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Abstract

This thesis is a collection of three independent essays
in econometrics.

The first essay uses the empirical characteristic
function (ECF) procedure to estimate the parameters of
mixtures of normal distributions and switching regression
models. The ECF procedure was formally prorosed by
Feuerverger and Mureika (1977), Heathcote (1977). Since the
characteristic function is uniformly bounded, the procedure
gives estimates that are numerically stable. Furthermore, it
is also shown that the finite sample properties of the ECF
estimator are very good, even in the case where the popular
maximum likelihood fails to exist.

The second essays applies White’s (1982) information
matrix (IM) test to a stationary and invertible
autoregressive moving average (ARMA) process. Our result
indicates that, for ARMA specification, the derived
covariance matrix of the indicator vector is not block
diagonal implying the algebraic structure of the IM test is
more complicated than other cases previously analyzed in the
literature (see for example Hall (1987), Bera and Lee
(1993)). Our derived IM test turns out to be a joint
specification test of parameter heterogeneity (i.e. test for
random coefficient or conditional heteroskedasticity) of the

specified model and normality.
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The final essay compares, using Monte Carlo simulation,

the generalized method of moments (GMM) and quasi-maximum
likelihood (QML) estimators of the parameter of a simple
linear regression model with autoregressive conditional
heteroskedastic (ARCH) disturbances. The results reveal that
GMM estimates are often biased (apparentiy due to poor
instruments), statistically insignificant, and dynamically
unstable (especially the parameters of the ARCH process). On
the other hand, QML estimates are generally unbiased,
statistically significant and dynamically stable. Asymptotic
standard errors for QML are 2 to 6 times smaller than for

GMM, depending on the choice of the instruments.
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OVERVIEW

This thesis is a collection of three independent essays
in econometrics. The first chapter deals with the estimation
methodology of the mixtures of normal distributions and
switching regression models. The second chapter derives the
information matrix (IM) test for a stationary and invertible
autoregressive moving average (ARMA) process. The fipal
chapter compares various parametric estimation procedures
ior a linear regression model with autoregressive
conditional heteroskedastic (ARCH) disturbances.

In Chapter 1, the empirical characteristic function
(ECF) procedure 1is used to estimate the parameters of
mixtures of normal distributions and switching regression
models. The ECF procedure was formally proposed by
Feuerverger and Mureika (1977), Heathcote (1977), Bryan and
Paulson (1983). Since the characteristic function is
uniformly bounded, the procedure gives estimates that are
numerically stable. Furthermore, it is also shown that the
finite sample properties of the ECF estimator are very good,

even in the case where the popular maximum likelihood fails




to exist.

In Chapter 2, we apply White’s (1982) information
matrix test to a stationary and invertible ARMA process. Our
results indicate that, for the ARMA specification, the
derived covariance matrix of the indicator vector 1is not
block diagonal implying the algebraic structure of the IM
test is more complicated than in Hall (1987) and Bera and
Lee (1993). Our derived IM test turns out to be a joint
specification test of parameter heterogeneity (i.e. test for
random coefficient or conditional heteroskedasticity) of the
specified model and normality.

Chapter 3 compares, using Monte Carlo simulation, the
generalized method of moments (GMM) and quasi-maximum
likelihood (QML) estimators of the parameters of a simple
linear regression model with ARCH disturbances. The results
reveal that GMM estimates are often biased (apparently due
to poor instruments), statistically insignificant, and
dynamically unstable (especially the parameters of the ARCH
process). On the other hand, QML estimates are generally
unbiased, statistically significant and dynamically stable.
Asymptotic standard errors for QML are 2 to 6 times smailer

than for GMM, depending on the choice of the instruments.
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CHAPTER 1
EMPIRICAL CHARACTERISTIC FUNCTION PROCEDURE IN
MIXTURES OF NORMAL DISTRIBUTIONS AND
SWITCHING REGRESSION MODEL

I. INTRODUCTION

One of the best known problems that occurs in applied
research is the mixtures of two or more normal
distributions, see for example Bhattacharya (1966), Cohen
(1967), Day (1969), Odell and Basu (1976), Hosmer (1973,
1978), Tan and Chang (1972), Quandt (1975), Quandt and
Ramsey (1978), Schmidt (1982), and Titterington et al.
(1985) for reference therein. Thus, in the general case, we

have a random variable y such that

(1) y ~ N(u ,0°) with Probability a, i=1,2,...,k
K

where ZAl = 1, (Al, ", a‘f) are (3k - 1) unknown
i=1

parameters.



4

Alternatively, one can extend the problem in (1) to the
regression case where we allc:. for the means to depend on
some explanatory variables in which case it is referred as
th: ‘"switching regressions" problem. In the economic
context, the normal mixture model such as (1) (cr switching
regressions) can be viewed as a "contaminated data" (or
structural change) problem. Some of the contaminated data
examples include Granger and Orr (1972) (see also Hamermesh
(1970), Quandt (1975) for the economic application of the
switching regressions <case): (i) In a firm’s monthly
production series, the contamination may be due to a sudden
strike, a sales promotion, or an annual vacation shutdown;
(ii) In daily interest rate changes, the result of a
governmental policy action, such as large open-market
purchase, can be viewed as contamination.

For simplicity, we shall restrict our attention to the
case where the number of mixtures is two. This problem is an
old one and the history of attempts to solve the problenm is
a long one beginning with Newcomb (1886) and most recently
Lindsay and Basak (1993), see Titterington et al. (1985) for
extensive references up to 1983. Also, this problem is
irregular in the sense that without any further restrictions
the likelihood function is unbounded. Computational
difficulties, therefore, may be encountered in practice.

There are a couple of well known facts about the problem
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worth noting. First, unlike other mixtures, the parameters
are identified (Teicher (1961, 1963)' and secondly, the
parameters can be estimated consistently by methed of
moments (Cohen (1967), Day (1969)) and the method of moment
generating function (Quandt and Ramsey (1978), Schmidt
(1982)).

In this paper, we introduce an alternative method of
estimating the parameters of normal mixtures and switching
regressions. The procedure is similar to that of the Quandt
and Ramsey (1978) method of moment generating function
(hereafter MGF) except we replace the sample moment
generating function by the charac:eristic function. This
method was formally proposed by Feuerverger and Mureika
(1977), Heathcote (1977). There are several advantages of
using the characteristic function. One is the
characteristic function is uniformly bounded and thus, it
should lead to greater numerical stability. Furthermore, the
characteristic function is applicable to cases where the
moment generating function fails to exist, as with certain
fat tailed distributions.

Section 2 reviews various methods of estimating the
parameters and their drawbacks for the normal mixtures case.
These include the method of moments, the method of maximum
likelihood and the MGF method.

Section 3 proceeds to outline the alternative
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estimation procedures using the characteristic function
ap.)roach and cffers detailed discussion on its asymptotic
properties. Section 4 provides some Monte Carlo evidence of
the finite samnpi« properties of the estimator discussed in
section 3. Section 5 generalizes the framework in section 3
to the cas2 ui switching regression models. Finally, section
6 concludes the paper and offers some suggestions for future

research.

II. VARIOUS METHODS OF ESTIMATING PARAMETERS OF NORMAL

MIXTURES MODEL

For simplicity, we shall examine the case of a mixture of
two univariate normal distributions. Thus consider we have a
random sample Y, Y eeeer¥, from the distribution specified
in (1) for k = 2, with probability density function given

by:

(2.1)
£(YiM, 0 ,1,,05,00) =[A/(zn)”zo,]exp[-(llzof) (y - ul)?‘] +

[(1-7«)/(2n)"zaz]exp[-u/zo§> (y - uf]

and suppose we wish to estimate the five parameters A, Mo

2 2
L, 0., 0,



2.1. Method of Moments (MOM)

The method of moments technique can be found in Cohen
(1967), Day (1969), and others (see Titterington et al.
(1985) for a list of references). Estimation of the five
parameters in (2.1) using MOM is obtained by equating the
first five sample moments to their population counterparts
and, after much elimination, we are left with a problem of

finding the negative root for the nonic equationl.
9
) -
(2.1.1) Yrw =0
3=1

where 71 are known coefficients. Let m and ks (s =
1,2,...,5) be the sth sample central moment and sample
cumulant, respectively, and suppose that the negative root W

of (2.1.1) exists, we then calculate the following

quantities

- (o -3 ~2 3 ~3 - 2
(2.1.2) u = 6m3w +2k5w +9m3k4+6m3) /(2w +3k‘w+4m3) ’
(2.1.3) vV = u-ma,
(2.1.4) p = v/w,
(2.1.5) z = (2v-m3)/3&,

1 Refer to Cohen (1967) for details.




and solve the quadratic equation

? - pd + w = 0,

{2.1.6) d
giving roots dl and d_, with d > 0 > d, say. We may

express our estimates in the form

h =
i

a + x,

)
2
j'

-

=d/(d -d).

& = djz +m -d
A
2

Note that the above estimates can be greatly simplified
if knowledge about various restrictions of equal means or
equal variances is given a priori. However, in general,
there are a number of potential problems which occur
frequently with the moment estimators.

(i) The parameter estimates may not be unique and may
be non-feasible (i.e. lie outside the parameter space).

(ii) There may be more than one negative root or none
at all in solving the nonic equation (2.1.1).

(iii) The quadratic form in (2.1.6) may not have real
roots.

(iv) Although the parameter estimates are consistent,

they are inefficient. Indeed, simulation work by Tan and

Chang (1972) establish the 1lack of efficiency against




9
alternative maximum likelihood estimators, especially when
the two component densities are close together. Furthermore,
computation of the exact covariance matrix of the estimated

parameters is not usually possible.

2.2. Method of Maximum Likelihood (ML)

Alternatively, Quandt (1972), Hosmer (1973, 1974)
proposed to estimate the parameters by using the popular
maximum likelihood approach. It is popular because of its
attractive asymptotic theory, i.e. strongly consistent,
asymptoticaly normal and efficient, and because the
estimates are often easy to compute. However, as we will
see, this is not always the case. Given a sample of n
independent observations from (2.1), the log-likelihood

function is given by

(2.2.1) L' = 1InL
n

= Y1In [(A/ (2m)

J=1

“o,)exp {-(1/207) (y 1) %} +

(1-2)/ (2m) oY) exp §=(1/207) (¥ 1) °}]

Maximization of L' with respect to the five parameters, a,
M, My, af, a: yields the maximum likelihood estimates. It
is obvious that from (2.2.1) the set of likelihood equations

cannot be solved explicitly and generally have multiple
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(1978) demonstrated that the sequence of roots corresponding
to the largest of the local maxima for each n is consistent,
asymptotically normal and efficient with the last two
results conditional on A = 0 and (u“of) 2 (uﬂof) for (i =
j = 1,2). In addition, the 1likelihood surface is littered
with singularities. For example, Kiefer and Wolfowitz (1956)
noted that if we set H, = K, = K, of = 1, ai = 02, and A =
0.5, then the supremum of L’ is almost always infinite and

no ML estimator exists. Therefore, ML approach may encounter

some difficulties in practice.

2.3. Method of Moment Generating Fuction (MGF)

Due to the difficulties of both MOM and ML approaches,
alternative estimation procedures have been considered in
the literature. One particular procedure of interest is the
MGF proposed by Quandt and Ramsey (1978). The MGF method
seems to work reasonably well against both MOM and ML
(Hosmer (1978)) for the case of mixtures of two normal
distributions. However, since the MGF is unbounded, the
estimates may be numerically unstable (Quandt and Ramsey
(1978)) .

The moment generating function associated with (2.1) is

given by:
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2.3.1) G(t,y) = E(e”) = rexp(ut + 1 o%t?%) +
( 1 2 1

1 2.2
(1 A)exp(uzt + 3 O'ZC )

with its empirical counterpart defined as

(2.3.2) g,(t) = n” Lexp(ty)
1=1

Quandt and Ramsey (1978) propose tc¢ estimate the 5
parameters by minimizing the distance between these two
functions (i.e. (2.3.1) and (2.3.2) for a given set of fixed
grid points te .ot That is, one chooses a set of 5

distinct values of t:""'ts and finds @ to minimize
(2.3.3) €(6)'e(9)

where [c(8)) = G(t ,0) - Gn(t‘), i=1,2,...,5, and @ = (a,

Moo W, af, a':). Minimization of (2.3.3) is equivalent to a

non-linear least squares problem and hence asymptotically,

n'’? (8 - 8) -4 N(0,¥)

where ¥ = (A’A)'Aa’0A (arA 7!
nn n n nn

with (A ]

nli = ac;(t‘,e)/ae’

and Q = Q(t,8) = G(t +t ,8) - G(t -t ,6)
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for all i,j3 =1,2,...,5.
Schmidt (1982) pointed out that a more efficient estimator
of 6, 6., can be found by minimizing the generalized least-

squares criterion rather than (2.3.3), i.e.
(2.3.4) e(8)'Q e (0)

where ﬁ is a consistent estimator of ). Asymptotically,

n'? (8" - &) —%» N(0,[A’Q'A 17).

It is interesting to note that Quandt and Ramsey’s MGF
method and the method of moments are related. Johnson (1978)
points out that the use of the MGF method with a normal
mixture is equivalent to the use of the method of moments
with fractional moments on the mixture of 1lognormals and
thus would suffer some of the same drawbacks as the method

of moments.
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III. EMPIRICAL CHARACTERISTIC FUNCTION PROCEDURE

3.1. Theoretical Aspects

The empirical characteristic function (hereafter ECF)
procedure has been previously investigated by Paulson,
Holcomb and Leitch (1975), Heathcote (1977), Feuerverger and
Mureika (1977), Bryan and Paulson (1983), Feuerverger and
McDunnough (1981a, 1981b), and most recently Feuerverger
(1990) 2. These papers are mostly confined to the theoretical
properties of the procedure, and very few have examined the
application of the technique with the exception of the
stable law family which has been considered extensively. In
what follows we will examine the application of the ECF
procecure to the case of mixtures of normal distributions.

Suppose that a random sample A AEERYS & has been
drawn from a population with <the probability density
function specified in (2.1). Define the characteristic

function (CF) of y, as focllows

(3.1.1)

c(t,8) = E[exp(ify,)]

2 Feuerverger and MclCunnough (1981a, 1981b), Feuerverger
(1990) extend the procedure to estimate the stationary time
series and stationary stochastic process models.
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. 1 . 1 2
Aexp(iut - a’t?) + (1-a)exp(iu,t - - oztz)
2

i

1

1 1
Acos(ult)exp(- ; aftz) + (1-A)cos(u2t)exp(- ;— ojtz) +

1 1
ilasin(u t)exp(- — oftz) + (1-A)sin(u,t)exp(- - o;"cz)]
2

2 ]
and the empirical characteristic function (ECF) as

n
(3.1.2)  c(t) =n jexp(ity))
3=1
=n"? Zcos(ty)) + i|n™? ZSin(tyJ)
3=1 =1

where i = v~-1 , the imaginary number, 6 = (A, Mo, My, af,
U:), and t are the fixed grid points which can be discrete
or continuous. Now separating c(t,8) and Cn(t) into their

real (Re) and imaginary (Im) parts and evaluating at m grid

points, t,t,,...,t , we have
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[ Re C (t) | [ Re c(t ,0) ]
Re C_(t) Re c(t_,8)
2.7 | 1Immc () and  F(O) = | rIm c(t,,0)
Im én(t.) Im c(.tm,e)

where

Re c(t,,0) = Acos(ultk)exp(- % oft:) +

1 2.2
(l-A)cos(uztk)exp(- 3 cztk)
Im c(t,,8) = Asin(ultk)exp(- 32— oft:i) +
. 1 2.2
(1-A)sxn(u2tk)exp(- 3 aztk)

n
n! z cos (tkyj)

J=1
n

Re C (t)

-1 .
Im Cn(tk) n Zs;n(tkyj) . for k = 1,2,...,m

J=1

From Feuerverger and McDunnough (198la) we know that rn (zn
- F(8)) 1is asymptotically normal with mean zero and (2m x

2m) covariance matrix:
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_ RR RI
(3.1.3) Q = q

where the elements in the partitions associated with t and

tk are given by (see the appendix A for a formal

derivation)3

Q.),, = % {Re c(t +t) + Re c(t -t ) } - Re c(t )Re c(t )
1

() = < {rm c(t+t) - Im c(t -t ) } - Re c(t)Im c(t)
1

(), = {Re c(t -t.) - Re c(t +t ) } - Im c(t)Im c(t)

Furthermore, if we define

(3.1.4) e(t) = 2 (t) - F(t,6)

then (3.1.4) can be thought of as the non-linear regression
with a non-scalar covariance matrix where z2 (t) serves as
the dependent variable and F(t,®) serves as the right hand
side explanatory function. Hence, for a given set of grid
points td,tzpu.,t_, an efficient estimator of 6, which we
will denote as ECF estimator &, can be found by minimizing
e(t)'fz'le(t) where 1 is a consistent estimator of Q. The

asymptotic properties of 6 have been examined by Feuerverger

3 For notational simplicity we suppress 6 in c(%,0).
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and McDunnough (1981a, 1981b) with the basic result stated

in the following theorem.

