be administered. A variation on a role’s privileges varies the
access rights of authorized users. As well, revocation of a user’s authorization denies
such a user the privileges associated with the role. Flexibility can be enhanced further
should users be organized into groups and such a group authorized to a role. Hence
by varying a user group’s membership, we effectively alter the manner of distribution
of system access rights.

If flexibility is the key advantage of role-based protection, the complexity is its
price. Access rights administration and analysis is complex in role-based systems.
The lack of some formal theoretical structures has hampered the ability to do this
analysis. With some underlying formalism for role organization, one can design tools
for access rights administration. Indeed, this work aims, in part, to iay some theo-
retical foundations for role-based protection schemes.

This chapter also discussed role-based protection with reference to traditional se-
curity approaches. In particular, we addressed role-based protection and information
flows where, using the con pt of information flow, we determined constraints for
ensuring security in role-based systems. We also discussed a means of realizing the
equivalent of traditional mandatory access control. Hence we presented a model for
multilevel security in role-based systems.

Contributions of this chapter include the formal development and formulation of
the role concept. We formally defined the concept of privilege which is the under-
lying issue in role-based protection schemes. Cousequently, we presented the formal
definition of role and discussed its advantages and disadvantages in its application to
security. Further, we developed an information flow analysis methodology and the

111

security constraints for realizing security in role-base security systems. And to demon-
strate the power of role-based schemes, we illustrated the realization of traditional
mandatory access control using role-based protection schemes.

CHAPTER 6

ROLE ORGANIZATION

6.1 Introduction

Roles and role-based protection have been discussed in chapter 5. This chapter
presents a study of role relationships based on which a framework for role organi-
zation is derived. The resulting structure forms the framework for role management
and access rights administration. Our intention is to identify and define basic role
relationships. We then use these relationships to model role organization with the
ultimate aim at providing a role organization model that facilitates the ease of access
rights administration in role-based protection systems. For access rights adminis-
tration and role management in the proposed role organization model, associated
algorithms are proposed.

The basic role relationships abstracted include: partial, common and augmented
privilege sharing. A role’s privilege set can be a subset of another role’s: privilege
set. This partial privilege sharing is represented by the is-junior relationship which
refers to a junior-senior association between two roles. Two roles can have another
role that has a partial role relationship with each of them. We call this common
privilege sharing and refer to it as common-junior relationship. This is the case where
two (or more) roles have the same (or set of) junior role(s). The third kind of inter-
role relationship is referred to as augmented privilege sharing where two or more
roles have a common superior; each of the two roles has a partial relationship with
the superior role{s). The term common-seniordesignates this type of role association.
Other important concepts are those of minimum and mazimum privileges. The former
refers to the minimum privileges allowed for each role while the latter refers to the
cumulative privileges in the system.

From these relationships we derive role structural properties which form the ba-

112

113

sis for a structure for role organization. An important property arising from these
relationships is the acyclicity of the resultant graph structure.

Ar cher property is the monotonicity of role privileges on any given path. Further,
we characterize the structure by what we refer to as coupling based on the extent of
privilege sharing among roles.

Once defined, a role graph structure requires a means for manipulating the roles
and privileges in the system. To facilitate this, we explore the issues of role man-
agement and provide algorithms for the tasks. In particular, we address issues of
deletion, addition and partition of roles in the role organization structure.

In section 6.2 is a review of the common role organizing structures, their similari-
ties and differences. In particular, we focus on the common properties found in these
structures. We present this information to provide the basic infornation for our rela-
tionship extraction. Examples of structures discussed include Ntices {San88, San89},
lattices [RWK88, RWBK91], hierarchies [TDH92], named protectic:n deniains, NPDs
[Bal90] and domain definition tables, DDTs [Tho91].

Section 6.3 discusses access rights administration in role-based systems with a
view to underlining the gigantic task of access rights specification and management.
This forms the justification for proposing a structure for role organization. It iz fzom
this discussion and that on role organizing structures that we extract the properties
that we need for role organization.

Section 6.4 discusses the basic role relationships and their utilization in role orga-
nization. We explore the concepts of partial, common and augmented privileges. We
enunciate the notions of and semantics of maximum and minimum privileges. This
leads to the derivation of the role graph structure presented in section 6.5. First,
we discuss the structure informally and then formalize it by specifying the operator
semantics that represent the basic role relationships and the properties of the role
graph structure. Other interesting explorations in this section include the distribu-
tion of privileges in the model and means of deducing the privileges associated with
the roles in the system.

Section 6.7 is on role administration in which we discuss role deletion, addition
and partition. Corresponding algorithms are also presented. A key observation is that
the model properties must be maintained whenever there is a change in structure.
Moreover, we require that such changes be carried out by transactional executions.

In section 6.8 we present a comparison of our model and the other organizing
structures. We explore how our model could simulate the other structures. The major

114

advantage with our approach is that we formally characterize the role organization
structure. In this section we demonstrate that it has the expressive power of other
role organization structures. Section 6.9 is the summary and contribution of this
chapter.

6.2 Role Organizing Structures

This section offers a brief discussion of role organizing structures with emphasis on
their properties. A more detailed account is in appendix A. We start with a discussion
of the similarities and differences between the different structures. As will be seen in
the presentation, structures that capture both the function and structure [DM89)] of a
role have specific properties that will be useful in modeling role organization. Among
these are two key properties: acyclicity of the organization structure and increasing
monotonicity of the privilege function for roles in a given path. These will form the
basis of the formulation of our own role graph structure in the next sections.

6.2.1 Organizing Structures: Similarities and Differences

Two key issues can be seen as completely specifying a role: its function and structure
([DM89]. Function specifies what an authorized user can do while executing in the
role. Structure defines the role’s relationships with other roles in a given system.
The two, however, are not orthogonal, given that a role’s function depends, to a large
extent, on its relationships with other roles. This is due to the fact that a role’s
functionality depends both on the privileges explicitly specified in the role and those
implicitly deduced from its relationships with other roles. Hence role functionality
directly depends on the role structure which characterizes role relationships. However,
role structure need not depend on role functionality.

Different formal structures with known mathematical properties have been sug-
gested for the realization of role-based protection. Structures such as lattices [RWBK?91,
RWKS88], domain definition tables (DDT) [Tho91], Ntrees [San88, San89), hierarchies
[TDH92] and privilege graphs (PGs) [Bal90] have been proposed for role organiza-
tion. That we have such a variety is because of the flexibility of role-based protection
to be adaptive to different policies and organizing structures. We shall only give an
overview of these structure in this section. Appendix A on related work provides a
more detailed account.

113

Ntrees [San88, San89] have properties similar to lattices and can be transformed
into ordinary hierarchies via appropriate procedures. Interested readers are referred
to [San88, San89, San91]. Indeed, even lattices can be transformed to equivalent
tree structures by tracing every path from the common upper bound to the con.mon
lower bound for all nodes in the lattice. DDTs, on the other hand, are different from
any of these structures, hence we shall briefly outline their use to enforce role-based
protection.

Among these role organizing structures, lattices [RWK88, RWBI 91}, Ntrees [Sans8,
San89], hierorchies [TDH92] and privilege graphs [Bal90] completely specify the roles
whose organization they model. In other words, they specify both the structure and
function of the roles they characterize. The role relationships specified by the struc-
tures capture the role structure. Role function, on the other hand, is also defined
within the node which represents the role via the privilege set defined in the node.
Consequently, we argue that these structures completely define the roles they model.

DDTs, unlike lattices, Ntrees, User Hierarchies and privilege graphs, only specify
the functional aspect of a role. Indeed, a DDT structure captures both the role
function as well as the authorization to the role. While it is not explicit, except
for the privilege graph, how this authorization information is specified in the other
structures, it is safe to assume that such information would be held in some form
of access control list (see definition 5.13) for a role. Indeed, this is the approach we
adopt for user authorization in our formulation later in this chapter. In fact, one
can extend the access control list concept such that it incorporates a role’s structural
information. In doing so, the access control list entries would be either user, group or
role identifiers. Where the entry is the identifier of some role »; in the access control
list of role r,, it means that role r; is authorized to the privileges of role r;. This can
be seen as specifying a junior-senior relationship in which r; and r; are the junior and
senior roles, respectively. Baldwin [Bal90] advocates a similar approach which can
rightly be called role-role authorization.

It is not clear how structural aspects of role definition can be sperified within
a DDT. Presumably such structural information can be expressed outside the DDT
structure. See further discussion on DDTs in appendix A.2.3 on related work.

In a nutshell, some structures capture both role and function in their organi-
zation of system privileges. Authorization information is also important and needs
to be catered for in role organization. Our work recognizes these distinctions and
necessities.

116

6.2.2 Role Organization Structures & Their Properties

A key observation in role-based organization is the centrality of privilege sharing
between roles in an effort to minimize the number of times privileges are specified in
roles. Enumerating role privileges separately would be haphazard and would present
a problem in tracking privilege distribution. This is due to the fact that roles can
share the functionality, yet one’s role’s cumulative functionality would be different
from the other role’s. Based on functionality, roles can be used to determine the
“authority” relationships among roles related via partial privilege sharing. Due to
the transitivity of partial privilege sharing, roles related via partial privilege sharing
realize a total order. Such a total order can be seen as a path (see definition 6.9)
along which there is a monotonically increasing privilege relationship among the roles.
Moreover, such a privilege distribution scheme implies user privilege overlap for users
authorized different roles in the same path.

In Rabitti’s lattice organization [RWK88, RWBK91] (figure 5.1), there is a junior-
superior role relationship between two roles when there is an arc (or path) connecting
them. The arc (or path) implies that the junior role’s privileges (hence its function-
ality) are accessible to the superior role. Therefore the junior role’s privileges form
a subset of those of the senior one. Implied in this organization is some chain of
command along any path with the senior role wielding greater authority than the
junior one. Moreover, there is some minimum set of privileges (hence functionality)
that is available to all roles in the lattice. The maximum privilege set signifies the
cumulative privileges available in the organization to which the roles pertain.

Observe that the lattice structure is acyclic and the privileges associated with
roles in a given path grow monotonically from the junior roles to the senior ones.

In Ting et al.’s [TDH92] user role definition hierarchy, URDH, there are similar
relationships between roles as those in the lattice structure. Roles have a hierarchical
ordering; any roles in a given path have a junior-senior relationship in which the junior
role’s privileges are available to the the senior role. Moreover the hierarchy itself is
acyclic. Since the privileges of the totally ordered roles increase along the path, we say
that the structure captures both the role privilege increasing monotonicity for a given
path. As well, it captures structure acyclicity for the overall organizing structure.

Privilege graphs (Bal90] (figure 6.2) also have properties similar to hierarchies and
lattices. The effective (cumulative) authorization of a user is the set of all privileges
associated with roles along the path from the user’s node to all the functionalities

117

Users/Groups Roles Resources

o
o e
o
-l B
o : Ll
@
: L o
o
User- - Role
Authorization :‘::hodsnlon Am::::“l’ﬂ o

Figure 6.1: Three Kinds of Authorizations

associated with the path. The roles along such a path also have a junior-senior
relationship in which the privileges (hence functionality) of the junior role are available
to the senior role. Thus we have a monotonic privilege relationship for roles in any
given path. Moreover the privilege graph itself is acyclic.

Ntrees {San88, San89] have properties similar to those of lattices. They too have
both monotonicity of privileges for a given path as well as acyclicity of the structure.

DDTs, on the other hand, contain no structural information. Hence they are of
no consequence to our formulation of role relationships. Role relationships in DDTs
must be defined cutside the DDT structure.

6.3 Roles & Access Rights Administration

Roles act as gateways to system information. The privilege set of a given role de-
termines what information is available via the role. One advantage of role-based
protection is that access to system information can be seen to be accomplished at
two levels: via explicit authorization to a role or via inclusion of some privilege in
a role. We term the former user-role or group-role authorization while the latter is
termed role-privilege authorization (see figure 6.1).

In user-role authorization, a user/group is authorized access to system privileges

118

available via the role. Such authorization must be specified in a role’s access control
list (see definition 5.12).

Let the set of roles in a given system be R. We have that Vr € R,3J r.racl =
{---,id;,---}. We term a role with an associated access control list secure (see defini-
tion 5.13). User-role authorization for a given user means that such a user (or user’s
identity) in the role’s access control list.

Role-privilege authorization involves role configuration in which a privilege is
added to the role’s privilege list. Role-role authorization [Bal90] forms the third
kind of authorization. If a role A is authorized to access a role B, it means that
all of B’s access rights are available via role A. In other words, B’s privileges are a
proper subset of the effective privileges of A. Role-role authorization can be seen as
capturing role relationships; it specifies the structural component of the role.

Let PV be the universal set of privileges in a system. A function ¥ : R — PY
gives the privileges of a given role, i.e. given someroler € R, ¥(r) = {pvy,:-+,pvn} =
r.rpset.

Example 6.1 Suppose we have two roles: clerk and supervisor in which the supervisor
role has a role authorisation to the clerk role. This means that the clerk’s access
rights are available to the supervisor. A user authorised to the supervisor role can
perform whatever a user authorised to the clerk role can do.! We can view the privilege
relationships between the two roles as ¥(clerk) C ¥(supervisor). o

Role-role authorizations can be complex. To capture the role-relationships com-
pletely and be able to carry out analysis of implications of privilege assignment and
distribution in a system can be even more complex without some formal organizational
structure. Complexity of analysis of system priviiege distribution is one short-coming
of role-based protection [TDH92, NO93b).

Baldwin's approach to access rights administration uses privilege graphs (PG)
which captur= functionality, structure and authorizations. A PG (figure 6.2) is an
acyclic graph with three types of nodes: functionality, role and user/group. A path
from a given user node to a functionality node means that the user is authorized
to execute the functionality. The access rights available to such a use: are all the
privileges specified in roles in any such path.

Ting et al.’s [TDH92] approach utilizes hierarchical ordering of roles in which for
any given roles in a path, those lower in the hierarchy have lower functionality than

1Separation of duty {CW87)], on the other hand, can be specified to ensure that the supervisor
does not perform both roles.

119

those high in the hierarchy. In general, the path captures a subsetting relationship
between the roles such that for a given edge directed (v;, v;), ¥(v;} C ¥(v,). Both of
these structures have what we term the acyclicity property.

Definition 8.1 Acyclicity Property: A structure of role organization is said to have
the acyclicity property if a graph of their relationships, defined with the roles as
nodes, is acyclic and a directed edge (r;,r,) implies that ¥(r;) C ¥(r,). n

Without this restriction, the union of all privileges in a given loop would be
available to every role in the loop.

Constraint 8.1 Role Organization Structure Acyclicity: A role organization must

preserve the acyclicity property in order to offer differentiated access to system infor-
mation via role-based protection techniques. o

The subsetting privilege relationship among roles in a given path leads to the
monotonically increasing privilege relationship along a given path. Formally:

Definition 6.2 Function Monotonicity: A function f over a totally ordered set r, <

z; € .-+ < 2, is said to be monotonically increasing over the total order if and only
if f(21) C f(22) © --- € f(zn). a

Constraint 6.2 Privilege Monotonicity Constraint: For any given path in a role or-

ganizing structure, there must be a monotonically increasing privilege relationship
among roles along the path. ()

In the next section we present a role graph model which captures all these prop-
erties. It specifies minimum functionality requirements and avails it to all roles in
the system. Further, it provides a means of analysing shared functionality, common
superset functionality and subsetting functionality in the resulting role organizing
structure. The model addresses neither user-role nor role-privilege authorizations.

6.4 Modeling Role Organization

A role is a co'lection of privileges which facilitates the execution of some functlionality
for an authorizew user. Roles in a system can have different kinds of relationships
among themselves based on their associated functionalities and any organizational
constraints. Thus it is important to develop some formal organizational framework
which expresses desirable organizational properties and, in the process, captures the
relationships among roles. Such a framework would facilitate the ease of analysis of

120

Users/Groups Roles Functionality
> Accounts Accounts Clerk Compile
T | Supervisor Clerk Accounts

> Orders Make
Clark

Orders
2 Receipts Receipts Enter
‘{

Raceipts

ARVAS W

Figure 6.2: Privilege Graph

privilege distribution and sharing. It would help in the assessment of implications
of privilege assignment, sharing and distribution in a system. Such implications are
important, especially with respect to system security.

The motivation for this approach is based on the observation that a big draw-
back of rule-based protection is that the analysis of privilege assignment is complex
[TDH92, NO93b). A formal framework for role organization and privilege assignment
analysis would ease this task. Moreover, it can lead to formal tool development for
such analyses. Role administration would be enhanced further if there are developed
algorithms for role management (such as role addition and deletion) and role privi-
lege assignment (role-privilege addition and deletion). With a formal role organization
model, we can formulate algorithms which guarantee properties of the model.

In this section we discuss and model what we regard as basic role relationships
which must form the basis of a role organization framework. We start with rela-
tionships between two roles, introduce the concepts of the minimum and maximum
privilege sets in a role-based system and their relationship with other roles. Finally,
we combine these concepts to yield a framework for role organization.

121
6.4.1 Role Relationships: The Basics

We shall use the following notation, which has been introduced before, throughout
the rest of this thesis. We denote the finite universe of roles in a system by R. Hence
with n distinct roles in a system we have R = {r,---,r,}. Let r € R be some role
in the system. Let PV be the finite universe of privileges in the system. R and PV
are related via the function ¥ : R — PV. Given a role r € R, ¥ enumerates its
associated privileges, i.e. ¥(r) = {pw,---,pvm} = r.rpset.

6.4.1.1 Two-Role Relationships

This section address relationships between two roles. We identify three kinds: junior-
senior, common “junior” and common “senior”. Junior-senior relationship, referred
to as is-junior relationship in this thesis and expressed as junior—senior, expresses
the fact that a senior role’s privileges include those of the junior one. The common
junior, referred to as common-junior, relationship, denoted by “®", expresses the
relationship between two roles whose result is another role, junior to both of them.
The common senior relationship, referred to as common-senior, denoted by “@”, on
the other hand, results in a role which is senior to both given roles. Figure 6.3 shows
these possibilities with the Venn diagrams showing the associated privileges.

In all these cases, the underlying observation is that there is privilege sharing and
hence functionality sharing between two roles. To analyze the manner of interaction
between such roles would involve finding out their nature of interaction via role shar-
ing. The three relationships form the following three kinds of privilege sharing that
can be found in organizations.

1. Partial Privileges

In partial privilege sharing, we have privileges defined in one role being a com-
plete subset of privileges in another role. This implies shared functionality via
the shared privileges. For instance, the clerk and supervisor roles in ex-
ample 6.1 share the functionality associated with the clerk role, i.e. a user
authorized to the supervisor role can execute the functionalities associated
with both roles (figure 6.3a).

We model such direct functionality and privilege sharing using the is-junior
relationship denoted by “—" In our example we have clerk—supervisor.
In general, given two roles r;,r; € R with r;, — r,, we have the following
interpretation:

122

| VAN
TS
S

(a) (B) (e)

Figure 6.3: Three Kinds of Two-Role Relationships

r; and r; are “junior” (subservient) and “senior” (superior) roles,
respectively. Moreover, r;’s privileges and functionality are available
to r;. Hence ¥(r;) C ¥(r;). We say r;’s privileges are lndlrectly
available to r;.

Formally, the is-junior relationship is defined as:

Definition 6.3 is-junior relationship (—): An is-junior relationship exists be-
tween two roles r; and r;, denoted r; — r;, if and only if ¥(r;) C ¥(r;). (]

The is-junior relationship can be seen as a role-role authorization in which the
superior role is authorized to the privileges of the junior role. Suppose we have
two roles A and B with privileges ¥(A)={1,2,3} and ¥(B)={1,2,34,5,6}. We
have ¥(A)C ¥(B). We say A—B. There exists an is-junior relationship between
A and B.

If we consider relative authority as a measure of the privileges associated with a
role, then the “—" relationship can be seen as specifying which of the two roles
has a higher authority than the other. In our case the junior role exercises less
authority than the superior one. Moreover, the “—" relationship can be seen
as specifying the flow of authority. Further, for this authority .o be meaningful,
this relationship must not violate the acyclicity property (see constraint 6.1).

123

2. Common Privileges

Another form of reiationship between two roles is where there is privilege sharing
in which roles have a non-empty intersection of their privilege sets but with
neither of the sets being a subset nor a superset of the other. Such a relationship
can be used to indicate an overlap of responsibility (figure 6.3b).

If there exists a role defined whose privilege set is some or all of this intersection,
then we say such a role is a common-junior to the other two roles. We denote
the common-junior relationship with “©”. Suppose we have roles A, B and C
related as A © B = C. Suppose the privilege sets associated with A and B are
¥(A)=({1,2,3,4} and ¥(B) ={3,4.5.6,7}, respectively. ¥(C) must be a common
subset of both ¥(A) and ¥(B), i.e. ¥(C) C (¥(A) N ¥(B)) = {3,4).

In general, given three roles r;, r,,r, € R with r;Or; = ry, we have the following
interpretation:

bot' r; and r; are senior (superior) roles to r,. Moreover, r,’s priv-
ilege. and functionality are indirectly available to both r; and r,.
Hence 'l'(r,,) c ‘]’(T.') and \F(r;.) c \l'(r,-).

Definition 8.4 common-junior relationship (©): Given roles r;,r; and ry, ry
is a common-junior of r; and r; denoted r, = r; G r; if and only if W(r,) C
(¥(r.) N ¥(r;)). o

In general if we have r, -+ r; and r;, — r; then we have r, O r; = 7.

3. Privilege Augmentation

Another important consideration is privilege augmentation. In anelysing privi-
lege distribution it may be necessary to find a role that embodies the function-
ality and privileges of two given roles. Such a role would contain the privilege
sets of the two given roles. Clearly, such a role’s privileges will be a superset of
both given roles (figure 6.3c).

The relationship in such a case is termed common-senior and denoted by
“@”. Suppose we have roles X, Y and Z related as X @ Y = Z. Suppose
we also have ¥(X)=(1,2,34} and ¥(Y)={6,7,8,9}. For Z’s privileges to be a
common superset of those of X and Y, we must have (W (X)U ¥(Y)) C ¥(Z2),
ie {1,2,34,6,78,9} C ¥(2).

124

Given three roles r;,r;,r, € R with r; & r, = r\, we have the following inter-
pretation:

both r; and r; are junior (subservient) roles to r.. Moreover, both
ri’s and r;’s privileges and functionalities are indirectly available to
rx. Hence ¥ r;) C ¥(r,) and ¥(r;) C ¥(r,).

Definition 6.5 common-senior relationship (®): Givenrolesr;,r; and ri, ry is
a common-senior of r and r; denoted ry = r,®r; if and only if (¥(r;)L¥(r;)) C
W(rs). o

In general, if we haver; —w roand r; —» ry then r, @ r; =7,

6.4.1.2 Beyond Two-Role Relationships

The relationships introduced in the previous section can be extended to cater for
more than two roles. This section outlines how the extensions can be realized.

1. Partial Privilege Sharing

From the previous section observe that we can have is-junior relationships of
the form r; — r; and r; — r;. From the definition of the is-junior relationship.
i (ri = r;) A(rj — ri) then r; and r, mus: be related thus: r; — r; since
(¥(r) © ¥(r;)) A (¥(r;) C ¥(r)) = (¥(r;) © ¥(rs)). This then captures
the transitive property of the is-junior relationship. In general, if we have a
role relationship of the form: r; — rjyy — .- = rip,,n > 0 it follows that
¥(r;) € ¥(ris1) © -+ € ¥(ri4n). This captures the monotonic property of the
privilege function for roles related via the is-junior relationship.

Property 6.1 The privilege function ¥ increases monotonically with respect

to the is-junior (—) relationship. (]

We denote r; = riyy = -+ = riynbyr; »* forn>0and r; =+ forn > 0.
This leads to the formal definition of a path:

Definition 6.6 Role Path: A role path, p, between two roles r; and r, is of the
form r; —* r,. A trivial path exists between a role and itself. o

Other properties of the is-junior relationship include reflerivity and antisym-
metry. Given roles r; and r,, we have r; — r; (reflexivity) since ¥(r;) C ¥(r;).

