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ABSTRACT

It is now widely known that the new high-temperature superconductors are
antiferromagnetic insulators in their normal state. Experimental results indicate
that layered cuprates such as La;_;Sr,Cu0O, and Y Ba;Cu30s,; - go from antiferro-
magnetic to superconducting state as x changes in the stoichiometry with doping.
This suggests a possible correlation between the properties of antiferromagnetism
and superconductivity in these materials. Also, the magnetic properties in the
normal state such as Neel temperature, it's dependence on doping, the sublattice
magnetization etc. have an unusual behaviour which is not yet fully understood.
The existing theories are not able to explain these magnetic properties. The aim of
this thesis, therefore, is to understand the magnetic properties of these compounds

in the antiferromagnetic insulating state.

We have developed a theory which takes into account the antiferromagnetic
correlations present within the CuQ; layers and also the weak but finite interlayer
coupling between these CuO; planes. Our theory is based on the Green’s function
approa:h by which we have obtained an expression for the Neel temperature, it'’s
doping dependence, the sublattice magnetization, the magnetic susceptibility and
the magnetic correlation length. We have obtained self-consistent expressions for
sublattice magnetization and susceptibility. We have found analytical expressions
for some of these magnetic properties which would prove extremely helpful to the
experimentalists. We have compared our theoretical results to the experimentali
result for doping dependent Neel temperature, sublattice magnetization, magnetic

susceptibility and the magnetic correlation length. It is shown that the theory gives

i
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Figure 3.3: (a) Magnetic susceptibility x vs. temperature for 2-1-4. (b) Corrected
magnetic susceptibility x, - C/T vs. temperature for 1-2-3 compound.
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Chapter 1

Introduction

1.1 Historical Background

The very first indication that metals when cooled below a certain temperature
showed zero resistivity was found by H. Kamerlingh-Onnes[1]. This phenomenon,
initially observed in mercury and later in other metals, was termed Superconduc-
tivity. In 1913, Kamerlingh-Onnes was awarded the Nobel Prize for his pioneering
work on the properties of matter at low temperatures. It was a startling discovery
except that the temperature required to do so was 4K. The importance of the dis-
covery was no doubt recognised and hoards of activities have taken place since then

[2-14].

Prior to 1986, superconductivity saw at least two periods of high activity
[1-6]. It started with the discovery of superconductivity and the existence of critical
current and critical magnetic field. H.K.Onnes during 1911-1914 also did the persis-
tent current experiments. In the years that followed, a variety of metals and metallic
alloys were found which showed superconductivity at varying transition tempera-

tures. Apart from finding these materials with higher transition temperatures a
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lot of other important developments occurred in this field before 1986. In 1933,
Meissner and Ochsenfeld revealed the diamagnetic character of superconductors|2!.
The discovery led to the formulation of Gorter-Casimir theory of the thermodynam-

ics [3] of superconductors in 1934 and then the London theory of electromagnetic

behaviour (4] in 1935.

More recent discoveries involve the development of the Ginzburg-Landau
theory [5] in 1950 and the discovery of the Isotope Effect in the same year. The
theoretical attempts for the elucidation of the microscopic mechanism responsible
for the properties of Type II superconductors resulted in BCS theory in 1957 by
John Bardeen, Leon Cooper and Robert Schrieffer, for which they won a Nobel
Prize in 1972. They proposed that electrons interact with each other by means of
distortions in the lattice and they form a bound state called Cooper pair. It was
then shown that this attractive interaction between electrons was responsible for
Superconductivity. This was the first comprehensive theoretical attempt to describe

the superconducting phenomenon in superconductors [6].

Later in the 1960’s, Ivar Giaever was the first to study the single particle
tunnelling in superconductors. Other major theoretical development came in 1962
when Brian Josephson predicted that Cooper like pairs can tunnel between weakly
linked superconductors. In recognition of these theoretical and experimental devel-
opment in superconducting tunnel junctions both Brian Josephson and Ivar Giaever
were awarded the 1974 Nobel prize along with Esaki who studied tunnelling in semi-
conductors. These discoveries were important from the technological point of view
since they formed the basis for a diverse electronic application of superconductors,
such as the production of SQUIDS and multilayers, which would be required to

produce integrated circuits.
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1086 saw one of the most important discoveries of this century. In the early
part of 1986, Bednorz and Miiller [7] found a ceramic material La-Ba-Cu-O, which
showed some interesting properties and a transition temperature of 30K. It was con-
ceived, for the first time that a ceramic material could show a transition temperature
(T.) of 30K. These materials are now famously known as 2-1-4 compounds. It is to
be understood here that ceramics are Insulators. Prior to 1986, all the supercon-
ducting materials discovered were either metals or metallic alloys. This discovery
fetched them the 1987 Nobel prize in Physics. Never before in the history of Nobel
prize has anyone been awarded this singular recognition in such a short time fol-
lowing their discovery. As a consequence of this discovery, a renewed interest grew
in superconductivity and in the ensuing years people all over the world engaged
themselves in finding materials with higher transition temperatures. Paul Chu (8]
and his group in early part of 1987 came up with a new class of superconducting
compound, Y-Ba-Cu-O, called 1-2-3 compounds, showing a T. of 90K. In 1988, H.
Maeda and his group found yet another compound, Bi-Sr-Ca-Cu-O, which showed a
transition temperature of 115K [9]. Later in the same year, the trend was continued
by Z. Z. Sheng and A. M. Herman who escalated the transition temperature to 125K
in T1-Ba-Ca-Cu-O [10].

In 1993, after a gap of almost five years, Andreas Schilling has reported find-
ing Hg-Ba-Ca-Cu-O which shows a transition temperature of nearly 133.5K [11].
Recently, in a span of less than two months, following this discovery, Paul Chu et
al. have reported observing superconductivity above 150K in HgBa,Ca,Cu305.4
under high pressures which is the highest reported 7, to date [12]. It is interesting
to realize that the transition temperatures in these high-temperature superconduc-

tors (HTS) is more than the boiling point of Liquid Nitrogen (77K) which has the
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advantage of being much cheaper than the liquid Helium which was widely used
to observe superconductivity prior to 1986. The only problem with the last two
of these ceramics is that they are highly toxic in nature and hence pose severe
problems in the study of their properties. Fig 1.1 shows the manner in which the
transition temperature has grown during this century. The list of High-temperature

superconductors and their transition temperatures are presented in Table 1.1.

Although, the field of High temperature superconductivity is still in it's in-
fancy but already, these discoveries have made an everlasting impression on the
scientific re.sarch by bringing Physics, Chemistry and Engineering together. From
the applications point of view, it has been recognised that these discoveries are so
vital that the enhancement of T. to somewhere near the room temperature would
revolutionize the basic structure of the world we live in. The efforts to achieve that

ever so elusive goal is still underway.

In this thesis, Superconductors among metals and metallic alloys discovered
prior to 1386 are called Conventional Superconductors while those discovered
after 1986 in layered copper oxides would be called High temperature Supercon-
ductors. The difference in the nomenclature is important since before the advent
of High temperature superconductivity in ceramics it was believed that due to the
presence of the quantized lattice vibrations in solids (phonons), there was attractive
interaction between electrons and they formed Cooper pairs which were responsible
for the onset of superconductivity. BCS theory gave an upper limit to the tran-
sition temperature, below which there is no residual resistivity in the material, of
nearly 30K. Now, in the post 1986 era, the highest transition temperature has gone
to almost 150K and BCS theory is no longer applicable to the High temperature

superconductors. It hence becomes imperative to look for different mechanisms and
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theories that could explain such high transition temperatures in these new oxides.

High temperature superconductors are different in the sense, that they have a
highly unusual phase diagram, for example, in La;_.Sr,CuO,_, and Y Ba;Cu304,,,
the material undergoes a structural change from tetragonal to orthorhombic as x
changes in the stoichiometry. This changing x in the stoichiometry is also accompa-
nied by an insulator to superconductor transition. This rich phase diagram, a very
distinct insulator to metal transition and various structural instabilities have given
different approaches for possible mechanisms. On top of all this, rather unusual
magnetic and electronic properties have contributed significantly to the notion that
a completely different type of mechanism may well be playing part in the supercon-
ductivity. Some of these have gathered enough support both theoretically and by
experimental revelations. Initial suggestion of Anderson[13, 14] that a rovel quan-
tum spin fluctuation in CuO; layers may be responsible for HTS has received consid-
erable attention. This theory has been called the Resonating Valence Bond (RVB)
theory. Further, it was found that the 3-D Neel temperature in 2-1-4 compounds
showed a sensitive dependence on the doping concentration of oxygen [15] and later
strong 2-D correlations were observed in these materials[16, 17]. These observations
led Anderson to conjecture that these fluctuations may play decisive role in destroy-
ing the long range antiferromagnetic order in the ground state, thereby, producing
a new quantum ‘spir-liquid’ state. How does this spin-liquid state manifests itself
in —bringing out the superconducting properties in these layered superconducting

ceramics is still a matter of great debate.
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Table 1.1:

LIST OF HIGH 7. OXIDE SUPERCONDUCTORS

Compound T. Discovered by
La-Ba-Cu-O J. G. Bednorz, K. A. Muller (1986)
(LazBa,_.):Cu0, 43K
La,,,;Sr_uCuO‘ 45K
Y-Ba-Cu-O W. K. Wy, C. W. Chu (1987)
YBGzCUaO‘] 90K
Y Ba;Cu30y 85K
Bi-Sr-Ca-Cu-O H. Maeda et al. (1988)
Bi.ST:CdzCuzOy 85K
Bi,S5r3Ca,Cus0, 115K
T1-Ba-Ca-Cu-O Z. Z. Sheng, A. M. Herman (1988)
Tl,Ba;CaCu,0, 100K
Tl ,Ba;CaCu30y 120K
ledeCdzcusolo 125K
Hg-Ba-Ca-Cu-O | 133.5K | Andreas Schilling (1993)
HgBa-,.CagCu;;O”g 50K C. W. Chu et al. (1993)

Ba, K, _,BiO 30K R. J. Cava et al. (1988)
Nd?—zCG,C‘UOq 20K

Y. Tokura, H. Takagi and S. Uchida (1989)
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Until 1986, superconductivity was observed in metals and metallic alloys.
The layered copper oxides on the other hand are Insulators in the normal state.
Study of these insulators in their normal state has revealed some very unusual
properties and a very strong antiferromagnetic correlation. It is believed that the
normal state of these high-temperature superconductors (HTS) holds the key to the
mystery enveloping superconductivity in these compounds. It is in this context that

a study of the magnetic properties in the normal state takes utmost importance.

Various studies on HTS [15, 16, 17] suggest th.t their structure is highly
anisotropic and they undergo a phase transformation from tetragonal to orthorhom-
bic superconducting state when doped. In the case of Lay_,S..CuO4_,, the doping
of oxygen as well as doping of Sr affects the phase transition. As x changes from
0.0 to 0.02 the compound is an AF insulator. At x ~ 0.04 the compound becomes
a superconductor. Similarly, in Y Ba;Cu30s,., the parent compound is an anti-
ferromagnetic insulator at no doping. With x > 0.4, the compound goes under a
phase transformation from AF insulator to superconductor[35, 36, 37]. As far as
superconductivity is concerned, it has also been found that substitution of ‘Y’ in 1-
2-3 by other rare earths doesn’t change the transition temperature much. However,
the transition temperature is strongly suppressed by substitution of zinc but at the
same time, iron and cobalt have very little effect. Substitution of oxygen in these
compounds enhances the superconducting nature and the transition temperature is
increased but substitution of p-holes contributes towards a strong Antiferromagnetic

ordering in CuQ; planes.

The copper spins in these materials have a magnetic moment and they are
arranged antiferromagnetically within the two dimensional layers and also perpen-

dicular to it. Some earlier experiments suggested that the maximum staggered
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magnetization in the Neel state is approximately 0.5u5/Cu. Above the Neel tem-
perature no long range order exists [16]. Experiments on these materials have shown
that the Neel temperature is highly dependent on oxygen and rare earth metal dop-
ing [21, 38]. For undoped 2-1-4 and 1-2-3 compounds the Neel temperature is found
to be 340K and 500K respectively. The Neel temperature and the effect of doping

are dealt with in Chapter IV.

In the normal state, the sublattice magnetization depends crucially on the
temperature. The sublattice magnetization decreases as the temperatureis increased
and eventually disappears at the Neel temperature. Undoped materials at zero
temperature do not behave as saturated sublattices. Due to zero point quantum
fluctuations, the average spin value is less than half. We discuss these subtleties in
considerable detail in Chapter V. The sublattice magnetization has different temper-
ature dependences in different regimes. Also, it has been observed that with doping
the sublattice magnetization shows a crossover from 3-D to quasi-2D behaviour [74].
The temperature dependence of sublattice magnetization is still a very controversial

topic and we address this problem when we deal with magnetization in Chapter V.

The magnetic susceptibility in HTS depends crucially on the method of
preparation of the materials. It has teen found that the susceptibilities in these
compounds are anisotropic [40, 41]. The contributions to the susceptibility come
primarily from the spatial orientation of the Cu orbitals and the spin. The spin
susceptibility for 1-2-3 is found to be 2-3 times larger than the insulating antiferro-
magnet, below the neel temperature. The temperature variations of susceptibility
are more or less governed by the Curie Weiss law. Below the Neel temperature the
magnetic susceptibility is a linear function of temperature for quasi-2D case and

it varies as T? for the 3-D case [42]. We address these points in greater detail in
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Chapter VI.

The Magnetic correlation length has been studied by various authors. Ex-
perimental results on 2-1-4 compounds suggest that the correlation length decreases
as the temperature is increased {17, 114, 61]. Doping of Sr in 2-1-4 has been shown
to have far reaching implications on the magnetic correlation length. Even a small
concentration of excess holes was found to alter the magnetic correlation length to
a large extent [61]. Theoretical attempts to explain these experiments for undoped
and doped samples haven’t been very successful. We discuss some of these attempts

when we calculate the magnetic correlation length from our theory in Chapter VIII.

1.2 Scope of the Thesis

It is now known that the normal state of these HTS is an antiferromagnetic insula-
tor possessing strong correlations between spins in the 2-dimensional copper oxide
planes. Also, there exists a weak interlayer coupling between the planes which plays
a very crucial role in most of the magnetic properties such as Neel temperature,

sublattice magnetization, magnetic susceptibility and magnetic correlation length.

Our aim is to build a theory for quasi-two dimensional antiferromagnets in-
cluding the antiferromagnetic correlations within the planar CuO; layers and also
bet ween these layers. We wish to study the magnetic properties such as the Neel
temperature, it’s dependence on doping, the sublattice magnetization, the mag-
netic susceptibility and the magnetic correlation length. We would also study the
crossover behaviour of the magnetic properties in 1-2-3 and 2-1-4 compounds with
doping and with the change in temperature. We would then compare our theoretical

results with the experimental results available for the above mentioned properties.
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The theoretical results obtained with this theory woull be compared with other

theoretical attempts that have been made to explain these properties.