Theorem 3.1. Let t.t,...,t, be distinct fixed grid points.

The ECF estimator of ©, 6 is strongly consistent and

-1
asymptotically normal with covariance matrix n! [A;ndAé]

3F (8)
30

where Ah =

Proof: See Feuerverger and McDunnough (1981a, 1981Db).

From theorem 3.1 it is clear that the asymptotic
efficiency of the ECF procedure depends essentially on the
choice of {tj}. Feuerverger and McDunnough (1981b) argue
that for some cases, one can obtain full asymptotic
efficiency of the procedure (in terms of achieving Cramer-
Rao lower bound) by selecting the grid points {tj} to be
sufficiently fine and extended. A more detailed discussion

on the choice of {tj} is given on the next subsection.

3.2, Choice of {t)}

Like the MGF procedure, ECF procedure also requires
specification of ¢the gq:'id points ¢t,,t,,...,t,. Schmidt
(1982) gives a reasonable detailed discussion regarding the

choice of t’s including how to obtain the optimal t values
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for a given m and the value of m. He suggests one possible
criterion that might be useful in practice is to choose t
that minimizes the size of the asymptotic covariance matrix
(or its determinant) evaluated at some preliminary value of
the estimated parameters. However, to further simplify the
optimal choice of t in the minimization problem, Feuerverger
and McDunnough (1981b) suggested that t should be chosen to
be equally spaced, that 1is, taking t:j = tj, for 3 =
1,2,...,m and Tt is some real constant. This reduces the
minimization to one dimension.

We remark that in determining the optimal value for =,
one should keep in mind that both negative and positive
value of Tt would produce the same estimates of the
parameters when using ECF procedure. This would not be the
case for the MGF estimator. This type of ‘symmetry’
essentially comes from the properties of the trigonometric
functions. Also, some initial experiences (not reported
here) show that the initial choice for t equal to 0.25 to
0.65 seem to work reasonably well in terms of the number of
iterations it takes to convergence.

For the value of m, Schmidt (1982) showed that for the
MGF estimator, as the number of t’s increases the asymptotic
variance of the estimator declines. In fact, as m approaches

infinity, the asymptotic variance of the estimator

approaches the Cramer-Rao lower bound. Thus, the task of
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determining the optimal value of m will not be trivial and
as Schmidt has pointed out it may depend on the finite
sample properties of the estimator which at the present are
unknown. Nevertheless, for practical purposes, m = 10 is
sufficient. We found similar results for the case of the ECF
estimator as one might expect since MGF and ECF methods are
both based on the data transformation, that 1is, Laplace
transformation for the MGF and Fourier Transformation for
the ECF. Some of the Monte Carlo results will be presented

in the next section.

IV. MONTE CARLO EXPERIMENTS

4.1. Experimental Design

To evaluate the performance of the ECF technique in
finite samples, several sampling experiments were carried
out. Samples, of size n = 50 and 100, of the random variable
were generated according to (2.1). Table 1 summarizes the
seven experiments undertaken specifying their parameter
values and sample size?. Figures 1-6 plot the density of the
mixture for each case. Note that if the mixing weights are
equal and the variances of the two components are equal,
then the mixture density is bimodal if |u1 - u2|/a > 2 (Case

3 and 4). Other bimodal densities include Case 1, 5 and 6.

4 All the cases examine here are previouly studied either by
Quandt and Ramsey (1978) or Schmidt (1982).
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Each experiment was replicated as many times as
required to successfully produce 1000 replications, and the
minimization was performed with the DFP (Davidon-Fletcher-
Powell) algorithm and the computation was terminated if the
length of the gradient fell below 10°°. All the computations
were done using GAUSS386 Version 2.1. on a 486DXII-50 PC. A
small experiment on the effect of the starting values of 6,
showed that the ECF procedure was insensitive to reasonable
initial guesses. Consequently, the true parameter values
were used as the starting values. Also, in all experiments,

the value of Tt was set to 0.4.

4.2. Simulation Results

4.2.1. Finite Sample Results

Table 2 (A)-(G) displays the summary statistics of the
sampling distributions of the ECF estimates of the five
parameters for the seven cases. Examination of Table 2 will
reveal that the ECF estimator performs very well. Th:: means
are close to the medians which are close to the true values
and the quantiles are more or less symmetrically placed
around the true parameter values. The interquartile ranges
(IQR) are close to their expected values of 1.35 times the
true asymptotic standard errors. Table 2 also contains the

means and standard deviations of the estimates over 1000

replications. Furthermore, there are other interesting
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features in Table 2 worth noting. First, increasing the
variance of one component, the quality of the estimates
deteriorates both in terms of mean squared errors (MSE) and
median absolute deviation (MAD) (Case 1 and 2). Second,
increasing the samp'e size improves the accuracy of the
estimates (Case 3 and 4). Third, asymmetrical mixtures with
common variances (Case 5 and 6) generally increase (albeit
small) the inaccuracy of the estimate of both the mean and
the variance of the component with the 1lower mixture
proportion. Finally, the MAD was always smaller than root
MSE for all cases.

Table 3 presents a comparison of the root mean squared
errors (RMSE) of the ECF and MLE estimates for the seven
cases . First note that when the two components of the
mixtures are not well separated, as in Case 7, MLE procedure
seems to have serious problems in estimating the parameters.
Previous simulation studies by Hosmer (1973, 1974) have
shown that one would need a sample size of at least n = 250
in order to get reliable estimates. As for the remaining six
cases, out of 30 possible comparisons of the RMSE, the ECF
method out performs the HMLEs in 19 of 30 possible
comparisons. These results illustrate the superiority of the
ECF procedure over the MLE in small samples. It is also

worth noting that we did not compare the ECF procedure with

the MGF method since, comparison of the methods using the
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same grid points is rarely possible. The spacing between the
grid points for the MGF is required to be small whereas the
spacing between grid points for the ECF procedure must be
much larger. Closely spaced grid points for the ECF
procedure yields singularity in the covariance matrix .
Also, since the characteristic function of mixtures of
normals contains both real and imaginary parts, the grid
points used in estimation are twice as numerous as with the
MGF method. Consequently, one would expect the ECF procedure
to perform better than the MGF method in both finite samples
and asymptotically.

Finally, some experiments were run in which the value
of m (number of grid points) was increased tv 6, 7 or 10 to
see if the sampling distributions of the estimates could
offer any guidances as to the choice of m. Intuitively, the
ECF procedure can be thought of as the generalized method of
moments (GMM) applied to the exponentiated data with the
instruments being the grid points. However, while the
instruments used in the GMM technique come from the relevant
data sets, the grid points in the ECF procedure are
arbitrary. Tauchen (1986) studied the finite sample behavior
of the GMM estimator and showed that there is strong

evidence of a bias/variance trade-off as the number of

instruments increases. Thus, in practice, the instrument
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list should be kept small3. Unfortunately, this result does
not carry over to the ECF procedure. Our results (not
reported here but available upon request) indicate that
there is evidence of a bias/variance trade-off for some, but
not all, of the parameters. Consequently, the choice of grid

size m needs further study.

4.2.2. Asymptotic Results

One standard for evaluating an estimation method is the
reliability of its interval estimates of the parameters.
Table 4 provides the coverage rate for 95 percent confidence
intervals of the ECF estimators. The 95 percent nominal
confidence intervals were constructed using the estimates of
the asymptotic standard errors from Theorem 1. We then
compute the number of times in 1000 replications that
individual 95 percent confidence intervals for each of the
five parameters cover their respective underlying true
values. Our results show that, in almost all cases, the
intervals are extremely reliable as the coverage rates are
very close to the expected value of 0.95.

Another standard on which any estimation method should

be evaluated is the validity of the estimator’s asymptotic

5 There was a bias/variance trade-off in the sense that, as
the number of instruments increased, the measure of
dispersion decreased and the bias increased.
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distribution. Table 5 repo..s the Kolmogorov-Smirnov test
for normality of the ECF estimators. At a 5 percent
significance level, normality is rejected in 23 out of 35
possible cases. However, a comparison of Case 3 with Case 4
shows that doubling the sample size greatly improves the fit
of the normal distribution. Normality is strongly rejected
in Case 6 in which the mixtures are highly asymmetrical with
equal variances.

Table 6 displays how the choice of m (number of t’s)
affects the asymptotic variance of the estimated parameters
fcr Case 1 with a sample size of n = 100. The column
labelled T gives the "optimal" value for the spacing
parameter <t from minimizing the determinant of the
asymptotic covariance matrix. It is clear from Table 6 that
the asymptotic efficiency of the ECF estimators increases as
we increase the number of t’s. This result seems reasonable
since, as Schmidt (1982) pointed out for the case of the MGF
estimator, increasing m is equivalent to adding extra
observations to the generalized least squares regression and
hence the asymptotic efficiency could never decrease. In
fact, as m — », Schmidt conjectured (and also provided some
evidence) that the asymptotic variance of the MGF estimators

approach the Cramer-Rao lower bound®. our result also

6 Following Schmidt (1982) the information matrix is
evaluated by simulation. Specifically, 50,000 drawings were
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supports this conjecture for the case of the ECF estimators.
Also, it 1is interesting to note that as m increases the
optimal spacing between the t values uniformly declines.
This striking result is somewhat counterintuitive since for
smaller T, the asymptotic covariance matrix, (A'Qqh)q, is
almost singular. However, the determi..ant of (A‘Q'A)™' is
small when t is small so as m increases smaller values of T

can indeed be optimal.

V. THE SWITCHING REGRESSION MODEL

Now consider a more general case where we let the means
of the two normal distributions depend on the values of some

of the explanatory variables. That is,

(4.1) Yy, -~ N(u“,af) with probability a
y, - N(uﬂ,ai) with probability (1-a)
. = 4
with un xjﬁl
“12 =x;BZI j =1,2,...,n

where xj is a Q-vector of non-stochastic, observable

made from the particular mixture distribution, and for each
drawing the second derivative matrix was calculated; these
50,000 second derivative matrices were then average to get
the information matrix.




26

explanatory variables. Let 68 = (Bl, B, af, a‘;, A) which is

of dimension Q' = (20+ 3). Also let us redefine the notation

for the characteristic function, with the subscript k =

1,2,...,mand j = 1,2,...,n.

= ’ -1 2.2
Re c(tk,a,xj) = Acos(thJB‘)exp( 3 altk) +
’ 1 2,2
(1 A)cos(thjﬁz)exp(- 3 Uztk)
- . ’ _ 1 2.2
Im c(tk,e,xj) = Aszn(thjﬂ‘)exp( 3 altk) +
L3 ' 2 [ =
(1—A)s1n(th132)exp(- ; aztk)

Re an (tk) cos(tkyj)

Im an(tk) sin(tky,)

e(t) =2z - F(t,06)

where an, and l-‘j (t,8) are defined as
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Re CM(CI) Re c(tx,e,xj)
Re C (t ) Re c(t ,0,x )
2o | mmcey | B = e exy
nj o1 17717y
Im Cn’(t.) Im c(tn,e,xj) J
Also, since “31 (1 = 1,2) depends on xj, we need to modify

the covariance structure of cJ = (c’ ot ,...,ejn), so that

1! Ty

Q q
(4.2) Ele e’ = a = ';“ ';‘ j=1,2,...n.
QR! Qll

where QJ is a (2m x 2m) matrix associated with observation
Je
Following Schmidt (1982), to obtain the ECF estimator for 6,

we minimize the following sum of squaves criterion:

n

(4.3) s =n"! e;ﬁ?e

=

J

~

where QJ is a consistent estimator for Qj based on any
consistent estimate of 6. The asymptotic properties of ECF
estimator for this case are a straight forward

genrralization of theorem 3.1 and hence it is easy to verify

that,
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(8 - 8) -2, N(O,® )

where ¢ = lim n[w'(ﬁ')’lvil].1

n—>0

Q is an (nm x nm) block diagonal matrix whose jth

block is ﬁj defined in (4.2), j =1,2,...,n.
W = (A,A,...,A) is a (2nm x Q') matrix with
aF (t,8)
A = |3 1.
J 30

VI. CONCLUSION

This paper has considered the empirical characteristic
function prccedure for estimating the parameters of normal
mixtures and switching regressions. The Monte Carlo study
showed that the procedure produces estimates with good
finite sample properties even in the case where the maximum
likelihood estimator fails to exist. One important problem
remaining is the choice of the number of values of the fix
grid points t. This has shown to be a difficult problem even
in the finite sample since asymptotically more t’s are
preferred to less. Thus, the technique used in this paper
can be viewed as providing an alternative estimator (or it
can be used as a starting values) to the popular maximum

likelihood approach.




References

Amemiya, T. (1977), "“"The Maximum Likelihood anu the
Nonlinear Three-Stage Least Squares Estimator of the
General Non- linear Simultaneous Equation Model,"
Eccnometrica, 45, 955-968,

Bhattacharya, C. G. (1966), "A Simple Method of Resolution
of a Distribution into Gaussian Coﬁponents,"
Biometrics, 23, 115-135.

Bryant, J. L. and A. S. Paulson (1983), "YEstimation of
Mixing Proportions via Distance Between Characteristic
Functions," Communications in Statistics-Theory and
Method, 12, 1009- 1029.

Clarke, B. R. and C. R. Heathcote (1978), "Comment on
‘Est.imating Mixture of Normal Distributions and
Swivching Regressions’, " Journal of the American
Statistical Association, 73, 749- 750.

Cohen, A. C. (1967), "Estimation in Mixtures of Two Normal
Distributions," Biometrika, 56, 15-28.

Day, N. E. (1969), "Estimating the Components of a Mixture
of Normal Distributions," Biometrika, 56, 463-474.
Fauerverger, A., and R. Mureika (1977), "The Empirical
Characteristic Function and 1Its Applications," The

Annals of Statistics, 5, 88-97.

Feuerverger, A. and P. McDunnough (1981a), "On Some Fourier

29




30
methods for 1Inference," Journi:l of the American
Statistical Association, 76, 379-386.

Feuerverger, A. and P. McDunnough (1981b), "on the
Efficiency of Empirical Characteristic Function
Procedures," Journal of The Royal Statistical Society,
B, 43, 147-156.

Feuerverger, A. (1990), "An Efficiency Result for the
Empirical cCharacteristic Function in Stationary Time-
Series Models," Canadian Journal of Statistics, 18,
155-161.

Granger, C. W. J. and D. Orr (1972), "’'Infinite Variance’
and research Strategy in Time Series Analysis," Journal
of the American Statistical Association, 67, 275-285.

Hamermesh, D. S. (1970), "W:ge Bargains, Threshold Effects,
and the Phillip Curve," Quarterly Journal of Economics,
84, 501-517.

Heathcote, C. R. (1977), '"Integrated Mean Square Error
Estimation of Parameters," Biometrika, 64, 255-264.
Hosmer, D. W. Jr. (1973;, "On the MLE of the Parameters of a
mixture of Two Normal Distributions When Sample Size is

Small," Communications in Statistics, 1, 217-227.

