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ABSTRACT

I describe the conceptual problems associated with the Kochen-Specker theorem in-
cluding the presuppositions of the theorem and plausible interpretations of the con-
clusions motivated by the theorem. 1 describe an idealized quantum system which
demonstrates both the Kochen-Specker theorem and the Bell argument for nonlocal-
ity. I present new firdings about the mathematical structures which support a proof
of the Kochen-Specker theorem.
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Chapter i

Quantum mechanics and classical mechanics

In classical mechanics, all observables may be simultaneously assigned probabilities
by atomic measures (concentrated on a single point in phase space), or by weighted
averages of such measures. In quantum mechanics, however, there are pairs of ob-
servables which cannot be simultaneously assigned probabilities in this way, so that
with respect to classical probability assignments, quantum mechanics appears to be
incomplete. The idea of completing quantum mechanics through an extension of clas-
sical mechanics requires that somehow the simultaneous and comprehensive atomic
probability measures may be recovered from ‘hidden variables’ at work in quantum
systems.

The Kochen-Specker [24] argument demonstrates that it is not possible to assign
hidden-values to the constituents of some quantum ensembles. This contradicts the
classical idea that we may universally make attributions of truth about the properties
of constituents of ensembles, even when we are not measuring them. In so far as
quantum mechanics is concerned there is nothing novel in this conclusion, but for
interpretations of quantum mechanics the conclusion poses a fundamental problem,
which I will refer to as the problem of contextualism.

The interpretational problem is to explain the inconsistency between the statisti-

cal algorithm of quantum mechanics and the counterfactual attribution of properties
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to sets of unmeasured quantum states. The Kochen-Specker theorem proves that,
under appropriate circusnstances, counterfactual attributions must impose contradic-
tory values to some state. The concept of ‘contextualism’ is an interpretation of
quantum mechanics which avoids the contradiction implied by counterfactual value
attributions by accepting that the properties of the constituents of ensembles depend
upon the context in which we measure them.

For the purposes of this dissertation a realist interpretation of quantum mechanics
is any set of explanatory hypotheses which is both consistent with quantum mechanics
and which gives an account of the measurement correlations in quantum mechanical
systems in terms of the actions of hidden-variables. There are a number of options
available to the realist metaphysician with which to evade the difficulties imposed on
hidden variable theories by the ‘context dependence’ of measurement. In the present
thesis, these options will be described but no attempt at evaluation will be made. The
arguments presented here will describe constructions which support a contextualist
interpretation: we will not examine the options by which a contextualist conclusion
might be avoided.

Contextualism is undesirable to the realist because it leads immediately to the fol-
lowing predicament: if truth values of propositions are to depend upon the context of
measurement then it is not possible to counterfactually assign a complete set of truth
values to yes/no propositions about certain physical systems and their properties.
Thus realist interpretations which avoid the Kochen-Specker ‘paradox’ by accepting
contextualism appear committed to giving up a central tenet of realism, namely, that
the world has a determinate structure which underwrites causal explanations and
our ability to make successful predictions independently of our knowledge of that
structure.

Several alternatives for avoiding the contextualist argument are available. Among
them is the idea, attributable to Bohm, that hidden values do not have to be consistent
with quantum mechanics when they are not being measured. Bohm's idea may be
rephrased as follows: if we cannot assign values to things we are not observing, then

we need not demand that the things behave consistently with quantum mechanics
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when we are not measuring them. On this view there is no need to entertain the
Kochen-Specker argument

A relationship between context dependent measurement (in the form of dependence
on apparatus) and nonlocality was observed by Bell {2] in his remat}-. on the Bohm
theory:

So in this theory an explicit causal mechanism exists whereby the dispo-
sition of one piece of apparatus affects the resnlts obtained with a distant
piece. In fact the Einstein-Podolsky-Rosen paradox ie resolved in the way
which Einstein would have liked least.

More generally, the hidden variable accourt of a given system becomes
entirel, different when we remember that it has undoubtedly interacted
with numerous other systems in the past and that the total wave function
will certainly not be factorable. The same effect complicates the hid-
den variable account of the theory of measurement, wher it is desired to
include part of the “apparatus” in the system.

Bohm of course was well aware of these features of his scheme, and has
given them much attention. However, it must oe stressed that, to the
present writer's knowledge, there is no proof that any hidden variable
account of quantum mechanic; must have this extraordinary character.
Of course we know that since the quoted passage was written a proof has been
given (the Bell inequalities argument [1]) that indeed any hidden variable account of
quantum mechanics must have the extraordinary nonlocal character exemplified by

the Bohm scheme. Bell continues:

It would therefore be interesting, perhaps, to pursue some further “im-
possibility proofs,” replacing the arbitrary axioms objected to above by
some conditions of locality, or of separability of distant systems.
This is reviewed by Mermin [29]. The arbitrary axioms mentioned by Bell are just
those which attempt to circumvent the context dependence of quantum measurement
through the introduction of some hidden mechanism.
We may distinguish two approaches on which a combined demonstration of non-
locality and contextualism may be given: one due to Stairs, Heywood, and Redhead,

and one due to Mermin. The former approach involves the extension of the spin-1

system employed in the original Kochen-Specker argument to a composite system of
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two spin-1 particles. The Mermin approach exploits the eigenstates of the idealized
system envisioned in the Greenberger, Horne, Zeilinger thought experiment [13] (ab-
breviated ‘GHZ'). While the two approaches differ in form they both involve the same
general techniques of proof, as I will show.

Both contextualist arguments and nonlocality proofs refute the hypothesis that
hidden dispersion-free states can contain the information needed to restore classical
mechanical explanations for otherwise mysterious contextual and nonlocal phenom-
ena. The GHZ provides a circumstance in which simple arguments for contextualism
may be brought together with straightforward arguments for nonlocality so as to
expose a single mathematical object (which, for convenience, I will dub ‘the GHZ-
graph’). The object is a subspace of the Hilbert space associated with the eigenstates
of the particles in the GHZ arrangement. I also describe a similar construction for
the Bohm model of the Einstein, Podolsky, Rosen thought experiment which, while
supporting the same argument for contextualism, fails to support the kind of state
required to combine the argument for contextualism with the argument for nonlocal-
ity (29). I will explain both of these arguments and show that they may be combined
to construct a single mathematical object. The mathematical object is important
to theorists who advocate a quantum logic, differing from classical logic, mirroring
the change from classical to quantum mechanics. A leading approach to quantum
logic exploits partial boolean algebras. However, it is not my intention to advocate
quantum logic

The mathematical object constructed for the GHZ system is of inttinsic geometri-
cal interest. In particular, the simple method of construction of such objects (together
with their high degree of symmetry) shows Hilbert space to be rich with configura-
tions of subspaces which satisfy (in the sense of Kochen and Specker [24]) classical
contradictions.

Any scheme for a principled method of assigning definite values to operators of
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quantum systems must provide an account of how such simpie and common mathe-
matical objects are to be avoided. An interpretation of quantum mechanics is there-
fore hard pressed to provide a plausible general account of definite value ascription
which does not make ad hoc definitions aimed at avoiding such ‘Kochen-Specker con-
figurations’. In this sense the results of the present dissertation place a new constraint
on the interpretation of quantum mechanics by revealing that the geometry peculiar
to contextualism is significantly more difficult to avoid than previous discussions of
contextualism have suggested.

Mermin (29] maintains that the attribution of context-independent properties to
quantum ensembles is badly motivated because it is noi consistent with quantum
mechanics. The motivation may be improved by replacing the noncontextualist pre-
supposition with the presupposition of Einstein locality. Mermin observes that prob-
lematic questions about states of the apparatus become questions about Einstein
locality when the apparata involved are sufficiently space-like separated. The tech-
nique used for demonstrating this argument involves applying the principles of the
proof of contextualism to common eigenstates of entangled systems such as the EPR
and GHZ. I will show that essentially the same technique is employed in a different
form by both Penrose and by the original extension of the Kochen-Specker argu-
ment to composite systems developed by Stairs (48], Heywood and Redhead [19], and
Brown and Svetlichny (8).

The differences in form are these: Mermin exploits simple relations among sets of
operators to display the incoherence of counterfactual non-contextual assignments of
predicted values for these operators; Penrose employs the Majorana representation of
spin to exhibit the same sort of contradiction; the Stairs, Heywood, Redhead (SHR)
construction exploits a map induced by correlated states of multiple systems, again
with the aim of displaying the same kind of contradiction. That all three approaches

should make the same argument in a different guise is made apparent through an
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application of the techniques developed by Peres which allow us to translate between
operator constructions and constructions based on sets of rays in Hilbert space. These
sets of rays may in turn be rendered as generators of projection lattices. Finally, the
projection lattices are the subject of Gleason’s theorem, and as von Neumann pointed
out, projections correspond to propositions — a correspondence which may be devel-
oped to include within the range of our discussion questions concerning quantum logic
and the possibility of a purely algebraic (semantic) proof of nonlocality as attempted
by Demopoulos [12].

The contextuality of quantum measurement and quantum nonlocality pose impor-
tant foundational and interpretive questions. There are numerous practical examples
of the disparity between quantum mechanics and intuition. Of these, some deal solely
with locality (Bell [2], Mermin [29], Hardy [17]); some with contextualism (Bell (1],
Kochen and Specker [24], Peres [35]); and some with both locality and contextualism
(Stairs {46], Heywood and Redhead [19], Mermin {29], Penrose [49]). Later portions
of this thesis will give new examples of solely contextual and combined contextualist-
nonlocality arguments, extending the work of Bell, Kochen and Specker, Stairs, Hey-
wood and Redhead, Peres, Mermin, Penrose and Zimba.

With all of these results there remains the question as to the philosophical prob-
lems addressed by these efforts. Clearly the question of nonlocality is of interest for
philosophical accounts of explanation and causality, so any progress with the formal
expression of nonlocal phenomena will serve to clarify the problem of causation to
some extent. Contextualism is not as clearly a philosophical problem - as is evidenced
by the difficulty in motivating the concept without introducing quantum mechanics.
Here I will maintain only that progress with the formal expression of logical and
mathematicel structural facts about physical theories aids in the interpretation of
the transition from one physical theory to another. Finally, we need to remember
with Bub [10] that:



The transition from classical to quantum mechanics only poses a philo-
sophically interesting problem because of the difficulties in the way of a
realist interpretation of the theory. A proper resolution of these difficul-
ties requires the interpretation of the non-Boolean structure of idempotent
magnitudes of the theory as a possibility structure, or possibility struc-
ture of events, i.e. as yielding all combinatorial possibilities for molecular
events or properties.

On this view it is possible to maintain a realist view of the structure of physical
accounts of the world, provided all the combinatorial possibilities encompassed by a
physical theory are given by the structure of the theory. The Kochen-Specker theorem
tests the limits of realism because it shows that Boolean propositional structure does
not suffice for the combinatorial possibilities of quantum mechanics. To account
for the additional possibilities the structure must be non-Boolean, and since partial
boolean algebras provide the required structure, it is plausible to argue that there
is a kind of realism available to philosophers which interprets the models of partial
boolean algebras as satisfiable by the physical world.

1.1 Nonlocality and contextualism

A nonlocal system is one in whicn measurements are correlated over large distances,
so that a measurement on Earth, correlated with a measurement of an observable on
Fomalhaut, allows someone on Earth to make a measurement and infer the value of
the corresponding observable on Fomalhaut. The Special Theory of Relativity rules
out instantaneous action at a distance. A ‘peaceful coexistence’ between nonlocal
systems and special relativity is maintained because it is impossible to discern the
correlation unless the data from Earth and Fomalhaut are brought together. This
feature of quantum mechanics is analogous to the results of coin flips in different
rooms. It may be that every head in room A corresponds to a tail in room B, but the
correspondence is not of use for communicating between the rooms, since only when

the transcripts of flips from the two rooms are brought together can the person in



8

room B observe that, for example, each tail obtained there corresponded to a head
thrown in room A.

To make the problem clear I use the idea of labelling states to ‘encode’ the hy-
pothetical determining information concealed within states. If abels are instrinsic
to states then the labels might be vehicles by which the nonlocal correlations could
be explained in a way consistent with classical concepts, such as causality. The ‘hy-
pothetical hidden states’ approach to explanation requires that there are intrinsic
properties of systems which are “cryptodetermined”: the labels already exist, so it is
possible to counterfactually declare a complete list of the properties, such that if X
were measured we would get result . We call the assumption that there are such
labels, nonconteztualism. For the purposes of this thesis, I will take noncontexty ..sm
to be equivalent with the nction of ‘counterfactual definiteness’.

Recall that EPR maintain that an element of reality corresponds to a physical
quantity whenever the probability of predicting the value of the physical quantity is
unity; providing of course that what we need to do to make the predictions does not
disturb the system about which the prediction is made. Imagine a classical case in
which a gambler predicts with certainty that Pittsburgh will lose the World Series. We
have two possible situations: either the gambler knows with certainty that Pittsburgh
will lose because it is possible to point to facts about players and coaches which suffice
to make it physically impossible for Pittsburgh to win; or as a matter of natural law
Pittsburgh will lose; clearly any gambler not aware of the second possibility should
not be gambling. The difference is disguised by EPR's choice of phrasing in “we
can predict with certainty,” which is ambiguous between a strong and » weak sense
of the phrase can predict. The strong sense is the gambler’s second possibility: it
is the sense on which a measurement result is already obtained and we may infer
by a natural law what other predictions must be. The weak sense is that in which

we have made no measurement, but are certain what the result will be because of
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facts about the particular system about which we make predictions. The ambiguity
is resolved cheritably by taking EPR to claim, consistently with quantum mechanics,
that there are cases in which it is in principle impossible to directly measure all of the
properties of a system. However, even in such cases physical laws allow us to predict
with certainty that properties not directly measured hold (cf. [16], fin. 10).

As an example of the EPR “paradox” consider Bohm’s model for an electron and
a positron that are separated decay products of some system with total spin zero.
There is a simple correlation between spin components of the two particles, such that
measuring any spin component of the positron allows an immediate determination of
a corresponding spin-component of the electron. The EPR condition that a prediction
may be made with certainty is satisfied and we may infer elements of reality associated
with these spin components. The disagreement with quantum mechanics is now
apparent, since quantum mechanics only permits a single spin component of the
composite system (whose total spin is zero) to have a definite value (this is evident

from the form of the singlet state of the composite spin zero system) [35).