A study like this is important since, recently, it has been argued based on
some experimental revelations that the antiferromagnetic correlations present in the
normal state persist through the superconducting transition. The inter correlation
betw=en antiferromagnetism and superconductivity has been one of the most im-
portant questions in the post 1986 superconductors. We present this study with the
hope that the results achieved through this theory would go a long way in under-

standing the the antiferromagnetic phase of Las_.Sr,Cu04 and Y Ba;Cu304; ».

The thesis has been divided into nine chapters. The first chapter of the thesis
deals with the historical background concerning Superconductivity and most of the
important developments that have occurred over the years. We have tried to give a
brief introduction of some major developments in the field until recently. We have
also introduced the magnetic properties of the High temperature superconductors

in their normal state.

The second Chapter covers some startling differences between the conven-
tional and high-temperature superconductors and some of the important structural
properties and phase diagram of HTS. Our intention is to establish here, that the
properties are so diverse that the theoretical model for conventional superconductors
are no more valid for HTS. Also, we start to look into some important structural
aspects and the phase diagram of HTS which would give us crucial information that

would be used in formulation of a theory for normal state magnetic properties.

A brief review of the experimental results on the magnetic properties of high-

temperature superconductors are given in Chapter III. We have focussed our study
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on two compounds namely Y Ba;Cu3Og.p (1-2-3) and La;_.Sr.CuO,_, (2-1-4). We
have reviewed all those magnetic properties that are calculated in chapters ahead.

So, this chapter would also establish some facts that are used later to test our theory

on.

In the fourth chapter, we have laid down the self-consistent theory and have
derived an expression for the Neel temperature for antiferromagnets. Theoretical
results obtained from the theory are presented and the results are compared with
experiments. We have also studied the role of interlayer coupling and doping on the

Neel temperature in HTS.

This theory is shown to provide a self-consistent expression, in the fifth chap-
ter, for the sublattice magnetization. The expression thus obtained is evaluated
numerically and the results are compared with the experimental results. We have
compared our results specifically with the linear spin-wave theory and have shown
that under specific approximations on the self-consistent theory, spin wave results
can be obtained. The theory is shown to give results which are in excellent agree-

ment with experiments.

The sixth chapter contains a novel approach for the evaluation of magnetic
susceptibility by the spectral function of spin waves. The magnetic susceptibility
and it’s dependence over temperature is studied and the results are again compared
with the available experimental results. Our theoretical results are shown to explain
the experimental results at high temperatures. At low temperatures, there is a

disagreement between theory and experiments which is discussed.

We have studied the r-dependent and T-dependent crossover in the seventh

chapter. The sublattice magnetization is shown to undergo a crossover which occurs
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at a critical value of the anisotropy parameter. The results obtained are compared
with other theoretical results. It is also shown, by a general use of the spectral func-
tion that at a temperature T~ 2J)v/2r/kp, the sublattice magnetization undergoes

a 3-dimensional to quasi-two dimensional character.

We have evaluated the magnetic correlation length in the eighth chapter.
The dependence of magnetic correlation on doping is also studied. It is shown that
the expression for the magnetic correlation length is doping dependent. The results
are compared with some of the recent experimental results and good agreement has
been obtained. We have also compared our theoretical results with other theoretical

models which have been used to explain the magnetic correlation length.

We have presented all the results and the salient features of the self- consistent

theory in the last chapter. A brief summary of our work is presented here.

A short review of the Green's function approach is added in the appendix
I since the self-consistent theory has emerged out of this approach. In appendix
II, we have shown by using the second quantization method that the Heisenberg

hamiltonian is a consequence of exchange effects in solids.




Chapter 2

Properties of HTS

The advent of High-temperature superconductivity in layered copper oxides has
triggered widespread interest in the study of the nature and the properties of these
materials. The most important reason for such an upsurge of interest was the real-
ization that the properties, both in the normal and superconducting state, in these
ceramic materials differed from their predecessors. We will try to give here a brief
outline of some basic properties in Conventional and High-temperature supercon-
ductors (HTS) since, it not only gives us a better understanding about these novel
materials but would also help others to appreciate the need for a comprehensive the-
ory that could solve the mystery which encompasses the field of High-temperature

superconductivity today.

This chapter gives the definition of superconductors and then the basic differ-
ences between conventional and high-temperature superconductors. We then discuss
the structural properties of High temperature superconductors, mainly 1-2-3 and 2-
1-4. Structural anisotropy in the High temperature superconductors is the reason
behind a lot of interesting properties in the normal state of these layered copper

oxides. At the end of this chapter, we have focussed our attention to the phase dia-

14
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gram of *wo widely studied High temperature superconductors, namely La-Sr-Cu-O

and Y-Ba-Cu-O.

The aim of this chapter is twofold. First, we want to establish that the
properties of conventional and High temperature superconductors are so different
that the theoretical model used to explain superconductivity prior to 1986 is no
longer valid. Second, we would review the structural properties and phase diagram
of High temperature superconductors in order to gather some basic information

which might help us in developing a theory for explaining the magnetic properties.

2.1 What are superconductors ?

A superconductor when cooled below a certain temperature, called the transition
temperature T, has zero electrical resistivity. This alone does not guarantee a
solid to be superconductor. At the transition temperature, a superconductor, should
expel all magnetic field. This phenomenon of perfect diamagnetism exhibited by
superconductors is called the Meissner Effect. At high enough fields, however,
the superconductivity vanishes and the field fully enters the sample. The critical
field, H., where the superconductivity is destroyed is also an intrinsic property of
superconductivity. It has been found that in some superconducting materials the
loss of the diamagnetic character happens at a sharp value of magnetic field and in
others there is a partial diamagnetism after a lower critical field H,, and total loss
at an upper critical field H.;. The materials showing former behaviour are called
Type I Superconductors while the latter Type II Superconductors. Most of

the HTS are known to be Type II superconductors.
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2.2 Comparison between Conventional and HTS

Here, we give a brief outline of some of the salient differences between Convention. |

and High temperature Superconductors.

Resistivity

Resistivity in normal metals is given by p = A+ BT where T > 0.20,. Here 8p, is
called the Debye temperature and A and B are constants. In this temperature range,
the T-dependent resistivity is dominated by the electron-electron interactions. How-
ever, in the low temperature regime, electron-phonon scattering plays the dominant
part in the resistivity and is given by the form p = C + D T®. Here, C and D are
constants. These constants in the above form for resistivity is a consequence of the
electron scattering from point or line defects, impurities etc. [18]. In case of High
temperature superconductors, due to the structural anisotropy, the resistivity too
has an anomalous anisotropic temperature dependence. At low temperatures, the
resistivity along the ab-plane, ie. within the CuQ; planes, p,, changes linearly with
temperature which is unusual since we expect a T® behaviour [19]. In the direc-
tion perpendicular to the planes, along the c-axis, p. &« T~%, where a =~ 0.61 [20].
The perpendicular resistivity is nearly two to five orders of magnitude larger than
the inplane resistivity ie. p./pa ~500 - 10%. These differences in the inplane and
interplane resistivities in 1-2-3 compounds is shown in fig.(2.1). This anomalous

behaviour of resistivity is still unclear with unknown reasons.

Carriers
In case of conventional superconductors which were metals or metallic alloys, the
charge carriers were always electrons. In retrospect, the recent Hall Effect and other

measurements suggest that the carriers in case of 1-2-3 and 2-1-4 are holes (21, 22].
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Energz gap

The conventional superconductors have an energy gap iz the superconducting state.
BCS theory predicts such a gap and gives the relationship between the critical
temperature 7. and the Energy Gap A as 2A/kgT. = 3.53. In HTS, different

experimental techniques have shown that in 1-2-3, there is an Energy gap similar
to the one in conventional superconductors [23, 24, 25]. Most of these identify a
range of 3.0 to 6.0 for 2A/kT.. This range of values reflect a highly anisotropic gap
in case of 1-2-3. Tsai et al. [24] have studied tunnelling in directions parallel and
perpendicular to the c-axis on 1-2-3 films. They have concluded that the gaps in two
principal directions had the values A, = 5.9 £ 0.2kT, and A, = 3.6 £ 0.2k7.. The
energy gap for 1-2-3 has also been measured from various other techniques by van
Bentum et al. [23]. The values obtained from some of these measurements range

from 12.5 to 14.0 meV.

Characteristic Lengths (¢§ and )\)

§, the Coherence Length, is the spatial range or the decay distance of the supercon-
ducting wavefunction. A is the penetration depth. Unlike the conventi- al counter-
parts the coherence length in HTS is very small and highly anisotropic, for example
in La-Sr-Cu-O ¢, ~ 20A. Coherence Length for 1-2-3 is of the order of 10Aas com-
pared to 1000Ain other type II superconductors. Braginsky et al. [26] have obtained
both coherence length and the penetration depth for the a-b plane and along the
c-axis. They found A = 1800 A and 270 A and £ = 2- 4 A and 16 - 30 A along the

c-axis and within the ab-plane respectively.

Heat Capacity

Like conventional superconductors, HTS too show a jump in Heat capacity at T=T,
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which is indicative of a phase transformaticn. Also, at T=0 unlike the normal
metals which have a linear T term in heat capacity, no such linear dependence has
been found in HTS nor in Conventional superconductors. In the Heat capacity
measurements, the sharp jump is replaced by a more gradual change with a tail

extending well above the transition temperature.

Isotope Effect

In conventional superconductors, it was observed that the doping of isotopes en-
hanced the transition temperature. The transition temperature was found to de-
pend on the Isotopic mass by the relation T, x M~ where a was almost 1/2 within
experimental error [27]). Measurements on HTS like 1-2-3, shift of transition tem-
perature was sought after a major fraction of O'® was replaced by O'®. Interestingly
enough, no shift in transition temperature was observed {28, 29]. This observation
is taken to imply that the phonon contribution to the coupling is minor and hence

BCS theory is not valid for these compounds.

Having understood some basic differences between conventional and High
temperi.iure superconductors, we would now move on to the study of some chaz-
acteristic properties of layered copper oxides. From here on, it’s our intention to
discuss those characteristics only, which have significant implications on the mag-
netic properties of HTS. Also, from here onwards, we would avoid the properties of

conventional superconductors altogether.

2.3 Crystal Structure

There has been a lot of indications that lead us to believe that the mystifying

properties of HTS originate due to certain type of structure of these superconductors.
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We will during the course of this thesis focus our attention on two famous materials
viz. Y Ba;Cu30q,, called 1-2-3 and La;_,Sr,Cu0,_, called 2-1-4. These have
the advantage of being extensively studied and most clearly understood among all
other materials that exhibit high temperature superconducting behaviour. These

two materials belong to the class of compounds known as perovskites.

2.3.1 Perovskite Structure

The structure of superconducting materials has been studied by various experimental
techniques like X-ray, Neutron-diffraction, Electron Microscopy etc.[43, 44, 45, 46,
47]. These studies suggest that their structure is related to the ideal perovskite
structure ABX;. The unit cell in ideal perovskite has a cubic ABXj; structure
where A and B are cations and X is an anion. The structure of an ideal perovskite
is shown in fig.(2.2). Almost all of these compounds are insulators except when A

and B both are heavy non-transition metals.

2.3.2 Structure of 2-1-4

The parent compound in the La,_,Sr,Cu0,_, series is the compound La,Cu0),
which forms as the tetragonal K;NiF; structure. The basic structure of these
A3 BX, compounds have their B atoms lying in planes and are octahedrally coordi-
nated by X atoms while the A atoms are about nine-fold coordinated. La-Ba-Cu-O
system is a variation on the perovskite ABX; structure where A=La or Ba and
B=Cu. Neutron and X-ray diffraction {48, 43] have found the structure of 2-1-4
having two K3 NiF, form 1a units per unit cell. At the center of the cell is a Cu(y

octahedron surrounded by La or Ba atoms. Each copper atom is at the center of




Figure 2.2: Structure of ABXj; : Ideal perovskite
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the octahedron surrounded by four oxygen in the square planar arrangement and
two other oxygen are situated above and below the plane at a larger distance. This
results in the cubic perovskite structure being elongated along the ‘c’ direction of
the cell. Above and below this is another layer of elongated perovskites that are
shifted along the‘a’ and ‘b’ axes by half a unit cell thus forming a CuO, octahedra
situated at the corners of unit cell of (La,_,Ba,);CuQ,. This kind of distortion is
called Orthorhombic distortion. This kind of structure almost always results in the
formation of a planar CuO; layer which is conjectured to be playing decisive role in
the onset of superconductivity in these materials. These planar CuQO, layers have
strong antiferromagnetic correlation between the neighbouring Cu spins and infact
these correlations are responsible for the host of unusual magnetic properties in the

normal state. The unit cell of La-Ba-Cu-O system is shown in fig.(2.3).

2.3.3 Structure of 1-2-3

The Y-Ba-Cu-O system which shows a transition temperature of 30K has a more
intricate structure although more or less similar to La-Ba-Cu-O. In 1-2-3, stacking of
three ABX; type perovskites make a unit cell. The A element in this case is either
Y or Ba and there are two key oxygen atoms missing in the unit cell structure. The
oxygen atoms at the center of ¢ axis and the corners of ‘ab’ plane surrounding the
Y site are missing. Also, the oxygen located at the top and bottom plane along
the ‘a’ direction is missing causing an orthorhombic distortion in the unit cell. The
absence of oxygen in the top and the bottom plane destroys the planar structure
and instead forms a one dimensional periodic chains of Cu-O along the b-direction.
Also, the oxygens between the chain and the plane moves towards the CuO chain

thus weakening th: bonding between it and the Cu on the CuO; plane.
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This produces a planar effect between the copper and the remaining oxygens. The
unit cell hence contains two of these CuQO; planes, in apparent contrast to La-Ba-
Cu-O which contains only one of these layers. When oxygen is added to the system,
they go irst to the chain layers where the Cu[l+] ions are changed to Cu[2+] and
hence we get holes in these layers. This is the reason why these layers are also
called the charge reservoir layers. The planar layers on the other hand are not
affected by the addition of the oxygen in the stoichiometry. Most of the conduction
takes place in these planar layers and they are also termed as the conduction layers.
The location of these planar and chain layers are depicted in fig.(2.4). Most of the
magnetic properties are associated with the interactions within and between these
planar layers. We would discuss the significance of these layers on the magnetic

properties in the normal state of these materials in Chapter IV.

The basic structure corresponds to a cubic perovskite with one of the axes
triply elongated. This is an oxygen deficient structure. Along the b-axis there are
Cul-O1 chains with each Cul having two Ol neighbours at 1.94Aand two O4 at
1.85A. Above about 500°C, the b-axis contracts while the a-axis elongates, and
finally both become almost equal and the structure becomes tetragonal. The unit
cell dimensions of this tetragonal Y-Ba-Cu-O system is a= 3.86 A, b=3.86 A, and
c=11.82 A.