125

As well. if ((r;, = r;) A(r, = r))) = r;, = r;. This follows from the observa-
tion that (r; — r;) = ¥(r;) C ¥(r;) and (r; — r;) = W¥(r;) C ¥(r;). With
W¥(r;) C ¥(r;) and ¥(r;) C ¥(r;) and by the acyclicity property (property 6.1),
it follows that W(r;) = ¥(r;) which implies r; = ;. This is the basis for the
following property:

Property 8.2 Role Privilege Set Uniqueness: In a given’s system, a role’s priv-
ilege set must be unique. a]

2. Common Privileges

From the common-junior (®) relationship in the previous section, observe that
the common subset of two roles need not be an immediate junior role of both
roles in question. This leads to the following lemma which expresses the re-
lationship between the is-junior and the common-junior operators, — and ©®,

respectively:

Lemma 6.1 Given that r, € (r; ©;), thenry —* r; and ry —* ;. (]
The common-junior operator (©) is commutative, associative and reflexive, i.e.
rROr=r0r, ri0(ron)=(ror)Crnadnrnon=r

3. Privilege Augmentation

As with the common-junior relationship, the common-senior relationship need
not involve immediate superiors of the role under consideration. This leads to
the following lemma which captures the relationship between the two operators

— and §:

Lemma 6.2 Given that ry € (r; ®r;), thenr; =* r, and r; % r,.)

The common-senior operator (®) is commutative, associative and reflexive, i.e.
@ =@, r®(r;®r)=(r;i®r;))®rrandri®dr, =1,

Notice that © and &, for any two or more roles, need not result in a unique role.
In the general case, the result is a set of roles corresponding to common juniors and
common seniors, respectively. This is one distinguishing feature between our model
and a lattice organization: the greatest lower and least upper bounds are not unique.

126

6.4.2 The Concepts of Minimum Privilege Sets

It is possible that an organization provides a minimum set of privileges available
to everv user. Such a basic privilege set, for instance, can be things like the abil-
ity/permission to log onto a computer system, the privilege to get into certain or-
ganization premises, etc. In general, this minimum privilege set represents the very
minimum set of privileges that any valid user/employee can be authorized to.

Since users are authorized to specific roles, it is pouasible to organize such a basic
set of privileges into a role such that they are available via explicit authorization or
via role relationships with other roles. We denote the role with the basic privilege
set MinRole. In general, depending on a particular organization, MinRole can be
empty.

Min. mandatory privilege set if defined
] Otherwise

A role r € R with a direct relationship with MinRole will be expressed as:
MinRole — r and, in general, Vr € R,MinRole —* r holds.

¥(MinRole) = {

Property 6.8 Minimum Privilege Property: MinRole is always defined. (=]

6.4.3 The Concept of Maximum Privilege Set

As with MinRole, we envisage MaxRole, some system “chief executive” role, which
embodies the collection of all privileges in a given system. Theoretically, a user
authorized to MaxRole can execute any functionality using the associated privi-
leges in whatever role they are specified. Unlike ¥(MinRole) which can be empty,
¥(MaxRole) can never be empty if the system is intended to accomplish anything at
all.
¥(MaxRole) = | J ¥(r)
réR

Property 6.4 Maximum Privilege Property: MaxRole is always defined. o

6.4.4 Combining the Concepts

The is-junior, common-junior and common-senior relationships presented in the fore-
going sections, in our view, capture all manner of relationships that can be used to
associate two or more roles when there is need for analysis of their interaction. The
MinRole and MaxRole roles express the concepts of minimum mandatory and

127

MaxRole Role MaxRole xRole
8 A B
A B D
A
MinRole MinRole
MinRole
MinRole
(a) (L) {c) a)
MaxRole MaxRole MaxRole
E
B D B oD A E
A
MinRole MinRole MinRole
(@) () (g)

Figure 6.4: Different Forms of Role Organization

maximum privilege sets, respectively, in a system. Combining these together yields
representations such as those in figure 6.4.

For the purposes of security and the need for dispersion of powers, MaxRole may
not be authorized to any one individual in an organization. In an ideal situation,
MaxRole conceptually corresponds with the role of a Chief Executive in an organiza-
tion. It is unlikely that an administrative or a security policy would advocate such
singular exercise of powers. Moreover, there is a very realistic risk that allowing ex-
ercise of privileges of MaxRole can compromise the system. However, such problems
need not arise if we make the exception that no single user can e.cercise the privileges
of MaxRole. This will make MaxRole a non-executable role. Other policies may
choose a collective execution of the role, e.g. by a number of votes of authorized
users. Whatever the case, authorization to MaxRole with be a matter of a specific
security policy. MaxRole, in our modeling, is useful for purposes of completeness.
It ensures that every two roles in the system have a common-senior just as MinRole
ensures that every two roles have a common-junior.

These basic relationships, on further examination, describe a role organization in
which the —, ® and @ can determine partial role ordering, greatest lower bound and
least upper bound, respectively. Although our framework appears like a lattice on
first sight, it is not one. However, it has properties that closely resemble those of

128

a lattice. Consequently, we shall refer to the structure as a role graph, a kind of
psexdo lattice. We develop these concepts further in the next section which leads to
a model for role organization. Along with the model we formulate algorithms for role
management including algorithms for role addition, role deletion and role partition.

6.5 A Role Graph Model for Role Organization

In this section we formally propose a model for defining the structure and function of
roles in a system. The fact that it very closely resembles a lattice structure, implies
that mathematical properties of lattices can be exploited in our formulation. We also
notice that our pseudo lattice can be tailored to meet varying modes of the structure
of organizations found in the real world. For instance, it is known that any employee
in an organization has some basic set of rights, obligations and is accountable to
some other (probably senior) employee. This concept of basic rights, obligations and
accountability is captured in our role model as MinRole. Accountability is captured
given that each role, except MaxRole has at least one superior role to it.

In an organization, it is common to have shared functionalities between individuals
performing different tasks. Our role lattice model is able to capture this fact via the
greatest upper bound role. As well, where there is a common superior role, we have
the least upper bound role. As well, we easily capture cases where roles have no
shared functions: role independence.

An interesting outcome of our formulation, which is also a mathematical fact of
the pseudo lattice structure, is that one can define a role that captures the cumulative
authority in the organization. In the real world such authority would be bestowed in
either the chief executive or the board of directors.

The fact that we can express all these attributes of organization within our pseudo
lattice model, makes the structure attractive. Our task here is to extract those
properties of real life organizations that can be abstracted and modeled in computer
systems for purposes of system protection. The properties in question, such as the
way the authority flows, the functionality of various roles in the organization and the
relationships of the roles with other roles can readily be expressed within the role
graph model.

129
6.5.1 The Model: Informally

We propose a role organization modeling structure that facilitates role organization
and administration of roles, which we discuss here informally and present formally
in section 6.5.2. It is clear that the organization modeling approach from section 6.4
points to an acyclic graph organization. Hence our modeling will use graph theory
and the properties enunciated earlier to facilitate role organization. We believe (as we
shall demonstrate towards the end of this chapter) that our role graph model is at least
as expressive as (if not more expressive than) other organizational structures such as
hierarchies, trees, etc. We believe that we can simulate properties of these other
structures using our model. Moreover, it presents no more difficult role management
tasks compared to these structures. Since our model is derived from basic principles of
role organization, we believe that it can approximate corporate structures in the real
word. With appropriate constraints on relationships between roles, one can simulate
these relationships to reflect corporate organization.

From definition 5.3, a role groups privileges that can be executed by users autho-
rized to that role. To minimize the task of enumerating the privileges of each role,
we organize them using the concepts introduced in section 6.4 which incorporates
acyclicity of the role graph structure and the monotonicity of role privileges for any
path. Such a structure, along with rules for role ordering and determining the priv-
ileges associated with a role, facilitate a simple, yet elegant, organization of roles to
reflect the authority? attached to each role.

Role ordering and role inter-relationships, in turn, offer a means of distributing
privileges among the roles. The idea is that we explicitly assign a privilege at the
lowest point in the structure where it is desirable. Since our formulation specifies
that high order roles can execute the privileges of the lower order ones with a con-
necting path (see definition 6.6), we can make the least number of explicit privilege
assignments that facilitate the desired distribution.

From the ordering, we define authority paths that are linear (total) orders of roles
according to non-decreasing authority, connected by the is-junior relationship (—).
In essence, tlie ordering asserts the fact that higher authority roles have access to
more privileges than lower ordered ones in any given path. This is due to the fact
that higher authority roles can execute the functionality of lower authority ones with
a connecting path.

20ur use of this term will become clear as we advance.

130

Figure 6.5: An Example of Role Organization

The effective privileges associated with a role result from those privileges directly
associated with the role and those indirectly associated with it. The former are those
privileges directly specified in the role while the latter are those privileges specified
in lower order roles with a connecting path to the role.

6.5.2 The Role Organization Model: Formally

This section presents the formal organization of roles into a role organization struc-
ture, as shown in figure 6.5. We have 2 universal set of roles in a system R =
{r1,7r2,- -+, s} that represents all roles available. The role graph structure, is denoted
RG = (R,—)? is composed of the set of all roles on which the is-junior relationship
imposes an ordering and in which the properties of the role relationships specified
earlier hold. Hence operators @ and © have meaning as defined previously. They can
be used to determine the relationships between any given roles in the system.
Observe that:

1. (R, —) is a partially ordered set, i.e. Vr;,r;, r, €R the relation “—” is reflexive,
antisymmetric and transitive. Vr;,r;,rs €R, r; — r; (reflexivity), r; — r;Ar; —

3The is-junsor relationship (—) can be seen as specifying the edges between the roles in the
sys ‘m.

131

ri = r; = r; (antisymmetry) and r, — r, Ar, — r, = r; = r, (transitivity).
Hence, (R, —) is indeed a partially ordered set.*

The is-junior relationship (—) can be seen as a flow relation with the arrow
indicating the direction of increasing “authority”. Given two roles ri,r, with
r; = r;, we have r; < r; in terms of authority. This authority is defined in
terms of privileges. For a given role r, its superior list is the set of all those
roles r, € R such that r — r,. {r,} denotes this set and the relationship of r
with this set can be expressed as r — {r,}. A junior list is similarly defined.

Letri =*rj=ri—ry = o ry,—r,n>0andr, =»* P STy~ —
Tign — 75,8 20. We say a path (see definition 6.6) exists between two roles r;
and r; if r; —»° r,. Of concern to us are paths with a length greater than zero,
i.e. r; =% r;,i # j. In general, a path is a linear order of roles of the role graph
according to their authority as derived from the — operator.

2. The operator “©" gives a greatest lower bounds set (glbs) of any two roles,
i.e. glbs(ri,r;) = (r; ® r;). It gives roles common to the two roles involved
in the operation, i.e. for any two roles r; and r;, if {ri} = (ri@r,) = Vr €
{re},A(r = --- > 1)) A(r — --- = r;)). Or alternatively, Vr € {r,} we have
(r =*r)A(r =*r;)and both ((r = -+ = r;) A(r = --- - r;)) are the
shortest paths of this form. Formally:

Definition 6.7 Greatest Lower Bound Set (glbs): Where r,®r; # {MinRole},
then a glbs exists. {r,} is a glbs if and only if ¥r € {ri},3((r =% ri) A(r —*
r)A(Rr, (r =t =t r)A(r =% 1y =% 1)) with both (r =t r,)A(r =% 1))

being the shortest paths of this form . Generally, the glbs of two or more roles

is a set; it is not necessarily a unique role. o

3. The operator @ yields the least upper bound set (lubs) of two or more roles.
This is the set of the next higher roles common to two or more roles in the model.
For any two roles r;, and rj, we have r; @& r; = {rs} = Vr € {rs},3(---r, —*
r)A(---r; =% r) where both (r; =*) A(---r; =% r) are the shortest paths
of this form.

Definition 6.8 Least Upper Bound Set (lubs): Where r; & r; # {MaxHole},
then a lubs exists. {ry} is a lubs of r; and r; if and only if ¥Vr € {rs}, 3(r; —*

‘Edges of the form r; — r; are not shown in the graphs. They are implied.

132

Figure 6.6: Another Example of Role Organization

r)A(r; =¥ r)A(Br,(ri =% rp =* r)A({r; =% r, =% r)) with both
(ri =»* r)A(---r; =% r) being the shortest paths of this kind. The lubs, in its
most general form, is a set of roles and hence not necessarily a unique role. O

4. There exists MinRole representing the minimum privilege set associated with
every role in the system. In general, this least lower bound has a relationship
of the form MinRole —* r for any role r € R. Where there is no common set
of privileges for all roles in a system, ¥(MinRole) = @. It serves to make our
model complete such that for any two roles, we can always determine a common

junior.

5. There exists MaxRole representing the cumulative privilege set associated with
the system. In general, this greatest upper bound has a relationship of the form
r —+ MaxRole with any role r € R. It follows that MinRole —+ MaxRole.

Considering paths in the role graph, it is noticeable that paths involving neither
MaxRole nor MinRole may be of more interest to us. Consequently, we shall use the
following role graph path definition in the subsequent sections.

Definition 6.9 Role Graph Path: A role graph path, p, is of the form r; — r;4; —
co = Pipn B 2 0 = r; =° such that r; # MinRole A r;,, # MaxRole associating two

133

or more roles in the role graph, RG, connected by the flow relation “—”. Respectiveiy.
risn and r; are the highest and lowest ranked roles in this path, p. (w]

6.5.3 The Role Graph & Privilege Distribution

One can define a function PATH (PATH : RG — P) which enumerates, among
other paths, all the possible paths (P) of a given role organization structure, RG. For
such a given RG the set P is finite. The function PATH enumerates all the linear
extensions (topological orderings) {San88, San89] of a given structure RG.?

In our model, higher authority roles have more privileges than lower authority
ones. In general, the three operators —,® and @ define a subsetting, common subset

and common superset privilege relationship, respectively, between roles. We enumer-
ate the cases as follows:

1. Given two roles r;,r, with r; — r, we have ¥(r;) C ¥(r;) (subsetting). Prop-
erty 6.1 asserts that the privilege function increases monotonically with the
is-junior (—) relationship along any path. Since this function derives from the
is-junior relationship, it possesses properties similar to those of is-junior. Thus,
besides monotonicity, it is also transitive and reflezive, i.e. W(r,) C ¥(r,) C
W(ry) = ¥(r;)C ¥(ry) and ¥(r;)C ¥(r;), respectively.

The corollary of this is that given two roles r;,r, with ¥(r;) C ¥(r,), then we
must have some path between them, i.e. r;, -° r,.

2. Given two roles ;,r; with r; @ r; = {ri;} we have (¥(r,) U ¥(r;) C ¥(r),Vr €
{ri}. We define ¥(r; ® 7;) = U,¢(r,gr,) ¥(r) for any two roles r; and r,.
The function ¥ is commutative, associative and reflezive for roles related via
the common-senior (®) operator. Hence it follows that ¥(r, & r,) = ¥(r; B r,)
(commutativity) and W(r; & (r; D r)) = ¥((ri ® r;) @ 1) (associativity). We
also have r; & r; = r; (reflexivity) hence ¥(r;) U ¥(r;) = W¥(r;) which is the
trivial case of the privileges set of a role being a superset of itself.

3. Given two roles r;,r; withr,Gr, = {r;} wehave Vr € {r,}, ¥(r) C ¥(ri)"¥(r,).
We define ¥(r, ® ;) = N,g(r,q-,) ¥(r) for any two roles r, and r,.

The function ¥ is commutative, associative and reflezive for roles related via the
common-junior (©) operator. Therefote, ¥(r;or,) = ¥(r;©r;) (commutativity)

5Sandhu’s [San88] I'(P) that enumerates all linear extensions of a partial order P is equivalent
to PATH

134

MaxRole
E (= F (e 7.8 G
A (1) u\ /cm 4 D
\) /
MinRole

Figure 6.7: Role Graph with Privileges

and ¥(r; © (r; ® 1)) = ¥Y((r; © r;) © r) (tramsitivity). As well, we have,
r, ® ri = r; (reflexivity) we have ¥(r;)N¥(r;) = ¥(r;). This is the trivial case
of the privileges set of a role being a subset of itself.

4. Observe the significance of privileges associated with MaxRole and MinRole.
We have |J,er ¥(r) C ¥(MaxRole) while N,ex ¥(r) = ¥(MinRole). The former
signifies the cumulative privileges that can be exercised in the system while the
latter denotes the least privileges at the disposal of any role in the role graph.
In terms of real life organizations, MaxRole denotes the cumulative authority
of a system while MinRole denotes the very least authority in the system to

which everyone is entitled.

Definition 6.10 Path Role Set: The role set of a given path is the set of all roles
that compose the path. We say that a given role participates in a path f it belongs
to the path’s role set. It is given by I'(p) where I' is defined asT : P— R. P and R
are the universal path and role sets in the system. (]

Definition 6.11 Path Independence: Let T'(p;) and I'(p,) be the role sets of paths
pi and p,. respectively. We say p; .~ independent of p; if and only if and only if
Vri € I'(pi), Vr; € T(p;),ri®r, = {MaxRole} and r;Or; = {MinRole}. Alternatively,
pi is independent of p; if and onlv iff ¥(I'(p;) N T'(p;)) = ¥(MinRole). 0

1.

135

tivilege Distribution Table
For Figure 6.7

[Role Name | Direct (D) [Indirect (I) | Effective (DUT)

A {1} {} {1}

B {2} {} {2}

C {3} {} {3)

D {4} {} {1}

E {5) {1,2) {1,2,5)

F {6} {3} {38}

G {7.8) {4) {4.7.8)

H {910} {1,2,5) {1,25,9.10)

1 {11,12) [{1,23456,7,8} | {1,23.4,56.7.8,11,12)

Table 6.1: Table of Privileges

In other words, the two role sets are not related other than via MaxRole and MinRole.

Such independence, as we shall see later, guarantees that independent paths do not
share privileges.

Concerning privilege distribution, the privileges directly assigned to a role are
termed direct while those implicitly acquired from roles in its junior role set are
termed indirect. For a given role r, Direct(¥(r)) denotes its direct privileges. The
effective privilege set of a role r, which we have been denoting by ¥(r), is the union
of its direct and indirect component privileges. This relationship between a node’s
junior role set and its privilege set is important and eases the task of system privilege
administration. It determines the privileges available to users via the role associated
with a node for users authorized for the role.

Example 6.2 Consider figure 8.7 where we have distinct privileges numbered 1, -, 12
with privileges 1,---,6 directly assigned to roles 4,---,F and {7,8},(9,10},{11,12} as-
signed roles G, H,] respectively. We have a role graph specificaticn as follows: A —
EB—EC—F.D—G,E—={H1}{F,G)—=I,MaxRole= H& I, and MinRole = 4% B
C % D with ¥(MinRole) = §.

From this we can rompute the privileges of various roles and obtain the privileges
distribution as in table 6.1. Moreover, we have the following relationships relating to
the =, 9, —~ operators:

The common-junior operator, <, defines a common subset of privileges for any two roles.
Consider H © [= E and note that ¥(H & 1) = ¥(E) = {1,2,5} = W(H)n¥(I).

The common-senior operator, %, defines the union of privileges of two roles and as

136

such is a common superset for any two roles. Consider F® G = | and note that
WFDG)=WF)U¥(G)={3,4,6,7,8} C ¥(I) = {3,4,6,7,8,11,12}.

. The 1s-jenior operator, —, defines a proper subset relationship between two roles, e.g.
E—H. Note that ¥(E) = {1,2,5) C {1,2,5,9,10}). This is true for all roles related via the
1s-yunior relationship.

. Paths A— E — H and C — F are independent paths since their roles sets {A,E,H) and
{C,F} are mutually exclusive and the two paths are related via only via MaxRole and
MinRole.

6.5.4 Role Organization Model & Operator Semantics

The structure RG = (R, —) is role graph which characterized by it its four compo-
nents (R, —,®,0) as well as MaxRole and MinRole. Collectively, they can be
viewed as defining an authority structure for the roles. The relation r; — r; means
that r; is subservient to role r;, i.e. authority increases along the “—" relation. For
any role path of the form r; — -+ — r,,n > 1 we have an authority relation of
the form r; < --- < r, with the roles totally ordered. In general, given any two roles
r.r2 ER, ry < r3, r; < ry or they are incomparable. Hence their partial ordering.
Where there is a path (call it an authority flow path) the roles in the oath form a
total order. Such a path is essentially a linear ordering, also termed a linear extension
in [San88, San89)], of a subset of a set of roles in the organization structure RG.

6.5.5 The Model Properties

Besides acyclicity and monotonicity, other interesting properties of this model include
the fact that any node in the model has the same properties as the overall structure.
Moreover, any role can be decomposed into any number of sub-roles while at the same
time retaining the mandatory role organization property (see property 6.5).

Property 6.5 Mandatory Role Graph Property: Any node in the role graph model
is itself a role graph. o

The structure can be “expanded” at any point by adding new roles as the need
arises while retaining the mandatory role structure property, a strategy that offers a
flexible manner of introducing new privilege into the model. Such privilege can be
incorporated in an existing structure by introducing new roles or by increasing the
privilege of existing ones.

137

The set of privileges of any role is ti:e union of all privileges of its associated junior
roles. This leads to another key property:

Property 8.8 Role Graph Privilege Set Invariant Property: The privilege set of a

given role graph (or a subgraph of a role graph} remains invariant unless altered
through some system security function. 0

6.5.6 Other Role Graph Characterizations

Other important characterizations of the role organization model can be formulated.
Considering the role organization model proposed in section 6.5.2, we term the extent
of linkage between roles a coupling which is related to the extent to which privileges
are shared among roles. We can have a variety of cases, e.g. where each role is
independent of all others or where some roles are coupled and hence dependent on
each other. To characterize these facts we introduce the concepts of the role coupling
set and role coupling factor between sets of roles. We define these two in terms of
shared roles among the role set, i.e. roles related via the © operator. Before that we
formally define coupling between two roles:

Definition 6.12 Coupling: Coupling exists between two roles r; and r, if 3{r,} such

that r;Or; = {ri}A{rs} # {MinRole}. We call {r,} the coupling betweenr; and r,.

The coupling between two or more roles the greatest lower bound set of the roles. O
Independent roles have no coupling between them, i.e.

Definition 86.13 Role Independence: Two roles r; and r; are independent if and

only if r; ®r, = {MinRole}, i.e. their only coupling is the role common to all roles in
the structure. In other words their greatest lower bound is the MinRole. o

As we shall see later in the next chapter, this independence is important is ensuring
there is no conflict of interest between different roles when assigning roles to users.

Notice that there is a very close relationship between role coupling and role in-
dependence. This arises from that fact that each role can be decomposed into any
number of roles provided the privilege set invariant property is retained.

We define the coupling set between two roles as the role set associated with the
coupling role of the two roles. Formally:

Definition 6.14 Role Coupling Set: The coupling set of two rolesr; and r; is CS(ri,r;) =
{r«} such that ¥r € {ri},(¥(r) C ¥(r:)) A(¥(r) C ¥(r;)) A(r # MinRole) The cou-

138

MaxRole MaxRole
MinRole
nRole
*Fiat” Role Graph MaxRole Medium Coupled Role Graph
(a) (b)

Tightly Coupled Role Graph
(c)

Figure 6.8: Different Levels Coupling Role Graphs

pling set of a single role r; is the set {r.} such that Vr € {ri},((¥(r) C W(r:;))A(r #
MinRole), i.e. all roles with 8 common-junior relationship with the role. (m}
Role Independence is also closely related with path independence, where

Definition 6.15 Independent Paths: Two paths are independent if the coupling set
between their role sets is empty, i.e. there are no shared roles between the roles that

compose the two paths. In other words, the two paths are independent when every
role from one path has empty coupling set with every roles from the other path and
vice versa (see also definition 6.11). m]

Definition 8.18 The Coupling Factor:

The coupling factor CF of two given roles r; and r; is the cardinality of their coupling

set, i.e. CF(r;,r;) = |CS(ri,1,)| or simply CF = |CS|. CF for a single role follows

from the definition of CS for a single role. o
Notice that 0 < CF < CF(MazRole), i.e. the size of the coupling set is zero

where there (s no coupling at all and is equal to the number of roles in the system

(except MinRole) where there is maximum role coupling. Where the CF involves two
or more roles, in the former, the roles are said tc be independent while in the latter
the roles completely interwoven and hence they have maximum dependency.

in talking about coupling, it makes sense to talk about coupling of roles other
than MaxRole and MinRole. Hence, without considering these two, we say a role

139

organization structure can be loosely coupled, tightly coupled or not coupled at all. In
the former, two or more roles in the systems would have a low coupling factor while
similar roles would have a higher coupling factor, in the latter. A structure without
coupling has a coupling factor equal to zero for many of its roles, a loosely coupled
one has a coupling factor close to zero while a tightly coupled structure has a coupling
factor that tends to the maximum value of the coupling factor. In a structure without
coupling all paths are independent. Where there is coupling we have no guarantee
that there will be independent paths.