1.2 A caveat due to Bell

For a classical statistical ensemble (such as a pile of rocks in free-fall) we may de-
termine for each element X of the ensemble that X either has or lacks the property
j. In quantum mechanics, howeve., the unqualified assumption that we are able
to determine properties of elements of ensembles leads to contradictory predictions.
Thus quantum mechanics does not allow all of the determinations made possible by
classical statistical mechanics.

Another way to make the same point about the possible incompleteness of quantum

mechanics was given by J.S. Bell (2]:

To know the quantum mechanical state of a system implies, in general,
only statistical restrictions on the results of measurements. It seems in-
teresting to ask if this statistical element be thought of as arising, as in




classical statistical mechanics, because the states in question are aver-
ages over better defined states for which individually the results would
be quite determined. These hypothetical “dispersion free” states would
be specified not only by the quantum mechanical state vector but also by
additional “hidden varisbles” — “hidden” because if states with prescribed
values of these variables could actually be prepared, quantum mechanics
would be observably inadequate.

Bell [2] agreed that von Neumann [48] and Jauch & Piron [21] had given a reduc-
tio ad absurdum of the hypothesis that ensembles of dispersion free states “have all
measurable properties of quantum mechanical states.” However, he expressed disat-
isfaction with the proofs, since the supposition against which the reductio is mounted
lacks adequate motivation. In order to refute the hypothesis that dispersion free states
have all the measurable properties of quantum mechanical states it is necessary, as

Bell shows, to suppose that ensembles of dispersion-free states have

...certain other properties as well. These additional demands appear rea-
sonable when results of measurements are loosely identified with proper-
ties of isolated systems. They are seen to be quite unreasonable when one
remembers with Bohr “The impossibility of any st arp distinction between
the behaviour of atomic objects and the interacticn with the measuring
instruments which serve to define the conditions under which the phenom-

ena appear”

Bub [9] suggests that a “Bohrian dispositional interpretation” motivates Bell’s
disavowal of the additional properties. Bub maintains that Boht’s view that mea-
surement results represent dispositions of the behaviour of systems (given conditions
imposed by measuring instruments) underwrites “Bell’s proposal that equivalence
in the algebra of quantum magnitudes need not be preserved in a hidden variable
theory.”

We can identify two approaches to the question of the completeness of quantum
mechanics. Either we say quantum mechanics is incomplete because it cannot answer
all well-formed questions; or, we say there is an extension of qua..tum theory which
answers all well-formed questions, but this theory must be such that its set of well-

formed questions is not equivalent with the set of well-formed questions of the theory
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of classical statistical mechanics. Put this way the choice turns on what we permit
as the well-formed questions of each theory. Bub’s suggestion here is that our choice
1s contextual: if we follow Bohr we would question the motivation of a scheme for
assigning values to incompatible magnitudes which adheres to restrictions imposed
by dispersion-free measures on classical probability spaces. Only a quantum theory,
one which attempts to honour such restrictions, could be incomplete.

Bell's caveat is against the assumption that algebraic functional relations must
be satisfed by hidden variables. The proofs of von Neumann and Jauch & Piron
demonstrate that where hidden variables are required to meet these demands it is
possible to derive a contradiction. However, if this condition is relaxed the proofs do
not hold. Bell seeks to leave open the possibility that there are hidden variable theories
which do not presuppose the particular restrictions imposed on the values assigned
to incompatible magnitudes by the functional relations of quantum mechanics. A
theory which does not satisfy such relations is a contextual hidden variable theory
[44]. An example is the Bohm theory (5. We could summarize Bell's caveat as holding
that, since quantum mechanics is itself a contextual theory, we have no reasoa to
require that a hidden variable theory is not also contextual. The caveat is clearly
consistent with the view I attributed to Bohm. Both Bohm and Bell agree that the
values assigned to unmeasured observables should not be constrained by the functional

relations of quantum mechanics.

1.3 Gleason’s theorem

Von Neumann (48] had introduced an axiomatic construction for quantum mechanics.
Gleason [15] describes how in attempting to weaken these axioms he derived what we

now call Gleason’s theorem:

Theorem 1 (Gleason) Let u be a measure on the closed subspaces of a separable
(real or complez) Hilbert Space H of dimension at least three. There ezists a positive
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semi-definite self-adjoint operator T of the trace class such that for all closed subspaces
AofH

u(A) = Trace(TP,), (1.1)
where P4 is the orthogonal projection of H onto A.

An eigenvector equation describes the mechanical behaviour of systems. An oper-
ator (which must be Hermitian) corresponds to an observable for the system. The
eigenvalues for the operator correspond to observational results. Gleason’s theorem
shows that, for any countably additive measure on the lattice of projections of Hilbert
space, there is always an operator of trace class which induces it.

The contextual and nonlocal features of quantum mechanical descriptions of sys-
tems may be exhibited by instancing the failure of boolean relations among expec-
tations. The boolean relations which fail can be picked out by assigning a valuation
function to hypothetical ‘elements of reality’ and showing that the valuation is un-
satisfiable for the eigenvectors of idealized systems such as those envisioned in the
Einstein-Podolsky-Rosen (EPR) and Greenberger-Horne-Zeilinger (GHZ) thought ex-
periments. The ‘elements of reality’ fail for the EPR and GHZ because their definition
supposes 2-valued measures on lattices of projection operators, in contradiction with
the non-2-valued measures which, with Gleason’s theorem, are required for quantum
mechanics.

A quantum mechanical system is associated with a state represented by a density
operator acting on a complex Hilbert space. If H is a Hilbert space, every closed
subspace of H is associsted with a unique projection operator PP onto the subspace.
An operator W is a density operator if it is Hermitian; if it is positive definite (i.c.
(¢|W|¢) > 0forall |¢) € H); and if it has a well defined Trace such that Tr(W) = 1.
When W projects onto a one-dimensional subspace (or ray), so that W = |9)(4 |,
then the states [ ¢) are called ‘pure states’; otherwise the states are ‘mixtures’.

Each projection [P is associated with an observable O, such that the expectation

on the pure state |¢)( @] for O is (¢|P|é). The expectation for @ on a mixture
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W is Te(WIP). We can define a measure u on the lattice of projections such that
u(P) = Tr(WP).

To obtain an orthocomvplemented lattice of closed projections we can make the
following associations for two projections IP; and P;: tc obtain the lattice meet, let
P; A P; be the projection unto the subspace P, () N Pa(?); to obtain the lattice
join, let P, V IP; be the projection onto the closed subspace spanned by P,(?) and
P,(H) [40]. The orthocomplement P+ is associated with the subspace orthogonal to
P(H).

For purposes of this thesis, the unitary symmetry of projections ensures that the
configurations of subspaces in real Hilbert space to be introduced are unoriented, so
that only their mutual orthogorality is required for our arguments, and not their
scalar properties.

We may stipulate that P, is orthogonal to P, if, and only if, P,(Pa(z)) = 0, for
all z € M, so that Py(P3(H)) is zero. The inner product exists on pairs of elements
of H, but here we are concerned with pairwise orthogonality among operators on H
and the observables associated with them. Nevertheleas, we should recall that the
inner product is always present in Hilbert space, since this space is definable as a
Banach space with an inner product. As well, we recall that in so far as Hilbert
space is concerned, the general theory of measures on sets of orthonormal functions
1s interchangeable with the Lebesgue theory of integration.

The associations between the subspaces of a Hilbert space and a lattice of projec-
tions permit the definition of a measure over the projection lattice of closed subspaces
of Hilbert space. Recall that u(IP), the measure on & projection, is given by Tr(WP).
We may write, for all P, u4(P+) = 1 — 4(P); and, where | is the identity operator
and 0 is the null operator, u(!) = 1 and u(0) = 0. Furthermore, if a set of projection

operators P, P, ..., P, are such that any pair are orthogonal we may write:

p(ViP) = 0 (P, (1.2)
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The measure u is therefore an ordinary additive measure when the operators form
families of pairwise commuting projections [40]. In order to show that a candidate
measure has countable additivity one need only show that it is additive up to n.

In a separable Hilbert space of dimension > 3, a measure u which satisfies the above
considerations exists for a density matrix W. This fact is the subject of Gleason's
theorem. Furthermore, the measure 4 on closed projections in a Hilbert space H"23
must be non-2-valued, and we may take, except for certain pathological functions,
the restriction of the space to the surface of the unit sphere.

The choice of the density matrix as the operationally appropriate formal device
for the calculation of quantum expectations may be interpreted as carryiug with it a
testriction on the choice of measures, so that we are limited to just the non-2-valued
measures if we choose to represent quantum states as closed subspaces, a fact which
reveals the peculiar nature of the quantum world when the space of representation is
a Hilbert space of dimension equal or greater than three.

With this in mind, we may understand the work of Bell and of Kochen and Specker
in the following way: the operationally adequate quantum formalism implies that
states of quantum systems support only non-2-valued measures on projection lattices
- and this fact places limitations on interpretations of quantum mechanics; in par-
ticular, this fact rules out interpretations which would require 2-valued measures on
the lattices hich represent quantum states. Furthermore, the interpretation which
holds that quantum mechanics may be ‘completed’ by the introduction of hidden va -
ables must introduce 2-valued measures on projection lattices when the interpretation
assumes that Boolean algebraic relations hold among the hidden variables.

Kochen and Specker took this interpretation of the implication of the Gleason
theorem for hidden variable theories further by observing that the failure of Boolean
algebraic relations over quantum states motivates the introduction of partial Boolean

algebras. An analogy between Boolean and quantum algebras, the latter constructed
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from partial boolean algebras, may be extended to an analogy between Boolean propo-
sitional logic and quantum propositional logic (called ‘quantum logic’). On this ac-
count, Kochen and Specker, by extending a consequence of the Gleason theorem,
showed that some tautologies of Boolean propositional logic are, in a certain sense,
refutable in quantum propositional logic.

Kochen and Specker provided a proof of a consequence of the Gleason theorem for
a finite set of projections. I note that philosophers have tended to prefer the Kochen-
Specker result both for its finitude and its manner of argument, which in form is well
suited to the discussion of quantum logic. The Kochen-Specker result is in a clear
sense a simplification of Bell's corollary to Gleason. This thesis is, in the same clear
sense, a simplification of Kochen-Specker. In all cases we reduce the portion of the
Hilbert space required for the proof. Bell's proof of the Gleason corollary depends on
the fact that the surface of the unit sphere is dense. The Kochen-Specker argument
may be given, without mention of the topology of the sphere, if we construct an
axiomatic formal quantum theory from orthocomplemented lattices or partial boolean
algebras.

The line of argument deriving quantum logic from the projective structure of exper-
imental propositions is known as the Logico-Algebraic approach [20]. I demonstrate
a construction which, while consistent with the Logico-Algebraic approach, is not as
comprehensive in scope.

It is of interest to establish the minimal commitment that must be taken to advo-
cate quantum logic as an avenue for avoiding the implication for realism imposed by
the Kochen-Specker azgument. Clearly this minimum commitment must include the

claim that quantum logic salvages the determinacy of physical properties, for this is

the point of trying to avoid the Kochen-Specker argument.




Chapter 2

The Kochen-Specker theorem

Gleason’s theorem entails that all 2-valued measures on projection lattices are in con-
tradiction with quantum mechanics. Bell's observation was that this entailment may
be proved simply by noting the contradiction between an assumed additivity prop-
erty of expectation values and the properties of projection operators. The geometric
problem is to construct the smallest ensemble of projections which, when given a
2-valued measure, display a contradiction with quantum mechanics. I will show how
2-valued measures on projection lattices of real Hilbert space may be represented
as ‘colouring rules’ on graphs. The result is the class of ‘BKS-graphs’ (named for
Bell-Kochen-Specker) which display the distinction between classical mechanics and
quartum mechanics. Colouring rules represent classical measures and a BKS-graph
is a graph generated from idealized quantum states for which the colouring rule fails.

As an example of the difference between 2-valued and non-2-valued measures sup-
pose I wish to distinguish features on the surface of the sphere. Let blue be one
feature and yellow another. I want to keep blue and yellow distinct. Consider two
points on the sphere. Let one of them be a blue poini and the other a yellow point.
Next, consider a point lying between the two points. Is it blue point or a yellow point?
Let it be either, say & blue pomnt. Next, pick another point lying between this new
blue point and the original yellow point and repeat the process. Since the surface

of the sphere is continuous and connected, the process of interpolating a new point
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between two old ones is endless and the boundary between ilue and yellow regions
must be an open one. Therefore two points may not be distinguished to arbitary
degree on the surface of the sphere. That is to say, distinctions of features require a
continuous nonconstant 2-valued map, but the topology of the surface of the sphere,
being connected, does not support such a map.

The contention that it is possible to assign definite values to all the observables
of all quantum states runs afoul of the connectedness property of the surface of the
sphere. Bell [2] proved that the complete assignment of values t- obscrvables implies
that thereis a minimum angular difference with respect to the origizi between distinct
points that can be assigned different values (e.g. 1 or 0) on the surface f the sphere,
and that therefore the assignment implies a 2-valued measure.

Kochen and Specker [24] showed that algebraic relations among projection opera-
tors cannot be preserved under a homomorphic mapping to a sj:ace of independent
random variables. The result demonstrates with a finite explicit model that the sta-
tistical modelling developed for classical ensembles cannot be successfully employed
in quantum mechanics. By the construction invented by Kochen and Specker we
may find classical logical tautologies which are not satisfiable in quantum mechan-
ics. Therefore the construction may be used to delineate instances of the distinction
between classical and quantum mechanics. Recall that classical mechanics assumes
that it is possible to employ atomic measures, or weights over atomic measures, to
provide a complete description by inventory of the states of the constituents of any
mechanical system. The Kochen-Specker argument demonstrates that such complete
description by inventory is unavailable in quantum mechanics, even if it is maintained
that hidden variables are available to restore the atomic measures.

