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Abstract

Propensities, Chance, Causation, and
Contrastive Explanation

A pragmatic account of scientific understanding is used both to
examine and to unify fundamental questions concerning the propensity
interpretation of probability and theories of chance, causation, and
explanation. One of the most important problems to be addressed is the
problem of defining homogeneous reference classes in theories of chance,
causation, and explanation. The consistency of the propensity interpretation
is defended against traditiopal criticisms such as *‘Humphreys’s paradox.” Itis
demonstrated that the application of this interpretation to theories of chance
and probabilistic causation provides insights into problems common to both
theories. Various approaches to causation are examined, including those
based on identifying sufficient causal factors, necessary causal factors, and
contrastive causes. These insights are applied to quantum mechanics and are
presented in terms of a set of controlled experiments. The study of quantum
mechanics focuses on the paradox of the two slit experiment and quantum
logical and quantum probabilistic attempts to resolve this paradox. Finally, the
analysis of chance and causation provides the basis for a version of the
contrastive theory of explanation. This theory of explanation provides a
unique understanding of the nature of explanation, and lessens the impact of

the problems of homogeneity and of explanatory ambiguity.
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Introduction

The topics and issues discussed in this dissertation revolve around the
problem of defining the ‘‘broadest homogencous reference class,’” referred to
hereafter as the problem of homogeneity. I was first introduced to this problem
as it arises in theories of scientific explanation, and I will begin by detining
the problem as it is commonly presented in those theorics. One major
presupposition in theories of expl- .ation is that events are explained in terms
of, or relative to, a reference class. Furthermore, most theories of explanation
require that two conditions are placed on the definition of the reference class.
First, the reference class must be homogeneous; that is, the reference class
must be partitioned into only those events that are statistically or cansally
relevant. Second, the reference class must be as broad as possible; that is, the
reference class must contain as many events as possible. Typically, there is no
problem in meeting each of these conditions individually. However, a
tension is created when these two conditions are imposed together: imposing
the condition of homogeneity has a tendency to narrow the reference class,
and imposing the condition of broadness has a tendency to create
inhomogeneity. In general terms, the problem of homogeneity is the problem
of defining a reference class that is at once homogeneous and as broad as

possible. The overal' aim of this dissertation is to demonstrate the manner in




which this problem arises in the areas of explanation, causation, and chance.

From the time that I was introduced to the pioblem of homogeneity, I
have been insistent that this problem was not a problem that had to be solved,
or could be solved, by any account of scientific explanation. I was convinced
that thcories of explanation may have to find a way to iive with, or avoid, the
prablem of homogeneity, but finding the solution to the problem of
homogeneity was a task for accounts of causation. I have now come to the
conclusion, however, that many approaches to causation are in a situation that
is similar to that of accounts of explanation: the best they can do is avoid the
problem of homogeneity--they have no hope of solving it. The reason that
many accounts of causation cannot hope to solve the problem of homogeneity
is that this problem is produced by the notion of chance, and any account of
causation that presupposes chance-based criteria for causation, or employs
**chance-like thinking,”” is doomed to inherit the problem of homogeneity. If
this dissertation could be presented from the last chapter to the first chapter, it
would tell the story of my search for the roots of the problem of defining the
broadest homogeneous reference class. The aim of this dissertation is to
demonstrate the usefulness of the propensity interpretation of probability in
understanding and solving many of the traditional problems in the
interpretations of chance, causation, and explanation that are associated with
the problem of homogeneity.

The core of this disscrtation is the propensity interpretation of the

probability calculus. The reason for utilizing the propensity interpretation is to

provide a formal connection between a probability distribution and the




experimental setup or system responsible for the events over which a
probability function is defined. Consequently, the propensity interpretation
replaces the classical two-place probability function (defined over the unit
interval and an event space) with a three-place relation (defined over the unit
interval, an event space, and a system): the propensity function assigns values
in the unit interval to the members of a Boolean o-algebra for a system.
Alternatively, propensities provide a formal representation of an experiment
by providing the relationship between the experimental setup, the possible
results produced by that setup, and the probabilities that the setup will produce
the particular results.

Many propensity interpretations are deeply metaphysical, especially the
theories of Karl Popper (1957, 1959a, and 1959b) and Ronald Giere (1973 and
1979). This dissertation has no metaphysical motivation for accepting the
propensity interpretation; as outlined above, the reasons for accepting a
propensity interpretation are largely formal. Consequently, the account of
‘‘propensities’’ given here attempts to remain neutral with respect to the
metaphysical status of propensities. Propensities may be real, or they may not;
they may correspond to physical dispositions, or they may not.

In fact, the propensity interpretation given here is compatible with both
subjectivist and frequentist interpretations of probability in the following
manner. As it is presented here, the distinguishing feature of the propensity
interpretation is that it represents the probability function as a three-place
relation rather than a two-place relation. However, the method for determining

propensity values may be subjective or objective, and the interpretation of “‘a



propensity’’ may be subjective or objective. There are, of course, many
frequentist versions of the propensivy interpretation of probability, most
notably Ian Hacking 1965, David Miller 1991, and Popper 1957, 1959a, and
1959b.

Also, there are many discussions of the connections between traditional
frequentist interpretations of probability, such as Hans Reichenbach 1949 and
Richard von Mises 1964, and the propensity interpretation; examples include
James Fetzer 1974c, Ian Hacking 1973, Ronald Giere 1973. Popper himself is a
frequentist turned propensity theorist. Many subjectivist interpretations can
also be interpreted as providing a propensity interpretation of probability.
Notable examples of subjectivist interpretations that employ propensity-like
reasoning include L. J. Good 1983; David Lewis 1980; and Brian Skyrms 1980,
1984, and 1988.

Some authors, specifically Paul Humphreys (1985), Peter Milne (1986
and 1987), and Wesley Salmon (1979, 1984, 1988 and 1989), have argued that
the propensity interpretation is inconsistent with the classical axioms and
theorems of the probability calculus. Specifically, it is argued that the
“‘dispositional’” nature of propensities, created by the asymmetrical relationship
between the system and its events, is inconsistent with the inversion
theorems of the probability calculus. Chapters 1 and 2 provide a general
semantics for the propensity interpretation and defend the foundations of the
propensity interpretation against the attack of these authors. In chapter 2. it is
argued that there is neither motivation nor justification for the robust causal

interpretation of conditional propensities that is presupposed by these authors.




This analysis demonstrates, among other things, that individual propensity
functions provide only statements of stochastic independence, and that causal
independence can be determined only by comparing results of different
propensity functions.

The propensity interpretation also provides the basis for an examination
and an interpretation of chance. Chance and conditional chance are both
represented as selection functions on a family of propensity functions. The
most important consequences of this representation of chance is that it
demonstrates that, on the one hand, chance-like thinking plays a large part in
our understanding of experimentation, while on the other hand, the problem
of homogeneity originates in chance-like thinking. Specifically, the
idealized nature of chance provides the basis for ct.r understanding of ideal
and generalized experiments, and this understanding is essential to scientific
and experimental method. But the idealized nature of chance also calls into
question the p..ysical meaning of statements concerning chance because
chance is often defined over inhomogeneous situations.

This account of chance and experimentation provides the basis for an
investigation into the relations between two distinct approaches to
probabilistic causation. One approach, the sufficiency approach, bases its
analysis of causation on the identification of sufficient positive causal factors.
The other approach, the necessity approach, bases its analysis of causation on
the identification of necessary positive causal factors. It is demonstrated that, in
both approaches, the central criterion for identifying these causal factors makes

an appeal to chance. Hans Reichenbach’s ([1956] 1991) frequentist aitempt to




define causal relevance in terms of statistical independence and his

‘‘screening off’’ condition is presented as an example of the sufficiency
approach to causation. Also, I. J. Good’s (1983) development of a ‘‘causal
calculus’’ in terms of a subjectivist’s formulation of the weight of evidence is
presented an example of the necessity approach to causation.

One result of this investigation into these two approaches to causation is
the determination that the appeal to chance that is made by both approaches to
causation causes these them to “‘inherit’’ the problem of homogeneity.
Consequently, hoth Reichenbach’s and Good’s theories inherit the problem of
homogeneity. Furthermore, the study of causation in terms of ideal
experiments produces questions concerning the physical meaning of the
results. To avoid the problem of homogeneity, accounts of causation must
avoid appeals to ‘“‘chance,’’ and to the idealized results of chance-like
thinking. Two strategies for avoiding the problem of homogeneity are
introduced. One method of avoiding these kinds of appeals is to conduct
controlled experiments. Chapter 3 provides an analysis of the two slit
experiment (performed with bullets, water waves, and electrons) in terms of a
group of controlled experiments. The empirical results of these experiments
are represented in terms of tw principles: the principle of strict summation,
which provides a statement of the relationship between three different
experiments; and the principle of strict composition, which provides a
statement of the relations between the components of one (more complex)
experiment.

There are two conclusions drawn from the analysis of the two slit




experiments. First, as a general methodological point, it is demonstrated that
the analysis of causation should proceed in terms of relations between
propensity functions for the same event but different experiments, rather than
in terms of relations between conditional propensities for different
conditioning events and the same experiment. The second point is
concerned with the interpretation of quantum mechanics and the two slit
experiments performed with electrons. It is demonstrated that the *‘paradox’” of
the two slit experiment results from the assumption that there is a single
consolidated causal explanation of the manner in which the principle of strict
summation is violated and the principle of strict composition holds.
Consequently, the paradox of the two slit experiment is not based on
exclusively formal considerations. Finally, it is argued that strictly formal
attempts to solve the paradox, such as the quantum logical arguments of Hilary
Putnam (1979) and the quantum probabilistic arguments of Luigi Accardi
(1984) fail to solve the paradox. Given this analysis of the two slit experiment,
a brief characterization of current interpretations of quantum mechanics is
provided.

Finally, the analysis of propensities, chance, causation, and
experimentation are applied to the domain of scientific explanation. In
particular, contrastive explanation, a theory of explanation based on answering
cortrastive why-questions of the form ‘‘why P rather than Q,”’ is examined. In
the first step of this examination, an account of contrastive explanation is
developed in terms of Peter Lipton’s (1991a and 1991b) notion of a

‘‘corresponding cause’’ and a principle based on John Stuart Mill’s (19(4)



“difference condition.”” This acccunt expands upon Lipton’s account by
providing a detailed account of the role of the foil (Q above) in contrastive
explanation. This is accomplished by providing an undersianding of the
“‘rather than’’ relation in contrastive explanation. It is argued that this ‘‘rather
than’’ relation confers an important advantage on the contrastive approach to
explanation. Specifically, it is argued that contrastive explanation is better
equipped to avoid the problem of homogeneity and that non-contrastive
explanation, much like chance and causation, will encounter the problem of
homogeneity.

In conclusion, the development of the theories of chance, causation,
and contrastive explanation in terms of the propensity interpretation enables
one to identify the sources of the traditional problem of homogeneity.
Ultimately the source of this problem is the consideration of ideal
circumstances because these circumstances typically include inhomogeneous
causal factors. By considering specific situations--situations characterized by
homogeneous causal factors--the problem of homogeneity can be avoided.
This realization is not new. But the propensity interpretation provides a
unique method for identifying the source of this problem in all three areas, as

well as a method for avoiding this problem in all three areas.



1

Propensities and Chance

1.1 Introduction

The aim of this chapter is to provide an outline of both the propensity
interpretation of the probability calculus and the propensity interpretation’s
relation to chance. The primary feature of the propensity interpretation is that it
presupposes and reinforces a distinction between *‘systems’” and *‘events.”
The basis for this distinction is t' e asymmetrical relationship between
experimental setups and ti.: results of experiments. Furthermore, this
distinction provides the basis for developing the notion of chance in terms of
chance in a situatior:. This chapter initiates a program to emphasize the
temporal asymmetry involved in the propensity interpretation, and to
deemphasize, or remove, the traditional emphasis on causal or “‘dispositional”’
asymmetry.

The first stage in developing the propensity interpretation consists in
examining the detii.tion of, and relationships between, *‘systems’’ and
““events.”” This is accomplished by providing a detailed analysis of the two slit
experiment, performed with electrons. In this analysis, systems are depicted as
representations of experimental setups, described in terms of those factors or
variables that are statistically relevant to the production of certain outcomes. [t

is the notion of ‘‘production’’--rather than some stronger notion of causal




dependence--that is considered to be central in characterizing the
dispositional, or ‘‘forward looking,’’ nature of propensities. Ultimately, the
propensity function is demonstrated to be a useful tocl in representing the
relationships between experimental setups and their outcomes. For the sake
of these discussions, the concept of a ‘“version’’ of an experiment is
introduced informally here; it is formally developed later. The analysis of
experiments, as well as the relationship between propensity functions and the
notion of statistical relevance, is discussed and developed throughout this
chapter and the rest of the dissertation.

The second stage in developing the propensity interpretation of
probability involves a continuation of the discussion of the two slit
experiment, but is primarily concerned with the notion of chance. It
becomes obvious that the propensity interpretation is particularly well suited to
the formalization of intuitions about chance and conditional chance. To
begin, an account of chance in a particular situation is presented. Then the
account of chance in a situation is extended to provide a~ account of chance
in set of situations, where that set of situations is described by a partition.
Finally, the extended account of chance in a situation is further extended to
produce a description of chance (itself) as a selection function on a partition of
situations that is described by the statistically relevant systems, causal factors, or
variables. This development of chance provides insights into the activity of
cxperimentation, and supplies the basis for a formal definitiun of a version of
an experiment (as introduced in the first stage). Also, a connection is

established between systems and causal histories of events. Ultimately, the
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analysis of chance, experimentation, and causal histories, enhances the
presentation of the semantics for the propensity interpretation itself.

The third stage extends the analysis of chance to consider conditional
chance. In the end, conditional chance is represented as a selection function
on conditional propensities. Through this analysis, it is demonstrated that
chance must be defined over (causally) inhomogeneous situaiions. As a result,
it is argued that, although the notion of chance is useful, the notion of chance
cannot be physically meaningful in all situations. Finally, it is maintained that
the notion of a single generalized two slit experiment should be understood as
the result of chance-like thinking and, although ideas of generalized
experiments are useful, they fail to be physically meaningful in some

situations.

1.2 Propensities and experimental setups

The aim of this section is to provide a semantics for the propensity
interpretation of probability. First, the notation that is adopted throughout the
dissertation, along with many of the conventions involved with the notation,
is introduced and discussed. Then a brief and formal consideration of the
semantics for the propensity interpretation is provided. However, most of the
semantics is revealed through an informal consideration of one version of the
two slit experiment.

Propensity statements are of the form ‘Pr(A:S) = p,” and are read as *‘the
propensity for a system S to produce an event A is p.”’ The symbols occurring

within the parentheses and before the colon denote propositions concerning



the occurrence of events. Frequently, reference is made to the events
themselves rather than to the propositions. Symbols occurring within the
parentheses, but after the colon denote propositions comprising a set of
background conditions that describes an experimental setup or system. Again,
reference is often made directly to the background conditions, experimental
setups, or systems. For clarity, the symbols ‘Pr’ denote propensity functions,
‘P’ denote probability functions, and ‘Ch’ denote chance functions.

A propensity function is a numerical measure defined over a Boolean
o-algebra # on a set of events 2, where each member of Q is a possible
outcome of some experimental setup or system. The propensity function is a
probability measure: Pr assigns a propensity value--a number in the unit
interval [0, 1]--to each member of & according to the axioms and theorems of
mathematical probability. Symbols such as p, q, and r are used to denote
propensity values. It is important to note that the propensity function takes
both members of the o-algebra & (defined on a set of possible outcomes Q)
and the system S as its domain: a propensity function is defined over a Boolean
o-algebra on a set of possible outcomes and for a system. The distinction
between, and definition of, the set of outcomes in €2 (and consequently
among members of the o-algebra #) and the system S depends primarily on a
consideration of the elements and properties of an experiment.

A system is, quite simply, the experimental setup as it is arranged prior to
the running of the experiment. A system can be represented as the statistically

relevant events that actually occur at some time before the experiment begins.

The notion of statistical relevance used here is discussed and developed

12




throughout this chapter. The set of possible outcomes of an experiment are
composed of measurable events that either occur or do not occur at some time
after the experiment begins. Alternatively, the occu.rence of the system-
events is intentionally brought about (or allowed) by the experimenter in
order to initiate the experimental process, whereas the occurrence of the
outcome-events is spontaneous, once the experiment is initiated. Given the
temporal nature of this distinction and the assumption that systems are
described only by relevant events, once the experiment is over, the

sequence of ‘‘relevant’’ events leading to the outcomes of the experiment are
given in large part by the event description of the system. The only relevant
events not given by the event description of the system are those events that
occur between the time that the experiment is started and the time that the
outcome occurs.

In order to better understand the analysis of experiments and
propensities in terms of systems and possible outcomes, consider the
application of the propensity interpretation of probability to a particular
experiment. The particular experiment is the two slit experiment, originally
proposed by Thomas Young in 1803. The experimental setup is described as
follows. A source of particles (or waves) is placed in front of two parallel
barriers. The first barrier, the diaphragm, contains two narrow slits that can be
opened and closed. The two slits are placed at equal distances from the origin
line O-L which runs perpendicular to the two barriers and through the source.
These slits are just wide enough for the emissions to pass through, and unless

the emissions negotiate the slits they are either absorbed or reflected by the

13



diaphragm. If the emissions do pass through the diaphragm they are absorbed

by the second barrier, the screen. For the sake of analyzing the results, those
emissions that are absorbed by the screen must be recorded (in some fashion)
as “*hits’’ on the screen.

A device that is capable of detecting the arrival of a source emission at
some designated region R is placed in front of the screen. The detector is
movable along the face of the screen. Thus, the position of the detector can
be expressed as a function of the distance x from the origin line. This system

is shown diagrammatically in figure 1.1.

i

R o

P J :é

/ i

Ve ” ol :

/S - < - v ;

: ~ : - a.’ O‘L
source N ~ 4 ;
\ 8
%
diaphragm screen

Figure 1.1. The basic two slit experiment.

The experiment is carried out in the following manner. At some time t,

the source is allowed to emit a particle (or a wave) in the direction of the
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diaphragm. Only those trials in which an emission reaches the screen are
counted as statistically relevant. Consequently, at some time ¢ later than G the
emission hits the screen and is recorded as either a hit by the detector in the
region R, or a hit on the screen. Given the system and the experimental
procedure described above, the event space consists of the events R and ~R,
where R = “‘the emission hit region R at some time t..”" Finally, propensity
values can be calculated from the number of hits in region R and the number
of total hits.

There are many factors that can affect the results of running an
experiment on the system described above. These factors include the
separation between the source and the diaphragm, the separation between the
slits, the size of the slits, the separation between the barriers, the area of region
R, the distance x between the region R and the origin line O-L, and the
symmetry of the emission pattern. The most important factors in the present
discussion are the type of emission (particle or wave) and the status of the slits
(both open, slit one open and slit two closed, or slit one closed and slit two
open).

In order to run the two slit experiment, the state of each of these factors
must be fixed, and in order to define a propensity for this experiment, the state
of each of these factors must be determined or described. Each of these factors
is evident before the start of the experiment and can be described as an
event. Examples of events are ‘‘slit one is Smm from the origin line at time t,”’

““slit one is 2mm wide at time t,”’ “*slit one is open at time t,”’ and *‘the source

emits electrons.”” Thus, the system S denotes a conjunctive event, wherein




each conjunct provides a description of the status of a factor that may influence
the results of the experiment. The events represcnting the system must occur
at some time t; before the start of the experiment at time 4. Consequently, the
system S itself (as an event) is said to ‘‘occur’’ at some time t; before the start of
the experiment.

Consider performing the two slit experiment with a source that emits
electrons. The source is an ‘“electron gun’’ that is capable of firing electrons of
approximately equal energy at the diaphragm. The diaphragm is simply a thin
metal plate with two narrow slits. The screen is some suitable electron
absorbing plate that is also capable of recording, or at Jeast detecting, the impact
of electrons. The screen could be an electron-sensitive film with a pre-
marked region R, or an array of geiger counters with one designated as the
detector for R. Thus, the experimenter can record the number of hits in
region R and the num_er of hits on the screen. Although this experiment is
incapable of being done in the idealized manner in which it is presented
here, the results can be discussed (as they should arise) based on results of
similar experiments with other particles. For example, a similar experiment
(performed with neutrons) is reported in A. J. Leggett 1986.

Suppose that all the variables discussed above are fixed in some
appropriate manner, except for the s:atus of the slits as open or closed. The
space of possible outcomes is expressed in terms of the event R = “‘the
electron hits region R’’; that is, Q = {R, ~R}. Considering the measuring system
described above, ‘‘the strength of the propensity for this system to produce

the event R’’ can be calculated by dividing the number of hits in region R by
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the total number of hits.

Informally, any number of experimental setups are considered to be
versions of one another if they have the same set of possible outcomes; that is,
if two systems are capable of producing the same measurable events, then
those two systems are considered to be versions of one another. A more
precise account of a ‘‘version’” of an experiment is given below. There are, of
course, many versions of the two slit experiment, and several versions are
discussed throughout this chapter and chapter 3. Consider the three non-
trivial versions of the experiment that can be performed with a source that
emits electrons. In the first version, called system E,, the experiment is run
with slit one open and slit two closed. In the second version, called system E,,
only slit two is open, and in the third version, called system Ej3, both slits are
open. The version in which both slits are closed is not considered here.

A complete description of the systems E, E,, and E4 would include a
consideration of the events concerned with the status of each of the factors
that influence the results of the experiment. If these three systems are exactly
the same with respect to those factors other than the status of the slits, then, at
some time t; (before the experiments are to start), the only difference between
the three systems is the occurrence or nonoccurrence of the events O and
0,, where O = “‘slit one is open at time t;”” and O, = “‘slit two is open at t,.”’
Ideally, then, for some residual event X (a conjunction of all the events
representing the fixed variables), E; = X&0,&~0,, E; = X&~0,&0,, and
E; = X&0,&0,.

Also, if experiments are carried out on all three systems at some time g
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later than t;, then (pairwise) each system may or may not produce the same
outcomes at some later time t,. But, the set of possible outcomes is the same for
all three systems: for all three systems, Q = {R, ~R}. For any pair of systems, if
Pr(R:E;) = Pr(R:Ej), where i, j € {1, 2, 3}, then the difference between the
those two systems is statistically significant. In other words, systems E; and E;
are statistically different ‘‘versions’’ of the two slit experiment. Because it is
assumed that the only difference between the systems is the occurrence of the
events O, and O,, these events are considered to be statistically relevant to the
system (or to the description of the system).

Thus, the statistically relevant features of an experiment are described
and determined by the relations of three elements: the system, represented as a
set of events actually occurring at some time t;; the start of the experiment,
occurring at some time t; later than t;; and the possible outcomes of the
experiment, namely those events that occur at some time t; later than 4 (if at
all). Recall that a propensity function is defined over a o-algebra defined on a
set of outcomes £2 and for a system S. Furthermore, the members of €2 are
considered as measurable events that are capable of being produced by the
system S. Given these points, by defining a propensity function at the time
that the experiment starts t, the propensity function provides a *‘dispositional’’
relationship between the system and the outcomes. According to one
description of the account of the propensity interpretation, the semantics
provides an analysis of experiments in terms of a system S, a “‘start’’ at some time
t;, and a set of possible outcomes €2, such that the propensity function (defined

at some time t;, for some system S, and on some set of outcomes ) provides a
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‘‘synthesis’’ of that experiment.

A complete notation is given as ‘Pr[j(Alk:Sli)’ and is read as *‘the
propensity (at time t;) for the system Sy; to produce the event A,;.,’” where t; is
earlier than t; which is earlier than t;. Unless the temporal properties of events
are at issue, temporal indices are often suppressed. The dispositional nature of
propensities reflects the fact that propensity values are **forward looking’* and
asymmetrical. In so far as the propensity function is defined for a system (and
that system must actually occur by or at some time t;) and is defined over a
cralgebra (and the events in that o-algebra must occur at some time after t.), the
propensity function represents a relationship that can be described as **forward
looking.”” The primary aim in describing this ‘‘forward lookingness®" as
dispositional is to stress the asymmetry involved in the relationship between
the system and the members of the o-algebra. Chapters 2 and 3 provide a
further demonstration that one must be cautious in extending the dispositional

nature of propensities to include or describe more robust causal relations.

1.3 Propensities and chance

One of the most important merits of the propensity interpretation of
probability is the ease with which it provides an interpretation of chance.
This section continues, and expands upon, the discussion of the two slit
experiment in order to provide an outline of chance in terms of the propensity
interpretation of probability. The analysis begins with a consideration of
chance in a situation and extends this treatment to consider chance itself.

Ultimately, it is demonstrated that chance can be represented as a selection




function on a partition of statistically relevant systems, factors, or variables.
Finally, this section provides a formal definition of a version of an
experiment.

Two of the most important similarities between propensities and
chances are already evident. First, as discussed above, propensities are
‘‘forward looking.”” Both chance and propensity apply only to future events;
there is no propensity or chance concerning the occurrence of past events.1
Second, in principle, propensity values represent objective physical
tendencies and can be applied to single-case phenomena. Just as there are two
similarities that are quite evident at this point, there is also one major difference
between chance and propensity. On the surface, at least, chance is a function
on events while propensity is a function on events and systems. The key to
developing a theory of chance in terms of propensity is the relationship
between events and systems. The basis for the development of the notion of
chance depends on the explication of ‘‘chance’’ in terms of ‘‘chance in a
situation,’’2 and the reduction of ‘‘chance in a situation’’ to *‘propensity for a
system.”’

