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ABSTRACT: In pavement technology, performance models are mathematical expressions that relate 

pavement condition, surface distresses and structural properties as response variables to a set of predictors 

including material properties, traffic loading, environmental factors, etc. In the existence of numerous 

important predictors and their interrelationships, developing a predictive model for pavement performance is 

not a trivial task. In this study, a machine learning-based framework is developed for predicting pavement 

performance. The framework starts with a preparation step of data pre-processing and data wrangling. After 

removing outliers, the framework will conduct principal component analysis (PCA) to firstly reduce the 

dimensionality of the problem and secondly eliminate pairwise correlation between the inputs by producing 

orthogonal pseudo-inputs. These pseudo-inputs are used to develop two predictive models using multivariate 

regression analysis and artificial neural networks (ANN). In empirical predictive models, mapping input 

space to response space can be threatened by extrapolation. However, it is often disregarded by design 

engineers. In this study to confront extrapolation, a method is implemented to determine a hyperspace based 

on the inputs. The hyperspace determines where the predictive model is valid up to given thresholds and is 

then added as a constraint to the modeling problem. Two of the performance-related characteristics of 

asphalt mixtures, including rut resistance and dynamic modulus, are considered to examine the robustness of 

the proposed approach. The developed predictive models are then compared to conventional models for each 

case and indicated superior performance (  of 0.97 and 0.99 for rutting and dynamic modulus, 

respectively). A global variable importance analysis is also conducted to obtain the most effective variable in 

each case. Percent air voids and binder shear properties appeared to be the most effective variables in 

predicting rutting and dynamic modulus, respectively. To indicate an application of the developed framework 

in asphalt pavement design, for each of these two cases a design-related optimization problem is defined and 

solved using a mean-variance mapping optimization (MVMO) algorithm. The obtained optimal design 

parameters are within the acceptable range of current asphalt pavement design specifications and thus can 

be used as an appropriate starting point in a design procedure.  

KEYWORDS: pavement performance modeling, principal component analysis, artificial neural 

networks, multivariate regression analysis, optimization, variable importance analysis. 
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1.0 Introduction 

Maintenance, rehabilitation, and reconstruction of the highway system are the major 
expenses in a state general expenditure.  Therefore, seeking to develop an accurate and 
efficient performance model to predict the remaining service life of a pavement and to 
provide its rehabilitation or reconstruction requirements punctually is beneficial.  Relating 
pavement condition, surface distresses, and structural properties to a set of predictors 
including material properties, traffic loading, environmental factors, etc. via mathematical 
expressions is called performance modeling (Morovatdar et al., 2019; Jalali et al., 2019;
Hosseini et al., 2020).  According to the American Association of State Highway and 
Transportation Officials (AASHTO), pavement performance is the pavement ability to 
serve traffic over time sufficiently.  To measure and predict pavement performance, a 
reproducible, authoritative, and field calibrated condition evaluating system is required.  
Several researchers have attempted to develop pavement performance predictive models 
but almost all of the performance models are site specific and also restricted to the 
materials used in the AASHO road test.  

One of the performance-related properties of asphalt pavement is its resistance to 
rutting.  Rutting or permanent deformation often happens under the wheel path and appears 
as a depression worn into a pavement with uplift occurring along the sides (Ghasemi et al., 
2018; Notani et al., 2019).  To analyze asphalt mixture rut susceptibility, performance 
testing along with mechanistic-empirical regression-based modeling appears to be a 
common approach (Bashin et al., 2012).  To simulate rutting in the laboratory a rut 
resistance index called flow number (FN) is defined.  In a repeated loading and unloading 
test FN is the point at which the strain rate starts to increase with loading. According to 
AASHTO TP 79-13, Standard Method of Test for Determining the Dynamic Modulus and 
Flow Number for Asphalt Mixtures Using the Asphalt Mixture Performance Tester 

this parameter has demonstrated a strong correlation with rutting that happens in 
asphalt pavement due to traffic.  In asphalt pavement design procedures, the amount of 
rutting should generally be limited to 0.4 in. (10.16 mm) regarding the total deformation of 
a pavement structure.  

It has been demonstrated that the amount of rutting is a function of binder viscosity, 
volumetric properties of the asphalt mixture, and testing temperature (Kaloush et al., 2003;
Witczak et al., 2002).  Kvasnak et al. (2007) proposed a list of the efficacious factors in rut 
susceptibility of asphalt mixture.  The list includes nominal maximum aggregate size 
(NMAS); voids in mineral aggregate (VMA); percentage aggregate passing through sieve 
sizes No. 4, No. 16, No. 200; binder grade; binder viscosity; asphalt content; testing 
temperature; and the number of gyrations.  Rodezno et al. (2010) selected 12 parameters
(i.e., testing temperature; maximum shear stress; normal stress; binder viscosity; 
percentage aggregate passing through sieve sizes 3/4-inch, 3/8-inch, and No. 4; percentage 
air voids; effective binder content; binder content; VMA; and voids filled with asphalt 
(VFA)) to be important in estimating asphalt pavement rutting behavior.  It was illustrated 
by Apeagyei (2011) that dynamic modulus test results at specific temperatures and loading 
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frequencies along with aggregate gradation appears to have strong correlation with FN test 
results. However, there are some discrepancies on the existence of correlation between rut 
susceptibility of asphalt mixture and its dynamic modulus value (Birgisson et al., 2004; 
Pellinen and Witczak, 2002; Timm et al., 2006). 

Another widely used pavement performance characteristic is dynamic modulus, ,
which defines the stress-strain relationship of asphalt mixtures under sinusoidal loading. 
Dynamic modulus represents the stiffness characteristic of an asphalt mixture, and it has a 
significant role in pavement design.  Therefore, several researchers have attempted to 
predict asphalt mixture dynamic modulus as 
properties, loading rate, and temperature (Nobakht and Sakhaeifar, 2018; Peng et al., 2019;
Shu and Huang, 2008).  

There are several well-known predictive models for dynamic modulus amongst which 
some use regression analysis while newer ones use other techniques including genetic 
programming and artificial neural networks (Ziari et al., 2018).  Witczak developed a 
predictive model using material component properties including binder viscosity.  Andrei 
et al. (1999) modified the original Witczak model.  The developed model has then been 
modified to use binder shear modulus instead of binder viscosity (Bari and Witczak, 2007).
Christensen et al. (2003) created a predictive model based on the law of mixtures.  Al-
Khateeb et al. (2006) created a model from the law of mixtures to be used over a wide 
range of temperatures and loading frequencies.  Sakhaeifar et al. (2017) created separate 
temperature-based models that can predict dynamic modulus over a wide range of 
temperature.  The predictor variables of the aforementioned models are selected from the 
following list: cumulative percentage aggregate retained on sieve sizes 3/4-inch, 3/8-inch, 
No. 4, and percent aggregate passing the No. 200; VMA; VFA; percentage air voids;
effective binder content; binder shear modulus ( ); and binder phase angle ( ).  