It is worth stressing that there are interpretive and motivational differences be-
tween Kochen-Specker [24] and Bell [2] with regard to the properties necessary to a

hidden variable account of quantum mechanics. The difference is clear from inspec-
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tion of the following passage from the Kochen and Specker paper and comparison

witi the discussion of Bell's relation to Bohr in the previous chapter:

The proposals in the literature for a classical reinterpretation usually in-
troduce a phase space of hidden pure states in a manner reminiscent of
statistical mechanics. The attempt is then shown to succeed in the sense
that the quantum mechanical average of an ensemble is equal to the phase
space average. However, this statistical condition does not take into ac-
count the algebraic structure of the quantum mechanical observables. A
minimum such structure is given by the fact that some observables are
functions of others. This structure is independent of the particular theory
under consideration and should be preserved in a classical reinterpretation.
That this is not provided for by the above statistical condition is easily
shown by constructing a phase space in which the statistical condition is
satisfied but the quantum mechanical observables become interpreted as
independent random variables over the space.

The algebraic structure to be preserved is formalized ... in the concept
of a partial algebra. The set of quantum mechanical observables viewed
as operators on Hilbert space form a partial algebra if we restrict the
operations of sum and product to be defined only when the operators
commute. A necessary condition then for the existence of hidden variables
is that this partial algebra be embeddible in a commutative algebra (such
as the algebra of all real-valued functions on a phase space). In sections
IIT and IV it is shown that there exists a finite partial algebra of quantum
mechanical observables for which no such embedding exists.

In section V of their paper Kochen and Specker show that their result is stronger
than von Neumann’s, as it must be given Bell's critique of von Neumann's proof.
But it is still open to adopt Bell's caveat that the algebraic structure preserved in a
partial algebra is not a necessary constraint on a hidden variable theory. Therefore,
Bell could argue that Kochen and Specker demonstrate that quantum mechanics does
not permit the embedding into commutative algebras of certain finite partial algebras
formed from operators on Hilbert space (for a given set of observables), but this in
no way repudiates the existence of hidden variables.

The Kochen-Specker argument against hidden variables does not require the topol-
ogy of the surface of the sphere, if its presentation is limited to specific physical
instances, such as the orthohelium atom I discuss below. That is to say, the Kochen-

Specker argument does not require Gleason's theorem. However, the general principle
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at work in the physical cases to which the Kochen-Specker argument may be applied
is the topological principle brought out by Gleason. The motivation for the general-
ization is to allow identification of the class of physical states which will support a
Kochen-Specker argument, and this cannot be done case by case.

In the classical propositional calculus, any proposition may be paired by some log-
ical connective with any other proposition. The notion of a partial propositional cal-
culus of functions is suggested by propositions which may not be combined with other
propositions. An example might be the two propositions expressing, respectively, the
position and momentum of an electron. Since quantum mechanics precludes such
pairings, a propositional calculus for quantum mechanics requires a generalization of
the classical calcelus. The generalization may be achieved by allowing functions on
subsets of some set S and defining an appropriate equivalence relation among the func-
tions. Where the set S is the set of pure states, an appropriate equivalence relation
may be defined such that equivalence classes of functions correspond to observables.
Kochen and Specker observed in (26] that:

Ifa € S and if f is an element of the observable g, the f(a) is the value of
the observable g for the physical system in state a. In classical theories,
every observable has a value for all states — the functions are defined for
the whole set S; in quantum theory, an observable has a (fixed) value only
for certain states - the functions are partial functions.

Following Kochen and Specker {25], partial Boolean algebras are structures A =
(B,9,0,1, L,V) such that B is non-empty; O s a binary relation on B (the relation
‘commeasurable’); 0 and 1 are elements of B; L is a unary function from B to B,
and V is a binary function whose domain is the set of ordered pairs (a,b) of B x B
for which O(a, b).

Consider an a—dimensional Euclidean space E®. We may let B(E®) denote the
partial boolean algebra of linear subspaces of E2. The linear subspaces of E? (for
example) form a structure A under the following {25] definitions: B is the set of

linear subspaces of E?; for subspaces a and b, U(a,b) iff there exists a basis of E?
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containing a basis of a and a basis of b; 0 is the 0-dimensional subspace of E3 and 1
is the 3-dimensional subspace of E3; 1 is the orthogonal complement of a; and a V b
is the span of subspaces a and b, defined only for the pairs (a, b} for which O(a, b) is
the case.

Kochen and Specker show that there is a finite partial boclean subalgebra D of
B(E*®) for which there is no homomorphism A: D — Z,. The elements of D must
be shown to correspond to quantum mechanical observables. Kochen and Specker
constructed a 117 vertex graph which generates the partial boolean subalgebra D.
Their graph is constructed by iteration of the graph in Figure 2.1, which is a BKS-
graph generator (since by repeated composition of the graph generator a full BKS-
graph is obtained). The vertices of the graph correspond to rays in Hilbert space. If
two vertices are connected by an edge, the rays so connected are orthogonal.

To obtain a partial boolean algebra from a BKS-graph, we complete the implicit
orthogonal sets of which the edges in the graph are explicit members. Each edge
represents an orthogonai pair of rays, and each orthogonal pair of rays is a subset of
some orthonormal basis, but for proving the Kochen-Specker theorem we do not need
all of these bases. Since the definition of a partial boolean algebra does require all the
orthogonal bases we need to recognize that in a BKS-graph the full set of orthogonal
bases is implicit. Since we can always complete the full set of bases by adding in the
implicit rays, 8 BKS-graph is s generator of a partial boolean algebra. The graph in
Figure C.2 is a smaller generator of a partial boolean algebra. In general, a BKS-
graph represents the generator of a partial algebra that satisfies the variable D in the
Kochen-Specker theorem:

Theorem 2 (Kochen-Specker) The finite partial Boolean algebra D has no homo-
morphism onto Z,.

We will see with Peres and Mermin that BKS-graphs may be obtained directly
from operators associated with observables of the EPR and GHZ experiments. The
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Kochen-Specker theorem as given above is no longer needed in order to make the
argument — since the contradiction with quantum mechanics may be demonstrated
directly from properties of operators, and a generalized construction may be given
for BKS-graphs from sets of mutually commuting eigenstates.

A Kochen-Specker ‘contradiction’ is entailed by any complete set of counterfactual
value assignments to projection operators in Hilbert space which induce a 2-valued
measure on the lattice of those projection operators. The result may be demonstrated
with a simple physical system introduced by Kochen and Specker (24].

Suppose we have the following system: An atom of orthohelium in its lowest
orbital state sits inside a set of six point charges. The point charges are arranged
equidistantly, one in front, one behind, one above, another below, and one on each
side of the atom. Thus the charges sit at the vertices of a three dimensional rhombus
with the atom at the centre. Unperturbed, this system has some Hamiltonian H;
but suppose we perturb the system by applying a small field. Since the point charges
are thombically arranged the field will have rhombic symmetry. The Hamiltonian of
the perturbed system is then H + Hg, where Hg is called a spin-Hamiltonian. The
spin-Hamiltonian corresponds to a physical observable. We observe the change in the
energy of the lowest orbital state of the orthohelium atom due to the application of
the field. This change may be observed in the spectrum.

Since the field has thombic symmetry, the spin-Hamiltonian must have the form
Hg = aS? + bS: +cS3, (2.1)

with a, b, and c distinct in three dimensions. Hgs is an operator associated with the
observable change in energy level. The eigenvalues of the spin-Hamiltonian operator
for this system are a + b, b + ¢, and ¢ + a. Since a,b,c are distinct, so also are
their sums. Since we have three distinct sums, the eigenvectors form a complete
orthonormal set. The eigenvectors give the values we measure lying in the spectrum

of Hg. If a measurement of Hg gives a+b, then it follows that S2 and S: have value one
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and S? has value 0, and similarly for other measured values. Thus a measurement
of Hg is a simultaneous measurement of all three of the spin angular momentum
operaters 52,53 and S7.

The atom of orthohelium in its lowest orbital state has total spin angular momen-

tum S = v2h. We recall that s = 1, and let us set A = 1 to obtain
(82+ 53+ 52)1s) = §%s) =s(s +1)|s) = 2ls), (2.2)

where | s) is an arbitrary basis for the spin operator.

It follows that:

Fact 1 Ezactly one of the three components of spin angular momentum of the lowest
orbital state of orthohelium is zero.

Fact 1 is a colouring rule. It is predicted by quantum mechanics and it is always
confirmed in measurement. For any set of orthogonal rays, if we assign value 1 to
two of them the other must have value 0. We have obtained a colouring rule when
we identify the values with colours, say red and green, such that any orthogonal set
must have one ray green and the others red. I call the colouring rule of Fact 1 the
BKS colouring rule. I use colours red and green to indicate a distinction between
assigned values, instead of numbers 1 and 0, to avoid confusion with the numbers
used to indicate coordinates. As well, the use of colours for valuations on graphs
conforms with standard mathematical practice.

In a three dimensional vector space we may ..dd to any pair of orthogonal vectors
a third vector othogonal to each of the pair. If we have ezplicitly two vectors A and
B then there is a third implicit vector which completes a mutually orthogonal set.
Assume A and B are both red. Then by Fact 1 the implicit third vector must be
green. If we assum= that one of the two explicit vectors is green then by Fact 1 the
implicit vector is red. It follows that any ray orthogonal to a green ray must be red.
Thus we have:
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Fact 2 Any component vector orthogonal to a component vector with value zero must
have value A?

A Kochen-Specker argument may be obtained by finding a set of directions T in
Hilbert space such that among them there are three orthogonal directions z, y, z which
cannot all be simultaneously assigned values consistent with Fact 1. Given such a set
T it can be shown that it is not possible to simultaneously predict all of the values of
the components of spin angular momentum in the directions comprising T'. For some
a in T the value assignment f[{a] must be wrong.

We may be add to the two facts above an assumption which captures the noncon-

textualist assumption:

Assumption 1 The value assigned to a component vector is maintained by that com-
ponent vector regardless of the order in which assignments are made.

Without Assumption 1 no contradiction will ensue. The ray is permitted to
have different values in different contexts. Thus the argument proceeds by explic-
itly demonstrating sets of directions for which Fact 1 and Assumption 1 cannot both
be satisified. The denial of Assumption 1, while problematic to interpret, is easily
seen to be a fair statement of the contextualist thesis; namely, it is the claim that
if components have definite values, then these depend on the order in which the as-
signments are made, and the order of assignment is determined by the order in which
measurements of the associated observables are made.

The colouring rule may be applied to graphs, where edges represent orthogonal
relations among rays represented by vertices. Fact 1 then requires that any 3-clique
has exactly one green vertex, say, and the other two being red. The generalization
to n-dimensional systems is to apply the same rule to n-cliques, so that in any clique
just one vertex may have a green colour, and all the others in the clique must be red.
A colouring fails when it is not possible to distribute greens and reds among cliques
consistently with the rule.
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The onginal Kochen-Specker argument constructs a graph of 117 vertices from 15
graphs of eight vertices (we call these graphs ‘nuggets’). Figure 2.1 shows a 10 vertex
graph (which I will call a ‘Specker graph’), originally defined by Kochen and Specker
(24], 1n which the vertices labelled b and ¢ are in addition to the required eight vertices,
but are essential to the argument. Vertex b is an a-vertex for a second Specker graph,
since the original Kochen-Specker set is formed by iterative composition of Specker
graphs around an arbitrary basis. The details are evident from inspection of the

original 117 vertex graph [24].

Figure 2.1: The Specker graph of 10 vertices. The colouring rule implies a depen-
dency between vertices a and b.

In order that the ort - rgonal relations represented by the Specker graph be realiz-

able in three dimensions it is sufficient that the angle between the rays represented by

vertices a and & not exceed arcsin 3. In the original Kochen-Specker graph the angle

is 18 degrees. For the Peres cube of Figu:e C.1 the angle is exactly arcsin 1, while

for the Kochen-Conway cube (which has 37 vertices, six of which are not required for
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the proof of the Kochen-Specker theorem), the angle lies between the angles of the
other two graphs. Thus there is a simple correlation between the number of vertices
of a BKS-graph in three dimensional space and the angle between vertices a and b of
the Specker graphs from which they are constructed. Nevertheless, the redundancy
evidenced by the Kochen-Conway proof [35] counsels against ascribing any profound
meaning to this correlation.

Maczynsk (28] employs the direct limit of a partially ordered set of boolean alge-
bras to construct sets of observables of quantum mechanics on Hilbert space which
have boolean representations. We may interpret his results as restrictions on the
range of subspaces of Hilbert space on which a BKS-graph is derivable. Maczynski
proves, by construction, that there are boolean representations for any set of compat-
tble observables, and for the set M of all maximal observables. The possibility of an

extension of Maczynski’s construction of boolean representable sets to include locally

maximal observables has been explored in (46], [12], [19], and [42].




Chapter 3

Geometric aspects of contextualism

The mathematical construction of measures over projection lattices allows a geomet-
rical demonstration of the difference between classical and quantum mechanics. As
we have seen, context dependent measurement in quantum mechanics may be demon-
strated, given the appropriate initial assumptions, by attempting to assign definite
measurement values to quantum propositions. The configurations of subspaces of
Hilbert space corresponding to these propositions may be identified by geometric re-
lations. The geometry of Hilbert space determines what is, to borrow from Bell,
speakable or unspeakable in quantum mechanics. One of the virtues of the Bell-
Kochen-Specker graphical arguments is their capacity for providing simple geometri-
cal representations of those mathematical objects which demonstrate contextualism
and nonlocality. In this chapter I will describe the construction of these mathematical
objects and their significance to the interpretatica of quantum mechanics. We will see
that various constructions share a general scheme: namely, assumptions derived from
classical mechanics, and/or premises required to support a realist interpretation of the
properties of constituents of ensembles, are shown to induce paradoxes when coupled
with the quantum formalism. The paradox solved by adopting a contextual interpre-
tation is the paradox demonstrated by the Kochen-Specker theorem. I will extend
the considerations involved in this general scheme to include some demonstrations of

nonlocality as well. We will see that tke appropriate tools for this generalization are
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the geometrical and topological results concerning functions on orthonormal frames
obtained by Gleason.

Stairs [46] gave a direct scheme for constructing a Kochen-Specker argument to
demonstrate nonlocality. His scheme is given in detail by Brown and Svetlichny (8]
and is essentially the same scheme exploited by Zimba and Penrose [49]. Stairs’
method picks out a 2-valued measure entailed by locally maximal observables on a
Hilbert space for a composite of two spin-1 systems. The method applies the BKS
colovring rule to composite systems to demonstrate that certain properties attributed
to hypothetical dispersion-free states in these systems are inconsistent with Quantum
Mechanics, since these properties imply a 2-valued measure. The idea is informally

referred to as ‘cloning’ and is, according to Shi- 'ny, properly attributed to Specker.