Suppose that some version of the two slit experiment is to be performed;

t-at is, there is a situation in which either E, E,, or E; is to be used. Recall that

1Some commentators have claimed that the inversion theorems of the
probability calculus demand that propensities be defined over ‘‘past’’ events.
This criticism is discussed in chapter 2.

2This explication proceeds in a manner that 1s similar to Brian Skyrms
1984 and 1988.
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E) denotes the version of the experiment that is run with slit one open and slit
two closed, E, denotes a version that is run with only slit two open, and E4
denotes a version that is run with both slits open. In a situation in which
system E, is to be used, the ‘‘chance’’ of R occurring is based upon the
propensity for E; to produce R; that is, Ch(R) = Pr(R:E,). Similarly, in a
situation where system E, or E; is used, Ch(R) = Pr(R:E,) and Pr(R:E;)
respectively. The propensity interpretation of probability gives a method of
determining the value of chance in a particular situation: Ch(A) = p if and only
if, for some system S describing that particular situation, A is a possible outcome
of S and Pr(A:S) = p. Thus, the value of Ch(A) can be determined in any
particular situation provided that the situation is one in which an appropriate
propensity function (and system) can be properly defined.

The method of extending this interpretation of ‘‘chance in a particular
situation’’ to “‘chance’’ is based on generalizing the situations for which
chance is defined. Recall that systems E,, E,, and E; deno*e many events,
each fixing the value of a number of factors capable of influencing the ability
of the system to produce the event R. Consider a new situation: suppose that
the status of the slits is the only factor that influences the results. That is, only
the events O, and O, are statistically relevant to the descriptions of the systems
capabl.: of producing the event R. In other words, the events described by
the residual state X are irrelevant to the descriptions of E ., E,/, and E5.. In this
situation, E;- = 04&~0,, E5 = ~0,&0,, and Ey- = 0;&0,.

The systems constituting this situation are not the same as the originally

defined systems. In the original situation, the systems E;, E,, and E; are not




exhaustive of the systems producing the outcome R. In the present situation,
however, the new systems form a partition of the systems producing R; that is,
E,-, Ey, and E3: are mutually exclusive and exhaustive. In this situation, Ch(R)
is not interpreted as a probability function on the possible outcomes and on a
particular version of the experiment (E;- for example). Instead, Ch(R) is
interpreted as a function on the possible outcomes and on a partition t = {E;,
E,, E5-}. In this situation, Ch(R) is defined as follows: Ch(R) = Pr(R|}x),
where Pr(R||x) = Pr(R:E/) if it is true that system E,. is at work; Pr(R||x) =
Pr(R:E,) if it is true that system E,. is at work; and Pr(R||x) = Pr(R:Ey/) if it is
true that system Ej: is at work. The notation ‘Pr(R|}x)’ can be read as ‘‘the
propensity of R on x.”” Under this interpretation, Ch(R) can be viewed as a
selection function. For any situation w, Ch(R) selects some system E;s €
(where i = 1, 2, 3) that describes the statistically relevant aspects of w and
assigns the value of Pr(R:E;)) to R.

For the general case, define a partition & = {S,, S,, S3,.. ., S, }, where
each S; € n is a system that is capabte of producing some member of a set of
outcomes £2. Then, in a situation w and for the event A in a Boolean o-algebra
defined on some £, the function Ch(A) in w is defined as follows:

Ch(A) = Pr(Aljrx), where Pr(Aljr) = Pr(A:S;) and the system S; is the member
of n containing w. This is still a definition of chance in a highly restricted
type of situation. Specifically, it is a definition of Ch(A) in a situation where all
the systems capable of producing the event A form a partition.

Returning to the original experiment, although systems E;, E,, and E;

are exclusive, they are not exhaustive of the systems capable of producing the
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event R. Ignoring the trivial case where both slits are closed, systems E,. E,.
and E; exhaust only those versions of the two slit experiment in which all the
factors other than the status of the slits are held fixed. There are many other
versions of the two slit experiment based on altering the values of the other
variables.

How, then, is one to interpret Ch(R) in the original situation? The
answer is obtained by extending the previous analysis as follows. Suppose it is
determined that the results of the original two slit experiment are affected by
the values of some fixed number of variables, and each variable contains an
arbitrary number of possible values. Let the number of variables be ‘n’ and the
number of values for any variable be ‘m.” For each variable, define a partition
m; = {F;1, Fi2, Fi3, - - o, Fij .« »» Fj} where each Fij (for 1<i<n and l<j<m) is
the event ‘‘variable ‘i’ has the value ‘j’ at some time t.”’ If the variables are
exhaustive, then the family of partitions, Il = {x,, &y, 15, .. ., &}, contains
every variable whose values are statistically relevant to the occurrence of the
event R. ITis a family of variables such that each variable in I is statistically

relevant to the occurrence of R. Alternatively, the set of all *‘system-events’’

that are statistically relevant to the occurrence of R ran be easily defined as the
m
sete = Uni, where and &; € I1.
i=1
Conceming ‘‘complete’’ systems, any two slit system S that is statistically
relevant to the occurrence of R can be defined as a conjunction of events:
S =Fjw&Fy& ... &F,, where F;; € x; € I, such that i’ identifies the event

with some variable and ‘j’ identifies the event with some value of that




variable. Furthermore, the set of all two slit systems that are statistically relevant
to the occurrence of R can be obtained by forming the set of all n-length
conjunctions where each conjunct is a member of one and only one partition
in I1. Call this set of all systems Z. That is, Z is a partition of all statistically
relevant systems, much like the partition 7 discussed in the previous situation.
Note that it is not necessarily the casc that all members of Z are capable of
producing R. For example, a system in which the distance between the slits is
relatively large while both the distance of the source from the barrier and the
angle of emission are quite small may be incapable of producing an emission
that passes through the barrier. Hence, this system is incapable of producing
an emission that hits region R. Consequently, the analysis of chance in a
situation has been generalized from situauons in which only systems capable
of producing the event R are considered to situations in which there may be
(statistically relevant) systems that are incapable of producing emissions that hit
region R.

The result of this analysis of the two slit experiment is that there are three
manners of representing the statistically relevant events in the ‘*history’’ of the
event R. The family of partitions I represents the events as statistically
relevant values of variables; I is the family of statistically relevant variables,
each represented by some ;. The indexed union ¢ represents a partition of
the statistically relevant events themselves. The partition of systems, X,
combines the events to form a partition of the statistically relevant and distinct
systems. Those systems that are ‘‘capable of producing R’’ are 2 subset of Z.

From this analysis of variables, events, and systems, Ch(R) for the two slit
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experiment is defined as follows: in a situation w, Ch(R) = Pr(R||IT), such that
Pr(R|[IT) = Pr(R:S), where S = F,&F,,& . . . &F,,, for appropriate w, x, . . ., and
z, where Fij € n; €Il and S describes the statistically relevant features of w.
One interpretation of Ch(R) is as a *‘tw¢ step®’ function. In the first step, Ch(R)
selects a value for each variable =; in I1. This produces a complete description
of the statistically relevant features of some system S in such a manner that S
describes the situation w. In the second step, Ch(R) assigns a number to R
according to the propensity for w to produce R; that is, Ch(R) = Pr(R:S), where
S is determined in the first step. More simply, Ch(R) can be described as a
selection function on the partition of all systems X that are statistically relevant
to R: Ch(R) = Pr(R||IZ). In any situation ®, Ch(R) selects a system S € X such
that S describes the statistically relevant aspects of w to R, and Ch(R) assigns the
same value to R as Pr(R:S).

This account of chance as a selection function has two important
consequences. First, in situations that have the same (relevant) descriptions,
or have the same “‘propensity’’ to produce the event R, the chance of R, Ch(R),
has the same value. Second, this account allows for easily generalized
definitions of experimental setups. If it is the case that ‘‘the two slit
experiment’’ is the only mechanism relevant to the occurrence of R, then
Ch(R) = Pr(R||IT), where I1 is defined as above. In the case that one
introduces more experimental setups that can produce the same event, or:
can introduce a new partition or add to the partitions already contained in I1.
For example, if the case in which both slits are closed is considered to be a

system that is statistically relevant to the event R, then the event ~0,&~0), is
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added to the ‘‘status of slits’’ partition. On the other hand, a ‘‘number of slits”’
partition could be added to accommodate one slit experiments, three slit
experiments, four slit experiments, and so on, if these are considered (or
found) to be statistically relevant.

As is to be expected, in the final analysis, the general definition of
Ch(A) in o presupposes ihe identification of those events that are statistically
relevant to A in that situation. Thus, in general, Ch(A) = Pr(A||IT), where the
union of the partitions in I'T (namely, €) contains every event that is relevant to
A and Pr(A||IT) is defined as above. Then, to determine the value of Ch(A) is
to select the appropriate event from each partition in IT, and assign a value to
Pr(A:S), where S is the conjunction of the relevant events that are selected.
Alternatively, Ch(A) presupposes the identification or selection of the
appropriate system that is relevant to A. In this case, Ch(A) = Pr(A||S), where =
contains every statistically relevant system, and Pr(Aj|Z) = Pr(A:S), where S is
the selected system. On this account, then, if the job of science is to
determine “‘chances,’’ then science is involved in (1) determining the
‘*‘appropriateness’’ of certain systems as descriptions of certain situations, and (2)
determining the values of propensity functions or the propensity for certain
systems to produce certain events.

Given this account of chance, it is possible to properly characterize a
**version’’ of an experimental setup. Reconsider the two slit experiment. The
notion of a generalized two slit experiment is the product of *‘chance-like’’
thinking: ‘‘the’’ two slit experiment is represented by a partition of statistically

different systems; that is, Z. Consequently, there is a ‘‘version’’ of an




experimental setup for every S € Z. The system denoted by E, for example,
represents a particular version of the two slit experiment: every relevant factor
is fixed, and E, is described by the conjunction of an event from each

n; €EI1. E; may be repeated time and time again, perhaps on different sets of
apparatus, and at different times. The propensity function is a function on
specific versions of experimental setups such as E;. Chance is a function on
experimental setups in the most general sense: chance is a function on objects
represented by partitions of particular versions.

As discussed above, on the propensity account, given an event
description of a particular system and the fact that an experiment on that system
has ended with the occurrence of an outcome A, the event description of the
system provides a statistically relevant history of the event A, prior to the start of
the experiment. The propensity function Pr(A:S) is defined on the event A
and a specific version of an experimental setup S, such that the function Pr
relates the occurrence of the event A to the occurrence of the events
describing S. The chance function Ch(A), as a function on an event A and a
partition of systems Z, relates the occurrence of the event A to the occurrence
of the events describing each unique ‘‘version’’ of the setup in Z.

Finally, a brief word needs to be said considering an important
presupposition that was imposed in the account of chance. Inherent in the
account of chance given above is the assumption that it is possible to identify
an exhaustive set of statistically relevant variables and partition them into
mutually exclusive and exhaustive values. The satisfaction of this assumption

is a physical (applied) matter; it is the job of science and is discussed to some
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extent in later chapters.

1.4 Propensities and conditional chance

This section extends the analysis of chance to provide an account of
conditional chance. As in the account of chance, the account of conditional
chance begins with the notion of conditional chance in a particular situation,
and propensities defined for systems that entirely describe that particular
situation. The account proceeds to generalize the situations for which
conditional chance can be defined. Considering the similarity of the
development of conditional chance and the development of chance,
intermediate stages of the development are skipped and a general account of
conditional chance is given immediately following the account for
conditional chance in a particular situation. The development of conditional
chance is first presented in terms of the mathematical definition of conditional
probability as a quotient of absolute probabilities. Then, it is presented in
terms of conditional propensities. Finally, this interpretation of chance reveals
that chance cannot be a physically meaningful concept in all situations.

Recall the definition of system E; above: Ej; is the system described by a
particular set of events (including the fact that both slits are open) representing
all the events that are statistically relevant to the occurrence of the outcomes R
and ~R. That is, the set of outcomes for E; is {R, ~R}. Suppose that E; is
altered by adding two detectors that can determine whether the electron passes
through slit one or through slit two. Given that electrons scatter light, one

could place an extremely strong light source behind the diaphragm and



between the two slits. Consequently, if an electron passes through slit one,
then a ‘‘flash’’ would be observed or detected within the vicinity of slit one,
and if an electron passes through slit two, then a flash would be observed
within the vicinity of slit two. Thus, as shown in figure 1.2, **flash detectors™
(appropriately calibrated light sensors or trained observers), placed above slit

one and below slit two, could focus on the light, in order to detect flashes.
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Figure 1.2. The two slit experiment with detectors.

Call this new system E';, and assume that the brightness of the light is
such that electrons are detected at a given slit when and only when electrons
pass through that slit. Consequently, define the events Pyand P, as follows:
P, = “‘the electron passed through slit one at some time between t; (the start of

the experiment) and t, (the time that the electron hits the screen),”” and




P, = “‘the electron passed through slit two at some time between t; and t,..”’
Note that ~P; = P, since only those electrons that reach the screen are
statistically relevant: electrons that are absorbed by the diaphragm are aot
counted as statistically relevant. Then the set of (measurable) outcomes for E’4
is {R, ~R}x{P, P,}. By the definition of conditional probability, Ch(R|P,) =
Ch(R&P,)/Ch(R). This definition of conditional chance can be extended to a
definition of conditional chance in a situation as follows: for some situation @
[Ch(R|P)) in w] = [Ch(R&P,) in w]/[Ch(R) in w]. Thus, according to the
account of chance above, in a situation where system E'; is to be used,
Ch(R|P;) = Pr(R&P:E';)/Pr(R:E’3). That is, the chance of ‘‘R given P;"’ is
equal to the propensity for system E’; to produce R&P; weighted by the
propensity for system E’; to produce R. Alternatively, by the definition of
conditional probability, define conditional propensities as follows:
Pr(R[P,:E’;) = Pr(R&P;:E';)/Pr(R:E’;). Conditional propensities are interpreted
as follows: Pr(R|P,:E'5) = “‘the propensity for the system E'; to produce the
event R given that the system E’'; produces the event P,.”” Consequently, the
account of conditional chance can proceed more directly in terms of
conditional propensities. In a situation where system E'; is to be used,
Ch(R|P,) = Pr(R|P:E'5).

Generalizing these results, the explicata of ‘‘Ch(A|B) in situation ®’’
includes Pr(A&BJ|=") and Pr(B||Z"), where X' is the partition of systems that are
statistically relevant to A&B, and X" is the partition of systems that are statistically
relevant to B. In particular, Ch(A|B) in w = Pr(A&B||Z')/Pr(B|IZ"'), where
Pr(A&B||Z)/Pr(BZ") = Pr(A&B:S)/Pr(B:S) and S, which contains the situation
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®, is a member of both £’ and Z". Altematively, **Ch(A|B) in situation @’’ =
Pr(A|BJIZ), where 2 is the partition of systems that are statistically relevant to
both outcomes A&B and B such that Pr(A|B||Z) = Pr(A|B:S), where S is the
member of X that contains the situation w. That is, conditional chance is the
corresponding conditional propensity for the true situation.

Finally, the propensity account of chance and conditional chance raises
a very basic concern about the nature of chance: ar: *‘chances’” a nataral and
measurable feature of the world? Recall that propensity functions are defined
for particular experiments and represent the relations between particular
experimental setups and the events that they produce. Once one properly
identifies the statistically relevant features of an experimental setup and settles
on an interesting set of outcomes, the propensity function can be defined by
running repeated experiments while holding the statistically relevant features
fixed, and measuring the occurrence or nonoccurrence of the outcome
events.

Determining the value of a ‘‘chance in a situation’’ function is quite
similar: it is a matter of defining and reproducing *‘the situation.”” The task of
defining statistically relevant features of systems, or of defining a situation, is no
easy matter (it may be impossible), but it is a matter of experimentation. The
determination of propensities, and of chances in a situation, is a matter of
controlling variables and recording the occurrence (or nonoccurrence) of
events. When described in this manner, the determination of propensities is,
in fact, the activities of scientists in every field. Chance, however, was

iepresented as a selection function on a family of systems and their propensity




functions. The determination of the values associated with Ch(A) and
Ch(A]B) is not a matter of running a single controlled experiment. Instead, it
involves the running of a diverse and large number of controlled
experiments. The determination of chances cannot (for us) be a totally
empirical matter.

Furthermore, given that the value of ‘Ch(A)’’ is based on the study of
systems that are composed of diverse and possibly inhomogeneous causal
factors, one is led to question whether this value is physically meaningful. For
example, the value of Ch(John is late for school) could depend on economic,
social, psychological, and physical systems. In one situation John is late
because he must work at night to afford school; in another situation he is late
because his child had to be driven to daycare; in still another he is late
because he wanted to upset his instructor; and finally, in another situation, he
is late because his car broke down. It is difficult to imagine how all the factors
involved in these situations can contribute to a single value representing
Ch(John is late for school).

There are two qualifying remarks that must be made. First, some may
argue that the task of determining the values of propensities, or chances in a
situation, is no more likely to be successful than is the task of determining
chances. Certainly, especially for complicated systems, this point is well
taken. But, the fact remains that the act of determining propensities, or chance
in a situation, more greatly resembles the empirical study of causal and statistical
systems.

The second point is made evident by the fact that the notion of the two
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slit experiment was regarded as a result of *‘chance-like’’ rather than
‘‘propensity-like’’ thinking. Chance certainly adds to the understanding and
analysis of the empirical world in a way that single propensity functions do not.
Chance must be regarded as providing a more general analysis of phenomena,
and the propensity account captures this fact. There is a manner in which
Ch(A) represents a property of A that transcends any particular occurrence of
A. It may be said that the relationship between chance and propensity is
analogous to the relationship between law and regularity. If chance is to
represent the physical world but be something more than propensity, then
there is an open question as to whether the notion of chance is or can be well-

defined in all physica. uations.

1.5 Concluding remarks

The overriding concern of this chapter has been to distinguish
between systems and events, and to demonstrate the manner in which this
distinction is important to the propensity interpretation of probability. This
distinction is the sole basis for designating the interpretation as a *‘propensity”’
interpretation of probability. Systems have a ‘propensity’’ to produce events;
events have no propensity to produce systems. The term ‘propensity’ is used
to indicate the asymmetry of the relationship between systems and events.
Furthermore, a causal interpretation of the term propensity must be used with
caution, as the asymmetrical relationship is merely *‘forward looking.’” It is this
feature of propensity functions that enables them to provide the basis for

constructing the causal history of events. Chapters 2 and 3 take up the task of




clarifying the degree to which the propensity interpretation of probability can
be considered a ‘‘causal’’ interpretation of probability.

A propensity function is defined for a system and over a Boolean o-
algebra on a set of possible outcomes. For brevity, it is often stated that a
propensity function is defined for a system and on an event space. Propensity
functions are defined in order to represent the relations between a specific
experimental setup and the results of running that experiment (the possible
outcomes of that experiment). Consequently, propensity functions are
particularly well suited for providing an interpretation of ‘‘chance in a situation’’
and an analysis of ‘‘chance’’ itself. Chance was represented as a selection
function on the statistically relevant systems, factors, and variables.
Furthermore, the propensity analysis of chance revealed that, in some
situations, ‘‘chance’’ is defined over causally inhomogeneous situations. Thus,
chance is not a physically meaningful concept when applied to certain
situations.

The propensity analysis of chance also revealed that the notion of a
single generalized two slit experiment should be thought of as the result of
chance-like thinking: ‘‘the’’ two slit experiment is not a particular physical
system and cannot be represented by a single propensity function. Propensity
functions describe relations between aspects of the same physical

experiment. Propensity functions describe only particular “‘versions’’ of the

two slit experiment.
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Conditional Propensities and Causation

2.1 Introduction

Chapter 1 provided a semantics for propensities, and demonstrated that
conditional chance can be represented in terms of conditional propensities.
Chapter 1 did not, however, give a detailed interpretation of conditional
propensities. The aim of this chapter is to provide a detailed examination of
conditional propensities and the issues surrounding them. The first issue
involves the controversy over the interpretation of inverse conditional
propensities--conditional propensities in which the conditioned event occurs
before the conditioning event. The second issue is the consistency of the
dispositional nature of the propensity interpretation and the inversion
theorems of the probability calculus, where an inversion theorem is any
theorem of probability that makes explicit (or implicit) appeal to an inverse
conditional probability. The third issue concerns the relationship between
the notion of stochastic independence which is supported by the propensity
interpretation, and various notior- of causal independence. Finally, this
chapter examines the relationship between the propensity interpretation of
prooability and various theories of probabilistic causation.

Section 2.2 provides some background to the controversy--generally

referred to as Humphreys’s paradox-- concerning inverse conditional
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propensities and the inversion theorems of the probability calculus. Section
2.3 demonstrates that the identification of conditional propensities with
conditional probabilities does not create problems for the propensity
interpretation. By applying the propensity interpretation to an experiment
involving a photon’s transmission through, or reflection by, a half-silvered
mirror, it is demonstrated that inverse conditional propensities can be assigned
non-trivial values; that is, there are inverse conditional propensities with
values not equal to 1 or 0. Ultimately, it is established that conditional
propensities, and their inverses, are formally symmetric in the same manner as
conditional probabilities, and their inverses. Furthermore, a procedure for
updating propensities over time is developed in order to establish the criterion
for a conditional propensity to be well-defined. This criterion is simply that
both the conditioned event and the conditioning event occur after the time
that the system and propensity function are defined. Building on the fact that
inverse conditional propensities can be non-triviai and well-defined, section
2.4 demonstrates that there is no inconsistency between the dispositional
nature of the propensity interpretation and the inversion theorems of the
probability calculus. The basis for the demonstration that there is no
inconsistency is the fact that conditional propensities do not provide a direct
measure of the causal dependence of the conditioned event on the
conditioning event.

Section 2.5 reinforces the analysis given in section 2.4 by establishing
that the propensity interpretation yields a notion of independence which

corresponds to stochastic independence, rather than to causal independence.



Furthermore, it is shown that the aforementioned attacks on the propensity
interpretation are based on the misconception that the propensity
interpretation should, or does, yield a formulation of causal independence in
terms of (simple) conditional propensities. The most common form of this
misconception is that conditional propensities provide a direct measure of the
degree to which the singular conditioning event ‘‘causes’ the singular
conditioned event. Finally, it is argued that talk of event-event causation--talk
of a singular event causing another singular event--is particularly susceptible to
being formulated in terms of conditional propensities, and that these types of
formulations involve the same sort of misconception described above.

The last section of this chapter utilizes the propensity interpretation of
conditional propensities and chance (developed in chapter 1) to distinguish
between, and to evaluate, two approaches to probabilistic causation: the
sufficiency view, advocated by Hans Reichenbach ([1956] 1991); and the
necessity view, advocated by I. J. Good (1983). By virtue of the propensity
analysis of chance, the propensity interpretation is capable of demonstrating
the manner in which both approaches to probabilistic causation encounter the
problem of homogeneous reference classes. Furthermore, it is argued that any
theory of probabilistic causation utilizing criteria expressed in terms of chance
will, and must, encounter this problem. Finally, it is argued that the analysis of
probabilistic causation in terms of propensities and controlled experiments is

capable of minimizing, and possibly avoiding, the problem of homogeneity.




2.2 Humphreys’s paradox
The aim of this section is to provide some background on the
controversy over the interpretation of inverse conditional propensities and
what has come to be called ‘‘Humphreys’s paradox.’” Humphreys’s paradox is a
term used by James H. Fetzer (1981, 283) to describe the basis for one of the
most fundamental criticisms of the propensity interpretation of probability.
The paradox rests on the apparent inconsistency between the dispositional
nature of propensities and the interpretation of ‘‘inverse’’ conditional
probabilities. Wesley C. Salmon (1979) provides a particularly stark example of
this inconsistency:
Supnose we are given a set of probabilities from which we can
deduce that the probability that a certain person died as a result of
being shot through the head is 3/4. It would be strange, under
these circumstances, to say that this corpse has a propensity
(tendency?) of 3/4 to have had its skull perforated by a bullet.
(213-14)
In a more formal characterization of this inconsistency, Paul Humphreys (1985)
has presented an argument to show that the identification of conditional
propensities with conditional probabilities is inconsistent with Bayes’s
theorem and other inversion theorems of the probability calculus.
Critics of the propensity interpretation, such as Salmon (1979)! and Peter
Milne (1986; 1987), have used this apparent inconsistency to argue that,

despite the intuitive appeal of using propensities for interpreting conditional

1See especially Salmon 1979, 213-14. Salmon also presents similar
criticisms, in terms of alternative examples, in: 1984, 204-5; 1988, i4, and
1989, 87-89.

38




39

probabilities in certain situations, we should abandon the notion that we can
develop a complete interpretation of the probability calculus in terms of
propensities. Humphreys (1985, 557), on the other hand, contends that the
inconsistency is a reason to reject the probability calculus as the correct
interpretation of chance.

