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ABSTRACT

The thesis studies the movement of wood pulp through a rotating disk refiner, by
developing continuum and discrete models of the process. An existing continuum
model of pulp movement for steady-state refining is first extended to include time-
dependent effects, in order to study the dynamic aspects of refining operation. A
system of hyperbolic P.D.E.’s is obtained, but it is shown to suffer from numerical
instability. Attention is therefore shifted to a discrete model, and a stochastic model
treating pulp as discontinuous flocs is developed. The prediction of the residence tim=
distribution of pulp in a refiner is the first test for the muuel. The model treats pulp
as individual flocs moving in ihree regions inside a refiner: the grooves in the stator,
the gap between the plates, and the grooves in the rotor. As the pulp moves through
the refiner, it changes regions stochastically. The model calculates the residence time
by following each floc individually and then accumulating the results to obtain the
distribution of the time. The model is also used to predict the treatment time, that is,
the time that pulp spends between the refiner plates. The treatment time distribution
shows a non-monotonic rise to a maximum, followed by a non-monotonic decay to
zero. Several simple prototype simulations are analyzed to show that the behaviour
is not due to errors in the numerical simulation, but is inherent in the class of models
used. The model is then extended to a time-dependent one, by keeping track of all
flocs in the refiner simultaneously. The fluctuation of the locally averaged densities
of pulp inside the refiner are simulated. The trends in the treatment time and the
residence time of pulp in the refiner, as well as the correlation between the locally
averaged densities and the treatment time are also given. The stochastic model is
improved by introducing formulas that calculate the probabilities for flocs to switch

regions based on both the locally averaged densities and the densities of pulp flocs

il




averaged over the refining zone. A new set of residence-time and treatment-time
distributions calculated using the probability formulas is given. Finally, the relation
between the thrust load on the refiner and the plate gap is predicted by considering
the forces supported by a single floc, and a mechanism is found to take into account

all the flocs collectively.
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Chapter 1

GENERAL INTRODUCTION

1.1 Pulp and Paper

Paper has traditionally been defined as a felted sheet of fibres formed on a fine screen
from a fluid suspension (usually water), and pulp is the suspension containing fibrous
raw material for papermaking. Usually, pulp fibres are of vegetable origin, commonly
wood, but other materials such as animal, mineral or synthetic fibres may be used for
special applications. Paper is an inexpensive product consumed in large quantities,
and the pulp and paper industry is one of the largest industries in Canada. The
modern pulp and paper industry utilizes lumber residuals as the basic raw material,
and is characterized by large capital investment in its production facilities; Paper
mills are no longer labour intensive, operations being highly automated.

The manufacture of paper takes place in two stages: the conversion of wood to
pulp and the making of paper from pulp. In the first stage, wood is delivered to
the mill, either as logs or as chips, for chemical or mechanical pulping. Chemical
pulping takes place in large, usually continuous digesters, while mechanical pulping
uses either grinders or refiners. The pulp is then cleaned and bleached. The pulp is
further treated mechanically in a process known as ‘beating’, in which the flexibility of
fibre is increased and the surface fibrillation is created. After beating, additives such
as sizing agent and filler are added to the pulp slurry to improve the paper properties.




Then the beaten pulp is either dried for market or pumped to paper machines, where
the sheet of paper is formed, pressed, and dried to the specification.

1.2 Pulping

The three major components of wood are cellulose (45% by weight), hemicellulose
(25%-35%) and lignin (21%-25%) [1). The polyme: cellulose determines the charac-
teristic of the fibre and permits its use in papermaking, while lignin is an organic
glue, which cements the fibres together. Wood consists of fibres in the shape of
hollow tubes, and exhibits a number of properties which fulfill the requirements of
papermaking. In general, the best balance of papermaking properties occurs when
most of the lignin is removed from the fibres while retaining substantial amounts of
cellulose fibres. Properties are also greatly optimized by beating or refining, which
causes the fibres to hydrate (i.e., pick up water) and swell, increasing their flexibility
and bonding power.

The primary purpose of pulping is to separate fibres from each other, and the
secondary purpose is to give the fibres optimal properties for their ultimate use. To
achieve the two purposes in the most economical way, two main types of pulping
processes have been developed [2]: Chemical and Mechanical pulping. The processes
produce substantially different fibre characteristics, and the choice between them de-
pends upon the wood species available and the end applications for the pulp produced.
A combination of different chemical and mechanical pulping process is used in order

to obtain the desired paper quality.

1.2.1 Chemical pulping

Chemical pulping uses a variety of chemicals to degrade and dissolve the lignin which
binds the cellulose fibres together, and leave behind most of cellulose and hemicellulose
in the form of intact fibres [3]. Usually it is considerably lower in yield than mechanical
pulp, but it produces a more compact stronger sheet of paper. It is easily bleached,
and the bleached brightness is considerably more stable than what can be obtained



from mechanical pulps. A serious problem is environmental pollution.

1.2.2 Mechanical pulping

Mechanical pulping uses mechanical forces to free cellulose fibre from lignin, and
therefore differs from chemical pulping that it does not destroy the lignin [3]. Paper
from mechanical pulp absorbs ink easily, rapidly and uniformly, giving it excellent
printability. Because of its high yield (almost 100%), mechanical pulp has certain
advantages over chemical pulp in areas of huge consumption, such as newsprint. On
the other hand, it has undesirable p-roperties such as low strength, harsh fell and lack
of permanence, and does not develop strength during beating.

Developments in mechanical pulping, especially Thermal Mechanical Pulping,
have improved the strength of the paper, and newer _'TMP (Chemical-Thermal Me-
chanical Pulping) may serve as an adequate substitute for chemical pulping in some

area in the near future (3, 4).

1.2.3 Mechanical pulping methods

Mechanical pulps are produced by two different processes: Grinding and Refining.
In the grinding process, debarked logs are forced against a revolving abrasive stone,
which in part grinds the fibres off the logs and also separates them from the lignin
matrix. This happens in a process of compression and release when the stone passes
over the individual fibres. In refining, wood chips are fed between two metal discs
with at least one of them rotating. The wood fibres are separated by grooves and
bars on the surfaces of the two discs acting on wood chips and fibre bundles.

The two types of mechanical pulps are significantly different. The gro::adwood
pulp has a higher content of fine material owing to the abrasive action, whereas the
refiner pulp has a smaller content of fine material and long fibres tend to be more
ribbon-like. The principle of groundwood pulping is simple, but efficient production
of a uniform, good quality pulp requires careful control of stone surface roughness,

pressure, shower water temperature and flow rate. While the mechanism governing




refining is more complicated, it can produce a uniform quality of pulp and is more
suitable for automation and computer control, thereby reducing labour costs. Fur-
thermore, refiner pulp can use sawdust or hardwood, though not as easily as softwood,
as raw material. At present, more than half of the mechanical pulp is made by refining

[1] and this can only increase.

1.3 Wood-chip Refiner

Although the refining of chips was started by Asplund in 1931, it was not until
the 1950’s that work started on the production of papermaking pulp, and the first
commercial refiner mechanical pulp (RMP) was produced in 1960 [5, 6]. The three
basic types of refiners are schematically shown in Figure 1.1 [3]. In the first, one disc
rotates; in the second, a centre disc rotates against two stationary discs; and in the
third, the two discs counter rotate.

The plate clearance is of critical importance, with a typical size of the order 0.1
mm, and is accurately controlled by either an electro-mechanical or hydraulic loading
system. The material to be refined is introduced by a screw feeder into the open eye of
the refiner. As the material moves through the refining zone towards the periphery,
the wood mass is progressively broken down into smaller particles and finally into
fibres. Water is supplied to the eye of the refiner to control pulp consistency. Some-
timnes, chemicals are also added to achieve special purposes. Refiners are currently
available with plates up to 76 inches in diameter with 30,000 hp of power supplied to
each plate [1].

1.3.1 Refiner plate

The discs are faced with plates containing a pattern of bars and grooves. Generally
refiner plates can be classified in two categories: first-stage refiner plates and second-
stage refiner plates as shown in Figure 1.2. First-stage refiner plates have wide breaker
bars close to the eye of the refiner that shred the chips and feed them to the ‘refining

zone’. The refining zone consists of progressively narrower bars and grooves where the
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coarse material is converted to pulp. Usually the plates are tapered slightly (by 0.01
mm/mm or less) to ensure that the pulp moves evenly towards the periphery. Some
plates are provided with dams to block the grooves at intervals and force the pulp to
move over the bars. Plates may also be made with a peripheral rim to increase the
retention time of pulp between the plates.

Second-stage refiner plates usually have a shorter breaker bar section and a larger
portion of refining surface. The breaker bars are necessary to align and impart cen-
trifugal force to the partly refined pulp. Figure 1.2 shows a typical first stage plate
(above) and second stage plate.

At present, there are no rules for plate design, and it is strictly a method of trial-
and-error. Design characters of the refiner plates include: Types of metal or alloy for
the plate; Bar and groove dimensions, locations and the number; Dam shape, location
and the number; And plate taper. A general refiner plate is shown in Figure 1.3 to
define refiner plate terminology [5). Apparently different demands of pulping methods
and quality require different plate patterns. It is assumed that the bars are used to
apply pressure to the fibres, while the grooves allow the fibres to expand and the
excess steam and water to escape. The taper design depends on a lot of factors and
has to be optimized case-by-case, but it is normally less for second-stage refining than

for first-stage.

1.4 Control of Refining Process

For acceptable refining to take place, the plate gap between the bars has to be small,
on the order of a few fibre diameters. It is observed that water alone can not support
a compressive load exerted by refiner plates. When fibres are present in water, the
load carrying capacity of the pulp is substantially higher than water alone (7, 8, 9].
As a matter of fact, the load carrying capacity of a refiner is quite enormous during
refining. Furthermore, the load carrying capacity of stock to be refined is so high that
it actually deforms the refiner plates [10)].

There are many variables which affect the chip refining process and pulp quality it
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Figure 1.3: Refining plate terminology. A. View of the refining surface; B. Taper.




produces, but only few of them can be actively controlled during refining. Operating
variables in refining are defined as the variables which have influence both on pulp
quality and refining operation. The control variables mean that they can be directly
controlled during the refining operation. According to Stationwala et al. [11], there
are three primary operating control variables in most types of refiner mechanical
pulping processes. They are dilution water rate, throughput and refiner plate gap
setting, each of which can be adjusted separately in the process of refining. In turn,
these variables, or some combination of them, control discharge consistency, specific
energy and motor load, all of which in one way or in another are related to the pulp
quality. In fact, these operating variables are interrelated in nature, which contributes
another reason why there is no unified theory pertaining to refining process.

To maintain uniform operation, it is important that the steam be freely exhausted
from the refining zone. Uneven steam exhaustion relates to ‘blowback’, which causes
interruption of chip flow and corresponds to load fluctuations. Steam pressure devel-
opment has been found to be affected by most of the operating variables, but is easily
controlled by reducing the temperature and consistency of the feed. Chip quality is
another important factor to influence the pulp quality, and it should be controlled
before the refining stage.

Another important aspect of refining control is to prevent plate-clashing. Usu-
ally the pulp pad between the discs counter-balances the applied load and prevents
destructive contact of plates. Should the pad break down, due to either process or
machine disturbance, plate contact can occur, with resulting damage to the plates and
interruption of normal production. Since no theory has been developed to describe

the phenomenon, preventing plate-clashing relies only on sensor devices [12].

1.5 Mathematical Models of Refining

Although there are many papers in the literature describing the hypotheses and the-
ories of refining {10, 13, 14, 15, 16, 17, 18, 19], very little work has been done on

the theoretical analysis of the refining process, and only in recent years have some




mathematical models of refining been worked out to predict the relations between the
parameters involved and pulp quality.

1.5.1 Steam flow models

A preliminary theory on steam flow in a chip refiner was put forward by Dana et
al. [20]. With some restrictions, this work identified how the development of self-
pressurization and steam flow in the refining zone could be predicted. The theoret-
ically predicted level of self-pressurization was found to be only a fraction of that
calculated from experimentally measured temperatures in the refining zone.

In recent work, Miles et al. incorporated the interaction between steam and pulp
into the preliminary steam theory, resulting in a modified steam theory {21]. The
new model assumed the pulp to be evenly distributed in the refining zone with the
generated steam flowing through the porous pulp pad. By suitably choosing the
values of the specific surface area of the pulp inside a refiner, the authors were able
to fit the analytical result to practical measurements of the steam distribution within
the refiner.

Newman et al. has simplified his numerical analysis and his recent modification
of the preliminary steam theory appears to provide simplified solutions using more
realistic levels of skin friction coefficient than those used earlier and under condi-
tions which include the possibility of the steam attaining supersonic velocity, even
though they were not certain whether this condition actually occurs in refining (22].
Predictions, using this newer model, compare favorably with experimental data.

A dynamic model of steam flow was developed by Aarni and Virkkunen [23].
To the best of our knowledge, this is the only modelling done for time-dependent
effect of steamn flow. It was claimed that the simulation can be used to optimize
the operating point of the steady state operation of refining, and to study the effect
of control variables on the refining operation. The simulation also showed that the
fastest response time of the refiner is of the order of 30 microseconds and the time that
a disturbance takes to travel through the refiner is one millisecond. But the model

reported lacks some details such as setting of some important parameters, boundary
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and initial conditions for the simulation.

1.5.2 Pulp flow (movement) models

Two theoretical models were developed more recently for pulp flow inside a refiner by
Miles et al.[24] and Fan [25]. Although they interpreted pulp movement differently,
the models are very similar in appearance. With some assumptions, the models
predicted the pulp velocity profiles along a refiner radius, but no time-dependent
effects of pulp flow were included. The features and the differences of the two models

will be discussed in more detail later when we extend the current models into a

time-dependent model.

1.6 Scope and Aims of the Thesis

This thesis describes a study of the pulp movement inside disc refiners by mathemati-
cal modelling and numerical simulations. The work attempts to answer the following

questions:
e What is the time-dependent effect on pulp flow (movement)?
e What is the alternative for modelling pulp movement as a continuum?

e Is it possible to incorporate recent experimental observations into a relatively

simple, but effective model?
o If such a model can be developed, what is the best example to test the model?

o Can we predict the residence time distribution and the treatment time distri-

bution using the new model?
o How can this model take time-dependent effect of pulp movement?

o Can we relate the probability parameters to the local conditions of pulp move-

ment?

e How can we calculate the forces supported by discontinuous flocs?




The work is presented in the subsequent six chapters.

Chapter 2 describes extending the previous pulp movement model into a time-
dependent model without adding more forces. A simple system of hyperbolic partial
differential equations is obtained, but instabilities hamper the numerical solutions.

Chapter 3 introduces modelling pulp movement as a discontinuous stochastic pro-
cess. Predicting residence time distribution is a first test of the model, and some
results are given for the numerical simulations of the new model.

Chapter 4 investigates the behaviour of the treatment time distribution found by
using the model. The origin of the non-monotonic behaviour is identified by studying
a simplified model, and a theoretical explanation is given for this phenomenon.

Chapter 5 deals with the time-dependent stochastic modelling of pulp movement
in a refiner. Locally averaged pulp densities are used as an indication of local pulp
property variation with time, and correlation between the locally averaged pulp den-
sity and the residence time as well as the treatment time are also presented.

Chapter 6 explains the derivation of the formulas that are used to calculate the
probability expressions in the model. Several versions of the probability expressions
are proposed to relate the probabilities to the averaged pulp densities based on the
understanding (or assumptions) of the floc exchange mechanisms. Implementation of
the model and some results of numerical simulations are also included.

The final Chapter illustrates the development of the relations among operating
variables in refining, in particular, between varieties of the loads and the plate gap.
The assumptions for a single floc to behave under repeated compression and relaxation
are described, and the mechanism for the total load supported collectively by all the
flocs inside refiners is speculated. Some simulation results are given at the end.

The thesis concludes with a section giving summary and contribution to knowl-

edge, suggestions for further work.
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Chapter 2

EXTENSION OF THE STEADY-STATE MODEL

2.1 Background

Several theoretical models have been developed describing the steady-state operation
of a refiner [20, 21, 22, 24, 25]. One set of calculations has concentrated on the steam
flow, largely ignoring the presence of pulp and dilution water except in as much as
they justified putting terms in the equations to describe the generation of steam
throughout the refiner [20, 21, 22]. A second set of calculations has attempted to
model the movement of the pulp between the plates (24, 25]. The word movement is
used rather than flow, because it is not clear to what extent the pulp does flow. The
choice of the words flow and move is based on whether the internal deformation of
the material is assumed to be important. Thus a block of wood moves from one place
to another because any theoretical treatment will ignore things happening inside the
wood. In contrast, water or oil flows because we cannot ignore internal processes, i.e.,
the internal velocity profile. Modern disc refiners operate at very high consistency
levels, usually above 40 % (Consistency being defined as the wood fibre weight divided
by the total weight of the wood fibre and water). High consistency pulp is considered
to be a non-Newtonian fluid with a very high viscosity, if it is treated using the
standard ideas of fluid mechanics [26]. To include equations for such flow in any
model would make solution very cumbersome and time consuming and yet might
return little in improving the agreement between theory and experiment.

Our first work has been a steady-state study of pulp movement in a refiner [25].

By assuming that the refiner is working with constant input and motor load, we
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can exclude time-dependent terms from the equations and obtain a relatively simple
solution. The difficulty with this strategy is that, because we have simplified the
situation so much, the predictions available from such a model are inherently few. The
model is basically not accurate enough to warrant making a quantitative comparison
between the theory and experiment.

To extend the previous model, we have focused on generalizing the model to in-
clude time-dependent effects. The behaviour of a refiner under varying loads and
inputs is important in its own right, because it is the basis of refiner control. The
inclusion of time variation also opens up many useful possibilities for comparison be-
tween theory and experiment. Some of the behaviour of a refiner has a qualitative
aspect that can be studied independently of the accuracy of individual numerical pre-
dictions. For example, pulp-pad collapse and the subsequent danger of plate clashing
is something that requires an explanation in qualitative terms. At present, pulp-pad
collapse is a condition that is detected by control programs but not explained.