The predictor variables used in the conventional performance predictive models, e.g., 
rutting and dynamic modulus, are not admitted being independent sets of variables and 
therefore may not be suitable to be used in modeling.  Pairwise correlated predictors in the 
data set can decrease the estimation accuracy of their effects on the response variable.  
Therefore, a data preparation step is useful to assure that the input variables are qualified to 
be used in model development (Rollins, 2015).  The process of transforming raw data into 
another format with the intention of making it more appropriate and valuable for the main 
analysis is called data wrangling.  One of the data wrangling techniques is reducing the 
dimension of the data especially when predictor variables are highly correlated.  There are 
several dimensionality reduction techniques including exploratory factor analysis (EFA), 
variable clustering and principal component analysis (PCA).  To reduce the dimension of 
the data, variable clustering and EFA tend to eliminate some of the predictors (Thompson,
2004) while PCA transforms the data into a new coordinate system and preserves more 
information of observed variables with less tendency for information loss.  Therefore, PCA 
is preferred over other techniques for the particular application presented in this study.  
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PCA is a multivariate statistical procedure that reduces the size of a data set by 
transforming a large set of variables into a smaller set of orthogonal (i.e. zero correlation) 
pseudo-variables called principal components (PCs).  The produced pseudo-inputs can be 
used as input variables in developing predictive models.  They not only make the 
prediction analysis easier but also contain most of the information of the large set 
(Ghasemi et al., 2018). 

Another issue within performance models is that since they are developed based on 
empirical data, they can be prone to extrapolation which is defined as the process of 
estimating beyond the original observation range.  In case of extrapolation, predictive 
models are subject to major uncertainty and high risk of producing meaningless results.  To 
prevent extrapolation from happening, a hyper-space containing all the data points can be 
found and added as a constraint to the desired modeling problem.  

The focus of this study is on developing a machine learning-based framework to predict 
pavement performance using orthogonal pseudo-inputs obtained from principal component 
analysis.  Unlike most of the conventional performance models, the proposed framework 
utilizes different data for model training and performance testing.  An n-dimensional 
hyperspace is determined and added as a constraint to the modeling problem to guard 
against extrapolation.  The authority of the proposed framework is illustrated by solving 
two separate problems of predicting rutting behavior and predicting dynamic modulus of 
asphalt mixtures.  In order to find the most effective variable, global variable importance 
analysis is performed on the developed models.  This research also claims to determine the 
optimal design and a successful approach to perform inverse design of asphalt mixture as 
some of the applications of the framework using a state-of-the-art evolutionary 
optimization algorithm. 

2.0 Methodology 

2.1. Data Preprocessing 

Data preprocessing is a crucial task in every machine learning and data mining project.  
Irrelevant and redundant information, as well as correlated and unreliable predictor 
variables, can produce misleading results.  Therefore, the representation and quality of data 
should be verified prior to running the main analysis.  

A parsimonious model is a model that accomplishes a great explanatory predictive 
power with as few predictor variables as possible.  The obstacles in creating such model 
can be the availability of numerous, highly correlated, and weakly related or unrelated 
predictor variables (Fodor, 2002).  In a general model, the expectation function is given by: 

                                        [1] 

Where vector is input values at the sampling time, is the expected value of the 
response, and is a vector containing unknown parameters of the model. 
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The corresponding element of the row and  column in the Jacobian matrix, , is
defined by .  In this case if two columns (e.g.,  and ) are orthogonal, their 
correlation coefficient should be zero. In other words, if the two columns are independent, 
the information used to estimate  is separate from the information used to estimate .
Such an approach will solidify the inputs-output relationship which leads to enhancing the 
accuracy of analysis.  Correlated columns in the Jacobian Matrix are a consequence of 
pairwise correlated inputs.  Therefore, to decrease standard parameter errors and increase 
accuracy of input-output mapping, the pairwise correlation of inputs could be eliminated 
by implementing PCA (Fodor, 2002). 

2.2. Data Wrangling: Dimensionality Reduction using Principal Component Analysis 
(PCA)  

Data wrangling is a main step in creating a machine learning model.  During this step the 
data will be converted into a suitable format which can be used by any machine learning 
algorithm.  During data wrangling step PCA can be implemented to remove correlated 
predictors, improve algorithm performance, and reduce overfitting. 

PCA is a statistical technique often used to reduce the dimensionality of the data by 
selecting the most important features that capture maximum information about the data set. 
In other words, PCA is a technique of extracting important features (in the form of PCs) 
from a large set of available features in a data set.  The features are selected based on 
variance that they cause in the response.  During this orthogonal transformation, original 
inputs of the data set are converted to the principal components (PCs) which are linear 
combinations of the original inputs (Rollins et al., 2006).  PCA works in a way that the 
variable that causes highest variance is the first PC, the variable responsible for the second 
highest variance is considered the second PC, and so on. 

PCA can be implemented by either eigenvalue decomposition of a data covariance (or 
correlation) matrix or singular value decomposition (SVD), often after normalizing the 
data matrix (mean centering) for each procedure (Jolliffe, 2002).  In the present study, the 
eigenvalue decomposition of the data correlation matrix is used. PCA reduces the 
dimension of a given data set, X, by representing the original variables  as p 
new pseudo-variables (PCs), where .  For a given data set, X, this analysis is 
summarized in the following steps. 

Standardize original data, X, by transforming it to Z using the following equations:  

  , [2]
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Where, for  to n and to ,  is the  measurement for the  variable, 
 is sample mean for the  variable, and  is sample standard deviation for the 

variable.  

Determine the unit eigenvectors of Z.  

Determine the corresponding eigenvalues .

Rank the eigenvectors (in descending order) according to their eigenvalues.  

Select the PCs according to their eigenvalues.  

Considering the number of eigenvalues (or components) versus their fraction of total 
represented variance is used to select the appropriate number of PCs.  One might stop 
adding more PCs when little variance is gained by retaining additional eigenvalues. The 
selected PCs will be used in the main analysis. 

2.3. Cross Validation 

To assure that the results of a statistical analysis can generalize to an independent data set a
model validation technique called cross validation should be implemented.  This technique 
is mainly used to prevent overfitting in prediction problems, where a model is usually 
trained with a data set called training data and is tested against a first-seen data set called 
testing data (Refaeilzadeh et al., 2009).  According to the size of an available database and 
the desired computational time, the most suitable cross validation technique should be 
selected to be used in the modeling.  

2.4 Principal Component Regression (PCR)  

Recalling from section 2.2, the selected PCs are used as new predictors in the modeling 
procedure. All possible regression structures should be considered and examined for 
mapping the predictors  to the response variable (pavement performance). To 
estimate the values of unknown coefficients of the model, the least squares criterion of 
minimizing the sum of squared residuals (SSE) is implemented. Finally, after eliminating 
the redundant terms the reduced model is developed and selected as the best fitted model. 

2.5 Principal Component Neural Network (PCNN)  

A developed 
using artificial neural networks (ANN).  ANNs consist of a collection of connected units or 
nodes called artificial neurons which learn to perform tasks by considering examples 
(Cheng and Titterington, 1994; Fathi et al., 2019; Majidifard et al., 2019).  A three-layer 
feed-forward neural network, consisting of an input layer of neurons, with being the 
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number of principal components ( ten neurons, and an output layer 
of one neuron, which is the pavement performance, is developed using the MATLAB 
software.  The number of hidden neurons is selected to balance between the cost function 
and computational time using a trial and error procedure. 