The desirable extent of role coupling would be a factor of the enforced security
policy and the attendant ease of privilege administration it offers. This extent of
coupling would, inevitably, be related to the flexibility of role privilege administration
and consistency and completeness analysis.

We identify two extreme forms: the “flat single-level” structure® and the multilevel
tightly inter-related forms (see figures 6.8b and 6.8c, respectively). In the former,
each role is independent of all others except for the special MinRoles and MaxRoles.
Determining the privileges associated with a role is a straight forward task in which we
get the privileges ezplicitly associated with the role in question. A simple enumeration
is sufficient for such a task. In the latter case, we have each role coupled (via the
— operator in the model of section 6.5.2) with two or more other roles. Thus we
have privilege sharing determined by the extent of coupling within the structure.
Determining the privilege associated with a particular role requires determining the
junior role set of the role and taking the union of all the privileges in the junior
role set. This case clearly involves some implicit step in which indirectly assigned
privileges are determined.

Midway between these “extremes” (see figure 6.8b for example) lie a range of cases
with varying levels of coupling hence varying levels of complexity in determining the
privilege associated with some role. Indeed, we can have differing levels of “horizontal”

and “vertical” spread of the role organization structure.

SRecall that each role is a role organization structure and with vertical partition we can turn
this structure into independent paths with more than one role each. The term “flat single-level
structure” is used loosely!

140

6.6 The Role Graph & Privilege Administration

The major benefit of formulating the role graph is to facilitate the case of access
rights administration. It is thus important that the manner in which the privileges
are distributed throughout the role graph be optimized. To do so involves taking
into account the role relationships specified as well as those inferred from privilege
relationships. Relationships specified are of the formr; = r;,r, ®r; = {rn},ri Or; =
{r:}. Relationships inferred result from the analysis of privileges associated with the
given roles. For instance, if we find that the privileges of one role form a subset of
those of another, then we can infer an is-junior relationship between the two. This
then implies a mandatory path requirement whenever there is a subsetting privilege
relationship. There must exist a path between any two roles with subset privilege
association. This requirement aims at reducing privilege distribution redundancy and
this forms the basis of privilege distribution optimality. Both privilege distribution
optimization and transitive reduction [AGU72] (see below) characterize role graph
well-formedness.

A role graph is a role relationship structure derived from privilege relationships
(specified and inferred) among roles. It can thus be seen as a privilege distribution
scheme. It is important that privilege duplication within roles, itself a form of re-
dundancy, be minimized by taking into account the privilege relationships between
roles. A privilege distribution scheme is said to be optimal if privilege duplication
within roles is minimized. In other words, considering the direct privileges defined
in roles, duplication should be minimized by taking into account the role relation-
ships on which basis the role graph is formulated. This has the effect of minimizing
privilege distribution redundancy where privilege redundancy is defined as:”

Definition 6.17 Privilege Distribution Redundancy: There is privilege distribution

redundancy between any two roles r;,r; whenever we have r; —*%* r; and ¥(r;) N
Direct(¥(r,)) # 9.)

Consider a role graph with two roles X and Y. Suppose it is given that: MinRole —
X,X — MaxRole,MinRole — Y and Y — MaxRole. Without knowledge of the
privileges associated with the two roles X and Y, no other relationship information
can be deduced. As such it is correct to assume that the two roles are independent.

"Recall that Direct(¥(r)) and W(r) refer to the direct and effective privileges, respectively.

141

The role graph would then have paths MinRole —+ X — MaxRole and MinRole —
Y — MaxRole.

By examining the associated privileges, however, it is possible to determine whether
the two are related. For instance suppose that ¥(X) = {1} and W(Y) = {1,2}.
It follows that ¥(X) C ¥(Y) == X — Y. We can then have Direct(¥(Y)) =
{2}, Direct(¥(X)) = {1} and X — Y. Once we know this, privilege 1 need not
be duplicated in the direct privileges of Y. It can be inferred from the relationship
between X and Y. This then reduces the role graph to only one path: MinRole —
X — Y — MaxRole.

The mandatory path requirement for roles related via the subsetting privilege
relationship, as a property of the role graph, is expressed as follows:

Property 6.7 Mandatory Path: A path r; —° r; must exist between any two roles
ri,7; whenever ¥(r;) C ¥(r;). 0

A role graph in which all roles with s-junior relationship are connected by some
path and in which there is an is-junior relationship whenever there is a privilege
subsetting relationship, is said to be in proper form. Formally:

Definition 6.18 Role Graph Proper Form: A role graph is in proper form if and

only if (1) there is some path between all roles with an is-junior relationships and (2,
there is an inferred is-junior relationship between two roles whenever there is a subset
relationship between their privilege sets. o

A graph in proper form captures all possible paths. A role graph in proper form
can be used to eliminate the redundancy in the privileges associated with a role in the
graph. The resulting role graph with privilege redundancy removed is said to realize
privilege distribution optimality.

Definition 6.19 Privilege Distribution Optimality: A privilege distribution scheme
is optimal if and only if (1) it captures all possible (specified and inferred) paths and

(2) there is no redundancy in privilege distribution in the graph, i.e. for any roles (r,
and r,) with a path r; =% r; between them, Direct(¥(r;)) N ¥(r;) = 0. D

This definition implies that all privileges defined for r; must not be duplicatedin r;
whenever we have r; —»* r,. This process ensures that we retain a privilege in a role’s
direct privilege set if and only if it has not already been specified in the associated
junior roles of the role in question. In other words, all direct privileges of a given
role 7, should be those such that there exists no role in the role’s junior set in which

4

142

the privilege has been defined. Hence in our example from above, we shall have only
privilege “2” directly defined in Y since privilege “1” is already defined in X which
has an is-junior relationship with Y.

The above process can rightly be termed privilege distribution optimization. It is
the process by which privilege duplication is minimized. It aims at reducing privilege
distribution redundancy.

The foregoing, addresses redundancy elimination via minimization of privilege du-
plication within roles in a role graph. However, it does not address another form of
redundancy: path redundancy.

Definition 6.20 Path Redundancy: There exists path redundancy whenever we have

paths of the form: r; =%+ r, =% r; and r; — r, simultaneously. o

Path redundancy can be eliminated via transitive reduction [AGU72] which is
a process by which, given paths of the form: r; =+ r; —* r, and r;, — ry, the
redundant edge r; — r; is removed. This process, when applied to a directed graph,
removes all redundant edges while leaving all the relationships pertaining to the graph
intact. The resulting graph is said to have been transitively reduced; it is a transitive
reduction.

A graph in which there is neither redundant path nor redundant privilege distri-

bution is said to be well-formed.

Definition 6.21 Role Graph Well-Formedness: A role graph is well-formed if it is a
transitive reduction and if its privilege distribution is optimal. o

It is important that a role graph, at any one time, be well-formed. Any operations
that transform the graph assume a well-formed graph as input and must assure to
leave it in a well-formed state.

There are other interesting modifications that can be done on a role graph. These
include the reduction and/or addition of role privileges which requires the specifi-
cation of the target role and privileges to be removed/added but which does not
alter the basic structure and relationships in the role graph structure. This may be
addressed within the context of role-privilege authorization. However, these modifi-
cations should preserve privilege distribution optimality.

143

6.7 The Role Graph & Role Administration

In this section we briefly outline role administration in the proposed role graph model
and demonstrate the soundness of the operations suggested . Included in the task of
role administration are operations of role deletion (e.g. when that role is no longer
required), role addition (when there arises a need to create a new role), or role parti-
tion, vertical or horizontal (when there is a need to partition the functionality of the
role). In all these cases, we can have an increment or decrement in the overall privi-
leges associated with roles related to the one undergoing change. Such privileges may
be kept either invariant, reduced or increased depending on the specified operations.
We address the cases where (1) path privileges are introduced with the addition of
a new role, (2) path privileges remain invariant with the deletion of a role, (3) path
privileges are “partitioned” with the partition (horizontal partition) of a role and (4)
path privileges remain invariant with the partition (vertical partition) of a role.

In each of these cases we assume a well-formed role graph (see section 6.6), i.e. one
in which privilege distribution is optimal and to which transitive reduction [AGUT72)
has been done. The resulting graph after the operation is guaranteed to be well-
formed.

Consequently, after carrying out the operations on the graph, our procedures will
confine themselves with the immediate neighbourhood of the target role. Such a
“neighbourhood” can be seen as the roles along the paths affected by the operation.
Hence in doing privilege optimization, we look at the paths in which privilege changes
have taken place while with transitive reduction we examine the affected paths for
any redundant arcs. The following definitions will be useful with respect to a role’s
“neighbourhood”:

Definition 6.22 Juniors(r): The set Junior(r) for a given role r is all r, € R such
that r; =% r. 0

Juniors(r) can be seen as the set of roles in the subgraph associated with the role
r without the role itseif.

Similarly-

Definition 6.23 Seniors(r): For a given role r, the set Seniors(r) is all r; € R such
that r —* r;.]

As with the Juniors(r), Seniors(r} can be seen as the subgraph defined by r minus
the role, after inverting the role graph.

144

6.7.1 Role Addition & Deletion

Role addition means the creation and incorporation of a totally new role in the role
graph. Such a role would be defined (name and privilege list) before being integrated
into the role graph. While the integration process must preserve the role definition, it
is important to ensure that if there are privileges defined in the new role that exist in
junior roles in the target paths, they must be removed to take away the redundancy.
To introduce such a role requires the specification of the target path and the position
in the path. Such a position is determined by defining the immediate superior and
subservient roles to be related to the new role. We term these superior and junior
lists, respectively. See algorithm 6.1 in figure 6.9 and also figure 6.10b.

Example 6.3 With role addition we specify the target path(s) and points of insertion.
This involves the specification of the target superior and junior role(s) for the role to
be added (see figure 6.10a). The role to be inserted is added with the appropriate links
being specified to indicate the junior and superior roles. Finally redundant paths are
removed from the resulting structure. a]

The flip side of role addstion is rols deletion which involves the elimination of a
role from the role organization structure. ThL. process requires specifying the target
role and short-circuiting it by making the target’s immediate subservient role the
immediate subservient roles of the target’s immediate superiors. In doing so, the
privileges associated with the deleted role can either be eliminated or distributed.
This must be specified in the role deletion process. Privilege elimination involves
overall privilege reduction of the path associated with the role so deleted.

Retaining the privileges of the deleted role, on the other hand, requires a specifica-
tion of how these privileges will be distributed among the existing roles. Usually, such
privileges would be distributed within the immediate neighbourhood of the deleted
role.

In deleting a role, it must be specified whether the privileges will be deleted with
the role or whether they will be distributed among the existing roles. For instance
some may be re-allocated to the immediate superior role while others may be allocated
to the immediate junior role. In practice, however, if the task is to keep the privilege
set of the paths invariant, the task would be easier if the privileges are allocated
to the superior role. When privileges of a role are distributed, the overall effect is
that of ordering the privileges and total path privileges may remain the unchanged.
This case is illustrated pictorially in figure 6.11. See the associated algorithm 6.2 of

145

Algorithm 6.1 Role_Addition(rg, target, s.target.set j.target set)

/* For the addition of a given role into a role graph */
Input: rg = (R, —) (role graph), target to be added (name with ;.. osed direct privilege set),
s.target.set (immediate superior set for target), j.target.set (immediate junior set for target),
Output: The role graph with target added and overall privileges of other roles left intact.
Var r,r;,r,: roles;
Begin
If 3(r, —* r;) for any r, € s.target.set,r; € j.larget.set
Then abort /* Must not violate acyclicity */
Else Begin
1. i(mget):z (Upe,',(.y'" set '(f))U Dt'fcd(ldfgtt);
* Compute the effective privileges of target role */
2.If ¥(r) = ¥(target) for any r € R
hen target ;= r; /* Role privilege sets must be unique */
3.1f 3(larget —* r;) for any r; € j.larget.set
hen abort /* Must not violate acyclicity */
Else Begin
. R := R Utarget; /* Add target to system roles */
Vr, € s.target.set do add the edge target — r,;
Vr; € j.larget.set do add the edge r; — target;
If for any r € R, ¥(r) C ¥(target) and NOT(r —* target)
Then add the edge r — target; /* Add this inferred edge */
e. If for any r € R, ¥(target) C ¥(r) and NOT(target —* r)
Then add the edge target — r; /* Add this inferred edge */
f. Rem_Red.Arcs(rg, j.target.set, s.target.set, target);
g Red_Priv_Res(rg, j.target.set, target); end;
4.Vri,r; € R do if ¥(r;) = ¥(r;) then /* Remove duplicate roles */
Be%n Vr such that r; — » do add the edge r; — r
r such that r — r; do add the edge r — r;
Delete all edges r; — r and r — r;;
Remove r;; end;
5.Vri,rj,re E R do if I((r; =% r; —* 1) /* Remove redundant edges */
A(ri — ri)) then
Delete the edge r; — ry,end: /* Delete the direct edge */
end. /* Role_Addition */
Procedure Rem_Red_Arcs(var rg: role graph; j.target.s.t, s.target.set. roleset; target: role);
* Removes redundant arcs in the immediate neighbourhood of target role */
ar ry, T, Ty roles;
Begin 1. Vr; € jtarget.set do /* Remove airect paths */
if 3(rj — ry — --- — target) then
Delete the edge r; — target /* Delete the direct edge*/
2. VYr, € s.target.set d’o
if 3(target <~ ry — --- —r,) then
Delete the edge target — r, /* Delete the direct edge®/
end; /* Red_Red_Arcs */
Procedure Red_Priv.Res(var rg: role graph; j.target.set: roleset; target: role);
Var pv : privilege; r : role;
Begin 1. For all r in Seniors(r) do /* Remove redundant privileges in seniors. */
¥Ypv € Direct(targ:t) do
if pv € Direct(r) then
Direct(r) := Direct(r) - pv;
2. For all r in j.target.set do /* Remove redundant privileges in Direct(target).
VYpv € ¥(r) do
if pv € Direct(target) then
Direct(target) := Direct(target) — pv;
end; /* R2d.Priv_Res */

aoow

Figure 6.9: Algorithm for Role Addition

146

ENminate Redundant Arcs

Target Junior and Senior

Figure 6.10: Role Addition

GX

GX

—
o
nnu/ K 9
<
Y -
O
w
il "
\O/ @ o’ -~
© o
O...
" e
&
Q\ . Ill..
U

Figure 6.11: Role Deletion

147
figure 6.12.

Example 6.4 Suppose our target role for deletion is role D in figure 6.11a with the
constraint that all existing paths must keep their privilege sets invariant. For this
purpose we choose to shift the privilege set of the target role to its superiors.

To achieve this, first transfer the privileges from role D to both F and G which are
both superior to D. This results in roles roles FX and GX which we make immediate
superiors of both A and B which were immediate juniors of role D. The graph retains
all previous relations, ie. A -~ D —~FA—~D-~GB—-D—F, andB — D — (G are
replaced by A — FX,A - GX,B — FX, and B — GX, respectively.

The next step is to do away with redundant alternative paths (marked X in the
figure 6.11b) and remove them. We notice that paths A — " —~ FX and B — F — GX

contain the set of privileges of pcths A — FX and B — GX, respectively. This results
in a new role graph structure as shown in figure 6.11c.

We consider this as representative of the most general case as it involves more than
one path. Where the target role involves just one path, the task should be by far easier
than that outline here. Q

Both role addition and deletion correspond to real life situations where in creating
a new portfolio, a new role is added, while in eliminating some “office”, a role will be
deleted. Role deletion without privilege reduction entails elimination of some “office”
in an organization while retaining the total functionality of the organization. Indeed,

this may be the usual practice.

6.7.2 Role Partition

A role can be partitioned into two or more roles in our role graph. Essentially, the
basic partition operations are either vertical or horizontal, and can of course be com-
bined. In both cases it must be specified what the new roles and their corresponding
privileges are. Where the order of “seniority” is required, as in tF. case of vertical
partition, it must be specified as well.

In vertical role partition, a role is split into two or more roles and an ordering
is imposed on them with the is-junior relationship. In doing vertical partition, we
must specify the target role, the new roles to be created, their direct privileges and
their ordering (according to partial privilege criterion). For instance, a role X is
not only partitioned into roles Xy,---, X, but also, these roles must be ordered,
e.g. Xy — .-+ — X, (see figure 6.13b and algorithm 6.3 of figure 6.14). Privilege

distribution among the new roles is constrained by the privileges associated with the

148

Algorithm 6.2 Role_Deletion(rg, target, inv)

J* Deletes a specified role retaining or discarding its privileges depending on mv */

Input: rg = (R, —) (the role graph structure}, target (the target role to be deleted),
inv Boolean indicating whether or not to retain the role’s privileges

Qutput: The role graph structure with target deleted

Var s.set, jset: role set; r,r;,r,: role;
Begin 1. s.set := Superior_Set(target); /* Get the senior set */

2. j.set := Junior.Set(target); /* Get the junior set */

3. Forallr, € s.set do /* Connect Junior and Senior Roles */
Foralir, € jsetdoadd rj — r,;

4. Hf inv then do

For all r, € s.set de /* Transfer Privileges to superiors */
Direct(r,) := Direct(r,) U Direct(target);
5. Forall r, € s.set do /* Remove all redundant arcs */

For all rj € j.set do
If 3(rj — ¢ -- —r,) then delete r; — r,;
6. R :=R - larget; /* Take out target from system roles
end. /* Role_Deletion */

Function Superior.Set(var tg: role graph; target: role): role.set;
Var Tempset: role_set; r: role;
Begin 1. Tempset := 0;
2. For all r with target — r do
Tempset := Tempset U t;
3. Superior_Set := Tempset
end; /* Superior.Set */

Function Junior Set(var rg: role graph; target: role): role_set;
Var Tempset: roleset; r: role;
Begin 1. Tempset := §;
2. For all r with r — target do
Tempset := Tempset U r;
3. Junior Set := Tempset
end; /* Junior.Set */

Figure 6.12: Algorithm for Role Deletion

149

Figure 6.13: Vertical & dorizontal Role Split

role being partitioned; there must not be an increment or decrement of privileges, i.e.

Direct(X) = U Direct(X,)
izl
Consequently, the privileges associated with the paths in which the role appears
neither decrease nor increase. In general, vertical partition leaves the privilege set
associated with all paths unaffected; only the path length increases.
Further constraints include the requirement for distinct direct privilege sets for

the newly created roles, i.e. for any
Xi, X, € {X1,---, Xn}, Direct(X;)() Direct(X,) = 9

Suppose we have a target role for partition (call it X) with a relationship {J,,---,J,} —
X — {5,,---,8,} which 1s partitioned vertically into roles {X,,---, X,} such that
[Jio o Ja} = {Xi1 = - = X} — {S51.-++, Sa}. It follows that (X, C (S; 7 527
ZSIOA KIS (LD B)

Horizontal role partition, on the other hand, involves partitioning a role into
two or more roles with none of them being subservient (superior) to another (sec
figure 6.13c and algorithm 6.4 of figure 6.15). Paitition, as used here, merely dis-
tributes the direct privileges of the target role among newly created roles that replace
it. In partitioning a role, there should be no effective increment or decrement of

privileges. In other words, as with vertical partitioning, if role X is partitioned into

150

Algorithm 6.3 Verticai_Partition(rg, target, {((z,, —),z;.rpset;)})

/* Partitions a given role “ertically */

Input: rg = (R, —) (the role organization structure), target (the target role to be partitioned),
{((z,, =), rpset;)} (the new role-direct privilege set pairs and their ordering).

Output: The role graph with target vertically partitioned into {((z:, —), rpset,)} and
integrated intc the role graph structure.

Uses Superior_Set and Junior_Set of algorithm 6.2 in figure 6.12.

Var s.set, j.set: role set; r;,r,: roles;
Begin

If Direct(target) # | J(Direct(z;))
Then abort /* Must keep privilege set invariant */

Else Begin
1. R:=RuU{z}; /* Add new roles to system */
2. s.set := Superior Set(target); /* Generate superior set */
3. j.set := Junior Set(target): /* Generate Junior set */
4. Add edges ; — 23,22 — 23, -, Zn—] — Zn;
/* Create a Path as specified */
5. Vz, do Direct(z,) := rpset,; /* Assign the appropriate privileges */
6. Vr,€ssetdoadd z, —r,; /* Join the Senior end */
7. VYr; € j.set do add r; — zy; /* Join the Junior end */
8. R:=R - target; /* Delete target from system */
end;
end. /* Vertical.Partition */

Figure 6.14: Algorithm for Vertical Partition

roles X, .-, X,, we require that

Direct(X)= |J Direct(X;)
1=i,n
The direct privilege sets of these newly created roles can have empty or non-empty
intersections. However, none of them should have identical privilege sets. Note that,
unlike vertical partition, horizontal partition can cause a variation of privileges asso-
ciated with a path when the target role is the senior-most role in the path.

Suppose we have a target role for partition (call it X) with a relationship {J;,---,J,}
= X = {5.---.S,} which is partitioned horizontally into roles {X;,---, X, } such
that {Jy.---.J,} = {X1,---, Xp} = {S51,---,Sa}. It follows that ({J;,---,Jn} €
(X120 X0 DX DAAS1, - S} E (X1 Xad - D X,))

Updates to the role graph include ihe reduction and addition of role privileges
which require the specification of the target role and privileges to be removed/added,

151

Algorithm 6.4 Horizontal_Partition(rg, target, {(2;, z, .rpset,)}

/* Partitions a given role horizontally */

Input: rg = (R, —) (the role organization structure), target (the target role to be partitioned),
{(zi, rpset;)} (the new role-direct privilege pairs to replace target).

Output: The role structure with target horizontally partitioned into {(z;)} and integrated into ry.

Uses Superior_Set and Junior_Set of algorithm 6.2 in figure 6.12.

Var s.set, j.set: role set; r,r,, r,: roles;
Begill Direct(target) # | J(Direct(z;))

Then abort /* Must keep privilege set invariant */
Else begin

1. R:=Ru{z}; /* Add new roles to system Roles */

2. s.set := Superior_Set(target); /* Generate the superior set */

3.).set .= Junior _Set(target); /* Generate the junior set */

4. Vz;€{z,,---,za) do /* Assign privilege set to new role */
Direct(z;) := rpset;; /® Assign respective privilege sets */

5. R:=7R -tarjet; /* Delete target */

6. Vr,€{z1,---,za} do

end;
end.

beghir, € s.set doadd z; - ~=,; /* Link New Roles to seniors */
Vrj € ssetdoadd rj - ,; /* Link New Roles to juniors */
end;
Vri.r; € R if ¥(r,) = ¥(r,) then /* Remove any duplicate roles */
Begin
Vr such that r; — r do add the edge r; — r
Vr such that — r; do add the edge r — r,
Delete all edges r; — rand r —r,;

Remove r;;

end;

Vri,rj,ry € R do if 3{(r, =+ ry —* ry)

A(ri — 7)) then /* Remove tedundant edges */
Delete the edge r; — /* Delete the direct edge */

/* Horizontal_Partition */

Figure 6.15: Algorithm for Horizontal Partition

152

but do not alter the basic structure and relationships in the role graph structure.

These may be addressed within the context of role-privilege authorization.

6.7.3 Correctness of the Graph Algorithms

In the foregoing sections we have the basic relationships and properties necessary
for a role organization model. We proposed such a model to be a role graph and
gave examples of algorithms for its manipulation. Note that several operations are
possible on the role graph including, but not restricted to, those implemented by the
algorithms presented in sections 6.7.1 and 6.7.2. This section emphasizes the need for
correctness of operations on a given role graph. Operation correctness is based on an
operation achieving its intended function while maintaining the properties of the role
graph. An operation must not disturb the basic role graph structure hence role graph
properties must hold both before and after the operation. Hence it is important
to show that the operations implemented by the suggested algorithms are indeed
correct, i.e. they achieve their function and preserve the role graph model properties
enunciated in the foregoing sections. We shall offer arguments that demonstrate
algorithm correctness of one of the algoiithms. These arguments can then be extended
to cover the rest of the given algorithms and any other operations that manipulate
the role graph.

In any given application, correctness is based on some criteria defined within the
system in which the application “executes”. In our application, operation execution
correctness if determined by the role graph properties. The operations given assume
a role graph input in which all the properties and constraints hold. In our situation,

the correctnss criteria include:

1. achieving the intended purpose of the operation and, in case of failure to do so,
aborting the operation and restoring the graph to its original state. The opera-
tion commits if and only if the operation’s effects do not violate the properties
of the role graph mode!. These graph properties ensure the two key character-
istics of the role graph: role graph proper form (definition 6.18) and privilege
distribution optimality (definition 6.19).

