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CHAPTER 1. INTRODUCTION 

A problem that is computationally intractable in the worst case may or may not be in-

tractable in the average case. In applications such as cryptography and derandomization, 

where intractability is a valuable resource, worst-case intractability seldom suffices, average-

case intractability often suffices, and almost-everywhere intractability is sometimes required. 

Implicit in these distinctions is the truism that some instances of a computational problem 

may be hard while others are easy. 

The complexity of an individual instance of a problem cannot be measured simply in 

terms of the running time required to solve that instance, because any algorithm for that 

problem can be modified to solve that instance quickly via a look-up table. Orponen, Ko, 

Schoning, and Watanabe [36] used ideas from algorithmic information theory to circumvent this 

difficulty, thereby introducing a precise formulation of the complexities of individual instances 

of computational problems. 

Given a decision problem A~ {O, 1}*, an instance x E {O, 1}*, and a time bound t: N -t N, 

Orponen, Ko, Schoning, and Watanabe [36] defined the t-time-bounded instance complexity of 

x relative to A, written ict(x : A), to be the number of bits in the shortest program 7r such 

that 7r decides x in at most t(lxl) steps and 7r does not decide any string incorrectly for A. (See 

chapters 2 and 3 for complete definitions of this and other terms used in this introduction.) 

Instance complexity has now been investigated and applied in a number of papers, including 

[36, 22, 9, 17, 24, 8, 34], and is discussed at some length in the text [25]. 

In this paper we investigate the instance complexities of problems that are hard or weakly-

hard for exponential time under polynomial time, many-one reductions. Our most technical 

results establish the measure-theoretic abundance of problems for which almost all instances 
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have essentially maximal instance complexities. From these results we derive our main results, 

which are lower bounds on the instance complexities of weakly hard problems, and we sepa-

rately establish upper bounds on the instance complexities of hard problems. We now discuss 

these results in a little more detail. 

The t-time-bounded plain Kolmogorov complexity of a string x, written ct(x), is the number 

of bits in the shortest program 7r that describes (i.e., prints) x in at most t(jxl) steps. As 

observed in (36), it is easy to see that, fort' modestly larger than t, ict' (x : A) cannot be much 

larger than ct ( x), since a description of x contains all but one bit of the information required for 

a program to correctly decide whether x E A and decline to decide all other strings. An instance 

x thus has essentially maximal t-time-bounded instance complexity if ict(x : A) is nearly as 

large as ct' (x), where t' is modestly larger than t. Orponen, Ko, Schoning, and Watanabe 

[36] established the existence of a problem A E E = DTIME(2linear) for which all but finitely 

many instances x have instance complexities that are essentially maximal in the sense that 

ic2n ( x : A) > ct' ( x) - 2 log ct' ( x) - c, where c is a constant and t' ( n) = cn22n + c. In contrast 

with this existence result, we prove in this paper that almost every language A E E has the 

property that all but finitely many instances x have essentially maximal instance complexities 

in the slightly weaker (but still very strong) sense that ic2n(x : A) > (1 - E)Ct'(x), for any 

fixed real€> 0, where t'(n) = 23n. 

Naturally arising problems that are - or are presumed to be - intractable have usually 

turned out to be complete for NP or some natural complexity class containing NP. The complex-

ities of such problems are thus of greater interest than the complexities of arbitrary problems. 

The instance complexities of problems that are complete (or just hard) for NP or exponential 

time under ::;~-reductions have consequently been a focus of investigation. 

Regarding problems that are ::;~-hard for exponential time, Orponen, Ko, Schoning and 

Watanabe (36] have shown that every such problem H must have an exponentially dense set 

of instances x that are hard in the sense that for every polynomial t, ict ( x : H) > ct' ( x) -

2 log ct' ( x) - c, where c is a constant and t' ( n) = cn22n + c. Buhrman and Orponen [9] proved 

a related result stating that, if H is actually ::;~-complete for exponential time, then H has 
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a dense set of instances x that are hard in the sense that for every polynomial t(n) > n2, 

ict(x: H) > Ct(x) - c, where c is a constant. 

The main results of this paper show that this phenomenon - a dense set of instances whose 

complexities are essentially maximal - holds not only for :::;!:-hard problems for exponential 

time, but in fact for all weakly :::;!:-hard problems for exponential time (with slight technical 

modifications in the instance complexity bounds). This is a significant extension of the earlier 

work because Ambos-Spies, Terwijn and Zheng [2] have shown that almost every problem in 

E is weakly :::;!:-hard, but not :::;!:-hard, for E, and similarly for E2. 

To be precise, we prove that for every weakly :::;!:-hard language H for E2 and every€ > 0 
0 

there exists 8 > 0 such that the set of all instances x with ic2" (x : H) > (1 - €)C24"(x) is 

dense. Since Juedes and Lutz [21] have shown that every language that is weakly :::;!:-hard for 

E is weakly :S!:-hard for E2 (but not conversely, even for languages in E), our results hold a 

fortiori for problems that are weakly :S!:-hard for E. 

Regarding problems that are NP-complete ( of which we take SAT to be the canonical 

example), any nontrivial lower bound on instance complexity must be derived from some 

unproven hypothesis (or entail a proof that P i=- NP) because languages in P have bounded 

instance complexities [36]. Assuming P i=- NP, Orponen, Ko, Schoning and Watanabe [36] 

showed that for every polynomial t and constant c, the set {xlict(x : SAT) :2:: clog Ix!} is 

infinite. Assuming the hypothesis that nonuniformly secure one-way functions exist (which 

implies P i=- NP), Ko [22] proved that this set is nonsparse. Assuming E i=- NE (which also 

implies Pf=.NP), Orponen, Ko, Schoning and Watanabe [36] showed that SAT has an infinite 

set of instances of essentially maximal complexity in the sense that for every polynomial t there 

exist a polynomial t', a constant c, and infinitely many x such that ict(x : SAT) > ct' (SAT)-c. 

The hypothesis that NP does not have p-measure 0, written µp(NP) i=- 0, has been proposed 

by Lutz. This hypothesis has been shown to imply reasonable answers to many complexity-

theoretic questions not known to be resolvable using P i=- NP or other "traditional" complexity-

theoretic hypotheses. (Such results are discussed in the surveys [28, 1, 27, 10].) The µp(NP) i=- 0 

hypothesis implies the hypothesis Ef=.NE [29] and is equivalent to the assertion that NP does 
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not have measure 0 in E2 [2]. Here we note that, if µp(NP) =f=. 0, then SAT is weakly ~~-hard 

for E2 , whence our above-mentioned results imply that SAT has a dense set of instances of 

essentially maximal complexity. That is, if µp(NP) =f=. 0, then for every f > 0 there exists 8 > 0 
6 

such that the set of all x for which ic2n ( x : SAT) > (1 - f )C24 n ( x) is dense. 