To derive a set of equations that can model the movement of pulp inside a refiner,

we must start with a mental picture of what is going on between the plates.

2.2 Basic Assumptions

The first assumption we would like to make is that the variations of pulp movement
in the tangential direction are negligible due to the obvious symmetrical structure of
the refiner disks. Fox et al. [27] observed that in a model refiner, the flow patterns in
the tangential direction around the periphery are similar except near the exit area.
Thus our model is axisymmetric in that all quantities vary only with r, the radial
distance from the centre of the discs.

Pulp movement is assumed to be mainly confined to the grooves of the refiner
plates, as has been observed in the high-speed ciné films and photographs of the
refiner [28, 29]. The refining action is assumed to be concentrated on the bars and is
the result of relatively small amounts of pulp being stapled on the bars for a short
period of time. Thus the model takes the pulp in the grooves of refiner plates into
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consideration while ignoring the pulp between the plates.

We shall lump th¢ wood and water tczether as a single phase characterized by a
velocity and a consistency. The steam will be a separate, second phase with its own
velocity and density.

The hydraulic load is assumed to be uniformly distributed in the refining zone,
and shared by the steam pressure and the pulp confined in the grooves. The pulp
compressed between the refiner plates is ignored at the moment because of the small
quantity of pulp compared with that inside the grooves.

2.3 Derivation of Governing Equations

We consider a plate containing a simple type of har pattern. Let depth of grooves d
and width w be constants with respect to radius r. Then the total number of grooves
will increase towards periphery. The total number of grooves can be expressed as
n = a2xr/w, where a is a fixed parameter to represent the width ratio of bars and
grooves.

We now use cylindrical coordinates outlined in Figure 2.1, and consider an element
ring of pulp in the refining zone. The governing equations consist of conservation of
wood material in the element ring and conservation of momentum in the same element.

The schematics of the pulp element in the refiner is shown in Figure 2.2.

2.3.1 Continuity equation (mass conservation of wood)

The amount of wood material in a unit volume is (cp), where c is pulp consistency and

p pulp density. Thus the conservation of wood in the element results in the following
equation:

0 18 19 0

3;(P) + 7 5, (cpru) + Zzp(cpv) + g-(cpw) =0 (2.1)
where v and w are pulp velocities in the directions of 0 and z. If we ignore cross flow

and tangential flow, i.e., w = 0 and v = 0, we end up with the following equation:

%(cp) + -}grl(cpm) = 0. (22)
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Figure 2.2: Schematics of a pulp element inside the grooves of the refiner.
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Based on a sensitivity analysis of the dynamic model of steam flow [23], it was con-
cluded that the effect of the consistency on dynamic operation of refining is insignif-
icant. Also consistency was known to have a slowly increasing profile with respect
to the refining radius r, as a result of water evaporation along r [23, 24]. Therefore,
we approximate the pulp consistency ¢ = ¢(r) as linear along the refining zone radius
r. In particular, we let ¢ = ¢; + b)(r — ry) where ¢, is inlet consistency and b, is a
constant so that dc/dr = b,. We have

dp pu 10 _
TR b+ rar(pru) =0 (2.3)

where u is the pulp velocity. We see that pulp in the element is not conserved due to

the fact that wate: evaporates inside a refiner at the rate of (—pub, /c).

2.3.2 Conservation of momentum

To obtain an equation describing the force balance on the pulp, four possible forces
should be considered.
1). Centrifugal Force

The force on the pulp elem:ni ring is
6F, = (bm)w’r = a2nrd - brpwir (2.4)

where 6r is the radial length of the element ring and w is angular velocity of rotating
discs.
2). Friction

Coulombic friction is assumed to exist between the pulp and groove. The friction
force for the pulp element ring is

2rrd
w

8F, = pPy6A = pP,6r(2d + w) (2.5)

where u is friction coefficient between pulp and groove, and P, is the internal pressure

of pulp.
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3). Pressure Gradients within the Pulp

If the outlet of the refiner is obstructed, it is obvious that the wood can not be fed
into the refiner. The mechanism that would prevent the feeding would be the greater
pressure inside the pulp resisting the pressure of the pulp being pushed. In a less
extreme way, it is expected that {“e constriction at the fine-bar section would make
itself felt in the dynamics of the pulp by creating a higher pressure there, building up
a pressure gradient within the pulp. This force is hard to represent because we have
little information about internal pressure distribution and compression characteristics
of moving pulp. At the present time it does not appear to be an essential componer?
of the model and will be neglected.

4). Steam Drag on Pulp

The magnitude of this quantity is also hard to assess, since it is not clear whether
the steam flows through the pulp in the grooves or only through the pulp trapped
between the plates. As with item 3) above, the steam force does not seem to be
essential to the model, because the pulp clearly moves outwards to the steam pressure
maximum in spite of having to move against the steam flow. Physically, this means
that we model a non-pressurized small size refiner. The steam flow will obviously
reduce the pulp velocity to some extent as it approaches the pressure maximum and
increase it as it leaves.

Thus we take the first two contributions which involve simple mechanisms into
consideration for the model, ignoring the last two contributions at the moment. It is
unlikely that any new qualitative effect will emerge. Obviously, quantitative predic-
tions will benefit from these ignored terms.

Now the momentum of the element of pulp is a2xrd- érpu, and the rate of change

will be

D a a a v ) .
-52=5;+u'v=-67+u5;+;‘55+w'02- (2.6)

After takiug into account the assumptions that v =0 and w = 0, we get simplified

form of the above equation:

D a a
onm— . _— — . m—— . . .7
Dt(a2ﬂd brpu) at(a21rrd 6rpu)+uar(021rrd érpu) (2.7)
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Therefore, the force balance for the element of pulp is

%(a%rrd -brpu)+ u%(oﬂrrd -érpu) = a2xrd-6rpuwr — uPoér(1 + 21—‘:-)21rra. (2.8)

Then, after simplification we obtain

d d
() + ;E(rtm) = pw'r — uFyA,

where A = 1/d + 2/w.

2.4 Equations in Matrix Form

(2.9)

Now if we substitute Equation (2.3) xu into Equation (2.9) and simplify Equation (2.3),

we are able to obtain the system of equations governing the pulp movement in a re-

finer:
_c'_?g
ot

The above equations can be rearranged into matrix form:

A

or
where in our case, A= 10
01
and b= r <
[ ~Eh —wir + ﬂ%i

®|3

1

:N

¥IR

=T

8u,-

+b

frem—

b

i=0’

=4,

u p
00|’

(2.10)

(2.11)

(2.12)

(2.13)

Because the 2x2 coefficient matrix @ has 2 real and distinct eigenvalues for all possible
solutions of the system (2.13), then (2.13) is said to be hyperbolic type [30], or
is classified as first order hyperbolic system with two independent variables [31].
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The system is also called quasi-linear hyperbolic due to the fact that the coefficient
matrix d is in the form of @ = a(i, r, t) only, and independent of the derivatives of .

According to [31, 32], the characteristic form of the above matrix system is

du.~ dr v .
l.'-dT +5Lb;,=0 on "-i{ =C (2.14)

where [; is the left eigenvector of coefficient matrix @, while C is governed by the

characteristic equation La;; = [;C, or |a;; — Cé;;} = 0,

ie.,
u=C r |_, (2.15)
0 -C
which yields
(u—C)-C)=0. (2.16)

Solving the above equation, we obtain the eigenvalues of the coefficient matrix @ to
be, C = 0 and C = u, which are the characteristic lines of the hyperbolic system.
1). Along characteristic line C =0

The left eigenvector [ is obtained by substituting C = 0 into the characteristic
equation, i.e.,

lia-C)=0, (2.17)

or

[, 1] [: g] =[0,0]. (2.18)

We solve the above matrix equation and put ['into orthonormal form I = [0,1]). The

resulting equations along the characteristic line C = 0 are

du u? 2. . WA dr _ .
W-—--&-bx—wr+—7—-—0 on — =0. (2.19)

2). Aleng the Characteristic Line C = u
Following the same steps used in 1), we are able to obtain the left eigenvector
'=[1,p/u], and the resulting equations are

pdu
u di

dp pu_pu, p W, 2 bBA & (220
Sttt -+ =5 on u. (220

dt



2.5 Solution Methods

There is no analytical solution for this system of hyperbolic equations. Thus a nu-
merical scheme has to be employed to get a solution.
1). Method of Characteristics

The basic rationale underlying the use of characteristics is that by an appropriate
choice of coordinates, the original system of hyperbolic first order P.D.E.’s can be
replaced by a system expressed in characteristic coordinates. These are the ‘natural’
coordinates of the system in which P.D.E.’s reduce to O.D.E.’s. A knowledge of
the characteristics is also important to the understanding of discontinuity and shocks
present within the solution domain [33, 36]. This method involves two steps: The first
is to locate the characteristic curves; and the second is to integrate the O.D.E.’s along
the characteristic lines. The key for this method to be successful is the complexity of
the characteristics concerned. For example, if the charactesistic curves are straight
lines, it is fairly easy to construct the characteristic coordinates. In our case, one of
the characteristics is C = u which is unknown, therefore it is not appropriate to use
this method to build grids of characteristic coordinates for the numerical solution.
2). Finite Difference Method

The method of integrating along characteristics is usually the most accurate and
convenient. However, for the hyperbolic system of no great complexity, whose solution
is known to be well behaved, we can alternatively employ finite difference procedures.
For the finite difference methods to be useful, we must take into account the char-
acteristics of the system [35]. Since we do not know the behavior of the hyperbolic
system, this method is also not practical.
3). ‘Hybrid’ Method

As the name suggests, ‘hybrid’ method is the one that uses characteristics method

as a basis and then interpolates the results into spatial distributions of the dependent
variables at a fixed time step. The method has the advantage of attempting to follow
the characteristics as closely as possible (depending on the scheme for the interpo-

lation) [34, 35]. Thus this method was chosen to perform the numerical solution for
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Figure 2.3: Layout of grid points for the numerical scheme.

the first order hyperbolic system.

2.6 Numerical Scheme

The numerical scheme is due to Courant et al. [38] and explained in detail by Jeffrey
and Taniuti [37]. Their method has the advantage of being straight forward and
general in its application, which is appropriate to the numerical solution for our
hyperbolic system. The scheme is applicable to initial and boundary value problems
for quasi-linear hyperbolic system in two independent variables.

The scheme uses a rectangular grid for time and space variables advancing from
time ¢ to (t + At) by interpolating the results based on the characteristics of the
hyperbolic system. The details are the following: Suppose that we know the solution
up to time ¢ with known grid point P and Q in Figure 2.3, and we want to advance
the solution to Q’ which corresponds to time (¢t + At). The numerical scheme in

matrix form is

@) [AL I , coR QIR L igii@r =0 2an

where i is the index to indicate ith characteristic line, and in our case i is equal to 1

or 2.




To ensure that the domain of dependence of grid point Q' is contained between
segment PQ, we have to select At and Ar such that all the characteristic lines through
@’ when traced backwards in time intersect the line between grid point P and Q. This
condition requires that the gradients of each of the characteristics at Q' should be
bounded by the rays ’P and Q'Q. Or this may be expressed by the condition that

: Ar
o’ = =
max |CH(Q)| < L i=1,2 (2.22)
for all points Q' under consideration. In our case the above condition becomes
Ar
|u| < E (2.23)

The convergence of the discrete valued vector @ to the differentiable solution of
the hyperbolic system as Ar and At tend to zero subject to condition (2.22) has also
been established by Jeffrey et al. [37).

1). For I = [0,1] and CM =0
Substituting the ~bove relations into Equation (2.21), we get the numerical for-

mula for u to advance from grid points P and Q to a new point Q’

2
ugr = ug + At [%—b, + wlr - ﬁ? (2.24)

Q
where subscript Q outside of the square bracket indicates that the variables inside

are evaluated at the point Q.
2). For 1 = [1,p/u) and C® = u
We have a similar equation for p at point @’

Ug’ At

= - 9 = -
PQ 2pq - Pq ug x;ualre —pr)
At pu  p 5 . pPA
- EPQ(“Q - 'uP) — At _1‘— «;w r+ u g . (2.25)

2.7 Inmitial and Boundary Conditions

1). Initial Conditions
Suppose that we start the calculation from a steady state of refining operation, i.e.,

when a refiner has reached the normal operation stage. Since the model is based on the
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assumption that the material between the refiner discs is continuous, this assumption
is violated before the machine reaches the normal operation stage. Naturally the
initial conditions for the numerical scheme are the steady state solutions obtained
from the previous model [25). These are the profiles of u and p as functions of refiner
radius r.
2). Boundary Conditions

The boundary conditions are based on the previous model for the steady state
solution. Then a small change .., is given to the steady state boundary condition
for inlet velocity u, to simulate the dynamic effect of changing the feed rate during the
operation of refining. Here only the change in u; and p, are considered to be mainly
responsible for the feed rate change because consistency is found to be insensitive to
the operation of refining by Dana et al. [20]. We chose to change u, for testing the
stability of the system, for the following reasons: First, from the steady state solution,
u; and p, have a simple reciprocal relation for a fixed feed rate; Secondly, changing
u; will result in a simple relation for the numerical scheme at the inlet boundary to
start the simulation, so that it is less likely to introduce instabilities at the inlet. For
example, from Equation (2.11), we can express p; in terms of u; and Ju/0t at ry, but
if we use p; to start, that will involve evaluating two more partial derivatives with

respect to r in addition to the dp/dt at ry to obtain u, using Equation (2.10).

2.8 Implementation of the Numerical Scheme

A program was written in Fortran to implement the numerical scheme discussed
before. The same basic gioup of the refiner operating parameters in [25] was used
to make relevant comparisons, in which internal pulp pressure is £, = 50 kPa and
the friction coefficient g = 0.2. The program requires three input parameters: u;
pulp velocity at inlet radius ry; total number of steps in time N; and increment
of u; (linearly) as time increasing. The output variables are u and p with respect
to radius r in different time steps. During a calculation, the values of u and p

are plotted simultaneously for every 5th time step using the plotting subroutines
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developed by Jeffrey [39]. The step sizes of Ar and At are chosen by the convergence
condition (2.23), and the accuracy of the calculation required. The values of step
sizes adopted in the program are: Ar =1 x 1072 m, and At = 2.5 x 1073 s. In the
graphs shown below, we chose to show only the results of the u profiles, because we
found that for all the cases, the p profiles follow the trend of the u profiles closely for

both steady and dynamic state simulations.

2.8.1 Steady state simulation

The steady state solution is obtained by using the boundary and initial conditions
directly from the previous steady state model [25). We approximate thesc profiles
using the condition in the steady state that flux of wood is constan, or a2xrd-cou = F
where F is the feed rate of wood, or rcpu = constant. We know from the solution
of the previous model [25] that u is approximately proportional to 1/r so that we let
u = uyry /r, then pulp density can be expressed as p = p;c;/c, where u; and p; are
inlet pulp velocity and pulp density predicted in the previous model.

The results are the steady state profiles of u and p as functions of r advanced
in time, which are shown (only profiles of u as representatives) in Figures 2.4 to
2.6. A small deviation from the steady state curves is observed for N = 80. Then
a certain degree of oscillations is observed when the number of time steps is above
80. The oscillations are intensified as N becomes larger. Notice that, for example in
Figure 2.4, each line representing a steady profile in 5 time steps apart shifts up a
little bit, resulting in an overall much thicker line of a profile except near the ry. The

profiles of p are very similar to that of u, and can be seen in Appendix A.

2.8.2 Dynamic state simulation

The largest number of time steps that produces a reasonably stable solution in steady
state simulation is adopted to carry out the calculations. For most of the cases, we use
total number of time steps N = 80. The initial conditions are kept the same as in the

steady state solution. But the boundary condition u, is changed to t1,.. to simulate
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the situation for the feed rate change. In order to make the change consistent, we
also make a corresponding change for p; to pyn.w according to Equation (2.11) where
Ou/dt at r, will be approximated by the ways that u, is changed to ujn.. specified.
1). Changing 4y t0 %;,.w in one time step

We change u; to uju. in one time step At, and du/0dt at r, can be approximated

by the following difference equation in the numerical scheme:

ou Ulnew — U
-a? r=r, = _---—l At ! . (2.26)

Figures 2.7 and 2.8 show that u;,., is about £0.03 m/s away from the steady state
solution u; = 0.39 m/s. These are the largest changes for ujpn., that we can give to
4, since otherwise the oscillations will be simply out of the scale of u in the graphs.
We can manage to give u,,., a slightly higher value of u;,., = 0.50 m/s for the case
N = 60 (Figure 2.9). Here, only the profiles of u with respect to r are shown, because
the profiles of p follow very similar trends, as can be seen in Appendix A.
2). Changing u; to ujn.w linearly in time steps

The procedure is the same as in 1) except that the boundary condition u, is
changed linearly over the entire time steps N to u;,.,. In other words, an increment
of Au, is given for each time step so that u;,., is equal to (Au; x N). Obviously,
du/0t at r = r; can be approximated by Au;/At. Figures 2.10 to 2.13 show the
effects of changing u; linearly to uj,.. The increment of Au, is from -0.002 to
+0.003. Again, the profiles of p with respect to r are illustrated in Appendix A.
3). Changing p; to pinew

Similar trends are observed for changing p; to pinew, Wwhen compared with the
cases of changing u; to ujn.,. But in order to keep the work focused, we put these

results into Appendix A.

2.9 Observations

A disturbance is only confined to a small segment of r no matter how large it is (in
a range of r; = 0.432 m to r = 0.440 m). Even in the steady state simulations,

some unstable deviations occur at time about T = 2 x 1072 s, and later change to
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oscillations as time advances. The disturbances in the boundary cannot travel along
radius r for too far.

