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Abstract

It is becoming increasingly common for epidemiologists to consider ran-
domizing intact social units (e.g. families, schools, communities) rather than indi-
viduals in experimental trials. Reasons are diverse, but include administrative
convenience, a desire to reduce the effect of treatment contamination and the
need to avoid ethical issues that might otherwise arise. Dependencies among
cluster members typical of such designs must be considered when determining

sample size and analysing the resulting data.

The primary focus of this thesis is on comparisons of tests of the effect of
treatment in trials where clusters are randomly assigned to treatment groups after
suatifying on cluster-level baseline risk factors (e.g. cluster size). Particular

attention is paid to the analysis of binary outcome data.

Tests of the effect of treatment for such trials range in complexity from
adaptations of standard statistical methods performed using the cluster as the unit
of analysis to extensions of logistic regression adjusted for clustering. The vali-
dity of such extensions was shown to be assured if the average correlation
among cluster members is fixed. This assumption can be relaxed by using robust
variance estimators. Test statistics using these different approaches were shown

to be asymptotically equivalent when there is no variability in cluster size.

Simulation studies were used to examine the small sample properties of test
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statistics assuming an average cluster size of 100 subjects and either two or four
strata. These simulation studies indicated that exact permutation tests should be
used to make inferences about the effect of treatment if there are 20 or fewer
clusters per treatment group. Approximate test statistics using cluster-level ana-
lyses or extensions of the Mantel-Haenszel test statistic are appropriate if there
are more than 20 clusters per treatment group. Valid rejection rates for methods
using robust variance estimates can not be assured even if there are 40 clusters
per treatment group. There is little need to employ such techniques, however,
since the simulation studies also showed that typical violations of the common

correlation assumption have no effect on the validity or power of test statistics.
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intervention trials. The most statistically oriented paper was by Comfield (1978)
in which he expanded the arguments put forward by Comficld and Mitchell
(1969) describing the statistical inefficiency of cluster randomization by drawing
an analogy between cluster sampling and cluster randomization. The symposium

stimulated much of the subsequent research developments in this field.

Many of the subsequent research papers (Donner, Birkett and Buck (1981),
Donner (1982), Salonen et al (1986), Williams, Fortmann, Farquhar et al (1981))
describing the design and analysis of cluster randomization trials were published
in epidemiologic joumals. Publication of these papers did not, of course,
immediately translate into any marked improvement in the methodological qual-
ity of cluster randomization trials. The continuing problem of poorly designed
and analyzed cluster randomization trials is described in a recent methodological
review of 16 studies of non-therapeutic interventions (Donner et al, 1990). This
review found that eleven of the trials failed to justify the need for cluster ran-
domization, only three trials correctly accounted for between-cluster variation in
discussing sample size and power while eight accounted for between-cluster vari-
ation in the analysis. The quality of the more recently published papers tended
to be higher than in earlier trials. These results are consistent with those of Alt-
man and Bland (1991) who after reading 150 methodological reviews of articles
from medical joumals report that about half the published papers in the medical
literature are statistically lawed. They found that problems are more likely to be

due to inadequate descriptions of design, often due to the failure to explain how




that treatment affects the behavior of control subjects could be avoided by ran-
domly assigning treatment to the entire factory as was done in a trial evaluating
educational strategies used to prevent heart disease (World Health Organization

European collaborative Group, 1986).

Cluster randomization may also be used to increase partcipation rates or to
avoid ethical issues which might otherwise arise. Physicians, for example, might
feel ethically bound to offer all their patients the same treatment and be willing

to participate in a trial only under these circumstances.

There are several analytic implications associated with randomly allocating
treatment to clusters. These arise since subjects’ responses within a cluster,
whether for reasons related to genetics or environment, tend to be dependent.
These dependencies increase the ratio of between to within cluster variability,
reducing the effective sample size and increasing the variance of the estimated
effect of treatment. Failure to adjust standard statistical methods for within-
cluster dependence will result in studies with spuriously elevated type | errors.
Since prognostic variables measured on cluster members also tend to be posi-
tively correlated, cluster randomization tends to reduce the probability of obtain-
ing balance on these variables, thus increasing the importance of stratification in

design and the need for multivariate methods in analysis.

None of these issues would arise if inferences were intended at the cluster

level. The cluster would then be both the unit of randomization and the unit of




analysis and the degree of dependence among cluster members would be
irrelevant. However in many applications the inferences are aimed at individual
subjects. For example, in a trial of hypertension screening and management
(Bass et al, 1986) administrative convenience and the need to obtain physician
cooperation dictated that intact medical practices be randomized, although the
ultimate aim was to reduce cardiovascular morbidity and mortality among indivi-

dual patients.

The source of dependencies among cluster members varies with the nature
of the cluster and the outcome variable. Dependencies among family members,
for example, are caused by a combination of genetics and shared environment,
while similarities of students in a classroom are partially determined by
differences among teachers and interactions among students. A unique feature of
vaccine trials is described by Comstock (1978), in which dependencies among

members of a cluster may be determined by the dynamics of the disease.

Pocock (1987, pp. 188-191) describes three classes of patient outcomes
which occur in clinical trials: quantitative responses (e.g. blood pressure, weight
loss), qualitative responses (e.g. alive/dead), and time to relapse. Standard sta-
tistical techniques such as generalized least squares (Donner, 1985b) can be used

to analyze quantitative outcome data while methods for the analysis of correlated

failure times are still in the early stages of development (Anderson, 1991).




The primary focus of this thesis is on the analysis of binary outcome data,
reflecting an epidemiologic emphasis and the current interest in analysis of cotre-
lated categorical data (Zeger, 1988). The discussion also tends to focus on trials
with two treatment groups in which the effect of treatment is evaluated at only
one point in time, although all of the methods which will be discussed can be

extended to more complicated designs.

The thesis is divided into five chapters. The theory and practice of cluster
randomization trials are reviewed in the first chapter. This review includes a dis-
cussion of the history of cluster randomization to help place ideas described else-
where into historical perspective. Methods for the design and analysis of cluster

randomization tri~ls are discussed in the last two sections of the chapter.

A detailed algebraic examination of several methods is conducted in the
second chapter of the thesis. The methods can all be used to test the effect of
treatment in cluster randomization trials which stratify clusters prior to randomi-
zation. Such trials have received, perhaps, the least attention in the literature.
The discussion focuses on designs in which there are few strata but where the
number of clusiers per stratum is large. Brief attention will also be given to

community trials where there tend to be very few clusters,

The complexity of the methods described in Chapter 2 generally restricts
algebraic comparisons to fairly simple and unrealistic situations in which there is

no variability in cluster sizes. Simulation studies were therefore used tc compare




the velidity and power of methods described in the previous chapter in the more
realistic case where cluster size is variable. The simulation studies were also
used o0 determine how robust these methods are to violations of their underlying

assumptions. The results of this research are described in Chapter 3.

Data analyses from two cluster randomization trials are presented in Chapter
4. The presence of baseline risk factors, missing data, and unbalanced designs in
such case studies tend to offer more complex analytic challenges than is practical
to simulate using computer generated data. Case studies can therefore be helpful
in seeing how well theoretical findings hold in particular applications. Large
deviations from expected results may even suggest fruitful avenues for further

research.

The principal findings of the thesis are summarized in Chapter 5, the last
chapter of the thesis. Recommendations for the analysis of data from cluster

randomization trials and suggestions for future research are also discussed in this

chapter.




1.2 Historical Survey of Cluster Randomization Trials

Random allocation of treatment serves three functions in clinical trials. It
ensures that subjects are, on average, alike at the start of the study, precludes any
use of judgement in assigning treatment and provides a basis for the validity of
statistical tests of treatment efficacy. The first two functions of randomization
were known in the 19°th century (Stigler (1986, p. 253)). There are also several
early examples in medical research of physicians and statisticians using or advo-
cating randomization (Armitage (1985), Greenwood and Yule (1915)) to ensure
internal validity. The role of random treatment allocation in tests of significance,
however, appears not to have been appreciated before 1925 when R.A. Fisher
published Statistical Methods for Research Workers (Cochran, 1989). Fisher
expanded on these ideas (Fisher, 1926) in a paper which evolved into The

Design of Experiments (Fisher, 1935).

The earliest known example of random allocation in clinicai medicine was
also in 1926 (Lilienfeld, 1982). Its use appears to have been independent of
Fisher’s influence. In this year (i.e. 1926) Amberson ¢t al (1931) divided 24
patients into two matched groups of 12 subjects each and then assigned the
groups to treatment on the basis of a single coin flip. Thus the first use of ran-

dom allocation in medicine was in a trial using cluster randomizatiun.

Although other early examples of random allocation are known (Armitage

(1985), D’Arcy Hart (1972), Lilienfeld, (1982)) the modern era of randomized




clinical trials is generally accepted to have started in 1948 with a trial of strepto-
mycin as a treatment for pulmonary tuberculosis (Medical Research Council
(1948), Pocock (1987, p. 17)). The streptomycin trial stands apart because of the
care which was used in its design and analysis, the influence of Bradford Hill,
the statistician who designed it (Armitage, 1991ab)), and, perhaps, due to the

success of streptomycin in treating tuberculosis (D’ Arcy Hart, 1972).

The success of the streptomycin trial in instilling the virtues of randomiza-
tion in the minds of clinical researchers was at first quite modest. For example,
none of the 29 clinical trials reported in the New England Journal of Medicine in
1953 used randomized controls (Chalmers and Schroeder, 1979). In spite of a
fairly steady and dramatic increase only S0 percent of clinical trials published in
the late 1970’s could claim to have employed randomization. It should therefore
come as little surprise that progress in the design and analysis of cluster random-

ization trials has been much slower.

An interesting early source of technical material on cluster randomization
appears in Lindquist (1940), a book written as an interpretation of Fisher’s
(1935) Design of Experiments for educational researchers. Such researchers
often evaluate new methods of instruction using the classroom as the unit of ran-
domization and using test scores as the outcome variable. Lindquist suggested
that the effect of such interventions can be tested using standard statistical

methods applied to cluster means. His ideas were not initially well received




(Glass and Hopkins (1984), McNemar (1940)) and the confusion was still evi-

dent 40 years later (Barcikowski (1981), Hopkins (1982)).

'n the medical research arca, Mainland (1952, pp. 114-115) describes the
importance of replication in trials where the unit of randomization is a cluster of
subjects and not independent individuals. The discussion was timely since some
trials (e.g. Ast and Schlesinger, 1956) assigned only one cluster to each treatment

group confounding the effect of treatment with between cluster variability.

Although the impact of Mainland's book is difficult to assess, some com-
municable disease epidemiologists in the 1960's were aware of several analytic
issues unique to cluster randomization trials. Pollock (1966), for example, recog-
nized that trials randomizing clusters were less likely to be balanced for impor-
tant prognostic variables than trials randomizing independent individuals but ack-
nowledged that at times cluster randomization trials must, of necessity, be per-
formed. The reasons for randomizing clusters, as cited by Pollock (1966),
included administrative convenience, increased participation, reducing the risk of
treatment contamination, and are similar to reasons given in current trials

(Donner, Brown and Brasher, 1990).

The methodological sophistication of this early work is demonstrated by
three double-blind, placebo controlled trials of isoniazid (Comstock (1962),
Horwitz and Magnus (1974), Ferebee et al (1963)), a drug still used to prevent

and treat tuberculosis (Berkow et al, 1987, pp. 113-114). In one such trial



patients in 556 hospital wards received either placebo or isoniazid (Ferebee et al,
1963). The wards were selected as the unit of randomization to reduce the
administrative complexity of the trial. The test of treatment effect was corrected
for overdispersion by adapting a method described by Cochran (1953, pp. 124-

127) for the analysis of cluster samaple surveys.

Unfortunately, while familiarity with the analysis of data from cluster ran-
domization trials grew among epidemiologists interested in communicable
disease, chronic disease epidemiologisis were slower to adopt the analytic tech-
niques required by cluster randomization. Perceived differences in the methods
used by communicable and chronic disease epidemiologists probably delayed the
use of appropriate cluster randomization methodology among chronic disease
epidemiologists (Comstock, 1978). Except for a few isolated papers (Cornfield
and Mitchell (1969), Henderson and Meinert (1975), Spitzer, Feinstein and Sack-
ett (1975)) no advice was targeted at these epidemiologists, even though cluster
randomization was being used in trials of preventive measures for chronic

diseases (World Health Organization European Collaborative Group, 1974).

A breakthrough occurred in 1978 with the publication of papers from a
symposium on coronary heart disease prevention trials (Comstock (1978),
Cornfield (1978), Farquhar (1978), Hulley (1978), Sherwin (1978), Syme
(1978)). This was the first occasion on which extensive attention had focussed

on methodologic challenges faced by medical researchers performing community

'}




intervention trials. The most statistically oriented paper was by Comfield (1978)
in which he expanded the arguments put forward by Cornficld and Mitchell
(1969) describing the statistical inefficiency of cluster randomization by drawing
an analogy between cluster sampling and cluster randomization. The symposium

stimulated much of the subsequent research developments in this field.

Many of the subsequent research papers (Donner, Birkett and Buck (1981),
Donner (1982), Salonen et al (1986), Williams, Fortmann, Farquhar ¢t al (1981))
describing the design and analysis oi cluster randomization trials were published
in epidemiologic journals. Publication of these papers did not, of course,
immediately translate into any marked improvement in the methodological qual-
ity of cluster randomization trials. The continuing problem of poorly designed
and analyzed cluster randomization trials is described in a recent methodological
review of 16 studies of non-therapeutic interventions (Donner et al, 1990). This
review found that eleven of the trials failed to justify the need for cluster ran-
domization, only three trials correctly accounted for between-cluster variation in
discussing sample size and power while eight accounted for between-cluster vari-
ation in the analysis. The quality of the more recently published papers tended
to be higher than in earlier trials. These results are consistent with those of Alt-
man and Bland (1991) who after reading 150 methodological reviews of articles
from medical journals report that about half the published papers in the medical

literature are statistically flawed. They found that problems are more likely to be

due to inadequate descriptions of design, often due to the failure to explain how
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sample size was determined, rather than a problem with the analysis.




1.3 Experimental Design of Cluster Randomization Trials

1.3.1 Issues Arising when Selecting the Unit of Randomization

The choice of the unit being randomiized is largely determined by the
scientific question. For example, in studies of the etfect of water fluoridation on
prevention of dental caries, the community is the natural unit since water sup-
plies are usually controlled at the level of the community. Families, however,

are a more natural unit in studies of the relationship between diet and health.

Researchers might, however, occasionally conclude that a varicty of units
are suitable. They would then have to consider the tradeoff between administra-
tive convenience, expected participation rates, varying risks of treatment contam-
ination and the variable costs likely to occur when treaiment is randomly

assigned to different types of clusters (e.g. families, schools, communities).

There is also an ethical concern which needs to be addressed when selecting
the unit of randomization. Informed consent will usually only be possible when
treatment is randomly assigned to smaller clusters such as families or schools.
Although informed consent is still possible when physicians’ practises are the
unit of randomization it is not uncommon for patients to know only that their
doctor is involved in research (Buck and Donner, 1982). Such tacit consent by
patients is scientifically valuable in maintaining patient blinding. This is particu-

larly important in trials of lifestyle interventions where knowledge of treatment
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can affect outcome (Buck and Donner, 1982). Informed consent becomes impos-
sible in most community intervention trials requiring the use of community or
proxy consent (Strasser, Jeanneret and Raymond, 1987)) from the local govern-

ment.

Use of proxy consent by physicians on behalf of their patients or of local
governments on behalf of their electorate is, however, ethically questionable.
Strasser et al (1987) criticize the use of proxy consent arguing that the mandate
of most governments does not include enrolling their community into random-

ized trials, no matter how seemingly innocuous the intervention might be.

The assumption that the intervention is innocuous also needs to be exam-
ined. Cluster randomization tends to be used far more often in trials of interven-
tions aimed at preventing rather than treating disease (Buck and Donner, 1982).
There seems to be a belief that non-therapeutic interventions are risk free. Skra-
banek (1990) wams of situations where this is not the case and argues for the
development of ethical guidelines for preventive medicine in general and for the

importance of informed consent in particular.

Some ethical concerns about possible harm caused by treatment are
addressed in phase 1 and phase II trials of therapeutic interventions (Pocock,
1987, pp. 2-3). Only treatments shown to have been helpful in these trials will

be evaluated in full-scale phase III trials. While there are no accepted equivalent

procedures for trials of non-therapeutic interventions, proposals for possible
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criteria are being discussed (ACS, (1992), Cullen (1990), Flay (1986), Piantadosi

and Byar (1989)).

1.3.2 Choosing an Experimental Design

The survey discussed above (i.e. Donner et al, 1990) showed that cluster
randomization designs adopted by medical researchers tend to fall into one of
three categories: completely randomized, stratified, or pair-matched. In com-
pletely randomized designs clusters are randomly allocated to treatment without
matching or stratification. This design is often satisfactory when many clusters
are available to be randomized. The number of clusters which can be economi-
cally and feasibly allocated declines rapidly with cluster size (Koepsell et al,
1992), implying that completely randomized designs are practical only when
relatively small clusters such as families are being allocated. Stratification by
important baseline risk factors is recommended in order to reduce the probability
of large imbalances on such variables when larger clusters (e.g. physicians’ prac-
tices, communities) are the unit of randomization. Since precision is increased
when there are equal numbers of subjects in treatment groups stratification on
cluster size is recommended whenever the number of subjects per cluster is

highly variable.

If there are many known risk factors requiring a finer stratification a pair-
matched design can be performed by matching similar clusters and randomly

assigning one member of each match to treatment. When there are few clusters

14



in a trial it can become increasingly difficult to obtain close matches on all
potential risk factors, increasing the likelihood that there will be only a small
gain in precision obtained by using a pair-matched as opposed to a stratified
design. Furthermore Martin et al (1992) have shown that ineffective matching
can lead to a considerable loss of power relative to the completely randomized
design, especially if the total number of clusters is small. Associated analytic

limitations of this design are discussed in Section 1.4.

Two possible variants of these designs have been described in the literature
and arc worth noting. The first occurs when researchers have control over clus-
ter size. Most clusters are naturally defined units like families or communities.
Hauck et al (1991), however, describe a trial of nurse-managed instructional sup-
port for cardiac patients in which temporal clusters of patients were randomly
assigned to one of two types of support groups. Control over cluster size allows
a choice between relatively inexpensive designs involving a few large clusters
and a more statistically powerful design in which many, small clusters are ran-

domly assigned to treatment.

The second variant is a composite design developed for clinical trials in
physician’s practices (Simon, 1981). Some physicians may feel that ethical and
administrative considerations requiie the use of cluster randomization while oth-
ers may be willing to offer either treatment to their patients. The design is an

attempt at increasing the power of cluster randomization trials balanced against
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accrual problems common to many clinical trials.

The difficulty of studying more than a few experimental units in community
intervention trials has been previously noted (Blum and Feachem (1983), Koep-
sell et al (1992), Mickey et al (1991)). Two pragmatic solutions to the absence
of replication have been put forward. Kramer (1988, pp. 83-84) suggested using
standard statistical tests when no between cluster differences are found in a pre-
trial study period. This approach is potentially misleading, both because of the
low power to detect significant between-cluster differences in a pretrial study
period of reasonable length, and because, for large clusters, standard tests of the
effect of treatment are strongly influenced by even very small within-cluster

correlations (Donner, 1982).

The second solution to the replication problem has been to adopt a variant
of the crossover design. Turpeinen et al (1979) assessed the effect of diet on
heart disease by randomly assigning a cholesterol-lowering or a standard diet to
all patients in one of two Finnish mental hospitals. After 6 years the hospitals
switched meal plans. The power of crossover designs when individuals are ran-
domized is only evident when patients can experience the outcome in both study
periods, and in the absence of carryover effects (Jones and Kenward, 1989,
Chapter 2). In the Finnish study mortality was the outcome and any patient who
participated in the entire trial would be a highly selected survivor (Halperin,

Cornfield and Mitchell, 1973).
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1.3.3 The Determination of Sample Size

Since the scientific question will usually determine the choice of cluster
(e.g. family, classroom, community) to be used in the trial, the average cluster
size is frequently known in advance. Furthermore when cluster sizes are small
or when routinely collected vital statistics are used to assess the effect of inter-
vention all cluster members will be included in the study (Sherwin, 1978). In
this case power analyses are needed only to determine the number of clusters

needed to detect clinically relevant treatment effects.

When very large clusters are randomized sub-samples of individual cluster
members may be necessary in order to assess the effect of treatment. For exam-
ple. the end point in a community intervention trial of smoking cessation pro-
grams is the quit rate of 500 heavy smokers randomly selected from each cluster
(Byar, 1988). In such a trial both the number of clusters and the number of sub-

jects per cluster must be determined in advance (Donner (1992), Hsieh (1988)).

Sample size requirements for completely randomized and stratified cluster
randomization trials can be calculated after adapting standard formulae developed
for trials randomizing individuals. It is well known (e.g. Donner, Birkett and
Buck, 1981) that when clusters consist of the same number of subjects, n, the
appropriate trial size is obtained by multiplying the number of subjects required
under individual randomization by a variance inflation factor, 1+(n~1)p where p

is the expected intracluster correlation coefficient. This coefficient measures the
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degree of dependence between responses of cluster members. It equals zero, its
minimum value, when subjects’ responses are independent and increases towards

nne as the responses of cluster members become more alike.

An alternative approach used to determine sample size has been described
by Hsieh (1988). Although both approaches assume that there is no variability
in cluster size the method described by Hsich (1988) can be used to calculate
both the number of clusters per treatment group and the number of subjects per

cluster.

As the expected variability in cluster size increases, stratification on cluster
size may have to be considered in order to obtain a more balanced and hence
more powerful design. Donner (1992) extended a formula due to Woolson et al
(1986) to provide sample size requirements for stratified cluster randomization
designs. Several methods have also been developed to determine sample size for
pair-matched cluster randomization trials (Byar (1988), Freedman, Green and
Byar (1990), Gail et al (1992), Hsieh (1988), Shipley, Smith and Dramaix

(1989)).

Randomization assures that estimates of teatment effect are unbiased.
When linear models are used the expected value of the estimated treatment effect
is unchanged by the inclusion of variables which account for stratification or
baseline risk factors (e.g. age, sex). What becomes relevant are the gains in

power which will be obtained by stratification or by modelling baseline risk
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factors.

The discussion becomes more complicated when non-linear models are
adopted for binary outcome data to examine the effect of weatment. The most
general models available to analyze correlated binary outcome data are exten-
sions of logistic regression which summarizes the effect of treatment using odds
ratios. Results obtained by Gart (1992) and Robinson and Jewell (1992) imply
that the population odds ratio from completely randomized designs will tend to
be closer to one than the population odds ratio from either stratified or pair-
matched designs. This relationship will hold in the absence of effect
modification and when there are about equal numbers of subjects in each treat-
ment group within each stratum. As the variability in the numbers of subjects
per treatment group in each stratum increases it becomes impossible to predict
the differences in the size of the population odds ratios from different designs.
Random assignment will therefore only assure that sample odds ratios are con-
sistently estimating the population odds ratio for that particular design. It is not

possible, in general, to compare odds ratio estimators between different designs.

There are three exceptions to this rule. Population odds ratios from the
different designs will be equal when treatment has no effect, when risk does not
vary across strata, or when risk is low (i.e. when the rare disease assumption
holds). The rare disease assumption is most likely to hold in cluster randomiza-

tion trials of preventive strategies aimed at reducing mortality in the general
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population. In general, however, the greater power of stratified and pair-matched
designs arises, in part, because odds ratios tend to be larger for such designs.
The difficulty of comparing odds ratios from different models will be discussed

further in Section 1.4.2.

In all three designs power is more directly affected by varying the number
of clusters than by varying cluster size. This is easily demonstrated by noting
that for m clusters of n subjects the

cz
var(y )= —[ 1+ (n-1)p} (L.3.1)
mn
where y is the average score for the m clusters and 0'2 is the variance for the

response of any one of the mn subjects (Donner et al, 1981). As m-—oe the

2

C
var( y )—0 while if n—ee var( ¥ )=>— p. Thus the power to detect the effect
m

of treatment can only reach 100 percent when the number of clusters becomes

large.

Prior estimates of p typically required by sample size formulae for cluster
randomization designs can be obtained from the literature, or, alternatively from
a pilot study. Cornfield (1978) and Donner (1982) have urged investigators to

publish empirical estimates of p that can help in sample size planning.

Estimates of p obtained from studies in which there are few clusters will
likely be imprecise complicating the determination of sample size. In particular,

a simulation study performed by Feng and Grizzle (1992) found that the number
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of clusters required to obtain stated levels of power would frequently be underes-
timated when the sample siz¢e was determined using imprecise estimates of p. It
is therefore usually advisable to perform a sensitivity analysis to determine the
effect of different values of p on sample size. Sensitivity analyses also need to
be performed since random samples of clusters are not obtained in most cluster
randomization trials so estimates of p may not be representative of the degree of

intracluster correlation in the target population.

There can also be difficulties in using prior estimates of intracluster correla-
tion from trials which used different experimental designs. An estimate of intra-
cluster correlation obtained from a stratified cluster randomization trial, for
example, is likely to be smaller than a coefficient from a trial using a completely
randomized design since some of the between-cluster variability is likely

explained by stratification.

An additional issue is that the degree of intracluster correlation may not be
independent of disease risk. In toxicological trials, for example, intracluster
correlation tends to increase as risk increases from 0 to 50 percent (Williams,
1988b). More recently a similar relationship was noted by Mickey and Goodwin
(1993) between the degree of variance inflation due to clustering and mortality

rates using county-level data from 44 states in the USA.

A theoretical explanation is offered by Kraemer (1979) and Thompson and

Walter (1988) in the context of reliability studies which have two observations
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per cluster. Their model is dependent upon the idea that disease risk in a cluster
is determined by the binomial distribution conditional on the true underlying risk

which follows a Bemoulli distribution.

Estimates of p in cluster randomization trials are almost always positive and
tend to be larger in smaller clusters. This empirical inverse relationship was first
described in the context of survey sampling by Smith (1938) and is sometimes
referred to as "Smith’s Law" (e.g. Proctor, 1985). It has been further noted that
the influence of cluster size on p tends to be less than linear (Hansen, Hurwitz
and Madow (1953, pp. 306-309)). A similar correlation with cluster size was
noted by Mickey and Goodwin (1993) using design effects calculated as a ratio
of county-level sample variance estimates of morality rates and estimates of

variance obtained using simple random sampling.

An example of "Smith's Law"” can be obtained using data from a cluster
randomization trial which examined if intensive screening and management
would lower the risk of stroke among patients of primary care physicians (Bass
et al, 1986). Estimates of intracluster correlation were calculated for four dicho-
tomized baseline risk factors (i.e. hypertension, smoking, drinking, and obesity)
and the data were organized into three types of clusters: spouse pairs, physicians’
practises, and counties (Donner, 1982). The resulting estimates of intracluster
correlation have been plotted as a function of cluster size and are displayed in

Figure 1.1. Nearly identical patterns were observed for all four risk factors.
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A common feature of cluster randomization trials is that there tends to be a
relatively small number of clusters included in most studies. An idea of the vari-
ability in size of such trials can be obtained by examining Table 1.1. These tri-
als were previously discussed in the methodological review conducted by Donner
et al (1990). The pair-matched and triplet-maiched are the most common
designs among these studies. In either design there is only one cluster for each
combination of treatment and stratum. The principal finding in this table is that
except for one notable exception (Sommer et al, 1986) the number of clusters in

a trial tends to be inversely proportional to cluster size.

The possibility of loss to follow-up is potentially serious in all longitudinal
studies. This can be a particularly severe problem in cluster randomization trials
because of the relatively long follow-up time required to evaluate the non-
therapeutic interventions common to such studies (Piantadosi and Byar (1989),
Syme (1978)), because of the possibility that entire clusters may drop out (Byar,
1988), and because treatments are oiten applied at the cluster level, with little or
no autention given 1o individual study participants. Note however that some stu-
dies, e.g. mass education or community intervention trials, have also to contend
with immigration of new subjects after baseline, further complicating the prob-
lem (Gillum et al (1980), Jooste et al, (1990)). Sample size estimates need to be
adjusted to account for loss to follow-up and immigration of new subjects after
baseline Byar (1988), Gillum et al (1980)). A variety of issues related to loss to

follow-up and data quality in longitudinal research are discussed in a book edited
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by Magnusson and Bergman (1990).
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Table 1.1

Reference

Black et al (1981)

How Big are Cluster Randomization Trials in Epidemiology?
after Donner, Brown and Brasher (1990)

Unit of
Randomization

Day-Care Centers

Completely

Randomized

*7 Tabar et al (1985)
7 strata

* Wilson et al (1988) 24 Medical Practices
| McDonald et al (1984) | 27?7 | Medical Practices
Sommer et al (1986) 225 Villages

Communities

Stratified Evans et al (1986)

4 Strata

31

Medical Practises

Farr et al (1988)
* Trial #1
2 Strata

Trial #2
3 Strata

100

115

Families

Families

* indicates trials with three treatment groups

m denotes the mean number of clusters per treatment group
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Table 1.1 continued ...
How Big arr Tluster Randomization Trials in Epidemiology?
after Donner, Brown and Brasher (1990)

Experimental
Design

Unit of
Randomization

3l

Reference

Schools

* Bush et al (1989)

* Dwyer et al (1983) 7 Classroom
Pair-Matched Bass et al (1986) 17 | Medical Practices
and Stanton et al (1987) 25 Communities
Triplet-Matched Grant et al (1989) 33 Practices,Clinics
Hospitals
WHO European Collaborative | 40 Factories

Group (1986)

Lloyd et al (1983) 44 Schools

* indicates trials with three treatment groups.

m denotes the mean number of clusters per treatment group.
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Fig 1.1 Empirical Demonstration of Smith’s Law
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1.4 Analysis of Data from Cluster Randomization Trials
1.4.1 Methods of Analysis for Continuous Outcome Data

Analysis of continuous outcome data from clusier randomization trials can
often be accomplished using mixed-effects lincar models, as fit by géncrulizcd
least squares (Donner, 1985b). Data can also be fit using analysis of variance,
maximum likelihood, restricted maximum likelihood, and MINQUE (Secarle,
1988). For mixed-effects linear models maximum likelihood is equivalert
generalized least squares (Goldstein (1986), del Pino (1989)). None of these
methods can be unreservedly recommended when cluster sizes vary and all
methods are asymptotically equivalent when there is no variation in cluster size
(Searle, 1988). For this reason the discussion is limited to ANOVA (i.e. analysis
of variance), the simplest approach, and generalized least squares, perhaps the
most general (del Pino, 1989). The discussion will also omit mention of

hierarchical linear models, reviewed recently by Bryk and Raudenbush (1992).

Mixed-effects models can be used with stratified or completely randomized
designs to estimate the effect of treatment, to test if the observed eff -t is due o
chance, and to adjust for imbalance on baseline risk factors. Several relevant
computer programs are described by Jennrich and Sampson (1988), Prosser

(1991), Wolfinger et al (1991), and Wolter (1985, Appendix E).

It is well accepted that data should be analyzed in accordance with the

<8



underlying design (e.g. Fisher (1935, Section 33), Meier (1981)). This implies
that data from pair-matched and stratified designs take into account these design

features.

A mixed-effects model which includes covariates for treatment, strata and
baseline risk factors is given by

=B Xiyse + Cois + Ejon (14.1)

Yyst ijst
where y ., is the score for the U'th subject, t=1....ny, from cluster s, s=l,...,m.u.,
treatment j, j=1,2 and strata i, i=1....k. The fixed effects of treatment, strata, and
baseline risk factors are represented by the vector B while Cijs and €ijsy denote
the respective independent random effects of cluster nested in treatment and stra-

tum, assumed (o be i.i.d. N(O.oé ), and subject nested in cluster, assumed to be

iid. N(0.g?).

An equivalent marginal model can be constructed after averaging over C“j)s,

yielding the model
Y.J;Fb xust *+ Wiisn (1.4.2)

where w, =Cijys * €ijsy 18 the U'th element of the vector wy,, each of which are
i.i.d. multivariate normal random variables with a mean ot zero and a variance
matrix denoted by ( oéﬂs2 ) V. The matrix V is a correlation matrix in which

all correlation coefficients are equal implying that responses of all cluster

members are equally correlated. It is sometimes referred to as an exchangeable
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or common correlation matrix.

Note that the parameters, $, in the marginal model are identical to those in
the mixed-effects model. This equivalence only holds because both model out-
come as a linear function of the data. The distinction between mixed-effects and
marginal models becomes important, however, when outcomes are binary requir-
ing the use of nonlinear (e.g. logistic) models and will be discussed in the next

section.

An intuitive understanding of mixed-effects linear models is complicated by
two factors. The first complication occurs when cluster sizes are variable. In
this case iterative solutions are required to obtain parameter estimates. Insight
can be gained by considering the case of a stratified cluster randomization trial in
which all clusters are the same size and in which there is no adjustment for base-

line risk factors.

In this case test statistics are easily calculated using ANOVA methods. The
test of the null hypothesis that there is no difference between treatment groups is
equal to the square of a stratified t-test (Fleiss, (1986, Section 6.1), Schwartz,
Flamant and Lellouch (1980, pp. 189-191)) which uses the cluster as the unit of
analysis. In a completely randomized design this statistic simplifies to the square

of an ordinary t-test, again using the cluster as the unit of analysis. These rela-

tionships are derived and discussed in some detail in Section 3 of the next
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chapter.

The identity between test statistics constructed using the individual as the
unit of analysis, i.e. mixed-effects models, and tests performed on cluster means
is not unexpected. Similar identities have teen previously described for related
designs by Hopkins (1982) and more recentdy by Koepsell et al (1991). The
identity is a validation of methods originally described by Lindquist (1940). It
shows that an unweighted cluster-level analysis is fully informative when there is

no variability in cluster size.