In the course of this introduction, we have seen that almost every problem A in exponential 

time has both of the following properties. 

1. All but finitely many instances of A have essentially maximal instance complexity (our 

abundance results). 

2. A is weakly ~~-hard for exponential time [2). 

Thus weakly hard problems can have essentially maximal complexity at almost every instance. 

In contrast, we also show that every problem H that is actually ~~-hard for exponential time 

must have a dense set of instances x that are unusually easy in the very strong sense that 

ic26n ( x : H) is bounded above by a constant. Our proof of this fact is based largely on the 

proof by Juedes and Lutz (20) of an analogous result for complexity cores. 

It should be mentioned here that most of the work in this thesis is joint work with my 

advisor, Dr.Jack Lutz. Theorem 4.1 is joint work with Dr. Jack Lutz and my fellow graduate 

student, Sridhar Srinivasan. Also, most of the results in this thesis are for the complexity 

class E. It should be noted that these results can be extended to obtain similar results for the 

complexity class E2 as in [30). 

The rest of this thesis is organized as follows. In chapter 2 we summarize our basic termi-

nology and notation and briefly review some basic aspects of resource-bounded measure. In 

chapter 3 we review the definition and basic properties of instance complexity, and we note 

that, for a language A, the condition of having very high t-time-bounded instance complexity 

is strongly incomparable with the condition of being incompressible by ~~TIME(t)_reductions. 

(In particular this implies that our lower bound results are much stronger than the analogous 

lower bounds for complexity cores proven in [20].) Chapter 4 is the main chapter of this thesis. 

In this chapter we prove our abundance theorems, derive our lower bounds on the instance 

complexities of weakly hard problems, and note the consequences for the complexity of SAT if 
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µp(NP) =f=. 0. In chapter 5 we prove that every hard problem for exponential time has a dense 

set of unusually easy instances. Finally in chapter 6, we summarize the results in this thesis. 
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CHAPTER 2. PRELIMINARIES 

We write N for the set of natural numbers, Z for the set of integers, and z+ for the set of 

positive integers. All polynomials here have coefficients in N, and all logarithms are base 2. 

We write ['P] for the Boolean value of a condition <p, i.e., [<p] =if <p then 1 else 0. We write 

ISi for the cardinality of a set Sand sc for the complement of S. In addition to the quantifiers 

:lx and Vx, we use the quantifiers :300 x ("there exists infinitely many x such that ... ") and 

\;/00 x ("for all but finitely many x, ... "). 

All strings in this paper are binary strings x E {O, 1}*. We write lxl for the length of x, 

and we use the standard enumeration so = >., s1 = 0, s2 = 1, s3 = 00, ... of { O, 1} *. A string x 

is a prefix of a string y, and we write x i;;;; y, if there is a string z such that xz = y. 

All languages (equivalently, decision problems) here are sets A ~ { 0, 1} *. We identify each 

language A with its characteristic sequence 

XA =[so E A][s1 E A][s2 EA] .... 

Relying on this identification, we write A[O .. n - 1] for the binary string consisting of the first 

n bits of XA· 

A language A~ {O, 1}* is sparse if there exists a polynomial q such that (Vn) IAn{O, lF:;nl ~ 
q(n), and exponentially dense (or, simply, dense) if there exists a real number€> 0 such that 

(V00 n) IA n {O, 1}$nl > 2n•. 

Our main results involve resource-bounded measure, which was developed by Lutz [26, 28]. 

We briefly review a fragment of the theory that is sufficient for the purposes of this thesis. The 

interested reader is referred to any of the surveys (28, 27, 1, 10] for further discussion. 

Definition. A martingale is a function d : { 0, 1} * -+ (0, oo) with the property that, for all 



w E {O, 1}*, 
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d(w) = d(wO) + d(wl). 
2 

A martingale d succeeds on a language A~ {O, 1}* if 

limsupd(A[O .. n-1]) = oo. 
n~oo 

The success set of a martingale d is 

S 00 [d] ={Aid succeeds on A}. 

Intuitively, a martingale d is a betting strategy that, given a language A, starts with capital 

(amount of money) d(A) and bets on the membership or nonmembership of the successive 

strings s0 , s1, s2, ... in A. Prior to betting on a string Sn, the strategy has capital d(w), where 

w =[so EA]·· ·[sn-1 EA]. 

After betting on the string Sn, the strategy has capital d(wb), where b = [sn EA]. Condition 

( *) ensures that the betting is fair. The strategy succeeds on A if its capital is unbounded as 

the betting progresses. 

Notation. The classes Pl = p and P2, both consisting of functions f: {O, 1}*--+ {O, 1}*, are 

defined by 

Pl p = {f If is computable in polynomial time}, 

P2 {flfis computable in n(logn) 0 <1l time}. 

These classes induce measure structure on the classes E1 = E and E2, respectively. 

Definition. Let i E {1, 2}. A martingale d is Pi-computable if there is a function d : N x 

{O, 1}*--+ Q such that d E Pi (with input (r, w) coded in the form orlw) and, for all r EN and 

w E {O, 1}*, 

id(r, w) - d(w)I ~ 2-r. 

A Pi-martingale is a martingale that is Pi-computable. 

Martingales were introduced by Ville (44], and resource-bounded martingales were used 

extensively by Schnorr [39, 40, 41, 42] in his investigations of random and pseudorandom 
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sequences. Lutz (26) used resource-bounded martingales to induce measure structure on E and 

E2 by means of the following definitions. Let X be a set of languages and let i E {1, 2}. 

1. X has Pi-measure 0, and we write µPi (X) = 0, if there is a Pi-martingale d such that 

x <; S00 [d]. 

2. X has Pi-measure 1, and we write µPi (X) = 1, if µPi (Xe) = 0. 

3. X has measure 0 in Ei, and we write µ(X I Ei) = 0, if µPi (X n Ei) = 0. 

4. X has measure 1 in Ei, and we write µ(X I Ei) = 1, if µ(Xe I Ei) = 0. In this case, we 

say that X contains almost every language in Ei. 

We write µ(XIEi) # 0 to indicate that X does not have measure 0 in Ei. Note that this 

does not assert that "µ(XIEi)" has some nonzero value. 

The following is obvious but useful. 

Fact 2.1. For every set X <; {O, 1}*, 

µp(X) = 0 

JJ. 

µ(XIE)= 0 

===> µp2 (X) = 0 ===> Pr[ A EX)= 0 

JJ. 

where the probability Pr[A E X) is computed according to the random experiment in which 

a language A<; {O, 1}* is chosen probabilistically, using an independent toss of a fair coin to 

decid~ whether each string x E {O, 1}* is in A. 