The magnitude of u, ., is always amplified whether using one step change to ujnew
or linear change to ujn.,. But we see that using one step change t0 ujp,, causes much
more severe oscillations than using linear change to u),.u, i.e., linear change to up,.,
gives less degree of disturbance than one step change to u;,.,,. However, using linear
change to uyn., still predicts that the peak of the disturbance is about twice of
the magnitude given in the boundary condition %j,.. This means that the system
amplifies any disturbances as time advances.

Another phenomenon is observed that the unstable disturbance in the steady state
simulation is stronger above the steady state curves, i.e., the centre of oscillations is
above the steady state curves. While in both cases of one step change to ujp., and
linear change to 4.y, the disturbances are always one-sided (either above or below
the steady state curve) except for the case of using larger time steps. And in both
cases, they display a symmetrical pattern about the steady state curves when uj ., is
larger or smaller than u, for the same amount (e.g., Figure 2.11 where Au, = —0.001

versus Figure 2.12 where Au, = 0.001).

2.10 Implicit Method to Test the Stability of the System

The numerical method used before is explicit, i.e., in each calculation we solve u and
p on time t 4+ At using values of u and p in previous 3 points on time t. The explicit
method is easy to implement, but has conditions for stability. On the other hand, the
implicit method expresses u and p of 3 points on time ¢t + At in term of values of u
and p at 1 point on time ¢, and therefore the unknowns of « and p on time t + At are
coupled. This method requires special techniques to solve the unknowns in exchange

of more favorable stability conditions. Thus, we employ the implicit method to test

the stability of the system.
First of all, we discretize the Equations (2.10) and (2.11) in terms of grid point

values at i and j (corresponding to variables r and t), resulting in the following finite
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difference equations:

At(u; ;41)2 AtuP, A
Ui j41 — -(J—W‘- - Athr.- + el 2o = U, ;, (227)
C; Pij+1
1 1 t
gFuianpirn + [+ Sk = dien) + uin
At 1
+‘c:fbl“i.i+1]PiJ+l - Ek“i-jﬂl’i-l.jﬂ = pi;j (2.28)

where k is the ratio of At/Ar.

Suppose we know all the information about time ¢ (at step j), and want to advance
our solution to time ¢+ At (at step j+1). The term p; ;4 in Equation (2.27) is coupled
with Equation (2.28), and (u; j+1)? in Equation (2.27) is nonlinear. To get a solution,
iteration has to be used, where m indicates the mth iteration. In order to break the

nonlinear term, we use Newton-Raphson linearization, i.e.,
.. 2 m m+1 3
(uij+1)" = 2"a’.j+1“-‘.j+1 - “?.'j+1- (2.29)

To uncouple the Equations (2.27) and (2.28), we let p; ;41 = pi,; for m = 1, and
p:’:,'f,_'l = p[41 in Equation (2.27) for the iterations. Now we start with Equation (2.27)
to generate u(,,, then substitute u’;,, into Equation (2.28) using Thomas Algorithm
[40) to produce p%;,,. And we put this p";,, back to Equation (2.27) to start another
round of iteration until certain level of accuracy is achieved. In our case, we take
Au/8r at r, as an indication of convergence, i.e., when the difference between the
previous and current value of Ju/dr at ry is less than a set value (10~%) we stop the
iteration. The boundary and initial conditions are exactly the same as those used in

the explicit method before.

2.10.1 Steady state simulation

Figures 2.14 to 2.16 show the results produced by using the implicit method. From
Figure 2.14, we see that using the implicit method predicts almost the same steady
state profiles for u compared with those of using the explicit method. The minor

difference here is that there is a small disturbance below the steady state profiles as r












is near r;. We also see that the stability of using this method does not improve over
the explicit one in the steady state simulations, which is evidenced in Figure 2.16.

The corresponding p profiles are shown in Appendix A.

2.10.2 Dynamic state simulation

Figures 2.17 and 2.18 illustrate the results of changing u, to u;,., in one step and
linearly. In both cases, the method is very stable, but the disturbances introduced in
the boundary conditions cannot travel along radial direction r at all. The p profiles
show a similar trend, as illustrated in Appendix A.

An important conclusion can be drawn from using the implicit method that even
though we use this more stable method some disturbances will grow in steady state
simulation after certain time steps. This kind of behaviour suggests that the equations

we try to solve might possess some unstable character.

2.11 Discussions and Further Work

According to the general theories of hyperbolic P.D.E.’s [31], discontinuities may
occur within the domain of a solution for a hyperbolic system, even though there
is no discontinuities introduced in boundary or initial conditions, resulting in non-
unique solutions.

We have tested both the explicit and the implicit methods to solve our system
of equations. Both methods generate oscillations when simulating the steady-state
of the system, in spite of the fact that the implicit method is so stable that there is
no amplification of any disturbances given on the boundary conditions. It appears,
therefore, that the instability comes from the equations of the hyperbolic system. To
tackle the problem, we have two choices. We can reexamine the terms and assump-
tions used in deriving the governing equations of the system, especially the effect of
steam that we ignored. The ways in which we introduce disturbances on the bound-
ary conditions may also be crucial to the stability of the system. Alternatively we

could add an artificial diffusion (or viscosity) term [41] to our numerical scheme. By
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adding chis term we could improve the stability of the hyperbolic system. An accu-
rate numerical solution could still be achieved by letting the artificial diffusion term
be the same order as the truncation error of the numerical scheme. However, as we
shali see in the next Chapter, there are many effects of refining that we cannot expect

to handle in a continuum model, and so we try instead a discrete model.
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Chapter 3

DISCRETE MODEL AND STOCHASTIC MOTION

3.1 Introduction

One of the obvious weaknesses of the theoretical models described so far is the fact
that no attempt is made to take into account the fact that bars and grooves are
present on the plates of the refiner. In contrast, the widely held view within the
pulp and paper industry is that pulp within the grooves behaves differently from the
pulp between the bars. For example, the reason given for the placing of dams in the
grooves of refiner plates is that they force the pulp out of the grooves into the space
between the plates, in order that the pulp can be treated there by the mechanical
forces generated from the moving bars. Another aspect that the current models fail to
address is that experiment observations emphasize the fact that pulp inside a refiner
breaks up iuto (temporary) flocs (The definition of pulp flocs is given in Appendix B).
To develop an improved model, we have to address these fundamental questions first.
Our initial focus of development has been the calculation of the residence time of the
pulp in a refiner.

The amount of time that pulp spends inside a refiner is a significant factor in
both low-consistency and high-consistency refining. For low consistencies, a number
of studies have shown that residence time is important both for the quality of the pulp
produced and for the operation of the refiner [42, 43, 44, 45]. For high-consistency
refining, much less is known about residence time and its effects, because little ex-

perimental data are avail. ble [46]. In spite of this, concepts related to residence time

have been used in models of refining with some success [47]. The theoretical models




of refining already introduced can calculate the residence time of pulp in a wood-chip

refiner (25, 24]. The models share the following similarities.

1. The pulp inside a refiner is treated as a continuous medium, flowing from the

inlet to the outlet.

2. A single velocity describes the motion of all the pulp at a given radial position.
The exact interpretation of this velocity varies between the models. In Refer-
ence [25] it is called the velocity in the refiner plate grooves, and in Reference [24]

the velocity averaged over the whole surface of the refiner plates.
3. The mathematical equations obtained for the two models are similar.

These mathematical models successfully describe some aspects of refiners, but do not
capture all of the ideas used to explain refiner behaviour. For example, Miles et al.
(48] suggest that fibres stapled to a rotor blade behave differently from fibres stapled
to a stator blade. There is no place for such a difference in existing mathematical
models. In both models, assumptions (1) and (2) imply that the residence time is
simply the integrated reciprocal of the pulp radial velocity, ard it thus has a unique
value for a given set of conditions. Experimental measurements of residence time,
however, show that it takes a range of values [42, 43] and is not unique.

In order to build a mathematical model that incorporates more of the modern
experimental evidence and more of the modern theories, we have reexamined the
assumptions and incorporated recent experimental observations [49] into a new set of
assumptions that more closely describe the conditions inside a refiner. An immediate
consequence will be a model of pulp flow which gives a distribution of residence times,
but it is also a framework for future expansion.

Starting with assumption (1), we reconsider whether pulp can be treated as a
continuous medium. From an examination of high-speed still photographs and ciné
films, Atack et al. [29, 50] concluded that pulp moves inside a refiner in the form of
flocs. These flocs probably do not have a permanent identity, but rather breakup and

re-form continuously. More recently, a new technique was used to obtain blur-free
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pictures of pulp in motion between refiner plates [49]. The results show that the pulp
is not continuously distributed on the bars of the plates, and indeed the concentration
of wood fibres in a small segment of refiner radius fluctuates considerably, even on the
frame-by-frame time scale of 10° frames per second. Figure 3.1 shows typical high-
speed photographs taken inside an industrial refiner through a transparent plate,
and Figure 3.2 is a close-up picture of the pulp flocs [49]. The white parts in these
pictures indicate the pulp coverage on the rotating bars of the refiner plate. We
have, therefore, replaced assumption (1) with an assumption that pulp moves inside
a refiner in the form of discrete flocs. We shall speak of these flocs as though they
are permar: at entities, but it is understood that there is no evidence that they are
in fact permanent. We are thus treating the flocs in an average sense.

We next examine assumption (2). The idea that pulp flow is not confined only
to the ga:;» between the plates was put forward by Miles and May [51] as part of
an extension of their earlier model of pulp flow [24]. A numerical calculation is
given in Appendix C to support the idea that the volume between the plates is not
large enough to contain all of the pulp that is present inside a refiner under normal
operating conditions. Miles and May [51] stated that ‘the pulp is assumed to flow
along the grooves at the same average velocity as it does along the bars, so that
the network remains essentially interconnected’. We go further, however, and assume
that the pulp in the grooves behaves differently from the pulp in the gap. Specifically,
our new model departs from assumption (2) by dividing the refining zone into three
regions: the grooves on the stator plate, the grooves on the rotor plate and the gap
between the plates. For convenience, we refer to these regions as the stator, the rotor
and the gap. It is generally thought that the bottom part of the grooves is packed
with stationary pulp, nd that only a mobile layer of pulp lying on top of this packed
pulp flows significantly. It is this mobile layer that we refer to when we speak of pulp
moving in the grooves of the plates. It is also generally thought that pulp moves from
one region to another. For example, dams are placed in grooves to force the pulp out.
In a recent experiment carried out in a laboratory single disc refiner. Ouellet et al.

observed that the stagnant pulp inside the stator grooves could be suddenly pulled
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Figure 3.1: IMACON photograph inside refining zone of the trans-
parent plate. The numbers show the sequence of taking

the picture. In the time frame that the pictures were
taken the leading edge of the rotating bar has moved over
one bar of the stator plate. The circles in frame 1, 2 and
3 identify the same fibre floc in the three photographs.
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out of the grooves [52]. The experiments reported by Miles, Lunan and May (48] were
explained by postulating different mechanisms for the pulp moving from one plate to
another. There are several mechanisms that can cause this, for example, dams in the
grooves, turbulence in the flow, and entanglements between the flocs. The present
version of our model does not specify these mechanisms further, but assumes their
existence in order to explain the transport of pulp between regions. The transport is
then treated as a stochastic process specified by a parameter.

These assumptions form the basis of the new model of pulp movement. In its
present form, the model is a kinematic one, in that the forces acting on pulp inside
the refiner are not taken explicitly into account, and pulp is simply assigned a constant
radial velocity in each of the three regions. The kinematic model alone yields some
new results, in particular for the residence time distribution, but in the longer term, it
needs to be extended to include dynamic effects. A detailed description of the model

and its implementation on a computer are given in the next section.

3.2 Description of the Model

We assume that the refiner is working at a steady production rate and motor load.
The pulp flocs are assumed to be discrete individual particles or flocs of the same size,
and we further assume that inside the refiner they are in one of three possible regions:
inside a stator groove, in the gap between the plates or inside a rotor groove. The
pulp flocs are assumed to move radially outwards at different velocities depending
on which of these three regions they are lying in. Miles [53] studied the relations
between the steam effect and the pulp radial velocity and found that steam flow
has little impact on the average pulp radial velocity, although the local pulp radial
velocity depends on steam flow. For simplicity, we have assumed that the radial
velocity is constant within each region, and in particular we shall denote the radial
velocity of pulp in the rotor grooves by u. And we shall point out that u represents
the average radial velocity for all the pulp in the rotor grooves. A numerical estimate

for u is given in the next section based on a model in which there is a force balance
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between centrifugal force driving the pulp outwards and friction resisting the motion.
The pulp velocity on the stator is assumed to be zero, the justification being that
on the stator there is no centrifugal force, and the only forces that might cause the
pulp to move are steam drag forces. Observations have shown that pulp can move
radially inwards on the stator grooves [29], presumably because of steam forces. Such
an inward velocity could be incorporated into our model, and indeed the possibility
of doing so is one of the advantages it offers over previous models. We felt, however,
that since the magnitvde of this velocity is small compared with that in the rotor
grooves or the gap between the plates, it would be better to leave this effect until we
add steam flow to the model. Hence we approximate the velocity of the pulp in the
stator groove by 0. Between the plates, we assume that a pulp floc is stapled either
to the bars of the rotor or to the bars of the stator, and as a consequence has the
same tangential velocity as the bar. The extra frictional resistance to motion, which
the fibres will experience as a result of being stapled on the bars, will reduce their
radial velocity. We therefore suppose the outward velocity in this region is u/2, a
more accurate estimate of the reduction factor requiring experimental observations.
We suppose that the flocs stay in a single region .or a fixed time interval At before
they have the possibility of shifting to another one. The radial displacement of a pulp
floc in a time interval At will be Ar = uAt in the rotor, Ar = (u/2)At in th~ gap
and Ar = 0 in the stator. After each time interval, the flocs are allowed to switch
to a different region. The change takes place so quickly that the time required is
negligible. In other words, the model makes the approximation that all the time that
a floc spends in the refining zone is divided between the three regions. This exchange
mechanism is therefore instantaneous and is modelled as a stochastic process, as
illustrated schematically in Figure 3.3. For example, suppose that a floc is at present
in the stator. At the next time step, the floc will either remain in the stator or go
to the gap between the plates. For the first possibility we assign a probability P,,
and for the second P,,. A floc that is in the gap will have three possible positions
to go to at the end of a time step: the stator, the gap or the rotor, the associated

probabilities being P,,, P;; and P,, respectively. Similarly the pulp floc in the rotor
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Figure 3.3: Schematic of positions available to the pulp flocs in different time steps.




will have two possible positions to go to, namely to stay in the rotor or to go to the
gap, with probabilities P, and F,, .

In general we denote the probability of a change by P and two alphabetic indices.
The first index refers to the present position and the second index refers to the position
at the next time step. The characters s, ¢ and r are used to represent the stator,
the gap and the rotor. There are seven probability parameters altogether, but the

following relations mean that only four are independent:

P, + Py =1, (3.1)
Pfy'*‘Prr = 1, (3-2)
FPyy + Pyg + Py = 1. (3.3)

We choose P,,, P,;, P,y and P,, as independent probability parameters. We also
need to assign probabilities to the way in which a floc enters the refining zone. The
probabilities for it entering the stator, the rotor or the gap are F;,, Py, P;,. These

probabilities obey
P, + Rg + P, =1 (3.4)

and P, and P, are chosen to be independent.

The algorithm of the process is illustrated in Figure 3.4. Before a pulp fioc enters
the refining zone, a random number is drawn to determine the region through which
it enters, i.e., the state function is initialized to stator, gap, or rotor according to the
random number drawn and to the initial probabilities P,,, P;, and P;,. The time is
set to ¢ = 0, and the radial position to r = r;. An iterative process is then started
by drawing a random number that determines the value of the state function to be
used during the time step. This decision process depends on the existing value of the
state function, since the probabilities of the new state are tied to the old state. The
state function is now updated to the value just determined. The increment Ar on
the radial position of the floc is calculated using the velocity appropriate to the state.
An iteration is completed by incrementing the radial position r and the time counter

t. All of the above steps are repeated until r is greater than o. equal to r3, indicating
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Figure 3.4: Flow chart of the steps to determine the residence time of a single floc.




that the floc has reached the refiner outlet. At that point, the residence time of the
floc is recorded and the whole process is repeated for another floc. After enough pulp
flocs have passed through the simulation, the residence time distribution of the pulp

can be plotted.

3.3 Implementation of the Model

A Fortran program has been written to implement the above algorithm. The four
independent probabilities and the two initial probabilities are treated as constants
throughout the calculations. The program includes a random number generation
subroutine to generate uniformly distributed random numbers between 0 and 1.

The geometrical and operational parameters of the refiner used in the simnulations
were taken from Reference [25], and the pulp radial velocity u was taken as the av-
erage velocity predicted by Reference [25]. This makes comparisons with previously
calculated residence times easier. Some parameters cannot be estimated from Ref-
erence [25]. Three additional groups of parameters must be specified for the model,
namely, the size of the time step At, the total number of pulp flocs to run through
the simulation, and the independent probabilities.

We assume that there are equal chances for a floc to enter the refining zone
through the stator or the rotor, so that P,, = P,,. Because of the smaller space
for the gap, we further assume that the probability of entering through the gap is
smaller, i.e., P;; < P,. In the simulations we took the values of initial probabilities
as P, = P, =0.45 and P, =0.1.

A standard set of values for the parameters were selected to calculate a basic
case against which others can be compared. The refiner operating parameters taken
from Reference [25] were pulp radial velocity » = 0.3 m/s, refiner inlet radius r, =
0.432 m, and refiner outlet radius r; = 0.572m. The independent probabilities were
P, = P.; = 0.5; P,, = P,, = 0.4. The above values of the probabilities reflect the
assumptions that there is an equal chance for a floc in the stator to stay there or to

go to the gap, and similarly for a floc in the rotor. For a floc in the gap, there is an




equal chance to go to either the stator or the rotor, and a slightly smaller chance to
stay there.