Over the years it has been well established that the Cu{l} and Cu[2] atoms
have a 2+ valence (3d®) configuration ia the fully oxygenated x=1 compound [135].
Evidences of oxygen holes in the planes and chain layers in 1-2-3 has also been
obtained by different experimental techniques [50, 51]. Superconductivity occurs
when a sufficient concentration of holes is present in these materials. In case of

1-2-3 it is now known that the transition from the tetragonal to the orthorhombic
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Figure 2.4: High temperature superconductor 1-2-3 showing the alternating layers
of conduction and reservoir of charges. Conduction layers comprise of two CuO,
layers separated by Y atom while the charge reservoir layers consist of CuO, chains
along ‘b’ with barium and oxygen atoms. The oxygen content near the copper atoms
in the chain layer is variable with x ranging from 0 to 1
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phase is controlled by the orientational ordering of the chain segments. The antifer-
romagnetic ordering, however, in the tetragonal phase is dominated by the localized

Cu moments in the CuQO; layers.

2.4 Phase Diagram

Neutron diffraction [35, 52, 16, 53, 17| and muon spin precession experiments {54, 55]
have confirmed that the oxygen doping in these materials produces a phase trans-
formation from tetragonal to orthorhombic structure. Fig.(2.5) shows the phase
diagram for 1-2-3 compounds. With no oxygen doping the undoped compound is a
tetragonal antiferromagnetic insulator with Neel temperature of nearly 500K. As the
oxygen concentration changes from x=0 to x=0.4 the Neel temperature decreases
and eventually becomes zero. For x< 0.4 in Y Ba;Cu30g,:s, Cu?t spins are anti-
ferromagnetically aligned on the CuO; planes and also along the tetragonal axis.
At z > 0.5 the compound becomes superconducting and the transition temperature
starts increasing. This phase is orthorliombic superconductor with transition tem-
peratures getting to a maximum at x=1.0. The phase diagram also shows that if
the temperature is increased at a particular doping concentration of oxygen beyond

=0.5 the orthorhombic superconductor changes to an orthorhombic metal.

The properties of La;_,Sr,CuO,_, also change drastically with oxygen dop-
ing and also with the doping of Sr. With no oxygen doping, y=0, and varying
the concentration of Sr, 2-1-4 changes from orthorhombic superconductor to or-
thorhombic antiferromagnetic insulator. The phase diagram in fig.(2.6) shows the
dependence of Sr doping on the Neel temperature. At x=0, with no oxygen doping

the parent compound is La;CuQ, which is an antiferromagnetic insulator with Neel
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temperature of 300K. As the concentration of Sr changes from 0 < z < 0.02 the Neel
temperature of La-Sr-Cu-O decreases from 300K and eventually becomes zero. At
this Sr concentration further doping makes the system undergo an antiferromagnetic
to superconducting transition. Sandwiched between these two states there is a spin-
glass state, the properties of which are beyond the scope of this thesis. The material
becomes superconducting for 0.05 < z < 0.35 with maximum transition temperature
of about 35K. The superconductivity is destroyed if the temperature is increased
at these concentrations of Sr doping. The subsequent phase is an orthorhombic
normal metal. It has also been found that the Neel temperature in 2-1-4 is extremely

sensitive to oxygen concentration as well.

2.5 Conclusions

Through this chapter we have established a few facts which would emerge to be of
immense help later when we start developing a theory for the magnetic properties.

We have established here that

e The properties of conventional and HTS are very different and hence the older

models can not be used to explain the properties of HTS.

e These layered copper oxides are antiferromagnets in their normal state and

the magnetic nature is due to the Cu spin.

e Strong magnetic correlations exist in the planar CuQO, layers and a much
weaker correlation also exists between these planar layers. These planar layers

are identified as playing important role in the magnetic properties of HTS.
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e They undergo a phase transformation from Insulator to Superconductor as

they are doped.

We have now familiarized ourselves with some of the basic properties of these layered
copper oxides. We would now study in detail, the magnetic properties for 1-2-3 and

2-1-4 as obtained from different experimental methods, in the next chapter.



Chapter 3

Magnetic Properties of the
Normal state

Now that we have reviewed the crystal structure and the phase diagram of 1-2-3
and 2-1-4 compounds, we are in a better position to understand some of the mag-
netic properties in the normal state of these layered copper oxides. Most of these
properties are a direct consequence of the highly anisotropic crystal structure and
a complex yet rich phase diagram which we have already discussed in Chapter II.
Here, we are going to review some of the important experimental results on some
vital magnetic properties such as the Neel temperature, the sublattice magnetiza-
tion, susceptibility and magnetic correlation length. In the chapters ahead, we will

develop a theory to explain these experimental results.

3.1 Antiferromagnetism

Before we discuss the magnetic properties of these AFM insulators, let’s first under-
stand what exactly is an antiferromagnet. It’s a material in which the ionic spins are

arranged antiparallel to each other. Supposing we have a crystal whose constituent

31



32

atoms can be resolved into two sublattices ‘A’ and ‘B’ such that the nearest neigh-
bours of the atoms of ‘A’ are the atoms of ‘B’ and vice-versa. The cubic and bec
are both of this type with a negative exchange interaction. The exchange energy
of two atoms is a minimum if their spins are antiparallel. This type of material is

called an Antiferromagnet.

Below a certain temperature the magnetic moment of one sublattice is ori-
ented in one direction. However, as we reach the transition temperature the spins
start orienting randomly and consequently the magnetization becomes zero. The
temperature at which this happens is called the Neel temperature. Hence, an anti-
ferromagnet can be viewed as two interpenetrating ferromagnetic lattices with the
nearest neighbour of any spin lying on a different sublattice. The orientation of spins
in a crystal lattice is the effect of a purely quantum phenomenon called Exzchange
Interaction. Fig.(3.1) shows the alignment of spins in a general antiferromagnet. A
classical antiferromagnet would have perfect Neel order at zero temperature, but, in
a quantum mechanical antiferromagnet, spin waves are present even at T=0, which
correspond to the zero point fluctuation of the spins, and hence there is deviation

from the perfect order.

Most of our knowledge about the high-temperature superconductors is .ased
on the experimental results that have been achieved over the last six years. Most of
the time it has been observed that one single experiment is not conclusive enough
and hence a different more sophisticated experi:nent becomes a necessity. During our
discussion we will mention some of these experiments with the understanding that in
most cases, although the basic understanding about these magnetic properties may
not have changed, some of the numbers are coatinuously being improved. With this

in mind, let’s now review some of the magnetic properties of Y Ba,Cu30,,, and
g
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Las_.Sr,CuQ, in their normal state.

3.2 Magnetic Moment

In the case of both 2-1-4 and 1-2-3 compounds, antiferromagnetic ordering has been
observed by neutron diffraction studies {16, 17, 52|. In both these oxides, there is
about 0.5u 5 spins per Cu atom [16, 17]. In the 2-1-4 series, the parent compound is
an antiferromagnet with copper spins aligned along the ab-plane and also perpen:
dicular to this plane. Muon spin rotation experiments done on La,CuQ,_; found
that in the presence of a zero external magnetic field, below the Neel temperature
there were clear long lived signals of muon spin precession [54]. The muon precession
signal suggested that the ozdering of Cu spins occurs with microscopic homogenous
spin distribution. It was also interpreted from this experiment that the Cu atoms in
2-1-4 have the same distribution of magnetic moments on all the Cu sites. Some first
hand calculations with the assumption that only 50% ordering takes place resulted
into an upper limit of S < 0.6ug where S is the average ordered moment per copper

spin.

Neutron diffraction studies done on the samples of 1-2-3 also show AFM
ordering as the oxygen concentration is changed in the samples. A single AFM
structure has been observed for 1-2-3 with a maximum Neel temperature of 500K
and average ordered moment of (0.66 + 0.07)up per magnetic copper atom at no

oxygen doping [37].

It has been interpreted from these experiments that both the HTS, Y-Ba-Cu-
O (1-2-3) and La-Sz-Cu-O (2-1-4) are magnetic in nature in their ground state since

they contain copper in the 3d® state In the ionized state, there is one unpaired Cu
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spin. The ahgnment of this spin is instrumental in providing the magnetic nature

to these materials.

3.3 Doping Effects and the Neel temperature

Positive muon spin rotation and relaxation experiments have revealed local antifer-
romagnetic order in the defect perovskite Y BasCusQOg,, for the oxygen concentra-
tion ranging between 6.0-6.4 [57]. It _s found that with increasing concentration of
oxygen, the Neel temperature decreases rapidly *. The magnetic ordering in these
materials can be found by applying an external magnetic field transverse to the
muon polarization direction. If the external magnetic field is less than the local field
at the site of the muon, the amplitude of muon precession at external magnetic field
frequency contains information about the nonmagnetically ordered spins. Hence
the 1nuon precession amplitude gives us the paramagnetic fraction of the spins. For
spins that lic 1. the antiferromagnetic fraction they experience a local field due to
the neighbouring spins and for these the external field is only a small perturbation.
The results from this experiment have indicated that the mean Neel temperature,
at which almost half of the spins are ordered, decreases with the increase in oxygen
concentration. The Neel temperature was found to decrease sharply around x=0.25

and after that it is followed by a tail at higher value of ‘x’ [57].

Neutron Scattering results of Tranquada et al. [36, 37] have reached almost
the same conclusions. The results for 1-2-3 indicate that as ‘x’ increases, the Neel

temperature changes slowly until the tetragonal-to-orthorhombic transition is ap-

*These experiments also suggest a possible correlation between Antiferromagnetism and super-
conductivity. The positive muon is very useful in studies like this since it serves as a probe of the
local magnetic environment and it is quite sensi*ive to and can differentiate between antiferromag-
netism and superconductivity.
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proached, at which point it quickly falls to zero. With increasing x, oxygen enters
the Cu[l] layer and creates some Cu[l]**. This was confirmed by the fact that the
Neel temperature remains high over a large range of x. As a result for 1-2-3, the
magnetic ordering is not destroyed until the tetragonal-orthorhombic phase bound-
ary is reached, in contrast to La;_,Sr,CuO4_, in which even a small amount of
doping destroys the long range order even before the phase boundary is reached
[56]. For 2-1-4, Neel order exists only for z < 0.02 and within this region the charge
carniers are strougly localized, and the electronic conduction is closely similar to
that of conventional lightly doped semiconductors [58, 59]. All these results have
resulted in a phase diagram of the type shown in fig.(2.5) and fig.(2.6), for 1-2-3 and

2-1-4 respectively.

Neutron scattering experiments on pure and doped samples of 2-1-4 have
also established that the pure system is very close to being an ideal realization of
the 2D spin-1/2 Heisenberg model [17]. Strong magnetic correlations exist in these
pure systems. Within the 2-D layers, the strong antiferromagnetic superexchange
provides the relevant antiferromagnetic interaction between the neighbouring Cu
sites [56]. But, apart from these strong two-dimensional correlations there is a small
but finite interlayer coupling which makes these systems quasi- two dimensional.
Elastic neutron scattering studies have now confirmed that the parent compound of

2-1-4 does behave as a quasi-two dimensional quantum Heisenberg antiferromagnet

[63].
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3.4 Sublattice Magnetization

The staggered magnetization is proportional to the average spin < S > and a value
of M= gug < § >~ 0.65u5 was observed at low temperatures [60]. Assuming a
g~2.2 for spin 3 Cu[2+] ion one gets a value of < § >~0.3. After some of these
initial reports for magnetization, various experimental techniques have been used
to study sublattice magnetization in these layered cuprates. Among them, Moss-
bauer experiments are one of the most widely used. The principle underlying this
method is simple. Earlier studies have suggested that in the layered oxides, doped
Fe usually occupies the Cu sites and the Fe spin is coupled antiferromagnetically to
the Cu spins {118, 117]. The hyperfine field splits the nuclear ground state and the
first excited state of Fe which have spins of 1 and % respectively. Below the Neel
temperature, transitions between these two states with a dipole selection rule results
in a completely split out sextet which can be easily observed by Mossbauer spectra.
Through this the magnetic hyperfine field is determined which is proportional to
the sublattice magnetization. Low levels of doping ensure that the property of the
parent compound is not altered considerably. The temperature dependence of the

hyperfine field at the Fe nucleus in the lattice hence gives the temperature depen-

dence of the sublattice magnetization of the antiferromagnetic Cu-spin system.

The temperature variation of sublattice magnetization in La,CuQ, from such
a technique has revealed that there’s a weak dependence which increases to almost
a linear fall off as the temperature increases. Mossbauer spectroscopic studies with

about half a percent of doped " Fe on La;CuO4 have provided these results{116).

Other experimental techniques have been used to study the phase diagram

of La;Cu0, including Perturbed ¥4 angular correlation experiments (PAC) using
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1111n atoms as probes to find out about the mean field exponent for magnetization
[140]. Inhomogeneous samples of 2-1-4 were doped with < 10 ppm of radioactive
1111n on oxygen gas at 1273K and annealed for 3-4 hours in vacuum at 773K. It was
found that the In settles at the La site. The Fourier lines of the PAC data were
found to split by a weak magnetic field, B,4(T), which were shown to fit to a power

law
By (T)
B,4(0)

where 8 = 0.50 and Ty = 316.7K. We recall that the hyperfine field is proportional

=D(1-T/Ty) (3.1)

to the sublattice magnetization. This value of @ = 0.5 corresponds to the mean field
value thus implying that ordering in 2-1-4 is dominated by long range interactions.
However, a different set of PAC experiments have found that the 3 has a value of

0.27 [123].

The above mentioned mean field nature of the sublattice magnetization as-
sumes a homogenous Neel temperature throughout the sample. In reality how-
ever, the Neel temperature in 2-1-4 is inhomogeneous as shown by % La nuclear
quadrupole resonance (NQR) [154] and 57 Fe Mossbauer measurements{122]. The
effect of inhomogeneity on the value of 8 has recently been demonstrated by 37Fe
Mossbauer experiment of Imbert et al. [122]. It was shown that at each temperature
below about 230K all the probes that were doped in the 2-1-4 material experienced
the same Hyperfine field. As the temperature was increased above 230K, fractions
of the probes crossover into the nonmagnetic state thus giving a clear signature of
inhomogeneity in the Neel temperature. This happened due to the fact that with
these inhomogeneities some parts of the material reach their Neel temperature at
230K and the probes in this part of the material becomes nonmagnetic while nthers

still occupy a position in parts which reach their Neel temperatures at about 316K.
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Typically the highest Neel temperature of these segments where local magnetic order
exists is almost 318K. The thermal evolution of the sample average of the hyperfine
field obtained by weighting over the magnetic and nonmagnetic fractions was also
calculated. It was shown that these averaged data points correspond to those values
which would be obtained by experimental procedures, like the one explained above,
which are not sensitive to local inhomogeneities. They fit very well with #=0.5. But,
in reality, since inhomogeneities are present in the samples, this value is fictitious

and much larger than the real local value.

The Neutron scattering experiments of M(T) reveal that 2-1-4 follows a mean-
field magnetization curve, unlike the results obtained from hyperfine field By (T')
from Mossbauer-effect spectroscopy (MES) of dilute 37 Fe in these compounds. Fig.
(3.2a) and fig.(3.2b) show the temperature dependence of normalized magnetization
from different experimental and theoretical predictions. The criticism of these MES
[see fig.(3.2b)] data too has been subject of debate for a while now [124]. It seems
that the discrepancy observed in the M(T) observed through NS and 5" FeB,,(T)
[see fig.(3.2a)] is due to incorrect explanation of MES data. The hyperfine field of
a probe impurity such as 57 Fe, which has a local magnetic moment, is not directly
proportional to M(T) and hence it’s description over entire temperature range below

the Neel temperature for 2-1-4 is incorrect [124].