To initiate the training process the input of each processing neuron, , is multiplied by 
a randomly assigned (and adaptable) connection weight  and the weighted inputs are 
summed and added to a threshold value, . The result crossed through a nonlinear 
transfer function (sigmoid in this study) resulted in the output of the first layer, , which 
establishes the input for the next layer.  During each iteration in the training process, the 
network adjusts its weights and biases to minimize the loss function which is the difference 
between the predicted and observed values of response variable.  The iterative procedure 
continues until the convergence criterion is satisfied.  The performance of the trained 
network is then validated against an unseen set of data (test data set). For network training 
efficiency the Bayesian Regularization algorithm is implemented.  

The output from the hidden node is given by: 

           [3] 

and the single output  is:  

                                                                                     [4] 

Then the expression of  as a function of PC becomes a complicated nonlinear regression 
function with the sets of weights, as parameters. It is assumed that: 

                                                                          [5] 

and for each ,

                                                                             [6]                                                           

so a general form of the feed forward neural network is described in Equation 7. 

                                     [7]                        

where  is bias at output layer; is weight of connection between neuron j of the 
hidden layer and output layer neuron; is bias at neuron j of the hidden layer (for 
to 10); is weight of connection between input variable i (for ) and neuron j
of the hidden layer; is pseudo input parameter i;  is transfer function of the 
hidden layer, and is transfer function of the output layer.  

For an arbitrary variable t the transfer functions used in the network, and ,
are defined in Equation 8. 

                                                                                   [8] 



GHASEMI, ASLANI, ROLLINS, WILLIAMS

2.6 Effective Variable Space  

A major shortcoming in most research articles where a predictive model is developed is the 
space (range of input variables) where the developed empirical model is valid.  The answer 
to this question is important because the behavior of such an empirical model is arbitrary 
when the inputs are not inside the n-dimensional hyper ellipsoid covering the original data 
(in this case the training data set).  A number of valid assumptions make the above 
conclusion possible. One of these assumptions is based on the normal distribution of the 
input variables and their joint distribution which is bi-variate normal (Devore, 2012).  In 
this way, any slice of such a domain (at a constant density function) will result in a n-
dimensional hyper ellipsoid.  Thus, one should perform a test to determine if the desired 
data is inside this appropriate space.  This concept is better visualized in Figure 1 (Neter et 
al., 1989).   

The n-dimensional space can be located using a number of approaches (Todd and 
Yildirim, 2007).  The problem of finding the n-dimensional ellipsoid that contains m-
dimensional data has been a subject to a thorough classical computational complexity 
analysis (Sun and Freund, 2002) and is not the purpose of this article. 

Ghasemi et al. (2019) showed that an iterative scheme where a modified dual 
optimization problem is solved numerically to find the details of the desired n-dimensional 
hyperspace (in this case an n-dimensional ellipsoid) is an effective solution to this 
problem.  This approach is only dependent on an inverse matrix step which might become 
numerically cumbersome for large data sets. 

Another approach to this problem is possible through the usage of interior-point 
algorithms as described in [Sun and Freund, (2002)].  To summarize the approach used in 
this paper, we start by defining the following optimization (minimization) problem:  

minimize             

with respect to                                                                                  [9] 

subject to           

where is the number of points given in dimensions and is the ith point. The 
unknowns are vector  and the matrix . The above problem is reformulated in order to fit 
an interior point type algorithm as follows: 
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Figure 1. Schematics of a bi-variate (normal) distribution (left) and their cross-sections 
(right) (Neter et al., 1989). 

minimize             -

with respect to     [10] 

subject to             

             

To use an available interior-point method, one should reformulate the above problem to a 
barrier function type: 

                                                                    [11]

An interior point method is used where at each step Schur-complement matrix of size 
is factorized.  

The above algorithm is used to determine the -dimensional and -dimensional hyper 
ellipsoid in the original and pseudo space of the data set, respectively.  

A summary of the proposed methodology is presented in Figure 2. For every 
performance prediction problem, the framework starts with creating an empirical data base 
using field or laboratory-produced data.  The framework continues with a data 
preprocessing and data wrangling step to make the data more appropriate and valuable for 
the main analysis which is developing the predictive models (PCR and PCNN). The 
framework confronts extrapolation with using the developed predictive models over their 
allowed variable space. The developed models can be used in further performance 
prediction, design and optimization problems, etc.  

The rest of the paper focuses on using the developed framework to define and solve two 
separate performance related problems: (1) predicting rutting behavior and (2) predicting 
dynamic modulus of asphalt mixture.  These two examples are presented, solved, and 
discussed in section 3 of this paper.  



GHASEMI, ASLANI, ROLLINS, WILLIAMS

Figure 2. A summary of the sequential tasks implemented to produce the machine learning 
based framework for predicting pavement performance. 

3.0 Results and Discussion 

The problem of predicting rutting behavior, as one of the most important performance 
related properties of asphalt mixture, is defined and solved in this section.  

3.1 Problem (1): Predicting Rutting Behavior  

3.1.1 Material and Laboratory Testing 

To create a data set for predicting rutting behavior of asphalt mixture, specimens were 
collected from different locations in the state of Wisconsin.  Eighty-three specimens from 
21 different mixtures were used to perform laboratory testing.  

Asphalt mixtures were collected directly from the back of the delivery trucks at the 
plant site, and for each asphalt mixture the corresponding asphalt binder was sampled 
during mix plant production.  Maximum theoretical specific gravity ( ) was measured 
in accordance with AASHTO T 209/ASTM D2041.  The measured was used to 
obtain other volumetric properties of the asphalt mixtures.  Specimens are compacted using 
a Superpave gyratory compactor to the following dimensions, 150 mm in diameter by 170 
mm in height. Specimens were compacted to three different air voids including 4.0%, 
7.0%, and 10.0%. Following AASHTO T 166/ASTM D2726, the bulk specific gravity 
values of specimens were determined. 

To conduct the dynamic modulus test, a 100-mm diameter by 150-mm height 
cylindrical specimen was cored out of the laboratory compacted specimens.  The 
specimens were trimmed and prepared for the dynamic modulus test. The specimens were 
tested at an effective test temperature of 36.6°C under repeated sinusoidal load with 25, 10, 
1, and 0.1 Hz loading. The same specimens were used to perform flow number tests under 
repeated haversine load with the load being applied for a duration of 0.1 second and a 
dwell period of 0.9 second.  The same effective temperature of 36.6°C was selected for the 
flow number test.  No confining pressure was applied, and the axial stress was similar to 
the deviator stress (600 kPa).  The accumulated strain at the FN was considered to be the 
response variable during the modeling procedure.   
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To study binder shear properties, the complex shear modulus test was performed using a
dynamic shear rheometer (DSR) based on ASTM D7552-09 at 36.6 C and similar loading 
frequencies used in the dynamic modulus tests (25, 10, 1, and 0.1 Hz).