In order to give a definite value to the time step used in the simulation, At, we
need to specify a mechanism that causes a floc to change region, for example, the
doctoring/stapling mechanism described in Reference [48]. Our knowledge of the
operation of this mechanism does not allow us to calculate At directly, and we must
be content with estimating an upper bound on possible values of At. The estimate
below is an order-of-magnitude only, and two things must be kept in mind. First, it
will be shown below that the standard deviation of the residence time distribution
depends significantly on the value of At, implying that a good value of At will be
important for fitting data; second, the values chosen here are only starting points, and
comparison with an experiment (residence time directly measured from an industrial
refiner) will be necessary before anything definitive can be claimed for the quantity.

The order of magnitude of the time step At used in the simulations was chosen
according to the observed size of pulp flocs [49] and the average distance between the
flocs as determined by the geometry of the bars of the refiner plates. The width of the
refiner plate bars for the refiner considered is in the order of 2 —3 mm, which in turn
limits the maximum size of the pulp flocs between the plates. If we assume that the
diameters of the pulp flocs are approximately equal to the width of the refiner plate
bars, and that the maximum distance that a floc is likely to travel before changing
region is equal to its diameter, then At = 2 x 1073/0.15 ~ 10~% 5. Consequently we
chose At = 10~2 s as the maximum size of time step. For most runs we reduced this
further and chose At = 2 ms as the time step for the standard set of parameters, but

in the end, experiment must decide.

3.4 Results and Discussions

The results shown in Figures 3.5 to Figure 3.13 are the residence time distribution
curves calculated with the model. Along the horizontal axis, the residence time

is measured in seconds, while on the vertical axis the corresponding frequency of
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pulp flocs is expressed as a percentage of the total number of pulp flocs used in the
simulation. The model was run for several different time <teps At, but to allow easy
comparisons of different cases, all the results are presented using histograms based on
a fixed time width. The time step equals the longest one used in the simulations and
is At = 1072 5. The other time steps were fractions of this basic one. For instance, for
time steps equal to At/3, we collect the points from 3 consecutive bins, thus obtaining
one bin of width At. In the same way, if the time step is At/5, we collect the points
from 5 consecutive bins and assign the total to a bin of width At. In any event the
results are plotted as curves passing through the tops of the histograins, and the bars
of the histograms are suppressed.

Some general observations concerning all the curves can be made. First, we no-
tice that there is 2 minimum residence time. The shortest theoretical residence time
corresponds to a floc never leaving the rotor and is approxiinately equal to the resi-
dence time calculated in Reference [25]. The minimmum value observed on the curves
piesented here is significantly higher than that however. This is simply because the
probability of this case is too small to be resoived by our numerical -alculations. The
observed and theoretical minimum residence times become close if the probability
parameters take values that force most of the pulp flocs to go to the rotor. Secondly,
we notice that the distribution has a finite tail. Although it is possible for flocs to stay
on the stator indefinitely, in practice, almost no floc stays there longer than twice the
mean. Finally we notice that most distributions are close to being symmetrical about
their maximum values, implying that the means and the medians of the distributions
are approximately equal. We describe later the circumstances under wl.ich the curves
t zcome less symmetrical.

In addition to these general observations, some particular aspects of the results
can be selected for comment.

1. Total Number of Pulp Flocs

The total number of pulp flocs is chosen according to two criteria. The first is the

smoothness of the residence time distribution curve. As can be seen in Figure 3.5, the

curves get progressively smoother as we increase the total number of flocs from 5 x 10?



to 5 x 10°. However, a second criterion is to minimize the computing time used. We
found that a simulation using 3 x 10° was a reasonable compromise between these two
requirements, and this value was used for the rest of the simulations presented hcre.
With this number of flocs, a computer run on a workstation took about 40 minutes.
The equivalent dry mass of wood for this number of pulp flocs is about 0.6 kg, which
corresponds to about 1.5 s of production time for the refiner being considered.

2. Time Step At

The erfect of changing the value of the time step At is illustrated in Figure 3.€
The residence time distributions become progressively narrower as At is decreased,
but their means change very little. When At is reduced, the number of times a floc
changes regions during its transit of the refining zone increases, making it more likely
that different flocs will sample the three different regions a similar number of times.
3. Probabilities

The two independent entrance probabilities, P;, and P,,, were found to have very
little influence on the predicted residence time, because they only affect the initial
step of the simulations. The other probability parameters have a more pronounced
influence that is worth exploring.

Figures 3.7 and 3.8 show the effect of changing one particular probability parame-
ter at a ti«n 2 in either the stator or th- rotor while keeping the others at their standard
value. Figures 3.9 and 3.10 illustrate the effect of the probability parameters in the
gap. In Figure 3.9, P,, has a fixed value of 0.1 while P,, is assigned different values,
and vice-versa in Figure 3.10. in both cases, P,, varies according to Equation 3.3.
It is clear from these figures that changing one probability parameter affects both
the height and the position of the peak in the distribution, but has little effect on
the skewness of the distribution (the curves remain approximately symmetrical about
their mean).

4. Pulp Velocity «

Pulp velociiy is a major parameter in determining the residence time distribution

cnrves of a refiner because ¢ directly influences the time the pulp flocs spend inside

the refiner. Figure 3.11 snows that changing the valve of the pulp radial velocity u
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has a significant effect on both the height and the position of the peak of the residence
time distribution.

We also tested the sensitivity of the model to pulp velocity profiles using u =
u(r), which is the approximation of the result obtained from the previous model
[25]. Figure 3.12 shows the distribution curves generated by using u = u(r) =
0.2u;/[0.2 + (r — r1))], where u, is inlet pulp velocity, compared with the case of
using u = constant = 0.3. In order to make the two cases comparable, we define an
average pulp velocity as

=" 3.5
e —71T ( ‘)

and then we found in particular that the average pulp velocity is @ = 0.758u, using
the above equation. We compared the two cases with the saine average pulp velocity
using different velocity profiles. From Figure 3.12, we can clearly see that the effect
of using u(r) profile is to shift the distribution to the right a little and the shape of
the distribution is very similar to the one using u = constant. Therefore, no further
effort is made to explore the effect of different pulp velocity profiles.

5. Skewness of the DistriLation Curves

So far, all the results indicate that the residence time distributions obtained by
changing the various parameters are approximately symmetrical about their mean
values. However, the asymmetry of the residence time distribution can be accentuated
by forcing the probability parameters to take extreme values. This effect is shown in
Figure 3.13.

The reason behind the asymmetrical distribution is that since P,, and F,, are
both small, the pulp flocs in the stator will stay there for a long time before they
get a chance to go to the gap and from there to the rotor in order to advance in the
radial direction. As a result, a considerable portion of the pulp flocs spends much

more time than average in the refiner.



L:'l

|

u = 0.25]m/s]
G- 4 0.50[m/s]
104 A A u  0.35m/s]

cency [%]

o
©
S
L

1.0

Residence lime [s]

Figure 3.11: Effect of the velocity u on the residence time distribution.




- u=constant=0.3 m/s
O u-u(r) and cveroge u 0.5 m/s

Frequency [%]
(@)

O - St B A S S

00 02 04 06 08 1.0 12 14 1k

[

Resicence lime |

Figure 3.12: Residence time distributions in a refiner using u = u(r)
profile compared with that using constant u profile, the
rest of the parameters being the values of the standard

set.




cy [%]

Freg.en:

10
- Pgs=.4, i’sg=.5, Pgr=.4, Prg=.0
G i’gs .1, ¥sqg .7 Pgr -.8, Pro .7
N Pgs .2, Psg .2, Pgr .7, Prg=.3
Bk x Pgs=.3, Psg=.3, Pgr=.6, Prg=.4
b
4
2
O ~wrp =1 o aah L R -
0.0 0.7 0.4 0.6 0.8 1.0 1.2 1.4

Residence lime |s]

Figure 3.13: Residence time distributions in a refiner when all four

probability parameters are assigned extreme values.

69



3.5 Conclusions

We have presented a first attempt at incorporating recent experimental observations
into a model of pulp flow in a refiner. The new model, in the form presented here,
improves on some aspects of the existing models, but is weaker than them in other
aspects. The improvements lie in the treatment of floc movement, while the main
weakness is the approximate treatment of the forces that determine pulp radial veloc-
ity. The weaknesses, however, are not inherent in the model, which is intended to be
a generalization of existing ones. Therefore the dynamic modelling done in previous
models can be added in further work on this model. The benefits of the new model
are both qualitative and quantitative. The immediate quantitative benefit has been
a more realistic prediction of residence time, but in the longer term, we hope that the
model will provide a clearer way of thinking about pulp flow in general.

Through the parameter study made here, we have indicated a range of possibilities
which experimental studies can evaluate. Such experimental studies will help us
improve our model. In particular, the following conclusions have been drawn from

the model:

1. The time step At used in the model is the minimum time a pulp floc stays in
a groove or the gap between the plates, and it has a strong influence on the
standard deviation of the residence time distribution. The smaller At is, the

sharper the curves are.

2. The tendency of pulp flocs to leave the grooves or the gap between the plates is
described by probability parameters. These parameters give nearly symmetrical

distributions, except when they take extreme valurs.

3. The computer simulation treats each floc passing through the refiner separately,
and in order to obtain predictions that are reasonably smooth and not affected

by statistical fluctuations, one must run the program for about 10° flocs.

4. Changing the probability parameters will change both the height and the posi-

tion of the peak of the residence time distribution.

0




5. The pulp velocity in each region has a strong effect on the residence time dis-
tribution, both on the values of the mean and the standard deviation. The
magnitude of the effect is similar to that of the probability parameters. Using
different pulp velocity profiles along r does not seem to affect the residence time

distribution significantly.

Many aspects of the model can be improved. For example, the motion of pulp
flocs could be predicted from a force balance rather than being simply prescribed.
Mechanisms to determine the probabilities of transition between the three regions
could also be included and tested. Furthermore, the mathematical treatment of the
model could be refined to extract new statistics that the present treatment cannot
calculate, for example the fluctuations in the bar area covered. Finally, the time for
pulp flocs to spend between the plates has its own importance because this is the time
believed to be the indication of amount of treatment that the pulp receives during

refining,.
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Chapter 4

NON-MONOTONIC TREATMENT TIME

4.1 Treatment Time Calculation

The first thing that we consider, after the residence time, using the stochastic model
is the treatment time. As we mentioned in the end of the previous Chapter, this is
a significant improvement over other modr:is in that we can actually distinguish pulp
in different regions during refining. We define treatment time as the time that pulp
flocs spend in the space between the plates only, because 1ccording to the current
theories of refining, this is the place where pulp is refined. On the same principle, we
can calculate the times spent by pulp flocs in the other two regions, i.e., in the stator
and in the rotor. The three individual times add up to the residence time for pulp in
a refiner. After implementing the stochastic model numerically, we can easily obtain
all of the distributions of times that the pulp spends in the different regions so that
we can study the behaviour of the treatment time.

Figure 4.1 shows the three distributions of the individual times compared with
the residence time distribution, using the standard set of parameters. We can see
in general that the treatment time is a small portion of the residence time, and
usually has a much narrower distribution than the residence time. As we expect, the
distribution of the time in the rotor is the sharpest and that in the stator the most
flat among the three distribution curves, beca:'se of the obvious velocity differences in
the three regions assumed. However, after examining the treatmer.: time ¢"stribution
closely, we found an interesting phenomenon that the treatment time distribution

curves are always not as smooih as all the other distribution curves, which prompted
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of parameters.




us to investigate the nature of this behaviour.

4.2 Simulation Accuracy or Probabilistic Character

First, we investigated whether there is a connection between this phenomenon and
the tota! number of flocs N used to calculate the distribution curves, and found that
the situation does not improve with incrzasing N. After we changed the plotting
method using every data point in the time step, i.e., no average is used to plot the
original data, the phenomenon can be seen more clearly (Figure 4.2). Secondly, we
tested the sensitivity of this phenomenon to changing different probability parameters,
and there seems no correlation between them. Thirdly, we found that changing the
velocity ratio between the gap and the rotor significantly changes the patterns of these
seemingly regular wiggles. Thus, it is important to establish whether this phenomenon
is an artefact of the numerical simulation, for example because of the rando:n number
generator used, or whether it is inherent in the stochastic model. After comparing the
numerical results of the treatment time with the ones obtained using several different
random number generators (Mcleod [56], Mcleod [57] and Wichmann «# al. [58]), we
concluded that the phenomenon has nothing to do with the random routines employed
in the program. In what follows, we demonstrate tl-at the two-level behaviour shown
in Figure 4.2 is indeed due to the stochastic properties of he model. Therefore, we

conclude that our computation of the treatment time is accurate.

4.3 Preparation of a Simplified Case

Let us build up a simplified mode! so that we can study the behaviour of the treat-
ment time effectively. Based on the experience of testing the sensitivity of different
parameters to the patterns of this non-monotonic behaviour of the treatment time
distribution, we thus chose to simplify the model in such a way that it shall be the
simplest form, but its character remains. Since the pulp is assumed to be station-
ary in the stator in the current version of the model, we simplified the model to a

2-channel system (consisting of the rotor groove and the gap between the plates),




Frequency [%]

. Plotted in
121 At=10"2s

Plotted in
At=(1/5)x10"g

020 025 030 035 040  0.45
Time [s]

Figure 4.2: Treatment time distribution for pulp with different meth-
ods of plotting: one that has wiggles is the one using
data in every time step, i.e., using time step as it is
At = (1/5) x 10~2s; the other is the one to collect the 5
neighbouring bins, average to one bin, and plot using the
basic time step At = 10~%s (this method of plotting has
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which nonetheless has a non-monotonic behaviour that is simuar to that of the in-
dustrial model. The above statement has been confirmed by letting the probability
for flocs to stay in the stator be zero in the industrial model. Also, since changing the
probability parameters does not significantly affect the pattern of this behaviour in a
wid range, we took equal probabilities for the flocs to leave or stay in the 2-channel
system.

Now this simplified model resembles some general problems found in the field
of probabilistic process. For example, we consider a queuing system consisting of
2 queues, with one fast queue and one slow queue. Suppose the probabilities for
a customer to go from one queue to the other are equal. We are interested in the
probability of the time spent in the slow queue. Another similar example is that if we
have two equal length conveyor belts with one fast and the other slow moving, and
a particle being transported can randomly jump from one to the other with equal
opportunities. We want to study the behavior of the time a particle spends in the

slow moving belt. From now on, let us call it the two-channel model, and concentrate

on the principle that governs the probability distribution of times.
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Figure 4.3: Schematic of the 2-1 speed model.
4.4 Preliminary for the Probabilities
1. Let the two queues be labelled 1 and 2;
2. Let queue 1 move with speed 1 and queue 2 with speed 2;

3. Let the total distance to travel be d.

First we consider a case for d = 6 and enumerate the probabilities. The schematic
of the details of this 2-1 model is shown in Figure 4.3. Suppose at time ¢ = 0, and
distance r = 0, we start with a particle. At the end of t = 1, the probability for a
particle to travel in the fast lane is P; = 1/2, so is the probability to travel in the
slow lane P, = 1/2. Now the particle moves corresponding distance r = 2 or r = |
depending on which lane it travels. The distance it travelled is less than d = 6, so we
continue with another time step.

At the end of time ¢t = 2, there are 4 possible cases. We define the probabilities
for each case by the ordered combinations of letters f and s in the subscript. For
example, Py, stands for the probability of a particle to enter via the fast lane first
and then switch to the slow lane. Thus for a particle to follow the path of ff (in
short for fast-fast), the probability is Py; = 1/4, and the distance travelled is r = 4;
similarly, for a particle *~ follow the path of fs, Py, = 1/4 and r = 3; using the same
principle, P,y = 1/4 and r = 3; and finally P,, = 1/4 and r = 2. Since none of the

above distance travelled has reached d = 6 yet, we process with another time step.
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Table 4.1: All probabilities for time t = 3.
______———————————p—-——————-———————,___________._____.________
Prob.=1/8 | Pysy Prgs Prag Pres Pogs Pags Pisg  Pass

Distance 6 5 5 4 5 4 4 3

Table 4.2: All probabilities for time { = 4.
— e s O P e O e
Prob.=1/16 | Prysy Prrss Pregr Prsgs Presg  Press  Psggg

Distance 7 6 7 6 6 5 7
Pl’Ob.=1/16 Psfjc Ps!s] Po].n Pn]f Puf: Pnsf Pisss
Distance 6 6 5 6 9 5 4

We repeat the process for time t = 3. The probabilities and distance travelled
are listed in T ble 4.1. Since a particle via the path fff has already travelled the
distance r = 6, we remove it and continue for the next time step.

For time t = 4, we have only 14 probabilities to consider since Psyss and Pyyy, are
no longer present, and they are listed in Table 4.2. This time we remove the cases of
both r = 6 and r = 7, i.e., the cases of ffss, fsfs, fssf, sffs, sfsf and ssff for
r=6,and ffsf, fsffand sfffforr=T1.

For the next time t = 5, there are 10 cases to consider and they are listed in
Table 4.3. Again we remove the cases of both r = 6 and r = 7, i.e., fssss, sfsss,
ssfss, sssfs and ssssf for r =6, and fsssf, sfssf, ssfsf and sssff forr=T.

Finally for the last time step ¢ = 6, we have only two cases to consider, i.e.,
Pissssy = 1/64,r =7 and P,,,,,, = 1/64 and r = 6. Now we rearrange and add up the

probabilities for the cases of r > d in the order of time spent in the slow lane. The

Table 4.3: All probabilities for time t = 5.