When cluster sizes are variable the test statistic can be adjusted using the
weights n;;, /[ 1+(n,~1)p ] where the cluster size is denoted n,, and P is an esti-
mate of p. The weighted, stratified t-test can be thought of as the first iteration
towards the weights obtained using generalized least squares. In either case the

exact distribution for the test statistic is unknown but can be approximated using

k 2
a t-distribution with ¥ ¥ ( m; — 1) degrees of freedom. Alternatively the

=l j=1
degrees of freedom could be obtained using Satterthwaite’s (1946) approach as
discussed by Giesbrecht and Burns (1985). The approximation might not hold
when there are few clusters. Simulation studies are needed to examine the small
sample properties of test statistics obtained from generalized least squares (Gold-
stein, 1987, p. 29) as well as from the other methods used to fit mixed-effects

linear models (Searle, 1988).
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An estimate of p can be obtained as p=o§_ /[ Gé + 6] where 67 and Gé
are estimates of variance components within and between clusters, respectively.
Negative estimates can occur. They are usually set to zero since values of p less
than zero are generally considered implausible in the context of cluster randomi-
zation trials. The ANOVA approach in Donner (1985a) is easily adapted to cal-
culate @ in completely randomized cluster randomization designs. These results

are extended to a stratified design in Section 2.3.

A distinction is sometimes made between tests performed using cluster-level
data and tests performed using individual-level data (Haseman and Hogan
(1975), Kalter (1974), Palmer (1974), Weil (1974)). The discussion in the last
few paragraphs can be used to argue against this distinction for completely ran-
domized and stratified cluster randomization trials since analyses using continu-
ous outcome data at either level are equivalent if methods have been adjusted for
the effect of intracluster corielation. The distinction might have arisen because
individual-level analyses unadjusted for intracluster correlation were sometimes
being compared to unweighted cluster-level analyses (Haseman and Hogan

(1975), Kalter (1974)).

The second complication unique to mixed-effects models arises when
adjusting for individual-level baseline risk factors (e.g. age, sex). Scott and Holt
(1982) point out that parameter estimates of such covariates are weighted aver-

ages of slopes calculated with cluster-level data (i.e. an ecological analysis) and
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a common within cluster slope. The parameter being estimated is only interpret-
able when both slopes are at least approximately equal. Differences between
parameter estimates can be examined by comparing the results obtained when
individual-level (e.g. age, sex) and cluster-level versions (e.g. mean age, propor-
tion male) of a covariate are included in the same model. Complications arising
when analyzing multi-level data have recently been reviewed in an epidemiologi-

cal context by von Korff, Koepsell, Curry and Diehr (1992).

The random allocation of clusters assures that the assumption of a common
value of p between treatment groups is tenable, at least under the null
hypothesis. However it is also commonly assumed that the within-cluster corre-
lation is constant across strata. This assumption can be investigated using tests
of significance described by Donner (1985a) and Munoz, Rosner and Carey
(1986). Unfortunately, when there are few clusters, a not infrequent occurrence
in community intervention trials, these tests have little power. An approach
which relaxes this assumption has been described by Liang and Zeger (1986).
Their approach is introduced in the next section of the thesis and then described
in greater detail in Section 2.8. It should be noted, however, that the increased
robustness of this approach also increases the asymptotic requirements for the
validity of tests of significance. This can be an important issue in cluster ran-

domization trials.

The methods which have been described cannot be used in the analysis of
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pair-matched designs. Since there are only two clusters per strature, estimates of
between-cluster variability within a stratum are confounded with the effect of
treatment. Tests of the effect of treatment must therefore be calculated using
between-stratum information. The resulting test statistic is the square of a paired
t statistic obtained using the cluster as the unit of analysis and is only valid in
the absence of any interaction; an untestable assumption. The same untestable
assumption is required to estimate the degree of intracluster correlation. Alterna-
tively an estimate of p can be calculated under the null hypothesis that treatment

is unrelated to the outcome. Neither option is attractive.

Estimates of intracluster correlation calculated under the assumption that
there is no treatment by stratum interaction will likely be quite imprecise relative
to a completely randomized design with the same number of clusters. Such
imprecision occurs because approximately half the available degrees of freedom
are needed to maintain the pair-match. However, these estimates could be used
to construct models which allow statistical inferences to be made concerning the
effect of baseline individual-level risk factors on outcome. This ability must be

weighed against the likely imprecision of the resulting variance estimales.

These difficulties do not arise if all baseline risk factos are measured at the
cluster level. Adjusted inferences for the effect of treatment could then be con-

structed by adapting an approach described by Rosner and Hennekens (1978) fo-

the analysis of matched case-control and cohort studies. Stratum specific
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differences in outcome are modelled as a function of similar differences among
cluster-level covariates. Adjusted inferences concerning the effect of treatment
are constructed using the estimate of the intercept. Inclusion of individual-level
baseline risk factors is only possible if modelled at the cluster level. This
approach must be used cautiously because cluster-level adjustment for imbalance

does not necessarily imply adjustment at the individual-level (Greenland and

Morgenstern (1989), von Korff et al (1992)).

35




1.4.2 Methods of Analysis for Binary Outcome Data

The development of methods for the analysis of correlated binary data has
lagged behind and been more fragmented than research on correlated continuous
data (Zeger, 1988). There are several reasons for this. The first and most obvi-
ous reason is that linear models were developed for continuous data earlicr than
the nonlinear models generally used for binary data. The fragmentary nature of
the research probably arose because there is no unique multivariate extension of
the binomial distribution which has the flexibility of the multivariate normal.
The result has been a wide array of methods which use different approaches to
adjust for the dependence among cluster members and which include extensions
of linear, logit and Probit regression (Ashby et al, 1992). Attention will be res-
tricted aimost entirely to extensions of logistic regression because of the popular-
ity of this approach among health science researchers (Hosmer and Lemeshow,

1989, pp. vii).

Unlike the situation for continuous outcome data the distinction between
cluster-level and individual-level analyses becomes important in evaluating
methods of analysis for binary outcome data. The simplest cluster-level analysis
for binary outcome data would involve arbitrarily dividing clusters into different
groups as a function of cluster-level responses and then to analyze the results on

a cluster-level basis. Weil (1970) argues that the requirement of imposing an

arbitrary categorization makes this simple approach quite unattractive. An
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exception is presented in Gyorkos (1985) where a cluster-level analysis was per-
formed to determine if screening and treatment for parasitic infection of family
members was successful. In this study it was quite natural to dichotomize fami-
lies into those with and without any infected members at the end of the treatment
period since the absence of infection could be considered a clinical success while

families with even one infected member would require additional treatment.

More powerful cluster-level analyses are constructed using the proportion of
subjects in a cluster who responded positively. The primary advantage of this
approach is that standard methods can then be used to analyze data from any one
of the three designs. For example, independent t-tests or the nonparametric Wil-
coxon test can be used to analyze data from a completely randomized design.
Such tests are easily extended to stratified designs using multiple regression or
stratified rank tests (described in Section 2.4) while paired t-tests or the Wil-
coxon signed rank test can be used to analyze data from pair-matched designs

(Cochran (1954, p. 447), Donner (1987)).

There are, however, disadvantages to this approach. Tests of significance
using the cluster as the unit of analysis will, in general, have less power than
methods using the individual as the unit of analysis, although simulation studies
have demonstrated that the loss in power is small (e.g. Shirley and Hickling
(1981, Table 3)). The efficiency of these procedures can be increased using

weighted least squares as first advocated by Cochran (1943) and more recently
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by Marubini et al (1988). Such analyses still lack appeal since they do not
always yield interpretable estimates of treatment effect on an individual level and

since they can not be extended to model individual-level baseline risk factors.

Methods used to test the effect of treatment in pair-matched designs invari-
ably use the cluster as the unit of analysis, with estimates of variance derived
using between-strata variability. As stated in the previous section, this is done
because there are only two clusters per treatment group so that estimates of
between-cluster variability within a stratum are confounded with the effect of
treatment. Procedures capable of testing the effect of treatment and adjusting for
cluster-level baseline risk factors are described by Liang, Beatty and Cohen
(1986) and Donner (1987). The confounding of between-cluster variability with
the effect of treatment, unique to pair-matched designs, does not allow the intra-
cluster correlation to be estimated (except under the null hypothesis), and thus

prevents modelling of individual-level covariates.

Unlike the case of a continuous outcome variable, the absence of treatment
by stratum interaction in a pair-matched design with a binary outcome is not
sufficient to allow a consistent estimate of p to be computed. For example, a
logistic regression model which omits treatment by stratum interaction terms still
implies interaction on an additive scale except under the null hypothesis or when
the stratification variable is unrelated to the outcome. Standard estimates of

intracluster correlation, however, assume that between-cluster variability is on an
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additive scale.

Four different methods can be distinguished for completely randomized and
stratified cluster randomization trials when individuals are the unit of analysis.
The first method adjusts standard tests for the effects of clustering (Donald and
Donner (1987), Donner and Donald (1988), Rosner and Milton (1988)). Esti-
mates of intracluster correlation used in these adjustments can be calculated
using the previously described ANOVA approach adapted to binary data (Fleiss,
1981, pp. 225-227). These methods have the added advantage of not requiring
complicated iterative solutions. Furthermore the resulting test statistics simplify
to standard test statistics when p=0 and to standard test statistics divided by the
variance inflation factor, 1+(n—1)p, when all clusters are the same size. Rao and
Scout (1992) described an alternative approach which can be used to adjust stan-
dard tests for the effect of clustering by adapting the theory of ratio estimation
from the sample survey literature to the analysis of correlated binary outcome

data.

The remaining three methods (i.e. population-averaged, cluster-specific,
Rosner’s model) are computationally intensive. Important examples of each
method are, respectively, the generalized estimating equations approach of Liang
and Zeger (1986), the logistic-normal (Anderson and Aitkin (1985), Stiratelli,

Laird and Ware (1984)), and the logistic-binomial (Mauritsen, 1984) models and

Rosner’s polytomous logistic model (Rosner, 1984). Their primary advantage is
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that they can adjust for individual-level and cluster-level baseline risk factors
while testing for the effect of reatment. Unfortunately the parameters estimated
by these three approaches are only equal when risk of disease is rare, treatment
is unrelated to outcome or in the absence of clustering; otherwise the interpreta-
tion of the effect of treatment is dependent upon which type of model is used
(Neuhaus and Jewell (1990), Neuhaus et al (1991)). Thus tests of the effect of
treatment are asymptoticaily equivalent for these different models (Neuhaus

(1991,1992), Glynn and Rosner (1992)) when the null hypothesis is true.

The beta-binomial (Williams, 1975), Williams (1982) quasi-likelihood
approach, and Liang and Zeger's generalized estimating equations approach
(Liang and Zeger. 1986) are all examples of population-averaged models. They
are nonlinear analogs of the marginal model defined in equation (1.4.2). A com-
mon feature of these models is that they tend to simplify to ordinary logistic

regression when p=0 or cluster size equals unity.

The population-averaged model for a stratified cluster randomization trial

can be expressed as

logit(p,, )=B "X, (1.4.3)
when there are no baseline risk factors. In this model Pys denotes the risk for
subjects from the s'th cluster, s=1,..., m,, in the i'th stratum, i=l....k, and j’th

treatment group j=1,2 and B' is the vector of k+1 parameters summarizing the

effects of strata and treatment, parametrized using the matrix X, ..
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One method of fitting this model is to assume that the between-cluster vari-
ability can be described using a beta distributicn (Williams, 1975) so that the
marginal distribution of risk within a cluster follows a beta-binomial distribution.
This model can be fit using the computer program EGRET (1989). Two limita-
tions of this model are that it is not robust to violations of the parametric
assumptions (Williams, 1988a) and that it cannot be used to adjust for

individual-level baseline risk factors.

The assumptions underlying a beta-binomial model can be avoided by using
the quasi-likelihood approach developed by Williams (1982), which only requires
specifying the first two moments of the distribution. Williams’ (1982) approach
can only be used to adjust for cluster-level risk factors and also assumes that the
degree of intracluster correlation is fixed. When all clusters are the same size
the model simplifies to logistic regression with variance estimators multiplied by

the variance inflation factor, 1+{n-1)p.

Liang and Zeger (1986) describe an extension of generalized linear models
used to fit multivariate data. For logistic regression models their approach is
similar to Williams’ (1982) but the validity of inferences about the effect of
treatment no longer depend on the assumption that the degree of intracluster
correlation is fixed. Furthermore this model is capable of fitting both
individual-level and cluster-level risk factors. The model can be fit using a com-

puter program privately distributed by Liang and Zeger or by using the computer
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package SPIDA (1992). A limitation of the method described by Liang and
Zeger (1986) is its requirement of a large number of clusters (Liang, Zeger and

Qagish, 1992).

Cluster-specific models are constructed in an analogous manner to the
mixed-effects linear models examined in the last section. Two approximatcly
equivalent models are the logistic-normal (Anderson and Aitkin (1985), Stiratelli,
Laird and Ware (1984)) and the logistic-binomial (Mauritsen, 1984). Using a

logistic-normal model equation (1.4.3) can be expressed as
logit(p, )=Bxu‘ +Cis (1.449)

where Pys again denotes the risk for subjects in the s'th cluster of the i'th stratum

and j'th treatment group and C,, is the independent randem effect of cluster

0]
nested in treatment and stratum, assumed to be i.id. N(O.oé ). The logistic-
binomial differs from the logistic normal in assuming that the random effect Coun
comes from a standardized binomial distribution with parameters K and r, where
K is a positive integer and O<r<l. The computational burden of fitting a
cluster-specific model can be reduced by using a small value for K. As K
increases the standardized binomial becomes approximately normal. Both

models simplify to logistic regression when there is no between-cluster variabil-

ity in risk and allow inclusion of individual-level and cluster-level baseline risk

factors. They can be fit using the computer package EGRET (1989).
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Coefficients of cluster-level variables obtained from cluster-specific models
are not as casy to interpret as are coefficients from population-averaged models.
For example, if a completely randomized design is employed, the effect of wreat-
ment from population-averaged models is equal to the log of the odds of the
average risk in the treated group relative to the odds of the average risk in the
control group. Odds ratios from cluster-specific models however, are calculated
conditional on a latent variable which measures cluster-specific risk. These latter
odds ratios will tend to be further from unity than those from population-
averaged models (Neuhaus et al, 1991). A very simple example which illustrates
this point for a binary individual-level covariate is presented by Kenward and

Jones (1992 Table 5).

Rosner (1984) developed the first model which allowed inclusion of both
individual-level and cluster-level covariates. This polytomous logistic regression
model has been criticized for requiring a possibly artificial conditioning on
responses of all other cluster members, forcing dependence between cluster size
and the proportion of subjects with the outcome of interest and being too compu-
tationally burdensome to fit clusters with more than 10 subjects when
individual-level baseline risk factors are included in the model (Neuvhaus and

Jewell (1990), Rosner (1989)).

Random assignment provides assurance that the value of p will be the same

in treatment and control groups when the null hypothesis holds. No such

43




assurance exists under the alternative hypothesis. The value of p may also vary
among strata in a stratified cluster randomization trial. These considerations

affect both the construction of test statistics and of confidence intervals.

Tests of the common correlation assumption can be developed using the
beta-binomial distribution (Williams (1975), Kupper et al (1986)) or following
the approach described by Ganio and Schafer (1992). A more sophisticated
approach has been developed by Liang, Zeger and Qaqish (1992) which allows
simultaneous modelling of risk and intracluster correlation. Parameter estimates
calculated using this newer model are asymptotically more precise than estimates
obtained using their original approach but now depends on correctly specifying
the degree of intracluster correlation. An alternative extension of Liang and
Zeger's (1986) approach which also allows simultaneous modelling of risk and
intracluster correlation has been described by Paik (1992). This approach will
likely require a very large number of clusters to obtain valid tests of significance
since robust variange estimators are employed to model both risk and intracluster

correlation.

Many cluster randomization trials will lack the power to reject the common
correlation assumption. However the assumption of a common correlation may
be necessary in trials involving only a few clusters to ensure the validity of sta-
tistical procedures. Confidence intervals for the effect of treatment could then be

constructed by inverting Wald type tests as described by Donner and Klar
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(1993a). The generalized estimating equations methodology might yield valid
confidence intervals if the common comelation assumption was used to estimate
the variance of the log odds ratio. It is also possible to construct confidence
intervals using cluster specific models or Rosner’s model. These approaches can
not be recommended, however, because of the difficulty of interpreting odds

ratios for the effect of treatment from such models (Neuhaus and Jewell (1990),

Neuhaus et al (1991)).

Most cluster randomization trials, as stated in the introduction, are used to
evaluate non-therapeutic interventions and generally recruit healthy subjects.
Risk for subjects will naturally tend to be low when the stated objective of the
trial is to reduce disease incidence or mortality. Confidence intervals from any
of the multivariate methods would then be asymptotically equivalent (Neuhaus et

al, 1991) and the odds ratio would be approximately equal to the relative risk.

If the rare disease assumption does not hold the confidence intervals from
the different multivariate models would likely be different and none of the odds
ratio estimates would be similar to the relative risk. Greenland (1987) has
argued that odds ratios are only valid measures of effect when they approximate
relative risks. Certainly estimates of relative risk are preferable in prospective
studies. Unfortunately relative risk models (Prentice and Farewell, 1986) have

not yet been extended to correlated Linary outcome data.
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Adjustment for baseline risk factors in randomized trials is used to increase
the power to detect treatment differences. Assessment of the gain in power
obtained using logistic regression models is complicated by the difficulty
obtained in comparing odds ratios from models including different risk factors

(Hauck et al (1991), Gart (1992), Robinson and Jewell (1991)).

Additional complications arise when individual-level baseline risk factors
are included in logistic regression models adjusted for clustering. As previously
stated estimates of treatment effect from population-averaged models have a
more direct interpretation than do estimates obtained from cluster-specific models
(Neuhaus et al, 1991). Coefficients estimating the effect of individual-level base-
line risk factors, however, are simpler to interpret if obtained from cluster-
specific models. One solution suggested by Neuhaus (personal communication,
1992) is to use results from both types of models when estimated treatment
effects are adjusted for individual-level baseline risk factors. An example of
these difficulties in the context of an observational, longitudinal study is provided

by the discussion between Galbraith (1991) and Zeger, Liang and Albert (1991).

The complications described in the last two paragraphs are a result of using
logistic regression which summarizes treatment effects in terms of odds ratios.
These problems are reduced when the rare disease assumption holds and might

not occur if models for correlated binary outcome data were available which

summarized the effect of treatment using risk differences or relative risks (Gail




et al, 1984).

Any solution for the problems of logistic regression would also have to
address the possibility that individual-level baseline risk factors might have
separate effects at the level of the individual and the cluster. This possibility is
easily handled when outcomes are continuous following the approach described
by Scott and Holt (1982), reviewed in Section 1.4.1. For correlated binary out-
come data the possible separate effects of baseline risk factors at the level of the
individual and the cluster could, perhaps, be exanined using the hierarchical
logistic regression models described by Wong and Mason (1985) and Goldstein
(1991). These models can be fit using the computer program ML3 (Prosser,

1991).

A final consequence of using multivariate models is that estimates of intra-
cluster correlation are likely to become smaller as more baseline risk factors are
used to adjust estimates of the treatment effect. Examples of this phenomenon
were given by Prentice (1988) using baseline risk factors from a cluster randomi-
zation trials and by Bull and Pederson (1987) in the context of a complex sur-
vey. This result has also been noted by Gail, Tan and Piantadosi (1988),
Leisenring and Ryan (1992) and Rotnitzky and Jewell (1990). The most likely
explanation is that baseline covariates account for some of the between cluster
variability which arises as a consequence of shared environmental exposures and

genetic relationships among cluster members. These issues are explored algebra-
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ically in the context of correlated continuous outcome data by Stanish and Taylor

(1983).

An alternative explanation is possible for binary outcome data. The
expected risk for any two subjects in a cluster, denoted p, and p, where u=v,
will tend to be different as the number of individual-level baseline risk factors in

the model increases. The possible range of intracluster correlation can be
expressed as (Prentice, 1988)

12 1/
p pv q qV -
ol {22 [ ]}m{v L0
Quqv pupv

where y=(p,/q,)/(p,/q,) denotes the odds ratio between the the u’th and v'th

cluster members. As the odds ratio gets larger p is forced towards zero, espe-

cially if negative estimates of intracluster correlation are unlikely.

Tests of the effect of treatment for the methods which have been discussed
are only asymptotically valid. None of the methods are applicable when there
are very few clusters, as is the case of most community intervention trials (Koep-
sell et al, 1992), Exact tests could of course be constructed using randomization
theory as suggested by Williams (1988b), but would be expected to have low
power. Such tests are reviewed in Section 2.4. A two-stage method described
by Gail, Tan and Piantadosi (1988), in which results from a preliminary analysis
are used as response measures in a primary analysis, might also allow adjustment

for baseline risk factors including pre-treatment estimates of risk (Duffy et al,
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1992).

An additional concern is that cluster size is not necessarily unrelated to the
risk of a positive outcome in a cluster. Haseman and Kupper (1979), for exam-
ple, have noted that cluster size is sometimes correlated with risk in toxicological
studies. Toxicologists randomly assign treatment to pregnant animals to deter-
mine the risk of birth defects or death among their offspring. Particularly potent
chemicals might not only increase the mortality of animals after birth but could
also induce resorption of the fetus in utero reducing the eventual cluster size

(Catalano and Ryan, 1992).

Some work in this area has been done by Rai and van Ryzin (1985). Their
model has been criticized by Williams (1987), however, for not sufficiently
adjusting for overdispersion. Williams (1987) proposes including cluster size as
an additional covariate as an alternative approach and acknowledges that more
parametric methods which impose an underlying distribution on cluster size

could also be developed.

1.4.3 Methods of Analysis for Data with Other Outcomes

The development of methods for the analysis of correlated continuous or
dichotomous outcomes is fairly advanced in comparison to the development of

methods for other types of response data. There has been little work on the

analysis of correlated multinomial or ordinal data and there has been even less
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development of methods which could be used to analyze correlated failure times
data. The near absence of methods for these outcomes reflects the greater com-
plexity of the problem, and the relatively recent introduction of methods for
uncorrelated multinomial, ordinal or failure time data. Recent publications
(Ashby et al (1991), Binder (1992), Hougaard et al (1992), Liang, Self and
Chang (1993), O’Hara Hines and Lawless (1993), Segal and Neuhaus (1993))
suggest that in spite of limitations (Andersen, 1991) progress is being made in

the development of methods for some of these outcomes.

All of the methods reviewed in this chapter need to be extended to allow
for multiple longitudinal measurements per subject. Koepsell et al (1991) review
such methods for continuous outcome data but there has not yet been any exami-

nation of similar methods for other outcomes.

1.4.4 Diagnostic Methods for Correlated Outcome Data

There has been little development of methods for testing the assumptions
underlying models used to analyze correlated outcome data (Liang, Zeger and
Qagish (1992), Moulton and Zeger (1989), Hocking, Green and Bremer (1989)).
This is not surprising, given the scope of the problem. Not only do all of the
diagnostic methods developed for uncorrelated observations (e.g. Cook and

Weisberg, 1982) need to be extended to allow for intracluster correlation but

additional methods are needed to examine the assumptions particular to corre-




lated outcomes models.

An example of the difficulty is offered by considering the extension of
methods needed to detect influential points in the data. For correlated outcomes
data such points might be either particular subjects in a cluster or even entire
clusters. Influential points could also affect both coefficients in regression

models and estimates of intracluster correlation.

Several researchers have begun developing diagnostic methods for corre-
lated outcome data. Hocking et al (1989), for example, have developed methods
for correlated continuous data while Roberts et al (1987) discuss diagnostic
methods for logistic regression analyses of complex sample surveys. Methods
which allow joint modelling of risk and intracluster correlation (Liang et al
(1992), Paik (1992)) or tests for the variation of intracluster correlation as a
function of treatment, stratification variables or baseline risk factors (Ganio and

Schafer, 1992) can :Iso be useful diagnostic tools.

Methods are also available to test for the presence of overdispersion (e.g.
Tarone (1979), Dean (1992), Ganio et al (1992)). Such tests should not be used
in cluster randomization trials because they will tend to have low power when
correlations are near zero (Donner and Klar, 1993b). Furthermore the results of
Donner (1982), reviewed above, indicate that for large clusters even small corre-
lations can have sizable effects on estimated variances. For example, consider a

cluster randomization trial in which there were 100 subjects per cluster and

51




where the intracluster correlation coefficient was 0.01. Then, using equation
(1.3.1), the variance of the estimated treatment effect for this trial can be shown
to be approximately twice that of the variance obtained under the assumption
that responses of subjects from the same cluster are independent. Thus rejection
rates for tests of the effect of treatment would be elevated if failure to reject the

null hypothesis that p=0 was used as evidence for the absence of clustering.
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2. Tests of the Effect of Treatment in Stratified Cluster

Randomization Trials

2.1 Introduction

Detailed algebraic examination of several methods of analysis are presented
in this chapter. Attention is restricted to methods which could be used in
stratified cluster randomization trials. Particular attention is paid to those

methods which will be used in the simulation study described in Chapter 3.

There are two asymptotic cases which could arise in stratified cluster ran-
domization trials, one assuming a large number of strata, the other assuming a
large number of clusters per stratum. The average cluster size is determined by
the type of clusters (e.g. families, classrooms, communities ) used in the study
and so can be considered to be fixed by design. These asymptotic conditions are
equivalent to the two cases presented by Hauck (1989) for uncorrelated binary

outcome data.

A matched-pairs design arises as the limit of the first asymptotic case.
Methods of inference for such designs are all performed at the cluster level using
between-stratum information tc obtain estimates of variability, as described in
Chapter 1. These methods are quite well known and have been reviewed by

Donner (1987) and Donner and Klar (1993a).
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There has been comparatively much less work on methods developed for
designs in which there are few strata where estimates of variance are obtained
using between cluster variuwuty within each stratum. Therefore only this
asymptotic case will be considered. Examples of trials in which such designs

were used are given in Table 1.1 of the previous chapter.

The primary focus of this chapter is on comparisons of the different ways in
which statistical tests can be constructed for correlated binary outcome data from
stratified cluster randomization trials. Less attention is paid to confidence inter-
val construction although methods which can be used for this purpose are
identified. Some of the issues arising from variation in the degree of intracluster

correlation across strata are also discussed.

The chapter begins with a discussion of the similarities and differences
which exist between moment and ANOVA estimators of intracluster comelation.
This discussion is required to understand the relationship between different tests

of the effect of treatment in stratified cluster randomization trials.

The main body of the chapter is devoted to describing six different ways in
which tests can be constructed for this design: adaptations of linear models, non-
parametric tests, simple adjustments of methods originally developed for binomi-
ally distributed data, adaptations of methods developed for sample surveys, beta-
binomial models and Liang and Zeger's (1986) generalized estimiating equations

approach. The first four approaches were selected because they are simple non-
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iterative methods. The beta-binomial model is investigated both because it is
probably the most widely known method used to analyze correlated binary out-
come data and because both it and the generalized estimating equations approach
employ population-averaged models. Odds ratios of the effect of treatment from
such models can be interpreted in the same way as simpler, but still valid esti-
mates such as the Mantel-Haenszel odds ratio (see Section 1.4.2). Cluster-
specific models and Rosner’s model are omitted primarily because of difficulties
found in interpreting estimates of the effect of treatment when using these

approaches.

The size of stratified cluster randomization trials described in this chapter is
determined by the number of clusters in the i'th stratum, i=l,...k and j'th treat-

ment group, j=1,2, denoted m. , and the number of subjects in each cluster,

'lv
denoted n, s=1...., m,. Algebraic comparisons between the six approaches are
often only possible if simplifying assumptions are made about the number of

clusters per treatment group and the variability in cluster size.

The least restrictive assumption is that clusters within a stratum are all the
same size. This occurs fairly frequently since clusters are often stratified by size.
Randor assignment within strata will usually assure that there will also be equal
numbers of clusters in both treatment groups of the i"th stratum (i.e. m; =m,,
j=1.2, i=l.... k). Studies are balanced when all the clusters in the i'th stratum are

the same size and when there are equal numbers of clusters in both treatment
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groups of each stratum.

At times an additional assumption that there is no variability in cluster size
between strata is required to draw out similarities between methods. The addi-
tional assumption that there are equal numbers of clusters in cach treaiment
group and stratum is occasionally imposed for the sake of drawing insights.
Designs which meet this last criterion (i.c. m,=m, n,=n) are said W be com-

pletely balanced.




2.2 Introduction to Moment and ANOVA Estimates of Intraciuster

Correlation

There are at least three different methods which can be used to estimate
coefficients of intracluster correlation for binary outcome data. These include
fully parametric approaches employing distributions such as the beta-binomial,
the use of methods of moments (Moore and Tsiatis, 1991), and adaptations of
ANDVA metnods to binary outcomes (Fleiss (1981 Section 13.2), Landis and

Koch (1977)).

Fully parametric meihods bascd on the beta-binomial or logistic-normal dis-
tributions, for example, require sophisticated software. Estimates derived using
such models can be biased when the parametric assumptions are not met.
Simpler and more robust methods are available as an altermative, with the conse-

quent loss of precision when the parametric assumptions are true.

The moment and ANOVA estimators are consistent so long as the first
moments are accurately estimated, a far less restrictive assumption. The moment
method, however, requires an iterative solution when cluster sizes are variable.
The similarity between these two approaches is most evident when estimating

intracluster correlation in a single population.

Consider a single population from which a random sample of m clusters is

drawn cach of which contains n subjects. Let i, denote the observed risk for the
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s'th cluster and ;= 1-p, so that the average risk for the m clusters is

m
p=3 P, /mand g=1-7. Following Moore and Tsiatis (1991) the moment

s=1

estimate is derived by solving the equation,

ay (B, - )’
s=1
= m~1, (2.2.1)
pq [1 + (n=1)p]
for p yielding
2
1 {ns
puy=——"|—-1 (2.2.2)
n~11 g
m
where szzz P, - p)’/(m—1). This statistic is identical 1o X derived by Donner,

s=1
Birkett and Buck (1981) except they used m rather than m-1 degrees of freedom

) . .2
in the denominator of s

Note that as cluster size becomes large

ar( P )
Py = P . (2.2.3)

pq

which is a consistent estimate of the intracluster correlation coefficient obtained

for mixed-effects logistic regression models (Neuhaus, Kalbfleisch and Hauck,
1991). This formula for intracluster correlation was also derived by Kraemer

(1979) in the context of population models for a coefficient of reliability.

The ANOVA estimator, denoted f,, is den.ed by adapting the estimator of

p from a one-way random effects model (Fleiss, 1981 Section 13.2) to binary
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outcomes data. Following Landis and Koch (1977) it can be expressed as
pa=( BMS — WMS )/( BMS + (n-1)WMS ) (2.2.4)

2 .
where the between cluster mean sum of squares, BMS = ns” and the within clus-

m
ter mean sum of squares, WMS = ¥ np.§/m(n—-1). This statistic differs from R

s=1

derived in Section 13.2 of Fleiss (1981) by using m-1 rather than m degrees of
freedom in the denominator of s>. The effect of the choice of degrees of free-
dom on estimates of p was evaluated by Feng and Grizzle (1992) in their simu-
lation study. They found that Fleiss's (1981) version of this statistic underesti-
mates p even if there are as many as 30 clusters in the study ... m = 30 ). The
moment and ANOVA estimators of intracluster correlation are identical when

m/(m-1) = 1.

It is important to note that estimates of p and p are not likely to be
independent. The asymptotic covariance between P and the moment estimator

derived by Donner, Birkett and Buck (1981) can be expressed as

) o E(h-p)
1
n_[a-2p)i1 + @-npr® | ECP } (2.2.9)

n-1 n’ Pq
Moore (1985, p. 50). A more explicit calculation requires additional assumptions

about the distribution of the number of subjects from the s’th cluster, s=1,....m,

having a positive response.

Suppose that the number of subjects from the s'th cluster who responded
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positively can be described using the beta-binomial distribution introduced in
Section 1.4.2 and described in detait in Section 7 of this chapter. In this case

results from Moore (1985, p. 33) can be used to show that

1-2 1-p)[1 + (n—-1)
cov( p. py = LZ2PPU=PIL + @-Dpl 226)

n(i+p)

so that for p > 0

>0 if p<l1/2
corr(p.p) { =0 if p=1/2 (2.2.7)
<0 if p>1/2.

Note that p and P are also uncorrelated when p = 0.

This dependence complicates inference. For example, several authors have
noted thet estimates of intracluster correlation tend o become larger as estimates
¢ " -isk increase from 0 to 0.5 (e.g. Williams, 1988b). This empirical result has
been used as an argument in favor of models which allow p to vary. An addi-
tional factor which .night be associated with the phenomenon is the dependence

between p and P.
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2.3 Adaptations of Linear Models to Correlated Binary

Outcome Data
2.3.1 Derivation of Results when Outcomes are Continuous

Tests of the effect of treatment constructed using mixed-effects linear
models were outlined in Section 1 of the thesis. The technical details needed to
construct such tests are described in this section using analysis of variance.
Difficulties arising with this approach when cluster sizes are variable are also
discussed. The variance components from the analysis of variance are then used

to derive an estimator of intracluster correlation.

A mixed-effects linear model which includes covariates for treatment and

strata is given by
yljst=u+a1+Bj+aBu+C(1})s+e( ijs)l (2.3. l )

where y,, is the score for the t'th subject, t=1,....n;, from cluster s, s=1,....m,

ijs?
treatme:t j, j=1,2 and stratum i, i=1,...k. The fixed effects of strata, treatment
and their interaction are represented by o, BJ, and aBij respectively, while C(ij)‘
and €, denote the respective independent random effects of cluster nested in
treatment and stratum, assumed to be i.i.d. N(O,o'é ), and subject nested in clus-
ter, assumed o be i.i.d. N(0,0° ). The usual linear constraints

2 k

k 2
Yo=EB=X o= af;=0 (2.3.2)

=1 j=1 =1 =1




are imposed to fit the model. This model can be fit to data from a stratified clus-

kK 2 m,
ter randomization trial which includes N=3 3 3 n  subjects from
=1 =1 =1
k 2
M= 3 ¥ m; clusters.

i=l j=1
The sums of squares for the fixed effects can be expressed as

k 2
SS( Fixed Effects ) = ¥ 3 n, (7, - )° where (2.3.3)

=1 =1

m, o, m,
Vi = X X! X 0y

s=1 =1 s=1

k 2 my 0y

andy =3 3 3 DY !N

i=l j=1 s=1 =1

Imbalance in cluster size prevents decomposing SS( Fixed Effects ) into scparate
sums of squares for strata, treatment, and their interaction complicating construc-
tion of tests of significance. The sums of squares for the fixed effects can, how-
ever, be written as a sum of sequential or Type 1 sum of squares (SAS (1989,
page 115), Rawlings (1988, Section 4.5 and Section 16.5), Speed, Hocking and

Hackney (1978)), i.e.