It is worth pointing out that 36 6°C is selected as the temperature that all the laboratory 
tests were performed at based on climate conditions in the Midwestern area of the United 
States.  In other words, this temperature is considered as a reasonable temperature at which 
permanent deformation happens in this area, equivalent to a seasonal correction throughout 
the year.  However, what makes the machine learning based models so special is that the 
model can be retrained and modified based on any test temperatures suiting any climate 
conditions.  Once the data is fed into the framework it will learn the data pattern and the 
network will modify its weights and biases to fit the new data.

3.1.2 Step 1: Data Preprocessing  

According to the literature (Kaloush et al., 2003; Kvasnak et al., 2007; Rodezno et al., 
2010; Witczak et al., 2002), the rutting behavior of an asphalt mixture can be accurately 
estimated as a function of its component properties.  The input variables are selected 
amongst those properties that have already proven to be important in predicting rutting 
behavior.  However, their importance was also re-examined before selection by performing 
a multi-factor analysis of variance (ANOVA).  The selected material component properties 
and their ranges that are measured and used in this section are presented in Table 1.  These 
properties are selected based on the existing literature and used as the original input 
variables to predict accumulated strain value at the FN. 

To study the quality of the input variables and their interrelationships, the correlation 
analysis is performed, and the cross-correlation matrix of the input variables is obtained 
and presented by Table 2.  Within the matrix, there are 273 elements with absolute values 
greater than 0.1.  This means that the corresponding variables are not independent.  
Besides, there are 41 elements with absolute values are greater than 0.5 (elements in bold 
text). This means that several of the input variables appear to have strong correlation.  
Therefore, to eliminate the existing pairwise correlation, PCA should be implemented. 
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Table 1. Original input variables of problem (1): predicting rutting behavior. 

Variable Identity
Values in the database

Min. Max. Ave. Std. Dev.
Binder % 3.40 6.60 5.09 0.77

G* 210800.54 1163559.91 612179.57 265903.65
NMAS 12.50 25.00 15.92 3.76

Passing 3/4" 81.30 100.00 98.55 4.09
Passing 1/2" 38.30 98.80 87.13 15.20
Passing 3/8" 34.10 89.90 76.34 15.10
Passing #4 26.20 72.50 56.25 13.74
Passing #8 17.50 54.00 42.25 10.51

Passing #16 14.20 47.40 32.18 8.74
Passing #30 9.60 39.10 23.20 7.00
Passing #50 5.70 18.60 12.02 3.18

Passing #100 3.70 9.80 6.19 1.42
Passing #200 2.80 8.50 4.32 1.12

VMA 10.32 21.00 16.45 2.50
VFA 46.45 91.72 65.19 9.06
Va% 1.02 9.83 5.87 2.09

E* 395.70 2299.40 869.41 411.52
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3.1.2 Step 2: Data wrangling: Dimensionality reduction using PCA  

For the pairwise correlation matrix, the eigenvalues and their corresponding percent 
variance were calculated and presented in Tables 3 which indicates the fraction of total 
variation in the data expressed by each eigenvalue.  In Table 3 the eigenvalues were sorted 
in descending order meaning that the first eigenvalue represents the highest portion of the 
total variation, the second one has the second highest portion and so on. By selecting the 
first five PCs, 89.72% of the variation in the original data will be represented. Adding the 
sixth PC has an insignificant impact on the overall represented variation. Thus, the first 
five PCs are selected to be used as the pseudo-input variables.  

Table 3. Eigenvalues of the normalized matrix and the corresponding percent variance for 
problem (1): predicting rutting behavior. 

Component 
Number

Eigenvalue
Percent 

Variance
Cumulative 

Percent
1 7.98 46.94 46.94
2 2.88 16.92 63.86
3 1.95 11.46 75.31
4 1.54 9.05 84.36
5 0.91 5.36 89.73
6 0.58 3.42 93.15
7 0.42 2.48 95.62
8 0.26 1.53 97.15

9 0.20 1.17 98.31
10 0.15 0.89 99.21
11 0.06 0.37 99.58
12 0.04 0.22 99.80
13 0.02 0.10 99.90
14 0.01 0.05 99.95
15 0.01 0.03 99.97
16 0.00 0.02 99.99
17 0.00 0.01 100.00

PCs can be obtained using Equation 12:

[12] 

Where , the is the corresponding coefficients, the are constants, and the 
Equation 12 can be presented in matrix notation as in 

Equation 13.

[13] 
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Where 

The PCs obtained in this way will be used in the main analysis.  

3.1.3. Step 3: Model Development  

To validate the stability of the machine learning model and examine how well it would 
generalize to new data, a cross validation technique is implemented.  In this case of having 
limited amount of data (sample size of 83), a k-fold cross validation technique leads to a less 
biased model compared to other methods, because it ensures that every observation from the 
original data set has the chance of appearing in training and test sets.  K-fold cross validation 
technique works in a way that the given data set is randomly partitioned into k subsets. K-1 
of these subsets are used to train the model and the remaining subset is used to test the 
model.  The process is repeated k times and each subset can be used as test data exactly once.  

Based on the size of rutting data set (83 data points), the data set is randomly partitioned 
into three folds.  Results of the developed models are presented in this section, and their 
performance in predicting the response variable over the defined effective variable space is
examined and discussed.  

After examining all the possible regression structures, the second-order quadratic linear 
regression model fitting the measured response the best, is presented in Equation 14:

[14] 

Where 

.
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Using Equation 7 the connection weights and biases are presented 
by the following matrices.  

Using several statistics, the performance results of the PCR and PCNN models are 
discussed and presented in Table 4
defined as: 

                                                                                            [15] 

AD is an estimate of systematic model bias, is the number of input vectors, is the 
measured response value, and  is the fitted response value. The second statistical 

which shows the average closeness 
of the fitted value to the measured response value. AAD is defined as: 

                                                                                          [16] 

The third statistical component, , is the correlation of and defined as: 

                                                   [17] 

Higher  (with maximum value of 1) indicates better fit. The last statistical component is 
R-squared (R2), also known as the coefficient of determination. R2 is the portion of the 
variance in the dependent variable that is predictable from the independent variables and can 
be explicated by the fitted model. It is applicable to the PCR (training set) since it is linear in 
its parameters and not to PCNN due to the non-linear nature of its parameters.  
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Table 4. Statistical analysis of PCR and PCNN models for problem 
(1): predicting rutting behavior. 

Subset Statistics
PCR PCNN

Fold 1 Fold 2 Fold 3 Fold 1 Fold 2 Fold 3

Training

AD 0 0 0 34.99 -242.99 46.19

AAD 1497.02 1705.55 1514.59 729.41 1350.87 944.83

rfit 0.83 0.82 0.85 0.96 0.87 0.94

R2 0.69 0.68 0.72 na* na* na*

Testing

AD 626.73 -129.91 -226.1 -98.24 149.2 -169.6

AAD 2007.47 1515.74 2110.64 694.53 719.9 1037.28

rfit 0.79 0.80 0.73 0.97 0.95 0.92

R2 na* na* na* na* na* na*
          *not applicable

Researchers have developed several predictive models for rutting in asphalt mixture 
(Kaloush et al., 2003; Leahy, 1989; Ayres and Witczak, 1998; Kaloush and Witczak, 1991; 
Rodezno et al., 2010; Witczak and El-Basyouny, 2004; Kvasnak et al., 2007; Andrei et al., 
1999; ARA, 2004). A summary of the most well-known conventional models, their 
parameters and prediction accuracy expressed in R2 is presented in Table 5.