Despite the growing diversity and number of propensity interpretations
of probability, Humphreys’s paradox has received little attention, especially
from advocates of ‘‘physical’’ propensities. There has, however, been some
attention. Fetzer (1981, 283-86) has argued that the paradox can be avoided by
considering the calculus of single-case propensities as a nonstandard
interpretation of the probability calculus, much like non-Euclidian geometry
was considered to be a nonstandard interpretation of Euclidean geometry. On
this view, propensities are a part of a family of closely related *‘probabilistic’’
systems, and propensities are probabilistic in a manner that is broader than the
notion of *‘probabilistic’’ as characterized by the *‘classical’’ set of probability
axioms. Ilkka Niiniluoto (1988, 103, n. 16) alludes to an epistemic solution to
an example of the paradox given by Salmon (1984, 205).

The most successful attempt to resolve the paradox is contained in
section three of David Miller 1991. Although Miller is concerned with a
frequentist interpretation of propensities, his defense against Humphreys’s
paradox is quite general and strikes at the core of the issues involved. In fact,
as a proponent of the propensity view, I find his treatment quite successful. As
a general resolution, however, Miller’s treatment may be all too brief and may

pass over too many issues for most critics of the propensity interpretation. Two



of the aims of this chapter are to present a generalized resolution of
Humphreys’s paradox, and to outline the issues surrounding the paradox by
demonstrating that the asymmetrical nature of physical propensities is not

inconsistent with the interpretation of ‘‘inverse’’ probabilities.

2.3 Inverse conditional propensities and symmetry
This section provides a detailed examination of the interpretation of

conditional propensities and their inverses. The main issue that is addressed

here is raised in an objection to the propensity interpretation, presented by

Milne (1986):
a realist single-case [propensity] interpretation of probability is
useful only in an indeterministic universe because otherwise the
probabilities are all trivial [either equal to 1 or 0]. In such
universes the future is ‘‘open’’ with respect to the present and
past. Non-trivial conditional probabilities are only possible when
the conditioned event occurs later than the conditioning event.
(130-31)

This section demonstrates that, in fact, non-trivial conditional propensities are

possible when the conditioned event occurs before (or at the same time as)

the conditioning event. In other words, it is demonstrated that conditional

propensities, like conditional probabilities, are formally symmetric. The

demonstration includes the development of an update semantics for the

propensity interpretation of probability.

The discussion of Milne’s objection is presented in terms of
Humphreys’s (1985) example involving the ‘‘transmission and reflection of

photons fror- a half-silvered mirror’’ (561). Following Humphreys (1985, 560-

61), the notation reflects the temporal relationships between propensity



functions and events: the propensity * ti(A,leﬂ\.)’ is generally interpreted as
““the nropensity at t; for A to occur at t;, conditional upon B occurring at ¢;.” In

the notation of chapter 1, the propensity would be represented as

‘Prii(A:By).’
Humphreys’s example involves an experimental arrangement that is

described as follows:

A source of spontaneously emitted photons allows the particles to
impinge upon the mirror, but the system is so arranged that not all
the photons emitted from the source hit the mirror, and it is
sufficiently isolated that only the factors explicitly mentioned
here are relevant. Let I;7 be the event of a photon impinging

upon the mirror at time t2, and let T3 be the event of a photon
being transmitted through the mirror at time t3 later than t>. Now
consider the single-case conditional propensity Pr(1(.|.) where t;

is earlier than t, and take these assignments of propensity values:

i) Pru(Talli2Bu)=p>0
ii) 1>Pra(InBu)=q>0
iii) Pri(Tal~I2Bu) =0

where, to avoid concerns about maximal specificity, each
propensity is conditioned on a complete set of background
conditions Byj which include the fact that a photon was emitted

from the source at tg, which is no later than t}. (561)

In terms of this example, Milne’s objection can be presented as follows:
the propensities Pr,;(1,5]T;3B;;) and Pr,;(I,5|~T;3B,;) have no realist single-
case interpretation; once the event T4 or ~T,5 has been realized, there is no
indeterminacy about the occurrence of the event I;,--it has either occurred or
not (see Milne 1986, 131). But the propensity function is defined at a specific
time, and propensities evolve in time along the lines suggested by David

Lewis’s ‘‘A Subjectivist’s Guide to Objective Chance’’ (1980). It is argued that
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proper attention to this feature of the propensity account is sufficient to answer

Milne’s objections and to provide a general solution to Humphreys’s paradox.

The propensity function Pr,, is defined over a Boolean o-algebra on
the event space. The event space consists of those events, such as I,; and
T,3, that may occur after t;. The propensity function is defined for the specific
arrangement described above; this is reflected by the conditionalization of all
propensities on the set of background conditions B,;. The background
conditions typically include statements concerning the occurrence of certain
events prior to t; such as ‘‘a photon was emitted from the source at ).’ Properly
speaking, the background conditions, B,;, and any events that are described
in the background conditions as occurring before t;, are not members of the
event space or the o-algebra.

In general, ‘‘propensities’’ are attributed to, or are considered as
dispositional properties of, a system that satisfies the background conditions
prior to time t;. The ‘‘absolute’’ propensity Pr,;(I,5|B,;)--Pr,;(I,>:By;) in the
notation of chapter 1--represents the propensity at time t;, for a system that
satisfies the background conditions B, ;, to produce a photon that impinges
upon the mirror at time t,. Similarly, the propensity Pr,;(T;|B,;) represents the
propensity at t,, for a system that satisfies conditions By, to produce a photon
that is transmitted at t;. Thus, a particular propensity (for a system that satisfies
B,; att;) is identified as a propensity to produce a particular event at some time
after t;. In this manner, propensities are properties of systems to produce
‘‘future’’ events.

At this point it is important to specify the level of generality ‘hat is
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assumed in the use of the term ‘propensity.” Most certainly, no claims
concerning realism are made: propensities--whatever they are--may or may not
be real. Furthermore, a formal definition of **a propensity'* is not presented
here. Claims concerning the nature of *‘propensities’" are limited to issues
surrounding their role in the interpretation of the probability calculus. To this
end, the use of the notion of *‘a propensity’’ in the interpretation of the
probability calculus is limited to providing the basis for the distinction
between--as well as the relationship between--the members of the event space
(the possible outcomes) on the one hand, and the background conditions (the
events comprising the experimental setup) on the other hand.

As described above, this distinction rests on the notion that the
background conditions describe a set of events that have a “‘propensity,’” or
‘‘disposition,”” to produce the events in the event space. That is, the events
described by the background conditions are in some manner responsible for
the production of outcomes. The notion of ‘‘production’’--as opposed to the
notions of ‘‘propensity,”” ‘‘disposition,”” or ‘‘cause’’--is the central notion in the
propensity interp.etation. In a manner similar to Salmon (1984), the intention
here is to indicate that, in making the distinction between the system and the
events in the event space, one is only isolating a natural instance of
“‘production’” and is not making claims about the causal properties of particular
events or systems. The events described by the background conditions are
responsible for the assignment of particular probability values to the members
of the (previously established) event space, because these events are

responsible for the production of the events in the event space. As a result, an




asymmetrical relationship between the background conditions and the event
space is created, and this relationship is not formally represented in other
interpretations of the probability calculus.

To return to the interpretation of propensity statements, the ‘‘conditional”’
propensity Pr (T3l »B,;)--Pr;;(T3ll>:By;) in the notation of chapter 1--is
interpreted as the propensity at t; (for a system satisfying conditions B,,) to
produce a photon that is transmitted at t3 conditional upon its producing a
photon that impinges upon the mirror at t;. On this account, a conditional
propensity such as Pr,;(T;;|I;,B,;) is interpreted as the propensity at t, for the
system to produce the event T3, given that the event I, is also produced.
Similarly, the inverse conditional propensity, Pr,;(I;5|T,3By;), is interpreted as
the propensity at t for the system to produce the event I,,, given that the
event T, is also produced. The fact that the conditioning event occurs earlier
than the conditioned event is inconsequential with respect to whether the
inverse conditional propensities are physically meaningful or not. For any
conditional propensity, inverses included, both the conditioning event and
the conditioned event occur after the time at which the propensity function
and the system are defined. The relationship between a conditional
propensity and its inverse is symmetrical in the same manner as the
relationship between conditional probabilities. This account of the relation
between systems and events, and between the conditioned event and the
conditioning event, provides a preliminary answer to Milne’s objection.

In order to fully understand the manner in which inverse conditional

propensities are non-trivial, consider a aetailed examination of the particular



conditional propensities, and the corresponding inverse conditional
propensity, for the photon arrangement. The system described above has a
propensity to produce photons that impinge upon the mirror at t,. This
propensity and its value are represented by assignment ii) above:
1> Pr,;(I5/B,1) = 9 > 0. For all intents and purposes, this propensity is an
‘‘absolute’’ propensity; it is only conditioned on the fact that the system satisfies
certain background conditions. The notation of chapter 1 makes this point
clear: Pry;(I;5|By,) is represented as Pr,;(I,>:B,;). If this (absolute) propensity is
realized, or if the system produces a photon that impinges upon the mirror at t,,
then the system may also produce a photon that is transmitted at t;. This fact is
expressed in terms of the conditional propensity (and its value) represented by
assignment i) above: Pr,;(T5|I;,B,;) = p > 0. Similarly, depending on the
value of p, if the system produces a photon that impinges upon the mirror at t,,
then the system may or may not also produce a photon that is not transmitted at
t3. This result is represented by the fact that, according to assignment i) and
the additivity axiom for conditional probabilities (1985, 560), the conditional
propensity Pr,;(~T|[;;B,;) = 1 - p.

The system also possesses an absolute propensity to produce a photon
that is transmitted at t5, and this absolute propensity is formally represented as
Pr,;(T;3|B,;)- According to Humphreys’s additivity axiom and total probability

theorem for binary events, Pry)(Ti3|Bi1) = pq.2 If this propensity is realized, or

2See ‘‘A.1 A demonstration that Pry)(T3|By1) = pq’’ in Appendix 1 for
the derivation of this result.
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if the system produces a photon that is transmitted at t5, then the system must
also produce a photon that impinges upon the mirror at t, since assignment iii)
states that Pr;(T3]~1,,B,;) = 0. This state of affairs can also be represented by
the fact that the inverse conditional propensity Pr,;(I,5|T;3B,;) = 1. Note that
the reason for assigning a value of one to the propensity Pr,;(I;;|T;3B,;) can be
based on mathematical, or abstract, considerations involving the relations
between conditional probabilities (or propensities) and their inverses, but it is
not necessary to consider these relations.

Instead of utilizing the inversion theorems to determine the value of
Pr,;(I,5|T3By1). the value can be arrived at as follows: the value of
Pr,;(I5|T;3B;1) must be one since the description of the system indicates that
the system is arranged in such a manner that if the system produces a photon
that is transmitted at t3, then the system must also produce a photon that
impinges upon the mirror at t,. Indeed, it is assignment iii) that provides the
information that the system is arranged in this manner, but it is the arrangement
of the photon system itself--and not the value of Pr,;(T3]~1;,B,;)--that demands
that Pr,;(1,5|T,3B;;) = 1. Thus, the reason for assigning a vaiue of one to the
propensity Pr,;(I;5[T;3B,,) is not the fact that the propensity Pr;(T3|~I;;B,;) is
assigned a value of zero, per se. Further, the value of Pr,;(I,»{T,3B,) is not
arrived at through abstract, or mathematical, considerations of the relations
between conditional propensities and their inverses.

To return to the task of describing the photon transmission example in
terms of conditional propensities and their inverses, if the system produces a

photon that is transmitted at ty, then the system cannot also produce a photon



that fails to impinge upon the mirror at t>. This is a fact concerning the
physical arrangement and this fact is represented by assignment iii), namely
that Pr,(T;3|~I;,B,;) = 0. Consequently, for reasons similar to those above, and
without reference to abstract reasoning about the relations between
conditional propensities, Pr;(~1,,|T\3B,;) = 0, since Pr;(T,3|~1,-B,,) = 0.

Finally, the system possesses an absolute propensity to produce a photon
that is not transmitted at t3: Pr,;(~T3|B,;) = 1 - pq, by the additivity axiom and
the value of Pr, (T 3|B,;). If this propensity is realized, or if the system
produces a photon that is not transmitted at t;, then the sysiem may or may not
produce a photon that impinges upon the mirror at t,. This fact is represented
by the value of the inverse conditional propensity Pr,,(I,»|~T;B,,). By the
additivity axiom, the total probability theorem for binary events, and the values
assigned above, Pri(Ii2]~Ti3Bu1) = (q - pg)/1 - pq).3 Furthermore, if p < 1 then
1> Pry;(I;5|~T3B,;) > 0, and if p = 1 then Pr;;(I,5]~T3By;) = 0 (recall that
q < 1). Similarly, if the system produces a photon that is not transmitted at t5,
then the system may or may not produce a photon that impinges upon the
mirror at ty. Thus, by the additivity axiom, if p = 1 then Pr,(~1,5}~T\3B;) = 1,
and if p < 1 then 1 > Pry(~1,5}~T3B,;) = 1 - [(q - pq)/(1 - pg)] > 0.

Before considering the representation of this system over time, it is
important to note that the propensity assignments described above made no

appeal to the inversion theorems. In some cases, Humphreys’s propensity

3See ‘“A.2 A demonstration that Pry;(I;2]~T3B11) = (q - pg)/(1 - pg)’’ in
Appendix 1 for the derivation of this result.
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assignments i) - iii) were used in order to understand the physical system itself,
and from this understanding of the physical states of affairs, the appropriate
propensity assignments were made. In other cases, an appeal was made to
either the additivity axiom--‘If A and B are disjoint, then P(AvB|C) = P(A|C) +
P(B|C)’’ (560)--or the theorem on total probability for binary events (TP)--
“P(A|C) = P(A|BC)P(B|C) + P(A|]~BC)P(~BJ|C)’’ (560)--but neither of these
theorems makes an explicit or implicit appeal to inverse conditional
propensities.4

Most important to the task of answering Milne’s otjection is the fact that
it has been established that if p < 1 then 1 > Pr,(I,5|~T 3B} > 0,and ifp<1
then 1 > Pr,;(~1,5|~T3By;) = 1 - [(q - p@)/(1 - pq)] > 0. Consequently, for a
photon transmission system described by Humphreys’s assignments i) - iii),
where p < 1, there are non-trivial conditional propensities defined by a
propensity function at time t,. Thus, in establishing the values of the
conditional and inverse conditional propensities above, it has been
demonstrated that--contrary to Milne--non-trivial conditional propensities are
possible when the conditioned event occurs later than the conditioning
event.

Of course, systems change over time as the events that they produce are

realized. Consequently, the propensities that systems possess, and the values of

4Although some proofs of TP make an appeal to inversion theorems, TP
can be proven without such appeals. See ‘*A.3 A derivation of the theorem on
total probability for binary events, without an appeal to the inversion theorems’’
in Appendix 1.
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those propensities, also change over time. In the photon system, if the event
I;> occurs at t5, then it is possible to update the dispositional nature of that
system to reflect the dispositional nature of the *‘new’’ system as it exists at 5.
Updating the dispositional nature of that system requires the definition of a
new propensity function for the system at t,; call this new function Pr,>. This
function is conditioned on a set of background conditions B> which consists
of the conditions expressed in B,; as well as the additional condition that the
event [;5 occurred at t;. Furthermore, this function is defined over a new
o-algebra (defined on a new event space), since the event I,» no longer lies
in the future of the system. Only the events T3 and ~T,5, of the original
events mentioned, remain in the event space. The assignments made by the
new propensity function are defined as follows: Pr,»(T3|B,») = Pr,(T;3ll,>B,;)
= p» and Prip(~Ti3|Bo) = Pryy (~T3ll2Byy) = 1 - p.

If the event ~I,, (rather than the event I;,) occurs at t,, then a different
propensity function is defined for the system that exists at t,; call this
propensity function Pr,,.. This function is conditioned on a set of
background conditions B, which consists of the conditions expressed in B,
and the condition that the event ~I, occurred at t,. Then Pr5(T3|B>) =
Pr,1(Ty3~1;2B,1) = 0 and Pry»(~T3|B,y) = Pry;(~T3l~15By;) = 1. Properly
speaking, the events I, and ~I, are not members of the event space for the
propensity functions Pr, and Pr - since these events cannot be ‘‘produced’’
by the corresponding systems. Nor do these events lie in the future of the
systems described by the background conditions B, and B,,.. Thus, for

example, the propensity function Pr,, is not defined over propensities such as
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Pr5(I,5|B2), Pro(1;lTi3B,2), and Pri5(T3)l;,B,;). Consequently, inverse
conditional propensities, such as Pry;(I,5|T;3B,,), are not well-defined. But this
is not because the conditioned event occurs before the conditioning event.
Pr,(I,5[Ti3B,) is not well-defined because the event I, occurs at or before
the time that the system and the probability function were defined.

Thus, as a system evolves over time, events are essentially removed
from the event space and incorporated into the background conditions.
Depending on which events actually occur, this creates a new propensity
function that is defined at a different time, for a differ :nt system, and over a
different o-algebra of events. Consequently, inverse conditional propensities
are susceptible to a propensity interpretation just in case both the conditioned
event and the conditioning event are members of the Boolean o-algebra
defined on the event space. That is, inverse conditional propensities,
defined at some time t; and defined for some system, are well-defined just in
case: (1) both the conditioned event and the conditioning event occur after t;
and (2) the system is capable of producing those events.

The update semantics is more clearly stated in the notation of chapter 1,
without temporal indices. In general, for any system S, corresponding event
space €2, and events A, B € ©, where A either occurs or does not occur at t,
and B either occurs or does not occur at some later time t,: if Pr(BJA:S) =pat t,
and A occurs at t,, then there is a new propensity function Pr’ defined at t, on
a new space Q' = Q-A such that Pr'(B:S’) = Pr(BJA:S), and §' = “‘S&A”’ is an

event description of the ‘‘new’’ system existing at time t,.
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2.4 Humphreys’s argument against the inversion theorems

Humphreys 1985 presents an argument that is intended to demonstrate
that the ““inversion theorems of the classical probability calculus are
inapplicable in a straightforward way to propensities’’ (563). Humphreys’s
argument is not simply concerned with temporal asymmetries (as discussed in
the previous section); his argument is concerned with causal asymmetries.
Consequently, the appeal of the previous section to the temporal evolution of
propensities alone is not enough to refute Humphreys’s argument.
Humphreys’s argument against the inversion theorems is presented in the form
of a reductio ad absurdum, and is based on an inconsistency between
assignments i) - iii) cited above, a principle concerning causal independence
for the photon example (CI), and the propensity interpretation of the inversion
theorems. The aim of this section is to refute Humphreys’s argument by
questioning both his justification for principle CI and his reasons for using
principle CI to represent causal independence as he does. First, principle CI,
and Humphreys’s justification for it, are examined. Next, it is demonstrated--
without an appeal to the inversion theorems--that principle CI does not hold for
the system in question. Then it is revealed that there is a flaw in both
Humphreys’s justiiication for CI and the claim that CI gives a proper statement of
causal independence. Finally, the implications of this analysis of Humphreys’s
argument against the propensity interpretation is discussed.

Humphreys defines principle CI as follows (1985, 561):

(CD) Pryy(IlTy3Byy) = Pryy (Ip]~Ty3By)) = Pryy (I]By )

Note that there are two questions that arise. First, does principle CI, in fact, hold



for the photon arrangement? Second, how is one to interpret the fact that CI
holds (or does not hold) for the arrangement? Humphreys’s answers to these
questions, and his justification for them, are considered first. Humphreys
claims that CI does ho!d for the arrangement, and he reveals that the intended
interpretation of Cl is that *‘the propensity for a particle to impinge upon the
mirror is unaffected by whether the particle is transmitted or not’’ (1985, 561).
Humphreys considers two alterations to the arrangement described above in
order to justify this interpretation of principle CI (1985, 563). According to the
first alteration, the mirror is rendered opaque in order to prevent impinging
photons from being transmitted. If this is the only alteration, the propensity for
a photon to impinge would remain the same. Call the background conditions
for this arrangement B’,; and the corresponding propensity function Pr'y;.
Then the result of this alteration is that Pr',;(~Tl[;B';;) = 1 and
Pr',(1,5|B';;) = q. According to the second alteration, the mirror is rendered
transparent in order that (ideally) all impinging photons are also transmitted.
Again, the propensity for a photon to impinge would 12main the same. Call the
background conditions for this set of alterations B";; and the corresponding
propensity function Pr”’;. The results of these alterations are represented by
the propensity statements Pr’’;;(T,;|[;,B";) = 1 and Pr”;(I;5|B" 1) = q.

The discussion of these alterations demonstrates that the degree to
which the mirror is silvered is the only causal factor responsible for the events
T, and ~T,3 once the photon has impinged upon the mirror at t,.
Furthermore, the degree of silvering can be isolated as having its effect

between the times t, and t3. Thus, it can be assumed that the degree of
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silvering is directly responsible for the values of Pr,(T;ll,>B,,) and
Pr,1(~T3ll,2B;), and is in no way responsible for the value of Pr;(1,5|B,;)-
The value of Pr,;(I,5|B,;) depends on those factors that are responsible for the
impinging of a photon on the mirror at t,. These factors have their effects
between t; and t,; for example, these factors determine the specific
momentum of the photons as they are emitted from the source.

Humphreys regards these results as crucial to the interpretation of CI. Of
these results, Humphreys states on page 563: ‘‘given these facts, the events T3
and ~T, are irrelevant to the propensity for I;,, and they can be omitted from
the factors upon which the propensity is conditioned without altering its
value.”’ In other words, the equalities expressed in principle CI--

Pr,, (15T 3B,y) = Pr(Io}~Ti3By;) = Pry (1,5]B,; )--are obtained by omitting the
““irrelevant’’ events T,3 and ~T,; from the propensities represented by
Pr,,(I,,|T\3B;;) and Pr,;(I;5}~T;3B,;). But does the consideration of the altered
arrangements together with this method of ‘‘omission’” provide an adequate
justification for the claim that principle CI is true of the photon arrangement?
Furthermore, does principle CI provide an appropriate formulation of the
manner in which event I, is ‘‘unaffected’’ by events T3 and ~T3?

As it is demonstrated below, despite the fact that the singular events T+
and ~T; are causally irrelevant to the event L5, principle CI does not, in fact,
hold for the original arrangement. The examination of the altered
arrangements reveals that, in all three cases, the values of Pr,(I5|B,;) do not
depend on the values of Pr,;(T3|l;;By;) and Pr,{(~Tll;;B,;). But nothing has

been demonstrated concerning the values of Pr,(I,5|T3B,;) and
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Pr,;(I,5}~T,3B,;)--the very propensities from which Humphreys is ‘‘omitting’
events. In section 2.3, however, it was determined through an examination of
the physical characteristics of the system alone--without any appeal to the
probability calculus—that Pr,;(I,|T;3B,;) = 1. Yet, CI states that Pr,;(I|T;3B,;) =
Pr,;(1,,|B,;), and assignment ii) states that 1 > Pr,;(I;5|B,;) = q > 0. Thus,
principle CI fails for the photon transmission arrangement, and the failure of CI
does not depend on the inversion theorems--or any theorems--of the
probability calculus.

In fact, both equalities in CI fzil. Using the total probability theorem for

binary events and the additivity axiom, one can demonstrate that

Prii(I2}~Ti3Bu) = (p - pq)1 - pq) < q.5 Consequently, the following strict
inequality holds for the arrangement described by Humphreys (1985):

Pry (1l 3By1) > Pryy(I5IBy;) > Pry (Ip}~Ti3By;). " is important to note that the
demonstration of these values in section 2.3 made no appeal to the standard
inversion theorems, such as Bayes’s theorem for binary events--*‘P(BJAC) =
P(A|BC)P(B|C)/[P(A|BC)P(B|C) + P(A|-BC)P(~B|C)]”’ (1985, 560)--or the
multiplication principle--*‘P(AB|C) = P(A|BC)P(BJ|C) = P(BJAC)P(A|C) =
P(BA|C)”’ (559). The demonstration of these values only appealed to
Humphreys’s own probability assignments i), ii), and iii) (561), the additivity
axiom--*‘If A and B are disjoint, then P(AvBJ|C) = P(A|C) + P(B|C)’’ (560)--and

SRecall that, according to Humphreys’s assignments i) and ii), 0 <p s 1

and 0 < q < 1. Suppose that (q - pq)/(1 - pq) > q, then (q - pq) > (q - pq?)- Thus,
w‘ < pg2, and this implies that g > 1. This result contradicts assignment ii).
erefore, (q - pq)/(1 - pq) < q by reductio ad absurdum.




the theorem on total probability for binary events--**P(A|C) = P(A|BC)P(B|C) +
P(A|~BC)P(~BJ|C)"’ (560).

Considering the failure of CI for the photon arrangement, what is the
source of the error in Humphreys’s appeal to the alterations of the original
arrangement and subsequent “‘omission’’ of the events T,; and ~T,; in
formulating and justifying CI? The examination of the altered arrangements
does not demonstrate that the degree of silvering is the only causal factor
responsible for the events T,3 and ~T,; between the times of t; and t;. In the
original arrangement, a photon must impinge upon the mirror at t, in order for it
to be transmitted at t;. Consequently, the causal factors responsible for the
propensity for the arrangement to produce a photon that is transmitted at ty
consists of both the degree of silvering of the mirror and those factors
responsible for producing photons that impinge upon the mirror at t,.