SS( Fixed Effects ) = SS( Strata ) (2.3.4)
+ SS( Treatment | Strata )
+ SS( Interaction | Strata,Treatment ).
These sums of squares, their degrees of freedom, and accompanying expected
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mean squares are displayed in Table 2.1. The weighted average of stratum

specific treatment differences is denoted by

k
d, =Y w,d/w. where (2.3.5)

i=l

d =Yy, -V, and

-1
w=|—+—| .
n, Ny

Statistical tests are constructed from ANOVA tables using ratios of mean
sums of squares. Mean sums of squares are selected so that ratios of their
expected values are equal under the null hypothesis and are larger than one
under the alternative hypothesis. Furthermore when the null hypothesis is true
the ratio of mean sums of squares follow an F distribution with degrees of free-
dom obtained from the numerator and denominator mean sums of squares
respectively. These distributional properties are a mathematical consequence of

the assumption that the random errors are normally distributed.

Such exact test statistics cannot be constructed for the effect of treatment in
stratified cluster randomization trials when cluster size is variable. For example,
under the null hypothesis that treatment is unrelated to outcome the expected
mean squares for treatment given strata and for cluster are unequal
(i.e. A; # Aq). A test of the effect of treatment could only be constructed in the
extremely unlikely instance that there is no between-cluster variability (i.e.

og = 0 ) using the ratio of mean sums of squares for treatment given strata and
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the mean sums of squares for error. In either case validity of the test statistic

depends on the absence of any interaction since E(d) = B,-B, + af,—aB,, .

This difficulty in constructing tests of the effect of treatment is not unique
to stratified cluster randomization trials. Dunn and Clark (1987, pp. 116-119)
and Donner (1985a) noted similar difficulties in situations comparable to unbal-

anced completely randomized cluster randomization trials.

Even though exact tests of the effect of treatment cannot be constructed
when cluster sizes are variable there are several approaches which could be used
to construct approximate tests of significance. Dunn and Clark (1986, pp. 116-
119), for example, suggest using Satterthwaite’s (1946) procedure to construct an
approximate F-test. Alternatively a cluster-level analysis could be constructed as
outlined in Chapter 1 of the thesis or the generalized least squarss method

described by Donner (1985b) could be used.

The cluster-level analysis is the simplest approach. In this case the test
statistic described by Schwartz, Flamant and Lellouch (1980, pp. 189-191) can
be adapted to test the effect of wreatment in stratified cluster randomization trials.

It is denoted by

kK m,m, _
p) .
=1 Wi
oo = —; Where (2.3.6)

o4




Di=Y,-Y,.
m,
] = Z Yus‘ / mx]’
s=1

O
Ynjs. = Z yi‘|st ! nus and
=1

) k 2 o, - 2
u = Z 2 Z [yus. - Ylj] /(M-2k).

i=l )=1 s=1

and is approximately distributed as a random variable from a Students t-
distribution with M-2k degrees of freedom. Furthermore it reduces to the ordi-
nary two sample t-test performed on the cluster means in completely randomized
designs. An alternative weighting scheme could be developed which also adjusts

for the degree of clustering.

The simplification which occurs when all clusters have the same number of
subjects, ny, = n and when t re are the same number of clusters, m; = m, in
each strata and treatment group (i.e. completely balanced designs) is displayed
in Table 2.2. This table could altermatively have been constructed using the

algorithms developed to obtain sums of squares and expected mean squares for

analysis of variance (Montgomery, 1984 Chapter 8). Notice that under balance

SS( Fixed Effects ) = SS( Strata ) (2.3.7)
+ SS( Treatment | Strata )
+ SS( Interaction | Strata, Treatment )
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= SS( Strata )
+ SS( Trcatment )
+ SS( Interaction ).

Tests of the null hypothesis that treatment has no effect can now be con-
structed using the ratio of mean sums of squares for treatment and cluster respec-
tively. Under Ho this test statistic follows an F distribution with 1 and 2k(m-1)

degrees of freedom and can be expressed as

- 2
< d
F T (2.3.3)
1.2k(m-1) S Jf—}

P
k

where d = 3 d /k, a special case of equation (2.3.5), while

i=1

) k 2 m )
Sp = 2 Z 2 (yljs.-y.lj.) 12k(m-1)

izl j=1 s=I
k2

=X X,
i=l j=1 2k
is an unbiased estimator of between cluster variability. Thus the test statistic is

the square of a stratified t-test (Fleiss, 1986 Section 6.1) performed on the cluster

means and simplifies to the square of a t-test in a completely randomized design.

An additiona! special case arises when there is no treatment by stratum
interaction. The sums of squares for interaction can then be pooled with the
sums of squares for estimating the between-cluster variability. The test statistic

constructed as a ratio of mean sums of squares for treatment and the new pooled

mean sums of squares is equal to the square of a paired t statistic with k-1




degrees of freedom in matched-pairs designs where there are only two clusters

per stratum (i.e. m=1 ).

These results validate the cluster-level analyses discussed in Section 1.4.1
and originally described by Lindquist (1940), at least when there is no variability
in cluster size. Similar identities have been described by Hopkins (1982) who,
like Lindquist, was concerned with the analysis of data arising in educational
research. Earlier proof that unweighted cluster-level analysis is fully informative
is due to Greenhouse and Geisser (1959) who were concerned with the analysis
of repeated measures on the same subjects. They also showed that such cluster-
level analyses are valid for testing between-group differences even if the under-

lying correlation matrix was not exchangeable.

The sums of squares and their expected values displayed in Table 2.1 and
Table 2.2 can also be used to estimate the degree of intracluster correlation. The
intracluster correlation coefficient is defined to be pg =oé/ ( oé+ 6’ ] and,
using model (2.3.1), can also be derived as the correlation between any two
members of the same cluster since COV(Yjjrr Yijen ) = cé, and

var(y,,, ) = aé +6°, for t2u, tu=l,-- - A,,. Thus model (2.3.1) implies that

responses of cluster members are equally correlated.

The estimate of intracluster correlation denoted

Ps = 8/(8.+8)) (2.3.9)
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_ MS( Cluster ) — MS( Error )
MS( Cluster ) + (n~1) MS( Error )

since 63 = ( MS( Clusters ) — MS( Error ) )/n_ , 8 = MS( Error ) , and
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l=lj=l zz(mu_l)
i=1 j=I
Vij denotes the observed between-cluster variability in cluster size. Note that

when there is only a single stratum (i.e. k=1) this estimator of intracluster corre-
lation simplifies to the intraclass correlation coefficient derived by Donner

(1985a) assuming only two populations.

A limitation of pg is that it may be negative even though the parameter can
only be positive. The lower limit of g is —1/max( n, - 1) since, from model

(2.3.1),

8248

vang,, )= (14(n, - 1)p] (2.3.10)

ijs

which is greater than or equal to zero. Following Searle, Casella and McCulloch

(1992, page 60) such negative estimates of p are usually set o zero in practice.



A common simplification used in estimating p involves replacing n  with
f#_=N/M, where n, < . The second algebraic expression for n, suggests
this is reasonable when the number of clusters in each treatment group and stra-
tum is large. Replacing n, with i might oherwise result in underestimating
the degree of intracluster correlation. For example, if the number of clusters per
treatment group, my; =m for all i=l,..k and j=1.2 then n,<n _ for small m.
Note that n_ is also less than or equal to i when the number of ciusters per
treatment group and stratum is variable but i, =a , i=l..k, j=1,2. No gen-
eral relationship appears to exist between n, and @ when the number of clusters

per treatment group and stratum is variable.

Thus imbalance complicates but does not otherwise affect estimation of p.
The simplification which obtains for completely balanced designs allows fg to be
rewritten as a weighted average of stratum and treatment specific one-way ran-
dom effect estimators of intracluster correlation (Fleiss, 1986, page 11) denoted
P, The weights are functions of stratum and treatment specific estimates of

between-cluster variability. That is,

1 - MS(E
- MS( Cluster ) — MS( Error ) 2.3.11)

" MS( Cluster ) + (n-1)MS( Error )

k 2
=3 z Wij p.u. where
i=1 =1
MSCij - MSEij
P, =

MSC, + (n—1)MSE,’



1 MSC, + (n-1)MSE,

" 9k MS( Cluster ) + (n-1)MS( Error )

k 2
MS( Cluster ) = 3, 3 MSC, / 2k,

i=1 j=l

m
MSC, = 2 n( ¥, - ¥,. y 1 (m-1),

=1

k 2
MS( Error ) = 3, 3 MSE_ / 2k and

=1 j=1
m n

MSE; =% (¥~ Vs ) I m@a-1).

s=1 t=1

The mean square estimates are calculated using the sum of squares and
degrees of freedom displayed in Table 2.2. A simpler summary estimate of
intracluster correlation could be constructed as the unweighted average of stra-
tum and treatment specific estimators p,j . This approximation is reasonable

since the weights are asymptotically equal if the model holds.

2.3.2 Adaptations for Binary Outcome Data

The ANOVA methods described in Section 2.3.1 can also be used to con-
struct a test of the effect of treatment and to estimate p for binary oulcome data.
When the design is completely balanced and Yyyst is binary and scored 1 for suc-

cess and O for failure y,. =P, which estimates the risk for subjects from the

15

70



s'th cluster, i'th stratum and j'th treatment group. The average risk for subjects

m
from the i'th stratum and j’th treatment group is p, = ) p.,js/m and the average
s=1
2 m
risk ior subjects from the i'th stratum is p, = 3 3. P, /2m .
)=t s=1

Therefore the test statistic for the effect of treatment obtained using the

rest s displayed in Table 2.2 is

N

d

Flsum-1 = {—:_} (2.3.12)
Sp\/2/km

k mn ?
{ZT(pd-f’ll )}

=1

k
mn
2 —h, §; [1+n-1)p]
=1 2
Xe
I+(n-1)p

where x(z is Cocbran’s (1954) version of the Mantel-Haenszel statistic (Mantel
and Haenszel, 1959) and p is ar estimate of intracluster correlation. Statistical
significance is determined by comparing the test statistic to an F distribution with

1 and 2k(m-1) de;. ¢s of frecdom which can be approximated by a xlz distribu-

tion as m gets large.
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k
This relationship arises because d = 2 (py—p, )/ kand

1=1

k 2 i 5
2 Z z o sij
SP i=l j=1 2
J
kn " =n . (2.3.13)
2z b4, 09,

i=l 1=1

o zi 2 p,q
z pl ql
1=1
k ih 2 1
= 2 ” z;[l + (n—l)ﬁul
D X
1=1
=1+ (n-1)p

where f is a moment estimator of intracluster correlation calculated using m-1
degrees of freedom but estimating P, in the denominator under the null
hypothesis (see Section 2.2). A similarly weighted estimator can be obtained by
adapting the estimate of intracluster correlation derived by Donner (1985a) o

binary outcome data.
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If cluster sizes are variable this simple relationship does not hold. A
stratified t-test on the cluster means may still be valid. The properties of such a
test have been examined by simulation and are described in Chapter 3 of the

thesis.

An alternative estimator of intracluster correlation for stratified cluster ran-
domization trials is provided by adapting 4 to binary outcome data. This estima-
tor can be used even if the design is unbalanced. It is theoretically plausible to
estimate intracluster correlation coefficients for binary outcome data using vari-
ance components originally proposed for continuous outcome data because the
expected mean squares can be calculated without the need for normality assump-

tions (Scheffe, 1959 page 229).

When m is large and the design is completely balanced

2 y
pS = Z E-—k——z—-—— pij (2.3.14)
ST T,

1=l j=1
where p“ is the ANOVA estimator of intracluster correlation discussed in Section

2.2 calculated using m degrees of freedom to estimate between-cluster variabil-

ity.

Donald and Donrer (1987) advocated using the arithmetic average of the 2k
estimators pu. This simpler statistic will tend to be less precise than 5. An

indication of the loss of precision is obtained by observing that when balance
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holds pg can be written as a weighted average of p“. and noting that these

weights will likely vary between strata when outcomes are binary.

The tests of significance and estimates of intracluster correlation which have
been described were calculated allowing for interaction between treatment and
strata. If such interaction seems unlikely the precision of these procedures could
be increased by pooling the sums of squares from the interaction with the
between-cluster sums of squares. Even small increases in precision can be

important when there are few clusters in the trial.

The absence of interaction in stratified samples of binary outcome data is
usually described in terms of equality of odds ratios across strata, i.e.
¥; = (P29,/Pud.) (2.3.15)

=y
The parametric models introduced in the last section, however, define the

absence of interaction on a linear rather than a multiplicative scale, i.c.
P, — P, =B, — B, (see Table 2.1). Equality between odds ratios across strata is
likely to result in variable risk differences unless the stratification variables are
unrelated to the outcome or when the common odds ratio equals one. Therefore
pooling the interaction and between-cluster sums of squares increases the preci-
sion of tests of the effect of treatment when the null hypothesis holds but
reduces the power of the test under the alternative hypothesis when it is defined
in terms of odds ratios. In this instance estimates of intracluster correlation cal-

culated by pooling the interaction and between-cluster sums of squares will be
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positively biased.

For testing the effect of treatment in randomized studies the precision of
estimates of intracluster correlation can be increased further by calculating them
under the null hypothesis. This is accomplished by pooling the sums of squares
from the effect of treatment with the sums of squares for the treatment and strata
interaction and the sums of squares for between-cluster variability. An
equivalent statistic can be obtained by adapting the estimate of intracluster corre-
lation described by Donner (1985a). Such estimates of p will be positively
biased under the alternative hypothesis whether it is defined in terms of risk

differences or odds ratios.
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Table 2.1

ANOVA Table for Unbalanced Stratified Cluster Randomization Trial
Fixed Effects Estimated using Sequential (Type I) Sums of Squares

———————— e — |

Source df SS E(MS)
2 2
i c° + A, o
Strata k-1 ¥n 7 -7 )
i=l
+A,
Treatment (Rx) 2 02 + A, 05.
k
Given 1 [E w, d_'.] I w
-1
Strata +A,
2 2
Strata x Rx G + A5 O
k -
Given k-1 ¥ w(@ -4,
i=1
Strata, Rx + A,
_ = 2 2 2
Cluster M -2k 20,y - V) G + A, 0
ijs
- 2 2
N-M Z (yljsl - yljs.) Y

Error

ijst
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Table 2.1 continued ...
Coefficients for E(MS) of the Variance Components

kK 2 my nz[l l]
D b e
=1 jo1 =1 K71 N

Ay= '}S:l 2 [e(5..-9.]]

2 2
k 2 m
bW [ Mys R 1
=YY — |—=|, wherew!'=—+—
=l j=1 s=1 w. nij. n, Dy,

c Rt
A, EWIE[di]] !/ w.

2

k 2 my W, nus
=X XX :(1-—')[ ]

i=l j=1 s=1




Table 2.2

ANOVA Table for Balanced Stratified Cluster Randomization Trial

——

Source df SS E(MS)
| —— -
k
Strata k-1 2mnY (7, -7 ) | o +nol
=1 K alz
+2mn}, —
e
=1
kmn — 2 2
Treatment (Rx) 1 (d) ¢ + no.
2
+ kmnY ([31)2
j=1
mn X _— _
Strata x Rx k-1 — 3 @-d) | o +ncl
2 =1 2
k 2 (aB)ll
+nmmY ¥
i
1=l =1
- _= 12 2 2
Cluster 2k(m-1) 0} ¥ = ¥,) G~ + no.
s
- 2 2
Error 2km(n-1) 2 Yy — ¥ys) c

1yst
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2.4 Nonparametric Tests of the Effect of Treatment

2.4.1 Introduction

Nonparametric tests are the simplest and most robust methods available to
evaluate the effect of treatment in cluster randomization trials. Their primary
advantage is that they can be constructed without requiring any distributional
assumptions. Weil (1970) was the first to suggest using such tests in cluster ran-
domization trials. His advice was foreshadowed, however, by Wilcoxon (1945)
who used, what is likely, a cluster randomization trial as an example to motivate
derivation of the Wilcoxon rank sum test. More recently nonparametric tests
have been recommended by Crump et al (1°71), Edgington (1987, Section 2.3)

and Williams (1988b) for use in cluster randomization trials.

The statistical significance of nonparametric tests can be determined using
randomization theory. Test statistics are calculated for each permutation of the
data and exact p-values are defined as the proportion of test ctatistics calculated
using permuted data which are at least as large as the test statistic calculated

using the observed data (Edgington, 1987 p. 1).

The nonparametric methods described in this chapter use either pijs, the

observed cluster risks in the i"th stratum, i=l....k, j'th treatment group, j=1,2,

and s'th cluster, s=1,..., m., or rank transformations of them. Standard textbooks

ij?

of nonparametric methods (e.g. Conover (1980), Lehmann (1975)) tend to focus
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on methods using rank transformed data downplaying the importance of tests
using the observed data. There are several reasons for this preference for rank
transformed data. Tables of the exact statistical significance of tests can only be
constructed for tests performed on ranked data. Tests performed using the per-
mutation distribution of the observed cluster risks, however, require sophisticated
computer programs (o calculate the exact statistical significance. Rank
transformed data are also more widely applicable to problems in which outcomes
can only be measured on ordinal rather than ratio scales and are less atfected by

extreme values.

There are three objectives in this section. First, the usual advantages just
noted for rank transformed data will be explored to determine if they are likely
to occur in stratified cluster randomization trials. Second, several different
approximate methods are investigated as less computationally intensive alterna-
tives to the exact tests. These approximate methods use the central limit thzorem
to derive the asymptotic distribution of the test statistics. Third, algebraic com-
parisons are drawn between the methods described in this section and methods

described elsewhere in the thesis in the hope of gaining additional insight.

2.4.2 Randomization Tests

Several statisticians have strong reservations about using statistical tests
derived from randomization theory (c.g. Basu (1980), Royall (1991, Section §)).

Royall (1991), for example, has argied that any test statistic derived from a
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randomization distribution is ancillary. The conditionality principal from likeli-
hood theory would then suggest using probability distributions conditioning on
the ancillary statistic. The resultirg distribution would be degenerate eliminating
the possibility of constructing tests of significance or confidence intervals.
Welch (1990), however, has argued that these philosophical concems can be

avoided by viewing the design as fixed and the observations as random.

These ideas can be made more concrete by displaying results from the i'th
stratum as in Table 2.3, adapted from Mantel (1963) and Mehta et al (1992).
The columns of the table are headed by U unique estimates of risk denoted p,,
u=L,...,U, from the m, clusters in the stratum. There are A;;, control and A,
treated clusters sharing the same estimate of risk in the i'th stratum and m,; con-
trol and m,, treated clusters in all. The multivariate hypergeometric distribution
(Lehmann, 1975 pp. 381-385) arises as the permutation distribution for the vec-

tor (A .A,j) after conditioning on the marginz’s. Although controversies

e - -
remain about the value of using conditional versus unconditional distributions in
randomization tests the former approach is the more common (Agresti, 1992 Sec-
tion 1.3), has been used in other exact stratified tests (Mehta et al, 1992) and
does lend itself to comparisons among a wi-e variety of methods. A corollary of

conditioning is that the observed risks are treated as fixed and only the numbers

within a table are permuted.

In either case the maximum number of permutations is only obtained when
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all clusters in the i'th stratum have different estimates of risk. The maximum

number of possible permutations equals

k (m.
1 [m] 2.4.1)

=1 u

(Lehmann, 1975 p. 134). The maximum naumber of permutations is reduced
when there are equal number of clusters in each treatment and stratum and two-
tailed tests are employed because there will then be mirror image summary

statistics (Edginton, 1987, p. 42). The maximum number of permutations is then

1 m k
; Fm] . (2.4.2)

A relatively small trial with two strata and 10 clusters per stratum could still

require 31,752 separate permutations.

The number of possible permutations decreases as the number of clusters
with tied estimates of cluster-specific risk increases. There are several factors
unique to cluster randomization trials which will tend to affect the expected
number of ties occurring in a stratum. For example as the degree of intracluster
correlation approaches one the observed cluster risk will tend to be cither near
zero or one increasing the probability of ties. The probability of ties will also
increase as cluster size and the variability in cluster size decreases. In a cluster
randomization trial in ophthalmology, for example, there are only three possible
responses depending on the number of eyes per subject having a particular out-

come.
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The computational burden can also be reduced somewhat by recognizing
that many different statistics may be monotonically equivalent (Edgington 1987,
Section 3.5). That is, they will yield equal rank ordering of the permutations and
so produce identical p-values. For example most tests statistics used to compare
two treatments can be written as an estimate of the effect of treatment divided by
an estimate of the square root of its variance. Variances of test statistics con-
structed using randomization theory are derived under the assumption that the
nuli hypothesis holds (e.g. Mantel, 1963) and so are identical for all permuta-
tions. Thus valid test statistics for randomization tests usuaily only involve esti-

mates of the effect of treatment.

An early attempt at resolving the remaining computational burden suggested
by Dwass (1957) and also discussed by Edgington (1969) involved using a ran-
dom sample of permutations to estimate the exact p-value. The precision of the
estimated p-value is a function of the sample size, denoted n,. For a given rejec-
tion rate, o, 2% of the estimated significance levels would be within the limits
ot 2.58 yo (T-a)/n, (Manly, 1991 Section 3.3). Using as many as 1000 per-
mutations would still result in a 99% confidence interval of (0.032, 0.068) when
the true rejection rate was 0.05. Thus a deficiency of ihis approach is that two
analyses of the same data set using the same test statistic ccld produce different

inferences.

Meht, Agresti, Patel and their colleagues have developed computer algo-
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rithms which reduce the time necded to calculate exact p-values. These methods
have recently been reviewed by Agresti (1992), have been applied to stratified
data by Mehta et al (1992) and are available in the computer package StatXact
(1991). Estimates provided by Agresti (1992) and Agresti et al (1990) suggest
that these algorithms aliow calculation of exact p-values within a few minutes on
personal computers 2ven with data sets requiring tens of thousands of permuta-
tions. Although such tests are now possible less computationally intensive
approximations which use central limit theorem results to Jdetermine statistical

signuficance are still preferable as the number of clusters gets large.

In addition to their computational complexities exact tests have been criti
cized for being overly conservative when sample sizes are small (Agresti, 1992,
p. 147). This conservatism arises because the data are discrete so small changes
in results can cause large jumps in p-values when data are sparse. A solution
proposed by Lancaster (1961) calculates one-tailed p-values as one half the
observed probability plus the probability of more cxtreme values. Two-Liled
tests can then be calculated by doubling the one-tailed value. Cluster randomiza-
tion trials have been conducted, however, in which it was impossible to obtain

statistically significant results evei. using Lancaster’s mid-p approach.

Black et al (1981), for example, reporied on results of 2 study in which
day-care centers were randomly assigned to hand-washing or control programs o

determine the effect on diarrhea among the children. There were only two clus-
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ters in each treatment group which is o few to guarantee the validity of
approximate test statistics. The smallest p-value which can occur using a two-
tailed randomization test, however, is 0.33. In fact at least four clusters per
treatment group are required in a completely randomized design to allow tor the
pussibility of statistically significant randomization tests. This problem has been

previously alluded to by Koepsell ct al (1992).

2.4.3 Stratified Rank Tests

Following Conover and Iman (1981) there are several ways in which data
from stratified cluster randomization trials can be ranked. A natural approach is
to rank clusters separately in ecach stratum. A stratified extension of Wilcoxon's

rank sum test can then be used to determine the effect of treatment.

The literature on such stratified rank tests is somewhat confused. Similar
statistics have been independently rediscovered by several authors (Mantcl
(1963), Shirley (1987), Fry and Lee (1988)) since first discussed by van Elteren
(1960) ironically mirroring earlier multiple discoveries of the Wilcoxon rank sum
test (Kruskal, 1957). These approaches differ in the choice of weights selected
when the number of clusters varies over treatment and stratum. These
differences do not appear to be widely appreciated (Fry and Lee (1988), Kuritz,

Landis and Koch (1988)).

The test statistics for the diffe->nt stratified rank tests can be expressed as
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k
¥ w, R, where w, is the i’th stratum weight and R;; is the sum of the ranks for

i=1
clusters from the control group. van Elteren (1960) proposed two statistics using
the weights 1/(m +1) and 1/(m m_,). Tests using the first weight have
locally optimal properties when there are few strata and many clusters per stra-
tum and treatment group (van Elteren, 1960). Statistics using this weight are
also discussed in detail by Lehmann {1975 pp. 135-138). Tests using th. latter
weight are more appropriate as the number of strata gets large. The test statistic
suggested by Shirley (1987) differs from van Elteren’s (1960) in selecting identi-
cal weights for all strata while Mantel (1963) and Fry and Lee (1988) argue for
the use of weights proportional to the inverse of the number of clusters per stra-

tum. All these methods are equivalent when there are the same number of clus-

ters in each stratum and treatment group.

Exact tests for these stratified rank statistics are likely to be nearly as com-
putationally intensive as more powerful tests using the untransformed cluster
risks. Thi- difficulty occurs because the high probability of ties would require
calculating stadstical significance separately for each data set rather than being
able to construct tables of p-values as is commonly done for rank transformed
data. Even if there were no ties tables of the distribution might not be practical
to construct since the distribution of the test statistic is a function of the number
of strata in addition to the number of clusters per stratum and treatment group

(Lehmann, 1975 p. 135). Separate tables would then have to be constructed for
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a very.large number of possible designs to be of any general use.

If there are at least 30 clusters in the trial claims have been made (Koch,
Imrey and Singer et al (1985, p. 239), Mchta et al (1992)) that an asymptotically
112 test can be used to approximate the exact permutation distribution. The

resulting stratified Wilcoxon test statistic denoted

k 2
{ 2 “’i[ R, -E(R, )] }
- =]
XS.W = " N (243)
T Wl R, )
1=1
" 2
{z w mll le [ Rl2. Rll. ] }
i=t l m:. mnz mnl
= where
k
Z w|2 var( R:l. )
=]
2
k 2 m(m +1)
Var(Rll.) = Z E Rijs - 2 / ( ml. - 1)

i=] j=1
is calculated under the null hypothesis and les is the rank for the ijs’th cluster.

The algebraic simplification in the numerator of stw arises because

mlj(m.l_+l)

ER;) = 5 , J=1,2, (Lehmann, 1975 p. 14) and
ER,;)+ER;)=R; +R; (2.4.4)
m (m +1)
= 50
2




E(Ril.) =m, ( RIL + R|2. )/ml.'

The presence of ties complicates both the accuracy of the xlz approx:mation
and calculation of the variance estimator. The approximation is still valid so
long as the proportion of tied observations denoted A /m, in Table 2.3, i=l,...k,
u=1,...,U, are not too near one (Lehmann, 1975 pp. 20-21). The resulting "lum-
piness” of the distribution might still increase the asymptotic requirements of the
approximation. In the absence of tics the

var(R, ) = mm,(m, +1)/12 (2.4.5)
(Lehmann, 1975 pp. 137).

Two limitations of stratified rank tests are that there does not appear to be
any obvious extension which atlows inclusion of baseline risk factors nor are any
useful summary estimates of the effect of treatment available. A solution to both
problems might depend on proportional odds models (McCullagh, 1980). A
score test of the null hypothesis that there is no difference between two popula-
tions obtained using this ordinal model is equivalent to Wilcoxon’s rank sum test
(McCullagh (1980, pp. 116-117), McCullagh and Nelder (1989 p. 188)). The
odds ratios from proportional odds models thus seems to be a natural non-
parametric summary statistic. Additional research is needed to see if score tests
from ordinal models adjusted for stratification variables are equivalent to
stratified rank tests before attempting additional extensions to include baseline

risk factors.
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Lehmann (1975, pp. 138-140) argues that methods which employ scparate
rankings for each stratum can lack power when there are few clusters per stratum
and suggests ranking data from all strata after adjusting for between stratum
differences. The Wilcoxon rank sum test can then be performed on the aligned
ranks. Alternatively standard parametric methods such as analysis of variance
can be used after ranking all clusters in the study even when original scores are
not aligned (Conover and Iman, 1981). The central limit theorem ensures asymp-

totic normality will hold under the null hypothesis for such test statistics.

2.4.4 Stratified Randomization Tests using the Observed

Cluster Risks

Some gain in power can be obtained using randomization tests with the
observed cluster risks rather than their ranks. The asymptotic gain in power
might, however, be small. Hodges and Lehmann (1962) have shown that the
asympitotic efficiency of the van Elteren’s (1963) test statistic constructed using

the optimal weights is equal to

- - (2.4.6)

i=1 3

T.. . m +1
=1 L

relative to a stratified t-test when the data are normally distributed. Thus, in a
trial with m =m clusters per stratum and treatment group the asymptotic relative
efficiency is never less than 63 percent and can be as large as 96 percent.

Asymptotic comparisons with other distributions can be constructed using the




formulae in Puri (1965). Results may, however, be decidedly different in finite

samples (Lehmann, 1975 p. 81).

Mantel (1979) offers additional arguments against using rank transformed
data for correlated binary outcome data. He points out that observed cluster risk
is a more rcasonable measure and that rank transformations can be inappropriate
when cluster sizes are highly variable because small clusters will tend to have

more extreme ranks than larger clusters.

There are two types of randomization tests which use the observed cluster
risks. The first type of test is performed at the cluster level ignoring any varia-
tion in cluster size and can not be extended to include individual-level covariates.
The stratified rank tests can be derived as the special case of these tests which
arise when the data are rank iransformed. The second type of test employs sum-
mary statistics which take varying cluster sizes into account. These methods are
more computationally intensive and can be extended to include both cluster-level

and individual-level baseline risk factors.
2.4.4.1 Type 1: Cluster-Level Randomization Tests

The numerator of the extended Mantel-Haenszel test can be used as a test
statistic to demonstrate the first type of randomization test. Birch (1965) derived

the following equivalent version of this statistic

2
kK m; m,
{ Y —— (¢,- P, )} (2.4.7)

=1 i.




where P, is the average risk for clusters in the i'th stratum and j'th wreatment
group. The exact statistical significance is again determined as the proportion of
tests statistics calculated using the permuted data which are at least as large as

the test statistic evaluated using the observed data.

A one degree of freedom xz approximation to the exact permutation distri-

bution is given by

2
k m, m12
{ 2 (pll ll )}
2 =1 ml
Xemu = (2.4.8)
k mlm 2 ’(pus-pl

2 m,
where p, = 3.3, p,/m,_. The variance estimate is obtained using the multivari-
=1s=1

ate hypergeometric distribution.

As mentioned in Section 2.4.2 exact p-values for stratified permutation tests
can be obtained using the computer package StatXact (1991). This computer
package uses the sum of the observed cluster risks for one of the treatment
groups summed over all strata as the test statistic. The extended Mantel-
Haenszel statistic is the square of a standardized version of this test statistic. It
is constructed by subtracting off the expected value of the stratum-specific sum
and then dividing by the square root of its variance. The expected value and

variance are the same for all permutations since they are calculated after condi-
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tioning in each stratum on the number of clusters per treatment group and the
observed cluster risks. This algebraic relationship implies that StatXact can be

used 1o obtain exact p-values for the extended Mantel-Haenszel test statistic.

The proposed randomization test simplifies to the stratified rank test dis-
cussed by Shirley (1987) when the observed cluster risks in a stratum are rank
transformed. Alternative tests which employ other weighting schemes could be
developed. Such weights might be helpful if there is considerable variation in the

number of clusters per stratum.

Note that xpy,y differs from the stratified t-test, described in Section 2.3,
only in how the stratum-specific variance estimates are calculated. Variance esti-
mates in the approximate randomization test are calculated assuming that the null
hypothesis holds while stratum-specific pooled estimates of variance are used in

the stratified t-test.

An important specia‘ case of xéMH occurs when all clusters are the same
size, i.e. n; =n. Then the extended Mantel-Haenszel x2 test statistic equals
Cochrans’ (1954) version of the classical Mantel-Haenszel xz test statistic (Man-

tel and Haenszel, 1959) divided by the variance inflation factor

1 + (n=1)p where (2.4.9)
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m, le
ﬁ|( l—ﬁl)
K ml.
6 = Z pl'
=1 k mll m,
)D p,(1-p)

2 m,
p,=2 X P,/ nm,_and B is the moment estimator of intracluster correlation

=1 s=1

for the i'th stratum.

The extended Mantel-Haenszel test can be adapted to adjust for variations
in cluster size. This adaptation requires the stratified design to be further
stratified by cluster size in each of the original strata. This approach has been
suggested for completely randomized designs by Paul and Mantel (1989) and
independently by Zucker and Wittes (1992). That is, if there were F| dilferent

cluster sizes in the i‘'th original stratum, i=1,..k, the data would be divided into

k
F.= 3 F, strata containing clusters of identical size. The extended Mantel-

i=1
Haenszel statistic is then calculated on these F. strata. In trials with few clusters
there will now likely be strata which would include only control or only treated
clusters. Such strata would not contribute to the test statistic reducing its preci-
sion possibly outweighing any advantage obtained by only comparing estimates

of risk for clusters of equivalent size.
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2.4.4.2 Type 2: Individual-Level Randomization Tests

The permutation tests which have been discussed so far are all cluster-level
analyses. An alternative approach, favoured by Crump et al (1991), considers the
permutation distuibution of summary statistics which are functions of both
cluster-specific risk and cluster sizes. Examples of such statistics for stratified
cluster randomization trials include the numerator of the classical Mantel-
Haenszel's xz statistic (Mantel and Haenszel, 1959), or estimates of summary
statistics like the odds ratio. The exact statistical significance for tests using such

statistics is calculated the same way as for the other randomization tests.