Although the reported R2 values for the Leahy, Ayres, and Kaloush models seem 
reasonable, they did not use separate data sets for training and testing possibly resulting in 
biased and over fitted models.  Comparing the results obtained from the PCR and PCNN 
models with the previous prediction models used in the AASHTO design procedure, the 
developed models are performing significantly better with   for PCR model and 

 for PCNN model.  In comparison between PCR and PCNN, one can see that 
although the PCR works well in predicting the response variable, PCNN provides the best fit 
for both training and test sets.  Measured values of accumulated strain and the fitted values are 
presented in Figure 3.  The measured and fitted values are close to the line of equality meaning 
that the fitted values by PCR and PCNN have a strong correlation with the measured one.  

Figure 3. Measured values of accumulated strain versus fitted values by PCR and PCNN. 
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Table 5. Summary of the well-known existing rutting prediction models. 

* It should be mentioned that the ability of the developed model in fitting to the empirical data should be 
expressed in terms of the  value and not the  value. 

Kaloush et 
al. (2003)

accumulated permanent 
strain

resilient strain
number of load repetitions
mix temperature (

Leahy
(1989)

accumulated permanent 
strain

resilient strain
number of load repetitions
mix temperature (
deviatoric stress (psi_
viscosity at70 (

effective binder content
(%volume)

percent air voids

Ayres and 
Witczak
(1998)

accumulated permanent 
strain

resilient strain
number of load repetitions
mix temperature (

Kaloush and 
Witczak 
(1991)

test temperature 
binder viscosity at 70 F

effective asphalt content 
(%volume)

air voids (%)

Kvasnak et
al. (2007)

+

number of gyrations
binder viscosity at test 

temperature 

voids in mineral 
aggregates

percent aggregate 
passing from sieve sizes #4, #16, 
and #200

2002 design 
guide (ARA, 
2004)

accumulated plastic strain at 
N repetition of load

resilient strain of the asphalt 
material as a function of mix 
properties, temperature, and time 
rate of loading

number of load repetitions
non-linear regression 

coefficients
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3.2. Problem (2): Predicting Dynamic Modulus  

The problem of predicting dynamic modulus, as one of the most important performance 
characteristics of asphalt mixture, is solved and discussed in this section.  

3.2.1 Material and Laboratory Testing 

To create a data set for dynamic modulus prediction, 27 specimens from nine different 
asphalt mixtures are selected and used to perform laboratory testing.  AASHTO T 
209/ASTM D2041 was used to measure maximum theoretical values of specific gravity 
(Gmm).  The measured Gmm values were used to obtain other volumetric properties of the 
asphalt mixtures.  

The samples were 150 mm in diameter and 38 mm in thickness cut from Superpave 
gyratory compacted specimens. The dynamic modulus test in indirect tension mode is 
performed at three temperatures (0.4, 17.1, and 33.8 ° ) and nine loading frequencies (25, 
20, 10, 5, 2, 1, 0.5, 0.2, 0.1 Hz) in accordance with AASHTO TP 62-07
of Test for Determining Dynamic Modulus of Hot-Mix Asphalt Concrete Mixtures.
Based on ASTM D7552-09, the dynamic shear rheometer (DSR) test was conducted to 
measure complex shear modulus of asphalt binder. The test was performed at a wide 
variety of temperatures (-10 to 54 ° ) and frequencies (0.1 Hz to 25 Hz), including the 
exact test temperatures and loading frequencies which were used in the mixture dynamic 
modulus test. It is important to mention that the present research uses a consistent 
definition of frequency, meaning that to predict the dynamic modulus value of an asphalt 
mixture for example at 4 ° and 25 Hz, one should input in the model the complex shear 
modulus of asphalt binder, , at 4 ° and 25 Hz. A summary of the nine different 

6.  Using the laboratory test results on 27 
specimens, a database of 243 data points was created to be used in further modeling. 

3.2.2. Step 1: Data Preprocessing  

According to the literature, dynamic modulus of asphalt mixture can be estimated by the 
properties of the material components (Andrei et al., 1999; Bari and Witczak, 2008;
Christensen et al., 2003; Al-Khateeb et al., 2006; Sakhaeifar et al., 2015).  The input 
variables are selected amongst those properties that have already proven to be important in 
predicting dynamic modulus.  However, their importance was also re-examined before 
selection by performing a multi-factor analysis of variance (ANOVA). The selected 
component properties and their ranges that are obtained from laboratory testing and used in 
the present study are summarized in Table 7.  

To evaluate the quality of the predictors, correlation analysis was performed, and the 
results are presented in Table 8. Fifty elements of the pairwise correlation matrix with 
absolute values of greater than 0.5 are shown in bold text indicating that there is strong 
correlation between the predictors. Therefore, to eliminate the existing correlation, PCA 
was implemented.
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Table 6. Properties of nine asphalt mixtures used in problem 
(2): predicting dynamic modulus. 

Properties
Asphalt mixtures

1 2 3 4 5 6 7 8 9

Binder PG 58-28 58-28 58-28 58-34 58-34 58-34 64-28 64-34 64-28

% Vbeff 4.20 4.10 4.10 3.90 3.50 4.30 4.20 4.00 4.60

%VMA 13.50 13.50 13.60 13.10 12.50 13.90 13.70 13.40 14.40

% VFA 70.30 70.40 70.60 69.60 68.10 71.20 70.80 70.20 72.30

Gmb 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30

Gmm 2.40 2.50 2.50 2.50 2.60 2.50 2.50 2.50 2.40

% VA 4.01 4.00 4.00 3.98 3.99 4.00 4.00 3.99 3.99

% Passing 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

93.90 96.40 87.20 93.50 95.10 96.40 94.10 94.40 94.20

77.50 84.60 73.70 76.40 83.10 87.30 83.40 82.00 80.90

% Passing #4 49.80 53.10 48.40 52.20 52.20 60.90 63.80 48.20 58.60

% Passing #8 34.40 38.40 35.10 43.60 38.80 46.90 47.10 34.90 46.00

% Passing #30 16.70 18.70 17.90 20.90 18.80 23.40 21.70 19.20 25.90

% Passing #50 10.30 10.80 10.90 11.40 9.90 12.40 11.90 11.80 13.80

% Passing #100 6.10 5.90 6.40 5.80 5.40 6.10 6.60 6.10 7.20

% Passing #200 3.60 3.30 6.20 3.30 3.50 3.40 4.00 3.10 4.00

Table 7. Original input variables of problem (2): predicting dynamic modulus. 

Variable Identity Min. Max. Ave. Std. Dev.