PTOb-=l/32 Pjnul Plun Pnluf Pn!au Pll!'f
Distance 7 6 7 6 6
PI'Ob-=l/ 32| P, () P sssff P, sesfs P ssssf Possss
Distance 6 6 5 6 5

—
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Table 4.4: All probabilities for time spent in the slow lane.
t in slow lane r in slow lane ¢ in fast lane 1 in fast lane Probability

0 0 3 6 1/8
1 1 3 6 3/16
2 2 2 n 6/16
3 3 2 4 4/32
4 4 1 2 5/32
5 5 1 2 1/64
6 6 0 0 1/64

results are shown in Table 4.4. We see from Table 4.4 that an interesting pattern has
emerged. For example, for time spent in the slow lane ¢ = 2, the probability is much
higher than the values in the neighbouring time steps. Certainly we nced more time

steps to unveil the nature of this phenomenon.

4.5 Analysis of Two-channel Model

We consider two channels of length d units, and assume that a particle in the fast
channel moves at twice the speed of one in the slow channel. We further assume
that the motion of the particle can be divided into equally spaced time intervals.
For the duration of one interval, the particle stays in one channel and moves with
the appropriate velocity. The time interval is chosen so that a particle moves one
distance unit in the slow channel, or two distance units in the fast channel (we call it
the 2-1 speed model). At the end of each time interval, a particle either remains in the
current channel, or jumps to the other channel, both possibilities having probal.ility
1/2. Let n and m denote the number of steps spent in the slow and the fast channel
respectively and assume that d is even. Similar results would be obtained if d is odd.

If n is even, then any arrangement of fast and slow steps is permissible, and the

total distance travelled is d = n + 2m. Thus m = (d — n)/2, and if we define

P[n (even) slow steps, m fast steps]=P(n),



we get
din

nem din )t

Pm)y=|"t™ (l) = __(_?_2._(1) ' (4.1)
n A ()

In contrast, if n is odd, then the distance travelled after (n+m) steps will be n+2m =

(d+1) units, and the last step must necessarily be fast. This is the key to the analysis.

Therefore, if we define again
P[n (odd) slow steps, m fast steps]=P(n),

we obtain

nim (;‘.tfi*:.l.)t dtatl

P(n):(n+':—1)(%) _m(%) - (4.2)

2

Let N denote an even positive integer. Comparison of these equations leads to the

following relationships:

P(N =1) = P(N) (%) < P(N); N=0,2,..,d (43)

so that odd probability is less than the next even one. And
P(N +1) = P(N) (—d:—&-) . N=02..d (4.4)
4N +1)
Furthermore P(N 4+ 1) < P(N} for 5N > d — 4. In the context of Figure 4.4 where
d = 100, we can see that P(18) < P(19), but that indeed P(21) < P(20) as the
theory suggests. From this point onwards, all of the odd probabilities are less than
the adjacent even ones, below and above.

The same line of reasoning can be used to show that when a particle moves in the
fast channel at thrice the speed of the slow one (the 3-1 speed model), the probability
distribution P(n) for the number of slow steps is usually larger when n is a multiple
of 3 than when it is not. In this case, we assume that d is divisible by 3.

If n is also a multiple of 3, then n + 3m = d, so that

P(n) = ﬂ (1)‘*{“ .
n! (

(]

(4.5)

,é:n); 2

3
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If n exceeds a multiple of three by one, then n +3m =d + 1, and

e 1 N
P(")=;(!F‘-?2))z(§) : (1.6)

whereas if n + 3m = d + 2, we get

P(n) =

(t2p1), (1)“?1 (4.7)

In both of the previous two cases, the last step is necessarily fast. Letting N now be

a multiple of 3 and using Fquations (4.7) and (4.6) respectively, we find

(229 1)1 g\
(N =1y () 3)
3N .

= P(]V)m—j- < P(N). N=0,3,..4d, (4.8)

(428 —2)1 (22
(N —2)! (=) (5)

6(N — 1)
(d+2N -3)
_ 18(N — YN
- P(N)(d+2N)(d+2N -3)°

For example, if d =99, P(N ~2) < P(N —1) up to N =24 and P(N - 2) < P(N)

P(N-1) =

P(N -2)

P(N-=1)

(4.9)

up to N = 42. Similarly using Equation (4.6), we get

(éﬂﬂ)! 1\ (252 +1)
PN +1) = (N+l)!24.;_~_1)g(§)
= PNgaT o

Thus P(N +1) £ P(N), if TN > d — 6 (in our example, if N > 15 since N is a
multiple of 3). Lastly using Equation (4.7), we have

(87411 _(nysten
(N +2)! (552 -1)!

P(N +2) = 2

(d=N)(d+2N +3)
36(N + 1)} (N +2)

= P(N) (4.11)
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4.6 Numerical Simulation

In order to test the numerical implementation of the full refiner model, we have applied
the same approach to a numerical treatment of the 2-channel model just analyzed. We
represent the random process by using a pseudo-random number generation routine
to produce uniformly distributed random numbers between 0 and 1. First, a random
number X is drawn to determine the initial position of a particle before it enters
the 2-channel system, if X < 1/2 the particle starts in the slow channel, otherwise
it starts in the fast channel. Then at each time step, another random number X is
generated. For the particle in the slow cl.annel, if X < 1/2, the particle travels in the
slow channel, otherwise it jumps to the fast channel at the end of the time step. For
the particle in the fast channel, if X < 1/2, the particle remains in the fast channel,
otherwise it switches to the slow channel. While the particle is in the slow channel
during time At, it moves a distance Ar = 1, or else (in the fast channel) Ar = 2 (in
the 2-1 speed model) or Ar = 3 (in the 3-1 speed model) during time step At = 1.
Then, the distance that this particle travelled r (r = 0, when ¢t = 0) is updated by
an iteration r = r + Ar. We repeat the process until r > d, then we record the
time spent in the slow channel for one particle. When a large number of particles has
been accumulated through the loop, the probability for the time n spent in the slow
channel can be approximated by the number of particles spending time n divided by
the total number of particles used in the simulation.

Figure 4.4 shows a typical comparison between the theoretical prediction and
the numerical simulation using the above algorithm for the 2-1 speed model, while
Figure 4.5 illustrates a similar comparison for the 3-1 speed model. In the graphs,
the theoretical probabilities are plotted joined by lines. The results of the numerical
simulation are represented by asterisks. Owing to the large factorials required, for
example in Equation (4.1), the theoretical calculations were carried out using the
symbolic package Maple V. For Figure 4.4, the total distance was d = 100, and for
Figure 4.5, d = 99. The total number of particles used in the numerical simulations

was 300,000.
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4.7 Discussion

We see that there is generally very good agreement between the theoretical prob-
abilities and numerical simulations. The oscillating behavior between neighbouring
points is well described by the probability distribution for the time spent in the slow
channel. The oscillation phenomenon, however, will not be present if we plot the
time spent in the fast channel or the total time spent in both channels. In these
situations, for example in the case of the 2-1 speed model, we have to merge the
paired neighbouring probabilities (one large and one small) for a particular time. As
a result, the oscillation is smeared out for the probability distribution for the time
other than spent in the slow channel. In addition, we conclude that the lower values
of probabilities correspond to the cases in which the last step has to be in the fast
channel. This can be clearly seen in Figure 4.5, in which the probalilities between
any times N and N + 3 (N is multiple of 3) are generally much smaller than those
on times N and N + 3. For higher speed differences than 2-1 and 3-1, the situation
becomes more complicated, owing to increased combinatorial complexity.

From an industrial perspective, the numerical implementation of stochastic mod-
elling has been vindicated. Clearly in a real refiner, flocs of pulp will not always
stay in a groove for the same fixed unit of time, and consequently, the real treatment
time will likely be smoothed by this extra stochastic element. To implement such
a model numerically would increase ti:» computational burden greatly, and weaken
the attractiveness of the model to industry. Now that the source of the unexpectcd
non-monotonic behaviour has been identified, it can be taken into account when de-
ducing the overall trends in behaviour. Thus from now on, w= can collect paired
neighbouring data points for the treatment time calculation, average these points
over each pair, then obtain a reasonably smooth treatment time distribution, which
will be seen in the next Chapter when we study the effect of the different parameters

on the treatment time.



Chapter 5

TIME-DEPENDENT STOCHASTIC MODEL

5.1 Introduction

‘The time-dependent behaviour of pulp flow in a refiner is an important aspect of refin-
ing, because it directly influences the dynamic control of the refining operation. The
flow of pulp within a refiner will vary with time because of several causes. First, dur-
ing steady operation, there are fluctuations in the chip feed rate, because of variations
in chip density and moisture [59]; Next, any deliberate change in operating conditions
will lead to time-dependent flow, while the refiner adjusts to the new steady state. Fi-
nally, the motion of pulp inside the refining zone has a stochastic aspect, and this leads
to internal fluctuations. Besides the attempt to study the dynamic aspect of refining
described in Chapter 2, we can only find another theoretical study of time-dependent
flow in a refiner in the literature to date [23], but this was concerned with steam flow,
rather than pulp flow. There are, however, some experimental observations of flow
fluctuations.

Experimental studies have looked at pulp on refiner bars during refiner operations;
and the bar coverage has been studied in order to understand the nature of pulp flow
in refiners [49]. The observations show ihat bar coverage fluctuates rapidly in time
over a wide range along the refining zone. In addition, a connection between feed
rate and bar coverage is evident and expected. We have extended the steady state
stochastic model described in Chapter 3 [60] into a time-dependent model to study
the fluctuations in the amount of pulp in different regions inside a refiner.

The time-dependent model shares several assumptions with the previous version:
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1. Pulp is in the form of discontinuvus flocs.
2. Flocs move in three regions: the stator, the gap and the rotor.

3. The exchange mechanism between the regions is modelled by a stochastic pro-

cess governed by parameters.
4. The pulp velocities in the three regions are different.

The time-dependent model, however, differs from the previous one in keeping track
of all pulp flocs present in a refiner simultaneously. In the previous version, we
followed only one floc at a time, and accumulated averages. Now we can look at
fluctuations within a steady state, and also study how changes occur when the steady-
state parameters are shifted.

Another quantity that describes the refining action is treatment time, which is
defined as the time pulp spends in the gap between the plates through a refiner. This
quantity is extremely important for the quality of pulp produced because it directly
me sures the amount of energy pulp receives during refining. Treatment time arises
naturally from the model, in which we treat pulp differently in three regions. The
idea of using time spent for pulp between the refiner plates to quantify refining action
has already been put into formulas such as ‘C-factor’ [61}, and ‘refining intensity’ {62].
But it is impossible to predict treatment time by using the approach similar to the
early ‘one-passage’ pulp flow models [24, 25], hence residence time has been used in
general for these formulas instead. The current model can calculate the treatment
time in addition to the residence time described in the previous model for steady
state.

The purpose of this study is to predict the locally averaged density fluctuations
of pulp, a phenomenon reflected in the experiment [49], and to see the influence of
different parameters on the locally averaged densities especially the feed rate. We
also want to study the correlations between the locally averaged densities and the

residence time or the treatment time. In its present form, the model is still a kinematic

one, in that the forces acting on pulp inside the refiner are not taken explicitly into




account, and pulp is simply assigned a constant radial velocity in each of the three
regions. The probabilities of pulp floc exchange and the gap between the plates are
also treated as constants in the current model. The kinematic model alone yields
some new results, in particular to predict the locally averaged density fluctuations,
and to relate the densities to feed rate in different set points of steady states. But in
the longer term, it needs to be extended to include the force balance in pulp flocs. A
detailed description of the model and its implementation on a computer are given in

the subsequent sections.

5.2 Description of the Model

The principle of the current model is the same as in the previous version of the model
for steady state. We summarize the positions available to the flocs in Figure 5.1. And
the algorithm of the process is expl. ‘ned in delail in Chapter 3 [60].

But in this version of the model we treat each floc simultaneously and individually,
so that we can study the time-dependent effect of refining. Each floc is assigned an
integer label while it is in the refiner, a different integer for each floc. This label is
then used to store the state of the floc in three arrays. We assign the three arrays to

describe a floc in the refiner:
1. state(label)= ‘stator’, ‘gap’, ‘rotor’ or ‘no floc’;
2. time(label)= 0 to the longest time;

3. distance(label)= r; to r;.

When a floc leaves the refiner, its label is returned to a pool for reuse by an incoming
floc; this saves computer memory. Thus for each floc (represented by a label), we
know at each moment where it is inside the refiner and how long it has been in the
refiner. During a time step At, flocs that leave the refiner will be added to the labels
with state(label)= ‘no floc’. In other words, for those labels with distance array
greater than or equal to r;, we will remove the flocs from the refiner and return the

labels for the new flocs. While for the labels with state array not equal to ‘no floc’,
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Figure 5.1: Schematic of positions available to the pulp flocs in dif-
ferent radial positions of the refining zone.




we will update the flocs by giving distance array advances according to the schemes
described in Figure 3.4 of Chapter 3. The number of labels in use during At depends
on the number of flocs entering the refining zone in At.

We approximate the refining zone by parallel bars and grooves with equal width
for simplicity. In addition, we assume that the feed rate is evenly divided by the
total number of grooves in the rotor and stator, and the total space between the
plates. This will give an average feed rate for the three regions in the refining zone
represented by one groove in the stator, one groove in the rotor and 1/n of the total
space between the plates, where n is the total number of grooves (or bars, since we
assume that there is equal number of bars and grooves in a plate). Now we divide
the refining zone into a number of segments of equal width ér. Knowing the radial
position and the state function of each floc, we can evaluate the locally averaged

density in the rotor, gap and stator over ér at any radius r as follows:

N, (r)m
Br(r) = A( \or® (5.1)
i) = Q0. (52)
Bu(r) = A((:))Z- (53)

where N;(r) represent the number of flocs in ér, and A; denote the cross-sectional
area in different states with state i (i = s,r, or g). Then we can calculate the locally
averaged densities of pulp in a refiner if we know the number of flocs appearing in
different regions in the simulations, because the rest of the parameters involved in
the above equations are all constants as assumed in the current model.

We add the treatment time calculation in that we record the time a floc spends
in the gap region only, and use the same method to obtain the treatment time distri-
bution as described in getting the residence time distribution.

In order to relate the locally averaged densities of pulp to the feed rate of the
refiner, we have to assume the number of flocs entering refining zone in At, because
there is no relevant experiment data available about this information. Despite the

fact that pulp floc sizes are far from uniform as evidenced in the experiment [49], we




treat all pulp floc in one size in an average sense. Thus for a given level of feed rate
F, we will have a corresponding mass m of the averaged individual flocs for different

total number of flocs NV entering refining zone in At assumed.

5.3 Implementation of the Model

A Fortran program has been written to implement the above algorithm. The four
independent probabilities and the two initial probabilities are treated as constants
throughout the calculations. Most of the parameters used [cr the simulations in
Chapter 3 [60] were adopted for the simulations using the new time-dependent model.
In addition, some groups of parameters must be specified for the model, namely, the
size of the time step At, the total number of pulp flocs to run through the simulation,
and the independent probabilities.

From a study of the previous model in Chapter 3 [60], we found that the value of
time step At is very important for fitting data. However, we also found that At only
affects the standard deviation, not the mean of the residence time distribution. The
size of the time step will have similar effect on the locally averaged density, because
the smaller At reduces the number of flocs contained in the sample area. Therefore,
At will affect the magnitude of the locally averaged density fluctuations, but not the
mean of this property. Here we chose to use the maximum At = 10~? s adopted in
the simulations using the previous model, but in the end, experiment must decide.

The total number of flocs used to produce the residence time and the treatment
time will vary with the number of flocs into the refining zone in At. But in most cases,
it was well short of 10° used to give a reasonably smooth residence time distribution
found in Chapter 3 [60]. As a result, the residence time distribution and the treatment
time distribution in general are not as smooth as seen before.

As explained in Chapter 3 [60], the values of initial probabilities were taken as
7, = P, =0.45 and P, = 0.1. And the independent probabilities for the standard
set of parameters were chosen to be P, = 04, P,y = 0.5, P, = 0.4 and P, = 0.5,
which are denoted by P in the graphs. Then three groups of probabilities were
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selected to see the influence of probabilities on the model. In particular, they are
Py =03, Py =03, P, =06 and P,, = 0.4; P, = 0.2, P,, = 0.2, P,, = 0.7 and
Py =03; P, =0.1, Py =0.1, F;, = 0.8 and P,y = 0.2. And in the same sequence,
they are indicated by P, P, and P in the graphs. The selection of above values
of the probabilities was based on the experience gathered on simulations using the
previouvs model. They reflect the assumptions that there is a smaller chance for a floc
in the gap to go to the stator, and once a floc is in the stator it tends to stay there
due to the feature of the stator. For a floc in the gap, there is a greater chance to go
to the rotor because flocs moves faster there. Hence the chance for a floc in the rotor
to come back to the gap is also smaller.

In addition to the values for the parameters selected above, some operational
parameters for refining were chosen in line with Reference [22] for the standard set of
the parameters used in the simulations. They include: the width and the height of a
bar (or the width and the depth of a groove) 3 mm; the plate gap ¢ = 0.3 mm; and
the feed rate of the refiner F' = 0.416 kg/s. The length of ér for calculating the locally
averaged densities was chosen to be a multiple of Ar in the gap, a distance that a
floc may travel in time At, to reflect the average distance travelled for a floc in three
regions in At. From the experience of the simulations, we chose to use ér = 4Ar in the
gap to produce a reasonable degree of fluctuations in the locally averaged densities for
the range of N adopted in the simulations. We assigned N the total number of flocs
entering ry in At to be from 10 to 120 for the three regions, with the corresponding
mass of a single floc being from 4.60 x 10~7 kg to 3.83 x 10~® kg. For the standard
set of parameters, we chose N = 40, with mass of a single floc being 1.15 x 10~7 kg.

We used two criteria to define a steady state: All random quantities have reached
constant. average properties; and all deterministic quantities have constant values. In

particular, we declared a steady state,

1. when the averaged density in the gap (averaged over r in one At) averaged again

in 10 At’s is less than 0.01 of its previous value;

2. and also when the total number of flocs out of the refiner averaged in 10 At’s

92




is equal to the total number of flocs into the refiner, within a toierance of 0.02

times the total number of flocs into the refiner.

