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ABSTRACT

For the design of underground structures in rocks, the initial stresses in the rock
mass are a pre-requisite for any analysis. The hydraulic fracturing technique is the only
practical method for determining these initial stresses at great depth. For vertical
fractures, existing solutions for calculation of stresses are satisfactory. For horizontal
or mixed-mode fractures, appropriate solutions are required.

Closed-form solutions for horizontal and mixed-mode fractures including strength
anisotropy are developed and applied to several case histories. The reinterpreted
horizontal stresses agreed with results derived from convergence measurements and they
are also consistent with field observations of excavation performance, indicating that the
stresses are correct and readily applicable to practice. Stress values obtained using the
conventional method in these cases are too low and may lead to unsafe design.

With the initial stresses correctly determined, the stability of tunnels immediately
after excavation may be evaluated. For this purpose, Closed-form solutions for the
stresses and displacements around unlined circular tunnels in cross-anisotropic rocks such
as shales are derived. For convenience of application, design charts are prepared for the
determination of stresses and displacements for given values of initial stresses and the
elastic parameters.

After the stability conditions during construction are satisfied, the long-term
deformation and consequent stress built-up in the lining are important design
considerations, so as to ensure that the structural integrity of the lining is not affected.

An experimental study is carried out to investigate the characteristics of the time-



dependent deformation of Queenston Shale. The study has shown that Queenston Shale
exhibits long-term time-deperndent deformation upon stress relief and that the deformation
is non-linearly stress dependent. This deformation is represented by a model consisting
of three Kelvin units connected in series. The predicted swelling deformations using this
model are in good agreement with the measured values in laboratory tests.

Using the theory of viscoelasticity, closed-form solutions for the time-dependent
stresses and displacements in the rock mass and the lining of tunnels driven in swelling
rocks are derived. A semi-analytical approach is then developed to account for the
increase of the values of the moduli of rock as the pressure built-up behind the lining
increases with time. It is shown that this solution taking into account stress-dependency
of swelling reduces significantly the final stresses and displacements in the lining and the
final pressure built-up behind the lining. Therefore, use of the analytical method

developed will 'ead to a more economical design.
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CHAPTER 1

INTRODUCTION

For the design of underground structures in rocks for various purposes, the states
of initial stresses in the rock mass are required. For structures located at great depths,
the hydraulic fracturing test for stress measurements is the only practical method.

For vertical fractures, the conventional theory for calculation of stresses from test
results is satisfactory and often used in practice. For mixed-mode fractures (combination
of horizontal and vertical fractures), the conventional theory for vertical fractures has
been used by adopting the arbitrary assumption taat the vertical fractures were initiated
before the horizontal ones by the first breakdown pressure. This assumption may lead
to incorrect results if the horizontal fractures are initiated before the vertical fractures.
For horizontal fractures, the only available solution is Ljunggren and Amadei’s method.
However, this mewhod leads to very high ranges of stresses which are not accurate and
cannot be adopted in design. Therefore, for horizontal or mixed-mode fractures,
appropriate solutions are required.

It is the objective of the first part of this thesis to develop and check the reliability
of a new theory for evaluation of the in s:tu stresses from hydraulic fracturing test
results. The method developed deals with different modes of fracturcs (horizontal and
vertical as well as mixed-mode fractures) and takes into account strength anisotropy,
where appropriate. The method enables the determination of which fracture (horizontal
or vertical) occurs first at the first breakdown pressure during the test, so that appropriate

stress calculation may be carried out.




The first part of the thesis consists of four chapters (Chapter 2 to Chapter 5). In
Chapter 2, a critical review of the conventional theory and other available theories for
the calculation of in situ stresses from hydraulic fracturing test results is presented.

The new theory, the Modified Stress Path (MSP) method, is developed in the
third chapter. Experimental requirements for the measurements of rock parameters
relevant to the specific stress paths in hydraulic fracturing tests are, also, discussed in
Chapter 3.

In Chapter 4, the method developed is used to reanalyze three case records and
the reinterpreted stresses are compared to those obtained from other methods and from
back analysis of field observations of underground structures.

Chapter 5 deals with the evaluation of the initial stresses in Queenston Shale at
Sir Adam Beck Niagara Generating Station Number 3 (SABNGS NO. 3) site. Most of
the fractures forred in 1984, 1990, and 1992 investigations are either horizontal or
mixed-mode fractures. The conventional theory for vertical fractures was used
previously to calculate the initial stresses in the site from the mixed-mode fractures by
arbitrarily assuming that the vertical fractures were formed before the horizontal fractures
at the first breakdown pressures. The method developed (MSP) is used to reinterpret the
initial stresses and the results are compared with those previously obtained from the
conventional theory and it is shown that the use of the conventional theory for mixed-
mode fractures may lead to unsafe design. The method developed is then used to analyze
the hydraulic fracturing test results for the 1990 and 1992 ir-vestigations. The effect of
the strength anisotropy on the solution is discussed.

The estimation of the distribution of stresses and displacements around tunnels is



of crucial importance for the design and construction considerations. Closed-from
solutions for the stresses and displacements around tunnels excavated in isotropic elastic
rocks are well known. However, for tunnels driven in cross-anisotropic rocks, only the
distribution of <tresses resulting from loading in one direction is known. The solution
for the displacement is not given in tne literature.

Part II of this thesis (Chapter 6) contains the complete derivation of closed-form
solutions for both stresses and displacements around circular unlined tunnels driven in
cross-anisotropic rocks. The solutions are given as functions of the in situ state of stress,
the anisotropic strength parameters of the rock, and the dimensions of the tunnel. The
effects of the different parameters affecting the solution are investigated. The solutions
developed are, then, used to analyze a case history and to show the importance of
adopting these correct solutions in case of tunnels driven in cross-anisotropic rocks (such
as shales). Design charts for the stresses and displacements around tunnels are also
provided in this chapter.

The problem of structural cracking of lining of tunnels under high in siru
horizontal stress and driven in swelling rocks is well recognized. The release of the in
situ stress due to excavation works acts as an initiating mechanism for time-dependent
deformation to take place. With time, the pressure behind the lining is built-up and
finally may lead to distress of the lining. The available closed-form solutions for the
tangential stresses in lining are suitable for short-term swelling and for cases where the
parameters of the rock are constant with ti: .

For the proposed SABNGS No.3 project, twin diversion tunnels will be excavated

deep in Queenston Shale. Experiments on Queenston Shale have shown that its time-




dependent swelling upon stress relief continues for a very long period of time and that
the swelling is nonlinearly dependent on the stiess applied. It is the objective of part 111
(Chapter 7 to Chapter 11) of the thesis to study and model the swelling behaviour of
Queenston Shale.

In Chapter 7, the previous time-dependent deformation studies performed on
Queenston Shale are reviewed. The results of the experimental study carried out during
the course of this thesis are outlined. The mechanism of swelling of Queenston Shale
is also discussed. Experiments devoted to study the effect of load-water sequence on the
swelling behaviour of Queenston Shale and the mechanism of swelling are presented.

Mcdelling of the long-term time-dependent deformation of Queenston Shale is
discussed in Chapter 8. The nonlinear relationship describing the change of deformation
parameters of the rock with the level of stress applied is derived. Comparisons between
the predicted and measured swelling strains of Queenston Shale samples under different
applied pressures are presented.

In Chapter 9, the theory of linear viscoelasticity is used to derive closed-form
solutions for the stresses and displacements around unlined tunnels driven in swelling
rocks idealized by a generalized 7-element Kelvin model (a spring and 3 Kelvin units
connected in series).

The closed-form solutions derived for unlined tunnels are extended to include the
case of time-rock-lining interaction in Chapter 10. In the solutions, both the rock and
the lining posses time-dependent deformation properties. The time elapsed between the
excavation of tunnel and the installation of lining is also consicered in the solutions.

In Chapter 11, a semi-analytical solution (nonlinear pressure step-wise approach)



is introduced to account for the change of the values of deformation parameters of rock
as the reactive pressure behind the lining increases with time. The method developed is
then used to evaluate the stresses and displacements in the rock and lining for the
proposed twin tunnels for SABNGS No.3 project. The effects of the different parameters
on the obtained solutions are also studied.

Finally, based on the results and conclusions obtained from each part of the

thesis, a summary and general conclusions are provided in Chapter 12.




PART I
EVALUATION OF INITIAL STATE OF STRESS
IN THE GROUND USING
THE HYDRAULIC FRACTURING TECHNIQUE

(Chapter 2-5 inclusive)



CHAPTER 2

REVIEW OF METHODS OF ESTIMATION OF
INITIAL STATE OF STRESS IN THE GROUND USING
HYDRAULIC FRACTURING TECHNIQUE

2.1 INTRODUCTION

For the rational design of underground structures in rocks for various purposes,
the magnitudes and directions of the initial stresses in the rock mass must be known.
While there are several methods available for in situ measurements of stresses, the only
practical technique for determination of stresses at great depths is the hydraulic fracturing
method. In tests where the fractures are clearly vertical, the current method of
interpretation (Hubbert and Willis 1957, Haimson and Fairhurst 1969) applies, and the
results obtained are usually unambiguous and reliable. For cases where the fractures are
horizontal or inclined or mixed mode (combination of horizontal and vertical),
appropriate solutions of the problem are required.

In the following sections, the method of hydraulic fracturing test is described and
followed by a critical review of the available methods of estimating the initial state of

stress in the ground.

2.2 METHOD OF HYDRAULIC FRACTURING TEST
The test procedure is described in “"Suggested Method for Rock Stress
Determination,” published by the International Society for Rock Mechanics (Kim and

Franklin 1987), and in the published works of Haimson who has made important




progress in the development of the hydrofracturing technique (see e.g. Haimson 1978a).
For convenience of relating the test procedure to the available methods of initial stress
calculation presented subsequently and to the theoretical development of the solutions
presented in the next chapter, the test method is described.

The first step is to select the depths in the borehole. The choice of the test zones
is made based on the fracture characteristics of recovered cores or on inspection of the
drillhole wall by an optical or acoustic logging tool. Zones that appear to be free of
fractures are usually chosen for hydrofracturing stress measurements. This implies that
the stress condition on the walls of the test hole should not exceed the stress condition
at failure, by a selected failure criterion.

The next step is to insert a borehole device consisting of two inflatable packers,

with a straddled interval as illustrated in Figure 2.1. The pressure in the straddled

interval is increased by pumping water at a constant flow rate until a critical value P_,,

the breakdown pressure (Fracture Initiation Pressure, Figure 2.2), is reached and a
fracture occurs. After maintaining the pumping for a short time to extend the fracture
beyond the borehole zone influence (about three times the borehole diameter), the
injection is stopped and the hydraulic system is sealed or “shut-in”, yielding the shut-in

pressure, P,. The pressurization cycle is repeated several times to obtain the fracture

reopening pressure, P,,, and additional measurements of the shut-in pressure.

The last step is to obtain the inclination and the direction of the induced
hydrofractures at the borehole wall. This is performed with the use of an impression

packer and a magnetic orienting instrument, Figure 2.1.



2.3 CONVENTIONAL METHOD (MAXIMUM TENSILE STRESS METHOD)
FOR INITIAL STRESS CALCULATIONS
In this method, the vertical in siru stress is considered to be one of the principal
stresses in the ground, and the fracture is assumed to develop perpendicular to the least
horizontal principal stress. The stress distribution around the borehole is given by the
Kirsch solution for stress distribution around a circular hole (see ¢.g. Obert and Duvall
1967) in an infinite, linearly elastic, homogeneous, unfractured, isotropic medium loaded

at infinity. The minimum tangential stress at the perimeter of the hole is
O = 30, - Oy 2.1)
where o, = the minimum horizontal in situ stress
6, = the maximum horizontal in sifu stress

For a hole with an intemnal pressure P,, the value of the minimum tangential stress is

Ogia = 30, - 0, - P, 2.2)
As the internal pressure is increased, the minimum tangential stress is reduced, finally
to a value of the tensile strength of the rock (T). The injection pressure at this stage is

P

.1» the breakdown pressure (fracture initiation pressure, Figure 2.2). Therefore, the

condition for formation of the vertical fracture is
30‘ - Ou - Ptl = 'T (203)

The fracture once formed will continue to propagate as long as the internal

pressure is greater than the stress normal to the plane of the fracture. When pumping




is stopped, the internal pressure decreases (Figure 2.2). The recorded value of shut-in

pressure, P, is the value for the closing of the fracture, and is assumed equal to o,,
giving
c, =P 2.9

Substitution for o, in Eq. 2.3 leads to

6, =3P, -P,+T 2.5
Equations 2.4 and 2.5 are commonly used to determine the minimum and the maximum

horizontal stresses respectively. Iu these equations, P, and P,, are measured directly

at the test zone (i.c. they represent the total pressure at the test zone). If the values of

P, and P_; are recorded at the ground surface, the value of P, the head pressure at the

depth of the test, should be added to P, and P,, values. Therefore, Egs. 2.4 and 2.5
become, respectively,

o, =P + P, 2.6)

6, = 3P,-P,+T+2P, R

The tensile strength, T, may be obtained by considering the fracture reopening pressure,

P_, (Figure 2.2), of the second cycle (Bredehoeft er al. 1976) in Eq. 2.3 using P, n

place of P,, and putting T=0
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(c) The results of stresses computed by the MSP method agree closely with those
determined by the USBM method as reported by Lo and Lukajic (1984) (see
Figure 4.2 for USBM result, Test OH2-3).

Sample calculations for the MSP method are shown in Appendix 4A, using results
of Test UN1-3 with mixed-mode fractures. The calculated stress paths are shown in
Figure 4.4. It is clear from Figure 4.4 that only stress path 1i reaches the failure
envelope Therefore, the vertical fraciure occurs first in the mixed-mode fractures and
:h~ stresses may be . - iculated accordirzly by equations corresponding to stress path II
in Table 2.1.

From Tables 4.1 and 4.2, it may be observed that for shallow depths both the
effective stress principie and total stress principle yields almost the same restits which
are in agreement with the USBM results. This occurs because for shallow dep:hs the
pore water pressure represents only a small fraction of the calculated stresses. On the
other hand, for deep depths, the maximum horizontal stresses zre higher than those
calculated using the effective stress principle. The USBM method was not conducted at
these deep locations. This emphasizes the importance of deciding which equations should

be used in estimating the in situ horizontal stresses.

4.3  CASE HISTORY 2 - IN SITU STRESS AT LAVIA IN FINLAND
1y 1985, hydraulic fracturing stress measurements were cc.aducted down to a
depth of 500 m in a vertical borehoie in Precatubrian Granodiorite at Lavia in Finland

(Ljunggren and Amadi 1989). Vertica! -actures were foun in only sevcn tests of 23

iests performed. The majoniy of the tests showed horizontal or scbhorizontal fractures.
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rocks such as granite. There is, however, a slight inconsistency in applying the principie

of effective stress in Eq. 2.11. The theory of fracture so far has been derived

consistently by consideration of total stresses in o4, o,, o4, and P,. If effective

stress principle is invoked for the solution of the problem, then the effect of transient
flow under pressure P, on the stress distribution around the borehole should be
considered and tensile strength determined in terms of effective stress. It should be noted
that hydrofracturing tests are usually completed within a few minutes and the effect of
transient flow in impermeable (intact) rock is negligible. For consistency, Eq. 2.5 should

be used in the analys's of vertical fractures in hydraulic fracturing tests.

It should be noted that the use of Eq. 2.11 for many rocks at shallow depths
resulted in o, magnitudes consistent with those determined by other techniques (see e.g.
Lo 1981). However, because these depths are shallow, the pore pressure is a small
fraction of the calculated stress and the use of either Eq. 2.11 or Eq. 2.5 would lead to

the same conclusion.

Schmitt and Zoback (1989) suggested the following equation for the calculation

of Oy:

P,, = 30,-0,+T-pP, 2.13)

where P ranges between 0 and unity. When § =0, Eq 2.13 is the same as Eq. 2.3 and
it is suitable for nonporous rocks. In the case of p =1, Eq. 2.13 is the same as Eq. 2.11
and it is suitable for porous rocks which are impermeable to the injected fluid. Because

of the difficulty of estimating the parameter P, Schmitt and Zoback (1989) did not

12



analyze any actual field data using Eq. 2.13, and this equation has not been used in

practice.

2.4 EQUATION FOR POROUS ROCK
Haimson and Fairhurst (1967) suggested the use of the following equation, for
maximum horizontal stress determination, for porous rocks into which fracturing fluid

infiltrates prior to fracture initiation:

30,-0,+T-a ll._z: P, .10
P, = .
-a

1-v

where

v = Poisson’s ratio

a = Biot poro-elastic parameter

The value of « ranges between 0 and unity. & =0 for low porosity rocks and a« =1 fcr

highly-porous compressible rocks. Due to the difficulty to measure the parameter «,

Eq. 2.14 has not been used in practice.
It should be noted that there is inconsistency between Eq. 2.10 and Eq. 2.14.

Equation 2.14 becomes the same as Eq. 2.10 when both the denominator and the
coefficient of P, in Eq. 2.14 are equal to unity. This requires that « =1 and v =0
which refers to the case of highly-porous rocks. On the other hand, Eq. 2.10 requires

that the rock is impermeable to the fracturing fluid.

Schmitt and Zoback (1989) proposed the following eonation to be used when the

13



fluid infiltrates the rock before fracture initiation:

30k—oH+T—a-11-_2—va, )
P, = (2.15)
el 1-2v
1+f-a
1-v

The value of P ranges between 0 and unity. Equation 2.15 has the advantage of the

ability to represent Eq. 2.3 when @ = =0. The higher the values of @ and B are, the
more porous is the rock. The authors used Eq. 2.15 to estimate the value of g8 for
Valders limestone from a laboratory hydraulic fracturing experimental data but the value
of P increased unexpectedly as the value of a decreased. Schmitt and Zoback did not
analyze any actual field hydraulic fracturing data using this method. It seems that the

difficulty of determining a and P limited the use of Eq. 2.15 in practice.

2.5 CORNET AND VALETTE’S METHOD

In 1984 Comnet and Valette suggested two methods for initial stress calculations.
In these methods the orientation of the fracture is not necessarily perpendicular to that
of the minimum principal stress. The first method is based on the measurements of the
instantaneous shut-in pressure for fracture planes with various dips and strikes. The
second method makes use of both shut-in pressures and reopening pressures for fractures
parallel to the borehole axis.

In these methods, the stress field is assumed to vary linearly with depth and the
lateral variation of the stress field is ignored. The horizontal stress values at a test

location cannot be predicted from only that test data but rather from a large number cf
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tests conducted at different depths. At least six hydraulic tests are required if both the
shut-in pressure and the reopening pressure are measured for each test, while a minimum
of 12 hydraulic tests are required if only the shut-in pressure is measured.

Comnet and Valette analyzed hydraulic fracturing test data at two different sites
to show the applicability of their technique. At the first test site, Le Mayet de Montagne
in France, the stress field was not previously known. Therefore it is not possible to test
the reliability of their method from the results of this site. At the second test site,
Waterloo (Wisconsin), the results were satisfactory for the minimum horizontal stress,
poor for the orientation of horizontal stresses and very poor for the maximum horizontal
stress, according to the computed standard deviations.

The disadvantage of Cornet and Valette’s method may be summarised as follows.
The method makes use of the shut-in pressure and the reopening pressure and ignores the
first breakdown pressure, usually, the best well defined quantity in hydraulic fracturing
tests. The method requires the assumption of the linearity of the stress field with depth.
The lateral variation of stress field is also ignored. In addition, a large number of tests

is required to estimate the state of stress.

2.6 COMMENTSONCONVENTIONALMETHOD OFINTERPRETATION OF
HYDRAULIC FRACTURE TESTS
It is clear from the discussion in the previous sections that the conventional
method is the only practical method to use from the previously mentioned methods.
However, it applies to the case of vertical fracturing only. The conventional method has

also been used for subvertical fractures (Haimson et al. 1989 and Haimson 1992). In
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these cases. the inclination of the fracture is ignored and the fracture is dealt with as if
it were a vertical fracture.

In the cases where both vertical and horizontal fractures are found in impression
packer tests, some researchers assume that the vertical fracture is initiated before the
horizontal fracture by the first breakdown pressure and they use the conventional theory
to estimate the horizontal stresses (see e.g. Haimson and Lee 1980; Haimson 1985).
These calculated values could be corvect if the vertical fracture is formed with the first
breakdown pressure before the horizontal fracture. However. the calculated values based
on this assumption would be erroneous if the horizontal fracture is initiated by the first
breakdown pressure before the vertical fracture.

From the previous discussion, it is clear that the conventional method should be
used only for the cases of development of unambiguous vertical fractures. It is therefore
necessary to develop a more appropniate technique suitable for the analysis of various
fractures commonly encountered in hydrofractuning tests in different types of rocks under

different stress regimes.

2.7 LJUNGGREN AND AMADEI'S METHOD

Recognizing the limitations of the conventional method, Ljunggren er al. (1988)
and Ljunggren and Amadei (1989) introduced a new method of calculation suitable for
initial stress determination when the hydrofractures are either vertical or horizontal. The
method uses Hoek and Brown's failure criterion (Hoek and Brown 1980) instead of the
maximum tensile stress failure criterion. As in the case of the conventional method, the

test location is assumed to be intact and free of fractures before performing the test. The
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essential steps of the method may be summarized as follows:

(@)

(b)

(©)

The initial state of stresses at the cylindrical surface of the test section before test
is obtained by a three-dimensional analytical solution for the stresses around a
circular hole in an infinite, linearly elastic and homogeneous continuum loaded
at infinity (Leeman and Hayes 1966). These initial stresses (before test) are
functions of the unknown maximum and minimum horizontal stresses. It should
be noted that for the case where the axis of the test hole is aligned with the
direction of the vertical principal stress, the results of the solutions by Kirsch and
Leeman and Hayes are identical (Eqs. 3.11 to 3.13 in next Chapter).

The changes of stresses are obtained by the elastic solution of a thick-walled
cylinder under internal pressure, with the external radius approaching infinity.
The final state of stress at failure is obtained by superposition of the stress
changes to the initial state of stress obtained in (a) above.

The final stresses obtained in (b) must satisfy the Hoek and Brown criterion of
failure.

The simultaneous imposition of conditions (b) and (c) leads to three useful stress

inequalities at failure, resulting in three corresponding sets of equations applicable to

vertical and horizontal fractures. Ljunggren and Amadei’s solution may be considered

as a stress path method often employed in geotechnical engineering. For convenience

of reference, the stress path designation is shown in Figure 2.3 and the stress inequalities

and the corresponding equations from which the stresses are calculated are summarized

in Table 2.1.

At failure, the tensile fracture (which is not necessarily vertical) is assumed to
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develop perpendicular to the minimum principal stress. This method requires a
knowledge of the breakdown and shut-in pressures (obtained from the hydraulic
fracturing tests), the uniaxial compressive strength, Poisson’s ratio, and the tensile
strength of the rock. To calculate the state of stress, after deciding on the type of
fracture (horizontal or vertical), substitution in the equations in Table 2.1 for a
corresponding stress path is required. In the case of vertical fractures, the solution yields
unique values of horizontal stresses as in the case of the conventional method. In the
case of horizontal fractures, however, the method does not predict a single value for the
minimum or maximum horizontal stresses but rather a very wide range of stresses. The

reasons for this are that the solution is in terms of the difference of the horizontal

stresses (6, - 0,) and the conditions are in terms of inequalities. Ljunggren and Amadei

(1989) and Bjarnason ¢t al. (1989) faced this problem in calculating the virgin state of
stress at Lavia in Finland when the fractures were horizontal. The ranges of the
predicted maximum and minimum horizontal stress were typically 15 MPa (see Tables
2 and 4 in Ljunggren and Amadei 1989, and Tables 4.3 and 4.4 in Chapter 4). The
same problem in using this method was encountered by Martin (1990) in calculatir.;; the
horizontal stresses in Granite in Southeastern Manitoba. A stress range of about 30 MPa
was obtained.

In the following Chapter, the method of Ljunggren and Amadei is modified so
that the inadmissible stresses are eliminated from the obtained range of stresses, with the
result that the calculated stress range is reduced considerably. The procedure for this
reduction technique is given. Since some rocks exhibit intrinsic anisotropy, especially

shaly rocks, Hoek and Brown’s failure criterion is modified to take into account the
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strength anisotropy in hydrofracturing calculations. The proposed experimental program
necessary for such modification and the deduction of the required parameters are
formulated. In addition, the method is extended to include the case of calculating the
state of stress when the hydrofractures are mixed-mode fractures (combined horizontal

and vertical fractures). For convenience, the method developed will be referred to as the

Modified Stress Path (MSP) method.
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CHAPTER 3

THE MSP METHOD
FOR THE INTERPRETATION OF HORIZONTAIL AND MIXED-MODE

FRACTURES IN HYDRAULIC FRACTURING TESTS IN ROCKS

3.1 INTRODUCTION

In Chapter 2, a critical review of the available methods for the prediction of in
situ horizontal stresses from hydraulic fracturing tests was presented. The advantage and
disadvantage of each method were clarified. It has been shown that the conventional
method is the only practical method for stress determination when the hydrofractures are
vertical. It has been shown also that although Ljunggren and Amadei’s method is able
to analyze horizontal fractures, it produces very wide ranges of the calculated stresses
with the result that the calculated stresses are not suitable for design.

In this Chapter, the method of Ljunggren and Amadei is modified so that the
inadmissible stresses are eliminated from the obtained range of stresses, with the result
that the calculated stress range is reduced considerably. The developed method
(Modified Stress Path (MSP) method, Hefny and Lo 1992a) enables the determination
of the in situ stresses when mixed-mode fractures (combination of horizontal and vertical)
are encountered, as recorded by the packer impression. This method takes into account
the strength anisotropy of rock. Results of hydraulic fracturing tests in several case

histories reanalyzed using the method developed will be presented in the next Chapter.



fluid infiltrates the rock before fracture initiation:

1-2v

30h‘0"+T-¢—1-:‘-’—P° (2 ls)
P, = .
<t 1-2v
1+p-a
1-v

The value of B ranges between O and unity. Equation 2.15 has the advantage of the

ability to represent Eq. 2.3 when a = B =0. The higher the values of @ and P are, the
more porous is the rock. The authors used Eq. 2.15 to estimate the value of 8 for
Valders limestone from a laboratory hydraulic fracturing experimental data but the value
of P increased unexpectedly as the value of a decreased. Schmitt and Zoback did not
analyze any actual field hydraulic fracturing data using this method. It seems that the

difficulty of determining « and P limited the use of Eq. 2.15 in practice.

2.5 CORNET AND VALETTE’S METHOD

In 1984 Cornet and Valette suggested two methods for initial stress calculations.
In these methods the orientation of the fracture is not necessarily perpendicular to that
of the minimum principal stress. The first method is based on the measurements of the
instantaneous shut-in pressure for fracture planes with various dips and strikes. The
second method makes use of both shut-in pressures and reopening pressures for fractures
parallel to the borehole axis.

In these methods, the stress field is assumed to vary linearly with depth and the
lateral variation of the stress field is ignored. The horizontal stress values at a test

location cannot be predicted from only that test data but rather from a large number cf
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to Figure 2.3. In all stress paths, the fiucture is assumed to develop with the occurrence
of the first breakdown pressure and perpendicular to the least principal stress. These
stress paths are the loci of points defined by the radial, tangential, and vertical stresses

on the borehole wall at the test location.

(a) Stress Path 1

The first possible stress path that causes a vertical hydrofracture is shown in

Figure 2.3-a. Point I in the figure represents the initial stresses after drilling the hole

and before performing the test, while point F represents the final stress state at the

formation of the fracture. At fracture formation, the following inequality of stresses

must be satisfied:
6,>0,>0, 04<0 3.3)
where: 4] is the vertical stress at the test location.

o, = 6,-2v(c,-0)

(refer to Appendix 3A for the derivation of the value oi o, at the

location of minimum tangential stress on the periphery of the

borehole assuming plane strain conditions)

o, is the overburden pressure.
v is the Poisson’s ratio
GO, are the maximum and minimum in situ horizontal stresses,

respectively.
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o is the radial stress and it is equal to the breakdown pressure (P,;)

at the time of initiation of the fracture.

O, is the least tangential stress at the periphery of the borehole

O, = 30, -0,~ P, attime of initiation of the fracture

Therefore, the failure criterion may be written as

6,-2v(0,-9,)=30,-0,-P,, *\lmoce"n'ou"’d) ﬂ,: 3.9

(b)  Stress Path Il
The other possible stress path for formation of a vertical hydrofracture is shown

in Figure 2.3-b. The corresponding inequality for this case is
6,>0,>0,, 06,<0 A.5
or,

P.,>%,-2v(0,-6)>30,-0,-P,, 3.6)

(4

The major principal stress at failure is the breakdown pressure while the minor principal
stress is the minimum tangential stress at the periphery of the hole. Therefore, the

relation between stresses at failure takes the following form;

3.7

P =30,-0,-P, *\/"'°c(3°n'°u‘P¢1) +07)




(©) Stress Path 111
Figure 2.3-c shows the possible stress path for initiating a horizontal
hydrofracture at the breakdown stage. The following inequality of stresses at fracture

formation should be satisfied:
6,>0,>0,, 0,<0 3.9
or,
P >36,-0,-P,>c -2v(o,-0,) 3.9)
In this case, the fracture is formed perpendicular to o,, the minimum principal stress at

failure. The value of the breakdown pressure, P_,, is the major principal stress. The

failure criterion becomes

P ,=0,,-2v(o,-0,) +J(m°t(rw -2v(0,-0,)) ﬂ,f) (3.10)

U-ing Eqs. 3.9 and 3.10, the difference between the maximum and the minimum
horizontal in situ stresses could be estimated when horizontal fractures are initiated. A

range of values for both stresses will be obtained. It is important to note that the stress

range is obtained by forcing the value of o, to be the intermediate principal stress. In
other words, o4 can take any value between P_,, the major principal stress at failure,

and o,, the minor principal stress.

3.2.3 Inadmissible Stresses

In the framework of solutions discussed in the previous sections, the following
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additional requirement must be satisfied. The state of stress at the circumference of the
test section before test must be below failure, otherwise premature pretest failure would
occur rendering the test results meaningless. The application of this condition will

eliminate ranges of stress calculated that are inadmissible.

3.2.4 Procedure for Elimination of Inadmissible Stresses

To eliminate the inadmissible stresses, the initial stresses before test will be

examined. The range of the initial minimum horizontal tangential stress, o,,, (location

of potential horizontal fracturing) is computed using the calculated vziues of the
maximum and minimum horizontal stresses (see Sec. 3.2.2 and Table 2.1). After drilling
the hole and before performing the test, the expressions for the stresses at the

circumference at location of potential hydrofracturing (see Figure 3.1) are

0y = 30, -0, = 0, 3.11)
g, =0 3.12)
o, = 0, - 2v(6, -0,) = 0, (3.13)
where
o, O, = the maximum and minimum in situ horizontal stress values
respectively.
0,,0,,0;, = the major, intermediate, and minor initial principal stresses

respectively at the start of the test.

c = the radial stress
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o, = the vertical stress at the test location
o, = the overburden pressure (before test hole was drilled)
v = Poisson’s ratio

From Egs. 3.11 and 3.13, it may be seen that there is a range of o4, but only one value
of o, because (6,-0,) is single-valued. The next step is to calculate the maximum
value of ¢,, (0,.,. ), which lies on the failure envelope and corresponds to the single
value of o, (Figure 3.2). The value of o,,, represents the failure condition for a point
with a minor principal stress equal to o,. Comparing this value of o, .. with the

calculated range of o, three cases would appear (Figure 3.2):

1. O, nax > the range of the values of o,
2. O\ nax < the range of the values of o4,
3. O\ max lies on the range of the values of o,

It is clear that if we have Case 1, all stresses calculated are admissible and no reduction
could be done for the calculated range of the horizontal stress. On the other hand, Case

2 is an inadmissible condition because it indicates failure before performing the test. For

Case 3, all the range of o, above the failure envelope is inadmissible (premature failure)
and has to be discarded. Only the range of o, under the failure envelope is considered
and a reduced range of o,, is obtained. The last step is to substitute the value of 0,

for o4, in Eq. 3.11. Knowing the value of the difference between o, and o,, which
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is already computed from the equation corresponding to stress path IlI in Table 2.1, new
upper limit values for the maximum and minimum horizontal stresses can be obtained.

Therefore, a narrower range of both the maximum and the minimum horizontal stresses

can be estimated.

Experience gained from the analysis of results of hydraulic fracturing tests from
several case histories (Chapters 4 and 5) has shown that Case 1 and Case 2 never appear

and only Case 3 arises. These results are consistent with theoretical considerations of
stress conditions at fracture according to the inequality of stress path III in Table 2.1.

In the following the theory behind this fact will be discussed.

At first, the value of o,_,, discussed in Cases 1, 2 and 3 above is examined.

The stress ranges of o, and o, are obtained by allowing the value of o4 at failure to

be the intermediate principal stress (refer to stress path III in Section 3.2.2 and Table

2.1). In other words, a, at fracturing can take any value between the radial stress
(=P_) which is the major principal stress at failure (the upper limit of a,) ando,
which is the minor principal stress (the lower limit of 6,). It can be concluded also that
the value of @, .. should be equal to the value of P, (the major principal stress at

failure).

Secondly, the upper limit of the initial tangential stress, o4, before the test is

examined. According to the elastic solution for thick-walled cylinder under an internal

pressure, P, (when the outer radius approaches infinity), the tangential stress at the

inner radius after applying the internal pressure (P,) is equal to -P;,. Therefore, in
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hydrofracturing tests the value of final tangential stress is less than the initial tangential

stress. The final tangential stress will be equal to the difference between the initial

tangential stress and the radial pressure at fracturing, P,,, (0, = 64, -P ;). Realizing that

the upper limit of the final tangential stress equals to P_, as discussed above, the value
of the upper limit of initial tangential stress should always be equal to twice the value of
P,,. Comparing this value of the upper limit of initial tangential stress (=2P ;) with the
value of o, .. (=P,), it can be concluded that the upper limit of o4, should lic above

the failure criterion. Therefore, Case i never appears in the solution and only Case 2
and 3, so far, could be obtained.

Finally, the lower limit of the initial tangential stress is examined. As discussed

above, the value of the tangential stress at fracturing lies between o, (which is tensile
for case of horizontal fracturing) and P_,. This means that the lower limit of the final
tangential stress is tensile and is equal to o, . Therefore, the value of the lower limit of
initial tangential stress equals to (P,,+o,). Comparing this value with the value ofo,
(=P,,), it can be concluded that the lower limit of o, should lie below the failure

envelope, because o, is tensile. Therefore, it could be concluded that only Case 3 of

the three cases discussed above will always be obtair.d. This guarantees that reduction
can always be done for the calculated range of stresses.
For convenience, the complete steps of calculatiag the initial horizontal stresses

from horizontal fractures are summarized in Figure 3.3.
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3.2.5 Which Hydrofracture Has Been Initiated First?

Until recently, the maximum tensile stress method has been the only available
technique for calculations of the state of stress from the hydraulic fracturing test results.
The validity of this method is limited to the case of unambiguous vertical fracture
formation. However, this method has been used to calculate the state of stress where
both horizontal and vertical fractures have been developed. In the calculations, it was
necessary to assume arbitrarily that the vertical fracture was initiated with the first
breakdown pressure and before the horizontal hydrofracture. Intuitively, the stresses
calculated could be correct if the vertical fractures were formed with the first breakdown
pressure before the horizontal fractures. However, the calculated values based on this
assumption would be erroneous if the horizontal fractures were initiated by the first
breakdown pressure and before the vertical fractures.

The MSP method offers a direct way of calculating the state of stress for the
mixed-mode fractures, without using any arbitrary assumptions. In the case when both
horizontal and vertical fractures are recorded by the impression packer, the first
breakdown pressure will satisfy only one o the three stress paths discussed previously
in Sec. 3.2.2. By following the three stress paths successively until the breakdown stage,
it will be found that only one stress path hits the failure envelfope at the first breakdown
pressure. The stress path thus found will define the type of fracture (horizontal or
vertical). This fracture is considered to be initiated first and the state of stress should
be calculated using the corresponding equations. It should be noted that stress path III
implies forcing the tangential stress at failure to take all the possible values that make it

the intermediate principal stress. Therefore, checking stress path III should only be
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carried out after checking stress path I and 1l and making sure that they are not satisfied.

Examples of application of this procedure will be given for the hydrofracturing
test at sites where combined fractures were encountered. In Chapter 4, this method will
be used to re-analyze the hydrofracturing test results for the Darlington Generating
Station site where mixed-mode fractures were encountered. State of stress was
calculated, previously, at these test locations using the conventional theory of vertical
fractures, Haimson 1978b. Calculations of the state of stress in the SABNGS No.3 site
where mixed-mode hydrofractures were formed will be given in Chapter 5. The obtained
results will be compared with those obtained using the conventional theory of vertical

fractures by Haimson (1985).

3.3 EXTENSION OF THE MSP METHOD
3.3.1 Modified Hoek and Brown’s Failure Criterion for Anisotropic Rocks

For Rocks which exhibit strength anisotropy, such as shales, the method of
calculating the virgin state of stresses should take strength anisotropy into account. For
shales, Hoek and Brown (1980) recognized that the strength behaviour wouid be
anisotropic. If a failure criterion is adopted, such as Hoek and Brown's failure criterion,
and considering that there are three different stress paths with different relationships
between stresses at failure, strength anisotropy indicates the existence of three failure
envelopes. To define these failure envelopes, a strictly specified series of tests matching
the condition of failure for each of the three stress paths should be performed. In the
following, the relevant tests for obtaining each of the three failure envelopes will be

discussed. Four types of tests are required to define each envelope: tensile strength test,



tests for the part of the envelope where o, is negative (tensile), uniaxial compression

test, and tests for the part of the envelope where g, is positive (compressive).

(a) Envelope For Stress Path I

In the case of stress path [, a vertical fracture is encountered. The proposed types
of tests required are illustrated in Figure 3.4. The condition at failure indicates that the
vertical stress is the major principal stress and the horizontal stresses are the minor and

intermediate principal stresses. Therefore, the tensile strength that should be adopted in
this case is that representing vertical fracturing, T,, i.e. the tensile stress is apphed in
the horizontal direction. A series of biaxial compression-tension tests or triaxial
compression-compression-tension tests would determine that part of the failure envelope

where o, is less than zero. In this group of tests, the vertical direction is the direction
of the major principal stress. The uniaxial compressive strength obtained by applying
the stress in the vertical direction ,i.e. for vertically oriented samples, o_,, is relevant
for this stress path. For the part of the envelope where o, is positive, a series of triaxial

compression tests for vertically oriented samples is required.

(b) Envelope For Stress Path 11
Stress path II also represents vertical fracturing. However, the condition at

failure indicates that both the major and the minor principal stresses are horizontal.

Therefore, 7, should also be determined to represent such a vertical fracture. A series
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of biaxial compression-tension tests or triaxial compression-compression-tension tests,
where one of the horizontal directions is the direction of major principal stress and the

other is the direction of the tensile stress, could be adopted for the determination of part

of the envelope where o, is tensile. In this case, th~ ..ue of the uniaxial compressive

strength in the horizontal direction, o_,, represents the suitable value for this envelope.

A series of triaxial compression tests on h:‘nizontally cored samples represents the part

of the envelope where o, is positive.

(c) Envelope For Stress Path Il

Stress path III represents the condition of horizontal fracturing. At failure, the
major principal stress is horizontal, while the minor principal stress is vertical. In this
case, it is clear that the tensile strength from samples cored in the vertical direction and
fractured in the horizontal direction represents well this mode of fracture. A series of
biaxial compression-tension tests or triaxial compression-compression-tension tests, where

the vertical direction is the direction of the “cnsile stress, would represent the part of the

envelope for o, < 0. The value of the uniaxial compression test for horizontally cored

samples, o,,, is appropriate for this failure condition. A series of triaxial compression

tests for horizontally cored samples is required to complete the envelope in the region

where o, > 0.

Figure 3.4 and Table 3.1 summarize the type of tests and applied stress states

required for obtaining the three failure envelopes needed to represent the strength



anisotropy of ihe rock.

(d)  Effect of Poisson’s Ratio

The importance of the effect of Poisson’s ratio on calculated stresses has been
pointed out by Ljunggren and Amadei (1989). From the analysis of test data in several
case histories (to be discussed in Chapters 4 and 5), similar effects of Poisson's ratio
have been found and the importance of this effect is confirmed. It should be noted that

for stress paths 1 and I1I, the Poisson’s effect relates to the effect of horizontal stress on

vertical strain. The correct Poisson’s ratio is therefore v, , the ratio for the effect of

horizontal stress on vertical strain, in the theory of deiormation of cross-anisotropic
media (see e.g. Lo and Hon 1979). For stress path I, Poisson’s ratio is not involved
(see Table 3.2). An example illustrating the effect of Poisson’s ratio on the calculated

stresses will be given in Chapter §.

34 APPROXIMATE METHOD FOR DETERMINATION OF PARAMETERS
FOR THE MSP METHOD
Although the experimental methods described in the preceding section to
determine the appropriate envelope will yield representative parameters, in practice, time
and other constraints may not ailow such a complete investigation. As an alternative, th
required parameters may be determined approximately by the following procedure.

Realizing that the hydrofracturing tests should be performed at locations where the rock

is intact, the parameter “s “ in Hock and Brown's failure criterion is taken equal to unity.

Only appropriate values of the parameter "m*“ are required to represent the three failure
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envelopes. This parameter "m" may be obtained from Hoek and Brown criterion by
knowing o, and T as shown in Appendix 3B. Therefore, the values of "m™ for the

three stress paths are

T

m = S A (3.14)
Th On

my - 2o T (3.15)
T, o,
T

my = ok v (3.16)
Tv Ter

Where, m,, m,, and m,, are the values of the parameter "m " for the envelopes required

to represent stress path I, II and IlI, respectively. In the case of o, = o, which

occurs quite often, we have only two envelopes, one for the vertical fractures and the

other for horizontal fractures. The values for “m" become

T,
Wzmz%Jl 3.17
h 9,

and the value of m,, is the same as in Eq. 3.16.
Figure 3.5 shows failure envelopes for the three stress paths as functions of the
strength parameters T,, T, o, and o_,. Two cases representing the commonly

observed strength behaviour of rocks are shown. The firstis for T, < T, and o, >

6., while the second is for the case 7, < T, and o, = o_. A summary of the

equations describing the possible stress paths during hydrofracturing tests, in terms of
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the representative anisotropic strength parameters, is given in Table 3.2 and Figure 3.6.
These equations may be used for stress determination for hydraulic fracturing tests in
rocks with tensile strength anisotropy. The effect of the degree of strength anisotropy

on the calculated horizontal stresses will be studied in Chapter 5.

3.5 ANALYSIS OF SUBVERTICA L FRACTURES

One of the reasons for the formation of subvertical fractures is tensile strength
anisotropy. If .t any stage of the test the tangential stress in any direction is equal to the
tensile strength of the rock in that direction, a fracture develops. The initiation of
sutvertical fracture is not only a function of the directional tensile strength but also
depends on the state of stress during testing.

To analyze subvertical fractures, it has been assumed that these fractures are
vertical and that ‘heir deviation from the vertica! results in negligible change in the
computed stress values (Haimson et al. 1989). This implies that the horizontal tangential
stress at any stage of the test was assumed equal to the actual stress normal to .he
fracture. If the inclination of e fracture to the vertical is large and/or tensile strength
anisotropy is significant, this assumption may lead to unreliable results.

A direct method to calculate the horizontal stresses from subvertical fractures is
to introduce into the analysis the component of stress normal to the fracture at the
breakdown stage and shut-in stage together with the anisotropic tensile strength of the
rock. The closed form solutions for the maximum and minimum horizontal stresses,

respectively, at the test location obtained using this analysis are

3¢



OH = ‘il Pd+Bl P3+Cl om’Dl Tn (3'18)

and
o, = B, P,+C, o, (3.19)
Where:
4
4 oM
F
2 2
B, - 3IM<+2vN
F
C. - -2N*(M?+vN?)
L =
F
2
p, - M
F

1
B. = —
L

2
c, - -1
2 m?
M = cosp
N = sinf

B = Angle between fracture plane and the vertical plane whose strike 1s parallel to the
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direction of initial maximum horizontal stress
v = Poisson’s ratio
Appendix 3C includes the complete derivation of the equations for calculating the

in situ horizontal stresses using this analysis and an example of calculations.