3.5 Susceptibility

The other important magnetic property in 2-1-4 and 1-2-3 compounds is the static
susceptibility. Variations in the static susceptibility can be found when the chemical

modifications induce the insulator to superconducting transition i these com-
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Figure 3.2: (a) Normalized Hyperfine field vs. Temperature of CuO from pSR
(0), '®Rh PAC (o) and "Fe MES (O); (b) Temperature dependence of normalized

magnetization (o) and *"Fe hyperfine field (o) for 2-1-4 via NS and MES respectively.
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pounds. In 1-2-3 the variation of susceptibility with temperature depends crucially
on the method of preparation of oxygen deficient samples. One of the common
problems with the calculation of susceptibility from experiments is the presence of
paramagnetic contributions from intrinsic impurities. Johnston et al. {125] have
shown that these paramagnetic impurities tend to dominate at low enough tem-
peratures. After separating the contributions from impurities they found that the
magnetic susceptibility scales universally with temperature normalized to the tem-

perature at which susceptibility has a maximum.

Tranquada et al.[37] have shown that the intrinsic signal for magnetic suscep-
tibility can be obtained by subtracting a Curie-like contribution (Cy;/T). When they
fitted a term like C,/T to the susceptibility data they found that the shapes of the
residual curves were not sensitive to the precise value of C, or to the replacement of
the Curie term by a Curie-Weiss form C,/(T — 8). They hence wrote the corrected
term as x°" = x, — (C,/T). We show the corrected susceptibility data for both
1-2-3 and 2-1-4 compounds in fig. (3.3a and 3.3b). Each curve is dominated by a
broad maximum at temperature > 800K and the susceptibility is found to decrease

with decreasing temperature [130].

Interestingly, the spin susceptibility for the 90K superconductor is 3 to 4
times larger than the insulating antiferromagnet below the Neel temperature. The
same tendency is also observed in La;_.Sr.CuQ,, but the quantitative analysis is
not quite straight. However, a best estimate gives a ratio of ~ 1.5 - 1.9 for the low
temperature spin susceptibilities of x=0.15 and x=0. This ratio incidentally is only
half of that in 1-2-3 [62]. Discounting the contributions due to long range order,
there is a peculiarity in the low temperature spin susceptibility of 2-1-4 and 1-2-3.

For both these compounds, spin susceptibility is close to 1 x 10-% emu per one mole
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Figure 3.3: (a) Magnetic susceptibility x vs. temperature for 2-1-4. (b) Corrected
magnetic susceptibility x, - C/T vs. temperature for 1-2-3 compound.




43

formula unit. Now, since the chain sites have no magnetic moment in undoped
compound, this suggests that 1-2-3 double layer has the same susceptibility as the

single layer 2-1-4.

Lines [131] has ulso studied the susceptibility for K3 NiF, and has shown that
the position of Xma. should occur at a temperature comparable to the intraplanar
exchange parameter Jj. These results are also true for the layered copper oxides
since the structure of undoped 2-1-4 is similar to the K, NiF system. We would
discuss more about these susceptibility measurements and would compare some of
these results when we calculate the magnetic susceptibility from the self-consistent

theory in Chapter VI

3.6 Magnetic Correlation Length

The two dimensional spin-correlations in 2-1-4 have been studied in some detail in
a series of Neutron Scattering experiments [16, 15, 17]. In these experiments one
integrates over the energy without changing the intraplanar momentum transfer by
collecting all the outgoing neutrons in a direction parullel to the 2D plane. If the
magnetic correlations are two dimensional in character, they shouldn’t be affected
by the momentum transfer perpendicular to the CuO; plane. The correlation length
is then extracted from the static structure factor S(q) which has been approximated
to have the form S(q) ~ 1/¢® + [1/£€(T))? by Endoh et al. [17]. It is important to
realize that experimentally this energy integration is carried out between -T and
the incident neutron energy. The idea behind it is that a neutron can not, ofcourse,
lose energy greater than it’s incident energy. However, it can gain any amount of

energy from the available excitations but the integration would be effectively cutoff
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by the thermal occupation factor. Extraction of the correlation length from the
structure factor like this has yielded a decreasing variation of correlation length

with temperature. This was done for undoped samples of 2-1-4 compounds.

Recent experimental results of Keimer et al. on the magnetic correlation
length show that it is greatly suppressed as a function of x. These experimental
results have reached to the conclusion that the magnetic correlation length decreases
as the doping of Strontium is increased in 2-1-4 compounds. We will discuss more
about the magnetic correlation length when we calculate it by our self-consistent

theory in Chapter VIII.

3.7 Conclusions

In conclusion, in this chapter we have reviewed some of the expennments which have
given us an insight into the magnetic nature of these High-temperature superconduc-
tors, in their normal state. The results presented in this chapter will be explained

on the basis of our theory that we will start building from the next chapter onwards.



Chapter 4

Self-Consistent calculation of the
Neel Temperature *

In the last chapter, we surveyed the magnetic properties of 1-2-3 and 2-1-4 com-
pounds in the normal state. The anomalous magnetic proverties of these compounds
can not be explained by the old theories and it has become essential to formulate
a theory that could explain all the experimental results that we have presented in
Chapter III. From this chapter onwards, we will develop a theory tailored especially
to meet the requirements of these compounds. So far, there hasn’t been any the-
oretical model for HTS that explains all the experimental results. Although, over
the last couple of years, there have been a few attempts to explain some of the
magnetic properties in the normal state. We will discuss these theoretical attempts

and sometimes compare our theory with those that already exist.

*Results in this chapter are published in Physica Status Solidi (b), 189, 571, 1992 and in Physical
Review, B46, 12277, 1992
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4.1 Introduction

Various experimental techniques have been used to study the phase diagram and
the variation of Neel temperature with the oxygen concentration in layered copper
oxides such as 2-1-4 and 1-2-3 [36, 37, 54, 57, 35]. In Sec. 2.3 - 2.4 we have seen
that these compounds have a highly anisotropic crystal structure and they undergo
a phase transformation from Antiferromagnetic (AFM) insulator to orthorhombic
superconductor [61, 48]. The copper spins are aligned antiferromagnetically in the
planar CuO; plane at no doping but, as the oxygen concentration increases, they get
aligned along the tetragonal axis also [36]. However, with increasing concentration of
oxygen in 1-2-3 the Neel temperature falls rapidly and at x~0.4 the Neel temperature
drops to zero. Different experimental techniques give very similar Ty vs. x results
and give the maximum Neel temperature in 2-1-4 and 1-2-3 in the vicinity of 300K
and 400K respectively (36, 37, 57, 35, 17]. In case of 2-1-4 compounds, the Neel
temperature decreases tremendously as the Sr concentration increases from 0 to 0.02
(106, 35, 52, 107]. Undoped compound of ?-1-4 is an Antiferromagnetic insulator
and it is orthorhombic. As x changes from 0.05 to 0.35 it undergoes an insulator
to superconducting transition. Above 0.35 it undergoes a structural transformation

from orthorhombic to tetragonal phase [see fig. (2.6)].

We have already seen in Chapter II that these oxide superconductors have
a very strong antiferromagnetic correlation in the planar CuO; planes. The dis-
covery of this strong antiferromagnetic correlation in these quasi-two dimensional
magnetic systems has driven theorists for an extensive theoretical study on the
two-dimensional quantum Heisenberg model. Among the approaches used to study

such a model are the renormalization group treatment of the nonlinear & model (67},
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1/N expansion in the Schwinger-boson representation [68]. modified spin-wave treat-
ments [69, 70} etc. Linear spin-wave theory has been widely pursued to study the
magnetic properties of anisotropic Heise:;berg antiferromagnets {71, 72]. Most of
the theories that have ventured to explain the magnetic properties are not able to

explain all the experimental results of doping dependent Neel temperature.

In this chapter, we have developed a theory based on the quasi-2D Heisenberg
model and Green’s function method to explain the magnetic properties of 1-2-3 and
2-1-4 compounds. We have used the Equation of motion method for the Green’s
function. The chain of equations in the Green’s function approach is decoupled
by using the Random phase approximation. This theory is shown to give a self-
consistent expression which is evaluated to explain the Neel temperature in layered
cuprates. For this reason we call it the Self-consistent theory. We have for the
first time, introduced a novel parameter which is dependent only on the ratios of
inter to intraplanar couplings and provides us crucial information about the Neel
temperature and it's dependence on doping. Before we started this study, there were
limited reports about the use of Green’s function approach to study these systems
in the normal state [71]. However, recently, quite a few groups all over [73, 74, 75]
have taken interest in such a study and as a result the Green’s function approach
for an antiferromagnet has developed into one of the forerunners in explaining the

vast amount of experimental results.

4.1.1 Quasi - two dimensiona’ Heisenberg Hamiltonian

Magnetism is a purely quantum mechanical phenomenon without any classical ana-
log. It arises due to exchange interaction between spins which can be ordered either

ferromagnetically, antiferromagnetically or in any of the different kinds of ordering
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possible depending upon the electronic structure of the material and the nature
and strength of the interaction between spins. To study a behaviour of this kind it
almost becomes imperative to use a method which may explain such quantum phe-
nomenon. In quantum field theory the Green's functions describe the propagation of
particles and it seems appropriate to use them in a theory which could describe some
normal state properties of HTS since they too are known to be insulators in normal
state. In the 60-70s, a very popular theoretical approach to study three dimensional
magnetic systems was based on these Green’s functions which were introduced by
Bogoliubov and Tyablikov. A direct evaluation of these Green’s functions by dia-
grammatic techniques is not available, but, considerable progress has been made in

decoupling the chain of equations of motion for the Green’s function.

A simple valence counting leads us to the fact that in HTS like 1-2-3 and
2-1-4 Cu is present in the 2+ state. Accordingly, Cu[2+] ion should have a 3d hole.
In the presence of a crystal field inside the material the five-fold degencracy of the
3d orbital is lifted and the only remaining orbital of interest to us is the 3d,._,a
orbital. We can imagine that the intervening oxygen atoms in the plane could
mediate an antiferromagnetic coupling via the superexchange mechanism leading
to a S=; Heisenberg Model. We have here a lattice which has all the nearest
neighbours of a site on sublattice ‘f’ present on a different sublattice ‘g’ which has
opposite orientation of spins on it. This is called a two-sublattice picture for an
Antiferromagnet. The crystal structure of these two antiferromagnets suggest to
us that the copper spins are aligned antiferromagnetically within the planar CuQ,
layer and also in the c-direction within two such planes. The correlations within
the planar layers are result of the exchange interaction between two copper spins

and a coupling of this kind is called as the ‘Intralayer Coupling’. The coupling
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between two spins in the c-direction, as we have discussed before, is much weaker
but is crucial for the long range antiferromagnetic order. This coupling is called the
‘Interlayer Coupling’. Here, before going any further, we will discuss the origin of

this inteclayer coupling in case of 2-1-4 compounds.

In their ground state these high temperature superconductors such as 1-2-3
and 2-1-4 are quantum antiferromagnetic insulators for x<0.4 and x<0.02 respec-
tively {56]. The parent compound of the La-Sr-Cu-O system is La,CuQ0y4_s. The
origin of the interlayer coupling can be understood by observing the spin structure of
this parcnt compound. Fig.(4.1) shows the alignment of Cu spins in this compound
since the magnetic moments are known to reside on the Cu spins [52]. The exchange
interaction between the copper spins on the planar layer is mediated through the
presence of oxygen atoms in between. Also, the bonding between the Cu-O atoms
within the plane gives rise to an interaction which is much larger than the interac-
tion between two such planar lavers. Due to the presence of a highly anisotropic
structure with ‘c’ substantially larger than either of ‘a’ and ‘b’ axes, this difference
in the exchange interaction is highly amplified. Hence, the intralayer exchange cou-
pling is much larger than the interlayer couplings. Also, it should be noted that
each copper spin on the planar layer has four spins above and four spins below it at
almost equal distance from each of these spins due to the fact that ‘a’ = ‘b’. The
interactions betweer layers should cancel out and they in fact do for a system which
is isotropic, for eg. K, NiF,. However, due to the orthorhombic distortion present
in the 2-1-4 compceunds this cancellation is incomplete and as a result the interlayer

coupling is much less than the intralayer coupling. This anisotropy in the exchange

coupling constant leads to strong correlations within the planar CuO; layers and
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Figure 4.1: Antiferromagnetic alignment of spins in La;CuO4_,. The spins within
the be-plane are ferromagnetically aligned but they are antiferromagnetically aligned
with adjacent planes
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that’s the reason why these compounds have strong 2-dimensional behaviour [16].
The three dimensional interlayer coupling is less than the intralayer coupling by a
factor of 1073 —107% in both these oxides [15, 62, 36]. The interlayer coupling for 1-2-
3is even stronger than in 2-1-4 [16, 64, 36, 66]. So, theoretically these compounds can
be described as spin - ; quasi-two dimensional quantum Heisenberg antiferromagnets
[63]. Any theoretical model, which attempts to describe the magnetic properties of

these compounds should hence take this interlayer coupling into account.

With these requirements in mind, we will hence consider a quasi - two di-
mensional Heisenberg Hamiltonian which is a true depiction of the system at hand.

So, we will start with a Hamiltonian of the type
H = 22.1” Si's_i + 22‘]-1- S,Sj (41)
ab c

where J; and J, are the AFM coupling constants in ab-plane and c-direction respec-
tively. Similar situation arises in high temperature superconductors. for example,
in 1-2-3 and 2-1-4 compounds J|; will be the coupling constant between spins within
the copper-oxygen planes and J, will be between the copper-oxygen planes. The
sums are taken between nearest neighbours within the ab-plane and between planes
in the c -direction. We will now make use of the thermodynamical Green’s function

method [See Appendix I] to investigate the Hamiltonian given in eqn.( 4.1).