Cum. % retained on 3/4" 3.60 13.00 6.11 2.63

Cum. % retained on 3/8" 12.68 26.29 19.01 4.11

Cum. % retained on #4 36.20 51.76 45.86 5.32

Cum. % retained on #8 52.87 65.70 59.42 5.06

Cum. % retained on #30 74.06 83.30 79.63 2.76

Cum. % retained on #50 86.22 90.12 88.57 1.15

Cum. % retained on #100 92.81 94.59 93.83 0.48

% Passing from #200 3.07 6.18 3.81 0.89

Log |G*| -2.29 3.03 0.50 1.26

Phase angle (degree) 28.15 79.17 52.86 11.54

Vbeff% 3.50 4.60 4.10 0.29

VMA 12.50 14.40 13.51 0.49

VFA 68.10 72.30 70.40 1.08

Va% 3.98 4.01 3.99 0.01
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3.2.3. Step 2: Data Wrangling: Dimensionality Reduction Using PCA 

The eigenvalues of the correlation matrix are calculated and presented in Table 9. The 
eigenvalues and their corresponding contribution to the total variance are sorted in 
descending order. According to the table, 95.8% of the variation in the original data is 
expressed by the first five PCs. Adding the sixth PC has an insignificant impact on the 
overall represented variation. Therefore, the first five PCs are selected to be used as input 
variables in the modeling problem.  

Table 9. Eigenvalues of the normalized matrix and corresponding percent variance for 
problem (2): predicting dynamic modulus. 

Component
Number

Eigenvalue Percent Variance Cumulative Percent

1 6.02 43.02 43.02
2 3.23 23.00 66.02
3 1.97 14.10 80.12
4 1.42 10.12 90.24
5 0.79 5.61 95.85
6 0.32 2.27 98.12
7 0.11 0.78 98.90
8 0.08 0.56 99.46
9 0.06 0.39 99.85

10 0.02 0.15 100.00

The PCs are obtained using Equation12 and 13 where matrices M and n are as follows  

,  

3.2.4. Step 3: Model Development  

To examine the stability of the developed model against an unseen data set and based on 
the size of data set, a holdout cross validation technique was used.  During this procedure 
the given data set was randomly assigned to two subsets, and , called the training set 
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other statistics, AD and AAD, shows that these values are significantly higher for the 
modified Witczak, Hirsch, and Alkhateeb models, meaning that the fitted values by these 
models are not as close as the ones fitted by PCR and PCNN to the response value.  In 
other words, AD and AAD indicate that the Hirsch and Alkhateeb models are 
overpredicting and the modified Witczak model is underpredicting the response variables.  
Measured values of dynamic modulus and the fitted values are presented in Figure 4.  The 
measured and fitted values are close to the line of equality meaning that the fitted values by 
PCR and PCNN have a strong correlation with the measured one.  

Table 10. Summary of the well-known conventional dynamic modulus prediction model 

Modified 
Witczak

dynamic modulus (psi)
binder shear modulus 

(psi)
binder phase angle 

(degree)
, , cumulative 

percent aggregate retained on 

percent aggregate 
passing from sieve no.200

percent air voids
effective binder 

content

Hirsch

dynamic modulus (psi)
binder shear modulus 

(psi)
voids in mineral 

aggregate
voids filled with 

asphalt
aggregate contact 

volume

Al-
Khateeb

dynamic modulus (psi)
binder shear modulus 

(psi)
voids in mineral 

aggregate
complex shear modulus 

of binder in glassy state
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Table 11. Statistical comparison of PCR and PCNN and the existing predictive models for 
problem (2): predicting dynamic modulus. 

Model
Average difference 

(MPa)

Average abs difference 

(MPa)
rfit R2

PCR
Training 3.90 575.30 0.99 0.99

Testing -162.30 718.90 0.99 na

PCNN
Training 13.20 380.70 0.99 na

Testing 9.70 337.50 0.99 na

Modified Witczak -2460 3152.10 0.93 0.88

Hirsch 1241.60 1785.70 0.95 0.91

Alkhateeb 2844.50 2984.50 0.95 0.9

Figure 4. Measured values of dynamic modulus versus fitted values by PCR and PCNN. 

4.0 Model Validation 

The task of confirming that the outputs of a statistical model have enough fidelity to the 
output of data generating process is called model validation. The difference between 
estimated and measured values of the response (residual) is assumed to be a random error 
which is normally distributed with a mean of zero and unknown variance (Devore, 2012).
To examine the adequacy of these assumptions, two sets of residual diagnostic analyses are 
implemented and presented in Figure 5. If the residuals are random error terms, the 
residual plot should contain no obvious pattern. According to the residual plot this 
assumption is satisfied for both PCR and PCNN in rutting as well as dynamic modulus 
prediction models. The assumption of normality can be checked by a normal probability 
plot in a way that if the residual distribution is normal, their plot will resemble a straight 
line. According to Figure 6 the data points are located around a straight line. Therefore, the 
normality assumption does not appear to be violated. 
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Figure 5. Plot of the residuals for (a) PCR rutting predictive model, (b) PCNN rutting 
predictive model, (c) PCR dynamic modulus predictive model, and (d) PCNN dynamic 

modulus predictive model. 

Figure 6. Normal probability plot of the residuals for (a) PCR rutting predictive model, 
(b) PCNN rutting predictive model, (c) PCR dynamic modulus predictive model, and (d) 

PCNN dynamic modulus predictive model. 

5.0 Variable Importance Analysis (VIA)  

Once the performance model has been identified, design engineers may desire to know 
which factor (predictor variable) included in the model has the strongest influence on the 
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response variable. If variation of a specific factor causes high variability in the response, 
that effect is important relative to the model. Variable importance analysis is one of the 
global sensitivity analysis methods and is based on the functional decomposition idea by 
Sobol (1990).  He proved that one can decompose a function 

into the sum of lower dimensional 
functions. The variability of these lower dimensional functions assesses the importance of 
input variables in terms of effect indexes which indicate relative importance of the 
variables and are presented as the main effect, 

                                                                                   [19] 

and the total effect  

                                                                       [20] 

Where represents a random input (vector) variable and indicates all input variables 
except . The unique contribution of the input variable to the total variation of the 
response, y, is represented by main effect, while the total effect represents the overall 
contribution of on  which includes all interaction terms (Wei et al., 2015).  

In the case of correlated factors (inputs), the contribution of an individual input variable 
to the variation of the response should be divided into two parts of uncorrelated and 
correlated contributions.  In order to account for correlation, in the present study, factor 
values were constructed from observed combinations using a k-nearest neighbors (KNN) 
approach. Observed variance and co-variance were treated as representative of the co-
variance structure of the factors.  For rutting and dynamic modulus prediction models, VIA 
was conducted, and the results are presented in this section. Table 12 and Figure 7 indicate 
the main and total effects for the rutting prediction model.  For the developed rutting 
prediction model, percent air voids, percent passing the #200 sieve, VFA and VMA are in 
turn the most effective variables, while for dynamic modulus prediction model the most 
effective variables are in turn complex shear modulus and phase angle as presented in 
Table 13 and Figure 8.  
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Table 12. Variable importance analysis results for rutting prediction model. 