TABLE 3.1  Tests required to determine the failure envelope representing the strength
anisotropy in analysis of hydraulic fracturing tests
Stress Required Tests
Path
UT ucC Envelope part for Envelope part for
tensile min. stress comp. min. stress
HCS VCS BCT TC-VCS
or TCCT o
1 %4 1
L - — O3
1= 93 -
¥ =/ Tensile 037
b
HCS HCS BCT TC-HCS
or TCCT g, 0'3
I
N l
L == == {403
-/ Tensile —, ) s
a, g, /
vCs HCS BCT TC-HCS
or TCCT 5, Tensite ¢
| .
m —==— ar 9
402 ~ 3
C/5 /
o’ U‘El—j
Note: HCS Horizontally cored samples

VCS Vertically cored samples
BCT Biaxial compression-tension test
TCCT Triaxial compression-compression-tension test

TC

Triaxial compression test

UT  Uniaxial tension test
UC  Uniaxial compression test
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Case 1 Case 2

I Range of dy;

e 01 max

Figure 3.2 Different cases of the location of the range of the tangential stress
with respect to the failure envelope (before performing the test)
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Figure 3.3 Steps of calculations for horizontal fractures

1- Determine Hydraulic Fracture test data (at test location)
Pressurs at test locatioa = Pressure st G.S. + Head Pressure
Breakdown Pressurs: P,,
Shut-in Pressure: P,

2- Establish Strength Parammeters
particularly,
Tensile Strength: T,
Uniaxial Comp. Surength: ¢,
Poissons’s ratio: ¥,
Paramster ‘e’ for modified Hosk and Brown's failure criterion: My,

3- Conditions and Rciations at Failure

0, > 0,>0,, 0, <0 a-n

0, =P =0, + V (my 040, + 03) (3-2-9)
0= ’n’z"h(‘u"n)

P ={00-20(04-0)) + V {my 0, 10,:-20.(04-0)) + 0] 3-2-b)

4- Calculate the Difference Between the Major and Minor Initial Horizontal Stresses (v, =#y-0,)
Using Eq. (3-2-b) and afier substitutions and arrangement, a quadratic equation in 0y is obtained

agy +bey +c=0
Solution of this equation gives the value of ¥y

S- Calculate the Upper Bound of ¢, and ¢,
From stress condition at feilure (Eq. 3-1),
o, > 0y
Pd > Jab"l"a
Pd > u‘*ﬁ'ﬂ)"ul
o, < QP,+ep)2
Similarly,
oy < QP +30,)/2

6 Calculate the Lower Bound of ¢, and ¢,
The following condition at failure is used:
g, > 0,, whichlesdsto
o, > o +ep(l-20,)+P,)/2
oy > lo +e,(3-20)+P, )2

7- Elimination of Inadmissible Stresses '
In the 0,9, plane, the siresses sfter drilling and before test must not exceed stress
condition st failure.
From failure criterion, cakulate the maximum permissible stress
0‘.,! = Oy + ‘/ lmm O O + ’Qzl
= 0,21 (04-0) + V [my, 04{0,-2n(04-00} +047]
0y = Y040y < Op pur
o < (0, + 0)2
Similarly,
/"] < (.'-F + 3'0)/2
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CHAPTER 4

APPLICATION OF THE MSP METHOD TO CASE HISTORIES

4.1 INTRODUCTION

In Chapter 3, the proposed MSP method, to calculate the state of stress when
horizontal or mixed-mode fractures are encountered, has been developed. In this
Chapter, three case histories of stress measurements by hydraulic fracturing tests will be
reanalyzed using the MSP method. The first case history illustrates the ability of the
MSP method to delineate the first fracture at first breakdown when mixed-mode fractures
are recorded on the wall of the borehole by packer impression. The second and third
case histories show the effectiveness oi the MSP method in reducing the calculated range
of maximum and minimum horizontal stresses by eliminating the inadmussible stress
ranges. The third case history shows that the use of the MSP method in the analysis of
horizontal fractures yields reliable stress values consistent with other stress measurements
and field performance of underground structures.

The use of the MSP method in the case of anisotropic rocks will be presented in
Chapter 5 where the in situ stresses in Queenston Shale at the Sir Adam peck Niagara

Generating Station No. 3 site are estimated.

4.2 CASE HISTORY 1 - DARLINGTON GENERATING STATION
The Darlington Generating Station is a nuclear generating facility located
approximately 60 km east of the city of Toronto. For the design of the Cold Water

Intake and Discharge Tunnels, both the USBM overcoring method and the



hydrofracturing method were used to determine the in situ state of stress. A total of ten
hydrofracturing tests were conducted in a deep borehole (UN1) (Haimson 1978b).
Figure 4.1 displays the borehole stratigraphy and hydrofracture test depths. Figure 4.2
shows the results of initial stress measurements obtained from the USBM overcoring
method and the hydraulic fractunng method. The design envelopes suggested by Lo and
Lukajic (1984) are also shown in Figure 4.2. It is clear from depths where both the
USBM overcoring method and the hydrofracturing method were conducted that the
hydrofracturing test results, caiculated by Haimsor (1978b) using the conventional
method, are in good agreement with the USBM overcoring resul...

Five of the ten hydrofracturing tests produced unambiguous vertical fractures,
and four tests developed mixed-mode fractures. Only one test initiated an unambiguous
horizontal fracture. Figure 4.3 shows the packer impressions for some of these tests
(Haimson 1978b). The calculation of the initial stresses were done only for th ¢ tests
that produced vertical fractures or mixed-mode fractures. Therefore, nine tests were
used in the computations. The data for the test where an »nambiguous horizontil
fracture was formed, UN1-1, are not available and they were not included by Haimson
in his report to Ontario Hydro. The conventional method was used in the analysis of the
nine tests, although this method is suitable only for unambiguous vertical fractures. The
use of the conventional method for the combined fractures implies that it was assumed
that the vertical fractures were initiated by the first breakdown pressures and before the
horizontal fractures. The calculated values would be erroneous if the horizontal fractures
were iniiiated before the vertical fractures.

The measurement. are reinterpreted using the proposed MSP method. The field
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tensile strengths obtained from the hydrofracturing tests (as the difference between the

first breakdown pressure and the reopening pressure, Eq. 2.9) are used in the analysis,

as used by Haimson in 1978, so that stresses calculated may be coinpared. The uniaxial
compression strength and Poisson’s ratio for the Verulum Shaly Limestone, the Gull

River Limestone, and the Granitic Gneiss were reported by Lo (1978), while the uniaxial

compression strength and Poisson's ratio for the Lindsay Limestone were obtained by Lo

(1981). The strength parameters for the Bobcaygeon Limestone are not available. Only

one hydraulic fracture test was conducted in that rock layer, 1efer to Figure 4.1. In the

calculations for that tc.t, it is assumed that this rock has the same strength parameters
as those for the Lindsay iimestone. Table 4.1 shows a comparison between initial
stresses obtained by the MSP method and those obtained by Haimson (1978b) and
reported in Haimson and Lee (1980) using the conventional method in terms of effective
stress (Eq. 2.12). Table 4.2 shows a comparison between the stress values calculated by
the MSP method and the conventional method in terms of total stress (Eq. 2.7).
From Table 4.2, the following observations may be made:

(a) Using the MSP method, it is found that the four tests with mixed-mode fractures
satisfy Stress Path 11. Stress Path II is for vertical fractures. This indicates that
the vertical fracture is formed with first breakdown pressure and before the
horizontal fractures occurred.

(b)  The assumption that the vertical fracture was initiated with the first breakdown
nressure before the horizontal fracture is correct for these tests. It should be
noted that in other case histo:ies to be presented in the next chapter, horizontal

fracture occurs first in mixed-mode fracture, according to the MSP method analysis.



(c) The results of stresses computed by the MSP method agree closely with those
determined by the USBM method as reported by Lo and Lukajic (1984) (see
Figure 4.2 for USBM result, Test OH2-3).

Sample calculations for the MSP method are shown in Appendix 4A, using results
of Test UN1-3 with mixed-mode fractures. The calculated stress paths are shown in
Figure 4.4. It is clear from Figure 4.4 that only stress path 1f reaches the failure
envelope Therefore, the vertical fraciure occurs first in the mixed-mode fractures and
:h» stresses may be . - (culated eccordirzly by equations corresponding to stress path 11
in Table 2.1.

From Tables 4.1 and 4.2, it may be observed that for shallow depths both the
effective stress princip'e and total stress principle yields almost the same restlts which
are in agreement with the USBM results. This occurs because for shallow depihs the
pore water pressure represents only a small fraction of the calculated stresses. On the
other hand, for deep depths, the maximum honzontal stresses 2re higher than those
calculated using the effective stress principle. The USBM method was not conducted at
these deep locations. This emphasizes the importance of deciding which equations should

be used in estimating the in situ horizontal stresses.

4.3 CASE HISTORY 2 - IN SITU STRESS AT LAVIA IN FINLAND

2 1985, hydraulic fracturing stress measurements were cc.aducted down to a
depth of SO0 m in a vertical borehoie in Precaiubrian Granodiorite at Lavia in Finland
(Ljunggren and Amadi 1989). Vertica! -actures were foun in only sevcn tests of 23

tests performed. The majoniiy of the tests showed honizontal or scbhorizontal fractures.
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The stresses reported in the rock are shown in Tables 4.3 and 4.4. The use of Ljunggren
and Amadei’'s method yielded a large stress range of both the maximum and minimum
horizontal stresses. This calculated stress range was in the order of 20 MPa in most tests
when the laboratory tensile strength, obtained from hydrofracturing tests on core
specimens, was used in the analysis. The calculated stress range was about 15 MPa in
most tests when the field tensile strength was used in the analysis. It is difficult to use
results with such a wide range of values in design.

Using the data from Ljunggren and Amadei (1989), the results of hydrofracturing
tests in which honizontal fractures were encotiutered are reanalyzed by the MSP method.
Table 4.3 shows a comparison between the results obtained by Ljunggren and Amadi and
those obtained by the MSP method, using the tensile strengths obtained from the
laboratory. Table 4.4 gives a similar comparison for stresses -alculated using the field
hydrofracturing tensile strength. From Tables 4.3 and 4.4, it is clear that siress ranges
determined have been considerably reduced by the MSP method. The reduction is from
about 20 MPa to about 6 MPa, in the case of using the laboratory tensile strength, and
from about 15 MPa to about 2 MP. for the case of using the field tensile strength. For
example, the siress range obtained by Ljunggren and Araadei for the test at depth 116.5
m was 13 MPa (Table 4.4) whereas that obtained by using the MSP method is only 2.4

MPa.




4.4 CASE HISTORY 3 - IN SITU STRESS AT THE AECL UNDERGROUND

RESEARCH LABORATORY, MANITOBA

To examine further the applicability of the proposed MSP method in estimating
the initial state of stress from horizontal hydrofractures, the hydraulic fracturing test data
at the AECL Underground Research Laboratory in Manitoba, (Martin 1990) are
reanalyzed in this section.

The hydraulic fracturing technique was one of several methods used to determine
the state of stress surrounding the AECL Underground Research Laboratory (URL)
acress shaft (Martin 1990). For relatively shallow depths, where the induced fractures
were subvertical, the ccnventional method was used in the analysis. The results obtained
are in good agreement with those obtained from the USBM overcoring method.
However, at greater depth below Fracture Zone 2, the conventional method could not be
used to analyze the hydrofracturing test data because the induced fractures in both test
holes (URL6 and PHI1) were subhorizontal. The method of Ljunggren and Amadei
(1989) was employed to compute the stresses and the calculated values of the maximum
horizontal stresses presented by Martin (1990) are shown in Figure 4.5. The ranges of
the horizontal stresses determined were large, in the order of 30 MPa (the magnitude
generally varying from 80 to 110 MPa). In addition, these values were considerably
higher than those determined from convergence measurements which were carefully
performed. If the values computed by this method were true, it would suggest that the
horizontal excavation at the 420 level shculd experience extreme stability problems
(Martin 1990).

Using the parameters obtained from a comprehensive laboratory testing program
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and published by Martin (1990), the results of hydrofracturing tests in which honzontal
fractures were encountered are reanalyzed by the MSP method. Table 4.5 shows the
values of the horizontal stresses calculated before and after applying the proposed
reduction technique. It is clear that after eliminating the inadmissible stresses, the stress
range decreases from around 30 MPa to 2 MPa. The horizontal stresses determined
using the MSP method and those calculated from convergence measurements are
compared in Figure 4.6. It is clear that the results from both methods agree well from
the 391 to 428 levels. More detailed examination of the results follows.

Referring to Figure 4.6, during the excavation of the shaft below Fracture Zone
2, failure of the wall was noticed and continued until the excavation reached Fracture
Zone 1.9. This failure resulted in a V-shaped notch to a depth of 0.4 m beyond the
excavation design perimeter. The development of the sidewall V-shaped notches was
also observed at depths between 340 and 350 m. In addition, a horizontal excavation
performed at the 420 level experienced crown spalling and the formation of V-shaped
notches in the crown.

With this information, it is possible to compare the stability conditions as implied
by the reinterpreted stresses with the field observations of the shaft and horizontal
excavation.

Using the horizontal stresses determined (Table 4.5), the maximum stresses may
be computed at appropriate depths to be compared with the uniaxial compressive
strength. The uniaxial compressive strength of the grey granite ranges between 147 and
198 MPa with a mean value of 167 MPa.

The maximum compressive tangential stress on the wall of the shaft obtained from



test at depth 336.6 m ranges between 204 to 210 MPa. Comparing this value with the
values of the uniaxial compressive strength of the rock, failure of the shaft wall around
this depth is predicted. The depth of failure is also consistent with the theoretical value
of 0.6 m from elastic solution.

At depths between 391 and 428 m, the maximum compressive tangential stress
calculated from the corresponding tests ranges between 165 to 177 MPa suggesting that
the rock at these locations is close to failure. This is in agreement with field observation
that no local instability was reported.

At a horizontal excavation at the 420 level, the tangential stress at the crown was
calculatey using the lithostatic stress and the maximum horizontal stress obtained from
the nearest hydraulic fracturing test at depth 425.1 m. The value obtained ranges
between 192 to 200 MPa suggesting that the horizontal excavation at the 420 level would
experience some crown spalling. This prediction is consistent with field observation that
crown spalling and formation of V-shaped notches in the crown occurred.

It is evident, therefore, that the reinterpreted stresses are comparable not only to
those deduced from the results of convergence measurements but are also consistent with

field observations.

4.5 CONCLUSIONS

A method of analysis of hydraulic tracturing test dealing with different modes of
fractures has been developed (Chapter 3). The method deals with horizontal and vertical
fractures as well as mixed-mode fractures and takes into account strength anisotropy,

where appropriate. The method includes the following features:

§7



(@)

(b)

©)

For vertical fractures, the determined stresses are essentially identical to the
conventional maximum tensile stress theory.

For horizontal fractures, the range of horizontal stresses computed is much
reduced so that the stresses determined are appropriate for engineering design.
For mixed-mode fractures, the method follows the stress paths during the test and
determines whether the horizontal or the vertical fracture occurs first, so that
appropriate stress calculations may be carried out.

Results of hydraulic fracturing tests in three case histories have been reanalyzed

by the MSP method. From the results of the analyses, the following conclusions may

be drawn:

0]

)

3)

For vertical, horizontal, or a combination of vertical and horizontal fractures, the
method developed delineates the relevant stress path of the hydraulic fracturing
tests from which the rock stresses may be determined. For mixed-mode
fractures, it is possible to determine whether the vertical or the horizontal fracture
occurs at the first breakdown pressure so that the stresses may be computed using
the appropriate solution without uncertainty.

Application of the MSP method to the analysis of test data reduces considerably
the stress range computed, to the extent that they are adequate for engineering
purposes.

The reinterpreted horizontal stresses in the AECL Underground Research
Laboratory are not only consistent with results deduced from convergence
measurements but are also consistent with field observations of excavation

performance.
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The method of analysis presented is, therefore, of value for the determination of
rock stresses in hydraulic fracturing tests for the design of underground structures in

rocks.
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Figure 4.1 Borehcle stratigraphy and hydraulic fracturing test depths
TEST HOLE UN-1 (DARLINGTON GENERATING STATION)
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a- UN1/7
Vertical Fractures

h- UN1/10
Mixed-Mode Fractures

c- UN1/2
Mixed-Mode Fractures

Figure 4.3  Example of packer impressions (Darling.on G. S.): a- typical vertical
fracture in Gneiss; b, ¢, and d- mixed mode fractures in Limestone (after

Hamison 1978)

d- UN1/9
Mixed-Mode Fractures
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CHAPTER §

EVALUATION OF THE INITIAL STATE OF STRESS

IN QUEENSTON SHALE AT SABNGS NO.3 SITE

5.1 INTRODUCTION

For the design of the Niagara Hydro Power Development project (NHPD), twin
tunnels, each of approximately 13 m diameter and 10 km long are required (Semec et al.
1986). This project has also been referred to as Sir Adam Beck Niagara Generating
Station No.3 (SABNGS NO.3). The tunnels will be mainly in Queenston Shale, a thinly-
bedded mudstone which exhibits important time-dependent deformnation (Lo 1986; Lo and
Lee 1990). In addition, the Powerhouse will be located underground, in the Qucenston
Formation (Rigbey ¢r al. 1992).

To determine the initial state of stress at the site, programs of hydraulic fracturing
tests were carried out in 1984, 1990, and 1992.

All the hydraulic fracturing tests conducted in 1984 and the majority of tests
conducted in 1990 and 1992 induced either horizontal or mixed-mode fractures (a
combination of horizontal and vertical frac.ures). The rer. .. ing tests performed in 1990
and 1992 produced either vertical or subvertical fracture< -+ “he acker impressions were
not taken.

The MSP method developed in Chapter 3 and presented by Hefny and Lo (1992a)
is adopted for stress determination in Queenston Shale since the method is capable of
analyzing horizontal and mixed-mode fractures. This method takes into account tensile

strength anisotropy, a dominant characteristic of weakly bedded shales.
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5.2 LOCATION AND GEOLOGY

The locations of the ten boreholes for hydraulic fracturing tests have been chosen
so as to cover most of the area that will be occupied by the proposed diversion tunnels
and powerhouse. Figure 5.1 shows the location of the holes and the alignment of the
proposed diversion tunnels. Tests in boreholes NF3 and NF4 were conducted in 1984
by Haimson. Tests in the other boreholes shown in the figure were carried out in 1990
and 1992 by Acres-Golder team.

The upstream segment of the diversion tunnels would start in an east-west
direction from the edge of the Niagara River and extends inland in a curved path, Figure
5.1. The tunnels at that part wouid be at a distance 0.6 Km or less from the Niagara
River. Two test boreholes, M.'3 (1984) and NF32 (1990), are located along that
proposed path. The central segment of the tunnels would then run in a north-south
direction and then change direction and cross under the buried St. Davids Gorge rising
in a north-east direction to the outlet location. Three borekoles, NF4 (1984), NF4A
(1990), and NF28 (1990), are located along the noriii-south part of the proposed tunnels.
In borehole SD6 stress measurements extended below the bottom of the gorge. Stress
measurements were also conducted in borehole NF30 located at the edge of the S:.
Davids Gorge. One borehole, NF33, is located at the outlet of the proposed diversion
tunnels.

In the area of generation facilities, the powerhouse complex would be located
between the existing PGS reservoir and the Niagara River Gorge. The penstock tunnels
would extend from the headworks in the PGS reservoir in an East-West direction to an

underground powerhouse oriented with its long axis approximately parallel to the river.
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Stress measurements were performed in two boreholes, NF34 and NF35, in that arca in
1990. In 1992, stress measurements were performed in berchole NF38 1in the area of
generation facilities near the Niagara River gorge, and in borchole NFF31 which is more
than half kilometre away from the gorge and lies between boreholes NF3S and NF33.
A detailed bedrock stratigraphy down to the Queenston shale, the deepest

formation intersected by the holes, is given in Figure 5.2.

5.3 A{ALYSIS OF TESTS PERFORMED IN 1984 INVESTIGATION

In 1984 investigation, a total of 7 tests were carricd out within the Queenston
Shale Formation (Semec er al. 1986; Haimson 1985). Four tests were conducted ir
borehole NF4 and three tests were conducted in borehole NF3. The test data are shown
in columns (1) to (6) of Table 5.1. Figure 5.3 shows the packer impressions for the
different tests in Queenston Shale except for test no. 18 which was not included by
Haimson in his report to Ontario Hydro in 1985. It was stated, however, that the
fracture was horizontal. It may be seen from Figure 5.3 that three tests (Test Nos. §,
8 and 20) gave unambiguous horizontal fractures, while the remaining three tests yielded
mix>d-mode fractures. None of the seven tests yielded unambiguous vertical fractures.
It is clear, therefore, that the "conventional” method, which deals with vertical fractures
only, cannot be used in the analysis of any of tuese tests. However, Haimson calculated
the values of the horizontal stresses in the rock from tests having mixed-mode fractures
by assuming that the vertical fractures were initiaicd before the horizortal fractures by

the first breakdown pressure. This assumption could lead to reasonable results if the

vertical fractures were initiated before the horizontal fractures, as in the case of
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Darlingtor Generating Station (Hefny and Lo 1992a). On the other hand, it could lead
to unreliable results if the horizontal fractures occurred first (Lo and Hefny 1993). In
the following sections, the MSP method which does not require this assumption is applied

to calculate the initial state of stress in Queenston Shale.

5.3.1 Rock Parameters Used in Analysis
(a) Tensile strength

If the tensile strength for the Queenston Shale is taken as the difference between
the first breakdown pressure and the reopening pressure (columns 4 and 6, Table 5.1),
the values would lie between 7.3 and 12.3 (Table 5.1), amounting to one third to one
half the valve of the uniaxial compressive strength. These values are considered to be
very high and not representative. The values obtained in the laboratery from the splitting
tensile strength test (Lee 1988) are used in the calculations. Two vertically onented
samples and one horizontally oriented sample were tested. The vertical samples failed

across the bedding planes, while the horizontal specimen failed parallel to the bedding

planes. The tensile strength for the horizontal direction (7,) was found to be 4.6 MPa,

while that in the vertical direction (T,) was 3.4 MPa. The ratio of T,/7, is 1.35.

(b) Uniaxial compressive strength

The value of the uniaxial compressive strength (o) is obtained from 1987

investigation in borehole NF4A (L.ee 1988) performed to study the behaviour of the

Queenston Shale for the SABNGS NO.3 project. The values for the uniaxial




compressive strength in both the horizontal (o) and the vertical (o_) directions were

found to be 25 MPa.

(© The empirical constant (m)

Methods for the determination of strength parameters tak:ng into account strength
anisotropy in the modified Hock and Brown failure criteria have been discussed in detail

in Chapter 3 and by Hefny and Lo (1992a). From the uniaxial compressive strength and

the tensile strength, the parameter "m", in the modified Hoek and Brown criteria may
be determined (refer to Section 3.4 in Chapter 3). The values of "m" corresponding to

the three stress paths (I, II, III') shown in Figure $.4 are:

o T

m, = v _"h 5.1
Th ocv

my = S D (5.2)
T, o,

mw - oCk _ Tv (5.3)
Tv ocf.

For the case where o, = o_, = ¢, , the value of m, is equal to the value of m, and is
given by:

T,
m, = m, = Te Ta 5.9)

T e

(4

Substituting the values of o_, T, and T, in Eqgs. 5.3 and 5.4, the values of "m”

are found to te:




m, = m, - 5.25
and,
m, = 7.22

(d)  Poisson’s ratio
Methods for the determination of deformation parameters in orthotropic elastic
rock have been presented by Lo and Hont (1979). The relevant Poisson’s ratio for the

analysis of hydraulic fracturing tests is the Poisson's effect of horizontal stress on vertical

strair, v,,. The average value of v,, from resuits of uniaxial compression tests was

found to be 0.40.

5.3.2 Values of the Calculated Stresses

The results of stress computation for the seven tests using the MSP method are
summarized in Table 5.1 (columns 9 and 12). For comparison, the stresses computed
before the reduction of inadmissible stress state are also shown (columns 8 and 11).
These latter values would correspond to the method of computation by Ljunggren and
Amadei (1989). Values of stresses reported by Haimson (1985) are shown in columns
(7) and (10) under the heading of maximum tensile stress theory (MTS).

In cases of having ouly horizontal fractures, the relations required to be satisfied
for nitiating such fractures are those for stress path 1J1 in Table 3.2. In the cases of
mixed-mode fractures, it i1s not known which fracture occurred first. Therefore,

substitutions in the equations of all the possible stress paths are required. Only one stress
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path will satisfy the stress conditions defined by the tailure envelope. This vernified stress
path indicates the type of fracture initiated by the first breakdown pressure betore the
other fractures occurred.

In all of the three tests where mixed-mode fractures occuried (NF4-6, NF4-7, and
NF3-19, see Figure 5.3), computations show that only stress path Il which is
responsible for formation of horizontal hydrofracture is verified for ¢ach test. Ths
observation indicates that the first breakdown pressures are responsible for imtiating
horizontal hydrofractures in all of the seven tests. As an example, the calculations
required to check the different stress paths and to compute the state of stress from test
NF4-6 are given in Appendix SA. Figure 5.4 shows the difterent possible stress paths
for test NF4-6. It is clear that stress path III is the only stress path that satisfies the
failure critena.

It may be seen from columns 8 and 9 (Table 5.1) that the ranges of the computed

minimum horizontal stress o, for all the seven tests have been reduced from about 9

MPa to about 1 MPa. A similar observation may be made for the maximum horizontal
stress (columns 11 and 12). It is evident, therefore, that the MSP method not only
delineates the mechanism of failure in cases of mixed-mode fractures but also leads to
narrow ranges for the maximum and minimum horizontal stresses computed. It 1s
important to observe that the stresses calculated by the conventional method (column 7
in Table 5.1 and Figure 5.5) are much less than those calculated using the MSP method.
Thus the arbitrary assumption that the first breakdown pressure initiates a vertical
fracture first leads to stresses computed that are too low, which in turn may lead to

unsafe design, if such stress values are adopted.
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§.4 ANALYSIS OF TESTS PERFORMED IN 1990 INVESTIGATION

In addition to the seven tests that performed in 1984, a total of 39 tests in 8
boreholes were performed in Queenston Shale in 1990 investigation. The locations of
the boreholes NF28, SD6, NF30, NF32, NF33, NF4A, NF34 and NF3S are shown in
Figure 5.1. A variety of fractures were encountered in these tests, including
unambiguous vertical fractures, unambiguous horizontal fractures, subvertical fractures,

and mixed-mode fractures. The results of the hydraulic fracturing tests are analyzed

using the MSP method.

5.4.1 Determination of Strength Parameters

To determine the strength parameters for the modified Hoek and Brown failure
envelope, a test program was performed. The samples tested were recovered from
depths below El. 40 m in borehole NF4A and below El. 110 m in borehole NF35(J1) and
NF37(J2) corresponding generally to the depths where the majority of hydrofracturing
tests were performed. The tests performed include triaxial compression tests, unconfined
compression tests, direct tension and Brazilian tests. These tests were performed for
both vertically and horizontally cored samples in order to determine the anisotropic
parameters. A summary of the test requirements for the determination of strength
parameters representing the different stress paths in the hydrauvlic fracturing tests was
given in Figure 3.3. Figure 5.6 shows the results of the strength tests performed on the
vertically cored samples. In this figure. the results of the Brazilian tests with tensile

fracture across bedding planes are used to represent the tensile strength. Therefore, the

results in this figure are relevant to stress path I. The vanation of the results reveals the
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effect of the shale conteat on the values of the strength parameters.  Therefore.,
correlation between the shale content and the strength parameters governing the failure
envelope is necessary. Figure 5.6 shows two failure envelopes. The upper curve could

be represented by the following parameters:

o, =37MPa
T, = 4.2 MPa
m, = 8.70

5 =1

These parameters were taken to represent the {faillure envelope tor samples with shale
content < 60 %. They represent the upper bound of parameters for the failure
envelopes.

The lower envelope is taken to iepresent the failure for samples having shale
content > 70%. This represents the lower bound of the strength parameters. The

strength parameters values for this envelope are:

o, = 12.5MPa
T, = 3.2 MPa
m, = 3.65

s =]

To obtain the parameters relevant io stress paths If and HI, results of the tenstle strength

in the vertical direction (where failure is along the bedding planes) and the uniaxial

compressive strength for hornizontally cored samples should be considered.
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Results of direct tension test showed that for samples of shale content less than 60%, the

ratio of tensile strength normal and parallel to the bedding planes (7,/T,) equals to 4.2.

This ratio is considered representative for the degree of tensile strength anisotrony for

Queenston Shale.

The uniaxial compression tests for vertically and horizontally cure i samples
having the same shale content indicated that the uniaxial compressive strength in the
vertical and horizontal directions are the same. However, because of the tensile strength

anisotropy, the modified Hoek and Brown’s criterion is anisotropic and Case (b) in

Figure 3.4 appears.

Substituting the values of T,, T,, and o, into Eqs. 5.3 and 5.4, the values of

"m" are found to be:
(a) For shale content < 60%

m =m, = 8.7

my, = 37

(b) For shale content > 70%

m, = m,; = 3.65
my, = 16.4

The value of Poisson’s ratio for the effect of horizontal stress on vertical strain (»,) is
determined from the results of the uniaxial compression tests as 0.44.

The shale content in depths between EIl. 25 m and El. -20 m, where most of the

hydraulic fracturing tests were performed in borehole NF4A, ranges between 30% to
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70% and typically 60%. These values are also representative of the shale contents 1n
range of depths where hydraulic fracturing tests were performed in borchole NF28.
Therefore, the strength parameters obtained above for shale content < 60% are used
in the analysis of the hydraulic fracturing tests performed in these boreholes. The shale
contents at depths between El. 85 m and El. 45 m, where all the hydraulic fracturing
tests in the generating facilities area in boreholes NF34 and NF35 were performed, are
generally higher than those along the tunnel alignment. Therefore, the strength
parameters for shale content = 70% are used in the analysis of hydraulic tracturing tests

in the generation facilities area.

5.4.2 Discussion of Results

Typical results of the pressure-time and flow-time records of one of the hydraulic
fracture tests are shown in Figure 5.7. The water was pumped at a constant flow rate
of about 0.5 gal/min leading to increase in pressure in the test section. When a fracture
was initiated, a sudden pressure drop occurred. Pumping was stopped and the pressure
decay was monitored until a stable pressure was attained. The test cycle was then
repeated.

Results of tests that are apparently unreliable, including: (a) those yielding
unambiguous vertical fractures but giving negative maximum horizontal stress values, (b)
those giving maximum horizontal stress less than the minimum horizontal stress (c)
those giving reopening pressures higher than the first breakdown pressure, are discarded.
These tests constitute about 30% of all the tests performed.

Table 5.2 summarizes the results of stress calculations using both the conventional
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(MTS) method and the MSP method (columns 6 and 8; 7 and 9). It has been shown
(Hefny and Lo 1992a) that th. conventional method can be applied only for the analysis
of vertical fractures, therefore only stress values obtained from vertical or mixed-mode
hydrofractures that satisfy stress path I or II are shown in Table 5.2. It may be observed
from Table 5.2, in cases of horizontal fractures or mixed-mode fractures which satisfied
stress path III, that the ranges of the minimum and the maximum stresses calculated from
each test are almost single values (the range is mostly 0.2 MPa). This is a direct result
of MSP method which takes into account strength anisotropy and elimination of

inadmissible stresses.

543 ional St Regim he Si n of the Pr d Tunn

Stre>s measurements conducted in boreholes along the straight North-South central
portion of the tunnels, are in locations away from the existing topographic features. The
initial stress values obtained from tests in these boreholes would be representative of the
general initial stress regime at the site. These boreholes include NF4 (1984), NF4A
(1990) and NF28 (1990), refer to Figure 5.1.

The distributions of maximum and minimum horizontal stresses (o, and o,,

respectively) with elevation are shown in Figure 5.8. The vertical stress, o, calculated

as overburden pressure is also shown. From Figure 5.8 it may be observed that:

(1) The horizontal stresses in the rock are substantially higher than the vertical stress, as
generally known in Southern Ontario.

(it) The results of the 1984 tests, when correctly interpreted, agree well with the results

of the 1990 investigations.
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(iii) The computed ranges of stresses are very small, so that there is no difficulty of

selection of values of o4 and o, for design.

(iv) Both the maximum and minimum horizontal stresses increase approximately linearly
with depth. The maximum horizontal stress increases from 14.5 MPa at El. 86 m to 24
MPa at El. -20 m. The minimum horizontal stress increases from 9 MPa at El. 86 m
to 18 MPa at El. -20 m.

It should be noted that no impression packe. test was performed in borehole
NF4A. However, analyses of the results of hydraulic fracturing tests showed that the
stress conditions at fracture for all the tests performed in NF4A satisfy only stress path
III. This result indicates that the fractures induced by the first breakdown pressure are
horizontal and is consistent with the mode of fracturing observed in borehole NF4 (see
Table 5.1). It also illustrates the capability of the MSP method in the determination of
stresses in the absence of any knowledge of the mode of fractures.

The value of the shut-in pressure in each test location where stress path 1II is
satisfied (implying horizontal fractures) is taken as representative of the vertical stress
at that location and the results are plotted in Figure 5.9. The solid line represents the
overburden pressure distribution with depth. It may be observed that the vertical stress
distributions with depth obtained from the hydraulic fracturing tests and the overburden
pressures are comparable.

The direction of the regional maximum horizontal stress is calculated as the mean
orientation of the vertical fractures obtained from impression packer tests that satisfied
stress path II. The direction of the maximum horizontal stress in Queenston Shale is

found to be in the northeast quadrant with a mean value of N65°E (Figure 5.10(a)). The



mean direction of the maximum horizontal stress in the Whirlpool layer overlying the
Queenston shale is obtained from tests satisfied stress path II in the same boreholes and
found to be NSO°E. These directions are consistent with the orientations of the regional

stresses previously measured in the Niagara Peninsula (Lo et al. 1979).

5.4.4 Horizontal Stresses at Other Locations of the Propesed Tunnels

(@) Downstream Part of the Tunnels

One borehole (NF33) is located at the outlet of the proposed diversion tunnels,
and one successful test (test A2 at El. 18 m) was performed in this borehole. No packer
impression was taken for this test. Application of the MSP method indicated that a
horizontal fracture was initiated with the first breakdown pressure (only stress path III
is satisfied). The maximum horizontal stress calculated from this test is 20.2-20.4 MPa
and the minimum horizontal stress is 14.7-14.9 MPa. These values almost lie on the

lines representing the regional horizontal stress distribution in Queenston Shale discussed

in the previous section.

(b)  Upstream Part of the Proposed Tunnels

Two test boreholes, NF3 and NF32, are located along the curved path of the
upstream segment of the proposed diversion tunnels, Figure $.1. The tunnels at that part
would be at distance 0.6 Km or less from Niagara River. Results obtained from these
two boreholes are shown in Figure 5.11. It may be seen that there is deviation from the
general initial stress regime in Queenston Shale discussed in the previous section. In

contrast to the trend of horizontal stress increasing with depth, both the maximum and
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minimum horizontal stresses at the upstream portion of the proposed tunnels are constant
with depth, down to El. 30 m. Itis clear, also, that results of 1984 tests when properly
interpreted and 1990 investigation are in good agreement The representative value of the
maximum horizontal stress is 15.8 MPa, while that of the minimum horizontal stress is
10.2 MPa. The ratio of the maximum to minimum horizontal stress is 1.6.

The maximum horizontal stress direction at this tunnei portion is determinad as
N65°E which is the same direction calculated for the maximum horizontal stress at the

central portion of the tunnels.

(¢) Location of Borehole NF30 (Near the Edge of the Buried St. Davids Gorge)

Figure 5.12 shows the distribution of the maximum and minimum horizontal
stresses, from tests performed in borehole NF30 near the edge of the buried St. Davids
Gorge which is oriented northwest at this location. All the tests performed were below
the bottom of the gorge. The distribution obtained is approximately constant with depth.
This trend differs from that at the central portion of the tunnel and may be an indication
of the effect of the proximity to the gorge on regional state of stress. From Figure 5.12,
the representative value of the maximum horizontal stress is about 23 MPa and that of
the minimum horizontal stress is about 13.5 MPa.

The direction of the maximum horizontal stress obtained at the test location ‘s

east-west, which is different from that obtained at the central portion of the tunrels

(N65°E).




(d) Location Below the Buried St. Davids Gorge (Borehole SD6)

Three hydraulic fracturing tests were performed in Queenston Shale in borehole
SD6 which is drilled at the intersection of the proposed tunnels with tiie course of tke
buried St. Davids Gorge, Figure 5.1. The packer impressions for these tests showed that
horizontal fractures were produced in the test locations, Figure 5.13. The first
breakdown pressure, at each test location, and the successive reopening pressures are
almost the same and sometimes the reopening pressure is higher than the first breakdown
pressure. Figure 5.14 shows the pressure-time curve of three cycles of test C1 at depth
165.5 m. It may be seen that no true first breakdown pressures were obtained in these
tests but rather, reopening pressures of approximately 2500 psi (17 MPa) were observed.
Possible reasons for this phenomenon are that the horizontal fractures at these test
locations are: (a) pre-existent incipient tensile fractures in Queeuston formation due to
the relief of the original lithostatic pressure and the formaiion of the valley, and/or (b)
premature pretest fractures initiated after drilling the hole and before performing the tests
due to horizontal stress concentration below the gorge. If the inaximum pressure
obtained from the first pressurization cycle is considered as a fracture initiatioi- pressure,

the results show that the horizontal stresses lie close to the regional trend as shown in

Figure 5.15.
5.4.5 Horizontal Stresses at the Gereration Facilities A

Figure 5.16 shows the initial horizontal stress values in the area of generation
facilities. These results were obtained from tests in boreholes NF34 and NF35 which

were near Niagara Gorge, Figure 5.1. All the measurements in these boreholes were
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above the riverbed. It may be observed from Table 5.2 and Figure 5.16 that the
minimum and maximum horizontal stresses are approximately constant with depth in the
Generation Facilities area. The representative value of the maximum horizontal stress
at that location is interpreted as 9 MPa, while that ¢f the minimum horizontal stress is
oitly 4 MPa. The relatively low hoi» ~ntal stress values in that area reflect the effect of
Niagara River Gorge on releasing the high horizontal stresses in nearby areas.

The directions of thc maximum horizontal stress obtained from orientations of
fractures from borehole NF35 are shown in Figures 5.1 and 5.10(b). It may be seen
from these figures that the direction of the maximum horizontal stress is almost north-
south (average N5°W), parallel 10 the Gorge direction. This observation is consistent
with results of stress measurements reported for Ontario Power Generating Station

(OPGS) (Lo et al. 1979).

§.5 ANALYSIS O." TESTS PERFORMED IN 1992 INVESTIGATION

IN 1992, 8 tests in two boreholes, NF31 and NF38, were performed in Queenston
Shale. Vertical, subvertical, horizontal, and mixed-mode fractures were recorded by the
packer impression for these tests. As for 1990 investigation, the analysis is performed
using the strength parameters reported in section 5.4.1. As discussed in this section, the
strength parameters for Queenston Shale in the area betwcen borehole NF34 and NF35
are those for shaie content > 70%. Therefore, these strength parameters are used in the
analysis of tests performed in borehole NF38 since it is adjacent to borehole NF35. For

borehole NF31, the strength parameters for shale content < 60% are used.
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5.5.1 Discussion of Resuits

Table 5.3 shows a summary of the results of the analysis of hydraulic fracturing
tests performed in 1992. Figure 5.17 shows a comparison betweer. the stresses calculated
from borehole NF38 and those computed from boreholes NF35 and NF34. It can be
seen that there 1s a good agreement between results of tests performed in 1990 and those

performed in 1992.

Borehole NF31 is in the zone between borehole NF3S and borehole NF33 at the
outlet of the proposed tunnels. Therefore, stresses calculated from borehole NF31 are
expected to be transitional stresses between the stresses near the gorge and thoss
representing the general stress regime.

Figure 5.18 shows the stresses calculated from borehole NF31 and those
representing the stresses near Niagara River gorge as well as the stresses representative
for the general stress regime in the site. It can be seen from the figure that the stresses
calculated from borehole NF31 are transitional stresses between the stresses in the two

regions.

§.6 THE EFFECT OF TENSILE STRENGTH ANISOTROPY ON THE
CALCULATED INITIAL HORIZONTAL STRESSES

To investigate the effect of tensile strength anisotropy on the horizontal stresses,

test NF4-5 is examined. Figure 5.19 shows the relation between the ratio (7,/T,) and

the calculated values of the maximum and minimum horizontal stress. It is clear from

Figure 5.19 that the case of isotropic tensile strength (T,/T, =1) gives the highest values
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of thc horicontal stresses. As the ratio (T,/T,) increases, the horizontal stresses

decrease. Moreover, the rate of decreasing is relatively high for low values of (T,/T.)
and diminishes as the degree of anisotropy increases. Even a modest change in the

degree of anisotropy from unity leads to a significant decrease in the horizontal stresses.

For ex'.mple, a change of (T,/T,) from unity to two decreases the maximum horizontal

stress by 2.3 MPa, while changing this ratio from 5 to 20 decreases the maximum stress
value only about 0.9 MPa. In addition, the calculated range of maximum and minimum
horizontal stresses narrows as the tensile strength anisotropy increases. Therefore, even
a small degree of tensile strength anisotropy impacts on the results significantl r and

anisotropic strength should be taken into consideration for stress determination.

5.7 EFFECT OF POISSON’S RATIO
Poisson’s ratio has a significant effect on the calculated initial stresses (Hefny and

Lo 1992a). The correct Poisson’s ratio that should be adopted in the calcuiations is
Poisson’s ratio for the effect of horizontal stress on vertical strain v, . Figure 5.20
illustrates the effect of Poisson’s ratio on the initial stress values. It can be seen from
Figure 5.20 that a small change in Poisson’s ratio leads to a significant change in initial

stresses. For example, a change of v, of 0.40 to 0.3 (conventional value determined

from uniaxial compression tests on vertical specimens) will increase the maximum

horizontal stress value by 20%.
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5.8 CONCLUSIONS
Investigations were performed in 1984, 1990, and 1992 to determine the in situ

state of stress in Queenston Shale using the hydraulic fracturing tests. All the tests

performed in 1984 and the majority of tests performed in 1990 and 1992 investigations
initiated either horizontal or mixed-mode fractures. It was therefore necessary to develop

a method of interpretation taking into account these modes of fractures and strength

anisotropy of the shale.

Due to its capability of analyzing various modes of fracturing, the MSP method
(developed in Chapter 3) is adopted to re-interpret the 1984 test data and to analyze the
1990 and 1992 test data. The 1984 test data were interpreted, previously, using the
conventional theory of vertical fractures (Haimson 1985).

From the re-interpretation of 1984 test data, the following conclusions may be
drawn:

(@)  Only stress path III representing horizontal fracturing is satisfied in all the tests
performed in the 1984 investigation. Since all the observed modes of fracturing
are horizontal, the resuits of analysis are in agreement with observations. It also
indicates that the stresses can only be computed consistently with the MSP
method taking into account horizontal fractures.

(b)  The assumption that vertical fracture is initiated before the horizontal fracture by
the first breakdown pressure will lead to unsafe design, if these stresses computed
were adopted.

From the interpretation of the hydraulic fracturing test data in the 1984, 1990, and

1992 investigations, the following conclusions may be drawn:




(H

)

3

“4)

&)

The results of hydraulic fracturing performed in 1984, when correctly interpreted,
agree well with the results of 1990 investigation, both in the magnitudes of
stresses computed and modes of fractures.

In tests in which packer impression tests are not available, it is possible, by the
application of MSP method to determine which stress path the test results would
follow, which mode of fracturing theoretically would occur, and thereby compute
the magnitudes of stresses consistently without invoking assumptions other than
that (i) the strength criterion (modified Hoek and Brown) should be satisfied and

(i1) the inadmissible stress ranges should be eliminated.

The regional initial stress regime in the Queenston Shale are characterized as
follows:

(i) the maximum horizontal stress increases linearly from 14.5 MPa at El. 86 m
to 24 MPa at El. -20 m.

(ii) the minimum horizontal stress increases linearly fromm 9 MPa at El. 86 m to
18 MPa at El. -20 m.

(iii) The vertical stress is given closeiy by the overburden pressure.

(iv) The orientation of the maximum horizontal stress is approximately N65°E
Localized topographic features modify both the magnitude and direction of the
regional stresses. In the powerhouse area, the maximum horizontal stress is
approximately 9 MPa and is oriented parallel to the Gorge, consistent with
previous observations made at the Ontano Power Generating Station.

The use of anisotropic strength envelopes is significant in (i) decreasing the
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magnitude of stresses computed and (ii) narrowing the ranges of maximum and

minimum horizonta) stresses.