The propensities represented in principle CI are conditioned on the
events T,3 and ~T,3. The propensity values for these events depend on
causal factors that have their effect after t, and before t;. These causal factors
include those factors responsible for the momentum of the photons (after t, but
before ty) which are also responsible for the event I,. CI fails for this
arrangement because of the manner in which the events I,5, T3, and ~T3
have common causal factors that are effective after 1, and before 1,.
Specifically, the causal histories of these events share certain causal factors that
determine whether or not a photon impinges upon the mirror at t,.

The alterations described by Humphreys indicate that the value of

Pr,;(I;2|B,;) does not cepend on the values of Pr, (T 3ll,,B,;) and



Pr,;(~T3ll;5B,;)- This fact reveals that the event I;; does not depend on those
causal factors that are responsible for the events T3 and ~T,3 and that are
effective between t, and t3. The fact remains that, although the events 1,5, Tis,
and ~T,; lack common causal factors between the times t; and t5, the events
L5, Ti3, and ~T,5 share common causal factors that are effective between t; and
t,. Specifically, the photon transmission arrangement itself (described by By;)
provides a host of common causal factors. This fact is responsible for the
failure of principle CI: if the system produces event T3, then it must have
exhibited certain causal factors, some of which have an influence on the
event I,,. Given that the propensity function is defined for a system, these
influences are taken into account by the assignment of propensity values.
Humphreys’s method of justifying CI on the basis of the relationships between
singular events 15, T3, and ~T,3 does not take these influences into account.
For the same reasons, principle CI {ails to provide an adequate formalization of
the fact that the singular event I, is unaffected by the singular events T3 and
~T,3 . Alternatively, the reason that principle CI {ails for the photon
arrangement is that it does not provide a statement concerning the causal
independence of singular events. Consequently, Humphreys’s justification for
Cl fails because his justification for CI is based on the assumption that CI
provides a statement of the causal independence of the singular events
involved.

To conclude this section, consider Humphreys’s argument against the
propensity interpretation of the probability calculus. Humphreys argues that

there is a fundamental inconsistency between the propensity interpretation of
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the probability calculus (especially the inversion theorems) and the fact that
principle CI holds for the photon arrangement, and Cl is intended to make a
claim concerning causal dependence (of singular events) in terms of
propensities. From this inconsistency, Humphreys argues that **[the]
inversion theorems of the classical probability calculus are inapplicable in a
straightforward way to propensities’’ (563). Given the demonstration that these
inconsistencies arise without the inversion theorems, one is left with an
inconsistency between the propensity interpretation of probability (without
the inversion theorems), and the claim that principle CI holds for the photon
arrangement. That is, the source of the inconsistency is not the propensity
interpretation of the inversion theorems.

At this point, then, one is forced to either reject the restricted propensity
interpretation of probability (without the inversion theorems) or reject the
claim that principle CI holds for the photon arrangement. There are two
arguments for rejecting the latter. First, based on the physical description of
the arrangement--specifically assignment iii) which states that
Pr,;(Tl~1;5B,1) = 0—it follows, without the use of any theorems of probability,
that Pr,;(I,»|T;3B;;) = 1. Consequently, principle CI in fact fails for the
arrangement. Second, Humphreys’s argument for principle CI, based on the
fact that the singular events T3 and ~T,; are causally irrelevant to the singular
event L,, is not valid. As discussed above, the method of omission that is
employed in this argument is not justified. The interpretation of principle CI as
a statement of the causal independence of singular events is based on a

misunderstanding of the photon arrangement and the propensity interpretation




of probability.

Thus, the causal interpretation of principle CI is as much at issue as
whether principle CI, in fact, holds or not. Furthermore, the controversy that
has generally been referred to as ‘‘Humphreys’s paradox’’ rests on a
disagreement over the causal interpretation of propensity statements and not
necessarily on a disagreement over the propensity interpretation of
probability. Under the propensity interpretation of probability, outlined
above, the propensity statements comprising principle CI do not provide a
formulation of causal dependence between singular events. Conditional
propensities do not provide a measure of causal dependence between the
(singular) conditioned event and the (singular) conditioning event.

If one maintains that conditional propensities do provide a measure of
causal dependence between th:e (singular) conditioned event and the
(singular) conditioning event, then one is no longer dealing with a propensity
interpretation of probability, one is dealing with a theory of propensities.
Furthermore, as both Humphreys’s discussion and the present discussion point
out, no obvious motivation has been provided for a theory of propensities to
adopt the inversion theorems of the probability calculus. The question then
arises: is there a motivation for an interpretation ot the probability calculus to
adopt talk of propensities? The next section examines both the relationship
between conditional propeusities and causal dependence, as well as the
possible motivations for an interpretation of probability to adopt talk of

propensities.
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2.5 Principle CI and causal dependence

This section examines the significance of the failure of principle CI
towards the propensity interpretation of probability. First, it is argued that,
under the propensity interpretation of probability, principle CI must be taken
to be a statement of statistical independence rather than a statement of causal
independence. Consequently, the failure of principle CI cannot be taken to
be proof that the singular events T, and ~T 5 are ‘‘causally relevant™" to the
singular event I;,. Finally, this section addresses certain ambiguities
surrounding ‘‘common’’ propensity statements of the form ‘‘the propensity of X
to produce Y is p,”’ and examines the relationship between physical
propensities and epistemic probabilities.

Given the failure of CI, rather than concluding that the singular events
T3 and ~T; are causally relevant to the singular event 5, first consider
whether principle CI should be taken as a proper statement of the causal
irdependence of the events 1,5, T3, and ~T,3. Current theories of
probabilistic causation provide evidence that (simple) direct conditional
propensities do not provide an . le uate characterization of causal
independence. For exainple, conditional propensities cannot be equated
with a funcion like L J. Good’s ‘Q(E:F)’ or ‘¢(E:F),” ‘‘the tendency of F to cause
E’’ and ‘‘the degree to which F caused E’’ respectively (see Good 1983). As
Good demonstrates, the explicatum for these functions is more complex than
the explicatum for a direct conditional propensity (according to the classical
definition of conditional probabilities). Conditional propensities do not

represent the degree to which the (singular) conditioning event causes the



(singular) conditioned event. Consequently, given the interpretation of
principle CI that is outlined above, and assuming that indications from current
theories of probabilistic causation Jike Good’s are correct, principle CI cannot
be interpreted as a complete statement of causal independence of the singular
events I», Ty3, and ~T;.

As long as the definition of conditional propensities is taken to
correspond to the definition of conditional probability, CI must correspond to a
statement of statistical independence rather than to a statement of causal
independence. Of course it is possible to reject the classical definition of
probability as the proper definition of conditional propensities. In fact, this is
what is done by advocates of propensity theories. But, the motivation of
propensity theories is only to construct a calculus that is capable of
representing the causal influences between events, and not *o preserve the
structure of the probability calculus. On the other hand, some advocates of
propensity interpretations of probability also reject the classical definition, but
claim to retain some *‘probabilistic’’ status--Fetzer (1981) is an example. The
success of these alternative interpretations depends on the proposed
definition. Furthermore, for this type of propensity interpretation, *‘success’’
involves both the degree to which the new calculus is ‘‘probabilistic’” and the
degree to which it can capture the notion of causal independence.

I see no reason to reject the classical definition, as long as one is willing
to accept the stochastic, rather than causal, notion of independence that
results. The motivation for retaining the classical definition is to have a

stronger, richer, and more useful interpretation of the probability calculus, and



not to create a causal calculus. Ultimately, the motivation for this **cnriched”’
interpretation of the probability calculus is to provide the basis for the
representation of experiments, the interpretation of chance (as demonstrated in
chapter 1), and the construction of a causal calculus. It has already been
demonstrated that the dispositional nature of the propensity interpretation is
consistent with the axioms and theorems of the probability calculus, and it is
demonstrated below that the propensity interpretation is particularly well suited
to expressing various criteria for identifying causal relationships. By rejecting
C], the propensity interpretation is not rejecting the notion that the singular
events T3 and ~Ty3 are “‘causally irrelevant’’ to the singular event 1,,. What is
being rejected is the notion that CI provides an adequate formulation of the
causal independence of singular events in terms of the propensity
interpretation of the probability calc lus.

One issue arising in the previous discussion deserves further
consideration: if direct conditional propensities do not provide an adequate
representation of causal dependence, then what is the benefit of using the
propensity interpretation in the study of causation? The remainder of this
section provides a partial answer to this question by addressing certain
ambiguities surrounding common appeals to propensity statements, particularly,
statements of the form ‘‘the propensity of X to produce Y is p.”’ It must be
recognized that (generally) propensity statements of this form are not
represented by conditional propensities. Instead, they are represented by
‘‘absolute’” conditional propensity statements of the form ‘the propensity of the

system X to produce the event Y is p.”’
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The example that is considered here is that of a ‘‘can opener factory’” as

presented by Salmon (1984, 205).6

Consider, for example, a factory that produces can openers. There
are only two machines, which we may designate A and B, in this
factory. Machine A is ancient; it produces one thousand can
openers per day, and 2.5% of these are defective. Machine B is
more modern; it produces ten thousand can openers per day, and
only 1% of its products are defective. Suppose, at the end of the
day, that all of the defective can openers (which have been sorted
out by the inspectors) are placed in a box. Someone randomly
picks a can opener out of the box, and asks for the probability that
it was produced by the modern machine B. We can easily
calculate the answer; it is 4/5.

Let A, be the event that a can opener is produced by machine A at t,,
let B, be the event that a can opener is produced by machine B at t,, and let
D3 be the event that a can opener is defective at ty. Also, define F,; as the
background conditions concerning the running of the can opener factory for
a day once work starts at that factcry at some time ¢ earlier than t;. Given these
definitions, Salmon has indicated that Pr,,(A»:F,;) = 1/11, Prj(D3]A5:F;y) =
1/40, Pr;{(By:F;;) = 10/11, and Pr,y(D5|B,,:F;;) = 1/100. From these
propensitics and Bayes’s theorem, it follows that Pr,;(B,,|D,5:F,;) = 4/5.

As Salmon continues, he expresses the following misgivings:

Nevertheless, I find it quite unacceptable to say that this
defective can opener has a propensity of (.8 to have been
produced by machine B. It makes good sense to say that machine
B has a propensity of 0.01 to produce defective can openers, but
not to say of the can opener that it has a certain propensity to have
been produced by that machine. (1984, 205)

First, consider the statement that makes good sense: ‘‘machine B has a

6Salmogl has presented a number of examples, most of which have a
structure that is similar to this example. See note 1 for citations.

62




propensity of 0.01 to produce defective can openers.”’ Considering the fact
that “‘propensities’’ are attributes of systems to produce certain events, this
statement is represented as follows. Let M,; be a set of background conditions
describing the operation of machine B at some arbitrary time t;; then there is a
propensity function defined for the system ‘‘machine B’ at any time t; such that
Prﬁ(Dtj:Mﬁ) = 1/100 where the time 4 is later than t,. Thus, the propensity at t;
for (the system) machine B simpliciter to produce a defective can opener at 4 is
1/100.

The reason that the statement ‘‘the defective can opener has a certain
propensity to have been produced by machine B’’ is unacceptable is now
clear. A defective can opener simpliciter (at t;) has no causal power (in and of
itself) to ‘‘produce’’ the property of being made by machine B (at t5). That is,
there is no system described by some set of background conditions D;; and
some corresponding propensity function Pr,; for which Pr;(B, i-Dyi) = 3/4,
where the time t; occurs later than the time t;.

But this result is paralleled in the case of the propensity function defined
for the factory F. Suppose that the system produces a defective can opener at
t3, and the propensity function Pry; for the factory Fis *‘updated’’ accordingly.
The updated propensity function is Pr,3 and is defined for a system that
satisfies the background conditions Fi3 which include the fact that the factory
produced a defective can opener at t;. Then, as described in section 2.3, the
propensity function Pr,5 is not defined over the event B,, since this event
does not occur after t;. Thus, the propensity statement Pr3(B,5:F,3) is not well-

defined.
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Finally, recall the exact nature o Salmon’s characterization of the
situation that raises the question of how one should interpret inverse
conditional propensities in the first place.” The situation is this: at the end of
the day (at t3), ‘‘someone randomly picks a can opener out of the box, and asks
for the probability that it was produced by the modern machine B’” and the
answer ‘“the probability is 4/5”’ is given. Does this answer imply that the
defective can opener, itself, has a propensity of 4/5 to have been produced by
machine B? Of course not. At the end of the day, it is known that at a previous
time t; the propensity for the factory to produce a can opener that is made by
machine B at t,, given that the factory produced a defective can opener at t3, is
4/5. This is a physical probability that (still) characterizes the running of the
factory as it stood at t;. Also, at the end of the day it is learned that a particular
can opener is defective, and was produced by the factory between the times t;
and t3. Thus, the value of the physical propensity (at t;) for the factory to
produce a can opener made by machine B, given that it produced a defective
can opener, is simply adopted as the value of an epistemic probability that this
can opener was made by machine B.

“Inverse’’ propensities do not represent ‘‘inverse’’ dispositions. An
‘*inverse’’ propensity represents a ‘‘forward’’ disposition: a disposition that
produces one future event given that it also produces another future event.

Furthermore, the propensities corresponding to inverse conditional

71 am grateful to William L. Harper for pointing out the necessity of
returning to this issue.



probabilities are not ‘‘redueced’’ from physical probabilities to epistemic
probabilities. The volues of physica! propensities are, however, often adopted
as the values of epistemic probabilities. Finally, one must recognize two
important points concerning the nature of this answer to Salmon’s question.
The first point is that the solution to the problem of interpreting the conclusion
that ‘‘the probability that this defective can opener was produced by machine
B is 4/5” is an epistemic matter.8 The second point is that this solution does
not rest on interpreting inverse conditional propensities as being ‘*merely’’
epistemic probabilities and not physical probabilities:.

What is to be said of the corpse mentioned in the example from Salmon
(1979)? Does the corpse have a propensity to have had its skull perforated by a
bullet? The ‘‘corpse’’ simpliciter has no such propensity. But at some time
earlier than the time at which the fatal shot killed the victim, the circumstances
surrounding the shooting death of the victim had a propensity to produce a
bullet that would perforate the victim’s skull, given that those circumstances
woui also cause the death of the victim. Without more information
concemning the circumstances that produced the fatal shot, not much more can

be said.

2.6 Conditional propensities and probabilistic causation
This section uses the interpretation of chance to relate the propensity

interpretation of probability to the study of probabilistic causation and causal

8This point is recognized by Niiniluoto (1988, 103 note 16).
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independence. First, two disti:ct approaches to probabilistic causation--the
sufficiency view and the necessity view--are characterized using the
propensity interpretation of chance. Next, examples of each view are
examined: Hans Reichenbach ([1956] 1991) as a proponent of the sufficiency
view, and L. J. Good (1983) as a proponent of the necessity view. Then, the
propensity interpretation is used to demonstrate that both of these approaches
to causation incorporate chance-like thinking, consequently both approaches
encounter the problem of the homogeneous reference class. Finally, it is
argued that any acccunt of causation based on chance-like criteria will
encounter the problem of homogeneity, and that it is only through an analysis
in terms of ‘‘chance in a situation’’ that the problem of homogeneity can be
avoided. Of course, as it was demonstrated in chapter 1, the propensity
interpretation is particularly well suited to providing an analysis of chance in a
situation. Consequently, it is argued that the propensity interpretation is
capable of avoiding the problem of homogeneity.

There is a great deal of debate concerning the nature ¢ ” probabilistic
causation. Consequently, the presentation here is quite general. Following
Brian Skyrms (1988), discussion focuses on the distinction between two
fundamental approaches to causation. The first approach analyzes an event (a
potential cause) in terms of the degree to which it provides a sufficient
condition for the occurrence of some other event (the potential effect). The
second approach focuses on the ‘‘necessity’’ of an event (a potential cause) in
producing the occurrence of some other event (the potential effect).

The basis of the first approach--the sufficiency view--usually involves
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some statement or formulation of the following criterion for causation:

SPCF Cis a (sufficient) positive causal factor for E if and only if

Ch(E|C) > Ch(E|~C)

The propensity interpretation of this criterion for causal relevance is as
follows. Ch(E|C) > Ch(E|~C) if and only if Pr(E|C:S) > Pr(E|~C:S) for any
relevant system S capable of producing both event E and event C.
Pr(E|C:S) > Pr(E}~C:S) is true if and only if it is found that, among those systems
that are capable of producing both events E and C, the systems that produce
event C have a stronger propensity to produce event E than do the systems that
produce the event ~C. It is on this basis that C is called a positive causal factor
for E. The definition of a negative causal factor can proceed in a simifar
fashion in terms of Ch(E|C) < Ch(E}]~C). The result is that the identification of
causal factors is a task of identifying events that always contribute to the
occurrence (or nonoccurrence) of an event: if C is a positive causal factor for E
then there are no systems for which Pr(E|C:S) < Pr(E|~C:S).

One manner of approaching the problem of verifying the fact that there
are no such systems is to test for systems containing a common cause for CC and
E. This is the approach of Hans Reichenbach, one of the most notable
proponents of the sufficiency approach o probabilistic causation.
Reichenbach ([1956] 1991) defines causal relevance as follows:

An event A1 is causally relevant to a later event Az if P(A1, A3) >

P(A3) and there exists no set of events A(;) s A(g) which are

carlier than or simultaneous with A} such that this set screens off
A1 from A3. (204)




The fact that Reichenbach must supplement his ‘frequentist’’ definition
of statistical independence with the ‘‘screening off’’ condition in order to
define causal relevance can be easily understood in terms of the propensity
account of SPCF. In terms of propensities, Reichenbach’s search for a set of
events that screens off event A, from A; in the analysis of causal relevance is
the same as the search for systems that ‘‘screen off,’” or do not exhibit, the
contribution of C to the production of E. That is, the screening off condition
motivates the search for systems for which Pr(E|C:S) = Pr(E|~C:S).
Reichenbach’s notion of screening off is built into the propensity
interpretation of SPCF. Given that chance can be understood as a selection
function on propensitics, the satisfaction of SPCF, above, demands that there
exists no system that screens off the effects of C on E. Thus, the use of chance
and propensities demonstrates the strength of Reichenbach’s screening off
condition.

The ‘‘necessity’’ approach usually involves some statement or
formulation of the following criterion for causation:

NPCF Cis a (necessary) positive causal factor for E if and only if

Ch(~C|~E) > Ch(~C|E) where the event C either occurs or
does not occur at some earlier time than the time that event E
either occurs or does not occur.
The propensity interpretation of this criterion for causal relevance is as
follows. Ch(~C}~E) > Ch(~CIE) if and only if Pr(~(}~E:S) > Pr(~CIE:S) for any
relevant system S capable of producing both event E and event C.

Pr(~C|~E:S) > Pr(~C|E:S) is true if and only if it is found that, among those




systems that are capable of producing both events E and C, the systems that fail
to produce event E have a stronger propensity for failing to produce event C
than do the systems that produce the event E. That is, proportionately fewer
systems are capable of producing the event E without also producing the
event C. The difference between the values of Pr(~C|~E:S) and Pr(~(]E:S)
can be considered as a measure of the degree to which the production of C s
necessary for producing the event E. It is in this manner that C is considered a
causal factor for E.
The most notable example of this approach to the analysis of causation is
L J. Good’s *“A Causal Calculus’’ (1983). Consider, for example, his Q-function.
In abbreviated notation, Q(E:F) is read as the *‘causai support for E provided by
F, or the tendency of F to cause E’’ where F and E are, respectively, the initial
and final events in a causal network (198). The full notation reveals that the
subjectivist theory of Good relies on many of the same assumptions as does the
propensity account.
Good takes Q(E:F) to be an abbreviation for Q(E:FJU.H) where U and H
are defined as follows:
Let H denote all true laws of naturc, whether known or unknown,
and let U denote the ‘‘essential physical circumstances’” just
before F started. When we talk about *‘essential physical
circumstances’’ we imply that the exact state has a probability
distribution. (200)
The conditioning of Q on ‘‘the ‘essential physical circumstances’ just before F
started’’ is simply taking account of what ‘‘system’’ is being used. Also, the

‘‘implication that the exact state has a probability distribution’’ amounts to the

assumption that there is a well-defined propensity function for that system on
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some appropriate event space. Consequently, by considering the abbreviated
definition of Q to be Q(E:F) = log[P(~E}~F)/P(~E|F)}, the Q-function most
certainly provides a measure of the difference between the values of
Pr(~C|~E:S) aud Pr(~C|E:S) as described above.

NPCF presupposes that event C precedes event E. This assumption is
tantamount to the assumption that there is no ‘‘backwards causation.”’ If
backward causal systems are being studied, then an appropriate definiticn of
‘‘necessary positive causal factor’’ will have to be formulated. The
reformulation could be as simple as changing the temporal conditions in
NPCF. Ultimately, the determination of the necessary changes is an empirical
matter. In his statement of causal tendency, Good takes events F and E to be
the *‘initial’’ and ‘‘final’’ events, respectively, in a causal network. Thus, Good’s
version of NPCF consists of a subjectivist statement of statistical relevance,
the physical presuppositions involving ‘*.ae ‘essential physical circumstances’
just before F started,”” and the temporal conditions between F and E.
Furthermore, the propensity interpretation of chance reveals that these
presuppositions are necessary for capturing the force of NPCF.

While the propensity interpretation of chance provides an opportunity to
compare and contrast the necessity and sufficiency approaches to probabilistic
causation, it also provides an opportunity to evaluate them. Both the necessity
approach and the sufficiency approach encounter a fundamental problem: both
approaches to causation make reference to probabilities that are defined over
negated events, and this reference introduces inhomogeneous causal factors

into the analysis. For example, according to the propensity interpretation of
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Reichenbach’s theory, to search for systems that screen off the event C fcom E,
one must consider systems that produce the event E but fail to produce the
event C. Without restrictions on similarity of systems, this search tor s, stems
that screen off the event C from E can be interpreted as a search for any system
that produces the event E and ~C, with no consideration of its ability to
produce the event C. The result is that the systems to be considered can
include systems composed of extremely diverse--even
inhomogeneous--causal factors. This problem is particularly acute for
frequentists like Reichenbach. Given that the frequentist’s search for a
reference class proceeds in terms of sets of events (rather than systems), the
threat of inhomogeneity is more evident since it is possible to devise an
infinite number of alternative reference classes in terms of sets of events.! Of
course, in addition to offering a method for identifying this problem, the
propensity account offers a method for avoiding or reducing the extent of the
problem.

In stating the criteria in terms of propensities, one can demand that the
propensity functions are defined over a o-algebra on the same set of
outcomes. This restriction results in the consideration of propensity functions
that are defined for the same (or similar) systems, since propensity functions are
defined both for a system and on an event space. As a result, the propensity

functions used i the analysis of causation should be defined for systems that

9See Salmon 1971 (especially 40-42) for a similar criticism of
Reichenbach’s frequentist approach to identifying an appropriate reference
class.
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can produce the events E, ~E, C, and ~C. The assumpticn is that, in most
cases, there will be greater similarity between the causal factors involved in
these systems than among the ‘‘unrestricted’’ pool of systems allowed by
Reichenbach’s frequentist account. Traditionally, this problem has been
characterized as the problem of the homogeneous reference class. Of course,
even with the propensity interpretation of the sufficiency approach, as long as
the criteria for causal relevance are expressed in terms of conditional chance,
the problem o1 homogeneity wil' emain.

The problem of homogeneity can be avoided by basing the analysis of
causation on chance in a situation, where that situation is chcracterized by a
homogeneous set of causal factors. This can be expressed as an analysis of
Ch(Al||Z), where X is a set of homogeneous systems; systems that are composed
of homogeneous sets of causal factors. In practical terms, the same basic
experimental set up (characterized by some set of variables) is used to perform a
number of experiments with different settings for the variables. The desired
results are produced by controiling variables such that the results of the same
general experimental setup run with different settings for the variables can be
compared. In chapter 3, examples of such controls and comparisons are
discussed in terms of the results of a number of versions of the two slit
experiment.

Fin»ily, the necessity approach to cauvsa! relevance is confronted with

stmilar problems. Advocates of the necessity ap; - ~ach confront the problem

of homogeneity with both the potential cause and the potential effect. In

72




response to the problem of homogeneity, various authors! have suggested
narrowing the reference class for the potential cause or effect by defining
“‘contrastive’’ causal relevance as follows (for example): “*C in contrast to
{C,C",C", ...} is a positive causal factor for E’" or **C has a positive causal
factor for E in contrast to {E’, E”, E", .. .}.”* Chapter 3 demonstrates that this
strategy is easily incorporated into the strategy of analyzing causal relevance in

terms of controlled experiments.