4.2 Self-consistent Green’s function Method

We divide the simple cubic lattice into two sublattices denoted by ‘f’ and ‘g’ where
the nearest neighbour of ‘f’ is on ‘g’ sublattice and vice-versa. We develop now
the equation of motion for the Green's function given by < S7(t), 5, (t') 3> where

S5* = 5% +iS¥ are the spin raising and lowering operators respectively. We have
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used the expressions obtained in Appendix I. The corresponding equation of motion

at t = t’' is written as:

< [S7,57] >
E <« 5;7,5; »= [ ’2W'] + < [SF,H), 57 » (4.2)

Rewriting the Hamiltonian given in eqn.( 4.1) for the spin operators defined above
we get

H = 2(% i+ ;JJ.)(%S?S; + %S,-’ S} + S!S3) (4.3)
Using the commutation relations for the components of spin operators and fixing

i=j, we sum over all nearest neighbour sites, ie. over j and obtain,

(S5, H] = 2(2; Ji+ 22 JL)(S5S] - S5S7) (4.4)

Using the results in eqn.(4.4) and putting them in eqn.(4.2), the equation of motion

can be written as

E << S§f;5; >>= 2—<3—§‘L>5,, +20° I+ DX JL) << (558F - S7S1): S, >>

“ : (4.5)
where the first term is a consequence of the commutation relation between the
components of the spin operator, viz. < [§};S;] >= 2 < §; > §;,. We see that
the Green’s function appearing in the above equation on the right hand side of the
equation is of an higher order than the original Green's function. We can now write
the equation of motion for this new Green’s function and we will then land up with
an even more complicated Green’s function of yet higher order. To go around the
problem of evaluating this never ending chain of equations we will decouple using
some approximation. The most obvious choice of approximation that has been
successfully used in the past is Random Phase Approximation (RPA). In the

RPA we write the Green's function approximately as

& 557,85, »=< §; >« 57,5, »
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+ - ~ z + -
<« S}S5,5; »x< Si>« 5f,5; »

The whole idea of making an approximation like this is to ignore the fluctuations in
S and S} and replace them by their average values. Incorporating these approxi-

mations and substituting for the higher order Green’s function we obtain

2< 55>
E<< S8 >> = —5156 + 22 Jy+ 3 J1)[< 5 ><< 57357 >>
ab c

- < 5 ><< §7;5; >>] (4.6)

Now since we have a two sublattice model for an Antiferromagnet we have one
sublattice with all spins ‘up’ and the average spin S =< S5j > while the other
sublattice has all its spin orieated in the ‘down’ direction with an average spin of

—S. We now define the Green’s function for these two sublattices as G, and Gy.

e For both sites ‘f’ and ‘g’ on the same sublattice, we have

<< §§;8; >>= %ZGU. ek (f-9) (4.7)
k
Gu =Y << 855, >> e *li-a) (4.8)
f-9

e For both sites ‘I’ and ‘g’ on different sublattices, we have

<< S;; S; >>= % g G ek (f-9) (4.9)

G =Y << 5555 >> ekl (4.10)
/-7
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Here, N is the total no. of spins in the lattice and k is the reciprocal lattice vector
which runs over the magnetic Brillouin zone, which incidentally is half of the crys-
tallographic one. We consider an Antiferromagnet as a system with two atoms in
the unit cell and hence the ‘k’ summation will run over N/2 values rather than N

values in the first Brillouin zone. The kronecker delta can be written as

2 o
519 = % z:e""(f*ﬂ (4.11)

Putting these expressions together we can obtain an expression such as

< 57> - .y -
EGu = L= +2) gy {s 3 Gare* N 4 SG,,,}
ab k

T

+2% 7, {S‘ZG,,.e"'-U-” + SG,..} (4.12)
< k

The above equation in a simpler form can be written as

< 5;>
T

EGy =

+ < 55> (€Gau + 7G1k) (4.13)
In the above equation, £ and 1 are defined as
I i
¢ = 2.]”Ze""(’“'f) + 21128""(’_”
ab c
and
The relation between the two Green’s fuiictions turns out to be
= < 5% > ~
(E-—1nS)Gw = —!—ﬂ + £5Ga (4.14)

when the sites ‘f’ and ‘g’ are on same sublattice. But, when they are on different

sublattice a similar approach will yield

(E - 7S5)Gau = —£SG1s (4.15)
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Finally, Gy, has the following form:
_(1-P)<S8;> (1+P)<S5;>

Cuw="ZETE) ' 2x(E-E) (4.16)
where
P =1q/\/(n* - €)
and

E, =< 55> {/(n* - €2)

The correlation functions are related to the Green’s function by the following equa-

tion

m i /*‘” & A(t), B(t') P E=wsic — € A(t), B(t') > Ecw—ic

li
n—+0 —o0 e“’/kBT -1

e -y (4.17)

< B(t"YA(t) > =

Using this equation with the fact that | see Appendix I, eqn.(1.23) |

. 1 1 .
¢1-1~T0 [w +ie— E,  w—ie— Ek] = —2mib(w - £) (4.18)

we have for ‘f’ and ‘g’ on the same sublattice, at t=t'

_ 2 - . [ G(lk)(lzu se) G(lh)(l=u-i¢) ik (f-—
< S;8f >= ﬁe‘-‘g}oz’? /;w e:/kaT — e -9 dy, (4.19)

Substituting expressions for G, into the above equation, we obtain

<5;Sfr=2 <85> ¥ [ o

N —~ J-oo
(1-PY(w+ Ey) (14 P)é(w— E,)
[ ew/kpT _ 1 + ew/kpT _ 1 (4-20)
Solving the integration we obtain for the correlation function,
2< 57> E
~StSs=—217 )
<5857 >=—% ‘2; [P coth (ZkBT) 1] (4.21)
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4.2.1 Neel Temperature for quasi - 2d systems

To calculate the average value of spin in one of the sublattices in c-direction we use

the following equation for spin 3 :

< 8§ >= %— < S/ St> (4.22)

where at t = ¢/, < 57,5 > is equal to < 57 (t)S;(t') >. Putting the value of
< S;S§ > from eqn.(4.21) in the above equation we get:

1 _4_ E, _
3 = Nz,,: [Pcoth (_ZkBT) 1] +2 (4.23)

Substituting the values of ‘P’ and ‘E,’ from the values obtained previously we can
get
4 Sn [5 vVt = ¢ ] ]
= — ——— coth | —————| - §| +28§ 4.24
Nzh:[\/q!—fi 2kgT (4.24)
Here we have represented < S7 > by §. The above equation will give us the variation
of sublattice magnetization with temperature. It can however be reduced to give an

explicit expression for the Neel temperature. We know that as T — Tw, S — 0 and

in the above expression we will have:

coth[g ¢ ] — 2ks Tn
2k3T g\/‘l]!—f,

This expression gives us a compact form for the Neel temperature in Artiferromag-

(4.25)

nets as
1 [1 7 17
™ = 32 [ﬁ ; - €’] (4.26)
To calculate the Neel temj.erature explicitly, we need to put in the values for all t*

variables mentioned in the above equation to get an expression of the form
- 1-1

_ 1 2JH +J,
Ty = 3ka Nzk: 5 (4.27)

4(2.]” + J.L) —_ (J”Ze"‘ (G-1) + J_Lze"l {3~ f))
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A precise numerical estimate of Neel temperature can be obtained by integrating this
expression. This is a general expression and it can be used to give us the variation of
Neel temperature with the intralayer and more importantly the interlayer coupling

in case of High Temperature Superconductors.

4.2.2 Neel temperature for undoped 1-2-3 and 2-1-4

We have calculated the Neel temperature of both 1-2-3 and 2-1-4 compounds by
choosing the proper values of J; and J,. Fig.(4.2) shows the results obtained for
the Magncdtization as a function of temperature for the undoped samples of 2-1-4
and 1-2-3. The evaluation of the Neel temperature is dcne by the self-consistent
expression derived earlier ie. eqn.(4.24). By choosing a value of the intralayer
exchange coupling Jj; = 98.0meV and the ratio of interlayer to intralayer exchange
coupling strengths ‘r’(= J. /J)) as 6x10~3 for 1-2-3 we obtained a Neel temperature
of 420K. For J; = 120.0meV and 1=3.0x10"% gives a Neel temperature of 320K for
2-1-4. These results for the undoped compounds are in excellent agreement with

the results experimentally obtained [36, 37, 106, 35, 52, 107].

The parameters that we have used in the calculation above agree very well
with their estimated values from various experiments. For the intraplanar coupling,

Neutron scattering experiments have estimated a value of 0.138eV [66], 0.14eV
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Figure 4.2: Neel temperature for 1-2-3 and 2-1-4
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by Raman Scattering [64], 0.13eV by fitting the spin-correlation length within the
nonlinear sigma model [67] and 1500K was obtained from optical studies on 2-1-4
compounds|79]. Inelastic light scattering measurements were done recently on var-
ious cuprates and the intralayer exchange was found to be 0.128eV for 2-1-4 and
0.098eV for 1-2-3 compounds [65]. Apart from these, an estimate of 1450K was
obtained by fitting the spin-correlation length within a Monte Carlo simulation of
spin-1/2 Heisenberg model[147]. We have already pointed earlier in Chapter II and
sec. 4.1.1 that the magnitude of the interlayer coupling is at least 3-5 orders of
magnitude less than the intralayer coupling. Numerical analysis of various exper-
iments has given a net interplanar coupling of 0.002meV for undoped 2-1-4. It 1s
also known that the interlayer coupling in case of 1-2-3 is at least two orders of

magnitude larger than 2-1-4 [62].

Using the same parameters for undoped compounds of 1-2-3 and 2-1-4 we
have compared our self-consistent calculation [cf. eqn. (4.24)] to the approximate
evaluation of the Neel temperature from eqn. (4.27). The results obtained from such
a direct evaluation are not very different from the earlier results. For the case of
undoped 1-2-3 the Neel temperature comes out to be 419K while for undoped 2-1-4
it is 316K. The comparison with the earlier results suggest that the approximation

used to obtain eqn. (4.27) is a very accurate one.

4.3 Doping depcendent Neel Temperature

A lot of experimental evidence [81 - 104] has come up during the last couple of
years suggesting the importance of interlayer coupling in the magnetic dynamics of

layered superconductors which is related to the doping of oxygen in case of 1-2-3
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[62]. We have already shown in Chapter II, that the Neel temperature decreases as
the material is doped with oxygen. The neutron scattering experiments reported in
Chapter III, have established that at a critical value of z ~ 0.4 in 1-2-3 the Neel
temperature is found to reduce to zero {37]. The changing concentration of oxygen in
Y Ba;Cu30¢, . makes the system undergo an antiferromagnetic to superconducting
phase transition. Addition of oxygen into these layered compounds will destroy the
AFM long range oraer along with the appearance of the metallic superconducting
phase. This doping of oxygen is also crucial since a variety of interactions [105] come

into play and they affect the dynamics of the system.

We have explained in Sec. 4.1.1, that the difference in the interplanar and
intraplanar coupling strengths is a consequence of the layered structure of 1-2-3
and 2-1-4 compounds [see fig.(4.1)]. It is also observed that the Neel temperature
depends crucially on the interplanar coupling in these materials {36, 37, 80]. In the
temperature range T < Ty, when 2D ordering becomes sufficiently long ranged,
quasi- 2D ordering sets in and the interlayer coupling plays a crucial role in deter-

mining the AFM correlation in these materials [62].

The experimental results for the Neel temperature reported in Chapter Il]
combined with what we have learnt here, suggest to us that both the doping and
the interlayer couplings should have some dependence over one another since both
are known to affect the Neel temperature. We will find such a dependence, if any,
in the study we are going to undertake in the next section. We will develop and use
our theory to calculate the variation of Neel temperature with doping concentration.
The comparison of the results thus obtained with the existi1 g experimental results
of Chapter III will also be discussed later in the chapter. For the sake of simplicity,

we have taken intraplanar coupling as a constant independent of the doping con-
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centration ‘x’ for ou- calculations. We discuss the behaviour of Neel temperature
with the variation of the ratio of interplanar to intraplanar couplings and show that
in the limiting case when J,/Jy — 0, the 3D AFM ordering is lost. In the dis-
cussions to follow, we will show that the results thus achieved with the assumption
that the ratio of interplanar to intraplanar exchange coupling strength is directly
proportional to the doping concentration ‘x’, are in excellent agreement with the

experimental results.

4.3.1 A New method to calculate the Neel temperature

We will now venture to study the expression for the Neel temperature obtained in
sec. 4.2.1 in order to extract more information about the possible consequences of
dopiug on the Neel temperature. Here, we have identified a function of the ratio of
inter to intraplanar coupling ratios. The Neel temperature is found to be inversely
proportional to this function. The advantage of identifying a function of this t;~e
in the expression of the Neel temperature is manyfold. It not only provides us with
the dependence of Neel temperature on ‘r’ but can also be used for the study of

doping.

We start by writing the equation for Neel temperature obtained in the earlier

section, eqn.(4.27), as follows

_ A
Tv = 5t (4.28)

where, I(r) is given as:

2 2+r
Ir) = _ﬁg(Z +7)? — [cos kea + cos kya + 7 cos k,c]? (4:29)

Breaking the fraction in the above equation into two parts and changing the sum-
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mation over ‘k’ into integration

174 w/a px/a px/c dk,dkydk,
I(r) = 273 -/o ./o -[) (2 — cos kga — cos kya) + r(1 — cos k,c)

N dk.dk dk,
(2 + cos kza + cos kya) + r(1 + cos k,c)

(4.30)

Here, V is the volume of the unit cell. In the above equations we have replaced
the ratio of interplanar to intraplanar coupling strengths by r(= J,/J). It can
be proved that the last term gives the same contribution to I{r) as the first term.

Therefore, the above expression of I(r) reduces to:

I(,.) _ %‘/:r/c jfotla [ /e (2 dk,dk"dk, (4.31)

— cos kza — cos kya) + r(1 — cos k,c)

Making the substitution u = k.a,v = kya,w = k,c, and integrating over w we get

dudv

1 L g L g
I(r) = —-/ / (1.32)
( x2Jo Jo \/(2-—cosu-cosv)\/(2—cosu—-cosv) +2r
Now, performing the integration over v the above integral reduces to
I(r) = /' F(u,r)K(u,r)du (4.33)
°
where F and K are given as:
F(u,r) = 2 (4.34)
’ \/(l—cosu+2r)(3—cosu) .
and
/2 dé
K(u,r) = / — 4.35
W= h A—awms (13%)
where,
@ ar (4.36)

- (1 —cosu +7)(3 - cosu)
For very small ‘r’, K becomes constant /2 and the leading contribution to the

integration comes from small u. With the help of numerical calculation, we found

that I(r) is proportional to In (1/r).
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4.3.2 Mermin and Wagner Theorer:

Mermin and Wagner {110] have proved through their ingenious paper that for a 2-D
antiferromagnet, there cannot be a long range order at any finite temperature. It
should however be noted that the Mermin and Wagner theorem does not exclude
long range order for 2D systems at zero temperature. Over the decades that foli. ved

no one has come up with results that indicate otherwise.

In our expression for I(r) [» equ.(4.33)], it can be easily showr analytically
that when » = 0, i(r) = co. Hencc, the Neel temperature Ty = J;/2kp I(r) = 0 for
r=0. This establishes the consistency of our thecry with the Mermin and Wagner
theorem that there can not be long range order in 2D systems at finite temperature.
Hence, our Self-consistent theory which is basically developed for quasi-2D systems
does show agreeirent with the Mermin and Wagner thecry in the limiting case when

there is no interplanar coupling.