Variable Main Effect Total Effect
Va% 0.155 0.195

Passing #200 0.024 0.181
VFA 0.155 0.155
VMA 0.128 0.134

Passing #16 0.042 0.119
Passing #100 0.033 0.112

E* 0.091 0.091
NMAS 0.068 0.068

Passing #50 0.03 0.067
Passin 3/4'' 0.052 0.052
Passing #8 0.043 0.043

G* 0.03 0.043
Passing 1/2'' 0.041 0.041
Passing 3/8'' 0.035 0.035
Passing #30 0.03 0.03
Passing #4 0.02 0.025
Binder% 0.021 0.021

Table 13. Variable importance analysis results for dynamic modulus prediction model. 

Variable
Main 
Effect

Total 
Effect

Log |G*| 0.221 0.685
Phase angle 0.156 0.322

VMA 0.057 0.057
Cumulative % Retained on 1/2'' 0.052 0.052
Cumulative % Retained on 3/8" 0.052 0.052
Cumulative % Retained on #4 0.052 0.052
Cumulative % Retained on #8 0.052 0.052

Cumulative % Retained on #30 0.052 0.052
Cumulative % Retained on #50 0.052 0.052

Cumulative % Retained on #100 0.052 0.052
Passing #200 0.052 0.052

VFA 0.052 0.052
%Va 0.052 0.052

%Vbeff 0.042 0.042
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Figure 7. Variable importance analysis results for rutting prediction model. 

Figure 8. Variable importance analysis results for dynamic modulus prediction model. 

6.0 Application of the Framework 

In this section we present two applications of the developed framework in the design and 
optimization of flexible pavement.  

6.1 Application 1: Minimizing Accumulated Strain  

A proper formulation of minimizing accumulated strain in the flexible pavement design 
can be formulated based on the above framework.  The objective function is the output of 
the trained network based on the laboratory data as explained in the previous section.  The 
next step is adding the appropriate constraints to this problem.  These constraints ensure 
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that the desired point remains in the space where the trained data set was originally located 
and that the model remains reliable in this domain.  It should be noted that the ANN 
network makes a nonlinear objective function and unlike convex function, their behavior 
tends to promote multiple local minimizing points.  The problem becomes more 
complicated by the introduction of constraints.  

Since the overall optimization problem is not convex, gradient-based algorithms are 
prone to being trapped in a local optimal point. Many researchers have shown that a 
proper application of evolutionary-based algorithms for engineering-based problems can 
result in desirable solutions in a finite amount of computational time (Cai and Wang, 2006; 
He and Yao, 2002; Thiele and Zitzler, 1999).  In this study, we used a variant of an 
evolutionary-based search algorithm called mean variance mapping optimization 
(MVMO).  MVMO (Erlich et al., 2010) employs a number of operators to locate the global 
optimum of a given function.  More specifically, MVMO preserves an archive of points 
during its evolution and extracts information to proceed forward from this archive.  
MVMO also behaves adaptively so that it can explore the domain initially and exploit the 
specific domain of interest to better locate the global optimum. 

MVMO was originally designed to solve unconstrained problems. In an attempt to 
optimize truss structures with multiple constraints, Aslani et al. (2017) provided an 
adaptive penalty function which can transfer a given constrained problem into an 
unconstrained one. This strategy has been shown to be robust, especially in the context of 
the problems with many constraints involved.  In the problem of minimizing accumulated 
strain, the constraints limiting the space to an enclosing ellipsoid enter the problem through 
constraints and then are added to the objective function through the penalty approach that 
was described above. Thus, the problem is formulated as following:  

minimize                 

with respect to         

subject to                                                                   [21] 

Where is the objective function (in this case, it is the accumulated strain) which is a 
function of material property indicated by . Finally, the set of constraints are represented 
by 1. The uncertainty in the process of finding the enclosing can be 
found as a function of principal semi-axes of the ellipsoid ( ):

                                                           [22] 

Where  is pre-defined threshold in the effective variable space section.  As indicated 
before, the constrained problem is changed to an unconstrained one through application of 
a penalty function.  
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The MVMO convergence plot is show in Figure 9.  The initial point is random, and the 
algorithm is evolved through the application multiple routines that model exploration 
initially and later on exploitation to narrow down the domain of interest.  

PCNN predictive model used in the objective function along with the constraint results 
in a minimum of 1772 micro strain.  Table 14 summarizes the material properties 
associated with this solution.  The obtained aggregate gradation graph in presented in 
Figure 10. 

Table 14. Design parameters associated with minimum accumulated strain for problem 
(1): predicting rutting behavior. 

Variable Identity
Value 

Obtained 
from PCNN

Superpave Design Specification
Control Points Restricted Zone

Lower Upper Lower Upper
Binder % 4 - - - -
G* (Pa) 270,190 - - - -
NMAS 19 - - - -

Passing 3/4" 92 90 100 - -
Passing 1/2" 66 - 90 - -
Passing 3/8" 65 - - - -
Passing #4 58 - - - -
Passing #8 50 23 49 34.6 34.6

Passing #16 39 - - 22.3 28.3
Passing #30 27 - - 16.7 20.7
Passing #50 9 - - 13.7 13.7

Passing #100 4 - - - -
Passing #200 3 2 8 - -

VMA 16 13 - - -
VFA 76 65 80 - -
Va% 4 4 - -

E*(Mpa) 713 - - - -
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Figure 9. Convergence plot for minimization problem of accumulated strain. For different 
values of the threshold parameter the algorithm converges to the same output. 

Figure 10. Optimal aggregate gradation graph with 19.0mm NMAS particle size 
distribution associated with minimum accumulated strain. 

6.2. Problem 2 

The developed predictive model for dynamic modulus is used along with an optimization 
algorithm to answer the following two central questions.  

What design parameters result in the maximum ?

What design parameters result in a pre-specified ? 

One can see that the first item corresponds to the optimal design problem whereas the 
second one corresponds to the so-called inverse design.  
prediction capability, solving optimization problems based on PCNN would be more 
reliable. The optimal design problem is formulated as follows:  

maximize                 

with respect to           

subject to                                                                   [23] 
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Similar to the rutting predicting problem, the vector  represents the predictor variables,
and is the constrain equation. This optimization problem will be 
solved by implementing a penalty function that penalizes (decreases, in the case of the 
maximization problem) the objective value for each constraint regarding its degree of 
closeness/violation of the corresponding constraint.  

Compared to optimal design problem, the inverse design problem is a minimization 
problem defined as follows: 

minimize                 

with respect to           

subject to                                                  [24] 

Where is the desired dynamic modulus. A similar penalization method is used to 
address the constraint in this case as well. As mentioned in previous section, constrained 
MVMO algorithm is implemented to solve the problem. 

Figure 11 (left) shows the convergence plot for the optimal design problem solved using 
the constrained MVMO algorithm. The algorithm initiates with a random initial point 
(heavily penalized as can be seen from the graph) and the objective function increases with 
every iteration 05 is used as the threshold in Figure 9. 
Solving the maximization problem resulted in .The obtained 
optimal design parameters are presented in the first column of Table 15. The maximization 
problem is solved one more time with an additional constraint of 5000 kPa to 
find the maximum dynamic modulus one could design for without low temperature failure 
in the asphalt binder. Solving this problem resulted in .
Corresponding design parameters are presented in the second column of Table 15 as the 
optimal design 2.  