It is shown in [26) that these definitions endow E and E2 with internal measure structure. 

This structure justifies the intuition that, if µ(XIE) = 0, then X n Eis a negligibly small subset 

of E (and similarly for E2). 

In addition to using the above definitions, we will use the resource-bounded first Borel-

Cantelli lemma. The statement of this lemma uses the unitary success set 

S1 [d] ={A I (3n)d(A[O .. n - 1)) ~ 1} 
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of a martingale d and the following notion of effective convergence. 

00 

Definition. A series Lan of nonnegative real numbers an is p-convergent if there is a function 
n=O 

m: N-+ N such that m E p (with input and output coded in unary) and 

00 I: an~ rk 
n=m(k) 

for all k EN. 

Routine calculus proves the following lemma. 

Lemma 2.2. Let f. > 0. The series 2:7re{o,I}* 2-2' 1"1 is p-convergent. 

The following lemma gives the case p of the resource-bounded generalization of the classical 

first Borel-Cantelli lemma. 

Lemma 2.3.(Lutz [26]) Let Zo, Z1, Z2, ... be sets of languages, and let 

Z = {Aj(300k)A E Zk}· 

Assume that there is a function d: Nx {O, 1}*-+ [O, oo) satisfying the following four conditions, 

where we write dk(w) = d(k, w). 

1. dis p-computable. 

2. For each k E N, dk is a martingale. 

4. The series l:~o dk(>.) is p-convergent. 

Then µp(Z) = 0. 

Recall that a language H is ~~-hard for a class C of languages if A ~~H for all A E C, 

and ~~-complete for C if HE C and His ~~-hard for C. Resource-bounded measure allowed 

Lutz to generalize these notions as follows. (We write Pm(H) = {AIA ~~ H}.) 
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Definition. A language H ~ {O, 1}* is weakly ~!:i-hardfor E (respectively, for E2) if µ(Pm(H)IE) =J. 

0 (respectively, µ(Pm(H)IE2) =J. 0). A language H ~ {O, 1}* is weakly ~!:i-complete for E (re-

spectively, for E2) if H E E (respectively, H E E2) and His weakly ~!:i-hard for E (respectively, 

for E2). 

It is clear that every ~!:i-hard language for E is weakly ~!:i-hard for E, and similarly for 
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CHAPTER 3. INSTANCE COMPLEXITY AND RELATED MEASURES 

In this section we review the basic properties of instance complexity and discuss its rela-

tionships with Kolmogorov complexity, complexity cores, bi-immunity and incompressibility 

by many-one reductions. 

Following [36), we define an interpreter to be a deterministic Turing machine with a read-

only program tape, a read-only input tape, a write-only output tape, and an arbitrary number 

of read/write work tapes, all with alphabet {O, 1, U}, where U is the blank symbol. Given a 

program tr E {O, 1}* on the program tape and an input x E {O, 1}* on the input tape, an 

interpreter M may eventually halt in an accepting configuration, a rejecting configuration, an 

undecided configuration, or an output configuration, or it may fail to halt. If M halts in an 

accepting configuration, we say that tr accepts x on M, and we write M(tr, x) = 1. If M halts 

in a rejecting configuration, we say that tr rejects x on M, and we write M(tr, x) = 0. In either 

of these two cases, we say that tr decides x on M. If M halts in an undecided configuration, or 

if M fails to halt, we say that tr fails to decide x on M, and we write M(tr, x) =L If M halts 

in an output configuration with output y E {O, 1}* on the output tape, we write M(tr, x) = y. 

(If y is 0 or 1, the context will always make it clear whether "M(tr, x) = y" refers to a decision 

or an output.) 

We write timeM(tr, x) for the running time of M with program tr and input x. If M(tr, x) =1-, 

we stipulate that timeM(tr, x) = oo. 

A program tr is consistent with a language A~ {O, 1}* relative to an interpreter M if for 

all x E {O, 1}*, M(tr, x) E {[x E A], 1-}, i.e., tr either decides x correctly for A or else fails to 

decide x. 

We now recall the definition of time-bounded instance complexity, which is the main topic 
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of this paper. 

De:finition.(Orponen, Ko, Schoning and Watanabe(36]) Let M be an interpreter, t: N--+ N, 

A ~ {O, 1}*, and x E {O, 1}*. The t-time-bounded instance complexity of x with respect to A 

given Mis 

ick(x: A)= min{l7rl I 7r is consistent with A relative to Mand timeM(7r, x) ~ t(lxl)}, 

where min </> = oo. 

Thus ick(x : A) is the minimum number of bits required for a program rr to decide x 

correctly for A on M, subject to the constraints that 7r is consistent with A relative to M and 

M(7r, x) does not run for more than t(lxl) steps. 

Note. Our definition of ick(x : A) differs from that in (36] in that we do not require M(7r, y) 

to halt within t(lyl) steps - or even to halt at all - for y =f=. x. In our complexity-theoretic 

setting, with time-constructible functions t, this difference is technical and minor (at most a 

constant number of bits and a log t factor in the time bound), and it simplifies results such as 

Lemma 3.3 below. In other settings, such as that of the time-unbounded instance complexity 

conjecture (36], the halting behavior for y =f=. x is a more critical issue. 

We next recall the definition of plain Kolmogorov complexity. 

De:finition.(Solomonoff[43], Kolmogorov[23] and Chaitin[ll, 12]) Let M be an interpreter, 

t: N -t N, and x E {O, 1}*. 

1. The plain Kolmogorov complexity of x relative to M is 

2. The t-time bounded plain Kolmogorov complexity of x relative to M is 

(We again stipulate that min </> = oo.) 
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The plain Kolmogorov complexity of x is thus the minimum number of bits required to 

"describe" x using the interpreter M. This information content measure and its time-bounded 

variant have been discussed extensively in the literature. We refer the reader to the text by Li 

and Vitanyi [25] for a comprehensive treatment. 

The existence of optimal interpreters is of fundamental importance for both instance com-

plexity and Kolmogorov complexity. 

Definition. Let U be an interpreter. 

1. U is optimal for plain Kolmogorov complexity if for every interpreter M there is a constant 

CME N such that for all x E {O, 1}*, 

Cu(x) ~ CM(x) +CM· 

2. U is efficiently optimal for plain Kolmogorov complexity if for every interpreter M there 

is a constant CME N such that for all time bounds t: N -t N and all x E {O, 1}*, 

cu(x) ~ c~(x) + cM, 

where t'(n) = CMt(n) log(t(n)) +CM. 

3. U is efficiently optimal for instance complexity if for every interpreter M there is a 

constant CM E N such that for all time bounds t : N -t N, all A ~ {O, 1}*, and all 

x E {O, 1}*, 

ic~(x: A) ~ ic~(x: A)+ CM, 

where t'(n) = CMt(n) log(t(n)) +CM. 