(6) Poisson’s ratio has a significant effect on the calculated horizontal stresses and the

relevant value is poisson’s ratio for the effect of horizontal stress on vertical

strain v, . The use of the conventional Poisson’s ratio may lead to a significant

increase in the calculated stress values.
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Figure 5.1 Locations of hydraulic fracture boreholes
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Borehole NF34 Test K7 depth 94.1 m, Queenston Shale
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Figure 5.7  Pressure-time record for Test K7



ELEVATION (m)

STRESS (MPa)

0 5 10 15

20

25

10 ~—— T

.
5 . v e
.
- -8 4
.
- -9 .
L]
.8 .
8 !
b o:b
s e b
.
- * o v
.
80 e
.
L . .
.
L . H
(]
o
»
-

&
—

ssse
-..--.--..p--o-.
[

&
(=
S

.
.
.
.
.
.
+
.
.
.
a
- .
.
o L]
"
b — Ll
.
- 1]
L[]
- L3
.
L
.
- -
L]
b -
.
o L[]
.
o Ll
»
o -
L]
o L]
*
- .
-20
.
- L]

vTY T T T

B

- | Legend
oy o

1 e o NFaA:
4 NF28
‘o NF4(1984]

N S

" Queenston Shale at NF4A

A I

Figure 5.8 Initial horizontal stresses in Queenston Shale at SABNGS No. 3
site (central segment of the proposed diversion tunnels)

(REGIONAL STRESS REGIME)

104




VERTICAL STRESS (MPa)
0 2 4 6 8 10
— —_ T ————————————
100 |
I
120 -
|
I
140 | OVERBURDEN PRESSURE ]
fE\ b -f———
E |
B 160}
A .
! TUNNEL
180 | AT
[ NF4A
®
200 . °
[
220 i ad " 1 — U B
Figure 5.9 Comparison between vertical stresses calculated from hydraulic

fracturing stress measurements (in Boreholes NF4 and NF4A)
nd the overburden pressure

108




s € 'ON SONEVS 1®
9[PYS UOISUINY) U1 $53118 [EIUCZIIOY WNWIXBW JO UONRIT (]S nBig

@ (e)
(30409 ¥FAR VIVOVIN 4VIN) (STANNNL FHL 4O NOLLYOd TVYINID)
() c€4AN FTOHTAOY
S S

uonewsog joodpwym - - - -
uoljewio,] uoisuadNg)




107

STRESS (MPa)

0 S 10 15 20 25
O r———r 7
o . | Lesend |
....... o, oy ?"’:m

.......

3

o
I ‘IQ
4
-}
.
r 4
3

E .......

5

[:40_ o$a (=

<

>

: : -

m Tuanel - .
20 |- NF32
0:,1A1AAI,.‘IA...1‘...

0 5 10 15 20 25

Figure 5.11 Initial horizontal stresses in Queenston Shale at SABNGS No. 3
site (upstream the proposed tunnel)



108
STRESS (MPa)
0 5 10 15 20 25 30
] e —
Legend ------ ﬁ
Y. Oy j
10 I+ v oh ¢ v _+
0} |
_ i (] ‘
Z v v
g - . . -
= -10} : _
< ! i ) ]
o- 4
m
- | |
i i }
20 ¢ |
! .
230 F ,
! v v :
| ;
.40 PG U N G N NS VTS S U RS B 1 et

Figure 5.12 Initial horizontal stresses in Queenston Shale at the edge of
the buried St. Davids Gorge (results from hydraulic fracturing

tests in Borehole NF30)




e ©°
a P =
= . w
- | e /—_JF
. ———
|
'
TEST Ct TEST C2 TEST €3
CEPTH: 1633 m DEPTH: 190.7 OCPTH- 1907 m
FORMATION: QUEENSTON FORMANON: QUEENSTON FORMATION: QUEENSTOM
BOREMOLE: SD-§ BOREMOLE: SO-§ BORECHOLE. SD-6

Figure 5.13 Packer impression for tests in Borehole SD6
(below the buried St. Davids Gorge)
(Queenston Shale - SABNGS No. 3 site)

109




110

::: First cycle
2 — —TE
e e E
£ / E
2 e AR i~
g . AN 2
a. ) o c~— (0
':- e -lo; e 188 ) 08 s
Time (sec)
300 Second cycle
o~ "“J —
'5 1908 it <y E
& .. [\ e N\ , E
3/ AR
£t 2
—..: A \‘b-‘rmmh\ﬂ‘v\u\.‘[ Hile
L *» 198 ll.Ti mé..(sx)l- 0. e +00
L Third cycie
o re
g . E
o
A &
o A— 3
. \ [
sl
L] *" (1 J 'D.Tim:é. (wz)l. a0 L90 -0

Figure 5.14 Pressure-time record for Test SD6-C1
(below the burieu St. Davids uorge)
(Queenston Shale - SABNGS No. 3 site)




111

STRESS (MPa)

o 5 10 15 20 25 30
100
Legend
E oy
80 |- o
E
E
60
F
S wf
Z [
S
<
_"_']l 20 *
- F
0 [
Tunnel
i at
i SD6
20
,40__ — 1 R ol — L

Figure 5.15 Initial horizontal stresses in Queenston Shale b:low the buried St. Davids
Gorge relative to the regional stress regime in the site

(calculated from tests in Borehole SD6)




ELEVATION (m)

STRESS (MPa)

0 S 10 15 20
100 | — , ——————
T‘ Legend
I %, %4
i v v NF35
[ ¢ NF34
80 | o . :
v v Location
of
Power
g House
Uh H
60 » .
o [ ]
1
4 v
40 N — P N A | i
0 5 10 15 20

Figure 5.16 Initial horizontal stresses at the area of generation

facilities (Queenston Shale at SABNGS No. 3 site)

112




113

STRESS (MPa)

0 S 10 15 20
100 T T —
@ o T | Legend
% %
© e NF38
P [ 0 -
g %y ]
Z - ]
o Location
= [ of
; I oe Power
4] i O'h OH House
A =
6 4] 60 N R
-L 4
[ o .
40 " N 4 N | P . i MU D Sy -
0 5 10 15 20

Figure 5.17 Comparison between initial horizontal stresses calculated
from hydraulic fracturing tests in Borehole NF38 (1992)

and those calculated from the 1990 investigation (the solid
vertical line) at the area of generation facilities

(Queenston Shale at SABNGS No. 3 site)



STRESS (MPa)
0 S 10 15 20 25 30
100 ————1——1—————————— ]
Legend ]
i oy w
[ maximum . » NF31 _
- horizontal 1
80 [ stress ]
[ near :
. Niagara ]
| River gorge 1
i

[ g )
E OF : £ |-
Z _ = |
S | 50
= i = ]
S “ & |
(b3 i a ]
vt i S ]
w40 - e |

: 3
S - ]
[ - & 4
| ;
20 |- .
[ regional maximum ]
[ horizontal stress j
o L 1 R B ! J

Figure §.18 Comparison between the initial maximum horizontal stresses calculated

from tests in Borehole NF31 and the regional maximum horizontal
Stress and the maximum horizontal stress near Niagara River Gorge

114




15 20

1,/T,

orizomal siresses

ect of tensile strength anisotropy of initial v

Eff

Figure 5.19
(T NF4-6 is used in the a8




116

24

17
!

2t
20 |
18|
t6

14 |

HORIZONTAL STRFSS (MPa)

12 f

10 |

L e l 5 L i l

0.1 0.2 03 0.4 0.5 0.6
POISSON'S RATIO

Figure 5.20 Effect of Poisson's ratio on initial horizontal stresses
(Test NF4-5 is used in the analysis)




PART 11

STRESSES AND DEFORMATIONS AROUND
AN UNLINED TUNNEL DRIVEN IN
CROSS ANISOTROPIC MEDIUM

(Chapter 6 inclusive)
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CHAPTER 6

STRESSES AND DISPLACEMENTS AROUND AN UNLINED TUNNEL

DRIVEN IN CROSS-ANISOTROPIC ROCKS

6.1 INTRODUCTION

When a tunnel is excavated in a rock mass, the initial state of stress is altereg,
resulting in changes of positions of the points in the medium relative to one another (i.e.
strains and displacements are created). The determination of the state of stress and
displacements due to excavation are of importance for applications in rock engineering.
The elastic solution for stresses around a circular hole in an infinite plate subjected to a
uniaxial stress (refer to Figure 6.1) was obtained by Kirsch (1898) and reported by many

authors (see e.g. Timoshenko and Goodier 1951). The compressive stress concentration

at points B and B’ is 3P,. Mindlin (1939) investigated the more general case of a

biaxial stress field. Three cases were studied: (a) case of hydrostatic pressure (K,=1),

where K, is the initial stress ratio, (b) case of K, = v/l1-v, where v is Poisson’s ratio,

and (c) case of no lateral stress. The effect of proximity of boundary on the stress

concentration under horizonta! in sifu stress was given by Mindlin (1948). In Figure 6.2,

the stress concentration factor (6,/P,) at three points M, A, and A’ is plotted against

the embedment ratio c/a, where o, is the compressive tangential stress induced by the
horizontal stress P_. It is obvious from Figure 6.2 that high stress concentration occurs

at the crown for small values of ¢/a and as the value of cfa increases, the compressive
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stress concentration factor approaches that of the classical case of uniaxial stress field

(04/P,=3). The elastic solution for the tangential stresses around a hole in an infinite

medium under general biaxial stresses is known in the literature as Kirsch solution and
has often been employed in design (see e.g. Obert and Duvall 1967). The elastic
solution for the displacement around a pre-existing hole in an infinite plate is given by
Obert and Duvall (1967) and Jaeger and Cook (1976). However. this solution is not
relevant for tunnel design since it does not represent the actual case of deformation due
to in situ stress relief at the tunnel boundary resulting from the excavation. The elastic
solution for the displacement resulting from the relief of in situ stress was investigated
by Yuen (1979).

It is evident, however, that for sedimentary rocks such as shales, the deformation
behaviour is anisotropic. The effects of anisotropy on stresses and displacements
resulting from underground excavations have not been studied in detail. The stress
distribution around a circular hole in an infinite orthotropic (cross-.aisotropic) plate
loaded at infinity from one direction was studied by Green and Taylor (1939 and 1945).
Using Green and Taylor solution, Lo and Morton (1976) computed the tangential stress
on the surface of a tunnel in rock with various cases of anisotropy. However, the
solutions for the displacements are not studied in the literature.

In this work, closed form solutions for the stresses and displacements along the
circumference of tunnels driven in cross-anisotropic rocks are derived. An example of
utilizing the theoretical solution for design analysis is given. Different factors affecting

the resulting stresses and displacements, including the initiz! stress ratio and the degree

of anisotropy, are studied. Design charts have been prepared for the determination of
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stresses and displacements for given values o: initial stress ratio (K,) and the elastic

parameters (Hefny and Lo 1992b)

6.2 CONSTITUTIVE RELATIONSHIPS

For an elastic isotropic material, only two material parameters are required to
represent the stress-strain relationships. However, in the case of cross-anisotropic
material, properties are different in the horizontal and vertical directions and five

independent parameters are involved in the constitutive relationships. Consider the

problem as shown in Figure 6.3, where a tunnel is driven along the z -axis such that axesx
and z are horizontal and lie on the plane of isotropy. The cross section lies on the
vertical plane (x -y plane) which is the plane of anisotropy. The problem is a plane

strain problem where the components €, €, and €, vanish everywhere. Therefore, the

constitutive relationships are given as

€ Sy S, O 9,
€t =[Sy Sp 0] {o, 6.1)
€, 0 0 5, Ty

Where, §,,, 8,,, 85, S,,. and §,, are deformation coefficients and related to the

material parameters as follows:
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1-v l-v, v
Spo= —— Sy = —
E, dovn E, 6.2)
- _ Vallry, 1
s12 - szn - E, S;, = G—w.
where:
E = elastic modulus in vertical direction

E, = elastic modulus in horizontal direction

v, = Poisson’s ratio for effect of vertical stress on horizontal strain
v,, = Poisson’s ratio for effect of horizontal stress on vertical strain
v, = Poisson’s ratio for effect of horizontal stress on horizontal strain

G, = independent shear modulus in vertical plane

From energy considerations (Hearmon 1961; Poulos and Davis 1974), the

following relationships among the elastic parameters must be satistied:

E_& (6.3)
Y Vw
1-v,>0 1+v,>0 1-v,-2v, v >0 (6.%)
For the case of isotropy the conditions that,
E,-E =E , and v, =V, =V, -V (6.5)

are necessary conditions but not sufficient to insure isotropy. A final condition 1s:

.6 -—E (6.6)

vh

2(1+v)




6.3 METHOD OF CALCULATIONS

The final stresses due to tunnel excavation in the cross-anisotropic rock may be
obtained by the superposition of stresses resulting from two ca.es (Figure 6.3): case ()
where the infinite medium loaded by the initial state of stress (before excavating the
tunnel), and case (b) of releasing the initial stresses at the boundary of the excavated

tunnel. The displacements in the medium due to the excavation of the tunnel result

directly from case (b).

The problem of finding the stresses and displazements in an infinite medium with

an opening loaded at the circular boundary was reduced by Green and Zerna (1968) to

the problem of finding two complex potentials #(z) and W(z) satisfying the boundarv
conditions. The symbol z now represents the complex variable:

z = x+iy in cartesian coordinates, or

z =re® in polar coordinates

The boundary conditions for stresses at r=a, where a is the radius of the tunnel, are
represented by p(ae®®) and q(ae'®) for norma! and shear stresses respectively. The

complex potentials could be represented in a power series as

V2 = Y (R, +is,)i’_:
n=0 4 6.7

W) = Y (-U,+T)E
n=0 "

122




where:
i 2x 2x
R = — f plae®)cosn8do S, = 1 f plae’®)sinnd 0
LA L
i x 2=
T, = — f q(ae™®) cosn8do U, = 1 f q(ae'®)sinnB d0 (6.8)
L) o
1 21: n
R, = U, = —— [plae*®)de -5, = T, = = [q(ae™)do
2n S 2n o

sothat S,, R, and U,, T, are respectively the Fourier coefficients in the expansions of p(ae ')

and g(ae’®) in Fourier Series. Therefore,

p(ae®) = R,+Y" (R cosn® +S,sinn6) (6.9-8)
n=1
g(ae®) = T,+ Y (T,cosn® + U, sinnB) (6.9-b)

n-l
The complex potentials ¥(z) and W(z) in Eq. 6.7 are obtained through Eqs. 6.8 and 6.9.
The solution for the tangential stresses at the boundary of the hole in terms of

these complex potentials is

_ (147, 201+, 2)MD) + 2(1-y,7,e W
2(1-v,e O)(L-v,e ) _

, 047,200 + 7, "W 7) +2(0 -7, 7,6 )W 7)
2(1-7,2%)(1 - 7,¢%9)

V( Z ) and W( 7 ) are the conjugates of the complex potentials V(z) and W(z)

Og

(6.10)

where:

respectively.
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a,-1 «,-1
= , <1 = , <1 (6.11-a)
T a,-+1 "l Y2 a,+1 s
afai - Sy af+a§ - M (6.11-b)
5 5

The displacement, in terms of complex variables, is D=u, +iu , where u, is the
displacement in x-direction and u, is the displacement in y-direction. At the

circumference of the tunnel r =|z|=a, it has been shown by Green and Zema (1968) that

the displacement D may be expressed in terms of two complex functions Az} andg(z)
and their conjugates f(2) and g(2) as

D = 8,f)+p,f(Z)+8,8() +P,&(Z) (6.12)

The functions f{z) and g(z) are defined by their derivatives f(z) and g‘(z) which are

functions of the complex potentials W(z) and V(z), which have been determined;

2 2
1+ 1, DV +(1 -1, )W)
4 Z

@ - (6.13-a)
4Y,-vy)
(1+1, 5V (11, %)W)
o - . (6.13-b)
pro—

where 6,, &,, p,, and p, are functions of the elastic constants and given by:
1 92, Py 2 4 y

8, = (1+v)B,-(1-v)B, 8, = (1+y)B,-(L-v)B, (6.14)
Py = (l*’Yl)pz*(l-Yl)pl Py = (1+72)ﬂ|+(l°72)pz
Where: B, = slz'“fsn B, = SIZ-agsn 6.15)

It should be noted that the symbols used in Eqs. 6.14 and 6.15 are different from those

used by Green and Zerna.
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In general, two cases arise:

(@) Y1=Y 72:72

so that vy, and y, are real. In this case, p,=p, and p,=p, (i.e. p, and p, are real)

® Y=Y, P, =P,
sothat v, and v, are complex conjugates. In thiscase. p, =B, and p, =p, (i.e. p, andp,
are complex conjugates).

For isotropic media, a, =a, =1, therefore,

L "2(1+v)
E

leyzzalzbz-oo p|=p2 (6'16)

Equation (6.10), with the aid of Eqs. (6.7) and (6.11), is the formal solution for
the tangential stress, while equation (6.12), with the aid of Egs. (6.7}, (6. 13), (6.14), and
(€ 15), is the formal solution for the radial displacement. In the following sections, these

formal soiutions will be reduced to engineering quantities.

6.4 CLOSED FORM SOLUTIONS OF THE STRESSES AND
DISPLACEMENTS

Consider a tunnel driven in a cross-anisotropic rockmass acting upon by the initial

stresses P, and P, as shown in Figure 6.3. Utilizing the theory discussed in the

previous section, the closed form solution for the tangential stresses along the

circumference of the circular tunnel is derived as
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2+2(y, +¥,)* - 275 v3 -4(y, + ¥,)c0s20
Oy = P

(]
(1+v}-2y,c0s28)(1 +y2 -2Y,0526) (6.17)
4(Y, +¥5) - 4(1 +v,v,)c0s260

(1 +y} -2y,c0s20)(1 +y3 - 2y,c0s26)

Pk +Pv )
2

where: P, is the hydrostatic initial stress component (

] v)

Q, is the deviatoric initial stress component (

The solutions derived for the radial displacements (u,) and the tangential disple.cements
(ug), respectively, are

a

u, = —2—6—_;—5 iPo(sz, "Ylpz) +Qa(p] - Pz) (6.18)
1 2
+[Pa(y2bl - Ylbz) +Qo(61 - 62)](:0826'
ty = 3PV B,~1,8) + Q8,8 Jsin20 (6.19)
1 2

The complete derivation of Egs. 6.17 to 6.19 is given in Appendix 6A.

6.4.1 Case of Pressure Tuanel

The tangential stresses at the circumference of a pressure tunnel of an internal

pressure (P,) in a cross-anisotropic rock is given by Eq. 6.17 with the substitution of

(P,-P,)) in place of (P,). Therefore, the solution for the tangential stresses in case of

pressure tunnel 1s
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2420y, + ¥, ~2v¥1v3 - 4(v, * v,)c0s20

2 2 (P" - P')

(1+y)-2y,c0s20)(1 + y; ~2v,c0s20) (6.20)
4(Y, +v,) -4(1 +v,Y,)cos20

1+ yf -2y,c0s20)(1 + y§ -2y,c0s820)

The radial and tangential displacements resulting from the internal pressure are

given by Eqs. 6.18 and 6.19 respectively with the substitution of (-P,) in place of (P,)

and (Q,=0). Therefore, the radial and tangential displacements in the case of pressure

tunnel, respectively, are

aP

U, = So——— {(Y,0; " ¥2P,) *(¥,8; - ¥,8,) c0s 28} 6.21)
20y, -1, 1P2 " YaPy 192 7720,
aPb,
Uy = —— ' (4,8, -v,8,)sin20 (6.22)
) 20v,-7,) %17 Y19,

6.5 COMPARISON TO SOME CASES OF KNOWN SOLUTIONS
(a) Green and Taylor Solution for Stresses

Closed form solutions for displacements on the circumference of an excavated
tunnel in an elastic cross-anisotropic medium resulting from the relief of the in situ stress
have not been obtained in the literature. However, the stress distribution around a pre-
existing hole in an infinite plate loaded at infinity from one direction is known (Green
and Taylor 1939 and 1945). For an elastic medium, the stress distribution from a pre-

existing hole or from stress relief at the hole boundary in pre-loaded medium should be

the same. Therefore, the closed form solutions for stresses, when P, =0, should reduce

to that given by Green and Taylor.

Under the existence of a uniform pressure T parallel to the horizontal direction
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(x -axis) the tangential stress a4 at the hole boundary is given by Green and Taylor as

A+ ) +y)(E+y, +Y,-¥,Y; ~2c0520)
1+ yf -2y,cos208)(1 + yi ~2y,c0s20)
This corresponds to the case of: P,=0 and P,=T. Therefore, P, =Q,=T7]2. Substituting

(6.23)

for the values of P, and Q, in Eq. 6.17, an identical solution as given by Green and

Taylor is obtained (Eq. 6.23).

(b) Case of Isotropic Medium

The solutions for the stresses and displacements for the case of a tunnel excavated
in elastic isotropic rocks are well known (see e.g. Yuen 1979). The tangential stresses
and the radial and tangential displacements at the circumference of the tunnel wall, in

terms of the hydrostatic and deviatoric components of initial stresses, are, respectively:

o, = 2P,- 4Q,cos20 6.29)

u, - 1(%"—)[}’0**(3 ~4v)Q,c0s26) (6.25)
_ _a(l+v) . 2

Uy = = Q,(3-4v)sin20 (6.26)

Taking the limit of 0,4, #,, and 4, in Eqs. 6.17, 6.18, and 6.19, respectively, as

-2(1+v)

¥;°Y,=6,=8,-0 and p,=p,~ E

Eqs. 6.17, 6.18, and 6.19 are reduced to Eqs. 6.24, 6.25, and 6.26 respectively. The

complete derivation is given in Appendix 6B.
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6.6 EXAMPLE OF DESIGN ANALYSIS

For the design of Sir Adam Beck Niagasa Generating Station (SABNGS) No. 3
project, twin tunnels, each of approximately 13 m diameter and 10 Km long are required.
The tunnels will be excavated in Queenston Shale at depths of 150 to 200 m. The five
independent parameters required to describe the deformation behaviour of Queenston
Shale, using the theory of elastic orthotropic (cross-znisotropic) material, were

determined using the method presented by Lo and Hori (1979). Typical values for the

parameters obtained are: E, =15.8 GPa, E =10.5 GPa, G, =3.95 GPa, v_, =0.3, and
v, =0.3, implying, E,/E =1.5, E,/G , =4, and v,, =0.44. The values of E, andv ,

are usually taken to represent the elastic parameters of the material if the theory of elastic
isotropic material is adopted.

The initial stresses at a typical cross section of the tunnels at depth 200 m from

the ground surface are: P,=5.2 MPa and P, =21 MPa, giving: K, =4, P, =13.1 MPa,

and Q,=7.9 MPa.

Using the values of the five elastic parameters discussed above and Eqs. 6.2 and 6.11,

the following values of y, and y, are obtained:
Y, = 0.1432 Y, = -0.2296
The values of 8,, §,, p,, and p, are obtained, using Eq. 6.14, as

[ =7813x10° 8, = -5.625x10"°

p, = -2.368x10*  p, - -2.269x10"*
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The tangential stresses and radial displacements are obtained by substituting the values
of P,, Q,, ¥,. Y. 8,, 8,, p,, and p, in Eqs. 6.17 and 6.18, respectively. For

comparison, the corresponding values of stresses and displacements, assuming the rock
is isotropic, are also calculated using Eqs. 6.21 and 6.22.

Figurr: 6.4 shows the distributions of the tangential stresses and rzdial
displacements at the circumference of the tunnels for the two cases considered (isotropic
and cross-anisotropic). A summary of the stresses and displacements obtained at the
crown and the springline is given in Table 6.1. The differences between the two cases
are represented as percentages of the results obtained for the cross-anisotropic case.
From Figure 6.4 and Table 6.1, the following observations may be made:

(a) Compressive stress concentration at the crown-invert with a stress concentration factor
of 3 is predicted by the anisotropic theory. The assumption of isotropy leads to a small
difference of only 9%.

(b) Both isotropic and anisotropic theories predict wangential tensile stress at the
springline. However, consideration of anisotropy leads to significantly lcwer values, the
difference in magnitude being as much as 170%.

(c) Both theories predict inward displacements at the springline; consideration of
anisotropy gives lower predicted values by 27%.

(d) At the crown-invert, the predicted direction of elastic displacements depends on the
theory used. although the magnitudes of displacements are small.

These observations are significant in the interpretation of results of field

monitoring of stresses and displacements in test adits and during construction of tunnels.
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6.7 EFFECTS OF ANISOTROPIC ELASTIC PARAMETERS AND K, ON

STRESSES AND DISPLACEMENTS

The five elastic parameters characterizing the deformation behaviour of the rock
(E,, E,. v,, v,,, and G ) can be determined using the method described by Lo and
Hori (1979). Experience gained from testing of different shaly rocks from Southern
Ontario showed that the elastic parameters generally vary within the following ranges:

Vi 021004 v,:0.2100.4 EJE:1t02 E /G, 31010

In situ stress measurements in the same rock formations showed that the stress ratios
(K,) generally lie in the range of 3 to 30 (Lo 1986). These ranges of values are used
to study the effect of v,, v ,, E,/G,, and K, on the tangential stresses and radial

displacements. For the presentation of results, stresses and displacements are expressed

in dimensionless forms. The tangential stress o, is normalized by the initial stress

hydrostatic component P,, and the radial displacement u, is expressed by the

ua Eh

aP,

dimensionless displacement 2= . The results are shown in Figures 6.5 and 6.6.

(a) Effect of v,

Referring to Figures 6.5-a and 6.6-a, it may be observed that the effects of 4, on

both the tangential stresses and radial displacements are aegligible.
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(b) Effect of v ,
The effect of v, on the tangential stress and radial displacement is shown on

Figures 6.5-b and 6.6-b respectively. It may be observed from Figure 6.5-b that the

effect of v, on the tangential stresses is small. The effects of v, on the displacements

(Figure 6.4-b) however, show some interesting and significant features. Starting from

the crown-invert region, the effect of v , progressively increases towards the springline.
At the springline, an increase of v, from 0.2 to 0.4 leads to a change of Q from -0.1

to 0.5. Therefore, not only the magnitude of Q is affected, but also the direction of

displacement is altered, for the case considered.

(c) Effect of E,/G,,
Figures 6.5-c and 6.6-c show the effect of E,/G,, on the tangential stresses and

radial displacements respectively. It may be observed from Figure 6.5-c that as the value
of E,/G,, increases, the compressive tangential stresses at both the springline and the
crown increase, with higher stress concentration at the crown. It may be seen from
Figure A.6-c that the radial displacements at both the crown and the springline are highly

sensitive to the value of E,/G,,, increasing with E,/G,. Therefore, E,/G, is an

important deformation parameter to consider in predicting displacements.
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(d) Effect of K,

The effects of K, on the tangential stress and radial displacement are shown on

Figures 6.5-d and 6.6-d, respectively. It may be observe” rom Figure 6.5-d that the

compressive stress concentiation increases at the crown as the value of K, increases.

On the other hand, the stress at the sprin,_line decreases and becomes tensile as the value

of K, increases.

It is obvious from Figure 6.6-d that the dimensionless displacement factor (Q)
at the springline increases (indicating greater inward displacement) as the value of K,

increases. At the crown-invert, the value of Q decreases and then changes to outward

displacement as K, increases.

Under isotropic stress condition (K, =1), it is well known that the assumption of

isotropy will lead to uniform stresses and displacements. It is interesting to note that

Figures 6.5(d) and 6.6(d) show that both the stress and displacement are nonuniform for

K,=1. This is a direct result of material anisotropy, which induces shear stresses and

distortion even under external uniform pressure.
It may be concluded from the previous discussion that the elastic parameters
controlling the degree of anisotropy of the rock have significant effects on stresses and

displacements around the tunnel, and should be taken into consideration in design

analysis.




6.8 CHARTS FORDETERMINATION OF STRESSES AND DISPLACEMENTS

To facilitate calculation of stresses, Figures 6.7, 6.8, and 6.9 show the

relationships of a,/P, with K,, for different values of E,/G,, and E,/E,. These
figures are for v, =0.2, 0.3, and 0.4, respectively.

From Figures 6.7, 6.8, and 6.9, it may be seen that the effect of E,/E, on
stresses at the crown is negligible, for any value of K. At the springline, the magnitude
of stress decreases slightly as E,/E  increases from 1 to 2.

The relationships for the dimensionless displacements @ with K, for v , =0.2,

0.3 and 0.4 are shown in Figures 6.10, 6.11, and 6.12 respectively. It is obvious from

these figures that the radial displacement at the springline is insensitive to the value of

E,/E,. On the other hand, the magnitude and direction of the radial displacement at the
crown-invert is highly sensitive to E,/E , specially for values of v, higher than 0.2.

For Example, for the case of v, =0.4 (Figure 6.11), as E,/E, increases, the

displacement changes direction from outward to inward displacement generally for values

of K, higher than 6. This is an important factor that should be taken into consideration

in prediction of displacements.

6.9 CONCLUSIONS

The stresses and dispiccemems around an unlined tunnels driven in cross-

anisotropic rocks have been investigated. Closed form solutions for the stresses and
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displacements are derived utilizing the stress potentials developed by Green and Zema
(1968).

The effects of anisotropy of the initial stress system and the elastic parameters on
the stresses and displacements are studied. From the results of this investigation, the

following conclusions may be drawn:

(a) The effects of v, on both of the tangential stress and radial displaccments are

negligible.
(b) At the crown-invert, the magaitude and direction of the radial displacement are

sensitive to the value of v ,.

(c) The compressive stress at the crown increases with increasing E /G, . The radial
displacements around the tunnel are highly sensitive to the value of E /G, , increasing
substantially as E,/G,, increases.

(d) As the value of K, increases, the compressive stress conc ntration at the crown-invert

increases and the stress at the springline decreases and changes to tensile.

The dimensionless displacement factor () at the springiine increases (indicating greater
inward displacement) as the value of K, increases. In contrast, the value of Q2 at the
crown decreases and then changes to outward displacement as K, increases.

(e) The radiai displacement at the springline is insensitive to E,/E, for any value of K.

On the other hand, the magnitude and direction of the radial displacement at the crown-

invert is highly sensitive to the value of E,/E, . specially for values of v , greater than

‘N



0.2.

For convenience of application, charts (Figures 6.7 to 6.12) have been prepared
for the determination of stresses and displacements for given values of initial stresses and
the elastic parameters.

It is believed that the results presented would be useful not only for ready
determination of stresses and displacements for design considerations, but also for the

interpretation of results of field monitoring in test adits and during construction.
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TABLE 6.1  “tresses and Displacements at the Circuinference of a Tunnel Driven in
Queenston Shale

Stresses (MPa) Displacements (mm)
Springline Crown Springline Crown
is0- aniso- % iso- aniso- % 180~ aniso- % is0- aniso- %
tropic tropic diff tropic | tropic | diff | tropic | tropic | diff tropic | tropic | diff
5.4 -2.0 170 57.8 63.4 8.8 21.9 17.2 27 0.9 1.2
é_
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CHAPTER 7

RESULTS OF TIME-DEPENDENT DEFORMATION TESTS
PERFORMED ON QUEENSTON SHALE AND MECHANISM OF SWELLING

(SABNGS NO. 3 PROJECT)

7.1 INTRODUCTION

For the design of Sir Adam Beck Niagara Generating Station (SABNGS) No. 3
project, two diversion tunnels each of diameter 13 m and 10 km long will be excavated
in Queenston Shale. The tunnels will be excavated as deep as 200 m below the ground
surface. In addition, the powerhouse for the project will also be located in Queenston
Shale.

One of the most important characteristics of Queenston Shale is the time-
dependent defoi mation due to initial stress relief. Several distress problems of lining for
‘unnels constructed in swelling shales in Southern Ontario have been reported (Lo and
Yuen 1981). Queenston Shale is not only characterised by time-dependent swelling
deformation due to stress relief but also the deformation continues for a long period of
time.

Testing on Queenston 3"ale to determine its time-dependent deformation
behaviour began in 1984 at the University of Western Ontario undcr the supervision of
Professor K.Y. Lo and has continued to the time of writing of this thesis (1994). Testing
programs include free swell tests and semi-confined swell tests. Table 7.1 contains a
summary of tests performed on Queenston Shale since 1984. Tests especially devoted

to the study of the mechanism of swelling are not included in this table and will be
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discussed at the end of this chapter. Tests for the study of long-term time-dependent
deformation (5 tests) of Queenston Sha'e are also not listed in Table 7.1 and will be

discussed in Chapter 8.

7.2 RESULTS OF FREE SWELL TESTS

The method of free swell test was developed at the University of Western Ontario
to study the swelling behaviour of shales from Southwestern Ontario. Simplicity and
inexpensivity of the free swell test have made it a practical way for the assessment of
potential "rock squeeze" problems. Since the early 1970s, this method has been
implemented extensively in many projects (Lo er al. 1978; Lo 1986).

In a free swell test, the swelling strains due to the relief of initial field stress are
monitored with time in the vertical and two orthogonal horizontal directions. A plot of
tr.> swelling strain versus logarithm of the elapsed time is used to determine a very useful
index called the swelling potential, which can be dctermined for both the vertical and
husizontal directions. The swelling potential has been defined by Lo er al. (1978) as the
value of the average slope of swelliiig strain versus logarithm (to the base 10) of elapsed
time curve betwecn 10 and 100 days. The swelling potential is a good measure of the

ability of the shale to deform with time when the initial stresses are released.

7.2.1 1984 to 1989 lnvestigations

In 1984 investigation, 6 free swell tests on samples recovered from borehole NF7
between depths 79 and 122 m (elevations 94 m to 81 m) were carried out (Lee 1988).

The horizontal swelling potential and the calcite content for all samples tested are
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summarized in Table 7.2. It can be seen from Table 7.2 that. in general, as calcite
content increases, swelling potential decreases.

For the 1985 to 1987 investigationis (Lo and Lee 1990), 11 samples recovered
from borehole NF4A were tested as follows: 3 samples between depths 95 and 98 m
(elevations 85 to 82 m) in 1985 investigation, 3 samples between depths 101 and 106 m
(elevations 79 to 74 m) in 1986 investigation, and 5 samples between depths 110 and 115
m: (elevations 70 to 65 m) in 1987 investigation. Test results of the 11 free swell tests
are summarized in Table 7.3. From Table 7.3 the following observations can be made:
I- The vertical swelling potential is higher than the horizontal swelling potential. The
ratio of vertical to horizontal swelling potential is 1.3 to 1.9.

2- The swelling potentials in the horizontal directions are virtually identical. Th's
observation indicates that the swelling behaviour for Queenston Shale in the horizontal
direction is isotropic.

3- There is no general trend of swelling potential variation with depth, however, as
observed for tests on samples from borehole NF7, there is a high tendency for the
swelling potential to increase as calcite content decreases.

A total of 27 free swell tests were conducted in 1989 investigation on samples
recovered from boreholes SD2 and SD3 (Lo 1989): 14 samples were from borehole SD2
between depths 212 and 248 m (elevations -32 to -68 m) and 13 samples were from
borehole SD3 between depths 197 and 235 m (elevations -14 to -52 m). Tables 7.4 and
7.5 summarize test results for the 1989 investigation for samples recovered from SD2
and SD3 respectively. The vertical and horizontal swelling potentials in the two

boreholes are plotted against depth in Figures 7.1 and 7.2.




From Tables 7.4 and 7.5 and Figures 7.1 and 7.2, the following observations can
be made:
1- As observed for borehole NF4A, the horizontal swelling is generally isotropic. This
observation indicates that in the horizontal plane, the time-dependent deformation is not
sensitive to the difference in magnitude of initial horizontal stresses.
2- The vertical swelling potential is higher than the horizontal swelling potential. The
ratio of vertical to horizontal swelling potential is 1.2 to 3.2, except for some samples
with low shale contents that showed higher ratio (e.g. sample of test FSQ/SD3-35 having
15% shale and 85% silistone showed 13% ratio). It should be noticed that some other
tests of low shale content did not show the same behaviour.
3- For tests on samples taken from borehole SD-2, the values of the vertical swelling
potential vary between 0.13% and 0.46%, with an average value of 0.29%. The values
of the swelling potential in the horizontal direction vary between 0.03% and 0.23%, and
the average value is 0.13%. Swelling potential from test ZSQ/SD2-14 which was carried
out on a fine-grained sandstone indicated zero swelling potential in both the vertical and
horizontal directions. This test may be regarded as a contro] test. This observation
implies that a certain amount of shale content must exist in order for time-dependent
deformation to take place.
4- For tests on samples taken from borehole SD-3, the values of the vertical swelling
potential vary between 0.10% and 0.30%, with an average value of 0.21%. In the
horizontal direction, the values of the swelling potential vary from 0.01% to0 0.24%, with

an average value of 0.1%

S- As observed for tests in previous investigations, there is no general trend of variation
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of swelling potential versus depth and there is a tendency for the swelling potential to
increase as calcite content decreases and shale content increases.

In his study of time-dependent deformation of Queenston Shale, Lo (1989)
provided a three-dimensional diagram conceptually illustrating the influence of calcite

content and shale content on the swelling potential (Figure 7.3). It may be seen from the

figure that for a given calcite content (BB'), swelling potential increases with shale
content (BB ). For a given shale content (AA * ), on the other hand, swelling potential

decreases with the increase in calcite content (A4 ). Lo (1989) showed also that if
both shale content and calcite content are determined on a free sweil test specimen, it is
then possible to interpret the results either on the swelling potential-calcite content plane
with a family of lines corresponding to different values of shale content (Figure 7.4(a)),
or on the swelling potential-shale content plane with a family of lines corresponding to
different values of calcite content (Figure 7.4(b)). Therefore, the shale content and the
calcite content are essential factors influencing the amount and rate of swelling (I.o et al.
19'78).

To illustrate his theory, Lo (1989) plotted the horizontal swelling potential against
the calcite content (Figure 7.5) for free swell test samples recovered from boreholes
NF4A, SD-2, and SD-3 (1985 10 1989 investigations). The family of lines shown divides
the plane into regions of certain snale content ranges. Although there is scatter, the trend

as discussed earlier is generally followed.
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7.2.2 1990 Investigation

In 1990 investigation, during the course of this thesis, free swell tests on 13
samples recovered from borehole NF4A and on 11 samples recovered from borehole
NF37 have been carricd out. Samples from borehole NF4A were recovered from depths
between 151 and 224 m (elevation 29 to -44 m), representing relatively deep depths of
Queenston Shale. Samples from borehole NF37 were recovered from depths between
72 and 108 m (elevation 100 to 64 m), representing relatively shallow depths of
Queenston Shale.

Figures 7.6 and 7.7 show typical records for the swelling strain versus logarithm
of elapsed time for free swell tests performed on samples recovered from boreholes
NF4A and NF37 respectively. Details of results of all tests performed in 1590
investigation are compiled »: Appendix 7A. Values of swelling potential in three
orthogonal directions for samples tested in this investigation and taken from boreholes
NF4A and NF37 are summarized and compared in Tables 7.6 and 7.7 respectively.
Calcite content determined from each sample after testing is also listed in these tables.
The vertical and average horizontal swelling potentials are plotted against depth in
Figures 7.8 and 7.9. From Tables 7.6 and 7.7 and Figures 7.8 and /.9, it can be seen
that all the observations recorded earlier from previous investigations (1984 to 1989)
gencrally apply for the 1990 investigation. The ratio of verti.~ to horizontal swelling
potential is between .2 and 2.0 for samples taken from both boreholes, except for some
samples where separation of bedding planes was noticed during testing leading to a

higher ratio (refer to the notes in Tables 7.6 and 7.7). Tor the tests on samples taken

from borehole NF4A, the values of the swelling potential in the vertical direction vary
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from 0.18% to 0.69%, with an average of 0.29%. In the horizontal direction, the values
of the swelling potential vary from 0.11% to 0.31%, and the average value is 0.22%.

For the tests on samples taken from borehole NF37, the values of swelling
potential in the vertical direction vary from (.13% to 0.53%. with an average value of
0.37%. In the horizontal direction, the values of swelling potential vary from 0.07% to
0.34%, and the average value is 0.23%.

The average honzontal swelling potential is plotted against the calcite content for
samples taken from borzholes NF4A and NF37 (1990 investigation) in Figure 7.19. The
values in brackets are the shale contents. The same family of lines obtained from
previous investigations for Queenston Shale and given by Lo (1989) is drawn on the
figure. It is obvious that, although there is some scatter, the theory as given by Lo

(1989) is generally followed and the previously obtained family of lines apply tc the 1990

investigation.
7.2.3 Summary of Observations on Results of Free Swell Tests on Queenston Shale

The observations on the results of all free swell tests conducted since 1984
investigation can be summarized as follows:

1- The horizoatal swelling is generally isotropic regardless of the area and the depth.
It can be concluded, therefore, that *he horizontal swelling is independent of the
difference between the major and minor initia: norizonal stress.

2- The ratio of vertical to horizontal swelling potential (RSP) in geaeral vanies
between 1.2 and 2. This observation is recorded for all tests except for samples

where separation of bedding planes was noticed and for some samples from




boreholes SD-2 and SD-3 where RSP reached a value as much as 15. It was
noticed and reported by Lo (1989) that samples from boreholes SD-2 and SD-3
contaired more frequent occurrence of siltstone and sandstone than other samples
tested. It can be concluded, therefore, that the structure of the samples taken
from boreholes SD-2 and SD-3 1s more complex than the structure of other
samples tested. For such samples of complex structure, the monitored vertical
swelling corresponds to the average vertical swelling of the sample, while the
monitored horizontal swelling corresponds to a local swelling of layers dominant
at the measurement level (due to sample heterogeneousity) rather than the average
horizontal swelling. Therefore, a deviation from the normal value of RSP is
expected from such samples. The value of RSP, therefore, may be regarded as
an index for the structure complexity of the sample. A sample .f RSP value
between 1.2 and 2 may be regarded as a homogenous sample, otherwise the
structure of the sample is complex and the sample is regarded as a heterogenous
sample.

The calcite content and the shale content control the amount and rate of swelling.
The swelling potential decreases as ii.~ shale content decreases and the calcite
content increases. The calcite content acts as a cementing agent lessening the
swelling of the sample. In other words, it can be said that the increase in shale
content and the decrease in calcite content decrease the time-dependent
deformation modulus of the swelling rock, amounting to a higher swelling strain
at any time.

From each individual investigation, it is noticed that there is no definite trend of
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variation of swelling potential with depth. Comparing the results of tests
conducted on samples taken from borehole NF4A at different elevations, it is
observed that there is a general trend of decrease of swelling potential with depth
regardless the increase of initial stresses with depth (refer to Chapter 5). The
variation of the vertical and horizontal swelling potentials for samples taken from
borehole NF4A are plotted against depth in Figures 7.11 and 7.12. The vanation
of calcite content and shale content is also shown in these figures. From Figures
7.11 and 7.12 it can be seen that

(a) macroscopically, there is a trend of decrease of swelling potential with depth,
(b) there is no definite trend of variation of shi'a content with depth, however,
the shale content varies from sample to sample, and

(c) macroscopically, there is a trend of increase of calcite content with depth.
Piotting the variation of swelling potential, shale content, and calcite content
(obtained from all samples tested since 1984) against elevation, Figures 7.13 and
7.14, supports the observations a, b, and ¢ above made from borehole NF4A.
The important observation of the macroscopic decrease of swelling potential with
depth may be mainly attributed to the noticeable macroscopic increase of calcite
content with depth which acts as a cementing agent suppressing the swelinrg and
increasing the value of time-dependent deformation modulus of shale. However,

as discussed before, in microscopic scale, both the shale content and the calcite

content affect the swelling potential of Queenston shale.
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7.3 SEMI-CONFINED SWELL TESTS

The semi-confined swell test has been developed in the 1970s (Wai 1977,
modified by Lee 1988) to study the stress dependency of the time-dependent deformation
of sweiling rocks. Since then, results of semi-confined tests have been employed in
practice (see e.g. Trow and Lo 1989). In this test, a vertical load is applied on the
sample in a temperature-controlled room (102 2°). This load is perpendicular to the
bedding planes for vertically oriented samples and parallel to the bedding planes for
horizontally oriented samples. The vertical swelling strain (loading direction) is
monitored by a dial gauge, and the lateral strains in two orthogonal horizontal directions
are monitored by strain gauges.

In general the tests are performed in groups (series). Samples in each group
usually are chosen within one meter of the core to decrease the probability of variation

of maenal. The samples in each group are loaded with different constant loads.