3.1 [Eigenstates of the GHZ experiment

Greenberger, Horne, Shimony, and Zeilinger [16], in a detailed review of the earlier
published GHZ thought experiment, demonstrated the Bell [1] theorem for more than
two correlated spin-1 particles.

Mermin [30] demonstrates the GHZ argument for three spin states by developing
an inconsistency implied by constraints on algebraic relations over operators with
common eigenstates. He remarks:

Kochen and Specker originally produced a set of 117 observables, associ-
ated with the squares of the components of the angular momentum opera-
tor along 117 directions. They demonstrate with a somewhat intricate geo-
metrical argument that there is no way to assign values (0 or 1) to all th.ese
observables, consistent with the requirement that v(A)+v(B)+v(C) = 2
for A, B, and C any subset of the observables associated with three mu-
tually orthogonal directions. To the well trained quantum mechanician
it must surely seem shocking that the direct refutation of so heretical an
attempt should require so elaborate a counterexample, but that is where
things have stood for almost 25 years.

Peres [36) introduced a proof of the Kochen-Specker theorem which exploits the

operator formalism of quantum mechanics. He proves that quantum mechanics is not




consistent with one or both of the propositions:

1. Tke result of the measurement of an operator A depends solely on A and on the
system being measured;

2. If operators A and B commute, the result of a measurement of their product
AB is the product of the results of separate measurements of A and of B.

In the singlet state for Bohm-EPR, any hypothetical attributed values must respect
the perfect spin-correlations between the two single particle states. For convenience,
measurements of spin angular momentum are taken in units of 3. The Pauli matrices
then represent the spin operators for each particle. Consider the operators 01,02, 03,
and o0}. The operators 030 and 0}o2 are commuting products of these operators.!
Any attribution of numerical values to these operators must respect the correlation
between spin in one EPR-subsystem and the reverse of that spin in the other, so that
¥o2) = —¥(o}) and ¥(o7) = —9(0}). [lere I use the notation ¥(:) to indicate a map
9:0 - {1,-1}.

Furthermore, since the products commute, the value assignments must preserve the
product #(olol)¥(olod) = ¥(o)0l). We know that in the singlet state this value must
be —1. However, the constraint thus derived contradicts proposition 2 above, since
if that proposition were true then ¥(olo]) = 9(o1)¥(0}) and ¥(a}0?) = 9(o}}¥(c2).
It would then follow that ¥(olo})}d(o)ol) = #(o))9(03) (o )¥(02) = F(ol0?). The
valuation must respect this product, but since it is a product of two pairs of operators
in which the members of each pair have opposite values, the value assigned to the
product must be +1. Thus. in the singlet state, the six operators offered by Peres
demonstrate that proposition 2 is refutable in quantum mechanics. Proposition 1
is refutable as well, since the assumption that a value of a measurement may be
attributed to an observable is dependent upon the exclusion, from the determination

for that value, of any relation to other observables. Without this assumption we

1Note that whereas with ‘cloning’ the tensor product is taken between an operator and the unit
matrix, here the tensor products among opetators are considered.
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could not have entertained the hypothesis that value attributions such as ¥(ol) are
the same regardless of whether we are measuring 0,02 or gj0l. That is, proposition
1 is a noncontextualist claim, and either it, or proposition 2, or both, are shown by
Peres’s argument to be refutable in quantum mechanics.

Mermin found that the Peres argument will apply for any state if Peres’s set of six
operators is supplemented by three additional operators. The resulting nine ‘Mermin
operators’ may be arranged in a table such that operators commute if they are in the

same row or if they are in the same column (Table 3.1).

o 07 o0u0;

2 1 1,2
o o, 0,0,
152 4241 glg2
o0, 00, 0,0;.

Table 3.1: Mermin’s nine operators which generalize Peres’s proof of contextualism
in quantum inechanics.

With the exception of the rightmost column, each column and row is such that the
product of 1ts constituents is +1. The product of the constituents of the rightmost
column is —1. Hypothetical value attributions to products of observables cannot obey
the second of Peres’s two propositions given above since, if they did, the product of
the three rows would agree with the product of the three columns. However, such
agreement is impossible, since the product of rows must be +1 and the product of
columns must be —1, because of the rightmost column.

The argument applies to any state for which the nine operators represent observ-
ables. Peres’s six operators lack this generality only because they lack the operators
comprising the rightmost column (although o}o? is implied). Mermin has added the

operators necessary for constructing a generalized eigenstate.

The nine Mermin operators allow a refutation of noncontextualism. But Mermin,
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like Bell, is not satisfied with a refutation of something already known to be impos-
sible. GHZ extend the argument to prove that there are systems for which quantum
mechanics entails nonlocal dynamics, by considering triple products of operators. The
triple products succeed because they all are mutually commuting. The set of nine
operators in Table 3.1, on the other hand, does not prove nonlocality because the
five operator products among them are not mutually commuting. Hence there is no
simultaneous eigenstate of the five for which a hypothetical nonlocal value attribution
may be postulated (and refuted).

Mermin observes that while noncontextualism is a demand that in general is not
well motivated, it is not unreasonable to look to noncontextual value assignments for

local systems. Mermin {29] motivates this approach as follows:

Suppose that the experiment that measures commuting observables
A,B,C, ... uses independent pieces of equipment far apart from one
another, which separately register the values of A,B,C,... . And sup-
pose that the experiment to measure A with the commuting observables
L,M,..., not all of which commute with all of B,C,..., requires changes
in the complete apparatus that register the values of B, C, ... with differ-
ent pieces of equipment that register the values of L, M, ... . And suppose
that all these changes of equipment are made far away from the unchanged
piece of apparatus that registers the value of A. In the absence of action at
a distance such changes in the complete disposition of the apparatus could
hardly be expected to have an effect on the outcome of the 4 measure-
ment on an individual system. In this case the problematic assumption
of noncontextuality can be replaced by a straightforward assumption of
locality.

As I observed in chapter one, the motivation outlined here reiterates the suggestion
made by Bell [2].

The GHZ system exhibits an eight dimensional eigenstate for which there are four
triple-product operators produced from six individual constituents. These, taken
together, compose a set of ten commuting operators closed under products. The set
is most effectively arranged as a star figure (Table 3.2, due to Peres). The operators

composing each of the five legs of the star are mutually commuting.
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gy
1,23 1.2,.3 1,.2,.3 1,2,.3
ololod ololol o,0303 os0l03
3 3
o o
o:
a? o?

Table 3.2: The ten operators for the GHZ system arranged to display their com-
muting products.

The three operaters ol070), 0,020), and olo20 are composed of combinations

of spin directions for three particles, such that where the z direction is indicated for
one particle, the y is indicated for the other two. Of the six individual operators, all
commute except those indicating different spins for the same particle. These pairs
anticommute. Since any product formed from a pair of the triple product opera-
tors involves an even number of these anticommutations, all such pairwise products
commute.

Any operator of the ten has eigenvalue +1 or —1 (since the ten are Pauli matrices
or products of Pauli matrices). The three triple-product operators commute and
therefore have simultaneous eigenstates. We can select, for convenience, the eigenstate
in which all three have eigenvalue +1. Given the commutation relations among the
operators, we may interpret them as simultaneous measurements of an x component
of one particle and the y component of the other two. We see that the product of
the eigenvalues of the three triple product operators must be +1, since this is the

eigenvalue of the eigenstate for the three particle system. However, the product of
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the three triple products is given by the relation:
0,040; = —(030,0,)(0,030;)(0,0707). (3.1)

This demonstrates that the operator olo202, which represents a simultaneous mea-

surement of the z component of all three particles, is also an eigenstate of the system,
though with eigenvalue —1. As can be seen in the star figure, this last operator com-
mutes with the three product operators.

Now the argument against locality is straightforward: just as with the table of nine
operators arranged in rows and columns, the star figure, with its arrangement along
legs, contains an explicit example of ‘hidden value’ attributions which are unsatisfiable
for the given set of commuting operators. Each operator is 2 member of two legs of
the star. The hypothetical value attributions, if they are to respect the commutation
relations given, require that values assigned to products of operators which share a
leg agree for both of the legs to which each operator belongs. Yet this is impossible,
since the product of operators along the horizontal leg is —1, while the products along
the other four legs are all +1. It is clearly not possible to consistently satisfy this
demand for these operators.

Since the operators are those applicable to the GHZ setup they are operators which
exhibit perfect correlations among three spin- particles. These correlations permit
prediction with certainty of spin properties of one particle from a measurement of the
spin properties of another, even when the particles are spacelike separated. The BKS
colouring argument demonstrates that the values predicted for such measurements
either do not exist prior to measurement, or depend upon which particle is measured.
Since the argument may be realized for a system with perfect correlations, we obtain
nonlocal predictions simply because the context dependence is shared instantaneously
over any distance. However, as Mermin [20] explains, if we use a locality assumption

to motivate noncontextualism, then the refutation of noncontextualism is limited to

those states which refute locality:
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This new version of Bell's theorem makes it clear that the use of a par-
ticular state is required to provide the information that is lost when one
permits the assignment of noncontextual values only when noncontextu-
ality is a consequence of locality.

The Peres-Mermin operator proof of the Kochen-Specker theorem represents a
considerable gain in simplicity. However, the operators used in the proofs for EPR and
GHZ carry redundancy, since it is possible to render the proofs in terms of relations
among subsets of the eigenvectors of the operators. Peres recast the EPR operator
argument as a Kochen-Specker ‘impossible colouring’ proof requiring 24 vectors. Later
I show how this may be reduced to 20. Similarly, 40 vectors are required to generate
the operators for the GHZ setup, but again, these can be shown to contain redundant
information, since just 36 vectors are required to prove the proposition (cf. Appendix
A).

Mermin [29] suggests that because we need not rely on a complicated geometrical
argument, and because we can replace the noncontextualist motivation by a locality
motivation, the EPR and GHZ operator proofs supersede the Kochen-Specker geo-
metric argument. Mermin complains that Peres’s vector representation complicates
the proof by bringing the geometry back again. I point out against this view, that
aside from the interesting geometry introduced, the vector representation does furnish
information not obvious on the operator account. As I show below, fewer vectors are
required to make the argument than are implied by the operators used in the GHZ
and EPR operator proofs. I first discuss an exegetical advantage of the vector rep-
resentation: namely, that with the vector representation we may clearly demonstrate
the relation between the Kochen-Specker argument and the Gleason theorem. To see
this we will need to review the manner by which the vectors may be derived from the
operators.

Peres demonstrated that the operator proofs may be formulated as geometric

demonstrations, in the manner in which Kochen and Specker had given a geomet-




34

ric demonstration of the Gleason theorem. He notes that in Table 3.1 each row and
column is a set of commuting operators. We call this set complete because there is
a single basis in which all of the operators of the set are diagonal and represent a
simultaneous measurement of a single operator (note that operators are matrices).

Peres observes that:

If a matrix A is not degenerate, there is only one basis in which A 1s
diagonal. That basis corresponds to a maximal quantum test which is
equivalent to a measurement of the physical observable represented by
the matrix A. If, on the other hand, A is degenerate, there are different
bases in which A is diagonal. These bases correspond to inequivalent
physical procedures, that we call “measurements of A.” Therefore the word
“measurement” is ambiguous.

To remove the ambiguity, Peres suggests we take “measurements” to be tests and a
maximal test to be possible for commuting matrices, since we can always find a basis
for commuting matrices in which both are diagonal. If the matrices do not commute
then there is no possible maximal test, and the measurements, each represented by
such a matrix, are not compatible with one another.

Peres [35) maintains that the assumption of “functional consistency” is consistent
with quantum mechanics. Informally, the assumption is tlat since we can measure
commuting operators simuitaneously, we can also measure functions of commuting
operators simultaneously.

Assumption 2 (Functional Consistency) Where two operators A and B do not

commute, but share a common eigenvector 3, it is possible to prepare a state for i,
so that AY = ay and By = B¢.

If A and B share a common eigenvector ¢, then such a 3 permits functional con-
sistency of all A and B, and in general f(A,B)y = f(a,B)¥, for any function f(A,B)
and shared eigenvector 4. Note that Mermin’s argument uses an eigenstate as ¥,
while Stairs’s uses the singlet state

The stronger assumption of “independence from context” is:
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Postulate 1 (Independence from Context) Even ify is not an eigenstate of the
commuting operators A, B, and f(A,B) and even if these operators are not actually
measured, one may still assume that the numerical results of their measurements (if

these measurements were performed) would satisfy the same functional relationship
as the operators.

Peres maintains that together the assumption of functional consistency and the
postulate of independence from context contradict quantum mechanics. The proof is
demonstrated by the failure of the product relation to hold for the nine commuting
operators in Table 3.1.

Since functional consistency is in principle consistent with quantum mechanics,
even for non-commuting operators when there is a common eigenvector between them,
the postulate of independence from context is refuted in quantum mechanics. The
conclusion is equivalent to Bell's demonstration that a property of the statistical
average of an ensemble, such as additivity, cannot be extended to the constituents
of the ensemble in a way which is consistent with quantum mechanics, since such
an extension presumes a 2-valued measure on the lattice of closed subspaces of the

Hilbert Space.

3.2 A geometric construction due to Penrose

The techniques of proof and the simplifications of the BKS colouring argument I have
introduced appear to suggest a purely geometrical demonstration of the failure of local
deterministic hidden variable theories. Recall that from Bell and Kochen-Specker
I have taken a colouring rule with which we may define configurations in Hilbert
space that refute various classically-motivated assumptions. Noncontextualism 1s one
assumption for which I may employ the colouring rule to show an inconsistency with
quantum mechanics. If noncontextualism is implied by a hidden variable theory, we
have an argument against such a theory. In particular, we can test the postulate of

independence from context, and, where noncontextualism may be replaced by locality,
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we can test Einstein locality.