It is helpful, however, to use log transformations of parameters like the
odds ratio or relative risk so that the distribution of the test statistic is symmetric
under the null hypothesis simplifying calculation of statistical significance.
One-tailed tests of the null hypothesis that the log odds ratio is zero could then
be constructed by calculating the summary statistic for each permutation of the
data and determining the proportion of times that statistics calculated using the
permuted data are as large as the statistic calculated using the original data.
Two-tailed p-values are defined to be twice this probability. Alternatively two-
tailed tests could be directly calculated by squaring estimates of the log odds

ratio (Edgington, 1987, p. 35).

Greater precision can be obtained using summary statistics which also

attempt to adjust for intracluster correlation. Permutation tests, for example,
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could be constructed using estimates of odds-ratios from iterative procedures
such as Liang and Zeger's (1986) generalized estimating equations. The permu-
tation test is then asymptotically equivalent to the bootstrap method proposed for
the analysis of correlated binary outcome data and can be extended o incor-
porate baseline risk factors (Moulton and Zeger (1989), Welch (1990)).  Moulton
and Zeger (1989) have also described an asymptotic relationship which exists
between the bootstrap approach of estimating variance and the robust variance
estimator proposed by Liaag and Zeger (1986). The application of bootstrap
methods to cluster randomization trials in particular have been discussed by Rao

and Colin (1991).

An extension of a jackknife test proposed by Gladen (1979) can be used as
an approximation of the second type of permutation test (Crump et al, 1991).
Let the pseudovalue (Hinkley, 1983) for the i'th stratum, j'th trcatment group

and s’th cluster be denoted

J
s =m,; B, - (m - 1p_ (2.4.10)
m,;
where p, = ¥ 0B, /n, and p_, is the crude risk in the i'th stratum and j'th
s=1

treatment group calculated after eliminating the s'th cluster and can be expressed

as

T 0By /(0 -0 (2411
ves

The jackknife estimator for the i'th stratum and j'th treatment group is then



m,

p; =Y p;s / m, and its variance denoted
=]
I ]2
var( p, )} = 2 (P, — B, )/m (m ~1). (2.4.12)
s=]

A jackknife estimator of the weighted sum of stratum-specific treatment

. . . k nll. n|2.
differences is then given by Y

1=] 1..

(f):, -ﬁijz) and its variance can be

estimated as

k nll. ni2. ? 2 )
)X Tvarp, ). (2.4.13)

1=1 n! j=[

Under the null hypothesis the resulting test denoted

k N,y N J J :

[ Z (ﬁu - ﬁiz) ]
2 =1 i..
Xy = 3 (2.4.14)
k{0 0y 2 )
p) 2 var(p, )
n.

=1 1. J=l

is asymptotically x 12 .

An alternative and simpler test statistic, denoted szc is obtained by using
the square of a weighted sum of the crude stratum-specific treatment differences,

nll. an.

k
z

=1 t..

(P, = ,5). in the numerator. This altlernative test statistic is valid

because both summary estimates of treatment differences have the same expected
2

kfn.n, ) 2
value and since z{ - } Zv&r(p;) is a valid estimate of variance for

=1

=1




either statistic (Gladen, 1979). The two test statistics are identical when n,, is
constant for all clusters in the same stratum and treatment group and can be seen
to differ from stratified t-tests on the cluster means only in using cluster and
treatment specific estimates of variance rather than the more precise pooled esti-
mate of variance. A related simplification occurring with completely randomized

designs was previously noted by Rao and Colin (1991).

The alt¢rnative test statistic, 7(12(‘ is preferable not only because it is casier to
calculate but also because of the possibility of aberrant estimates of treatment
differences possible with xf . This possibility arises because p, is not con-
strained to be between O and 1| when there are few clusters in each treatment

group and stratum, and when cluster sizes are highly variable (Gladen, 1979).

More complicated jackknife estimators could also have been developed.
For example estimators could have been calculated as an average of all m p:cu-
dovalues by consecutively eliminating single clusters from all strata and treat-
ment groups. Alternatively jackknifed odds ratio or log odds ratio estimators
could have been proposed. The primary advantage of the relatively simple
method which has been proposed is that it simplifics 10 approaches previously
described for completely randomized cluster randomization trials (Crump ct al

(1991), Gladen (1979)).
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Table 2.3

Frequency of Unique Cluster-Specific Estimates of Risk in the i’th Stratum

Treatment Group P B Total
B Control A Aqu m;,
Treated A, Apy m,
o Total A, Ay m,




2.5 Simple Adjustments of Mantel-Haenszel and Stratified Woolf

Test Statistics

2.5.1 Introduction

Statistical methods for testing the effect of treatment in cluster randomiza-
tion trials can be derived as relatively simple extensions of methods originally
developed for binomially distributed data. Examples of such methods as applied
to stratified cluster randomization trials are described by Donald and Donner
(1987). Such test statistics share several properiies such as being noniterative
and simplifying to standard methods when estimates of intracluster correlation

equal zero.

Two test statistics which could be used in stratiiied cluster randomization
trials are distinguished by using either weighted sums of stratum-specific risk
differences or log odds ratios. The test statistic using risk differences was origi-
nally proposed by Donald and Donner (1987) and is an extension of the Mantel-
Haenszel-Cochran statistic while the latter method is an extension of the
stratified Woolf (1955) estimator previously adapted to matched-pairs designs
(Donner and Klar, 1993a). Test statistics can also be distinguished by whether
or not stratum specific estimates of the effect of treatment are constructed using

asymptotically optimal weights.
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2.5.2 Methods of Inference using Non-Optimal Weights

Let Y, Scored one or zero denote the response of the t'th subject, t=1....,
Ny from the s’th cluster, s=1,..., m,; , j'th treatment group, j=1,2 and i'th stra-

tum, i=l,....k. Also, assume that

E( yust ) = plj‘ (251)
var( Yist ) = P,9; where q, = [ - Py and

corr( yijsu’yljsv )= pus(uv)' U=y,

Then the observed risk for the ijs’th cluster,

0y,
pljS = Z Yijst / anS (2.5‘2)
t=1

and an estimate of the effect of treatment in the i'th stratum can be expressed as

P2 — By = ;Jz[n.zs ﬁizs’“iz.] - g[“ns pils/nil.]' (2.5.3)
=i s=1

Note that (2.5.3) is an unbiased estimate of the effect of treatment since

m,,
E(P,) =X n; E(Py iy, (2.5.4)

s=]
m,

= Z nljs pij/nij.
s=]
= p“,

A limitation of (2.5.3) is that it lacks precision since P, — P, does not use

asymploticahy optimal weights except when subjects’ responses within a cluster

are uncorrelated or when there are the same number of subjects in each cluster in
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the i’th stratum, i=1,...k. More precise estimators are described in the next sec-

tion.

The variance of p, — f,;. denoted by var( p, — p,, ). can be expressed as

2

2 nxjs
T X [—| var(p) (2.5.5)
. n.
=1 =1 1.
2
2 % (g Seovar(y, o) M oVl Y0¥ )
j=l s=1 nlj t=1 nljs u=]l v#u anS

2 px'ql' i nl's
=3 [T’_’. ) n—’ [1+ (1P, ]]

=1 ij. s=1 ij.

Pidn  Pla
= + C,
n;,. Ny,

2 P ql,/n.‘. m, n.
where C, = ¥ . LML S nus[ 1 + (".,,-”5,,s ],
= Z( p]jqij/nij. ) =t
=l

and P is the average intracluster correlation among the n, ; subjects in the ijs’th
cluster. Thus the variance of P, — f,, equals the variance derived under the
assumption that responses of cluster members are uncorrelated, multiplied by a
correction factor C, to adjust for the effect of clustering. The correction factor is
a weighted average of the variance inflation factors from each cluster allowing

for the possibility that the average degree of intracluster correlation may vary
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from cluster to cluster.

There are two important special cases which need to be considered. First,
suppose that all clusters within a stratum have n, =n; subjects and that there are

m,=m, clusters in the j’th treatment group of the i'th stratum. Then

Pudiy Pl
+

nm, n;m,

var( p,z - pn ) = [ ][ 1+ (ni—l)ﬁl" ] (2'5-6)

_ Al B ¥ PR
where 5, = % 3| = —

=1 s=1
== 2 Py
=1

mi 6ijs :

Therefore balance assures that valid inferences about treatment effects in the i’th
stratum can be constructed using simple adjustment techniques which do not
make any particular assumptions about intracluster correlation. For example the
average intracluster correlation in the i’th stratum could then be estimated using
the ANOVA approach discussed by ™onner (1985a) and described in Section 2.3

of this thesis.

In general some imbalance in cluster size is expected. Then the
var( P, = P;, ) can only be estimated using the robust estimates described in
Sections 2.6 and 2.8 or by making additional assumptions about intracluster

correlation. The simplest assumption is that §,, = B, in the i'th stratum and j'th

ij.
treatment group. Separate ANOVA estimators for each treatment group would

then have to be used to estimate the variance in the i'th stratum. Such
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estimators would likely be quite imprecise when there were few clusters in the
j’th treatment group, j=1,2, and the i'th stratum, i=1....k. Some simplification
occurs under the null hypothesis that p; = p,, = p, when treatment has been ran-
domly assigned. In this case p,, =p,, and the ANOVA approach could again

be used to estimate the common intracluster correlation in the i'th stratun.

The second special case arises upon extending this assumption and suppos-
ing that all responses of individuals within a cluster are equally comrelated. This
assumption usually arises indirectly as a consequence of assuming that the binary
responses of subjects from the ijs’th cluster, y;, follows a Bemoulli distribution
after conditioning on their expected value, p, . Furthermore it is supposed that
Pijs varies at random within each treatment group and stratum as a common mul-
tiple of the variance of a Bernoulli distributed random variable (e.g. Donald and
Donner (1987), Moore and Tsiatis (1991), Williams (1982)). The beta-binomial
distribution also arises as a consequence of these assumptions when it is further
assumed that the between-cluster variability of p;;s Can be described using a beta

distribution,
var( p, ) = o’ p,q; Where 0 s o’ sl. 2.5.7)
Then foru# v

cov( yijsu 4 yijsv) = E( yijsu ynjsv ) - E( yljsu ) E( yljSV )
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= E(E( yusu.yusv I pus )) = E[E( y‘jsu | D,js )JE[E( yij“ | pijs )]

= E( p,fs ) = [EC(pys n

2
=0 Py,
since Yijsu and y;, are conditionally independent. Furthermore

var( y;i, ) = var[E( y; | p )] + Elvar( y, )] (2.5.8)
= var[ py; 1+ E[ py(1-p,9) ]

= Py
using theorem 7 of Mood, Graybill, and Boes (1974, p. 159). Therefore the

2
COIT( ¥, ¥ oy ) = O, URV.

Results from (2.5.5) suggest that this approach makes more assumptions
than are strictly needed for most inference problems. It is sufficient to assume
only that the average correlation within all clusters is common across strata and
treatment groups. Furthermore (2.5.6) implies that in completely balanced
designs no assumptions about differences in the p,; are required. For these rea-
sons the methods used to test the effect of treatment in this section will all

assume only that 5i1=p for all i=1,....k and j=1,2.

There are several ways in which this assumption can be relaxed to allow p
to vary by strata or across treatment groups. The simplest approach is to use the

methods described in this section but using separate estimates of p as needed. A




second approach, proposed by Rao and Scott (1992). adapts the theory of ratio
estimadon from survey sampling to cluster randomization trials. Their approach
is quite flexible rrd can used to make inferences in a wide variety of design set-
tings. It is dec. .»ed in Section 2.6. A third possibility is to use the generalized
estimating equation approach described by Liang and Zeger (1986). This last
approach is perhaps the most general since it incorporates all the generalized
linear models (McCullugh and Nelder, 1989). This approach was introduced in
Chapter 1 and is described in detail in Section 2.8 of this chapter. All three
approaches require large numbers of clusters in each stratum and treatment
group, i.e. are asymptotically valid as the numbers of clusters in each cell

becomes large.

The assumption that ﬁu- = p allows (2.5.5) to be expressed as

2
Pij4ij
var( P, - B, )= 2 L B, where (2.5.9)
j=l nlj.
o n
B,=X— [ 1+@,lpl
_, .
s=] 1)

The variance can be estimated using ﬁij and any consistent estimate of p , e.g.

the ANOVA estimator derived in Section 2.3. Then

puqu

2
var( p‘12 - pll )= Z
J:] nlj.

ﬁu where (2.5.10)

n M nus
B,=X— [1+@,-DpI.

s=1 nl)-
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If stratum-specific weights inversely proportional to var( f,, - p,; ) under
the null hypothesis are used to obtain a summary statistic for the effect of treat-
ment then an extension of Cochran’s (1954) statistic, denoted xéA , can be used
to test the effect of treatment in stratified cluster randomization trials. The statis-

lic is expressec as

k LTS
LE . ( pi.‘! - pn )

2 =1 m By +1, By,
Xca =

(2.5.11)
k 0, Ny

X — Pg;

=1 M B+ 0y, By

m; 2
where p, =3 3. n, P, /n . Note that xéA , like all the other test statistics

s=1 j=1
described in this section, is asymptotically xlz under the null hypothesis. An
asymptotically equivalent statistic derived by Donald and Donner (1987) is an
extension of the Mantel-Haenszel xz test statistic (Mantel and Haenszel, 1959).

This statistic denoted anm A is expressed as

k nll. ni2.
[E . R ( piz - pn )
i=1 N By +n, B,

(2.5.12)

2
XMHA = .
n; np

z — Bd;

=1 Ny Bp+1n,B, -1

Some insight into why these statistics are reasonable can be gained by con-
sidering three special cases: P =0, p =1, and the simplification which occurs
when there are n,s = 0 subjects in each cluster. If p=0 anm A reduces to the

standard Mantel-Haenszel xz statistic
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2
TR
[2 ( pnz - ﬁll )]
2 =1 ni..
AMH = . (2.5.13)
k n, n,
p B,

1= l“l.._l

At the other extreme X:m A becomes equal to

(2.5.14)

at least when there is no variability in cluster size among clusters in the i’th stra-
tum (i.e. n;, = n). Equation (2.5.14) is the standard Mantel-Haenszel xz test
statistic, but using the number of clusters rather than the number of subjects to
calculate the weights. This is appropriate since when P =1 each cluster
effectively contributes only a single independent response. Finally if all clusters

have exactly n subjects in each cluster xfm A anm /{1+(n-1)p].

Day and Byar (1979) have shown that the Mantel-Haenszel test statistic can
be derived as a score test from logistic rcgression in the absence of clustering.
The statistic proposed by Donald and Donner (1987) is therefore an extension of

this score test adjusted for clustering.

An alternative approach based on extending a Wald statistic proposed by

Woolf (1955) is more easily adapted to either hypothesis testing or confidence

interval construction. The classical Woolf’s (1955) estimator of the log of the
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odds ratio of the effect of treatment is given by
-~ k ~ -~ k -~
Yw =23 WY,/ W, where (2.5.15)

i=1 i=1

Y, = log( p, 0, / p;;3;, ) and
s -1 -1
W=, p,4) + ;8297 -
This estimator is consistent for correlated binary outcome data but lacks preci-

sion, at least asymptotically.

The imprecision arises because the weights used by Woolf (1955) are only
optimal when p =0 or when there are the same numbers of subjects in each
cluster. Optimal weights are proportional to the inverse of a statistic’s variance
(Rao, 1975, p. 308, Example 2.2). Thus optimal weights for the statistic ?, are

equal to the inverse of

- B, B,
var( ¥, )= + (2.5.16)
NPl Pl

which is obtained using the delta method (Agresti 1990, Chapter 12).

A similar approach was previously used by Donner and Hauck (1988) to
obtain odds ratio estimates from case-control studies of familial aggregation.

Such designs are the observational equivalent of pair-matched cluster randomiza-

tion trials.




1O

A modified version of the Woolf estimator is then denoted by

k k
Yow = X W, | W,y where 2.5.17)
=1 i=l
B, B
a = 1 2
Wy=|———+ and so the

n; Pula  mipBixdia

var( Yyw =1 / W,
Therefore a weighted version of the classical Woolf test is given by

2
k
Xorw = [ W ?.] W. 2.5.18)

i=1

Simplifications previously noted for the adjusted Mantel-Haenszel xz test
(Donald and Donner, 1987) when p =0 , when p =1, and when there are
n;, = n subjects in each cluster also occur for the weighted Woolf test. That is
the test statistic reduces to the classical Woolf test when p = 0, and to the classi-
cal Woolf test divided by the variance inflation factor 1 + (n—1)p when n,, = n.

Finally when § = 1 and n,, = n, the weights reduce to

-1
1
+ ! ] . (2.5.19)
m; P4, myPAa;,

2.5.3 Methods of Inference using Asymptotically Optimal Weights

The test statistics described in the previous section were constructed using

my
simple estimates of p, calculated as p, = 3 n, P, /n, . Such estimates are

=1




only optimal when there is no variability in cluster size within each stratum and
treatment group, i.e. n =n,, or when p = 0 . Optimally weighted estimates are
given by

m; ¢

P, = X —,, where (2.5.20)

=11

f=ny /[ 1+ ~1p ]
The weights ?,, are consistent estimates of ny /[ 1+ (n;~1)p] which are

inversely proportional to var(pus).

The greater precision of f’u relative to p; can be demonstrated by noting

that
. P n
var( Plj )= 1y 1
n, ™
2 0y / [1+Hn,~Dp]
s=1

which is the standard binomial variance multiplied by the weighted harmonic

mean of the variance inflation factors 1+(n. ~1)p. The variance of ., however,

ij ij’
can be expressed as the standard binomial variance multiplied by the weighted
arithmetic mean of the variance inflation factors. A corollary of Hardy et al’'s
(1991, p. 17) Theorem 9 is that weighted harmonic means are less than or equal
to weighted arithmetic means with equality holding only if terms being averaged

are equal. Therefore the var(l"“) s var(pij) with equality holding if there are the

same number of subjects in each cluster or when p = 0. This relationship will

LIREY]



also hold for estimates of each variance.

Under the null hypothesis the

N - 1 1
var( P, — P,)= p,ql[-— + ——] (2.5.21)

l'|l. r|2.

and so following the same arguments used to derive the adjusted Mantel-
Haenszel statistic (Donald and Donner, 1987) an asymptotically more precise test

statistic is given by

2
PO ¢
il. 12, A
Z ( P|2 - Pll )
=1 B
anmo = where (2.5.22)
k ?nl. i512. P
z PlQi
=1 ?I..
a 2 ™ ?ljs ~
P=%2X—p, and Q=1-P
=1s=1 4

The optimally weighted Woolf estimator denoted

k k
?ow =3 W.o'}.o / EWIO where (2.5.23)
i=1 i=1

?i() = loge( l‘5|2 Qu/sz il ) and

a - 1 |
W-.ol = + and so the

?l’. Pll Qll ?12. P|2 Q|2

i

i
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var( "Yow ) =1 I\AV‘O.
Therefore an asymptotically optimal weighted version of the classical Woolf test
is given by
c 2
Xwo = [ZW.O *‘!-.o] W, (2.5.24)
=1

Both of these optimally weighted test statistics are equal to xé A and xé,w respec-

tively when p = 0 and when there are the same number of subjects in each clus-

ter.
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2.6 Adaptations of Methods Developed for Complex Sample

Surveys

2.6.1 Introduction

In Chapter 1 many early ideas conceming the design and analysis of cluster
randomization trials were traced back to earlier work on cluster sampling. In
spite of these common beginnings there are many differences between surveys
and experiments so methods originally developed for complex surveys -nay not

always be applicable in randomized triz's.

The most important difference is the use of random allocation in experimen-
tal studies. Random allocation assures equality of intracluster correlation param-
eters across treatment groups under the null hypothesis and eliminates the possi-
bility of confounding. Survey samples, on the other hand, are characterized by
the selection of a sample from a specified population using a random mechanism.
The focus here is on estimation of unknown parameters rather than tests of

significance.

Tne analysis of data from national surveys is also often complicated by hav-
ing to account for the use of stratified, multi-stage cluster sampling. Such com-
plicated designs are required for three reasons. First, no national sampling frame
may exist (Kom and Graubard, 1991) eliminating the possibility of a simple ran-

dom sample. Second, travel costs and time to complete the study are reduced




when subjects are selected by household within neighbourhoods. Third, stratified
samples allow surveys to be designed to obtain precise estimates of health
behaviours at both the national and local level. This requirement for obtaining
precise estimation at both national and local levels increases the overall sample
size. Therefore most complex surveys sample iarge numbers of clusters (e.g.

usually households or subjects within a home).

The nature of the clusters selected in cluster randomization trials (e.g. fami-
lies, schools, communities) is largely driven by the scientific question. Further-
more this choice will affect the number of clusters which are needed to have
sufficient power to detect clinically relevant effects while satisfying practical
considerations. For example, community intervention trials are usually limited in
practice to a relatively small number of clusters. Cluster randomization trials
also tend to use one of three fairly simple designs (i.e. completely randomized,

stratified, pair-matched) reviewed in Chapter 1.

Finally, analytic methods for complex surveys often include finite popula-
tion corrections (Cochran, 1977, p. 24) which can become important when a high
proportion of members of the sampled population are included in the study. No
such corrections are needed for methods used to analyze data from cluster ran-
domization trials since the clusters are generally assumed to be a sample from an

infinite population of clusters.
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Curiously these differences have received little attention in the statistical
literature. Methods developed for sample surveys have on occasion been applied
to data obtained from randomized trials without any considerauon of the benéfits
of random assignment or the limitations arising from a small number of available
clusters (e.g. Rao and Scott, 1992). This is exceedingly ironic since the main
thrust of statistical advice offered to medical researchers using data collected
from cluster randomization trials (e.g. Donner, Brown and Brasher, 1991) or
from complex surveys (Korn and Graubard, 1991) has been to consider the

design in the analysis.

2.6.2 Ratio Estimators in Stratified Cluster Randomization Trials

The only sample survey analytic technique which will be discussed is a
simple method described by Rao and Scott (1992). They adapt the theory of
ratio estimation from the sample survey literature (e.g. Cochran 1977, Chapter 6)
to adjust methods used to analyze uncorrelated binary outcome data for the effect
of clustering. Their method is of interest because its simplicity allows it to be
easily adapted to a variety of problems and because it can be shown 0 be

closely related to methods discussed elsewhere in this thesis.

Let the observed cluster risk in the i'th stratum, i=1,..k, j'th treatment
group, j=1,2, and s’th cluster, s=1...., my be denoted P, =y,, / ny, where y,,
equals the number of subjects in that cluster who responded positively and Ny

denotes the cluster size. Then the observed risk in the i'th stratum and j’th




treatment group denoted

mn. p
h=T— (2.6.1)
s=1 ]
can bc reexpressed as a ratio of two sample means
my
2.(¥;;/m,)
s=1
(2.6.2)
m,
2 (n/my)
s=]

as suggested by Rao and Scott (1992). An estimator of the variance of this ratio
obtained using the delta method (Agresti (1990), Mood, Graybill and Boes
(1963, p. 181) is given by

m

. my
Vrg( P ) = ———— ¥ 0}, (p, - B, 2.63)
2
(my = Dy

using results from the sample survey literature (Rao and Scott (1992), Cochran
(1977, pp. 31-32 and 155)), and omitting the finite population correction
(Cochran, 1977, p. 155). The ratio of this variance estimate to ﬁa,-%/“'.j.’ the vari-
ance obtained in the absence of clustering, represents the variance inflation due
to clustering and is denoted by dij. This approach does not explicitly involve the

notion of an intracluster correlation coefficient p .

Standard methods for uncorrelated binary outcomes data can be used if Yi.

is replaced by S«.u_=y.u.‘/d.lj and n, is replaced by i’lij'=n.u../d.lj since ¥y is approxi-
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mately binomial with parameters f; and p; (Rao and Scott, 1992). Note that
Py = p; in this case. The principal disadvantage of using this approach in
stratified cluster randomization trials is that the asymptotic distributional proper-
ties of statistical tests or confidence intervals depends on there being large

numbers of clusters in each stratum and treatment group.

Similarly restrictive asymptotic requirements are made when using the
robust variance estimates described by Liang and Zeger (1986). Liang and
Zeger's (1986) generalized estimating equations approach is discussed in Section

2.8.

In general, inference procedures adjusted for the effect of clustering using
the approach described by Rao and Scott (1992) simplify in the absence of clus-
tering to standard methods when du.=l in all strata and across treatment groups.
Fung et al (1993) recommend setting du.=l if d, is computed as less than 1,

which is essentially equivalent to truncating negative estimates of p.

In randomized comparisons the varance inflation factors will be homo-
genous across treatment groups under the null hypothesis. In this case Rao and
Scott (1992) suggest methods of estimating a common inflation factor although
they offer little advice as to how this can best be accomplished in stratified

designs. One possibility is to use

k 2 N-n 1je pnjq ij

4=y 3 d, (2.6.4)
=1 j=1 (2k-”N pq
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where p denotes the proportion of positive responses for subjects in the study
and q = 1-p. Equation (2.6.4) simplifies to equation (5) from Rao and Scott
(1992) when there is only a single stratum and two treatment groups. Test statis-
tics which use a pooled estimate of the variance inflation due to clustering will
equal standard tests divided by the common variance inflation factor. A similar
result arises as a special case of a robust test of significance derived using the
GEE methodology and will be discussed in Section 2.8. The focus of the
remaining discussion in this section is on the more general approach using

separate adjustments for clustering in each stratum and treatment group.

Consider the special case where there are Nys =Ny subjects in each cluster

in the i'th stratum and j’th treatment group. Then the estimated variance of P,

m;
expressed by equation (2.6.3) reduces to ¥ ( pijs - pij )2 / my; ( m.u.-—l ) . The

s=1
variance inflation factor d,; is then recognizable as the formula used to obtain a
moment estimator of intracluster correlation previously described in Section 2.2
so d; = 1 + (n;~1)p,, where p,; is a moment estimator of intracluster correlation.
This identity will be used below to point out some algebraic simplifications.
Notc that tests of significance constructed using d,j will be somewhat imprecise
in this case because the equality of intracluster correlation parameters across

treatment groups is ignored.

As the imbalance in cluster size increases the ratio estimator of variance,




varg( p,; ). is likely to be biased downward unless there are at least 30 clusters
per treatment group and stratum and the coefficient of variation for cluster size is
less than ten percent (Cochran 1977, pp. 162-164). When these conditions are
not met the variance inflation will be underestimated resulting in test statistics

which reject the null hypothesis too often.

2.6.3 Adjusting Mantel-Haenszel Methods for the Effect of Clustering

The Mantel-Haenszel test statistic (Mantel and Haenszel, 1959) can be
adjusted for clustering after substituting ¥, for y, and f; for n;. The statistic

can then be expressed as

2

k fl|l.ﬁ'12.

T = (s~ Pu)

=1 0

x:m = where (2.6.5)

LTINS
z - bl qi
=1 B -1

2 2
P= 2 Y. ! > ny;
j=l j"—'l

The method described by Rao and Scott (1992) can also be used to adjust
Wald type test statistics for the effect of clustering. These test statistics have the
advantage of being easily adapted to confidence interval construction. Rao and
Scott (1992) consider using a cluster adjusted version of the natural log of the

Mantel-Haenszel odds ratio expressed as
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Yuaps = 108, Wpgy ) (2.6.6)

= log,

whose variance estimate is

r “al.hnz. . )
—Pud.
. ol B i 1
var( Yy )= X + (2.6.7)
=t X Ay By . n,Pndy PoPode
Z _ ﬁxlqaz
Li___l ni.. 7

after adapting the variance formula given by Hauck (1979). An approximate test

of the null hypothesis that log ( y ) = 0 is then

-2
™MH
Ty = ————— (2.6.8)

var( Yay )

and the (1-0)100% confidence interval is
exp[ Y £ 2y VAT Yy D ] 2.6.9)

The simplification noted for most other methods when all clusters are the
same size does not occur for statistics constructed using the approach described
by Rao and Scott (1992). This lack of simplification results because even when

there is complete balance intracluster correlation is allowed to vary not only

between strata but also between treatment groups. Furthermore the variation in




intracluster correlation is used when estimating the effect of treatment and its
variance. None of the other methods discussed in this chapter allows p to vary
when estimating treatment effects. Since under the null hypothesis randomization
ensures that p is constant at least within cach stratum x:m and XIZMH are likely

imprecise.




2.7 The Beta-Binomial Distribution: A Parametric Approach to

Modelling Correlated Binary Outcome Data

2.7.1 Introduction

The beta-binomial distribution was the first parametric model proposed for
use in the analysis of over-dispersed binomial data. It is derived as the marginal
distribution of a random variable which is binomially distributed conditional on a
random risk parameter which follows a beta distribution. The beta distribution is
used to model the distribution of risk since it is the conjugate prior of the bino-
mial and so is the mathematically simplest choice (Lee, 1989 Chapter 3). The
beta distribution is also very flexible and can resemble a surprisingly wide array

of distributions (Johnson and Kotz 1970 pp. 42-44).

The beta-binomial distribution was first derived by statisticians interested in
Bayesian methods of inference (Dale (1991), Pearson (1925)). This distribution
was introduced by Skellam (1948) as a useful method for the analysis of over-
dispersed binomial data. Following its introduction the distribution was proposed
for a variety of different problems in which correlated binary outcome data were
likely to occur (Chatfield and Goodhart (1970), Griffiths (1973)) and was first

compared to other less parametric methods by Kleinman (1973).

Williams (1975) can be credited with demonstrating the usefulness of this

distribution for testing hypotheses in teratological studies. His work arose as
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part of the debate among toxicologists (Luning et al (1966), Weil (1970), Healy
(1972), Weil (1974), Palmer (1974), Haseman and Hogan (1975), Haseman and
Soares (1976), Kupper and Haseman (1978)) as to the appropriate analysis of
data from trials in which pregnant animals are randomly assigned to treatment or
control groups and their offspring compared for risks of birth defects or death.
The beta-binomial distribution was subsequently discussed by Crowder (1978) as
an extension of logistic regression for over-dispersed binomial data indepen-

dently of Williams (1975) (Crowder, 1979).

The beta-binomial distribution is derived in the next section of the thesis.
Its relationship with logistic regression is then explored in Section 2.7.3 in the

context of likelihood based inferences.
2.7.2 Derivation of the Beta-Binomial Distribution

Let y,; denote the number of subjects having positive responses in a cluster
of size n,  in the i'th stratum, i=1.,....k, j'th treatment group, j=1.2, and s'th clus-
ter s=1,..., m,.. Now suppose that Yiss is binomially distributed conditional on the

)

unknown, true risk denoted p, so

n ¥i 0,~Y,
f( ylji | pljs ) = [ u‘] p]]s’ q.j: " (2-7‘])

If Pys follows a beta distribution with parameters au>0 and bu>0 then

'S l

a~1 b
g( pljS ) = pus q']‘ /B( a') ’ b“ ) ‘27.2)
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where B(a; . b, ) is the beta function (Mood, Graybill and Boes 1974, pp. 534-

535). Therefore

|

h( yljs ) = I f( yus I pus) g( p]js )dpljs (2.7.3)
Pp =0

_ [nijs] B( 4ty - nlj5+bij-yijs )
Yijs B(a,.b,)

r( alj+y ijs ) r( bij+nljs.yij5 )

_ [nijs] r( aij ) r( bU )
yajs I( au+bu+nijs )
I'( au.+bij )
Yip—1 N =Yyl
T1¢ a+v ) I ¢ b,+v)
_ nljs v=() v=)
yljs 0,1
[T¢ au+bl,+v )
v=0

since B(a,b) = M'(@)['(b)T'(a+b) and I'(a) = (a-1) IN(a-1) (Mood, Graybill and

Boes, 1974. pp. 534-535).

Expected values and variances for ¥,s €an be obtained using the expected
values and variances of variables from the binomial and beta distributions
(Mood, Graybill and Boes 1974 Appendix B) and identities relating conditional
and marginal expected values and variances respectively (Mood, Graybill and

Boes (1974, pp. 158-159), Moran (1968, pp. 76-77)). Thus the
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E(y,; ) =ECE[y, |p,D 2.7.9)

=n,a, /( a, + blJ )

m,s P, and

var(y, ) = E(var y, | pys D)+ varE[y, I Pys D

=n._p,9q,l1+ n"s_l
nsTe L+a +b

= nus pu qu [+ (nxjs_”pu ]

where p.. is the intracluster correlation coefficient.
ij

Proof of the last step in this equation is obtained by calculating the correla-
tion between any two subjects within the same cluster. Let Yisu and y, ., denote

the responses for the u'th and v’th subjects within a cluster, uv=1...n  uzv.

)

Then the

cov( yijsu'yusv ) = E( yusuyusv )—E( yusu JE( yljSV ) (2.7.5)

, 2
=E(p,)- [E( Py, )}
= Var( pljs )

=p0qu/(l+au+bu)

using results from Appendix B in Mood, Graybill and Boes (1974). Thus the

£
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corr( ¥, o Yyew ) = /(1 +2, +b) since var( 'y, , ) = p, q,; obtained as a special
case of var( y, ) where n =I. Notice that negative intracluster correlation is

not possible with this beta-binomial model since a, and b, must be greater than

7L10.

These results suggest a more convenient expression for the beta-binomial
distribution. Let p, = a,/(a +by) and let 8, =1/(ay+h, ) then a;=p;/8; .

b, =4,/8,and 8, =0, /(1 - p,). Therefore h( y, ) can be expressed as

yl”-l Dy Y™ 1
. IT ¢ a,+v) I1 ¢ bu+v )
v = = 2.7.6)
Yys 0,1
[T Caj+b+v)
v=0

Yl p,+ v, “m‘li’f“ g + v9,
0.

1) p v=0 1

ool (] 4 veu
I 0
v=0 1
Y~ 1 nus—ynp_l
I1 (pu+v6|j) I (qu+veu)
_ nus v=(0) v=0
y‘Js nl)l-l
[T1(1+ VOiJ )
v=0

-1
where [J(c+dv) = 1 by definition for any constants ¢ and d.
v=0
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There are three important special cases of this distribution. First, if n,,=1
for all clusters then h( 'y ) reduces to the Bernoulli distribution. More generally

the beta-binomial distribution reduces to the binomial distribution whea p, = 0.