Hosmer, D. W. Jr. (1974), "Maximum Likelihood Estimates of
the Parameters of a Mixture of Two Regression Lines,"
Communications in Statistics, 3, 995-1006.

Hosmer, D. W. Jr. (1978), "Comment on ’‘Estimating Mixtures




31
of Normal Distributions and Switching Regressions’,"
Journal of the American Statistical Association, 73,
741-744.

Johnson, N. L. (1978), "Comment on ‘Estimating Mixture of
Normal Distributions and Switching Regressions’,"
Journal of the American Statistical Association, 73,
750.

Kiefer, J., and J. Wolfowitz (1956), "Consistency on the
Maximum Likelihood Estimator in the Presence of many
Nuisance Parameters," The Annals of Mathematical
Statistics, 27, 887-906.

Kiefer, N. M. (1978), "Discrete (larameter Variation:
Efficiency Estimation of a Switching Regression Model,"
Econometrica, 46, 427-434.

Kiefer, N. M. (1978), "Comment on ‘Estimating Mixture of
Normal Distributions and Switching Regressions’,"
Journal of the American Statistical Association, 73,
744-745.

Lindsay, B. G. and P. Basak (1993), "Multivariate Normal
Mixtures: A Fast Consistent Method of Moment," Journal
of the American Statistical Association, 88, 468-476.

Newcomb, S. (1886), "A Generalize Theory of the Combination
of Observations so as to Obtain the Best Result,"

American Journal of Mathematics, 8, 343-366.

Odell, P. L., and J. P. Basu (1976), "Concerning Several




32
Methods for Estimating Crop Acreages using Remote
Sensing Data,"™ Communications in Satatistics, A, 5,
1091-1114.

Quandt, R. E. (1972), "A New Approach to Estimating
Switching Regressions," Journal of the American
Statistical Association, 67, 306-310.

Quandt, R. E. and J. B. Ramsey (1978), "Estimating Mixtures
of Normal Distributions and Switching Regressions,"
Journal of the American Statistical Association, 73,
730-738.

Schmidt, P. (1982), "An Improved Version of the Quandt-
Ramsey  MGF Estimator for Mixtures of Normal
Distributions and Switching Regressions," Econometrica,
50, 501-516.

Tan, W. Y. and W. C. Chang (1972), "Some Comparisons of the
method of Moments and the Method of Maximum Likelihood
in Estimating Parameters of a Mixture of Two Normal
Densities," Journal of the American Statistical
Association 67, 702-708.

Tauchen, G. (1986), "Statistical Properties of Generalized
Method -of-Moments Estimators of Structual Parameters
Obtained From Financial Market Data," Journal of
Business and Economic Statistics 4, 397-416.

Teicher, H. (1961), "Identifiability of Mixtures," The

Annals of Mathematical Statistics, 32, 244-248.




33

Teicher, H. (1963), "Identifiability of Finite Mixtures,"

The Annals of Mathematical Statistics, 34, 1265-1269.

Titterington, D. M., A. F. M. Smith and U. E. Makov (1985),

Statistical Analysis of Finite Mixture Distributions,

John Wiley & Son Ltd.




APPENDIX : DERIVATION OF COVARIANCE MATRIX Qc.

o]
0.0

Q
E[e(t)e(t)'] = = R,R R, I
I,R 1,1

where

(1 a ., = E{ [Re C,(ty)-Re c(t,)][Re Cn(t))-Re c(t,)] }

E{ Re C.(t,)Re C.(t,) } - Re c(t,)Re c(t,)

Now:

E{ Re C,(t,)Re C,(t,)) } = n‘zr:{ ) cos(t,y,) § sin(t,y)) }
J=1 =1

n

= n'ZZE{ cos(t,y,)cos(t y,) } *
=1

2n%y ¥ E{ cos(tyy,)cos(t,y,) } (A1)
J r

The E(.) of the first term of (Al) can be written as:

E{ Ccos(t,y,)cos(t,y,) } = E{ % (e''%*14e " ti*y)

10 —la)

by using the fact that cos(a) = = (e~ + e

% . Hence

- _:_ E{ ei(tkotl)yj . el(lk".l)y" +
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e"“k*"l”} . e"”"k""lyj }
= _:. { c(t,+t;) + c(t,-t,) + c(=(t,+t,)) + c(—-(t,-t;)) }
= L { Re c(tytt)) + Re c(t,-ty) } (A2)

Similarily, the E(.) of the second term in (Al) can be

written as:

E{ cos(tyy,)cos(ty,) }
= E{ % e''Wire W) (e! 1rse 1) }
= E{ ei(tkyjotlyr)+el(tkyrtlyr)_’_

e"l “’k"j’tl"r)+e'l (thj-tlxr) }

3 { cttac@y + ctye-ty +
c(-t,)C(-t)) + c(-ty)e(ty) }
T { tet + ettt + e-ty }

Re c(t,)Re c(t,) (A3)

Now by subtituting (A3) and (A2) into (Al) ans since z(t)
are i.i.d., we have:
E{ Re Ci(tuRe Cu(t)) } = (2n){ Re c(t,+t)) +

Re c(t,-t,) } + (1 -~ 1/n)Re c(t,)Re c(t,)

Thus,
Q,=n" { 1 (Re c(t +t;) + Re c(t,-t;)) -

Re c(t,)Re c(t,) }
(2) o = E{ (Im C. (t,) - Im c(ty)]

[Im Co(ty)) - Im c(ty)] }
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= E{ Im c,(t,)Im C,(t,) } - Im c(t,)Im c(t,)
Now,
-2 n n
E{ Im Co(ty)Im Co(t)) } = n E{ I sin(t,y)) L sin(t,y,) }
j=1 r=1
_2 n
= n E{ L sin(t,y,)sin(t,y,) +
J=1
LI sin(tyy,)sin(tyy,) }
J¥#r
n
= n'ZEE{ sin(t,y,)sin(t,y,) } +
j=1
n? LT E( sin(tyy)sin(ty,) } (A4)
)*r
e!® _ '@
Furthermore, by using sin(a) = , the E(.) of the
21
first term in (A4) becomes:
. . ] - 1 ( ityyy _ -itky’)
E{ sin(t,y,;)sin(t,y,)] = E < e e
= _l 1(tpetyy . -k(tyety)y -
< E{ e Jee )
ei(tk-tl)y’ - e-l(f-k-ll’y" }
= "{’ { c(tk+tl) + c(-(tk+tl)) - C(tk-tl) - C('(tk-tl)) }
=1 { ~Re c(t,+t,) + Re c(t,-t,) } (AS5)

Simialrily, the E(.) in the second term of (A4) can be shown

to have

E{ sin(t,y,) sin(t,y,) } = mm ety Im c(ey)) (A6)
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Hence, by subtituting (A6) and (A5) into (A4), we get
E{ Im C,(t,)Im C,(%,) } = (zn)"{ -Re c(t,+t,) +
Re c(t,-t,) } - (1 - 1/n)Im c(t,)Im c(t,)

Therefore,

q, = n'{ 1 (-Re c(ty+t,) + Re c(t-ty)] -

Im c(t )Im c(t,) }

(3) 9, = E{ [Re Cu(ty) - Re c(t))]1(Im C,(t,) - Im c(ty)] }

= E{ Re C,(t,)Im C,.(t,) } - Re c(t,)Im c(t,)

E{ Re C.(t,)Im Co(t,) } = n? E{ }'_'cos(tky,) ):sin(t,y,) }

{ { cos(tyy,;)sin(t,y,) } +
=1

) E{ COS(tu}'J)sm(t;Yr)} (A7)
J*

Now the E(.) in the first term of (A7) can be evaluate as

follow:

E{ cos(tyy))sin(tiyj) }
= E{ L(e'"ite ') (!t 1Y) t1Y
E{ ;1(9 +e e *1Yi-7 ' 1)) }

= _1_\_{ E(e‘(tk.tl)y]-e-l(tk.tl)yj) -
41
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E(el(tk-tl)yj_e—l(tk-tl)yj) }
=1 { Im c(ty+t))= Im c(t,-t,) } (A8)
E{ cos(t,yj)sin(t,y,) } = E( :—;(e“k"ue'”*”)
(e"'lyr..e'"'lyr) }
= o { cttaen + c-tyecey -
c(tye(=t,) = c(-t)e(-t,) }
o { et + e=tpiree - e-t }
Re c(t,)Im c(t,) (A9)

Now subtituting (A9) and (A8) into (A7) we have:

E{ Re C,(t,)Im C\(t)) } = e m ety -
Imc(t,~t,) } + (1 - 1/n)Re c(t,)Im c(t,)

Therefore,

Q. = n'ﬁ(.% [Im c(t,+t,)) - Im c(t,-t,)] -

Re c(t )Im c(t,) }
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Table 1. Summary Characteristics of Experiments
Case
Parameters 1 2 3 4 S 6 7
A 0.5 0.5 0.5 0.5 0.6 0.75 0.5
ul -300 -3-0 0.0 0.0 0.0 0-0 0-0
H, 3.0 3.0 4.0 4.0 4.0 4.0 0.0
af 1.0 1.0 1.0 1.0 1.0 1.0 1.0
a': 3.0 16.0 1.0 1.0 1.0 1.0 10.0
n 50 S0 50 100 50 50 100
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Table 2. Quantiles, Sampling Statistics and Measures of
Performance
(A) CASE 1: A = 0.5, u = =3.0, u = 3.0, o, = 1.0,
0. = 3.0, n = s0.
Parameters T N
A “ w,
Quantiles
Qo .3044 -3.5923 1.1144 .2413 1.1752
Q.os .3652 -3.3988 2.1113 .4551 1.4985
Med. .5025 =-3.0162 2.9966 .9591 2.9913
Q.os .6343 -2.6378 3.6176 1.8213 6.3395
Q. g0 .6999 -2.4691 4.0142 2.5661 11.5580
Other Statistics
IQR -1145 .3227 .5474 .5481 1.6126
Mean .4995 -3.0158 2.9477 1.0339 3.3751
std. .0851 .2373 .5179 .4694 1.8123
Bias and MSE
Bias ~-.0005 -.0158 -.0523 .0339 .3751
(-0027) (.0075) (-0146) (.0148) (.0573)
MSE .0072 .0565 .2707 .2213 3.4221
(.0004) (.0028) (.0247) (.0185) (-4037)
MAD .0670 .1817 3632 .3421 1.1454
¢ Standard errors are in parenthesis. 1QR = Interquartile
Range; <td. = Sample standard deviat for;; MAD = Hedian

Absolute Deviation
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(8) CASE 2: A = 0.5, p, = -3.0, u_= 3.0, af = 1.0,
o2 = 16.0, n = 50.
Parameters
Quantile;
Q.01 .1999 -3.6321 -2.1959 .0849 1.3342
Q.05 .2879 -3.4102 -1.0104 .2608 3.3399
Med. .5226 ~-2.9865 3.1114 .8912 12.4810
Q. ¢¢ .73548 ~2.4560 5.7693 2.3441 25.4575
Q oo .8361 -2.1518 12.0455 4.2156  31.1895
Other Statistics
IQR .1786 .3567 2.4691 .7764 9.9360
Mean .5156 -2.9681 2.8948 1.0738 12.9927
std. .1345 .2951 2.2948 .9301 6.9153
Bias and MSE
Bias .0156 .0319 -.1052 .0738 -3.0073
(.0043) (.0136) (.0726) (.0294) (.2187)
MSE .0183 .0880 5.2716 .8696 5€.8169
(.0008) (.0052) (.3756) (.2598) (2.1542)
MAD .1068 .2250 1.6494 .5225 5.5912
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(C) CASE 3: A = 0.5, 4. = 0.0, g = 4.0, 0 = 1.0,

1 2
“2 = 1.0, n = 50.
Parameters
Quantiles
Q. o1 .2817 -.7062 3.0723 .2699 .2912
Q. os .3562 -.4373 3.5085 .4210 .4469
Med. .5035 -.0312 4.0135 .9496 .9505%
Q.95 .6460 .4776 4.4012 1.9020 2.0066
Q. g0 .7077 .7969 4.6131 2.9931 2.6879
Other Statistics
IQR .1178 .3561 .3277 .5729 -5467
Mean .5005 -.0107 3.9875 1.0383 1.0504
std. .0900 .2890 .2932 .5069 .5151
Bias and MSE
Bias . 0005 -.0107 -.0125 .0383 . 0504
(.0028) (-0091) (.0093) (.0160) (.0163)
MSE .0081 .0835 .0860 .2582 .2676

(.0004) (.0046)  (.0056) (.0214) (.0274)
MAD .0713 .2205 .2183 .3647 .3604
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(D) CASE 4: A = 0.5, u = 0.0, u, = 4.0, @ 1.0,
oo = 1.0, n = 100.
Parameters
Quantiles
Qo -3548 -.4219 3.4912 .4689 .4720
Q. os .4057 -.3272 3.6525 .5827 .5844
Med. .5017 -.0166 4.0020 .9702 .9713
Q o5 .5961 .3212 4.3049 1.6761 1.6544
Q.99 .6472 .5453 4.4540 2.2162 2.1171
Other Statistics
IQR .0758 .2544 .2682 .3991 .4203
Mean .5011 -.0085 3.9244 1.0375 1.0256
stad. .0593 .2022 .2007 .3892 .3410
Bias and MSE
Bias .0011 -.0085 -.0056 .0375 . 0256
(.0019) (.0064) (.0063) (.0123) (.0108)
MSE .0035 . 0409 .0402 .1527 .1168
(.0002) (.0029) (.0021) (.0250) (.0092)
MAD . 0464 .1541 .1577 .2630 .2527
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(E) CASE 5: A = 0.6, u = 0.0, u, = 4.0, of = 1.0,
o2 = 1.0, n = 50.
Parameters
A M H, of oz
Quantiles
Q.01 .3882 -.5477 2.9811 .3474 .2337
Q. os .4597 -.3581 3.4517 .4922 .3868
Med. .6005 .0038 4.0230 .9688 .9063
Q. o5 .7353 .4204 4.4928 1.8349  2.0043
Q.99 .7948 .7007 4.7649 2.5143  2.8312
Other Statistics
IQR .1116 .3079 .3752 .5208 .6211
Mean .6007 .0098 4.0100 1.0363 1.0148
std. .0854 .2515 .3383 .4495 .5364
Bias and MSE
Bias .0007 .0098 .0100 .0363 .0148
(.0027) (.0079) (.0107) (.0142) (.0170)
MSE .0073 .0633 .1144 .2032 .2877
(.0004) (.0040) (.0108) (.0187) (.0232)
MAD .0669 .1920 .2428 .3250 .3909
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(F) CASE 6: = 0.75, , = 0.0, H, = 4.0, o, = 1.0,
o2 = 1.0, n = 50.
Parameters
A ul uz of U:
Quantiles
Q. o1 -.4327 -.5690 2.2314 .3794 .0964
Q. os .5911 -.3948 3.0211 .5254 .2193
Med. .7469 -.0003 4.0755 .9834 .8157
Q.95 .8631 .3579 4.6916 1.7801  2.4320
Q 99 .9485 .5823 5.0406 2.3973 3.6065
Other Statistics
IQR .1017 .2914 .5259 .4427 . 7242
Mean .7420 -.0058 4.0028 1.0478 .9897
std. .1012 .3100 .5477 .3962 . 7296
Bias and MSE
Bias -.0080 -.0058 .0028 .0478 -.0103
(.0032) (.0098) (.0173) (.0125) (.0231)
MSE .0103 .0960 .2996 .1591 .5319
(.0017) (.0261) (.0270) (.0144) (.0476)
MAD .0675 .1856 .3708 .2853 .4964
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(G) CASE 7: A = 0.5, Moo= 0.0, M, = 0.0, o = 1.0,

oi = 10.0, n = 100.