Von Neumann gave axioms for quantum mechanics based on a projective geometry.
Gleason sought to solve an open problem arising from an axiomatization due to
Mackey, who had looked to improve on von Neumann’s axioms. Gleason found that
quantum mechanics exhibits a rich structure of measures, and from these we must
choose a standard. Trace is the preferred canonical measure because with it we can
define functions which are linear over orthonormal frames and sum to a constant
weight. We could choose a measure for which the weight is not constant, but only
at the cost of losing the linear structure of weights over subspaces. However, the
linear structure of the weights on subspaces is the mathematical fact by which we
explain the outcomes of the the Stern-Gerlach experiment, or the stability of stars.
The functions allowed by Trace are called frame functions and I will return to them
in more detail shortly. I will maintain that the choice of Trace, as an axiomatic
principle of quantum mechanics, is not made solely to preserve consistency with the
formalism of density matrices anu frame functions. The choice serves as well to give
a foundational explanation of the contextualism exhibited in quantum mechanics.

The choice of Trace as canonical entails non-2-valued measures over lattices of
projection operators in Hilbert spaces of dimension three or more. Since propositions
are to projections as obervables are to operators, and since lattices of projection
operators correspond one-to-one with lattices of subspaces of Hilbert spaces, we may
construct lattices of projections with provably non-2-valued measures and employ
these as counterexamples to a set of propositions whose algebraic structure implies a
projection lattice with 2-valued measure.

We recall that Mermin motivates the Kochen-Specker theorem with the observation
that there are circumstances in which “the problematic assumption of noncontextu-

alism can be replaced by a straightforward assumption of locality” [29]. For instance,

the GHZ system and its eigenstates aze an example in which the locality assumption
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may be tested by the BKS colouring argument. Penrose couples Mermin's approach
with the ‘cloning’ construction to find a geometric structure with which to test a
locality assumption and prove that it is not consistent with quantum mechanics. He
achieves this by showing that the Stairs construction permits a colouring rule identi-
cally expressed by relations among the Majorana representations of spin-} systems.

Penrose introduces the Majorana map as a vehicle for representing configurations
of rays in complex n-dimensional Hilbert space as unordered sets of n — 1 points
on the surface of the real unit sphere. For a four-dimensional Hilbert space of the
EPR setup we may use the Majorana map to derive triples of points on the surface
of the sphere in R®. In the GHZ case, the cight-dimensional Hilbert space of the
GHZ eigenstates has a set of rays, picked out by eight-component coordinate vectors,
which are in bijective correspondence with unordered seven-tuples of points on the
real sphere S?2 C R? [49)].

Penrose defines a Majorana map appropriate for the complex four dimensional
Hilbert space H* as follows: where d is a ray in H4, let d be a non-zero vector
spanning d. For convenience in the construction, Penrose chooses a basis in H* such

that d has components:

Ao
V3a,
V34,

A;

The A; are complex numbers used to form a polynomial:
A(z) = 832® + 3A;32% + 30,2 + A

The polynomial has three complex roots d;,d;,ds when A3 # 0 and, if the leading
p coeficients are zero, then setting d, = ... = d, = oo will give three roots ir the
Riemann sphere R = C U {00} The stereographic projection from the Riemann

sphere to the real 2-sphere S? therefore permits the construction of an association
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between the ray d and an unordered triple of points (D, Dy, D3) on the sphere. The
triple of points may be denoted by [d]. The points D, € S? project stereographically
to the roots d, € R of A(z), and Penrose gives an informal diagram of the bijective

Majorana map as’
de— - = A(z)— - —d€R——-—D, €S

To explain why Penrose employs the Majorana map I must reiterate in more detail
a construction employed in the proof of the the Gleason theorem. It is a corollary
to Gleason’s theorem that the non-2-valued nature of projection lattice measures
may be expressed as a topological property of the sphere. The construction used
by Gleason exploits the connectedness property of the sphere in the manner sum-
marized in our earlier discussion of the topological properties of the surface of the
unit sphere. Penrose exploits the Majorana map to render geometric properties of
con x four-dimensional space on the surface of the unit sphere of real three space,
so as to exploit the same consequence of Gleason’s theorem that Kochen and Specker
exhibited in finite explicit form, namely, that the attribution of labels to directions
in space must generate projection lattices with non-2-valued measure if they are to
be consistent with quantum mechanics (recall that “hidden variables” and “inde-
pendence from context” entail 2-valued measures). The demonstration that a set of
hypothetical dispersion-free states entails a 2-valued measure may be made either by
the geometncal colouning rule argument of Kochen and Specker, or by the operator
arguments of Mermin and Peres. The operator arguments, however, are given for
cigenstates of four and eight dimensional Hilbert spaces. On the other hand the Bell
and Kochen-Specker proofs, and the Stairs extension-to-locality argument, all exploit
the construction employed by Gleason to demonstrate the non-2-val e condition for
projection lattice measure as a property of S?. The Majorana map demonstrates
relations between the complex n-dimensional Hilbert spaces for which the operator

versions of the Kochen-Specker theorem are given and the topological properties of
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the unit sphere exploited by three-dimensional geometrical proofs of contextualism.

Penrose demon 'rates that a colouring rule may be derived in a Majorana rep-
resentation since the representation permits a unique condition under which rays
are orthogonal. The Majorana representation (triples of points on the surface of
the sphere) conserves orthogonal relations among the rays of H™. The BKS colour-
ing argument may be constructed using properties of Majorana representations, and
Penrose provides an explicit example using a regular dodecahedron inscribed within
the unit sphere. The vertices of the polyhedron correspond to rays through the ongin
of the sphere. Where these rays intersect the surface of the sphere they have Majo-
rana representation (z,y,z). The twenty such triples derived from the dodecahedron
correspond to twenty rays in H*

The vertices of the dodecahedron label twenty eigenstates of a four dimensional
Hilbert space. It turns out that these twenty eigenstates generate a projection lattice
on S? to which we may apply the BKS colouring argument. That is, the eigenstates
may be represented by a configuration of projections on Hilbert space which supports
a2 Kochen-Specker argument.

For the example of an EPR pair of particles of spin-%, emitted in opposite direc-
tions from the singlet state, there exists an anticorrelation between measurements
taken on each side. Penrose notes that this anticorrelation is realized on the Ma-
jorana representation in the following way: the measured value corresponds, by the
eigenvalue equation, with an operator. We may take the operator that projects onto
a ray ¥ which has Majorana representation []. The anticorrelated measurement
may also be taken as an operator that projects ontc a ray which has as Majorana
representation the antipodal point of {¢], which for convenience may be denoted by
~[¥).

If we are to assign noncontextual values tu these measurements, then the assigned

values must be the same for (] and —[¢]. In the EPR setup we separate the particles
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to be measured at a sufficient dictance so that, consistently with special relativ-
ity, we can discount any transmission of information from one particle to the other.
Accordingly, any noncontextual value must exist prior to the measurement (other-
wise there could be no anticorrelation). This motivation reiterates Mermin’s idea:
a noncontextual value assignment is rendered as a locality condition, but since the
value assignment derived contradicts quantum mechanics, so too must the locality
condition. Once the hypothetical values are assigned to the rays with Majorana rep-
resentations [¢] and —[4], it is a straightforward matter to construct a set of rays
whose Majorana representation retains the assigned values, but which cannot satisfy
the requirements on its orthogonal relations stipulated by the colouring rule. Penrose
constructs the dodecahedral set as an explicit example (cf. [34], §5.3).

In the course of demonstrating the orthogonality conditions for Majorana represen-
tations, Penrose proves that two rays are orthogonal if their Majorana representations
are reflections of one another through the centre of the sphere. That is, antipodal
points of the Majorana representation are orthogonal. We must take care, in light of
this fact, about how we label Majorana representations, since, following Gleason, we
see that frame functions do not change sign on passing to antipodes. The assignment
of a negative sign to the antipodal point of (] should be taken as only a convenience
to the presentation of the proof, since if we claim literally that the antipodal point of
[4] is —[+] then the Majorana map cannot be a frame function. To see the importance
of preserving consistency between the Majorana map and frame functions I review
Gleason’s introduction of frame functions.

Penrose’s introduction of the Majorana representation, as an indicator for defi-
nite value assignments, is motivated by the elegance with which that representation
encodes information about points on the sphere. However, since the Majorana rep-
resentation and frame functions differ with respect to change of sign on passage to

antipodal points, we must take care that the representational elegance does not ob-
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scure the central role of frame functions in the proof of contextualism and nonlocality
in quantum mechanics. Furthermore, the Majorana representation is not necessary
for the proof that Penrose’s twenty eigenstates support a Kochen-Specker argument
(cf. Peres [35], p. 212 for a succinct summary of such a proof).

Consider a separable Hilbert space H and the surface of the unit sphere of that
space. Define a function f as real valued on the surface of the unit snhere of H so
as to obtain a linear function over the orthonormal bases {z;} of H, where 1 is the

dimension of the space. The linear function will give a weight W and we can write:
W = flza] + flza) + .. + fl=i]. (3.2)

The function f is a frame function. For all closed subspaces S of H, a frame function
on H is also a frame function on S by restriction. But since, in general, the restriction
alters the {z;}, the weight W will alter as well under the restriction. Where, for any
unit vector z, there exists on 7 a self-adjoint operator T such that f(z) = (Tz,z) =
(z|T|z), we call the frame function regular, and we say that only regular frame
functions have self-adjoint operators associated with them. Gleason [15] proves that
given certain additional assumptions every non-negative frame function in three or

more dimensions is regular. He remarks:

In dimension one it is obvious that every frame function is regular. In
dimension two a frame function can be defined arbitrarily on a closed
quadrant of the unit circle in the real case, and similarly in the complex
case. In higher dimensions the orthonormal sets are intertwined and there
1s more to be said.

Among the additional hypotheses are those necessary to avoid unbounded frame
functions induced under composition with pathological functions. The requirement is
essentially satisfied for finite dimensional cases by the hypothesis that nothing is lost
in proving the regularity of just the non-negative frame functions. We will see that

the “intertwining” of orthonormal sets in higher dimensions is more than a metaphor.
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We recall that a frame function is defined on the surface of the sphere and gives
a constant sum over orthonormal bases {z;}. The orthonormal bases may be given
by the points at which their component basis vectors intersect the surface of the
sphere. Therefore, we may write the {z;} in spherical coordinates and use angles 8
and ¢ as decompositions of the unit vecors. This is the technique Gleason used to
prove that every continuous frame function ou the unit sphere in R® is regular. The
proof proceeds by expanding the frame function in terms of spherical harmonics and
finding the conditions under which the expansion has constant terms. It turns out
that odd harmonics cannot be frame functions because they induce a change of sign
upon passing to the antipodal points (i.e., when 8 is replaced by x — 6 and ¢ by » + ¢,
¢f. Peres [35]). Frame functions do not change sign under such conditions, since
passage to the antipodal point represents the extension of a vector in its opposite
direction, and orthonormal bases are unaffected by this. That is, an orthonormal
frame composed from vectors in directions north, east and up is the same frame as
that composed of directions south, east and up. This feature of frame functions is an
instance of the fact that it is the ray structure, and not the vector structure, which
gives the essential features of quantum mechanical propositions and states. When
we consider orthonormal bases we are considering rays through the centre of the
sphere rather than just the vectors from the centre of the sphere. Finally, additional
considerations lead to the rejection of all even harmonics greater than the second. The
resuit is that all frame functions which are continuous on the unit sphere in R are
regular, since the expansion in spherical harmonics reveals that any frame function
which is continuous must be the restriction of a quadratic form. Peres makes this
point clearly:

We are thus finally left with spherical harmonics of order 0 or 2. These
can be written as bilinear combinations of the Cartesian components of
the unit vector u, so that any frame function has the form

f(U) =Y pmntimtn, (3.3)
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where p is a nonnegative matrix with unit trace.

The form given in 3.3 is clearly continuous. Throughout our discussion of the
BKS colouring argument I have noted that noncontextualist hidden variable theories
imply a 2-valued measure on the surface of the unit sphere. This is simply another
way of saying that such theones entail functions on orthonormal bases which are
not continuous frame functions. If we were to insist that a Majorana representation
changes sign on passing to the antipodal point then the Majorana representation

could not be a frame function on the unit sphere.

3.3 EPR, GHZ, and minimal Kochen-Specker proofs

Suppose we have comrnuting projection operators on a set of vectors such that the
summation over the operators equals one. The operators may be given by the matrices
formed by multiplying the vectors of the set by their adjoints. For a complete set of
orthogonal vectors v; to v, there will be N such matrices. If we assume that a value
assignment to a vector which is a member of more than one orthogonal basis is the
same regardless of the choice of other bases, then, for given sets of vectors in R?, a
Bell-Kochen-Specker result arises. This general approach to the proof was used by
Peres in constructing his 24 point set. However, I note that the procedure does not
produce a minimal set of vectors. It is possible to remove vectors from four of the six
orthogonal bases which make up Peres’s set and still have the contradiction. But the
fact of the removal renders the method ineffective for generating smallest sets - i.e.,
the method inclu1es redundancy.

Recall that a BKS graph represents rays in Hilbert space and their mutual or-
thogonality relations. We call the subgraph representing the orthogonality relations
among n mutually orthogonal rays an n-clique. Where the space is N-dimensional

(we are concerned only with N > 3) then an N-clique represents an orthonormal

basis for the space. Adopting the strong superposition principle [35], according to
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which every orthonormal basis represents a maximal test, we may infer that every
n-clique represents a maximal test of a system with n degrees of freedom.?

Consider the EPR system: for spin angular momentum components in directions
z,y, z there exists an cigenstate given by the operators in Table 3.1, each of which
is a product of operators for given components we might measure (i.e. obtain test
results for, where the results are expectation values, obtained from the probability
amplitudes; though since we are taking the projections of the operators onto one
dimensional rays of the space, all the results will be answers to yes/no questions of
the sort “is there a component of spin in such and so a direction?”). Each operator is
a product of two operators, for we may write o, as o, ® 1, since this is multiplication
by unity. We may write each operator explicitly as a tensor product of Pauli matrices,

so that, for example:

21 (0 1)@(1 0)
Oz = =
1 0 01

In this way Table 3.1 becomes a table of nine 4 x 4 matrices. Since the space is

1
0
0

(== R = I - ]
- O O O
o O -~ O

0

the four dimensional product space of the operators 0., oy, 7,, the table is completely
expressed by the 24 rays which comprise the six orthonormal bases corresponding
with the matnces. Peres [35] obtained the representation in coordinates of R* given
in Table 3.3, where I have arranged the coordinates in bases; and since the only
information relevant to our proofs concerns the orthogonality relations among rays,
we lose nothing by calling them vectors.