7.3.1 1985 to 1989 Investigations

In 1985 to 1987 investigations, 27 semi-confined swell tests, representing 9
groups of tests, on samples recovered from borehole NF4A at depths 95 t0 112 m
(elevations 85 to 68 m) were carried out (Lee 1988). Samples of three from the nine
groups were loaded perpendicular to the bedding planes (vertically oriented samples),
while the rest were loaded parallel to the bedding planes (horizontally oriented samples).
The resul‘s of semi-confined swell tests from 1985 to 1987 investigations are summarized

in Table 7.8. The effects of applied pressures on swelling potential in the vertical and

horizontal directions are shown in a semi-log scale in Figures 7.15 and 7.16 respectively.
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It may be seen that the swelling potential in both the vertical and the horizontal directions
approximately decreases linearly with logarithm of applied pressure.

In 1989 investigation, 11 semi-confined swell tests were performed: 4 vertically
onented and 7 horizontally oriented (Lo 1989). All the samples were recovered from
borehole SD-3 at depths from 209 to 219 m (elevations -26 to -36 m). Table 7.9
summarizes the results of the semi-confined tests for the 1989 investigation. The effect
of the applied pressure on the vertical and horizontal swelling potentials is shown in
Figures 7.17 and 7.18. The numbers in brackets in the figures are the values of calcite
content determined on the samples subsequent to the tests. It may be seen that the higher
the applied pressure on the specimzn, the greater the suppression of the swelling potential
is. In addition, it can be observed that the swelling potential is linearly decreasing with

logarithm of applied pressure.

7.3.2 1990 and 1992 Investigations

In 1990 investigation and during the course of this thesis, 11 semi-confined swell
tests were performed: 6 tests on samples recovered from borehole NF4A at depths from
180 to 181 m (elevations O to -1 m) and S tests on samples recovered from borehole
NF37 at depths from 97 to 98 m (elevations 75 to 74 m). All samples in this
investigation were loaded parallel to the bedding planes (honzontally oriented samples).

Table 7.10 summarizes the results of semi-confined swell tests for the 1990
investigation. The suppression effect of the applied pressures on the swelling potential
is shown in Figures 7.19 and 7.20 for samples from boreholes NF4A and NF37

respectively. As observed from results of the previous investigations (1985 to 1987), it
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can be seen from Table 7.10 and Figures 7.19 and 7.20 that the applied pressure has a
suppression effect on the swelling potential and that the suppression increases as the
value of applied pressure increases. It can be also seen that the swelling potential
linearly decreases with logarithm of the applied pressure.

In 1992 investigation, 3 samples recovered from borehole NF43 were tested. The
samples were loaded perpendicular to the bedding planes (vertically oriented samples).
One of the samples was subjected to zero pressure as in free swell tests, but was tested
in the temperature-controlled room and the horizontal swelling was monitored using
strain gauges as in semi-confined tests.

Table 7.11 summarizes the results of semi-confined tests performed in 1992
investigation. The suppression effect of the applied pressure as discussed above is

obvious from comparison of the swelling potentials of the three tests.

7.3.3 Discussion of Results

The most important observations on the results of semi-confined swell tests
(Tables 7.8 to 7.11 and Figures 7.15 to 7.20) are that:
1- the time-dependent swelling deformation decreases as the applied pressure

increases (stress dependency and suppressicn effect)

L]

the applied pressure in one direction not only suppresses the swell deformation
1n that direction but also reduces the deformation in the other two orthogonal
directions (Poisson’s effect, see Lo and Lee 1990)

3- the time-dependent deformations in all three directions approximately decrease

linezsly with logarithm of the applied pressure. The scatter may be attributed to
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the matenal variation in the specimens, sach as the calcite content and shale

content.

In their representations of th_ suppiession effect of the applied pr..ssure (o,) on
time-dependent sweiling deformation, Lo and Lee (1990) and Huang (1992) introduced
two indices: the critical applied pressure (o,) and the slope (S) of the swelling potential-
logarithm of applied pressure line (a -logo,).

The critical applied pressure (o) is defined as the value of applied pressure
where the straight line a-logo, intersects the axis cf log o (see e.g. Figure 7.19).
When o, is larger than or equal to o, the time-dependent deformation is completely

suppressed and no swelling occurs. On the other hand, when o, is Icss than o, time-

dependent swelling deformation occurs but it is suppressed to a certain amount according

to the value of o,. Therefore, the value of critical applied pressure o_ may be taken

as a characteristic index of stress-dependency of the time-dependent deformauon of a

rock. The smaller the value of o,, the easier to suppress the time-dependent swelling

deformation of the rock.
Lo and Lee (1990), expressed the stress-dependent swelling potenhiai, a(s), by

the following equation:
a{o) = S(logo,-logo,) (1)
where o, was taken as a reference pressure. The value S is the slope of e-logo, line

and it measures the sen-itivity of the swelling deformation 10 siress change. The larger




the value of §, the more sensitive the swelling deformation 1s to the applied pressure

(o,).

7.4 MECHANISM GF SWELLING

Lee and Lo (1993) provided a comprehensive review of swelling mechanisms for
clay, clay shales, anhydrite, and black shale. A review of these mechanisms of swelling
can also be found in Balasubramonian (1972), Mitchell (1973 and 1976), Yong and
Warkenun (1975), Lindner (1976), and Huang er al. (1986).

lLee and Lo (1993) concluded that the proposed mechanisms of swelling n
literature (relating the swelling to chemical or biochemical action of minerals like pyrite,
anhydrite or swelling of clay minerals) are not applicable for the long-term swelling of
shales in Southern Ontario. In this section, the experimental study carried out by Lee
and Lo (1993) on shales will be reviewed. The mechanism of swelling controlling the
time-dependent behaviour of Queenston Shale is then discussed. An independent
experimental study carried out to investigate and verify the effect of some of the factors

controlling the mechanism of swelling for Queenston Shale is then followed.

7.4.1 Review of the Experimental Study by Lee and Lo (1993)

In Lee and Lo study, all the samples tested were recovered from 1983 and 1987
investigations of the SABNGS No. 3 project. Their experimental program included the
following components:

(@) Study of mineralogy of four shales.

(b) Residual negatiy . pore pressure measurement on the fresh Queenston Shale
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experimental study carried out to investigate and verify the effect of some of the factors

controlling the mechanism of swelling for Queenston Shale is then followed.

7.4.1 Review of the Experimental Study by Lee and Lo (1993)

In Lee and Lo study, all the samples tested were recovered from 1983 and 1987
investigations of the SABNGS No. 3 project. Their experimental program included the
following components:

(@) Study of mineralogy of four shales.

(b) Residual negati\ . pore pressure measurement on the fresh Queenston Shale
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samples.

(c) Swell test on artificially sedimented and consolidated clay samples prepared from
the Queension Shale.

(1) Free swell test in different ambient fluids for the Queenston Shale samples from
1987 investigation.

(e) Free swell test on the Queenston Shale samples from the 1983 coring.

) Swell tests in ambient fluid having different salt concentrations.

From the results of their study, the following conciusions were drawn:

(a) The shales contained abundant clay minerals but only traces of swelling clay
minerals, in the form of vermiculite. There was no evidence of pyrite or
anhydrite in the Queenston Shale.

(b) Results of free swell tests in different ambient fluids showed that the time-
dependent swelling is associated with increase in water content of the sampie. An
outward salt concentration gradient from the sample to the ambient fluid was
required for swelling to occur. The magnitude and rate of swelling increased
with increasing outward gradient.

(c) Results of free swell tests on samples which had been preserved for 1700 days
after recovery showed subs:antial swelling under an outward salt concentration
gradient. This observation supported conclusion (b).

(d) During the swelling process, the salt concentration of the specimen decreased,
while that of the ambient fluid increased. The volume of macro pores (100 to
300 um) and ultra-micro pores (less than 0.02 um) increased.

(e) Results of tests on reconstituted clay samples prepared from Queenston Shale



showed long-term sweliing dependent on the outward salt concentration gradient,
conclusion (b).
H) residual negative pore pressure exists in specimens of Queenston Shale, resulting
from stress changes in recovery of the rock cores.
Based on these conclusions, the following necessary and sufficient conditions for
the swelling of Queenston Shale were postulated:
@) the relief of imtial stresses which serves as an initiating mechanism;
(ii)  the accesstbility to water; and
(ili) an outward salt concentration gradient from the pore fluid of the rock to the
ambient fluid.
They concluded also that if none of these conditions is existing, no swelling will take

place. If only one or two conditions are met, the shale may or may not swell.

7.4.2 Swelling Mechanism

Based on the experimental results, Lee and Lo (1993) concluded that the time-
dependent swelling of shales from Southern Ontario does not occur because of the
chemical or biochemical action of minerals like pyrite, anhydrite or swelling clay
minerals, but because of the interaction of clay minerals and pore water solution with
ambient fluid. The following swelling mechanism was proposed.

Shales studied swell as a result of the dilution of pore water sait concentration
which results in the expansion of spacing between clay particles. Both processes of
osmosis (liquid flow from low to high concentration region) and diffusion (ion transfer

from high to low concentration region) are responsible for the dilution of pore water salt
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concentration.

The available water is driven into the shale sample by the action of negative pore
pressure and the process of osmosis. While water migrates into the sample in iesponse
to the concentration difference between pore water and ambient water. The diffusion of
cations lowers the concentration of cations in the pore water solution. The decrease in
the concentration of cations results in an increase in the repulsive force and an increase
in the interparticle spacing, thus causing the expansion of sample. Since the process of

dissipation of cations is a time dependent phenomenon, the swelling of shales is also a

time-dependent process.

7.4.3 Experimental Study
To verify the findings of Lee and Lo (1993), a follow-up study is performed o:.

six samples of Queenston Shale recovered from borehole NU-13 in 1993 investigation
for the SABNGS No. 3 project. All the six samples were recovered from a 30 cm core
to reduce the probability of material variation. The main objective of this study is to
examine the effect of the following factors on swelling behaviour of Queenston Shale:

(a) Imponance of accessibility to water in order for swelling to occur.

(b) Effect of time elapsed before submergence of samples and loading.

(c) Effect of the sequence of loading and accessibility to water.

Figure 7.21 summarizes the testing program performed on the six samples. The

testing program can be described as follows.
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(a)

(b)

Loading Before Accessibility to Ambient Water

Three samples were prepared for testing in semi-confined test (LW-1, LW-2, and
LW-3). The diameter of each sample was approximately 6 cm and the hight was
about 5 cm.

The samples were placed in position in three semi-coniined cells with rubber
membrane around them to prevent loss of water from samples before accessibility
to water.

The three samples were subjected to different vertical pressures as follows:

Sample # Pressure (MPa)

LW-1 0.05
LW-2 0.2
LwW-3 2

The vertical deformations of the samples were monitored using dial gauges for
7 days during which the samples had no access to water.

The rubber membrane were carefully cut and removed from around the samples.
The water is then added in the cells around the samples to provide continuous
accessibility to ambient water.

The deformation with i, was monitored for more than 200 days before the tests

were stopped.

Accessibility to Ambient Water Before Loading
Three samples were prepared for testing in semi-confined test (WL-1, WL.-2, and
WL-3). The dimensions of the samples were similar to those in (a).

The samples were placed in position in three semi-confined cells and then
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submerged in water to provide continuous access to water from the beginning of

the test.

3- The three samples were subjected to a 0.2 MPa vertical pressure after different

elapsed times from submergence as follows.

Sample # Elapsed Time Before
Loading (days)

WL-1 0
WL-2 7
WL-3 14
4- The vertical deformation with time was monitored for more than 200 days before

stopping the test.
Sample WL-1 can be considered as a reference test since both the load and water

were provided at the beginning of the test.

7.4.4 R nd Di ion
Figures 7.22 10 7.27 show the time-swelling strain curve for the six samples
tested. The swelling potentials resulted from the samples are summarized in Table 7.12.
From Figures 7.22 to 7.27 and Table 7.12, the following observations and
conclusions can be made:
(1) The swelling potential for sample LW-1 (applied pressure = 0.05 MPa) is higher
than that for sample LW-2 (applied pressure = 0.2 MPa). Swelling potentials of samples
LW-1 and LW-2 are higher than that of sample LW-3 where the applied pressure is 2
MPa. It is obvious that as the applied pressure increases, the swelling potential
decreases.

(2) The ambient water is an important factor for swelling to occur. No swelling is
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observed when the ambient water was absent for 7 days (samples LW-1, LW-2, and LW-
3). After the samples had accessibility to water, they began to swell. Samples in access
to water from the start of test commence to swell at the beginning of the test (samples
WL-1, WL-2, and WL-3). This is consistent with the conclusion of Lee and Lo (1993)
that ambient water is an essential factor for swelling to occur.

3) Samples LW-2 and WL-1 have the same swelling potential (0.31%). In sample
WL-1 (reference test), the load and water were applied at the start of the test. In sample
LW-2, the load was applied at the start of test and the water after 7 days. Both samples
were subjected to the same stress value (0.2 MPa). It may be inferred, therefore, that
the application of the load before the accessibility to water does not change the swelling
potential of the sample. This may be attributed to the fact that the salt concentration
inside sample LW-2 did not change during the first 7 days (no diffusion occurred due to
the absence of the ambient water). Thus, the outward salt concentration gradient after
adding the water is the same as that for sample WL-1 at start of test, leading to the same
swelling potential. This is also in support of Lee and Lo conclusion that the salt
concentration gradient is a crucial factor controling the time-dependent deformation of
shales from Southern Ontario.

(4)  Comparing the swelling potentials of sampies WL-i , WL-2 and WL-3 to each
other, the following conclusion can be drawn. The longer the sample is subjected to
ambient water before load application, the less the swelling potential it shows after
loading. This can be attributed to the fact that the longer the sample is subjected to
water, the more salt is diffused from sample before loading. Therefore, the sample

subjected to water for longer period of time before loading will loose more salt by
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diffusion and will have less salt concentration gradient and consequently less osmotic
pressure after loading. Consequently, this leads to less swelling potential after load
application. This observation, also, confirms Lee and Lo theory (1993) of mechanism
of swelling for shales in Southern Ontario.

In the following Chapter, the long-term time-dependent deformation of Queenston
Shale will be modelled using a generalized Kelvin model of three units connected in
series. The measured time-dependent free swell strains will be compared to the predicted
strains using this model. This model will also be used to predict the time-dependent
strains under applied pressures using stress-dependent deformation parameters for the

three units.

7.5 CONCLUSIONS
Several testing programs have been carried since 1984 to determine the time-
dependent deofrmation characteristics of Queenston Shale for the design of the SABNGS
No. 3 project. The testing porgrams include free swell tests and semi-confined swell
tests. The most important conclusions drawn from the results of the: » (=, cstigations are
1- The horizontal swelling is generally isotropic regardless the area and the depth.
It can be concluded, therefore, that the horizontal swelling is independent of the
difference between the major and minor initial horizontal stress.
2- The ratio of vertical to horizontal swelling potential (RSP) may be regarded as an
index for the structure complexity of the sample. A sample of RSP value
between 1.2 and 2 may be regarded as a hcmogenous sample, otherwise the

structure of the sample is complex and the sample is regarded as a heterogenous
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sample.

The calcite content and the shale content control the amount and rate of swelling.
The swelling potential decreases as the shale content decreases and the calcite
content increases. The calcite content acts as a cementing agent lessening the
swelling of the sample.

From each individual investigation, it is noticed \ at there is no definite trend of
variation of swelling potential with depth. Plotting the variation of swelling
potential, shale content, and calcite content (obtained from ail samples tested
since 1984) against elevation reveals the following conclusions:

(a) macroscopically, there is a trend of decrease of swelling potential with depth.
(b) there is no definite trend of variation of shale content with depth, however,
the shale content varies from sample to sample.

(c) macroscopically, there is a trend of increase of calcite content with depth.
The important observation of the macroscopic decrease of swelling potential with
depth may be mainly attributed to the noticeable macroscopic increase of calcite
content with depth which acts as a cementing agent suppressing the swelling and
increasing the value of time-dependent deformation modulus of shale. However,
as discussed before, in microscopic scale, both the shale content and the calcite
content affect the swelling potential of Queenston Shale.

The time-dependent swelling deformation decreases as the applied pressure
increases (stress dependency and suppression effect)

The applied pressure in one direction not only suppresses the swell deformation

in that direction but also reduces the deformation in the other two orthogonal

172



directions.

7- The time-dependent deformations in all three directions approximately decrease
linearly with logarithm of the applied pressure. The scatter may be attributed to
the material variation in the specimens, such as the calcite content and shale
content.

The study carried out in 1993 investigation supported the postulation of Lee and

Lo (1993) that the following conditions are necessary and sufficient for the swelling of

Queenston Shale:

(i) the relief of initial stresses which serves as an initiating mechanism;

(i1) the accessibility to water; and

(iii)  an outward salt concentration gradient from the pore fluid of the rock to the

ambient fluid.
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TABLE 7.1 Summary of time-dependent deformation tests on Queenston Shale

Number of Tests

Semi-Coafined
Swell
Groupe(Samples)

77 w0 127

13)

95 1o 98

39

101 to 106

39)

110 to 115

39)

21210 248

197 to 235

2(11)

151 0 224

1(6)

72 o 108

KS)

158 to 164

1(2)

Total

Note: Tests devoted to the study the long-term time-dependent deformation of Queenston Shale and those

15(54)

specially devoted to study the mechanism of swelling are not included in this table.
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TABLE 7.2  Results of free swell tests on Queenston Shale for SABNGS No. 3
(Borehole NF7 - 1984 investigation)

Horizontal
Swelling
Potential

(% /Log Cycle)

0.30

0.27
0.31

0.32

0.33

0.28
0.30

(after Lee 1988)
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Figure 7.1

Variation of swelling potential with depth in Borehole SD-2

(after Lo 1989)
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Figure 7.2  Variation of swelling potential with depth in Borehole SD-3

(after Lo 1989)
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Figure 7.3  Conceptual illustration of influence of calcite content and shale content on
swelling potential (after Lo 1989)
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Figure 7.6 Results of free swell tests on Queenston Shale at SABNGS No. 3 site
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Figure 7.7 Results of free swell tests on Queenston Shale at SABNGS No. 3 site

Test NF37-2 (1990 investigation)
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Figure 7.8 Variation of swelling potential, calcite content and shale content
with depth in Borehole NF4A (1990 investigation)
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Figure 7.9 Variation of swelling potential, calcite content and shale content with depth
in borehole NF37 (1990 investigation)
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Figure 7.11 Variation of horizontal swelling potential, calcite content and shale content
with depth in Borehole NF4A (1985 to 1990 investigations)
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Figure 7.12 Variation of vertical swelling potential, calcite ~ontent and shale content
with depth in Borehole NF4A (1985 to 1990 investigations)
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with depth for Queenston Shale (1985 to 1990 investigations)
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Figure 7.14 Variation of horizontal swelling potential, calcite content and shale content
with depth for Queenston Shale (1985 to 1990 investigation)
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CHAPTER 8

MODELLING OF LONG-TERM TIME-DEPENDENT DEFORMATION

AND STRESS DEPENDENCY FOR QUEENSTON SHALE

8.1 INTRODUCTION

Investigations since 1984 on time-dependent deformation of Queenston Shale have
shown that Queenston Shale exhibits important swelling characteristics upon stress relief.
Two of the most important characteristics are that the swelling continues for very long
period of time and that it is nonlinearly dependent on the applied stress.

In this chapter, the rheological model consisting of three Kelvin units connected
in series is adopted to describe the nonlinear long-term swelling behaviour of Queenston
Shale. This model was originally used by Huang (1992) to describe the swelling
behaviour of Queenston Shale. In his formulation, however, the effect of the initial
stress relief on the swelling was ignored and different rate parameters were used to
represent deformation of samples from different boreholes. In this study, the initial
stress value is introduced into the formulation and it is shown that only one set of rate
parameters calculated from long-term swell tests can be used to represent adequately the
swelling behaviour of Queenston Shale at different locations.

The same model is also used to predict the stress-dependent swelling strain for
Queenston Shale. Equations relating the deformation moduli of the three Kelvin units

under free swell strain to those under any applied stress are derived. The predicted

swelling strains using this model are compared to the measured values.




8.2 MODELLING OF LONG-TERM TIME-DEPENDENT DEFORMATION
8.2.1 Long-Term Tests

In addition to the swelling tests discussed in Chapter 7, another § free swell tests
have been started in 1986 and devoted to examine the long-term time-dependent
deformation of Queenston Shale. The five samples were recovered from borehole NF4A
at a depth of 103 m from the ground surface (elevation 77 m). Three of the five tests
(NF4A/L1, NFA4A/L2, and NF4A/L3) lasted for about 1260 days before converting them
into semi-confined swell tests under different applied pressures. The other two free swell
tests (NF4A/L4, and NF4A/LS5) are still running till present (early 1994), more than
2700 days ( ~ 8 years) since start of testing.

The swelling strains for the five tests are plotted in normal scale against time in
Figures 8.1 to 8.5 and in semi-logarithmic scale in Figures 8.6 to 8.10. Table 8.1
summarizes the results of the five free swell tests. In this table, the value of the average

slope of the curve of swelling strain versus logarithm of time between 10 and 100 days

is denoted a,,_,,, and that between 100 and 1000 days is denoted @,y _,000- The values

of @,y 00 and & 4 .00, are indices of swelling potentials (strain per log cycle of time

as defined by Lo er al. 1978). From Figures 8.1 to 8.10 and Table 8.1, the following

observations can be made:

1- The values of swelling strain increment from 100 to 1000 days are larger than
those from 10 to 100 days, indicating that the swelling potential (strain per log
cycle of time) is increasing with time, that the swelling deformation may last for

long time, and that the long-term swelling deformation is highly nonlinear with
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8.2.2

time.

In the vertical direction, the average value of @,, 9 fOr the five tests is 0.37%
and that of @,y 440 is 0.44%. In the horizontal direction, the average value for

the five tests of &, 4, is 0.2% and that of &4, 009 is 0.28%.

After 2700 days and up to the present (early 1994), time-dependent swell

deformation is still developing although the swelling rate decreases gradually with

time.

The rate of swelling of samples (NF4A/L1, NF4A/L2, and NF4A/L3) after

converting them into semi-confined tests is dec-eased due to the applied pressure.

hi - fi i

To represent the time-dependent deformation of geotechnical materials several

empirical laws and rheological models have often been employed (see e.g. Goodman

(1980), Lo and Yuen (1981), and Lo and Lee (1990)). The method introduced by Lo

and Lee (1981) for modelling the swelling behaviour of Queenston Shale is dependent

on the assumption that the relationship between the swelling strain and logarithm of time

is linear. Therefore this method will be suitable only for representation of short-term

deformation. Huang (1992) showed that the logarithm law, the multipower law, a Kelvin

body, and a Burger body can only represent the short term time-dependent deformation

of Queenston Shale. The ineptitude of different models to represent the swelling

deformation of Queenston Shale is due to the high nonlinearity of the lorig-term time-

dependent swelling deformation as discussed above.
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Huang (1992) showed that the rheological model consisting of a series of Kelvin
units can represent the nonlinear long-term time-dependent deformation of Queenston
Shale to a high degree of accuracy. The parameters of this model can be obtained by a
nonlinear regression analysis. For this model (Figure 8.11), the time-dependent swelling

strain can be expressed as

e(r) = o}:I E'i(l—e"") @.1)

where e£(f) = time-dependent sweiling strain under stress relief o,

o = stress relief under which swelling occurs,

n = the number of Kelvin units adopted,

E, = deformation modulus of the irh unit,

A, = parameter controlling the swelling rate of the ita unit

n,
n, = viscosity of the dash pot in the irh unit, and
t = elapsed time

It was shown by Huang (1992) that a model consisting of three Kelvin unis
connected in series well represents the long-term swelling behaviour of Queenston Shale.

For a model of two units, not only it gives poor representation but also the choice of the

parameters A, is critical. Any small change in the value of A, may affect the accuracy

of the predicted results. For a model of more than three units, a negligible to no better
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representation may be obtained, the number of parameters increases, and some of the
values of E, may be negative which has no physical meaning.

Using a model of three Kelvin units connected in series, the parameters obtained
from regression analysis for the five long-term free swell tests of Queenston Shale are
listed in Table 8.2 for the vertical direction and Table 8.3 for the horizontal direction

(obtained based on the first 1260 days of test results, Huang (1992)). The average values

of the rate parameters A, of the five tests are also shown in the tables. It can be seen
from Tables 8.2 and 8.3 that the average value of A, is the same for the vertical and
horizontal directions. There is, also, negligible difference between the average values
of the parameter A, and A, in the two directions. for engineering purposes, therefore,
the average set of values of the parameters A, in the vertical and horizontal directions

may be used to represent the long-term time-dependent deformation of Queenston Shale
for both directions.

The representative average values of A, in the vertical and horizontal directions

arc
,=0.11,  2,=0.028, and  1,-0.0018 @.2)

Since these values are adequately calculated from long-term swell tests, they will be
considered as the governing swelling rate parameters for Queenston Shale at this site
regardless the depth and location. The variation of swelling strain from a free swell test

to another will be dependent only on the deformation moduli of the three Kelvin units,

keeping the rate parameters A, constant. Using the rate pa;ameters obtained in Eq. 8.2,

213




the values of moduli E,, E,, and E; for each free swell test in both directions are

calculated using the least-squares method and listed in Table 8.4. The predicted swelling

strains using the values of A, and E,; listed in Table 8.4 are plotted against time and

compared to the measured values in Figures 8.12 to 8.16. From these figures, the

following two important observations can be made:

1- the predicted values of swelling strain agree well with the measured values.

2- the predicted curves of swelling strain versus elapsed time for tests NF4A-1.4 and
NF4A-LS5, whose parameters were obtaincd on the basis of the test results during
the first 1260 days, can represent the results of the free swell test up to the
present (more than 2700 days) reasonably well. This important observation
shows that the model not only represents the swelling straiii within the period of

time the parameters are calculated but also predicts adequately the strain for even

much higher values of time.

The representative values of E; for the overall behaviou: are the values of E, that

give the average swelling strain of the five tests at any time. Using Eq. 8.1 and the
deformation moduli of the five tests, the average swelling strain of the five tests at any

time is
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s 3
e = 225 La-eH 8.3)
S j-141 EV ;
i

4

where i is the unit number and j is the test number. Since A,, A,, and A, are the

same for the five tests, Eq. 8.3 can be wntten as

s s ]
e@ = Zla-e™z L ia-e™er Ll a-eHz L 8.4)
5 /=1 Eu it Ey j=1 ESI
From Eq. 8.1, the average swelling strain can be directly expressed as
1 -3, 1 -1 1 -1
e = ol =—(1-e*H+—U-e"H+—(1-7 3.5
E, E, E,

where E,, E,, and E, are the representative deformation moduli of the overall

behaviour. Comparing Eq. 8.4 to 2.5, the following expression for the representative
moduli is obtained:

5
S 1s 1 8.6)

1
E, 5iE,

The representative values of E; in both the vertical and horizontal directions
calculated using Eq. 8.6 are as follows:
E, =3080 MPa E, =730 MPa E, =420 MPa
horizon ir
E, =19610 MPa E, =9950 MPa E,=3240 MPa

The swelling strains calculated using the above set of parameters in both the vertical and

horizontal directions are plotted and compared to the calculated swelling strains for



individual tests in Figure 8.17. From this figure, it can be observed that the

representative values of E; estimate quite well the average strains of the five tests at any

time for both the vertical and horizontal directions.

8.3 STRESS-DEPENDENCY OF TIME-DEPENDENT DEFORMATION

In addition to the long-term time-dependent deformation, the nonlinear stress-
dependency of the deformation is an important characteristic of Qucenston Shale (refer
to Chapter 7). It has been shown from the results of the semi-confined tests analyzed in

Sec. 7.3 that:

1- Under an applied stress less than the critical stress (o,), there is a suppression

effect on the time-dependent swelling deformation of Queenston Shale.

2- Under an applied stress equal to or higher than o_, no time-dependent

deformation occurs

3- The swelling potential is not linear to the applied stress (o), however, it is linear

to the logarithm of the applied stress.

Extensive study on the swelling bel.aviour of Queenston Shale (Lee 1988) has
shown that the swelling potential and the time-dependent deformations at any time (less
than 100 days) are linear to the logarithm of the applied stress. In 1990 investigation,
semi-confined swell tests lasted for more than 500 days and results have shown that the
time-dependent deformations at any time over 100 days ar« also linear to the logarithm
of applied stress (Figure 8.18).

To relate the swelling strain resulting from a semi-confined swell test to ihat from
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the free swell test, the equivalent free swell stress (o,) was introduced by Huang (1992),

refer to Figure 8.19. The equivalent free swell stress can be defined as the minimum

applied stress under which the suppression effect of the stress begins to be effective. In

other words, for any applied stress less than o,, the resulting swelling strain (e,) equals
to the free swell test strain (€,), while for an applied stress higher than o_, a strain less
than €, is obtained with its magnitude dependent on the value of the applied stress.
From this discussion, it is obvious that o, is referred to as the equivalent free swell
stress because under o, the resulting strain ¢, is eqnal to the free swell strain. As will
be shown later, the value of g, is very small, usually less than 0.02 MPa.

The swelling strain at time ¢ under an applied stress o, between o, and o, is

denoted ¢_(¢) (Figure 8.19) and can be related to the free swell strain, ¢,(2), by the

following relationship:

logo, -logo
e, () = B~ 8% e, 8.7
logo, -logo,
e () , . . .
where is the slope of the straight line betwesn o, and o_ at time ¢ .
logo, - logc

It has been shown in Sec. 8.2 that the rheological model consisting of three

217



Kelvin units connected in series well represents the results of long-term time-dependent
deformation of free swell tests. In this section, the model will be extended to include
modelling of the results of semi-confined swell tests.

In his formulation of the problem, Huang (1992) ignored the effect of initial stress

value o, on the swelling strain of semi-confined tests. He considered that the swelling
strain is resulting from the relief of the difference between the critical stress o, and the

applied stress o, although in modelling the free swell test results he considered that the
deformation is resulting from the relief of the initial stress. This discrepancy led to a
sudden huge decrease in the deformation moduli, of the three Kelvin units, within a very
small change in stress (between stress relieves o, and o,-0,).

In this section, the initial stress value is introduced into the formulatic.. which

overcomes the discrepancy given by Huang's formulation and leads to smooth rational

values of deformation moduli.
Assuming that the swelling strain €(¢) is dependent on the stress relief o, it has

been able (Sec. 8.2) to express the free swell strain by the following expression:

3 A
e() = Z=(1-e" (8.8)

o
ZE
Under applied stress, the resulting swelling strain is less than the free swell strain

and the relation between the applied stress and the resulting strain is nonlinear (linear in
logarithmic scale). For applied stress higher than the critical stress o, , the strain is

completely suppressed and no time-dependent deformation occurs. Results of semi-

confined tests since 1985 have shown that in general the critical stress value is
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considerably below the initial stress value o,. Mechanically, the suppression of the
swelling strain for the general case (o_<o_) can be regarded as the combination of the

effects of two factors (refer to Figure 8.20):

1- Suppression due to reduction of stress relief: under applied stress o, the stress
relief o, is less than the initial stress value 6, considered with the free swell
strain (o, =0, -0 ), leading to lower strain values.

2- Suppression due to apparent stiffening effect: as the applied ivad on the sample
increases, the sample apparently becomes more stiffer towards wne time dependent
deformation and the values of deformation moduli increase, leading to a lower

strain value than that would be obtained if only factor (1) above is considered

(Figure 8.20).

The effects of both factors can be considered in the generalized Kelvin model

expressed by Eq. 8.8 by letting 0 = o, -0, (factor 1) and by constructing a nonlinear
relationship between the deformation moduli E, and the applied stress (factor 2).
According to the above discussion, the rate parameters A, are considered stress
independent and only the deformation parameters E, are stress dependent. Consequently,
the equivalent swelling strain ¢, under applied stress @, can be given by the followirng

equation:
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_ 3 l -Ag
e, = (0, - 0,) —0-e ™ (8.9)
i1 E

where E, is a stress-dependent modulus for the irh Kelvin unit under applied stress o, .

From Eqgs. 8.7 and 8.9, the swelling strain e,() under applied stress o, can be ‘written

as

_ _ 3
(ogo_ -loga)o, - ) o, - o‘)}:l(l e ) (8.10)

e (t) =
4 (ogo, -loga,)(a, - o) i-1E,

Similar to Eq. 8.9, the sweiling strain €,(7) under applied stress ¢, can be wniten as

3 1 At
e = (oo—oa)EE-(l—e ) (8.11)

i-1E,

where E_ is a stress-dependent modulus for the itk Kelvin unit under applied stress o, .
From Eqs. 8.10 and 8.11, the following relationship between E_, and E_, can be

obtained:

_ (loga, - logo )(o, - 0,)
(logo, - loga,)o, - 0,)

E. (8.12)

Equation 8.12 shows that the deformation parameter E, is an important quantity that

should be determined in order to calculate the deformation parameters of the sample

under any applied stress o, .
Since the free swell strain €, (under stress relief o) is equal to the equivalent

strain €,, then ¢, = ¢,. Therefore,



3 3
0,2 L(1-e™) = (a,-0)E —El—(l _e7My (8.13)
-1 E,

i-1E,

After arrangement, a relationship between the deformation parameters of free swell test

and those under equivalent stress is obtained

E, -22""F, (8.14)

From results of semi-confined tests, the values of o, obtained are very small (usually

less than 0.02 MPa), therefore, E, can be taken the same value as E_ .

8.3.2 S f f icting the Ti n f ion

The method of predicting the time-dependent deformation for any sample of

Queenston Shale under applied stress o, is summarized as follows:
1- Using nonlinear regression aralyses, determine the rate parameter A, and the

deformation parameter E  for each of the three Kelvin units from results of long-

term free swell tests.

2- From results of semi-confined tests, determine the critical stress o, and the
equivalent free swell stress o,. The critical stress is the value of stress at the

intersection of the swelling potential line with logo axis. The equivalent free

swell stress is the value of stress under which the resulting swelling potential is

equal to the free swelling potential (Figure 8.19).

3 Consider the deformation parameters E_, for the three Kelvin units are equal to
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the values of E_ or calculate E, using Eq. 8.14.

4- Under applied stress o, between o, and o_, calculate the corresponding values

of E, using Eq. 8.12.

5- Calculate the swelling strain ¢, under the applied stress o, using Eq. 8.11.

6- As o, approaches o , the value of E, approaches infinity and for o, 2 o, no

swelling strain occurs.

7- For locations where no long-term free swell tests are performed, use a reliable

semi-confined test to calculate the values of E_ for that test and the deformation

parameters for the other tests can be related to those from that test (this test will

be referred to as a reference test).

8.4 PREDICTION OF STRESS-TIME-DEPENDENT DEFORMATION OF
QUEENSTON SHALE
In the following analysis, the method described in the previous section will be
implemented to predict the stress-time-dependent deformation of Queenston Shale at
different locations and different depths. The predicted strains will be compared to the

measured values both in the vertical and horizontal directions.

8.4.1 19 1987 Inv ti
As mentioned in Chapter 7, the semi-confined tests carried out in 1985 to 1987

investigations were on samples recovered from borehole NF4A at shallow depths of




Queenston Shale. The five long-term free swell tests were also for samples from the
same borehole and within the same depths. Therefore, the deformation parameters
obtained from these five tests can be used with Eqs. 8.11, 8.12 and 8.14 to predict the

time dependent deformation for different samples under different applied pressures.

(A) Vertical Direction

From results of semi-confined tests on samples under applied stresses in the

vertical direction. the critical stress o, and the equivalent free swell stress o, are

determined as 12.5 MPa and 0.0035 MPa, resperiively (refer to Figure 7.15). The

initial vertical stress o, at the test locations is 2.6 MPa.
The values of the deformation moduli E; of the three Kelvin units under different

stresses are calculated using Eq. 8.13 and listed in Tabie 8.5.

Typical predicted curves of swelling strains versus time under different applied
stresses are compared to the measured strains from semi-confined tests in Figure 8.21.
It can be seen that there is good agreement between the predicted and measured strain

values.

(B) Horizontal Direction

The average initial horizontal stress at the depth at which the samples of the semi-
confined tests were recovered is found to be about 12.0 MPa from results of
hydrofracturing tests (refer to Chapter 5). The critical and equivalent free swell stresses

under applied pressures in the horizontal direction are calculated as 7.0 and 0.01 MPa,
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respectively (refer to Figure 7.16).

Using Eq. 8.12, the values of the deformation moduli of the three Kelvin units
under different applied stresses are calculated and listed in Table 8.6. The variation of
the deformation moduli in the honzonial direction with the applied stress is plotted in
Figure 8.22. It can be seen that as the applied stress increases, the values of the

deformation moduli of the three Kelvin units increase. The apparent stiffening effect

discussed in the previous section is obvious from the increasing trend of E, values aso,

increases.

Typical predicted curves of swelling strain vs. time under different applied
stresses are compared to the measured values from semi-confined tests in Figure 8.23.
It can be seen that the results of the semi-confined tests can be predicted reasonably well

using a model of three Kelvin units with stress-dependent deformation moduli.

8.4.2 1989 Investigation

In 1989 investigation, samples for semi-confined tests were recovered from
borehole SD3 at depths from 209 to 219 m, representing the deep section of Queenston
Shale. No long-term free swell tests were performed on that depth. Therefore, as
discussed previously in Sec. 8.3, in calculating the stress-dependent moduli of the three

Kelvin units, it is necessary to choose a semi-confined test as a reference test. As

discussed in the previous sections, the rate parameters A, calculated from the five long

term free swell tests will be used as the governing rate parameters for Queenston Shale

regardless the focation and depth.
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(A)  Vertical Direction

The initial vertical stress at the test location is 4.8 MPa. The critical and the
equivalent free swel: stresses are calculated as 3.2 and 0.014 MPa, respectively (refer
to Figure 7.17). The applied pressures on the samples ranged between 0.02 MPa and
1.02 MPa.

The semi-confined test SD3-V3 is chosen as a reference test for the
determination of the stress dependent moduli. The values of the stress-dependent
deformation moduli calculated are listed in Table 8.7.

A comparison between the predicted swelling strains under different applied
stresses and the measured strains from semi-confined tests is shown in Figure 8.24. It

can be seen that the calculated strains are generally consistent with the measurex! values.

(B)  Horizontal Direction

The average horizontal initial stress at the depth from which the samples were
recovered is 23 MPa, from results of hydraulic fracturing tests (refer to Chapter S).
The critical and equivalent free swell stresses are determined to be 1.8 and 0.05 MPa,
respectively (refer to Figure 7.18). The applied pressures on the samples ranged from
0.02 to 3.0 MPa.

Using test SD3-H11 as a reference test, the deformation moduli under different
applied stresses are calculated and summarized in Table 8.8.

The swelling strains predicted using the proposed model are calculated for
different applied stresses and compared to the measured strains in Figure 8.25. It can

be seen that the predicted and measured strains are in good agreement.
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8.4.3 1990 Investigation

In 1990 investigation, 6 semi-confined tests on samples recovered from boreho'e
NF4A and 5 tests from borehole NF37 were carried out. The samples from borehole
NF4A were from depths between 180.37 m and 181.18 m, therefore they represent the
deep section of Queenston Shale where the twin tunnels will be constructed. The
samples from borehole NF37 were from depths between 97.48 m and 98.10 m in the
area of the proposed power house. The loading direction for all the 11 tests performed

in this investigation was parallel to the bedding planes, i.e. the horizontal direction.

(A) Borehole NF4A

The applied stresses, in the horizontal direction, on samples from borehole NF4A
ranged from 0.02 MPa to 3.0 MPa. The average horizontal initial stress at the test
depths is 19.5 MPa as determined from hydraulic fracturing measurements (Chapter S).
The critical stress and the equivalent free swell stress are determined as 6.0 MPa and
0.005 MPa, respectively, refer to Figure 7.19.

According to the method described in Sec. 8.3.2, test NF4A-11 is chosen as a
reference test. From regression analysis and using the rate parameters determined
previously from the long term free swell tests discussed in section 8.2, the deformation
parametess for the three Kelvin units for this test are determined. Using Eq. 8.12, the
deformation parameters under different applied stresses are calculated and they are listed
in Table 8.9.

Using the deformation parameters listed in Table 8.9, the swelling strains under

different applied stresses are calculated and compared to the measured strains in Figure
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8.26. It can be seen that there is a good agreement between the predicted and the

measured values.

(B)  Borehole NF37

The semi-confined test samples from borehole NF37 were loaded in the horizontnal
direction. The applied stresses on the samples ranged from 0.03 MPato 1.0 MPa. The
average initial horizontal stress at the test depths is 6.5 MPa as determined from
hydraulic fracturing measurements (Chapter §5). The critical stress and the equivalent
free swell stress are determined as 31 MPa and 0.007 MPa, respectively, refer to Figure
7.20.

To calculate the deformation parameters, test NF37-4 is chosen as a reference
test. From regression analysis and using the rate parameters determined previously from
the long term free swell tests discussed in section 8.2, the deformation parameters for
the three Kelvin units for this test are determined. Using Eq. 8.12, the deformation
parameters under different applied stresses are calculated and they are listed in Table
8.10.

Using the deformation parameters listed in Table 8.10, the swelling strains under
different applied stre.ses are calculated and compared to the measured strains in Figure
8.27. It can be seen that there is good agreerient between the predicted and the

measured values.

8.4.4 1992 Investigation

In 1992 investigation, two semi-confined tests were performed on samples
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recovered from borehole NF43. The applied stresses were in the vertical direction: 1.0
MPa on one sample and 3.0 MPa on the other. The initial vertical stress at samples
location is 4.2 MPa. The critical stress determined from these two sarnples is 13.0 MPa,
and the equivalent free swell test is 0.00012 MPa.

The stress dependent deformation moduli for the samples are determined twice:
once by using sample NF43-V1 as the reference test and another by using test NF43-V2
as the reference test. The average of the two set of values for each test is considered as
the representative set of deformation moduli for this test. A summary of the values of
the deformation moduli obtained is shown in Table 8.11.

Figure 8.28 shows a comparison between the measured and the predicted swelling
strains. It can be seen that the calculated swelling strains represent the measured strains

reasonably well.

8.5 SUMMARY AND CONCLUSIONS

Results of five free swell tests started in 1986 and still in progress till present
(early 1994) are presented in this chapter. These tests are devoted to examine the long-
term time-dependent deformation of Queenston Shale. A rheological model consisting
of three Kelvin units connected in series is adopted to describe the nonlinear long-term
swelling behaviour of Queenston Shale. The same model is also used to predict the
stress-dependent swelling strain for Queenston Shale. Equations relating the deformation
moduli of the three Kelvin units under free swell to those under any applied stress are
derived. The predicted swelling strains using this model are compared to the measured

values. From this study, the following observations and conclusions are drawn:
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a- The swelling deformations of Queenston Shale last for long time and the long-term
swelling deformation is highly nonlinear with time: up to the present (more than 2700
days, = 8 years), time-dependent swell deformation is still developing although the
swelling rate decreases gradually with time.

b- The rheological model consisting of three Kelvin units connected in series well
represents the long-term swelling behaviour of Queenston Shale.

c- The predicted curves of swelling strain versus elapsed time, whose parameters were
obtained on the basis of the test results during the first 1260 days, can represent the
results of the free swell test up to the present (more than 2700 days) reasonably well.
Therefore, the model not only represents the swelling strain within the period of time the
parameters are calculated but also predicts adequately the strain for even much higher
values of time.

d- One set of ruce parameters, A,, calculated from long-term swell tests can be used to

represent adequately the swelling behaviour of Queenston Shale at this site regardiess the

depth or location. The representative values of rate parameters, A,, are

A, =0.11, A, =0.028, and A,=0.0018
The variation of swelling strain from a free swell test to another are dependent only on
the values of deformation moduli of the three Kelvin units, keeping the rate parameters A,

constant.

e- The suppression of the swelling strain under applied stress can be regarded as the

combination of the effects of two factors:

1- Suppression due to reduction of stress relief: under applied stress o, the stress
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relief o, is less than the initial stress value o, considered with the free swell

strain (o, = 0, -0,), leading to lower strain values.

2- Suppression due to ap7 ...at stiffening effect: as the applied load on the sample
increases, the sample apparently becomes more stiffer towards the time-dependent
deformation and the values of de/~rmation moduli increase, leading to a lower
strain value than that would be obtaiued if only factor (1) above is considered.