Parameters
» u, w, o

Quantiles

Qo .2129 -.5866 -4.5552 .1609 1.6623

Q.os .2923 -.4054 -1.3612 .3266 5.9550

Med. .5133 .0083 .0178 .8633 9.8364

Q. o5 7543 .3533 1.4804 1.9707 15.3315

Q.99 .9490 .5290 5.9672 3.0842 18.2695
Other Statistics

IQR .1911 .2936 .8883 .5771 3.6404

Mean .5190 -.0028 .0578 .9746 10.1123

std. .1463 .2326 1.3253 .5608 3.0523
Bias and MSE

Bias .0190 -.0028 .0578 -.0254 .1123

(.0046) (.0074) (.0419) (.0177) (.0965)
MSE .0217 .0540 1.7577 .3248 9.3202

(.0017) (.0261)  (.0270)  (.0144) (.0476)
MAD .1147 .1812 .7333 .3875 2.3137
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Table 3. Comparison of the RMSE of ECF and MLE Estimates.

Case

Par Method 1 2 3 4 S 6 7

A ECF . 0851 .1354 .0900 .0593 .0853 .1015 .1474
MLE .0912 .1050 .0960 .0593 .0991 .2104

u ECF .2377 .2966 .2890 .2023 .2516 .3099 .2325
MLE .2400 .2597 .2473 .2142 .2519 .3107

M ECF .5203 2.2960 .2933 .2006 .3383 .5474 1.3258
MLE .6017 1.3203 .2969 .2013 .3501 .5503

o ECF .4704 .9325 .5081 .3908 .4508 .3989 .5611
MLE .4013 .9622 .5020 .3963 .4623 .4003

o ECF 1.8499 7.5377 .5173 .3418 .3250 .2853 3,0529
MLE 1.8110 6.1285 .4802 .35€3 .1581 .1818

a The MLEs fall to converge due to singularity in the
Iikelihood surface (fatlure rate for this case is more than
90%) .
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Table 4. Coverage Rate for 95% Confidence Interval

Case
Parameter 1 2 3 4 5 6 7
A .974 .946 .974 .979 .970 .947 .967
o .950 .956 .945 .956 .954 .954  .947
i, .941 .889 .943 .952 .947 .929  .934
af .934 .922  .923 .945 .935 .945  .932
az .947 .876  .935 .948 .920 .890 .955

* piffer from expected value of 0.950.

Table 5. Kolmogorov-Smirnov Test of Normality

Case

Param 1 2 3 4 5 6 7

L ® . ® ® »

A .647 .911 .532 .640 .880° 2.661 .819

M, .577° 1.320° 1.556  1.265 1.406  3.344 1.163

W, 2.625 2.247 1.931 .764° 1.784 3.100 5.117

of 2.408 4.675 2.761 1.150° 2.646 2.613 3.477
az 4.398 1.728 3.425 2.531 2.971 4.135 1.450

Normality is not rejected at 5% significance 1level
(critical value = 1.36).

Normality is not rejected at 1% significance level
(critical value = 1.67).
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Table 6. Asymptotic Variances of ECF Estimator for Various
value of m.

Case 1: A = 0.5, u = -3.0, u, = 3.0, af = 1.0,

crz = 3.0, n =100.

Asymptotic Variance

m : ) u, u, o’ o?
6 .3361 .00285 .02663 .08210 .05817 . 71227
8 .3343 .00281 .02658 .07610 .05796 .60971
10 .3298 .00269 .02657 .07534 .05721 .59605
15 .3110 .00265 .02651 .07532 .05678 .59306
20 .2951 .00265 .02650 .07532 .05619 .59275

.00263 .02409 .07524 .05548 .59016
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Fig. 1. PDF of Mixtures of Normal Distributions—Case 1
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Fig. 3. PDF of Mixtures of Normal Distributions~Case 3 and 4
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CHAPTER 2
INFORMATION MATRIX TEST FOR ARMA MODEL

I. INTRODUCTION

Recently, the information matrix (IM) test proposed by
White (1982) as a test for general model specification has
received a lot of attention (see for example Chesher (1983,
1984), Lancaster (1984), Chesher and Irish (1987), Hail
(1987), Davidson and MacKinnon (1992) Bera and Lee (1993),
Bera and Zuo (1993), Santos Silva (1993). In this paper, we
use the IM framework t¢ derive the test for a pure
stationary ARMA process.

The paper is organised as follows. In section 2 we
specify the model and derive the algebraic structure of the
IM test. Unlike H-?1 (1987), and Bera and Lee (1993), who
derived the IM test for the linear regression model without
and with autoregressive disturbances respectively, our
derived covariance matrix of the indicator vector no longer

has a block diagonal structure implying the algebraic
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4
structure of the IM test is much more complicated. Our
derived IM test can be separated into two general tests: a
general test for parameter heterogeneity ( i.e. test for
random coefficient or conditional heteroskedaticity) of the
specified model and a general test for normality. In section
3, the results derived in section 2 are interpreted while
section 4 offers a concluding summary. All of the detailed

algebraic derivations are given in the appendices.
II. MODEL AND INFORMATION MATRIX TEST

For the sake of simplicity, we consider the stationary
and invertible ARMA(p,q) model of the form:

(1) v =¢y + ... + 9y + 7€ + ... + 7€ + €

t 19¢-1 pT t-p 1 t-1 q t-q t
where p,q =z 1, e, ~ N(o,oz), t=2,3,...,T, Y, is taken to
be fixed, and e = 0. Alternatively, we could start the
recursion in (1) at t = 1 with Y, and t© set equal to zero.
However, this would not be recommended since arbitrarily
setting Yy, =0 introduces a distortion into the calculation.
The ARMA(p,q) stated in (1) can be written more elegantly by

defining associated polynomials in the lag operator. If
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(2) ¢(L) =1 -9¢L- ... -¢L°

and

(3) 7 (L) 1+ 9L+ ...+ 1qu

then (1) becomes:
(4) #(L)y, = 7(L)e,

We assume that the AR(p) and MA(q) polynomials in (4)
do not have a common factor, i.e. they do not have a rocot
which is the same. Otherwise, the model would be over-
parameterized and hence would not be identifiable and

possibly suffer from computational problems. Rearranging (1)

we have
P q
et - Yt - zﬁnyt-t - ijct-j
1=1 J=1
(5) =y -y, ¢ - 7
where Yoo = (YooY preeer¥ )y
e T (ct-1'et-2"' "c;-q)'
¢ = (¢1I¢2I"'I¢p)l ¥ = (11'12’.'.'11.1).
Assuming that ¢ is given, the conditional 1likelihood

-1
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function for this model is given by:

T
(6) L(8) = )

a(e) = - — log(2n) - — log o """"ZC
2
t=2 20 .2
where 8 = (¢',7',0°) is a kxl vector of parameters with k =

(p+g+1) . Let @ denote the maximum likelihood estimate (MLE)

of 6. Then White’s IM test can be constructed vased on

(7) d(8) = vech €(9) = vech(4(8) + B(9))

where vech(.) is the vector-half operator, which stacks the

lower triangular elements of a matrix, and

. . 3%t (6) at () at, (8)4"’ ) .
o - LT[(m?) ()" ] -0 s
EEL) 36 ET:

2 consistent e:stimator of the variance matrix of I;d(é) is

given in White (1982, p.1l1l) as

- 1 i - ~
(8) V(8) = -—}a(8)a ()
t=2

where

a (8) = dt(é) - Vd(é)d(é)'lwt(é)
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. , L84, (8)
vd(e) = —) ——
T-1 86
t=2
. ot (8)
ve () =
ET:

Then White’s IM test takes the form
(9) g = Td’ (8)V(8) 'd(8)

Under the null hypothesis that model (1) is correctly

specified, J  is asymptotically distributed as x° with

k(k+1
~( ) Jdegrees of freedom. It is important to note that

White’s IM test holds under fairly general conditions. For
our case, the mixing conditions stated in White (1987) are
satisfied and hence our derivation of the IM test here
remains valid.

Following the notation of Bera and Lee (1993), after
some tedious algebra, collecting and rearranging terms in

d(é) , Wwe can write (see Appendices A and B for derivations)

(10) d = (&,

a

where we suppress €& for notational simplicity and write 4

- P p(p+1)
for d(6). The element c.‘.1 is a ——— x 1 wvector of the

2

diiference of two estimates of the variance of &, d2 is a
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q(g+1)
—_ X

2
variance of %, &3 is a scalar difference of two estimates of

1 vector of the difference of two estimates of the

-~

the variance of &2, d4 is a pg x 1 vector of the difference
of two estimates of the covariance between 6 and i, &5 is a
pxl vector of the difference of two estimates of the

covariance between ¢ and o° and d6 is a gx1 vector of the

difference of two estimates of the covariance between ; and

o®. The typical elements of ai, i = 1,2,...,6 are given
below

(T-1)o ,_, i 15)
. 1 7 “n a2 36:‘,'- aét ’
d,: [—_ Z(cta)[ar)[aw] -
(T=-1)0 ,_,
1 ih a’e
R t 0y 47 ]I.J-l. .
(T-1)6%, 1 00 Tk
. T
. “4__"2°2 -4 _
a: [ ———Z (€;-60°€ +30") ]

4(T-1)0°,

[—-————1 — Y (e;-30") ]
a(T-1)0° ,
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(T-1)0 - }
T e
1 zé a Ct
SL% 3y 3¢ |i=L...-.a
(T"l)(f t=2 i J =1,.. P
T -
. 1 de i -
a_: [ Y 3¢ (307€,-€)) ]
2(T-1)0%_, ! ) = 1,e..,p
T -
- 1 a€ —pe
d: [ Zaw"(tsazct 63) ]
2(T~1)0® o, ! L= 1,....q
ae, o, _, ae, ) e, _,
where Er N = --yt__j T 3¢ and T €., = 5y °

-

Note that our expressions for ai,&z,...,&é are identical to
those of Bera and Lee (1993) if we put ; = 0 in our model
and B = 0 in their model. As White (1982) and Hall (1987)
pointed out, if we are only interested in testing a certain
direction, we can premultiply d by a selection matrix whose
elements are either zero or unity.

To obtain the IM test we need the asymptotic variance
matrix of 4. Unfortunately, unlike in Hall (1987) and Bera

and Lee (1993) the variance matrix of d is not block

diagonal and hence the exact expression for the variance of

-

d is extremely complicated (see Appendix B for derivation).
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Therefore, the derived IM test for the specification of (1)

can not be written as the sum of quadratic terms.
Alternatively, as in Bera and 2Zuo (1993), we can use a

result from Pierce (1982) to obtain the asymptotic variance

of the components that are of interest to us, namely, &1, &,

-

and &‘. The indicator vector d, is related solely to the
AR(p) parameter vector ¢. Likewise, the indicator vector éz
is related solely to the MA(q) parameter vector 7. We will
discuss these two components here and leave the remaining to
the next section. But first, we briefly describe Pierce’s
result.

Suppose there is a sequence of random variables,
Y, o Yreeer¥, whose joint distribution depends on a parameter
6. Let an = 7n(yl,y2,...,yn,e) be a sequence of statistics
which has a known limiting normal distribution, and suppose

P

that we wish to determine the limiting distribution of ﬂn =

a

3n(yz,y2,...,y;,én) where en

H

en(y‘,yz,...,yn) is an
asymptotically normal and efficient sequence of estimators.

Assume that for every O, we have the following joint

convergence in distribution
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8T
"1, such that
a0

and that there exists a matrix W = lim E

Ing =dn7 + wine - 9) + o (1)

Under the above assumptions, Pierce (1982) showed that

Cov[ﬂyn + win - o), Ineo - e)] = 0

and thus,

. ,
{ng ~ #(o, v - wv _w')

-

Using the above results, an estimate of the variance of d1

is (the derivation is given in Appendix C2, Part I)
= = - t t a £vd
v(d,) I/1 _t + Vdmd Vdﬂ

i,j=1,...,p;7 1 s3]

T

. 1 1
where vd = -« — lim — Z
13 Gt Toe T

e ae
t t

e

1A

y 4,3 = 1,...,p; 1

=2 3
j, and 47 is the lower right-hand corner block of & .

Thus, the test statistic can be written as
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. . 2 4. . . . p(p+1)
which has an asymptotic x° distribution with — degrees

of freedom. It is important to recognize that the test, ﬂl,
is asymptotically equivalent to (T-1)R® of an ordinary least

squares (OLS) regression of u on 21, i.e.

- 1 ~pn il i 157~
71 = ; u Zl(lel) Zlu
where u = (&2,...,&,)' is a (T-1)x1 vector with &t =
~2
€
-t . 1| and
&2
- ) i . i ) . ) ) -
ae2 aez ac2 ac2 aez ae2 acz ae2
a¢1 a¢l a¢1 a¢2 a¢1 a¢p a¢p a¢p
(11) z = . . . .
aeT acT acT aeT acT acT ae aeT
a¢1 a¢1 6¢1 a¢2 aa¢1 a¢p a¢p a¢p
. p(p+1) . e . -~
is a (T-1) x ——1;—— matrix of derivatives of € with respect

to the AR parameter ¢ (for detail derivation see Appendix

C2, Part II).
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Similarly, we can derive the test statistic 7, as

. . . . . 2 . q(g+l)
which 1is asymptotically distributed as x° with ———

degrees of freedom. Furthermore, 72 can also be obtained by

-~

using (T-1)R2 from the auxiliary regression of u on Z2 where

u defined as before and

ac2 ae2 ae2 acz ac2 aez aez acz
811 awl 611 612 611 612 61q awq
(12) z2 = - - . e L ] ® o e -
acT acT acT acT c"Je,r acT acT aeT
611 ¢‘3'3r1 511 672 67l a1q awq Bwq
q(g+l) . . . -
is a (T-1) x —_?;__ matrix of derivatives of € with respect

to the MA parameter vector 7. It is important to recognize

that we have omitted the second term in d2 since under the
normality assumption of €.r this term is asymptotically

Zero.
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III. INTERPRETATION OF THE INFORMATION MATRIX TEST

Given the analysis of Chesher (1984), Hall (1987), Bera
and Lee (1993), and Bera and 2Zuo (1993), we are ready to
give the interpretation of each of the components of the
indicator vector d. As mentioned in the previous section,
the component &1 is related solely to the AR parameter
vector, so the test statistic 71 is a test for ran&omness of
the AR parameter, ¢ = (¢1,¢2,...,¢p)'. Suppose that the AR
parameters, ¢ are fluctuating around a mean with finite
variance. This can be formulated as ¢t ~ (¢,2) where ¢t =
(¢1t'¢2t""'¢pt),° Then J  is the LM test for testing the
hypothesis H: Q = 0. Note that if we put 7 = 0 in our
model, the test statistic 71 is exactly identical to the
test statistic T2 in the Bera and Lee (1993) model (with g8 =
0).

Like &1, the component &2 is related solely to the MA
parameter vector and hence the statistic 32 is a test for
randomness of the MA parameters, 7 = (1},1?”..,1q)'. That
is, if ¥, ~ (7,,E) where 7, = (71t'7zt,""1qt)' and ¥ is
finite, then 92 is the LM test for testing H : z =0.

Next, in close connection with &1 and &2, the component &‘
is based on the correlation between the AR and the MA

parameter vectors. Like az, under the normality assumption,

E(é:) = E(ét) = 0 and this allows us to omit the second term
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1 T
in d. Then, d simplifies to d = —— Z(éz -
4 ] ') ~a t
(T-1)d* o
., |3, ] joe,
o) | — , i=1,...,9; j = 1,...,p. This can be easily
ar 3¢

seen to be a description of the relationship between u and

le where the elements of the matrix él 2 are the cross

products between the first derivatives of f:t with respect to
AR parameter vecter, ¢, and the first derivatives of ét with
respect to the MA parameter vector, y. Thus, this allows us
to test for randomness of the ARMA parameters.

Finally, it is worth pointing out that each of the

- ~

three components, d‘, dz and a‘, contain the term l:lt =

- 1]. For obtaining Sll, ?2 and 3‘ we run the regressions

- - -~

of u on Zu, u on ZZt and u on Zm, where 2Z A

and

1tf 2e’

-~ - -

let are respectively the tth row of Zl, 22, and zlz.