It turns out that among the set of 24 vectors are 192 subsets, each of 20 vectors

1t could be objected that this procedure begs the question of the acceptance of superpositions as
given, since [ may consistently deny that superpositions are real without violation of a..y implication
of the Gleason theorem. Rather, the objection might continue, the remarkable fact we are asked
to explain and understand is that the Gleason proof shows that the continuity conditions must be
satisfied, and that it is upon this fact that the applicability of the continuity conditions and the
validity of the strong superpositional principle depend.
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Eigenbasis Mutually orthogonal vector set
[ A: [ [1000],[0.,00], 0,010, [0.001] |
B: (-1.1,1,1], [1,-2,1,1], [1,1,-1,1], [1,1,1,-1]
C: [0,1,1,0], [0,1,-1,0}, [1,0,0,-1], {1, 0,0, 1]
D: [0,0,1,1], [0,0,1,-1}, [1,-1,0,0}, [, 1,0, O}
E: (1,0,1,0], [0,1,0,1], [0,1,0,-1], [1,0,-1,0]
F: (1,1,1.1], [1,1,-1,-1), [1,-1,-1,1], [2,—-1,1, 1]

Table 3.3: The coordinates of Peres’s 24 vectors may be grouped in cliques each

corresponding to an eigenbasis for Mermin's nine operators.

(three from four of the bases and four from two of the bases), which are sufficient to
prove the Kochen-Specker theorem. That is, the claim that each ray may be consis-
tently associated with a ‘hidden value’ of either one or zero is refutable in quantum
mechanics. To demonstrate the refutation, I first assume an assignment of ‘hidden
values’ to a specified set of rays. Then, by invoking a simple rule of quantum mechan-
ics, I derive a contradiction. The simple rule, often called the quantum mechanical
sum rule, is that given four mutually orthogonal rays 1,2,3,4 in R* (a 4-clique), we
may write f(1) + f(2) + f(3) + f(4) = 1, where f() has value one or zero. Table
3.4 demonstrates a set of 20 vectors with 11 4-cliques for which the set of associated
equations cannot be satisfied. I note in Tabie 3.4 that the surn of the LHS is odd, yet,
since each vector contributes either one or zero an even number of times to the sum
of the RHS, the equations are not simultaneously consistent.

We recall Mermin's observation that the operators in Table 3.1 do not permit an
extension of the Kochen-Specker argument to a nonlocality proof because the four
local operators do not all commute with the five nonlocal operators. To achieve a
nonlocality proof we can perform the same argument as just given for the vectors

which compose the eigenstates of the GHZ system. However, we know already that

the result will contain the four triple product operators required for a proof that
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1 =1 £(1,0,0,0) + £(0,1,0,0) + £(0,0,1,0) + £(0,0,0,1)
1= £(1,0,0,0) + f(0,1,0,0) + £(0,0,1,1) + £(0,0,1,-1)
1= £(1,0,0,0) + £(0,0,1,0) + £(0,1,0,1) + f(0,1,0,-1)
1= f(1,0,0,0) + f(0,0,0,1) + £(0,1,1.0) + f(0,1,-1,0)

= f(-1,1,1,1)+ f(1,-1,1,1) + f(1,1,-1,1) + f(1,1,1,-1)
1= f(-1,1,1,1) + f(1,1,-1,1) + £(1,0,1,0) + f(0,1,0,-1)
1= £(1,-1,1,1) + f(1,1,-1,1) + £(0,1,1,0) + £(1,0,0,-1)
1= f(1,1,-,1)+ f(1,1,1,-1) + £(0,0,1,1) + f(1,-1,0,0)
1= f(0,1,-1,0) + £(1,0,0,-1) + £(1,1,1,1) + f(1,-1,-1,1)
1= £(0,0,1,-1) + f(1,-1,0,0) + f£(1,1,1,1) + f(1,1,-1,-1)
1=1£(1,0,1,0) + £(0,1,0,1) + f(1,1,-1,-1) + f(1,-1,-1,1)

Table 3.4: Inconsistent equations derived from mutually orthogonal rays. Each ray
occurs twice or four times.

hidden values 1 and 0 may not be assigned without contradiction to the obervables
associated with these operators. The complete demonstration of the Kochen-Specker
theorem in 8 dimensions, corresponding to the Mermin construction for the GHZ
common eigenstates, is given in Appendix A, which is a research paper jointly written

by Kernaghan and Peres.

3.4 Minimal Kochen-Specker configurations

Several geometrical questions may be associated with the distinction between lattices
of quantum propositions, which induce non-2-valued measures on lattices of sub-
spaces of Hilbert space, and lattices of classical propositions, which require 2-valued
measures. These questions concern the symmetries of the subsets of Hilbert space
associated with projection lattices which do not permit a 2-valued measure, and the
critical sizes of such subsets, where the critical size is the number of one-dimensional
subspaces ot the Hilbert space giving the desired type of projection lattice. Any num-

ber of subspaces below the critical size supports a 2-valued measure, so the critical size
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is a lower bound on the number of subspaces required to prove the Kochen-Specker
theorem.

The critical size clearly depends on the dimension of the Hilbert space. I note as
well the important fact that there is not one critical size for each dimension, since the
size is a measure only of a quantity of subsets, and there are distinct ways to arrange
the same number of subsets and still prove the Kochen-Specker theorem. Critical size
is also dependent upon the particular set of observables that a BKS argument proves
to be contextual. This dependence of critical size upon a particular set of observables
explains the multiplicity of examples of Kochen-Specker configurations. We have seen
three systems for which the configuration of subsets supporting the BKS colouring
argument are known: the three dimensional spin-1 system with rhombically symmet-
ric point sources about atomic orthohelium (for which the Kochen-Conway example
is of critical size); the EPR setup, for which the operator proofs of Mermin and Peres
are not of critical size; and the GHZ setup, for which the subset of critical size is not
given directly by the operator proofs. The configurations of subsets of Hilbert space
of critical size for the EPR and GHZ systems are obtainable by computer calcula-
tion. Each of these three systems supports a BKS colouring argument because the
eigenvectors of the systems support an arrangement of subsets whose corresponding
projection lattice cannot have a 2-valued measure and be consistent with quantum
mechanics. Thus we can specify a geometric configuration of projection operators in
a given Hilbert space as a generator of a ‘Kochen-Specker Contradiction’ proof. That
is, we can point to a set of vectors which prove that a given system must contradict
expectations based on a noncontextualist, or in some cases lccal, account of quantum
measurement.

The determination of the smallest configuration of critical size in three dimensions
has been of interest for many years. Presently the smallest known configuration is

the 31-ray set due to Kochen and Conway. I will outline an effective procedure by
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which a computer search of all graphs with 30 or fewer vertices will turn up any small
Kochen-Specker configurations if they exist.

Before giving an outline for the effective search procedure for small Kochen-Specker
configurations I will discuss some matters concerned with the symmetries of the con-
figurations. In particular, it is of interest to evaluate the hypothesis that Kochen-
Specker configurations in general correspond with regular polytopes. Certainly the
dodecahedra! configuration found by Penrose supports this hypothesis. As well, the
24 rays derived by Peres from the EPR states form a regular polytope in four dimen-
sions called the Coxeter Simplex. However, as I have shown, the 24 rays contain 192
subsets which support a Kochen-Specker proof, and this result breaks the symmetry
of the 24 ray set and the relation with the polytope is lost. Similarly, the Kochen-
Conway 31 ray set may be obtained as a subset of a 37 ray set corresponding with a
more symmetrical arrangement of rays. I will look in closer detail at the highly sym-
metric configuration of 33-rays found by Peres. It was observed by Penrose that the
33-ray configuration corresponds with the polytope obtained by an interpenetration
of three cubes. However, it turns out not to be the case that the subsets of the 33-ray
configuration correspond with the cubes from which the polytope is composed. I will
show this failure of correspondence and maintain that it offers additional evidence
that there is no systematic correspondence between Kochen-Specker configurations
and regular polytopes, since, in addition to the existence of less symmetrical subsets,
it appears not to the case that Kochen-Specker configurations may be built from
smaller subsets corresponding with regular polytopes.

Figure 3.1 represents as a graph the orthogonality relations among thirteen vectors.
The vectors span cubes, planes, and rays of R®. Where three vectors span a cube they
are mutually orthogonal and form 3-cycles in the graph. In such a case we consider
the three rays which the vectors span. We associate with each ray a projection

operator. The eigenvalues of these operators must sum to unity since the rays span
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a cube, and a cube spans the space. For a spin-1 system with eigenvalues 0 and 1
we obtain the rule that exactly one vertex of a clique may be coloured green, where
we have associated the eigenvalue 1 of a projection operator with the colour green of
a vertex which represents the vector spanning the subpace (the ray) associated with
the operator.

We can write, for vectors z,y, z, an equation f[z] + fly] + flz] = 1 to capture
the associations made between a graph and the eigenvalues of the projection opera-
tors. The function f[z] takes value either 1 or 0 according to the eigenvalue to be
hypothetically made definite for the subspace picked out by the vector z. Clearly the
given equation will have as solutions just the three combinations of one 1 and two 0s.

Thus the equation corresponds to the graph colouring rule.

Figure 3.1: The Penrose BKS-graph generator, with four cliques and thirteen ver-
tices. The graph is nonplanar.

The Penroze graph is a subgraph of the Peres33 graph (Figure C.2). Three Penrose
graphs, sharing three rays which form a clique in each Penrose graph, comprise the
Peres cube (Figure C.1). The shared clique is that formed by the rays through the
centres of the faces of the Peres cube. We can show explictly the construction of the
Peres33 set from three Penrose graphs.

The result of what I will call an Escher-gluing of three Penrose graphs is the full
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Peres graph. This gluing corresponds to the three interpenetrating cubes shown in
a picture by M. C. Escher [29]. Note the central triangle in figure C.2. The vertices
at the corners of the triangle correspond with the rays through the centre of one of
the cubes, and with the face centre points of the Peres cube. The second penetrating
cube is obtained by a 90 degree rigid rotation of the first about an axis described
from the centre of the original cube to the midpoint of an edge of that cube. The
third penetrating cube is obtained by the same procedure applied to the second cube.

This relation may be seen on the Peres cube: imagine the ray which intersects the
centre of the cube and one of the midpoints on an edge of the cube, say (0, V2, v2),
and picture a rotation of the cube through 90 degrees around this ray. The result is
a second cube, but we observe that the points painted on the first cube lie between
the centre of the first cube and corresponding rotated points on the second cube. In
this way it is demonstrated that the Escher cubes and the Peres cube are in one-one
correspondence.

The graph of the Peres cube is nonplanar. This fact follows from its construction
from three Penrose graphs, each of which itself is nonplanar. Note, however, that
the graph of the orthogonality relations among rays through corner and mid-edge
vertices of an ordinary cube is planar. Thus we should not say that thc Penrose
graph represents a cube, even though the orthogonality relations which compose it
imply that a three dimensional space is spanned. Instead, we may say only that
the Penrose graph is a set of thirteen projections determined only by the mutual
orthorgonal relations given in the Penrose BKS-graph generator. It 1s equivalent
under a unitary transformation to infinitely many sets of thirteen projections which
have those orthogonal relations, as these are preserved under the unitary action.
In other words, so long as the orthogonality relation remains invariant the set is

freely orientable in (for this case) three dimensions. Given the appropriate relation

among three Penrose projection sets a Kochen-Specker contradiction is obtainable (as
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represented by the 33 rays of the Peres BKS-graph).

The foregoing technical distinctions are aimed at highlighting the distinction be-
tween the Penrose polygon representations and the graph representations. It would be
incautious to proceed in a search for BKS-graph generators by positing that they form
regular polyhedra. The EPR, GHZ, and Kochen-Conway BKS-graphs demonstrate
that polyhedral symmetry is not respected by Kochen-Specker directions.

Finally, I offer the conjecture that any (finite) graph of orthogonality relations
that has no 2-valued homomorphisms onto a Boolean algebra must be nonplanar.
The known examples are consistent with this conjecture, and if a proof may be had,
a simple characteristic for such graphs may be given. This would be of benefit in
narrowing the candidates for a computer search of graphs of order < 30.

Kuratowski showed that a graph is nonplanar if and only if the graph contains a
subgraph isomorphic with either of the elementary graphs K or K(3,3). Thereis a
subgraph of the graph for Peres’s 33 rays that is isomorphic with K5 and a subgraph
isomorphic with K(3,3). By examination of the graph in Figure C.2 it is evident
that there exists a subgraph homeomorphic with the graph Kj, the graph obtained
by drawing edges in all possible ways among a set of five vertices. Note that there
are algorithms for testing the planarity of graphs which are much more efficient than
the method suggested by Kuratowski's proof.

To determine the existence or no of Kochen-Specker graphs in three dimensions of
order < 30 we may filter a large portion of the graphs of order < 30 for the following

requirements which characterize candidates:

o The graph is connected;
o The graph has no vertices with fewer than two edges;
o The graph can contain no 4-cycles;

o The graph contains at least one 3-cycle.
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Rather than characterize realizability on the sphere as a filter it is simpler to
include as filters such things as ‘no 4-cycles’ which are consequences of the fact that
the graph must represent orthogonal relations, in this case in three dimensions. Also,
this approach allows greater fiexibility should a search of higher dimensional cases be
desired.

It would of course help matters further to include ‘no planar graphs’. It is possible
to automate the search for lower order ‘Kcchen-Specker’ graphs by filtering the set
of all graphs of a given order (for orders up to 16 this is simple, up to 24 is possible,
or will be within the decade in all likelihood) and feeding the remaining graphs to
an algonthm which checks colouring. Any result must be checked (in particular for
realizability on the sphere). If there is such a graph this procedure will find it and if

there are none then the lower bound is increased acordingly.




Chapter 4

Conclusions

The results given in this thesis extend the proofs of Mermin and Peres chat both
the EPR and the GHZ are systems in which a boolean representation for the observ-
ables 1s impossible. The extension consists in the demonstration that the common
eigenstates of the operators for the EPR or the GHZ contain not just one noncon-
textual configuration of subspaces, but several hundred. I prove tkat there are 192
equivalent configurations of 20 rays available among the operators of the EPR system
that support a proof of the Kochen-Specker theorem. In appendix A, Peres and 1
demonstrate the extension of these results to the eight dimensional real Hilbert space
of the operators of the GHZ system. We found 1,280 configurations of 36 rays that
support a Kochen-Specker proof.