The effects of both factors can be considered in the generalized Kelvin model

expressed by Eq. 8.8 by letting ¢ = 0, -0, (factor 1) and by constructing a nonlinear
relationship between the deformation moduli E; and the applied stress (factor 2).
Accordingly, the rate parameters A, are considered stress independent and only the

deformation parameters E, are stress dependent.

f- The predicted stress-time-dependent strains, using the method developed, agree well

with the measured values from different series of semi-confined swell tests in 1985 to

1992 investigations.
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TABLE 8.1 Summary of swelling potentials in the vertical and horizontal directions
for the five long-term free swell tests on Queenston Shale

Swelling Potential
(% per log cycle of time)

Vertical Direction Horizontal Direction

®40-100 @ 100-1000 ®10-100 ®100-1000

FSQ/NF4A-L1 0.43 0.45 0.27 0.27
FSQ/NF4A-L2 0.44 0.45 0.25 0.29

FSQ/NF4A-L3 0.41 0.42 0.19 0.28

FSQ/NF4A-L4 0.27 0.43 0.14 0.29

FSQ/NF4A-LS5 0.28 0.46 0.15
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TABLE 8.5

Values of defermation moduli E, under applied stress o, in the vertical
direction for "shallow section” of Queenston Shale at Borehole NIF4A

Notes:

A,=0.11, 2,=0.028, and A,=0.0018 1/day
o,=2.6 MPa

o,=0.0035 MPa

o,=12.5 MPa
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TABLE 8.6  Values of deformation moduli E, under applied stress o, in the horizontal
direction for "shallow section” of Queenston Shale at Borehole NF4A

Free Swell

19610

9950

3240

Notes: A,=0.11, A,=0.028, and A,=0.0018 1/day
c,=13.0 MPa
o,=0.01 MPa
o,=7.0 MPa
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TABLE 8.7  Values of deformation moduli E; under applicd stress o, in the vertical
direction for "deep section” of Queenston Shale at Borehole SD3

Free Swell

1710
12250

370

Notes: A,=0.11, 2,=0.028, and 2,=0.0018 1/day
¢,=4.8 MPa
o,=0.014 MPa
0,=3.2 MPa
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TABLE 8.8  Values of deformation moduli E, under applied stress o, in the horizontal
direction for "deep section" of Queenston Shale at Borehole SD3

Free Swell

101
1345

37

Notes: A, =0.11, 4,=0.028, and A,=0.0018 1/day
o,=23 MPa
a,=0.05 MPa
o.=1.8 MPa
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TABLE 8.10 Values of deformation moduli E, under applied stress o, in the horizontal

direction for Queeaston Shale at location of Borehole NF37
(SABNGS No. 3 project, 1990 investigation)

Free Swell

20000
2640

Notes: A,=0.11, 1,=0.028, and A, =0.0018 1/day
c,=6.5 MPa
o,=0.007 MPa
o, =31.0 MPa
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TABLE 8.11 Values of deformation moduli E, under applied stress ¢, in the vertical
direction for Queenston Shale at location of Borehole NF43
(SABNGS No. 3 project, 1992 investigation)

Free Swell

20000

2640

Notes: A, =0.11, ,=0.028, and A,=0.0018 1/day
o,=4.2 MPa
0,=0.00012 MPa
o, =13.0 MPa
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Figure 8.18 Typical isochronous swelling strain versus logarithm of applied

stress, Queenston Shale
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Figure 8.19 Idealization of relationship between swelling strain and applied stress
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CHAPTER 9

UNLINED TUNNELS DRIVEN IN VISCOELASTIC

ROCKS

9.1 INTRODUCTION

Distress in underground structures built in rocks exhibiting time-dependent
deformation and subject to high horizontal stress is well known. Table 9.1 summarizes
the effect of high horizontal stress and time-dependent deformation on underground
structures (Lo and Yuen 1981).

Lo and Yuen (1981), showed in many case records that fcr lined circular tunnels
the distress is manifested in the form of subhorizontal cracking at the springline. Invert
heave up to 30 cm was measured in tunnels in Switzerland in 30 years (Berk and Grob
1972; Einstein and Bischoff 1975). Floor heave of about 45 cm in 3 years measured in
tunnels in Germany was reported by Wittke and Pierau (1979).

Gill et al. (1970) and Gill and Dube (1974) studied the problem of rock-structure
interaction for elastic lining. The case of viscoelastic lining was investigated by Curtis
(1974, 1976) and Sakurai (1974). Lo and Yuen (1981) developed a theoretical solution
for stresses and displacements in the lining and rock mass. Their solution takes into
account the following important factors: (a) the initial stresses in the rock mass, (b) the
time-dependent behaviour of the lining as well as that of the rock mass, and (c) the time
elapsed between excavation and installation of the lining. Results of their solution were
compared with several case histories in which severe cracking occurred and the

comparison was satisfactory in Georgian Bay Shale and Shaly limestone. However,
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because of the adoption of one Kelvin unit in their model, their solution is suitable only
for rocks deforming for relatively short period of time. in the order of up to a few years.

In the light of results from Chapters 7 and 8, it can be seen that the time-
dependent deformation of Queenston Shale occurs over a very long period of time. It
has been shown in Chapter 8 that this long-term time-dependent deformation of
Queenston Shale is well represented by a model consisting of three Kelvin units
connected in series.

In this chapter, closed form solutions for the displacements around unlined tunnels
driven in viscoelastic rocks are derived. The theory of linear viscoelasticity is adopted.
The rock is idealized by a 7-element Kel 7in model (a spring and 3 Kelvin units connected
in series, refer to Figure 9.1). The law of correspondence between the elastic solution
and viscoelastic solution is adopted to obtain the solutions.

In the next Chapter, the closed form solution developed will be extended to
include the case of lined tunnel in viscoelatic rocks. The solutions obtained will be used
to estimate the stresses in lining of the proposed tunnel for SABNGS No. 3 proje.t and

all the parameters affecting the solution will be investigated.

9.2 CORRESPONDENCE PRINCIPAL

If the elastic solution of a particular problem is known, the associated problem
in linear viscoelasticity may be solved by using the principle of correspondence (Fliigge
1975) derived in Appendix 9A. The steps of solution may be summarized as follows:
(a) replace the displacements and stresses by their Laplace transforms.

(b) replace the actual loads by their Laplace transforms.



(c) replace the elastic parameters (K, G, E and v) in the elastic solution by the

transformed operators given in Appendix 9A, Eqs. 9A.57 through 9A.59

:6-¥< x-< 9.1a)
P P
E-_3¢e<2  ,.FOX-FQ 9.1b)
2P +PQ W +PQ

where K = bulk modulus of the rock

G shear modulus of the rock

E = Young's modulus of the rock

v = Poisson’s ratio of the rock

P, 6 . I_", and 6" are the Laplace transforms of the differential operators P, ¢, P”,

and Q" respectively in the constitutive laws of a viscoelastic material, and they are

polynomials in s, the transformation variable.

(d) inversion of the Laplace transforms will give the final viscoelastic solution.

9.3 ASSUMPTIONS

The following basic assumptions for the rock mass are considered during the
derivation of the solution:
1) The rock mass is an infinite, elastic, linear viscoelastic material and acted upon
by the initial stresses at infinity.
2) Both the dilatational and distortional behaviour of the rock mass are represented

by a 7-element Kelvin model (a spring and 3 Kelvin units connected in series,
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Figure 9.1).

3 Poisson's ratio of the rock mass is independent of time. Extensive study on
Queenston Shale has shown that Poisson's r tio is independent of time (Lee
1988).

4) The tunn.l is long enough to consider the problem a plane strain problem with
one of the principal stresses parallel to the tunnet axis and the other two

perpendicular to it in the vertical and horizontal directions.

9.4 ELASTIC STRESSES AND DISPLACEMENTS AROUND UNLINED

TUNNELS

Since the method of analysis described above (the correspondence principle)
requires the existence of the elastic solution of the problem, the elastic solutions of
stresses and displacements around unlined tunnels are cummarized in this section.

The elastic solution of stresses and displacements around unlined tunnels are well

known (Jaeger and Cook 1976; Obert and Duvall 1967, and Yuen 1979). In terms of

the initial hydrostatic (P,) and deviatoric (Q,) stress components, the radial, tangential

and shear stresses respectively are

2 Py 2
o,, = P,(1 --Ri) + Q. (1 +3ﬁ - 4»&)00526 9.2)
? I'2 ? I'4 r2
R R 9
Tor = Poll+ =) + Q1 - 3—)cos20 9.3)

23



4 2
e - ~Q,U1 ~3‘—:’; +2%)sin26 9.9)

The radial and tangential displacements respectively are (Yuen 1979)

2 2
R, R, 9
- P,+Q,(4-4v - —2)cos20 @-5)
JIR 2GR" o Qo( R rz)
‘ 2
2
Vg = - % ﬁ+ﬁ(1-2v,) sin26 (9.6)
2G,| r? r
Pll + Pv
where P, =
2
Q —_ Ph‘PV
° 2
P, P, = initial horizontal and vertical stresses in the -ock mass
respectively
R2 = radius of the unlined tunnel
r = radial distance from the centre of the tunnel

G, vp = shear modulus and Poisson’s ratio of the rock respectively

6 = angle measured from the springline of the tunnel

The subscript R stands for Rock.
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9.5 VISCOELASTIC SOLUTION FOR THE STRESSES AND
DEFORMATIONS AROUND A TUNNEL
Yuen (1979) showed that the final time-dependent deformation of the rock is
independent of the Poisson’s ratio. In addition, extensive study on Queenston Shale has
shown that Poisson’s ratio is independent of time (Lee 1988). Therefore, in the

following investigation Poisson’s ratio will be assuimed to remain constant with time.

9.5.1 Solution For Stresses

As shown by Egs. 9.2, 9.3, and 9.4, the stresses in the elastic rock mass are
independent of the material parameters. Therefore, the viscoelastic stresses will be the
same as given by these equations for elastic rock mass, according to the elastic-

viscoelastic correspondence principle.

9.5.2 lution For Radial Di
The elastic solution for the radial displacement is given by Eq. 9.5 and can be

written in the following form:

Ug = M, 9.7

1
Gp
where

R} | R 9.8
M, - 5{po+oo(4—4v,~-’—z)cosze ®.8)

The initial stresses P, and Q, are applied at infinity and remain constant with time,
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therefore,
P, =P A 9.9)
and
Q, = Q,A( (9.10)
where ¢ = time variable
A() = the unit step function
=0 for t<0
=1 for t20

The Laplace transforms of P, (Eq. 9.9) and Q, (Eq. 9.10) respectively are

4(P) =P, = L (9.11)
s
and
9Q) = Q, = < 9.12)
)

Since Poisson’s ratio is assumed independent of time, the laplace transform of M, is

- M
M, - —s'— Application of the correspondence principle (Sec. 9.2) to Eq. 9.7 leads to the

following equation:
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uk=

M, 9.13)
S

2P
@

- M
where u,, is replaced by its Laplace transform u,, M, by its Laplace transform —! . and 2G,
s

by the transformed operators P and Q as given by Eq. 9.1

2:6-< ©9.19)
P

where é’ and P are polynomials in the transform variable s .

It has been shown in Chapter 8 that the long-term time-dependent deformation for
Queenston Shale is well represented by a 6-element Kelvin model (three Kelvin units
connected in series,. To include the elastic deformation of Queenston Shale, a spring

should be connected in series to the three Kelvin units, consisting a 7-element Kelvin
model. For this model, the transforms of the differential operators P and 6’ are given

by the following expressions (see Appendix 9A):

P =1+pgs+pPpsi+ppys’ (9.15)
and

Q=+ S+ TS+ Gy 5 (9.16)
The coefficients p'p;, P'ry- P'ry» T ro+ 9ri+ Trz» and ', can be expressed in terms of

the elastic and viscoelastic parameters of the rock as follows (refer to Appendix 9Aj:
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Pri = (GryGraMps * Gy CpsNpp * GroGpsMpy * GrGroNps * GrGpsNpe
+GpGryNpy * GGy + GG Mgy + GpGpaMypy) 9.17
| 2(GpGp;Gps * GGGy + GrGryy Gy + GpGy G2)}

Pro = (GyMpMps * GpafigyNps * GpsNpy N2 * CrNpa s
* Gy Mas * Gy M) (9.18)
/(4 (G Gp;Gps * GpGp;Gpys * GGy Gy + GpGpy G

Pas = WAL AT (9.19)
¥o8 (G 1GpyCps * GpGp; Gy * GGy Gy + GpGpyy G
q, - 2 GR le sz GM (9. 20)
o G Gr2Grs * GrGpy Gy * GpGryy Gy + GpGpy G
To - GG G2 as * CrGriCas Nz * GaGOp2 s Nir: ©.21)
M Gr GryGrs * GrGr2Gps * GrOpiCrs * GrGpi G
Tvr - GrGrrNraMrs * CrGraNarMas * GO Nas M 9.22)
22 (GryGr2Crs + GpGpyy Gy + GGy Gy + GrTrri Opd)
G
T = all AT 9.23)

4(Gp GGy * GxGryGps * GpGpy G * GrGpy Oed)

Substitution of Egs. 9.15 and 9.16 into Eq. 9.13 leads to the following equation:

- 2(1 +p'313+ﬂmsz+ﬂk3s3) M (9.24)

u =
gy s(qm*'qlms*q'nzsz*q/msa)

After arrangement, Eq. 9.24 can be written in the following form:

i = (1+p s+plusz +prms3) (2M’]
R = Ri

9 v 9n

If -2, -Ag,, and -A,, are the roots of the following equation:
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3, q’nsz, qlms+ Tro _ 0
‘Z',_; 9 ps q'm

A

then, Eq. 9.25 can be expressed as

where

“n S(S+Ag)(s+A)(s+ Ap,)

Aps = 2‘[-6,cos[9-'+120°] I3
3 @

G orastps )

qns

0 2G
Ay - zfa',cos[?uzw]-ie - w

7 ¢Rj “Rj‘

54

R =

1ta (0]
q
Q - R3 5 u)

Ap (where i can take any value of 1, 2, or 3) can be expressed as

(9.26)

(9.27a)

(9.27b)

(9.27¢)

(9.27d)

(9.27e)

(9.270
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A, = (9.28)

where G,, and 7, respectively are the shear modulus of the spring and the viscosity

coefficient of the dashpot in the i th Kelvin unit.

Using partial fractions, Eq. 9.26 can be written in the following form:

i = |2 o B SR W | Kl 9.29)
S S(s+Apy)  S(S+Ag)  S(+Ap) |\ @
where
Ao = p‘RJ (9.308)
’ 2 3
A] = (Am'lv)(lmp‘u ”Aklﬂm + A'RIPRJ "~ 1) (9.30b)

Apphps(Aps=Aps) + Apjhps(Aps=Aps) + Ap;A gy (Agyhg))

A - (Aps~Ag)(Agy Py - Aftzp’m + )‘izpln -1) (9.30¢)
: ApgAgs(Apg=Ap)) + Ag;ps(Apy=Ap) + Agdp(Apdy))

Al = (Ags = App)Agy P'py - A:,p'n M l:.'plm - 1) (9.30d)
? AppAps(Aps=Apg) + AgAns(Apy = Ags) + AgApy(Apyhgy)

Inverse Laplace transform of Eq. 9.29 leads to the following solutiun of the time-

dependem radial deformation of the unlined tunnel:

Al ~dgyt Az
UpD) = |P'pyt —(1-¢ %)+
lm lkz R3

A 2M
(1-e ety —2(1-e “uty ——') 9.31)
A 9

Eq. 9.31 can be written in the following form:
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up(t) = Jp(0) 1 (elastic) (9.32)
where
2G A . A ‘ A e
T = =Epg =LY s 2(1-e Moy e ZL( et | 039
9ps Ay A Ay
or
T = [1+ QpL-e7%) + o1 -€7") ¢ yp(1-¢ '] (9-34)
Pw . 1 (9.35a)
9 ps 2G,
2G A G
Opy = —— = == (9.35b)
Tty Gpy
2G4 G
Op = X2 x (9.35¢)
Tosrpy Gpo
bgs = Z,G"A’ - S (9.35d)
Tt Oy
¢y, where i can take any value of 1, 2, or 3, can be expresses as
by - =1 (9.36)
G,

J(t) is a time-dependent function which relates the time-dependent deformation to the
elastic deformation.

When t=0

81



J(0) =1 9.37
and
uy(0) = uy(elastic) (9.38)
When t = ‘
T} = 1+ g+ Gpy* bpy 9.3%)
and
Ug(=) = (1 + ¢y, + by, + bp,) uglelastic) (9.40)

In gereral, for a model of a spring and k Kelvin units, the time-dependent radial

deformation takes the following form:
ug(t) = Jy (1) uyfelastic) 9.41)

where

k
IO = 1+ By(l-e ) (9.42)

i=1

¢, represents the ratio of the final detormation resulting from the i th Kelvin unit to the
elastic deformation and it is defined by Eq. 9.36. A, is an indicator to the rate at which

the time-dependent deformation of the i t# Kelvin unit is built up and it is defined by
Eq. 9.28; a high value represents fast occurrence of the time-dependent deformation and

vice versa.
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9.5.3 Solution for Tangential Deformation

The method of analysts described in the preceding sections may be applied in a

similar manner to solve for the time-dependent tangential deformation of the unlined

tunnel. Thus, for a model consisting of a spring and k Kelvin units, similar to Eq. 9.41

valt) = J(0) v (elastic) 9.43)
where
[
) = 1+ }:'¢h(1-¢"¥) 9.49)

9.5.4 Example of Design Analysis

As an example of utilizing Eq. 9.41 in practice, the final unrestricted time-
dependent radial deformation of a typical section at depth 200 in of the circular twin
tunnels proposed for the SABNGS No.3 project are calculated. As shown in Chapter 8,
the elastic and time-dependent properties for Queenston Shale (the rock component in

which the tunnels will be excavated) are

E, = 15800 MPa ve =03
A, = 0.1100 day" A, = 0.02800 day" A, = 0.0018 day'
E,, = 15000 MPa E,, = 8080 MPa E,, = 4940 MPa
: . E,
The elastic shear modulus is G, = = 6077 MPa
2(1+vp)

The time dependent shear moduli are also calculated as



Gy, = 5769 MP2a  G,, = 3108 MPa G, = 1900 MPa

¢,, are calculated using Eq. 9.36

Gy

G
¢”:_..L=l.l ¢m=——=20 ¢”= =32
le

GR
Gy Gps
The final time-dependent radial deformation are calculated using Eq. 9.41
ug>) = (1+1.1+2.0+3.2) uylelasticy = 7.3 uy(elastic)

which indicates that the unrestricted final radial deformation is more than 7 times the

elastic deformation.

9.6 SUMMARY

Closed form soiutions for the displacements around unlined tunnels driven in
viscoelastic rocks are derived using the theory of linear viscoelasticity. The rock is
idealized by a 7-element Kelvin model (a spring and 3 Kelvin units connected in series).
The law of correspondence between the elastic solution and viscoelastic solution is

adopted to obtain the solutions. In the next chapter, the solution is extended to include

the case of rock-lining-time interaction.
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TABLE 9.1  Effect of high horizontal stresses and time-dependent deformation on
underground structures
-
Type of Structure Short Term

(duning construction)

Long Term

Open excavation

(a) Heave and buckling of floor
(b) Movement along bedding planes

(1) As (a)

(i1) Long term deformation n
unsupported excavation

(111) Stress increases in support system
leading to distress

Tunnels

(a) Movement along bedding planes
at or near springline

(b) Local "failure® at crown and
invert in soft rock

(c) invert heave

TSR

(1) Displacements (inward) increases
with time in unlined tunnels

(11) Stress increases n lining leading to
distress

(after Lo and Yuen 1981)

28§



286

K = Elastic bulk modulus
G, = Elastic shear modulus
K_ .= Bulk modulus for the spring in the i th Kelvin unit

G

n I

= shear modulus for the spring in the i th Kelvin unit

2 2

n Ri = Viscosity of dashpot for the i th Kelvin unit
)\m = rate parameter for the i th Kelvin unit

__ G
AR

Figure 9.1 7-Element Kelvin model for hydrostatic and deviatoric stress components
for rock




CHAPTER 10

ROCK-LINING-TIME INTERACTION

OF CIRCULAR TUNNELS

10.1 INTRODUCTION

In Chapter 9, the closed form solutions for the unrestrained time-dependent
displacements around a circular tunnel driven in a linear viscoelastic rock mass are
derived. In the solutions obtained, the rock mass has been represented by a 7-element
Kelvin model (a spring and 3 Kelvin units connected in series), a model which is capable
of describing the long-term time-dependent deformation of swelling shales.

In this chapter, the rock-lining-time interaction of circular tunnels is considered.
Closed form solutions for the stresses and displacements in the lininig and in the rock
mass are derived. The geometry of the problem and the sign convention for the stresses
and displacements are illustrated in Figure 10.1. The elastic and time-dependent
deformations of the rock mass are idealized by a 7-element Kelvin model (Figure 9.1)
and those for the lining are idealized by a 3-element Kelvin model. The correspondence
principle derived in Chapter 9 is adopted to convert the elastic solution of the problem

to its correspondent of time-dependent solution.

10.2 ASSUMPTIONS
Besides the basic assumptions for the rock mass mentioned in Chapter 9, the
following basic assumptions are considered for the lining:

(1)  The lining is an isotropic linear viscoelastic material.
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(2) Both the dilatational and distortional behaviour of the lining are represented by

a 3-element Kelvin model. Poisson’s ratio is independent of time.

10.3 ANALYSIS OF ROCK-LINING-TIME INTERACTION OF A CIRCULAR
TUNNEL UNDER INITIAL HYDROSTATIC STRESS COMPONENT, P,
10.3.1 h i i k-Lining In i
Since the correspondence principle will be adopted to convert the elastic solution

of the problem to its correspondent of time-dependent solution, the elastic solution of the

problem, which can be found in Yuen (1979), is summarized in this section.

(1) Expression for the lining pressure, P,

The lining pressure :s defined as the radial stress at the rock-lining interface. For

the hydrostatic stress component, P, i< independent of 6

P = - (10.1)
1+C,C,
where P, = the initial hydrostatic stress component
P +P
P, = h v
2
P, P, = the initial stresses in the horizontal and vertical directions
respectively
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_E () Gy (10.23)

c, - “'2‘;‘)&2 _ R (10.2b)
R, - R,

Vas Vg = Poisson’s ratios for the rock mass and lining respectively

E,, E, = Young's moduli for the rock mass and lining respectively

Gg. G, = the shear moduli for the rock mass and lining respectively

R,, R, = the inner and outer radii of the lining respectively

The subscripts R and ! refer to rock and lining respectively.

(2) Stress distribution in rock mass

The final radial strcss in the rock mass after elastic rock-lining interaction is

2 2
o, = P, 1-5’; . p,[ﬁz] (10.3a)
r r
or
2
0 = P,|1- e ] (10.3b)
!+C1C2 r2

Where r is the distance from the point of interest to the center of the tunnel and the

subscript h refers to the hydrostatic component. The expression for the tangential stress

is
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2 2
OOM = p [l +ﬁ] _ P‘[ﬁ (10.43)
° 2 2
r r
or
2
ogy = P12 B (10.4b)
° °l" 1+CC, r?
while the shear stress is zero
Tom = 0 (10.5)
3) Deformation in rock mass
(i) radial displacement, u,
_ (P -P)(L+vy) g (10.6)
R E, r
(i)  tangential displacement, v,,
Ve, = 0 (10.7

4) equivalent moment and thrust in the lining

The expression for the equivalent moment per unit length in the lining is
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P,
M, = - o (R, ‘Rn)z (10.8a)
or
M, = -——° ___(R,-R) (10.8b)
o120 +c,c,)m2 X
The expression for the equivalent thrust per unit length in the lining is
P,(3R} +R})
N, = 2 (10.9a)
2(R,+R))
or
P, (BR}+R}
N, - o ! (10.9b)
(1+C,C,) 2(R,+R))
£)) Stresses in the lining
The radial and tangential stresses in the lining respectively are
Ry
P,(1- —2)
r
Oy = ———— (10.10)
R,
a--)
R,

and
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(i) at the outer fibre

(i) at the inner fibre

(6) Doformation in lining

(M radial displacement

where

P,(1+—1)
o = l rz -
Ol Rlz
a '~—2)
R,
r=R,
orlh(r=R2) = Pl
2 p2
R +R,
Oaun(r=Ry) = P;- 2
- Rl
r =R
o,,(r=R) =0
2P,R;
Oou(r=R)) = ra—
) — Ry
C,(1+v)r
» E, {

(10.11)

(10.12a)

(10.12b)

(10.13a)

(10.13b)

(10.14)
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Sy, ¢ |
C, - ! (10.15)

(ii) tangential displacement

v, =0 (10.16)

10.3.2

The elastic solution for the rock-lining interaction problem, summarized in the
previous section, is obtained for the imaginary case that the lining is installed in its place
in the rock before excavation and then the initial stresses are released at the interface.
Therefore, if the correspondence principle is utilized to obtain the time dependent

solution, this solution will represent the imaginary case of placing the lining into the rock

and instantaneously releasing the initial stresses at the interface at ¢ = 0. In practice,
however, the lining is installed at time ¢ = ¢, after the tunnel excavation.

In this section, the correspondence principle will be used to obtain the expression
for the time-dependent lining pressurc assuming the lining is installed at ¢, - 0. Then,
the expression will be extended to include the case of ¢, > 0.

From the elastic solution for rock-lining interaction u:.der the action of hydrostatic

stress compouent (P, ), the lining pressure is (refer to Sec. 10.3.1)

[ &3
‘o



p-—te
‘o G, 10.17)
l +Cz"_

The associated problem in viscoelasticity can be formed using the principle of
correspondence. Application of the correspondence principle to Eq. 10.17 yields the

following equation:

- Po
fi - 7, P 10.18)
P -
s(l + —gj- —c)
r Qi
where P, is replaced by its Laplace transform F,, P, by its Laplace transform —2, and
s

the elastic parameters (G, and G,) by the transformed operators (I;',t and 6’,) and (F’,

and Q_’,) respectively as given by the following relationships:

G, -2 -2 (10.19)

1] for rock
The long-term time-dependent deformation of Queenston Shale is idealized by the

7-element Kelvin mode! shown in Figure - .. For this model,

F'R =1+pp s+Pp s? *Prs s3 (10.20)

and
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Qr TS S+ @ 5° (10.23)
Where the coefficients p'y;, P'ry+ P'rse Tros ri» Trp» a1 'y can be expressed in

terms of the elastic and viscoelastic parameters of the rock as follows (refer to Appendix

9A):

Pri = (G GppMps * Gy GrsMpy * GroGrsMpy * GrGriaNas * GaGrsMip
*GrGpi Ny * GpGrsfips * GrGriNiy * GaGrar) (10.22a)
| (2(Gpy;GpzGps * GpGryGrs + GGy G * GrGpyGry))

Pre = (GryMpa Mgy * Gy Nps * G My Mgz * GrMpy My
*Grlipg Mgy * Gplig Nyp,) (10.22b)
/{4 (G Gp;Gps *+ GrGryGrys + GpGpyy Gy + GeGp, Gl

Pr = WA A - (10.22¢)
¥os (G GpyGpys * GGy Gy * GGy Gy + GGy G,)
ql - 2 GRGBI szGM (10-238)
o G Gy Gps + GpGpyy Gy * GpGp Gy + GGy Gy
v . OrCmiGae"es * GrOriCrsNaa * GaGraCrs i (10.23b)

T G GGy * GG p; Gy * GpGp Gy + GpGpy Gy,

s, - GrGriNazNrs * GaCrairMs * OrFps i N2 (10.23¢)
e o2 (G Gp;Gpys * GGy Gy * GGy Gy + GpGpy G,)

T Al TR ) (10.23d)
4(Gyy Gp;Gps + GpGp; Gy * GpG Gy + GpGy Gy

(b) for lining

As mentioned at the beginning of this chapter, the concrete lining of the tunnel
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is idealized in the analysis by the 3-element Kelvin model (a spring and one Kelvin unit

connected in series). For this model,

i;l =1 +p'"s (10.24)
and
Q, = 0y * IS (10.25)
where
n,
p’ T e— (10.26)
7 2G,+ Gy
qs = 2 G0 (10.27»)
G, +G,
qy = S (10.27b)
G, +G,

Substitution of Eqs. 10.20, 10.21, 10.24 and 10.25 into Eq. 10.18 leads to the following

expression:

P

[

, Cr* O a5+ pss”) 147,5)C, (10.28)
(l +p’lls+p'nsz+ﬂus3) (Q'b*Q'uS)

v
n

s

After arrangement, Eq. 10.28 can be written in the following form:

_ P, (as‘+ays’+ays+as+a) (10.29)
by s(s*+bs*+bs’+bs+b)

F,
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where
—— (10.30a)
4 - Pods ) (10.30b)
Gy = Py * Py (10.30¢)
8 =P, * P 2y (10.30d)
—— (10.30¢)
b - @ *9rC) (10.31a)
o b‘
b, - a9yt T0C2* 4 ? uC) (10.31b)
b‘
5, - PO raTio* P s * CpaCa* TPy Co) (10.31¢)
b‘
b, - IuTe PuTu* IS InPuC) (10.31d)
b‘
b, = Pydy *dxP'yCs (10.31e)

If -a,, -a,, -a,, and -a, are the roo's of the following polynomial of the transform
variable s:

. 3 2 -
5% +bys’ + bys +b1s+bo =0

Eq. 10.29 can take the following form:

297



where

5 - P, a;s*+a,s’+a,s*+a,s+a,
¢ b, s(s+al)(s+az)(s+¢3)(s+a‘)

Z, = 3(6b;bb, +4b;b; +128b2b; - 16b by +4b]b; +27b]b}
-b2blb} +192b,b,b} - 18b,b.b, - 144b b,b] - 144bb,b;

1
+4b bib; -256b, +27b; +80b,b;b b3 - 18b,b,b;b,)?

_ bbby, bbb bbb 2,
2 6 3 2 2 27 18

2 3
5 . bbb, b, 5 bbbz,
i 6 3 2 2 27 18

z, - 3b7 -8b, + 12}/Z; + 127,

(10.32a)

(10.32b)

(10.32¢)

(10.324d)

(10.32¢)

(10.320

(10.32g)

(10.32h)

(10.32)
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b, 3,Z 6 3
2, = 2 --—lg-%(sb}\[zj-sb,\[zj-sﬁ;,/z_‘

(10.32)
1
-6/Z;\/Z, -3y3b] +12,/3b,b, -243b )2

N
|

_h B, ﬁ(sb},/z-ab,‘/’zj-s’\/z@

a 12 12
1
-6Z,\/Z, -3,/3b} +12,/3b,b, -24/3b, )2

(10.32k)

b, 3,Z
_ 5,32 -_l'/g(»}‘[z“—sb, Z,-6Z, /2,

4 12
1
-6 Z,//Z, +3/3b] - 12,/3b,b, + 24/3b,)?

N

(10.32))

b, Jf3/Z 6
PR TN AW A A

Z
. 4

1
-6 Z,/Z, +3y/3b - 12//3b,b, +24,/3b,)?

(10.32m)

After partial fractions, Eq. 10.32a becomes

L

I E s (s+a)) ) (s+a,) * (s+ey) ) (s+a)

F P (Ao A, A, A, A, ] (10.33)

A, A, A, Ay, and A, are determined by equating the coefficients of 5 in the

numerators of Eqs. 10.32a and 10.33:

A e (10.34a)
° aaaa,

]
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3
- - a,a}-cya; *“z“i’“l"l’“o (10.34b)

Al
o (a,-a,)(a,-a )Ne,-a))
aai-a,a3+a,a2-a,a,+a
Az=—‘2 3%2+G,Q,-a,x,+a, (10.34c¢)
aa, -a)a,-a ) a,-a,)
4 3 2
A - _G,837G,03*Q,&y-a,x3+d, (10.34d)
? a(e, -a)(a,-a)a,-as)
a,ai-a a’+a,az—a &,+a
A = -S4 374 247174 o (10.34e)

‘4 o fa, -a Na,-a Na;-a,)
Inverse transform of Eq. 10.33 yields
PO = % (A, ¢4, A v A v 0" (10.35)
(]

Eq. 10.35 can also be expressed in the following form:

po -8 -a
FAD = E(A°+A1+A2+A3 +A,-A(1-e7*") - A (1-¢ ") (10.36)

-Ay(1-¢ ") -A (1-¢7*)
From Eq. 10.36, it can be seen that A +A,+A,+A;+A, is a term related to the time-
independent lining pressure and 4,(1-¢ ") to A,(1-¢ ~**') are terms related to the tine-

dependent lining pressure. The sum of the coefficients A, to A, controls the final time-

dependent lining pressure. «, 10 a, are parameters governing the rate at which the

pressure builds up.




Equation 10.36 represents the lining pressure-time relationship for the imaginary

case of installing the lining into the viscoelastic rock and instantaneously releasing the

initial hydrostatic component of stress (P, ) at the interface. If the lining is installed after

time ¢=¢, after the excavation of the tunnel, the only relevant parts in £q. 10.36 are the

time-dependent terms A,(1-¢ ') to A,(1-¢ **). These terms being derived from the

imaginary case do not give the actual magnitude of the lining pressure but they do give

the form of the expression of the rate of stress built-up.

Now, let the final lining pressure equal to P, . The time-dependent lining

pressure can be expressed by the following form:

P - -a -e -a
P(D) - A"" [A,(l—e YA, (1-e )+ A(1-e ) Al e ")] (10.37)
s
where A, = AvA,+A A,
r = new time variable

= t-1

When 7 =0, all the terms in Eq. 10.37 vanish resulting in P{0)-0. When £ -0,
P(»)=P,.

By examining the time function in Eq. 10.37 using numerical study and

reasonable ranges of parameters for the lining and the rock, the following observations

are made: (a) a,, a,, and a, are much higher than a,, and (b) the summation of the

terms of &,, a,, and &, vanish after few days and only the term of a, controls the rate
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of pressure built up behind the lining. Similar observations were made by Yuen (1979)

when he analyzed the problem -wsing 3-element Kelvin model for the rock mass.

Therefore, for practical considerations, it 1, convenient to consider only the term ofa,

in the time function controlling the rate of pressure built up. Therefore, the expression

for the time-dependent lining pressure becomes
PLr) = P, (1-¢*") (10.38)
where a is &, which is defined by Eq. 10.32b. It should be noted that a is a function

of all the model parameters of lining and rock and lining geometry and therefore the

approximation does not lead to loss of any important features of the solution.

The final lining pressure (P,_) can be determined from the condition of continuity

of deformation at the interface. The condition of continuity of deformation is that the

radial deformation of the lining at the interface must be equal to the free deformation of

the rock at the time interval from ¢, to #(¢) plus the radial deformation of the rock due
to the reaction lining pressure (refer to Fig. 10.2), i.e.

Up(Ry, 1) = up(Ry, 1) ~ upy(Ry, 1) + i (R, 1) (10.39)
The term in the left side of Eq. 10.39, u,(R,, r), represents the radial deformation of the

lining at the interface at time ¢ after the installation of the *"iing. The first two terms

in the right side of Eq. 10.39, ug(R,,?)-u,(R,, 1), represent the free deformation of the
rock at the interface from the time of installation of the lining, ¢, till the time ¢. The

term ug,(R,, ) represents the radial deformation of the rock at the interface due to the
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reactive lining pressure.

(a) Free deformation of rock at time (¢)
The free deformation of the rock is equal to the free elastic deformation multiplied

by the time function Jy(7) (refer to the derivation in Chapter 9). Therefore, at the

interface, the free deformation of the rock after time ¢ from the excavation of the tunnel

is
P(l1+
uUp (R, 0 = Mﬁ],(t) (10.40)
ER
where

Te®) = 1+ bpll-e ) + dp(1-e ") + §p(1-e 71+

(b)  Free deformation of rock at time (z,)

The free deformation of the rock at the interface at the time of installation of the

lining (z,) can ve obtained by substituting ¢, for ¢ in Eq. 10.40:

P, (1+v )R,

Upy(Ry, 1) = J(t,) (10.41)

(c) Free deformation of rock for time interval from ¢, to ¢

The free deformation of the rock, at the interface for the time interval between

the time of installation of the lining (¢)) and the time (¢ ), equals to the difference
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between Eq. 10.40 and Eq. 10.41.

(d) Radial deformation of rock due to reactive lining pressure (P(r))

The reactive lining pressure P[r) is zero at the time of installation of lining (£ =0
or t=t,) and it is monotonically increasing function with time (Eq. 10.38). At infinity,
the vuiue of the lining pressure is p{«=) = P, . Since the reactive lining pressure is a

function of time and the time function Ju () (in Eq. 10.40) rclating the elastic

deformation to the viscoelastic deformation has been derived for a constant applie

pressure, the radial deformation of rock under the action of reactive pressure can not be
obtained directly by using this time function. Therefore, the deformation of the rock for
this case should be evaluated by the use of the hereditary integral which takes into
consideration the history of the applied load (Fliigge 1975). Appendix 10A contains the
complete steps of derivation of the deformation of the rock using this technique. The
resulting radial deformation of the rock at the interface due to the reactive lining pressure

is

Ug(R,, €) = ;(i;v—‘)fl P, R,(0) (10.42)

where
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l "lm( ) : A _li ) ]
R(r) = (1-e7*) - Me___(l_e (e-2epr) _ brah naf (1-e l..,)r)
a-lm a-—lm

-~
i ¢n’-m: (1-¢ 7207) « gpf1-e7%7) + i -e 2 ) + {1 - )
& =Aps

(10.43)

At infinity, Ry(=) = 1 +&g, +dp, + by

(e) Radial deform:ation of lining

Since the lining is subjected to the monotonically increasing lining pressure p(r)

(Eq. 10.38), the evaluation of the radial deformation requires the adoption of the
hereditary integral as shown in Appendix 10A. The resulting radial deformation of the

lining at the interface is

C, (1~
uu.(R‘p r) = —2('—5\"’-)'52‘ P“ L.(f) (10.44)

i

where

-

£
L) = (1-e7*) - i’g—l—(l e M) v g f1-e ) (10.45)
{

At infinity, L () =1+¢,

Continuity at the interface:
The continuity condition of radial displacement at the interface is given by Eq.
10.39. Substituting Eqs. 10.40, 10.41, 10.42 and 10.44 into Eq. 10.39 leads to the

following relationship:
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U p 1y - Ly, e

E, Ep Levoy (10.46)
(™™ e ) 1 (e e '*f)] - ___;.R_ﬁ P, R,)
R

After arrangement, Eq. 10.46 becomes

ER l*vl _ L”"— -l”‘ +
P.,..[[ —E,_C’) L) R,,(t')] = P,[bgy """ -e (10.47)

lev,
Opy(e ™" -e ) oy (e -]

Therefore,

b buE! e s py (et Ly e 1048
om C,C,L () +R,(0) o

Equation 10.48 should be satisfied for the time interval from (¢=¢t, or £=0) to (¢= or

f==). A direct relationship, which is independent of the time variables ¢ and 7,

between the final reactive pressure P, and the initial hydrostatic stress componentP,

can be obtained by evaluating Eq. 10.48 at infinity

“Aast, “Anty + g,
P_ - i€ +bps Prse P, (10.49a)
CilC(1+d) +(1+d g+, +dyy)

For perfectly rigid lining, E,~e. Therefore, C,~0 and the expression forP,,

vecomes
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“Apt, - A, - ~Aget,
(1+dp+bp+dpy)

The expression for the lining pressure P(r') is

P(t) = P, (1-e™*") (10.50)

10.4 ANALYSIS OF ROCK-LINING-TIME INTERACTION OF A CIRCULAR

TUNNEL UNDER INITIAL DISTORTIONAL STRESS COMPONENT, Q,

10.4.1 he Elasti luti -Lining In ion
) Expression for the lining pressures
(A) no slip at the Interface

For no slip case, there are normal and tangential reactive pressures at the

interface. The expression for the reactive normal pressure at the interface (r=R,) is

5,46) = §,,c0s20 (10.51)

The expression for the reactive tangential pressure at the interface (7=R,) is

S/0) = -S,sin20 (10.52)
where §,; and §, are the maximum normal and tangential stresses occurring at the rock-

lining interface at ©® =0° and 0 = 45° respectively. @ is the angle measured from the

springline (refer to Fig. 10.2). The expression for the maximum radial lining pressure S,

is



33-4
S, - _ 3040, (10.53)
Cs(K‘d+C) +(5-6vy,) +K‘(4-6vk)
where
. el . . P._Pv
¢, = the initial deviatoric stress component = 3
P, P, = the initial stresses in the horizontal and vertical directions
respectively
c,- el 1 _Ga 1 (10.54a)
E, 1+vg -k G, (1-hY
K -2 176@0 (10.54¢)
snl l"'C;(Cl -d)
C = h¥(5-6v) + h*(9-6v) + h(15-18v) + (3-2v) (10.54¢)
d = h’4-6v) + h*(12-6v) - 6v} +2v, (10.54d)
C, = h*(5-6v) + h*(9-6v) - h(9-6v) + (3-2v) (10.5de)
R
h = (2)? (10.540)
R,

The maximum tangential lining pressure §, at 45° is
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(B) Full Slip at the Interface

Expression for the lining pressures

(10.55)

For full slip case, only the normal reactive pressure at the interface exists while

the tangential reactive pressure is zero
§$./(0) = S cos20
5406) =0
where S, is the maximum radial lining pressure at 8 = 0° and is given by

3Q,(3-4v,)
C,C +(5-6vp)

2) Deformation in lining

The expression for the elastic radial displacement of the lining is

Atr = R,

1 -
= LYL).R_i- [Es.‘ &dS'I] cos20

u
Yem  3E(1-h)

(10.56)

(10.57)

(10.58)

(10.59a)
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At r =R,

(1+v) - -
= ——— (A'S,, + B'S,) cos20 (10.59b)

E,(1-h)}

u
u' Ry

where

- R; R?
A = (2h’+h+1)kl-h=(h+3)—3+2h(h2+h+2)}%
N ; ! (10.60)
2 R’l 2 Rl
~v,[2h(h*+h+2)— + =(3h+1)—: ]
R, 3 R?

4 2

B = 2h°R, - %mfz; +2h’(h+l)%
h . (10.60b)
R
- v,[zhz(ml)ﬁ +23p-1)—L 1
R, 3 R?

The expression for the elastic circumferential displacement of the lining is

At r = R,

“(evIR, =
- — Y 2ds,, +,S,)sin20 (10.612)
% 3E(1-h)’

At r = R,

-2(1+v) - - .
= ———[A"S,, + B"S,)sin20 (10.61b)

Vv,
“,-l. EK! _b)3

where



3 4

R,
= (2h2+h+l)— -(3-2v) (3h+1)

+ (1-2v)h(h?+h +2)-2’%-

Dr _ 2 _ Rla 3 R;

B = h'R - (3-2v)Ch-1) =L + 2
6R> 3R
R

+ (1-2v)h¥h+1) —
(1-2v)h*( )2R,

A3) Stresses in lining

The radial, tangential and shear stresses in the lining are

- -4+ £ 4Dy 000

r I‘

orld

(A + 12Br? + 6—("‘)cosze

r

Tou

o = 24 +68r2 - 5€ - 2D, g

r f

where

1
(1-h)*

S
A= [-—21’(2h2+h+1)—s,,h21

B =

S
,[—-(3;: 1) + == (3h-D)]
(1-h)’  6R? 6R]

RZ
+ hi(h+3)—
6R} 6R}

31

(10.62a)

(10.62b)

(10.63)

(10.64)

(10.65)

(10.66a)

(10.66b)
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2 Iipt
c - L[5 g 3R (10.66¢)
(1-n)? 6 3
D = .__l__. [E’L'h(h2+h +2)R22 + i‘.’hz(h+])R:] (10.66d)
(1-h)? 2 2

The tangential stress at r = R, is

Oua,,, = @A+ 12BR} ¢ %) c0s28 (10.67a)
1
andatr = R, is
Ooid,.,, " (24 + 1281?22 + %) cos20 (10.6™b)
2

C)] Equivalent moments and thrusts
The equivalent moment and thrusts per unit length in the lining are

Rz’Rl

2
M, = (Oeu’_.l - Oeu,_nl)( 2 ) (10.68)

(R,-R,)
Ny = (o, * O, ) (10.69)

&) Deformation in rock mass

The free radial and tangential displacements due to the removal of the initial

deviatoric stress component respectively are




Qv QR QR
r

Upy E, 3 (1-vp)] cos26

r

oo 0D QR 208

nd AL =2 (1-2v )] sin26

(10.70a)

(10.70b)

The radial and tangential displacements of the rock mass due to the reactive lining

pressure respectively are

1+ 4 2
Upg = vy ((2.9,,+s,,,)£3 -2(1—2v)(S_,*Sd)—R—2]cos26
R 3r r
(1+v r Ry R;
Ve = (S, +25,) —= + (1-2v)(S, +S,) — ] sin20
ER 3" r2

At r = R,

l+v
Ung,, * _ER—R [Q,R,(3-4v,)]cos20

o (evy)
relly E‘

Veg [G,R,(3-4v )] sin26

1+
g, = - ()R, [(S (5-6v,)+S,(4-6v,)]cos20

3E,

(AR,

A4
Riren, 3E,

[(S,,(4-6vp) +S5,(5-6vy] sin 206

(10.71a)

(10.71b)

(10.72a)

(10.72b)

(10.72a)

(10.72d)

The final displacements are obtained by combining the free displacement and the

displacement from the reactive pressure.
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6) Stresses in rock mass
The elastic radial, tangential and shear stresses in the rock mass due tc the release

of the initial deviatoric stress component respectively are

R, R}
O'M = [Qo + —-:(300'23".%‘) - -—;(wo—zsu—zsd)]cmze (10.73)
r 4
R,
Oond = ~1Q,+ —-‘—(30., -25,-5 )] cos26 (10.74)
r

R} Ry
Tong = - [O, ~7(3Q,-2s,,-s_,) +72-(2o,-s_,-s,,)1sinze (10.75)

10.4.2 Vi i j -Lining-Ti i )
In this section, two cases at the rock-lining interface will be considered:

(a) case of no-slip at the interface, and (b) case of full slip at the interface.