2.7 Concluding remarks

The dissolution of Humphreys’s paradox, and most of the issues
surrounding the propensity interpretation of inverse conditional propensities,
rests on recognizing that conditional propensities do not represent a measure
of the causal dependence of the (singular) conditioned event on the (singular)
conditioning event. Inverse conditional propensities do not correspond to, or
represent, i..verse dispositions. Furthermore, inverse conditional propensities
can take non-trivial values and, as the update semantics demonstrated, inverse
conditional propensities are well-defined as long as both the conditioned
event and the conditioning event occur later than the time at which the
propensity function is defined. It was alsc demonstrated that Humphreys’s
claim that principle CI--Pr,;(I,5]T,5:B,;) = Pr,;(15|~T;3:B,;) = Pr,;(1,5:B,,) in the

notation of chapter 1--holds for the photon arrangement is false. On the one

1CFor example, Glymour (1986), Good (1983), Holland (1986), and
Skyrms (1988).
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hand, by examining the physical characteristics of the photon arrangement
(without an appeal to the theorems of the probability calculus) it was
demonstrated that principle CI does not hold for the arrangement. On the other
hand, it was demonstrated that Humphreys’s justification for principle CI was
based on a misconception of the causal relations expressed by principle CL
Under the propensity interpretation outlined above, principle CI does not
provide a direct statement of causal independence: principle CI provides a
statement of stochastic independence.

It was demonstrated that the propensity interpretation of chance is
particularly well suited to providing a distinction between, and analysis of, ‘wo
approaches to probabilistic causation. This analysis showed that any account of
causation based on criteria expressed in terms of chance, such as SPCF and
NPCEF, is subject to the problem of homogeneity. There is a tension in the
study of causation. On the one hand, causation must involve the study of the
relations between events in more than one particular system. However, the
study of morc than one system introduces the problem of homogeneity. Any
account of causation based on chance will encounter the problem of
homogeneity in full force, since chance is a selection function on all systems
exhibiting a relation between the events in question. Consequently, in order
to avoid, or reduce, the impact of the problem of homogeneity, the class of
systems that are examined must be restricted in some manner. The propensity
account is particularly well suited to imposing such restrictions.

Finally, it has been demonstrated that the dispositional nature of the

propensity interpretation that has been outlined above is consistent with tne



theorems of the probability calculus. Additionally, the enriched nature of the
propensity interpretation, resulting from its dispositional character, is the basis
for unique insights into the analysis of chance and causation. Moreover, the
prcpensity interpretation provides a link between the **abstract’” nature of
chance (discussed in chapter 1) and the problem of homogeneity as it is
encountered by both the sufficiency and necessity approaches to causation.
Furthermore, this analysis provided a strategy for avoiding the problem of

homogeneity.
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3

Propensities and Quantum Mechanics

3.1 Introduction

Chapter 1 emphasized the fact that propensity functions are defined for
particular systems and represent the relations between a specific experimental
setup and its possible outcomes. Chapter 1 also introduced four different
“‘versions’’ of the two slit experiment: one version, namely E,, in which slit
one is open, slit two is closed, and the detector is off; one version, namely E,,
in which slit one is closed, slit two is open, and the detector is off; one
version, namely E;, in which both slits are open and the detector is off; and
one version, namely E'3, in which both slits are open and the detector is on.
Clearly, there are relationships between the experimental setups in the
different versions. Basically, the values of two variables are changed: the status
of the slits and the status of the detector at the slits. Considering the demand
that the propensity interpretation puts on the representation of systems and
their possible outcomes, an obvious question arises: ‘‘Can the propensity
interpretation provide a means of representing these relations between
different experiments?’’

In fact, the update semantics of chapter 2 provided a means of
representing the relations between alternative descriptions of the ‘‘same’’

system as it evelves over time. But in the case of the two slit experiment,
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shouldn’t there also be a rather straightforward relationship between the values
of Pr(R:E;)--representing trials that produce electrons that pass through slit one
and hit region R, with the detector off--and the value of Pr(R&P,:E';)--
representing trials that produce electrons that pass through slit one and hit
region R, with the detector on? Given that chance was represented as a
selection function on a partition of propensity functions, one must anticipate
the possibility of providing a mathematical representation of the relations
between different experimental setups and their results in terms of propensity
functions. One of the primary aims of this chapter is to demonstrate that the
representation of relations between experiments is an empirical enterprise.

In addition to examining the results of the various two slit experiments
performed with electrons (as discussed in chapter 1), this chapter examines the
results of two sets of macroscopic two slit experiments: one set is carried out
with bullets and the other is carried out with water waves.! Each set of
experiments is considered in turn. beginning with the bullet experiments.
First, the bullet experiments and their results are described in terms of the
propensity interpretation. Then the relations between these experiments are
expressed in terms of the principle of strict summation and the principle of
strict composition. Finally, it is demonstrated, by appealing to the theorems of
probability and to various empirical results, that these principles are equivalent.

Section 3.3 examines the exact nature of, and the significance of, the

1These experiments are based on these described in Richard Feynman
1965 (ch. 6® 'nd in Richard Feynman, Robert B. Leighton, and Matthew Sands
1965 (ch. 1)
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equivalence of the principles of strict summation and strict composition. It is
demonstrated that the equivalence of these principles is tantamount to making
an appeal to controlled experiments. Also, an analysis of controlled
experiments establishes that controlled experiments provide the basis for
defining the relations between propensity functions that are defined for
different systems. Furthermore, the study of controlled experiments provides a
characterization of the manner in which the bullet experiments themselves
share common causal factors.

Section 3.4 provides an examination of the two slit experiments
performed with water waves and of the results of these experiments. The
results of the experiments with water waves are presented in terms of
intensities rather than propensities. Fi:-¢ it is demonstrated that the principle of
strict summation is violated. Also, it is established that the violation of this
principle is due to the causal influence of the status of the slits. Furthermore,
these results yield an interference effect that can be expressed in such a
manner that they obviously correspond to a violation of the principle of strict
summation, but there is no expression corresponding to the violation of the
principle of strict composition. It is argued that, due to the nature of intensities
and their measurement, there are limitations on the manner in which the
results of wave experiments can be expressed. Thus, questions concerning
the violation, or satisfaction, of the principle of strict composition cannot be
answered.

The two slit experiments performed with electrons, and their results, are

examined in section 3.5. It is demonstrated that the principle of strict
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summation is violated while the principle of strict compaosition is not violated.
Furthermore, it is demonstrated that these results are consistent with the
supposition that both the status of the slits and the status of the detector are
causally relevant. it is concluded that the results of the two slit experiment with
electrons are paradoxical only if one supposes that there is a causal explanation
of the manner in which the status of the detector is causally relevant to the
results. From this conclusion it is argued that strictly logical and probabilistic
attempts to solve the paradoxes, such as those of Hilary Putnam 1979 and Luiyi
Accardi 1984, fail. Finally, this chapter utilizes the propensity interpretation of
the two slit experiment to formulate two fundamental questions that any
interpretation of quantum mechanics must answer. Then, the various
interpretations of quantum mechanics are characterized, and distinguished

from one another, in terms of the possible answers to these two questions.

3.2 The two slit experiment performed with bullets

The aim of this section is to examine the results of the two slit
experiment when it is performed with bullets. First, this section describes the
apparatus for six closely related two slit experiments performed with bullets.
Next, the propensity interpretation of probability is used to represent the
results of those experiments and to represent the relations between those
results. The relations between the results are presented in terms of the
principles of strict summation and strict composition. Finally, it is dcmonstrated
that the principles of strict summation and strict composition provide

equivalent representations of the same relation.




The experimental apparatus for the two slit experiment, performed with
bullets, is described as follows. The source is a machine gun, randomly firing
bullets at the diaphragm. The diaphragm is a bullet proof barrier containing two
slits just big enough to allow a bullet to pass through, and is arranged so that the
slits can be opened or closed. The screen is a wood wall that absorbs, and
retains, all bullets reaching it. The region R is simply a specific (possibly
painted or outlined) region of the screen. At the end of an experiment both
the number of bullets that hit the region R and the number of bullets that hit
the screen can be counted, and only those emissions that reach, or hit, the
screen are considered statistically relevant.

The apparatus is also equipped with a device that is capable of detecting
whether a bullet passes through slit one and a similar detector for slit two. This
device could take the form of a set of infra-red motion detectors appropriately
placed behind the diaphragm, or it could consist of the experimenter
reviewing high speed film of each trial. The result is that if the detector is
‘‘on’’ during the experiment, then, for each trial, the experimenter would be
able to determine whether the bullet passed through slit one or slit two. In this
experiment all factors are held fixed except for the status of the slits and the
status of the detector. The results of an experiment that is run with the detector
on can be recorded using two columns: on trials where a bullet is detected at
slit one, **hits’” and ‘“‘misses’’ of region R are recorded in column 1; and on trials
where a bullet is detected at slit two, **hits’’ and ‘‘misses’’ of R are recorded in
column 2. Recall that it was assumed that the detection process is 100 percent

accurate; consequently, the number of bullets d::tected at a given slit is equal to
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the number of bullets passing through that slit. Thus, the number of **hits of R
given that the bullet passed through slit one*’ can be calculated using the data
from column 1, the number of *‘hits of R given that the bullet passed through
slit two’’ can be calculated using data from column 2, and **number of hits of R™
can be calculated using data from both columns.

Define B, to be the two slit experiment in which the source emits
bullets and only slit one is open, define B, as the system where only slit two is
open, and define B; as the system with both slits cpen. For each of these
systems the detector is left ‘‘off.”> Consequently, for an arbitrary region R, the
set of outcomes for each system is {R, ~R}. Three new sysiems can be created
by turning the detectors ‘‘on’’ in each of the previous systems. A prime sign
(') indicates that the detector is ‘‘on’’; for example, the system B'; is defined as
having both slits open with the detector “‘on.”” The set of outcomes for each
““primed’’ system is {R, ~R}x{P,, ~P,}x{P>, ~P>}, where P and P, are
defined as the events ‘‘the emission passed through slit one’” and *‘the
emission passed through slit two,’” respectively.

Now, assume that there is a single apparatus that is capable of providing
the basis for all six systems: the desired system can be produced by opening
and closing the slits and turning the detectors on or off. That is, for some event
X, specifying the common causal factors, O, = ““slit one is open at time ;,”’
O, = “slit two isopen at t;,”” and event D = *‘the detector is on,” all six systems
can be defined as follows: B; = X&0&~0,&~D, B, = X&~0,&0,4&~D,
B; = X&0;&0,&~D, B'| = X&0,&~0,&D, B') = X&~0&0,&D, and

B’y = X&0,&0,&D. There are a numt :r of manners in which the empirical
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results for these experiments can be reported. For example, the distributions
of hits of regions in different positions (X) on the screen are given in figure
3.1. And these distributions correspond to the values of Pr(R:B,), Pr(R:B,), and

Pr(R:B;), respectively.

Pr(R:B1)

Pr(R:B3)

Figure 3.1. Distributions of hits for the bullet experiments.

The results of and relations between these systems have also been
represented in terms of the following equalities. The principle of strict
summation holds between systems B, B,, and B5:

Pr(K:Bs3) = Pr(R:B,) + Pr(R:B-,, 3.1)
That is, the results from B, can be obtained by simply adding the results of the
experiments involving B, and B,. For all systems, the bullets are localized at
the screen:

Pr(R&~R:B;) = 0 and Pr(R&~R:B’;)) =0 (3.2)

fori< {1, 2, 3}. Inother words, for all six experiments, there is no trial in



which an emission both *‘hits’’ and *‘misses’’ region R. The results of system
B’y obey the mathematical principle of strict composition :
Pr(R:B'3) = Pr(R&P;:B'3) + Pr(R&P2:B'3)* 3.3)
The results of system B'; also demonstrates that the bullets are iocalized in the
region of the slits:
Pr(P,&P,:B'3) =0 34)
That is, system B’5 produces no bullets that are detected at both slits on the
same trial.
Given the similarity of the relationship between the results of systems
B, B,, and B; and the results of system B’;--expressed by the principles of
strict summation and strict composition, respectively--it is natural to make the
claim that the principles of strict summation and strict composition provide
alternative statements of the same property, or alternative statements of the
relations between the bullet systems. Ultimately, the fact that both strict
summation and strict composition hold provides evidence for the claim that all
six systems are governed by, or ‘‘composed of,’’ the same causal factors.
To end this section, it is demonstrated that the principles of strict
summation and strict composition can, in fact, be derived from one another
with the consideration of two more sets of empirical results--namely those

equalities stated in (3.5) and (3.9) below. The interpretation of the resuits of the

2Strict composition is often expressed in terms of conditional
probabilities. For simplicity and clarity we use conjunctions. See ‘A4 A
d.rivation of alternative expressions of the principle of strict composition’’ of
Appendix 1 for the derivation and statement of equivalent expressions of strict
composition.




bullet experiments, the significance of the derivation given below, and
discussions concerning the causal similarity of the systems are taken up in the
next section.
From empirical results, the following equalities hold:
Pr(R:B’y) = Pr(R:B,), 3.5)
Pr(R:B’,) = Pr(R:B,), and
Pr(R:B’;) = Pr(R:B,)
Step 1: by substituting into strict summation--Pr(R:B;) = Pr(R:B,) + Pr(R:B,),

equality (3.1) above--according to the equalities in (3.5) it follows that

Pr(R:B’;) = Pr(R:B’)) + Pr(R:B’,) (3.6)
Step 2: since Pr(P;:B’)) = Pr(P,:B’,) = 1, it must be the case that
Pr(R:B’;) = Pr(R&P,:B’;) and (3.7)

Pr(R:B’,) = Pr(R&P,:B’5)
Step 3: substituting into (3.6) according to the equalities in (3.7) yields
Pr(R:B’;) = Pr(R&P,:B')) + Pr(R&P,:B’5) (3.8)
The following equalities are also empirically verifiable,
Pr(R&P,:B’;) = Pr(R&P,:B’|) and 3.9)
Pr(R&P,:B’;) = Pr(R&P,:B’5)
Step 4: subs.ituting into (3.8) according to the equalities in (3.9) produces the
principle of strict compesition: Pr(R:B’;) = Pr(R&P:B’3) + Pr(R&P,:B’;),
equation (3.3) above.
Note that each step in this derivation can be reversed to produce a
derivation of the principle of strict summation from the principle of strict

composition. Thus, the results of these experiments are very closely related;
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they are so closely related that the principles of strict summation and strict
composition must be considered to be equivalent. The next section
examines the manner in which these principles are equivalent, by providing
an analysis of each step of the derivation given above. Furthermore. the
examination of the next section supports the claim that all six systems ure

governed by the same causal factors.

3.3 Controlled experiments and causal relevance

The aim of this section is to demonstrate the significance of the
derivation given in section 3.2. Specifically, it is demenstrated that the
derivation cannot proceed 1 terms of mathematical probability alone, and that
the intended use of the argument presupposes a deeper analysis of
experimentation than is given by most ‘‘nonpropensity”’ interpretations of
probability. In fact, it is argued that the derivation essentially presupposes the
results of controlled experiments, and that the propensity interpretation can
both reveal the fact that this presupposition is made, and reveal the force and
reason behind making this presupposition. Also, it is demonstrated that
controlled experiments provide the basis for defining the relationship
between propensity functions for different systems. Ultimately, it is
demonstrated that this presupposition, and the propensity interpretation of the
results of the experiments with bullets, are necessary to support the claim that
the results of the bullet experiments provide evidence that cach experiment is
governed by the same ‘‘type’’ of ¢ usal factors.

Before examining the derivation in section 3.2, it is important to



recognize the restrictions imposed by, or limitations of, the propensity
calculus. Recall that a propensity function is defined for a system and over a
Boolean o-algebra on a set of possible outcomes. There is no formal
relationship between propensity functions defined for different systems or
between propensity functions defined on different event spaces. Although
systems B, B,, and B each have {R, ~R} as its outcome space, the status of the
slits is different in each system. Consequently, there is no formal relation
between the results of the experiments carried out on systems B, B, and B,.
The examination of the derivation in section 3.2 focuses on the manner in
which this derivation establishes, or defines, relationships among propensity
functions for different systems and on different event spaces.

The validity of the first step in the derivation--establishing the
equivalence of strict summation and equation (3.6)--depends on the equalities
expressed in (3.5). In c.der to understand the significance of step onc, first
consider the manner in which the equalities in (3.5) represent the nature of
the relationships between systems B,and B'{, systems B, and B’,, and systems
B; and B’;. To begin, imagine performing the following controlled
experiment with system B,. First, measure the ability of B to produce the
event R; that is, measure the value of Pr(R:B). Then zlter B, in a controlled
manner. In other words, turn the detectors on while holding all other factors
fixed; that is, convert B, to B';. Next, measure the ability of B'; to produce the
same event R; that is, measure the value of Pr(R:B’;). The results of this
controlled experiment are represented by the relationship between the values

of Pr(R:B,) and Pr(R:B’;).




According to conventional interpretations of controlled experiments,
the status of the detectors is a causal factor for R (in system B, or B',) if and only
if Pr(R:B;) = Pr(R:B’;). Thus, the first equality of (3.5), Pr(R:B;) = 1'r(R:B,),
demonstrates that the status of the detector is not causally relevant to the
system’s ability to produce event R. Since the only difference between
systems B and B’ is the status of the detectors, and since having the detectors
on or off has no effect on a system’s ability to produce the event R, the causal
factors responsible for the event R must be ‘‘within’’ the common element of
systems B, and B’;.

In terms of the propensity interpretation, if the difference between two
systems is not statistically relevant to the production of an event, then that
difference is not a causal factor in those systems’s ability to produce that event.
Formally, for any pair of systems S; and S, such that for some conjunction of
events X and some event F, S; = X&F and S, = X&~F, event ¥ (and ~F) is
not a causal factor for the event A in systems S, and S, if and only if
Pr(A:S;) = Pr(A:S,). In this manner, the propensity interpretation provides a
method of representing the results of controlled experiments. Furthermore,
controlled experiments provide the basis for defining the relationships
between propensity functions defined for Jifferent systems. Under the
propensity interpretation, then, an equality or inequality involving propensity
statements for different systems, on the same event, is a statement about the
causal relcvance of the difference between those systems for that event.

On this interpretation, the second and third equalities of (3.5) provide

similar results concerning the causal influence of the detectors among
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experiments with slit one closed and slit two open (systems B, ~ad B',) and the
causal influence of the detectors among experiments with both slits open
(systems B3 2nd B'3). Consequentl: the equalities given in (3.5) provide a
representation of the fact that the status of the detectors is not causally relevant
to any of the six systems. Given this understanding of the equations in (3.5),
the physical and causal implications of step 1 are made clear.

According to the propensity interpretation of relations between
propensities defined for different systems on the same event, the significance
of the principle of strict summation can be interpreted as follows. Given that
the status of the slits is the only difference between systems By and B, and
between B4 and B,, strict summation reveals that the status of the slits is causally
relevant to the production of the event R since strict summation implies that
Pr(R:B3) = Pr(R:B,) and Pr(R:B;) = Pr(R:B,), when Pr(R:B,) = O and
Pr(R:B,) = 0. Furthermore, the mathematical structure of strict summation
provides a statement of the ‘‘manner in which’’ the status of the slits is causally
relevant to the occurrence of event R.

Now consider the significance ~f step 1. Strict summation (3.1)
provides a statement of the manner in which the status of the slits is causally
relevant to the occurrence of event R among the systems with the detectors
turned off. The equalities in (3.5) reveal that the status of the detectors is
causally irrelevant to the production of the event R in the bullet systems. From
these two facts it follows that the manner in which the status of the slits is
causally relevant (or not) to the production of the event R must be the same for

the systems with the detector turned on. This relationship of causal relevance




is represented by equation (3.6). Thus, in establishing (3.6), step 1 reveals that

the manner in which the status of the slits is relevant to the event R is
unaffected by the status of the detector.

Step 2 involves relations between propensities that are defined for the
same system on the same set of events. Consequently, step 2 proceeds in terms
of the axioms and theorems of probability. From a measure theoretic view, any
event is equivalent to the conjunction of that event and a tautology. For

example, the propensity function for B'; assigns the event P; a value of one;

that is, event P; is a tautology for this function. Thus, the propensity function
defined for B’y must assign the same values to the events R and R&P;. That is,
step 2 establishes that the events R and R&P, are considered equivalent, and
can be fully interchanged within the scope of the propensity function

defined for B’ without a loss of ‘‘meaning’’ in measure theoretic terms.
Together with similar reasoning in terms of the function for B, and events R
and R&P,, it follows that the equalities in (3.7) represent the fact that the
propensity function defined for B considers the events R and R&P, to be
equivalent, and that the propensity function defined for B’, considers the
events R and R&P, to be equivalent.

Step 3 can be understood as follows. Given the interpretation of (3.7)
above, equality (3.6) can be represented in terms of events R&P, and R&P,
without any significant ‘‘measure theoretic’’ loss of meaning. That is, (3.8)
represents the same relationship that (3.6) represents except that (3.6) states the
relationship in terms of the events R&P; and R&P,, whereas (3.6) states the

relationship in terms of the event R.




Step 4 involves relations between propensiti~s defined for system B';
and systems B’; and B'5. Consequently, step 4 depends on empirical results
corresponding to appropriate ‘‘controlled experiments.”” The equalities of (3.9)
provide these results. According to the first equality of (3.9), the status of slit
two is not causally relevant to the production of the event R&P in systems B,
and B';. Thus, the manner in which B’ is causally relevant to event R&P, is
the same as the manner in which B'; is relevant to the event R&P . Similarly,
the second equality of (3.9) represents the fact that the status of slit one is not
causally relevant, in systems B’ and B',, to the production of the event R&P».
Therefore, step 4 establishes that the manner in which the events R&P, and
R&P, are produced is unaffected by the status of the stilt through which the
bullet does not pass. Does this correspond to the propensity interpretation of
the principle ot strict composition?

The principle of composition states that the causal factors for the event R
(in B'3) can be represented as the sum of the causal factors for the events R&P,
(in B'3) and R&P, (in B’3) just as the principle of strict summation states that the
causal factors for R (in B3) can be represented as the sum of the factors for R (in
B,) and the causal factors for R (in B;). This interpretation is supported by the
analysis of the derivation given above. In fact, the analysis of the derivation
supports a stronger claim: the principles of strict summation and strict
composition are alternative representations of the relationship between the
causal factors for the event R in “‘bullet systems.”’

The principle of strict composition represents a relationship between

different events, and it is expressed in terms of a single propensity function.
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On the other hand, the principle of strict summation represents a relationship
between different propensity functions, and is expressed in terms of the same
event. Each principle provides a truly distinct manner of analyzing the
relationship between causal factors for the event R, and the analysis of the
derivation given above allows the unification of the results of these distinct
methods of analysis. Furthermore, the unifying role of the derivation is a direct
result of both the incorporation of empirical results and the ,..opensity
interpretation of probability. Equations (3.5) and (3.9) provide empirical
evidence that is essential to the derivation of strict composition from strict
summation (and vice versa). Moreover, the manner in which this empirical
evidence is used is tantamount to supplying the results of controlled
experiments. Furthermore, the propensity interpretation of the probability
calculus enables the significance of the empirical data (as resuns of controlled
experiments) to be appreciated, and maintained, through each step of the
derivation. This appreciation is made possible by the fact that the propensity
interpretation represents probabilities as a three-place relation, providing a
unified and formal representation of particular experimental setups and their
relations to the events they produce and the propensity values assigned to
those events. Generally, in so far as non-propensity interpretations of
probability do not provide a unified, formal representation of the experimental
setup, no other interpretation of probability is able to track this influence of
causal factors in terms of the physical experiments and their empirical results

within one unified formal system.

Traditionally, the fact that bullets are localized in the region of the slits




has been taken to be the most important characteristic of **classical’* particle
systems. The reason that the principles of strict summation and strict
composition hold is the fact that a bullet cannot pass through both slits. It is the
following claim that underlies most attempts to characterize B and B'; as
‘‘particle’’ systems:

If the detector had been turned on (and the events Py and P>
were measured) while running experiments with system B3 then
the results associated with B’3 would have been recorded,;

specifically, the bullets would have been found to be localized at
the region of the slits (3.4), and so strict composition (3.3) would
have been found to be true.

The force and intent of this counterfactual can be captured in terms of the
propensity account by asserting that the following equalities hold:
Pr(P,&P,:B3)=0 (3.10)
Pr(R:B;) = Pr(R&P;:B;) + Pr(R&P,:B;) (3.11)
Yet, these equalities cannot be empirically tested using B3 alope, and they are
not well-defined according to the formalism of the propensity interpretation
since the propensity function for B; is not defined over the events P; and P;.
The proper method to assert that systems B; and B3 have similar causal
structure is to note that the difference between them is not causally or
statistically significant. This method incorporates the empirical results of
controlled experiments and is empirically testable. Moreover, the fact thut the
bullets are localized in the region of the tw slits (3.4) implies strict
composition and, through the derivation discussed above, it also implies strict

summation. But it is also the case that (3.4) is not equivalent to the principles of




strict composition an1 strict summation.3 There is a significant difference
between claiming that (A) the bullet systems are the same ‘‘because’’ in each
system the bullets are localized at the slits, and claiming that (E) the bullet
systems are the same ‘‘because’’ in each system the causal factors responsible
for the event R are related to each other in the same manner--in the manner
captured by strict summation and strict composition.

Statement (A) involves the hypothetical or counterfactual claim that
system B, behaves in the same manner when it is unobserved as it does when
it is observed. This claim is not empirically testable. Statement (B) claims that
the systems are equivalent, relative to some empirical criteria. Specifically,
statement (B) is made relative to strict summation and strict composition;
consequently, statement (B) is empirically testable. Statement (B) does,
however, provide evidence, or support, for statement (A). If the causal factors
for every event that a group of systems produces are related tv each other in
every manner then those systems must be equivalent in every sense.