2. ensuring that operation execution leaves the role graph in a state in which
all the properties and constrains pertaining to the role graph hold. Hence
properties 6.1--- 6.7 and constraints 6.1 and 6.2 must hold.

153

3. ensuring that the operation causes no side effects other than those directly
and indirectly possible via the operation. Side effects indirectly generated by
an operation arise from any “normalizations” which derive from role graph
properties. For example, if after an operation we find that for two roles r; and
rj, ¥(r;) C ¥(r;), then we must ensure that there exists a path r; —* r,.

We choose the algorithm for role addition, i.e. algorithm 6.1 in figure 6.9, to

demonstrate the correctness of our operations. We make the following conjecture:

Conjecture 6.1 Given a ~ole graphrg, a target role target to be added torg, a set of
roles j.target.set in rg to be the target’s juniors and another a set of roles s.target.set
inrg to be the target's seniors, Role_Addition i.e. algorithm 6.1 of figure 6.9 preserves
operation correctness. 0

Proof: The input graph rg must be such that all the role graph model properties hold.
Our proof is based on the fact that once we assume that role graph properties hold for
rg, then it is sufficient to show that no role graph property or constraint is violated by the
operation to demonstrate operation correctness. Preservation of these properties ensures
that role graph remains both in proper form (see definition 6.18) with privilege distribution
optimality (definition 6.19). Qur proof dwells on the three main issues listed above in this

section. We proceed to show that, on the basis of these issues, Role_Addition, meets the
correctness criteria.

1. Perhaps the most important characteristic of the role graph is its acyclicity. Where
there is potential violation of acyclicity, the operation must abort. Role_Addition
checks whether the intended junior (j.target.set) and senior (s.target.set) sets of
the target to be added, as well as the target's privilege set, would cause cycles . We
show that Role_Addition does not violate acyclicity.

Since the graph is acyclic, we are concerned with the immediate neighbourhood of
the target to be added. Now, assume that we end up with a graph with cycles.

We know that cycles, ie. 3ri,r,.r such that r; =% r, =+ 7, —* 1, in
the graph would arise in two ways: (a) due to the junior and senior sets, i.e.
3r; € j.target.set,r, € s.target.set, target such that it is possible to have r, —*
target —* r, —* r; or (b) through the privilege relationships and due to the
is-junior and or is-senior relationships after the incorporation of the target into

154

the role graph since we know that whenever we have ¥(r;) C W¥(r;) we must have
ro—"r,.

To deal with (a), Role_Addition checks, as the first step that the junior and senior
sets would not cause such a cycle. If this is potentially possible, the addition is
aborted. The operation proceeds only when there is no potential cycle between the
Junior and senior sets. Therefore, Role_Addition introduces no cycles on insertion
of the target role target with j.tc ~get.set and .target.set as its junior and senior
role sets, respectively.

With respect to (b) Role_Addition checks in step 3 to ensure that no such potential
cycles occur since, due to privilege relationships, should there be a potential cycles
on insertion of target, Role_Addition aborts.

Conclysion: Role_Addition introduces no cycles into the role graph rg.

. We make the claim that Role_Addition does indeed leave the role graph in a state
where properties 6.1 - - 6.7 and constraints 6.1 and 6.2 hold.

We note that Role_Addition causes no redefinition of the role graph properties.
Therefore, to show operation correctness with respect to role graph properties, it is
sufficient to show that the operation violates none of the properties. We proceed
to demonstrate this on property by property basis.

The algorithm does not affect privilege monotonicity, i.e. property 6.1. It preserves
privilege uniqueness, i.e. property 6.2 by ensuring that no target role is added with
identical privilege set as an existing role (see line 2). Where this is potentially
possible, the algorithm treats this role as the target role and adds necessary arcs
to the juniors and seniors of the target. Role_Addition touches neither MaxRole
nor MinRole, i.e. properties 6.3 and 6.4, respectively. Moreover, each role in the
graph still remains a role graph as per property 6.5. It does obey the privilege set
invariant property 6.6 since Role_Addition execution must be authorized, like any
other operations that execute in the system. Therefore all the privilege set changes
it causes must be authorized as well. Further, the mandatory path property 6.7 holds
as the algorithm, in steps 3(d) and 3(e), makes sure that all paths are present.

With respect to constraints, Role_Addition maintains acyclicity (constraint 6.1) and
hence it doesn't violate this constraint. Moreover, the path privilege monotonicity
(constraint 6.2) still holds as Role_Addition utilizes this to reorganize the roles in
the system.

155

Conclusion: After the execution of Role_Addition properties 6.1.-- 6.7 and con-
straints 6.1 and 6.2 hold.

3. Finally, we claim that Role_Addition introduces no side-effects other than those
directly and indirectly associated with its execution.

Assume, that it did introduce such side-effects. This means that certain changes
would occur within the role graph by other means, other than that those inferable via
the properties in the system. However, as we have shown, Role_Addition causes only
changes that derive from the characteristics of the role graph. Hence all changes
must thus derive from Role_Addition directly (e.g. by the addition of the target role
and its privileges) and indirectly (e.g. via the application of role graph properties to
ensure inferred relationships hold as per the said properties.)

Conclugion: Role_Addition causes no changes other than those directly and indirectly
required by the operation and the role graph nroperties.

Main Conclusion: We conclude that Ro.:_Addition does indeed execute correctly by
preserving the properties of the role graph, meeting role graph constraints and introducing
no other side effects other than those directly or indirectly related to the operation. It
leaves the role graph both in proper form and with optimal privilege distribution. Thus
we have established that conjecture 6.1 holds. o

To show that the rest of the suggested algorithms execute correctly, we could use
similar arguments.

6.8 Comparison with Hierarchies, Privilege Graphs
& Others

The model presented here has the expressive power of other role organization struc-
tures. In this section we demonstrate such power in the simulation of hierarchies
[TDH92] and privilege graphs [Bal90].

The role graph model can simulate a hierarchical organization. We can convert
a role graph into a tree (hierarchy) and vice versa. To obtain a tree from a given
role graph, we designate MaxRole as the root of the hierarchy and do a recursive
bread-first or depth-first traversal for every node with a relationship with MaxRole.
A given path terminates when MinRole is encountered which forms the leaves of

156

all paths in the resulting tree (hierarchy). The resulting hierarchy has “duplicated”
leaves which in each case in the MinRole. In general, there is duplication whenever
the greatest lower bound of two or more roles is a role different from MinRole. We
have a duplication of just the leaf nodes only when MinRole is the only common
lower bound of any two roles. This tree contains all paths present in the associated
role graph. In going from a tree to a role graph, we designate the root of the tree
to be MaxRole, do a depth-first traversal of the tree and equate nodes whenever
equal privileges are encountered. The resulting role graph can then be augmented
with MinRole if necessary. The advantage with the role graph is its compactness,
i.e. shared nodes lower in the hierarchy, need not be duplicated. This is a major
advantage in that it reduces the extent to which shared privileges are scattered among
roles which makes the task of tracking their use easier.

To simulate privilege graphs [Bal90], attach to every role an associated function-
ality that specifies the associated duty requirements/title/etc. With the role’s access
control list (racl) acting as the user/group node (figure 6.2), it is possible to determine
the authorized users for any role. An authorized user’s access rights are determined
by the effective privilege set ¥(r) of the associated role r to which the user is au-
thorized. Further, remove MaxRole and assign its direct privileges to roles with a
direct partial privilege relationship with it. The result is a privilege graph.

To simulate lattices, we let the greatest lower bound set (glbs) and the least upper
bound set (lubs) represent a lattice’s greatest lower bound (glb) and least upper bound
(lub), respectively.

Finally, although this model is based on subsets with an acyclic graph, it is differ-
ent from the Bell and LaPadula Model (BLPM). Moreover, although both are meant
for security application, they have different approaches to realizing protection. The
BLPM relies on subsets, acyclicity and is static. However, it is based on the clas-
sification of information as opposed to the execution of operations as is the case in
our model. The BLPM specifies two simple operations of either read or write access
depending on object classification and subject clearance. This approach realizes mul-
tilevel security. In our modc’, privileges represent pre-defined executions designed in
a manner intended to realize certain desired functionality in a system. These opera-
tions are designed from considerations of desired system functionality. Once defined,
the operations are distributed ainong roles in the system in the manner that suits
organizational requirements. The executions can be simple reads and writes. They

can be a combination of simple reads and writes. But they can also be complex exe-

157

cutions of such methods in object-oriented programming. These operations need not
merely alter or return the information relating to a given object but can also create
other objects and invoke other operations.

In the BLPM, once classification has been done, access to information is governed
by the simple security property and the *-property. Its specification is static. In our
model, execution of privileges can cause the assignment or revocation of privileges

pertaining to some role. In that respect, our model is dynamic.

6.9 Summary

This chapter has presented a basis of role organization and proposed a framework
for such organization. We discussed common role organizing structures to enable us
“extract” properties for the formulation of role organization. The two key properties
are the acyclic nature of the role organizing structures and the monotonic privilege
relationship among roles in a given path in the organizing structure.

We discussed basic role relationships (partial, common and augmented) based
on privilege sharing between roles. Starting with these two role relationships, we
generalized to cases of more than two roles. Through such extension, we proposed
a role graph framework that preserves the key properties and offers differentiated
privilege sharing. The concepts of maximum and minimum privileges were introduced
for purposes of easing the modeling. With these two it is possible to completely specify
the semantics of the operators introduced for the various role relationships.

Acyclicity of the resulting structure and monotonicity of role privileges in a given
path ease the task of administration and analysis of privilege distribution in a system;
privileges need only be defined at the most specific location in the structure,

We formulated a means of specifying role independence and role coupling to help
study the extent of privilege sharing. Role independence (revisited in the next chap-
ter) allows us to assign non-conflicting assignments without worrying about shared
responsibility; independent roles have no shared privileges/responsibilities/etc?.

Role management strategies were also presented. Using the graph structure de-
rived, we present a role administration scheme as well as associated algorithms. Thus
we discussed strategies for role addition, deletion and partition.

To illustrate the expressive power of our role graph structure, we presented a means

8As will be seen in the next chapter, tighly coupled graphs are unlikely to be useful where
partitions are required to forestall conflict of interest,

158

for simulating hierarchies [TDH92] and privilege graphs [Bal90]. This was intended
to demonstrate that our model is at least as expressive as the two structures. Similar
simulations can be done for lattices [RWK88, RWBK91] (the closest structure to our
model) and Ntrees [San88, San89)] (which have similar properties with lattices).

The key contribution of this chapter is the exploration of the basic relationships
between roles which are then applied to the modeling of role organization. We also
addressed the key properties necessary for differentiated privileges for different roles
in such a role organization. We found that we need basic role relationships (partial,
common and augmented privilege sharing). The key properties were also found to be
acyclicity of role organization structures and the monotonic privilege relationship for
roles in a given path in the structure. We formally defined a pseudo lattice structure,
also referred to as a role graph, that incorporates these properties. We presented
a means of role administration for roles in the structure that preserves the graph
properties. In particular we formulated methodologies (in the form of algorithms) for
role addition, deletion and partition.

We defined the concepts of role independence and role coupling. Coupling refers
to the extent of privilege sharing among roles. Independent roles have no coupling
between them. The coupling factor introduced can act as an indication of the extent
of privilege sharing in the role graph.

CHAPTER 7

REALIZING COMMERCIAL INTEGRITY

7.1 Introduction

In the previous chapter we presented a role graph model for role organization. This
chapter explores an application of the model, along with the object and transaction
models of chapters 3 and 4, respectively, to realize the principles of the Clark and
Wilson model [CW87]. The object model provides a framework for modeling objects
and manipulating them. The transaction model forms the basis for transaction exe-
cution of processes in our model. Indeed, all our executions are either transactional
in nature or execute within some transaction. Finally, the role graph of the previous
chapter provides the basis for role relationships and hence role organization.

The principle requirements of the Clark and Wilson model [CW87] have been
summarized in chapter 2. Among them are requirements such as database items
(those requiring integrity) being constrained data items (CDIs), that only certified
transformation procedures (TPs) manipulate the CDIs, that the TPs are certified to
take CDIs from one correct state to another, that there are verification procedures
(IVPs) that assure the integrity of the CDIs, etc. In general, all data transformations
are required to be designed as well-formed transactions (WFTs) where a WFT is a
program that has been certified to maintain the integrity of the data it manipulates
[CWB8T, Kar88, Lee88, San91, Tho91]. The manner in which O-O executions meet
transactional requirements has been given in chapter 4; method execution must be
either transactions or be part of transactional executions. In this chapter, we shall
utilize the transaction framework to meet the integrity requirements of the commercial
integrity model [CW87], We shall demonstrate the well-formedness of the transaction
procedures executed in our model. From the point of view of the O-O paradigm, these
transactional requirements make the object interface transactional. Further, objects

159

160

(at least those which require integrity to be maintained) will be handled as CDIs as
required by the commercial security model.

Integrity is concerned with modification of information. Integrity policies can be
seen as falling into two broad classes: whether the modification is authorized and
whether the modification results in a consistent state [SD87]. Consistency encom-
passes integrity rules, recovery management and concurrency control. The following
sections will address realization of the Clark & Wilson model properties within this
perspective.

Separation of duty is another major requirement for commer-ial database integrity
[CW8T7, Kar88, Lee88, San91, Tho91]. The Clark and Wilson model {CW87] proposes
separation of duty as a means of dispersing the exercise of responsibility in commercial
environments. Using object histories introduced in chapter 3 and role authorization,
we shall demonstrate how our formulation realizes separation of duty. Object histories
facilitate the tracking of users that have participated in the processing of some object
along with the events they executed in the process. The authorization specifies the
user-TP-CDI relationships. Further, with the role graph organization of chapter 6 we
associate subtasks in execution sequences to roles in paths in the role graph. This is
equivalent to having some execution sequence mapped onto a path in the graph. By
keeping the history of execution from one step to another along the path, we enforce
what we term in-path separation of duty.

Another important principle in commercial security is conflict of interest. Like
separation of duty, it is intended to disperse the exercise of authority. However,
whereas separation of duty involves subtasks of one task, conflict of interest connotes
totally different tasks. There exists conflict of interest where there is violation of
integrity requirements in which some user executes two tasks that conflict. This
chapter will address this too and uses the role graph of chapter 6 for the purpose. We
shall show that independent role groups in a role graph in which a user is authorized
to roles belonging to one such group, forestalls conflict of interest.

The rest of this chapter is organized as follows: In section 7.2 we discuss the role
concept further, especially in reference to the object model of chapter 3. In particular,
we note that privileges, since they can be complex, can be defined as object-method
pairs. Each such privilege acts as a window to object information. Associating
different methods with different roles distributes the object interface across different
roles with each role having its own set of windows into object information. It is up

to system designers to determine the manner of distribution of object interfaces to

161

meet system processing requirements. Roles themselves can be seen as windows to
database information. Such windows can be expanded and/or narrowed depending
on the associated list of privileges; adding a privilege to a role's privilege list expands
this window while revoking a privilege from the list narrows the associated window.

Section 7.3 relates roles to the transaction model of chapter 4. In this respect,
method executions (as defined in section 7.2) must be either transactional or execute
within transactional executions. The main aim is to meet the transactional require-
ments of WFTs. The transaction model of chapter 4 offers the framework for these
executions. As well, we demonstrate transaction well-formedness of the transactional
executions associated with CDIs.

In section 7.4 we address the issue of authorizations to roles in which we dis-
cuss both user-role and role-role authorizations. The former gives an authorized
user/group access to the privileges defined in the role. The latter gives a role autho-
rization to privileges of another role. In essence, this serves to define role relationships
given that a role authorized access to another role’s privileges has a partial privilege
relationship (see chapter 6) with the other. Indeed, as will be demonstrated, the
whole idea of role organization can be captured using rola-role authorizations.

Further discussion in this section addresses the issue of authorizations and the
role graph. A user authorization to a role gives such a user access to both the
direct and indirect (those defined in its junior roles) privileges of the role. If the
effective privilege authorization can be used as a measure of a user’s authority, then
the authorization scheme can be seen as conferring authority to users while the role
organization structure can be seen as some authority structure. For instance, for any
given path in the role graph, a user’s authority will be determined by the position (in
the path) of the role to which the user is authorized.

Separation of duty is the subject of section 7.5. We demonstrate how, from our
formulation, we meet one of the enforcement requirements in the Clark and Wilson
model. This is the requirement that system security officers (SSOs) associate users
with transformation procedures and the objects that the procedures operate on. In
our model, since all users execute privileges in authorized roles which are defined
as methods (the transformation procedures), we show that we can “compute” for
each user an authorization scope that “lists” a user’s privileges. The use of audit
information to determine whether to grant access is another important requirement
of separation of duty. Our solution is to use object histories t» keep track of an

object’s audit trail information and hence make it readily available for use. Object

162

histories are part of audit trail information hen.e keeping this information within the
object itself, makes it readily accessible. As Karger [Kar88] notes, scanning the audit
trail for the same information would be a major processing task.

A paih in the role graph can be associated with a given task. Such a task’s
subtasks would then be associated with roles in the path which effectively maps the
subtask processing order to a path in the role graph. Imposing separation of duty on
the task processing amounts to what we term in-path separation of duty. We start
with the case of one user authorized to one role and extend it to group authorization
to the role.

Conflict of interest, also a majc- 1ssue of concern in commercial security, is dis-
cussed in section 7.6. In pa:t. ular we present a means for managing conflict of
interest within the frameworl. of the role orgarization.

Section 7.7 is a review of our formulation with illustrations of how it meets the
requirements of the Clark and Wilson model. Going through the suggesied properties
in the Clark and Wilson model, we demonstrate how our formulation meets respective
properties.

Section 7.8 presents the summary, conclusions and the key contributions of this

chapter.

7.2 Roles and the Object Model

This section discusses the role concept in the context of object-oriented (0-O) prin-
ciples. The basic idea is that since methods form the only means of access to object
information, they form the object interface. Further, since each method gives access
to object information in a particular form, a method can be seen as a window to
object information. Moreover, methods, being the only access modalities in the 0-O
paradigm, can form the basis for privilege definition. Consequently, the least unit
of privilege definition is an object-method pair. Hence, each such privilege acts as a
window into the object.

Given that methods constitute the object interface, associating different methods
with different roles distributes the object interface among the roles with each role
having its own (set of) window(a) into objc information. Such windows can be
crpanded and/or narrowed by varying the entries of the roles’ privilege lists. It is up
to a system designer to determine the manner of distribution of an object interface to

meet system requirements. From this basis we modify definitions for privileges and

163

roles to reflect O-O contexts.

7.2.1 Roles, Privileges & O-O Interfaces

Roles offer differentiated access to database information based on their associated
privileges. In the O-O paradigm, information is held in the state of objects and is
accessible via methods. In this section we combine the two roncepts to exploit the
advantages of role-based protection and those of the O-O paradigm.

In the O-O paradigm, each object is an instance of some type/class defined in
the system. Object information access takes place only via the methods defined in
the type/class. The O-O paradigm is very suitable (almost uatural) for this scheme
where objects are assigned types/classes with methods in the type/class being the
well-formed transactions. Essentially, the designer of an application specifies the
types/classes in the database by defining the attributes (and their types/classes) of
the instances and the methods that are applicable to them. Objects defined in the
database must then be instances of the defined types/classes in the database. Their
behaviour is determined by the methods that operate on them.

An important issue is the assignment of privileges to roles in a system. This
can be seen as the composition of roles which determines what a user authorized to
the role can accomplish while executing privileges in the role. In other words, what
inforrr~tion is accessible via the role? What form of access is it? Is it information
update or just access without modification of information? The system designer
would assign, to the associated role, methods that perform the desired function.

Role privilege assignments can be seen as role-resource/object authorization. In
an O-O environment, this can be realized via role “authorization” to the associated
method, i.e. the inclusion of a method in the role’s privilege list ensures that the
object can be accessed via the role in the manner determined by the nature of the
method execution. From definition 3.1 in chapter 3 we know that each method can be
seen as a partition of the object interface. i.e. given an object, o its interface Of(v) is
the set of methods Methods(o) associated with the object, i.e. Of(0) = Methods(o).
A partition of the interface (part(Ol(o))) is a subset of the object interface Ol{v),
i.e. part{OI(0)) C Ol(o) or part(Ol(0)) € 2219 (see definition 3.10). In an O-
O environment, such partitions are central to role definition and hence authoriza-
tion. Consequently, we redefine privilege. and to avoid confusion, we term this an

o-privilege;

164

Definition 7.1 o-privilege: An o-privilege is a pair (x,part(Ol(x)) where x deter-
mines a unique object (resource) and part(Cl(x)) is some partition of the interface
Ol(x) of x. (m)

As seen elsewhere, x can be any object, resource, etc. that is accessed via some
interface Ol(z).

The difference between definitions 5.2 and 7.1 is that, in the former, access modal-
ities can be any types such as read, write, execute. In the latter, the access modality
must be a partition of the O-O object interface. In other words, it must be, at least, a
legally defined access method for the object. This implies that the least unit that can

constitute a privilege is a object-method pair, which leads to the following lemma.

Lemma 7.1 In an O-0 environment, the least unit of privilege definition is an object-

method pair. a

Proof: Consider the definition 5.2. x refers to an object while m is a non-empty set
of valid access modalities for x. The least unit of privilege definition must then be the
pair (x, m) with m containing at least one valid access modality of x. In an O-O oriented
environment valid access modalities are methods.

Suppose that in such an O-O environment some access modality is not one of the
methods defined for the given object. This would suggest that there exists some vslid
access modalities for the object other than the methods associated with x. However, we
know th-at in an O-O environment (like that defined in chapter 3) only methods are valid
modalities of access to objects. Consequently, it follows that the least unit of access must
be some method in the object’'s method list. The least unit of privilege definition would
be the object x itself and such a least unit of access. Therefore in an O-O environment,
the least unit of privilege definition must be some object-method pair. given object. O

The method itself could be complex (see the method invocation tree in figure 3.2)
but what is important is that for the object, such a method must be defined within
the types/class of the object. Moreover, as we shall see in the next section, such
access modalities can indeed be transactional.

For the rest of this thesis we do not make a distinction between definitions 5.2
and 7.1.

Example 7.1 Consider the cheque issuing process of chapter 4 in which cwo “signa-
tures”, of a clerk and supervisor, are required to be appended onto a cheque, and where
the clerk’s signature must come before that of the supervisor. The cheque object is an

165

instance of a type CHEQUE with two methods, clerk and supervisor, which appeand

(update) the clerk and supervisor signatures to the cheque object, respectively. We
use the type definition of example 3.1 on page 39.

Let method clerk be implemented to update the PAYEE, PAYEE_ID, AMOUNT
and SIGN.1 attributes with the payee name, payee identifier, the amount of the cheque
and signature, respectively. Then the audit trail is updated with the appropriate
information and the cheque is “dispatched”. On “receipt”, the supervisor invokes
method supervisor which, among other things, updates SIGN_2, audit trail before
dispatching the cheque for, say, payment. A security system will specify authorization
to the appropriate methods such that subjects assigned to the clerk and supervisor
roles can execute the clerk and supervisor methods, respectively.

(8]

7.2.2 O-O Roles & Object Information Windowing

In determining and enforcing access control, the windowing effect discussed in the
previous section facilitates differentiated access to object information. This can be
achieved via authorizing different users to access different portions of object infor-
mation via the associated interface partitions. By explicitly (or implicitly) basing
authorization on these partitions of the interface (windows) to different roles, we can
effectively enforce differentiated access to object information to different users.

Role definition in an O-O environment must recognize and take advantage of
this fact. The definition must be in terms of the o-privileges. Hence a role can be
seen as grouping different o-privileges (objects and their interface partitions). A role
definition scheme RDS defines roles R from given objects O, associated methods M

and role names RV, i.e.

RDS:Ox M xRN - R

It is an assignment of partitions of the interfaces to roles. This can be specified as:

RDS:Ox M xRN — R C RN x O x 2010
We refer to roles defined in terms of o-privileges as o-roles. Formally:

Definition 7.2 g-role: An o-role is a named collection of o-privileges; i.e.

o-role = (o-rname, {- - - ,int, j,- - -}) where each of theint; , is of the form part,(01{0,))
and each object o; can be accessed via the respective partition in {---,int,,,--}
through the o-role. o

166

Subjects

Database Information Partition :

Figure 7.1: Object Interface Distribution Over Roles

The differences between definitions 5.3 and 7.2 follow from the definitions of priv-
ilege and o-privilege.