Moreover, as byproduct of our analysis we have a simple test

for heteroskedaticity in the presence of ARMA. To see this,

-~ - -

simply regress u on Zn’ Z?_t and let we would get some

sort of White’s (1980) test for (static) heteroskedasticity.
As for the remaining components, &3 is exactly the sare as
in Bera and Lee (1993) and hence can be interpreted as a

test for variation in 02, i.e. it is a pure test for
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kurtosis. This can be easily calculated by taking (T-l)R2
from the auxiliary regression of ﬁl = (é:-B&‘) on a
constant. The components &5 and &6 each involve the third
sample moment of é; and thus can be given an interpretation

-

as a test for skewness. In Bera and Lee (1993) jargon, dS

and d6 are tests for heterocliticity.

Since the covariance matrix V is not block diagonal,
all these tests are definitely correlated with each other
and hence to get the overall test of the model it |is

necessary to have a joint specification test. This can be

obtained using the results derived in Appendix B2.

IV. CONCLUSION

In this paper, we have presented an application of
White’s IM test to a pure stationary ARMA model. wWe provide
the computation and interpretation of the resulting test.
Due to the complex structure of the ARMA process, the
framework of the information matrix test is much more
complicated. Because of the non-block diagonal nature of the
information matrix, the estimated variance of the indicator
vector is also not a block diagonal matrix. This implies
that the components of the indicator vector are no longer

asymptotically independent. Consequently, to get the overall
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test for correct specification of the model, the joint test
is needed.

Finally, it is worth pointing out that although there
are many applications of the IM test, very few have examined
its size and power, see for example Taylor (1987), Orme
(1990), Chesher and Spady (1991), Davidson and McKinnon
(1992) and recently Horowitz (1994). Thus it would be useful
to examine these issues, specifically, the power 7 the IM
test, since, &s Horowitz (1994) points out "...obtaining
high power and getting the finite-sample size right are
different objectives and that achieving one does not insure

that the other is also achieved."
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APPENDIX A2
The Derivatives of the Log-likelihood Function

For parameter vector @ = (¢',¥’,0°)’ and an information
set ?bd, the conditional 1log-likelihood function for the

t-th observation is given by

1 1 2 1 2
¢ (0) = -log2nm - — log 0" - — ¢
¢ 2 2 202 t

The first derivatives are
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and the second order derivatives are
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APPENDIX B2
Covariance Matrix for the Information Matrix Test

A consistent estimator of the covariance matrix for the IM

test is given in White (1987) and can be written as

T

-

— 1 A o ’
(B.1) v(8) = D) Zat(e)at(e)

t=2

where at(é) = dt(é) - Vd(é)J(é)'lwt(é). Let us start with

the indicator vector d(é) which is

(B.2) d(6) = vech 6(8) = vech(4(8) + B(6))
where
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From A(é) and B(é) we can obtain G(é) as
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Therefore, d(é) is given by
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is a g x 1 vector. Next we consider
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1
vd(e ) = lim — ) E
0 T3m T-1 ae

t=2
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Using the normality assumption of €, and by taking the
expectation conditional on the information set 9'__1
iteratively, after some algebraic simplification we get the

following simple form of Vd(eo)
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Thus, we can consistently estimate Vd(eo)
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with its consistent estimate, ) (MLE) . Therefore
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Now, having obtained the expressions for d(é), vd(e),
va(é), and J(é), using formula (B.l1l) we can obtain an
estimate of the covariance matrix for the IM test. As
mentioned in the main text, the information matrix, 4(8), is
not block diagonal, thus implying that v(8) will also be

non-diagonal. Consequently, the final expression for V(é) is

extremely complicated and will not be pursued here.




APPENDIX C2

Part I,
Recall,
T ERIEER
22 . . .
a = Z(C"G')—— —_— 1, =1,...,P; 1L =)
1 t
r-ng’ t :2 a¢t l6¢1
By using
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where 4 denotes the lower right-hand corner block of the

matrix 44, and Vd13 defined as before.

Hence
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1'] = 1. b lp
finally, we have
plim v(d ) = v(d)
T—® 1 i
¢
_oaltoos 2 _ p(pt1)
71 = dlvldl-xv where v —<—~E~_-

We can obtain V(éz) and V(&‘) in the same way but this is
onitted in t.ue interest of saving space.

Also note that
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Part II.

The test statistics 71 and 72 whicn we derived in section 2

can be written as (T-l)Rf by running the OLS regression u on

-~

zZ ,1=1,2.

where u = (u,,...,u) is (T-1)x1 vector with u = -1

-~ -~

and Z., 2, are respectively defined in (11) and (12) in the

main text. From Part I we know that

v(d,) = E[V(4,1%, )]
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= Z;E(uu')Z‘
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Thus,
g = (T-l)Rf, i=1,2.

where R? is the uncentered coefficient of determination from

regression u on Z.




CHAPTER 3
ALTERNATIVE ESTIMATORS FOR ARCH MODELS:
MONTE CARLO COMPARISON

I. INTRODUCTION

Recently, the concept of autoregressive conditional
heteroskedasticity (ARCH) introduced by Engle (1982), has
been popularised by the empirical work in financial
economics associated with the modeling of time-varying
variances. See for example, Bollerslev, Chou, and Kroner
(1992) for a recent survey. The ARCH model specifies the
conditional error variance as a linear function of the past
squared realizations, and suggests estimation by maximum
likelihood (ML). Bollerslev and Wooldridge (1992) showed
that, albeit the incorrect specification of the conditional
distribution of the disturbances, the ML procedure still can
produce strongly consistent estimators if the first two
conditional moments of a random vector of the disturbances
are correctly specified. However, convergent results for

nonlinear estimation are not easily obtained by standard
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numerical maximization routines. Consequently, researchers
tend to turn to alternative estimation procedures such as
Hansen’s (1982) generalized method of moment (GMM) discussed
in Rich, Raymond and Butler (1991, 1992) (other procedures
include nonparametric and semiparametric methods considered
by Pagan and Ullah (1988), Pagan and Hong (1988), Engle and
Gonzalez ,1991)).

There are several advantages in applying the GMM
estimation procedure rather than ML. First, the GMM
procedure is robust to the distributional assumption for the
disturbances of tha ARCH model and yields consistent
estimates of the parameters and their variance-covariance
matrix. Secondly, the GMM procedure is more tractable and
less computatiocnally expensive, in this case, than ML.
However, in finite samples the properties of the GMM
estimator are virtually unknown and hence deserve study.

In this paper, the finite sample performance of (Quasi)
ML and GMM estimators is examined through Monte-Carlo
simulation. Particularly, we  study: the Dbiases of
estimators, the ratios of the estimated standard errors to
the sample standard deviations, the coverage of the
confidence intervals, Wilcoxon matched-pairs signed-ranks
tests, Kolmogorov-Smirnov tests of normality and the

relative efficiency.
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Section 2 briefly discusses the (Quasi) ML and GMM
estimation procedures and their asymptotic properties. The
design of the Monte-Carlo experiments and the results are
presented in section 3. Generally speaking, the results are
quite discouraging for the GMM estimator in the ARCH
regression setting. Section 4 offers some concluding

remarks.
IXI. THE ARCH PROCESS AND ESTIMATION STRATEGIES

The pth order 1linear ARCH model introd.ced by Engle

(1282) is given by:

(1) y, = E(y ¥ _) +e =xg+¢, t=1,2,...,T
(2) E(c,|¥, ) =0

2
(3) E(c.|¥,

1

P
2
= = +
) ht. ao zajct-l !
J=1

P

< -
o, > o, 2}5 <1, 0 < a 1

3=1

where Y, is the dependent varias <. X, is a vector of

explanatory variables in the information set ¥ = { Yoy

t-1
}

J=1" and B is a vector of parameters of interest.

xt-joi

Notice that the mean function in E(ctlw in (1) can also

t-1 )

be generalized to any type of regression model including an
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autoregressive integrated moving average (ARIMA) 7. The ARCH
model focuses upon the distinction between unconditional and
conditional second moments. Specifically, it generalizes the
second moment to allow for the variance to depend on the
past forecast errors but leaves the specification of the
mean unchanged. T stimation of the parameters of the ARCH(p)
model can be done by applying ordinary least square (OLS) or
by maximum likelihood (ML). Engle (1982) shows thaf there is
a large gain in efficiency from using ML rather than OLS and

thus we focus here on the ML procedure.

2.1. Maximum li“elihood and Quasi-maximum likelihood

estimators

Let 8 = (B,a) and assume that the conditional
probability distribution of €’s in (1) is g(cclwhl), then
the 1log-likelihood function for a sample €1 Eyreee sl is,

apart from some initial conditions, given by:

7 Bollerslev (1986) proposed a generalized autoregressive
conditional heteroskedasticity, GARCH(p,q), in which ht in

(3) is modified to allow for the additional effect from the

past conditional variances, i.e. ht = w

p

2 q
02(! Ct_’0 ZB_’ht-}.
1=1 =1

see Bollerslev (1986).

For more detail on GARCH(p,q) process
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T

T
(4) L = )¢ = )log g(e I¥ )

t=1 t=1

In most applications, g(etlwb‘) is taken to be
conditionally normal because of its simplicity and well
known properties under certain ideal conditions. Now under

the assumption that g(etlQ is N(O,h ), it follows that

t-l)
the density of Y, conditional upon Wbl is N(xJSJK) and so

(4) would be

T

|

T
) log(h,) -

t=1 t=1

T
(5) L = - > log(2n) -

2 -1
T (y, - x.8) h

|-

By substituting ht in (3) into (5), the joint estimation of
the parameters B and a can be obtained by maximizing (5)
with respected to B and a subject to the restrictions listed
in (3). While the estimation algorithms are detailed 1in
Engle (1982), we concentrate on the asymptotic property of

MLE which can be stated as follows.

Proposition 1: (Engle (1982)). If the regularity conditions

set out in Crowder (1976) hold, then, with 8 the MLE from
(5),

vT(e - 8) — N(0,A)
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T
where A = J = - 7 Z]-:[ast(eo)/ae}, with S

t=1

t

aL_(8 ) /38.

Notice that the above proposition holds true if the
conditionally distributed errors are normal and 6 is the MLE
of 6. However, when the conditionally normal distributed
errors is violated, but the normal log-likelihood is falsely

-

maximized, then 6 is referred to as a quasi-maximum
likelihood estimator (QMLE) of 6 and denoted by 8. Moreover,

the asymptotic properties of 6 are still valid under a
slightly modified set of regularity conditions (Bollerslev
and Wooldridge (1992)).

Weiss (1986) provided the first study of the asymptotic
properties of Quasi-maximum likelihood estimation of the
univariate ARCH models. Bollerslev and Wooldridge (1992)
extend the results to the multivariate GARCH models.
Bollerslev and Wooldridge also investigated <the finite
sample properties of the QMLE and found that QMLE perforus
reasonably well in small samples. The consistency and

asymptotic normality of QMLE can be summarized in the

following proposition.
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Proposition 2 : (Bollerslev and Wooldridge (1992)). If the

regularity conditions in appendix Al hold and for some @ ¢

Int 8, then V(8 - 6 ) 2 N(0,Q) where Q_ = A;‘BTA;‘, and

T
-1
B, =T ZE[SL(GO)SJBO)’], Sc(8,) = A, (8 ) /3
t=1
T
-1
A =T Zg[at(eo)], a () = -E[ast(eo)/amxt]
t=1
-~ _ -1 3 . P
Moreover, A,r =T E at(eo)] — Ar and

~ ’ -~ p
E|s, (8,) st(eo)] -2, B

Wt
)
=3

T

The proof of the above proposition can be found in
Weiss(1986) and in Bollerslev and Wooldridge (1992) with the
first author considering the univariate ARCH model and the
second authors considering the multivariate GARCH case. Note

that while the consistency and asymptotic normality still

hold for eT, the asymptotic covariance matrix of eT takes

the form of Ils;_'BTA;1 due to the incorrect specification of

the likelihood function.
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2.2. Generalized Method of Moments (GMM)

An alternative ~ethod of estimation to MLE and QMLE is
Hansen’s (1982) GMM and the idea has been implemented by
Glosten, Jzgjannathan, and Runkle (1989), Harvey (1989), Mark
(1990), Simon (1989), Rich, Raymond and Butler (1991, 1992).

To obtain GMM estimates, we rewrite (1) and (2) as follows:

(6) E =Y, - xtB

(7) n

]
~
-~
'
X
fod
™
N
]
R
1
N ae B
R
<

where n, = cf - ht, and E('ntl\['t_l) = 0.

The system of equations (6} and (7) contains a cross
equation restriction on B since B appears in both the
specification of the conditional mean and the conditional
variance eguations.

Let ut(eo) = {et(eo),nt(aj)} be (1x2) vector of innovations

to the ARCH model where 90 is the true value for 8. Define

the following [2x(m1+m2)] block diagonal matrix
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where Z and z,,, are respectively (lxm:) and (1xm)

- -1

» L]

vectors of observable variables that are in the information
set at time t-1. Under the assumption that u are
uncorrelated with the set of information available at time

t-1, it follows that

(8) E[ut(eo)zt_l] i z[qt(eo)] -0

Equation (8) 1is the basis of the GMM procedure. It
represents a set of (m1+mz) orthogonality conditions which

are used to estimate eo with Zt_1 serving as instruments for

the regressors in the ARCH model. Note that if we let

T
§T(e°) = T'l):qt(eo), then under regqularity conditions
t=1

§T(eo) — E[gt(%)] almost surely, and since 8[91(90)] =0 ,

the GMM estimator of 6 can be found by minimizing the
following criterion function:

(9) J (8) =g (8)’ W_g.(e)

where WT is a [(m‘+mz)x(m‘+m2)] symmetric nonsingular
weighting matrix that satisfies WT - W almost surely, where
W is also symmetric and nonsingular. The GMM estimation of 6
involves a two-step procedure and Hansen (1982) provides the

details of the estimation algorithm including how to obtain

the optimal weighting matrix, w; .
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Proposition 3 : (Hansen (1982)) If the conditions set out
in appendix A2 hold, then VT(G; - 6,) is distributed

asymptotically as N(0,Q) where Q = (D’W_ D) with8
. -1
D = E[aqt(eo)lae] and W_ = { E[gt(eo)'gt(eo)] }

The detailed proof of Dproposition 3 is given in
Hansen(1982).

Now we have presented thus far the three estimators and
their asymptotic properties. The next problem is to examine
whether these properties would carry over to finite samples
since how these estimnators behave in finite samples will
have special interest to an applied researcher.

The finite sample properties of MLE and QMLE for the
univariate ARCH model have been studied in detail by Engle,
Hendry and Trumble (1985), Bollerslev and Wooldridge (1992),
Engle and Gonzalez-Rivera (1991). All these papers show that
when the underlying density is nonnormal, the biases and MSE
are very small. Tauchen (1986) provide a small sample
property for the GMM estimator in a Markov chain model

applied to the generated data on asset returns from

8 Here we use the optimal GMM estimator, i.e. formula (10)
of Hansen’s Theorem 3.2 (p. 1048) is used, rather than more
general formula of Theorem 3.1 (p.1042).
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stochastic exchange economies. He shows that there is a
bias/variance trade off regarding the lag length used to
form the instruments.