The existence of optimal interpreters for plain Kolmogorov complexity was proven by 

Solomonoff (43], Kolmogorov (23], and Chaitin (12]. Standard techniques extend this to effi-

cient optimality, and Orponen, Ko, Schoning, and Watanabe [36] noted that this also achieves 

efficient optimality for instance complexity. We thus have the following well-known theorem. 

Theorem 3.1.(0ptimality Theorem) There is an interpreter U that is efficiently optimal for 

both plain Kolmogorov complexity and instance complexity. 
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Following standard practice, we fix an interpreter U as in Theorem 3.1 and omit it from 

the notation, writing C(x) = Cu(x), Ct(x) = Ch(x), and ict(x: A)= icf;(x: A). These three 

quantities are then simply called the plain Kolmogorov complexity of x, the t-time-bounded plain 

Kolmogorov complexity of x, and the t-time-bounded instance complexity of x with respect to 

A, respectively. 

Intuitively, the instance complexity of a string cannot be much greater than its Kolmogorov 

complexity, since a description of the string is all but one bit of the information needed to 

correctly decide that string and decline to decide all others. The following known result 

formalizes this intuition. 

Theorem 3.2.(0rponen, Ko, Schoning, and Watanabe [36]) For every time constructible func-

tion t: N -t N there is a constant c EN such that for all A~ {O, 1}* and x E {O, 1}* 

where t'(n) = ct(n) log(t(n)) + c. 

Complexity cores were first introduced by Lynch [31) and have been studied extensively 

over the past fifteen years [16, 14, 35, 37, 6, 18, 38, 7, 15, 19, 20). 

Definition. Lett: N -t N be a time bound and let A, K ~ {O, 1}*. Then K is a DTIME(t)-

complexity core of A if for every c E N and every program 7r E {O, 1}* that is consistent with 

A on U, the "fast set" 

F ={xi timeu(7r, x) ~ ct(lxl) + c} 

satisfies IF n Kl < oo. 

Note that every subset of a DTIME{t)-complexity core of A is a DTIME(t)-complexity 

core of A. Also, if s(n) = O(t(n)), then every DTIME(t)-complexity core of A is a DTIME(s)-

complexity core of A. 

Definition. Let A, K ~ {O, 1}*. 
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1. I< is a polynomial complexity core (briefly, a P-complexity core) of A if for every k E N, 

I< is a DTIME(nk)-complexity core of A. 

2. I< is an exponential complexity core of A if there is a real number E > 0 such that I< is 

a DTIME(2n')-complexity core of A. 

The following lemma, which is a straightforward extension of a result of Orponen, Ko, 

Schoning and Watanabe [36] (see Corollary 3.4 below), relates instance complexity to com-

plexity cores. 

Lemma 3.3. Lett: N-+ N be a time bound, and let A, I<~ {O, 1}*. Then I< is a DTIME(t)-

complexity core of A if and only if for every c E N there are only finitely many x E I< for which 

icct+c(x : A) S c. 

Proof. To prove the if part, suppose there exists c E N such that there are infinitely many 

x E I< for which icct+c(x : A) :S c. Hence there are infinitely many x E K, for which there 

exists a program 7r testifying to the value of icct+c(x : A) with 17rl S c. Also, there exist only 

finitely many programs 7r such that 17rl S c. Therefore there is at least one program 7ro with 

l7rol S c, which testifies to the value of icct+c(x : A) for infinitely many x E I<. Hence 7ro is 

consistent with A on U and the "fast set" 

F ={xi timeu(7ro, x) S ct(lxl) + c} 

satisfies IF n Kl = oo. This implies that I< is not a DTIME(t)-complexity core of A. 

To prove the only if part, suppose I< is not a DTIME(t)-complexity core of A. Hence, there 

exists c0 E N and a program 7r E { 0, 1} * that is consistent with A on U, such that the "fast 

set" 

F ={xi timeu(7r, x) S cot(lxl) +co} 

satisfies IF n Kl= oo. Let c = max(l7rl, co). Therefore we have, 'ilx E F n K, 

icct+c(x : A) S iccot+co (x : A) S 17rl S C. 

Hence there are infinitely many x E I< for which icct+c(x : A) S c. D 
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Corollary 3.4. Let A, K ~ {O, 1}*. 

1. (Orponen, Ko, Schoning and Watanabe [36]). ]{is a polynomial complexity core of A if 

and only if for every polynomial t and every constant c E N, there are only finitely many 

x E I< for which ict(x: A) :::; c. 

2. I< is an exponential complexity core of A if and only if there is a real number E > 0 

such that for every constant c E N, there are only finitely many x E I< for which 

ic2n' (x : A) :::; c. 

Corollary 3.5. Let A ~ { 0, 1} * and let t : N -+ N be time constructible. Then { 0, 1} * is a 

DTIME(t)-complexity core of A if and only if for every c E N, 

Jim icct+c(sn : A)= oo, 
n-+oo 

where s0 ,s1 , ••. is the standard enumeration of {O, 1}*. 

Remark 3.6. Having {O, 1}* as a complexity core is a very strong intractability property that 

Balcazar and Schoning [4] have shown to be closely related to complexity-theoretic bi-immunity. 

Specifically, every language that is DTIME(t)-bi-immune has {O, l}*as a DTIME(t)-complexity 

core, and, almost conversely, there is a constant c E N such that if t'(n) = ct(n) logt(n) + c, 

then every language that has {O, 1}* as a DTIME(t')-complexity core is DTIME(t)-bi-immune. 

In particular, a language is P-bi-immune if and only if it has {O, l}*as a P-complexity core. 

Corollary 3.7.(0rponen, Ko, Schoning and Watanabe [36]) A language A ~ {O, 1}* has 

{O, 1 }* as a P-complexity core if and only if for every polynomial t, 

Jim ict(sn : A) = oo. 
n-+oo 

Incompressibility by many-one reductions, an idea originally introduced by Meyer (33], has 

played a central role in earlier work on complexity cores and instance complexity and continues 

this role in the present thesis. 

Definition. Let f: {O, 1}*-+ {O, 1}*. 
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1. The collision set of f is the set 

C1 = {x E {O, l}*l(3y < x)f(y) = f(x)}, 

where "<" refers to the standard ordering of {O, 1}*. 

2. f is one-to-one almost everywhere (briefly, one-to-one a.e.) if C1 is finite. (Note that f 

is one-to-one if and only if C1 = </>.) 

Definition. Let A, B ~ {O, 1}*, and let t: N -t N. 

1. A ~~TIME(t)_reduction of A to Bis a function f E DTIMEF(t) such that A= f- 1(B), 

i.e., for all x E {O, 1}*, x EA iff f(x) EB. 