4.3.3 Comparison with Experiments

We have calculated numerically I(r) as a function of ‘r’ asing eqn.(4.33). The nu-
merical results are presented in fig.(4.3) by solid lines. It is shown that the value of
I(r) decreases as ‘r’ increases. Fig. (4.2) which has the variation of I(r) with r was

then fitted with an analytical expression of the type
1
I(r) = 0.16161n(;) + 0.5055 (4.37)

for values oi ‘r’ ranging from 1.0-107® to 1. By using this aualytical expression of

I{r) given by e3n.(4.37) we have calculated I(r) as a{ ction of ‘r’. The results are

shown in fig.(4.3) by dotted line. One can see from the figure that the above
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Figure 4.3: Variation of I(r) with ‘e’. Solid curve is obtained from equation (4.33).
The dotted curve is obtained from the analytical expression given in equation (4.37).
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analytical expression [ie. eqn.(4.37)] is an excellent approximation for I(r) given by
eqn.(4.33). On the basis of this analytical expression , the Neel temperature can be

approximately written as

_ o
" 2kg[0.16161n(Jy/J.) + 0.5055)

Tw (4.38)

This expression of the Neel temperature will come in handy when we compare
our results with those of other theories in the next section. Also, this expression
establishes that the Neel temperature is solely a function of the ratio of inter to

intraplanar exchange couplings. We will discuss more about it at the end.

By explicitly czlculating the Neel temperature from eqn. (4.28) at a constant
value of the intraplanar exchange coupling we found that the Neel temperature
depends crucially on the value of the ratio r. This suggests to us that there should
be a direct relation between ‘r’ and ‘x’. Let us for a moment assume, that the ratio
of interplanar to intraplanar exchange interaction strength, ‘r’ is a linear “anction

of the doping concentration. For example,
z
r(z) =¢(1 — —) (4.39)
To

where, ¢ = 6.0 - 1072 and zo = 0.4). Using tlis form for the ratio of interplanar
to intraplanar exchange couplings we have calculated the Neel temperature as a
function of doping ie. Tn(z). The thecretical calculation is presented along with the
experimental values in fig.(4.4). The experimental results are taken from Tranquada
et al.[37]. In our calculation, for 1-2-3, we have taken the intraplanar exchange
coupling interaction as a constant (J; = 98.0meV’) throughout the entire doping
range. The experimental results of Tranquada et al. gives a different value of Neel

temperature at different doping concentrations (x). We have now used these values

of r(x) to find the Neel temperature by our theoretical expression |eqn. (4.28)], while
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fixing the value of intraplanar coupling at 98.0 meV. The results are presented in
fig.(4.5) along with the experimental results. In fig.(4.6), we plot the vanation of
‘t’ with ‘x’. The dotted curve in fig.(4.6) represents the values of r(x) vs. x that we
obtained above while the solid line shows the linear dependence of ‘r’ on ‘x’. As we
discussed earlier, fig.(4.4) was obtained by assuming that ‘r’ is a linear function of ‘x’.
The solid curve in fig.(4.6) represents this linear dependence as given in eqn.(4.39).
One can see from this figure that at ‘x=0’ and ‘x=0.4’ there is no difference between
the two curves but other than these values there is some deviction. The dotted
curve seems to give a quasilinear relation between ‘x’ and ‘¢’ for 0.05< x < 0.3. The
slope of dotted curve is slightly different than that of the solid curve. For x < 0.0
and x>0.3 the dotted curve shows a large non-linearity. It can hence be concluded
that, the linear dependence between ‘x’ and ‘s’ is a fairly good approximation for

most values of ‘x.

In Chapter IIl, we have shown that the experimental results for the doping
dependence of Neel temperature for 2-1-4 is different from 1-2-3. For a very small
value of Sr doping, the Neel temperature falls rapidly and is zero for x ~ 0.02. We
have calculated the doping dependence for 2-1-4 employing the same techniques dis-
cussed earlier. The results achieved for 2-1-4 are shown in fig. (4.7). The open circles
are the experimental points from Kumagai et al. [108]. The results thus obtained
from our self-consistent theory are in very good agreement with the experimental

results of Kumagai et al.
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Figure 4.4: Variation cf Neel temperature as a function of doping concentration ‘x’
in 1-2-3 compounds. Solid curve represents the theoretical results. Crosses represent
the experimental points. Here, a linear relation between ‘x’ and ‘r’ is assumed
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Figure 4.5: Variation of Neel temperature as a function of doping concentration
‘x’ in 1-2-3 compounds. Solid curve represents the theoretical results and crosses
represent the experimental points. Solid curve is obtained by fitting equation (4 32)
with experimental points choosing the proper value of ‘s’
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Figure 4.6: Variation of ‘r’ with ‘x’. Dashed curve represents the value of ‘r’ obtained
from fig.(4.5) as a function of ‘x’. The solid line represents the linear dependence of
‘t’ with ‘x’
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Figure 4.7: Variation of Neel temperature as a function of Sr doping in 2-1-4 com-

pounds. The dashed curve represents the theoretical results while the open cirdes
represent the experimental points.



71

4.4 Results and Discussion

As we have already pointed out earlier that the maximum Neel temperature observed
experimentally is in the vicinity of 300K and 400K for 2-1-4 and 1-2-3 compounds.
We have obtained a Neel temperature of 320K and 420K for 2-1-4 and 1-2-3 com-
pounds in Sec.4.2.2. This is consistent with the experimental results reported sofar

for 1-2-3 and 2-1-4 compounds [37, 62].

Our theory is consistent with the Mermin and Wagner theory which excludes
any long range order at finite temperatures in 2-dimensional systems. The theory
also gives a logarithmic dependence of the Neel temperature on the ratio of inter to
.atraplanar coupling. A logarithmic term was also obtained by Tesanovic group [76]
by linear spin-wave theory. Other authors have also used the linear spin-wave theory
to study the quasi- 2D quantum Heisenberg Antiferromagnet {71, 75]. Soukoulis et
al. [71] have obtained an expression for the Neel temperature by using the linear
spin wave theory as

Tn = 1/ ) (4.40)
where v is the anisotropy parameter or the ratio of inter to intraplanar couplings.
This expression is different from the one we have ot +ained here. The above ex-
pression is valid only when the spin S — oo ie. for classical spins. Infact, their
results are equivalent to the classical limit of Tahir-Kheli and de Ter Haar’s three
dimensional ferromagnetic Curie temperature divided by S? [111]. It is inappropri-
ate to use the classical limit when considering these layered compounds which are
unambiguously known to be S=1/2 quantum antiferromagnets. They have obtained

a value of 1.36J) for the Neel temperature while ours is 0.987J),.

Modelling of the undoped copper oxides by the quasi-2D quantum Heisenberg
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antiferromagnet has also beea done by the linear spin-wave theory {75, 72]. Cur
results of the Neel temperature are quite consistent with these results rather than
that of Soukalis et al. Results by Liu for the Neel temperature for ‘r=1.0" gives
Tn = 0.989J) which is in excellent agreement to ours (75]. It is worth pointing out
here that high temperature series expansion result Tnx = 0.951J) is also quite close

to our results {112, 113].

A recent study on the quasi-two dimensional systems is done by Majlis et al.
[74] on the basis of Green’s function approach in the Random phase approximation
(RPA), Callen Modified RPA (MRPA) and Free spin wave approximation. The Neel

temperature according to their results in RPA is

kg TRPA) ~ A
Jj " B, +in(1/¢)

where ‘A’ is a numerical constant and ‘B’ is a smooth function of €. For the RPA,
values of ‘A’ and ‘B’ are 6.0 and 3.0 respectively [74]. This expression is very
similar to the analytical expression we have obtained in our theory. Comparing the
analytical form for the Neel temperature in our theory [cf. eqn. (4.38)] with the
expression by Majlis et al. given above shows that their value of ‘A’ is almost twice
ours. According to our calculations, ‘A’ and ‘B’ are 3.09 and 3.13 respectively. We
have already shown that our analytical expression gives very accurate results for the
Neel temperature. It is worth reiterating here that our values of A and B again give
us kgTn = 0.987J, at r=1 consistent to the results we quoted above while Majlis’s

result won’t.

A Schwinger Boson Mean Field Theory (SBMFT) calculations done by Keimer
et al. [114] have obtained an expression for Neel temperature which too has an anale-

gous logarithmic dependence. For describing the behaviours at higher temperatures
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Keimer et al. have used the generalized version of SBMFT. They have found good

agreement between their theory and experiments up to T~ 0.87n.

Our comparisons to these results have shown us that SBMFT and spin-
wave theory cover complementary temperature regimes. At high temperatures, the
range of the intraplanar correlations is highly reduced and the harmonic spin wave
theory fails. This has also been found from the neutron scattering data of 2-1-4
where it is evident that systematic departures from spin-wave results exist as the
temperature is raised well above T=0. While the spin wave theory is good for
regions where there is large staggered magnetization, the SBMFT should be applied
to higher temperatures when the ordered moments are considerably reduced. In
retrospect, the self-consistent theory can be applied to a wide temperature range
and gives results consistent with the experiments for temperatures close to the Neel
temperature where at least spin-wave theory clearly fails. In Chapter V, we will
specifically show that the linear spin-wave theory is found to overestimate the value

of the Neel temperature in these layered copper oxides.

We have compared our doping dependent results with experiments of Tran-
quada et al. [36]. Neutron diffraction results for 1-2-3 [see fig.(4.4) and fig.(4.5)]
show that our theoretical results are in very good agreement. This indicates to
us that the approximation where we have assumed doping parameter as a linear

function of ‘r’ works reasonably well.

4.5 Conclusion

In this Chapter we have developed a theory for oxide superconductors by using the

Green’s function method. This theory gives us a self-consistent expression which
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is evaluated to obtain the Neel temperature for 1-2-3 and 2-1-4 compounds. Thus,
we call it the self-consist..t theory. We have shown that the results obtained from
this theory are consistent with the Mermin and Wagner theorem. Also, the ana-
lytical expression that comes out of this theory gives very accurate results for the
Neel temperatures at different values of the anisotropy parameter ‘r’. This has en-
abled us to explicitly evaluate the dependence of doping on the Neel temperature.
The evaluation and the comparisons of this doping dependent Neel temperature for
1-2-3 with Neutron scattering results show that the doping parameter varies approx-
imately linearly with the ratio of inter to intraplanar coupling. It also predicts a
logarithmic dependence of ‘r’ on the Neel temperature which has been found inde-
pendently within a linear spin-wave theory [72] and a Schwinger boson mean field
approach [114]. The advantages of such a theory over the linear-spin wave theory
will become apparent in the next Chapter when we compare the results of sublattice

Magnetization from these two theories.



Chapter 5

Self-consistent calculation for
Magnetization?

In the last chapter we developed a self-consistent theory for the magnetic properties
of cuprates based on the quasi-two dimensional Heisenberg model. In the formu-
lation of the theory we have included the effect of the planar CuQO, layers and the
interlayer coupling. We have also shown in the last chapter, by comparing our the-
oretical results to various experiments that our theory was able to explain the Neel
temperature and it’s doping dependence for 1-2-3 and 2-1-4 compounds. Now, we
will extend this theory to account for the sublattice magnetization in these com-
pounds. The sublattice magnetization will then be evaluated and compared with

some of the experimental and theoretical results available on the subject.

5.1  Introduction

We have shown in Chapter III, that experimental studies of the temperature varia-

tion of sublattice .nagnetization in La;CuO, has revealed a weak dependence at low

! The results in this section have been published in Physical Rev.B46, 14069, 1992

75
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temperatures. However, as the temperature is increased this dependence increases
to an almost linear falloff. This was inferred by Mossbauer spectroscopic studies
of 2-1-4 doped with about half a percent of *” Fe [116]. The doped Fe goes to the
Cu sites in 2-1-4 and their spins become antiferromagnetically coupled with those
of Copper. This process hence helps in determining some crucial information about

the magnetic properties in copper oxides (117, 118].

Apart from this, Neutron studies have been done on L;CuO, where L-— Pr,
Nd, Sm to investigate the magnetic structure of this class of compounds. By, ana-

lyzing the intensity of the magnetic (2, 1

3+ 3» 1) peak, it was inferred that the sublattice

magnetization shows an approximately linear fall off with temperature. This was
observed in a large temperature range from about 45K to just below the Neel tem-
perature. This linear falloff is considered to be a signature of very weak magnetic
interlayer coupling,. Some reports have suggested that ordering transition in cuprates
follows a mean-field type of behaviour {119]. This hasn’t been confirmed experimen-
tally because most of the experimental results are surrounded by controversies and

are inconclusive. We have already discussed some of them in Chapter II1.

The discovery of quasi-two dimensional behaviour of these magnetic systems
have prompted extensive theoretical work on quantum Heisenberg antiferromag
net. These approaches include renocmalization group treatment of the non-linear o
model [67], 1/N representations of the Schwinger boson representation [68], linear
spin-wave theorv (120, 75, 71, modified spin-wave treatments {69, 70}, and Green’s
function approach [73]. Some of these methods have been used to study the mag
netic properties of the normal state. For ex. linear spin wave theory has been used
by various authors to calculate the sublattice magnetization {120, 75, specific heat

[75) etc. Some of these theories t'.at are used to explain the magnetic pioperties
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have not been able to explain all the experimental results that we have mentioned

in Chapter III.

In this chapter our aim is to extend the self-consistent theory, the foundatious
of which has already been laid in Chapter IV, and to obtain an expression for the
sublattice magnetization. We will be using the equation of motion [see appendix
I] method for Green’s function rn a quasi-two dimensional quantum Heisenberg
antiferromagnet in the presence of a weak external magnetic field. We obtain a self-
consistent expression for sublattice magnetization. We will show that in the absence
of any external magnetic field the results obtained here correspond to the one we
have obtained in Chapter IV. We have compared our results with the theoretical
results of spin-wave theory and show that a simple approximation on our theory
yields the spin-wave results. The self-consistent expression obtained for magnetiza-
tion is evaluated numerically by a multi-dimensional Gaussian Quadrature method.
Results so obtained are compared with numerous experimental and theoretical re-

sults.

5.2 Expression for Magnetization

We start again with a quasi-two dimensional system in the presence of a magnetic
field ‘B’, the significance of which will become apparent later in the next chapter
when we differentiate the magnetization obtained here with respect to ‘B’ to obtain
the susceptibility. As we have already mentioned in earlier chapters, for copper
oxides, the spins are arranged antiferromagnetically in the CuO; planes. The ex-
change interaction within the CuO; planes (J)) differs from that between the planes

(J.) by several orders of magnitude. Dividing the spin lattice into spin up (f) and
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down (g) sublattices as before, one can write the Hamiltonian in the presence of an

external magnetic field B, as the following
H:ZJHSf'SL+ZJJ-Sf'59_”'gBZS;_P'gBZS; ’ (51)
ab c f ]

where ab and ¢ denote the nearest neighbor summation in the CuQ; planes in the ol
and tne c directions respectively. f and g denote the lattice sites of two sublattices (f
and g) with different spir orientations respectively. The magnetic field B is applied
along the z direction which lies in the Cu0, plane. u is the Bohr magneton and g

is the usual g-factor.