The settings of the above criteria were the results of trial-and-err in dealing with
most of the cases in the simulations. We chose to use the average density in the gap
to represent the state mainly because it is the most significant property for refining.
In general the second criterion is larger, because the number of flocs out has been
averaged only once instead of twice as in the first criterion except in some extreme
cases. If no time average is used, the fluctuations would be tuo high to define a steady

state.

5.4 Results and Discussions

We assume that the refiner is working from empty to a steady production rate and
motor load. Then from this steady state, we give a variation to feed rate until the
refiner reaches another steady state. We are more interested in what happens in this
period of time, because it is relevant to the situation in refining operation.

First of all, we presenied a general trend of the locally averaged density fluctu-
ations for the gap region 8, against both time t and radius r in Figure 5.2. It was
then followed by figures that show the locally averaged densities in all three regic s
against time and radius, and the number of flocs out of refiner against time, as well
as the residence time and the treatment time predicted by using the standard set of
parameters. The rest of results obtained from the simulations were basically divided
into two series: one that shows the effect from start of the refiner to the first steady
state; the other that shows the effect mainly from the first steady state to the second
steady state after a variation to the feed rate is given. Within each series, we plotted
the averaged densities and the number of flocs out of the refiner against time, as well
as the treatment time distribution and the residence time distribution.

Some general comments can be made from the simulations. From the limited

results, the fluctuations in the locally averaged densities are well observed for all the

cases, even after they are averaged over radius r. Thete seems to be a direct relation
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between the feed rate and the locally averaged densities. Changing probabilities seems

to change the magnitude of the locally averaged densities only, but has little effect on
the fluctuations in the locally averaged densities. There are very little influence on the
residence time distribution and the treatment time distribution for different number
of flocs into the refiner, except for the smoothness of the distributions. Changing
the number of flocs into the refiner also has little effect on the average values of the
locally averaged densities.

In addition, we can look at some aspects of the results in detail. Particularly, we
have the following observations and comments.

1). Observations using standard set of parameters for up to the first steady state

From Figure 5.2, we see that a gradual build-up of the locally averaged density
B, in both r and t directions. In general the values of 3, are higher near the entrance
r1, even when the steady state is reached.

We observe from Figure 5.3 (a) that for using the group of probabilities P, the
averaged density g, is much higher than 8, or 3,, due to the smaller cross sectional
area of the gap region compared with the other two regions, and the fluctuations in
B, are also much higher.

Figure 5.3 (b) shows the locally averaged density profiles with respect to r. We see
that there is a certain degree of fluctuations even through we used ér = 4Ar in the
gap to reduce the fluctuations. The regression of the curves indicates the downward
trend of density profiles with respect to r especially for §,.

There is roughly about half the time for the number of flocs out to reach a steady
state from 0 than the averaged density 3,, and it also has a greater degree of relative
fluctuations than 3, as well. These effects can be seen from Figure 5.3 (c).

Figure 5.3 (d) illustrates both the residence time and the treatment time distri-
butions. We can clearly see that the treatment time is a small portion of residence
time, and it has much narrower distribution than the residence time. We can also
see that there is a regular oscillation in a much higher magnitude than the random
wiggles seen in the residence time distribution, as explained in Chapter 4 [63]. In

other words, if we increase the total number of flocs used to produce the treatment
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time distribution curve, the curve will not get smoother as expected in the case of
the residence time distribution. As suggested at the end of the previous Chapter,
we averaged the paired neighbouring points in the original data to smear out these
regular oscillations in the subsequent calculations for the treatment time.

2). Changing probabilities for up to the first steady state

Figure 5.4 shows the averaged density in the gap using different groups of the
probabilities. The averaged density 3, gets progressively lower as the groups of the
probabilities change from F, to Ps, while the extent of the fluctuations seems to vary
little. The next three graphs (Figure 5.5 - Figure 5.7) give the detailed the locally
averaged densities for all three regions with respect to r at the end of the first steady
state. We can see that as the probabilities vary, the locally averaged densities in
all three regions change, but the extent of the fluctuations seems to be more or less
the same. Furthermore, although 3, is the lowest in Figure 5.7 among using different
groups of the probabilities, the downward trend of the 8, profile with respect to r
appears to be evident.

In Figure 5.8, a comparison is given for the number of flocs out using different
groups of the probabilities. The only effect observed in this series of graphs on the
number of flocs out seems to *. > the time for the first floc to reach r; from ry, which
is progressively shorter as from the case P, to P5. This is probably because in the
case of P;, for example, the probability for a floc to go to the rotor region P, is the
highest among using other groups of the probabilities, therefore, considerable more
portion of the flocs spend less time inside the refiner.

Figure 5.9 and Figure 5.10 show the residence time and the treatment time distri-
butions using different groups of the probabilities. It seems that the lower averaged
density B, predicted using P; supports sharper distribution and higher mean fre-
quencies of both the residence time and the treatment time, because the flocs get
more chances to travel in the rotor region. It also suggests that probability is one of

the major control parameters affecting the locally averaged densities, as well as the

treatment time or the residence time.

3). Observation for changing set points of steady states
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After the first steady state is reached, we give a small variation to the feed rate
represented by increasing the number of flocs into the refiner in time At. The results
are shown in Figure 5.11, in which 3, and the number of flocs out are plotted against ¢
for N = 40+ 4 (10% increase) and N = 40+ 8 (20% increase). If all other parameters
are kept the same, the changes in the averaged densities seems to be proportional to
the changes in feed rate brought about by the changes in N. Another observation is
that the time period for refining to reach new steady state from the previous one is
approximately in the same order as from 0 to the first steady state.

4). Changing the number of flocs into ry for up to the second steady state

Figure 5.12 shows that using different number of flocs into r, has little effect on
the mean values of the averaged density 8,, because it does not change the mass of
the feed rate. We found, however, that the extent of the fluctuations is greater,
say, for the case N = 10 compared with that N = 120, in which cases the second
criterion for defining a steady state has to be altered accordingly to 0.03 and 0.0}
respectively to ensure the convergence to a steady state in a consistent way. Or, the
extent of the fluctuations in 3, tends to be inversely proportional to the number of
flocs into r; used in the simulations. On the other hand, as shown in Figure 5.13,
the influence of different number of flocs in on the number of flocs out is not obvious.
At first sight, there seems to be a greater extent of the fluctuations in the number
of the flocs out for the larger N used, but if we look at the results closely, we can
find, on the contrary, that the extent of the fluctuations is greater for smaller N in
a relative scale (extent of the fluctuations divided by N), because N is different for
the different curves shown in Figure 5.13.

The above results can be explained by the following. The lower number of flocs
into the refiner will certainly decrease the number of flocs contained in the sample
section of §r, thus, will result in excessive fluctuations in 3, and the number of flocs
out. The opposite situation is also true for the large number of flocs into 7y, so that the
Auctuations are reduced. These results indicate that although N is a very important
parameter for the model, it only affects the ways to define a steady state, but not the

average properties such ¢ the mean values of the locally averaged densities inside the
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Figure 5.12: The averaged density §; versus time ¢ using different
number of flocs into r; with a 10% increase in the feed

rate until the second steady state is reached.




No. of flocs out

108

160-
~ N=80+8
120
BO - N=40+4
40-1
ol <—— N=1041
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time(s)
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refiner. If the number of flocs into the refiner is large enough to retain the fluctuations
in the local properties to some range, the exact number of flocs into r, (or mass of a
single flocs assumed) may not be crucial to the model at this stage.

The next four graphs (Figure 5.14 - Figure 5.17) illustrate the growing trend of
all three locally averaged densities with respect to r at different time steps between
the first steady state and the second steady state for a 20% increase of the feed rate.

The growing of 8, is obvious for different time steps, whereas the growing of g,
and S, is barely noticeable. The growing of 3, happens in an ordered way along r in
succession of the time steps.

There are very little changes using different number of flocs into r; for the residence
time and the treatment time distributions except for smoothness of the curves, since
it directly changes the total number of flocs used to calculate the residence time and

the treatment time.

5.5 Concluding Remarks

We have developed a time-dependent stochastic model to predict some important
local properties inside a refiner. The model improves from the previous one that it
connects the feed rate to the local properties of a refiner, which leads an important
step towards to applying the stochastic model to the refining operation. It can also be
used to study the property changes on different set points of steady states. In addition,
using the model we have tested the correlations between the locally averaged densities
and the treatment time and the residence time distributions.

The following conclusions may be summed up from the simulations using the

model.

1. The locally averaged densities are predicted to fluctuate in both radius r and

time ¢ directions especially for 3,.

2. The mean values of the locally averaged densities are directly proporiional to

the feed rate of the refiner.
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Figure 5.14: All three locally averaged densities versus radius r at the
time immediately after a 20% increase of the feed rate is
given when the first steady state is reached at ¢t; = 1.8 s.
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Figure 5.15: All three locally averaged densities versus radius r at the
time 0.5 s after a 20% increase of the feed rate is given
when the first steady state is reached at ¢, = 1.8 .
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Figure 5.16: All three locally averaged densities versus radius r at the
time 0.9 s after a 20% increase of the feed rate is given
when the first steady state is reached at ¢;.
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3. The probabilities are a very important parameter for the locally averaged den-

sities, but they affect little on the degree of the fluctuations in these properties.

4. The number of flocs into the refiner (or mass of a single floc) influences the
extent of the fluctuations in the local properties, but not the average values of

these properties.

5. There is no significant change for the residence time and the treatment time dis-
tributions when the locally averaged densities change as a result of the feed rate
increase, whereas the locally averaged densities are controlled by the probabil-
ity, in a similar way as the residence time and the :reatment time distributions

are.

Through the parameter study, we have accumulated first hand experiences which
will be needed for further advance of the stochastic model. The current model can be
improved by developing a mechanism to relate the probabilities to the locally averaged
pulp densities so that the probabilities will be calculated instead of being assigned
constants at the present. Finally, the relation between the dynamic gap width and

the local properties must be worked out before the model can be used to predict the

dynamic behaviour of refining.
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Chapter 6

PROBABILITIES FOR FLOC EXCHANGES

6.1 Factors to Control Floc Exchanges

In the models described in the previous Chapters, the probability parameters were
simply taken as constants, and the simulations were done using a range of the prob-
ability parameters. Now we want to study the factors that influence the probability
exchanges among the three regions, so that we can more precisely predict the floc
movement inside refiners. There are many factors that can influence the pulp floc
exchanges inside a refiner, but we believe that at least two categories are very impor-
tant to the model. In order to study these effects efficiently, we try to identify the
factors belonging to each category, and study them separately.

The first category are stochastic factors, such as turbulent flow in different regions,
forces caused by passing bar edges, as well as the doctoring/stapling mechanism
speculated by Miles et al. [48). These factors are hard to put into quantitative form,
so we simply assign a constant portion to the probability expressions. But their effect
should be represented one way or another in the probability expressions.

The second category is represented by the density difference among the three
regions. The basic concept we use to specify the probability parameters as functions
of the locally averaged densities (defined in the previous Chapter) is the following:
The pulp densities in different regions inside a refiner should tend to equalize among
the three regions around the steady state of refining. If one region u:s8 a higher locally
averaged pulp density, it is more likely that pulp flocs are going to end up in the region

with the lower locally averaged pulp density. For example, when the density is high
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in the stator compared with that in the gap, there is little chance for a floc in the
gap to go to the stator, but there is a high chance for a floc in the stator to go to the

gap. With this principle in mind, we try to put the mechanism into formulas.

6.2 First Version of the Probability Expressions

We define probability parameters as functions of 3,, 8, and 5,;, an choose an ex-
ponential profile to start with, where all the probabilities (except maybe P,;) are
between 0 and 1. We assume that when the steady state in refining is reached the
probability parameters will have equal values with respect to the three regions. We
also assume that the locally averaged densities of pulp tend to equalize in steady state.
In order to satisfy the conditions that when variables are equal to 1 (corresponding
to the equal density situation) the probabilities tend to certain specific values, the
expressions need to be adjusted by the following.

Now let us ronsider a special case that all the densities are the same, or the steady
state. In this situation, according to our assumption, we obtain that P,, = P,, = 1/2

and P,, = P,, = 1/3. We have to reflect this situation in the probability expressions:

Py = exp(=In(2)52) (6.1)
P, = exp(—ln(3)-§—: (6.2)
P = exp(=In®)g) (6.3)
P, = exp(—ln(?)%). (6.4)

We can see that these expressions will satisfy the conditions when variables are equal
to 1. For example, when 3,/8;, = 1, P, = e~'"® = 1/3. The ‘In’ terms in the
expressions only affect the slopes of the profiles, not the values of the end points.
Equations (6.1) and (6.4) are right now, but there are still some problems for
Equations (6.2) and (6.3). Notice that both P,, and P, will be close to 1 when
both 3, and 3, are much smaller than 3,, which will lead to F,; negative. This is

because we have ignored the special situation in the gap so far, where there are three
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possibilities instead of two as in the stator or the rotor. In other words, we have
to take into account the influence of the third density when considering P,, or P,,.
Equations (6.2) and (6.3) can be improved by introducing a linear combination in
term of ratio of the third density to the density in the gap:

P = k(G expl-In(3)5: (6.5)
P = k,(gi)exp(—ln(ii)g—;), (6.6)
where
kr(&)={%(l+%:) if%f(_l (6.7)
9 1 otherwise
and,

k‘(&)={ a+8 g < (65)
By 1 otherwise.

The above equations for introducing the effect of the third density reflect the
assumption that when the ratio of the third density to the density in the gap is
greater than 1, the effect on the probabilities is the same as that when the ratio
is equal to 1 as far as the particular probability is concerned. However, the higher
ratio of the third density to the density in the gap will reduce the other indepcendent
probability in the gap. Here we treat the dependence of the third density only up to
the point where the third density and the density in the gap are equal.

Now let us check the general trend of Equations (6.5) and (6.6). First, we see{hat
the maximum values for Equations (6.5) and (6.6) are still in the left boundary, but
in general will be smaller than one. Secondly, we observe that the influence of the
third density has been included in the expressions. For instance, as f3,; 3, increases
between 0 to 1, P,, will increase due to increasing of the third density 3,. Lastly,
Equations (6.5) and (6.6) go to zero as 3,/8; and f3,/, tend to oo.

In addition, we can check some special values of probabilities using Equations (6.5)
and (6.6) listed in Table 6.1. We see clearly that for most of the cases Equations (6.5)
and (6.6) predict the two independent probabilities in the gap correctly. There are

still some cases, however, such as those shown in the last two rows in Table 6.1, that
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Table 6.1: Some special values of probabilities predicted using P,
and P,, expressions with k, and k, factors.

0 1 o0 0
1/3 1/3 1 1
1/2 1/2 0 0
1 0 0 0o
0 0 00 00
1 1/6 0 1
1/6 1 1 0

cannot completely satisfy the boundary conditions imposed by rule of probability,
namely P,, + P,, + P,; < 1. This is the result of using a linear combination to
approximate the effect of the third dewsity on the probabilities. There seems to be no
such a simple form of equations to sati-fy all the conditions. It should also be noted
that these values predicted by the equations are small deviation from the conditions
imposed, and these situations are very rare in the simulation (like 3,/3, close to 0).

The locally averaged density was averaged again over refining zone to limit the
possible unstable components. The above expressions were found to be unstable in

the simulations.

6.3 Second Version of the Probability Expressions

We found that the reason for the probability expressions being unstable is the false
assumption used that probabilities go to certain values when it is in steady state,
and that equal mass flur should be demanded in the steady state instead. It does
indeed make sense physically that the mass fluz be related to the density rather than
the probability of floc exchanges alone, because it is the product of probability and

the number of flocs in one region that controls the total number of flocs out of that

region.
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We also modify the exchange mechanism that the relative locally averaged density
compared to the maximum density of pulp will be the control factor for floc exchanges.
We argue that the room availability in different regions inside a refiner plays an
important rule in determining the probabilities of floc exchanges. To illustrate the

point, let us see two extreme situations:

1. Volumes of the three regions are nearly fully packed with flocs.
In this situation, a flux of flocs out of that nearly fully packed region is possible
only if there is space available in the target region where the flux is going to,
i.e., it does not matter how strong the driving forces are, and the pulp flocs
can only move if they have room to move to. Thus the densities in the target
regions control the flux, regardless of the ratio of the density differences of the

two regions. Therefore, the densities in source regions are not important.

2. Volumes of the three regions are sparsely packed.
Then the first category of the factors, such as turbulence, pressure difference
between the regions and so on, is probably the mechanism that governs the floc
exchanges. In this case, the densities in the target regions are irrelevant, only

the densities in the source regions are responsible for the floc exchanges.

In general for the in-between situations, the above two mechanisms apply. So we
believe that it is the ratios of the densities to the maximum pulp density that control
the probability for floc exchanges among the three regions.

Now we put the new mechanisims into probability expressions:

P, = Kk ﬂ‘-(l—ﬂﬂ' ) (6.9)
Pry = kz{ﬂma:(l_ﬂziz)] (6'10)
Py = ks[ﬂ (1= 7 (6.11)
Pu = kalp=(1 = 2] (6.12)

where B.,. is maximum density of pulp, and k; are constants.
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If we assume that when steady state is reached, the densities tend to equalize and
the mass flux into a region is equal to the flux out of that region, then we obtain the

following relations:

ﬂ: = ﬂg = Br (6.13)

and,
NP,y = NyP,,, or Nk, = Nyk, (6.14)
N,P,, = N,P,,, or Nykz = Nyks. (6.15)

Using the definition of the locally averaged density for pulp flocs described in Chap-

ter 5, we can obtain in the steady state:

N. A.
E = ~A—y— (6.16)
N, A,
Fg =4, (6.17)

Therefore, we can get the connections among 4 coefficients in the probability expres-

S100S8;
A
by = 22ky (6.18)
A
ke = 22ks. (6.19)

If we further assume that the probabilities for flocs to go to the stator or to go to the
rotor from the gap are equal when densities in the three regions tend to equalize, we
can reduce the number of the coefficients to one, i.e., k3 = k4 = k. The range of k
can be estimated from examining the probability expressions in the steady state. For
example, from P, = kf.(1 — B.) where 8. = B,/Bmaz = By/Bmaz = Br/Bmaz, We see
that P,, reaches a maximum k/4 when B, = 1/2. Therefore, if we restrict Py, < 1/2,

then we can take 0 < £ < 2 in any case.