In the following section we present detailed finite
csample behavior of the three estimators though mean of Monte

Carlo simulations.
IIXI. MONTE CARLO EXPERIMENTS

3.1. Data Generating Process

To evaluate the finite sample performance of MLE, QMLE
and GMM estimat.rs described in the previous section, and
their relative ﬂefficiencies, we carried out Monte-Carlo
experiments. All the simulated models were nested within the

following model:

(10) y, =8y, + Bx +¢

(11) X, = AX_ + w, IAl < 1 and w_~ #(0,1)
(12) h =a + alcf- , t=1,2, ,T

(13) €, = c‘n:’z, ¢, - i.i.d.

with w, and Ct independent and t, is the standard
t-distribution with v degrees of freedom. We assume that a

+a = 1, and that the intercept term in (10) is equal to

zero. However, the restrictions on a’s are not imposed in
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estimation. The series {xJ» were kept fixed in repeated
samples within experiments but generated separately between
experiments. The tv distributed random variables were formed
as the squared root of (v-2) times an ¥(0,1) random variable
divided by the square root of xs variate generated by
forming -21n(lI':Ilu‘) where n = df/2 and u are inc 2pendent
random variables from a uniform (0,1) distribution.®

The experimental design is governed by the parameters
of the data generating process (10)-(13); i.e. 8 =
(G,B,A,ao,al). When B = 0, the simulated model is an AR(1l)-
ARCH(1) and we choose @8 = (§, o ai) as (0.8, 0.6, 0.4) and
(0.6, 0.8, 0.2). We denote this model as model A. When & =
0, the simulated model is that of Engle, Hendry and Trumble
(1985) and we set 8 = (B, A, o al) as (1.0, 0.8, 0.6, 0.4)
and (1.5. 0.8, 0.8, 0.2), and this is model B. Note that
both models chosen here have been empirically studied by Lee
and Tse (1992). The parameter values used for t..2se
experiments are similar to those values used by Engle,
Hendry and Trumble (1985). The sample size T was set equal

to 500 or 1000 and replicated 1000 times.10 Also, to

9 When the df v is an odd number, the xz variate 1is

generated by forming -21n(fiu‘) + 2° where n = (v-1)/2 and
i=1

Zz is a standard normal.
10 The sample sizes chosen for our study are not uncommon

since most financial series contain large data points, e.g.
daily stock returns series from 1980-1990.
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eliminate any influence of the initial condition, the first
10U observations were discarded in each replication. In all
Monte-Carlo simulations, TSP 4.2A was employed, using the
default seed, running on a 486DXII-50 PC. There were no
convergence problems, however there is a substantial time
difference in obtaining ths results. For example, with MLE
and QMLE, it took approximately 120 minutes to complete one
experiment while it took 65 minutes for GMM with a sample
size of 500.

Note that for GMM estimation, four different instrument
sets were used for each model: the first three are "naive"
instruments and the last one is "optimal" instrument. These
are listed as follow.

For model A:

NAV1 uses instruments 2 = Z, = ( ,ybd.yfq,(bytq)z]-

NAV2 =z =[ Y, 1,ybz,(AYH)Z.(Ayt,.,_)"']-
NAV3 by, )%, 8y, )°
1Ly, ¥, By, )% 8y, )°.

=[1 ay, Ay, . (8y, )", (Ayt_z)"‘].

OPT uses "optimal" instruments ZS = HZG}t where H: =

E[aut(eo) ;ae’] and ¢ = E[u'_(eo)ut(eo) ’].




For model B:

. 2 2
NAV1 uses instruments zl=z2=[1,xb4,ybd,(Axt4) ¢ (BY, ) ].

_ 2 2
NAV2 2.=2,= [1"&-. 'Y, e (Bx,_)7%, (By, ) ] ,

NAV3 Z

1 LoX, X 40 Yt—l}

z2=[1'Axt' (Axt)zo (Ayt.—l) ' (Ayt,-l)z] *

OPT uses "optimal" instruments described above.

It should be noted that the so-call "optimal”
instruments can not be used in practice due to the fact that
the instruments Zg depend on the underlying parameter vector
8,/ which is unknown. However, for the purpose of comparison

we include these instruments in the simulations.

3.2. Simulation Results

The estimated biases and mean square errors (MSE) of
MLE, QMLE and GMM estimators using four different sets of
instruments including the "optimal"® instruments are
presented in table 1 and 2. For both model A and B, the
results indicate that with MLE and QMLE, the biases of the
estimators of all parameters are quite small. The estimators

of & (for model A), B (for model B), and a show negative
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biases. Engle, Hendry and Trumble (1985) showed a similar
pattern but found much larger negative biases for a for
sample sizes smaller than 100. For GMM estimation, with the
exception of OPT, we found severe biases of the estimators
of @ . The biases show the same direction (negative) but are
very large ranging between 32% to 50% relative to the true
value depending on the choice of the instruments. The larger
the instrument 1list +the 1larger the biases. With the
exception of Tauchen (1985), there has not been much study
of the finite sample behavior of the GMM estimator.
Crnsequently, our results suggest that the problem of bias
is due to the quality of the instruments used in the
estimation. Finally, different parameter values do not seem
to affect the results. Furthermore, as the sample size
increases from 500 to 1000, the biases and MSE of estimators
for both model A and B in most cases, decrease.

To further examine the finite sample properties of
these estimators, we :investigate whether the estimated
standard errors, averaged across replications for each
experiment, reasonably approximate the sample standard
deviations. The estimated standard errors were calculated as
the squared root of the asymptotic variances evaluated at
the estimated values of the parameter. These results are
tabulated in table 3 and 4. There are several interesting

features of the results worth noting. First, for MLE and
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QMLE, the ratios range from 0.900 to 1.089 for both model A
and B, indicating that the estimated standard errors are a
reasonable approximation of the sample standard deviations.
Second, except for OPT, the estimated standard error of GMM
estimators with different instrument sets seriously
underestimate the sample standard deviations of all
parameters in model A. The ratios range from 0.570 to 0.912.
For model B, the problem of underestimation is less serious
in some cases. The ratios are seen to improve somewhat and
one possible explanation for this is that model B contains
extra information coming from the exogenous regresscr X,
i.e. the instrument lists used in the GMM estimation now
include both exogenous and predetermined variables. For
example, the ratios of estimated standard errors to standard
deriations for B are close to 1 but far less than 1 for the
ARCH parameters a, and . although these ratios are higher
than for those in model A. Consequently, as observed
earlier, these serious underestimation problems are due to a
poor choice of instruments. For OPT, the ratios show good
approximation ranging from 0.940 to 1.030.
Table 5 and 6 present the coverage confidence interval
of the estimators. We compute the 95 percent nominal
confidence intervals of estimators and then calculate the

number of times in 1000 replications that the confidence
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interval includes the true values of parameters.ll Table 5
and 6 show that for MLE and QMLE, the coverage of confidence
intervals 1is very <close to 95 percent of the 1000
replications. Table 3 and 4 show that the GMM of the ARCH
paraneters o, and a are often underestimated. As a result,
the t-statistics in GMM become upward biased. Table 5 and 6
reveal this phenomenon: the 95 percent confidence intervals
include the true value much less than 95 percent of the
time. In some cases, the confidence interval is as low as
34.1 percent of the 1000 replications. It is also
interesting to note that the confidence interval for GMM of
B is close to 0.95. Also, for OPT, the 95 percent confidence
intervals of all parameters are very close to 0.95.

To get an idea of how one estimator performs in finite
samples relative to another in terms of absolute bias, we
conducted the Wilcoxon matched-pairs signed-ranks tests and
table 7 and 8 report these results. First, the column
denoted by "Rank(=-)" in each table is the mean rank for the
estimator with the smaller bias relative to another
estimator (and hence the (-) sign). Second, the "Z" column
denotes the Wicoxon statistic for testing the null of no
difference between the two estimators. Third, in what

follows, unless otherwise noted, we choose NAV1l and OPT for

1l The asymptotic standard errors were use to calculate the
95% nominal confidence interval.
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model A and NAV3 and OPT for model B as the candidates for
the GMM estimator since the results are unaltered if we use
any other GMM than the one mentioned. Overall, as expected,
the MLE estimator is significantly better than the other two
(QMLE and GMM) in almost all cases. Between QMLE and GMM,
for both model A and B, GMM seem to be either significantly
worsa than QMLE (except for "optimal" GMM, OPT), especially
for ARCH’s parameters a and a , or there is no significant
difference at 5% significance 1level. Note that we used
Wilcoxon test rather than the standard paired-t test because
of its robustness to the departure of normality assumption.
Table 9 and 10 show the Kolmogorov-Smirnov (K-S) test of
normality of the parameters for the two models. First,
observe that increasing the sample sizes or changing the
parameter values do not seem to change the results much.
Secondly, for the MLE estimator, K-S test failed to reject
the null hypothesis of normality at (i) 5% 1level of
significance for all cases, (ii) 1% for some cases. For QMLE
and GMM, with the exception of OPT, there is a tendency of
departure from normality in finite samples, especially for
the ARCH parameters. For almost all cases, the K-S test
reject the normality at the standard 5% 1level of
significance for both estimators. With the regression
parameters (3 for model A and B for model B), the normality

seems to be valid for GMM but not for QMLE since the K-S
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rejects the null of normality for QMLE but cannot reject the
null for GMM. Figures 1-4 provide some evidences for these
conclusions. For conservation of space we plot out one case
in mudel B as being representative (all other plots have
similar patternj.l? In each figure, the empirical
distribution of the standardized estimates along with the
cumulative distribution of the standard normal is plotted.l3
These plots confirm the results reported in table 9 and 10,
namely (i) for MLE the asymptotic normality of the estimated
parameters are valid in finite sample; (ii) the departure
from normality is found with the QMLE estimate of both 8 and
the ARCH paramevers, and (iii) the evidence for normality of
the GMM estimate’s sampling distribution of B is weak and a
complete departure from normality for the ARCH parameters
(except for the "optimal" GMM).

Finally, we examine the relative efficiency of
estimators. For an applied researcher, relative efficiency
of estimators is an important issue since it represents the
trade (ff between efficiency and computational costs. The
ratios of sample MSE of pairs of estimators provide a good
measure of relative efficiency. These ratios are presented

in table 11 and 12 which also provide the ratio of

12 The case chosen here is for T = 500, 8 = 1.0, a = 0.6, «

= 0.4 and A = 0.8.

13 The estimate is standardized by the corresponding sample
mean and standard deviation.

1
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asymptotic variance of pairs of estimators. To get an idea
of efficiency gain from usiiig QMLE versus the GMM procedure,
we compare these with the true MLE. The first three rows of
table 11 and 12 depict these results. There seems to be a
better gain in efficiency from using QMLE rather than GMM
when the instruments used are other than the "optimal"
instrumentsl4. For model A, the relative efficiency of GMM1
to MLE (in terms of ratios of MSE) is particularlf lcw when
the ARCH coefficient, o, is large. Changing the parameters
values of & and a do tend to increuse this ratio
(particularly, for smaller & and “1" The second last row of
table 11 and 12 show the relative efficiency between QMLE
and the GMM estimators. The results reveal that QMLE
dominates GMM estimator in almost all cases. In some cases,
the ratios of MSE and AV show an improvement in efficiency
between 30 percent and 70 percent over GMM15, However when
the "optimal" GMM is used, the improvement in efficiency is
reversed.

In another study, Engle and Gonzalez-Rivera (1991) show
that, in their Monte-Carlo simulation, there is no gain in

semi-parametric procedures over QMLE when the true

14 However, as noted earlier, GMM using "optimal" instruments
requires that the instrument 1list be a function of the
unknown parameters and hence can not be used in practice.

15 with "optimal" instruments, OPT dominates the QMLE in all

cases.
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conditional density is Student-t due to the poor
nonparametric estimation of the tails of the density.
However, when the true conditional density is Gamma, they
find a 1large gain in efficiency. We have run some
experiments ( the results are not reported here) with
.onditional Gamma distributed errors and find that the
results are unaltered, i.e. there is no gain in doing GMM
over QMLE. This is not surprising since the GMM procedure is
robust to any distribational assumption on the innovation of

the model.

IV. CONCLUSION

In this paper, we have presented detailed finite sample
properties of estimators for the univariate ARCH models.
These estimators include MLE, QMLE, and GMM with 4 different
instrument sets. In general, the results are (uite
discouraging for the GMM estimator. The results from the
Monte-Carlo study suggest that the GMM estimators (except
for the optimal GMM) are generally biased and the magnitude
of the biases depend on the choice of the instrument list.
The estimated standard errors of GMM estimator are
essentially downward biased, resulting in an upward bias in
the t statistics. Therefore, the question that arises

immediately from our analysis is: can we derive a pratical
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GMM estimator which does almost as well as the optimal one?
This would be an interesting topic for future research.

Oon the other hand, the results for QMLE are quite
encouraging and prove it to be more efficient than GMM
estimation.

Overall, even though GMM 1is computationally less
expensive than QMLE, care must be taken when applied
researchers wish to use the GMM procedure in estimating ARCH
type models. Also note that the results reported here should

be taken as indicative rather than definitive.
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APPENDIX Al.

Reqgularity conditions for QMLE:

1. 8 is a compact subspace of Euclidean Space and has non
empty interior.

2. The conditional mean and conditional variance are
measurable for all ©6 € © and twice continuously
differentiable on int.8.

3. (a) (ﬂ(e), t=1,2,...} is the log-likelihood function of
observation t and it assumed to satisfy the uniform weak law
of large numbers.

(b) 8, is the identifiable unique minimizer of
T
E(zet(e)).
t=1
4. (a) Both azet/aeaa’, and E(azet/aeae’) are assumed to
satisfy the uniform of weak law of large numbers.

T
(b) A = —T"):E(aze‘/aeae') is uniformly positive
t=1

definite.
5. (aet/ae)’(aet/ae) satisfies the uniform weak law of large

numbers.
1T ’

6. (a) B = 'r‘):l-:(aet/ae) (azt/ae) is uniformly positive
t=1

definite.

T
(b) 7' BT (ot /o8)" ¥(0,9 ).
t=1

110




APPENDIX A2,

Conditions for GMM:

1. {(yt,xt): -» < t < +w} is stationary and ergodic.

2. S is an open subset of R’ that contains e, .

3. g(.,8) and 38g(.,8)/38 are Borel measurable for each 8 € §
and é8a(.,08) /86 is continuous on S.

4. agl/ae is the first moment continuous at 8 , and

0]
E[ag(xl,eo)/ael exists, is finite, and has full rank.
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Table 1. Biases and MSE of estimators’
Model A: yt = 6yc-1 + et
— 2 —
ht = a + ae . t=1,2,...,T
_ 1/2 . s
8 o al
Bias MSE Bias MSE Bias MSE

T = 500, & = 0.8, a = 0.6, a = 0.4.
MLE -0.002 0.0007 0.005 0.0044 -0.005 0.0130
(.0008) (.0000) (.0021) (.0002) (.0030) (.0008)
QMLE -0.002 0.0009 -0.000 0.0084 -0.012 0.0256
(.0013) (.0003) (.0036) (.0013) (.0036) (.0010)
NAV1 -0.004 0.0020 0.062 0.0220 -0.180 0.0480
(.0014) (.0004) (.0042) (.0013) (.0039) (.0012)
NAV2 -0.005 0.0017 0.049 0.0203 -0.185 0.0506
(.0013) (.0003) (.0042) (.0014) (.0041) (.0013)
NAV3 -0.006 0.0017 0.061 0.0215 -0.183 0.0502
(.0013) (.0003) (.0042) (.0015) (.0041) (.0013)
OPT -0.002 0.0008 -0.020 0.0078 ~-0.042 0.0184
(.0009) (.0001) (.0026) (.0004) (.0036) (.0009)

T = 500, 8§ = 0.6, ao = 0.8, a = 0.2.
MLE -0.001 0.0012 0.010 0.0063 -0.004 0.0085
(.0011) (.0000) (.0025) (.0004) (.0015) (.0004)
QMLE -0.002 0.0018 ~-0.002 0.0123 -0.011 0.0150
(.0012) (.0602) (.0035) (.0006) (.0025) (.0005)
NAV1l <«(.001 0.0022 0.009 0.0137 -0.090 0.015¢°
(.0015) (.0002) (.0037) (.0008) (.0028) (.0006)
NAV2 -0.002 0.0020 -0.017 0.0137 -0.091 0.0166
(.0014) (.0001) (.0036) (.0008) (.0029) (.0005)
NAV3 -=0.002 0.002n ~0.010 0.0142 -0.087 0.0158
(.0014) (.0001) (.0038) (.0009) (.0029) (.0005)
OPT -0.001 0.0016 -0.021 0.0113 -0.038 0.0100
(.0012) (.0001) (.0032) (.0006) (.0025) (.0004)




Table 1.
T
MLE -0.001
(.0005)
OMLE -0.001
(.0007)
NAV1 -0.000
(.0010)
NAV2 -0.003
(.0010)
NAV3 -0.004
{.0010)
OPT -0.001
(.0006)
T
MLE -0.001
(.0008)
OMLE -0.001
(.0010)
NAV1 -0.001
(.0013)
NAV2 -0.001
(.0010)
NAV3 =0.001
(.0010)
OPT -0.001
(.0009)

Continue...