{(A) Case of No Slip at the Interface

From the elastic solution for rock-lining interaction under the act on of deviatoric

stress component (P,), the maximum radial lining pressure at @ = 0° is (refer to Sec.

10.4.1)

S, - 20400, (10.76)

Cy(K,d+C)+(5-6v,)+K,{4-6v,)

where




Putting
J, = 3(3-4v,) (10.77a)
J, =5-6v,+K,(4-6v,) (10.77b)
g, - Kd-C (10.77¢)
(1-hy
Eq. 10.76 becomes
s = QO Jl
. G, (10.78)
Jy+—J
G

{

Since v, and v, are constants with time, J,, J, and J; are, therefore, independent of

time. The associated problem in viscoelasticity can be formed using the piinciple of
correspondence. Application of the correspondence principle to Eq. 10.78 yields the

following expression:

- J
S, = Q_"'-

P (10.79)
sy s 1)

* @

where §,, is replaced by its laplace transform §,‘,, Q, by its laplace transform & and
s

/7]



the elastic parameters (G, and G,) by the transformed operators (F’R and 6,) and (I-’,

and 6’,) respectively as given by the following relationships:

J
Putting J, = }i Eq. 10.79 becomes
2

- J
s" = QO 1 l
Ts | 25—1 (10.80)
r @

Substitution of Eqs. 10.20, 10.21, 10.24 and 10.25 into Eq. 10.80 leads to

E - Qo"l 1
. ) (L +q'ns2 *43333) (+p'ys) J (10.81)

s(1~ 2 3 4
(AP yS+PpsS* +Pass) (G, + y5)

After arrangement, Eq. i0.81 can be written in the following form:

5, - Q,J, (as*+a,s’+asi+a;s+a) (10.82)
Jye, s(s*+esieestieste)
where
a, =4q, (10.83a)

a, = p’mq’b ‘G, (10.83b)
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a = Ppd, P
ay = PrsQu * P9
a, = Pm;qy

CPA IS
o e‘

Cri9e* Ty s * TroP'1 D)

e =
e‘
.. - P9 Prdu* Cedos * TuiPuld
2
‘
. = CrsTio*Pra9u* Casla * CnP it
Y =

€

€ = Py * P yds

(10.83¢)

(10.834d)

(10.83e)

(10.84a)

(10.84b)

(10.84c)

(10.844d)

(10.84¢)

If -,, -B,, -B;. and -, are the roots of the following polynomial in the transform

variable s:
stvesPre,stresve, =0,
Eq. 10.85 can take the following form:

4 3 2
= Q,J, a,;s*+ays” +a,s"+a;s+a,

W e, sG+B)(s+P)(s+By)(s+BY)

(10.85)

(10.86a)
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where

w
]

(1

B,

w
&~
|

Y, - \/5(6e,2e32ea +deje; +128elel - 16e ¢; +4ele;) +27ele}

2,22 2 3 2 2, 2
-e eyey +192¢,e.e, - 18e,e, e, - 144¢ e.¢, - 144e ¢,¢,

1
2,3 3 4 3_1\2
+4e eye, -256e, +27e, + 80ele,e°e22 -18e,e,e4 e,,)2

2 2
_ 6005 de e, L I Y,

6 3 2 2 27 18

2 2 3
ey dege, L8 L85 & Y,
6 3 2 2 27 18

Y, = 3¢l - 8e, + 121, + 12\,

(10.86b)

(10.86¢)

(10.86d)

(10.86¢)

(10.860)

(10.86g)

(10.86h)

(10.86i)
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o BT e ;
Y, = 4 'T'%(3e3m—8ezﬁ;_6\[ﬁ\/—ﬁ (10.86j)
1
-6 T, /T -3 /3¢ +12//3e e, -24,3¢ )
_ e; ﬁ Y‘ J—é 2 3
r, -2 _132C e LB(ae2 7, -8, T, -6, 7, 0860
1
-63\/172‘/7‘ -33e; + 12J§e3e2—24ﬁe,)2
ey, 3JY. /6, 2 3
A T 1—2(3“‘/?‘_8"‘/?"6 h, (10.861)
1
-6 3,/72‘/?4+3\/§e3’ -12J§e3e2+24ﬁe1)2
e V3YY 6,2 3
Y, = ) +._-.12— +—l_i(3e3‘/?:—8e2\/’7‘—6ﬁ‘/7‘ (10.86m)
1
-6 V?;V’Kx*‘.}ﬁe; -12y/3e,e, +24‘/§e,)2
After partial fractions, Eq. 10.86a decomes
Sy = e/ (B, B B B B (10.87)
Joe s (s+B) (s+B) (s+By) (s+BY

B,, B,, B,, B;, and B, are determined by equating the coefficients of s in the

numerators of Eqs. 10.86a and 10.87:

a

B = —° (10.88a)
® B.BBsB,
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5, - - CaPiasPiva;pi-ap, a, (10.88b)
L B,(B,-B (BB )B,-BY

B. = _adpg'agp;*azﬁi'alpz*ao (10.88¢)
2 B,(B,-P)By-BB B

B, - _a‘B;-a,B:m,l}i-a,B,mo (10.88¢)

p3(p1'p3)(ﬂz‘p3)(pg-p3)

B _ aQB: ‘agpi"azgi'ag 34"“, (10.88¢)
C BB BIB,-BIBs-BY

Inverse transform of Eq. 10.87 yields

Qo "l

L

S0 = (B,+B,e ™ +B,e ™ +Bye ™ +B,e ") (10.89)

2

Eq. 10.89 can also be expressed in the following form:

Q

I

Su®) = <=(B,+B,+B,+By+B,-B,(1-¢ ") - B,(1-¢ ") -

24

(10.90)
By(1-¢ ") - B (1-¢ ?))

From Eq. 10.90, it can be seen that B +B,+B,+B,+B, is a term related to the time-
independent lining pressure and B,(1-e 10 B,(1-e "“) are terms related to the time-

dependent lining pressure. The sum of the coefficients B, to B, controls the final time-

dependent lining pressure. P, to P, are parameters governing the rate at which the

pressure builds up.
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Equation 10.90 represents the lining pressure-time relationship if the lining is

installed in the viscoelastic rock and then the initial deviatoric component of stress

(Q,cos20) is released at the interface. If the lining is installed after time r=¢, after the
excavation of the tunnel, the only relevant parts in Eq. 10.90 are the time-dependent
terms B,(1-e "") to B(1 —e°"'). These terms do not give the real lining pressure but
they give the form of the expression of the rate of stress built up.

Now, let the final lining pressure equal to Q,, at 8 = 0. Following the same

line of discussion for the case of hydrostatic stress component, the time-dependent radial

and tangential lining pressures, respectively, can be expressed as

S, 6) =Q,,{l-e -Bry (10.91)
SAt, 0)=KQ,, (1-¢ “Bry (10.92)
where P = B,
r = new time variable
=t-1

When =0, S,(0,0) = S(0,6) =0. When =, § (= 0) =Q, cos20 and
S~ 0) = KQ,,sin20.
The final lining pressure @, and the value of the parameter K can be determined

from the conditions of continuity of radial and tangential deformations at the interface.
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() Continuity of Radial Displacement
The condition of continuity of radial displacement at the interrace is that the radial

displacement of the lining must be equal to the free displacement of the rock at the time

interval from the time of installation of lining ¢, to #(¢') plus the radial displacement of
the rock due to the reaction lining pressure, i.e.

U R, 1',0) = up(R,,1,0) - upy (R, t,0) +uy,(R,,t',0) (10.93)
The term in the left side of Eq. 10.93, u,(R,,7, 0), represents the radial deformation of

the lining at the interface at time ¢’ after the installation of the lining. The first two

terms in the right side of Eq. 10.93, upy(R,,t,0)-u,(R,,1,0), represent the free
deformation of the rock at the interface from the time of installation of the lining, ¢, till
the time ¢'. The term u, (R,,t, 0) represents the radial deformation of the rock at the

interface due to the reactive lining pressure.

(@)  Free radial deformation of rock at time (z)
The free radial deformation of the rock is equal to the free radial elastic

deformation multiplied by the time function J(#) (refer to the derivation in Chapter 9).

Therefore, at the interface the free radial deformation of the rock after time ¢ from the

excavation of the tuanel is
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1+
UpfRy, 1, 0) = Q’(—Ev"zﬁ(s—w,)cos 20 J,(0 (10.99)
R
where
J) = 1+ g l-e ) + ¢p(1-¢ ") + §, (1-¢ ) (10.9%)

(b) Free radial deformation of rock at time (¢))

The free deformation of the rock at the interface at the time of installation of the

lining (¢,) can be obtained by substituting ¢, for ¢ in Eq. 10.94

1+
updR,, t,, 0) = ~QL(—EV—R)—§ (3-4v,)cos20 J (1) (10.96)

R
(c) Free radial deformation for time interval from ¢, to ¢

The free radial deformation of the rock at the interface for the time interval

between the time of installation of the lining (¢,) and the time ¢ equals to the difference

between Eq. 10.94 and Eq. 10.96.

(d) Radial deformation of rock due to reactive lining pressure
The reactive lining pressures (S, (¢") and S,(t")) are zero at the time of installation
of lining (¢'=0 or ¢=t,) and they are monotonically increasing with time (Eqs. 10.91 and

10.92). At infinity, the values of the radial and tangential lining pressures respectively

are 5 () = Q,, and S(=) = K.Q,, . Asinthe case of hydrostatic stress component, the
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deformation of the rock can be evaluated by the use of the hereditary integral which takes
into consideration the history of the applied load. The resulting radial deformation of

the rock at the interface due to the reactive lining pressure is

-(1+ -
uyfR,1,0) = —LS—EER—" (@+Kb)Q,, R (') cos20 (10.97
R
where

a=5-6v, (10.98a)
b =4-6v, (10.98b)

RJ") - (l -e _".) _ ¢lllﬂle ad (l -e ‘(ﬂ-lu)[') _ ¢mlu¢ i (l —e -(’-ln)l')

B-A B-A
Agy M r2 (10.99)
A ] (P~ ¢ gt N o -
-EL”L__(I -e (B-Aygy ) +¢”(l_e Ay )+¢m(l‘e Apm )+¢B(l —e l”t‘)

B'lm

At infinity, R (=) =1+ &y, +dp, + dps

(e) Radial deformation of lining

Since the lining is subjected tv the monotonically increasing lining pressure

S,.[(t',0) (Eq. 10.91), the evaluation of the radial deformation of the lining requires the

adoption of the hereditary integral. The resulting radial deformation of the lining at the

interface is

u R, t', 0) = AR ExDQ L_(1') cos20 (10.100)
e 3E,(1-h) o '

where

324



be e -(B-Apr -Ap 10.101
(1 -€ ) + ¢l(l -€ ) (10. )

AN _a B0\ _
Le) = (1-e®) -

At infinity, L (=) =1+ ¢,.

Condition of continuity at the interface:

The continuity condition of radial displacement at the interface is

U R, t',0) = ug(R,,1,0) -up(R,,t,0) +u, (R, ¢t 6) (10.102)
Substituting Eqs. 10.94, 10.96, 10.97 and 10.100 into Eq. 10.102 lcads to the following

expression:

LR & kDo, L) cos 20

3E,(1-h)°

1

= g‘L;_v_‘)ﬁ (3-4v,) [Jp(0) - J,(t))) cos 26 (10.103)
R
1 - -
JADK G kDO R ") cos 26
3E,
. 1+v, E; 1

Putting C; = , Eq. 10.103 becomes

1+v, E, (1-h)

3Q,(3-4vp[Up()-J4lt))] = [C,(E+KE)L (") +(@+Kb)R ..1(")] Q, (10.109)



(i) Continuity of Tangential Deformation
(a) Free deformation of rock at time ¢
At the interface the free tangential deformation of the rock after time ¢ from the

excavation of the tunnel 1s

VedRy, 1, 8) = -—gi?ﬂ)—f’- (3-4v,) J (1) sin 20 (10.105)

(b)  Free tangential deformation of rock at time (z,)

The free deformation of the rock at the interface at the time of installation of the

lining (¢,) can be obtained by substituting ¢, for ¢ in Eq. 10.105

- Qo(l +VR)R1

(3-4v,) Jo(t,) sin 26 (10.106)

Ry, 1,, 8) -

(c) Free tangential deformation of rock for time interval from ¢, to ¢

The free radial deformation of the rock at the interface for the time interval

between the time of installation of the lining (f,) and the time (¢) equals to the

difference of Eqs. 10.105 and 10.106.

(d)  Tangential deformation of rock due to reactive lining pressure

As in Eq. 10.97, the time dependent tangential deformation of the rock at the

interface due to the reactive lining pressure is
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AR & k@0 R sin20 (10.107

Vad Ry, 1, 0) = E,

(1+v
3
(e) Tangential deformation of lining

As in Eq. 10.100, the time dependent tangential deformation of the lining at the

interface due to the reactive lining pressure is

v, 1, 0) = —0R G xEy0, L sin2e (10.108)
3E,(1-h)

The continuity condition of tangential displacement at the interface is

VAR, ', 9) = VelR,1,0) - vy [R,,1,,0) + vy (R, 1, 6) (10.109)

Substituting Eqs. 10.105, 10.106, 10.107 and 10.108 into Eq. 10.109 leads to

-(1+v)

—F @d+CKQ,, L [t')sin20
3E(1-h)? 10 Lk
_ 'Q,(lE’VR)Rz (3'4VR) [.’,(I) -J.(to)]sinZO (10.110)
R
A0k F ek o R ) sin2e
3E,
l+v, E, |

, Eq. 10.110 becomes

Putting C, = —
> 1wy B (R
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_3Q,G-4v 0 - 4t (10.111)
= [C,(d+COL L) ~(b+aKR (1)) Q..
Solving Eqs. 10.104 and 10.110 simuitaneously, the values of Q__, and K can be

obtained. Comparing Eq. 10.104 to Eq. 10. 111, it can be seen that the left hand sides
of both equations are the same. Therefore, the right hand side of these two equations

shouid be equal. Thus,

C,(C+KDL ') +@ +KB) R f2') (10.112)
= C(d+KC)L (t') + (b+KDR (")

After arrangement, the value of K can be expressed as

x - SU-OLL) + G-DRA) (10.113)
Cyd-C)LL') +(b-DR L)

Since b -a = (4-6vy) ~(5-6vp) = -1,

K - C,d-C)L (') - R L") (10.1143)

C,(d-C)L ') - R (")

After arrangement,

Kk - Rt~ G(C-DLLY (10.114b)
R - Cy(d-C)L )

Substituting the values of R (#'3 and L, at ¢’ = =, Eqs. 10.99g and 10.101e, into Eq.

10.114b yields




(1 + g+ Opy + bpd + C;(C-(1 + &)

K = — (10.118)
(L +dg +dp, +dp) ~C,(d-C)H(1+9)
The value of Q,,, can be obtained by evaluating Eq. 10.104 at ¢’ - «
“Agt, -Ants Apy,
Qo | 3G-4v)ye g " vbye™) (10.116)

Q,  CyC+KD(1+4) + @+KDY(1 +py+d ,+dp)
For perfectly rigid lining, E; - «. Thercfore, C, - 0 and the final reactive lining pressure

given by Eq. 10.116 becomes

Q.. 3B-4v)(dye M e by

= = (10.116)
Q, @+Kb)(1 +dp +dp, +bpy)
The time-dependent distribution of radial pressure on the lining is
S, 6 = Q, (1-eP)cos20 (10.118)
The time-dependent distribution of tangential pressure on the linirg is
SLt', 8) = KQ,_(1-2*)sin26 (10.119)

(B) Case of Full Slip at the Interface

From the elastic solution for rock-lining interaction for full slip at the interface

under the removal of deviatoric stress component (P,), the maximum radial lining

pressure at ® = 0° is (refer to Sec. 10.4.1)
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. 36420, (10.120)

C,C-(5-6vp

nl

After arrangement,

s . 3(3-4v,)Q,
o ¢ (10.121)
(5-6vy)|C,—— +
(5-6vp)

C
(5 6vp(l-h?

Putting J, = J, = 3(3-4v,) and a = 5-6v, yields

(10.122)

The associated problem in viscoelasticity can be formed using the principle of
correspondence. Application of the correspondence principle to Eq. 10.122 yields the

following equation:

pes Q "1 1
Slll - 0- -— —
a P (10.123)
s(1+ (_” =71
R Ql

where §,, is replaced by its laplace transform .57,.,, Q, by its laplace transform & , and
s

the elastic parameters (G, and G,) by the transformed operators (F'u and 6’,,) and (E’,

and 5’,) respectively as given by the following relationships:




n

Substitution of Eqs. 10.20, 10.21, 10.24 and 10.25 into Eq. 10.23 leads to

c =Qo"l 1

S, -
a s(1 + ot oS * TreSE * T s (L +p'yS) 1 (10.124)

(l +p:”s +p:us2 "’p'”s’) (qab *Q'“S) 7

After arrangement, Eq. 10.124 can be written in the ™llowing form:

- QJ (as*+a;s+as?vas+a)

Su = = (10.125)
ag, s(s*+g;s’+g,st+gs+b)
where
a, = q, (10.126a)
a =Pyt 9y (10.126b)
a, = P'mq',, +P'uq‘" “0.]26c)
ay = P9, PRy (10.126d)
a, - P9y (10.126¢)
o w (10.127a)
&,
g - Cri90* Tu* I ars* CrlP )7 (10.127h)

&4




g, - O Py * o7 (P uid?) (10.727¢)
84

g = o590 * P 2T * Casl7* 2P 1)) (10.127d)
&

g - p,mq,” *1;31",111 (10.1270)

If -v,, -v,, -Y;, and -y, are the roots of the following polynomial in the transform
variab'e s:

st +g,s° «l»gzs2 +g,s+g, =0 (10.128)

Eq. 10.125 can be expressed as

4 3 q o2
5—'..1 ) Q-‘:,JI (a,s®+ays” +a,s°+a,;s+a) (10.1292)
ag, S(+y)(s+y)(s+yy)(s+y,)

where

XS

Y = — (10.129b)
VX
x6

Y: = (10.129¢)
%A

Y = (10.129d)

Elh
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Yo = T (10.129¢)

X, = V3(68i8:8,+ 48185 + 1288 8; - 168,8; +4gi8; +278.8;
-glgigs +192g,8,8 - 182,88, - 144g 8,87 - 14485 27 (10.1290
1

+4g g1g; -256g, +27g; +80g,8,2 27 - 188,5,8:8,)"

3

g o E5& 488 & g8 & X (10.129)
2 6 3 2 2 27 18
8:88; 488, & 88 & X

x, - 558 28 B &b & T (10.129h)
6 3 2 2 27 18

X, = 3g] - 8g, + 12)/X; + 12X, (10.32i)

8 3 6
x, - & ‘/_ ‘f( 3% -38,%, -6 X, /X, (10.129)
-Gsmfz-3ﬁg;+12ﬁgﬂz-24ﬁgl)i
& BB,
X =% "1 12( 3 V% 85,X, -6 X, /X, (10.129K)
_6Vgﬁj-3ﬁg;+12ﬁg,gz—24ﬁ .)i
_33+‘/§\/Z_~/3 2 X - -6 Y%, /%,
X, - 5. v 363 /X, -8, /%, - 6 K, /X, (10.129)

1
3, 2
-6 /%, /X, +3/3g; -12,/3g,8, + 24,3, )?



3/X
AR R AR [N, W, R o

4 (10.129m)
1
3 1
-6 [XoX + 3385 - 12 /38,8, + 24/3g, )
Aiter partial fractions Eq. 10.129a becomes
S-.l = Q_OJ' 234- G’ + Gz + 63 + G‘ (10.130)
age\ s (s+y) (s+v)) (s+vy) (s+v)

G,, G,, G,, G,, and G, are determined by equating the coefficients of s in the

numerators of Eqs 10.129a and 10.130

a

G - % _ (10.131s)
Y1Y2Y3Y,
a "'a 3+a 2"'0 +a
Gl - - ‘Yl 3Yl 2Yl |Y] 0 (lO.lJlb)

Y (Y2~ Y XY~ Y )Y Y;)

6«3 .2
G, = _G4Y2743Y240,Y279,Y, 44, (10.131c¢)
Yz(Yl'Yz)(73°Yz)(Y4°Yg)
a,Y3-0;Y3+0,Y3-0,Y,+a
G, - - o (10.131d)
Y;(Yl'Yg)(Yz-Yg)(Y4'Yg)
a,Y4-8,Ya+a,Y2-a,y,+a
G, - -24¥aZ0Ya"0Y4"aiY4 G, (16.131¢)

YY Y)Y YI(¥;5-Y)

Inverse transform of Eq. 10.130 gives
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J
< 1(G,+Ge " +Ge "+ Gye ™ + Gy ™) (10.132)

ag,

S0 =
Eq. 10.132 can also be expressed in the following form:

Qo Jl

2 1(G,+G,+G,+G,+G,-G,(1-¢ ") -G,(1-¢ ")
ag,

S A0 =

(10.133)
-Gy(1-¢ ™) -G (1-e ™)

As for the no slip case, the function for the lining pressure distribution will be in the

following form:

5.4, 0) = Q,,, (1-€77) cos26 (10.134)
where y is equal to v,
Q,,., is the final maximum radial pressure at 8 = 0°.

To solve for Q.. the continuity of radial displacement at the interface is

considered.

(a) Free radial deformation of rock at time (z)
Referring to Eq. 10.94, the free radial deformation of the rock at the interface

after time ¢ from the excavation of the tunnel is

1+
ity 1, 0 - QLR

(3-4v,4)cos20 J (1) (10.135)

where



J0) = 1+ g (1-e7%) + dp(1-e7"%) + py(1-¢7'*) (10.136)
(b)  Free radial deformation of rock at time ¢,

The free deformation of the rock at the interface at the time of installation of the

iining (2,) can be obtained by substituting ¢, for ¢ in Eq. 10.135:

1
- g"-(-—;—"-’)—k’— (3-4v,)c0s20 7,(t,) (10.137)

R

(¢)  Free radial deformnation for time interval from ¢, to ¢
The iree radial deformation of the rock at the interface for the time interval

between the time of installation of the lining (¢,) and the time (¢) equals to the

difference of Eqs. 10.135 and 10.137.

(d)  Radial deformation of rock due to reactive lining pressure

As in the no slip case, the hereditary integral may be adopted to calculate the
deformation of the rock due to the time dependent reactive lining pressure. The resulting
radial deformation of the rock at the interface due to the reactive lining pressure is

1+ -
UpdRy,t', 0) - (——5:—;)—)3’- @+KbQ, R (1')cos20 (10.138)
R
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whera
A’ Ayt
R_(t') = (1-e7") - ———¢'"A'_": . (1-¢ 0 2e%) - Sret (1-¢ 2
s Y L (10.139)
¢”A”¢ a4 ~ly-Agt’ At N W ~A gyt
——y_-—l——(l-e )*4’”(1" ")*¢p(l‘¢ "’)+¢,_,(l—e ")
R3

(e) Radial deformation of lining

The resulting radial deformation of the lining at the interface is

wR, v, 8) = SR & kDo 1) cos20 (10.140)
’ ’ 3£.‘l_h)3 oms “nds -
where
_1,'
L) = (1-¢) - ﬁ}—(l —e VM), ¢’(1 e *¥) (10.141)
YA,

At infinity, L_ () =1+¢,.
The condition of continuity of radial deformation at the interface is

U Ry, 1', 8) = Up(Ry, 1, 8) ~upfRy, 8, 0) + Uy Ry, 1, 8)  (10.142)

Substituting Egs. 10.135, 10.137, 10.138 and 10.140 into Eq. 10.142 yields

337



338

(lw‘)R2
L (') cos26
3E(1-h) € Qom Ll

1+
. ea ——a Q.a-voR, (3-4vp) (D) - Jy(t,)Icos26

(10.143)

_(1+vPR, _ ,
”:_'R’ Qs Ry (1)) cOs20

l+v, E,
1+vy E, (1-h)

Putting C, = , Eq. 10.143 becomes

C,CQ Lyt) = 3(3—:\:.)0.,[?.,@":"’ e ) 1 pple e - e (10.144)
+Ppslz - "')]-anRM,(t')

After arrangement,

33-4v ) [dule 0o ) « dple Moo Y < byle Mo T 0 s,
C,C L") +aR ()

Qous
Q,

Evaluating Eq. 10.145at ¢ = t' = = gives the following expression for the final reactive

lining pressure:

Qoms _ 33-4v,) (bpie ™" + gy " + dpe ) (10.146)

Q, CyC(1+) + (1 +gy +py+bpy)

The time-dependent distribution of radial pressure on the lining is

S, 8) = —2 (G, (1-¢ ") + G,(1-¢ ) + G,(1-¢ ")

(10.147

+G(1-¢ _7"1)] cos20
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For perfectly rigid lining, E, - «=. Therefore, C; ~ 0 and the final reactive lining

pressure given by Eq. 10.146 becomes

Quus _ 33-4v) (B ™" + bt + e ™) (10.148)
Q, a(l+dp tdp, by




10.S§ SUMMARY OF TIME-DEPENDENT STRESSES AND DISPLACEMENTS
IN ROCK AND LINING

10.5.1

(1) Reactive lining pressure P(t’')
P(t') = P,_(1-e™*") (10.149)
where

_ ¢”¢ -l”'. 4’¢ue -Ad. ¢¢”e -ln‘. (ln.lso)
- CilC(1+4) +(1 +dp,+bpytdp)  °

and ¢’ is the time elapsed after the installation of the lining

2) Stresses in lining

(a) Radial stress

Rz
PY(1-—)
r
2

Rl
1-=
R

(10.151)

our t') =

At r = R,

6,u(R, 1) = 0 (10.152)
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Atr=R2

0, ulRy 1') = PLL)

(b) Tangential stress

2

R;
Py) (1+=1)
r

Ooulr. ) = Z

Rl
(l_;f)

Atr=Rl

2P(t')
R

a--)
R

CoulRy. 1) =

Atr=lZ2

RZ
P@)(1+—)
2

Oeulr t') = 3

R;
(l‘-;t;z-)

(©) Shear stress

Tonlt') =0

(10.153)

(10.159)

(10.155)

(10.156)

(10.157)
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3) Equivalent moment and thrust in lining

P/r')

M;(") = - —-iz—' (Rz -R‘)2 (10.158)
‘ 2
Ny - SO0k *R0) (10.159)
2(R,+R)
) Deformation in lining
C,(1+
uy(t’) = ——2—(——2)—' P_LGN (10.160)
E,
where
RY
1- 2“, + —r'
c, = (10.161)
R}
(&)
R,
A
L(@) =(1-e "y - -M'-:A—— (l -e '("")") +&,(1-e ”"") (10.162a)
a=A
At infinity, L, (=) =1+¢,
At r= R,
C,(1+v)R

u,(R, 1) = P, L") (10.163)
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Atr = R,

C,(1+v
“u(Rp t')y = —2(—5‘:!}—& Pou Lh(f') (10.164)
1
(S Stresses in rock
(a) radial stress
\2
S ur. ') = P, -(5"3) [po_p‘(;')] (10.165)
(b)  Tangential stress
2
Ogm(rs ') = P, + [Er’.] [po _P‘(t')] (10.166)
() shear stress
T t’) =0 (10.167)
()] Deformation in rock mass
(a) Radial deformation
2
Ug(r, 1) = i (P J () - P _R,@1)] (10.168)
o 2G,r- * om AT T

where

Jft) = 1+ dg(1-e7%) + gp(1-¢ ") + §p(1-¢ ) (10.169)



Age ™ g A

Rh(t') B (1 -e -u') _ ¢Rl Rl: (1 _e-(u A”)r) N (bm RZ: (l-e (a 1n)‘)
. * " e e (10.170)

¢ A"el"' (& 1‘,)! -t -lu' Y
IRTAT (1-e )+ bpll-e %) + @ f1-¢ ) + b1 -e )
a - 7":3
At infinity, J(=) = R(=) = 1 ¢, +&p, + &y, Therefore,
R
Up,(r, ) = (1+¢p +bp+Op) (P, -P,) (10.171)
ZGRr

(b)  Tangentiai deformation

Va9 = 0 (10.172)
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10.5.2 Stresses and Displacements Resulting from Initial Deviatoric Stress
QQHI'IQQIIQH! QI
(A) No Slip at Rock-lining interface

(1) Reactive lining pressure

(a)  radial reactive pressure S

S (t',0) = § (t') cos28 (10.173)
where S (t’) is the radial lining pressure at the springline and 0 is the angle from

springline. S, (t') is given by

S) =Q, (1-¢%) (10.174)

where Q,, is the final deviatoric lining pressure at the springline and it is given by

3(3-4v,) (bp e " +dge T e bpge M)

. — =2 Q, (10.175)
Cy(C+Kd)(1+) + (@+Kb) (1 + 5, + b, *by)
. Ll . . h_Pv
Q, is the initia’ Jeviatoric stress component of the rock (Q, - 5 )
(b) tangential lining pressure S (t’, )
S{t',8) = §[t')sin26 {10.176)

where §,(¢) is the tangential lining pressure at 8 = 45° and is defined as



)

(a)

(b)

(c)

where

SAt') = KS ()
Stresses in lining
Radial stress
0,ulr,18) = -4 + 8 + 80y oo
rt r?

Tangential stress

30,1, 6) = 24 + 12877 + £€) cos2e
r

Shear stress

0,0a(r,1,0) = 24 +6Br2 - & - 2Dy 5img

r r

S I
a2 on ey - saya)

(1-hy? 2
S [t S (t
PR BEPL " PO R e YRS
(1-hy  6R} 6R;

- [
(1-h)} 6 3

S (t)Oh? S (t')h3R}
1 - W) (h03)R2‘—_"g_)_R.z.]

(10.177

(10.178)

(10.179)

(10.180)

(10.181a)

(10.181b)

(10.181¢)
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D h(h? +h+2)R? + —2—-h2(h*l)R22]

150
(1-h? 2

(3)  Equivalent moment and thrust in lining

Equivalent moment

Md((’ e) = [oou(R'p f’ e) - ao“(Rp rv e)]

(RQ —R|)2
12

Equivalent thrust

(R,-R.)
2

NAL, 8y = [ gy (R, ?,0) + 0y (R, 7,0)]

(4) Displacement in lining

(a) Radial displacement

Atr=R2

(1+v)R,

YRR (C+Kd)Q,, L (r)cos20

U Ry, >, 0) =

where

L) - (1-eP) - ———

Atinfinity, L (=) =1+¢,. Therefore,

(10.181d)

(10.182)

(10.183)

(10.184)

(10.185)
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1+ - -
wfR, =,0) - ——R2 (&, kd Q. (1+4)cos20

3E(1-hy
At r = R,
AR, 0,0) = Y (T KBYQ,, L Ar)c0s20
u o I = + cos
! E,(1-h)? o
where
- R} R}
A = (h?+h+1R - h*(h+3) 2 +2h(h*+h 2) =
3R} R;
R, 2 R,
v, [2h(h3 +h+2) =% + Z(3h+1)— ]
R, 3 R’
4 2
F - - 20k gyl
3R R,
2 3
R
- \»,[21&2(1”1)ﬁ +2an-n2L
R, 3 R
When t/ ~ o,

(1 +V,) = =
MH(R‘, £,0) = 3 A +KB) Q” (a +¢l) cos20

E‘(l - )

(10.186)

(10.187)

(10.188)

(10.189)

(10.190)
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Tangential displacement

(b)

At r = R,
~(1+v)R, - _
VAR, 7,8) = — "2 [d + K£,1Q, L {f)sin20 (10.191)

When ¢ = oo,
[d + K¢,1Q,,, (1+¢,) sin20 (10.192)

-(1+v)R,

lm!e -
il =:0) 3E(1-h)

Atr = R,
VAR, 0,8) =~ (2 KB Q. L(F)s5in20 (10.193}
| L El(l"h)3 om

where
- R, R R}
A” = 2h%+h+1)=L - (3-2v) (3h+1) - b3
2 6R, 6R, (10.194)
2

R;
+ (1 —ZV,)h(h 2 +h +2)2—Rl

R} R;

B = k'R, - (3-2v)(3k-1) — 3
6R; 3K (10.195)

R;
+ (1-2vph*(h+1) —
(1-2v)h¥( )2R|

When ¢/ « e,
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2(1"'\’[) Y oy .
v /R, »,0) = - (A" +KB") Q,, (1+d)sin28 (10.196)
E,(1-h)
(5 Stresses in Rock Mass
(a) Radial Stress
R
O, fr.0,8) = {Q, + — [3Q,-5Ar)-25(7)]
. r (10.197)

_ _r_z_ [4Q,-25 (r)-25,(r)]} cos20

When ' ~ =, S(=) = Q,,

4 2
Ry R, (10.198)

orld‘u bt e) = lQo + —r_‘ [300-(1 +2moou] - Tz- [400-2(1 +K)QO"'"” cos26

(b) Tangential stress

4
Tordr:1,0) = -{Q, + 52;[30,,-25,,(()-s,,,(r)l}c;osze (10.199)
r
When t' - @, S (=) = Q,,

4
Ogrdl> =, 0) = ~{Q, + 2‘[300-(1+2K)Qo_1}cosze (10.200)
r
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(c) Shear stress

4
ToadH ,0) = -{Q, - &‘I3Q,‘2S,,(f )-8,(0)]
2 r (10.201)
R ﬁz [2Q,-5.(r)-S(r)]} sin26
r
When ¢’ - =, § (=) = Q,,
R} R,
Tondl = 0) = -{Q, - —‘[300-(1 2KQ,.1+ — [2Q,-(1+K)Q,_1} sin20 (10.202)
r r
(6) Displacements in Rock mass
(a) Radial displacement
Qo(l +VR) RI‘ 4R22
u,d(r, ,0) = { {- -3 t— (I—VR)IJR(I)
E, P (10.203)
(Qevy .
+ (E'+KF)Q, R )} cos20
R
where
. 2
e-f .k (10.2042)
3r? oy
2R R; 10.204b
F =22 21-vp2 (10.204b)
3r? r

Je) = 1+ p(l-e ™) + dp(l-e ) s p1-¢ ') 110.2040)
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g At
R.,(r‘) - _e-p() _ ¢lu‘\'m‘ (l —e -(l-l.,)f) _ ¢ulm’ (l —e -(D—l.,)t)
s P-An P2 (10.205)
A b~ . . -
B T (1 ) < i) gfle ) + 1€ )
p - ly
When ¢ =~ e, Jp(<) = R (=) = 1+, + by, +bd,,. therefore,
Q(1+v,) R} 4R}
u,fr,,0) = (1+¢y,+dp, +dp) | [-— +—(1-vpl
Ep oo (10.206)
(d+vy) .
+ (E +KF)Q,,} cos20
R
(b) Tangential displacement
-Q,(1+vp) R} R;
VRdr. 1,0) = {———-——-—[—? +2(1-2v— (1-v )1 J (D)
Ee r 4 (10.207)
(I+vy) . . .
+ (E +KF)Q, R (r)}sin20
R
Where
4 2
E - ﬁ’. +(1-2v R)ﬁ (10.208a)
3r? r
. 2R} R}
F = +(1-2v)—= (10.208b)
3r3 r
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When ¢’ = =,
-Q,(1+vp) R} R;
Vpdrs =, 0) = (140 b tdp,) (—=— ﬁ] ¢ 2(1-2v )2 (1-v ]
Ex r r (10.209)
(Levy) . . )
+ (E +KF)>Q,, }sin20
R

(B)  Full Slip at Rock-lining interface
1) Reactive lining pressure
(a) Radial lining pressure

S,(t',0) = §.(t')cos20 (10.210)

where S, (t’) is the radial lining pressure at the springline (8 = 0) and it is given by
SAt) = Q. (1-¢ "1y (10.211)

where Q,,, is the final deviatoric lining pressure at the springline and it is defined as

_ 30-4v) (bye e T byye 1) e, (10.212)
C,C(1+¢) +a(1+dy +bp,+by,)

oms

(b)  Tangential lining pressure S (r°, 0)

Sr,8) = 0 (10.213)



(2) Stresses in lining

The solutions for the radial, tangential and shear stresses in the lining are given

by Eqs. 10.78, 10.79 and 10.88. S,{t') is defined by Eq. 10.211 and S(¢') = 0

(k) Equivalent moment and thrust

The solutio... for the moments and thrust in the liner are given by Eqs. 10.184

and 10.185.

4 Displacements in lining

(a) Radial Displacement

Atr = R,
)R,
u R, =,0) = —L-—CQ
iRy 3E(1- -h)}
where
' re M
L(') = (1-¢™)- 2—'-—-’-——(1
Y'A[
At infinity, L_ (=) =1+¢,
Therefore,
(1+v )R‘Z -

w, 8)
“dFer 35,(1 -h)?

CRTY b, (1-e

L (1) cos28

-4,

)

CQ,, (1+¢)cos20

(10.214)

(10.215)

(10.216)
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Atr = R,
(1+v
ulR,t',0) = A’Q L (t')cos29
Ry E(- h, nds
where
py 2 R; R22
A = (2h +h+l)R‘—hz(h+3) +2h(ht+h+2) —=
3R,1 R,
Py
--v,[zh(h%mz)f’- +23he 1)— ]
R, 3 Rz
When ¢ - o,
(I+
uR,t',0) = AQ (1+¢)cos20
AR, E(1-h ), !
(b) Tangential Deformation
At r = R,
vy, 8) = 2 G L @ysuze

35,(1 -h)?

(10.217)

(10.218)

(10.219)

(10.220)

‘»n



When ¢ < o,
-(l+v,)R2 - )
/R, =,8) = ———dQ,,(1+$,)sin26
s 3E(1-h)? !
At r = R
R0 = - Zug L (") sin20
v{R,1',0) = - s sin
' E,(1-h)* n
where
- R, R ., R
A" = (2h +h+1)=t - (3-2v) Chel)— + B (h+3)—
2 6R; 6R;
R;
1-2v)h(h2+h+2)—
+ (1-2v)h(h”+h+ )ZR.
When ¢’ - o,
2(1+v) - .
v /R, =,0) = - A"Q, (1+¢)sin20
E,(1-hy

5 Stresses in rock mass

(10.221)

(10.222)

(10.223)

(10.224)

The solutions for the radial, tangential and shear stresses in the rock mass are

given by Egs. 10.197, 10.199 and 10.201 respectively in which the value of § (') is

given by Eq. 10.174 and S, (¢') = 0.
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(6) Displacements in rock mass

(a) Radial displacement

2

1+vy) ' 4R
Qlovd R c =210

u fr, 1,0 = (—[-—
Ex 7 (10.225)
(Levy) .
+ EQ,  R.,())cus28
E,
where
4 2
E - & -2(1-v )ﬁ (10..226a)
3r3 Yor
Jt) = 1+ dp(l-e ) ¢« (1-e ") ¢ oy (1-¢ ') (10.226b)
T Ry g

Rnd'(t') - (l-e _,"-) _ ¢RIARI: (1 -e -(y - l"”') _ 4’”1”; (l ‘e (1-)..2)(‘)
L Y~ Ve (10.227)

¢RJ)‘RJC d’ (v -A gyt gt ~Agt’ ( At

STRTE . (1-e ) pll-e ) s ppll-e =) 4,1 € ™)

Y- A,u
When t' = o, J(®) = R (®) = 1+, +bp, + ¢, therefore,
Qv R 4R
U52,0) = (1+dp + P rp)l ——— - — + —(1-vy)]
Eq o (10.228)
I+v ,
U Q,.} cos26

R



(b)  Tangential displacement

_ 1 4 2
vpr,t,0) = {—(‘)—"“—v“)[ﬁ *2(1-2v,.)f’-(1uv,)lJ,(t)
Eg r’ r (10.229)
(I+vy)) . .
+ E'Q, R (t))sin20
R
!
Where li
4 2
E = 52_ . (1_2\,‘!)& (10.230)
i3 r
When ¢’ ~ o,
-Q,(1+vy) R} R
Vad(r: 2, 8) = (1+0g 4 gy +dpy) {———— [ +2(1-2vp)— (1-vy)]
Ep r r (10.231)

l+v .
+ (—-E—R) E Q,,])sin20

R

3s8
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10.5.3 Final Solutions
The final expressions for the stresses and displacements in the rock mass and

lining are obtained by superimposing the values obtained from the hydrostatic and

deviatoric stress components:

)] Reactive lining pressure at rock-lining interface

(a) Radial lining pressure

P(t',0) = P(t') +5 (1, 0) (10.232)

(b) Tangential lining pressure

S,(r',8) = S, 06) (10.233)
) Stresses in the Lining
(a) Radial stress
0,,(r,t,0) = o,t')+o0,rt,66) (10.234)
(b) Tangential stress
0o fr,t',0) = 0g,(r,t') + 0, (r, 1, 0) (10.235)




(c)

A3)
(a)

(b)

4)
(a)

(b)

Shear stress

To(r1,0) = 1 o,(r,t") +144r1,0)

Equivalent moment and thrust in lining

Equivalent moment

M(t', ©)

My(t') + MLt 6)

Equivalent thrust

N, 8) = N,(t') + N, 8)

Displacement in lining

radial displacement

u(r,t',0) = w,(r,t’) +ufr,t',0)

tangential displacement

v (r, ¢, 0) = v, (r,t') + v (r,1,0)

(10.236)

(10.237)

(10.238)

(10.239)

(10.240)

360



(5)
(a)

(b)

(c)

(Y]
(a)

(b)

Stresses in rock mass

radial stress

o, nt,0) = o, (r,t')+o,[rt,6)

tangential stress

Oor(r: 1',0) = 0gp (r, ') +0,,[r, 1, 0)

Shear stress

Ton(l1,0) = T op(r, t') 47, 0p,(r, 1, 6)

Displacements in rock mass

Radial displacement

ug(r,1,0) = up(r, ) +upfr,t,6)

Tangential displacement

VR(r, 6,0) = v (r, 1) + vp (r,t,0)

(10.241)

(10.242)

(10.243)

(10.244)

(10.245)

It should be noted that the solutions given by Lo and Yuen (1981) is a special

case of the solutions derived in this chapter. The solutions obtained becomes the same

as those given by Lo and Yuen if the rock model is degenerated into a spring and one

Kelvin unit connected in series.
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10.6 SUMMARY

In this chapter, the rock-lining-time interaction of circular tunnels driven in
swelling rocks is investigated. Closed form solutions for the stresses and displacements
and other engineering qu.antities of interest in the lining and in the rock are derved. In
the solutions, the rock mass is idealizzd by a 7-element Kelvin modci (a model which is
capable of describing the long-term time-dependent deformation of swelling shales). The
lining is idealized by a 3-element Kelvin model. The correspondence principle denved
in Chapter 9 is adopted to convert the elastic solution of the problem to viscoelastic
solution. [i should be noted that the solutions presented pertain to the linear case in

which the effect of reactive pressure in the moduli governing time-dependent deformation

(viz. values of E,,) has not yet been taken into account. This problem dealing with

“suppression effect” is treated in the next chapter.
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Figure 10.1 Sign convention, stress condition and geometry of the problem
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radial deformation =  free deformation 4 deformation of
of lining of rock due to rock due to

excavation reactive force Fl’

Figure 10.2(2) Continuity of radial displacement at interface r=R, for hyarostatic
stress component P,

Upig
VAld
deformation = free deformation 4 deformation of
of lining of rock due to rock due to
excavation reactive forces

Figure 10.2(b) Continuity of displacements at interface r=R, for deviatoric
stress component Q o




CHAPTER 11

NONLINEAR ROCK-LINING-TIME INTERACTION METHOD

AND ITS APPLICATION ON SABNGS NO.3 PROJECT

11.1 INTRODUCTION

In Chapter 10, closed form solutions for the stresses and displacements ir rock
mass and lining have been obtaired for the problem of swelling rocks around ! innels.
The rock mass is characterized by the long-term time-dependent deformation and it is
modelled by a generalized Kelvin model consisting of three Kelvin units and a spring
connected in series. The solution obtained takes into account one set of deformation
parameters which do not change with time.