Figure 11 (right) shows the convergence of the algorithm for the inverse design problem 
which was started randomly from three different initial points.  The algorithm is terminated 
when the error reaches around 10-9.  A pre-specified of 20,417 MPa. is considered 
and the inverse problem of finding the corresponding design parameters is solved.  Due to 
the non-linearity of the function, the problem does not have a unique solution.  Three of 
the possible solutions are presented as designs 1 to 3 in Table 15.  The five sets of design 
parameters are compared with current design specification in Table 15. The percentage of 
aggregate passing by sieve size located in the allowable range of the gradation 
specification. Gradation charts are presented in Figure 12.  The obtained percentage for air 
void is 4% which is the target value of the design specification.  The obtained values for 
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VMA are slightly less than 14% for nominal maximum aggregate size (NMAS) of 12.5 
mm. The reason is that VMA values of the nine mixtures used to train the PCNN are 
slightly less than 14% (see Table 6).  As discussed in previous section, the acceptable 
range for VFA depends on the amount of traffic.  The obtained VFAs for all of the five sets 
of design are satisfied for all of the traffic categories.  

Table 15. Design parameters associated with maximum and predefined values of dynamic 
modulus for problem (2): predicting dynamic modulus. 

Identity

Optim

al 

Design

Optimal 
Design 

restricted by 
low 

temperature 
performance 

criteria

Design 

1

Design 

2

Design 

3

Design Specification

Control Points Restricted Zone

Lower Upper Lower Upper

%Passing 

from 3/4''
100.00 100.00 100.00 100.00 100.00 - 100 - -

%Passing 

from 1/2''
93.38 94.03 92.25 91.88 91.80 90 100 - -

%Passing 

from 3/8''
81.74 81.72 79.57 79.92 80.70 - 90 - -

%Passing 

from #4
53.00 53.90 55.36 55.23 54.39 - - - -

%Passing 

from #8
39.56 40.51 41.37 41.08 40.92 28 58 39.1 39.1

%Passing 

from #30
20.75 20.68 21.02 20.87 20.83 - - 19.1 23.1

%Passing 

from #50
11.66 11.60 12.08 11.81 12.02 - - 15.5 15.5

%Passing 

from 

#100

6.22 6.21 6.52 6.38 6.40 - - - -

%Passing 

from 

#200

4.10 3.85 4.38 4.58 4.56 2 10 - -

G* (Mpa) 103.13 7.81 133.51 30.20 11.82 - - - -

Phase 

angle 

(degree)

35.71 39.60 47.69 47.27 44.77 2 8 - -

Vbeff% 4.11 4.18 4.02 4.06 4.05 - - - -

VMA 13.47 13.56 13.41 13.45 13.44 - - - -

VFA 70.29 70.50 70.11 70.24 70.24 - - - -

Va% 4.00 4.00 3.99 4.00 4.01 4 - -
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Figure 11. Convergence plot for maximization (left) and inverse design (right) problems of 
dynamic modulus. For different values of the threshold parameter the 

algorithm converges to the same output. 

pavement design indicating how to apply appropriate constraints to the modeling problem. 
Other examples can be finding optimal design parameters when a specific source of 
aggregate (or specific aggregate size) is missing.  Multi-objective design problems 
(minimizing rut depth while maximizing pavement fatigue life) can also be solved with 
this framework. 

Figure 12. Aggregate gradation graphs with 12.5-mm NMAS particle size distribution 
obtained from PCNN. 

7.0 Conclusions and Recommendations  

The purpose of this study was to develop a predictive framework for pavement 
performance that could be reproducible and easy to use for every data base. The proposed 
framework in a data preprocessing step, evaluates and qualifies the input variables to use 
them in further analysis. It identifies cross correlated input variables using correlation 
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analysis and substitutes them by orthogonal pseudo-variables (PCs) using a multivariate 
technique called PCA. This transformation not only eliminates the existing pairwise 
correlation between the original inputs but also it reduces the dimensionality of the data set 
and increases the accuracy of the prediction. The framework uses pseudo-inputs (PCs) and 
develops two predictive models using multivariate regression and ANN (models are called 
PCR and PCNN respectively.) 

According to the size of the available data set, the framework implements a cross-
validation technique to prevent developing biased or overfitted models. In case of limited 
amount of data points (e.g. rutting data set) the network performs k-fold cross validation 
technique to assure that the developed model is stable against an unseen data set. Empirical 
predictive models can lead to inaccurate results under extrapolation. A simple method is 
implemented to define the effective variable space in which both predictive models can be 
used. The defined hyperspace is added as a constraint to the modeling problem.  

To illustrate the authority of the proposed framework, two separate performance 
prediction problems are defined and solved. In the first problem, the rutting behavior of 
asphalt mixture is predicted as a function of asphalt binder, aggregate, and mixture 
properties using experimental data from the flow number test. In the second problem, the 
dynamic modulus of asphalt mixture is predicted using asphalt binder, aggregate, and 
mixture volumetric properties using experimental data of the dynamic modulus test. In 
both of the problems, the developed models, PCR and PCNN, indicated satisfactory 
performance in terms of modeling the amount of permanent deformation and dynamic 
modulus value, with PCNN being significantly better in fitting the test data than the 
conventional performance predictive models. 

To indicate one application of the proposed framework in pavement performance 
prediction, the problem of finding the optimal design parameters is solved using mean-
variance mapping optimization algorithm for both of the performance prediction problems 
over their effective variable spaces. The value of 1772 micro-strain is obtained as the 
minimum accumulated strain. For the problem of predicting dynamic modulus, the inverse 
design problem of finding the design parameters corresponding to any pre-specified value 
of dynamic modulus is also solved over its effective variable space. In all the optimization 
problems the design parameters corresponding to optimum or inverse designs are obtained 
for PCNN. The obtained optimal design parameters satisfy the current asphalt pavement 
design specifications and could be used as an appropriate starting point in the design 
procedure. 

It is also worth pointing out that selection of study materials was based on the 
availability of asphalt mixtures for laboratory testing and like every empirical model the 
obtained results are based on the available empirical database. Eventually, for creating a 
more reliable predictive model, a larger database is required. However, what makes 
machine learning-based models special is that the model will be retrained and modified 
when a new data set is fed into the framework. Thus, unlike other empirical predictive 
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models there is no need to calibrate the model for each specific location based on its 
climate condition and available materials. Moreover, the proposed framework can be used 
to predict any performance-related characteristics of asphalt mixture including rutting, 
fatigue, low temperature behavior, etc. In other words, having several performance 
predictive models for asphalt mixture is no longer necessary. Besides, due to the high 
accuracy of the developed models in predicting pavement performance characteristics, the 
framework can be implemented to improve level 2 and level 3 inputs in the MEPDG 
design procedure. The proposed framework can make a stand-alone software for predicting 
pavement performance which is highly beneficial for asphalt agencies when a large amount 
of performance data is available.     

Future research should address the capability of the model in handling larger data sets. 
Considering the high accuracy of the developed predictive models, these PCA-based 
approaches are strongly recommended as appropriate modeling approaches in this 
application. Moreover, these methodologies appear to be capable of modeling asphalt 
binder chemical properties as well as finding performance volumetric relationships and 
such investigations are recommended as future studies. 
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