A key advantage with this approach is that in designing interface partitions and
specifying access control, one can enforce the principle of least privilege by ensuring
that only necessary partition(s), that avail as much information as required to a
user, is(are) authorized to a role. Moreover, this introduces further flexibility to
our role window management whose variation can be effected either by privilege
revocation/addition of via narrowing/widening of the interface associated with given
privileges in the role’s privilege list.

A direct outcome of o-privilege definition is that interfaces associated with differ-
ent privileges can overlap. We say two privileges are related if they have intersections
in their interfaces. In other words, the two privileges pertain to the same object and
their access modes overlap. Such overlaps can result in overlapping contexts (see

section 5.5.4). Formally:

Definition 7.3 Related Privileges: Two privileges pi and pv; are related if they

refer to the same object and their interfaces overlap, i.e.
(py.x = puj.L) A (pvi-part(O1(z)) A p,.part(01(=)) #P) o

Definition 7.4 Role Relationship: Two roles i and r; are rels ed if they have shared

privileges and/or if any of their privileges are related. 0

167

The O-O paradigm is very suitable (almost natural) for this scheme of role-based
protection in which we have roles authorized to execute specific partitions of some
objects (see figure 7.1). The resulting effect is the distribution of an object’s interface
across roles. Role privilege assignment is the task of the system security function.
It can be defined in terms of privileges and its enforcement during execution is a
mandatory system function. Neither the users nor their processes can carry out the
tasks of a function and the administrative aspects of the privileges that accomplish
the task. In other words, a user cannot alter the system security function even when

this is defined in terms of privileges.

7.3 Roles & The Transaction Model

In section 7.2 we outlined role definitions in terms of object interfaces in the (-
O paradigm. We made the observation that the smallest unit that could possibly
specify such a privilege is an object-method pair. In this section we take the matter
further to define privileges in terms of transactions with the transaction model of
chapter 4 being the framework for our transaction executions. Another important
concern in this section is the well-formedness of the transactions.

The formulation in this section pertains to the correctness of the transformation
procedures and the correctness of the state of the objects they manipulate. Object
state correctness, and hence its validity, depends on its associated integrity con-
straints, a recovery management scheme (e.g. where a transformation must abort)

and concurrency control property to ensure isolation [SD87].

7.3.1 Roles & Transaction Executions

A transactional execution (TE) (also from chapters 3 and 4) is one bounded by a
BEGIN and either a COMMIT or ABORT with the executions bounded by these
being subject to isolation. The execution’s effects after a COMMIT take permanent
effect. Such execution’s effects will be undone or compensated for in the case of an
ABORT. Further, the whole execution will take the database from one correct state
to another. This is a requirement of the ACID properties (see chapter 4) in transaction
models. A TE (see page 46 in chapter 3) is of the form:

168

pre-conditions
IF preconditions then
BEGIN
{ Execute operations ensuring isolation }
IF commit conditions then
COMMIT { operations }
ELSE ABORT ({ operations }
END.

Given that the nature of method execution in an O-O paradigm is a matter for
the system designer, we can define such executions either as transactions or as trans-
actional executions. In the former, a method is itself a transaction while in the latter,
the method executes as part of some transaction. We say the latter method is trans-
actional. Hence like the object interface (Ol) of the previous section, we can define
a transactional object interface (TOI} for objects in the database as being an inter-
face in which every interface partition -= a transaction or is transactional. An object
which is accessible only via transactions or transactional executions is said to have a
transactional interface. An object that is partially accessible via a transactions has a
partial transac’ioncl interface and one that is not transactionally accessible is said to

have a non-transactional interface. Formally a transactional interface is defined as:

Definition 7.5 Transactional Object Interface (TOI): An object interface in which

all the methods are either transactions or are only in transactional executions. O

Definition 7.5 *nplies every method associated with such an interface has trans-
action properties. Consequently, the object itself may be viewed as “transactional”
in that all operations on it are either transactions or transactional executions. Thus
there will be no operation that will “mess” up the object with such a1 interface.

From definition 7.5 we define a transactional privilege (to-privilege) and a trans-

actional role (to-role).

Definition 7.6 to-privilege: A to-privilege is a pair (x,part(TOI(x)) where x refers to
an object (resource) and part(TOI(x)) is some partition of the transactional interface
of x. o

Definition 7.7 to-role: A to-role is a named collection of to-privileges, i.e.
to-role = (to-rname,{---,toint,,.---}) where each of the toint,; is of the form

169

part;(TOI(o,)) and an object o, can be accessed via the respective transactional
partition { - - ,toint, ;,-- -} through the to-role. a
For the rest of this chapter we shall be refetring to definitions 7.6 and 7.7 when
we talk about privileges and roles, respectively.
Our formulation is intended to me-:t the constrained data item (CDI) requirements
of the Clark and Wilson model in which all CDI accesses must be WFTs. We impose
the following constraint:

Constraint 7.1 Constrained Data Item Access Constraint: All CDls must have only

transactional interfaces. 0

Constraint 7.1 implies that all CDI classes and their subclasces must have transac-
tional interfaces. Every CDI's interface and all its partitions must be transactional.’
Observe the effect of this imposition. It ensures that the database, if it meets the
pre-conditions of an execution, will be left in a correct state after the execution. The
pre-conditions ensure that boih the database and the TP are in a correct state. Pre-
conditions designate the fact that when they are met,they guarantee the associated
post conditions. This way the TP is assured to execute correctly and hence leave the
database in a correct state.

In our formulations, the post conditions are the transaction’s commit condilions.
These ensure that only correct executions will have durable effect on the database.
Transactions are aborted when these conditions are not met. Effects of aborted
executions are undone or compensated for accordingly. Both undo and execution
compensation are assured to leave the database in a correct state,

An important observation to make is that since transactional executions are hased
on the 0-O method invocation scheme, they can be complex and can be nested to an
arbitrary level. Each transaction execution in our formulation assumes such a complex
environment in which every such execution is a node in a transaction execution tree
(see figure 4.1).

7.3.2 Transaction Execution Well-Formedness

Section 7.3.1 outlined role definitions in terms of transaction executions. This sec-
tion demonstrates the well-formedness of these executions. Well-formedness is a key
tequirement of the Clark . nd Wilson model, hence showing the well-formedness of

executions is a step towards satisfying the requirements of the model.

indeed, this is the case from chapter 3 and is made here for the purpose of emphasis.

170

The concept of well-formed transactions requires that users manipulate data only
in prescribed ways; users cannot manipulate data in an arbitrarily manner [CW87).
Further, every manipulation must not only be prescribed, but also its effects on the
data it manipulates must be recorded in some audit log. Audit information from the
audit log is useful in the reconstruction of the actions on the data, i.e. the history of
the executions on the data. The nature of the audit log entries pertaining to particular
types of objects would depend on the nature of the information necessary to “detect”
any “mistakes” in the manipulation of the object. 5Such information would also be
used to trace the users responsible for the execution. For instance double entry book-
keeping ensures that a balance is kept all the time. The kind of information kept
about objects of this nature would be related to the credits and debits that form the
basis for determining a balance.

In our model, each object is an instance of some class. Hence it can only be
manipulated by the methods defined in the class. The class prescribes the nature of
the manipulation on its instances. Secondly, for instances of the CDI class and its
subclasses, these executions on objects have transactional properties. Thus the: have
permanent atomic effects on the objects. Thirdly, not only does each object track
its history, but also the system’s audit log can be reconstructed from the individual
histories. However, where it is not considered a major expense, such a central log
can be maintained alongside object histories. This will require that every update
of object history will be entered in the system log as well (see further discussion
in section 7.5.2). Finally, since all the executions on CDIs are transactional, their
effects are assured to be atomic, consistent, isolatable and durable past the life of the
execution.

Our transactions execute within the transaction framework of chapter 4 which
include the well-formedness of the executions as outlined in section 2.4.1. An impor-
tant recognition is that at dalabase initialization, all code must be verified to execute
correctly within the requirements of the pre and post conditions. Further, any newly
introduced code is verified only with respect to existing code with which it interacts.
This negates the need to verify the system all over again. The key idea is that to the
extent that a given execution does not interact with other pieces of code, it does not
affect it. Hence if such code were verified at initialization, it need not be verified all
over again. Since all changes on data objects and code are retained in the system'’s
audit trail, any malicious change would not go undetected.

The pre and post conditions that govern execution ensure that with correct input

171

(as specified in the pre conditions) there would be correct output (as specified in the
post conditions). Otherwise, failure to meet any of these means that the execution
will be incorrect and must thus be aborted. Once both the pre and post conditions
are met, the execution can be regarded as correct.

7.4 Users, Roles & Authorizations

An important aspect of information integrity is user authorization [SD87]. We re-
gard user authorization to be mandatory given that no user will access information
without authorization, and that no one user can modify security information per-
taining to oneself. Information access is realized via invocation of transformations.
Therefore, user authorization to information is realized via authorization to system
transformation procedures.

This section addresses the issue of authorizations. In particular we shall concen-
trate on user-role and role-role authorizations. We discuss role-role authorizations

and how they capture role relationships.

7.4.1 User-Role Authorizations

User-role authorization is important in system security administration as it deter-
mines the users’ access rights. A role with a defined user-role authorization, in the
form of a role access control list, is; termed secure (see definitions 5.12 and 5.13). In
a secure system, it is required that all roles be secure roles. In other words if we have
a universal set of roles R and a universal set of secure roles SCR, the two sets must

be equivalent for a secure system. This is captured by the following constraint:

Constraint 7.2 Secure Role Constraint: In a secure system, every role must be se-
cure. 0

The effect of user role authorization is to generate relations of the form:

(rname, {(0;,m;),---},{-*-,idp, - -}) where rname is the role name, o, the object,
m; is a method and {--+,id,, -} is the access control list.

From a user’s point of view, user-role authorization determines the user’s a:cess
rights in a system. The cumulative access rights of such a user in a system, termed
a user’s access scope, determines what a user can access in the systemn. It determines
the nature of information at the reach of the user and the nature of access (read,

172

update, etc.). The scope is determined by the union of all privileges authorized to
the user.
To compute a user role authorizatior. scope, we must generate all roles to which

the user is authorized. These are termed the user’s role scope. Formally:

Definition 7.8 User Role Scope (I{RS): A user’s Role Scope (URS) is the set of all

roles that the user is authorized to. Given a user identifier and the set of secure

roles in a system, a user role scope function enurerates all roles to which the user is
authorized. 0O

Given an authorization scheme and some id € 1D we can generate a user’s autho-
rization scope of the form: (id,(rname,,rnames,---)). To generate this list of roles
we enumerate all those roles to which the user is authorized. Let YRS be the function
that enumerates the roles associated with a given user i.e. URS : ID x SCR +» 25¢R,

URS(id,SCR) = U (r)
(VrESCR)A(id€r.racl)

The condition id € r.racl “filters” out the roles to which the user is authorized.

A user privilege authorization scope is the set of all privileges to which the user
is authorized. It is an enumeration of all privileges in the roles to which the user is

authorized. Formally:

Definition 7.9 User Privilege Authorization Scope (UPS): A user’s privilege autho-

rization scope is the set of all privileges accessible to the user via the roles authorized

to the user. a
Having generated the user role authorization scope, we can enumerate their privi-

leges to generate, for a particular user, a relation of the form (id,(m;, (01,02, - *)), - *).
Let UPS be a user privilege authorization scope function. It can be seen as a

mapping

UPS : ID x SCR — PV. It enumerates the privileges associated with .ome user.

Hence given id € ID and some r € SCR, we have

UPS(id.SCR) = U ¥(r)
{(VreSCR)A(id€r.racl)

Given a system with users ID, secure roles SCR, objects O and methods M, an

access strategy ® can be defined as:

Definition 7.10 Access Ctrategy: An access strategy ® is of the form:
®:ID x SCR x O x M+ {true, false}. o

173

If &, is an access strategy of the form specified in definition 7.10 involving td €
ID,r € SCR,0 € O and m € M we have:

true <= id € r.racl
®,(id,r,o,m) = A (o, m) € r.pset
false Otherwise

The condition id € r.racl (user-role authorization) ensures that the current
user is authorized to execute the role while (0, m) € r.pset ensures that there is an
associated privilege defined in the role; (o, m) can be defined as any subset of the
authorized interface in the role.

Example 7.2 Consider the cheque process of example 7.1 and let the cheque object
have the same methods clerk and supervisor. To associate these methods with roles,
define two roles, CLRK and SPV, corresponding to clerks and supervisors, respec-
tively. CLRK and SPV are then authorized to execute methods clerk and supervisor,
respectively. This leads to role definitions of the form: (SPV,{(cheque,supervisor)})
and (CLRK, {(cheque,clerk)}) which effectively distributes the cheque object interface
to two roles.

Next, individuals are authorized to execute the roles. For instance (say) John
and Margaret are authorized for the CLRK and SPV, respectively. The roles with
their access control lists now look like: (SPV,{(cheque,supervisor)}, {Margaret}) and
(CLRK, {(cheque,clerk)},{John}). (o}

7.4.2 Roles, Explicit & Implicit Privileges

Roles are assigned privileges which determine what a user (or user processes) can do
in executing in that role within the system. Privileges are determined ezplicitly (i.e.
directly, e.g. by assignment) or implicitly (i.e. indirectly, e.g. by inference). Explicit
role privileges are defined with the role specification while implicit role privileges are
computed from the junior list of the role. The effective role privileges of a given role
is the union of its direct and indirect role privileges.

In chapter 6 we saw that from role relationships we can have partial privilege
relationships between roles. For instance if we have A—B it means ¥(A) C ¥(B). In
this case A’s privileges are implicitly available to B. Moreover, the effective privileges
of B are the union of B’s direct privileges and those of A, i.e. ¥(B) = Direct(B)U
W(A). This privilege relationship can be seen as the case of authorization of B to A’y
privileges.

174

Consequently, if we have some path in our role graph (see chapter 6) of the form
A—B—C, we have a privilege relationship of the form: ¥(A) € ¥(B) C ¥(C). In
this case both A’s and B’s privileges are implicitly available to C.

Example 7.3 Let Direct(¥(A)) = {1}, Direct(¥(B)) = {2,3} and Direct(¥(C)) = {4, 5,6}.
Moreover, it is also given that A—~B—C. Then ¥(A) = {1}, %(B) = {1,2,3} and ¥(C) =
{1,2,3,4,5,6}. a

Let < denote the precedence relationship between two roles in a given path --- —

r; — r, — -, and r; < r, when there is a path of the form:

.._..r'_...._.’rj.._.)...

For a given role r in the path, we have:

¥(r)= U ¥(r)

ryXr

7.5 Roles & Separation of Duty

A major property of the Clark and Wilson model is the requirement for the en-
forcement of separation of duty, a principle that requires that users that have been
involved in the procedure are barred from further participation in the execution of
the same procedure. Thus a clerk that has been involved in the draft of a voucher
cannot approve the same voucher in the supervisor role. The same principle would
bar a manager that acted in the position of a clerk from approving the same voucher.
Separation of duty is meant to limit conflict of interest and guard against fraud by
dispersing authority among different individuals. For instance no single user should
draft, approve and effect payment with respect to a cheque. This section will address
the issue of separation of duty in the context of our formulation. We demonstrate
that using the O-O model principles of chapter 3 and the role organization structure

of chapter 6, we can enforce separation of duty.

7.5.1 Separation of Duty & The O-O Paradigm

Separation of duty is a major requirement for commercial database integrity [CW87,
Kar88, Lee88, San91, Tho91]%.

1Others are requirements such as all database items being constrained data items (CDIs), ihat
only certified transformation procedures (TPs) manipulate the CDls, that the TPs are certified to

175

Separation of duty is applied where several people (or processes acting on their
behalf) are required to perform a given ta.k. Such a task would be broken intu sub-
parts which are then assigned to different people. Every individual is then required to
perform (say) only one of the subtasks with the restriction that none of the individuals
can perform more than one subtask. From example 7.1, separation of duty will bar a
single individual from updating both SIGN_1 and SIGN_2.

The main idea of separation of duty is to ensure that no individual can initiate an
action, approve the same action and (possibly) benefit from the action. Separation
of duty aims to spread the responsibility for various processing steps across different
individuals (or their proxies) and achieve dispersion of of authority across individuals
that access database information.

Among the enforcement requirements in the Clark & Wilson Model [CW87] is that
SSOs must associate TPs with users and the associated CDIs to form relationships
of the form: (UID,(TP/CDI,,CDI,,---)),---). Here UID is the user identity, TP
is the transformation procedure in question and CD] is the related constrained data

item.

To demonstrate that our formulation meets this requirement observe that:

1. Since every role in the database is secure, i.c. it has an associated access control

list of the form {:--,idy,---}, where the id,s are the identifiers of the users

authorized to the role.?
2. User authorizations to system information are of the form:

(rname, {(0i,m;), -}, {---,idp,---})

with rname being the role r> me, o; the object, m, is a method and {- - -, id,, - - -}

is the role’s access control list (see page 173).

3. A user’s privilege authorization scope (see definition 7.9) computes the privileges
authorized to a user. These ar - all the privileges specified in the roles to which a
given the user is authorized. In our O-O environment, these are object-iethod
pairs, i.e. (0;,m,). Hence for a given user, an authorization scope is of the form

(id,{- "$(0iv mj),‘ "}-

take CDIs from one correct state to another, that there are verification procedures (1VPs) that
assure the integri*y of code which manipulates the CDls, etc. In general, all data transformations
are required to } .. designe.] as well-formed transactions (WFTs) (see section 2.4).

3Note that neither a user responsible for the administration of role authorizations nor one that
designs/implements the privileges associated with a role can be be authorized to the role,

176

In the O-O paradigm, objects with the same behaviour and structure are han-
dled as a class. Since methods are defined in the class (see chapter 3), they will
operate on all instances of the class. Hence V(mg,0,),(mg,0;), - in a user's
authorization scope, if 0,, 0,, - - - belong to the same class, we can express the re-
lationship as (m,, (01, 02, - - -)). Consequently, a user authorization scope can be
expressed as (id, {-- - (m,.(0,,0k,---)),---}). This relationship is clearly similar
to the one suggested in the Clark & Wilson model and quoted above.

4. Thus given an authorization scheme for a given system and the system users, we
can compute, for each user, the associated authorization scope. Further, given
that no user, other than those authorized, can access system privileges, the user
authorization scope for each valid user must be unique for a given authoriza-
tion scheme. Indeed, given that the enforcement of security is mandatory, no

unauthorized user can execute a privilege in the system.

7.5.2 Separation of Duty & Object Histories

Another key requirement of separation of duty is the use of audit information to
ensure that before subjects are allowed execution, they have not participate] in the
processing before. However, as Karger (Kar88] observes, searching for such informa-
tion in the audit record can be very costly: there is need to avail this information in a
form and “location” that makes for its ready availability. In our case, we use object
history (see chapter 3) for this purpose. In our O-O model, object history is part of
object state and hence part of the object itself. This enables each object (at least
the CDIs) in the database to keep track of its own audit information. We introduce
a history attribute of the object to record audit information.

The class structure must be defined to reflect the desired object structure to
ensure that objects (at least those that require separation of duty) keep track of their
histories. In our case, one of the constraints of the CDI class and its subclasses is
that objects must keep track of their history. The history and its form depends on
the processing constraints required for the particular objects. It has a value which
is the audit information required for its processing. In defining a class, ‘hen, we not.
only specify that there be a history attribute but also its nature, i.e. the domain of
its value. In general, such a value will be a sequence of events in which the nature of
the event is determined from processing requirements.

This history provides no more information than can be found in the audit trail;

177

nor does it preclude the storage of the same information in the system audit record. It
merely avails the same information in a form that supports performance imnprovement.
Karger [Kar88] makes a similar observation.

To enforce separation of duty requires non-participation in the current history
which is necessary, but not sufficient, to guarantee access at any execution stage
[Kar88]. The final decision on whether or not to allow access must depend on autho-
rization and any constraints imposed on access that may take into account both the
history and any other required information to make such a decision. Karger [Kar88]
makes similar observations regarding token capabilities for control of object access.

Our refined access strategy retains definition 7.10 but imposes a separation of

duty criterion.
With id € ID,r € R,0 € O and m € M we have:

true <= id € r.racl
AVe; € o.Hist, id # e;.uid
A (o, m) € r.pset

false Otherwise

®,(id,r,0,m) =

The condition id # e;.uid,Ve; € o.Hist ensures prior non-participation for the
current user in any previous event on the object.

For this history to be useful, method executions must either update the history
attribute or be part of some transaction whose execution updates the attribute. Pro-
cessing constraints must ensure that each permitted (or attempted) execution on the
object utilizes the history and updates it.

Example 7.4 Cousider the cheque object of examples 3.1, 7.1 and 7.2 which, us de-
fined, does not keep track of execution history. We introduce another attribute (HIST),
to record audit information associated with the object. We redefine the type structure
of page 39. The redefined class structure of CHEQUE is:

Name: CHEQUE; /* Name of the class */
Structure: { /* The Structure of its instances */
PAYEE: String,
PAYEE.D: String,
AMOUNT: Currency,
SIGN.1: String,
SIGN_2: String
HIST: SequenceofEvents /* Attribute for object history */
b
Methods: { clerk,supervisor } /* Method List for the Class */

1R

Further, method executions must be redesigned to update this attribute on at-
tempted execution.

Begin {Some Trabsactional Execution}

on invocation of method (m); /* m could also be some TE */
check:= &;(id, r,0.m);
if check then
begin
execute method;

update(o.HIST)
end
else update(o.HIST)
End {Some Transactional Execution}

a]

In example 7.4, method execution is part of a transactional process that reads
history information, uses it along with authorization information and updates the
history. It is important that such executions be transactional in nature: the whole
process must be executed atom:cally, it must be correct, it must execute in isolation
with respect to shared data and its effects must be durable beyond the execution. This
illustration is similar to what Ravt Sandhu [San91] terms transactional czpressions.
We do not address the manner in which these executions are structured and processed.
It suffices (for now) to sa, that it must be transactional in nature.

Notice also that our formulation realizes dynamic separation of duty [NP90] in
that all we care about is that the current access attempt is authorized and that the
said user’s participation is not in the object history.

Each object as seen from the previous section, keeps track of its (access) history,
the nature of which depends on the application and the nature of the audit information
necessary for the system audit function as it relates to the object. Object history, as
defined in chapter 3, is a sequence of events and collectively, object histories constitute
system audit information. A system audit trail can be seen as a sequence of events
ordered acco-ding to time. Theoretically, this can be derived by ordering events
associated with objects in the system by the time at which they occurred.

However, this may turn out to be a very expensive exercise in that all object
histories would have to be ordered. To reduce the task of generating systemn audit

information, it is possible to have the system audit updated along with the update of

179

object history. The choice of whether or not to do t ..; simultaneously would depend
on the application and the cost of accessing and updating the audit trail.

The systemn audit trail, like a bank account, has unbounded history. The length of
the audit trail “history” to be kept would also depend on how long certain information
must kept and would be system-specific.

7.5.3 Separation of Duty & The Role Graph

In this section we discuss how the role graph of section 6.5.2 can be used to enforce
the principle of separation of duty [CW87, San91]. Separation of duty requires that
subtasks of a task be executed by different individuais. This way, barring collusion,
separation of duty guards against fraud. Hence an individual who has executed
some subtask of a given execution sequence will be barred from executing subsequent
subtasks in the sequence. In our formulation, object history is useful in determining
which individuals have participated in the execution sequence.

To enforce separation of duty using our role graph of chapter 6, we use the concept
of paths (see definition 6.9) from the role graph model. For a given path, we associate
some execution sequence such that subtasks are associated with the lowest ranking
role at which they can be executed. For instance given a path A~B—C—D and
some task T with execution sequence t, < t; < t3 < t,, we can map this sequence
to the path. Hence A, B, C and D will be associated with subtasks ¢,,%;,¢; and ¢,,
respectively. Accordingly, we shall directly assign privileges associated with ¢;,15,13
and t4 to A, B, C and D, with corresponding methods p, q, r, and s, respectively (see
figure 7.2).

From the semantics of the — role relationship, it follows that A, B, C and D can
execute subtasks {t;}, {t1, 22}, {t1, 2,3} and {¢;,13, 13,14}, respectively.