For rocks such as Queenston Shale (Chapter 8), the deformation parameters are

nonlinearly stress dependent, suggesting that the values of the deformation parameters E

increase as the reactive pressure is accumulated behind the lining. The use of the
deformation parametess obtained from the free swell test in the closed form solution will
lead to a too conservative solution. An approach, therefore, allowing tiic update of the
values of deformation parameters as the level of the accumulated reactive pressure
increases should be adopted.

In this chapier, a pressure step-wise method is implemented for the use with the
closed form soluiion obtained in Chapter 10 to account for the increase of values of
deformation parameters of rock as the pressure level behind the lining increases. The
method adopted is explained in the next section. In tne subsequent sections, the

developed method is used to calculate the stresses and displacements in the concrete
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lining of the proposed tunnels for SABNGS NO. 3 project. The effects of the different
parameters involved in the solution are studied by changing one parameter at a time in

this study.

11.2 PRESSURE STEP-WISE METHOD

After the installation of lining, the reactive lining pressure increases from zero
at £’ =0 to its final value at infinity. The final value of lining pressure is highly

dependent on the time-dependent deformation parameters used in the analysis. The
closed form solutions derived in Chapter 10 use only one set of parameters which does
not change with the marching of time. For rocks such as Queenston Shale, however,
these parameters are dependent on the stress level accumulated. Experiments (Chapters
7 and 8) showed that the values of the parameters controlling the amount of time-
dependent deformation increase as the stress level increases, leading to a decrease in the
forthcoming deformations and finally leading to a decrease in the final reactive lining
pressure.

To take into account this "suppression effect”, it is necessary to identify the
"equivalent applied pressure” at the rock-lining interface. In Chapter 8, it has been seen
that the values of moduli controlling the time-dependent deformation are dependent on
the level of applied pressure. In tunnel problems, it will be assumed that the values of
rock moduli are dependent on the level of radial reactive pressure accumulated behind
the lining along the tunnel perimeter. Since the reactive lining pressure at any time is
in general not uniform along the tunnel perimeter, the average value along the perimeter

will be taken as the "equivalent applied pressure” from which the updated values of rock
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moduli at any time are calculated.

To account for the increase of the values of deformation parameters as the
reactive lining pressure increases a pressure step-wise approach (semi-analytical method)

is adopted (Figure 11.1). In this approach, the pressure accumulated behind the lining
is assumed to increase in increments of equal magnitude (AP). The rock parameters are

considered constant within each increment and they are updated at the beginning of each
increment. For each increment of pressure, the time values at the beginning and end of
the increment are calculated and then used with the corresponding parameters to calculate
the increments of displacements and stresses in lining and rock within this time interval

using the closed form solutions derived in Chapter 10. It should be emphasized at this

point that the rate parameters, A,, are considered stress-independent quantities as

discussed in Chapter 8 and their values should be kept constant in all the increments.

For example in the first pressure step, the pressure is increased from zero at

t'=0 10 AP at ¢ (Figure 11.1). The time ¢, at the end of the increment is calculated

by sclving Eq. 10.50 to find ¢* at pressure level equals AP. The deformation
parameters for this pressure step are those from free swell test. Within the time interva!

between 0 and ¢, the increments of all the required quantities of stresses and

displacements in rock and lining are calculated.

For the second pressure step, the pressure is increased from AP at 1 t02AP
at t; . The deformation parameters for this step are calculated by substituting o, in Eq.

8.12 by the pressure level AP, the pressure at the beginning of the step. The timet,
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is known, calculated at the end of first pressure step. The time ¢, at the end of the

second pressure step is calculated by solving Eq. 10.50to find ¢* at pressure level equals

2AP. Within the time interval between AP and 24P, the corresponding increments of

stresses and displacements in the lining and in the rock are calculated. To update the
stresses and displacements, the increments of stresses and displacements calculated from

this step are added to the previously computed ones.

Similarly, for pressure step i , the pressure is increased from (i-1)AP at ¢’ t0iAP
at t; . The deformation parameters for this step are calculated by substituting o, in Eq.
8.12 by the pressure level (i-1)AP, the pressure at the beginning of the siep. The time ¢,
is known, calculated at the end of pressure step i-1. The time £ at the end of pressure

step i is calculated by solving Eq. 10.50 for ¢* at pressure level iAP. Within the time
interval between ¢, and f; , the required increments of stresses and displacements are

calculated and added to the previous computed ones to update the values.

The calculation procedures are repeated until the final pressure is reached. It
should be noted that the size of the final pressure increment may be less than AP and

it is calculated by subtracting the pressure at the beginning of the increment from the

final pressure.

It is obvious that in the aforementioned method, the solution may be sensitive to
the pressure-increment size AP. Therefore, a sensitivity study is performed to obtain
the relevant step size. The results of the sensitivity analysis are discussed in the

following section.



It should be noted that this "suppression problem"” could be tackled by using a
time step-wise approach instead of the pressure step-wise approach. However, the
former approach requires very large number of time steps to obtain accurate solution, and

the time infinity cannot be readily included for equal time steps.

11.3 ANALYSIS OF A TUNNEL IN QUEENSTON SHALE

In this study, a tunnel driven in Queenston Shale which has important time-
dependent deformation characteristics will be analyzed. Experiments performed showed
that Queenston Shale experiences long-term time-dependent deformations upon stress
relief. The deformation with time is well represented by a model consisting of three
Kelvin units connected in series, Chapter 7. It is also found that the time-dependent

deformation is nonlinearly stress dependent. At a certain value of applied pressure called

the critical pressure o, (Chapter 8), the deformation is suppressed completely.

Equations relating the deformation parameters of Kelvin units to the initial stress value
and the critical pressure are derived in Chapter 8 (Egs. 8.12).

The pressure step-wise approach mentioned in the previous section is adopted to
calculate the time-dependent stresses and displacements in the lining and the rock at a
typical section of the tunnel at depth 200 m. A "baseline” analysis for this tunnel section
is performed first using the proposed parameters for design. The effect of the different
parameters on design is studied by changing one parameter at a time and the results are

compared with the “"baseline” analysis.
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11.3.1 Parameters Used in the "Baseline" Analysis

(M In Situ Stresses (refer to Chapter $)

Vertical in situ stress: P =52MPa

\ 4

Initial Stress Ratio: K, =4
(2)  Geometry of Lining (Proposed)

Inner radius of lining: R =625m

Outer radius of lining: R,= 6.80 m

K)) Elastic Parameters of Rock (Hefny and Lo 1992)

Young's modulus: E,= 15.8 MPa

Poisson’s ratio: v,= 0.3 MPa

4 Initial Deformation Parameters for Time-Dependent Deformation of Rock

(free swell, Chapter 7)

These parameters are cciculated from the results of free swell test on samples
recovered from borehcle NF4A in 1990 investigation. Results of reliable tests (no
separation of bedding planes during test period) are used to calculate the representative
deformation parameters for the three Kelvir units (Tests: NF4A-1, NF4A-4, NF4A-6,

and NF4A-13).

E,,= 1.50x10* MPa




E,,= 8.08x10’ MPa

Ep, = 4.94x10° MP2

6] Initial Viscosity Parameters of Rock (Chapter 7)

Ny = 136x17 MPa.day
Np = 288x10° MPa.day

Np = 274x10° MPa.day

(60  Other Parameters of Rock
(a) Critical Stress Ratio (CSR) (the ratio of the critical pressure o, to the initial stress
o,, Figure 7.19):
CSR=0.3
(b) Equivalent Stress Ratio ESR (the ratio of the equivalent stress o,, stress below which

the deformation parameters are equal to those for free swell, to the initial stress o,) (see

Chapter 8):

ESR=0.03%

N Parameters of Lining
The parameters of elastic and time-dependent deformation of lining are taken

similar to those obtained for the concrete lining used in the Heart Lake Tunnel (Lo and

371




n

Yuen 1981).

Young's modulus:  E,= 28.0x10° MPa
Poisson’s ratio: v,= 0.2
E,= 14.0x10° MPa
n,= 1400x10° MPa.day

Tensile strength: f,= 3.5 MPa

Compressive strength: f. = 28-40 MPa (medium to high strength concrete, Beer

and Johnston 1987)

The time elapsed before the installation of lining is taken 30 days in the "baseline”

analysis.

11.3.2 Sensitivity Analysis

In this section, a sensitivity study is carried out to investigate the effect of the
magnitude of pressure increment on the final solution. Figure 11.2 shows the
relationship between the final radial lining pressure ratio at springline and the magnitude

of the pressure increment. The pressure at the springline is given as a ratio of computed

pressure to the linear case (case of constant values of E, , independent of stress). The

_ oh+ov)

pressure increment AP is given as a ratio to the initial nydrostatic stress P,( >

It can be seen from Figure 11.2 that for pressure increments less than 1% of P,




the final solution is insensitive to the increment magnitude. For pressure increments

greater than 1% of P,, as the increment magnitude increases, the sensitivity of the

o'
solution increases. For a step size approximately 20% of P, and greater, the computed

pressure approaches that of the linear case.

Based on the results of the above investigation, a pressure increment magnitude

less than 1% of P, should be used in the analysis to insure that the obtained solution ‘s

independent of the magnitude of the pressure increment. To obtain a smooth solution

with time, a pressure increment of magnitude 0.3% of P, is adopted. This leads to a

total of 26 pressure increments in the "baseline” analysis.

11.3.3 Discussion of Results

The parameters listed in section 11.2.1 are used to calculate the stresses and
displacements in the lining and rock. To show the effect of suppression of the

accumulated pressure behind the lining on the calculated stresses and displacements, the

solution from the linear case (case of no suppression where constant E, values are usec)

is computed and compared 1o that obtained from the nonlinear case (pressure step-wise

approach).

(1)  Displacement at interface
Figure 11.3 shows the change of radial displacement of rock at the springline at
interface with time. The solid line represewts the linear case whereas the dashzd line

represents the nonlinear case. The effect of lining installation is manifest from this
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figure. Before the installation of the lining, the displacement increases rapidly while
after installation, the rock deforms at much lower rates. It is also clear that the linear

case leads to higher radial displacements.

2) Final radial and tangential stresses in rock

The distributions of the final radial and tangential stresses in rock at both the
springline and the crown are shown in Figures 11.4 and 11.5. The final radial stress in
rock at the springline level (Figure 11.4) increases as the radial distance increases. More

than ninety percent of the far field stress is reached at radial distance equal to 5 times

R,. The final tangential stress at the springline level rapidly increases as the radial

distance increases until it slightly exceeds the value of the far field stress at distance

about 1.7 R,. Then it decreases to approach the value of the far field stress.

Above the crown, the radial stress in rock (Figure 11.5) rapidly increases from

the interface pressure value to its peak value at distance about 1.5 R,. The radial stress

decreases afterwards as the radial distance increases to approach the far field stress. The
tangential stress in rock above the crown (Figure 11.5) has its peak value at the interface

and then it decreases rapidly to approach the far field stress.

A3) Distribution of final lining pressure
Figures 11.6 and 11.7 show the distribution of the final radial and tangential
lining pressures for the cases of no slip (perfectly rough) and full slip (perfectly smooth)

of interface, respectively.



For the case of no slip at interface (Figure 11.6a), the radial pressure gradually

increases from its minimum value at springline to its maximum value at the crown-invert

line. The maximum value of the tangential lining pressure occurs at 45° and decreases

to zero at 8 =0° and 6 =90°.
For the full slip case, the radial lining pressure has its maximum value at the
springline and slightly decreases toward the crown-invert line (Figure 11.7). The

tangential lining pressure is zero.

From Figures 11.6 and 11.7, it is obvious that the increase of the values of rock
time-dependent deformation moduli as the lining pressure at the interface increases
(nonlinear analysis) has a tremendous effect in reducing tine final interface pressure buili-

up behind the lining.

@ Distribution of final tangential stress in lining
The distributions of the final tangential stress in lining for the no slip and full slip

cases are shown in Figuies 11.8 and 11.9, respectively. For the no slip case, the

tangential stress at both r = R, and r = R, decreases from its maximum at the crown to

its minimum at the springline. The maximum compressive stress in the lining occurs at

the inner face of the lining at the crown. At the inner face of lining at springline, a

small value of tensile stress occurred for the "baseline” analysis, K,=4. However, as

will be seen later, for higher values of K, higher values of tensile stress are obtained

at the inner face of the lining at the springline. From the results of analyses, it has been

found that the inner face at the crown is the critical location for compressive stresses,
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whereas the inner face at the springline is the critical location for tensile stresses.
From Figures 11.8 and 11.9 and Table 11.1 and by comparing the values of the
final induced tangential stresses in the lining to the strength of the concrete in tension and
conipression, it can be seen that the final stresses calculated in the lining from the linecr
analysis are too high and exceeds the compressive strength of the lining at the crown at
the inner and outer faces. It can, also, be seen that the stresses calculated from the
nonlinear analysis are less than half those calculated from the linear case and thai they
are below the tensile and compressive strengths of the concrete lining. This shows the
importance of adopting the nonlinear approach to obtain an economical and safe design

for the lining.

&) Distribution of final equivalent bending moment and axial thrust in the lining

The equivalent bending moment and axial thrust can be caiculated from the fibre
stresses in the lining at the inner and outer faces. The distribution is shown in figures
11.10 and 11.11 for the no slip and full slip cases, respectively. The equivalent bending
moment has its maximum positive value at the springline and decreases giadually to zero
and then becomes negative and increases to its maximum negative value at the crown.
Positive bending moment causes tensile stress at the inner fibre.

The equivalent axial thrust is maximum and compressive at the crown and

decreases gradually to its minimum compressive value at the springline. It should be

noted that for higher values of K, the thrust may become tensile at the springline.
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11.34 Diff meters on Final Tangential in Lini

(1)  Effect of R/R,
Figure 11.12 shows the effect of the geometry ratio R/R, on the tangential

stresses in lining at the inner and outer faces at the crown and the springline. It can be
seen that at the springline there is a small effect on the tangential stresses at the outer

face. At the inner face, although the magnitude of the tangential stresses slightly changes

as R /R, changes, the sign of the stress is dependent on the value of R/R,.

At the crown. the compressive tangential stresses increases at the inner and outer

faces as the ratio R\/R, increases, The sensitivity of the calculated stresses increases as R /R,

increases.

2) Effect of Poisson’s ratio of rock on the tangential stresses in lining

The effect of Poisson’s ratio on the tangential stresses in lining at the springline
and the crown is shown in Figure 11.13. It is clear that Poisson’s ratio is an important
parameter which strongly affects the results of the stresses especially at the springline.
At the crown, as Poisson’s ratio increases, the tangential stresses decreases at the inner
and the outer faces. At the springline, for small values of Poisson's ratio, the tangential
stress in the lining is tensile at both the inner and outer faces with a higher value at the

inner face. As Poisson’s ratio increases, the tensile stress dec-eases and then turns into

compressive stresses.
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(3)  Effect of ¢, and K, on the tangential stresses in lining

The variation of final tangential stress in lining at the inner face at springline with

time of installation of lining ¢, and ratio of in siru horizontal to vertical stress K, 1s

illustrated ir. Figure 11.14. It can be seen from Figure 11.14 that both ¢, and K play

crucial r.:es in determining the tangential stresses in lining,

For K, = 1, the tangential stress at the inner face is compressive and it decreases

and then becomes tensile as K, increases, for a given valuz of ¢,. tor K >5, the
tensile stress may exceed the tensile strength of the concrete which would cause distress
in the lining.

For a .iven initial stress ratic K,, an increase in f, (the time lapse between

excavation and lining installation) decreases the induced tensile stress in the lining.

@ Effect of flexibility of lining
To study the effect of the deformation parameters of rock (Young’s modulus and
the three deformation moduli of Kelvin units) on the final tangential stress in lining, the

following apparent flexibility parameters are defined.

G

F =%
e G,

G
F,=--=

G,
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where: = + +

For perfectly rigid lining, G,~ =, F,~0. For elastic lining, G,~ =, F~0.

Figures 11.15 and 11.16 show the effect of F, and F, on the tangential stress in
lining for big range of values. The values of F, and F, are calculated by keeping the
values of lining param:ters constant and changing G, and G, of the rock.

From Figure 11.15, it is obvious that F, has a small effect on the final tangential

stress in lining especially for values of F, greater than 1.

Figure 11.16 shows that the firal tangential stress in lining is sensitive to the
change in F,. As F, increases, the final tangential stresses everywhere in lining
decrease. This implies that as the deformation moduli of the springs in Kelvin units for
rock increases, the resulting final tangential stresses in lining decreases. This is expected
since the increase of the values of deformation moduli of rock means that less final rock
deformation will be developed and, therefore, less interactive lining pressure will be

built-up behind the lining.

£)) Effect of critical stress ratio (CSR)
The critical stress ratio (CSR) is defined as the ratio of the critical stress, the

stress above which the swelling strain is completely suppressed, to the initial hydrostatic

stress component P,. Figure 11.17 shows the effect of CSR on the final tangential
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stress in lining. It is obvious from the figure that the CSR is an important parameter

affecting the values of compressive stresses calculated in the lining at the crown. As the CSR
increases, the compressive stresses at the outer and inner face of the lining at the crown
increases. For example, the increase of CSR from the value used in the "baseline”
analysis (0.3) to 1, increases the maximum compressive stress at the inner face of the
lining from about 26 MPa to about 32 MPa. At the spring line, the CSR has small effect

on the tangential stresses in the lining.

11.4 SUMMARY AND CONCLUSIONS

Using the theory of linear viscoelasticity, closed form solutions for the stresses
and displacements in the rock mass and tunnel lining have been derived in Chapter 10.
The long-term time-dependent deformation of the rock is idealized by a model consisting
of three Kelvin units connected in series. The time-dependent deformation of the lining
is represented by a single Kelvin unit. The anisotropy of the initial stress system and the
time elapsed between the excavation and the installation of the lining are accounted for.
In this chapter, a semi-analytical solution (nonlinear pressure step-wise approach) is
developed to allow for the increase of the values of deformation moduli of the model as
the pressure level behind the iining increases. The developed method is then used to
predict the stresses in the lining of a tunnel in Queenston Shale similar to these
considered for the SABNGS No.3 project. The effects of the different parameters on the
solution are investigated. From the results of this study, the following conclusion can

be drawn:
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(1) The stresses and displacements calculated from the nonlinear approach
(suppression of rock deformation as the lining pressure increases is accounted for) aie
considerably less than those calculated from the linear case (suppression is not accounted
for).

(2)  The "baseline” analysis on the proposed dimensions of the tunnels shows that the
stresses in lining do not exceed the tensile or the compressive strengths of the concrete.
3) The critical location in the lining for the compressive stress is the inner face at
the crown and that for the tensile stress is the inner face at the springline.

4) Poisson’s ratio of the rock is an important factor in the solution. As Poisson’s
ratio decreases, the compressive tangential stresses in the lining at the crown increase and
the tensile stresses at the springline increase.

o) As the time elapsed between the excavation of the tunnel and the installation of
the lining increases, the stresses induced in the lining decrease.

6) As the initial stress ratio increases, the tensile stress induced in the lining at the
inner face at the springline increases. For the tunnel considered, ratios greater than 5

produce tensile stress which is higher than the tensile strength of the concrete.

(7)  The deformation moduli E,; for the three Kelvin units of the model play an
important rule in the final solution. As the values of the moduli governing time-
dependent deformation increase, the displacements and stresses induced in the lining

decrease.

381




TABLE 11.1 Tangential stresses in lining calculated from the "baseline” analysis

Tangential Stress (MPa)

No Slip Case

Full Slip Case

Crown Springline

Crown

Springline

r=R, | r=R, | r=R,

r=R,

r=R,

r=R,

t=R, | r=R,

62.2 | 498 2.1

9.5

38.5

23.8

258 | 355

26.1 | 218 | 0.2

2.1

15.0

10.1

10.9 139

Note: Ultimate strength in compression for medium to high strength concrete is 28-40 MPa

(Beer and Johnston 1987)
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CHAPTER 12

SUMMARY AND CONCLUSIONS

The study carried out in this thesis essentially falls into three parts. The first part
deals with the determination of initial stresses in rocks using the hydraulic fracturing test.
The second part deals with stresses and displacements around unlined tunnels driven in
cross-anisotropic rocks, which are representatives of shales in southern Ontario. The
third part deals with the time-dependent deformation of Queenston Shale and the stresse.s
and displacements around tunnels driven in swelling shales.

In part I, a new method, the Modified Stress Path (MSP) method, for the
evaluation of initial stress in rocks from hydraulic fracturing test resuits is developed.
This method is capable of analyzing horizontal and vertical fractures as well as mixed-
mode fractures and takes into account strength anisotropy, where appropriate. For
mixed-mode fractures, the method follows the stress paths during the test and determines
whether the horizontal or the vertical fracture occurs first, so that appropriate stress
calculations may be carried out without making any arbitrary assumptions regarding the
fractures.

Results of hydraulic fracturing tests in several case histories were reanalyzed by
the MSP method. From the results of the analyses, the following conclusions may be
drawn:

(1) For vertical, horizontal, or a combination of vertical and horizontal fractures, the
method developed delineates the relevant stress path of the hydraulic fracturing tests from

which the rock stresses may be determined. For mixed-mode fractures, it is possible to




determine whether the vertical or the horizontal fracture occurs at the first breakdown
pressure, so the stresses may be computed using the appropriate solution without
uncertainty.
(2) Application of the MSP method to the analysis of test data reduces considerably
the stress range computed, to the extent that they are adequate for engineering purposes.
) The reinterpreted horizontal stresses in the AECL Underground Research
Laboratry are not only consistent with results deduced from convergence measurements
but are also consistent with field observations of excavation perforrnance.

From the interpretation of the hydraulic fracturing test data in the 1984, 1990, and
1992 investigations in Queenston Shale, the following ~onclusions may be drawn:
(1)  The results of hydraulic fracturing performed in 1984, when correctly interpreted,
agree well with the results of 1990 investigation, both in the magnitudes of stresses
computed and modes of fractures.
(2) In tests in which packer impression tests are not available, it is possible, by the
application of MSP method to determine which stress path the test results would follow,
which mode of fracturing theoretically would occur, and thereby compute the magnitudes
of stresses consistently without invoking assumptions other than that (i) the strength
criterion (modified Hoek and Brown) should be satisfied and (ii) the inadmissible stress
ranges should be eliminated.
&) The regional initial stress regime in the Queenston Shale are characterized as
follows:

(i) the maximum horizontal stress increases linearly from 14.5 MPa at El 86 m

to 24 MPa at El -20 m.
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(ii) the minimum horizoutal stress increases linearly from 9 MPa at El 86 m to

18 MPa at El -20 m.

(iii) The vertical stress is given closely by the overburden pressure.

(iv) The orientation of the maximum horizontal stress is approximately N65°E.
4) The use of anisotropic strength envelopes is significant in (i) decreasing the
magnitude of stresses computed and (ii) narrowing the ranges of maximum and minimum
horizontal stresses.

) Poisson’s ratio has a significant effect on the calculated horizontal stresses and the

relevant value is Poisson’s ratio for the effect of horizontal stress on vertical strain v, .

The use of the conventional Poisson’s ratio may lead to a significant increase in the
calculated stress values.

With the initial stresses correctly determined, the stability of tunnels immediately
after excavation may be -valuated. In part II of the thesis, closed form solutions for the
distribution of stresses and displacements around unlined tunnels driven in cross-
anisotropic rocks are derived. The effects of anisotropy of the initial stress system and
the elastic parameters on the stresses and displacements are studied and a design example
is analyzed. From the results of this investigation, the following conclusions may be

drawn:

(a) The effects of v, on both the tangential stress and radial displacements are
negligible.

(b) At the crown-invert, the magnitude and direction of the radial displacement are

sensitive to the value of v .
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(c) The compressive stress at the crown increases with increasing E,/G,. The radial
displacements around the tunnel are highly sensitive to the value of E,/G,,, increasing
substantially as E,/G,, increases.

(d) As the value of K, increases, the compressive stress concentration at the crown-invert

increases and the stress at the springline decreases and changes to tensile.

The dimensionless displacement factor () at the springline increases (indicating greater

inward displacement) as the value of K, increases. In contrast, the value of Q at the

crown decreases and then changes to outward displacement as K, increases.

(e) The radial displacement at the springline is insensitive to E,/E, for any value of K,.
On the other hand, the magnitude and direction of the radial displacement at the crown-
invert is highly sensitive to the value of E,/E,, specially for values of »,, greater than
0.2.

For convenience of application, charts have been prepared for the determination
of stresses and displacements for given values of initial stresses and the elastic
parameters.

It is believed that the results presented would be useful not only for ready
determination of stresses and displacements for design considerations, but also for the
interpretation of results of field monitoring in test adits and during construction.

After the stability conditions during construction are satisfied, the long-term
deformation and consequ~nt stress built-up in the lining are important design
considerations, so as to ensure that the structural integrity of the lining is not affected.
In part III, an experimental study is carried out to investigate the characteristic of the

time-dependent deformation of Queenston Shale and the mechanism of swelling. From
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the present and previous experimental studies, the following conclusions are drawn:
(1) Queenston Shale exhibits important swelling characteristics upon _tress relief. Two
of the most important characteristics are the long-term til.(e-dependent swelling and the
non-linearity with the applied stress. Although the swelling continues to a long period
of time (samples under test since 1986 are still swelling till the time of writing of this
thesis, 1994), the rate of swelling is decreasing with time.

(2) The long-term time-dependent free sweliling is adequately represented by a
rheological model consisting of three Kelvin units connected in series.

(3) The model not only represents the swelling strain within the period of time the
parameters arc calculated (1260 days) but also predicts adequately the strain for much

higher values of time (2700 days).

(4) The time-dependent deformation at any given time under an applied stresso,

decreases with the logarithm of the applied stress.
(5) The stress-dependent swelling can be pradicted adequately using the three Kelvin
units and the rate parameters calculated from the long-term free swell tests. Only the
deformation moduli of the Kelvin units are stress-dependent and their values increase as
the applied stress increases. An expression relating the deformation moduli for free swell
tests to those under any applied stress is derived.

The follow-up study carried out in 1993 investigation supported the postulation
of Lee and Lo (1993) that the following con¢ tions are necessary and sufficient for the
swelling of Queenston Shale:

(@) the relief of initial stresses which serves as an initiating mechanism;

(i1) the accessibility to water; and




(iii) an outward sait concentration gradient from the pore fluid of the rock to the
ambient fluid.

Using the theory of linear viscoelasticity, closed form solutions for the stresses
and displacements in the rock mass and tunnel lining are derived. The long-term time-
dependent defcrmation of the rock is idealized by a model consisting of three Kelvin
units connected in series. The time-dependent deformation of the lining is represented
by a single Kelvin unit. The anisotropy of the initial stress system and the time elapsed
between the excavation and the installation of the lining are accounted for. A semi-
analytical solution (nonlinear pressure step-wise approach) is developed to allow for the
increase of the values of deformation moduli of the model as the pressure level behind
the lining increases. The developed method is then used to predict the stresses in the
lining of a tunnel similar to the proposed twin tunnels for the SABNGS No.3 project.
The effects of the different parameters on the solution are investigated. From the results
of this study, the following conclusion can be drawn:

0)) The stresses and displacements calculated from the nonlinear approach
(suppression of rock deformation as the lining pressure increases is accounted for) are
considerably less than those calculated from the linear case (suppression is not accounted
for).

(2) The base-line analysis on the proposed dimensions of the tunnels shows that the
stresses in lining do not exceed the tensile or the compressive strengths of the concrete.
(3)  The critical location in the lining for the compressive stress is the inner face at

the crown and that for the tensile stress is the inner face at the springline.

4) Poisson’s ratio of the rock is an important factor in the solution. As Poisson’s
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ratio decreases, the compressive tangential stresses in the lining at the crown increase and
the tensile stresses at the springline increases.

(5) As the time elapsed between the excavation of the tunnel and the installation of
the lining increases, the stresses induced in the lining decrease.

(6) As the initial stress ratio increases, the tensile stress induced in the lining at the
inner face at the springline increases. For the tunnel considered, ratios greater than §
produces tensile stress which is higher than the tensile strength of the concrete.

@) The deformation moduli for the three Kelvin units of the model play an important
rule in the final solution. As the values of the deformation moduli increase, the

displacements and stresses induced in the lining decrease.
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APPENDIX 3A

DETERMINATION OF THE VERTAICAL STRESS AT THE POINT OF

MINIMUM TANGENTIAL STRESS IN A VERTICAL BOREHOLE

Refering to Figure 3.1, the stress condition before drilling the test hole (point A)

is

Gy = O, (3A.1)
o, = oy (3A.2)
0, =0, (3A.3)

where, o,, Oy are the minimum and maximum in-situ horizontal stresses

respectively.

O, is the tangential stress.

o, is the radial stress.
o, is the vertical stress.
o,, is the overburden prssure.

The tangential and radial stresses, respectively, at point A after drilling the hole are

o = 30, - 0, (3A.9)

o =00 (3A.5)

r

The change in the tangential stress (Aag,) is equal to the difference between the
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values of o, after and before drilling the test hole. Therefore,

Ao, = (30,-0,) -0, = 20, -0, (3A.6)

Similarily, the change in ¢, is obtained as

Ao, =00-0, = -0, (3A.7D

r

The total change in the stresses in the horizontal direction is equal to sum of Ag, and

Ao_. Therefore,

Acy+Adg, = (20,-0,) -0, = -2(c,-0,) 3A.8)
Adopting plane strain condition, the change in vertical stress Ao, at point A due
to the drilling of the hole is
Ao, = v(Ao, +Ac) (3A.9)

Substitution for (Acga+Ac,) from Eq. 3A.8 in Eq. 3A.2 yields

Ao, = -2v(o, -0, (3A.10)

4

The vertical stress at point A after drilling the hole (o,) is equal to the sum of the
overburden pressure (o,) and the change in the vertical pressure ( Ac,) due to
excavation of the hole

o, = 0, -2v(o,-0)) (3A.11)

It should be noted that the vertical stress at point A during the test does not

change and is equal to the value given by Eq. 3A.11. This is because the sum of the
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change in tangential and radial stresses due to the increase of internal pressure is always

equal to zero, from elastic solutin of a thick-walled cylinder under an internal pressure.
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APPENDIX 3B

CALCULATION OF THE PARAMETER "m" FOR THE DIFFERENT

STRESS PATHS

Hoek and Brown's (1980) failure criterion states that

0, =0, + ‘/(mato3+sof) (3.B-1)

where: o, is the major principal stress
oy is the minor principal stress
o, is the uniaxial compressive strength of the intact rock material

m and s are constants depend upon the properties of the rock and upon the extent to

which it has been broken before being subjected to the stresses o, and 6,. For intact

rock, s=1. For previously broken rock, s<1. Because of selecting the hydro-fracturing
test locations at the depths where the rock is intact, the value of s is taken as unity.

Therefore, the equation becomes

o, =0, ¢ \/(moto,+c:') 3.B-2)

In terms of the anisotropic strength parameters, the suitable criteria for stress paths I, 11

and Iil, respectively, are
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G, =03+ \/(’"t°cv°3*°¢z-») 3.B-3)
O, =0y J(mlloch°3+°:ll) 3.B-4)
0y =037 \/('"m“ch"s*":h) 3.B-5)

Where m;, m,, and my, are the values of the parameter m for the envelopes required

to represent stress paths I, II, and III, respectively. o_ and o, are the uniaxial

v

compressive strength in the vertical and horizontal directions, respectively. The value

of m, can be obtained by substituting 6,=0.0 and o,=-T, in Eq. (3.B-3), where T, is

the tensile strength of the rock in the horizontal direction. Similarly, by substituting

0,=0.0 and o,=-T, in Eq. (3.B-4) and by substituting 0,=0.0 and o,;=-T, in Eq. (3.B-
S), the values of m, and my, can be obtained. The quantity 7, is the tensile strength

of the rock in the vertical direction. Therefore, the values of m for the three stress paths

are

T,

m = ook (3.B-6)
Th ocv

m, - 2 Ta 3.8-7)
T, Ocr
o h Tv

m”’ = Tf - (3-8‘8)
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APPENDIX 3C

ANALYSIS OF SUBVERTICAL FRACTURES

Figure 3.1(a) shows the stress condition at the test location after drilling the hole
and before performing the test. The elastic solution for stresses at the location of
potential hydraulic fracturing, where the minimum tangential stress occurs (Point A), is

given in the figure. The stress condition during the test is shown in Figure 3.1(b). At

the breakdown stage (Figure 3.1(c)), the value of P, (the internal pressure) is equal to
the value of P, (the breakdown pressure). Therefore, the elastic solution at this stage

(at Point A) is

a, = P, 3C.1)
¢y = 30,-0,-P, 3C.2)
o, = 0,-2v(0,-0,) 3C.3)

where: o, = radial stress
P_, = breakdown pressure
o, = tangential stress at point A

6, = minimum in-situ horizontal stress

Gy = maximum in-situ horizontal stress

o, = vertical stress (plane strain condition)




o, = overburden pressure

v = Poisson’s ritio
Consider the hydrofracture formed at point 4 lies in a plane inclined with an anglef
to the vertical plane whose strike is parallel to the direction of initial maximum horizontal

stress. The component of stress perpendicular to the fracture plane (o,) is

Oy = ogM*+a N? 3C.9
where: M = cosP, and N = sinp

The inclined fracture is assumed to be formed when the normal stress to the plane of

fracture is equal to the tensile strength T, of the rock in the normal direction.

Therefore,

-T, = o M2+o N? 3C.5)

-T, = 30,-0,4-P . )M? + (0,,-2v(0,-0 )N? 3C.6)
The shut-in pressure is equal to the component of stress normal to the fracture plane at

this stage. Therefore,

P, = o, M*+a N? 3C.7D

g

After arrangement, the minimum in situ horizontal stress is obtained as

_ 2
= i’# (3C.8)
M

Oy
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Substituting for the value of o, into Eq. (3C.6), the following equation is obtained:

P,-o N? P,-o N?
T, = M) Mo, M7P o NP 2uN e, ZVN Y=

)

After arrangement, the maximum in siru horizontal stress is obtained as

-M*P_ +(3M*+2vN?*)P +(-2M*N*-2vN*g +T M?

oy = (3C.9)
M*+2vNM?

The maximum and minimum in situ horizontal stresses (Eqs. 3C.9 and 3C.8,

respectively) can be written as

o, =A P, ,+B P+C 0, +D T, 3C.10)
o, = B, P,+C2 9, 3C.11)
where:
. 2 2 _AN2, . 2 2
Alz'i’ Bl=3M +2vN' C, - 2N +vN).
F F F
M2
D1=—F, F=M‘+2VN2M2,

R
i
|-
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EXAMPLE OF CALCULATIONS - (Case Of Vertical Fractures)
For vertical fractures B =0.0, therefore,

M=1, N=0, F=1, A,=-1, B, =3, C,=0, D,=1, B,=1, and C, =0.

This leads o

and

0” = 3Ps - Pcl + Tn

which are the same traditional equations for vertical fractures.
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APPENDIX 4A

CALCULATIONS OF INITIAL HORIZONTAL STRESSES
FROM TEST UN1-3

(DARLINGTON GENERATING STATION)

Data:

Data for the test are as follows:
Depth = 101.5 m

Unit weight = 0.026 MN/m’

Tensile strength (T) = 6.03 MPa

Uniaxial compressive strength (0,) = 59 MPa

Poisson’s ratio (v) = 0.32

First Breakdown Pressure (P ) = 13.10 MPa (measured at ground surface)
Shut-in pressure (P,) = 5.52 MPa (measured at ground surface)

Head pressure (P,) = 1.0 MPa

Calculate The Emperical Constant (m)

= 9.68

~la
Q=
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Check Stress Path /
At breakdown stage, the radial stress at the test location is
o, =P, + P, =13.10+1.0 = 14.1 MPa
And the vertical stress is
g, =0, -2v(og,-o0,)
o, = 0.026 x 101.5 = 2.639 MPa
Therfore, o, < 2.639 < o, =14.1

One condition for stress path I is that o, is the major principal stress. Therefore stress

path I is not satisfied.

Check Stress Paths II and 1l

The value of the empirical constant "m " for Hoek and Brown’s failure criterion is

3
]
~|.2

I
%,
Therefore, m = 9.68
The minimum horizontal stress (o,) is
o, =P, + P, =552+ 1.0 =6.52MPa

The failure criterion for stress path II is
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2
9, = 30.-0”-0,¢J mo (30,-0,-0)+n

Substitution for the values of 6, m, o,, and o, in the above failure criterion leads to

the following quadratic equation:

oy + 588.4 o, - 6524.66 = 0.0

Solution of this equation results in the following value of the maximum horizontal stress:
o, = 10.89 MPa

Therfore, the value of the vertical stress at test location is

o, = 0, -2v(o,-0,) = -0.16 MPa

z
And the value of the tangential stress is

0y = 30,-0,~0, = -5.43 MPa
Therfere, we have the following stress relation at failure:

or>oz>°0

This means that stess path // is satisfied for Test UN1-3.
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APPENDIX 5A

EXAMPLE OF CALCULATING THE INITIAL HORIZONTAL STRESSES

FROM MIXED-MODE FRACTURES

Test NF4-6 performed for the SABNGS No. 3 project is used for illustration of
calculating the initial horizontal stresses from mixed-mode fracturs in anisotropic rocks.
Data: Formation = Queenston Shale

Depth = 106.1 m

Unit weight = 0.026 MN/m’

Tensilc strength (7,) = 4.6 MPa

Tensile strength (T,) = 3.4 MPa

Uniaxial compression strength (6_ =0_,=0_) = 25 MPa

Poisson’s ratio (v,,) = 0.40

First breakdown pressure (P,,) = 12.30 MPa (measurec at ground surface)

Shut-in pressure (P,) = 3.5 MPa  (measured at ground surface)

Head pressure (P,) = 1.0 MPa

1- Calculate The Emperical Constant (m)

For Stress Path | and II the values of m, and m,, are




o T
m o= my = =+ =525 (5A.1)
Th %,
For Stress Patb III the value m,, is
oc TV
my, = —+— =722 (5A.2)
T o
v [4

In the following computations, the conditions and expressions used are summarized in

Table 3.2.

2- Check Stress Path /

At breakdown stage, the radial stress at the test location is
P,=0,=P  +P, =123+1 = 133 MPa (5A.3)
And the vertical stress is
6, = 6,-2v,(0,-0)) (5A.9)

And the value of the overburden pressure is

o, = 0.026 x 106.1 = 2.:56 MPa
Therefore, o, < 2.756 < o, =13.3

One condition for Stress Path I is that o, is the major principal stress. Therefore Stress

Path I is not satisfied.

3- Check Stress Path I/

The minimum horizontal stress (o,) is
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o, =P, +P, =35+1 = 45 MFa (5A.5)

The failure criterion for stress path II is

P (5A.6)

2
1 = 0, = 30,-0,-P, ﬂ/ my0,,(30,-0,-P )+,
Substitution for the values of o,, m,, ¢,, and o, in the above failure criterion leads to
the following quadratic equation:

oy + 157.45 o, - 479.64 = 0.0

Solution of this equation results in the following value of the maximum horizontal stress

o, = 3.0 MPa < o, = 4.5 MPa

This means that to satisfy Stress Path II the maximum horizontal stress should be less

than the minimum horizontal stress. Therefore, Stress Path II is not satisfied.

4- Check Stress Path /1]

The only remaining Stress Path is Stress Path IIl. The condition at failure is
G, > 04 > 0, (5A.7)

The modified Hoek and Brown'’s failure criterion is

- 2 (5A.8)
°, = °z+J MO en®:*Ccn

The vertical stress is
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o, = 6,-2v (0,-0) (5A.9)
Therefore,

¢, =2.756 - 0.8 (0y-q,)

Substituting the values of o,, o,, m,, and o, in the failure criterion, letting

l!

(op=0,-0,) and after arrangement, the following quadratic equation is obtained:
0.64 op + 161.27 o, - 1011.282 =0.0

Solving this equation, the following value for o, is obtained:
o, = 6.12 MPa

Now apply the following condition to obtain the upper limit of both o, and o, the first

condition is
e, > O,

From notes 4 and 6 in Table 3.2
P, >3o0,-0,-F,

After substituting for the value of o, in terms of o, and o, the following inequality

is obtained:
2P ,+3 2P ,+0
cl,,<-L2+2 , ssmilarly, ok<——‘32——o (5A.10)

Therefore, 6, < 22.48 MPa ,and o, < 16.36 MPa

To obtain the lower limit of the stress values, the second condition is used
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Gy > O, (see notes in Table 3.2)

from which the following inequality is obtained:

o, < 0,+0,(3-2v, )+P (SA.11)
2
Similarly,
a,> ouc»oo(l -2vh)+Pd (5A.11)
2
Therefore, o, > 14.76 MPa, and o, > 8.64 MPa

Now the ranges of the calculated horizontal stress values are

14.76 MPa <. o, < 22.48 MPa

and 8.64 MPa < o, < 16.38 MPa

S- Elimination of The Inadmissible Range of Stress That Causes Premature Failure

In the stress range computed above, not all values are admissible. Those values

of o, and o, which would cause failure at any point along the cylindrical surface of the

test section uefore the hydraulic fracturing test was conducted are clearly inadmissible.

These values of o, and o, should be excluded from the range. The procedure is to

compute the stresses around the circumference and ensure that the state of stress is below

the failure envelope. After the test hole is drilled, the vertical (o,) and tangential (o4)

stresses at the most critical location (Hefny and Lo 1992a) are

423




: = 0,-2v,(0,-0) (SA.13)

Q
]

04 = 30,-0, (SA.14)
Using the value of (0,-0,)=6.12 computed, and the following equation, which gives

the stress state at the failure envelope

Oy = 0,-2v,(0,-0,)+/ MyO (0, -2v,(0,-0,))+0% (5A.15)

the maximum permissible value of o, is 13.3 MPa.
Therefore, o©64 =3 0, -0, < 13.3
From this inequality, knowing the value of g, (6.12 MPa) obtained before, the upper
limits for o, and o,, respectively, are found to be
o, < 15.83 MPa

and o, < 9.71 MPa

The permissible ranges of the maximum and minimum horizontal stresses are

14.76 MPa < o, < 15.83 MPa

and 8.64 MPa < o, < 9.71 MPa

The stress paths investigated are graphically illustrated in Figure 5.4 and it is clear that

only stress path I1I satisfies the failure criteria.
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APPENDIX 6A
CLOSED FORM SOLUTIONS OF THE STRESSES
AND DISPLACEMENTS AROUND A CIRCULAR TUNNEL DRIVEN IN

CROSS-ANISOTROPIC ROCKS

6A.1 INTRODUCTION

In this Appendix, the solutions of the stresses and displacements around a circular
tunnel driven in a cross-anisotropic medium, Egs. 6.22 to 6.24, are derived. As
mentioned in Chapter 6, the tangential stresses are obtained by the superposition of two
cases (Fig. 6.1): case (a) where the infinite medium is loaded by the initial state of stress
(before excavating the tunnel), and case (b) of releasing the initial stresses at the
boundary o: the excavated tunnel. The displacements in the medium due to the
excavation of the tu.anel result directly from case (b). The case of releasing the initial

state of stress is the summation of the case of releasing the hydrostatic initial stress

component (P,) and the case of releasing the deviatoric initial stress component (Q,).

Fig. 6A.1 shows the normal stress and the shear stress released at the boundary of the

excavated tunnel for both the hydrostatic and deviatoric initial stress components.

6A.2 CASE OF RELEASING THE HYDROSTATIC INITIAL STRESS

COMPONENT (P,)

Referring to Fig. 6A.1-a and Eq. 6.9-a, the stress boundary conditions at the

tunnel surface are

431



432

P(ae®) = -P, (6A.1)
q(aeib‘) =0 (6A.2)

Using Eqgs. 6.9-b and 6.9-c, the boundary conditions are represented as

-P,=R,+Y_ R, cosn6 +S, sinn® (6A.3)

A=l

0=T,+Y (T,cosnb + U sinn6) (6A.9)

Therefore, R, =U, =-P, and all other coefficients being zero.
Substituting the values of the coefficients (R, S,, U,, and T,) obtained into Eq. 6.7, the
values of the two potential functions ¥{(z) and W(z) are determined as
W2)=-P, W(2)=P, (6A.5)

and their complex conjugates are

Z)=-P,, W(Z)=P, (6A.6)
In the following sections, these values of potential functions obtained are used to
determine the change in tangential stresses and radial and tangential displacements at the

boundary of the excavated tunnel due to the relief of the hydrostatic initial stress

component.