The second important reduction occurs when there are exactly two subjects

in each cluster. In this case y,  can take on three values and

h( Yis = 0)= qif + P09, 2.7.7)

h(y,,=1)=2pq,(1-p,)

h(y,=2)= p.f + PPy,
It is worth noting that this is the only parametric marginal distribution which can
be constructed when there are exactly two subjects in each clustei and only
cluster-level covariates (Prentice, 1988). Other approaches (e.g. Kupper and
Haseman’s (1978) correlated binomial model) differ only in the restrictions
imposed on p, in this case. The bewildering array of methods developed to

analyze correlated binary outcomes data (Ashby et al, 1991) have arisen, in part,

because of the absence of any similarly unique distribution for larger clusters.

There are, however, very few cluster randomization trials in which there
would be two observations per cluster. A notable exception occurs in ophthal-
mological trials (Rosner (1982), Dallal (1988), and Donner (1989)). Applications

are far more common in reliability studies (e.g. Kraemer (1979), Mak (1988),

and Donner and Eliasziw (1992)) where inferences are concerned with the degree
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of intracluster correlation and the risk is a nuisance variable in contrast to cluster

randomization trials.

The third special case is likely to occur in community intervention trials
evaluating methods to prevent disease or mortality. In such trials clusters tend to
be large while risk is low. The negative binomial distribution is the limiting
form of the beta-binomial distribution in this case (Skellam, 1948). The negative
binomial distribution can also be derived by assuming that the number of posi-
tive outcomes in a cluster follow a Poisson distribution conditional on the
expected risk which is sampled from a gamma distribution (Breslow, 1990). The
negative binomial distribution reduces to the Poisson distribution when there is

no between-cluster variability in risk (Moore and Tsiatis, 1991).
2.7.3 Likelihood Based Inferences

Inferences about the effect of treatment in stratified cluster randomization
trials can be conducted using likelihood methods when a parametric distribution,
such as the beta-binomial, is assumed. In order to construct tests of the effect of
treatment p,, the expected risk in the i’th stratum and j'th treatment group, is

rewritten using the logistic mode!

logit(p, ) = o, + X, where (2.7.8)

0 j=t
"J’{l j=2
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o, = logit(p,;) and y = log,( y ). is the natural log of the odds ratio. Therefore
the null hypothesis that vy, the log of the odds ratio, equals zero is used to evalu-

ate the effect of treatment.

The likelihood can be written as a multiple of the density functions h( Yys )

so that
k {m, mp
L= H[ IT hCy ) IT hCy,y )] (2.7.9)
i=l L g=] s=1
r ynls-l 0y Yas—l
- Il [pIl + ve] I [qIl + ve]
1 v=0 =0
B n ) 1-[ 0,|,-l
et Il [l + ve]
- v=0
Yoas—l 0,2y, 1 3
Il [p12 + ve] I [ql2 + ve]
m. v=0 v=0
g 0,51
Il [l + ve]
v=0 J

Therefore the log-likelihood (2.7.10), denoted log L can be expressed as

kK My Yus~l 0,6~ Yine~1 0,,-!
Y Z{ ) logc[plZ + ve] + Y loge[q.] + ve} -3 loge{l + vﬂ]}

i=l s=1\ v=0 v=0 v=0

k @ Yl 0,5~ .21 n-1
+Y 2{ p loge[pi2 + ve] + Y loge[q12 + ve] -3y logc[l + ve]}.

v=0 v=(0) v=()

=l s=1
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Notice that the simplifying assumption that Oij = 0 has been made. This
assumption is equivalent to assuming that the degree of intracluster correlation is
constant across strata and treatment groups. These likelihood equations reduce to

standard equations for logistic regression when @ =0 .

There are three approaches to developing tests of the effect of treatment
which can be constructed using likelihood theory: likelihood ratio, score and
Wald tests. These three test statistics are asymptotically equivalent when the
null hypothesis holds and are approximately distributed according to a x%__l dis-

tribution when there are T treatment groups (Cox and Hinkley 1974 Chapter 9).

The likelihood ratio statistic denoted foB is given by

L6, -... »Y=0, Py )
~2log,| —— s A @7.11)

L Gyps -« - 204 s Yoo Pa)
where L( &,y ..., 6y, ¥=0, Py ) is the likelihood maximized under the null

hypothesis and L( G, ....60, . ?A » Pa ) is the likelihood maximized under
the alternative hypothesis. This test statistic is the most commonly proposed. A
problem with this test statistic is that it tends to reject the null hypothesis too
often when it is true, at least in completely randomized designs in which there
are few clusters (Haseman and Kupper (1979), Donner, Eliasziw and Klar

(1993)).

The poor small sample properties of likelihood ratio statistics might arise, in
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part, because it uses maximum likelihood estimates obtained under both the null
and alternative hypotheses. The score test, however, only uses maximum likeli-
hood estimates calculated under the null hypothesis and so might have better
small sample properties. It is denoted xszn and expressed as

.. 0,0, 008 @, ...0,.0,.0) @12
where (U, ..., 0,0, . 0) is a vector of score equations for the parameters

o,,...,0n ,Y and p respectively and £ is an estimate of the (k+2)x(k+2)

variance-covariance matrix for the score equations.

Calculation of the score test can be simplified upon recognizing that the
score equations 01. R ,Uk and er are equal to zero when the vy is set to zero
and the maximum likelihood estimates for the other parameters are estimated
under the null. The score test then simplifies to

0: / &*8 (2.7.13)

where &°% is the element from £ corresponding to the variance of flg.

The third statistic which can be used to make inferences about treatment is

the Wald test. This test statistic denoted szvn is expressed as
¥/ var(y) (2.7.14)
where var( :{) is an estimate of the variance of *} calculated by maximizing the

likelihood assuming that the alternative hypothesis holds.

The principal advantage of the Wald test is the ease with which they can be

inverted to construct confidence intervals. These tests tend, however, to require
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larger sample sizes to be valid than do score or likelihood ratio tests. Wald tests
for parameters from logistic regression models which assume independence have
also been shown to exhibit aberrant behavior by several authors (Hauck and
Donner (1977), Vaeth (1985), Mantel (1987)). In particular the test statistic
tends to move towards zero as the odds ratio gets very large instead of getting
consistently larger! The same behavior is likely to affect Wald tests of y from

beta-binomial regression.

The variance of score equations and maximum likelihood estimates are
equal to functions of the expected information matrix. Estimates of variance can
be calculated by substituting in the maximum likelihood estimates. A simpler
estimate can be calculated using the observed information matrix. These two
approaches are asymptotically equivalent and will yield identical estimates when
responses of subjects from the same cluster are uncorrelated (Collett, 1991, p.
343). Variance estimates calculated using the observed information is, however,
generally believed to have better small sample properties (Efron and Hinkley

(1978), Buse (1982)).

An interesting consequence of using a parametric model is that the variance
of ¥ depends on the variance of p . This stands in contrast to the adjusted %’
methods discussed in the last section or the test statistics discussed in Section
2.8. These other methods calculate variance estimates assuming that p is known.

This may account, in part, for the inability to obtain simple algebraic expressions
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for test statistics from the beta-binomial model even when there is no variability

in cluster size.

All three tests require iterative procedures to obtain the appropriate max-
imum likelihood estimates. These estimates can be obtained using the Newton-

Raphson procedure which requires calculation of the first and second derivatives

of the log-likelihood.

The first derivatives of the log-likelihood (2.7.10) can be expressed as

)
— =2 P9 Ay i=l.k (2.7.15)
Sar; 1
5 ok
— =2 Pl A
o
81 kK 2 my (Y] v Lt | v 01 v
0 TX2Z 2 + X S~ o [
=1 j=1 s=1 L v=p P+ VO vwo GtV vo ' FV
m; Y1 1 0=yl 1
where A, = 3 { Y, - 3 }
s=1 v=0 pu +vO v=0 q'J + vO

The second derivatives can then be expressed as

#

2
i

&1
57

2
=-3 p,4,[l(P,~q)A,; + p,q,B; 1. (2.7.16)
=1

k
==Y P29.[(P2G)A; + P24,;B, |

i=1
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i=l j=1 s=1
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B~Yi—1 vz 0,1 vz }
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v=0 (qu+v0) v=0(l+V9)

54
= —p,2%2l(Pi—9,2)A12 + Pi29,2Bi2 |

da By
54 2
= _E pijquDij’
sae -
54 k
= =2 P29:Dp
GY 86 i=1

m, [ Yl 1 Ny—Yya—1 1
whereB;=¥{ ¥ ——+ ¥ —

=1 Lo ( Pi,- + vO )2 v=0 ( qij +vO )2

oy (Yl v Dig=Yie—1 v
wiD, -}z ——-"F ——]|

=1\ v=0 (pij+v0) v=0 (q.u.+v0)

forii'=l1,..k,i=1i .

The matrix of second derivatives can be expressed as a (k+2)x(k+2) parti-

tioned matrix
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The negative of the inverse of the matrix of second derivatives is needed to
calculate the observed information and is also required to obtain maximum likeli-
hood estimates when using the Newton-Raphson procedure. The inverse of this

matrix can be expressed as (2.7.18)

p’+Dp'U(G-uD'Uu)y'Up! -D'UCG-UD'U)
-G -UD"'Uv)y'up’! (G-up'u)?




using the formula for the inverse of a partitioned matrix (Searle 1982, p. 260).

Note that the advantage of this formula is that it reduces the problem to having

to invert nothing more complicated than a 2x2 symmetric matrix. The observed

information is then calculated as the negative of (2.7.18) after replacing the

parameters by their maximum likelihood estimates.

The Wald test of the effect of treatment can therefore be expressed as

X:Vbb = ‘}2 / var( y) 2.7.19)
where var( y ) is
54
(—
8% k36,50
“2 =1 821
56
2
( 8% ) ( 5% )2‘ 841 841 )
81 _i 868y |lg x 84 | | 54 x 803y 3456
" 1 p? 53 y 56 2
i=1 L 56 i=1 5’Y 50 =1 )
! 86, 86 | s’
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2.8 The Generalized Estimating Equations Approach

2.8.1 Introduction

Liang and Zeger (1986) described a family of models which extended the
generalized linear models (McCullagh and Nelder, 1989) to include multivaniate
outcomes. Their method requires specification of an assumed or working corre-
lation matrix to describe the association between outcomes, in addition to the
link and error functions, needed for fitting generalized linear models. This corre-

lation matrix is assumed to be common to all clusters in the study.

The consistency of parameter estimates obtained using this approach
depends only on correctly specifying the first moment, i.e. all confounders have
been included in the model. Misspecification of the assumed correlation matrix
increases the variance of the parameter estimates although they remain con-
sistent. Model dependent estimates of variance calculated using the working
correlation matrix can be employed if there is little likelihood that the correlation
is misspecified. In general such certitude is unlikely requiring the use of less pre-
cise robust estimates of variance calculated using a combination of model depen-
dent and empirically calculated between-cluster information. Earlier applications
of robust variance estimators is described by Royall (1986) where these ideas

have been traced back primarily to Huber (1967).

Parameter estimates are obtained by solving a set of equations which Liang
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and Zeger (1986) have called generalized estimating equations to distinguish
them from the estimating equations obtained using ordinary generalized linear
models. The asymptotic optimality of parameter estimates obtained by solving
these equations is assured by the theory of estimatling functions (Godambe and
Kale, 1991), assuming that the working correlation is correctly specified. The
theory of estimating functions combines the properties of least squares and max-
imum likelihood theory (Godambe and Kale, 1991) and also bears some resem-

blance to the method of moments.

Generalized estimating equations have properties similar to score equations
obtained from maximum likelihood theory. For example, Godambe (1960)
showed that the estimating function for a parametric model with a single unk-
nown parameter is the score equation. More generally the expected value of
estimating functions are asymptotically equal to zero. Parameter estimates are
obtained by setting the equations equal to their asymptotic expected value and
solving for the unknown parameters as is done using the method of moments.
The optimality of parameter estimates obtained by this approach is due to their
minimizing the mean square error, at least asymptotically (Godambe and Kale,

1991).

An altemative justification for the asymptotic optimality of parameter esti-
mates obtained using generalized estimating equations has been put forward by

Zhao, Prentice and Self (1992). These authors show that when the working




correlation is correctly specified the generalized estimating equations are
equivalent to maximum likelihood score equations obtained using a partly
exponential model and so are assured of yielding asymptotically optimal esti-

mates.

One of the models provided by Liang and Zeger's (1986) approach is an
extension of logistic regression adjusted for clustering. This model and some spe-

cial cases of it will be described in this section of the thesis.

Different methods of fitting such models have been described by Williams
(1982), Moore (1986), Liang and Zeger (1986) and Moore and Tsiatis (1991).
The similarities and differences of these approaches are also explored. The pri-
mary focus will be on models used to make inferences about the effect of treat-
ment in stratified cluster randomization tials. Atuention is restricted to models

where all variables are measured at the cluster-level.

Four different tests of the effect of treatment are discussed. They are dis-
tinguished by simplifying asymptotically to Wald and score tests in the absence
of clustering and may use either model dependent (i.e. naive) or robust estimates

of variance. Relationships betwecen these different test statistics are derived.
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2.8.2 Application to Stratified Cluster Randomization Trials

Consider a stratified cluster randomization trial in which there are

kK 2
M=% 3 m, clusters overall and m, clusters in the i'th stratum, i=1,..k, and

=1 =t

j'th treatment group, j=1,2. The effect of treatment in such a trial can be

estimated using the logistic regression model,
logit( p, ) =0, X, (2.8.1)

where p, is the expected risk in the i'th stratum and j'th treatment group. The

vector of parameters
8, = (0 .04.Y) (2.8.2)

where a =logitl(p,;) and y=log(y ), is the natural log of the odds ratio.

Furthermore X, is a vector of length k+1 where

it e
7 10 otherwise

and for u=k+1

_Jrif j=2
xu(k+l)' 0if j=1.
This model can also be expressed as
logit( Py ) = 0 Xy + 0 Xy VX

=Q, + qu(kH)




Both formulations will be used as required. This is the same model used in Sec-

tion 2.7 which discussed beta-binomial regression, a parametric approach.

Following Moore and Tsiatis (1991) the common or exchangeable correla-
tion matrix, which assumes that responses of all cluster members are cqually
correlated, will be used as the working correlation. The estimating equations for
model (2.8.1) then arise as a special case of the generalized estimating ¢quations
used by Moore and Tsiatis (1991). Moore (1986) has shown that parameter esti-
mates obtained by solving these equations are equivalent to those found using

Williams® (1982) model IL

The estimating equations for the k+2 parameters «,, - - - ,0,,Y and the intra-
cluster correlation coefficient, denoted p can be expressed as

2 my

=2 X0y (B =0y ) =0 (2.8.3)

=1 s=1
2 my

Z Z l.235 ( p2js p2} =0

j=1 s=1

2 mtj

z Z x'kjs ( pkjs pk} =0

=1 s=1
k m;

i =2 Ll (P =P ) =0

i=] s=]
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2
kK 2™ rljs( p|.|s pij)

k+2 ZZZ -M-k-1)=0,
i=l j=1 s=1 Pi9ij
where f _ denotes the observed cluster risk for subjects in the i'th stratum, j'th

ys

treatment group and s’th cluster, q; = 1 - pyand r, o =n, / [1 + (ny—Dp].

The terms denoted r,, are the effective cluster sizes which represent the
number of effectively independent observations from each cluster. Observed and
effective cluster sizes are equal if p = 0. The effective cluster size approaches
one as the degree of intracluster correlation increases. The first k+1 generalized
estimating equations are equivalent to score equations for ordinary logistic
regression but replacing the observed by the effective number of independent
observations. Furthermore these k+1 equations simplify to score equations for
ordinary logistic regression when there is no variation in cluster size (Moore

(1986), Williams, (1982)).

The last estimating equation also reduces to a familiar form when there is

no variation in cluster size. In this case

k 2 oy pus pIJ

=2 X X ~-M-k-1)=0, (2.8.4)
=1 j=1 s=1 pl.lqull + (n-l)P]

This equation can be solved to obtain

m,; )
Z ﬂ( pijs pu )
k 2 1 1 s=1
p=Y ¥ — -1 (2.8.5)
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kK 2

) S

i=l j=1
where p,. is a moment estimator of intracluster correlation. This simplification
depends on replacing M-k-1 by 2kM where M=M/2k, is the average number of
clusters over the 2k treatment groups and strata, which is reasonable when there

are many clusters in each stratum and treatment group.

The estimating equations must be solved iteratively whenever there are two

or more strata, 1.e. whenever k>1. An algorithm for this is described below.

A slightly different approach was taken by Liang and Zeger (1986). They
proposed using a non-iterative estimator of intracluster comelation rather than
using an additional estimating equation. A parameter ¢ was also included 0
account for any residual over-dispersion. One advantage of their approach is that
when k=1 (i.e. for completely randomized designs) the two estimating equations
can be solved analytically. The estimating equations approach, however, is
likely to provide more precise estimates of intracluster correlation, at least
asymptotically, assuming that the correlation matrix has been correctly specified.
An alternative, non-iterative estimator of intracluster correlation could be con-

structed using the ANOVA approach described in Section 2.3.
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2.8.3 Asymptotic Distribution of Estimating Equations and

Parameter Estimates

The k+2 estimating equations are each sums of independent functions of the
data and the unknown parameters. The central limit theorem guarantees that
such sums will be asymptotically normally distributed, under some regularity

conditions (Moore, 1986). Following the arguments given by Moore (1986)

- D
M2 1 MYN(0.A) (2.8.6)

where £ =(f,,f_,)

= 6, o By )

and A is the (k+2)x(k+2) covariance matrix. Note that the

cov( f,,f, ) =E(f[f )since E(f,)=E(f, )=0,unvuv=l, . k+2.

Since the estimating equations are asymptotically normally distributed one-
to-one transformations of them are also asymptotically normally distributed.
Variance estimates for these transformed variables are obtained using a mul-
tivariate extension of the delta method (Moore and Tsiatis, 1991). In particular

for the k+2 vector of parameter estimates denoted 0= ( é, Py

D

_, MVN (0, TT'Ar ) (2.8.7)

M" (8-9)

where T is the matrix of derivatives of the estimating equations.
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Inferences in cluster randomization trials are gencrally restricted to 0, since
p is generally considered to be a nuisance parameter. The distribution of the k+1

subvector of parameter estimates 9, can be expressed as

172 A D

M2 (8,-8,) _ MVN, (0. T A, (2.8.8)

= MVN,,(0, Al_xl )

where '}, and A, are the upper left-hand submatrices of T and A respectively
and I'y; = -A,; (Moore, 1986). The asymptotic distribution of f, can be simi-
larly expressed as

-z, D
M1 D MVN (0, A) (2.8.9)

This result from Moore (1986) is very important. It proves that the asymp-
totic covariance of 61 is not affected by estimation of p and so proves the
asymptotic equivalence between Liang and Zeger's (1986) approach in which a
simple, non-iterative estimator of p is recommended, and the approach used by
Moore (1986) or Moore and Tsiatis (1991) where estimating equations were pre-
ferred. In either case the variance of é, can then be calculated as if p were

known.

Moore’s (1986) result also adds insight into algorithms used to obtain

parameter estimates. In particular rather than having 10 solve the k+2 estimating

equations simultaneously a two stage procedure could be used. For example,

145




following Williams (1982) and Moore (1985, pp. 25-26)
1. Solve f; using some initial estimator of p.
2. Obtain a new estimator of p using the new fitted values of p,.

3. Iterate until convergence.

The uv’'th term in A, is expressed as

{rijspijqij Xiju xijv} (2.8.10)

i=l )=1 s=1

where u,v=1,...k+1 (Moore, 1986). When there is no variability in cluster size
(i.e. ny, = n) it is possible to factor out 1 + (n-1)p. In this case A, is equal to
the negative of the information matrix from ordinary logistic regression divided
by the variance inflation factor, 1 + (n-1)p. Parameter estimates in this case are
also identical to those obtained by logistic regression. This result was proved by

Williams (1982) and Moore (1986) and was earlier used in the context of Probit

regression by Finney (1947).

Variance estimates are obtained by replacing parameters by estimates
obtained by solving the generalized estimating equations. The validity of this
approach for estimating variance is dependent upon the common correlation
assumption. If, for example, the degree of intracluster correlation varies across

strata then alternative estimators of variance are required.
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Moore and Tsiatis (1991), following Liang and Zeger (1986). suggestwed
replacing A,, by a robust estimator, i.e. an estimator which will be consistent
deperding only on correctly specifying the terms in the logistic regression model.
In a stratified cluster randomization trial the estimator described by Liang and
Zeger (1986) and Moore and Tiatis (1991), denoted A, is a (k+Dx(k+1)

covariance matrix whose uv’th element, u,v=1,..k+1, is expressed as

1 k 2 m‘l

. Z Z Z{ ?i?s ( pjj; - pij )2 Xyu xljv} 2.8.1D)

M 1=l =1 s=1

where p.._ is the observed risk in the s’th cluster from the i’th stratum and j'th

ijs

treatment group while p; and f, . =n, /[l + (n,~1)p] are obtained by solving

s
the estimating equations. The distribution of the k+1 subvector of parameter

estimates 5, can then be expressed as

~ D 1= -
M (8,-8,) | MVN,,(0.T A,y (2.8.12)
SMVN, (0, A7)
asymptotically when the common correlation assumption is true.
2.8.4 Wald Type Inference Procedures

The first approach used to make inferences about the effect of treatment is
an extension of a procedure first described by Wald (1943) for problems where

the likelihood function is known. It employs ¥, the log odds ratio estimate and
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an estimate of its variance. The simpler of the two variance estimates is derived

assuming that the correlation among clusier members is correctly specified.

This model dependent variance estimator can be found using model (2.8.1)

and equation (2.8.10) to show that A, can be expressed as

[ D¢ ] where (2.8.13)
[ N ]

D =diag( v, , - - - ,u ),
= (U, )

e=u, and

m,
Uy =P Qf . Ty = X Ty
s=1

The kxk upper left-hand diagonal sub-matrix of A,, is the covariance matrix for
the first k estimating equations, f,, ... ,f, while ¢ contains elements of the
covariance between f and f,,,, u=1...k. Of primary interest is e = var(f,,, )

since f, ,, is used to estimate the effect of treatment.

The matrix A, needs to be inverted to construct Wald or score type test
statistics. The inverse of A,, can be found using the identity described by Searle
(1982, p. 260) so that A,,~' can be expressed as

[ o 'c,] (2.8.14)

’

(=¢) e
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where D'=D"! + D"c( e-¢Dle)ep™,
¢=D"e(e-¢D'e)! and,

e'=(e-cDe)”

={ i Uy Uy }—l.
=1 ul.,

A model dependent Wald type test of the null hypothesis that y=0 can

thus be calculated as

Xow = Y VARG Y ) (2.8.15)
kd,
a2 11.72.
=Y z
=t G
k -1
~2 1 1
=Y z +

=1 pnﬁil ?ll. ﬁlquz ?12.

where x,f,w is asympiotically distributed as a x,z random variable. If all clusters
are the same size the model dependent test statistic x,ﬁw reduces to the Wald test
obtained from ordinary logistic regression divided by the variance inflation factor

1 + (n-1)p.

Note that x,ﬁw is written in the same form as the non-iterative lest statistic
x&,o , which was derived in Section 2.5 as an extension of Woolf's (1955)

method which adjusted for clustering. Furthermore both these test statistics are




equivalent to the maximum likelihood tesi statistic derived by Gart (1962) for
uncorrelated binary outcome data obtained after replacing the observed cluster

sizes, n ., by the effective cluster sizes, i'u.s .

s’

It is also worth noting that the simpler non-iterative statistic (i.e. szvo) was
derived by explicitly assuming p was known and then substituting in a consistent
estimate of intracluster correlation. The asymptotic equivalence is thus a particu-
lar example of Moore’s (1986) proof that the asymptotic covariance of 61 is
unaffected by estimation of p. This asymptotic equivalence is analogous to the
earlier asymptotic equivalences found by Gart (1962) for stratified analyses of

uncorrelated binary outcome data.

There are two parts to the common correlation assumption which are usu-
ally believed to be needed if the model dependent test statistic, x,ﬁw, is to give
valid type I errors. The first part of the assumption is that responses of all sub-
jects within a cluster must be equally correlated. It arises as a direct conse-
quence of using an exchangeable correlation matrix to describe the correlation
between responses among cluster members. The intracluster correlation
coefficient can, however, be derived as the average correlation among cluster
members when all variables are measured at the cluster-level since then the
expected value for responses of any two cluster members are equal (see Section

2.5). This type of misspecification of the correlation therefore only affects the

asymptotic precision with which the parameters are estimated.




The second and more important part of the common correlation assumption
concerns the requirement that p not vary between strald or across treatment
groups. Randomization only assures equ...y of p across treatment groups under
the null hypothesis. A robust Wald test statistic, denoted x,fw could then be

constructed using (2.8.11).

The robust test statistic is expressed as
Xiw = Y Varg( ¥ ) where (2.8.16)

varg( ¥ ) is the k+1k+1 element of I, A,,cf";, which is estimated by substitut-
ing parameter estimates in the formulae for I\, liRllCrl- l'. Equation (2.8.11) and

the formula for T'y,;"'=—A,,”" can be used to prove that

varp( ¥) = ((c).e) f\,,c [:,] (2.8.17)

= K vary( Y ) where

k Vi
K=Y W,

-1
=l [ﬁxl.ad. / ﬁl.. ]

ﬁ| 012 / ﬁl..
W. = : and

! k
Zﬁil.ﬁlz, / a:..

1=1
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m o ba)

Thus the robust variance estimator of ¥ is equal to the model dependent variance
estimator multiplied by the correction factor K which adjusts for misspecification

of the correlation matrix.

The manner by which such corrections are made can be clarified by noting

that the correction factor K is a weighted average of the ratio of v, and

-1
[ﬁsl.ﬂd./ﬂi..] , i=l,...,k. The denominator of the i'th ratio, i.e.

P2
ﬁi l/ql 1

-1
[0“,%_ / ﬁ-,__] . i=l,...k, is equal to var| log, under the common
correlation assumption. The numerator is a robust estimate of the same variance.

This can be demonstrated by noting that

Pz | | 2 varep,)
var| log, =y (2.8.18)

l p.,/4,, 1 [p_“_q“]z

using the delta method and an adaptation of the ratio estimator of var( b, )




applied by Rao and Scott (1992) to the analysi: ~ correlated binary outcome
data. The robust estimate of var( pu ) used in the correction factor K differs from
variance estimates of ratio estimators by using modelled estimaws of p, . by
using the effective rather than the actual cluster sizes. and by assuming that
m/(m—1)=1 . The last difference is likely to yield estimates of variance which
are too small in cluster randomization trials with few clusters compour Jing the

bias noted by Cochran (1977, p. 162) for variance estimates of ratio estimators.

A second difficulty with robust variance estimates is that they will likely be
less precise than model dependent variance estimates when the common correla-
tion assumption holds. In this case the correction factor, K, would be equal to |,
on average, at least asymptotically. The robust variance estimator would then be
less precise than the model dependent variance estimator owing to the need to

estimate K.

Additional insight can be obtained by considering two special cases. The
first special case arises when using a working correlation matrix which assumes
independence among responses of cluster members (Liang and Zeger, 1986).
Tests of hypotheses and confidence intervals could then be constructed using
robust variance estimators. The advantage of this approach is that standard sta-
tistical packages can be used to fit correlated outcome data. For example, any
computer program capable of fitting ordinary logistic regression models could be

used to model correlated binary outcome data. Specialized programs would still



be needed to obtain variance estimates. The only disadvantage of this approach
is that parameter estimates will be asymptotically less precise than estimators

obtained by correctly specifying the comrelation among cluster members.

Parameter estimates obtained by assuming that responses among cluster
members are independent arises as the special case of the exchangeable correla-
tion matrix where p is set to zero. In this case the model dependent variance
estimator, dencicd vary( ¥ ), is identical to varg, ( *}01‘ ), the variance estimator
obtained using ordinary logistic regression and the cormrection factor, K, now
adjusts for the effect of clustering. The robust test statistic is therefore equal to
the Wald test statistic calculated using ordinary lcgistic regression divided by a

correction factor for the effect of clustering.

Suppose there is only a single stratum, i.¢. a completely randomized design.
Then the robust test statistic constructed using an independent working correla-
tion matrix, is written in a form very similar to an approximation to Rosner's
(1984) model described by Rosner and Milton (1988). The main difference is
that Rosner and Milton (1988) assume a common correlation among respon .2s of

cluster members.

The second special case which will be considered is the simplification

which occurs when all clusters in the trial are the same size. In this case

varg( Y)= vary( Y)K (2.8.19)

i5




= varg ( w}OL ) 1 + (n-1)py,] since balance ensures that

vary( ¥) = varg ( Yo )[1+(n=Dpl.

k v|
K=Y W,

-1
=1 [ ﬁllAﬁlz. / ﬁl.. ]

m,
n Z ( pus - pq )2 / m,p,4,
2 s=1
2z
. j=1 nm,p,q,

k
- Z w‘ . - * -1
1=1 [u”u12 /v, ] [1+ (n=D)p]

k 1+ (n-1)p,
"1+ (n-lp

1 + (n-1)py
= —  where
1 +(n-1)p

] * L ]
u, 4, lu,
W = —— and
1 k

2 [ ] &
Zulluﬂ / ul

=1
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u; =m,np,q,.
That is, under balance, the robust variance estimator equals the variance estima-
tor for ordinary logistic regression multiplied by a variance inflation factor calcu-
lated using a weighted average of intracluster correlation coefficients over the 2k
strata and treatment groups. In this case the only difference between model
dependent and robust variance estimators is in how p is estimated. Since both
estimators are weighted averages of stratum and treatment specific estimators of
intracluster correlation there is no asymptotic difference. Therefore when all
clusters are the same size the model dependent variance estimator is consistent
even if the working correlation matrix is misspecified. This result also f.- lows
from the discussion in Section 2.5. A similar result has been noted by Dean

(1993) for over-dispersed count data.

The estimates of Py obtained using the robust variance approach are likely
to be too small since the moment estimators of p, are calculated using my
degrees of freedom for the between-cluster variability. Thus the size of tests of
significance are likely to be too large and confidence intervals t00o narrow when
there are small numbers of clusters in each treatment group and stratum. A simi-
'ar problem has been noted by Thornquist and Anderson (1992) for robust vari-

ance estimators of coefficients from linear models.

Underestimation of the effect of clustering is likely to be most severe when

the common correlation assumptior holds and p is near zero. In this case nega-
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tive estimates of p are likely to occur. Methods which assume a common corre-
lation usually set such negative estimates to zero since p is assumed to be posi-
tive in cluster randomization trials. It is not as clear how such corrections could
be effected using robust variance estimators. One possibility would be to set the
correction factor, K, equal to one whenever smaller estimates are obtained. This
approach could only be used when the working correlation matrix assumes

independence among responses of cluster members.

2.8.5 Score Tests

An altemnative approach which can be used to construct tests of the effect of
treatment exploits the asymptotic normality of the estimating equations. The
resulting statis' 2l tests are extensions of the score tests first described by Rao
(1947). Although score and Wald tests are asymptotically equivalent under the
null hypothesis their small sample properties are quite different (Vaeth, 1985).
These differences arise, in part, because variances are estimated under the alter-
native for Wald tests and under the null for score tests. The model dependent
and robust score tests derived in this section are based on the discussions

presented by Breslow (1990), Sharples (1989), and Sharples and Breslow (1992).

Kent (1982) discusses an alternative procedure which could be used to
obtain robust score tests. Both procedures are compared by Boos (1992). This

latter approach will not be discussed further since the test statistics for the effect
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of treatment in stratified cluster randomization trials obtained by either approach

can be shown to be identical.

Under the null hypothesis that Yy =0 the first k estimating equations in

(2.8.3) can be solved to yield

2 ™ fijs

=2 X — Bys (2.8.20)

=lssl &)

Using these results the k+1°th estimating equation

fk+l = k+l( al’ ©t .ak.?'=0|p ) (2.8.21)

k1, fp
=Y — (Pw — B,;w ) Where

=t By

ol
Biw = LBy - i=1.2
s=1 1.

and where the parameter estimates of a,, . .. ,0, are calculated under the null

hypothesis and some estimate of p is used to adjust for the effect of clustering.

The model dependent variance estimator of f (&, - .6, y=0Ip) is
equal to the inverse of the variance estimator for ¥ (Breslow, 1990). This is just
a special case of the variance estimator of score equations from fully parametric

models (Cox and Snell, 1989, p. 182). That is

varg( M72E, (6, - 6 ¥=01p ) ) = 1/ var( ) (2.8.22)

o

(4]




k ull.ud.

=3 _
=1 ul.‘

This variance can be estimated by setting Py = p,. In this case

0,=paz, andso (2.8.23)

-12 k i‘ll.i‘|2.
VAN (M (6, e 60, ¥=01p ) )= ¥ — P4,

=1 i
The model dependent score test, denoted x,ﬁs, can therefore be expressed as
2
K r,t
11.h2,
z (PowDiw )

=1 i

(2.8.24)
k ?ll.?iZ
))

=1 1.

- P4,

This test statistic is an iterative version of the adjusted Mantel-Haenszel statistic,
denoted x:ﬂ‘lo which was derived in Section 2.5. Both statistics were derived

using identical assumptions and differ only in how the parameters are estimated.

Furthermore both test statistics reduce to Cochrans’s (1954) version of the

Mantel-Haenszel statistic (Mantel and Haenszel, 1959) divided by the variance
inflation factor, 1 + (n-1)p, when there is no variability in cluster size. This

simplification occurs because the estimating equations can then be solved analyti-

2 m,

cally under the null hypothesis yielding p, =3 ¥ P/ M, . The relationship

J=1 s=1




between Mantel-Haenszel methods and score tests from logistic regression were
previously noted by Day and Byar (1979) in the context of uncorrelated binary

outcome data.

The robust variance estimator for
£, ( Gy - - * 04 y=01p ), denoted varg( M™'2f, (6, - - - 6, ¥=01p ) ),

can be directly obtained by substituting A, and terms from A""l into equation
(9) of Breslow (1990). That is varg( M”26, (6, -+ - .6, ¥=0Ip ) ) can be

expressed as

a1 - -p'¢
(<D 1A, ¢ 1 (2.8.25)

=K varg( M™% (6, - - - 6, ¥=01p ) )

k

:KZ

hiilo.