To model the sequence of execution steps, we use the concept of authority paths
and keep track of which users have executed in roles with privileges pertaining to a
given set of subtasks. Using this history as well as the role privileges, we can make
assertions to govern continued execution of the processing. We term separation of
duty associated with some path of execution as in-path separation of duty. Formally:

Definition 7.11 In-Path Separation of Duty: Separation of duty is the enforcement

of separation of duty along a given processing path. o
Where the order of execution is important, we must impose a condition that
ensures adherence to such order. Suppose the sequence of tasks is represented T =

o3
i

180

Reb D mathed o
Rels C mabhed #
Rels B mathad 4
Rels A mathed p

SupA Segd SepC Sepd OO0 o,

npa(Rels)

Figure 7.2: Distribution of Object Interface

(t; <tz < ---t,). Let @3 be such an access strategy (see definition 7.10) and let
ideID,reR,oeO,me MandteT. Then:

®3(id,r,0,m,t) = {

[true <= id € r.racl

AVe; € o.Hist, id # e;.uid
A (o, m) € r.pset

AV(t; <t) € T, Executed(t;)

| false Otherwise

Here t is the current task and ¢, is some task preceding t in the sequenci' 7 and

Ezecuted(t;) is a Boolean that returns true when task ¢; has been executed.

7.6 Conflict of Int

Conflict of interest can be seen
separation of duty usually refer

erest & The Role Graph

as a form of separation of duty. However, while
s to some given task, conflict of interest refers to

separate tasks. This section formally presents the idea of conflict of interest and

formulates a means of ensuring safeguards against it. We then proceed to demonstrate

how we model it within our role

organization model.

181

7.6.1 Roles & Conflict of Interest

An important requirement in commercial database integrity is managing conflict of
interest. Conflict of interest is determined from an organization’s conflict of interest
policy which is part of an overall security policy. Conflict of interest exists between
two roles if it is specified or implied so in the policy. For instance in the stock ex-
change there zre regulations (with a force of law) that bar individuals with inside
information regarding particular enterprises from trading in stocks of the‘san;e en-
terprises. Another example is our cheque and voucher tasks that would be in conflict
should an individual responsible for approving a voucher also be the payee.

The principle of conflict of interest is applied where there is potential for conflict.
Where it is employed, it is aimed at forestalling the potential negative impact of such
a conflict of interest. To ensure there is no conflict, activities that conflict must be
isolated and different individuals authorized to execute those operations which may
conflict. In essence, this separates activities in conflict and ensures their separate
processing. This differentiation of tasks and their separate processing has the result
of reducing the potential for conflict.* Guarding against conflict of interest may
be seen as a form of separation of duty. However, the use of the term applies to
different activities whereas separation of duty pertains to sub-parts of one activity.
For purposes of this work, we use the two terms in the contexts specified in this
paragraph.

Two roles conflict if one user executing the two will violate the conflict of interest
policy of a given security policy. Conflict thus is a matter of the system security
policy. Such a policy would designate what activities conflict with which ones and
ensure that assigning privileges to roles and defining role relationships do not cause
conflict. Given a user u and roles r;, r; and a security policy P, conflict can be defined

as:

Definition 7.12 Role Conflict: Role r; conflicts with role r; if a given user (u €
ri.racl) A (r € rj.racl) while r; and r; have been declared to conflict by P. a
We term this the conflict of interest constraint: that no single user or group
is authorized to two roles that conflict. Formally, we can define conflict
The effect of this constraint is to partition roles into what we refer to as role
conflicting groups. A role conflicting group, CG, is a collection of roles without

4We say potential since, like security, conflict of interest is & human problem. Thus it may not
be feasible to eliminate it totally.

182

conflict of interest among them. A user authorized to execute different roles in the
group does not violate the conflict of interest constraint (see property 7.1). Formally,
a conflicting group is defined as:

Definition 7.13 Role Conflicting Group. CG: A role conflicting group, CG, is a col-
lection of roles among which there is no conflict of interest, i.c. Vr,,r, € CG, there is
no conflict while for VYr, € CG, and Vr, € CG; there is conflict since CG, # CG;. O

In other words, given the universal set of roles R, the conflict of interest rela-

tionship T partitions this universal set into non-conflicting sets. It is a mapping
T : R~ CG where CG = {CG,,---.CG,} is a finite universal set resulting from the
conflict relationship T. A given role in the system belongs to exactly one conflicting
group:

Constraint 7.3 Role Conflict of Interest Constraint: To ensure no conflict of inter-
est, no role in a system can belong to more than one conflicting group. o

It follows that for any two conflicting groups CG;,CG,,CG;, N CG, = 8. Conse-
quently, a conflict of interest definition scheme is correct if and only if constraint 7.3
is observed.

A role authorization scheme in a system associates users with authorized roles.
Without regard for conflict of interest such a scheme would be of the form Q,; :
R x ID = R x 2X? where R is the finite universal set of roles and ID the finite set
of user identifiers. This scheme can be seen as generating an access control list for
each role. An access control list is an element of the power set of the set ID (see
definition 3.12).

Where a conflict of interest relationship T is defined, it must form part of the
input for specifying access control to easure that the authorization does not violate
the conflict of interest property (see property 7.1 below). Hence sutch a scheme would
be of the form: £ : R x T x ID = R x 2% where R and ID remain as specified
before and T is the conflict of interest relationship.

Propc.ty 7.1 Conflict of Interest Property: Define @ : R x CG x ID s R x 270

be some scheme that maps a given set of roles R, conflicting groups CG and user

identifiers ID to role-identier associations R x 2¥P. Let r, and r, be some roles in
conflicting groups CG; and CG,, respectively, and both to which some user with user
with user identifier id; is authorized where some conflicting relationship Y holds. The

mapping 0 is correct with respect to conflict of interest if and only if the two roles

183

belong to the same conflicting group, i.e. CG; = CG,. We say the authorization
scheme Q has the conflict of interest property.]

An authorization scheme 2 : R x T x ID = R x 27? is secure with respect to
conflict of interest if and only if no single user or group is authorized to roles belonging

to two or more conflicting groups.

Constraint 7.4 User Conflict of Interest Copstraint: No user can execute two roles

from different conflicting groups. o

Given a set of roles R, a conflict relationship Y, a set of user identifiers and an
authorization scheme 2, an important question to ask is whether Q) preserves the con-
flict of interest property. In other words, is there a user id € ID with authorizations
to two or more roles from different conflicting groups?

To solve this we use the concept of role authorizition scope and the conflicting
groups to ensure that no user is authorized to two or more roles in different conflicting
groups. A user role authorization scope is the set of all roles the user is authorized

to.

Definition 7.14 User R~le Authorization Scope: A user’s role authorization scope

is the set of all roles authorized to the user. Q
Algorithm 7.1 of figure 7.3 determines whether or not a given Authorization
scheme has conflict of interest.

We determine the run time of the algorithm as follows

¢ Computation of CG takes O(m x n) with m roles and n conflicting groups.

¢ Computation of authorization scope AS takes O(m x p) for m roles and p users
o The rest of the algorithm takes O(m x p).

Hence we have overall performance of O(m x n) + O(m x p). In the general case
the number of riles is much smaller than the number of users, i.e. m < pand n < m.
"herefore we O(m x n) + O(m x p) £ O(p x p) + O(p x p) < O(p?).

7.6.2 The Role Graph & Conflict of Interest

The basis of the role graph model is privilege sharing. It follows that roles with shared
privileges have a likelihood of being authorized for the same user with the imposition
of separation of duty. Hence such roles must be in the same conflict group. Hence

184

Algorithm 7.1 Determination of Conflict of Interest:

. Use the conflict relationship to generate the conflicting groups, i.e. T : R — C@,

. Identify authorized users. i.e. the set of users ID C ID and for all id € I D generate a role
authorization scope. This results in pairs of the form (id,as) = (id, {r\.---.r,}) where id
is a user identifier, as € AS and as = {ry,---,r,} is its associated role authorization scope.
AS = Uas C 2R, on the other hand, is the set of all authorization scopes in the system,

. For each authorization scope as = {r,,---,7,} and for each role r € as, find the associated
conflicting group.

. There is a conflict of interest violation if and only if some authorization scope has roles
belonging to more than one conflicting group. There is no conflict of interest if for each role
authorization scope, every role belongs to the same conflict group. In other words,
YCG,,CG, € CG and Vas € AS if as C CG, then as,NCGy =8, for q # p.

Figure 7.3: Conflict of Interest Algorithm

such roles with no conflict of interest can be seen as sharing privileges. The conflict
of interest, on the other hand, precludes a user from executing two roles in different
conflicting groups. Consequently, such roles, using our formulation must not share
privileges. It follows that conflicting roles must be independent (see definition 6.13
on page 137).

Theorem 7.1 Conflicting Roles & Role Independence: Conflicting roles must be in-

dependent. @]

Proof: From definition 6.13, two roles, r; and r;, are independent if and only if r; - 7,
= {MinRole}. We shall prove this by contradiction.

Assume that the two roles conflict but are not independent, i.e. 3{ri} # {MinRole}
such that r, ® r, = {r,}. Consequently, a user authorized to one of the roles can ex-
ecute all the privileges of some r € {r.}. And since for such r, ¥(r) C ¥(r;) and
¥(r) € W(r;), it follows that the user will also be able to partially execute the other role,
i.e. those privileges that are common to the two. However, this implies a violation of the
conflict of interest principle. It then follows that for the two roles to be conflict-free, they
must be independent. 0

183

Theorem 7.1 holds as stated but not :n the other direction. Hence independent
roles may or may not ccrflict. In other words, even when the roles do not share
privileges, they may or may not conflict. This is because the conflict relationship
I is system defined and derives from the system’s security policy. It thus requires
that where roles conflict, then they must be independent. However, we can have
independent roles that do not conflict where such conflict is not specified.

Therefore, from we have that conflicting roles must be independent and indepen-
dent roles may or may not conflict.

Our task is to utilize the role graph model to manage conflict of interest and
we do this by using the concept of role independence (see section 6.5.6). We aim
at incorporating the conflict of interest constraints into the role graph model with
theorem 7.1 being the guiding principle. This implies that each conflicting group
can be associated with some independent partition of the role graph which has a
direct relationship with MaxRole in the model. By ensuring that no user/group is
authorized to roles in two or more independent partitions, we effectively preserve the
conflict of interest property.

One can also use role independence to see whether there would be conflict of
interest when given the role graph organization of roles. To do so, one must show
tha* there exists one role in one conflicting group which is not independent of another
role in another conflicting group. For n conflicting groups each with at most m roles
we have a worst case performance of O(m x n) which is O(n?) in the worst case.
This follows from the fact that if some role X is independent of another role Y, then
Y is also independent of X.

7.7 Satisfying Commercial Security Requirements

The foregoing sections have outlined a formulation of integrity preservation with
respect to the Clark and Wilson model [CW87]. While the intention has been to
satis{ly the re-juirements of the model, there has been no explicit demonstration how
specific requirements of the model are met. In this section we address, in turn, each of
the properties of the model and demonstrate how it is satisfied within our formulation.

186

7.7.1 Meeting Model Requirements

The model specifies two type: of properties: certification and enforcement. We shall
address these properties in the order in which they are presented in [CW87].

C1: All IVPs must ensure that all CDIs are in valid states at the time the
IVP is ren

IVPs, essentially, act as audit programs to ensure the correctness and hence the
integrity of CDIs. They serve to verify the effects of the TPs. For example in
double-entry book keeping procedures an IVP would verify that for every credit,
there is a corresponding debit and that any required balances are maintained. In our
formulation, IVPs are designed to be transactional executions. They commit when
correctness criteria are met for the associated CDls. They abort whenever there is
an anomaly and draw the attention of a user to that effect.

Like TPs, IVPs are designed with pre and post conditions which capture the
integrity related conditions of the associated CDIs. In their execution, whenever
IVPs return a negative results (i.e. an abort) they must return the nature of the

error whenever the associated correctness requirements are not met.

C2: All TPs must be certified to be valid. That is, they must take a CDI
from a valid state, given that it is in a valid state to begin with. For each
TP, and each set of CDIs that it may manipulate, the security officer must
specify a “relation” which defines that execution. A relation is thus of the
form: (TP,,(CDI,,CDl,,---)), where the list of CDIs defines a particular
set of arguments for which the TP had been certified.

Operations, in our formulation, are defined using O-O principles. These, in turn,
when invoked, operate on instances of the class in which they are defined. Let O
be the set of instances of some class ¢ with a set of methods M. It follows that
Vm € M and Vo € O, we have a relationship of the form (m, o) where method m
operates on object o in some prescribed manner. Hence if we let O = {0y, -+, 04}
we have, for each method m, a relationship of the form (m, {0y, -, 0,}), i.e. method
m operates only on the set of objects O and no other objects. This clearly defines
a unique relationship between a method and instances of a class and is similar to
the relationship specified in C2 above. The set of instances of the class specify a
particular set of arguments that the method may manipulate. Moreover, the manner

187

in which the method may manipulate the given set of instances is prescribed by the
method definition.

Our formulation assures that each certified transformation procedure executed is
guaranteed to obtain its input from named sources [GMP92] with such sources being
the instances of the class in which the transformation is defined. The object undergoes
a transformation as prescribed in the transformation definition within the class.

To ensure that each method leaves the objects it manipulates in a valid state,
each method has associated pre and post conditions that must be satisfied before its
effects are committed. These pre and post conditions are designed in such a manner
which ensures the validity of the objects they manipulate. Consider a method that
debits some account object which takes in the amount of debit, the current balance
of the account and returns a new current balance. Assume that we must maintain a
positive account balance at all the time of existence of an account object. This then
defines the validity of an account. We can have pre-conditions that the (1) current
balance is positive and (2) the current debit amount does not exceed the current
balance in order to maintain a positive balance after update. The post conditions
ensures that the committed action leaves the the associated object in a valid state.
In our case, such a post condition would be that the balance must be positive. In a
nutshell, each TP execution is subject to assertions regarding the condition of the CDI
and the TP itself both before (pre-conditions) and after (post conditions) execution.
Such assertions ensure that all CDI transformations are valid. Moreover, given that
method executions are transactional, we are assured that all committed operations

leave the objects in a valid state.

El: The system must maintain the list of relations specified in rule C2,
and must ensure that the only manipulations of CDI is by a TP, where
the TP is cperating on the CDI as specified in some relation.

Give our O-O approach each object is an instance of some class with speci-
fied methods for manipulation of instances of the class. Hence for some TP; (a
method in our case) we have a relation of the form (TP,(CDI,CDI,,:--)) where
CDI1,,CDI,, - are instances of the same class and TP; is a method defined in the
class. Given the manner of invocation of methods in the O-O paradigm, it is clear that
no TP would manipulate a CDI other than those specified. Moreover, only prescribed
TPs would manipulate any given CDI once invoked. Indeed, given that methods are
invoked by message sending, in a purely 0-O system, no other CDI manipulation is

possible.

E2: The system must maintain the list of relations of the form:
(UIDA(TP(CDL.CDI,,--+)),--)

which relates a user, a TP, and the data objects that TP may reference
on behalf of the user. It must ensure that only executions described in

one of the relations are performed.
In our formulation, each role is secure (see definition 5.13) such that:
Vr € R,3 r.racl={---,id;, - -}
A role authorization generates relations of the form:
(rname, {(0;,m;),-- -}, {---,idp,-++})

(see section 7.5.1). rname is the role name, o, the object, m, is a metl.od and
{---,idp,- -} is the access control list.

Given an authorization scheme and some id € ID we can generate a user's
role authorization scope (the set of all roles to which the user is authorized) as:
(id.(rname,,rname,, - - -)). Substituting each role with its definition of the privilege
list and rearranging the result yields a relation of the form (id,(m,,(0,,02,--)),---).
Since we regard methods as TPs and the objects o,s as CDIs, we have a similar

relationship to that required by E2.

The list of relations in E2 must be certified to meet the the separation of

duty requirement.

Our objects (at least those that require to maintain integrity) keep track of their
histories (see section 7.5.2) in which an access strategy was defined. With id €
ID,re R,0 € O and m € M we have:

[true < id € r.racl
AVe, € 0.Hist, id # e,.uid

®,(id,r,0,m) = <
A (o, m) € r.pset

| false Otherwise

The condition id # e;.uid,%e; € o.Hist ensures prior non-participation for the
current user in any previous event. This effectively imposes separation of duty on
relations specified in E2.

189

£3: The system must authenticate the identity of each user attempting

to execute a TP.

Each method is executed by users authorized to the associated role. Once it is
ascertained that the user is authorized to the role, then such a user can execute any
privilege in the role’s privilege set. From the access strategy above, this authentication

condition is satisfied by the condition id € r.racl.

C4: All TPs must be certified to write to an append-only CDI (the log)
all information necessary to permit the nature of the operation to be

reconstructed.

Objects in our formulation keep track of their histories whose nature is determined
by the application at issue. The nature of the history of an object would be application
specific; it must be relevant information necessary to fulfill an audit function relating
to the object. The object history is an append-only object that cannot be altered
once created.

While it is possible to generate the audit trail by ordering the events in all object
histories in a given system, this clearly would be too expensive to do. Consequently,
it is necessary to update the system audit trail along with object history update (see
section 7.5.2).

Consequently, the object history update operation in example 7.4 would be mod-
ified to appear as follows:

on invocation of method (m)
check:= &,(id,r,0, m);

if check then
begin
execute method;
update(o.HIST);
update(system audit)
end
else update(o.HIST)

Note that, like object history that is application dependent, system audit trail
woul' also be system dependent.

190

C5: Any TP that takes a UDI as an inpui value must be certified to
perform only valid transformations, or else no transformations, for any
possible value of the UDI. The transformation should take the input from
a UDI to a CDI, or the UDI is rejected. Typically, this is an edit program.

E4: Only the agent permitted to certify entities may change the list of
such entities associated with the entities: specifically, those associated
with a TP. An agent that can certify an entity may not have any execute
rights to that entity.

Entity certification, like any activity, is associated with system privileges. These
are defined in some role associated with certification. To execute a TP associated with
certification, an agent must be authorized to the associated role and must satisfy the
access strategy condition specified in section 7.5.1, both in terms of authorization and
separation of duty.

The second condition of this enforcement property is met via the conflict of interest
conditions. Entity certification and execution are clearly conflicting operations and
would belong to different conflicting groups. Since no user can be assigned roles
from different conflicting groups, it follows that no user would be authorized to roles
pertaining to both execute and certification of a given TP.

7.7.2 Security Information Management

Management of security information is as important as ensuring proper authoriza-
tion. Security information management entails the specification and maintenance of
the information pertaining to authorization information and enforcement. Hence role
definition, modification, authorization and all information pertaining to information
access falls under the management of security information. In general, the security
management function can be seen as pertaining to facilitating authorization, autho-
rization information and its administration which facilitates ensuring system security,
anthentication and its accuracy. It involves both the management of associated pieces
of informa.ior. as well as the correctness of their administration.

In our system, the security information is distributed across different roles. The
authorization and execution of a role pertaining to security information is not any
different from that of any role. However, correct emphasis must be placed on the
possibility for conflict. For instance, two roles pertaining to the execution and ad-
ministration of some piece of security information must be treated as conflicting.

191

Hence no one user can be authorized for both the administration and execution of
a given role. Moreover, no user is authorized to specify authorization information
pertaining to the user’s authorization. This strategy then allows us to “watch the
watchers”.

In general, such requirements on the administration of security information is part

of system security policy which is of the form:

1. Every execution must be due to invocation by a duly authenticated and autho-
rized user. Hence every execution must be authorized.

2. Every authorization must be via user-role authorization.
3. Every role must be duly defined in terms of specified privileges.

4. Every privilege in the system must be a valid access modality of the associated
object.

5. Each object must satisfy C-O requirements including being an instance of a
class, accessible via methods of the associated class, must have a unique iden-
tifier, must have history as a component of its object state, etc. Other require-
ments include the specificition of methods as TPs, mandatory object history

update whenever an object is accessed, etc.

6. All specified security constraints must hold at all times in the life of a system.

b

Object access must be subject to separation of duty.
8. The system must enforce a policy that forestalls conflict of interest.

9. The system must meet the requirements of the Clark and Wilson model for

commercial security.

7.8 Summary & Conclusions

This chapter has demonstrated how our formulation meets commercial security re-
quirements outlined in the Clark and Wilson model for integrity. Using an object
model, a transaction, a formal role definition and role organization, we were able to
formulate a scheme that assures commercial integrity.

We used O-O concepts to define roles. Methods associated with a given object are
assigned to different roles and thus offer differentiated access to object information.

192

This strategy which is similar to that of [TDH92], enables us to utilize a given object
interface to manage access control to the object information. Imposing a transaction
framework on the object interface enables us to exploit the transactional properties
of the model of chapter 4 which further allows us to model properties of well-formed
transactions as stipulated in the Clark and Wilson model.

Separation of duty is another major requirement of commercial integrity. In our
formulation, we introduced object histories as one way of aiding in enforcing separa-
tion of duty. Object history is important for determining which user has participated
in any task that is under process. Further, our formulation demonstrates that we
realize the kind of TP-CDI relationships specified in [CW87]. These requirements are
met via the class-instance and class method relationships in the O-O paradigm. Fur-
ther, with respect to the user-TP-CDI relationships, we showed that we can generate
equivalent relationships from user-role authorizations and associations between the
roles and the methods in question.

Using the role graph of chapter 6 we demonstrated how paths in *he graph can be
associated with processing sequences such that a task in the sequence is associated
with some role in a given path. Related to this is what we termed in-path separation
of duty.

Yet another important concept discussed in this chapter is that of conflict of
interest. We formally defined the concept and demonstrated how to guard against
it. We showed how our role graph can be used to determine what role assignments
preserve the conflict of interest property. This property expresses the fact that no role
can belong to two conflicting groups and that no user must be authorized to roles from
different conflicting groups. For instance TP certification and TP execution clearly
must belong to different conflicting groups. Hence no user would be authorized to
roles that involve both certification and execution. It has to be one or the other or
none.

With respect to our role organization model, the conflict of interest requirement
results in a partition of roles into independent groups whose least upper bound and
greatest lower bound are MaxRole and MinRole, respectively. In other words, the
conflicting groups of roles must have no coupling.

Among the key contributions of this chapter include a demonstration of the real-
ization of principles o' the Clark and Wilson model within our formulation. Among
these are the separation of duty using object histories, the generation of TP-CDI

relationships from O-O principles and user-TP-CDI associations via user-role autho-

193

rizations, class-method and class-object associations also from the O-O paradigm.
Object histories are defined as part of object structure in our model while class-
method and class-object relationships are directly defined from class definitions and
method invocation semantics in the O-O paradigm.

Modeling conflict of interest using rcle independence in our role organization model
is another major contribution of this chapter. We formally defined and adapted the
conflict of interest property to our role organization structure.

CHAPTER 8

Summary, Contributions & Future Directions

8.1 Introduction

This thesis focused on commercial security and its realization using O-O princijles.
Commercial security emphasizes the integrity of data and procedures that manipulate
the data objects whereas traditional security (as in government and military systems)
emphasize both secrecy and integrity. In commercial security, the accuracy with
which a bank account is maintained is more important than the secrecy concerning
the value of the account. The basis of the Clark and Wilson model [CW87] which
lays out the properties of commercial integrity, is the operation-data relationship.
Data objects have defined valid states and operations which manipulate the objects
are specified in such a manner that assures valid output state for the objects they
manipulate. The choice of 0-O modeling arises from the observation that there are
unique operation-data relationships defined via the class concept. Hence to ensure
the correct manipulation of data objects we define the methods in such a manner that
they have properties which assure that the objects they manipulate will be guaranteed
to be in valid state.

A substantial portion of this work was devoted to the role concept, its definition
and application in the management of access rights. The role concept is implied in
the Clark and Wilson model, hence we endeavoured to formalize it, demonstrate its
use access rights management as well as the administration of roles. Other interesting
investigations included the demonstration of the strength of role-based protection.

The current chapter will summarize the work covered in this thesis, discuss what
we believe to be the key contributions of this work to research in security and indicate
possible directions for further research. In the next section we summarize the con-
tents of this thesis. Section 8.3 discusses the major contributions of this work while

194

195

section 8.4 addresses outstanding issues for possible investigation in the future.

8.2 Summary

Chapter 1 defined the problem addressed in this work, set out the goals of this thesis
and the manner of tackling the problem to achieve the set goals. The key goal was
the formulation of an O-O based realization of commercial security as specified in
the Clark and Wilsen Model [CW8T7]. Consequently, it was necessary to address the
issues associated with the Clark and Wilson model, albeit as a summary. This formed
the subject of chapter 2.