I have also outlined a procedure to decide the least co. firurations required to prove
the Kochen-Specker theorem in three dimensions. I show that the problem is entirely
solvable by computer calculation, and 1 provide an effective procedure for sorting
the configurations of Hilbert space that support a Kochen-Specker argument. [ also
introduce a conjecture that, if proved, would considerably shorten the calculatians
required.

One conclusion of this thesis is that the configurations of subspaces of Hilbert space
that support the Kocher-Specker theorem are not characterizable as simple polytopes.

On tue basis of earlier results, it 1s plausible to suggest such a characterization.
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However, 1 have shown that the polytope structures cf configurations, such as the
Coxeter 24-simplex associated with the eigenstates of the EPR, contain many smaller
configurations sufficient to support a Kochen-Specker argument. This result reveals
that it is not trivial to characterize the sets of rays of Hilbert space that support a
Kochen-Specker thzorem.

Maczynski showed that boolean representations may be given for sets of maximal
observables, and we may use his results to demarcate the kinds of configurations of
Hilbert space within which a hidden variable theory cannot be shown to contradict
quantum mechanics.

More generally, hidden variable theories are free from contradiction with quantum
mechanics only while the operators associated with the observables of such theories
do not have eigenstates appropriately configured for the proof of a Kochen-Specker
theorem. The arguments I have presented here show that a systematic selection of sets
of observables, chosen to avoid families of observables that support a Kochen-Specker
theorem, is implausible. Such a systematic selection is implausible because what must
be ruled is quite ubiquitous. Earlier proofs of the Kochen-Specker theorem left open
the possibility of families of observables that might support a hidden variable theory.
The results obtained here apply to any interpretations that make definite claims about
values assigned to operators. Typically, however, interpretations are not of that kind.
Instead they give more abstract and general sets of criteria by which to decide what
values might be possessed by various hidden parameters associated with observables.
One example is the interpretation, due to van Fraassen, according to which Hermitian
operators may be distinguished into ‘maximal’ and ‘non-maximal’ . This distinction
departs from the standard quantum mechanical assumption that there is a one to one
correspondence between operators and observables , since on van Fraassen’s scheme,
a non-maximal operator corresponds to many observables, while a maximal operator

corresponds to just one. Van Fraassen's interpretation is ‘Deoccamized’, since the
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breaking of the one to one correspondence between operators and observables may
be interpreted as supporting an ontological-contextualist interpretation of quantum
mechanics. Contradictions are removed if non-maximal observables are allowed to
correspond to many physically distinct observables. Avoiding the contradiction in
this way leads to an interpretation whose ontology is, in some sense, rich enough to
support context dependent measurements.

I have shown that any interpretation that offers a scheme for incorporating the
EPR and GHZ observables within a hidden variable theory also must account for the
multiplicity of configurations of subspaces, within the space of EPR or GHZ operators,
that support a Kochen-Specker argument. I have maintained that an account of that
multiplicity will be so complex as to be implausible. The simple and highly symmetric
configurations of subsets of Hilbert space, such as the 33 directions of the Peres proof
in three dimensions, must be systematically ruled out on any hid-!~n variable theory,
so that a system for providing a hidden variable theory as an interpretation becomes
more complex than the quantum theory that is the subject of the interpretation.

The observation that the operator based proofs dus to Mermin and Peres con-
tain redundant information, in that we only need subsets of the operators’ common
eigenvectors to prove the Kochen-Specker theorem, has a significant relationship to
experimental proposals made recently by Bernstein, Bertani, Reck, and Zeilinger (3]
They show that it is possible to realize, with optical devices, any finite-dimensional
discrete unitary operator. They maintain that their contruction is the first to show
that “any discrete unitary operator can be given operational meaning in the real
world.”

The basis for the experimental proposals is an entirely constructive proof that any
unitary operator may be realized by optical devices in the laboratory. Thus, for ex-
ample, it is now possible to make a direct measurement of any of the unitary matrices

corresponding to the Hermitian operators appearing in Table 3.1. As well, the method
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for constructing the unitary matrices that correspond with matrix representations of
the Hermitian operators is constructive (an explicit example of the construction is
given in [3]). This fact absolves us of any worry that the constructions carried out in
this thesis are not physically realistic, since any system of rays in Hilbert space may
be given a physical realization. Furthermore, the proof that any configuration of rays
is physically realizable is a purely constructive proof, so again we are absolved of any
worry about arbitrary or hypothetical assvmptions hidden in the formulation of the
configurations that support a Kochen-Specker argument.

Clearly the experimental results obtained by Bernstein, Bertani, Reck, and Zei-
linger carry the important implication, for this thesis, that any configuration of eigen-
values of unitary operators is physically realizable and these correspond with the
Hermitian operators used in our proofs. However, the converse implication from the
reduced proofs of Kochen-Specker to their experimental test of Kochen-Specker, is
not so clear. Since the Kocken-Specker theorem may be proved for a subset of the
eigenvectors of the Mermin operators it may be possible to arrange a reduction in the
number of optical devices required to carry out the experiment. A similar observa-
tion may be made for the reduction of the Kochen-Specker proof given in Appendix
A for an eight dimensional Hilbert space. However, since the reduced proofs do not
remove the operators, but only subsets of their eigenvectors, it is not obvious that
fewer optical devices may be sufficient. The possibility is nevertheless intriguing and

should be investigated.
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Abstract

A Kochen-Specker contradiction is produced with 36 vectors in a real 8-dimensional
Hilbert space. These vectors can be combined into 30 distinct projection operators
(14 of rank 2, and 16 of rank 1). A state-specific variant of this contradiction requires

only 13 vectors, a remarkably low number for 8 dimensions.
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The Kochen-Specker theorem [1] asserts that, in a Hilbert space with a finite
number of dimensions, d > 3, it is possible to produce a set of n projection operators,
representing yes-no questions about a quantum system, such that none of the 2"
possible answers is compatible with the sum rules of quantum mechanics. Namely, if
a subset of mutually orthogonal projection operators sums up to the unit matrix, one
and only one of the answers is yes. The physical meaning of this theorem is that there
is no way of introducing noncontextual “hidden” variables [2] which would ascribe
definite outcomes to these n yes-no tests. This conclusion holds irrespective of the
quantum state of the system being tested.

It is also possible to formulate a “state-specific” version of this theorem, valid for
systems which have been prepared in a known pure state. In that case, the projection
operators are chosen in a way adapted to the known state. A smaller number of
questions is then sufficient to obtain incompatibility with the quantum mechanical
sum rules. An even smaller number is needed if strict sum rules are replaced by
weaker probabilistic arguments (3,4].

The original proof by Kochen and Specker (1] involved projection operators over
117 vectors in a 3-dimensional real Hilbert space R3. A simple proof with 33 vectors
was later given by Peres [5], who also reported an unpublished construction by Conway
and Kochen, using only 31 vectors [6]. A proof with 20 vectors in R* was recently
given by Kernaghan (7). Here, we consider the Kochen-Specker theorem in R®. A
state-independent proof is produced with 36 vectors, which can be collected into 30
distinct projection operators. A state-specific proof involves onl’ 13 vectors, and
achieves the lowest value of the ratio n/d that has been obtained so far.

Our construction is based on Mermin's remark [8] that, for any three spin-} par-

ticles, the four operators

A= 013 QD 03, & 03,4, (Al)

B = 01, ® 03¢ @ 0aq, (A.2)
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C =01: @02 ® 03, (A.3)

D =01:® 03: @ 03, (A.4)
commute. Moreover, their product is proportional to the unit matrix,

ABCD = -1 (A.5)

Mermin’s three particle system is the simplest one that illustrates both Bell's theo-
rems, on nonlocality {9] and contextuality [10].

Each one of the five equations above involves a complete set of commuting opera-
tors, and therefore determines a complete orthogonal basis in R® (complex numbers
are not needed here, because o, and o, are real matrices). The five orthogonal octads
generated by the above equations are listed in the first column of Table 1. fo simplify
typography, each vector was given norm 2 (this avoids the use of fractions) and the
symbol 1 means —1. The components of each vector are written as a horizontal array,
rather than the usual “column vector.” The basis used is the direct product of the
bases where each o, is diagonal. For example, the vector with components 00002000
is the eigenvector for which o,, has eigenvalue —1, and o3, and o3, have eigenvalue
1. This is most easily seen by using binary digits, 0 and 1, for labelling the “up”
and “down” components of a spinor, respectively, and combining them into binary
numbers, 000, 001, ..., 111, for labelling components of vectors in R®. Thus, the
vector 00002000 has the physical meaning stated above because its only nonvanishing
component is the 100th one (that is, the fifth one, in binary notation).

It is easy to see that the 40 projection operators on these 40 vectors provide an
example of the Kochen-Specker contradiction. Indeed, associating values 0 (no) and
1 (yes) to the vectors in a basis (with a single 1, of course) amounts to selecting
one of these eigenvectors, and the latter indicates which ones of the four commuting
operators which generate that basis have value 1, and which ones have value ~1. Such

a mapping of each operator on one of its eigenvalues cannot be done for all of them in



e —————

60

Eqgs. (1-5): it would lead to an inconsistency, because of the minus sign in (5). This
argument is readily generalised to a larger number of spin-1 particles, and provides
a proof of the Kochen-Specker theorem in a real Hilbert space with 2® dimensions.
However, fewer than 2™ vectors are actually needed for the proof, as we shall see.
First, we note that the above set of 40 vectors has a high degree of symmetry.
(Unfortunately, we have not been able to determine its invariance group. We asked
several well known experts, who also did not find it.) A direct inspection, best done
by computer, shows that each vector is orthogonal to 23 other ones (7 in the same

basis, and 4 in each one of the four other bases), and it makes a 60° or 120° angle

with each one of the 16 remaining vectors. It is possible to construct with the 40
vectors 25 distinct orthogonal octads (each vector appears in 5 octads). Eleven of
these octads are listed in the remaining columns of Table 1 (the 14 other octads are
not needed for the proof and have not been listed).

It is seen that there are four vectors, namely those with components 20000000,
00001111, 00110011, and 10101010, that do not appear in the 11 octads (they appear
of course in the 14 unlisted octads). These four vectors are mutually orthogonal, and
they belong to four different of the original octads. It is easily seen that there are
1280 different ways of choosing four vectors with these properties (that is, of choosing
which are the 11 octads, out of 25, that appear in Table 1).

It is also seen that each one of the 36 remaining vectors appears in Table 1 either
twice or four times. Let us now consider the projection operators over these 36 vectors.
According to quantum mechanics, each projection operator corresponds to a yes-no
question: the eigenvalues 1 and 0 mean yes and no, respect.vely. Each orthogonal
octad defines 8 commuting projection operators (that is, 8 compatible questions)
which sum up to the unit matrix. This means that if an experimental test is actually
performed for these 8 questions, the answer is yes to one, and only one of them. The

~alue 1 is thereby associated with one of the eight vectors of each octad, and the
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value 0 with the others.

If nothing is known of the state of the system, quantum mechanics is unable to
predict which vector will get the value 1. A natural question is whether there could
be a more complete theory, such that the value associated with each vector would
be determined by “hidden variables.” Table 1 readily shows that this goal cannot be
achieved. Indeed, the sum of values in each octad is always 1, therefore the sum of
values for the 11 octads in the table is 11, which is an odd number. On the other
hand, each vector (tentatively associated with a value which is either 0 or 1) appears
either twice or four times in the table (with the same value), thus contnbuting 2 or
4 (an even number) to the sum of values. We have reached a contradiction. This is
the proof of the Kochen-Specker theorem in R®.

Furthermore, our 36 incompatible propositions can be combined into a smaller
number, namely 30 distinct ones, by using projection operators of rank 2 on the
planes spanned by some pairs of vectors. Table 2 shows how 20 of the vectors can
be combined into 14 planes. The vectors on each line are mutually orthogonal. Each
plane is spanned by two adjacent vectors on the same line (for example, 02000000
and 00000002). When such & pair of vectors occurs in any of the 11 octads listed in
Table 1 (that is, in one of the columns) this vector pair should be replaced by the
corresponding plane. Once this is done, each column lists planes and unpaired vectors,
all of which are mutually orthogonal. They correspond to commuting projection
operators of rank 1 or 2, which sum up to 1. Therefore, if “experimental” (that
is, counterfactual) values 0 or 1 are attributed to them, these values sum up to 11,
exactly as before. On the other hand, each one of the remaining 16 vectors (those
not used in Table 2) appears twice in the new version of Table 1, and each of the
14 planes appears 2 or 4 times - always an even number. We thus reach the same
Kochen-Specker contradiction as before.

Until now, we assumed nothing about the state of the quantum system. If that
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state is known with certainty, it becomes possible to find a much smaller number
of propositions which lead to a Kochen-Specker contradiction. For instance, let the
quantum system be prepared in the pure state 10010110 (this does not restrict the
generality of this discussion in any way, because it is always possible to choose the
basis in R® in such a way i.at any given pure state be represented by a vector with
these components). We can now discard from Table 1 that vector, whose associated
value is 1, by definition, and all the vectors orthogonal to it, whose associated values
are zero. Only 7 non-empty columns, with 13 different vectors, remain in Table 1.
In each column, there are four mutually orthogonal vectors, which span a subspace
containing the known pure state 10010110 (because the complementary orthogonal
subspace is also orthogonal to 10010110). Explicitly, we have

2 x 10010110 = 10101010 + 10101010 — 00020000 — 00000200, (A.6)
= 11001100 + 11001100 — 00020000 — 00000020, (A.7)
= 11110000 + 11110000 — 00000200 — 00000020, (A.8)
= 11110000 + 00001111 + 10101010 — 01010101, (A.9)
= 11110000 + 00001111 + 11001100 — 00110011, (A.10)
= 11001100 + 11001100 + 00110011 — 00110011, (A.11)
= 11001100 + 00110011 + 10701010 — 01010101. (A.12)

Quantum mechanics asserts that, for each one of the above equations, there exists
an experimental test which randomly selects one of the four vectors appearing on
the right hand side of that equation. A hidden variable theory would claim that the
selection is not random, and that there are preassigned values, 0 and 1, corresponding

to all 13 vectors: on each line, one of the four vectors has value 1, the others have
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value 0. Moreover, we may demand that, if the same vector appears in different lines,
the value associated to it is everywhere the same (that is, the result of an experimental
test which would determine that value is not “contextual”). These demands then lead
us to the same contradiction: there are 7 equations, so that the sum of values is 7.
On the other hand, each vector appears 2 or 4 times, so that the sum of values is
even. It is remarkable that no more than 13 propositions are needed to reach the

contradiction. The p:oof entirely holds in these seven equations.
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11110000 x
11110000
11110000
11110000 x
00001111
00001111 x X
00001111 x
00001111
11001100
11001100
1io01i00
11001100
00110011 x x
oo110011 X x
00110011
oo11o00i1 x X
10101010 x x X X
1010%0f0 x x
10i01010 x x
10foio10
01010101 X x

o1010i01 X x
01010101 x x
o10ioio1 X X
10010110
10010110
10010110
100i0110
01101001 x
o1lo1001 X X x
of101001
bgnoioox X

X X X XX X X X

X X {x x
x

X X X x

x X x X
o
x

x X X X X X X X

Il

Table A.1: Orthogonal octads used for proving the theorem.