The distinction between statements (A) and (B) raises an important
question: ‘‘Is there any physically meaningful difference between having a
propensity function defined for By and on {R, ~R} and having a propensity
function defined for B; and on {R, ~R}x{P;, ~P; }x{P,, ~P,}?*’ For, if this
distinction is simply an insignificant artifact of the notation that is adopted here,

then the distinction between the two propensity functions can simply be

3See **A.S A derivation of the principle of strict composition from the
fact that bullets are localized at the slits’” in Appendix 1 for a proof of these last
two claims.
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dropped and the controversy between statements (A) and (B) can easily be
avoided.

Recall, first, that the only physical difference between systems B; and
B’; is that the detector is ‘‘on’’ in the case of B; and, second, that detection is
100 percent accurate. Furthermore, given that the status of the detector is not
statistically relevant to the production of the event R, the only effect of having
the detector turned on in the case of system B is that the occurrence of the
events P, and P, can be determined after the initialization of the experiment.
It is this physical (or measure-theoretic) condition prior to the start of the
experiment (as part of the system) that provides the motivation to include the
events P, and P, in the event space of the propensity function defined for
B’;. There is no similar physical or measure-theoretic motivation for including
the events P; and P, in the event space of the propensity function defined
for B.

The motivation for considering a propensity function that is defined for
B; and over {R, ~R}x{P,, ~P;}x{P,, ~P,} is provided by hypothetical
reas.iiog which arises from the equivalence of the causal factors for R in the
six systems. Given that systems B and B'; are considered to be causally
equivalent with respect to R, it is legitimate to suppose that the events P and
P, do, in fact, occur (measured or not) during the experiments performed with
B;. Also, the frequency of the occurrence of Py and P, (if they were
‘““measured’’) would have to be aescribed by a propensity function defined
over {R, ~R}x{P,, ~P;}x{P,, ~P,} and for B;.

Thus, there is a physically and measure-theoretically meaningful
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difference between having a propensity function defined for B, and on

{R, ~R} and having a propensity function defined for B, and on

{R, ~R}x{P;, ~P;}x{P,, ~P,}: one function represents a physical system and
the other system represents a hypothetical system. Furthermore, there is a
legitimate motivation for defining a propensity function for B; and on

{R, ~R}x{P,, ~P; }x{P,, ~P5}: it is defined in order to express the
hypothetical consequences of the statistical equivalence of systems B3 and B'5
with respect to R. This distinction between propensity functions defined on
different event spaces is not simply an insignificant artifact of the notation that
is adopted here, and it would be a mistake to simply drop the distinction
between the two propensity functions. Equalities like (3.10) and (3.11) have
hypothetical force that is based on causal information. Despite the fact that the
propensity functions in equalities like (3.10) and (3.11) are defined for a single
system, equalities like (3.10) and (3.11) cannot be confirmed by a single

experiment, nor do they represent the results of a single experiment.

3.4 The two slit experiment performed with water waves

The aim of this section is to examine the results of the two slit
experiment when it is performed with water waves. First, this section
describes the apparatus for six closely related two slit experiments performed
with water waves. Next, the propensity interpretation is used to represent both
the results of those experiments and the relations between those results. It is
demonstrated that the relations between the results cannot be presented in

terms of the principles of strict summation and strict composition. Specifically,
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the results exhibit an interference effect and violate the principles of strict
summation and strict composition. One interesting result is that this
interference effect can be represented only in a limited number of ways.
Finally, it is demonstrated that the reason for these failures is that the status of
the slits variable is causally relevant to the results.

Consider now a group of experiments utilizing water waves as the
emissions. The apparatus is setup in a shallow pool of water. The s wce is a
vibrating ‘‘bob’’ that produces waves of a uniform intensity or size, and the rate
at which it produces these waves can be controlled. The diaphragm can be
any suitable wave barrier with two closable slits. The screen must make use of
a ‘‘beach-like’’ absorber to eliminate any possibility that the waves arriving at
the screen are reflected. Similarly, the detector must be capable of recording
the height of the waves in the region R without reflecting the waves. Small
pieces of cork could be placed in front of a beach so that the experimenter
can record the height of the wave as it passes under the cork at some fixed
distance (perpendicular) from a specific region of the beach. Thus, the
‘“‘screen’’ is in fact an imaginary plane, parallel to the beach, at which the
experimenter can make the necessary measurements.

Furthermore, the apparatus is equipped with detectors that are capable of
recording the height of the waves at each slit without disturbing the wave.
The back of the diaphragm could have markings that would enable the
experimenter to simply read off the height of a wave as it passes through the
slit. As above, define W, as the two slit experiment where the source emits

waves and only slit one is open, define W, as the system where only slit two is
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open, and define W as the system with both slits open. For each of these
systems the detector is left ‘‘off’’; that is, the wave height at the slit is not
recorded, but the height at region R is recorded. Systems W';, W’,, and W'y
can be created by turning the detectors “‘on’’ in the previous systems. Thus,
for systems W’';, W', and W’'; the wave height is recorded at both slits and at
region R.

Again, assume that there is an apparatus that is capable of providing the
basis for all six systems, and that the systems can be expressed as a conjunction
of some event X (specifying the common causal factors) and the status of the
variables. The first thing to notice about the results of these experiments is
that the results are recorded in terms of wave heights rather than propensities,
probabilities, or ““hits.”” In fact, the results of these experiments are not
represented in terms of wave heights but in terms of wave intensities, where
the intensity of a water wave is proportional to the square of the absolute value
of its height. Define I(A:S) as ‘‘the intensity of the wave at A produced by
system S.”’ Then, as in the case of the propensity values for the bullet
experiments, the results of the wave experiments can be represented in terms
of the distribution of the values of I(R:W),), I(R:W,), and I(R:W3) for different
positions (X) of the region R along the screen. This manner of representation

is given in figure 3.2.
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Figure 3.2. Distributions of intensities for the wave experiments.

The other resalts and relations between these systems are represented in
a manner that is similar to the representation of the results of _he bullet
experiments. First, the principle of strict summation is violated.
I(R:W3) = I(R:W,) + I(R:W,) (3.12)
That is, the results from W3 cannot be obtained by simply adding the results of

the experiments involving W1 and W3. In fact, the relation between I(R:W3),
I(R:W1), and I(R:W>) can be represented as follows: for I(R:W1) = |hj|2 and

I(R:W2) = |hg]2, I(R:W3) = |h; + hoJ2. Also, water waves are not localized at the
screen, for some region R’ distinct from region R.
I(R:W;) = 0 and I(R":W;) = 0, and (3.13)

I(R:W',) = 0 and I(R":"W’,) = 0, fori € {1, 2, 3}

That is, there are trials in which the intensity of a wave is spread out over more

than one position on the screen. It is also noted that the following equalities
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hoid,

IR:W')) =I(R:W,), fori € {1, 2, 3} (3.14)
That is, the status of the detectors is not relevant to the intensity of the wave at
region R in any of the experimental setups. Finally, water waves are not
localized at the slits

I(S{:W'3) » 0and 1(S,:W'3) = 0 (3.15)
That 1s, non-zero intensities are recorded at both slit one and slit two. System
W’; produces waves that pass through both slits on the same trial.

Given the similarity of the relations between intensities for the water
wave experiments, and the relations between probabilities for the bullet
experiments, there is motivation to analyze the results of the wave experiments
in a manner that is similar to the analysis of the bullet experiments. Before
pursuing this possibility, however, it is important to note the physical
explanation for the results in the wave experiments. The physical explanation
runs as follows. With one slit open, a wave is emitted by the source and passes
through the open slit producing an expanding circular wave centered on the
slit. The wave travels across the region between the diaphragm and the
screen, and the intensity of the wave decreases as the distance travelled
increases. The expanding wave first reaches the screen at a point opposite
the slit, then it “‘rolls’” across the screen, away from the point of impact, in both
directions. For any point on the screen, the farther it is away from the slit, the
longer it takes the wave crest to hit that point. Consequently, the intensity of
the wave for region R is proportional to the distance that R is from the slit (as

represented in figure 3.2).
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With both slits open, a wave is emitted from the source and is split into
two expanding circular waves as it passes through both slits. Each wave is
centered on the slit of origin and the waves have the same initial intensity
(assuming the slits to be of equal size and configuration). Interference takes
place as the waves spread out over the region between the diaphragm and the
screen. For example, ‘‘double crests’’ form where two crests meet, *‘double
troughs’’ form where two troughs meet, and the water is practically undisturbed
where crests and troughs meet. The result of this interaction is a new and
distinct wave front which moves away from the region of the two slits across
the area between the diaphragm and the screen. This new wave front consists
of double waves, double troughs, and everything in between. The intensities
recorded at the screen vary according to both the particular segment of the
wave front that hits the region R (double crest, double trough, or something in
between), and the distance between R and the slits. The distribution of the
war-e intensity over the possible positions of region R on the screen is given
in figure 3.2,

Consider now an analysis of the results of the experiments with water
waves. Notice that the violation of strict summation (3.14) indicates that the
status of the slits is causally relevant to the intensity at region R, since the only
difference between the two systems was the status of slits, and the intensities
were different in each experiment with the detector turned off. The violation
of strict summation represents the ‘‘manner in which’’ the status of the slits is
relevant to the intensity at R as much as the holding of strict summation

represents the ‘‘manner in which’’ the status of the slits is relevant to the
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number of hits at R in the bullet experiments. The manner in which the status
of the slits is causally relevant is represented by the equality I(R:W3) =

|hy + hoJ2, where I(R:W1) = |h1]? and I(R:W2) = |ho}2. The :ausal factors
responsible for the intensity of waves at region R for the three wave systems,
W, W, and W5 are not ‘‘additive’” in the same manner as the causal factors for
bullets hitting region R.

Notice that, as indicated by the equalities in (3.14), the status of the
detector is not causally relevant to the intensity of a wave at region R. Thus, it
follows that I(R:W’3) = [(R:W’,) + I(R:W',), in an analogous manner to the
derivation of Pr(R:B';) = Pr(R&P:B’;) + Pr(R&P,:B’5) in step 1 of the bullet
derivation. The intensity of a wave at R for system W’3 can be expressed in
terms of the intensities of waves produced by W’; and W'5, and the manner of
expressing this relationship is the same whether the detector is on or off.
Considering the analysis of particle systems, one can infer that the causal factors
responsible for the intensity of the waves at region R in W’;, W’',, and W'; are
related in the same manner as those factors in W, W5, and W5. Both W and
W’; exhibit the effects of interference.

Also, notice that the bullets are localized at the slits, whereas the water
waves are not. Considering the connection between the localized nature of
bullets and strict composition, does it follow that an equality analogous to strict
composition is also ‘‘violated’’ in the case of the water wave experiments? In
other words, can the relationship stated above in terms of W'}, W’,, and W' be
expressed solely in terms of components of W'5, in the same manner that strict

composition for the bullet experiments is expressed solely in terms of

101




components of B';? In the case of water waves it is nct abvious that a physical
interpretation for intensities of conjunctive or conditional regions can be
provided. For example, how can the value of the intensity analog of
Pr(R&P,:B';) be measured? On the one hand, *‘the intensity of the wave at
slit 1 and region R’ is obviously not the desired quantity. The desired quantity
corresponds to something like “‘the contribution of a wave originating at slit
one to the intensitv measured at R,”’ yet it is not clear that the value of this
quantity can be measured on system W';.

It appears that the relationship stated in the violation of strict summation
(3-12) simply cannot be expressed solely in terms of system W';. There is no
analog of the violation of strict composition in the case of water waves.
Generally, it is not clear that the intensities are defined over a Boolean
g-algebra on the set of possible outcomes £2: it may be the case that the
‘“intensity function’’ can be defined only over the set Q. Note that the fact that
the intensity function has a restricted domain (relatively speaking) does not
deny the existence of a relationship bets . een the results of the experiments; it
simply denies the ability to measure that relationship and represent that
relationship solely in terms of the system W';.

Bullet experiments are ‘‘additive,”’ and this additivity can be expressed
in a number of distinct ways: it can be represented in terms of alternative
events, and in terms of alternative systems. The water experiments are not
additive; they show the effects of interference. Furthermore, the interference
effect can be represented as a relationship between systems and events. But,

as it turns out, this relationstiip cannot be represented in as wide a variety of

102




manners as additivity can for bullets. The limitations in representing the
relationships between systems and events may be the result of either the
limitations of our systems of measurement or the nature of the phenomenon
itself. There are limitations on the manners of expressing the interference

effect imposed by measurement.

3.5 The two slit experiment performed with electrons

The aim of this section is to examine the results of the two slit
experiment when it is performed with electrons. First, this section describes
the apparatus for six closely related two slit experiments performed with
bullets. Next, the propensity interpretation is used to represent the results of
those experiments and to represent the relations between those results.
Specifically, it is demonstrated that (like the water wave experiments) the
results violate the principle of strict summation, but (like the bullet
experiments) the results satisfy the principle of strict composition. Then it is
demonstrated that the explanation of these results is that both the status of the
slits and the status of the detector are statistically relevant. From this fact it is
argued that the ‘‘paradox’’ of the two slit experiment arises from the assumption
that there is a causal explanation of the manner in which the status of the
detector is relevant to the results, aad the paradox does not arise from the
empirical results themselves. Finally, the propensity analysis of the electron
systems is used to refute both the quantum probability arguments by Luigi
Accardi (1984, sec. 2) to reject Bayes’s theorem, and the quantum logic

arguments by Hilary Putnam (1979, sec. 4) to reject distribution.
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The experimental apparatus for the two slit experiment performed with
electrons is described in detail in chapter 1: the basic apparatus (without a
detector) is described in section 1.2, and the apparatus with a detector is
described in section 1.4. Recall that the detector is arranged so that all
electrons passing through the slits are detected when the detector is on. Also,
only those electrons reaching the screen are statistically relevant. Thus, all
electrons are detected at one slit or the other, and all electrons proceed to the
screen to hit or miss region R. Define E,, E,, E3, E'}, E'5, and E'; in an
analogous manner to the previous experiments: the E indicates that the
experiment is performed with electrons; the subscripts indicate the status of
the slits (1 = only slit one open, 2 = only slit two open, and 3 = both slits open);
and the prime indicates the status of the detector (no prime indicates that the
detector is off, and a prime indicates that the detector is on).

The first thing to notice is that the results of the experiment can be
recorded in terms of the number of electrons arriving at the screen or passing
through the slits. In fact, in the case of using an electron sensitive film with a
pre-marked region R, the experimenter can count the number of *‘hits’’ or
absorptions in the pre-marked region R, and the number of ‘‘misses’’ or
absorptions on the rest of the film in a manner similar to counting bullet holes
in the wood screen. Of course, this method assumes that there are no
overlapping holes or points of absorption that may interfere with the accuracy
of the counting procedure; it may be best to ‘‘count’’ after each trial and to
replace the film or wood screen on each trial. Alternatively, the experimenter

could simply count the clicks of the geiger counters. In any event, the results



can be represented in terms of propensity values (based on numbers of hits
and misses rather than the intensities of waves) and the relations between
them, as in the case of the experiments with bullets.
Just as with the waves, however, strict summation is violated.

Pr(R:E;) » Pr(R:E,) + Pr(R:E,) (3.16)
That is, the results from E; cannot be obtained by simply adding the results of
the experiments involving E; and E,. In fact, the distributions of
Pr(R:E,), Pr(R:E,), and Pr(R:E,) for different positions (X) of R are the same as
those given in figure 3.2 for water waves. Furthermore, for two complex
numbers ¢; and ¢2, Pr(R:E3) = |¢1 + ¢2 |2, where Pr(R:E}) = |¢1|2 and
Pr(R:E) = |$2]2. Thus, there is evidence of ‘‘wave-like’’ interference among
the experiments with the detectors turned off. However, electrons are
localized at the screen for all systems.

Pr(R&~R:E;) = 0 and Pr(R&~R:E’;) = 0, fori € {1, 2, 3} (3.17)
There is no trial on which an emission both hits and misses region R; this is a
characteristic of particle systems. The principle of strict composition holds for
system E'; just as it does for system B’;.

Pr(R:E';) = Pr(R&P;:E'5) + Pr(R&P,:E'5) (3.18)
In fact, the distributions for the values of Pr(R:E';), Pr(R&P,:E'3), and
Pr(R&P,:E';), for different positions (X) of R, are the same as the distributions
for Pr(R:B;), Pr(R:B,), and Pr(R:B,), respectively, as in figure 3.1. Finally, the
electrons are localized at the slits for E';.

Pr(P,&P>:E';) =0 (3.19)
peE -3
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That is, system E'; produces no electrons that are detected at both slits on the
same trial, and this fact is evidence of particle-like locality.

Equaiity (3.16) indicates that, with the detector turned off, there is wave-
like interference, and it may be stated that the electron experiments admit to a
wave description but do not admit to a particle description. But, as indicated by
equality (3.16), with the detector turned on, this interferencc is e!” ninated and
there is strict summation. Consequently, it may be stated that tne electron
experiments admit of a particle description but do not admit of a wave
description. These two results can be restated in terms of the principle of
complementarily: neither the wave description nor the particle description
provides a complete description of the electron experiments, but together
they are capable of providing a complete (but complemer ary) description of
the electron experiments. The paradox of the two siit experiment (and of
quantum mechanics) rests on the supposition that there is a single (non-
complementary) complete physical or causal description of the electron
experiments.

The results of the electron experiments clearly indicate that both the
status of the slits, and the status of the detector, are causally relevant to the
production of event R. In fact, Pr(R:E;) = Pr(R:E’) although
Pr(R:E;) = Pr(R:E';) and Pr(R:E,) = Pr(R:E’,). But it is not this fact alone that
presents us with a ‘‘paradox.”’ The paradox arises from a consideration oi the
manner in which the status of the detector is causally relevant to the event R.
With the detector turned off, the manner in which the status of the slits is

causally relevant to R is represented by (3.16). With the detector turned on, the



manner in which the status of the slits is causally relevant to R is represented

Yy (3.18). Thus, turning the detector on or off changes the manner in which
the status of the slits is causally relevant to R. Neither the wave description nor
the particle description offers an explanation of the mechanism by which
turning the detector on or off changes the manner in which the status of the
slits is causally relevant to R. The paradox of the two slit experiment rests on
the supposition that there is an explanation of the mechanism by which the
status of the detector ‘‘changes’’ the manner in which the status of the slits is
relevant to the production of event R.

The first point that must be recognized concerning the interpretation of

these results is that there is no contradiction between the results of the
experiments with electrons and the axioms and theorems of logic or
probability theory. For example, both Putnam (1979, sec. 4) and Accardi
(1984, sec. 2) argue as tollows: according to the axioms and theorems of
probability, we predict that the following equality holds for the two slit
experiment

P(RIP,vP,) = PRIP)P(P)) + PRIP,)P(P,) (3.20)
but, experimental results reveal that in fact

P(R|P,vP,) = P(R|P,)P(P,) + P(R|P,)P(P,) (3.21)
Thus, some fundamental principle used in the derivation of equality (3.20)
must be rejected. Putnam argues for the rejection of distributive laws and
Accardi argues for the rejection of Bayes’s theorem.

The arguments of both Putnam and Accardi fail to maintain the

distinction between systems. Yet if they are to maintain that (3.20) and (3.21)




are the basis for a contraciction, they must maintain that (3.20) and (3.21)
describe the same state of affairs. For cxample, Putnam and Accardi would
have to maintain that (3.20) and (3.21) both describe the same single system,
such as E'5, or the relationships among the same group of systems, such as E,,
E,, and E; . The propensity interpretation, however, demonstrates that it is not
possible for (3.20) and (3.21) to describe the same state of affairs. On the one
hand, equality (3.20) does hold of E’; but empirical data demonstrate that
inequality (3.21) does not hold of system E';. On the other hand, as discussed
in section 3.3, if either equality (3.20) or inequality (3.21) describes some
relationship among systems E;, E,, and E;, then it must hold in some
hypothetical or counterfactual manner, rather than as some direct empirical
result, since the propensity function defined for these systems is not defined
on the events P, and P,. Yet, the only empirical basis for stating that equality
(3.20) holds hypothetically or counterfactually would be that the status of the
detector is not causally relevant to R. But according to the empirical results of
the experiments above, the status of the detector is causally relevant to R.
Thus, there is no formal reason to say that equality (3.20) describes some
relationship among systems E,, E,, and E;, and there is no empirical evidence
to support a hypothetical version of (3.20) describing a relationship among
systems E, E,, and E;.

According to the examination of the electron experiments given
above, there is no other single experiment or group of experiments that (3.20)
and (3.21) could reasonably be intended to describe. Thus, equations (3.20)

and (3.21) cannot provide a description of the same state of affairs.
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Consequently, neither (3.20) and (3.21) can provide the basis for a

contradiction, or paradox. Therefore, the arguments of Putnam (for the
rejection of distributive laws) and of Accardi (for the rejection of Bayes’s

theorem) are not well-founded.

3.6 The interpretation of quantum mechanics

The aim of this section is to consider the implications of the propensity
interpretation of the two slit experiment for current theories of quantum
mechanics. First, a review of the salient results of the propensity interpretation
of the two slit experiment is given. Then it is demonstrated that the

interpretation of quantum mechanics rests on the answers to two fundamental

questions concerned with the status of propensity statements. Finally, a
consideration of the possible answers to these questions provides the basis for
distinguishing among the approaches of hidden variable theory, quantum
logic, quantum probability, and the rest of quantum theory.

In the case of the bullet experiments, it was determined that it is
physically meaningful to speak of the values of Pr(R&P,:B’5) and
Pr(R&P,:B’3), and that it is possible to measure the values of those
propensities. Given the physical meaning of these propensities, it was argued
that although the propensities Pr(R&P;:B;) and Pr(R&P,:B;) cannot be
empirically measured, they can be considered to have hypothetical, or
counterfactual, meaning. Furthermore, it was argued that the equivalence of
strict summation and strict composition provide evidence for the claim that

Pr(R&P,:B;) = Pr(R&P,:B’;) and PR(R&P,:B3) = Pr(R&P,:B’3). One result of




this analysis was that it was determined that there are many alternative
expressions of the common manner in which systems B; and B'; produce the
event R. Some alternatives involve the event R, while others involve the
events R&P; and R&P,. Some alternatives are expressed hypothetically,
while others are expressed in physical terms. In the case of the water waves, it
was found that it is meaningless to speak of the intensities (R&P;:W;) and
I(R&P,:W3), hypothetically or not. Consequently, it is meaningless to speak of
the equalities I(R&P:W3) = (R&P:W’3) and (R&P»:W;) = (R&P,:W’;). The
result is that there is a limited number of alterna.ive expressions of the common
manner in which systems W and W’; produce the event R. Specifically, the
interference effect cannot be expressed in terms of the events R&P, and
R&P,, hypothetically or physically.
In the case of the electron experiments, the difference between E; and

3 is causally relevant. That is, measurement has an effect on event R. If there
is some common manner in which E; and E'; produce the event R, then it
must be expressed in some manner other than the direct comparison of the
results of systems E; and E'5 and event R. As in the cases of the bullet systems
and the wave systems, the search turns to the events R&P, and R&P; (or
conditional events R|P; and R|P,) as the source of alternatives. This raises two
fundamental questions for interpretations of quantum mechanics. Specifically,

(1) Are the following propensities physically or hypothetically
meaningful?
Pr(R&P;:E;) and Pr(R&P,:E;)

and, conditional on an affirmative answer to (1),
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(2) Is there justification or evidence for the following equalities?

Pr(R&P;:E;) = Pr(R&P,:E'3) and Pr(R&P,:E;) = Pr(R&P,:E'y)
Hans van den Berg, Dick Hockzema, and Hans Radder (1990) point out that
most interpretations of quantum mechanics give a negative answer to question
(1), and this is tantamount to denying that the electron systems are classical
particle systems. Given the manner in which measurement is causally relevant
in the electron experiments, although it is empirically meaningful to discuss
the values of Pr(R&P:E';) and Pr(R&P,:E'y), it is not meaningful to discuss
the values of Pr(R&P,:E3) and Pr(R&P,:E;). There is no meaningful
discussion, hypothetical or not, concerning the events in Pr(R&P,:E;) and
Pr(R&P,:E;). On this account, the difference between the ‘‘meaningfulness”
of the propensities Pr(R&P,:E';) and Pr(R&P,:E’;), on the one hand, and
Pr(R&P,; :E;) and Pr(R&P,:E;), on the other hand, is just another point of
distinction between systems E; and E'5. It may be pointed out that this
approach reinforces the wave-particle duality picture of ‘“electron systems’’:
sometimes electrons behave like particles and sometimes they behave like
waves.

Hidden variable theorists provide a positive answer to question (1) and a
negative answer to question (2). Consequently, the hidden variable theorists
explain the difference between the systems as follows. There is another factor
that provides a manner of distinguishing between E; and E';. In the case of
Bohm’s hidden variable theory, the ‘‘quantum potential” of the system depends
on the status of slits, and the quantum potential determines (in part) the values

of the propensities in question (2). The ‘‘common manner in which’’ E; and




E'; produce the event R can be described in terms of the quantum potential.
Hidden variable theorists claim that there is a common manner in which the
electron experiments produce the event R, except that this manner cannot be
described in terms of traditional events such as R&P, R|P|, or R. The
common causal relation can be described only in terms of a **new event,””
namely, the value of some hidden variable.