2. A ~~TIME(t)_reduction of A is a ~~TIME(t)_reduction of A to f(A). (Note that f is 

a ~~TIME(t)_reduction of A if and only if there exists B ~ {O, 1}* such that f is a 

~~TIME(t)_reduction of A to B.) 

3 A . . 'bl b <0T1ME(t) d t. .f <0T1ME(t) d . f A . · • lS mcompressi e y _m -re uc ions 1 every _m -re uct1on o lS one-to-

one a.e .. 

4. A is incompressible by ~~-reductions if A is incompressible by ~!;TIME(t)_reductions for 

every polynomial t. 

Lemma 3.8.(Juedes and Lutz [20]) Let A~ {O, 1}*, and let t: N -t N be time constructible. 

If A is incompressible by ~~TIME(t)_reductions, then A has {O, 1}* as a DTIME(t)-complexity 

core. 

Corollary 3.9.(Balcazar and Schoning [4]) Every language that is incompressible by ~~­

reductions has {O, 1}* as a P-complexity core. 

In light of Theorem 3.2, we consider a language A ~ {O, 1}* to have essentially maximal 

t-time-bounded instance complexity if for all but finitely many x E {O, 1}*, ict(x: A) is nearly 

as large as ct' ( x), where the growth rate of t' is only modestly greater than that of t. The 

relations "nearly as large as" and "only modestly greater than" here can (and will) be made 
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precise in a variety of ways, depending upon the particular application. The following known 

theorem establishes the existence of languages in E that have essentially maximal time-bounded 

instance complexity in a very strong sense. 

Theorem 3.10.(0rponen, Ko, Schoning and Watanabe [36]) There exist a language A E E 

and a constant c E N such that for all x E {O, 1}*, 

where t(n) = 2n and t'(n) = cn22n + c. 

It is well-known and easy to see that limn-*oo C(sn) = oo. Since C(x) $ Ct(x) for all t 

and x, it follows that limn-*oo ct(sn) = oo for all t. Hence, if a language A ~ {O, 1}* has 

essentially maximal t-time-bounded instance complexity in any reasonable sense, it will satisfy 

the condition 

lim ict(sn : A) = oo. 
n-*oo 

Corollary 3.5 and Lemma 3.8 thus give us the following implications for all A ~ {O, 1}* and 

all time-constructible t : N-+ N. 

A is incompressible by 

:::;~TIME(t)_reductions 

A has essentially 

maximal t-time-bounded 

instance complexity 

A has {O, 1}* as a 

DTIME(t)-complexity core 

Due to Remark 3.6 and the implication on the left (and the failure of its converse), in com-

pressibility by many-one reductions is sometimes called "strong bi-immunity." 

We conclude this section by showing that incompressibility by :::;~TIME(t)_reductions and 

essentially maximal t-time-bounded instance complexity are incomparable conditions, (i.e., 
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neither implies the other), whence the above-displayed implications are the only implications 

that hold among these three strong intractability properties. 

Theorem 3.11. For all c E z+ and E > O, there exist A, B E E with the following properties. 

1. For all but finitely many x E {O, 1}*, 

2. A is not incompressible by ~~-reductions. 

3 B . . "bl b <DTIME(2cn) d t" . is mcompress1 e y _m -re uc ions. 

4. For all sufficiently large n E N, 

PrxE{o,l}n[icn2 (x: B) < i:C(x)] > 1 - E, 

where x is chosen according to the uniform probability measure on {O, 1 }n. 

Proof. Fix c E z+ and E > 0. By Theorem 4.1 there is a language DE E such that for all but 

finitely many x E {O, 1}*, 

. 2(c+l)n ( . D) ( _ _:)C2(c+3)n.( ) zc x. > 1 2 x . 

Let A = {bxjx E D and b E {O, 1}}. It is clear A E E, and A has property 2 because the 

function that deletes the first bit of every nonempty string is a ~~-reduction of A to D 

that is not one-to-one a.e. To see that A has property 1, let b E {O, 1} be arbitrary, and 

let M1 be an interpreter such that for all 7r ,x E { 0, 1} *, M1 ( 7r, x) simulates U ( 7r, bx). For 

all x E {O, 1}*, x E D {::}- bx E A, so if a program 7r testifies to the value of ic2cn(bx : A), 

then ict~n+i) (x : D) ~ j7rl, i.e., ict;+c(x : D) ~ ic2cn(bx : A). It follows by an application 

of Theorem 3.1 that there is a constant a E N such that for all sufficiently large x E N, 

ic2(c+i)n (x : D) ~ ic2cn (bx: A)+ a. We now have that for all but finitely many x E N, 

. 2cn(b A) > . 2(c+l)n( D) zc x : _ zc x : - a 

> (1- _: )C2!c+3ln (x) - a 
2 

~ {1- 1:)C2(c+4)n(bx). 
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Since b E { O, 1} is arbitrary here, it follows that A has property 1. 

It is well known that there is a language in E that is incompressible by ::=;~-reductions 

and contains at most one string of each length. (For example, this is Theorem 6.2 in the text 

[3].)It is routine to modify this construction to obtain a language B E E that is incompressible 

by ::;!;?IME(2cn)_reductions and contains at most one string of each length. This language B 

clearly has property 3. To see that it has property 4, let l = flog(~) l, so that 2-1 ::=; ~. For 

each 7r E {O, 1}1 and n E N, let 7r * n = ol11"111f'sn, where Sn is the nth string in the standard 

enumeration of {O, 1}*. Let M2 be an interpreter such that for all n E N and 7r, x E {O, 1}*, 

M,(Hn,x) = {: 
if lxl = n 2: l and 7r g x 

otherwise. 

It is clear that timeM2 (7r * n, x) = O(n) for all 7r E {O, 1}1, n 2: l, and x E {O, l}n. For each 

n 2: l, define 1rn E {O, 1}1 as follows. If B n {O, l}n = {w}, then 1rn = w[O . .l - 1] is the l-bit 

prefix of w. Otherwise (i.e., if B n { 0, 1} n = </>), 7r n = 01• Note that for all n 2: l, the program 

7rn * n is consistent with B relative to M2. 

For each n 2: l, let Sn= {x E {O, l}nl7rn g x}. Then for all n 2: land x E Sn, the program 

7r * n decides x in O(lxl) steps on M2 , so there is a constant a E N such that 

It follows by an application of Theorem 3.1 that there are constants n1 2: l and b E N such 

that for all n 2: n1 and all x E Sn, 

icn2 (x : B) < log(n + 1) + 21 + b. 

Choose n2 2: n1 such that for all n 2: n2, m > log(n + 1) + (2 + £)1 + b. 