0.0003
(.0000)
0.0004
(.0001)
0.0010
(.0003)
0.0010
(.0003)
0.0009
(.0003)
0.0004
(.0000)

1000, & =

0.0006
(.0000)
0.0008
(.0001)
0.0018
(.0001)
0.0010
(.0001)
0.0009
(.0001)
0.0007
(.0000)

1000, &6 = 0.8, @ = 0.6, «o

0.002
(.0015)
-0.000
(.0034)
0.077
(.0039)
0.070
(.0037)
0.082
(.0040)
-0.011
(.0020)

0.6, ao

0.002
(.0018)
-0.001
(.0026)
0.023
(.0032)
0.007
(.0028}
0.013
(.0029)
-0.010
(.0024)

1

0.0022
(.0001)
0.0044
(.0024)
0.0211
(.0024)
0.0187
(.0022)
0.0231
(.0023)
0.003/
(.0002)

0.8, a

0.0033
(.0002)
0.0068
(.0005)
0.0107
(.0008)
0.0081
(.0005)
0.0088
(.0005)
0.0060
(.0003)

= 0.4.

~0.002
(.0026)
-0.005
(.0032)
-0.191
(.0038)
~0.168
(.0038)
~0.165
(.0038)
-0.030
(.0029)

0.2.

~0.005
(.0018)
-0.005
(.0024)
-0.077
(.0026)
-0.079
(.0025)
-0.076
(.0025)
~0.028
(.0020)

113

0.0065
(.0003)
0.0121
(.0010)
0.0410
(.0014)
0.0424
(.0012)
0.0416
(.0011)
0.0103
(.0006)

0.0052
(.0001)
0.0081
(.0003)
0.0127
(.0006)
0.0125
(.0004)
0.0119
(.0005)
0.0061
(.0002)

*
Simulation standard errors are in parenthesis




Table 2.

Model B: Y, = th t €,

Biases and MSE of estimators

114

X, = o1 + W oW i.i.d ~(0,1)
—— 2 — s
ht = ao + a1€t-1’ t=1,2,...T
- 172 s s
o o
Bias MSE Bias MSE Bias MSE
T = 500, 8 = 1.0, a = 0.6, a = 0.4, A = 0.8.
MLE -0.000 0.000¢% 0.004 0.0045 -0.005 0.0133
(.0008) (.0000) (.0021) (.0002) (.0039) (.0011)
QMLE 0.001 0.0007 -3.002 0.0079 -0.020 0.0266
(.0009) (.0000) (.0031) (.0009) (.0043) (.0016)
NAV1 -0.000 0.0017 0,028 0.0237 -0.180 0.05¢1
(.0010) (.0000) (.0048) (.0013) (.0052) (.0019)
NAV2 0.000 0.0010 0.009 0.0192 -0.197 0.0635
(.0010) (.0000) (.0044) (.0011) (.0050) (.0018)
NAV3 0.000 0.0006 0.065 0.0316 -0.194 0.0650
(.0008) (.0000) (.0052) (.0021) (.0052) (.0019)
oPT 0.000 0.0005 -0.026€ 0.0070 -0.040 0.0191
(.0007) (.0000) (.0025) (.0004) (.0039) (.0011)
T = 500, B = 1.5, ao = 0.8, a1 = 0.2, A = 0.8.
MLE -0.001 0.0005 0.004 0.0067 -0.005 0.0089
(.0007) (.0000) (.0026) (.0004) (.0030) (.0005)
QMIE -0.000 0.0006 -0.002 0.0118 -0.015 0.0143
(.0009) (.0000) (.0038) (.0008) (.0029) (.0009)
NAV1l 0.000 0.0010 -0.032 0.0238 -0.084 0.0283
(.0010) (.0000) (.0048) (.0014) (.0046) (.0014)
NAV2 0.000 0.0010 -0.057 0.0225 ~-0.096 0.0280
(.0010) (.0000) (.0044) (.0012) (.0043) (.0012)
NAV3 0.000 0.0006 0.002 0.0282 -0.099 0.0366
(.0008) (.0000) (.0053) (.0019) (.0051) (.0020)
oPT 0.000 0.0006 -0.032 0.0106 -0.030 0.0104
(.0008) (.0000) (.0030) (.0005) (.0026) (.0005)




Table 2. Continue ...

MLE

QMLE
NAV1
NAV2
NAV3

OPT

MLE

QMLE
NAV1
NAV2
NAV3

OPT

T = 1000, B = 1.0, a, = 0.6,
-0.000 0.0002 0.002
(.0001)  (.0000) (.0015)
-0.002 0.0003 0.001
(.0006)  (.0000) (.0029)
-0.000 0.0006 0.052
(.0007)  (.00%0) (.0042)
-0.000 0.0004 0.037
(.0007)  (.0000) (.0039)
-0.000 0.0003 0.C78
(.0006)  (.0000)  (.0046)
-0.000 0.0003 -0.018
(.0005)  (.0000) (.0020)
T =1000, 8 = 1.5, a = 0.8,
-0.000 0.0002 0.001
(.0005)  (.0000) (.0013)
-0.000 0.0003 -0.005
(.0007)  (.0000) {.0020)
-0.000 0.0005 =-0.007
(.0007) (.0000) {(.0038)
-0.000 0.0005 -0.023
(.0007)  (.0000) (.0035)
-0.000 0.0003 0.019
(.0006)  (.0000)  (.0041)
-0.000 0.0003 =-0.022
(.0006)  (.0000) (.0024)

0.0022
(.0001)
0.0058
(.0006)
0.0220
(.0015)
0.0163
(.0011)
0.0277
(.0017)
0.0040
(.0002)

ai-

0.2,
0.0033
(.0001)
0.0059
(.0005)
0.0143
(.0008)
0.0128
(.0008)
0.0174
(.0012)
0.0059
(.0003)

-0.002
(.0026)
-0.001
(.0033)
-0.154
(.0047)
-0.168
(.0044)
-0.1%4
(.0048)
-0.018
(.0031)

A =

-0.001
(.0020)
-0.002
(.0024)
~0.069
(.0037)
~0.079
(.0035)
~0.080
(.0039)
~0.012
(.0022)

0.8.

0.0065
(.0003)
0.0098
(.0009)
0.0454
(.0017)
0.0475
(.0015)
0.0504
(.0019)
0.0099
(.0005)

0.0041
(.0002)
0.0070
(.0006)
0.0186
(.0008)
0.0186
(.0009)
0.0220
(.0011)
0.0058
(.0003)

Simulation standard errors are |in

parenthesis.
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Table 3. Ratios of estimated standard errors to standard

deviations
Model A: Y, = ayb_1 « €
— 2 —
ht —ao+alet_‘. t=1,2,...,T
_ 172 N
8 ao a1

T = 500, 8 = 0.8, a = 0.6, a1 = 0.4.
MLE 0.953 1.041 1.000
QMLE 0.962 1.008 0.927
GMM1 0.653 0.761 0.612
GMM2 0.700 0.712 0.570
GMM3 0.722 0.765 0.600
GMM* 0.948 0.956 0.952

T = 500, 8 = 0.6, a, = 0.8, a1 = 0.2.
MLE 1.010 1.089 0.969
QMLE 0.991 1.042 1.001
GMM1 0.811 0.860 0.630
GMM2 0.850 0.830 0.600
GMM3 0.856 0.840 0.688
GMM* 0.971 0.982 0.940

T = 1000, & = 0.6, ao = 0.6, @ = 0.4,
MLE 0.988 1.026 0.978
QMLE 1.028 1.009 0.954
GMM1 0.708 0.674 J.585
GMM2 0.672 0.681 0.567
GMM3 0.722 0.765 0.600
GMM* 1.000 1.030 0.978

T = 1000, 8§ = 0.6, « = 0.8, a = 0.2.
MLE 1.019 1.032 0.950
QMLE 1.104 1.030 0.958
GMM1 0.676 0.779 0.596
GMM2 0.912 0.858 0.657
GMM3 0.714 0.671 0.600

GMM* 1.018 1.008 0.933
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Takle 4. Ratios of estimated standard errors to standard
deviations

Model B: Y, = th + €,

X, = Axt_‘ + w2 W i.i.4d ¥#(0.1)
= 2 =
h =o +ac _, t=1,2,...,T
= 172 . N
€, 63& ’ E( i.i.d. t(5)
B ao al

T = 500, B = 1.0, « = 0.6, « = 0.4, A = 0.8.

MLE 0.985 1.033 0.987
QMLE 1.009 0.998 0.900
GMM1 0.976 0.786 0.699
GMM2 0.955 0.766 0.622
GMM3 1.040 0.899 0.848
GMM* 0.986 0.983 0.938

T = 500, B = 1.5, « = 0.8, a = 0.2, i = 0.8.

MLE 1.010 1.033 0.934
QMLE 1.095 1.035 1.037
GMM1 0.992 0.859 0.790
GMM2 0.976 0.841 0.748
GMM3 1.018 0.985 0.936

GMM* 0.989 0.984 0.937
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Table 4. continue

T = 1000, 8 = 1.0, a, = 0.6, a = 0.4, A = 0.8.
MLE 1.037 1.027 0.978
QMLE 1.026 0.931 1.014
GMM1 0.989 0.745 0.684
GMM2 0.985 0.741 0.634
GMM3 0.985 0.859 0.791
GMM* 0.971 0.977 0.974

T = 1000, B = 1.5, a = 0.8, « = 0.2, A = 0.8.
MLE 1.020 1.027 0.953
QMLE 1.029 1.036 0.968
GMM1 0.988 0.870 0.797
GMM2 0.982 0.849 0.750
GMM3 0.980 0.959 0.908

GMM* 0.976 0.984 0.955
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Table 5. Coverage of confidence intervals °
Model A: Y, = <Syb1 + e
—— 2 -
ht - ao + alct_ ’ t - 1, ou-'T
172 . N
€ = gh’, g i.i.d. t(5)
8 o a
T = 500, 8 = 0.8, ao = 0.6, al = 0.4.
MLE 0.934 0.958 0.934
QMLE 0.929 0.927 0.893
GMM1 0.883 0.872 0.341
GMM2 0.884 0.864 0.320
GMM3 0.897 0.862 0.327
GMM* 0.934 0.904 0.880
T = 500, 8 = 0.6, ao = 0.8, al = 0.2.
MLE 0.952 0.972 0.924
QMLE 0.944 0.937 0.868
GMM1 0.900 0.914 0.477
GMM2 0.896 0.888 0.466
GMM3 0.898 0.897 0.502
GMM* 0.953 0.911 0.861
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Table 5. continue

T = 1000, 8§ = 0.8, ao = 0.6, a1 = 0.4.
MLE 0.951 0.960 0.954
QMLE 0.950 0.934 0.910
GMM1 0.911 0.776 0.335
GMM2 0.907 0.769 0.312
GMM3 0.910 0.755 0.348
GMM* 0.960 0.929 0.913

T = 1000, § = 0.6, a = 0.8, a = 0.2.
MLE 0.951 0.964 0.932
QMLE 0.954 0.938 0.897
GMM1 0.924 0.928 0.476
GMM2 0.930 0.923 0.486
GMM3 0.939 0.918 0.531
GMM* 0.955 0.926 0.881
.Thl s table shows the number of times in 1000 replications
that the 95% conf idence intervals of estimators tnclude the

true value of paraaeters




Table 6. Coverage of confidence intervals b

Model B: Y, - th + €,

x, = AxM + w, i.i.d ¥(0,1)
— 2 —-—
ht bt ao + alct‘l. t - 1,.-.,T
172 .
€, = E:tht ¢ Et i.i.d. t(5)
B @ a

T =500, B =1.0, ao = 0.6, cL1 = 0.4, A = 0.8.
MLE 0.955 0.955 0.9133
QMLE 0.955 0.916 0.877
GMM1 0.943 0.871 0.486
GMM2 0.949 0.857 0.402
GMM3 0.952 0.887 0.514
GMM* 0.950 0.879 0.882
T = 500, 8 1.5, a = 0.8, a = 0.2, A = 0.8,
MLE 0.946 0.959 0.912
QMLE 0.961 0.929 0.851
GMM1 0.950 0.906 0.681
GMM2 0.948 0.858 0.634
GMM3 0.949 0.951 0.726
GMM* 0.948 0.882 0.877




122

Table 6. continue

T =1000, 8 = 1.0, ao = 0.6, a1 = 0.4, A = 0.8.
MLE 0.966 0.958 0.947
QMLE 0.960 0.930 0.900
GMM1 0.952 0.898 0.472
GMM2 0.944 0.834 0.413
GMM3 0.955 0.808 0.517
GMM* 0.948 0.897 0.914

T = 1000, B = 1.5, ao = 0.8, al = 0.2, A = 0.°.
MLE 0.950 0.960 0.936
QMLE 0.957 0.925 0.901
GMM1 0.945 0.918 0.671
GMM2 0.934 0.900 0.639
GMM3 0.956 0.941 0.710
GMM* 0.949 0.897 0.910

See note in table 6.
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Table 7. Wilcoxon Matched-pairs Signed-ranks Test.
Model A: Y, < By‘_‘ + oo
ht =a + a!ef_l, t=1,2,...,T
_ 172 ..
€ = cht ' Et i.i.d t(5)
(] a o
Rank(-)* 2°  Rank(-) 2 Rank(-) 2
T = 500, 8 = 0.8, a = 0.6, a = 0.4
MLE-QMLE 535.7 -7.32 550.1 -9.76 527.4 -7.42
(0.00) (0.00) (0.00)
MLE-NAV1 554.3 -10.71 572.0 -16.69 538.2 =21.57
(0.00) (0.00) (0.00)
MLE-OPT 517.5 -4.50 543.9 -7.79 529.5 -12.95
(0.00) (0.00) (0.00)
QMLE~-NAV1 531.6 -5.48 550.9 -10.54 533.2 -18.42
(0.00) (0.00) (0.00)
QMLE-OPT 473.0 ~-2.49 474.8 -2.40 517.3 -8.34
(0.01) (0.02) (0.00)
T = 500, 8 =0.6, a, = 0.8, a = 0.2
MLE-QMLE 549.3 -8.75 558.9 -11.08 528.2 ~-7.88
(0.00) (0.00) (0.00)
MLE-NAV1 538.5 -8.09 546.2 =-9.79 532.6 -14.46
(0.00) (0.00) (0.00)
MLE-OPT 518.8 -3.73 538.3 -8.43 515.6 -9.85
(0.00) (0.00) (0.00)
QMLE-NAV1 493.1 -0.08 484.2 -0.47 500.9 -8.03
(0.94) (0.64) (0.00)
QMLE-OPT 452.5 -5.89 470.4 -3.86 476.9 -3.56
(0.00) (0.00) (0.00)
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Table 7. continue

T = 1000, 6 = 0.8, a = 0.6, ., = 0.4

MLE-QMLE 539.8 =7.59 548.0 =11.60 535.4 =7.42
(0.00) (0.00) (0.00)
MLE~NAV1 556.% =12.39 570.8 =-21.15 552.6 =24.50
(0.00) (0.00) (0.00)
MLF~OPT 544.7 =6.77 541.0 -11.28 541.6 =14.29
(0.00) (0.00) (0.00)
QMLE-NAV1 526.2 =-6.94 564.4 =-16.90 534.1 =22.32
(0.00) (0.00) (0.00)
QMLE-OPT 490.0 =-1.32 504.4 -0.55 509.1 -9.05
(0.19) (0.59) (0.00)