Quantum logic and quantum probability answer both questions in the
affirmative. Their goal is to express some common relation in terms of the
traditional set of events, but with an alternative set of rules for logic or
probability, respectively. In tcrms of the propensity examination of the
problem, quantum probability theorists are looking for an algebra that defines
the relations between the different propensity functions that are defined for
different systems. Furthermore, the relations between propensity functions
defincd for different systems are determined by the relations between the
empirical results of different experiments. Thus, quantum probability and logic
are both searches for an algebraic representation of the empirical relations
among experiments.

Putnam (1975, secs. 1 and 7) draws an analogy between the status of the
parallel postulate in physical geometry and the status of distributive laws in
quantum logic. Similarly, Accardi (1984, sec. 1) draws an analogy between the
status of the parallel postulate in physical geometry and the status of Bayes’s
theorem in quantum probability. Putnam and Accardi agree with other
quantum logic and quantum probability theorists that the choice of a logic or

probability is an empirical matter. The problem with Putnam’s and Accardi’s




individual approaches is that they also presuppose that equality (3.20) and (3.21)
describe the same system. But, as was demonstratzd above, this presupposition
is tantamount to assuming that the status of the detector is not causally relevant to
R. Yet, the examination of the electron experiments demonstrated that the

status of the detector is statistically relevant to the event R.

3.7 Concluding remarks

Determining the relations among propensity functions is, in general, an
empirical matter: there is no purely logical or algebraic method for determining
the relations among propensity functions. The study of the relations among
propensity functions that are defined for different systems, and over the same
set of events, corresponds to the study of controlled experiments.
Furthermore, the principles that are used to represent the relations among
propensity functions for different systems are used to characterize *‘types’” of
systems. The principles of strict summation and s«rict composition characterize
the ‘‘additive’’ nature of bullet systems. The interference effect and the
violation of strict composition were used to characterize the ‘‘non-additive”’
nature of the wave systems. The non-additive nature of the electron systems is
different from the non-additive nature of the water wave systems; the non-
additive nature of electron systems is characterized by the interference effect
and the principle of strict composition whereas the non-additive nature of
water systems is characterized by the interference effect and the violation of

the principle of strict composition.

Controlled experiments and the relations among propensity functions
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also provide the basis for defining the causal factors in a system. By comparing

the differences among types of systems, and the results of those systems, it was
demonstrated that neither the status of the slits nor the status of the detector is a
causal factor in the bullet experiments. In the case of the water experiments,
the status of the slits is a causal factor, but the status of the detector is not a causal
factor. For the electron systems, both the status of the slits and the status of the
detector are causal factors. This study of causal relations in terms of controlled
experiments avoids the problem of the reference class. But there are two
conditions that must be recognized. First, the causal relations that are
confirmed are expressed in terms of the ability of some factor to produce a
given event in a specified group of systems. Second, it is often the case that
extending the group of systems to a *‘type’’ of system involves counterfactual
claims, as in the case of stating that the status of the slits is a causal factor in
‘‘unobserved’’ bullet systems.

It was demonstrated that there is no inconsistency in the empirical results
of the experiments, and that the ‘‘paradox’’ of the two slit experiment arises
only when it is assumed that there is a causal explanation of the manner in
which the status of the slits is causally relevant to the event R. Furthermore, it
was demonstrated that, if the propensity interpretation is correct, then strictly
logical or probabilistic arguments against the consistency of the methods of
representing the results of the experiments, such as those of Accardi (1984)
and Putnam(1979) respectively, fail. Finally, two questions concerning the
interpretation of propensity statements involving certain events were

presented, and it was demonstrated that the possible answers to these questions
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can provide the basis for distinguishing among the various interpretations of

quantum mechanics.




4

Propensities and Contrastive Explanation

4.1 Introduction

Theories of contrastive explanation, such as those put forward by Bas
van Fraassen (1977 and 1980) and Alan Garfinkel (1981), claim that
explanations are not answers to general why questions such as ‘**Why P.”’ but
are answers to contrastive why questions such as ‘*Why P rather than Q.”’ The
components of contrastive why questions are referred to as the fact (P) and the
Joil (Q). The aim of this chapter is to use the propensity interpretation to, first,
demonstrate the role of the foil in contrastive explanation, and, second, to
identify the advantage of contrastive explanation over non-contrastive
explanation.

Central to the preszntation in this chapter is a recent discussion of
contrastive explanation provided by Peter Lipton (1991a and 1991b). This
chapter both criticizes and expands upon Lipton’s discussion of contrastive
explanation. First, an outline of Lipton’s account of contrastive explanatior.
and the presuppositions that 2re r::ade by this account are provided. Then it is
argued that, aithough Lipton’s concepts of a ‘‘difference condition’’ and of a
‘‘corresponding cause’’ help to improve our intuitive understanding of
contrastive explanation, there is much more improvement to be made in terms

of explaining both the distinguishing features of and the advantages of
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contrastive explanation. Specifically, it is argued that Lipton’s difference
condition does not provide adequate restrictions on what qualifies as a
corresponding cause, and his account fails to provide a complete analysis of
the role of the foil in contrastive explanation.

Next, this chapter applies the propensity interpretation of the
relationship between experiments and their possible outcomes (as outlined in
chapter 1), as well as the propensity kinematics (as developed in chapter 2), to
contrastive explanation. First, it is demonstrated that the propensity account
provides the basis for identifying the causal history of events. Then, it is
established that the propensity interpretation is capable of formalizing both the
presuppositions of Lipton’s account as well as the constraints imposed by
Lipton’s difference condition. By relating this formalization of the difference
condition to the discussion of causation in chapters 2 and 3, it is argued that the
propensity interpretation provides justification for the difference condition.
Then it is demonstrated that the propensity interpretation is capable of
elucidating the mechanism by which the difference condition identifies
events in the causal history of the fact P.

Finally, the role of the foil in contrastive explanation is examined. First,
it is argued that the role of the foil in contrastive explanation is to narrow the
reference class. The foil essentially selects a partial causal history of the fact P.
Given this role, the foil facilitates the application of the propensity
interpretation to the causal history of the fact P and the application of the
difference condition to that causal history. It is argued that the notion of a

corresponding cause results from the application of the difference condition to




the causal history of the fact P that is selected by the foil Q. In conclusion, it is
argued that it is the role of the foil in both identifying corresponding causes,
and narrowing the reference class, that confers an advantage on the contrastive
theory of explanation. In the case of non-contrastive theories of explanation,
it is argued that the problems of homogeneity and explanatory ambiguity are
encountered in much the same manner (and for the same reasons) that the
problem of homogeneity is encountered by theories of chance and causation.
But, through the role of the foil, the contrastive approach to explanation is able
to avoid the problem of homogeneity and is able (in many cases) to overcome

the problem of explanatory ambiguity.

4.2 The presuppositions of contrastive explanation

The aim of this section is to examine the adequacy of Peter Lipton’s
(1991a and 1991b) account of contrastive explanation. First, the
presuppositions of Lipton’s account are presented in terms of an example
involving the explanation of ‘‘why David Lewis went to Monash rather than
to Oxford in 1979.”” This presentation includes a discussion of Lewis’s criteria
for contrastive explanation and a demonstration that Lewis’s criteria are too
weak. Then Lipton’s difference condition and his resulting notion of a
corresponding cause are discussed and evaluated. It is argued that Lipton’s
account is susceptible to Philip Kitcher and Wesley Salmon’s (1987) criticism
of Bas van Fraassen’s (1977 and 1980) account of contrastive explanation.
Specifically, it is maintained that, according to Lipton’s account almost anything

can qualify as a corresponding cause. Although it may be acknowledged that
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Lipton’s difference condition overcomes the problems associated with
Lewis’s account, Lipton’s difference condition does not guarantee that the
appropriate corresponding cause is identified. Moreover, although Lipton
provides an intuitive notion of corresponding cause, this notion fails to
provide a detailed understanding of contrastive explanation: it does not
provide an account of the role of the foil in contrastive explanation and of the
specific advantages of contrastive explanation.

Lipton discusses and defends four presuppositions of contrastive
explanation. In order to introduce these presuppositions, imagine, as Lipton
does, that we wish to explain why David Lewis went to Monash rather than to
Oxford in 1979. In offering an explanation of this event, it is first presupposed
that David Lewis actually went to Monash in 1979 and that he did not go to
Oxford in 1979. Also, it is presupposed that Lewis could have gone to Oxford.
Accordingly, the first two presuppositions of contrastive explanation are that,
first, at some time, both the fact P and the foil Q were possible, and second, at
some other (presumably later) time, the fact P actually occurred and foil Q did
not. The third presupposition is that explaining an event involves providing
information concerning the causal history of that event.! Thus, explaining
why Lewis went to Monash rather than to Oxford involves citing information
concerning the events that lead to his trip to Monash, but not to Oxford, and if

there are no such events then there is no explanation of why Lewis went to

INote that this is not a presupposition of all contrastive theories of
explanation. For example, van Fraassen (1977 and 1980) does not make this

presupposition.
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Monash rather than to Oxford. The motivations for these first three
presuppositions, and further discussion of their role in contrastive explanation,
are a ‘dressed in the next two sectiens.

The final presupposition involves the possibility of reducing
contrastive explanation to deductive explanation. First, notice that an
explanation of ‘P rather than Q°’ may be as simple as the citation of one event.
In the case of Lewis’s trip to Monash, ‘‘why Lewis went to Monash rather than
to Oxford’’ can be explained by simply citing the fact that he was invited only
to Monash. The explanation of ‘‘Why Lewis went to Monash,’’ however,
would require a complete description of various events leading to his actual trip
to Monash. Similarly, the explanation of ‘“Why Lewis did not go to Oxford”’
would require a complete description of various events leading to his not
going to Oxford. Thus, to explain ‘P rather than Q’’ is not the same as to
explain “P,” to explain ‘‘P and not-Q,”’ or to explain *‘not-Q.”’ In particular, the
fourth presupposition is that contrastive explanation offers a partial explanation
of the fact in terms of the foil.

The remainder of this section focuses on the degree to which Lipton’s
account can explain this presupposition. This presupposition is also discussed
in section 4.4. In examining the exact nature of this type of partial
explanation, Lipton first considers David Lewis’s (1986) account. On Lewis’s
account, ‘‘P rather than Q”’ is explained by simply citing the event or events
that are in the causal history of P but would not have been in the history of O.
Thus, if only Monash invited him to visit, the explanation of why he went to

Monash rather than to Oxford is simply that Monash invited him. But as Lipton
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points out, Lewis’s account is too weak. Consider the case in which Lewis is

invited by both Monash and Oxford. Then the explanation of why he went
to Monash rather than to Oxford could still be provided by the event ‘‘Monash
invited him"’ since this event still would not cause him to go to Oxford. Yet, in
this case, the invitation to Monash does not explain why he actually went
there. Given that the partition of the history of the eveat ‘‘Lewis went to
Monash in 1979°’ consists only of the events ‘‘Lewis was invited to Monash’’
and ‘‘Lewis was invited to Oxford,”’ there simply is no explan_tion of ‘‘Why
Lewis went to Monash rather than to Oxford’’ in the case that he is invited to
both universities.
Lipton suggests an improvement on Lewis’s account that is based on
John Stuart Mill’s (1904) method of difference. Lipton describes the
improvement as follows:
I propose that, for the causal explanations of events, explanatory
contrasts select causes by means of what I will call the ‘‘difference
condition.”” To explain why P rather that Q, we must cite a causal
difference between P and not-Q consisting of a cause of P and
the absence of a corresponding cause in the history of not-Q.
Instead of pointing to a counterfactual difference, a particular
cause of P that would not have been a cause of Q as Lewis

suggests, contrastive questions select as explanatory an actual
difference between P and not-Q. (1991a, 693)

Lipton’s suggestion certainly works. In the case that Lewis is invited only to
Monash, there is no (actual) event *‘corresponding’” to the invitation to
Monash in the history of going to Oxford--there is no invitation to Gxford.
Similarly, in the case that Lewis is invited to both Monash and Oxford, there is
a *‘corresponding cause’’: the invitation to Oxford corresponds to the invitation

to Monash. Furthermore, attention to the presence or absence of a




corresponding cause does appear to serve to identify the underlying
‘‘mechanism’’ of contrastive explanation.

Something is lacking in Lipton’s account, however. Lipton does not
discuss the requirements on ‘‘correspondence’’ among causes and such
discussion is required in order to provide a detailed analysis of the manner in
which the difference condition is to be applied. Lipton provides no
procedure for applying the difference condition--the very **‘mechanism’’ tor
identifying corresponding causes and for producing explanations. On page
694, for example, Liptcn (1991a) states that *“the difference condition . . .
[requires] only thzt the cited cause of P finds no corresponding cause of not-Q,
where a corresponding cause is something that would bear the same relation to
Q as the cause of P bears to P.”’ In so far as Lipton has not specified the
constraints on what a corresponding cause is, he has not specified the
constraints on explanatory relevance.

This is an important point because the chief criticism of contrastive
explanation is that it does not provide definite constraints on explanatory
relevance. For example, van Fraassen’s (1977 and 1980) theory of contrastive
explanation is based explicitly on a relevance relation, R. In our terminology,
van Fraassen’s relevance relation is defined as follows: a proposition A is called
relevant to the explanation of ‘P rather than Q’ exactly if A bears the relation R
to the couple <P, X> where X = {P, Q}. X is called the contrast class of the
why question and is generally the union of the fact with all of the foils (see
van Fraassen 1980, 143). Lipton’s relation of being a ‘‘corresponding cause’’

satisfies van Fraassen’s definition of a relevance relation. Consequently,




Lipton’s account is certainly a version of van Fraassen’s. But, as Philip Kitcher

and Wesley Salmon (1987) have argued, the lack of any definite constraints on
the relevance relation R in van Fraassen’s theory leads to the fact that, in any
situation, almost anything can count as explanatorily relevant. One may argue
that this lack of constraints is an advantage since the theory is applicable to a
more diverse range of explanatory acts. On the other hand, if one is an
advocate of causal explanation, one could argue (with respect to Kitcher and
Salmon’s criticisms) that Lipton’s account improves upon van Fraassen’s
account in so far as the relation must be causal.

On either account, however, Lipton has correctly emphasized that the
distinguishing feature of the contrastive account is that it provides partial
explanations of the fact in terms of the foil. But the question remains: exactly
how does the foil serve to call for one explanation rather than another?
Considering Kitcher and Salmon’s criticisms of van Fraassen, contrastive
theorists must reveal the manner in which consideration of the foil serves to
identify explanatorily relevant events. Furthermore, contrastive theorists must
demonstrate the manner in which the consideration of the foil provides them
with an advantage over non-contrastive approaches to explanation. For
Lipton, the question is this: what is the role of the foil in identifying the
*‘corresponding cause’’ rather than some other cause? For that matter, what
exactly is a corresponding cause--doesn’t just about anything count as a
corresponding cause? Lipton has not provided a mechanism or method by

which the foil (or fact-foil pair) serves to identify the corresponding cause (or

any other cause) in his account of explanation. The next two sections
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provide answers to these questions.

4.3 Propensities and the causal history of events

The aim of this section is to demonstrate the manner in which the
propensity interpretation can recover and expand upon the presuppositions of
Lipton’s analysis along with the basis for his difference condition. First, a brief
review of the semantics for the propensity interpretation of experiments and
their possible outcomes is provided. This review includes a discussion of the
manner in which the update semantics can be used to recover causal histories
of events. Then the propensity interpretation is used to formalize both the first
three presuppositions of Lipton’s account as well as his difference condition.
Next, the example involving Lewis’s trip to Monash is presented in terms of
the propensity formalization of the three presuppositions and the difference
condition. By appealing to the propensity interpretation of causation in
chapter 3, the manner in which the difference condition identifies events in
the causal history of the fact is explained and justified. Finally, one new
presupposition is made explicit: in order to provide a causal explanation of an
event, a detailed causal history of that event must be available.

Propensity statements are taken to be of the following form: Pr(A:S) = p
which is read as *‘the propensity for a system S to produce an event A is p.”’
The symbols occurring within the parentheses and before the colon denote
propositions concerning the occurrence of events. Symbols occurring
within the parentheses but after the colon denote propositions comprising a

set of background conditions that describe an experimental setup or system.



Reference is often made directly to the events, background conditions,
experimental setups, and systems themselves. A propensity function, ‘Pr’, is a
probability measure defined over a Boolean g-algebra & on a set of events £2,
where each member of Q is a possible outcome of some experimental setup or
system. It is important to note that the propensity function takes both the
members of the o-algebra B (defined on a set of possible outcomes £2) and the
system S as its domain: a propensity function is defined over a Boolean
o-algebra on a set of possible outcomes and for a system. The distinction
between, and definition of, the set of outcomes in £2 (and consequently the
members of the g-algebra &) and the system S depend primarily on a
consideration of the experimental setup.

A system is quite simply the experimental setup as it is arranged prior to
the running of the experiment. A system is represented as the statistically or
causally relevant events that actually occur at some time before the experiment
begins. The notion of relevance used here is discussed further below. The
set of possibie outcomes of an experiment is composed of measurable events
that either occur or do not occur at some time after the experiment begins.
Alternatively, the ‘‘occurrence’’ of the system-events is intentionally brought
about (or allowed) by the experimenter in order to initiate the experimental
process, whereas the occurrence of the outcome-events are spontaneous
(once the experiment begins). Given the temporal nature of the distinction
between events describing the system and the possible outcomes, and the

assumption that systems are described only by relevant events, once the

experiment is over, the sequence of ‘‘relevant’’ events leading to the
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outcomes of the experiment are given in a large part by the event description
of the system. The only relevant events not given by the system are those
events that occur between the time that the experiment is started and the time
that the outcome occurs.

In order to better understand the analysis of experiments and
propensities in terms of systems and possible outcomes, consider the
application of the propensity interpretation of probability to the example of
Lewis’s trip to Monash. For simplicity, suppose that Lewis is planning a trip at
some time prior to t,, that he receives invitations to various possible
destinations at some time t, later than t;, and that he takes the trip at some time t
after t5. The propensity analysis of this example presupposes that there is some
representation of the events and factors (actually taking place prior to t;) that
actually influence Lewis’s decision. This assumption is discussed further
below. Let ‘S,;” be the system representing these events and factors. Then
there is a propensity function ‘Pr,,’ defined over the o-aigebra on the set of
outcomes ‘I 4’ = Lewis is invited to Monash, ‘I’ = Lewis is invited to Oxford,
‘M’ = Lewis travels to Monash, and ‘O’ = Lewis travels to Oxford. Figure 4.1
provides a diagram representing this system (presented in outlined font) and its

possible outcomes (presented in normal font).




M& O
M &~0O
~M& O
~M &~O
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M& O
M &~O
~M& O
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~M& O
~M &~O

M& O
M &~0O
~-M& O

~I&~1o

A A A A

~M &-O

Figure 4.1. Lewis is invited either to Monash or to Oxford.

Given this propensity representation of the state of affairs concerning
the system S, and its ability to produce (or result in) the event that Lewis

travels to Monash, the values of various propenssities can be calculated as they
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exist at t;. Of course, systems change over time as the events that they
produce actually occur or do not occur. Consequently, the propensities that
systems possess, and the values of those propensities, also change over time.
In the system described above, if the event Iy4 occurs and I, does not occur at
t, then it is possible to update the dispositional nature of that system to reflect
the dispositional nature of the ‘‘new’’ system as it exists at t>. This updating
procedure creates a new o-algebra (defined on a new outcome space) since
the events Iy4 and Iy no longer lie in the future of the system. Of the events in
the original outcome space, only the events M and O remain in the new
outcome space. This updating procedure also requires the definition of a new
propensity function. This new function is defined over the new ¢-algebra
described above and for the new system as it exists at t,. The system itself may
have to be re-defined. In particular, if the event I\, is relevant to the events in
the new outcome space, then the fact that the event Iy4 occurred is
incorporated into the description of this new system. But, if the event I, is
not relevant to the events in the new outcome space, then Iy is not
incorporated into the description of the system. The reason for the different
treatments of events is that the system consists only of those (actual) events that
are causally relevant to those events that remain in the outcome space.

For present purposes, it is assumed that all of the events discussed here
are relevant to future events. Thus, in the case that I\4 occurs at t; and I, does
not, the description of the new updated system at t, consists of the conditions
expressed in S,; and the fact that the event Iy4 occurred at t, and I, did not

occur at t5. Figure 4.2 provides a representation of this new system



(S¢--Ipm&~Ig) and its possible outcomes (M and O) in terms of previously
adopted convention of placing the system events (or actual events) in outline

font and placing the remaining possible outcome events in normal font.

M& O

- M &~O
S Ty,

~-M& O

~M &-~0O

Figure 4.2. Lewis is invited to Monash but not to Oxford.

If the event I occurs and the event I; does not occur at t, then a
different propensity function is defined for the system that exists att,. The
propensities defined by this function are conditioned on a set of background
conditions consisting of the conditions expressed in S,;, also the fact that the
event I occurred at t,, since it is assumed that I is causally relevant to the
remaining future events. If both I\; and L5 occur at t, then still another
function and system are defined, and the resulting system consists of the
original description plus the fact that both Iy4 and I occurred at t,. Following
the previous convention of outlining system events (the actual events that are
causally relevant) and not outlining the remaining possible outcomes, these
two new systems and their possible outcomes are represented in figures 4.3

and 4.4, respectively.
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M& O
fla] 1 Ny T M &~0
S esf LlMI‘ﬁl“' E\: .

~-M& O
~M &-~0O

Figure 4.3. Lewis is invited to Oxford but not to Monash.

M& O
M &~0O
~-M& O
~M &~0

Figure 4.4. Lewis is invited both to Monash and to Oxford.

Each of the “‘new’’ systems are defined at time t,, and at time t, the
events Iy4 and I have either occurred or did not occur. At time t, the events
Ipg and I do not lie in the future of the new systems. As a result, the events I,
and I are not members of the outcome space for the new propensity functions
(defined for the new systems) since these events cannot be ‘‘produced’’ by
the new systems. Consequently, as a system evolves over time, events are
essentially removed from the outcome space and those relevant events that
actually occur are incorporated into the background conditions of the
emerging system. Depending on which events actually occur, this creates a

new propensity function that is defined at a different time, for a different



system, and over a different o-algebra of events. Thus, a propensity analysis of
the actual evolution of a particular system provides the causal history of the most
recent event to be incorporated into the system.

Given this analysis of the actual evolution of systems, the application of
the propensity interpretation of probability to contrastive explanation is quite
straightforward. The first two presuppositions of Lipton’s account can be
expressed as follows: for some appropriate propensity functions defined for

some systems S;, Sy,, and S5, where t; < t; < t3, and defined over the fact P

and the foil Q,
1>Pr(P:S;;)>0and 1> Pr(Q:S;;) >0, (4.1)
Pri»(P: S;5) > 0 and Pr,(Q: S;5) =0, and 4.2)
Priy(P: S3) = 1. (4.3)

Lipton’s first presupposition is provided by condition (4.1): according to the
propensity function Pr,;, ine fact P and the foil Q are both possible at some
time t;. Lipton’s second presupposition is provided by conditions (4.2) and
(4.3). In particular, the propensity function Pr,, of condition (4.2) states that
the foil Q is no longer possible at some later time t,, and condition (4.3) states
that, according to propensity function Pr,5 the fact P actually occurred at some
time t3 (possibly simultaneous with t,).

Lipton’s third presupposition, as well as the basis for his difference
condition, is inferred from conditions (4.1), (4.2), and (4.3) and the following
propensity version of the difference condition (DC):

DC if system S; evolved from system S,, and S, evolved from system

S1, then the explanation of ‘*Why P rather than Q”’ consists of the
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events that provide the actual difference between system S, and

its future events (up to time t,), and system S,.
Lipton’s third presupposition follows immediately: given that system S,
evolved from system S, the difference between system S, and its future
events (up to time t,), and system S, provides information concerning the
causal history of the event P. In the next section, it is argued that the
difference between these two systems is the event or events that caused **P
rather than Q,’’ and that this difference is the basis for identifying a
‘‘corresponding cause.”’ But, before examining the role of the difference
condition in these matters, the manner in which the difference condition
identifies the event or events in the actual causal history of the fact P must be
considered.

In order to examine the manner in which the difference condition
identifies the event or events in the actual causal history of the fact P
reconsider the example of explaining Lewis’s trip to Monash. In the case that
Lewis is invited to Monash but not to Oxford, conditions (4.1), (4.2), and (4.3)
are satisfied by systems S,; and S,;--I\,&~I; moreover, system S, ,--I\,&~l,
evolved from system S,;. Recall that as relevant events actually occur, they are
incorporated into the system description. This process of incorporation is
represented, diagrammatically, by placing the events that actually occur into the
outline font that is used to identify systems and actua} events. Consequently,
the difference between the outlined portions of figures 4.1 and 4.2 (above)
provides the actual difference between the causal histories of the occurrence

of the fact (M) and the nonoccurrence of the foil (~0). In comparing figures



4.1 and 4.2 (above), the only actual difference between these two systems is
the event Iy4. In the case that Lewis is invited to both Monash and Oxford,
however, there is no actual difference between th= causal history of the
occurrence of the fact and the nonoccurrence of the foil (compare figures 4.1
and 4.4 above).