6.3.1 Testing of the probability expressions

The above probability expressions were tested using the same program described in

the previous Chapter (time-dependent model), in which the constant probabilities
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Table 6.2: Values of probabilities predicted using the third version

of the probability expressions for & = 1.

Time(s) ﬂ./,ﬁmcr By/ﬂmnx B‘r/ﬁma: Pag Pyl Py" P"Q _

—_—_————— e e
t=0.60 0.049 0.064 0.078 0.009 0.06 0.059 0.015
t=4.40 9.15?__ 0.139 0.173 0.027 0.118 0.124 0.019

were replaced by these formulas. The probabilities were first given a set of constant
values to start the calculation when the refiner is empty, otherwise zero probabilities
would have been predicted due to no floc present in any regions. This set of constant
values of probabilities was replaced by the formulas when time ¢ = 0.50 s, and the
probabilities were updated using the expressions after every time step At until the
second steady state is reached. Note that we still used the averaged pulp densities
over refining zone to improve the stability of the probabilities calculated using the
formulas. The cross sectional areas used in the program were the same as before, i.e.,
A, = A =9x107% m? A, = 1.8 x 107®m?, so that A,/A, = 5. The maximum
density of pulp was chosen to be the density of fibre wall, which is usually considered
to be Bnaz = 1500 kg/m? [64]. The number of flocs into the refiner in At was N = 40,
and the dynamic change of flocs was a 10% increase, or 4. All of the other parameters
were the same as described in the previous Chapter.

It was turned out that the expressions are quite stable for a wide range of k, like
from 0.1 to 5, for this particular set of parameters. When k is very small, say k = (.1,
all the probabilities are proportionally smaller, as a result, the exchange among the
three regions is very small, and the steady state cannot be reached because of the
large difference of the averaged densities for the three regions. The steady state can
be achieved when k& > 1. The coefficient k& can even be taken as high as 5 because
in this case the highest densities predicted by using this set of parameters is about
200 kg/m?, well lower than the 3, = 1/2, or 750 kg/m?®. In the Tables 6.2 and 6.3,
some typical sets of probabilities and the averaged densities calculated for the cases

of k=1 and k = 4 are listed.
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Table 6.3: Values of probabilities predicted using the third version
of the probability expressions for k = 4.

Time(s) ﬁ:/ﬂma: ﬂy/ﬂmar ﬂr/ﬂfna.: P’! Pyl P.?" P"!

t=0.60 0.057 0.06 0.07 0.043 0.225 0.221 0.053
t=3.50 0.128 0.121 0.110 0.09 0.422 0.431 0.078

The general trend of these expressions is well behaved. In other words, the prob-
abilities grow slowly from the lower values at the time of start of kicking in to some
steady values near the first steady state, then to the second. No obvious oscillations
were observed for all the cases of using different values of k’s.

These sets of probabilities, for example usted in Table 6.3 for t = 3.50 s, were also
tested as constants using the first stochastic model described in Chapter 3, because
we never tried these combinations of the probabilities before. The results are quite

similar to those obtained using variable probability parameters.

6.4 Final Version of the Probability Expressions

Based on the experience gained on developing the previous versions of the probability

formulas, we want to further improve the formulas in the following aspects:
1. when no floc is in the refiner, the probabilities should not be zero;
2. when densities are small, their effect on the probabilities are also small;

3. when target density is close to maximum, the probability for flocs to go to that

region is close to zero.

We also introduce a constant portion A in the probability expressions to explicitly
represent the stochastic factors discussed at the beginning of the Chapter. Here are
the latest expressions:

2 2
k(75— + A)(1 - )] (6.20)

ﬂglllt maox

Py




2 2

Py = ki(m—+A)(1 - 3%) (6.21)
;;I m;x

P,y = ksf( 2’ + A)(1 — =) (6.22)
2 2

By = k(5 + A1 - 4] (6.23)

Using the same principle, we can reduce the number of the constants to 2, k¥ and A,
where k = k3 = kq and k) = k; = (A,/A,)k. If we again limit Py, or Py, to < 1/2, we
can use different combinations of ¥ and A to see the influence of the two categories of
controlling factors on the probabilities. The square of the ratio of the densities to the
maximum density in the expressions is just one of the simplest choices for the non-
linear profiles required by 2). We first used the densities averaged over the refining
zone, i.e., over r2 — r;. Then we also tested the above expressions using the locally
averaged densities in 6r=4Ar in the gap to calculate the probabilities (denoted by
prob.(r,t) to indicate 3 = f(r,t)), because if we use a single Ar, the fluctuations
would be too large to define a steady state as explained in Chapter 5.

6.5 Results and Discussions

We reexamined the maximum density of pulp used in calculating the previous version
of the probability expressions. It is more likely that the maximum density of pulp
is less than the fibre wall density adopted earlier, because there might still be some
spaces among packed fibres due to the random nature of fibre distribution in the
form of fibre network. From the experimental data obtained in a laboratory press
for static pulp pad [46], we found that the extrapolated maximum density of pulp
pad is about 400 kg/m?, which is much lower than the fibre wall density 1500 kg/m?.
Therefore, a middle value between the two seemed to be a better choice, and we chose
the maximum density of pulp as B, = 1000kg/m?® for the subsequent simulations.
But again, the exact value of the maximum density of pulp inside a refiner must be
determined by relevant experiment.

Some typical results using the latest version of the probability expressions are

shown in the following figures for k=1 and A=0.25. In each figure, a comparison is
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given between using the averaged densities over r; — r; and using the locally averaged
densities in ér = 4Ar to calculate the probabilities. And the two cases are represented
by prob.(r,t) and prob.(t) respectively in the graphs. Figure 6.1 shows the locally
averaged densities in all three regions against the refining radius. While Figure 6.2
illustrates the residence time and the treatment time distributions for the two cases.
In Figure 6.3, the fluctuations in the averaged density over the refining zone with
respect to time are plotted. And in Figure 6.4, the fluctuations in the number of floc
out of the refiner predicted are shown.

In general, the residence time distribution predicted is very non-symmetrical, the
trend being close to that shown in Figure 3.13 for using the first stochastic model.
And the treatment time distribution is much sharper and closer to the origin. All
the above observations reflect the fact for using these sets of probability parameters,
the chances for the flocs to go to the gap are much smaller than using the different
combinations of probability parameters used before. As a result, the treatment time is
much shorter, and there is fairly amount of flocs staying either in the stator, producing
a wide spread of distributions ahead of the peak, or in the rotor, producing a sharp
concentration of the peak of the residence time distribution.

We see that the difference between using prob.(r,t) and prob.(t) is quite minor,
except near the entrance r;. But it took long time for the case of using prob.(r, t) due
to extra loops needed to calculate the locally averaged densities in the program. From
the experiences of using both the averaged density and the locally averaged density to
calculate the probability expressions prob.(t) and prob.(r,t), it may not be necessary
to go back to the locally averaged density (in 4Ar) to calculate the probabilities for
the following reasons: First, there is no dramatic changes in the overall density in r
direction, although the locally averaged densities fluctuate in a slightly greater scale
than that of the counterpart, and these greater fluctuations in the locally averaged
density may result in temporary instability in the simulations. Secondly, At is the
time unit that we actually assign the probabilities for the flocs to switch regions,
thus the update of the probabilivies should keep the same rate as that of the flocs to

switch the regions. So we concluded that there is no need to use the locally averaged
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densities to calculate the probabilities, unless we study the local property changes,
for example, the ef*~ct of local dams in the plate grooves.

Next, we wan. to study the effect of different combinations of & and A in the
probability expressions on the results, so that the relative importance of stochastic
factors to the density difference factor that control the floc exchange mechanisis can
be established. We first find out the range that k and A can take without violating the
rule of probability. For example, for F,,, we require that P,, < 1/2. For the densities
around the steady state we have g2/83 . =~ B?/8%.. = B2. Then we rearrange
Equation (6.22) to obtain:

B(1-8+ AL -8 < 2% (6.24)
We see that the first term on the L.H.S. of the above inequality condition has a
maximum 1/4 when 32 = 1/2, and the highest value for the second term is A, so that

we can derive the condition for k£ and A:

A<

(6.25)

| —

L
2k
For k between 0 and 2, we have a range of A that can be selected to perform the
numerical simulations. Here we chose to show only two typical cases to illustrate the
point: case one is k = 0.5 and A = 0.4 for representing more stochastic effect; and
case two is k = 1.5 and A = 0.08 for emphasizing more density difference effect.

The results are shown in Figures 6.5 to 6.8 in the same sequence as before, i.c., the
locally averaged density against radius, the residence time and the treatment time
distributions, the averaged density over refining zone against time, and the number of
flocs out of the refiner against time. We see that the locally averaged densities in the
three regions are only marginally closer to follow the equal density assumption for the

case of k = 0.5 and A = 0.4 than the other case shown in Figure 6.5. In Figure 6.6,

only a subtle difference can be observed between the two cases for the residence time

and the treatment time distributions. And no obvious difference is seen through
Figures 6.7 to 6.8 for the scale of the fluctuations in the averaged densities and the

number of flocs out of the refiner between the two cases.
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Figure 6.7: Averaged pulp densities against time for the case of k =
0.5, A = 0.4 and the case of ¥ = 1.5, A = 0.08.
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The results suggest that both categories of the factors which are supposed to
influence the floc exchanges may not be as important as we originally thought to
be. In other words, if we substitute the probability expressions with constants but
keeping the coefficients k; (i = 1,2,3,4) the same, the results will be quite similar.
And this was confirmed by the simulations. The key is the ratio of the cross sectional
areas connecting the coefficients k;, like in ky = k; = (A,/A)k = (Ay/A)k. Tt is
the cross sectional area in the probability expressions that guarantees the equal mass
flux near the steady state. As a matter of fact, by observing the output step by step
during the simulations, we found that in most of cases the averaged densities of pulp
calculated are not too far from the steady state. Also the averaged densities predicted
are mostly in the sparsely packed state discussed before.

Therefore, we concluded that the primary factor to influence the probability pa-
rameters is the cross sectional area which almost warrants the equal densities among
the three regions. The density difference is at most secondary, and the extent of
the exchanges also depends on the stochastic factors. At present, due to lack of any
experimental data about the extent of floc exchanges among the regions inside a re-
finer, we have to content with an estimation again for the probability parameters.
But the values of the probability parameters were found to be not too sensitive to the
model from the simulations, as long as the cross sectional areas factors are included
in the probability expressions. Furthermore, the significance of relating the probabil-
ity parameters to cross sectional area of the different regions is that it gives us the
crucial connection between the plate gap and the probability parameters, which will

be needed for calculating the forces later. Thus for the subsequent simulations, we

only use constant probability parameters with cross sectional area factors.
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Chapter 7

RELATIONS AMONG OPERATING VARIABLES

7.1 Motivation

One of the main purposes of developing new mathematical models for refining is to
predict the relations among the operating variables in refining, so that we can control
the refining process better and improve the quality of the product. For example,
as shown in Figure 7.1 [65], the relation between the motor load and the plate gap
is widely used for refining process control, which is purely obtained by empirical
methods. So far no theoretical models can predict a similar trend, and there are only
some qualitative explanations, which are not adequate for process control. Although
there is some experimental work about the relations among operating variables in
steady state [11, 66], very little has been done in the theoretical front, partly due to a
lack of understanding of the mechanisms, about how pulp behaves under compression,
and partly due to the dependent nature of the variables involved. Recently, Miles
and May [51], using their theoretical model for steady state, predicted some relations
among the operating variables such as specific energy versus plate gap, throughput
versus plate gap and so on. But as we discussed in Chapters 2 and 3, this continuum
approach to pulp flow cannot be readily extended to study the time-dependent aspect
of refining. Thus we have to derive the forces supported by individual flocs, then
develop the mechanism to predict the total load supported by pulp flocs collectively.
Here, by the total load we mean the total mechanical load, since we have not put the

effect of steam into the model yet.
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process control.
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7.2 Conversion of the Experimental Data for Pulp Pad

We started by reexamining the experimental results for a static pulp pad in a lab-
oratory press reported by Miles et al. [46]. First we converted their results, which
are shown in Figure 7.2 [46], into a plot of pulp density versus applied load by the
following means. As seen in the graph, the results were originally presented with pulp
pad thickness (or the gap) against applied load which is used to obtained the data for
different mass concentrations of pulp per unit area of one press jaw. We calculated

the pulp density p by using the following equation:

M.
= —, 7.1
=5 (.1

where M. is mass concentration of pulp fibres per unit area of the press jaw, and
g is the pulp pad thickness or the gap between the two jaws. Then we marked the
applied load to 0, 25, 50, ..., 175, 188 kPa, or 9 groups in Figure 7.2. After that we
took the readings of the gap g against mass concentration M, from the graph for each
group. In other words, we took 6 pairs of readings (g versus M.) for each marked
value of the applied load. These 6 pairs of readings were converted to pulp density
p by using Equation (7.1), and then were further averaged to obtain the averaged
pulp density p,, for each marked applied load. After completing the calculations, we
have 9 converted averaged pulp densities corresponding to the 9 marked applied load
selected. These new pairs of averaged densities versus applied load are plotted in
Figure 7.3. Between the neighbouring converted data points represented by stars, a
straight line was used to connect them in the graph. Given the fact that a wide range
of mass concentrations M, was used in the experiment, we see that the fit of all the
data is quite remarkable, that almost a straight line is formed for the relation between
the averaged pulp density and the applied load. The ranges of the 6 converted pulp
densities used to calculate the averaged pulp densities are also indicated by the vertical
bars on each of the marked applied load. And these ranges are pretty consistent with
one and another. Note though, in Figure 7.3, that the data for applied load beyond
188 kPa are extrapolated in the conversion, and that the data near 0 applied load are

extrapolated by the authors [46).
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7.3 Assumptions for Flocs to Behave in the Gap

The first thing we need to address is how to predict the forces that a single floc can
support based on the experimental data obtained in a layer of the static pulp pad.
We know already from the experiment observations, that there is fairly large amount
of empty spaces between the pulp flocs in the gap, and these void spaces certainly
prevent us applying the load versus pulp density relation to the flocs. But if we
assume that each pulp floc has a uniform distribution of fibre material inside, plus
the assumption of equal mass for each floc made before, we can equivalently use the
load versus pulp density relation for within each floc. In other words, we treat the
floc in the gap as an evenly distributed pulp pad only within its boundary.

In order to ~alculate the pulp density within each floc in the gap, we have to know
the general shape of a single floc in zero load and how it behaves under compression.
Since no experimental data available from the literature for this information, we
simply assume that the shape of a floc is a ball under zero load, the reason being that
it is likely that there are motions in both radial and tangential directions for flocs in
this situation, and a ball offers the least resistance to motion. We also assume that
for a single floc in the range of normal compression below the maximum load, the
compression will be responded by the floc with a height reduction only (or the radius
of the floc ball is approximately the same). The rational behind this is that under
such a compression (happens in a very short period of time between the moving bars),
there is a tendency that the floc boundary is probably frozen momentarily. And this
offers one of the possible explanations why the observed covered bar area by pulp in
refiners is only a percentage of the total area of the bars.

Next, we need a mechanism for the load development of the pulp flocs in refiners
collectively. It is unlikely that the flocs in the stator or the rotor contribute much of
the load, owing to the larger space available there. Thus, we neglect these contribu-
tions to the total load. For the flocs in the gap, we assume there are two basic factors

contributing to the total load that all the flocs carry:

1. the forces that an individual floc supports;
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2. the total number of the flocs that are in the gap in the time period of At.

The product of the two should determine the total load of the refiner.

Finally, the behaviour of pulp flocs under the maximum applied load is a critical
point for our model. From Figure 7.3, we see that as pulp deunsity approaches the
maximum density in the graph, there is not much further increase of the pulp density
as the applied load increases. The gap remains approximately the same regardless
of how large the applied load is, which is also evidenced in Figure 7.2. We believe
this phenomenon is only associated with the evenly distributed and static pulp pad,
because the pulp pad has nowhere to escape under compression. In other words,
the lateral constraint around any small section within the pulp pad network prevents
any further spread of the network. Thus the network essentially remains intact un-
der compression. That is not the case, however, for the pulp flocs under repeated
compression and relaxation. First, as we discussed earlier, there are amble spaces
between the flocs, or the lateral constraint betwcen the flocs is weak; Secondly, any
load exceeding the maximum load (corresponding to the maximum density shown in
Figure 7.3) will definitely increase the chance of breakdown of a floc network, because
the load has already well passed the elastic deformation zone (the range for a linear
relation between load and pulp density); And thirdly, any breakdown or spread of
the floc network under this maximum load will reduce the pulp density for a single
floc, ard in turn reduce the capucity of the floc to support the forces. Based on
vhese arguments, we propose that when pulp density for a floc in the gap exceeds
the maximum density (indicated in Figure 7.3), the load that the floc can support
is a flat maximum applied load, which is illustrated in Figure 7.4 by a dotted line.
We have to bear in mind though, that this is by no means an precise prediction, but
rather a first attempt to correctly predict the confirmed industrial trend by using new
theoretical models. Any quantitative prediction of the load will depend heavily on a
well designed and relevant experiment about the load carrying capacity of the pulp
flocs.