P4,

where K is the correction factor which adjusts for the effect of misspecifying the

working correlation matrix.

Estimates of vary( M~ ’zfm( G, - .60, y=01p)) are calculated in the

same manner as for the model dependent variance estimator. The correction fac-

tor, K, is now estimated by setting p; = P, vielding

-

(10




Ko = z WI 1 ) where (2.8.26)
1=1
ﬁ]ql [ — + —]
?ll le.
?ll.flz. p~
4
~ ?i..
W, = and
kp.t
11,722,
Z ﬁlql
=1 ?l..
_2
m, fus l
Vi = Z —(pus M UE
s=1 ?u.

Therefore the robust score test, denoted Xés- can be cxpressed as

Xrs ! Ko (2.8.27)

In balanced trials estimates of the correction factor Ko can be expressed as

(2.8.28)
A
2 m,, m, (1°)u$-ﬁ,)2
z
mllm|2 f)‘ql J=1 __1.-+ __l__ s=1 mljr"(‘il
k ml mll m|2
Ko = -
i=1 o, Mam, 1+ (n-1)p
2 pd,
m .

-




mllm 2
~pa,
k m; 1 + (n-1)p,
=i=zl k m;m, 1 + (n-1)p
)) pa;
i=1 mi.
1 +(n-1)p .

The robust test statistic is now, again, equal to Cochran’s (1954) version of the
Mantel-Haenszel test statistic divided by a variance inflation factor. The vari-
ance inflation factor uses a weighted average of intracluster correlation
coefficients calculated under the null hypothesis ensuring greater precision than
was the case for the robust Wald test stati~tic under balance, at least when the
null hypothesis is true. Therefore the asymptotic requirements of the robust

score test are likely less stringent than the requirements for the robust Wald test.

Robust score tests could also be developed using a working correlation
matrix which assumes that responses of cluster members are independent, as was
described for robust Wald tests in the previous section. Such test statistics are a

special case of X:s calculated by setting p = 0 . If there is only a single stratum

X:s would then reduce to the test statistic derived by Boos (1992, Example 7).




2.9 Summary of Methods

Four principal results were obtained in this chapter. First, an approximate
equivalence was demonstrated for test statistics when there are the same number
of subjects in each cluster and the same number of clusters in each stratum.
Second, the common correlation assumption was shown to be overly restrictive.
Third, arguments were put forward suggesting that the methods which use robust
estimates of variance would require larger numbers of clusters per treatment
group to ensure their validity than other approaches. Fourth, tests of significance
constructed using the generalized estimating equations approach were shown to

be relatively simple algebraic extensions of standard procedures.

The approximate equivalence between test statistics in completely balanced
designs includes methods as seemingly diverse as stratified t-tests constructed
using cluster-level estimates of risk, Mantel’s (1963) extended Mantel-Haenszel
test statistic, simple adjustments of standard procedures such as Donald and
Donner’s (1987) adjusted Mantel-Haenszel test statistic, and more complicated
iterative techniques based on extensions of logistic regression which account for
the effects of clustering (e.g. Moore and Tsiatis (1991)). Equivalence occurs
because in completely balanced designs these procedures are asymptotically
equal to test statistics constructed under the assumption that the responses of
cluster members are independent divided by the varance inflation factor

1+(n-1)p where p denotes the average degree of correlation between cluster

e




members.

A consequence of the equivalence between test statistics is that the distinc-
tion between cluster-level and individual-level analyses seems somewhat arbi-
trary, especially in completely balanced designs. This result mirrors the earlier
discussion in Section 1.4.1 concerning the algebraic equivalence between

cluster-level and individual-level analyses of correlated continuous outcome data.

The equivalence between cluster-level and individual-level analyses also
suggests that the use of the t or F distribution to determine the statistical
significance of s atified t-tests and of xlz to determine the statistical significance
of all other test statistics is somewhat arbitrary. The choice will of course have
no effect in cluster randomization trials in which there are large numbers of clus-

ters per treatment group but can be important in smaller trials.

This is not a completely novel idea. For example, Williams (1991) and
McCullagh and Nelder (1983) have considered using the F distribution to deter-
mine the statistical significance of test statistics obtained from logistic regression
models adjusted for the effect of clustering to account for the degrees of freedom

used ¢ - estimate p .

An addiuonal consequence of the asymptotic equivalence between test
statistics is that there is no reason to use robust test statistics in completely bal-

anced stratified cluster randomization trials. Robust methods were developed to
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avoid having to make possibly incorrect assumptions about the degree of correla-
tion between responses of cluster members. This is not a concern in completely
balanced designs since then variance estimates of the effect of treatment are a
function of the average intracluster correlation coefficient from each stratum and
treatment group. In this case robust variance estimates described by Liang and
Zeger (1986) and Rao and Scott (1992) will likely be less precise since they
allow for variation in the degree of dependence among responses of cluster

members across strata and treatment groups.

Assumptions about the degree of correlation between responses of cluster
members are only required when there is variability in cluster size. Several
approaches begin by imposing the common correlation assumption. This
assumption is satisfied if the correlation between any two cluster members is
fixed and if this comrelation does not vary across clusters, strata or treatment
groups. It was shown in Sections 2.5 and 2.8 that this assumption is overly res-
trictive. The validity of methods such as Donald and Donner’s (1987) adjusted
Mantel-Haenszel test statistic is assured if at least the average correlation in each
cluster is fixed. This same assumption is sufficient to assure the validity of model
dependent test statistics constructed using Liang and Zeger's (1986) generalized
estimating equations approach, at least in the absence of baseline risk factors

measured at the level of the individual (e.g. age, sex).

The imprecision of the robust methods is not limited to completely balanced
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designs. Randomization assures p will be identical in both treatment groups
under the null hypothesis, although it may vary across strata. Therefore test
satistics constructed using robust variance estirnates which ignore this feature of
stratified cluster randomization trials will likely require a greater number of clus-
ters per treatment group to ensure that rejection rates will be near nominal levels.
Simulation studies will be used to determine how great this effect will be. Con-
versely methods which do not allow p to vary across strata may be invalid, even

in very large trials.

The identification of the assumptions required to assure the validity ° the
model dependent test statistics and the insight gained into the potential impreci-
sion of the robust test statistics were enhanced by the algebraic we presented
in Section 2.8. In this section of the thesis the model dependent test statistics
were shown to be asymptotically equivalent to relative”, simple extensions of
either Cochran’s (1954) version of the Mantel-Haenszel test statistic (Mantel and
Haenszel, 1959) or Woolf's (1955) test statistic. Robust test statistics were
shown to equal the product of model dependent test statistics and a correction
factor which accounts for misspecification of the comrelation between responses
of cluster members. Correction factors are a function of variance estimates con-
structed using the theory of ratio estimation. Such variance estimates are known
to be imprecise when there are few clusters per treatment group (Cochran, 1977,

p. 162).

ioo




3. A Simulation Study of Tests of Significance from Stratified

Cluster Randomization Trials

3.1 Introduction

The discussion of tests of significance in the previous chapter was limited o
algebraic comparisons of the different approaches which could be used to
analyze data collected from stratified cluster randomization trials. Algebraic
comparisons are, however, not helpful alone in identifying the factors affecting
the type I error rates or in determining the power of tests of significance. These
characteristics of test statistics are needed to provide epidemiological rescarchers
with advice on how to analyze their data and can best be determined using

finite-sample simulation studies.

Simulation studies are experiments performed on computers in which data
are generated to approximate the properties of random variables likely to arise in
practice. The Type I error rates and power of tests of significance can then be
calculated as a function of the parameters of these pseudo-random variables.
Estimates of rejection rates are calculated by repeating each cxperiment several
hundred times and calculating the relative frequency with which the null
hypothesis is rejected for a particular test statistic. Simulation studies can also be

helpful in suggesting additional avenues of reseah.

167



The results of a simulation study cesigned to compare the small sample pro-
perties of test statistics which could be used in stratified cluster randomization
trials are discussed in this chapter. Simulations were performed using both ran-
dom iad fixed cluster sizes. The average cluster size in each iteration of the
simulation was set to 100 which is approximately equal to the size of clusters in

tria!s which Lave randomized schools (e.g. Murray et al, 1992).

Autentir» is restricted to eleven tests of sigrificance which were selected as
representative of the methods discussed in the previous chapter. These tests are
applicable in trials corresponding to Hauck’s (1989) second asymptotic case in
which there are few strata and many clusters per stratum. This case was selected
because it corrcsponds most closely to how stratified cluster randomization trials

are designed in practice.

The methods include the stratified t-test (Schwartz et al, 1980), the cxtended
Mantel-Haenszel x2 test (Mantel, 1963), Donner and Donald’s (1987) adjusted
Mantel-Haenszel test, Rao and Scott’s (1992) version of the Mantel-Haenszel
test, a likelihood ratio test constructed using the beta-binomial distribution, and
four tests derived using Liang and Zeger's (1986) generalized estimating equa-
tions approach with an exchangeable working correlation matrix. These four test
statistics are distinguished by their use of either model dependent or robust vari-

ance estimates and by being either Wald or score tests. The ciassical Mantel-

Haenszel test statistic was al.. included to demonstrate the effect of falsely




assuming that cluster members’ responses are independent.

The chapter is divided into eight sections, including the introduction. The
next two sections contain the objectives and rationale for the simulation study. A
detailed discussion of the parameters used to define the study is presented in
Section 3.4. The methods used to generate the pscudo-random variables are dis-
cussed in Section 3.5 while the different test statistics being evaluated are
reviewed in Section 3.6. Finally the results of the simulation are p1zsented and

discussed in the last two sections of the chapter.
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3.2 Objectives

This simulation study was designed to compare methods of testing the

effect of treatment in stratified cluster randomization trials. There were 3

specific objectives.

1. To determine the number of clusters required per treatment group to obtain
valid type I error rates.

2. To compare the power of the test statistics.

3. To examine how robust the methods are to violations of the assumption that
the average correlation between responses of cluster members is fixed.

These three objectives were selected to allow recommendations to be made
regarding the choice of test statistics to be used when analyzing data obtained
from stratified cluster randomization trials. Attention was restricted to trials
where there were approximately 100 subjects per cluster on average while vary-
ing the number of strata, the range of risk across strata, the degree of imbalance
in cluster size and the number of clusters per treatment group and stratum. Such
cluster sizes are typical of school based trials (e.g. Murray et al, 1992) although
subsampling from larger intact social units (e.g. physicians’ practises) could

result in clusters of similar size.

All of the test statistics being compared are approximate methods so that
rejection rates for finite samples are best determined by simulation. The first
objective will allow determination of the minimum number of clusters per treat-

ment group required to obtain valid Type I error rates.
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The sample size needed for obtaining valid type I error rates may not be the
same for all methods. It was postulated in the previous chapter that the validity
of type I error rates of methods using robust variance estimators (i.e. Rao and
Scott’s (1992) ratio estimator approach and Liang and Zeger's (1986) robust test
statistics) require a greater number of clusters per treatment group than do other
approaches. The possibility that some test statistics have more stringent sample
size requirements than do other procedures was examined by varying both the

number of clusters in each treatment group and stratum and the number of strata.

For the first two objectives the data were generated so that the degree of
correlation between cluster members was the same for each cluster satisfying the
common correlation assumption. In the previous chapter it was shown that the
validity of methods such as the adjusted Mantel-Haenszel test statistic (Donald
and Donner, 1987) depends only upon the less restrictive assumption that the
average correlation between responses of cluster members is fixed. The same
resuit was shown to hold for the model dependent test statistics derived using
Liang and Zeger's (1986) generalized estimating equations, at lecast when all

variables are measured at the cluster level.

The effect of allowing the average degree of correlation within a cluster (o
vary was examined by generating the data according to "Smith’s Law" (Proctor,
1985) which states that the degree of intracluster correlation is inversely related

to cluster size. These simulations will help to develop a sense of how robust
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these statistical tests are to violations of their underlying assumptions.




3.3 Rationale

Numerous simulation studies comparing the properties of statistical methods
used in the analysis of correlated binary outcome data have been published.
Many of these are summarized in the annotated bibliography put together by

Ashby et al (1992).

The present simulation differs from these earlier studies in four ways.
Firstly, very few of these earlier studies focused on the small sample properties
of inferences concerning the effect of treatment in stratified cluster randomization
trials (e.g. Donald and Donner, 1990). Rather their focus has been on com-
pletely randomized (e.g. Donner et al (1993), Kupper et al (1986)) or matched
pairs designs (e.g. Donner and Donald (1987), Donner and Hauck (1989), Liang
(1955)) or have only been interested in individual-level covariates (Smith (1993},

Weerasekera and Bennett (1992), Wickens (1993)).

A second difference is that most of the earlier simulation studies have been
concerned with study designs in which there are few subjects per cluster and
where the degree of intracluster correlation is likely to range between (0.2 and 0.8
(e.2. Donner et al (1993), Kupper et al (1986)). The present simulation, how-
ever, is concerned with trials where fairly large clusters are randomized and
where the degree of intracluster correlation is small (i.e. less than or equal to
0.1). The asymptotic requirements of test statistics might well be different in

this latter situation.



The third difference between this simulation and earlier studies is that the
effect of variable cluster sizes was examined. Cluster sizes were generated using
the truncated negative binomial distribution described by Donner and Koval
(1987). This approach allows cluster sizes to be randomly generated with a
specified degree of imbalance. Most earlier simulation studies restricted attention
to situations where cluster sizes were fixed (e.g. Donald and Donner (1990)) or
generated cluster sizes using empirically determined distributions (e.g. Fung et

al (1993)).

The final distinct feature of the simulation studies described in this chapter
is the examination of the effect of vio.ating the assumption that the average
correlation bet-.:en the responses of cluster members is fixed. Most earlier
simulation studies have only generated data under the common correlation
assumption. Williams (1988a), one of the few researchers who was interested in
violations of this assumption, limited his examination to the effect on a beta-
binomial model which incorrectly assumed that the degree of correlation was

fixed across treatment groups.
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3.4 Parameters used to Generate the Random Variables

3.4.1 Type I Error Rates Under the Common Correlation Assumption

The number of parameters used in the design of the simulation study varied
for each of the three objectives. There were 96 different parameter combinations
used to examine the first objective which concerns the minimum number of clus-
ters required to obtain valid rejection rates for the different test statistics. These
96 different parameter combinations arose by varying five different parameters:
the number of strata, the number of clusters per treatment group, the degree of
imbalance in cluster size, the range of risk across strata, and the degree of intra-

cluster correlation.

Data were generated using either two or four strata and 20, 40 or 80 clus-
ters per treatment group. The same number of clusters were used in each treat-
ment group and stratum. For example in simulations using two strata and 20
clusters per treatment group there were m = 10 clusters in each of the four ueat-
ment group by stratum combinations, using the notation encountered in the previ-
ous chapter. This combination of the number of strata and the number of clus-
ters was selected to determine if methods which use robust estimates of variance

have more stringent asymptotic requirements than other approaches.

The smallest number of clusters per treatment group is approximately

equivalent to the number of clusters used in many of the trials examined by
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Donner et al (1990) in their review of cluster randomization trials. Larger
numbers of clusters were required 10 assure the validity of some test statistics.
Few trials would, of course, have as many as 80 clusters per treatment group. A
notable exception are the trials of vitamin A supplementation described in a
meta-analysis by Fawzi et al (1993). There were at least 100 clusters per treat-
ment group in half of the eigit community intervention trials which they

reviewed.

There tends to be considerable variability in cluster size in most cluster ran-
domization trials. Donner and Koval (1987), following the arguments put for-
ward by Ahrens and Pincus (1981), suggested measuring such variability using a
statistic denoted by

R= —1 3.1

1+CV2
where CV is the coefficient of variation for cluster size. This statistic equals one
when there is no variability in cluster size and decreases as imbalance in cluster

size increases.

Values of x = 0.8 were used to generate the variable cluster sizes employed
to study the empirical rejection rates. This degree of imbalance cormresponds to
the variability in cluster size found using data from two recent cluster randomi-
zation trials. Gyorkos et al (1989) conducted a cluster randomization trial in
which families were the unit of randomization while Murray et al (1992)

reported on a trial in which schools were randomized to treatment and control
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groups. The data from these two trials are analyzed in Chapter 4. An idea of
the degree of variability in cluster size corresponding to R = 0.8 can be obtained

by examining the data displayed in Tables 4.1 and 4.2

Simulations were also performed in which all clusters had exactly 100 sub-
jects In Chapter 3 it was shown that all of the test statistics used in the simula-
tion study are asymptotically equivalent when there are the same number of sub-
jects in each cluster. It is therefore of some interest to determine how many
clusters are required to assure equal performance among the test statistics. 1.e. to
determine the minimum number of clusters per treatment group required to

assure the application of asymptotic results.

The proportion of affected subjects in a stratum was determined using either
a narrow or wide risk range. The narrow risk range varied from 40 to 60 per-
cent while the wide band ailowed risk to vary from 30 to 70 percent. Values of
risk were =qually spaced across strata. Similar levels of risk were noted by Best
et al (1984 Figure 3) for various adolescent smoking behaviors (e.g. percent of
students who had never smoked) and by Gyorkos et al (1989) for -isk of parasite

infection.

Four different values of the intracluster correlation coefficient (i.e.
p =0, 0.025, 0.050, 0.100 ) were used to generate the proportion of affected
individuals per cluster. Binomially distributed data (i.e. p = 0 ) were included to

examine how the test statistics behaved when the responses of cluster members
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were independent as well as to help identify any patterns which might occur as
the degree of correlation approaches zero. The other values were selected to be
representative of correlation coefficients obtained from trials in which there are
about 100 subjects per cluster as well as to examine the effect of increasing

degrees of correlation on the empirical type I error rates.

There are very few published estimates of intracluster correlation represen-
tative of studies in which there are 100 subjects per cluster. Estimates of intra-
cluster correlation between 0.01 and 0.02 were calculated for the prevalence of
smoking using data collected by Murray et al (1992) and LaPrelle et al (1992).

There were, on average, approximately 140 subjects per cluster in these studies.

Estimates of comparable size were also found by interpolation using
"Smith’s Law” (Hansen, Hurwitz and Madow (1953, p. 309), Proctor (1985)).

This empirical law can be expressed as

p=An" (3.2)
where A and B are positive constants and n denotes cluster size. Data needed to

fit this model were provided by Donner (1982) who calculated intracluster corre-
lation coefficients for four different outcomes (i.e. the prevalence of hyperten-
sion, smoking, drinking and obesity) and three differe t types of clusters (i.e.
spouse pairs, physicians practises, couaties). Parameter estimates for this model
were obtained by regressing the log of the intracluster correlation coefficient

against the log of the average number of people per cluster.
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It is less common for correlations much larger than 0.05 to be found in
social units with as many as 100 members. Humphreys and Carr-Hill (1991
Table 2), however, did find correlations near 0.10 for a variety of health out-
comes using random samples of subjects from 206 electoral wards in the Uniwd

Kingdom.
3.4.2 Power Comparisons Under the Common Correlation Assumption

The same set of parameters used to determine the type I error rates of the
test statistics were also used to compare their power. Comparisons were how-
ever limited to trials in which there were 40 clusters per treatment group. It was
not possible to perform such coiaparisons when there were 20 clusters per treat-
ment group since then all of the statistical methods being compared tended (o be
overly liberal (i.e. they rejected the null hypothesis oo often when the null
hypothesis is true). The empirical rejection rates for both the classical Mantel-
Haenszel xz test statistic and Rao and Scott’s (1992) version of this statistic were
not tabulated for the same reason. The classical Mantel-Haenszel xz test statistic
was always overly liberal when p > 0 while the rejection rates for the test statis-
tic constructed using Rao and Scott’s (1992) approach was often greater than the
nominal five percent level even when there were 40 clusters per treatment group

(see Tables 3.1-3.4).

Power was determined for detecting a common odds ratio of 1.5 as statist-

cally significant at o = 0.05 (two-sided). Odds ratio of this size comespond to
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small effects in each stratum using the definition of effect size put forward by
Cohen (1988, pp. 180-185) for uncorrelated binary outcome data. This effect
size was selected because small effects are typical in preventive trials, particu-
larly those which autlempt to affect behavioral changes among participants. As
noted earlier, many cluster randomization trials are in fact preventive trials
(Donner et al, 1990). An odds ratio of 1.5 was used previously by Donner and
Donald (1987) to compare the power of statistical tests used in pair-matched
cluster randomization trials. These authors were also interested in trials in which

there were about 100 subjects per cluster.

3.4.3 Intracluster Correlation as a Function of Cluster Size

The type I error rates and power of the different test statistics were first
determined by generating the number of positive responses in a cluster under the
common correlation assumption. The effect of relaxing this assumption was
investigated by allowing the degree of cormrelation between cluster members to
vary as a function of cluster size, as suggested by "Smith’s Law". This was
accomplished by generating the random number of positive responses per cluster
from a different beta-binomial distribution separately for each cluster size and as
a function of the expected risk in each stratum and treatment group. Parameters
were selected to reflect the relationship between cluster size and intracluster
correlation described by Donner (1982) and to ensure that p = 0.025 when there

were 100 subjects in a cluster.
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Four combinations of the parameters A and B in equation (3.2) were used.
The four pairs are (0.C25, 0.0), (0.1, 0.3010), (0.5. 0.650S). and (0.9, 0.7782).
The first pair of parameters fixes the degree of correlation at 0.025 for all clus-
ters and was included to serve as a baseline comparison. The varation in the
degree of intracluster correlation as a function of cluster size was greatest when
A=09 and B=0.7782. Examples of the vanation in the degree of intracluster
correlation for clusters of three different sizes are presented in Table 3.7 for each

of the A,B parameter pairs.

It is quite common to stratify by cluster size in cluster randomization trials.
To correspond to this design feature the average cluster size was varied across
strata. This also had the effect of varying the average degree of intracluster

correlation across strata.

There were 55 subjects per cluster, on average, in the stratum where the
risk was lowest while in the stratum with the highest risk there were, on average,
145 subjects per cluster. Average cluste: size varied evenly between these two
extremes in *he remaining strata. Therefore there were stll 100 subjects per

cluster, after averaging across strata.

Some reduction in the variability of cluster size would likely result in prac-
tice when stratifying by average cluster size, i.e. stratification would not be “pes-
fect". Therefore cluster sizes were generated by setting the imbalance parameter,

x equal to 0.9.
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Y w, R, where w, is the i'th stratum weight and R;; is the sum of the ranks for

=1

clusters from the control group. van Elteren (1960) proposed two statistics using
the weights 1/(m _+1) and 1/(m,;m,). Tests using the first weight have
locally optimal properties when there are few strata and many clusters per stra-
tum and treatment group (van Elteren, 1960). Statistics using this weight are
also discussed in detail by Lehmana {1575 pp. 135-138). Tests using th. latter
weight are more appropriate as the number of strata gets large. The test statistic
suggested by Shirley (1987) differs from van Elteren’s (1960) in selecting identi-
cal weights for all strata while Mantel (1963) and Fry and Lee (1988) argue for
the use of weights proportional to the inverse of the number of clusters per stra-
tum. All these methods are equivalent when there are the same number of clus-

ters in each stratum and treatment group.

Exact tests for these stratified rank statistics are likely to be nearly as com-
putationally intensive as more powerful tests using the untransformed cluster
risks. Thi- difficulty occurs because the high probability of ties would require
calculating stadstical significance separately for each data set rather than being
able to construct tables of p-values as is commonly done for rank transformed
data. Even if there were no tes tables of the distribution might not be practical
to construct since the distribution of the test statistic is a function of the number
of strata in addition to the number of clusters per stratum and treatment group

(Lehmann, 1975 p. 135). Separate tables would then have to be constructed for




3.5 Generation of the Pseudo-Random Data

There are three approaches which have been used to generate varable clus-
ter sizes for simulatior studies of correlated binary outcome data. The simplest
approach is to deterministically select variable cluster sizes. This approach was
used by Donner and Donald (1987) in their simulation study which was designed
to compare tests of the effect of treatment in pair-matched cluster randomization
trials. Three levels of imbalance were used. If there were 120 subjects per clus-
ter the study was said to be balanced. A mildly imbalanced study had clusters of
60, 120 or 180 subjects while severely imbalanced studies had 20, 120 or 220
subjects per cluster. The principal attraction of this approach is that the degree

of variability and mean cluster size can be varied to suit particular problems.

An altemative approach is based on taking random samples tfrom distribu-
tions of cluster sizes obtained from earlier studies. This approach has been pri-
marily used by researchers investigating methods applicable to dose response
modelling in teratology (e.g. Kupper et al, 1986). The results of simulation stu-
dies which use this approach are more generally applicable than when the vari-
able cluster sizes are restricted to only a few predetermined values. Of course it
is no longer possible to vary either the mean cluster size or the degree of varia-

bility in cluster size when this technique is used.

The third approach combines the advantages of both these methods. It

requires specification of a parar-_tric distribution from which cluster sizes can be




randomly sampled. Both the average cluster size and the degree of imbalance
can be varied t suit particular problems while not restricting clusters to, a few,

predetermined sizes.

Donner and Koval (1987) suggested using a negative binomial distribution

truncated below one to model cluster sizes. This distribution can be expressed as

_ (s+n=1)! (14R)” (R/[14R])"
(s=1)'n! (1 - [14RT™S)

P(n) n=1,2... (3.3)

wiere the mean and imbzlance parameters can be expressed as

Em)=sR/(1+[I+R)”) and (3.4)

K =E()/(1+R+sR) respectively. (3.5)

Values of s (s>() and R (R>0) for given mean and imbalance parameters of clus-

ter size can be obtained by solving the two nonlinear equations (3.4) and (3.5).

The truncated negative binomial distribution was earlier shown to fit the distribu-
tion of family sizes in a variety of countries by Brass (1958) and has also been
used to generate litter sizes in a recent simulation study which compared
methods used for testing homogeneity of proportions in teratologic studies
(Donner et al, 1993). This model was also used to generate random cluster sizes

for the simulation study discussed in this chapter of the thesis.

The number of affected individuals in a cluster were generated from a

beta-binomial distribution, conditional on the cluster size. This distribution has
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been used in a number of simulation studies which compared methods of
analysis for correlated binary outcome data (e.g. Kupper et al (1986), Paul et al

(1989)). The distribution is described in greater detail in Section 2.7,

The cluster sizes and the number of positive responses per cluster were gen-
erated using the cumulative distribution function algorithm described by Kennedy
and Gentle (1980, p. 177). This technique is implemented by first gencrating a
random number between 0 and 1 from a uniform distribution. A pseudo-random
number from any specified distribution can then be obtained as the p’th percen-
tile from the relevant cumulative distribution function. Pseudo-random numbers
from a uniform (i.e. u(0,1)) distribution were generated using an adaptation of

Wichman and Hill's (1982) procedure.

Random variables from a truncated negative binomial distribution include
all integers greater than or equal to one. The cumulative distribution function
algorithm can however only be implemented by specifying an upper limit. No
clusters were generated which were greater than or equal to 500. This likely had
little effect since there is only a (0.0001497 percent chance of obtaining a cluster
larger than 500 from a truncated negative binomial distribution with mean cluster

size of 100 and imbalance parameter of x = ().8().

A continuing problem with the design of many simulation studies is that lit-
tle justification is given for the number of iterations used (Robey and Barci-

kowski, 1992). In this simulation study S00 iterations were used (o estimate
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rejection rates for each combination of parameters. This number of iterations
was selected so that the approximate 95% confidence limits for a five percent
rejection rate were (0.031,0.069). Therefore statistical tests which have empirical
type I error rates less than 0.03 can be considered to be overly conservative
while tests which have empirical type I error rates greaier than 0.07 are overly

liberal (Bradley, 1978).

All of the computer programs used for this simulation study were written in
FORTRAN 77 and run on a UNIX based network of SUN Workstations. Much
of the code was adapted from earlier programs written by colleagues in the

Department of Epidemiology and Biostatistics at the University of Western

Ontario.
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3.6 Test Statistics

The 11 test statistics which are being evaluated in this chapter were selected
as being representative of the procedures discussed in the previous chapter. Ten
of these test statistics adjust for the cffect of clustering. These ten procedures
include the stratified t-test (Schwartz et al, 1980), the extended Mantel-Haenszel
x2 test (Mantel, 1963), Donald and Donner’s (1987) adjusted Mantel-Haenszel
test, Rao and Scott’s (1992) version of the Mantel-Haenszel test, a likelihood
ratio test constructed using the beta-binomial distribution, and four tests derived

using Liang and Zeger’s (1986) generalized estimating equations approach.

The classical Mantel-Haenszel test statistic was also included to demonstrate
the effect of ignoring the effect of clustering on the empirical rejection rates.
This test statistic is denoted CMH in the tables displaying the results of the

simulation study.

Two of the ten test statistics which adjust for the effect of clustering use the
cluster as the unit cf analysis. Thew- two methods are the stratified t-test dis-
cussed by Schwartz et al (1980(). pp. !89-'91) and the extended Mantel-Haenszel
test statistic described by Mantel (1963) and discussed in detail in Section 2.4,
They are denoted TST and EMH respectively. The stratified t-test is a special
case of equation (2.3.6), found in Section 2.3 of this thesis, which arises when

outcomes are binary and there are m clusters in each stratum and treatment

group.
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It was pointed out in Section 2.4 that these two test statistics differ pri-
marily in that the sample variance is calculated under the null hypothesis for the
extended Mantel-Haenszel test and under the alternative hypothesis for the
stratified t-test. An additional difference arises in how the statistical significance
for these two test statistics is calculated. The stratified t-test was declared to be
statistically significant at the 5% level if the absolute value of the test statistic
was greater than the 97.5'th percentile from a t, . _,, distribution. Extended
Maniel-Haenszel tests, and each of the remaining test statistics were declared to
be statistically significant at the 5% level if the test statistic was greater than

3.841, the 95°th percentile of a X;z distribution. Thus all these procedures

employ two-tailed tests of significance.

Several authors have proposed using the F rather than the x2 distribution to
determine critical values for statistical tests constructed using correlated binary
outcome data (Collett (1991 pp. 196-204), Lipsitz et al (1991), Williams (1991)).
The rationale for this, somewhat ad hoc approach, is to account for the degrees

of freedom used to estimate the coefficient of intracluster correlation.

This approach was not followed for the test statistics used in this simulation
study and probably would have had little effect if it had. There were always at
least 32 degrees of freedom (= 4 strata x 2 wreatment groups x (5-1) clusters in

each stratum and treatment group) available to estimate p. The critical value

used to construct an F test with 1 and 32 degrees of freedom would be 4.149 if
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the o error were S percent. This is not much larger than 3.841, the equivalent

xlz critical value.

The next two test statistics being compared by simulation are two versions
of the adjusted Mantel-Haenszel test statistic described by Donald and Donner
(1987). These two versions of the adjusted Mantel-Haenszel test statistuces are
distinguished by how the intracluster correlation coefticient is estimated.  Follow-
ing Donald and Donner (1987) the first version of this test statistic, denowd
MH]1, is calculated using the average of the 2k ANOVA estimators from cach
stratum and weatment group. The second version of the adjusted Mantel-
Haenszel test statistic, denoted MH2, is calculated using an ANOVA estimator
obtained using the variance components from a mixed-effects linear model with
terms for the effect of the strata, the treatment and their interaction. This is the

statistic denoted pg described in Section 2.3.

These two ANOVA estimators of intracluster correlation were shown to bhe
asymptotically equivalent in Section Z.3, at least in the special case where there
are exactly n subjects in each cluster. It was also hypothesized in this section of
the thesis that pg would be the more precise estimator since it is uses more
efficient weights. Both versions of the adjusted Mantel-Haenszel test statistic
were included to determine if the hypothesized greater precision of P affects

either the type I error rates or the power to reject the null hypothesis.

1o
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Rao and Scott (1992) suggested an alternative approach which could be
used to adjust the Mantel-Haenszel test statistic for the effect of clustering.
Their adjusted Mantel-Haenszel test statistic, denoted RSM, is presented in equa-
tion (2.6.5) of Section 2.6 of this thesis. The adjustment is based on estimating
the effective number of independent observations in each stratum and treatment
group using the theory of ratio estimation. The classical Mantel-Haenszel test
statistic can then be calculated using these adjusted data. Such test statistics are
rebust in the sense that they make no assumptions about the degree of correla-

tion between responses of cluster members.

The seventh test statistic used in the simulation study is a likelihood ratio
test constructed using the beta-binomial distribution. This test statistic is
included primarily as a benchmark against which to compare the other test statis-
tics since this is the only procedure which is based upon the same distribution
used to generate the data. Maximum likelihood estimates required to construct
the test were obtained using the Newton-Raphson procedure with observed ... -
mation as described by Collett (1991 Appendix B) and outlined in Section 2.7 of
the thesis. Problems with convergence which occurred when p =0 led to the

use of the likelihood ratio test assuming independence in this case.

The last four test statistics (i.e. numbers 8 through 11) being compared by
simulation are based on Liang and Zeger's (1986) generalized estimating equa-

tions approach using an exchangeable working correlation matrix. The four gen-
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eralized estimating equations procedures are the model dependent Wald test, the
robus. Wald test, the model dependent score test and the robust score test. They
are denoted WZN, WZR, SZN, and SZR respectively in the tables displaying the

results of the simulation study.

Parameter estimates needed to calculate the model dependent and robust
Wald tests were obtained using the iterative procedure outlined in Section 2.8 of
this thesis. Model dependent and robust score tests were calculated analytically
using estimates of intracluster correlation obtained when constructing the Wald
tests. Such estimates of intracluster correlation are preferable because they are
consistent under both the null and alternative hypothesis (Breslow, 1990). An

algebraic justification for this approach is presented in Section 2.8.

Parameters for the simulations were selected primarily to address the objec-
tives listed in Section 2 of this chapter. Some attention was also given to reduc-
ing the possibility that there would be any convergence problems for the iwrative
procedures. Any iterations where the iterative procedures failed to converge

were replaced.