Let n 2: n2 , and let x E {O, 1r be chosen according to the uniform distribution on {O, l}n. 
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It is well-known [25] that Pr[C(x) < n - l] < 2-1, so 

Pr[icn2 (x: B) < EC(x)] ~ Pr[icn2 (x: B) < log(n + 1) + 21 + b] 

Thus B has property 4. 

- Pr[EC(x) :::; log(n + 1) + 21 + b] 

~ Pr[x E Sn] - Pr[EC(x) < E(n - l)] 

= Pr[x E Sn] - Pr[C(x) < (n - l)] 

> 1-2-/ -r1 

> 1- E. 

D 
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CHAPTER 4. HARD INSTANCES 

In this chapter we prove our main results. We show that almost every instance of almost 

every problem in E has essentially maximal instance complexity. Using this, we show that 

every problem that is weakly ~~-hard for E has an exponentially dense set of such maximally 

hard instances. 

4.1 Abundance of problems having hard instances almost everywhere 

In this section we prove our abundance theorem in E. In contrast with Theorem 3.10, 

which asserts the existence of a language in E with essentially maximal instance complexity, 

the following result says that almost every language in E has this property, albeit with a 

slightly weaker interpretation of "essentially maximal". 

Theorem 4.1. For all c E z+ and E > 0, the set 

. 2cn 2(c+2)n X(c,E) = {Al(V00 x)ic (x: A)> (1- E)C (x)} 

hasp-measure 1, hence measure 1 in E. 

Proof. Fix c E z+ and E > 0, assuming without loss of generality that E is rational, and let 

X(c, E) be the indicated set. For each 7r E {O, 1}*, define the sets 

Cons(7r) = {Al7r is consistent with A relative to U}, 

D(7r) = {xltimeu(7r, x) ~ 2clxl}, 

Y7r ={A E Cons(7r) I ID(7r)i = oo }, 

Z1r ={A E Cons(7r) j ID(7r)i ~ 2~ }. 
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(Note that our definition of timeu(7r, x) implies that 7r decides x on U for all x E D(7r).) Let 

Y = {Al(:l7r E {O, l}*)A E Y7r }, 

Z = {Al(:l00 7r E {O, l}*)A E Z7r}. 

It clearly suffices to prove the following three claims. 

Claim 1. yen ze ~ X(c, E). 

Claim 2. µp(Y) = 0. 

Claim 3. µp(Z) = 0. 

To prove Claim 1, let A Eye n zc. Define the sets B = {7rlA E Z7r}, D = LJ7rEB D(7r). 

Note that each D(7r) is finite because A Eye and B is finite because A E ze. Thus the set D 

is finite. 

For each 7r E {O, 1}* and k E N, let 7r * k = olskllsk7r· It is routine to design an interpreter 

M for which there is a constant a E N such that the following two conditions hold whenever 

7r E {O, 1}* and 0::; k < ID(7r)I. 

1. M(7r * k, .X) is the kth element of D(7r) in the standard ordering of {O, 1}*. 

2. timeM(7r * k, .X) ::; 2(e+l)n+a, where n = IM(7r * k, .X)I. (This is enough time for M to 

simulate 2n+i computations of the form U(7r, x), each for up to 2elxl steps, for strings 

x E{O,l}~n). 

Now assume that x ~ D. Let 7r be a program testifying to the value of ic2cn(x: A). Then 

x E D(7r), so 7r ~ B, so ID(7r)I < 2=.J;l. This implies that x is the kth element of D(7r) for 

some 0 ::; k ::; 2=.J;l - 1, whence M(7r * k, .X) = x and timeM(7r * k, .X) ::; 2(c+l)lxl+a. Letting 
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t ( n) = 2( c+l )n+a, it follows that 

Ck(x) S Irr* kl 

= lrrl + 2lskl + 1 

S lrrl + 2log(k + 1) + 1 

S lrrl + E1; 1 + 1 

E 
= (1+2)JrrJ+1. 

This argument shows that, for all x rJ. D, 

Let CM be the optimality constant for M, and let t'(n) = CMt(n) logt(n) +CM. Then the 

set 

D' = {xJ2(c+2)lxl < t'(lxJ)} 

is finite. Since A rj. Y, the set 

D" = { xJic2cn (x : A) S 2(cM + 1)} 
E 

is also finite. Hence the set f5 = D U D' U D" is finite. For all x rJ. f5, we now have 

whence 

C 2(c+ 2)n(x) s ct'(x) 

S Ck(x) +CM 

S (1 + i)ic2cn(x: A)+ CM+ 1 

< (1 + E)ic2cn(x: A), 

ic2cn(x: A)> (1 - E2)ic2cn(x: A) 

> (1- E)C2(c+2)n(x). 

This proves that A E X(c, E), completing the proof of Claim 1. 

To prove Claim 2, let d = l:~o 2-ids;, where so,s1 , ... is the standard enumeration of 

{O, 1}* and for each rr E {O, 1}*, the function d7r : {O, 1}* --+ Q is defined by the following 

recursion. 
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1. d'll"(.-\) = 1. 

2. If w E {O, 1}*, b E {O, 1}, and 11" does not decide slwl on U in at most 2cls1wil steps, then 

3. If w E {O, 1}*, b E {O, 1}, and 11" decides slwl on U in at most 2c!s1wil steps, then d'll"(wb) = 

2d11"(w)[b = U(11", Sjwj)]. 

It is clear that each d'll" is a martingale, whence d is a martingale. 

To see that Y ~ S00 [d], let A E Y. Then there exists 11" = Si E {O, 1}* such that A E Y'll", 

i.e., A E Cons(11") and ID(11")1 = oo. Since A E Cons(11") we have d'll"(A[O .. n]) 2: d'll"(A[O .. n - 1]) 

for all n E N. Since ID(11")1 = oo, we have d'll"(AfO •. n]) = 2d71"(A.{0 •. n - 1]) for infinitely many 

n E N. It follows that limn-too d'll"(A[O .. n - 1]) = oo, whence A E S 00 [d11"] = S 00 [dsJ ~ S 00 [d]. 

To see that dis p-computable define d: N x {O, 1}* -t Q by 

r+lwl 
d(r, w) = L 2-ids;(w)· 

i=O 

Then d E p and for all r EN and w E {O, 1}*, 

00 

id(r,w)- d(w)I = L rids;(w) 
i=r+lwl+l 

00 

< 21w1 I: ri 
i=r+lwl+l 

so d testifies that d is p-computable. We have now shown that d is a p-martingale with 

Y ~ S 00 [d], thereby proving Claim 2. 

To prove Claim 3, we use the resource-bounded first Borel-Cantelli lemma (Lemma 2.3). 