0-0 principles offer a powerful means of modeling of complex objects and their
behaviour and hence their suitability in our current application. Hence given that
we had intentions of using O-O principles in our formulation of a model for com-
mercial integrity, we developed an object model for the purpose. We found this task
necessary given the lack of a standard O-O model. Indeed, without a model and a
clear definition of the O-O terms used, there would be risk of multiple interpretations.
The specification and formulation of an object model was the subject of chapter 3.
Of particular importance to our problem is the object interfaces and the definition
and manipulation of the database objects. We developed a method execution scheme
which can be represented by a method execution tree. A formal definition of an object
interface was necessary since it is via the interface that objects are manipulated; it is
via this interface that object integrity can be assured. Yet another important tenet
of our object model is the concept of object history that is necessary for assuring
separation of duty in commercial security. It is important that such history be part
of an object.

Given the flexibility of defining and composing of O-O objects, we found it ap-
propriate to incorporate such history within the object structure. As such, every
object (at least all those that must maintain their integrity) must keep track of their
histories. Such history is necessary for enforcing separation of duty; making it part of
the object structure makes it readily available. The aim is to save valuable processing
resources that would be used in extracting the same pieces of information from the
system audit trail.! With the O-O concept of extensibility, it was possible to incor-
porate a new type in the type hierarchy with the desirable properties such as object
histories and transactional interfaces.

' Karger [Kar88] achieves the same via use of token capabilities.

196

From the requirements of the Clark and Wilson model [CW8T7], one requirement
is the transactional execution of transformation procedures. Hence it was necessary
to formulate a transactional model within which all executions would take place.
This was necessary given that there is no standard nested transaction model, just as
there is no standard O-O model. Our transaction mi..el of chapter 4 extended the
0-0 method execution of chapter 3. This involved 'L : incorporation of transactional
properties in the method executions specified along with the object model. The
effect of this was to make object interfaces transactional. This has the advantage
that operations on objects would have all or none of their effects causing change on
the objects they act on. This is important in commercial integrity for instance in
the case of double entry procedures. If only ore such entry were effected, clearly, the
integrity of the data would be questionable. Nesting arose as a natural consequence
of the method execution tree of chapter 3. The formulation of a transaction model
was the subject of chapter 4.

The role concept is an integral part of commercial security and was the subject
of chapter 5. From the related work. there i< no formal notion of the role concept
(except perhaps Baldwin’s [Bal90} named protection domains). Consequently, we
found it necessary to define it formally. Roles are defined as coliections of privileges.
Hence a formal privilege definition was necessary. Other issues discussed with respect
to role formalization, were the advantages of using role-based protection which are
mainly associated with flexibility in access rights administration. The shortcoming of
the approach lies in the complexity associated with the analysis of the implications of
privilege assignments. A formal role organization scheme simplifies this complexity a
great deal.

In studying roles and their application to role-based protection, we went beyond
mere role definition in order to understand its strengths. As such we formulated an
information flow scheme based on roles. In this scheme we proposed a methodology
that would ensure that roles defined in a system would not violate system security
as specified in the security policy. The approach ensures that any flows resulting
from role definition do not contravene the information flow scheme derived from the
security policy. The solution chosen uses graph theory and in particular the subgraph
isomorphism strategy for determining role definition consistency with a given security
policy. This yields a complexity of O(n?) where n is the number of roles in the system.

Yet another important issue addressed with respect to roles and traditional pro-

tection schemes is the application of roles to realize traditional mandatory access

197

control. Using information flow analysis strategies, we demonstrated that role-based
protection can emulate mandatory access control. By considering role update and
read scopes, we formulated rules that will ensure that mandatury access control-like
security can be achieved. In doing so we demonstrated that role-based protection
approaches to system protection can be comparable to traditional schemes (in this
case mandatory access control).

As hinted earlier a formal role organization scheme can ease the complexity of ac-
cess rights administration. Role organization was the subject of chapter 6. The basis
of the role organization model is role relationships and by examining role definition
and examining these basic role relationships, we were able to extract preperties that
must be ensured in a role organization model. Among these are the acyclic nature
of the graph model that represents role organization and the privilege monotonicity
property for roles in any path in such a graph. Along with the role organization we
proposed algorithms for role administration in role-based schemes. These algorithms
could be used to realize a role management tool which preserves the properties of the
role organization model.

Chapter 7 demonstrated the realization of commercial integrity within our formu-
lation. Using the object model of chapter 3, the transaction model of chapter 4, role
definition and role organization model of chapter 5, we were able to offer a formulation
which realizes commercial security as per [CW87].

Chapter 7 also addressed user-role authorizations, role-privileges authorizations
and their means realizing access control. We demonstrated the relationships between
constrained data items, transformation procedures and system users. We showed how
relationships specified for commercial integrity can be computed from those specified
via user-role and role-privilege authorizations. Another important aspect addressed
was the use of object histories in enforcing separation of duty.

Conflict of interest was also discussed and a distinction was made from separation
of duty. Using the role organization model, we demonstrated a means of guarding
against conflict. This led to the concept of tole groups and whether or not they
conflict. Conflicting roles must be associated with different groups and must be
independent of each other in the role organization model. Indeed, conflicting groups
can be seen as partitions of the role organization model into independent groups of

roles.

198
8.3 Key Contributions

The original goals included formulating commercial integrity using O-O concepts.
However, as we have shown in the summary, this work also encompassed other as-
sociated concepts such as roles definition and organization, information flow analysis
and roles as well as emulation of mandatory access control in role-based protection
systems. This section will summarize what, in our view, are the major contributions
of this research. We shall enumerate them in no specific order of merit.

1. Formalized the Role Concept:

The literature has no formal role definition. The term role has been used widely
but its context varies as widely as its usage (see for example [RWBKY1, San91,
Tho91, DM89, Bal90]) leading Baldwin {Bal90] to choose the namcd protection
domain in order to avoid potential confusion. Therefore, we believe that a
formalization of the role concept will go a long way to clear up this apparent
confusion. This work presented a formal definition of what we mean by role. In
doing so, we used another important concept whose formalization we realized

as well. Accordingly, we defined the term privilege.

A privilege was defined as a pair: an object and an access mode. It specified
what can be done by a user authorized to the use of the privilege. Our privilege
definition is general enough to be subjected to any application specific security
policies. For instance a capability is a special case of a privilege where a user can
copy and distribute the capability according to need, albeit with no possibility of
altering such a capability. The flexible nature of the privilege allows us to define
it in any suitable form based on application needs. As an example, the definition
of privilege on the basis of O-O object interface is a direct consequence of its
rather loose definition. In a word, the stringency of conditions that determine

the nature of a privilege can be varied to suit application requirements.

Having defined a privilege, we defined a role as a collection of privileges. The
flexible nature of privileges means that we can define roles with similar flexibil-
ity; the nature of role will depend on the nature of the associated privileges in
its privilege collection. It is this flexibility of role definition that allows us to
use 0-O principles to define roles. By specifying privileges as partitions of an
0-0 object interface, we are able to formuia‘e a role definition based on 0-O
interfaces. What is more is that such interface can be made transactional, a

199

further testimony to the flexibility arising from privilege definition.

Our formulation was not confined just to role definition and formalization. We
went further and studied role-based security and its associated benefits in sys-
tem protection. Consequently, we studied the advantages and shortcomings of
role-based protection schemes. Among the advantages include its in system
access rights administration. The flexibility arises from the apparent two-stage
authorization process used in role-based protection: user-role authorization and
user-privilege authorization. Flexibility is gained via the ability to assign and
revoke access rights associated with a user. This can be achieved via privilege
assignment to a role or via revocation of user authorization to a role. This
flexibility is important considering tiat security constraints tend to make sys-
tem access rights administration very inflexible. A down side of this protection
approach is that there is apparent complexity when it comes to the analysis of
the assignment and implications of assignments of system access rights. It is
inherently more difficult to analyse access rights assignments in such a scheme

compared with tradition schemes such as mandatory access control.

. Roles, Information Flow & MAC:

In studying role-based protection further, we explored information flow analy-
sis in such environments. In discussing information flow in role-based security
we developed a means of ensuring that role definition schemes preserve system
information flow policy. To enable us answer whether a given role definition
scheme preserves the associated system security policy, we proposed a graph
algorithm that compared flows resulting from role definitions and those ema-
nating from the security policy to determine whether the two are consistent. A
system is secure if the information flow scheme arising from role definition is

consistent with the information flow policy.

Yet another important issue studied following the formalization of the role con-
cept, is the demonstration of the ability to realize mandatory access control
using role-based protection. This aspect of role-based security is important as
it estzblishes the strength of this mode of protection.

. Proposed a Role Organization Model:

As hined in the previous item of contributions, one drawback with role-based

security is the complexity associated with access rights administration in such

200

systems. Thus it is important to organize roles in such a manner that this
complexity is minimized. Therefore, it was important for us to extract prop-
erties of roles that would facilitate the formulation of an organization model.
The basic focus of such search of properties is in basic role relationships. We
found that roles can be related via partial, common and augmented privilege
sharing. While these may appear distinct, they are all related via the partial
role ordering relationship. For purposes of modelling we introduced the con-
cepts of maximum and minimum privileges in a system. Combining all these
relationships resuited in a ro’e organization model which is basically a directed
acyclic graph.

Having proposed this model, we demonstrated that it had similar expressive
power as other role organizing structures such as hierarchies , named protection
domains and Ntrees. Essentially, our model has similar properties (acylicity

and privilege monotonicity in a path) as the other structures.

For purposes of role management, we proposed a set of algorithms that would
facilitate role management. These algorithms pertain to role deletion, addition

and partition (both vertical and horizontal).

. Formalized Commercial Security Using O-O Concepts:

The choice of O-O concepts for formulating the Clark & Wilson model, arises
out of the observation that the model is operation based, i.e. the model . ~quires
that there b~ unique relationships between data objects and operations on the
data. The O-O paradigm provides such a relationship via the class concept in
which methods which operate on instances of the class are defined. Moreover,
given that methods can be tailored to realize the effects of desirable operations
that we need, O-O approaches offer great advantage. Further, we know that
we can also specify the methods in such a manner that they meet the required
conditions of the TPs in the formulation. Hence the choice of O-O modeling.

Using the role concept and O-O approaches we realized the principles of the
Clark and Wilson model for commercial security. In particular we introduced
the concept of interface partition and distribution among roles. Object histories
(see next item) were proposed for the enforcement of separation of duty. By
defining the interfaces as WFTs and the objects as the CDIs, we guarantee the

realization of principles of the Clark and Wilson model.

201

5. Object Histories:

Object histories were introduced as a means of keeping track of audit infor-
mation pertaining to objects. Like Karger’s [Kar88] capabilities, our object
histories ar~ intended to simplify the task of extracting such information from
(say) a system audit trail. We defined history in terms of events where an event
represents some action pertaining to object uccess. The event was defined in a
general form and can be specialized to suit a given application depending on
the nature of audit information required. Given the extensible nature of 0-O
modeling, it was possible to incorporate object history as part of the object
information. Whether defined as an object attribute (and hence as part of ob-
ject state) or as a separate component of object definition, is a matter of an
application. Our demonstration used history attributes for this purpose.

With respect for commercial integrity, object histories are useful for keeping
track of audit information and for the enforcement of sep: - - -on of duty.

Finally, we point out that much of our research has focused on and utilized a2 num-
ber of ideas already pursued in computer security, object-orientation and database
research. Part of our achievement in this work has been to bring together known
concepts such as roles, transactions, mandatory access control, commercial integrity,
information flow, object-orientation, etc. into one formulation. Thus we examined
the role concept and gave it a formal definition; we used information flow techniques
to propose a means of ensuring conformance of a given design to a given security pol-
icy; we used information flow techniques to demonstrate the soundness of role-based
protection and how it can realize a level of protection equivalent to that of manda-
tory access control; we used object-orientation to capture object histories and applied
transactional properties to executions. Once combined in the manner demonstrated
in this work, we realized the concepts of commercial integrity.

8.4 Future Directions

In the foregoing section we have outlined some achievements of our research. The
value of research, however, is not just the results it demonstrates but also the “doors”
it opens for further investigations. In this section we outline some of these directions
which this line of study could take.

1. Implementation & Experimentation

There is a need to implement a role-based prototype that would facilitate fur-
ther study of the results arrived at in this work. Such a tool would be useful
both for the investigatigation of the applicability of theory arrived at in this
thesis. Some rudimentary Pascal-based implementation of the role graph al-
gorithms was done. It did offer some insight on some practical issues of such
an implementation. However, a more robust system needs to be implemented
and used in experimentation for access rights administration. This will give a
clearer picture on how complex the administration becomes in real life. Further,
insights may be gained into what other requirements are essential for a success-
ful role-based application. Indeed, the need for persistence of role-definitions
and the dynamic nature of addition and revocation of access rights suggests

database storage schemes with fast access.

2. Role-Based Protection & Constraints

There is a need for a study of users, roles and resources along with the effects
on security due to imposing constraints on their relationships. For example
suppose that, like role relationships, we had user and resource relationships?
Or suppose that we had some constraints (say) that impose restrictions on
concurrent access of user/user groups to resources/resource groups? Such a
study would delve into the nature of the constraints and how to express them.
No attempt was made in this direction including the manner of expressing and
managing such constraints. A probable future study is to formulate a language
of formally expressing the said constraints and a means of constraint checking

to assure their consistency.

It may be worthwhile to explore the suitability of expressing such constraints

using constrained logic and applying constraint consistency checking.

3. Roles & the Relational Model

One reason that the O-O model was suitable for our formulation is that the
complex operations/computations can be captured via the class concept where
all operations are defined which are applicable to instances of the same class,
Defining roles within the relational database paradigm presents a totally dif-
ferent approach. For one, we must talk about relations in first normal form in

which table entries are simple attributes, Moreover, talking about operations,

203

we must talk about simple reads and writes. How then do we configure roles

within this framework?

These are but a few of the directions future work in this area could take. However,
there are pussibly more directions that we have not determined currently but which we
or some other interested researchers could undertake following the results presented

here.

APPENDIX A

Related Work

A.1 Introduction

In this appendix we summarize work related to our own. The basis of our work is the
Clark and Wilson model for integrity [CW87] that was proposed for application in
commercial environments. As emphasized in the body of the thesis, the main focus
of this work is the integrity of information. Several approaches have been proposed
for realizing the properties of this model. Among these approaches are the role-
based [San91], secure capabilities formulation [Kar88], and the mandatory integrity
approach [Lee88].

Roles, on the other hand. given their advantages, have been used in various en-
vironments such as in an object-oriented (0-0) software design environment [TDH92],
to realize commercial security [San91. Tho91] and in a medical delivery system [Tho91].
We shall summarize discussion on roles and commercial database security in sec-
tion A.2. Specifically, we discuss roles and commercial security in section A.2.1, roles
in an O-O design environment in section A.2.2 and roles as used in a medical delivery
system in section A.2.3.

Secure capabilities and mandatory integrity formulations have also been used to
realize the Clark and Wilson model. These are the subjects of sections A.3 and A4,
respectively.

It is important to note that the Clark and Wilson model implies role-based pro-
tection. though it does not say so explicitly. Hence even when we talk about its
enforcement using mandatory integrity or secure capabilities, roles still lurk in the
background.

Ting et al. use roles for specifying and managing access rights in an O-O design
environment. They propose a hierarchical structure to capture role organization.

204

Section A.2.2 summarizes this application.
Domain definition tables, DDTs, have also been used for role definition [Tho91]}.

We present the summary in section A.2.3.

Roles have also been referred to as named protection domains [Bal90] and orga-
nized into privilege graphs (see figure 6.2). This is the subject of the discussion in
section A.2.4.

A.2 Roles & Role Organization

A.2.1 Roles & Commercial Database Integrity

The Clark and Wilson model [CWB87] is one application where the need for high level
integrity is desirable. In this model, users, programs (well formed transactions) and
system objects (constrained data items) are associated to enable the specification and
enforcement of integrity {CW87, Tho91]. Well formed transactions (WFTs), which
act on system objects (constrained data items, CDls) are associated with roles. Users
are, in turn, authorized for the defined roles. Such authorization facilitates access to
objects associated with the WFTs in that role.

Roles themselves can be organized and administered using any of the structures
suggested in section 6.2 while constraints can be specified in the execution of the
WFTs. For instance to enforce separation of duty [CW87] it may be specified that
continued execution, of any execution order, be dependent on previous history. Since
separation of duty requires that no individual can perform more than one function in
the history of some processing, such execution would keep track of the identities of
users that have participated in the execution so far. The principle of separation of duty
can be enforced in role-based applications using different strategies. Sandhu [San91]
suggests use of transactional expressions to achieve this and extends the original Clark

and Wilson model by accommodating dynamic substitution of attribution.

A.2.2 Roles & O-O Design Environment

T. C. Ting et al. [TDH92] propose a user role-based protection approach to an 0-O
design data model for software engineering environments. Their approach, like that
of Rabitti et al. [RWBK91, RWKS8] in the design of a an O-O protection model, is to
exploit the O-O paradigm to organize user roles, define their capabilities and offer a
framework for analysing and understanding the implications of using user role-based

206

protection. Users are organized into user groups and the groups have their inter-
relationships defined by some specified “ordering”. To determine what information
needs to be available to different groups, different methods are assigned to different
user grouj ;. Effectively, method assignment determines what portion of an object’s
(or class’) public interface is made visible to different groups. This way, the object
oriented prir.ciple of information hiding is extended and exploited. Extended in that
no single user, unless authorized, need execute all methods of a given type. Exploited
in that any given object of some type has its interface effectively “windowed™ to
provide different access to different groups.

The approach advocated by Ting et al. offers a framework for organizing users
(see user role definition hierarchy, URDH, below) in a system, determining thei:
needs which, in turn, determine the capability of the users through the roles autho-
rized to such users. Capability assignment is realized through method assignment
to the individual roles. Since methods are the only means of access to objects in an
object oriented environment, methods not assigned to a user’s role effectively hide
the information they access from such a user.

Suggested is a framework for defining and analysing the implications of autho-
rizations in a system. The task of definina user capabilities is a two-stage process.
First, a URDH used to define possible user roles in a particular environment is in-
stantiated. The URDH not only defines what roles are necessary but also captures
the relationships between them. Second, capabilitics are assigned to individual roles,
a task realized via method assignment. Using relationships between the defined roles,
an appropriate method assignment scheme is achieved that make the least num-
ber of role-method assignments to achieve desired functionality. Such analyses can
detect capability over provision (an inconsistency) and under provision (a form of
incompleteness).

Ting .t al.’s work also discusses techniques for analysing role capabilities and
the objects they pertain to in a given URDH. These techniques provide a means
of assessing and/or identifying any conflicts that may result from an initial URDH
method and object type instantiation.

A.2.3 Roles in a Medical Delivery System

Another example is a medical delivery system suggested by Thomsen [Tho91] in which
DDT's are used to specify user privileges. Given the diverse nature of medical delivery

207

services and the varied needs of users, roles offer a handy means of system capability
management.

The DDT approach is based on the principle of type enforcement [Tho91) in which
every system object is assigned a type while each subject is assigned a domain. A
DDT is defined to show which type of access subjects of a given domain can have
on objects of a given type. These entries, from a type enforcement point of view,
may be seen as classes of subjects (domains) and objects (types) with the specified
access type associating the two [Tho91). Associating a user to a domain determines
the user’s authorization. Such a user has the type of access specified for the related
domain to the objects of the associated type.

To ensure a mandatory policy enforcement, type enforcement is made a system
function in which neither subjects, objects nor processes acting on their behalf can
alter their authorization attributes (domain and type memberships). To achieve role-
based protection, each domain can be viewed as a role. The access rights (of sc.ne
user from some domain) to a given object are determined by the type of access the
«ssociated domzin has to the iype of the object.

As indicated elsewhere, the major distinction between DDT's and the other struc-
tures (lattices, Ntrees, hierarchies) is that DDTs do not capture the the structural
composition of roles [DM89]. Hence role inter-relationships must be specified outside
the DDT itself. As well, unlike any of the other structures, DDT's also cannot specify
authorization information within themselves. While this has not been stated explic-
itly, the role functional and structural specification can be specified to capiure the
access control information when it comes to hierarchies and lattices. In a nutshell
DDT do not prescribe the flow of authority in the system they are modelling and this

is their major shortcoming.

A.2.4 Roles as Named Protection Domains

Baldwin [Bal90] terms roles Named Protection Domains (NP7s).

Baldwin [Bal90] organizes roles, which he terms named protection domains, into
privilege graphs (see figure 6.2). The privilege graph has three types of nodes: user,
named protection domain (or role), and a functionality. Each role has an associated
functionality. A user authorized to a given role has an arc connecting the user node to
the associated role. A role’s relationship with a given functionality is captured by an

arc from the role to the associated functionality. An arc from role X to role Y implies

208

that the privileges and functionality of role Y can be executed by an authorized user
to role X. Consequently, a user is authorized a given functionality if there is a path
from the user node associated with the user to the functionality in question. The
cumulative privileges available to the user, which we shall define later as the user's
privilege scope, is the set of all privileges in the path from the user’s node to all the
functionalities. One can infer that the user’s authorization scope in the graph is a

tree.

A.3 Capabilities & Commercial Integrity

Karger [Kar88] discusses the realization of the Clark and Wilson Model [CW387] using
secure capabilities. A capability as used here facilitates access to database objects.
Possession of a capability in the formulation is necessary, though not sufficient, to
guarantee access to a database object. In formulating a realization of the CWM
model, Karger notes that the problem of verification would be a daunting and sug-
gests that attempts must be made to ensure commercial security without requiring
verification for every piece of code.

The concept of separation of duty [CWB87, San91, Tho91} suggests history depen-
dent access control. Such history can be gleaned from audit trails. However, the
task of searching the trail for the necessary information c. . be a daunting and time
consuming task. Audit trails are large and complex making it prohibitive to search.
Hence the author’s solution is the use of what he terms token capabilities. Token ca-
pabilities keep track of audit information of the associated object. Such information
would include the identity of the subjects that have accessed the object to date and
any other information required for realization of separation of duty. Token capabilities
thus avail audit information much more easily and its ready availability (as opposed
to audit trail search) facilitates performance improvement. Access to an object is
then dependent upon access information (say) from some access control list, audit
information captured in the token rapability and the rules governing access based on
these pieces of information.

Token capabilities can also be used to handle groups of users, as opposed to a
single user by use of operating system (0S) access control principles. For instance by
grouping users into the owner, group and other, one can specify access rights of users
based on their group memberships.

This wrrk also discusses the integration of audit, security and recovery strategies

209

(e.g. two-phase commit and time stamping) to ensure commercial integrity.

A.4 Mandatory Integrity & Commercial Security

Lee’s |Lee88] approach is to enforce commercial database security as specified in by
Clark and Wilson [CW87] using mandatory integrity, specifically, the use of integrity
categories. Lee contends that traditional models such as Bell and LaPadula’s [BL75]
have natural extensions that can realize the principles of the Clark and Wilson model
[CW8T] and goes on to enumerate the rules necessary for the formulation.

Two main ideas are employed: mandatory integrity categories and partially trusted
subjects. The former is used to control unauthorized modification (the key concern of
commercial security) while the latter, based on a variation of the Bell and LaPadula
model, is used to represent and control authorized transactions.

A trusted subject is assigned to integrity labels: view-min and alter-maz. The
former refers to the minimum category that the subject can view while the latter
refers to the maximum category of information that the subject can write/alter. An
untrusted subject has view-min=alter-maz. Two rules govern access to objects based

on the integrity label:

1. Simple Integrity Condition: a subject can write an object o if label(o) is a

subset of alter-max.

2. Integrity *-property: A subject can read an object o if view-min is a subset

of label(o) or alter-max is a subset of label(o).

An integrity categoryis a name of a particular type of protected information/data
where a given user (or program acting on the user’s behalf) cannot create or modify
any given type of information/data without ezplicit authorization for that type. A
set of categories, as applied to untrusted subjects (users, programs, etc.) indicates
that the subject is authorized to create/modify information/data of any type in that
set and not others. Of course a subject can have authorization to more than one
category! A partially trusted subject, on the other hand, is allowed to transform a
limited set of input types to a limited set of output types such that the inputs are
at least view-min while the outputs must be at at most alter-max. Used this way,
integrity categories facilitate the limiting of a subject’s ability to modify information.