Thus, the basis for Lipton’s difference condition is evident. The
propensity account identifies an actual difference in the causal histories of the
events P and ~Q where such a difference exists. Furthermore, the application
of the difference condition, and the manner in which it identifies the
difference in the causal history, does not make an appeal to hypothetical or
counterfactual events. It must be noted, however, that in order to avoid such
hypothetical or counterfactual claims, this account presupposes a detailed
(propensity) account of the actual causal history of the occurrence of the fact
and the nonoccurrence of the foil. Given this requirement, two additional
observations must be made. First, that this is a reasonable presupposition
because it would be unreasonable to require that one can provide a causal
explanation of an event without knowing the causal history of that event. If
one does not know the causal history of an event, then he or she cannot
possibly give a causal explanation of that event. The second observation is
that the establishment of the knowledge of the causal history of the fact may
include an appeal to multiple experiments and sequences of events rather than
to the single actual sequence of events resulting in the fact P. In particular,
given that a detailed causal history of the fact is required, the methods of causal

analysis must be used. Furthermore, as discussed in chapter 3, the methods of
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causal analysis typically make an appeal to controlled experiments. Thus, the
requirement of a detailed causal history of the fact P may require an appeal to
causal sequences that do not involve the actual fact P. Still, however, as
discussed in chapter 3, these appeals to other causal sequences do not
necessarily require an appeal to hypothetical or counterfactual occurrences of
events.

In conclusion, the propensity account adequately captures Lipton’s first
three presuppositions for contrastive explanation. Furthermore, the use of
propensities to represent the actual causal histories of events provides the basis
for the application of the difference condition. A complete examination of the
difference condition has not been given, however. Also, Lipton’s fourth
presupposition, that contrastive explanation offers a partial explanation of the
fact in terms of the foil, has not been discussed in detail. Consequently, the
following question remains: how does the identification of the actual
difference between P and ~Q identify the corresponding cause, and in what
manner does it provide a partial explanation of the fact in terms of the foil?

The next section considers the answer to this question.

4.4 The role of the foil in contrastive explanation

The aim of this section is to demonstrate the role of the foil in providing
a partial explanation of the fact in terms of the foil. Ultimately, it is the role of
the foil that provides the basis for describing the mechanism by which the
difference condition identifies a corresponding cause rather than some other

cause. First, an outline of the manner in which a change in the foil produces a



change in the propensity analysis of the causal history of the fact is given. Itis
argued that the foil selects partial causal histories of the fact, and that the
application of the difference condition to these partial causal histories produces
the partial explanation. This selection procedure serves to identify causal
histories based on a particular type of causal relevance. Moreover, the notion
of corresponding cause is defined in terms of being the type of cause that is
selected by the foil. Finally, the implications of this notion and the advantages
of contrastive explanation are exsmined. First it is argued that the foil serves to
narrcw the reference class and to reduce the problem of encountering
inhomogeneity. Consequently, the foil also serves to reduce the problem of
explanatory ambiguity. .

In order to appreciate the role of the foil in contrastive explanation,
consider the task of answering the following contrastive why question: why
did Lewis fly to Monash rather than sail to Monash in 1979? According to the
first three presuppositions, it is assumed that (1) at some time it was possible for
Lewis to fly to Monash and it was possible for him to sail to Monash; (2) at some
later time Lewis actually did fly to Monash (and did not sail to Monash); and (3)
the explanation of why Lewis flew to Monash rather than sailed to Monash
consists of information concerning the causal history of his flight to Monash.
Furthermore, according to the additional assumption that a complete causal
history of Lewis’s actual flight to Monash is available, suppose that the causal
history is provided as follows. At some time after accepting the invitation to
Monash in 1979, Lewis was confronted with the option of flying to Monash or

sailing to Monash. Additionally, the only factor left to influence his decision

135




to fly to Monash or to sail to Monash was the price of each option. That is, all
causal factors for his flying or sailing to Monash have been fixed at some time
t;, and can be represented by some system S';;. For example, factors such as
invitations, getting time-off for the trip, the length of a ilight versus length of a
voyage, and the prospect of seeing friends have all been captured in the
description of system S';;. Finally, assume that, given the manner in which
these factors are causally relevant, the reasonableness of the prices of flying to
Monash and of sailing to Monash are causally relevant.

Define the events P = ““The price of flying is reasonable’’; Pg = *‘The
price of sailing is reasonable’’; F = ‘‘Lewis flew to Monash™’; and S = **Lewis
sailed to Monash.”’” Then, given this causal description of the states of affairs at
t;, and assuming that it is not known which prices are reasonable, the causal
process leading to Lewis’s flight or voyage to Monash in 1979 is represented

in figure 4.5.
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Figure 4.5.

Either the price of flying is reasonable or the price of sailing is reasonable.

If it is actually the case that the price of flying is reasonable and the price

of sailing is not reasonable, the causal history of Lewis’s flight or voyage to




Monash is represented by figure 4.6.
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Figure 4.6. The price of flying is reasonable but the price of sailing is not.

On the other hand, if it is actually the case that the prices of both modes of

transportation are reasonable, the causal history of Lewis’s flight or voyage to

Monash is represented by figure 4.7.

F& S
e o F &-~S
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~F& S
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Figure 4.7. Both the price of flying and the price of sailing is reasonable.

Given this causal story describing Lewis’s flight or voyage to Monash in
1979, it is possible to apply the difference condition to Lewis’s flight (rather
than voyage) to Monash in the same manner as it was applied to the previous

causal story about Lewis’s travel to Monash (rather than Oxford) i 1979. In the
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case that the price of flying is reasonable and the price of sailing is not
reasonable (as represented by figure 4.6), the difference condition identifies
the actual difference between figures 4.5 and 4.6. This application of the
difference condition reveals that the actual difference is the event “‘the price
of flying is reasonable and the price of sailing is not.”’ Consequently, the
cxplanation of why Lewis flew to Monash rather than sailed to Monash is the
fact that the price of flying was reasonable and the price of sailing was not. But
in the case that both modes of transportation are reasonably priced (represented
by figure 4.7), the difference condition identifies the difference between
figures 4.5 and 4.7. In this case there is no actual difference between the two
representations of the causal history. Thus, there is no explanation of why
Lewis flew, rather than sailed, to Monash.

Clearly, the role of the foil in contrastive explanation is to help identify
the causal story to which the difference condition must be applied. Suppose
that, in fact, Lewis flew (rather than sailed) to Monash (rather than Oxford) in
1979. Also, assume that Lewis was invited to Monash, but not to Oxford, and
that the price of flying was reasonable, whereas the price of sailing was not
reasonable. Then, the complete causal history of Lewis’s trip to Monash would
consider a vast array of events including invitations to Monash and to Oxford,
as well as the price of flying and the price of sailing. But the explanation of
why Lewis went to Monash rather than to Oxford would consider only a partial
causal history of Lewis’s trip to Monash. As described above, this explanation
is the result of applying the difference condition to the causal history

concerned with invitations, and the explanation would be that only Monash
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invited him. In a similar manner, the explanation of why Lewis flew rather
than sailed to Monash would consider the partial causal history concerned with
the price of travel, and the explanation would be that only the price of flying
was reasonable.

The only difference between the two contrastive why questions is the
foil, and the foil serves to identify a particular partial history of the fact. In the
case of the two contrastive why questions considered above, the foils identify
different (partial) causal histories. In answering each contrastive why question,
the difference condition is applied in exactly the same manner: the difference
condition is applied to the partial causal history that is identified by the foil in
the contrastive why question. Consequently, in answering the two contrastive
why questions, the difference condition is applied to two different (partial)
causal histories. In so far as the explanation consists of some event or events
taken from an appropriate partial causal history, the resulting explanation
provides a partial explanation of the fact. Furthermore, since the explanation is
taken from one of the actual partial causal histories of the fact P (and the
nonoccurren;:e of the foil Q) and does not consist of a complete causal history
of the fact or the nonoccurrence of the foil, explaining *‘P rather than O’ does
not reduce to explaining ‘‘P,’’ explaining ‘‘P and ~Q,’’ or explaining **~Q."’

The following question remains: how does the selection of the foil
determine the partial causal history to use? The answer to this question
provides the basis for our understanding of the manner in which a contrastive
explanation provides a partial explanation of the fact in terms of the foil. When

confronted with a contrastive why question, the propensity function that is
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defined for the system describing the relevant causal history must be defined
over an outcome space consisting of the fact and the foil (and their negations).
Furthermore, if the outcome space is restricted to the fact and the foil (and their
negations), then different contrastive why questions yield different outcome
spaces. (iiven the description of the manner in which causal histories are
constructed, different outcome spaces produce different causal histories since
the causal history includes only those events that are causally relevant to the
fact and the foil.

The result of this restriction is that different contrastive why questions
request explanations in terms of different ‘‘types’’ of causal factors. For
example, the explanation of why Lewis traveled to Monash rather than to
Oxford in 1979 proceeds in terms of those causal factors that are responsible for
Lewis travelling to Monash and not travelling to Oxford, whereas the
explanation of why Lewis flew to Monash rather than sailed to Monash
p: <eeds in terms of those causal factors responsible for Lewis flying to
Monash and not sailing to Monash. This difference provides the basis for
claiming that the resulting explanation provides a partial explanation of the fact
in terms of the foil.

Of course, some events may be causally relevant to more than one foil
and may therefore have a role in more than one partial causal history of the fact.
For example, Lewis may have been invited to both Monash and Oxford, but
may have made his decision based on the reasonableness of the prices of

flying to Oxford and flying to Monash. Consequently, ‘‘the price of flying to

Monash is reasonable’’ is an event in both the causal history of why Lewis

141




travelled to Monash rather than to Oxford and the causal history of why Lewis
flew to Monash rather than sailed to Monash. Despite this fact, the *‘type*’ of
causal relevance is determined by, and expressed in terms of, the foil. Thus
the notion of a corresponding cause can be understood as follows. An event
A corresponds to an event B if and only if A and B are causally relevant to the
fact P in the same way. In particular, A and B are causally relevant to both the
fact P and the foil Q. Consequently, the notion of a corresponding cause is
dependent on what is actually causally relevant to both the fact and the foil, and
to those events that are necessary to produce the fact and the foil.

In conclusion, this section will examine the degree to which the
propensity interpretation of contrastive explanation encounters or avoids the
traditional problems of the homogeneity of the reference class and of
explanatory ambiguity. The problem of homogeneity arises in different
manners for different theories of explanation and has been discussed from
many perspectives ard by many authors.2 The propensity account of
contrastive explanation , for the most pait, avoids the problem of homogeneity.
One of the major presuppositions that is made by the propensity version of
contrastive explanation is that the actual (partial) causal history of the fact is the
broadest homogeneous description available. As described above, in the

present account there is an explicit assumption that such a reference class is

2See for example, J. Alberto Coffa 1974; James H. Fetzer 1974a, 1974b,
and 1977; Joseph F. Hanna 1981 and 1983; Carl G. Hempel 1962, 1965, and
1968; Peter Railton 1978 and 1981; and Wesley C. Salmon 1971, 1974, 1977,
and 1984.



available. In particular, this account of explanation presupposes that a theory of
causation is available to produce these ‘‘broadest homogeneous causal
histories.”” Once an appropriate causal history is acquired, the contrastive
account outlined above simply aoplies the difference condition DC to the
appropriate causal histories.

It must be acknowledged that the requirement that the reference class is
provided by a theory of causation, as a strategy for avoiding the problem of
homogeneity, is available to other (non-contrastive) approaches to
explanation. Yet, it must also be realized that the contrastive account has a
distinct advantage in using this strategy because the types of causal histories
demanded by the contrastive approach are more easily provided by a theory of
causation than are the types of causal histories demanded by non-contrastive
accounts of explanation. In most non-contrastive accounts of explanation, the
reference class must take the form of a complete causal history of the fact. But,
as discussed in chapter 2, a causal analysis of the foil simpliciter employs
chance-like thinking and encounters the problem of homogeneity directly.
On the other hand, the contrastive approach to explanation requires an analysis
of a partial causal history, and this requirement effectively narrows the
reference class. Most importantly, the reference class is narrowed by
restricting the causal analysis to only those events that are actually causally
relevant to both the fact and the foil. Thus, the reference class is narrowed
along causal lines. For example, the events effecting Lewis’s decision to fly to

Monash rather than Oxford in 1979 are less diverse than the events effecting

his decision to fly to Monash in 1979. Consequently, the manner in which
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the foil serves to narrow the reference class helps to make the reference class
that is required more homogeneous. Thus, the contrastive approach to
explanation facilitates the theory of causation’s task of defining the broadest
homogeneous reference class.

This discussion of the manner in which the contrastive approach avoids
the problem of homogeneity provides the basis for explaining the manner in
which the contrastive approach avoids the problem of explanatory ambiguity.
If an account of explanation leaves the task of producing the broadest
homogeneous reference class to a theory of causation, then the account of
explanation must be able to provide that causal theory with a specific and
unambiguous event that is, in fact, susceptible to a unique and homogeneous
causal history. This problem has been described by Joseph F. Hanna (1981,
413) as ‘‘the ambiguity of event descriptions.’” As Hanna notes, ‘‘the request
for an explanation is itself ambiguous, because there is no unequivocal fact . . .
has been specified”” (1981, 413). It will be argued, below, that non-contrastive
approaches often appeal to pragmatic methods of avoiding this problem,
whereas the contrastive approach to explanation provides a direct and formal
method of overcoming this problem.

Most non-contrastive approaches to explanation presuppose that a
complete and homogeneous reference class or causal story is available.
Consequently, if a causal theory that can, in fact, provide them with such a
causal history (in spite of the difficulties with homogeneity), then these
theories of explanation are provided with a large array of contributing and

counteracting causes that can be extraordinarily diverse in nature.



Subsequently, non-contrastive theories of explanation encounter the
overwhelming task of selecting a relevant event, or events, from that large

array of contributing and counteracting causes. Often, this task is achieved by

imposing pragmatic criteria for explanatory relevance or salience to this
complete causal history.3 In the case of contrastive explanation, as described
above, the answers to contrastive why questions provide partial explanations
of the fact in terms of the foil. This type of explanation is based on, or
presupposes, a partial causal history of the fact, and this type of causal history is
more easily partitioned into a homogeneous set of causal factors. Furthermore,
the foil serves to identify the partial causal history, and by appiying the
difference condition to this causal history, a specific event or group of events
is selected in the case that their is no corresponding cause. Consequently, the
foil serves to remove the ambiguity associated with singular (complete)
events. The advantage of the contrastive account is that it provides a method
for focusing the search on a specific part of the complete causal story, or
alternatively, it provides a method for narrowing the reference class. This
advantage serves to facilitate that application of causal theory, as well as the

application of the difference condition.

4.5 Concluding remarks
The contrastive approach to explanation is based on providing partial

explanations of the fact in terms of the foil. Moreover, this type of explanation

3See for example Carl G. Hempel 1965 and Peter Railton 1678 and 1981.
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certainly differs from non-contrastive explanations--explanations of the fact
simpliciter. One of the motivations for this chapter is that advocates of the
contrastive approach to explanation are still struggling to explain this
difference, as well as the advantage that this difference confers on the
contrastive approach to explanation. Lipton’s (1991a and 1991b) account has
made an effort to explain these differences, but, as indicated above, Lipton’s
account fails to demonstrate the manner in which the difference condition
identifies a corresponding cause rather than some other type of cause. Based
on this inadequacy, this chapter examines both the role of the foil in
identifying corresponding causes, and the advantages of contrastive
explanation.

First, it was demonstrated, by appealing to the distinction between
systems and events, as well as to the update semantics, that the propensity
interpretation of probability is capable of providing a representation of the
actual causal history of an event. Then it was demonstrated that the propensity
interpretation is capable of formalizing the four presuppositions of (causal)
contrastive explanation: (1) at some time, both the fact and the foil were
possible; (2) at some later time, the fact actually occurred and the foil did not
occur; (3) the explanation of an event consists of providing information
concerning the foil’s actual causal history; and (4) ‘‘explaining P rather than Q”’
is not reducible to ‘‘explaining P,”’ ‘‘explaining P&~Q,"’ or ‘‘explaining ~Q."’
Furthermore, it was argued that causal theories of explanation must also assume
that an analysis of the actual causal history of the fact is available prior to the

explanation. Finally, the propensity representation of the causal histories of




events was used to provide an understanding of the difference condition.
Most importantly, the role of the foil in contrastive explanation was examined.
It was demonstrated that the foil serves to identify partial causal histories of the
fact in terms of the foil, and that it was the application of the difference
condition to these partial causal histories that made it possible to identify
corresponding causes rather than some other cause. Moreover, it is the
application of the difference condition to the causal histories selected by the
foil that produced partial explanations of the fact in terms of the foil.

Finally, the advantages of the contrastive approach to explanation were
demonstrated. Theories of explanation based on explaining the fact
simpliciter encounter the problem of homogeneity in the same manner as the
theories of chance and causation encounter the problem. Specifically, by
considering events simpliciter, these theories must consider a diverse and vast
array of causal factors. The contrastive approach avoids the problem of
homogeneity by passing it on to a theory of causation, but it passes this
problem on in a beneficial and responsible manner. The foils serves to
narrow the reference class by requesting a causal history that is defined
according to a specific type of causal relevance. Thus, there is a relative lack
of diversity within the causal histories that are requested by the contrastive
approach to explanation and the causal analysis of these causal histories has a
better chance to be homogeneous. Furthermore, given that the foil selects the
partial causal histories that it does, and given that the difference condition is
applied to these causal histories, the problem of explanatory ambiguity is

avoided with the normal application of the formalism of the theory. In the case
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of the non-contrastive approach, however, an appeal to pragmatic
considerations is usually required in order to avoid this problem. Thus, the
propensity version of the theory of contrastive explanation provides an
account that is capable of avoiding or minimizing the effects of both the
problem of homogeneity and the problem ambiguity. Furthermore, the
propensity version is unified with, and facilitates the use of, theories of
causation and depends only on the difference condition, thereby avoiding an

appeal to the pragmatics of explanation.
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Appendix 1

Derivations Involving Probabilities and Propensities

A.1 A demonstration that Pr,;(Ts|B,,) = pq

Note the following theorems of the probability calculus. All page

references are to Humphreys 1985.

The theorem of additivity for conditional probabilities (p. 560):

Add If A and B are disjoint, then P(AvBJ|C) = P(A|C) + P(B|C)
The theorem of total probability for conditional probabilities (p. S60):

TP P(A|C) = P(A|BC)P(B|C) + P(A]~BC)P(~BI|C)

The demonstration that Pr,(T3|B,;) = pq proceeds as follows:

(1) Pr,(Tll,B)=p (p. 561, assignment i)
(2 Pr (1B =4 (p. 561, assignment ii)
(3) Pr(Tsl~1,B,)=0 (p- 561, assignment ii.)
(4) Pr,(~1,B,)=1-9 (Add; 2)
(5) Pry(Ty3By)=pq (TP: 1,2,3,4)
QED
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A2 A demonstration that Pr,,(I,]~T;3B,)) = (q - p@)/(1 - pq)
Recall the following theorems of the probability calculus. All page

references are to Humphreys 1985.

The theorem of additivity for conditional probabilities (p. 560):
Add If A and B are disjoint, then P(AvB|C) = P(A|C) + P(B|C)
The theorem of total probability for conditional probabilities (p. S60):
TP P(A|C) = P(A|BC)P(B|C) + P(A]-BC)P(~BJ|C)

The demonstration that Pr,(I,,]~T,3B,;) = (q - pq)/(1 - pq) proceeds as follows:

1) Pr (TsllHBy)=p (p. 561, assignment i)
(2) Pry(1fBy) =4 (p- 561, assignment ii)
(3) Pry(Tysl~1;pBy) =0 (p. 561, assignment iii)
(4) Pry(-1pBy)=1-4q (Add; 2)
() Pry(TylBy) =pq (TP; 1,2,3,4)
6) Pry(I,IT3B,) =1 (demonstrated in ch. 2, sec. 2.3)
(M Pry(-TylBy)=1-pq (Add; 5)
) Pryy(Il~Ty3Byy) = (@ - pa)A(1 - p@) (TP;2,6,5,7)

QED



A3 A derivation of the theorem on total probability for binary
events, without an appeal to the inversion theorems

Note the following definition, axioms, and theorems of the probability

calculus:

The definition of conditional probabilities:
Def P(A]B) = P(A&B)/Pr(B)
The general addition axiom:
Add If A and B are disjoint, then P(AvB|C) = P(A|C) + P(B|C)
The theorem for logically equivalent events:
Equiv If A and B are logically equivalent, then P(A) = P(B)
The theorem for tautologies:
Taut  If Ais a tautology, then P(A|B) = 1
The theorem of total probability for conditional probabilities:
TP  P(A|C) = P(AIBC)P(B|C) + P(A|~BC)P(~B|C)

The derivation of theorem of total probability for conditional probabilities

proceeds as follows :
(1) P(Bv-BJAC) = P(BJAC) + P(-BJAC) (Add)
(2) 1=P(BJAC) + P(~-BJAC) (1; Taut)
(3) KAC)=PACPBIAC) + AC)P(-BJAC) (2; multiply by (AC))
(4) P(AC)=P(BAC) + P(-BAC) (3; Def)

(5) P(AC)YP(C) = P(BAC)/P(C) + P(-BAC)P(C) (4; divide by P(C))
(6) P(A|C) = PBBAC)/P(C) + P(~BAC)/P(C) (5; Def)

151




() P(AC) = [PBACYP(C)][PBCYP(BC)]
+ [P(~BAC)/P(C)][P(~BC)/P(-BO)]
8) P(AC) = [PBACYPBO)|[P(BCYP(C)]
+ [P(~BACY/P(~BC)|[P(-BCYP(C)]
(9) P(AC) = [P(ABCYP(BO)][P(BCYP(C)]
+ [P(A~BCYP(~BO)][P(-BCYP(C)]
(10) P(AIC) = P(AJBC)P(BIC) + P(A|-BC)P(~BIC)
QED

(6. A/A=1)
(7. (A/BXC/D) =
(A/D)C/D))

(8; Equiv)
(9; Def)



A.4 A derivation of alternative expressions of the principle of
strict compeosition

Recall that only those emissions that hit the screen are statistically

significant. Also, note the following definition and theorems for propensities.

Only those emissions that hit the screen are statistically significant:
SS Pr(P,vP,:B’5) =1

The principle of strict composition, as expressed by (3.3) in ch. 3, sec. 3.2:
SC Pr(R:B’5) = Pr(R&P;:B’'3) + Pr(R&P,:B’;)

Definition of conditional propensities:
DCP  Pr(A|B:S) = Pr(A&B:S)/Pr(B:S)

The theorem for tautologies for conditional propensities:

TCP If Pr(AvB:S) = 1 then Pr(CJAVB:S) = Pr(C:S)

The derivation of alternative expressions of the principle of strict composition

proceeds as follows:
(1) PI'(P|VP2:B'3) =1 (SS)
(2) Pr(R:B’3) = Pr(R&P:B’3) + Pr(R&P,:B’;) (SO

(3) Pr(R:B;)=Pr(R[P;:B’ 1:B'3) + Pr(RIP,:B';)Pr(P,:B'5) OCP;2)
(4) Pr(R|P,vP,:B';) = Pr(R|P,:B'3)Pr(P,:B’;)
+ Pr(R|P,:B'3)Pr(P,:B’;) (TCP; 1,3)
Therefore. (2), (3), and (4) provide equivalent statements of the principle of
strict composition.
QED
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A.S A derivation of the principle of strict compeosition from the
fact that bullets are localized at the slits
Recall that the fact that bullets are localized at the slits is represented by
equ=lity (3.4). Note that references are made to the results of A.4 above. Also

note the following theorem of the propensity calculus:

Theorem of composition of conditional propensities:
CCP Pr(CJAvB:S) = Pr(ClIA:S)Pr(A:S) + Pr(C|B:S)Pr(B:S)
- Pr(CJA&B:S)Pr(A&B:S)

The derivation of the principle of strict composition proceeds as follows:

(1) Pr(P,&P,:B'3)=0 (34)
(2) Pr(R|P;vP,:B’;) = Pr(R|P,:B';)Pr(P;:B';)

+ Pr(R|P,:B’3)Pr(P,:B';)

- Pr(R|P,&P2:B';)Pr(P,&P,:B';) (CCP)
(3) Pr(R|P,vP,:B’5) = Pr(R|P,:B'5)Pr(P,:B';)

+ Pr(R|P,:B’)Pr(P,:B’;) (1,2)
(4) Pr(R:B’;) = Pr(R&P,:B'3) + Pr(R&P,:B'5) (results of A.4; 3)

QED

Note that this derivation is not ‘‘reversible.”” That is, strict composition
implies that Pr(R|P;&P2:B'3)Pr(P;&P,:B’3) = 0. This condition can be
satisfied if either Pr(RIP]&Pz:B'3) =0or Pr(P]&PzIB";) = ().
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