So our conceptual picture for floc behaviour in the gap is the following: The total
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load is shared evenly by each floc that is in the gap. Each floc under compression
in the gap follows the relation between the load and the pulp density obtained ex-
perimentally. Thus for a given plate gap and feed rate, the pressure supported by a
single floc, the area of the single floc to support the pressure, and the total number
of flocs in the gap will all control the total load that the flocs can carry. For example,
when the plate gap is decreased in the normal range of refining, the total number of
flocs will be smaller as a result of the smaller cross sectional area available for flocs
in the gap. On the other hand, the smaller gap will demand a higher pulp density
within each floc that is in the gap, then the forces supported by each floc will go up
in the normal range of load versus pulp density. Therefore, the total load will go up
as the plate gap is decreased until the point of the maximum load that a floc can
carry is reached. Any further decrease of the gap after that will further reduce the
total number of the flocs present in the gap, and because the load that a single floc
can support is already the maximum load, the total load will go down dramatically

as a result of this combination of the two factors.

7.4 Calculation of the Load Supported by Flocs

We assume that there is only one layer of flocs in the gap, and all the flocs have
the same average floc size. We now start the calculation by considering a floc ball
in general before and after compression, shown in F.grre 7.5. Let B (R = ho) be
the radius of a floc ball under zero compression, p,i,, be the ininimum pulp density
corresponding to the zero load situation illustrated in Figure 7.4, h be the half gap
after compression, R. be the radius of the area to support the applicd load after
compression for a floc, and p; be the density for the floc within its boundary after
compression. Following the assumptions made earlier about the behaviour of a floc

under compression, we can derive the density for the floc after compression as:

m

m
=" _ 7.2
PI=V ™ 2nh(re - ) (72
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Figure 7.5: Schematic of a floc ball before and after compression.

where m is the mass for a single floc. We can also obtain the floc radius R in terms

of m and pyn from the definition of density:

o] 3m
R= ‘/47rpmin. (7.3)

Once the mass of a single floc is known (or can be converted from the feed rate and the

assumed number of flocs entering the refiner in At), we know R from p,,;, indicated
in Figure 7.4. Thus, for a given plate gap value g = 2k, we can calculate the density
for a single floc using Equation (7.2). Treating p; as input in Figure 7.4, we can
obtain the interpolated value of the applied load corresponding to each value of the
input according to the curve. In the program, we used the Cubic Spline interpolation
method to get the applied load, which is also indicated by an arc line in Figure 7.4.

Next, we need to calculate the total area to support the load for all the flocs in
the gap under compression. First, we see from Figure 7.5, that there is a simple
relation among R, h and R, so that R, = VvR? = k2, and also the one side area for
a single floc is A, = v(R? — h?). Notice that R, the radius of the area to support

the load for a single floc shrinks to 0 for the case of zero load, and approaches to

maximum R theoretically. But because we assumed that the load can only be up to




the maximum load for a floc shown in Figure 7.4, we simply use the maximum load
when the calculated density of a floc exceeds the corresponding maximum density.
Also, we have to stop somewhere near a small value of A when R. is close to R since
py will blow up for h = 0 according to Equation (7.2). Secondly, we calculate A, the
total areas of all the flocs in the gap inside a refiner to support the total load:

A, = SA.N,n, (7.4)

where N, is the total number of flocs in the gap during time At, and n is the total
number of the grooves or the bars in refiner plates used to convert the feed rate
to one groove or one bar as discussed in Chapter 5. The factor S is used here to
take into account the situation that the moving bar is aligned with the stator bar
for the calculation of the forces, and this consideration is consistent with our earlier
assumption made in defining the gap region that the gap region is the averag:: state
of bar to bar and har to groove situations. For simplicity, we ‘~ok the factor S as
1/2.

Finally, we have to put these factors together to derive the formula for calculating
the total mechanical thrust force that all the flocs in the refiner can support. The

total thrust force L, takes the following form:
L = P(py)As, (7.5)

where P,(p;) is the applied load interpolated from the Figure 7.4 using p; calculated
as input. We can also derive the motor load of the refiner based on the friction force,
the radius for each floc, and the angular velocity of the disc. If we assume that the
friction force which every floc exerts on the discs is the same, and that g, the friction
coefficient in the tangential direction between the flocs and the discs is a constant,

then we obtain the following equation for the motor load M;:

M, =Y po=wri, (7.6)

where w is the angular velocity of the rotating disc, and r; represents the radius r

of the ith floc that is in the gap. In addition, we can get another very important
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operating variable for refining, ‘specific energy’, E by a simple relation:

— M‘
E==2, (1.7)

where F is the feed rate in refining.

"~ 7.5 Simulation Procedures

We modified the program used in the previous Chapter for testing the probability ex-
pressions to do the simulations. We first adopted the constant probability expressions
with cross sectional area factors as discussed in the end of Chapter 6. In particular,
we used A=1 and k=0.25-0.5, and the value of £ had to be adjusted in the range
to accommodate different plate gap settings in the simulations. For example, when
an extreme small plate gap is used in the simulation, the number of flocs going into
the gap region is dramatically reduced, then a higher k£ has to be used to encourage
the exchanges with the gap so that a steady state can be reacned, but we found that
the value of k is not too sensitive to the total mechanical thrust predicted. A similar
modification had to be made to the criteria that are used to define the steady state,
because the relative fluctuations are larger when very few flocs are in the gap region.

We also added some sections to the program to implement the formulas for the
calculations of the total mechanical thrust load, motor load, and specific energy. We
took the minimum density of floc p,in as 146 kg/m>, and the maximum applied
load P, as 188 kPa as shown in Figure 7.4. For a small plate gap setting in the
simulations, the density of the flocs ps calculated using Equation (7.2) may exceed
the density corresponding to the maximum applied load. We simply assigned the
maximum applied load to all the higher densities p; in the calculation, because only
the applied load is involved in Equation (7.5). For the case of very large plate gap,
when the total thrust predicted is close to zero, the total number of flocs in the gap
may be more than the one layer of flocs that the gap region can accommodate. In
this case, we simply took into account the total number of the flocs in the gap as

far as calculating the thrust is concerned, because the large gap situation is not of

interest in refining control due to the poor quality of the product associated with it.
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The subroutix;es ‘SPLINE’ and ‘SPLINT’ from Numerical Recipes [67] were ap-
pended to the main program to perform the Cubic Spline interpolation for P,(py) as
indicated in Figure 7.4.

In the simulations, we used the plate gap ¢ = 2h =0.3 mm and the number of flocs
entering the refiner in At N = 40 as the values in the standard set of the parameters,
and the rest of the parameters were the same as before. The friction coefficient g,
was chosen to be 0.75 as explained in [24], and the angular velocity of the rotating

disc was 188 s~1.

7.6 Results and Discussions

Some typical results are shown in Figures 7.6 to 7.11. In most of the graphs for the
relations between the loads and the plate gap, the calculated data points are indicated
by asterisks, and the arc lines connecting the neighbouring points are generated using
Cubic Spline interpolation method for plotting.

In Figure 7.6, the relation between the total mechanical thrust load and the plate
gap is plotted. The thrust load is calculated with the formuia using the standard set
of parameters. In each calculation, the value of the thrust is recorded upon reaching
the first steady state. Figure 7.7 shows the motor load and the specific energy against
the plate gap with the same conditions as in the case of the thrust load. While in
Figure 7.8, a comparison is given for using the different number of flocs entering the
refiner in At for the relation between the thrust load and the plate gap. The cffect of
the plate gap on the fluctuations in the thrust versus time is illustrated in Figure 7.9,
and the time scale is from the start of the refiner to the time that the second steady
state is reached, with a 10% increase of the feed rate given at the end of the first
steady state. In Figure 7.10, the development of the thrust load against time is
presented for g = 0.3 mm, but a 25% increase is given to the feed rate instead. The
relation between the thrust and the throughput (feed rate) is plotted in Figure 7.11
with a constant plate gap setting.

First, we see that the general trend predicted by the model is similar to that
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accepted in the industry, for example, compare Figure 7.6 with Figure 7.1, with a
peak around some value of the plate gap in the relation between the load and the
plate gap. As a matter of fact, this is probably the first thecretically predicted curve
that significantly follows those used in controlling industrial refiners. In addition, the
values of the loads predicted are comparable with those in the working range of the
refiner simulated. Furthermore, ocur model can predict the approximate time delay
that is needed between the different operating set points in normal refining process,
though more studies have to be carried out before we can apply the results to refining
process control. By breaking away from the traditional methods of modelling pulp
movement in refiners, we have successfully introduced the relations between the plate
gap and some crucial operating variables, and eliminated the source of instability for
time-dependent modelling.

Secondly, we see that the floc size under zero load is not too sensitive to the
level of the total thrust load predicted with the model. This floc size is directly
related to the number of flocs entering the refiner in At through m for a given feed
rate F' and the minimum pulp density pnin, which is reflected in Equation (7.3). In
particular, as shown in Figure 7.8, both the levels and the distribution of the thrust
are not significantly different than one another for a wide range of the N's used in
the simulations. Also from the same Figure, we can see that our assumption for the
size of the flocs (with a radius R) under compression, represented in the maximum
plate gap ¢ = 2h = 2R in the graphs (such as in Figure 7.6), is in line with the
experimental evidence found in the literature: It has been found that a floc has a
dimension of the order {? where [ is fibre diameter (about 2 mm) [61], and that the
ratio of length (along r direction) to width of a floc is usually abont 2:1 [68], which
is about the size of two flocs after compression that are aligned in r direction.

Next, the scale of the fluctuations in the thrust is predicted to be related to the
plate gap, which is illustrated in Figures 7.9 and 7.10. In general, the smaller the gap,
the larger the scale of the fluctuations. This provides some insight for explaining the

phenomenon of plate clashing that when the plate gap gets progressively smaller, any

adjustment to counter the greater fluctuations in load will be likely to encourage the
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gap to pass the peak load position. From the simulations, we also found that there is
no significant difference for the times needed from the first to the second steady state,
whether a 10% increase or a 25% in-rease is given to the feed rate. And the thrust
load is approximately proportional to the throughput if the steam cffect is ignored as
shown in Figure 7.11.

Finally, the averaged density of pulp in the gap can be close to that in the stator
or the rotor as predicted in the model, because the following reasons: When the
moving bars align with the stationary bars, the flocs are compressed. But there are
still some void spaces between the flocs in the gap. Thus even though the density
of the compressed flocs is higher than the average density of pulp in the stator or
the rotor, it is possible that the overall density of all the flocs in the gap remains
close to those of the other two regions, owing to the empty spaces between the flocs
in the gap. In other words, the higher density of the compressed flocs in the gap is
somehow compensated by the empty spaces in the gap. As a result, the averaged
densities in the three regions can be similar. But again, the validity of the model and
the predictions have to be tested vigorously against carefully designed experiments,

in order to establish the foundation for any industrial usage of the model.
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Summary and Suggestions for Further Work

The pulp movement model for steady siate of refining was first « ..teind=d to include
the ..me-dependent variables to stirdy the dynamic aspect of  fining, but the numer-
ical instability hampered the solution of the hyperbolic system derived. Therefore, a
new direction in modelling pulp in refiners was initiated, in which pulp movement is
modeled as a stochastic process with individual pulp flocs. The first test of the new
model was to predict a distribution of the residence time for steady state refining.
The numerical simulations showed that the time step, the probabilities and the pulp
velocity are iinportant parameters for the residence time distribution, and in most of
the cases the distribution is symmetrical. The treatment time, the time pulp flocs
spend in the gap only, can also be predicted using the model But one interesting
phenomenon was found in the simulations that the treatment time distribution is
non-monotonic. A simplified model was developed to study the behaviour, and a
theoretical explanation was found which was also confirmed by numerical simula-
tions. The stochastic model for steady state was then extended to a time-dependent
stochastic mode! by keeping track of all the flocs inside refiners at all the time. The
locally averaged densities of pulp were chosen to be the output for the model to
reflect the fluctuations in local property changes. The results showed that there is
a direct relation between tne locall, averaged densities and the feed rate, and the
numbeor of flocs into the refiner influences the fluctuations. The factors to control
the floc exchanges were identified in order to derive the probability express s that
were treated as constants before. The expressions worked fine after several versions
of the probability expressions were tested. But the results indicated that it is the
cross sectional area of refining zone that controls the floc exchanges. Based on the

understanding of floc behaviour and some assumptions, the formulas to calculate the




forces supported by a single floc were derived. Then the total mechanical thrust load
was predicted by considering the area to support the load and the number of flocs
in the gap contributing to the load. The predicted relation between the total thrust
load and the plate gap was similar in trend to that obtained from refining production
in mill. The relations between the motor load, specific energy and the plate gap can
also be predicted.

Many aspects of the model can be further improved. Until now the velocity field
for the three regions is assigned for simplicity, which can be improved by considering
the following work: Determine the friction and centrifugal force on floc level in the
three regions; Introduce the steam drag on floc level. Energy distribution can be
predicted based on the assumption that a bar crossing can transfer certain level of
energy to pulp flocs. Some effects on energy distribution can be simulated using the
model, such as: number of bar crossings; speed of bar crossings; angle of bars; energy
concentrations on different sections of the refining zone. The influence of grooves and
bars on refining can also b~ simulated: Angle of grooves changes the direction of pulp
flow in the stator and rotor, in turn, flects the residence time and the treatment time
distributions; Dam effect can be tested by setting the probabilities and the locally

averaged densities to zero locally.



Appendix A

Some Additional Results for Chapter 2

The following graphs are some additional results described in Chapter 2 for the so-
lution of the hyperbolic system of the equations. And the figures are in the same

sequence as those shown in the text of Chapter 2.
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Figure A.3: Dynamic state simulation using explicit numerical
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step.
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Figure A.5: Dynamic state simulation using explicit numerical
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Figure A.8: Dynamic state simulation using explicit numerical
scheme with p; = 982 changed to pyn., = 1100 in one

step.
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Appendix B

Definition of Pulp Flocs

The definition of a pulp floc is based on a number of observations, some general and
some specific to refiner mechanical pulping. Since the division of a spatial distribution
of fibres into entities called flocs must contain some uncertainty, it is important to
note at the outset that the results reported in this thesis are insensitive to the exact
definition used. Thus the model would give similar results if a different definition
resulted in tw'ce as many flocs of half the average size. Simple observations can be
made without special equipment that suggest the existence of flocs in pulp. If one
observes pulp collected from refiners, it forms clumps spontaneously. A handful of
pulp is similar to a mass of cotton-wool balls. The clumps observed are much larger
than the floc sizes proposed in the thesis, but they illustrate the tendency of pulp
fibres to entangle and form clumps.

The high-speed photographs and films of pulp inside a refiner show pulp that is
very sparsely distributed. Visual inspection of the pictures shows easily identifiable
regions of high fibre concentration that are weil separated from each other. The situ-
ation is quite different from the virtually continuous distribution of pulp that is found
outside the refiner. Therefore the division of pulp into flocs is much more straight-
forward and unambiguous than in other situations. As a result of these observations,

flocs are defined as collections of pulp fibres that satisfy the following conditions.

1. The fibres occupy a finite volume.

2. A simple convex surface, roughly spherical with a radius of 1-2 mm, can be

drawn around the floc such that it contains almost all of the fibres. Because
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of the dilute nature of the pulp in the refiner. it is usually the case that the
surface does not cut any pulp fibres, but it is not an important exception if a
particular collection of fibres is scparated into two flocs with only a few tibres
joining them. Clearly, this definition will result in flocs having a distribution
of sizes. For the model described in this thesis, a single size was used. This

simplification, as noted above, does not materially affect the predictions.

3. Although not necessarily permanent, a floc must retain its identity for a finite
period of time, such time period being determined by the application of the

apparatus that the pulp is subjected to.

4. The floc must exhibit some degree of coherence. In other words, there must

exist torces with which the floc resists rupture, and change of shape.

We determine the floc properties mainly by using experimental observations and
the physical restraints of refining zone geometry. For example, the size of pulp flocs
in disc refiners was estimated by examining the high-speed video frames and drawing
contours around coherent, isolated clumps of pulp. Usually, we found that they are
of the order 1-3 mm. Also the maximum size of pulp flocs was limited by refining
zone local conditions such as the bar width of refiner plates (typically 3 mm). The
time scale for the identify of pulp flocs was estimated by observing that they persist
at least for one bar passage during refining. This period of time translates about the
order of 1074 s for a typical industrial disc refiner. The coherence of the pulp flocs
has also been measured experimentally by Martinez [54] using a single-bar laboratory

disc refiner.



Appendix C

Calculation of Amount of Pulp in the Gap

Suppose the throughput of a typical refiner is Q t/d (or kg/s). For example, from
Table 1 of Reference [22] for a 45-1B refiner, the throughput is Q = 36 t/d (or
0.416 kg/s). From either Reference [25] or [24] we can estimate the residence time
in a refiner, ' ‘hich we denote by T seconds. An estimate for T is obtained by using
Reference [25] to calculate the average pulp radial velocity for the refiner, obtaining
u = 0.3 m/s, and thus giving T = 0.43 s. The quantity of wood in the refiner
must therefore be greater than QT kg. A similar method was used to estimate
residence time from the amount of wood in a refiner by May et al. [46]. The volume
available between the plates is approximately V = n(r2 —r?)g (where g is gap width)
and so if all the pulp were there, the pulp density would be QT/V provided that
water and steam do not take additional space (if they do, the pulp density would
be even higher than QT/V). For the example we have been using, the volume is
V = x(0.5722 — 0.4322)0.15 x 10~2 = 6.6 x 10~°> m3. Thus the pulp density is
QT/V = 2.71 x 103 kg/m3 which is about thrce times higher than the density expected
for pulp in this range of consistencies [55). The pulp density would be even higher if
we took into account the fact that the space between the plates is not fully covered
by pulp. Stationwala et al. [49] reported that bar coverage in an industrial refiner

could range from 50% to 85% for different refiner radial positions.
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