02000000 00000002 00000020
11110000 11110000 00001111
11001100 11001100 00110011
01010101 10101010 01010101
10010110 10010110 01101001 01101001
01101001 10010110 10010110 01101001

Table A.2: Construction of 14 planes from 20 vectors.



Appendix B

Computer program for testing Kochen-Specker colourings

Included here is an expansion of an algorithm devised by Peres [35] for testing a set of
vectors firstly for their orthogonal relations and their mutually orthorgonal basis sets,
and cecondly for the consistency of these relations with the Kochen-Specker colouring
rule. The expansion provides the same test for eight dimensional vectors, applying
the rule that only one vector in each eight vector basis may have value one and the
other seven must have value zero.

The program ¢.xample included here records the senes of tests made to reduce the
40 vectors implied by the common eigenstates of the operators in the Mermin-Peres
star figure to a minimum configuration inconsistent with the colouring rule. The
resulting set of vectors is a generator for a projection lattice which has a 2-valued
measure and is by Gleason’s theorem inconsistent with measures on closed subspaces
of ililbert space, subspaces correspondent with the projections in the lattice. The °
propositions associated with such lattices are therefore refutable in quantum me-
chanics. Since such a generator should exist for propositions associated with local
measurement outcomes in a GHZ experiment we have obtained a refutation of lo-
cality within quantum mechani s, using only independent geometric facts con.. tent
with the quantum formalism and the attribution to quantum states of hypothetical

properties prior to measurement.
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FOO=1

NQUAD=Q

B0O0=0

C00=0

DO 12 I=1,N

DO 12 J=I+1,N

DO 12 K=J+1,H

DO 12 G=K+1,N

DO 12 II=G+1,N

DO 12 JJ)=1I+1,N

DO 12 KK=JJ+1,N

DO 12 GG=KK+1,N
BOO=(P(I,J1)+P(I,K)+P(I1,G)+P(I,I1)+P(1,JJ)+P(I, KK)
+ +P(I,GG)+P(J,K)+P(J,G)+P(J,II1)+P(J,J3)+P(J,KK)
+ +P(J,GG)+P(K,G)+P(K,II))
C00-(P(K.JJ)+P(K.GG)+P(G,II)+P(G.JJ)+P(G,KK)
+ +P(G,GG)+P(I1I,J3)+P(II,KK)+P(II,GG)*P(JJ, KK)
+ +P(JJ,GG)+P(KK,GG))

IF ((BOD+COQ).NE.27) GOTO 12

NQUAD=NQUAD+1

X(NQUAD)=I

Y(NQUAD)=J

Z(NQUAD) =K

W(NQUAD) =G

XX(NQUAD)=II

YY(NQUAD)=JJ

ZZ(NQUAD)=KK

WW(NQUAD)=GG

CONTINUE

LVL=0

DO 15 Fisi,N

IF (C(NG).EQ.9) THEN

C(NG)=1

GOTO 16

ENDIF

CONTINUE

WRITE (8,’(361I2)’) C

Graph is ~olourable

Display orthonormal frames

WRITE(8,’(4013)’) X

WRITE(8,’(4013)’) Y

WRITE(8,’(4013)’) Z

WRITE(8,’(4013)’) W

. .TE(8,’(4013)’) XX

WRITE(8,’(4013)’)
WRITE(8,’(4013)’)
WRITE(8,’(4013)’)
STOP

sDonex

YY
Z
LLJ

wVL=LVL+1
LAST=1
L(LVL)=NG
DO 17 J=i,N



17
18

19
20

21
22

23

24

25

26
27

69

0C(LVL, J)=C(J)

DO 19 J=1,N

IF (P(NG,J).EQ.1) C(J)=0

CONTINUE

DO 21 NQ=1,NQUAD

IF (C(X(NQ))+C(Y(NQ))+C(Z(NQ))+C(W(NQ))+C(XX(NQ))
+ +C(YY(NQ))+C(ZZ(NQ))+C(WW(NQ)) .EQ.0) GOTO 22
CONTINUE

GOTO 25

IF (LVL+LAST.GT.0) GOTO 23

colouring fails

WRITE (8,’(’’This set has no consistent colouring’’)’)
display orthonormal frames

WRITE(8,’(4012)’) X

WRITE(8,’(4012)’) Y

WRITE(8,’(4012)’) Z

WRITE(8,’(4012)’) W

WRITE(S,’ (40I2)°) XX

WRITE(8,’ (4012)’) YY

WRITE(8,’ (4012) ') 2z

WRITE(8,’ (4012)°) WW

STOP

*Donex*

DO 24 J=1,N
c(J)=0C(LVL,J)
C(L(LVL))=0
LAST=0
LVL=LVL-1
GOTO 20
DO 26 NQ=1,NQUAD
IF (C(X(NQ))+C(Y(NQ))+C(Z(NQ))+C(W(NQ))+C(XX(NQ))

+ +C(YY(NQ))+C(ZZ(NQ) )+C(WW(NQ)).EQ.9) GOTO 27
CONTINUE
GOTO 14
IF (C(X(NQ)).EQ.9) THEN
C(X(NQ))=1
NG=X(NQ)

GOTO 18

ENDIF

IF (C(Y(NQ)).EQ.9) THEN
C(Y(NQ))=1

NG=Y(NQ)

GOTO 18

ENDIF

IF (C(Z(NQ)).EQ.9) THEN
C(Z(NQ))=1

NG=Z(NQ)

GOTO 18

ENDIF

IF (C(W(NQ)).EQ.9) THEN
C(W(NQ))=1

NG=W(NQ)

GOTO 18
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ENDIF
IF (C(XX(NQ)).EQ.9) THEN
C(XX(NQ))=1
NG=XX(NQ)
GOTO 18
ENDIF
IF (C(YY(NQ)).EQ.9) THEN
C(YY(NQ))=1
NG=YY(NQ)
GOTO 18
ENDIF
IF (C(2Z(NQ)) .EQ.9) THEN
C(ZZ(NQ))=1
NG=2Z(NQ)
GOTO 18
ENDIF
IF (C(WW(NQ)).EQ.S) THEN
c(ww(Ng))=1
NG=WW(NQ)
GOTO 18
ENDIF
END
C End GHZFTN

B.1 Compute: analysis of GHZ eigenstates

The following is a sample output from a run of the program GHZFTN. In this example
the program has in its data set the 36 projectors in eight dimensions that correspond
with a subset of the common eigenstates of the three GHZ operators. The result
reveals that the projection operators corresponding with these 36 vectors cannot be
assigned values independently of the ciccumstances of their eventual measurement.
The output first indicates the graph is not Kochen-Specker colourable and then
displays as columns the rays which compose the eigenbases among them. Here there
are eleven cigenbases. If we suppose that we may attribute values to the rays we must
satisfy the condition that the sum of zeroes and ones we attribute is unity for each
cigenbasis. That is, each eight member eigenbasis may have just one ‘one’ and must

have seven ‘zeros’. For the sample output given here this rule can not be satisfied.



GHZFTN (Data=36_min)
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This graph has no consistent colouring

Table of mutually orthogonal rays forming eigenbases
(each column is an ‘octad’)

1 1

2 3 3 5
4 5 6 6
7T 7 17 7
29 22 15 8
30 23 16 9
31 24 17 10
32 25 18 11

111
12 12
13 14
30 22
32 23
34 26
35 27

2 4 8 910

11
13
14
15
16
19
20

16
17
19
21
29
30
34
36

16
18
20

22
25
27
28
29
32
33
34

29
30
31
32
33
34
35
36

Table of the frequency of each ray.

2 8:
2 9:
2 10:
2 11:
2 12:
2 13:
4 14:

NN B WD -

NN PONON

16 +

15:
16:
17:
18:
19:
20:
21:

NNNNDN BN

16

22:
23:
24:
25:
26:
27
28:

[SESESESR SN NN 3

16

8 x 11 = 88
29: 4
30: 4
31: 2
32: 4
33: 2
4: 4
35: 2
36: 2
+ 24 = 88

The 36 8-dimensional rays forming the uncolourable set are listed in Table A.1.

The next example displays ouiput of the program given a data set which is Kochen-

Specker colourable. Instead of declaring the colourability the program supplies a list

of value attributions which may successfully be applied to the set. In this example ray

one, ten, twenty-six, and thirty-five may take value one and the remaining rays value

zero without contradiction. In the example above in which no colouring is available

there exists no such list of value attributions. For a successful colouring there may

exist many different successful lists.



100000000100000000000000 ...
000

01000
11 4 8 9
2 3 51111
4 5 612 12
7T 7 71314

30 22 8 31 22
31 23 933 23
32 24 10 35 26
33 25 11 36 27

15
16
18
21
30
31
35
37

16
17
19
21
22
24
26
28

001

22 22
23 25
24 27
25 28
26 30
27 33
28 34
29 35

00

23 30
24 31
26 32
29 33
31 34
32 35
36 36
37 37

B.2 Converting coordinate sets to graphs

The following is an algorithm for converting coordinates of vectors into adjacency
matrices for graphs. The adjacency matrix is an array of ones and zeroes where a
one occurs at (row i, column j) if : and j are orthogonal and a zer: ~therwise. The
graph is read from the matrix by allocating a vertex for each element of the array. An
edge e(i,7) exists if i and j are orthogonal. Orthogonality is determined by taking

an inner product and the result is recorded in an array which serves as an adjacency

matrix.

C Quadder.f: Outputs adjacency matrix and 4-cliques
c from coordinates.

PROGRAM QUADDER
PARAMETER (N=24)
INTEGER P(N,N), W(N), X(N), Y(N), Z(N), C(N)

INTEGER Q(N), R(N), S(N), T(N),
INTEGER A, B, D, FOO, E, F, G, H

OPEN (8,FILEs’INPUT.QD’)
OPEN (9,FILE=’OUTPUT.QD’)

DO 7 I=1,
DO 7 J=i,

7 P(1,J)=0

L(N), OC(N,N)

read N coordinate inputs (a,b,c,d) and

C
c create an adjacency matrix
v

»+» Initialize arrays

DO 8 E=1,

Q(E)=0
R(E)=0
S(E)=0

N
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T(E)=0
DO 8 F=1,N
8 P(E,F)=0
C #** Read input into arrays Q, R, S, T
DO 9 M=1,N
READ (8,’(413)’,END=10) A, B, D, H
Q(M)=A
R(M)=B
S(M)=D
T(M)=H
9 CONTINUE
10 F0O0=0
C »*x Check orthoganality and write to matrix P
DO 11 I=i,N
DO 11 J=I+i,N
IF ((Q(D)*Q(IN)+(R(I)*R(I))+(S(I)=S(J)) +(T(1)*T(I))
+ .EQ.0) THEN
P(I,3)=1
P(J,I)=1
ENDIF
11 F0O0=1
c Find quads of orthogonal rays
DO 12 I=1,N
DO 12 J=I+1i,N
DO 12 K=J+1,N
DO 12 G=X+1,N
IF (P(I,J)+P(I,K)+P(I,G)+P(J,K)+P(J,G)+P(K,G)
+ .NE.6) GOTO 12
NQUAD=NQUAD+1
X(NQUAD)=I
Y(NQUAD)=J
Z(NQUAD) =K
W(NQUAD) =G
12 CONTINUE
WRITE (9,’(’’adjacency matrix:’’)?)
WRITE (9.’(24123’) P
WRITE (9.)(): n):)
WRITE (9,’(’’Quads:’’)?)
WRITE (9,°’(39I2))’) X
WRITE (9,’(3912))’) Y
WRITE (9,’'(3912))’) Z
WRITE (9,’(3912))’) W
STOP
END
c *Done*
C End QUADDER




Appendix C

Figures

Figure C.1: Peres’s cubic representation of his 33 directions, reprinted with the -
permission of the author.
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Figure C.2: The BKS-graph for Peres’s 35 directions.
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Figure C.3: The Penrose BKS-graph generator redrawn to display the composition

from six ‘nugget’-graphs.



7

Figure C.4: A 36 ray subensen.ole of the 40 ray GHZ ensemble. There are 1,280
such subensembles. Each is an equivalent BKS-graph for 8 dimensions.
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Figure C.5: A BKS-graph of Kochen and Conway’s 31 ray uncolourable set. This
is a ‘circular’ embedding of the vertices. A ‘radial’ embedding better displays the
3-cycles of the graph.



19

Figure C.6: The state dependent 24 vertex minimalization of he BKS-graph for
Kochen ;nd Conway’s 31 rays, set in a radial embedding. If vertex 3 is green the
graph is uncolourable.



Appendix D

Special Symbols

H | Hilbert space R" | n-dimensional real Hilbert space
P | Projection operator A,B | Vectors (or matrices)

H | Hamiltonian ¥() | Valuation mapping

o} | Pauli spin operator ® | Tensor Product

A | Operator Tr | Trace

B | Borel sets E* | a-dimensional Euclidean space

Z; | Boolean Algebra
S? | The real sphere

Measure

I

R | The real numbers
| | Ide..tity operator

O

Set of observables

B() { Partial Boolean algebra
(¥] | Mrjorana representation
Interval of the real line
Density operator

Zero operator

J o 2P

Riemann sphere

Table D.1: Table of mathematical symbols adopted in the text.
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