Specifically, defined: N x {O, 1}* -t [O, oo) by 

where each d'll" (i.e., each d81J is defined exactly as in the proof of Claim 2 above. It is clear 
~ that each dk = 2-2 d8 ,, is a martingale and that d is p-computable. To see that each 
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Zsk ~ S1 [dk], fix k E N, let rr = sk, and let A E Z'll". Then A E Cons(rr), so d1r(A[O .. n]) ?: 
~ ~ d'll"(A[O .. n - 1)) for all n E N. Also, ID(rr)I ?: 2 4 , so there are at least 2 4 values of n for 

which d'll"(A[O .. n]) = 2d1l"(A[O .. n - 1)). It follows that, for sufficiently large n, 

2~ d'll"(A[O .. n - 1)) ?: 2 , 

whence dk(A[O .. n - 1]) ?: 1. Thus A E S 1 [dk], completing the proof that Zsk ~ S 1 [dk]· 
~ 

The series :Lk::o dk(.X) = :L'll"E{O,I}• 2-2 4 is p-convergent by Lemma 2.2, so Claim 3 now 

follows from Lemma 2.3. D 

Before proceeding, we note that Theorem 4.1 implies the following known fact, which was 

proven independently by Juedes and Lutz [20) (as stated) and Mayordomo [32) (in terms of 

bi-immunity, which is equivalent by Remark 3.6). 

Corollary 4.2.(Juedes and Lutz [20], Mayordomo (32]) Let c E z+. Almost every language 

in E has {O, 1}* as a DTIME(2cn)-complexity core. 

Proof. This follows immediately from Theorem 4.1, Corollary 3.5, and the fact that limn-+oo C( sn) = 

oo. D 

4.2 Hard instances of weakly hard problems 

Our next task is to use Theorem 4.1 to prove that every weakly :S~-hard language for 

exponential time has a dense set of very hard instances. For this purpose we need a few 

basic facts about the behavior of polynomial-time reductions in connection with time-bounded 

Kolmogorov complexity, time-bounded instance complexity, and density. 

The data processing inequality of classical information theory [13] says that the entropy 

(Shannon information content) of a source cannot be increased by performing a deterministic 

computation on its output. The analogous data processing inequality for plain Kolmogorov 

complexity [25] says that if f is a computable function, then C(f(x)), which is the algorithmic 

information content of f(x), cannot exceed C(x), the algorithmic information content of x, by 



27 

more than a constant number of bits. The following lemma is a time-bounded version of this 

fact. It is essentially well-known, though perhaps not in precisely this form. 

Lemma 4.3.(data processing inequality) For each l E PF, there exist a polynomial q and a 

constant c EN such that for all x E {O, 1}* and all nondecreasing t: N--+ N, 

ll(x)I ~ lxl =>ct" (J(x)) s ct(x) + c, 

where t"(n) = ct'(n) log(t'(n)) + c and t'(n) = t(n) + q(n). 

Our next lemma is a straightforward extension of Proposition 3.5 of [36). 

Lemma 4.4. For each l E PF there exist a polynomial q and a constant c E N such that for 

all A~ {O, 1}*, x E {O, 1}*, and nondecreasing t: N--+ N, 

where t"(n) = ct'(n) log(t'(n)) + c and t'(n) = q(n) + t(q(n)). 

The following consequence of Lemma 4.4 is especially useful here. 

Corollary 4.5. For each l E PF there exist o > 0 and c E N such that for all but finitely 

many x E {O, 1}*, for all A~ {O, 1}*, 

Proof. Let l E PF and choose q and c for las in Lemma 4.4. Let o = 1/(d + 1), where dis 

the degree of the polynomial q, and let t(n) = 2n". Define t' and t" from t as in Lemma 4.4. 

Then there exists n0 E N such that for all n ~ no, t"(n) < 2n. It follows by Lemma 4.4 that 

for all x E {O, 1}* such that lxl ~no, for all A~ {O, 1}*, 

6 
ic2n (J(x) : A)= ict(J(x) : A) 

~ ict" (x : l-1 (A)) - c 

~ ic2n(x: l-1 (A)) - c. 

D 
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Juedes and Lutz [20] introduced the following useful notation. The nonreduced image of a 

language S ~ {O, 1}* under a function f: {O, 1}*-+ {O, 1}* is the language 

J?:. (S) = {f(x)lx ES and lf(x)I ~ jxj}. 

Lemma 4.6.(Juedes and Lutz [20]) If f E PF is one-to-one a.e. and S ~ {O, 1}* is cofinite, 

then J?:. (S) is dense. 

We now prove that every weakly s~-hard language for exponential time has a dense set 

of very hard instances. Orponen, Ko, Schoning, and Watanabe [36] have shown that every 

S~ -hard language for exponential time has a dense set of very hard instances, and Buhrman 

and Orponen [9] have proven a similar result with improved time bounds and density for 

languages that are s~-complete for exponential time. Theorem 4.7 below can be regarded 

as extending this phenomenon (with some modification in the precise bounds) to all weakly 

s~ -hard languages for exponential time. 

Juedes and Lutz [21] have proven that every weakly s~-hard language for E is weakly 

s~-hard for E2 , but that the converse fails, even for languages in E. We thus state our results 

in terms of weakly s~-hard languages for E2 , noting that they hold a fortiori for languages 

that are weakly s~-hard for E. 

Theorem 4.7. If H is weakly s~-hard for E2, then for every f. > 0 there exists 8 > Osuch 

that the set 
8 n 6 4n Hr• (H) = {xjic2 (x: H) > (1- E)C2 (x)} 

is dense. 

Proof. Let H be weakly S~-hard for E2, and let f. > 0. Let X = X(l, ~) be defined as in 

Theorem 4.1, and let 

Y ={Al A is incompressible by s~-reductions}. 

By Theorem 4.1 we have µp(X) = 1, and Juedes and Lutz [20] proved that µp(Y) = 1, so we 

have µp(X n Y) = 1. It follows that µP2 (X n Y) = 1, whence µ(X n YIE2) = 1. Since H is 
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weakly ::;~-hard for E2, we have µ(Pm(H)IE2) =I= 0, so it follows that there exists 

A E XnYnPm(H)nE2. 

Since A E Pm(H), there exists f E PF such that A= 1-1 (H). By Corollary 4.5, there exist 

o > 0 and c1 E N such that the set 

no 2n 
S1 ={xi ic2 (J(x) : H) ~ ic (x: A) - c1} 

is co:finite. It suffices to show that the set H Jt,o (H) is dense. 

Since A E X, the set 

is co:finite. By Lemma 4.3, there exist a polynomial q and a constant c2 E N such that for all 

x E {O, 1}*, 

where t" is defined from q and t(n) = 23n as in that lemma. Since t"(n) = o(24n), the set 

Sa= {x I 241/(x)I ~ t"(lf(x)I)} 

is co:finite. Finally, since limn-+oo C(sn) = oo, the set 

is co:finite. It follows that the set 

is co:finite. Since A E Y, Lemma 4.6 tells us that the nonreduced image f~ (S) is dense. We 

complete the proof by showing that f~ (S) ~ H JE•5(H). 