For antiferromagnets, there ace two kinds ¢f Green’s functions, resulting from
the correlation functions between spins on the same sublattice and on the different
sublattices. We have calculated the Green’s function Gys(=<< S;S; >>) on the

same sublattice in the momentum and frequency space which is given by

1 1
E-E,  E-E

JZ 1 1
Ey, - P,,(E-Elq B E——E’zq)] -

Gif(9,E) = <S>

+H< Sf > - < §; >) 5.2)

Here S* and S~ are the spin raising and lowering operators perpendicular to the

Cu0, plane. E,, and E,, are given as

Ei2 = pgB+JZ(< S; >+ < 5: >)/2

ch“Z\/[(< S§§>—-<85;>)/2F+42 <S§;>< 85>, (5.3)
where
Yq = [2c08g.a + 2cosqya + 2rcosq.c]/Z (5.4)

with Z = 4+ 2r, and r = J,/J;. < §; > and < §Z > are the staggered spin

momentum of the { and g sublattices respectively. The sublattice magnetization M,
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is related to < §7 > by My = pg < S§; >. Now the magnetization for the sublattice

‘f’, using the identity for spm-— particles can be written as

Hg -
AI,:—Q-—,ug<SfS;> (5.8

(]
o4 |
—

and the relation betweer the correlation function and the Green's function
< 8§78 >=— ):/2—- np(w) [~2Im C;(a, E)] , (5.6)

where ng(w) is the Bose distribution function. With the help of eqns.(5.5), (5.6),

and (5.2), one finds the sublattice magnetization as a function of the magnetic field

_ kg 1 g
M, = S TI (5.7)
1

W= —2 e"EH-—1+e"E"—1)
+M,—M‘, i 1 1

pg  Ej  — Ejp ePEre — 11 "B — l) b
Similarly one can obtain an expression for M, from the above expression by ex-
changing f and g in the right hand side. In the absence of an external magnetic
field, ie. by putting B = 0, M; = -M, = M, and E,, = —E,, = E,, the above
expression takes a more compact form, which reduces to zero at and above the Neel

temperature as one would expect.

1 kg -
M(T) =~ ) (5.8
D=3 T5, T ena(BNI T 72 )

This expression is similar to the one we have already obtained in Chapter [V, on
a quasi-two dimensional Heisenberg model in the absence of an external Magnetic
field [cf. eqn.(4.21)-eqn.(4.22)]. At this point we will borrow the expression from

Chapter IV. Eqn.(4.21) and eqn.(4.22) gives us the sublattice magnetization as

2<S

1 Eg
£ E: P e
< Sf > 2 N k [ e coth [Qk T] 1} (5”))
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These two self-consistent expressions viz. eqn.(5.8) and eqn.(5.9) for magnetization
are equivalent except for a constant multiplication factor in eqn.(5.9), since M(T)=
pg < S; >. We can easily see here that one of the irteresting features of this
theory for quantum Heisenberg antiferromagnets is the departure of the sublattice
magnetization from the value S=1/2 which corresponds to the elementary classical

picture of a saturated sublattice.

The expression for magnetic moment at zero temperature can be obtained

from eqn.(5.9). At zero temperature, coth(E,;/2kgT) = 1 and hence eqn.(5.9) be-

<$j>=3-2< 55> [H(Ener - @) - 1) (5.10)

This value of < S; > gives us the effective magnetization by the relation M.s; =

comes:

2pu < S§; >. To evaluate the value of < S; > from eqn.(5.9) and eqn.(5.10),
the sum over ‘k’ can be converted to an integral over Brillouin zone whose volume

corresponds to N/2 values of ‘k’. This gives us:

2(2 )3/fjdk dk, dk, (5.11)

Here, ‘V'is the volume of the crystal and the integration limit for ‘k’ are taken within

k

the first Brillouin zone. The abnve eqn.(5.10) reduces to Anderson’s expression{121]
if one replaces Jop = J. = J and < §§ >= S on the 1.h.s of the equation. Eqn.(5.10)
can also be reduced to the expression given in eqn. (4.24), if one replaces < S >=§.
To get around the problems of self-consistent calculation of magnetization one can
simplify e jn.(5.9) by putting < §7 >= 1/2 on the r.h.s. In this approximation
eqn.(5.9) reduces to the expression of ‘Spin wave theory’ which is written as:

< Sp>=1- —ZP,, coth [-———M} (5.12)

4kgT
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We will compare the numerical results obtained from the two expressions given in

eqn.(5.9) and eqn.(5.12) in the next section.

5.2.1 Comparison with Experiments

We have evaluated eqn.(5.9) numerically using multidimensional Gaussian Quadra-
ture method. By using eqn.(5.9) we have calculated self consistently the magne-
tization as a function of temperature for La-Sr-Cu-O and Y-Ba-Cu-O. In our de-
liberations here, we will use M(T) and M(0) for the values of < S, > evaluated
at any arbitrary temperature T and zero respectively. The parameters used in the
calculation are J; = 120meV and r= 3x107°. We get M(0)=0.359 and it is found
that this value doesn’t change much by changing the value of intraplanar coupling
Jj- The dependence of M(0) on the interlayer coupling is rather large in compari-
son to intraplanar coupling as expected. If we substitute < S7 >=1/2 in the r.hs
of eqn.(5.10) we retrieve the equation of AS ' [72] and Liu et al.[75]. Further, if
we put r=1 we get back the Anderson’s and Oguchi’s result [121, 77]. They have
shown that within linear spin-wave theory, for spin-1/2 system, the spin deviation
ie. AS} = %— < 5% >, for 3-D and 2-D case are 0.078 and 0.197 respectively, in

case of simple cubic lattices at zero temperature. [r th~ limiting case of r=1 and 0,

our theory also reproduces these resuuts.

We have compared our theoretical results wii.. 'l.c Mossbauer spectroscopic
data of Tang et al. on 2-1-4 [116]. The results are presented in fig.(5.1). One can see
from this fig. that there is a good agreement between theory and experiments. Our
theoretical results agree very well with that of experimental data between tempera-

tures zero till 200 K. Our Curve falls sharply as we approach the Neel temperature,

tAS signifies A. Singh et al.
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as it should. For the above values of intraplanar and interlayer coupling we find
a Neel temperature of 318K, which is consistent with the value of Tx reported for

2-1-4 compounds in the literature.

We have compared our theoretical results for 1-2-3 compounds with the ex-
periments too. The exr~rimental data is taken from Keimer et al. [114]. In fig.(5.2),
we have shown the theoretical calculation along with the experimental data for un-
doped samples of 1-2-3 compounds. The parameters used for this calculation are
Jy = 98meV and r= 1.25 x 1072, Our results are in very good agreement with the
results of Keimer et al. over the entire temperature range. As we approach the
Neel temperature, however, there is a little deviation from the experiments and our

theory seems to overestimate the Neel temperature.

We have also studied the variation of magnetization with r. We found that
as r decreases the value of Neel temperature decreases which is consistent with the
experimental results. In fig.(5.3) we have presented magnetization as a function of
temperature for r=1, 0.01 and 1x107%. As the temperature increases the deviation
between these three curves increases. It indicates that the nature of magnetization
changes tremendously with the value of interlayer coupling as the temperature is

increased.

Further, to stress on the role of interlayer coupling towards magnetization we
have plotted the variation of magnetization with In(1/r) in fig.(5.4). It can be seen
from this figure that there is a drop between r = 10~! to 107%. This drop shows
a strong dependence of magnetization on the value of ‘r’ as the system goes from

strictly 3D to quasi-2D configuration. These calculations were done at a constant

value of temperature (T= 280 K). This fig. also shows a comparative analysis of
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our self-consistent calculations and those obtained by spin wave theory [cf. eqn.(5.12) .
It is shown that at low enough temperatures, there is almost no difference between
the two results but as the temperature is increased the difference becomes more
apparent. This could be easily comprehended by our next figure , fig.(5.5), where
we plot the variation of magnetization with temperature for a fixed value of r=
1.00x107® and have compared our results with that obtained by spin-wave theory.
As we approach the Neel temperature our curve starts falling sharply and cuts the

curve obtained from spin-wave calculations at about 290 K.

5.3 Discussion of Results

In this chapter, we have studied the variation of magnetization with temperature
and r. The temperature variation of sublattice magnetization is compared with
Mossbauer spectroscopic results of Tang et al. [116] for 2-1-4 and those of Keimer et
al. [114] for 1-2-3 compounds. We have obtained very good agreement between our
theoretical results and these experiments [see fig.(5.1) and (5.2)]. The parameters
are carefully chosen and are consistent with the experimentally determined values

of Jj and ‘r’ [62].

The calculations for the variation of raagnetization with r has shown that with
the decrease in the interlayer coupling the magnetization decreases. For theoretical
calculations from our theory at a constant temperature of 280K, the magnetization
decreases with r and eventually it begins to saturate at the quasi-2D value when r
becomes considerably small. However, for the spin-wave theory the magnetization
saturates at a 2-D value for almost the same value of r. These results are shown in

fig. (5.4).
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Linear spin wave theory has been used in the past to explain some of the
magnetic properties [75, 76]. AS have derived M(T) on the basis of spin-wave
theory and have compared the results with the MES data and muon-spin rotation
experiments of Uemura et al.[54]. Although their results do not fit with the results
obtained from the NS experiments but they get good agreement with the MES and
muon-spin rotation results at temperatures below the Neel temperature. It has
been argued by AS that the reduction in the staggered magnetization d M due to
thermally excited spin waves follow a T In T iaw [72], in apparent contradiction
with accepted experimental results. Their calculation on 2-1-4 has yielded a Neel

temperature of 350K.

We have compared our theoretical results for 2-1-4 compounds with the nu-
merical evaluation within the spin-wave approximation [cf. eqn. (5.12)]. The com-
parisons of these two calculations have shown that for the same parameters while
our calculation gives a Neel temperature of 318K close to the experimental value for
2-1-4, spin-wave expression overestimates it. AS results have also overestimated the
Neel temperature for 2-1-4 [76]. These results indicate that while spin wave theory
does overestimate the Neel temperature in these cuprates, our theory gives a much
more accurate variation of sublattice magnetization with temperature. We have also
shown that our theoretical predictions are consistent with the experimental results
of Tang et al., which are incidentally the same results used by AS. Later on, other
theoretical results of Majlis et al.[74] and Keimer et al {114} have concurred with
our results and have shown independently that the spin-wave theory does break

down in the vicinity of Neel temperature.

The reason for such a behaviour of spin-wave theory near the phase transition

point could be the lack of self-consistency in this approach. We have already sho :n
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that the expression in the spin-wave theory [viz. eqn. (5.12)] can be obtained in
the limiting case in our theory [eqn.(5.9)] as < S5 >— ;. By doing so one avoids
the self consistency in the equation and as a result the calculation becomes much
simpler. Another reason that could be affecting the behaviour of magnetization
near the Neel temperature could be the presence of quantum fiuctuations. Near the

phase transition point these fluctuations become important and should ' ircinded.

5.4 Conclusions

This chapter reports the study of sublattice magnetization and it’s dependence over
temperature and r The numerical calculations have established that our theory
gives excellent results for the sublattice magnetization in case of both 1-2-3 and 2-1-4
compounds. The comparisons between the theoretical results and recent experimen-
tal results also suggest that the sublattice magnetization can be best explained by a
self-consistent theory such as ours. We have established that the spin-wave theory
overestimates the sublattice magnetization near the Neel temperature. The advan-
tage of our theory over the linear spin-wave theory is the inherent self-consistency
and it 1s shown that the spin-wave results can be retrieved from our theory with
some simple approximations. In the next chapter, we will build on the theoreti-
cal framework and introduce the spectral function for spin waves to calculate the

magnetic susceptibility.




Chapter 6

Magnetic Susceptibility 3

So far in previous chapters, we have obtained, among other things, the Necl temper-
ature, it’s dependence on doping and the sublattice magnetization. The theoretical
results obtained from the self-consistent theory have encouraged us to explore other
magnetic properties and explain them. So now, in this chapter, we will calculate
the magnetic susceptibility by using our self-consistent theory and by introducing
the spectrai function of spin waves. We will compare our theoretical results with

the experiments

6.1 Introduction

We have already presented a brief review of some of the salient features of the
experimental results of susceptibility on 1-2-3 and 2-1-4 in Chapter II1. Some of the
earliest results for the magnetic susceptibility came from the works of Johnston et
al. [125]. They studied the dc magnetic susceptibility as a function of temperature

even before the antiferromagnetic ordering was found in these layered copper oxides

$The results in this section have been published in Physica Status Solidi (b) 179, 539, 1993
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by positive muon spin resonance [126] and neutron-diffraction studies [127]. They
couldn’t find any features which could reveal a 2-D to three dimensional phase
transition in the susceptibility data. But since then, reexamination of these earlier

results have clarified the problems which occurred in the susceptibility data.

For compounds like 1-2-3, a clear picture about the magnetic susceptibility
can only be achieved by isclating some of the intrinsic impurities which contribute
to the susceptibility. One such impurity is BaCuQ,, which is known to be para-
magnetic from both susceptibility [128, 129] and electron- paramagnetic resonance
studies {129]. The earlier susceptibility measurements of Johnston et al. contained
this paramagnetic contribution which tends to dominate at low temperatures thus
masking the phase transition [125]. Later, after identifying this problem Johnston
[39] has reanalysed the experimental measurements of the magnetic susceptibility
and after separating the contributions from ions and holes, he found that the spin
lattice magnetic susceptibility scales universally with temperature 1.ormalized to the
temperature where the magnetic susceptibility has a maximum. This temperature

is called Tpy.

In an effort to extract the correct susceptibility free from the paramagnetic
impurities, a Curie-like contribution (C,;/T) was subtracted by Tranquada et al.
from the susceptibility data [37]. It was assumed that the corrected susceptibility
x°""(T) would have dx/dT > 0 above 100K. The shapes of the residual curves were
found not to be sensitive to the precise value of the curie coefficient, Cy, or to the
replacement of the Curie term by a Curie-Weiss form C,/(T — 6). The corrected
susceptibility hence is written as x*™* = x, — (C,/T). For 1-2-3, such a corrected
susceptibility data has been shown in Fig.(3.3b). Each curve is dominated by a

broad maximum at temperature > 800K and the susceptibility is found to decrease
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with decreasing temperature [130].

It is believed that such a maxima can be explained in terms of a 2D Heisen-
berg model. From High temperature series expansion techniques, Lines [131] has
shown that the position of Xmes should occur at a temperature comparable to the
intraplanar exchange parameter J,. Tranquada et al. [37] have shown that their
T is very similar to the value of intraplanar exchange parameter estimated from
the spin-wave dispersion measured in 2-1-4 by neutron-scattering experiments [43].
We will discuss some of these experiments in view of our theoretical results later in

the chapter.

Here, we derive the expression of magnetic susceptibility by introducing the
spectral function of spin waves in the theory that we have developed in the earlier
chaptezs. This is a totally new approach, used by us f»r the first time to study
the magnetic susceptibility and it’s temperature dependence. We will extend the
self-consistent theory developed in the earlier chapters and we will use the mag-
netization expression [cf. eqn.(5.8)] in the presence of an external magnetic field.
The expressions for magnetic susceptibility are evaluated nvmerically and we will

compare them with the experimental results.