})) Change in Tangential Stresses

The change in tangential stresses at the boundary of the excavated tunnel, as a
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function of the two potential functions, is given by Eq. 6.10 as

_ L4y, e (A y,e PN + 2(1 v, 7,6 W)

20-7,e )l -y ™) 6A.T)
La +¥, (1 + 1,V (2) +2(1 -7, 7, W 2)

2(1 - 7,601 -¥,e*%)

Ao,

As mentioned in Chapter 6 Sec. 6.3, two cases arise:

@  ¥,=Y; Y=Y,

so ihat y, and y, are real. In this case, p,=p, and p,=p, (i.e. p, and p, are real)

® Y=Y T2

so that y, and vy, are complex conjugates. Inthiscase, p,=p, and p, =p, (i.e. p, and p,
are complex conjugates).

Case (a) v, and v, are real

Substituting ¥,=v, and ¥,=y, into Eq. 6A.7, the change in radial stress can be

written as

_ (+y,e (1 +y,e 29D + 2(1-7,7,¢ W)
1=y, MU -1pe ™D (6A.8)
,a +7, €21 +y e ¥ Z)+2(1 - y,7,e YW Z)
2(1 - v,e2%)(1 - v,¢™%)

Ao,




Case (b) vy, and vy, are complex conjugates

Substituting ¥,=y, and y,=y, into Eq. 6A.7, the same equation (Eq. 6A.8),
derived for the case when both y, and v, are real (case a), is obtained. This means that
Eq. 6A .8 can be considered as the general expression for the change in tangential stress
in terms of the two potential functions regardless the case of y, and vy, (case (a) or case
(b)).

Substituting the values of W(2), W), (7), and W(Z) into Eq. 6A.8, the change

in tangential stress is represented as

B0gpy  -(1+y,6 21 +7,672) + 2(1-v,7,6 ™)
Po 201 -Y,€ —1!0)(1 ~Y,€ -M) (6A.9)
L +v,20)(1 +y,e2) +2(1 - v,v,6*®)

21 -v,e¥)(1 - v,

After some arrangements Eq. 6A.9 is reduced to

o~

_ M
Bour, = 5P, (6A.10)

where

Al =2 *2(71 +Y2)2 '6YiY§'Z(Y|*72_7175-7372)(ew+e -2‘0) (6A.11)
-2y,Y,(e4-¢ %)

B, = 2[1+(y,+Y,) +¥1¥3 - (¥, +1 (1 +Y,Y,) (6A.12)
(€™ +e 20 vy, y,(e40+e "4




Eq. 6A.10 can be expressed in terms of the trigonometric functions (cos® and sin®),

where e® = cos0 +isin8, as

AZ
Aogp, = ’B—zpo (6A.13)
where:
A, = 1+(y,+y)% - 37375 - 20y, +¥,X(1-v,Y,)c0s20 GA.10
~2y,v,c0840
B, = (1+y}-2y,c020)(1 +y3-2y,c0520) (6A.15)

Equation 6A.13 represents the change of tangential stress at the boundary of the tunnel

due to the rciief of tiic hydrostatic iaitial stress component P, .

(I  Radial and Tangential Displacements

The displacement at the surface of the excavated tunnel (D =u, +iu ) is given by

Eq. 6.12 as

D = 8 A1) +5,f() +8,8() + $,8(2) (6A.16)

435




436

a? ” ) a’
o - (1*72‘;}') (@) +( ‘Yz:z')w(z) (6A.17)
Y, -7y
(1+y gi)V(z)*(l-'v a—z)W(z)
§@ - — & s @19
4Y,-Yy)
51 = (1 *Y;)pz -(1 —Yl)pl 6: =(1 "’Yz)p] -1 ’Yz)pz (6A.19)
p, = (L+y)B,+(1-7,)B, Py = (1+y))B,+(1-v,)8,
B, = su‘“fszz B, = sxz‘“iszz (6A.20)
Case (a) v, and y, are real
Substituting the values of ¥(z) and W(z) into Eq. 6A..7 leads to
a? a?
SRR TTI M Lo ol (6A.21)

f@ =

4(Y| -3 2)
The value of f{z) is obtained by integrating Eq. 6A.2[ with respect to z. Therefore,

2
ra°h, c, (6A.22)

f(» = ———21(11 v

where ¢, is an integration constant. Substituting z=ae® into Eq. 6A.22, the value of f(2)

can be written as
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aP,

72 -8
[ = — e e (6A.23)
2(7[ - Yz) !
The complex conjugate of f(2) is
- )
(D =25 g0, (6A.24)
2(71 - Yz)

Similarly, the function g(z) and its conjugate g(z) are obtained by substituting
the values of W(z) and W(2) into Eq. 6A.18 and integrating with resnact t0 z. The

valuer obtained for f(z) and g(z), respectively, are

—y,aPo -8
) = ——e Ve (6A.25)
80 = 30 vy 2
- -y,aP -
&(2) = —2(:' __Y")e‘“ + ¢, (6A.26)
1 2

Substituting the values of £(z), g(z), f(Z), and g(Z) into Eq. 6A.16 yields

= _._.Y.z.a_Pa_b e"°+__mp_°_p elO
2(v;-vp) ! 20v,-vp) (6A.27)

_ YIGPO -i@ YIa‘:'o “ e

3

—_—8 e ————p.e€
2(v,-Y) ° 2(v,-vy)

When the value of P, is zero, the value of the displacement D should be zero, therefore
the integration constant ¢; is equal to zero. By substituting D=u, +iu, and

e =ccs9 +isin® into Eq. 6A.27 and after arrangements, Eq. €A.26 is reduced to
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a
u+iu, = ———{[y,(8,+p,) -v,(8,+p;)]cosd
Yy 2(71 _Yz) 2 1 1 1 2 2 (6A.28)

+lv,(p, -8) - v,(p; - 8,)]isin6})

Comparing the left hand side of Eq. 6A.28 with the right hand side, the displacements

in x-direction (4, ) and y-direction (uy) respectively are obtained as

u, = 2 [' %, + P )-¥ (6 +p )] cosB (6A.29)
2(Y1 -Yz) 221 1 1v72 2
u > “ (P 8. Y, ( 6)] in® (6A.30)
= - - Py~ sin .
Y Z(Yl - Yz) 2 1 e 2

Referring to Fig. 6A.2, the radial disp.acement, u,.p s and tangential displacement,

Ugp s in terms of the displacements u, and u, , respectively, are

u, = u,cosd +u sind (6A.31-a)

ug = -u;sinG -u cosd (6A.31-b)

Substituting for the values of u, and u, (Egs. 6A.24 and 6A.25) into Eq. 6A.30-a, the

radial displacement is obtained as

u {[72{.61 +p1)“Y1(62*‘p2)]COSZB

e, " 2(y,-vy) (6A.32)

+[Yz(P| - 6|) - Yl(p‘ - bz)lsmzei

After arrangements and making use of the following trigonometric relationships,




cos26 +Sin26 =1 cmze - sinze = c08206 (6A 33)

the radial displacement at the tunnel surface due to the relief of the hydrostatic initial

stress component is derived as

aP,
“ar) T 34y (Y201~ ¥1P2) + (¥,0, - ¥,8,)c0s26)] (6A.39)

Similarly, by making use of Eqs. 6A.29, 6A.30, and 6A.31-b, the tangential

displacement at the tunnel surface is obtained as

aP,
Uy, = ———(v,6,-v,5,)5in20 (6A.35)
LY 204, -7y 192 7 Y29

Case (b) vy, and y, are complex conjugates

As in case (a), the function f(z) is given by Eq. 6A.23 as

f@ = ——"-e®+ec, (6A.36)

The complex ~onjugate of f(z) is

- 72‘1Pco 9 , -
f(2) = ——2—e"+¢c (6A.37)
2(7)’Y2) :

Substitut: g y,=v, and ¥, =y, into Eq. 6A.37 leads to

2P e, g (6A.38)

i 2(v,-vy)

(D)

Similarly, the function g(z) and its conjugate g( z) are obtained as
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-Y,aP, 0
(2) = ———e P+ (6A.39)
8 2(Y, -1, 2
- Y,aP, .
(z) = ————e% +¢ (6A.40)
£ 2(v,-vp) 2

Substituting the values of f(2), g(2), f( z), and g(z) into Eq. 6A.15 yields

Yzapo -0 YlaPo - L0
T cm——re———r— 1 -‘_———'—'—Ple

2(v,-Y,) 2(v,-v2) (6A.41)
Ylapo -i8 Yzap" 52¢m+c3

- — 0, b —

2(Y1'Yz) 2(Y1—12)

As mentioned in the previous section, for the case when y, and y, arc complex
conjugates, p, and p, are also complex conjugates. Therefore, substituting p,=p, and p,=p,

into Eq. 6A.41, the displacement D is reduced to

2(4,-v,) 2(0,-v) (6A.42)

2(vy-vy) 2 2(71-72) '
which is the same as Eq. 6A.26. Therefore, the radial and tangential displacements for

this case (where y, and y, are complex conjugates) are given by the same equations

(Eqs. 6A.34 and 6A.35 respectively) derived for the case when y, and y, are real.




6A.3 CASE OF RELEASING THE DEVIATORIC INITIAL STRESS

COMPONENT (Q,)

Referring to Fig. 6A.1-b and Eq. 6.9-a, the stress boundary conditions at the

tunnel surface are

P(ae®) = -Q,cos20 (6A.43)

q(ae’®) = Q,sin26 (6A.44)
Referring to Eqs. 6.9-b and 6.9-c, the boundary conditions are

-Q,c0s20 = R, +Y_ R, cosnd + S, sinnd (6A.45)
n=1
Q,sin20 =T, + Y (T,cosnb + U sinn6) (6A.46)

Therefore, R,=-Q,, U,=Q, and all other coefficients being rero.
Substituting the values of the coefficients (R, S, U,, and T,) into Eq. 6.7, the twe

potential functions ¥(z) and W(z) are determined as

2
V@) =W =-Q,% (6A.47)
4

or

Wz) = W2) = -Q,e *° (6A.48)
and their complex conjugates are

2

W1)-WM1)-Q,% (6A.49)
Zz
or
Z)-W(Z)=-Q,e%® (6A.50)

In the following sections, these values of potential functions obtained are used to
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determine the change in tangential stresses and radial and tangential displacements at the

boundary of the excavated tunnel due to the relief of the deviatoric initial stress

component.

n Change in Tangential Stresses

The change in tangential stresses at the boundary of the excavated tunnel, in terms of the

two potential functions, is given by Eq. 6.10 as

_ ey, e (1 + 1,2 2W) + 2(1-7,7,¢ )W)

20-v,e Y A-y,e ™) (6A.51)
. (1+y,e2) (1 +v,e)WV(7) +2(1 - v,v,e )W 2)

2(1 -v,62%)(1 - y,e9)
Substituting the values of WV(z),W(z),(Z), and W(Z) into Eq. 6A.51, the change in

Aoy

tangential stress becomes

Aogg)  -(1+v,e )L +v,e ™) + 2(1-y,7, ™)
- - - -2i0
Q, 2‘2(1 Y6 (1 - v,e %) 5 (6A.52)
Ly, + 7,6 ™) +2(1 - v, 7,6 49)
2(1 - v, 2%)(1 - v,¢%9)
After arrangements, Eq. 6A.52 is reduced to

Q, (6A.53)

Ospy) =

where

2 2 ] .
Ay = 203730, VTV (3T e ee ) o o
- #‘{24’71‘{?l*"73'\'2)(e“e +e ™49 "Ysz(em+e “6)

B, = 2[1+(1,+ 1) +¥1¥3- (1, 1)1 +1,7,) (6A.55)
(€™ Mo vy y (c40+e @)

Equation 6.53 can be expressed in terms of the trigonometric functions (cos® and sin@),
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where €' = cosB +isin9, as

Al
Aoo(o') = _B_.Qa (6A.56)
&
where
A, = (1, +B-Y,75) + (3477 +73-7,7,(1-7,Y,))c0s20 (6A.57)

~(y,+¥)(1+y,Y,)cos40 +y,y,c0560
B, = (1 *71‘27&0829)(1 Y3 -2y,¢0526) (6A.58)

Equation 6A.56 represents the change of tangential stress at the boundary of the tunnel

due to the relief of the deviatoric initial stress component Q,.

(I Radial and Tangential Displacements

Case (a) v, and v, are real

Substituting the values of V(z) and W(z) into Eq. 6A.16 leads to

2 2 2 2
-(1 + a_ .a_ -(1- E.. a_
o ( Yzzz)(Qozz) ( Yzzz)(o"z’) (6A.59)
f@ =
4(Y| -Yz)
After arrangement, Eq. 6A.59 becomes
. -20002
f@ = —— (6A.60)
4(y,-v,)2

The value of f{z) is obtained by integrating Eq. 6A.60 with respect to z. Therefore,

a’Q
Y L. (6A.61)
/@ 22(v,-v) |

where ¢, is an integration constant. Substituting 2 -ae® into Eq. 6A.61, the value off(2)

is obtained as
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a@ )
@ = —2—e™®+c (6A.62)
f Z(Yl - 72) !
The complex conjugate of f(z) is
y aQ -
) = ——2_e®.¢ (6A.63)
/¢ 2(71 -Yz) !

Similarly, the function g(z) and its conjugate g(z) are obtained by substituting
the values of V(z) and W(z) into Eq. 6A.17 and integrating with respect to z. The

values obtained for f(z) and g(z), respectively, are

-aQ -8
= T0 o8, . (6A.64)
g(Z) 2(Y1 - Yz) ¢ 2
~ - -aQ, o -
= T0 i (6A.65)
8(2) 2(Y1’Yz)e "G

Substiterting the values of £(2), g(2), £(Z), and 2(Z) into Eq. 6A.15 yields

= __i_Q_'.’_._ﬁle'm+_.iQ_°__pl 10
2(v,-vy) 2(v,-Y2) (6A.66)
B aQa F e-,'e_ aoo 9,
—2 3, —2 _p.e®+c,
2(71_12) 2(71-12)

When the value of Q, is zero, the value of the displacement D should be zero, therefore
the integration constant ¢, is equal to zcro. By substituting D=u+iu, and

" -cosd +isinB into Eq. 6A.66 and after some arrangements, Eq. 6A.66 is reduced to

. aQ,
u+iu, = ‘2—(—7-1—_—;2—)[(61"91'62—92)“0 (6A.67)
+(—61+p1+62-p2)isine]

Comparing the left hand side of Eq. 6A.67 with the right hand side, the displacements

in x-direction (&) and y -direction (). respectively, are obtained as




aQ,

L= ———2 _(8,+p,-8,-p,)cos0 (6A.68)
2(Y| Yz) ! 2 2
aQ,
u, = ———(-8,+p,+8 )sin® (6A.69)
AT A M AL

Referring to Fig. 6A.2, the radial displacement (4,) and tangential displacement u,
in terms of the displacements u, and u,, respectively, are

u, = ucosd +uysin8 {6A.70)
u, = -usind +uycosﬁ (6A.71)

Subst:uting for the values of #, and u (Eqs. 6A.68 and 6A.69) into Eq. 6A.70, tke

radial displacement at r=a, in terms of Q,, is obtained as

aQ,
u —_———
@) " 2(71 Yz)
+(-8,+p,+8,-p,)]sin’6]
After arrangements and making use of the following trigonometric relationships

(3, +p,-8,-p,)lcos’® (6A.72)

cos’0 +sin%0 = 1 cos?0 - sin?0 = cos20 (6A.73)

the radial displacement a¢ the tunnel surface due to the relief of the deviatoric initial

stress component is derived as

aQ,
o, -—_;[(p, p,)+(8,-8,)c0s26] (6A.74)

2(y, -7,
Similarly, by making use of Eqs. 6A.68, 6A.69, and 6A.71, the tangential

displacement at the tunnel surface is obtairied as

- %% (5. 8)sin20 (6A.75)

u
8Q,) - 2(v,- vy



Case (b) vy, and y, are complex conjugates

As in case (a). the function f(z) is given by Eq. 6A.62 as

aQ )
Q) = —2—e™+e¢ (6A.76)
S 2(v,-Yy) '
The complex conjugate of f(z) is
- aQ 0 -
= ——2 ee%+¢ (6A.77)
f(2) 2G.-7) .

Substituting ¥, =y, and Y, =y, into Eq. 6A.77 leads to

- _ -aQ .
) = _—o e'e +C (6A.78)
sz 2(v, vy !

Similarly, the function g(z) and its conjugate g(z) are obtained as

g@) = —2:?; et e, (6A.79)
1 2

- aQ, . -

g(l) = H‘{—_Q’T;ee te, (6A.80)
1 2

Substituting the values of f(2), 8(2), £(Z), and g(Z) into Eq. 6A.15 yields

.99 5 e'“’—-——aQ’ pe’
1 1
2(v,-Y) 2(v,-Yy) (6A.81)
aQ" ’fef_f_.oL_Eze‘e+c3

- — 0,
2(v,-Y,) 2(v,-Y,)

As mentioned in the previous section, for the case when y, and y, are complex
conjugates, p, and p, are also complex conjugates. Therefore, substituting p,=p, andp,=p,

into Eq. 6A.81, the displacement D is reduced to



aQ, - aQ, .

= —2 3 e®-———p.e
2(v,-v,) 2(v,-vy) (6A.82)
aQ, —— aQ,

]
——2 8 e®+—2 pe®ic
2(v;-v) > 2(,-vp b

which is the same as Eq. 6A.66. Therefore, the radial and tangential disptacements for

this case (where y, and y, are complex conjugates) are given by the same equations

(Eq. 6A.74 and 6A.75 respectively) derived for the case when y, and y, are real.

6A.4 FINAL STRESSES AND DISPLACEMENTS
(a) Tangential Stresses

The final tangential stresses at the circumference of the tunnel are obtained by
adding the change in tangential stresses from releasing the hydrostatic initial stress
component to that from releasing the deviatoric initial stress component. The final
tangential stresses are the sum of the initial stresses before excavating the tunnel and the
change in stresses induced by the excavation. Therefore, the final tangential stresses are
giver by the following equation:

0, = (P,-Q,c0s20) + Aow,) + A“o(o,) (6A.83)

Substituting for the values of Ao and Aoy, , from Eqs. 6A.12 and 6A.56

6P, Q,)

,respectively, into Eq. 6A.83 and after arrangements, the following equation for the

tangential stresses at the boundary of the tunnel is obtained:

2020y, 49 -27i¥; -4y, “¥)cos20

Og °
(1+ Y% -2y,co0s20)(1 + Y§ -2y,c0826) (6A.84)
4(y, +v,) -4(1 +v,v,)cos20

(1 -y} -2y, cos26)(1 +Y; - 2y,c0s26)

+
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(b)  Radial and Tangential Displacements
The final radial deformation due to the tunnel excavation is obtained by adding

the deformations resulting from the release of the hydrostatic and deviatoric initial

stresses components, therefore

U, = Uypy*lyg, (6A.85

Substituting for the values of 4, , and u,, ,, from Egs. 6A.34 and 6A.74 respectively,
into Eq. 6A.8S, the following closed form solution for the radial displacement at the

circumference of the excavated tunnel is obtained:

_ a
2(71 - Yz)
+[P°(726 17Y,8,)+Q, (8, - bz)lcos20|

Similarly, by adding the tangential d=formations resulting from the release of the

{P,(v,p,-7,p) +Q,(p, - p,) (6A.86)

hydrostatic and deviatoric initial stress components, the following expression for the

tangential stress at the circumference of the excavated tunnel is obtained:

o E(TC‘Tz;[P o118, ~¥;8,) + Q,(8, - 8)]sin20 (6A.87)
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Figure 6A.1 Normal and shear stresses on an imaginary circle in rock
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Ur=UxCO0So + Uy SINO
l.l9 =-Ux SING + Uy, COS6

Fignre 6A.2 Radial and tangential displacements in terms of x and y displacements
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Figure 7A.1 Results of free swell tests on Queenston Shale at SABNGS NO. 3 site
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Figure 7A.7 Results of free swell tests on Queenston Shale at SABNGS No. 3 site
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Figure 7A.8 Results of free swell tests on Queenston Shale at SABNGS No. 3 site
Tests No. NF4A-8 (1990 investigation)
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Figure 7A.9 Results of free swell tests on Queenston Shale at SABNGS No. 3 site
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Figure 7A.10 Results of free swell tests on Queenston Shale at SABNGS No. 3 site
Test No. NF4A-10 (1990 investigation)
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Figure 7TA.12 Results of free swell tests on Queenston Shale at SABNGS No. 3 site
Test No. NF4A-12 (1990 investigation)
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Figure 7A.13 Results of free swell tests on Queenston Shale at SABNGS No. 3 site
Test No. NF4A-13 (1990 investigation)
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Figure 7A.14 Results of free swell tests on Queenston Shale at SABNGS No. 3 site
Test No. NF4A-14 (1990 investigation)
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Figure TA.15 Results of free swell tests on Queenston Shale at SABNGS No. 3 site
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Figure 7A.16 Results of free swell tests on Queenston Shale at SABNGS No. 3 site
Test NF37-2 (1990 investigation)
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Figure 7A.17 Results of free swell tests on Queenston Shale at SABNGS No. 3 site
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Figure 7A.18 Results of free swell tests on Queenston Shale at SABNGS No. 3 site
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Figure 7A.19 Results of free swell tests on Queenston Shale at SABNGS No. 3 site
Test No. NF37-5 (1990 investigation)
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Figure 7A.20 Results of free swell tests on Queenston Shale at SABNGS No. 3 site
Test No. NF 37-6 (1990 investigation)
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Figure 7A.21 Results of free swell tests on Queenston Shale at SABNGS No. 3 site
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Figure 7A.22 Results of Free swell tests on Queenston Shale at SABNGS No. 3 site
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Figure 7A.23 Results of free swell fests on Queenston Shale at SABNGS No. 3 site
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Fgure 7A.24 Results of free swell tests on Queenston Shale at SABNGS No. 3 site
Test No. NF37-10 (1990 investigation)
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Figure 7A.25 Results of free swell tests on Queenston Shale at SABNGS No. 3 site

Test No. NF37-11 (1990 investigation)
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Figure 7A.26 Results of semi-confined swell tests on Queenston Shale at SABNGS
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Figure 7A.27 Results of semi-confined swell tests on Queenston Shale at SABNGS

No. 3 site. Test No. NF4A-H2 (1990 investigation)
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Figure 7A.28 Results of semic-confined swell tests on Queenston Shale at SABNGS

No. 3 site. Test No. NF4A-H3 (1990 investigation)
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Figure 7A.29 Results of semi-confined swell tests on Queenston Shale at SABNGS

No. 3 site. Test No. NF4A-H4 (1990 investigation)
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Figure 7A .30 Results of semi-confined swell tests on Queenston Shale at SABNGS
No. 3 site. Test No. NF4A-HS (1990 investigation)
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Figure 7A.31 Results of semic-confined swell tests on Queenston Shale at SABNGS

No. 3 site. Test No. NF4A-H6 (1990 investigation)
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Figure 7A.32 Results of semi-confined swell tests on Queenston Shale at SABNGS
No. 3 site. Test No. NF37-H1 (1990 investigation)
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Figure 7A.33 Results of semi-confined swell tests on Queenston Shale at SABNGS
No. 3 site. Test No. NF37-H2 (1990 investigation)
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Figure 7A.34 Results of semi-confined swell tests on Queenston Shale at SABNGS
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Figure 7A.35 Results of semi-confined swell tests on Queenston Shale at SABNGS
No. 3 site. Test No. NF37-H4 (1990 investigation)
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Figure 7A.36 Results of semi-confined swell tests on Queenston Shale at SABNGS
No. 3 site. Test No. NF37-HS (1990 investigation)
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APPENDIX 9A

DIFFERENTIAL FORM OF CONSTITUTIVE EQUATIONS
OF VISCOELASTIC MATERIAL

AND THE CORRESPONDENCE PRINCIPLE

9A.1 UNIAXIAL STRESS
@) Case of a 3-Element Kelvin Model

Consider the simple system shown in Fig. 9A.1 for a spring and a Kelvin unit in

series under the action of a uniaxial stress . The spring represents the instantaneous

elastic strain component (€,) of the system under o, and the Kelvin unit represents the

time dependent componen’ of strain (¢,). At any time, the total strain of the system is

€ = ec + G‘ (9A-l)
The stress-strain relationship for the elastic component is

o = Ee (%9A.2)

and for the time-dependent component is
o = Ee, +ng, (9A.3)
where E is the elastic modulus

E, is the modulus of the spring in the Kelvin unit

n is the viscosity of the dashpot in the Kelvin unit

The dot represents derivative with respect to time.




The Lapiace transform of any function of time, f(t), is defined as

O = fs) = [fWe"ds
0

where the bar is an indication that the function has been iransformed and it is a function

of the variable s instead of time ¢ .
The application of Laplace transform on both sides of Eqs. 9A.2 and 9A.3
respectively yields
o = Ee %A .49)
and
o = (E, + n3)E, (9A.5)
Multiplying Eq. 9A.4 by (E, + ns) and Eq. 9A.5 by E and adding, the following
equation which relates the transformed applied stress o to the transformed total strain€
is obtained:
(E+E,+ns)o = E(E, +ns)e (9A.6)
where € = €, +€,
Transforming back Eq. 9A.6 to the time space yields the following equation:

(E+E)o +n6 = EEe+Ené 9A.7)

which can be written in the following form:
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P,0 +p,& = q,€+q,¢€ (9A.8)
where
=1 = 9A.9
P, P, E+E ( )
q - L& g, = =1 (9A.10)
° E+E, E+E,

Equation 9A.8 is the differential form of the constitutive relationship of the 3-element
Kelvin model shown in Fig. 9A.1. This model is used to idealize the time-dependent

deformation of the concrete lining of the circular tunnel analyzed in Chapter 10.

(ii) Case of a 7-Element Kelvin Model

Consider the system shown in Fig. 9A.2 for a spring and three Kelvin units (7-
element Kelvin model) connected in series under the action of a uniaxial stress o. The
stress-strain relationship for the spring (elastic component) is

o = Ee 9A.11)
and the stress-strain relationships for the three Kelvin units respectively are

o = E e, + M€, (9A.12)
o = E e, +n,€, (9A.13)
(9A.14)

0 = Eze;tnyéy

where E, = modulus of the spring in the krh Kelvin unit
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€4 = component of strain of the time-dependent phase resulting from the
kth Kelvin unit
| = viscosity of the dashpot in the kA Kelvin unit

The application of Laplace transform on both sides of Eqs. 9A.11 to 9A.14 respectively

yields
3 - Et, (9A.15)
o = E, €, +n,€,s = (E, +1,5€, (9A.16)
o = E €, +n,€,5 = (E, +n,9)€, 9A.17)
6 = E €5+ M,€,5 = (Ey +1,9)€, (9A.18)

Multiplying Eq. 9A.15 by (E,+n,S)(E,+n,9)(E,;+n,s), Eq. 9A.16 by
E(E,+n,S)(E;+n;s), Eq. 9A.17 by E(E,+n,s)(E;+v,s), and Eq. 9A.8 by
E(E, +n,s)(E,+n,s) and after adding and arrangement, the following equation which
relates the transformed applied stress 6 to the transformed total strain € is obtained:

L=R (9A.19)

where
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L= (EE;E,+EE,\E,+EEE )0 + (E,Eqny + E E m,
+E Egn, +EE 0, +EE v, + EE ny + EEn, + EE n,

i (9A.20)
+EE m ) so +(E n,n, + Eynyny + Egnyn, + Enymy
+Enn, + Enyny) s’ «(n;n,ny)s’c
and
R = EE,E,E, € +(EE, E,n, + EE E,n, + EEE n )s¢ OA2D)

+(EE, n;n, +EE,n n; + EEu'la'\z)Szz + (En,q,n,)s’?

Transforming back Eq. 9A.19 to the time space yields the following differential form of
the constitutive relationship of the 7-element Kelvin model (a spring and three Kelvin

units connected in series) shown in Fig. 9A.2:
P,0 +P,6 +p,6 +p,G = q € +q,€ +q,E +q,E (9A.22)
where

(9A.23)

[}
—

P,

P, = (E Egn, + E, Eyn, + EgEyn, + EEpn, + EEym,
+EE n;+EE m « EE;n, + EE,n)) (9A.24)
| (E E Es +EEE, + EEE, + EE,E,,)

) Enyny +Epnyny + Egnyny ~Engny « Enyn,y + Eqm, (9A.25)
E E,E,+EE,E,+EE,E, + EE,E,

p. - 11027 (9A.26)
g E,E,E;+EE,E, + EE,E,+EE E,




g, - E Ell EIIERJ (9A.27)
E E,Es + EE\E, +EE,E, + EEE,

o = —EEuEany - EE,Eyn, + EE,Eyn, (9A.28)
' E E4Ey+EE,E,+EE,E,+EE,E,

“- EE,n,ny + EE,nn, + EEyn 0, (9A.29)
E:IEQEB + EE,ZE‘J + EE”E,’ + EE:IEtZ

2 - En,n,n, (9A.30)

E,E Es+EE,E,+EE,E,+EE,E,
This model is used to idealize the time-dependent deformation of the rock material in the

design of the circular tunnels analyzed in Chapters 9 and 10.

(iii)) Case of a General Multi-Element Kelvin Model

In general, the differential form of the constitutive relationships for a multi-

element Kelvin model can be written as
C+P,G+p,G+...=qe+qé+qé+.. (9A.31)
Eq. 9A.31 is commonly written in the following more compact form:

Po = Qe (9A.32)

where P and Q are linear differential operators with respect to time:
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d o & r
P = pﬂ "pla *p2~5t—5 "'p’; L S + p.; (9A033)
P = Ep,‘—ai (9A.39)
k=0 ot
- d & 4 4
Q- q,* 41,3; *42;; + q,-&-; o + q.;: (9A.35)
Q- Ep,i (9A.36)
k=0 otk

For a model of a spring and r Kelvin units, m = n = r. For example, the model
in Fig. 9A.1 consists of a spring and one Kelvin unit, therefore, m - a= 1, and only
P, P\, 4,, and g, appear (refer to Eqs. 9A.8 and 9A.32 to 9A .36).

As another example, the model in Fig. 9A.2 consists of a spring and three Kelvin
units, therefore, m = n = 3 andonly p,, p,, P;, P;. 9, 4,. 9, and g, appear (refer

to Eqs. 9A.22 and 9A.32 to 9A.36).
Taking Laplace transform for Eq. 9A.32 for zero initial conditions, the following

algebraic relationship between the Laplace transforms o(s) and €(s) of stress and strain

is obtained:

P(s)3(s) = Q(HE(s) (9A.37)

where
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P(s) = p, +P,s +pys* +

..... = L p,s (9A.38)
k=0
Qs) =g, +95+qys2+ ... = L q,s* (9A.39)
k=0

s is the transform variable.

Equation 9A .37 represents the constitutive relationship for multi-element Kelvin
model in the Laplace space.

9A.2 MULTIAXIAL STRESS STATE

The differential form of the constitutive equation for linear viscoelastic material
under uniaxial stress (Eq. 9A.32) can be generalized to the case of linear viscoelastic
material under multiaxial stress-multiaxial strain states. Consider the stress tensoro

which can be writien in the following matrix form:

i1 952 O O, 0y O
- - 9A.40
0, = |9y Oy Oyl =0, o o, ( )
Oy O3 Oy o, 0. O

= Iy 4

with shear stresses 0,0, G,=0,, and o_=o0

ye = Opi OF simply o,=0, . Itis
convenient 1n multiaxial stress states to separate the stress tensor o, into two

components: the hydrostatic (dilatational), 6,8, ., and the deviatoric (distortional), S,

components:
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o,=03,+S, (9A.41)

o, o, on' s, 0 O S, S‘y Sle

o. o ol =10 ov0+Sn S, S, (9A.42)
C_ O_ © OOOVSzSnSz

where o, = the average normal stress
o, *+0, +0,
3
5, = Kronecker delta
= ] when i=j
= 0 when i*j
ol = OV + sl
o, = 0,+§,
o, = 0,+§,
§,+5,+5, =0
Similarly, the strain tensor € can be separated into hydrostatic, €8 , and
deviatoric, e, ., components:
€, =€b +e, (9A.43)




€ €, €, €, 0 0| je ¢, ¢,
(9A.44)

€, € €,I[=10 € Ol+le, e e

€, €, € 0 0 €| [e, ¢, ¢

where €, the average normal strain

Ex*€y+€z

3

e ,ve +e, = 0
Analogous to Eq. 9A.32, the constitutive equations for isotropic linear viscoelastic
materials under multiaxial stress states can take the following forms:

for deviatoric component

PS;,=0Qe; (9A.45)

and for hydrostatic component

PPo, =Q€, (9A.46)

where P, ¥, P’, and Q" are differential operators in time and defined as

P =p/ +pl’-§z +p2‘—a—z- + (9A.47)
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’ ’ ' d ' az

Q =q°+q‘5;+q2¥+n_, (9A.48)
' " " d " 62 S

P = p, + p] 5 + p2 ;; + (9A.49l
. _ " w0 " az

Q = qo + ql 5 + q2 5’—2 + (9A.50)

9A.3 CORRESPONDENCE PRINCIPLE

For elastic hodies under constant load, nothing depends on time and the

constitutive relationships take the following form:
o, = 3Ke, (9A.51)

S; = 2Ge, (9A.52)

For viscoelastic bodies, all the stresses, strains and displacements are time

dependent and the constitutive relationships are given by Eqs. 9A.45 and 9A .46

PS,=Qe, (9A.53)

Po, - Q¢ (9A.54)

where P, Q, P’, and Q" are time differential operators.

The Laplace transforms of Eqs. 9A.53 and 9A.54 respectively yield




P(s)Ss) = Q) es) (9A.55)
P()3,(5) = T®EW) (9A.56)
where P (s), @ (), P’(s), and Q' (s) are now polynomialsin (s)and o, €, §ii’ and?v.

are transforms of o, €, S,, and e; respectively. Comparison of Eqs. 9A.55 and

JA.56 to Egs. 9A.51 and 9A.52 shows that Eqs. 9A.55 and 9A.56 describe constitutive

relationships for fictitious elastic body in which the elastic parameters (—o:—(ﬂ and
P(s)

G

<), the stresses (o, and §y) and the strains (€, and E'v.) are functions of the
P*(s)

transform parameter s. For this fictitious elastic body, the correspondence relationships

are
26-< 3k-< 9A.57)
P P
Since, E = ;;f:’;; and v = -—3(%(% the correspondence relationships for E andv
respectively are
E- 900 (9A.58)
2PQ'+P'Q

and
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rg-FQ OA.59
2PQ +P'Q

Therefore. if an elastic solution exists for a particular problem, the associated problem

v -

in linear viscoelasticity may be solved by using the principle of corr=spondence derived
above. The procedure is as follows:
(a) replace the displacements and stresses by their Laplace transforms.

(o) replace the actual loads by their Laplace transforms.
(c) replace K, G, E and v in the elastic solution by the transformed operators given in

Eqs. 9A.57 through 9A.59.

(d) inversion of the Laplace transforms will give the final viscoelastic solution.




o o

————>
(Applied (Applied
Stress) 1 | Stress)
Elastic Time-Dependent
Component Component

€ &

Figure 9A.1 3-Element Kelvin model (a spring and a Kelvin unit connected in series)
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APPENDIX 10A

EVALUATION OF THE RADIAL DEFORMATION
OF ROCK AND LINING DUE TO REACTIVE LINING PRESSURE

USING THE HEREDITARY INTEGRAL

The time function J(t) derived in Chapter 9 and which relates the viscoelastic
displacement to the elastic displacement is suitable for use when the applied pressure is

maintained unchanged. If at time ¢ =0, the matenial is subjected to a sudden pressure
and at time ¢=t, an increment of pressure is added, the displacement at time 7>, can
be obtained by the law of linear superposition:

u®) = v, J@O + du, . J2-1) Jor ¢, (10A.1)

If the applied pressure is a continuous function of time, the hereditary integral, which
takes into account the history of the applied pressure up to the time of interest, should

be adopted (Fliigge 1975).

The expression derived for the time-dependent lining pressure P{r) under the
release of the initial hydrostatic stress component (Chapter 10) is

P(t')y = P, (1-¢7*%) (10A.2)

The lining pressure p{t’) as expressed in Eq. 10A.2 is 2 monotonically increasing

function of time. Therefore, the radial displacement in the rock mass and the lining can
be obtained using the hereditary integral as follows.

Referring to Fig. 10A.1, the lining pressure diagram is broken into a sequence
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of infinitesimal step functions. In the time step between ¢, to ¢, the pressure increment
is (written in ¢ domain)
dP(t,) . A(t-1) (10A.3)

where

the unit step function

At-1)

=1 for t21

0 for 1<p

The pressure increment can also be written in ¢ domain instead of ¢ domain:
dP(tr).A@'-t,) (10A.9)

where ¢’'=t-t, and ¢, is the time of installation of the lining. Any infinitesimal step

function of lining pressure (Eq. 10A.4) can be expressed by the following form:

dpft')

a4 AEE) (10A.5)

In the following sections, the radial displacement of the rock due to the time-dependent
lining pressure is derived, followed by the derivation for the radial displacement for the

liner.

(a) Radial Displacement of the Rock

According to Eq. 10.6, the radial deformation of the rock at the interface due to
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dP(r')
de’,

dt’, . A(t'-t’)) increment of lining pressure is

dP(t’ 1+
Bup(Ry, ) = ——i(,—ﬂdr..A(z'-r'.)]f-l"—'f’-J,,a-:,) (10A.6)
de', E,
or
(1+v R2
Aupy(R, t') = ———dt' A@-t) E ———=Jr'-r') (10A.7)
R

The total deformation of the rock from time of installation of lining (2,) to the arbitrary
time (¢) or (¢') may be obtained by integrating Eq. 10A.7 from ¢, to ¢ or form O to

t'. Therefore,

n . (1+v IR, "dP,(t',) ) '
Ry 1) = —5- { ar IR (10A.8)
After arrangement,
Upu(Ry, 1) = l+Vg)Rz fdP‘( D J -1 dr, (10A.9)

The integral in Fq. 10A.9 is called a hereditary integral (Fliigge 1975) and it may be

evaluated through integration by parts as follows. First let

f

J‘“ -’ ) dr | (10A.10)

[

Through integration by parts, [ can be expressed as




.S dJ (¢'-t
I =|Je-v)P)f - fl’,(t',)—-—'%t,—'-)-dt'l (10A.11)
0 1

Knowing that d(¢'-t’,) = -dt’,, Eq. 10A.11 can take the following form:

. dJ(¢-t')
I = |-t Pa) + {P’('")'ZE‘:S'T',)L”‘ (10A.12)

Since
Te-e) = 1 v op(t-e™T) ¢ @pfl-e ) o gpf1-e ) (10AL3)

the differentiation of J(¢'~t’,) with respect to (¢’-t',) is

______d','(t ) = Qphpe Ay Op? st Bl N GpsA st “Apl-ty) (10A.14)
d@e’'-t',)
o dJ('-1') _
Substituting for P(¢’,) (Eq. 10A.2) and W (Eq. 10A.14) into Eq. 10A.12, the
3
integral I can be expressed as
=1 +1 (10A.15)
where
I = [Ie-t)PLE ) (10A.16a)

= ”l + @ (1-e ) L g (1-¢720) 4 d,l1-¢ "‘n(""'l))] '
P _(1-¢* {)

(10A.16b)
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=P,_(1-e*) {10A.16¢)
and
[4
, = [PA oy LD (10A.17)
A {6 d(-t,) i
f Al -F
= P"f(l - -.rl) [¢”A”e B A + ¢mlne-lﬂ“'fl) + ¢”ARJ‘ "Ryl ')]dl’l
1]
6
=Z 1
i=3
[4
I3 = me[¢ulme'lu(f'f|) +¢nlne “Aglr-£)) +¢”lue4“’“'r‘)]df| (10A.18a)
0
= P [0n(l-e ) + dplt-e ) + 4y l1-e )] (10.18b)
I, - f Oprge o e gy (10A.19)
-Aast’
_ -qu¢ll;*me ot (l—e -(¢-l.,)r') (10A.19b)

r
Iy = P, [bprpe "™ e 0 dr, (10A.20a)



—Aﬂ"
. Pabmret T () e (10A.20b)
@ -4,
[ 4
Iy = P, [bgrge ™ e N ar, (10A.21a)
0
-Opt’
- Pobrrut () terev) (10A.21b)
a-2,,

Substituting the values of the integrals (Eqs. 10A.16 through 10A.21) into Eq. 10A.15,

the radial displacement of the rock at the interface due to the reactive lining pressure in

the time interval of ¢, to ¢’ is

1+
Upy(R,, ) = (—%2-&1’0_ R,() (10A.22)
R
where

Ry - (1-e-)- w1 ey Omree T nor)
g “ Ay @Ay, (10A.23)

¢ A -{a- t -, 0 - ' Aot

C2WRE (1o ) 4 e ) ¢ ol -e ) « g1 -e o)

a-2,,

At infinity, Ry(«) =1 +&p, +$p, + Op,

(b) Radial Displacement of the Lining

Since the reactive lining pressure at the interface is a monotonically increasing

function of time (Eq. 10A.2, and Figure 10A.1), the radial displacement of the liner will
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b> obtained using the hereditary integral as used for the determination of rock

displacement in (a) above. The radial deformation of the lining at the interface due to

dP(t’')
dr’,

dr', . A(t’-t’,) increment of lining pressure is

dPft’ C,(1+
Aup(Ry, 1) = [ n ')dt'..A(r'—t',)] —’—(-——"—’-)5’-1,(:-:1) (10A.24)
dr’, E,
or
dP( C.(1+
Auy(R), t') = I d’:('t ')dt'1 . A(t'—t'l)] _2_5_5‘_'_:1&1’(,. ') (10A.29)
1 1 4

The total deformation of the lining from time of installation of lining (¢,) to the arbitrary
time (¢) or (¢') may be obtained by integrating Eq. 10A.25 from ¢, to ¢ or form 0 to

t’. Therefore,

G,(1 dpP
uy (R, 1') = ( +v:)R1[ Kl N dr', J(r'-1') (10A.26)
After arrangement,

JLr-¢ ) dr, (10A.27)

1) = S0 f”’( »

Now let
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"
apge)y
i -{ ar Je' 1) dr',

Through integration by parts, Il can be expressed as

I = |-t )Pl - fp,( P ’( )d'

Knowing that d(t'-t’,) = -dt’,, Eq. 10A.29 can take the following form:

dJ( -t
l( l)dtl
d@-r))

= \|J@e-r)Pfe) |'0 + f Pyr')
]
Since
) = 1+ gf1-e™C")

the differentiation of J{t'~t’)) with respect to (¢'-t")) is

die-r'y)
d(e'-r'))

-, (-
e (-1

= ¢,

(10A.28)

(10A.29)

(10A.30)

(10A.3D)

(10A.32)

djg’ -t
Substituting for P{r’,) (Eq. 10A.2) and —-é-———z (Eq. 10A.31) into Eq. 10A.30, the

d@’-t')

integral /I can be expressed as

=1, + I,

(10A.33)
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0, = |Jfe-e )P

= [t + #f1-e ) |.P1-e ""*)[)'

=P (1-e*") (10A.39)
and
dJfe-r')
=[P (10A.35)
f,(o Gy

.
= P, [(1-e") g, eV ar,
0
=L+ 1,
.
113 = Po.. jf¢llle —*I(‘ e 4 ‘) d"l
0

o, (1-e ‘1:") (10A.36)

.
I, = -2, [ore? e ar,
0

A
i} -P_ dAe (l_e-(.-wt’) (10A.37)
o-A,

Substituting the values of the integrals (Eqs. 10A.34 through 10A.37) into Eq. 10A.27,

the radial displacement of the lining at the interface due to the reactive lining pressure
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in the time interval of ¢, to ¢’ is

C,(1+
up(Ry, 1) = -’-(-—Eﬁ)flpa_ L") (10A.38)
i

where
, —at’ d’,C d -(e-2p¢ - 10A.39
L) = (1) - ———(1-e ™) v g (1) (10A.39)

M

At infinity, L(») =1+¢,




R(t) d[P (1))

—
o
ou——=
b
gl
d

+ -
Q.
gl
-
=

Figure 10A.1 Time-dependent lining pressure and the derivation of the hereditary
integral
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