Assume that y E f~(S). Then there exists x E S such that y = f(x) and lf(x)I ~ lxl. 

Since x E S1 n S2, we have 

. 2~ E ~n ic (y:H)>(l- 2)c (x)-c1. 
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Since x E S3 n S4 and lf(x)I 2: lxl, it follows that 

2n6 E t" ic (y: H) > (1- 2)[C (J(x)) - c2] - c1 

E 24n 2: (1 - 2)C (J(x)) - (c1 + c2) 

> (1 - E)C24" (J(x)) 

24n = (1 - E)C (y), 

whence y E H J!•8(H). 0 

By Lemma 3.3, Theorem 4.7 implies (and by Theorem 3.11 is much stronger than) the 

following known result. 

Corollary 4.8.(Juedes and Lutz [20]). If H is weakly ~~-hard for E2, then H has a dense 

exponential complexity core. 

We know that, for most strings x, ct(x) and C(x) are both very close to lxl, so the time 

bound on ct(x) is often of secondary significance. Thus for many purposes, the following 

simple consequence of Theorem 4.7 suffices. 

Corollary 4.9. If H is weakly ~~-hard for E or E2, then for every E > 0 there exists 8 > 0 

such that the set 
S n6 

HJ~· (H) = {xjic2 (x : H) > (1 - E)C(x)} 

is dense. 

We conclude this section with a discussion of the instance complexities of NP-complete 

problems. For simplicity of exposition we focus on SAT, but the entire discussion extends 

routinely to other NP-complete problems. 

We start with three known facts. The first says that the hypothesis P =F NP implies a lower 

bound on the instance complexity of SAT. 

Theorem 4.10.(0rponen, Ko, Schoning and Watanabe [36]) If P #NP, then for every poly-

nomial t and constant c E N, the set 

{xjict(x: SAT) >clog !xi} 
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is infinite. 

Each of the next two facts derives a stronger conclusion than Theorem 4.10 from a stronger 

hypothesis. 

Theorem 4.11.(Ko [22]) If nonuniformly secure one-way functions exist, then for every poly-

nomial t and constant c E N, the set 

{xlict(x : SAT) >clog lxl} 

is nonsparse. 

Theorem 4.12.(0rponen, Ko, Schoning and Watanabe [36]) If E #-NE, then for every poly-

nomial t there exist a polynomial t' and a constant c E N such that the set 

{xlict(x: SAT)> ct' (x) - c} 

is infinite. 

The following theorem derives a strong lower bound on the instance complexity of SAT 

from the hypothesis that µp(NP) #- 0. This hypothesis, which was proposed by Lutz, has been 

proven to have many reasonable consequences [28, 1, 27, 10). The µp(NP) #- 0 hypothesis 

implies E #- NE [29) and is equivalent to the assertion that NP does not have measure 0 in E2 

[2). Its relationship to the hypothesis of Theorem 4.11 is an open question. 

Theorem 4.13. If µp(NP) #- 0, then for every € > 0 there exists 8 > 0 such that the set 

S n6 24n 
HJ~· (SAT)= {xjic2 (x: SAT)> (1- E)C (x)}, 

is dense. 

Proof. If µp(NP) #- 0, then SAT is weakly ~~-complete for E2 , so this follows from Theorem 

4.7. 0 



32 

CHAPTER 5. EASY INSTANCES 

In this brief chapter, we note that languages that are ~~-hard for exponential time have 

instance complexities that are unusually low in the sense that they obey an upper bound that 

is violated by almost every language in exponential time. Our proof is based on the following 

known result. 

Theorem 5.1.(Juedes and Lutz (20]) For every ~~-hard language H for E, there exist B, DE 

DTIME(24n) such that Dis dense and B = H n D. 

The following theorem gives an upper bound on the instance complexities of hard problems 

for exponential time. It says that every such problem has a dense set of (relatively) easy 

instances. 

Theorem 5.2. For every ~~-hard language H for E there is a constant c E N such that the 

set 

Elc(H) = {xlic26"(x: H) ~ c} 

is dense. 

Proof. Let H be ~~-hard for E. Choose B and D for H as in Theorem 5.1. It is routine to 

design an interpreter M with the following properties. 

1. For all rr, x E {O, 1}*, 
1 if x EB 

M ( rr, x) = 0 if x E D - B 

1- if x ~ D. 

2. For all x ED, timeM(>., x) ~ 251xl. 
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(Note that M ( 71", x) does not depend on 71".) 

Then the program >. is consistent with H relative to M, so for all x E D we have ic~n ( x : 

H) = 0. By the optimality of U, it follows that there is a constant c E N such that for all 

x E D, ict'(x: H) S c, where t'(n) = ct(n)log(t(n)) + c and t(n) = 25n. We thus have 

D n S ~ Elc(H), where 

S = {xl26 1xl ~ t'(lxj)}. 

Since Dis dense and Sis cofinite, it follows that Elc(H) is dense. D 

By Theorem 4.1, almost every language in exponential time violates the upper bound given 

by Theorem 5.2. Thus these two results together imply the known fact [20] that the set of 

s~-hard languages for exponential time hasp-measure 0. It should also be noted that Ambos-

Spies, Terwijn and Zheng [2] have shown that almost every language in Eis weakly S~-hard 

for E. It follows by Theorem 4.1 that almost every language in E is weakly S~-hard for E 

and violates the instance complexity upper bound given by Theorem 5.2. Thus Theorem 5.2 

cannot be extended to the weakly s~-hard problems for E. 
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CHAPTER 6. CONCLUSION 

In this thesis we have investigated the instance complexities of problems that are hard or 

weakly hard for E under polynomial time, many-one reductions. In addition, we have clarified 

the relationships among three notions of intractability namely DTIME(t)-complexity cores, 

incompressibility by '.S~TIME(t) reductions and essentially maximal t-time-bounded instance 

complexity. The main results in this thesis are: 

1. Almost every instance of almost every problem in E has essentially maximal instance 

complexity. This extends a theorem in [36], which established the existence of such a 

problem in E. 

2. Every weakly hard problem for E has a dense set of instances with essentially maximal 

instance complexity. This extends a theorem in [36], which showed that every hard 

problem for E has a dense set of such maximally hard instances. 

3. Every hard problem for E has a dense set of unusually easy instances. It follows that 

the set of ::;~-hard languages for E form a very small (p-measure 0) set, which was first 

shown in [20]. 

We hope that the results here will provide a basis for further research along these lines. 
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