It was noted in Section 1.4.1 that negative intracluster correlation
coefficients are generally considered implausible in the context of cluster ran-
domization trials. For this reason negative estimates of p are usually set to zero.
This practice was also followed in the present study. For a similar reason the

design effects required when calculating the Mantel-Haenszel test statistic using
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Rao and Scott’s (1992) ratio estimator approach were set to one if they were less
than unity. This practice was also followed by Fung et al (1993) and Donner et

al (1993).
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3.7 Results

There were very few problems encountered when running the computer pro-
grams used in this simulation study. There was never more than one iteration
out of 500 which failed to converge. As mentioned in the previous section any
such iterations were replaced. Lack of convergence enly occurred when attempt-
ing to fit the beta-binomial logistic regression model, and then only when gen-
erating data in which the intracluster correlation cocetticient equals 0.025, the
smallest non-zero comrelation used in the simulation study. The failure to con-
verge was most likely a consequence of attempting to maximize the likelihood
equation when the best estimate of intracluster correlation was less than zero,

which is outside of the allowable range for the parameters of the model.

Failure 10 converge when fitting beta-binomial logistic regression models
can also occur when all of the subjects in a stratum and treatment group have the
same response. If this situation occurs finite maximum likclihood estimates
might not exist causing the lack of convergence. The combination of large clus-
ter sizes and small correlation coefficients eliminated the possibility that similar

situations could occur in this simulation study.

The results from the simulation study are presented separately for the three
objectives of the study. The type I error rates calculated using data gencrated
under the common correlation assumption are discussed first. Results from these

simulations are displayed in Table 3.1 through Table 3.4. These tables are
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distinguished by the number of strata and the range in risk across the strata.

The power of the different test statistics are compared next. Results from
simulations in which there were two strata are displayed in Table 3.5 and results
from simulations in which there were four strata are displayed in Table 3.6. The
data from these simulations were also generated under the common correlation

assumption.

The third set of simulations were concerned with the effect of allowing the
degree of correlation to vary as a function of cluster size. The type I error rates
and power of the test statistics in such circumstances are presented in Tables 3.8

though 3.11.

3.7.1 Type I Error Rates Under the Common Correlation Assumption

The empirical type 1 error rates for the classical Mantel-Haenszel test
(CMH) were only approximately equal to 0.05 when the responses of cluster
members were uncorrelated. The rejection rzies for this test statistic increased

dramatically for even very small correlation coefficients.

The stratified t-test (TST) and the extended Mantel-Haenszel test statistic
(EMH) were the two techniques whose type I error rates were the closest to the
nominal 5% level. Even these two methods, however, tended to reject the null

hypothesis too often when there were 20 clusters in each treatment group.



There is very little difference in the Type I error rates of the two adjusted
Mantel-Haenszel test statistics even when there are only 20 clusters per treatment
group and the clusters sizes are allowed to vary. The rejection rates tended 1o be
overly liberal for these two test statistics and all the remaining test statistics

unless there were at least 40 clusters per treatment group.

Rao and Scott’s (1992) adjusted Mantel-Haensze!l test statistic tended to
have the most liberal rejection rates when responses of cluster members were
correlated. The rejection rates remained too high unless there were at feast 20
clusters .« each treatment group and stratum. Note that rejection rates were still
too high on occasion even with this number of clusters. This mcthod had the

most severe asymptotic requirements of all the test statistics being compared.

The beta-binomial likelihood ratio test also tended to reject the null
hypothesis too often when the responses of cluster members were correlated
unless there were at least 40 clusters per reatment group. For a given number
of clusters per weatment group the problem tended to be more severe when there

were four as opposed to two strata.

There was little difference in the size of the model dependent Wald and
score tests Rejection rates from the robust Wald tests were consistently jarger
than the robust score tests which were, in general, larger than the rejection rates

of the model dependent tests. The robust Wald and score tests were also the

only two out of the eleven procedures examined in the simulation which ended
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to reject the null hypothesis too often when the responses of cluster members

were uncorrelated.

3.7.2 Power Comparisons Under the Common Correlation Assumption

The most striking feature of the power comparisons of the different test
statistics is the inverse relationship between power and ‘> degree of intracluster
correlation. Power ecqualled 100 percent when responses of subjects were
uncorrelated and decreased to about 70 percent as the degree of intracluster

correlation rose to 0.100.

Power differences between methods tended to be less extreme. The greatest
differences occurred when p = 0.100. In this case the range in power was as
great as 10 percent. The highest powers were associated with the beta-binomial
likelihood ratio test while the lowest powers were found using the stratified t-
test, the extended Mantel-Haenszel test statistic or either adjusted Mantel-
Haenszel tast statistics. Only marginal differences in power were found between

the two adjusted Mantel-Haenszel test statistics.

A curious pattern emerged when comparing the difference in power arising
when there was no variability in cluster size (i.e. x = 1.0) and and when x = 0.8.
The power was consistently larger for balanced data only for the adjusted

Mantel-Haenszel test statistics, approaching a difference of 6 percent when

p = 0.100. The effect of imbalance was inconsistent for the cluster-level test

0
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statistics while the power was greater for the remaining test statistics when clus-
ter sizes were variable. The differences were never more than 3 or 4 percent,

however.

3.7.3 Intracluster Correlation as a Function of Cluster Size

Type 1 error rates were not aftected when the degree of intracluster correla-
tion was allowed to vary by cluster size. Rao and Scott’s (1992) version of the
Mantel-Haenszel test statistic was the only test statistic which was overly liberal.
However the problems with this test statistic only occurred when there were four
strata and 10 clusters in each stratum and treatment group (see Table 3.8). There

was also almost no decrease in power accompanying a greater dependence of p

on cluster size.




Table 3.1

Empirical Type I Error Rates (a = 5% )

Wide Risk Range

Data Generated Under the Common Correlation Assumption

4 Strata
Intracluster Correlation Coefficient, p
Test K 0.000 0.025
m m

5 10 20 5 10 20

1. CMH 8 || .050 .052 .064 | 282 348 352
1 068 .060 .054 | .284 302 274

2. TST 8 062 .056 062 | .056 .060 .068
1 070 062 .052 | .072 .062 .052

3. EMH 8 052 .058 .060 | .05s4 .060 .068
1 068 .062 .050 | .070 .060 .048

4. MH1 .8 038 .048 0S8 | .050 .058 .072
1 064 052 .046 , .086 .064 .056

5. MH2 .8 " 038 .048 .058 | .050 .0s8 .072
1 064 052 .046 | .084 .064 .056

6. RSM 8 044 046 046 | .130 .108 .086
1 052 .04 034 | .126 .088 .056

7. XLR 8 050 .054 064 | .066 .064 .074
1 068 .060 .054 | .092 .068 .056

8. WZN R 042 052 058 | 056 .062 .070
1 064 .052 .046 | .084 .062 .060

9. WZR 8 072 068 072 | .078 .066 .074
1 094 072 056 | .098 .072 .062

10. SZN 8 042 052 .058 | .058 .062 .070
1 N64 052 046 | .084 062 .060

11. SZR 8 060 064 072 | 064 064 074
1 082 068 .054 | .092 062 .060
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Table 3.1 Continued ...
Data Generated Under the Common Correlation Assumption
Empirical Type I Error Rates ( o = 5% )
Wide Risk Range
4 Strata _
" Intracluster Correlation Coefticient, p
Test X 0.050 0.100
m m
5 10 20 h) 10 20
1. CMH .8 406 486 480 | .536 .634 .608
1 406 440 406 | 556 540  .562
2. TST .8 056 064 068 | .050 .066 .068
1 074 062 054 | .072 066 .052
3. EMH .8 058 064 066 | .050 .066 .068
1 070 .058 052 | .066 .062 .050
4, MH1 8 048 056 .066 | .042 064 .062
1 084 064 .060 | .084 066 .060
S. MH2 8 044 056 066 | .042 .058 .060
1 082 064 060 | .082 .068 .058
6. RSM 8 A58 108 088 | .158 112 .086
1 136 086 .062 | .136 .088  .058
7. XLR 8 072 066 .072 | .070 068 .074
1 092 .068 .058 | .092 066 .050
8. WZN 8 062 066 070 | .064 .064 066
1 078 062 .054 | .078 .066 .058
9. WZR .8 076 .068 .080 | .072 .074 076
1 098 072 062 { 092 .076 .060
10. SZN 8 062 066 .072 | 064 064 .066
1 078 062 .054 | 078 066 .060
11. SZR .8 068 068 .074 | .066 .066 .068
1 088 .068 .058 | .080 .068  .060
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Table 3.2

Data Generated Under the Common Correlation Assumption

Empirical Type I Error Rates (& = 5% )
Narrow Risk Range
4 Strata

Test

Intracluster Correlation Coefficient, p

K 0.000 0.025

5 10 20 5 10 20

1. CMH 8 052 066 .062 | .284 344 366
1 068 0S8 .046 | .288 302 .268
2. TST 8 062 056 .058 | .056 .060 .062
1 076 062 .050 | .076 .060 .050
3. EMH .8 056 .062 .058 | .052 .058 .062
1 076 .058 046 | 072 .058 .050
4. MHI 8 044 056 .060 | .058 .058 .06C
1 066 .054 040 | .086 .060 .052
5. MH2 8 044 058 .060 | .050 .058 .062
1 066 054 .040 | .082 .060 .052
6. RSM .8 050 .050 .050 | .136 .108 .082
1 048 044 034 | .124 090 .062
7. XLR 8 052  .066 .062 064 066 .068
1 068 058 046 | .06 .066 .052
8. WZN 8 042 056 .060 | .056 062 .068
1 066 054 .040 | .084 060 .050
9. WZR 8 078 072 .072 | 072 .072 .076
1 09 070 .060 | .104 074 .054
10. SZN 8 042 056 .060 | .056 .062 .068
1 066 054 .040 | .084 060 .050
11. SZR 8 062 070 .068 | .062 .064 .070
1

090 066 .054 | .090 .064 052
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Table 3.2 Continued ...
Data Generated Under the Common Correlation Assumption
Empirica: Type I Error Rates ( a = 5% )
Narrow Risk Range

___ 4 Strata
Intracluster Correlation Coefficient, p
Test X 0.050 0.100
m m
| 5 10 20 5 10 20
T.CMH | 8 || 408 .488 .482 | .548 612 612
1 || 408 438 406 | .554 548 554
2.TST | 8 | 054 068 076 | .056 .066 068
1 { 074 060 048 | 074 062 050
3.EMH | 8 | 058 .060 068 | .056 .06 .068
1 || 072 060 046 | 074 064 048
4 MHI | 8 || 050 058 066 | .048 058 .064
1 [ os6 .062 050 | .084 068 .056
5.MH2Z | 8 || 048 .060 066 | .044 058 .064
1 | 088 062 048 | .082 068 .056
6.RSM | 8 || .154 .112 084 | .158 .112 080
1 | 134 090 058 | 140 090 .058
7.XLR | 8 | .072 068 .070 | .070 068 .074
1 | 092 072 054 | .092 072 .054
8. WZN | 8 | 064 066 .070 | 062 .068 .072
1 f 082 .62 052 ] .078 066 .052
9.WZR | 8 || 076 070 076 | .072 010 .074
1 | .100 .072 058 | .104 076 .056
10.SZN | 8 | 066 .066 .070 | 064 068 .072
1 | 082 062 052 | .078 066 .052
11.SZR | 8 || .066 .066 070 | .066 068 .074
1 || 088 064 054 | .086 068 .052




Table 3.3

Empirical Type I Error Rates ( o = 5% )
Wide Risk Range
2 Strata

Data Generated Under the Commeon Correlation Assumption

Intracluster Correlation Coefficient, p

Test K 0.000 0.025
m m
10 20 40 10 20 40
1. CMH 8 054 .048 056 | 396 318 314
1 058 048 064 | .306 280 318
2. TST 8 070 .050 .060 | .080 .050 .052
1 060 .054 062 | .062 .046 .066
3. EMH 8 066 .050 .060 { .078 .050 .052
1 060 .052 .062 | .058 .044 .066
4. MH1 8 042 042 050 | .090 046 .052
| 048 .044 058 | 070 .058 .068
5. MH2 .8 042 042 050 | .082 046 .052
1 048 044 058 | .068 .056 .068
6. RSM 8 042 034 046 | .122 .052 .064
1 044 040 052 | .082 .060 .070
7. XLR .8 054 048 056 | .082 .050 .058
1 058 .048 064 | .068 .062 .062
8. WZN 8 038 .042 050 | .082 .048 .056
1 048 042 .060 | .074 058 .068
9. WZR 8 JJ00 060 062 | .094 .054 .060
1 082 .062 .068 | .076 .060 .070
10. SZN 8 038 .042 050 | .082 .048 .056
1 048 042 060 | .074 058 .068
11. SZR 8 074 044 060 | 078 .048 .058
1 062 058 .062 | 066 .052 .068




Tabie 3.3 Continued ...
Data Generated Under the Common Correlation Assumption
Einpirical Type I Error Rates (o = 5% )
Wide Risk Range
L 2 Strata
fe—— ———e— L
Intracluster Correlation Coefficient, p
Test K 0.050 0.100
m m
10 20 40 10 20 40
.CMH | 8 1 518 436 464 | 636 598 614 |
1 446 420 432 | 558 560 550
2. TST 8 068 .048 054 | .080 .050 .056
1 064 046 066 | .068 .050 .064
3. EMH 8 068 048 054 | .070 048 .056
1 062 046 066 | .064 048 .064
4. MH1 .8 094 048 052 | .094 050 052
1 074 054 070 | .074 056 .068
5. MH2 8 082 .048 052 | .084 .050 .052
1 068 052 068 | .074 .054 .064
6. RSM .8 A32 060 060 | (136 .060  .060
l 082 .052 074 | 088  .058 .066
7. XLR 8 080 .056 056 | .086 .050 .056
1 066 058 064 | .066 .056 .062
8. WZN 8 082 050 .058 | .080 .050 .056
1 072 052 068 | 072 054 068
9. WZR 8 092 054 060 | .092 054 058
1 ﬂ 080 062 072 | .084 0S8 070
10.SZN | 8 | .082 050 .058 | .082 .050 .0S8
1 072 052 068 | .074 .054 .06%
I1.SZR | .8 | .080 .048 .056 | .082 .050 .056
| 066 050 068 | .072 052 064




Table 3.4

Data Generated Under the Common Correlation Assumption

Empirical Type I Error Rates (a = 5% )

Narrow Risk Range
2 Strata

Test

1. CMH

Intracluster Correlation Coefficient, p

0.000 0.025

m m
10 20 40 10 20 40

050 | .400 310 316
314 292 326

e e —— |

2. TST

076 .050 .052
062 .054 .062

3. EMH

074 050 .052
060 .054 .062

4. MH1

042 038 046 | .090 .046 .054
052 044 060 | 066 .060 .068

5. MH2

044 038 048 | 084 .048 .054
052 .044 060 | .066 .060 .068

6. RSM

046 038 .046 | .124 054 .060
046 040 .056 | .080 .064 .068

7. XLR

056 .044 050 | .080 .048 .058
058 050 066 | .066 .058 .064

8. WZN

044 038 .048 | .082 046 .060
052 .044 060 | .066 .058 .066

9. WZR

098 052 064 | .094 050 .062
084 062 068 | .074 .058 .070

10. SZN

044 038 048 | .082 046 .060
052 044 060 | .066 .058 .066

11. SZR

— Bo| = Bo| = be| — bo| — bo| = do| = 0| = 0| = sof — o[~ ae

076 .046 .058 | .078 .046 .062
064 056 .066 | .066 .056 .064




Table 3.4 Continued ...

Data Generated Under the Common Correlation Assumption
Empirical Type I Error Rates (a = 5% )

Narrow Risk Range
2 Strata

Intracluster Correlation Coefticient, p

Test 'Y 0.050 0.100

m m
10 20 40 10 20 40
[1.CMH | 8 526 438 468 | 632 582 .622
1 440 422 424 | 560 .556 .542
2.1ST | .8 072 054 054 | 072 .048 050
1 062 048 064 | 064 .048 060
3.EMH | 8 1066 052 054 | .068 046 .052
1 .056 046 062 | 060 .048 060
4. MHL | 8 086 046 052 | 088 046 050
1 070 056 064 | 072 052 .060
5. MH2 | 8 084 046 052 | 082 046 052
1 070 054 066 | 070 .052 .060
6. RSM | 8 122 054 060 | .132 054 058
1 “ .080 064 066 | .082 .060 .064
7.XLR | 8 1086 054 056 | 088 .060 058
1 064 056 066 | 064 056 .062
8. WZN | 8 080 054 064 | 078 048 058
1 068 054 064 | .070 052  .060
9. WZR .8|| .096 056 064 094 052 .060)
1 080 .058 070 | .080 056 .064
10. SZN | 8 080 054 064 | 082 048 05K
1 068 .054 064 | .070 .052 .060
11. SZR | .8 076 052 062 | 078 .046 058
1 066 052 064 | 068 052 .060
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Table 3.5

Data Generated Under the Common Correlation Assumption

Power to Detect An Odds Ratio of 1.5

m=10
_4 Strata L
.” Risk Range
Test K Narrow Wide
P P

0.025 0.050 0.100 j 0.000 0.025 0.050 0.100

2. TST 8 .994 944 750§ 1.000 992 920 722
1 1.000 934 746 | 1.000 996 916 720

3.EMH | 8 .996 944 746 | 1.000 992 922 718
1 1.000 938 742 1 1.000 996 914 720

4. MH1 .8 998 924 .694 1.000 988 902 666
1 1.000 940 758 | 1.000 996 922 728

S.MH2 | 8 998 920 692 | 1.000 990 900 .666
| 1.000 .940 758 | 1.000 998 922 728

7.XLR | .8 998 .948 792 | 1.000 996 942 .766
1 1.000 944 770 | 1.000 996 .930 744

8. WZN | 8 .998 944 758 | 1.000 996 934 732
1 1.000 .940 752 | 1.000 996 916 726

9. WZR | 8 998 950 786 | 1.000 998 940 .750
1 1.000 .944 762 | 1.000 998 .926 .738

10. SZN | .8 || 1.000 998 944 758 | 1.000 .996 .934 732
1 1.000 1.000 940 752 | 1.000 996 916 726

11. SZR .81] 1.000 998 944 768 | 1.000 998 932 740
1 1.000 1.000 942 754 | 1.000 998 918 730

(@)
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Power to Detect An Odds Ratio of 1.5

Table 3.6
Data Generated Under the Common Correlation Assumption

m=20
2 Strata

Risk Range

Test K Narrow Wide

0.000 0.025 0.050 0.100 { 0.000 0.025 0.050 0.100

2. TST 8 | 1.000 990 940 758 | 1.000 986 910 706
| 1.000 .992 936 732 | 1.000 992 906 .664

3.EMH | .8 | 1.000 .990 938 754 | 1.000 986 910 700
1 1.000 992 934 726 | 1.000 992 904 .658

4. MH1 8 || 1.000 984 914 700 | 1.000 978 870 .640
1 1.000 .992 940 744 | 1.000 992 914 .684

5S.MH2 | .8 | 1.000 .986 914 694 | 1.000 978 872 642
1 1.000 992 940 742 | 1.000 992 912 682

7.XLR | .8 || 1.000 .992 938 788 § 1.000 988 922 736
1 1.000 992 .940) .764 | 1.000 992 922 .706

8. WZN | .8 || 1.000 992 938 768 | 1.000 988 916 710
1 1.000 992 .M8 .740 | 1.000 992 910 674

9. WZR | .8 || 1.000 992 940 780 | 1.000 988 922 124
1 1.000 992 942 758 1 1.000 992 918 694

10. SZN | .8 {| 1.000 992 938 768 § 1.000 988 916 710
1 1.000 992 940 740 | 1.000 992 910 678

11.SZR | .8 || 1.000 992 938 768 | 1.000 Y88 914 712
1 1.000 992 938 738 | 1.000 992 912 676




Table 3.7
Intracluster Correlation As a Function of Cluster Size
using Smith’s Law
Pp=An">

Values for the Parameters A.B

0.025,0.0 0.1, 0.3010 0.5, 0.6505 0.9, 0.7782
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Table 3.8

Intracluster Correlation Allowed to Vary with Cluster Size

[p =A n'BJ
Empirical Type I Error Rates (ax = 5%)
m=10
4 Strata
Risk Range
Test Narrow Wide
A.B AB
0250 .1,.301 5,651 9,778 | .025,0 .1,.301  5.651  9.77%

316 304 290 336 320 .300 304
068 .070 .064 066 .066 066 066
3. EMH .068 066 .070 062 062 .064 062 066
4. MH1 .060 .060 064 060 056 064 062 062
5. MH2 .060 062 .064 .064 054 060 .058 N62
6. RSM .096 .094 100 096 .090 096 096 094
7. XLR 066 .066 .072 070 058 068 066 070
8. WZN .064 .066 .068 066 058 062 062 064
9. WZR 072 .068 074 070 064 068 068 076
10. SZN .066 .066 .068 .066 .058 .62 062 064
11. SZR | .064 066 068 070 060) 066 068 068
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Table 3.9
Intracluster Correlation Allowed to Vary with Cluster Size
p An ‘l’
Empirical Type I Error Rates (o = 5%)
m=20
2 Strata _
Risk Range
Test Narrow Wide
AB AB
0250 .1,301 .5.651 9,778 | .0250 .1,301 5,651 9,778
1. CMH 322 .298 .284 .288 316 .302 .288 .280
2. TST [| .048 .050 .046 .046 048 046 .042 .048
3. EMH .048 .050 .042 .046 .050 044 044 .048
4. MHI 054 046 .042 .036 054 .040 038 .040
5. MH2 .050 .048 .050 .046 050 .046 .044 .050
6. RSM .048 052 .048 044 .058 .050 048 .048
7. XLR .054 054 .050 .046 052 .052 .044 .044
8. W«N .052 .050 044 .044 .054 .048 .046 046
9. WZR .058 054 .050 .048 054 .056 .050 .046
10. SZN .052 050 .044 044 .054 .048 046 046
[ 11. SZR |] 048 .052 .048 046 .050 .048 .046 046
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Table 3.10
Intracluster Correlation Allowed to Vary with Cluster Size
p=A n®
Power to Detect An Odds Ratio of 1.5
m=10
__4 Strata

Test

Risk Range

Narrow Wide

AB AB

.025,0 .1,.30t  .5.651 9,778 | .025,0 .1,301 5,651

9,778

996

7. XLR .996 994 .996 .994 994 9% 994

8. WZN 996 994 996 994 998 994 994 994
9. WZR .996 996 .998 .996 .998 996 996 996
10. SZN 996 994 996 994 998 994 994 994
11. SZR ﬂ .996 .996 .998 994 998 994 .996 996




Table 3.11
Intracluster Correlation Allowed to Vary with Cluster Size
p=A n?
Power to Detect An Odds Ratio of 1.5
m=20
2 Strata
Risk Range

Test Narrow Wide
AB AB

0250 .1,301 .5.651 9,778 | .0250 .1,301 .5,.651

9,778




3.8 Discussion
3.8.1 Type I Error Rates Under the Common Correlation Assumption

Cluster randomization trials in which there are about 100 subjects per clus-
ter will rarely have as many as 20 clusters per treatment group. The results of
these simulation studies suggests that even this number of clusters is insufticient
to assure the validity of most approximate test statistics. Researchers will either
be forced to include a greater number of clusters in their trials or limit attention

to exact tests.

Exclusive reliance upon exact tests is however not practical. Such tests
require sophisticated computer programs (e.g. StatXact (1991)) which are still
not widely available. Furthermore there may still be situations were therc are
too few clusters to assure the validity of asymptotic methods and yet too many
clusters to allow exact p-values to be calculated. The exact p-values would then
have to be estimated by taking random samples of the possible permutations. An
additional limitation of most exact tests is that they ignore any variation in clus-

ter size resulting in a loss in power (see Section 2.4).

There was considerable variability in the asymptotic requirements of the
different test statistics. Surprisingly the rejection rates nearest the nominal five
percant nominal level were found using the stratified t-test and the extended

Mantel-Haenszel xz test statistic. It is difficult to explain why these methods

ne
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performed so well. One possibility is that estimates of variance for these
methods were calculated using the between-cluster variability rather than reiying
upon estimates of intracluste: correlation to correct for the effect of clustering.
Such estimates can be very imprecise when there are few clusters (e.g. Feng and

Grizzle, 1992).

Difficulties in assuring the validity of approximate statistical tests has been
noted in earlier simulation studies. Overly liberal rejection rates for likelihood
ratio tests based on the beta-binomial distribution have been noted previously by
Shirley and Hickling (1981) and by Donner et al (1981) when there were few

clusters per treatment group.

Curiously Donald (1984) found that adjusted Mantel-Haenszel test statistics
were overly conservative rather than rejecting the null hypothesis too often. The
differences could be due to the very different cluster sizes in the two simulation
studies. Donald’s (1984) simulation study examined stratified cluster randomiza-
tion trials in which there were five strata and 240 subjects. These subjects came
from clusters of fixed size with either 2, 4, or 6 subjects per cluster and 60, 30,

or 20 clusters per treatment group respectively.

The Mantel-Haenszel test statistic calculated using Rao and Scott’s (1992)
ratio estimator approach (i.e. RSM) was the most consistently liberal statistic
examined. It rejected the null hypothesis as much as three times as often as it

should when there were fewer than 20 clusters in each treatment group and



stratum (i.e. m<20 ). Clearly this method can not be recommended for cluster

randomization trials.

Alternative versions of this test statistic which used pooled estimates of
design effects could be calculated. The rejection rates for such test statistics
would then likely be much closer to the nominal level (Donner et al (1993),
Fung et al (1992)). However, it is difficult to see what advantage they offer as
compared to other simple adjusted test statistics like the adjusted Mantel-
Haenszel xz statistics (i.e. MHI and MH2). Furthermore Rao and Scott (1992)
provide no guidelines to determine how best to estimate such statistics in

stratified designs.

The overly liberal rejection rates encountered with both robust Wald tests
and robust score tests was not unexpected. Algebraic results in the previous
chapter predicted that such tests would be overly liberal when there were few
clusters in each treatment group and stratum and also predicted that these prob-

lems would be more severe for Wald than for score tests.

These problems arose because of the way in which robust estimates of vari-
ance correct for misspecification of the working correlation matrix. In Section
2.8 robust variance estimates were shown o be functions of variance estimates
determined using the theory of ratio estimation. Variance estimates of ratio esti-
mators tend to be negatively biased when there are few clusters and when there

is considerable imbalance in cluster size (Cochran, 1977, pp. 162-163).
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Furthermore the robust estimates of variance were shown to be negatively biased

in Section 2.8 even when there are the same number of subjects in each cluster.

An additional problem with these correction factors occurs when the true
correlation is very near zero. Negative estimates of correlation are quite likely to
occur in such situations. These estimates are usually truncated at zero. A simi-
lar adjustment is applied to the design effects estimates required when using Rao
and Scott’s (1992) ratio estimator approach (Fung et al, 1993). Unfortunately no
similar adjustment is available for robust score and Wald tests. This likely con-
tributed to the overly liberal rejection rates which occurred for the robust test

statistics when p = 0.

The problem with the robust test statistics arising when there were few clus-
ters per treatment group and stratum was likely compounded by the large number
of subjects per cluster. For example Lipsitz et al (1991) and Prentice (1988)
point out that robust variance estimates are inaccurate when there are more sub-

jects per cluster than there are clusters in the study.

Previous simulations have found similar problems with robust test statistics.
Donner, Eliasziw and Klar (1993) reported that robust Wald tests tended to be
overly liberal in completely randomized cluster randomization trials in which
there were 10 subjects per cluster, on average. A similar problem occurred in
the simulation studies reported by Moore and Tsiatis (1991). Curiously no such

problems were found in a simulation study described by Sharples and Breslow



(1992). It is likely that the rejection rates were near the nominal levels because

there were only two subjects per cluster and relatively many clusters.

The possibility of obtaining overly liberal Type I error rates when using
robust estimates of variance is not restricted to comrelated binary outcome data
but will also occur with other types of outcomes and models when there are few
clusters. Overly liberal rejection rates or negatively biased variance estimates
were reported by Thornquist and Anderson (1993) when fitting linear models to
continuous outcome data, by Breslow (1990) when fitting log-linear models to
count data, and by both Lin and Wei (1989) and Segal and Neuhaus (1993) who
were concerned with modelling correlated survival times data. Several of these
researchers have also found that robust Wald tests tended to be more liberal than

robust score tests (Breslow (1990), Lin and Wei (1989)).

3.8.2 Power Comparisons Under the Common Correlation Assumption

Power was lowest for the two cluster-level test statistics and the two
adjusted Mantel-Haenszel test statistics, especially when cluster sizes were vari-
able. The low power of the cluster-level test statistics probably occurred because
these test statistics ignore any variations in cluster size. An additional reason for
their lower power is that the data were generated under the assumption of a com-
mon odds ratio. The cluster-level statistics, however, are more sensitive (o a
common risk difference. This latter reason might not be very important since

risk differences tend to be constant when risk across strata iz between 0.3 and
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0.7, as was generally the case in these simulation studies.

It is more difficult to understand why the adjusted Mantel-Haenszel test
statistics also had lower power than most other procedures, at least when cluster
sizes were variable. One possible explanation is that the risk estimates used to
construct these statistics are relatively imprecise. Asymptotically optimal esti-
mates are weighted averages of cluster-specific risks where the weights are func-
tions of both cluster size and the degree of intracluster correlation. Risk esti-
mates used in both the numerator and denominator of the adjusted Mantel-
Haenszel test statistics do not incorporate estimates of intracluster correlation. A
comparison of the different ways in which risk estimates can be calculated is

presented in Section 2.5.

Several researchers have derived formulae which can be used to determine
sample size or power for cluster randomization trials. These are reviewed in
Section 1.3.2 of this thesis. The approach suggested by Donner (1992) is the

only one applicable to stratified cluster randomization trials.

The power obtained by simulation using the adjusted Mantel-Haenszel test
statistics were compared to the power obtained using the methods described by
Donner (1992). This comparison was used to see how well the two different
approaches agreed. The adjusted Mantel-Haenszel test statistics were selected as

being the two test statistics which correspond most closely to Donner’s (1992)

sample size formulac. Estimates of power obtained using Donner's (1992)




method never differed from the empirically determined rejection rates by more

than three percentage points.

It was puinted out in the results section of this chapter that the power
tended to be greatest for the beta-binomial likelihood ratio test statistic. This is
not surprising since this statistic makes use of the parametric distribution from
which the data were generated. Similar results were found in the simulation
study conducted by Donner et al (1993) who also gencrated cluster-level

responses from a beta-binomial distribution.
3.8.3 Intracluster Correlation as a Function of Cluster Size

The rejection rates were not affected when the degree of correlation among
the responses of cluster members varied as a function of cluster size. The lack
of any effect might have occurred because of the opposing influences on p and
the variance inflation factor caused by the combination cf using "Smith’s Law"
and relatively large clusters. In situations where there are many subjects per
cluster, as in this simulation study, increasing variability in p is accompanied by

decreasing variability in the variance inflation factor.

The degree of comrelation was determined using the equation Pis = An.;B.

Since cluster size is negatively correlated with tl > degree of intracluster correla-

tion the parameter B was always set to be greater than or equal to zero. Varia-

tion in the size of p is greatest for large values of B. As B approaches 1 the
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variance inflation factor can be expressed as

1+ A = 1+A (3.6)

nus

if there are large numbers of subjects per cluster. Greater variability in p caused
by further increases of the parameter B might still have some influence on the

rejection rates of these test statistics but would, perhaps, be greater than could

reasonably occur.

This result stands in stark contrast to Williams (1988a) observation that
parameter estimates of beta-binomial models can be biased when the degree of
correlation is incomrectly assumed to be the same in all clusters. Williams
(1988a) however was interested in teratological studies where p has been noted
to vary across treatment groups (Catalano and Ryan, 1992). Simulations
described in this thesis were restricted to the case where the degree of correlation

varied across strata but, on average, was the same in each treatment group.

Pregnant animals are randomly assigned to treatment groups in teratological
studies. The monrality rates of newborn litter mates from the different treatment
groups are then compared. Variations in p across treatment groups can occur in
such studies as a function of litter size since some chemicals affect both the
number of animals per litter and the mortality rates of animals after birth
(Catalano and Ryan, 1992). This is quite different from the epidemiological stu-
dies for which the present simulation was designed. Cluster sizes are typically

fixed at baseline in epidemiological studies. It is therefore not at all likely that




cluster sizes could vary across treatment groups so that the same degree of intra-
cluster correlation would be expected in both treatment groups (provided random

assignment was used).

Even in teratological studies, however, variations in p across treatment
groups could only occur under the alternative hypothesis. Thus one only nceds
to be concerned about the effect on the power of test statistics. The power of
methods which assume that the average degree of correlation in a cluster was
fixed (i.e. the adjusted Mantel-Haenszel test statistics and both the model depen-
dent test statistics) would presumably be reduced when this assumption is

violated.
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4. Examples

4.1 Introduction

Data analyses from two cluster randomization trials are presented in this
chapter of the thesis. These case studies are included to illustrate the methods
discussed in the previous two chapters. They will also help in examining how

well theoretical findings hold in particular applications.

The first data set comes from a trial conducted in 1982-1983 which enrolled
Southeast Asian refugees upon their arrival in Montreal. The trial was designed
to examine if a parasite screening and treatment program would reduce the risk
of infection below the expected spontaneous loss of infection attained following
immigration to Canada (Gyorkos et al, 1989). The rationale for the tnal
stemmed, in part, from the Canadian government’s 1981 decision to eliminate
the requirement for parasite screening of potential immigrants from tropical and

subtropical countries.

Families were matched for size and age of family members separately dur-
ing each month of the study. One family of each pair was then randomly
assigned to the treatment group. If there were an odd number of families in any
month the remaining unmatched family was randomly assigned either to the
treatment or control group. Matching was used to increase similarity of subjects

at baseline and was not retained for the analysis. Families randomly assigned to
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the treatment group were screened and treated at the beginning of the tnial and
again after six months while families randomly assigned to the conwrol group
were only screened and treated after being enrolled in the trial for six months.
Subjects were identified as infected if any one of Ascaris lumbricoides,
Entamoeba histolvtica, Giardia lamblia, Strongyloides stercoralis or hookworm
were found in their stool samples. Analyses focus on the subset of 119 subjects
from 31 control families and 130 subjects from 35 screened families. These sub-

jects were Kampuchean immigrants whose six month infection status was known.