210

Lee observes that the Clark and Wilson model essentially reduces to identifying

he required roles in a system, determining conflicting roles and ensuring that no

user acts in two or more confl’ .uing roles, and letting each specific kind of application
data/information be modified by specific approved transactions acting on behaif of
some user executing in an authorized role.

To realize the Clark and Wilson model, Lee then proposes eight rules that must
be adhered to. These include establishing the roles to be supported, identifying all
different kinds of CDIs [CW8T], specify administration roles that must be distinct
from those specified in the earlier steps, distinguish conflicting roles and ensure that
no user is authorized to two or more conflicting ones, install certified transactions and
ensure that no unauthorized users can change them, establish transactions as partially
trusted subjects and specify (for each) view-min and alter-max, estaklish security
authorizing transactions, and ensure that consistency checking works zorrectly and
that it is protected accordingly. Further, there is specification on who -watche the
watchers where it is specified that one (any user, program acting on user’s behalf, etc.)
cann »t change one’s security authorization, one cannot install nor modify transactions
that they execute, one cannot install transactions outside one’s jurisdiction , and that
no one can delete nor alter audit records.

Lee goes to show that this formulation meets exactly the requirements of the
certification and enforcement rules of the Clark and Wilson model.

REFERENCES

[AA92]
[AAL*93]

[ABD*90]
[AGUT2]

[AH90)

[Baass]

[Balso]
(BB88]
[BCG*87)

[BDK92)
[BKK88]

[BL7S)
(BN79)

[BN87)

D. Agrawal and A. El Abdi. Transaction Management in Database Systems.
In Ahmed K. Elmargarmid, editor, Database Transaction Model; for Advanced
Applications, pages 1-31. Morgan Kaufmann, 1992,

M. Abrams, E. Amoroso, L. J. LaPadula, T. Lunt, and J. G. Williams. Report
of an Integrity Research Group. Computers & Security, 12(7):679-689, Nov
1993.

M. Atkinson, F. Bancilhon, D. DeWitt, K. R. Dittrich, D. Maier, and S. Zdonik.
The Object Oriented Manifesto. In ACM SIGMOD ’90 Proceedings, May 1990.

A. V. Alo, M. R. Garey, and J. D. Ullman. The Transitive Reduction of a
Directed Graph. SIAM Journal of Computing, 1(2):131-137, June 1972.

T. Andrews and C. Harris. Combining Language and Database Advances in an
Object Oriented Database Environment. In S. B. Zdonik and D. Maier, editors,
Readings in Object Oriented Database Systems. Morgan Kaufmann, 1990.

Sara Baase. Computer Algorithms: Introduction to Design and Analysis.
Addison-Wesley, second edition, 1988.

R. W. Baldwin. Naming & Grouping Privileges to Simplify Security Man-
agement in Large Databases. In Proc. 1990 IEEE Symposium on Research in
Security & Privacy, pages 116-132. IEEE Computer Society Press, May 1990.

J. Biskup and H. H. Briiggermann. The Personal Model of Data: Towards
a Privacy-Oriented Information System. Computers & Security, 7(6):575-592,
Dec 1988,

J. Banerjee, H. T. Chou, J. F. Garza, W. Kim, D. Woelk, N. Ballou, H. J. Kim,
F. Manola, and U. Dayal. Data Model Issues for Object Oriented Applications.
ACM Trans. Office Information Systems, 5(1):3-26, Jan. 1987.

F. Bancilhon, C. Delobel, and P. Kanellakis, editors. Building an Object Ori-
ented Database System: The Story of O,. Morgan Kaufman, 1992,

J. Banerjee, W. Kim, and K. C. Kim. Queries in Object Oriented Database
Systems. In Data Engineering ‘88 Proceedings, Feb. 1988.

D. E. Bell and L. J. LaPadula. Secure Computer Systems: Unified Exposi-
tion & Multics Interpretation. Technical Report MTIS AD-A023588, MITRE
Corporation, July 1975.

J. Beauquier and M. Nivat. Applications of Formal Language Theory to Prob-
lems of Security and Synchronization. In R. V. Book, editor, Formal Language
Theory: Perspectives and Open Problems, pages 407-454. Academic Press, 1979.

D. F. C. Brewer and M. J. Nash. The Chinese Wall "ecurity Policy. In Proc.
1989 IEEE Symposium on Research in Security & Privacy, pages 215-228. IEEE
Computer Society Press. April 1987.

211

[Cat94]

[Chasé]

[CIss)

[CLR90]

[CW87]
[CY92a]
[CY92b)
[Dat83]

(Dat86)
[Dat90]

[Day93]

[DD77]
{Den76)

(Dens82)
(DHL90]

(DHL91]

[DHP89]

(Dit90]

e
—
t

R. G. G. Cattell, editor. The Object Database Standard: ODMG-93. Morgan
Kaufman, 1994.

L. S. Chalmers. An Analysis of the Differences Between the Computer Security
Practices in the Military and Private Sectors. In Proc. 1986 IEEE Symposium

on Research in Security & Privacy. pages 71-74. IEEE Computer Society Press,
April 1986.

J. M. Carroll and H. Jurgensen. Design of a Secure Relational Database. In J. B.
Grimson and H. J. Kugler, editors, The Practical Issues in a Troubled World.
Proc. 3rd IFIP Conference on Computer Security. North Holland. August 1985,

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Presss, 1990.

D. D. Clark and D. R. Wilson. A Comparison of Commercial and Military
Security Policies. In Proc. 1987 I[EEE Symposium on Research in Security &
Privacy, pages 184-194. IEEE Computer Society Press, April 1987.

F. Cuppens and K. Yazdanian. Logic Hints and Security in Relational Database.
In C. E. Landwehr and S. Jajodia, editors, Database Security V: Status &
Prospects, pages 227-238. North-Holland, 1992.

F. Cuppens and K. Yazdanian. A Natural Decomposition of Multilevel Re-
lations. In Proc. 1992 IEEE Symposium on Research in Security & Privacy.
IEEE Computer Soci-ty Press, May 1992,

C. 1. Date. An Introduction to Database Systems. Addison-Wesley, 1983.
C. J. Date. Relational Databases: Selected Writings. Addison-Wesley, 1986.

C. J. Date. A Contribution to the Study of Database Integrity. In Relational

Dg%tgbasc: Writings 1985-1989, chapter 7, pages 185-215. Addison-Wesley,
1990.

U. Dayal. An Activity/Transaction Model for Distributed Multi-Service Sys-

tem. In M. T. Ozsu, U. Dayal, and P. Valduriez, editors, Proc. Int'l Workshop
on Distributed Object Management Systems, University of Alberta, Edmonton,
Canada August 1992, pages 246-251. Morgan Kaufmann, 1993.

D. E. Denning and P. J. Denning. Certification of Programs for Secure Infor-
mation Flow. Communications of the ACM, 20(7):504-513, July 1977.

D. E. Denning. A Leitice Model of Secure Information Flow. Communications
of the ACM, 19(5):236-243, May 1976.

D. E. Denning. Cryptography and Data Security. Addison-Wesley, 1982.

U. Dayal, M. Hsu, and R. Ladin. Organizing Long-Running Activities with
Triggers & Transactions. In SIGMOD Proc. 1990 Int’l Conf on Management
of Data, pages 204-214. ACM Press, May 1990.

U. Dayal, M. Hsu, and R. Ladin. A Transactions Model for Long-Running
gctivities. In Proc. 1991 Int’l Conf on Very Large Data Bases, pages 113-122,
ept 1991,

K. R. Dittrich, M. Hartig, and H. Pfefferle. Discretionary Access Control in
Structurally Object Oriented Database Systems. In C. E. Landwehr, editor,
Database Security II: Status & Prospects, pages 105-121. North-Holland, 1989.

K. R. Dittrich. Object Oriented Database Management Systems: The Next
Miles of the Marathon. Information Systems, 15(1):161-167, Mar 1990.

[DMs3]

[DS92)

[ELMB92)

[Eng87]

[FKMT91]

[Fol87)

[Fol91]

[GMP92]
[GR93]

[Hin88]

[HKM79]

[JK90]

[4590]

(JS91a)

[J591b)

[Kar88]

213

J. E. Dobson and J. A. McDermid. Security Models and Enterprise Models. In
C. E. Landwehr, editor, Database Security II: Status & Prospects, pages 1-39.
North-Holland, 1989.

D. E. Denning and W, Shockley. Discussion: Pros and Cons of the Various
Approaches. In T. F. Lunt, editor, Research Directions in Database Security,
j-ages 97-103. Springer-Verlag, 1992.

A. K. Elmargamid, Y. Leu, J. G. Mullen, and O. Bukhres. Introduction to
Advanced Transactions Models. In Ahmed K. Elmargarmid, editor, Database
Tmmaﬁg'g; Models for Advanced Applications, pages 33-52. Morgan Kauf-
mann, .

N. C. K. Eng. A Model for Security in Information Systems. Master’s thesis,
Department of Computer Science, University of Western Ontario, Canada, 1987.

E. Fong, W. Kent,
K. Moore, and C. Thompson, editors. X3/SPARC/DBSSG/OODBTG Final
Report. Sept 1991.

S. N. Foley. A Universal Theory of Information Flow. In Proc. 1987 IEEE
Symposium on Research in Security & Privacy, pages 116-122. IEEE Computer
Society Press, April 1987.

S. N. Foley. A Taxonomy for Information Flow Policies. In Proc. 1991 IEEE
Symposium on Research in Security & Privacy, pages 98-108. IEEE Computer
Society Press, April 1991.

J. Glasgow, G. MacEwen, and P. Panangaden. A Logic for Reasoning About Se-
curity. ACM Transactions on Computer Systems, 10(3):226-264, August 1992.

J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, 1993.

T. F. Hinke. Inference Aggregation Detection in Database Management Sys-
tems. In Proc. 1988 IEEE Symposium on Research in Security & Privacy. IEEE
Computer Society Press, April 1988,

D. K. Hsiao, D. S. Kerr, and S. E. Madnick. Computer Security. Academic
Press, 1979. ISBN 0-12-357650-4.

S. Jajodia and B. Kogan. Integrating an Object-Oriented Data Model with
Multilevel Security. In Proc. 1990 IEEE Symposium on Research in Security &
Privacy, pages 76-85. IEEE Computer Society Press, May 1990.

S. Jajodia and R. Sandhu. Polyinstantiation Integrity in Multilevel Relations.
in Proc. 1990 IEEE Symposium on Research in Security & Privacy. IEEE Com-
puter Society Press, 1990.

S. Jajodia and R. Sandhu. A Novel Decomposition of Multilevel Relations into
Single Level Relations. In Proc. 1991 IEEE Symposium on Research in Security
& Privacy, pages 300-313. IEEE Computer Society Press, 1991.

S. Jajodia and R. Sandhu. Polyinstantiation Integrity in Multilevel Relations
Revisited. In S. Jajodia and C. E. Landwehr, editors, Database Security IV:
Status & Prospects, pages 297-307. North-Holland, 1991.

P. A. Karger. Implementing Commercial Data Integrity with Secure Capabili-
ties. In Proc. 1988 IEEE Sgon:poaium on Research in Security & Privacy, pages
iety Press, April 1988.

130-139. IEEE Computer

[KC86]
[Kim90)}

[KM92]

[KMV+90]

[LAC*94]

{Lan81]
[Lan83]

(Law93]

[Lee88]

(LH91]

{Lin76]

{Lin91]

[Lip82]

[Liu80]

[LSS*+88]

[Lun89)

[Lun92]

214

S. N. Khoshafian and G. P. Copeland. Object Identity. In OOPSLA 86 Pro
ceedings, pages 406-416, Nov 1986.

Won Kim. Object Oriented Databases: Definitions and Resea..a Directions.
IEEE Trans. on Knowiedge and Data Engineering, 2(3):327-341, Sept 1990,

E. V. Krishnamurthy and A. McGuffin. On the Design & Administra-
tion of Secure Database Transactions. ACM SIGSAC Review, pages 63-70,
Spring/Summer 1992.

S. Krakowiak, M. Meysembourg, H. N. Van, M. Reveill, C. Roisin, and X. R.
de Plna. Design and {:’plementation of an Object Oriented Strongly Typed
Language for Distributed Applications. Joumaﬁf Object Oriente Iy’rogmm-
ming, 3(3):11-22, Sept/Oct 1990.

M. E. S. Loomis, T. Atwood, R. Cattell, J. Duhl, G. Ferran, and D. Wade.
The ODMG Object Data Model. Journal of Object Oriented Programming,
7(6):64-69, June 1994.

C. E. Landwehr. Formal Models for Computer Security. ACM Computing
Surveys, 13(3), Sept 1981.

C. E. Landwehr. The Best Available Technologies for Computer Security. IEEE
Computer, 16(7), July 1983.

L99(:;' Lawrence. The Role of Roles. Computers & Security, 12(1):15-21, Feb
1993.

T. M. P. Lee. Using Mandatory Integrity to Enforce “Commercial” Security. In
Proc. 1988 IEEE Symposium on Research in Security & Privacy, pages 140-146.
1IEEE Computer Society Press, April 1988.

T. F. Lunt and D. Hsieh. Update Semantics for Multilevel Relations. In S. Ja-
jodia and C. E. Landwehr, editors, Database Security IV: Status & Prospects,
pages 281-296. North-Holland, 1991.

T. A. Linden. Operating System Structures to Support Security and Reliable
Software. ACM Computing Surveys, 8(4):409-445, Dec. 1976.

T. Y. Lin. Multilevel Databzses and Aggregated Algebra. In S. Jajodia and
C. E. Landwehr, editors, Database Security IV: Status & Prospects, pages 325-
350. North-Holland, 1991.

J. S. B Lipner. Non-Discretionary Controls for Commercial Applications. In
Proc. 1982 (EEE Symposium on Research in Security & Privacy, pages 2-10.
IEEE Computer Society Press, April 1982.

L. Liu. On Secure Flow Analysis in Computer Systems. In Proc. 1980 IEEE
Symposium on Research in Security & Privacy, pages 22-33. IEEE Computer
Society Press, April 1980.

T. F. Lunt, R. R. Schell, W. R. Shockley, M. Heckman, and D. Warren. A
Near-Term Design for the Sea-View Multilevel Database Systems. In Proc.
1988 IEEE Symposium on Research in Security & Privacy. IEEE Computer
Society Press, April 1988.

T. F. Lunt. Aggregation and Inference: Facts and Fallacies. In Proc. 1989
IEEE Symposium on Research in Security & Privacy. IEEE Computer Society
Press, Apnl 1989,

T. F. Lunt, editor. Research Directions in Dalabase Security. Springer-Verlag,
1992, ISBN 0-387-97736-8.

[LVV8S]
[Man89)

[McH85]

[MHT92)

[Mil8i]

[Mot89)]

[MS90]

[NO91a)

[NO91b)

[NO93a)

[NO93b]

[NO94a)

(NO94b]

[NO94c]

[NP90]

[NRZ92]

215

C. Lecluse, P. Velez, and F. Velez. 02 an Objcct Oriented Data model. In
Proc. ACM SIGMOD Int’l Conference on Management of Data, 1988.

Udi Manber. Introduction to Algorithms: A Creative Approach. Addison-
Wesley, 1989.

J. McHugt. .\n Information Flow Tool for Gypsy. In Proc. 1985 IEEE Sympo-
sium on Rescarch in Security & Privacy, pages 46-48. IEEE Computer Society
Press, April 1985.

M. Morgenstern, T. Hinke, and B. Thuraisingham. Inference and Aggregation.
In T. F. Lunt, editor, Research Directions in Database Security, pages 143-159.
Springer-Verlag, 1992.

J. K. Millen. Information Flow Analysis of Formal Specifications. In Proc.
1981 IEEE Symposium on Research in Security & Privacy, pages 3-8. IEEE
Computer Society Press, April 1981.

A. Motro. Integrity = Validity + Completeness. ACM TODS, 14(4):480-502,
Dec 1989.

D. Maier and J. Stein. Development and Implementation of an Object Oriented
DBMS. In S. B. Zdonik and D. Maier, editors, Readings in Object Oriented
Database Systems. Morgan Kaufmann, 1990.

G. Matunda Nyanchama and S. L. Osborn. Mandatory Security in an Object
Oriented Database. Technical Report #2317, Department of Computer Science,
The University of Western Ontario, London Canada, Dec 1991.

G. Matunda Nyanchama and S. L. Osborn. Orthogonal Views in Object Ori-
ented Database Security. Technical Report mos, Department of Computer
Science, The University of Western Ontario, don Canada, March 1991.

M. Nyanchama and S. L. Osborn. Role-Based Security, Object Oriented
Datsabues & Separation of Duty. ACM SIGMOD RECORD, 22(4):45~51, Dec
1993.

M. Nyanch>ma and S. L. Osborn. Role-Based Security: Pros, Cons & Some
Research Directions. ACM SIGSAC Review, 2(2):11-17, June 1993.

G. Matunda Nyanchama and S. L. Osborn. Database Security Issues in Dis-
tributed Object Oriented Databases. In M. T. Ozsu, U. Dayal, and P. Valduriez,
editors, Distributed Object Data Managcmembpagu 92-97. Morgan Kaufman,
1994. Proc. of Int’l Workshop on Distributed Object Oriented Databases, Uni-
versity of Alberta, Edmonton, Canada August 1992.

M. Nyanchama and S. L. Osborn. Access Rights Administration in Role-Based
Security Systems. In J. Biskup, M. Morgenstern, and C. Landwehr, editors,
Database Security VIII: Status & Prospects, August 1994. To appear.

M. Nyanchama and J. L. Osborn. Information Flow Analysis in Role-Based
Security Systems. “All about nothing”, Journal of Computing & Information,
1(1), May 1994. Special Issue: Proc. of the 6th International Conference on
Cmputing and Information (ICCI), Peterborough, Ontario, Canada.

M. J. Nash and K. R. Poland. Some Conundrums Concerning Separation of
Duty. In Proc. 1990 IEEE Symposium on Research in Security & Privacy, pages
201-207. IEEE Computer Society Press, May 1990.

M. H. Nodine, S. Ramaswamy, and S. B. Zdonik. A Cooperative Transaction
Model for Design Databases. In Ahmed K. Elmargarmid, editor, Database
Tmmacl'ggzn Models for Advanced Applications, pages 53-85. Morgan Kauf-
mann, .

[Nya91]

[Nya93a]

[Nya93b]

[0C93]

[oD85)

[oD87]

[Osb89a]

[Osb89b)

(POS92]

[RGN90]

216

Matunda Nyanchama. Object Oriented Database Security. Master's thesis,
Department of Computer Science, The University of Western Ontario, London
Ontario, N6A 5B7, Canada. August 1991.

Matunda Nyanchama. Access Rights Administration in Role-Based Protection
Systems. In UWORKS 1993: Graduate Seminar of the Department of Com-
puter Science, number # 385 Tech Report. Oct 1993.

Matunda Nyanchama. Commercial Integrity, Roles & Object-Orientation, Oct
1993. Doctoral Dissertation Research Pro: ,» Department of Computer Sci-
ence, The University of Western Ontario, London Ontario, N6A 5B7, Canada.

Government of Canada. The Canadian Trusted Computer Product Evaluation

ngt;geria. Communications Security Establishment, Government of Canada,

Department of Defence. Department of Defence Trusted Compuler System
Evaluation Criteria DoD 5200-28-STD. Department of Defence, Dec 1985,
The Orange Book.

Department of Defence. Trusted Network Interpretation, NCSC-TG-005. US
Department of Defence, July 1987. The Red Book.

S. L. Osborn. Algebraic Query Optimization for an Object Algebra. Tech.
Report #251, Department of Computer Science, University of Western Ontario,
London Canada, 1989.

S. L. Osborn. The Role of Polymorphism in Schema Evolution in an Object-
Oriented Database. IEEE Transactions on Knowledge and Data Engineering,
pages 310-317, Sept. 1989.

R. J. Peters, M. T. Ozsu, and D. Szafron. TIGUKAT: An Object Model for

Query & View Support in Object Database Systems. Technical Report TR92-
14, Department of Computer Science, The University of Alberta, Edmonton,
Canada, Oct 1992.

T. C. Rakow, J. Gu, and E. J. Neuhold. Serializability in Object-Oriented
Database Systems. In Proc. Sizth Int’l Conf. on Data Eng., pages 112-120.
1IEEE Computer Society Press, Feb. 1990.

[RWBK91] F. Rabitti, D. Woelk, E. Bertino, and W. Kim. A Model of Authorization for

[RWKSS]

[San88}

[San89]

[San91]

[San93]

Next Generation Databases Systems. ACM TODS, 16(1):88-131, March 1991.

F. Rabitti, D. Woelk, and W. Kim. A Model of Authorization for Object
Oriented and Semantic Databases. In Proc. of Int’l Conference on Eztending
Database Technology, March 1988.

R. Sandhu. The NTree: A Two Dimensional Partial Order for Protection
Groups. ACM Trans. on Computer Syst., 6(2):197-222, May 1958,

R. Sandhu. Recognizing Immediacy in an N-Tree Hierarchy and its Applications
to Protection Groups. [EEE Trans. on Software Engineering, 15(12):1518 1525,
Dec 1989.

R. Sandhu. Separation of Duties in Computerized Information Systems. In
S. Jajodia and C. E. Laniwehr, editors, Database Security, IV: Status and
Prospects, pages 179-189. North-Holland, 1991.

R. Sandhu. Lattice-Based Access Control Models. IEEE Computer, 26(11):9
19, Nov 1993.

[SD87)

[$$77)

[SW92]

[TDH92)

[Tho91)}

[VB91]

[Weg90]

{Wis90]

(Wis92]

[WR92]

(WS92]

(YBK&7]

[ZM90]

MY

R. R. Schell and D. E. Denning. Integrity in Trusted Database Systems. In
M. D. Abrams and H. J. Podell, editors, Tutorial: Computer and Network
Security, pages 202-208. IEEE Computer Society Press, 1987.

J. M. Smith and D. C. Smith. Database Abstractions: Aggregation and Gen-
eralization. ACM Trans. on Database Systems, pages 105-133, June 1977.

K. P. Smith and M. S. Winslett. Entity Modeling in MLS. In Li-Yan Yuan,
editor, Proc. of the 18th Int’l Conf. on Very Large Data Bases, pages 199-210,
Aug 1992.

T. C. Ting, S. A. Demurjian, and M. Y. Hu. Requirements Capabilities
and Functionalities of User-Role Based Security for an Object-Oriented De-
sign Model. In C. E. Landwehr and S. Ja;fdia, editors, Database Security V:
Status & Prospects, pages 275-296. North-Holland, 1992.

D. J. Thomsen. Role-Based Application Design and Enforcement. In S. Jajodia
and C. E. Landwehr, editors, Database Security, IV: Status and Prospects, pages
151-168. North-Holland, 1991.

V. Varadharan and S. Black. Multilevel Security in a Distributed Object-
Oriented System. Computers & Security, 10(1):51-68, Feb 1991.

P. Wegner. Concepts and Paradigms of Object Oriented Programming. OOPS
Messenger, 1:7-87, August 1990.

Simon R. Wiseman. On the Problem of Security in Data Bases. In D. L.
Spooner & C. E. Landwehr, editor, Database Security IlI: Status & Prospects,
pages 301-310. North-Holland, 1990.

Simon Wiseman. Abstract and Concrete Models for Secure Database Applica-
tions. In C. E. Landwehr and S. Jajodia, editors, Database Security V: Status
& Prospects, pages 239-273. North-Holland, 1992.

H. Wacher and A. Reuter. The Contract Model. In Ahmed K. Elmargarmid,
editor, Database Transaction Models for Advanced Applications, pages 219-263.
Morgan Kaufmann, 1992.

G. Weikum and Hans-J Schek. Concepts and Applications of Mulitilevel Trans-
actions and Open Nested Transactions. In Ahmed K. Elmargarmid, editor,
Database Transaction Models for Advanced Applications, pages 515-553. Mor-
gan Kaufmann, 1992.

W. D. Young, W. E. Boebert, and R. Y. Kain. Proving Computer Systems
Secure. In M. D. Abrams and H. J. Podell, editors, Tutorial: Computer and
Network Security, pages 202-208. IEEE Computer Society Press, 1987.

S. B. Zdonik and D. Maier. Fundamentals of Object Oriented Database Sys-
tems. In S. B. Zdonik and D. Maier, editors, Readings in Object Oriented
Database Systems. Morgan Kaufmann, 1990.

	Western University
	Scholarship@Western
	1995

	Commercial Integrity, Roles And Object-orientation
	Matunda Nyanchama
	Recommended Citation

	tmp.1410235319.pdf.ziM9J