T = 1000, 8 = 0.6, a, = 0.8, a = 0.2

MLE-QMLE 531.0 -7.42 539.7 =12.25 539.3 -7.02
(0.00) (0.00) (0.00)
MLE-NAV1 539.2 -9.44 558.7 -12.48 547.7 -18.77
(0.00) (0.00) (0.00)
MLE-OPT 537.1 -4.88 536.4 -~10.89 537.4 -12.20
(0.00) (0.00) (0.00)
QMLE-NAV1 513.5 -3.35 523.8 -3.23 532.1 -14.25
(0.00) (0.00) (0.00)
QMLE-OPT 460.9 -3.18 491.2 -1.42 500.1 -6.94
(0.00) (0.16) (0.00)
‘Ranh (-) denotes the negative mean rank between a pailr of
estimators, e.qg. for MLE-QMLE, Rank (-) = 535.7 records the
mean rank for which MLE has smaller absolute bias than QMLE.
bz denotes Wilcoxon statistics for tescing HO: the two
estimators are equivalent. 2-tajled p-values are given in

the parenthesis.
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Table 8. Wilcoxon Matched-pairs Signed-ranks Test

Model B: Yy, = th + €

x = Axb1 + W, W i.i.d ¥(0,1)
= 2 -
ht_ao+a1€:-1' t=1,...,T
_ 1s2 . s
e = Etht ’ EL 1.1.d4 t(5)
B o a
Rank(-)* 2° Rank(-) 2 Rank(-) Z
T = 500, B = 1.0, a = 0.6, a = 0.4, A = 0.8
MLE~-QMLE 52€.6 -2.35 534.9 -7.74 535.6 -7.49
(0.02) (0.00) (0.00)
MLE-NAV3 509.4 -0.13 573.3 -19.61 565.9 -21.23
(0.90) (0.00) (0.00)
MLE-OPT 494.6 -1.13 538.9 -5.93 552.9 -12.19
(0.26) (0.00) (0.00)
QMLE-NAV3 478.4 -1.94 553.6 -14.66 544 .9 -17.23
(0.05) (0.00) (0.00)
QMLE-OPT 4174.6 -2.87 481.9 -2.28 $10.8 -6.77
(0.00) (0.03) (0.00)
T = 500, B = 1.5, o, = 0.8, al = 0.2, A = 0.8
MLE-QMLE 538.0 -7.88 545.0 -7.86 533.6 -5.84
(0.00) {0.00) (0.00)
MLE~-NAV3 520.0 -4.71 569.0 -15.59 558.7 -17.99
(0.00) (0.00) (0.00)
MLE-OPT 526.5 -4,99 539.7 -5.87 533.4 -9.22
(0.00) (0.00) (0.00)
QMLE-NAV3 473.2 -3.56 530.9 -9.45 537.6 -13.21
(0.00) (0.00) (0.00)
QMLE-OPT 467.0 -3.32 468.3 -2.32 492.8 -3.68
(0.00) (0.00) (0.00)
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Table 8. continue
T = 1000, B = 1.0, ao = 0.6, al = 0.4, A = 0.8
MLE-QMLE 545.0 -7.63 550.5 -8.70 538.2 -5.83
(0.00) (0.00) (0.00)
MLE-NAV2 529.2 -6.61 559.0 =-23.58 557.9 =23.79
(0.00) (0.00) (0.00)
MLE-OPT 518.0 -4.59 548.1 -9.20 540.6 -11.37
(0.00) (0.00) (0.00)
QMLE-NAV3 483.9 -1.86 558.2 -~-20.09 553.7 -21.34
\5.06) (0.00) (0.00)
QMLE-OPT 485.1 -4.,24 501.9 -1.12 515.3 -7.92
(0.00) (0.26) (0.00)
T = 1000, 8 = 1.5, a = 0.8, a = 0.2, A = 0.8
MLE-QMLE 525.5 -3.04 554.7 -9.82 539.6 -6.28
(0.00) (0.00) (0.00)
MLE-NAV3 514.3 -~3.85 572.4 -18.73 560.4 -20.21
(0.00) (0.00) (0.00)
MLE-OPT 535.3 -2.84 536.0 -9.,28 542.8 =-10.10
{0.01) (0.00) (0.00)
QMLE-NAV3 503.1 ~-1.08 552.2 -11.29 544.1 -15.49
(0.28) (0.00) (0.00)
QMLE-OPT 488.4 ~0.36 489.0 -1.60 515.8 -5.01
(0.72) (0.11) (0.00)
a,b

See footnote in table 7.
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Table 9. Kolmogorov-Smirnov Test of Ncrmality

Model A: Y, = c.’.yt_'1 + €,

— 2 —
ht = + @€ v t=1,...,T

e = 53‘1/2' g, i.i.d t(5)

8 a a

o 1
K-S P-value K-S P-value K-S P-value
T = 500, 8 = 0.8, a, = 0.6, a = 0.4
MLE 1.229 0.098 1.351 0.052 1.291 0.071
QMLE 2.842 0.000 2.906 0.000 2.770 0.000
NAV1 2.462 0.000 1.734 0.005 2.309 0.000
OPT 1.555 0.016 1.870 0.002 0.910 0.379
T = 500, 8 = 0.6, ao = 0.8, a = 0.2
MLE 1.168 0.131 1.319 0.062 0.957 0.319
QMLE 3.996 0.000 5.234 0.000 5.739 0.000
NAV1 1.017 0.253 1.174 0.127 2.280 0.000
OPT 0.791 0.802 0.003 0.300 1.244 0.091
T = 1000, & = 0.6, ao = 0.6, a1 = 0.4
MLE 0.972 0.301 0.720 0.678 0.987 0.284
QMLE 1.630 0.010 4.638 0.000 4.793 0.000
NAV1 2.304 0.000 2.017 0.001 2.589 0.000
oPT 0.817 0.516 1.472 0.026 1.088 0.187
T = 1000, 8 = 0.6, a, = 0.8, a1 = 0.2
MLE 0.781 0.576 0.862 0.447 0.843 0.477
QMLE 3.354 0.000 4.314 0.000 2.547 0.000
NAV1 2.834 0.000 1.737 0.004 2.554 0.000
OPT 0.638 0.810 1.461 0.028 1.534 0.018
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Table 10. Kolmogorov-Smirnov Test of Normality
Model B: Y, = th + €,
x =Ax _ t o, W, i.i.d ~(0,1)
— 2 3
h". - ao + alct-i, t - 1,..0,T
_ 172 . .
B ao al
K-S P-value K-S P-value K-S P~value
T = 500, B = 1.0, o, = 0.6, a = 0.4, A = 0.8
MLE 1.438 0.032 1.196 0.114 0.377 0.999
QMLE 5.829 0.000 4.530 0.000 3.540 0.000
NAV3 0.567 0.905 1.196 0.115 2.322 0.000
OPT 0.335 1.000 1.433 0.033 0.944 0.277
T = 500, B =1.5, o« = 0.8, a = 0.2, A = 0.8
MLE 0.624 0.832 1.186 0.120 0.935 0.346
OMLE 4.359 0.000 9.394 0.000 6.198 0.000
NAV3 0.617 0.841 1.504 0.022 1.952 0.001
OPT 0.358 0.9598 1.096 0.181 2.013 0.001
T = 1000, B =1.0, @, = 0.8, o = 0.2, A = 0.8
MLE 0.660 0.777 0.670 0.761 0.813 0.524
QMLE 2.839 0.000 2.101 0.000 2,217 0.000
NAV3 0.705 0.703 1.563 0.015 2.656 0.000
OPT 0.859 0.452 1.235 0.095 1.013 0.256
T = 1000, 8 = 1.5, a, = 0.8, a, = 0.2, A = 0.8
MLE 0.633 0.817 0.841 0.479 0.793 0.556
QMLE 8.172 0.000 9.078 0.000 4.921 0.000
NAV3 0.750 0.627 0.997 0.273 2.204 0.000
OPT 0.865 0.443 0.816 0.518 1.619 0.011
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Table 11. Ratios of MSE and Ratios of Asymptotic variances °

Model A: y =38y + €

t

- 2 -
ht = a + aEe t=1,...,7
_ 172 .
aO a‘l
MSE AV MSE AV MSE AV
T = 500, 8 = 0.8, a, = 0.6, a = 0.4.
MLE/QMLE 0.743 0.731 0.526 0.556 0.505 0.591
MLE/NAV1 0.331 0.706 0.205 0.463 0.270 0.444
MLE/OPT 0.824 0.834 0.562 0.697 0.705 0.857
QMLE/NAV1 0.447 0.967 0.390 0.834 0.534 0.751
QMLE/OPT 1.110 1.141 1.069 1.254 1.395 1.689
T =500, 8 = 0.6, a® = 0.8, a = 0.2.
MLE/QMLE 0.688 0.714 0.509 0.548 0.566 0.535
MLE/NAV1l 0.604 0.840 0.441 0.734 0.537 0.517
MLE/OPT 0.7%0 0.855 0.554 0.698 0.846 0.955
QMLE/NAV1 0.825 1.230 0.895 1.321 0.944 1.034
QMLE/OPT 1.149 1.196 1.088 1.274 1.494 1.959
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Table 11. continue

T = 1000, 6 = 0.8, ao = 0.6, a = 0.4.
MLE/QMLE 0.699 0.684 0.503 0.519 0.488 0.514
MLE/NAV1 0.300 0.583 0.104 0.334 0.157 0.250
MLE/OPT 0.806 0.788 0.589 0.603 0.635 0.697
QMLE/NAV1 0.429 0.901 0.207 0.642 0.321 0.534
QMLE/OPT 1.444 1.153 1.171 1.140 1.300 1.489

T = 1000, &8 = 0.6, ao = 0.8, al = 0.2.
MLE/QMLE 0.753 0.642 0.483 0.485 0.643 0.506
MLE/NAV1 0.345 0.785 0.307 0.565 0.411 -0.522
MLE/OPT 0.832 0.834 0.548 0.585 0.855 0.813
QMLE/NAV1 0.458 1.223 0.634 1.165 0.639 1.033
QMLE/OPT 1.106 1.300 1.134 1.206 1.331 1.609
* MSE denotes the ratios of mean square errors of estimators

and AV denctes the ratios of asymptotic varjances of
estimators.
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Table 12. Ratios of MSE and ratios of asymptotic variances °

Model B: Y, = th + €,

x = hxb‘ tw, w i.i.d N(0,1)
— 2 -
ht—a°+alct_l, t=1,...,T
172 . s
e = Etht . Ec i.i.d. t(5)
B o, o
MSE AV MSE AV MSE AV
T =500, B =1.0, a = 0.6, a = 0.4, A = 0.8.
MLE/QMLE 0.690 0.659 0.564 0.602 0.499 0.608
MLE/NAV3 0.833 0.747 0.141 0.215 0.204 0.656
MLE/OPT 0.914 0.912 0.637 0.774 0.694 0.880
QMLE/NAV3 1.208 1.134 0.251 0.357 0.409 1.078
OMLE/OPT 1.325 1.384 1.130 1.286 1.390 1.376
T = 500, B = 1.5, ao = 0.8, a = 0.2, A = 0.8.
MLE/QMLE 0.834 0.709 0.569 0.565 0.610 0.513
MLE/NAV3 0.347 0.833 0.238 0.261 0.244 0.330
MLE/OPT 0.845 0.880 0.636 0.775 0.857 0.930
QMLE/NAV3 1.016 1.175 0.418 0.461 0.391 0.643
QMLE/OFT 1.014 1.242 1.117 1.371 1.371 1.812




Table 12. continue

T = 1000, B = 1.0, a_ =

MLE/QMLE 0.507
MLE/NAV3 0.565
MLE/OPT 0.669
QMLE/NAV3 1.114
QMLE/OPT 1.322

0.521
0.626
0.764
1.200
1.464

o

0.380
0.079
0.553
0.209
1.456

T = 1000, B = 1.5, a =

MLE/QMLE 0.722
MLE/NAV3 0.726
MLE/OPT 0.769
QMLE/NAV3 1.006
QMLE/OPT 1.066

0.709
0.785
0.839
1.108
1.184

o

0.557
0.191
0.558
0.343
1.001

0.550
0.223
0.661
0.406
1.203

0.667
0.130
0.661
0.194
0.991

0.586
0.188
0.709
0.320
1.211

132

0.620
0.425
0.686
0.686
1.107

L = 0.2, A = 0.8.

0.568
0.291
0.725
0.513
1.277

Scs note on table 11,




Cumulative Distribution
02 0.3 04 05 06 07 08 09

Cumulative Distribution

L]
['e]
0
"
(£}

regt Jistntution of sets (MLI}

10
| S AR s sumn 4

v v v v

v

133

L — ot ¢.4.0 B
o - - %0,1) c.af.
) N n L
S _3 -2 -1 ] 2 3
M fen 20 10:30400 19080
Fig. 1b. Empirical Distribution of aiphal (MLE)
c’ A v A ¥ hd LS v
ol ]
o
h -
@
st 1
b -
~L e
° -
1"}
st )
1]
of )
P L
L 4 L f
S 1
”
ol )
cof .
o | 4
- — (vperieet ¢.4.1 4
af -~ %{0.1) c.4.l. ‘
q i — e .
©_3 -2 -1 0 2 3




134

WU Fa e 20 TATD oy

Fig 23. Emciricat Cistribution of cets [TMmLE)

. =]
m.
<
b
- -
-
S
S
c
ol\
- OL
3 3
L2 o
- b
= °f
Q i
o ©
> b
s %}
3 °}
E »
3 9]
Ny
[~
-1 —— Emprcal e.at | |
Q - - 0.1) c.a.t. ]
°_ L-,‘L " N I L
Q
-3 -2 Q 1 2 3

GUSE M fed 20 100RIe 1908

Fig. 2b. Empirical Distribution of alphal (QMLE)

° ey
ed 8
Q
ol
o
3
S ~L
= o
3 9
< 3t
5] p
S wi
o
27}
- @
s =t
=°.
o
o
o |
o~
ot P
.-' —— mgeriget ¢.¢.1
ol e - = N0.1) c.al. j
° " e 1 L
°-J -2 -1 o 1 2 3




St 4 Fea 20 (08T pe3 135

Fiq. Ja. Emzirica: T.stribution of deta (NAV3)

S
m.
o
g B
(=}
e b
oN
- OL
s S
2 i
- O
o J
Q w0}
© Q
2 P
- vy
2 a
- b 4
€ 2}
(-]
3 <f 1
~
ol .J
r 4
-b e Crgurigel ¢.4.1 J
Q - = n{0,1) c.a.t.
°_ J e o . )

QES At Fen 28 11 EED 1900
Fig. 3b. Empirical Distribution of alphal (NAV3)

3 v 1 J v L v " o L4 v ‘r‘g'
/—"
o -
o
o -
e <
S ~ ]
- O
S 4
2 e 1
% © )
o n 4
o © ]
2
g 3 -
3 ° L
£ ]
o ° )
~ 1
° )
- e Cmpivisel ¢.4.f | _
o -— o= 90.1) s.0t. )
Q| _ , - N
=]




- MMrelt TR W

Cumulative Distribution
0.2 03 04 05 06 07 08 09

Cumulative Distribution
0.2 03 04 05 06 07 08 09

10

00 01

1.0

00 0.1

P
b
P
b
4
I
S
: ——— Cmpiricel c.0.f
- - noM ecar |
-3 -2 -1 0 1 2 3
C X% NIBH- RO
Fig. 4b. Empirical Distribution of alphal (QPT)!
b <
s .
b 1
q
[ ]
b 4
s <
P -
5 s
S o
p <
b L
i ——— (perisel s.0.t :
I - = N0.1) c.aL. *
>
2 3

Fig. 4Q. E~ziricat Zlstriouticn of ocetg (oPT)




	Western University
	Scholarship@Western
	1994

	Mixtures, Moments And Information: Three Essays In Econometrics
	Kien C. Tran
	Recommended Citation


	tmp.1410234841.pdf.1R4bx