Data for the second case study result from a trial conducted in Minnesota
which randomly assigned 12 schools to one of three different adolescent tobacco
prevention programs or {0 a control group (Murray et al, 1992). The three inter-
ventions were selected as representative of the most widely adopted tobacco use
prevention programs in Minnesota following a 1985 state initiative. Students
attending the control schools received the existing tobacco education programs.
Students attending 6’th grade in 1987 were enrolled in the study and they were
surveyed again in each of the next three years. For illustrative purposes the ana-
lyses focus on the comparison of weekly prevalence of smokeless tobacco uy*
between the subset of 1338 grade 9 students in the Smoke Free Generation intor-

vention group and the 1483 grade 9 students in the control group.

Comparisons between different methods of analysis focus on three aspects

of models: statistical significance of associations, direction and strength of asso-

o
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ciation as measured by size of odds ratios, and width of confidence intervals on
odds ratios. These comparisons allow examination of how inference is affected

by the choice of a method of analysis.

The comparisons of methods are performed in two ways. Comparisons are
first drawn between results obtained using different methods within each of the
two studies. More general comparisons are also drawn between the two studies
since they represent the two extremes of cluster randomization trials. The first
trial has a relatively large number of small clusters while Murray et al’s (1992)

tobacco use prevention trial has a few quite large clusters. The differences

between methods will likely be more extreme in the latter case.
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4.2 Materials and Methods

Analyses for the parasite screening and treatment trial were performed after
stratifying by family size, a variable which has been shown to be a risk factor
for se-eral infectious diseases (Anderson and May (1991, p. 315), Green and
Zaaide (1989)) and is also believed to be a determinant of intestinal parasite
infection Gyorkos (1985, p. 149). Families with 3 or fewer members were
placed in one stratum and all other families were placed in a second stratum.
This stratification maintained roughly equal numbers of clusters in each stratum
and treatment group and was nearest to the median cluster size. The data from
this trial are displayed in Table 4.1 stratified by family size to distinguish
between cluster size and the number of family members who participated in the

study.

A similar approach was taken with data from the second cluster randomiza-
tion trial. Schools with 100 or fewer participants were placed in one straium and
schools with more participants were placed in a second stratum (see Table 4.2).
The number of participants was used as a proxy variable for the actual cluster
size which was not available. School size might be correlated with community
size or the location of the school (i.e. urban or rural) both of which are predic-

tive of adolescent smokeless tobacco use (Surgeon Generals Report, 1986, p. 20).

Several simple summary statistics were calculated for the data from the two

randomized trials and displayed in Tables 4.3 and 4.4. Estimates of intracluster
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correlation were calculated in each stratum and treatment group to help in
identification of any patterns in the dependencies among cluster members. These
estimates were obtained by adapting one-way random effects models to binary
outcome data as described in Sections 2.2 and 2.3 and then used to estimate the

degree of variance inflation induced by clustering.

The degree of imbalance in cluster size in each treatment group was calcu-
lated using the statistic & which was introduced in the previous chapier. This
statistic equals one, its maximum value, when there are the same number of sub-

jects in each cluster and then declines as the imbalance in cluster sizes increases.

Selected additional statistics were calculated for the parasite screening trial
using baseline data. These data were available only for subjects randomly
assigned to the intervention program (Gyorkos et al, 1989) and were used to
examine temporal trends in intracluster correlation coefficients, and to determine

the degree to which cured patients tend to cluster within families.

Results from 11 stratified, two-tailed tests of the effect of treatment are
compared in this chapter (see Tables 4.5 and 4.6). These methods include the
standard Mantel-Haenszel x,z test, and ten methods which are appropriate for the
analysis of correlated binary outcome data. All ten test statistics which adjust
for the effect of clustering follow an approximate xlz distribution under the nuil
hypothesis when there are many clusters in each treatment group and stratum.

The standard Mantel-Haenszel test statistic requires the additional assumption
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that the intracluster correlation coefficient, p = 0, for it to be approximately ;(f .
When p>0 the standard Mantel-Haenszel test will tend to reject the null

hypothesis too often.

The first three methods which adjust for the effect of clustenng (ie.
methods 2, 3 and 4) all employ cluster-level data. They include a cluster-level F
test and both approximate and exact tests calculated using Mantel’s (1963)
extended Mantel-Haenszel test. The cluster-level F test is equal to the square of
the stratified t test discussed by Schwartz et al (1980, pp. 189-191) and the exact

test was performed using the statistical package StatXact (1991).

The exact test for the parasite screening and treatment trial had to examine

N _ 18
[lz;] [:g] = 1.2508 x 10

permutations since 13 out of 27 clusters in the first stratum and 18 out of 39
clusters in the second stratum were randomly assigned to the screening and treat-
ment program (see Table 4.1). An exact test could not be calculated using
StatXact because of the very large number of possible permutations. The exact
p-value was approximated by drawing a random sample of 1,000,000 permuta-
tions from the permutation distribution. This sample sizc was selected so that

the 99% confidence limits were (0.049,0.051), assuming a 5% rejection rate.

It was possible to calculate the exact p-value for the data collected in the
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adolescent smoking prevention trial since there were only

1 (1
[7] [53] = 424,710

permutations which had to be examined. This number of permutations occurred
since seven out of the eleven clusters in the first stratum and five out of thirteen
clusters in the second stratum were randomly assigned to the Smoke Free Gen-

eration program.

Methods § and 6 employ simple adjustments of the Mantel-Haenszel x2 test
for the effect of clustering. Rao and Scott’s (1992) approach (see Section 2.6)
uses the theory of ratio estimation to obtain a correction factor used to adjust the
number of affected subjects and the cluster sizes for each cluster in the study.
Standard tests of significance can then be constructed using these adjusted data.
Following Fung et al (1993) correction factors were truncated at one. This is
analogous to truncating negative estimates of intracluster correlation. Simulation
studies described in the last chapter found that this test statistic was overly

liberal when there were few clusters in each treatment group and stratum.

An altemative approach which employs a simple adjustment of a standard
test is Donald and Donner’s (1987) adjusted Mantel-Haenszel xz test. This test
statistic was described in Section 2.5. It is derived under the assumption that the
average degree of correlation between cluster members is the same for all clus-

ters in the trial.
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The beta-binomial likelihood ratio test provided by the computer package
EGRET was also used to test for the effect of treatment. This test is asymptot-
cally most powerful when the data follow a beta-binomial distribution. Other-

wise its validity may be in question (e.g. Williams, 1988a).

Liang and Zeger's (1986) generalized estimating equations approach,
described in Section 2.8, is used to construct the last four tests of significance,
i.e. methods 7 through 11. Model dependent and robust Wald tests were con-
structed following Moore and Tsiatis (1991) while score tests were obtained as
described by Breslow (1990). The validity of the two model dependent test
statistics is assured if the average correlation between cluster members is fixed,
at least in the absence of baseline risk factors measured at the level of the indivi-
dual (e.g. age, sex). The robust Wald and robust score tests will, at least asymp-
totically, have valid type I error rates even if this assumption is violated. Their
robustness is offset, however, by the imprecision of the test statistics and

confidence intervals when there are few clusters.

The estimate of intracluster correlation needed for the score test was
obtained by solving the generalized estimating equations under the aliernative
hypothesis, as suggested by Breslow (1990). This approach was taken to
increase power. Two additional benefits of this approach are that the same esti-
mate of p is then used in both Wald and score tests and the parameter estimates

for the score test can be obtained analytically.
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Summary estimates of intracluster correlation were not provided for a
number of procedures. Such estimates are not used when calculating the stan-
dard Mantel-Haenszel test statistics listed in the first row of Table 4.5 and Table
4.6 or when constructing confidence limits for stratified odds ratios as described
by Woolf (1955) (see Table 4.7 and Table 4.8) because these methods assume
that the true correlation is equal to zero. The other test statistics which omit
estimates of intracluster correlation do so because they are either calculated at
the cluster level and do not rely on such estimates (i.e. cluster-level F test,
extended Mantel-Haenszel procedure, exact permutation test) or because the

theory of ratio estimation is used to construct tests of significance.

The magnitude of the effect of the interventions in the two trials was sum-
marized using stratified odds ratio estimates and their accompanying confidence
intervals. These are displayed in Tables 4.7 and 4.8. The classical Woolf
(1955) odds ratio estimate and confidence limits were included for the sake of
comparison and to examine the effect of failing to adjust for the effect of cluster-
ing. The three other approaches are all extensions of this basic method. In all

three cases confidence intervals were constructed as

[exo{'}— 1.96\0},exp{~}+ 1.96\13}]

where v is the log of the odds ratio estimate and ¥ is an estimate of the variance

-~

of y.
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Weighted Woolf odds ratio estimates and confidence intervals were con-
structed as described in equation (2.5.19) of Section 2.5. Intracluster correlation
was calculated as the average of the four treatment and stratum specific estimates
of p as described by Donald and Donner (1987). This estimate of p was also
used to construct the adjusted Mantel-Haenszel xz test. Odds ratio estimates
were also obtained using the beta-binomial and generalized estimating equations

extensions of logistic regression.
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4.3 Results

4.3.1 Parasite Screening and Treatment Program

Summary statistics for the parasite screening and treatment trial are
displayed in Table 4.3. These data are strongly supportive of the benefits of the
program. In the first stratum the odds of infection among control subjects was
4.67 times the odds of infection for screened and treated subjects. The odds
ratio for the effect of screening and treatment fell to 2.16 among subjects from
families with more than 3 members. Family size, however, had little effect on
the risk of infection and may not be an important predictor. Summary estimates

of risk in Table 4.3 are equal to the totals in Table 4 of Gyorkos et al (1989).

Estimates of intracluster correlation coefficient were highly variable.
Responses from control subjects from smaller families were negatively correlated
while the degree of correlation from subjects in the three other treatment and
stratum combinations ranged from 0.04 to 0.38. Correlation coefficients among
the wreated subjects were approximately the same size at the start of the study.
This high variability is probably due, in part, to the size and number of clusters
in each category. Variance inflation factors were far less variable suggesting that

variations in § 's may have been related to cluster size.

There were approximately four subjects per family in the 31 families in the

control group and in the 35 families randomly assigned to the screening and
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treatment program. There was also a fair degree of imbalance in family size as
measured by the statistic R . In both the control and treatment groups the statis-

tic was approximately equal to 0.8.

Finally note that there was little difference in the average family size and in
the number of subjects participating per family. This occurred because participa-

tion rates were high among families in which at least one member participated.

Summary estimates of intracluster correlation, listed in Table 4.5, ranged
from 0.058 to 0.084. Since cluster sizes were also relatively small there was lit-
tle difference in the size of the test statistics or accompanying p-values.
Although it is of no practical consequence in the interpretation of these data it is
still worth noting that the p-value from the standard Mantel-Haenszel xz test is at
least half that of all other procedures. It clearly overestimates the statistical

significance of the treatment effect.

Stratified odds ratio estimates displayed in Table 4.7 were all between 2.51
and 2.63. As expected the narrowest confidence intervals arose using the classi-
cal Woolf confidence limits (Woolf, 1955) which do not adjust for the effect of
clustering. The width of adjusted confidence limits was as much as 17% wider

although all confidence limits excluded one.

The beta-binomial logistic regression model was also used to examine the

relationship between cluster size (the stratification variable) and the risk of
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parasite infection. After adjusting for the effect of treatment the xlz likelihood
ratio test statistic was 1.10 (p=0.30) suggesting that there was little evidence for
any such relationship. This is not at all surprising since approximately 54 per-
cent of control subjects were infected in each stratum (see Table 4.3). Neither
the size of the effect of treatment nor its statistical significance were much
affected by fitting a simpler beta-binomial model which omitted the stratification

variable.
4.3.2 Adolescent Tobacco Use Prevention Program

Results from the tobacco use prevention trial are far less striking than those
from the first study. The odds for the prevalence of smokeless tobacco use
among students in the control group (i.e. Existing Curriculum) relative to stu-
dents receiving the intervention program (i.e. Smoke Free Generation) was 1.98
in schools with 100 or fewer participants and 1.24 in schools with more than 100

participants (see Table 4.4).

Estimates of intracluster correlation were smaller and less variable in this
study. They ranged from 0.0003 to 0.0204. The larger cluster sizes led to vari-
ance inflation factors ranging from 1.02 to 4.30 indicating that failure to adjust
for the effect of clustering will have far more serious consequences than in the

first trial.

There were, on average, approximately 123 subjects participating p<r school
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in the control group but 112 subjects per school among subjects in the schools
receiving the intervention program. The imbalance statistic was approximately
0.80 in both groups. Note that this was the same degree of imbalance in cluster

size as in the parasite screening and treatment program.

Use of the standard Mantel-Haenszel xz statistic displayed in Table 4.6 is
indicative of a weakly statistically significant result (i.e. p=0.073). This p-value
overestimates the statistical significance of the effect of the intervention. The
other p-values displayed in Table 4.6 ranged from (.121 for Rao and Scott’s
ratio estimator approach to 0.300 obtained using the beta-binomial likelihood
ratio test. The second smallest p-value from methods which adjusted for the

effect of clustering was obtained using the robust Wald test.

Stratified odds ratio estimates for the prevalence of smokeless tobacco use
were between 1.3 and 1.5. All of the confidence intervals included | but the
confidence interval for the classical Woolf odds ratio (Woolf, 1955) was again
spuriously narrow. This confidence limit was only 62% of the widest confidence
limit. Failure to adjust for the effect cf clustering will severely overestimate the

precision of the effect of the intervention.

Weekly prevalence of smokeless tobacco use tended to be slightly higher in
schools with more than 100 participants than in schools with 100 or fewer parti-
cipants. Prevalence increased from 5.57% to 6.29% among students from

schools in the control group and increased from 2.99% 1o 5.13% among students
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in schools randomly assigned to receive the Smoke Free Generation program.
These differences were not statistically significant. After adjusting for the effect
of treatment the beta-binomial likelihood ratio test xf statistic was 1.46 (p=0.23).
Omitting the stratification variable did not affect inferences concerning the effect
of treatment. Tests of the effect of weatment still failed to reach nominal levels

of statistical significance (e.g. beta-binomial likelihood ratio x,z = 1.81 , p=0.16).
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Parasite Screening and Treatment Trial
Subjects Classified by Stratum, Intervention, Family, and Outcome

Table 4.1

=
intervention Group
Stratum Family Conurol Screened
Size
1 o/1, 0/1, 1/1, 1/1 o/1, 071, 071
<3
Per 2 0/2, 172, 112, 112 02, 0/12, 172, 272
Family
3 173, 2/3, 2/3, 2/3, 072, 0/3, /3, 0/3,
22 0/3, 172, 2/3
4 1/4, 1/4, 3/4, 3/4, /1, /4, 1/4, 1/4,
4/4 2/4, 3/4
>3 5 2/5, 2/5, 3/5, ¥5 02, OIS, 1/5, 1/,
Per 1/4, 2/5, 4/5, 4/4
Family
6 1/6, 2/6, 3/6, 4/6, 02, 116, 2/6, 3/6,
3/4, 5/6 3/6
8-10 1/5, 2/4, 6/10 178, 5/10
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Table 4.2
Weekly Prevalence of Smokeless Tobacco Use Among Adolescents
Subjects Using Smokeless Tobacco
Classified by Stratum, Intervention, School, and Outcome
Intervention Group
Stratum Existing Curriculum Smoke Free Generation
]
< 100 1/55, 3/74, 6/83, 0/42, 1/96, 1/84
Participants 6/75 1/55, 2/63, 4/58,
per School 5/85
>100 2/152, 3/174, 5/103, 4/160, 10/219, 10/194,
Participants 12207, 7/104, 7/102, 9/149, 11/136
per School 237225, 16/125




Table 4.3
Parasite Screening and Treatment Trial

Summary Statistics Classified by Stratum, Intervention, and Outcome

Intervention Group

Stratum Variable Control Screened Odds
Ratio
Number of Families 13 14
<3 % Infected Subjects 53.85 20.00
Intracluster 4.67
Per Correlation Coefficient -0.26 0.38
Variance Inflation
Family Factor 0.66 1.54
>3 Number of Families | 18 21
% Infected Subjects 53.76 35.00
Per Intracluster Correlation 2.16
Coefficient p 0.04 0.12
Family Variance Inflation
Factor 1.12 1.53
Number of Families 31 35
% Infected Subjects 53.78 31.54
Total Mean Number of 2.53
Participants/Family 3.84 3.71
g 0.79 0.77
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Table 4.4
Weekly Prevalence of Smokeless Tobacco Use Among Adolescents
Summary Statistics Classified by Stratum, Intervention, and Outcome
Intervention Group
Stratum
(Number of Variable Existing Smoke Free Odds
Participants) Curriculum Generation Ratio
< 100 Number of Schools 4 7
Prevalence (%) 5.57 2.90
per Intracluster Correlation 1.98
Coefficient, p 0.0087 0.0003
School Variance Inflation
Factor 1.63 1.02
>100 Number of Schools 8 5
Prevalence (%) 6.29 5.13
per Intracluster Correlation 1.24
Coefficient, P 0.0016 0.0204
School Variance Inflation
Factor 1.29 4.31
e
Number of Schools 12 12
Prevalence (%) 6.15 4.33
Total Mean Number of 1.45
Participants/School 123.25 111.75
'Y 0.78 0.83




Table 4.5
Parasite Screening and Treatment Trial
Stratified Two-Tailed Tests of the Null Hypothesis
Ho: Treatment and Screening Does Not
Affect the Risk of Parasitic Infection

Test Statistic
( p-value )

1. Mantel-Haenszel

2. Cluster-Level F Test

12.45
(0.0004)

12.85

(0.0007)

Extended Mantel-Haenszel - 10.88
3. Approximate Test (0.0010)
4. Exact Test (0.0008)

S. Ratio-Estimator Approach - 9.58
r (0.0020)

6. Adjusted Mantel-Haenszel 0.070 11.20
(0.0008)

7. Beta-binomial Likelihood Ratio 0.058 10.88
(0.0010)

8. Model Dependent Wald Test 10.24
(0.0014)

9. Robust Wald Test 10.81
0.084 (0.0010)

10. Model Dependent Score Test 10.46
(0.0012)

11. Robust Score Test 10.25

(0.0014)
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Table 4.6

Weekly Prevalence of Smokeless Tobacco Use Among Adolescents
Stratified Two-Tailed Tests of the Null Hypothesis
Ho: There is no Difference between
the Two Smoking Prevention Programs

Method p Test Statistic
( p-value)
1. Mantel-Haenszel - 3.22
(0.073)
2. Cluster-Level F Test - 1.63
(0.216)
Extended Mantel-Haenszel - 1.63
3. Approximate Test (0.201)
4. Exact Test (0.210)
5. Ratio-Estimator Approach - 240
(0.121)
6. Adjusted Mantel-Haenszel 0.0077 1.82
0.177)
7. Beta-binomial Likelihood Ratio 0.0096 1.07
(0.300)
8. Model Dependent Wald Test 1.56
(0.212).
9. Robust Wald Test 2.10
0.0095 (0.147)
10. Model Dependent Score Test 1.57
(0.211)
11. Robust Score Test 1.77
(0.184)
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Table 4.7

2. Weighted Woolf

Parasite Screening and Treatment Trial
Stratified Odds Ratio Estimates of the Effect of Treatment
and Accompanying 95% Confidence Intervals

Ratio

m

95%
Confidence Interval

(1.49,422)

(143 ,4.61)

3. Beta-binomial

0.058

2.63

(148 ,4.66)

4. Model Dependent Wald

5. Robust Wald

0.084

2.63

(145,475 )

(148 '68 )
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Table 4.8

Weekly Prevalence of Smokeless Tobacco Use Among Adolescents
Stratified Odds Ratio Estimates of the Effect of Treatment
and Accompanying 95% Confidence Intervals

Method

Odds Ratio
p Estimate

95%
Confidence Interval

1. Woolf - 1.37 (098,1.93)

2. Weighted Woolf 0.0077 1.42 (0.87,232)

3. Beta-binomial 0.0096 1.32 (079, 2.20)

4. Model Dependent Wald (0.82,2.35)
0.0095 1.39

5. Robust Wald (0.89, 2.19)




4.4 Discussion

Donner et al (1990) point out that too many cluster randomization trials are
designed without ensuring that there are sufficicnt numbers of clusters to allow
detection of clinically relevant effects. This problem was not apparent in either
the parasite screening and treatment trial or the adolescent tobacco use preven-
tion trial. The adolescent tobacco prevention trial was designed to detect a 50%
reduction in weekly smoking incidence between the most effective intervention
group and the control group assuming an intracluster correlation coefficient of
0.02 (Murray et al, 1992, p. 460). Post-hoc power analyses confirmed that the
inability 10 detect a statistically significant difference arose as a consequence of
the small difference between treatment groups and not because of a failure 10

plan for the effect of clustering (Murray et al, 1992, p. 469).

The analyses presented in the previous section demonstrate the importance
of adjusting for the effect of clustering when making inferences about the effect
of treatment using data derived from cluster randomization trials. Specifically,
the differences between the size of test statistics or between the width of
confidence limits is always greater when comparing methods which do and do
not adjust for the effect of clustering than when contrasting approaches which

make such adjustments.

Among those methods which adjusted for the effect of clustering there was

still considerable variability in the size of the test statistics and the width of
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confidence intervals constructed using data from the adolescent smoking preven-
tion trial. The largest test statistics and widest confidence intervals occurred
when inferences were made using Rao and Scott’s approach or using robust

Wald statistics.

These results were likely due, at least in part, to there never being more
than 8 clusters in any stratum or treatment group. Both test statistics were found
to be overly liberal when there were few clusters per treatment group in the
simulation studies described in the previous chapter. An algebraic explanation

for this is provided in Chapter 2.

The p-value calculated using the permutation test is exact. All of the other
procedures are based on asymptotic theory. These other p-values and confidence
intervals must be cautiously interpreted when there are few clusters such as is
the case for the adolescent smoking prevention trial. One limitation of the per-
mutation test provided by the computer package StatXact is that it does not take
the variable cluster sizes into account. This will reduce the power of such tests
when cluster sizes are highly variable. A further limitation is that it is not possi-
ble to make inferences about odds ratios. Exact tests can be constructed which
do not have these limitations but are not presently available in the computer

package StatXact (see Section 2.4).

The estimates of intracluster correlation obtained using data from Murray et

al’'s (1992) adolescent smoking prevention trial were of the same order of
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magnitude as coefficients from similar studies. For example, estimates of intra-
cluster correlation could be calculated using data provided by LaPrelle et al
(1992 Table 1) who collected data on adolescent smoking behavior from students
in 10 different communities. The average of 6 estimates of intracluster correla-
tion calculated using data from different intervention groups and timepoints in
the trial was 0.0077. In another study Feng and Grizzle (1992), found an intra-
cluster correlation of 0.0052 for smoking prevalence among 2458 subjects from

24 worksites in Florida.

Estimates of intracluster correlation were also calculated using variance
components provided by Koepsell et al (1992 Table 1). These data were
obtained from three studies of the prevalence of smoking. The resulting esti-

mates of intracluster correlation ranged from 0.002 to 0.02.

It is generally accepted that infectious diseases spread more rapidly within
families than between families (Becker, 1989, p. 11). This heterogeneity in the
spread of disease is what creates the possibility that parasitic infections will tend
to cluster within families. For example a correlation of 0.24 can be obtained
using data from 40 households in which subjects were screened for serological
evidence of the parasite Trypanasoma cruzi (Smith and Pike, 1976). It is also
well accepted that infection from Ascaris , one of the parasites studied by Gyor-

kos et al (1989), clusters within families (Williams et al, 1974). Furthermore the

usual inverse relationship between cluster size and the degree of intracluster
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correlation often results in coefficients which are between 0.1 and 0.5 when fam-
ilies are the unit of randomization (e.g. Donner, 1982). It was therefore some-
what surprising to find such small correlations using the data described by Gyor-

kos et al (1989).

Why then are the correlations obtained using data from Gyorkos et al

(1989) so small? There are several possible explanations.

First, consider that both hookworms and Ascaris are not dirc 'ly transmitted
from person to person but rather that the parasites must spend some time in soil
before they can infect a new host (Benenson, 1990). Both the climate in Mont-
real and the availability of more hygienic surroundings than was available in the
refugee camps would combine to reduce the spread of disease between family
members. This was investigated using baseline data from the screened subjects
collected soon after they arrived in Montreal. The comrelation averaged across
strata was 0.19 which was slightly smaller than the average correlation for
screened subjects obtained using data collected at six months. It therefore seems
unlikely that the low overall correlation was a consequence of a diminishing

dependence between cluster members over time.

An alternative explanation arises upon recognizing that the small summary
estimates of correlation displayed in Table 4.5 were primarily a consequence of
small correlations among subjects in the control group. A low correlation could

result if the natural loss of infectivity among these subjects tended not to cluster
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in families to the same degree that occurred among subjects in the intervention
group. This hypothesis could not be examined since baseline data was not avail-
able from subjects in the control gro- An estimate of intracluster correlation
was calculated using baseline data from the treated subjects. It was only 0.089S,
Although it was very small it does not rule out the possibility that the difference
in dependence of the risk of infection among control and treated subjects at the
six month examination was not a consequence of differential patterns of loss of

infection.

Subjects in this study were probably among the healthier members of the
refugees camps in Southeast Asia. Less healthy people might not have survived
or might not have been permitted into Canada. The low correlation between
responses of cluster members might therefore have resulted because the
between-family variability for subjects enrolled in the trial was much less than
would have occurred if random samples of families from the refugee camps

were selected.

In these analyses there was little evidence that cluster size was predictive of
the outcome. The stratification was maintained only to illustrate the mcthods
discussed in this thesis. In general stratification should be maintained in the
analysis whenever it is used during randomization, following the policy first put

forward by Fisher (1935, p. 83).
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Similarly the recommended approach to take when a..alyzing data derived
from cluster randomization trials is to assume that responses of subjects from the
same cluster are positively correlated. The assumption of a positive correlation
is, after all, just another version of Fisher’s policy to incorporate features particu-
lar o the design of an experiment in its analysis. This policy is particularly
important in cluster randomization trials because even very small correlations can
dramatically inflate the variance of the estimated treatment effect when there are

many subjects per cluster.

Several authors have developed tests of significance which could be used to
determine if the true correlation is greater than zero. Tests of significance for
continuous outcome data are described by Donner (1985a) while tests for binary
outcome data have recently been summarized by Dean (1992). A limitation of
all such approaches is that they will have little power to detect very small corre-
lations (e.g. Donner and Klar, 1993b) especially when there are few clusters in
the wial (Paul, Liang and Self, 1989). Given the low power in this instance
failure to reject the null hypothesis should not be interpreted as equivalent to

accepting the hypothesis that responses of cluster members are uncorrelated.




S. Summary

The primary focus of this thesis was on comparisons of statistical tests of
the effect of treatment in stratified cluster randomization trials. This decision to
focus on stratified cluster randomization trials was taken because ot the relative
lack of attention paid to such experimental designs. The purpose of the comparis-
ons was to derive recommendations for researchers faced with the analysis of
data collected from stratified cluster randomization trials. The present chapter
was included to summarize the findings of this thesis, to present a brief list of
recommendations to help select an appropriate method of analysis for stratitied

cluster randomization trials and to suggest arcas for future rescarch.

The methods of analysis which were compared used one of six approaches
to construct inferences about the effect of weatment. They include adaptations of
linear models, nonparametric tests, simple adjustments of methods originally
developed for binomially distributed data, adaptations of methods developed for
sample surveys, beta-binomial models and Liang and Zeger's (1986) generalized

estimating equations approach.

These methods were compared in three ways: using algebraic compansons,
by simulation and via case studies. The algebraic comparisons were presented in
Chapter 2. Four principal results were obtained from the algebraic comparisons.
First, all methods were shown 1o be approximately equivalent when there are the

same number of subjects in each cluster and the same number of clusters in each




stratum. Second, the validity of methods such as Donald and Donner’s (1987)
adjusted Mantel-Haenszel test and the model dependent test statistics derived
from the theory of generalized estimating equations were shown 1o depend only
on the average correlation between clusier members’ responses being fixed rather
than depending on the more restrictive common correlation assumption. Third,
arguments were put forward suggesting that the methods which use robust esti-
mates of variance would require larger numbers of clusters per treatment group
to ensure their validity than other approaches. Fourth, tests of significance con-
structed using the generalized estimating equations approach were shown to be

relatively simple algebraic extensions of standard procedures.

The complexity of most of the methods restricts algebraic comparisons to
fairly simple and unrealistic situations in which there is no varability in cluster
size. Their small sample properties were therefore compared by simulation. The
simulation studies were limited to comparisons of ¢leven test statistics and trials
in which there were either 2 or 4 strata and 100 subjects per cluster, on average.
Resulis of the simulation study were presented in Chapter 3. Similarities and
differences among these 11 test statistics were illustrated in Chapter 4 .:sing data

from two cluster randomization trials.

The simulation study indicated that the type 1 error rates of all of these test
statistics were overly liberal, albeit to varying degrees, if there were only 20

clusters per treatment group. Rejection rates near nominal levels were obtained




when there were 40 clusters per trcatment group. Methods which employed
cluster-level analyses and relatively simple non-iterative methods such as the
adjusted Mantel-Haenszel y* test statist:c (Donald and Donner, 1987) tended to
have rejection rates nearest the five percent nominal level. One cost associated
with using such methods, however, is that there can be up to a 10 percent
difference in power in comparison to parametric methods such as the beta-

binomial likelihood ratio test, at least when cluster sizes a~= variable and p = 0.1 .

Researchers have advocated for the use of test statistics which use robust
variance estimators to avoid having to make, possibly unrealistic, assumptions
about the degree of correlation between cluster members. For example, pro-
cedures such as the adjusted Mantel-Haenszel %’ test assume that the average
correlation between responses of cluster members does not vary across clusters,
treatment groups or strata. The results of the simulation study demonstrate that
violations of this assumption does not necessarily invalidate these test statistics,
at least when the degree of correlation between cluster members’ responses
varies as a function of cluster size in accordance with "Smith’s Law" (Proctor,

1985).

These results lead to the following recommendations 10 researchers testing

the effect of treatmert in stratified cluster randomization trials.

1. Exact tests constructed using randomization & ory should be used to make
inferences concerning the effect of treatmen: when there are 20 or fewer
clusters per treatment group.
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2. Approximate test statistics using cluster-level analyses or simple extensions
of Mantel-Haenszel tests are appropriate if there are more than 20 clusters

per treatment group.

3. If there are 40 or more clusters per treatment group then more sophisticated
and powerful methods such as the model dependent score tests constructed
using Liang and Zeger's (1986) generalized estimating equations approach
can be used.

The simulation studies upon which these recommendations were based only
examined trials in which there were 100 subjects per cluster, on average, were
limited to stratified trials with two or four strata and either 20, 40 or 80 clusters
per treatment group. Furthermore no comparisons were drawn between the
rejection rates o power differences likely to arise as a consequence of using
pair-matched or completely randomized designs instead of a stratified cluster ran-
domization trial. Finally there was no consideration given to the possible gains
in power obtained when adjusting for individual-level baseline .isk factors.

These limitations suggest that additional research is needed.

In particular comparisons need to be drawn between the three different clus-
ter randomization designs (completely randomized, pair-matched, stratitied) with
the focus being fixed on community intervention trials. Economic and adminis-
trative considerations usually constrain such trials to randomly assigning treat-
ment to very few clusters (Koepsell, Wagner, Cheadle et al, 1992) complicating

any analyses of data collected from them.

There are few appropriate methods of analysis for such data. Methods

which might prove appropriate in community intervention trials are t(-tests




calculated on the cluster means and permutation tests, as suggested by Williams
(1988). There is some evidence that such t-tests have valid type I error rates in
matched-pairs and completely randomized designs even when there are very few
clusters per teatment group (Donner and Donald (1987), Donner and Klar

(1993b)).

There are two ways of increasing the power of tests of the effect of treat-
ment. One approach attempts to adjust at the design stage by using stratified or
matched-pairs designs rather than completely randomized designs. Conflicting
results about the gain in power obtained by using a matched-pairs rather than a
completely randomized design were found by Freedman, Green and Byar (1990)
and by Martin, Diehr, Perrin and Koepsell (1992). The conflict might be due to
whether or not adjustment is made for the difference in degrees of freedom
between the two designs. Comparisons need to be extended to include stratified

designs.

An alternative approach to increasing power is to adjust during analysis.
Differences between these approaches are likely 0 be irrelevant when there are
large numbers of clusters (Grizzle, 1982). Such similarities may not hold in

community intervention trials.

Inferences about the effect of treatment can be enhanced by calculating
confidence limits. Such limits focus attention on the likely size of the effect of

treatment which is often of greater scientific interest than whether or not the null
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hypothesis should be rejected. The work done in this thesis on comparisons of
test statistics needs to be extended to comparisons of the bias and precision of
estimates of treatment effect and should also compare the coverage for associated

methods of calculating confidence limits.

The simplest approach used to calculate confidence limits is based on
inverting Wald test statistics. This approach was discussed in Chapter 2 and
Chapter 4 of this thesis. Donner and Klar (1993a) summarize a number of
different methods used to calculate estimates of confidence limits in cluster ran-
domization trials concentrating on completely randomized and pair-matched clus-
ter randomization trials. All ot these methods follow the approach of inverting

Wald test statistics.

Several researchers have pointed out that Wald tests can exhibit aberrant
behavior when the alternative hypothesis is true (Hauck and Donner (1977),
Mantel (1987), Vaeth (1985)). For example Wald tests of coefficients from
logistic regression models are not strictly increasing as a function of the odds
ratio. It is possible for such test statistics to get smaller as the odds ratio

increases. This problem will also affect the calculation of confidence intervals.

An additional difficulty with Wald statistics is that they can require a
greater sample size to assure their validity as compared to score tests. This was
seen in the simulation studies described in Chapter 3 for comparisons of robust

Wald and score tests.




Both of these concems can be addressed if confidence limits are calculated
by inverting score tests as suggested by Moore and Tsiatis (1991). The resulting
confidence limits might have more accurate coverage for smaller sample sizes
(Minkin, 1993). Such a result was noted by Voliset (1993) for the calculation of

confidence intervals for a binomial proportion.
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