6.2 Magnetic Susceptibility: A new method

We again use the quasi-two dimensional quantum Heisenberg antiferromagnet in
the presence of an external magnetic field applied in the z-direction. We have the

same hamiltonian as expressed in eqn.(5.1). We recall the expression for sublattice
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magnetization given in Chapter V [cf. eqn.(5.7)], by

1

B9
= — 6.1
M; 21+ W (6:1)
, 1 1 1
W= -ﬁg[(eﬂElc—lJreﬂE"—l)
MMz L1,
pg  Eyg— Eyq efBre—1 AP 177

The susceptibility is defined in the linear response theory as x = 0M/0B at B = 0.
Differentiating eqn.(6.1) with respect to B, we get the following expression for the

magnetic susceptibility

Bug) * T,
N —~q ( 1) —Fy— (62)

X7 (g I@M(T) + BIIZ & T i

for T < Ty, and

x £ , (6.3)

= T i
4y Xq (ua) —xJy Z(1+vq)

for T > Tn. For T = T, one finds from both equations that the magnetic suscep-

tibility has the molecular field value, i.e.,

x = (19)*/(2J,2) (6.4)

These expressions for the sublattice magnetization and magnetic susceptibility, ie.
eqns.(6.1-6.3), contain the summation over the momentum q. Now we would like to
replace the q summation in terms of an integration over frequencies. We note that
the expression inside the q summation is a functioa of 7: and E;. Here E, is given

as a function of 7:

Ey, = M(T)JZ/(p9)
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in the absence of the magnetic field. We denote the expression inside the q summa-

tion by f(+2, E;). Hence
LY fEa) = [ dw D) f(?, BT =) (6.6)
7

where
v
W =Yg -8

D(w) = —Z&(w V) = ———Z Im

We will discuss the properties of D(w) at the end of this section. Now, if we change

(6.7)

the integration variable in eqn.(6.6) from w to v1 — w?, we have

_/01 dw L) f(w?, E(w)) = /01 dw p(w)f(1 — w?, Eow) (6.8)

where

p(w) = w D(V1 —w?)/V1 —w?. (6.9)

We call p(w) as the spectral function of spin waves. In terms of this function, we

can express the sublattice magnetization and magnetic susceptibility as follows

_ 1g/2
MT) = T (@) /w)(1 + Znn(wEa) (6.10)

o ForT < Tn
Blpg)® Jy dw p(w) 5%

X = ~5oE, (6.11)
(1g)?/(2M(T))? + BJyZ [y dw p(w)Fom 7y

o ForT > Ty

_ B
T 4(ug - xy2)|fy dw p(w)/((rg)? - 2xp9JZ + (xJyZw)?) |

(6.12)
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Eqns.(6.10) and (6.12) constitute the nonlinear equations for M(T) and x to be
determined self-consistently. With M(T) the magnetic susceptibility in antiferro-

magnetic phase can be calculated from eqn.(6.11).

Evidently, for the first time, we have obtained relations for the magretic
susceptibility with the help of spectral function of spin waves. All our expressions for
sublattice magnetization and magnetic susceptibility in the theoretical deliberations
above, have D(w) or p(w). We will first discuss some of the properties of D(w) and

p(w). The D function, which is given in eqn.(5.7) can be evaluated as following

D(w) = i‘(—z;:—fl /0'/’ 6 K(J1-(w+rw/2—r/2+rsin?8)?).  (6.13)

by replacing summation over q by integration. Here K is the complete elliptic
function of the first kind. D function is the diagonal element of the generalized
Watson function. For the isotropic case (r=1), it has been studied in the context
of lattice dynamics, ferromagnetism, and electron band in simple cubic lattice. D
has been evaluated analytically by Joyce and Glasser{137]. For arbitrary value of r,
the analytical expression for D is not known. But, it can be shown rather generally
that D has two singularities at frequencies given by r/(2 + ») and (2 — 7)/(2 + r).

These singularities are known as the Van Hove singularities.

The calculations have given us some insight into the behaviour of the D
function. It is found that for r=0, ie for strictly 2D case, D(w) diverges at w =
0. For values of w below the first van Hove singularity ie. w < r/(2 +7), D is
nearly a constant depending on r. But between these two van Hove singularities ie.

r/(2+7r)<w<(2-r)/(2+7r),it is a decreasing function of frequency. For w ~ 1,

D behaves 1 — w?2.



97

Now that we know the behaviour of the D function with the frequency w,
we can easily infer tiie spectral function of spin waves. We have already seen in
eqn.(6.9) that the spectrr .. =tion depends on the D function. For example. p(w)
is a quadratic function of frequency for very small frequency. It also suggests that
p(w) will have two singularities corresponding to the two van Hove singularities of
the D function. These twn singularities in the spectral function occur at frequencies
given by w; = /1 — (gl—:%)’ and w, = \/1_;—(—(—_#?. We have calculated the
spectral function by eqn.(6.9) and eqn.(6.13) for the D function. We have indeed

found that the two singularities do occur at the frequencies given above.

6.3 Comparison with Experiments

Let’s first investigate the behaviour of the spectral function with frequency. In
fig.(6.1), we have shown the weighted spectral function with the variation of fre-
quency. Curves 1 and 2 correspond to p(w)/w vs w for r = 1.0-107* and r = 1.0
respectively. We find that the weighted spectral function is a linear function of fre-
quency in both cases for relatively low frequencies. For the case of r = 1.0 - 1074,
the weighted spectral function is a linear function of frequency below w;. Above wy,
it becomes nearly a constant over a wide range of frequency. However, as w gets

close to unity, p(w)/w increases with frequency in the manner of 1/v1 - w?.

We have calculated the magnetic susceptibility from eqns.(6.11) and (6.12)
for T < Ty and T > Ty respectively. We found that the magnetic susceptibility
normalized to the value at the Neel temperature as a function of temperature nor-

malized to the Neel temperature depends only on r, independent of J;. We have

presented our calculations for » = 1.0-107* and r = 1 in figs.(6.2) and (6.3) respec-
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tively. As can be seen from these figures, the magnetic susceptibility has a peak at

the Neel temperature for both cases.

Our numerical calculations suggest to us that below the Neel temperature,
the magnetic susceptibility is a linear function of temperature. Above the Neel
temperature, the magnetic susceptibility decreases with thke increment of tempera-
ture. The rate is lower for quasi-2D case than the 3D case. As a result, the peak
for quasi-2D case is much broader than that for 3D case. At low temperature, the
magnetic susceptibility is a 7% function of temperature for 3D case. The magnetic
susceptibility is a linear function of temperature for quasi-2[' case. At very low
temperature, there is a crossover to 3D behavior in the quasi-2D situation. But this

happens at ~ 2J)v/2r/kp, a very low temperature to be seen in fig.(6.2).

In fig.(6.4), we compare the magnetic susceptibility to the experimental mea-
surements on La;Cu0,_, compounds. The parameters used in the calculation for
LayCuOy_y, Jy = T80K, Ty = 1460K, xm = 1.54 - 107* cm®/mole, and the
experimental data are taken from [39]. The ratio of the interplanar coupling to
the intraplanar coupling is assumed to be » = 1.0- 107%. This gives Tnx = 195K
and xy = 3.26 - 10 * cm3/mole. We have chosen y = 2.3 to fit the magnetic
susceptibility data with our calculations in the high temperature limit. As can be
seen, although our self-consistent calculation gives good results at high tempera-
tures, there is considerable difference between our results and experiments near the
temperature 2J;/kp. At this temperature, the magnetic susceptibility is observed
experimentally to have a maximum. The magnetic susceptibility peak is totally

missed by our theoretical calculations.




99

Figure 6.1: Variation of Weighted spectral function p(w)/w as a function of frequency
w for quasi-2D and 3D antiferromagnets. Curve 1 and 2 are for ‘r’ = 1 00x10~* and
‘'’ = 1.00 respectively.
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6.4 Results and Discussion

Our theoretical calculations show that the magnetic cusceptibility has a maxima at
the Neel temperature. These results are in agreement with those of Lines [131! who
ctudied the temperature dependence of susceptibility in connection with K, N:iF,.
According to Lines, the maximum susceptibility should occur at a temperature
comparable to the intraplanar coupling. Our resulis have shown that the magnetic
susceptibility has a peak near the Neel temperature in case of both quasi-two dimen-
sional and 3D cases. We recall, that the Neel temperature in the 3D case according
to our theory is Tw ~ 0.987J). The startling similarities between our results and
those of Lines arise due to similarity in K; NiFy structure with copper oxides. The
difference being, the localized spins have spin momentum 1 instead of 1/2 as is the
case with copper oxides. For K, NiF}, Lines introduced an anisotropic field to stabi-
lize the antiferromagnetic phase from thermal spin-wave fluctuations. Lines studied
the sublattice magnetization and magnetic susceptibility as a function of tempera-
ture. The correspondence of the anisotropic field in the Lines approach can be made

with the interplanar exchange coupling that we have used in our formulation.

We have obtained that the magnetic susceptibility in the direction perpen-
dicular to the CuO, planes is independent of the temperature jcf. eqn.(6.4)!. This
result is consistent with the results of Hewson et al.{133]. At the Neel temperature

we have recovered the correct expression for the susceptibility ie. x = (ng)?/(2J.7)}.

This is the same expression which was obtained by Hewson et al. in RPA.

The theoretical results are then compared with the experimental results of
Johnston [39] on La; Sr92Cu04_,. Our theoretical results are shown to be in good

agreement with the experimental results of Johnston {39! at high temperatures, At
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low temperatures, however, our theory misses the susceptibility peak as found in 2-1-
4 compounds. The reason for this apparent disagreement at low temperatures could
be due to the presence of impurity contributions in the magnetic susceptibility data.
We already know that the paramagnetic impurities that are present in the copper
oxide superconductors affect the susceptibility at low temperatures. A susceptibility
analysis of a impurity free sample has become a necessity to put to rest some of
these disagreements. Another reason that could be affecting our theoretical results
at low temperatures can be associated with the random phase approximation we
have used. This approximation replaces the fluctuations in the z-component of
spin by it's average value. But, in case of 1D and 2D systems these fluctuations
near the phase transition can play very important role. Any future theory which
includes these quantum fluctuations near the Neel temperature could improve upon

the results we have achieved here.

6.5 Conclus.ons

In conclusion, we have shown in this chapter, that by using our self-consistent theory
we were able to explain the magnetic susceptibility at high temperatures. We have
found good agreement between our theory and experimental results of Johnston
[39]. We should reiterate that the use of spectral function to calculate the magnetic
susceptibility is a novel approach which hasn’t been tried before. We have fournd that
the magnetic susceptibility is a function of the ratio of inter to intraplanar couplings
only. We have also found an apparent disagreement between our theoretical results
and the experimental results at low temperatures. This disagreement can be resolved

if susceptibility data on impurity free sample is made available. Qur theory calls for

such an experimental study.




Chapter 7

Study of crossover in Oxide
Superconductors *

In the last chapter we studied the susceptibility of oxide superconductors in the
antiferromagnetic phase. In this chapter we will study the crossover behaviour.
The magnetic properties in these HTS show crossover both with the variation of
temperature and the ratio of inter to intraplanar couplings. We will deal with both
of these crossover properties in this chapter. We will call these as T-dependent and

r-dependent crossover respectively.

7.1 Introduction

The study of dimensional crossover has received much attention recently ({74, 119,
142, 143, 144, 140]. 1t was found that when the interlayer coupling is weak the phys-
ical properties in the normal state undergo a dimensional crossover (r-dependent)

at low enough temperatures.

The quasi-two dimensional picture of layered antiferromagnets has been the

“The results of this chapter has been published in Physica Status Solidi (b) 179, 187, 1993
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subject of some interest recently. An anisotropic quantum Heisenberg model has
been used to describe the magnetic dynamics of these systems. Even most of the
experimental results are explained on the basis of such a model, for ex. Neutron
scattering experiments are usually explained by taking the free-spin wave approx-
imation on an anisotropic Heisenberg model. Such deliberations have resulted in
estimation of the anisotropy parameter of 107%- 10~* in case of 2-1-4 [76]. Pure
two dimensional character of magnetic excitation were used to find a scaling re-
lation of Neel temperature with the anisotropy parameter [36]. An estimate of
r = J,/Jj = 107® was obtained. Free spin wave results estimate a value of 10~*
for the anisotropy parameter, however, the approximation is not valid for T= Ty.
Recently, efforts have been made to explain the magnetic properties of 2-1-4 includ-
ing a weak XY anisotropy arnd the interlayer coupling. The predictions are quite
consistent with the experimental results up to a temperature where the critical fluc-
tuations become important. For 2-1-4, above 270K the results from such a study
overshoots {114]. Some of these results have suggested that the magnetic properties
in the normal state have a very crucial dependence over the anisotropy ratio and as
it changes the magnetic properties show a crossover from quasi-two dimensicnal to

three dimensional behaviour.

The magnetic properties also depend crucially on the temperature. We have
already seen in chapter VI that at low enough temperatures the magnetic suscep-
¢ibility undergoes change in temperature behaviour from T? *o linear dependence
which is a signature of crossover from 3D to quasi-2D behaviour. There are reports
that the behaviour of sublattice magnetization too changes from T2 to T In T[119]
and the specific heat from 72 to T? with the increase of temperature which corre-

sponds to 3-dimensional and quasi-2D behaviour respectively. It has also been found
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that the critical exponent of sublattice magnetization near the Neel temperature is
somewhere near 1/2[142]. Most of these results have found experimental approval
too[143, 144, 140]. We will show in this chapter that our theoretical results of

sublattice magnetization also show a crossover behaviour at a critical temperature.

Here, we will study the T-dependent and dimensional crossover from 3D
to quasi-2D character in magnetic properties of Layered Antiferromagnets such as
La,Cu0O4 (2-1-4). We have used the self-consistent theory for quasi-two dimen-
sional antiferromagnets to study the effect of changing anisotropy on the magnetic
properties. We show with the help of this self-consistent theory that the crossover
occurs as the value of dimensional anisotropy parameter (j’z) changes from ~ 1073,
where J,p and J. are defined as 2J) and 2J, respectively. For the T-dependent
case we have shown that the magnetization shows a crossover near the temperature
(~ 2J||\/2_'r/k5 ). We have obtained numerical results for sublattice magnetization

and it’s crossover properties and have compared it with other theoretical results.

7.2 Numerical results

We have used the expressions obtained in the earlier chapters to study the crossover
behaviour in 2-1-4 compounds. The expressions for magnetization are taken from
eqn. (5.9) and (5.12) from Chapter V and eqn. (6.10) from Chapter VI. Eqn.(5.12)
is the magnetization expression in the spin-wave approximation. We will use this
equation to compare the self-consistent results with the spin-wave theory. Here, we

have defined the anisotropy parameter (§) as J./Jqs.

Fig.(7.1) shows the numerical evaluation of eqn.(5.9) for 2-1-4 (r =2.0 x 1074,

Ja=0.130eV ). We have plotted the variation of normalized sublattice magnetization
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with temperature along with the experiment J results. We have fitted the exper-
imental results[114] by choosing proper values of the anisotropy constant and the
intralayer exchange coupling constant for 2-1-4. Same parameters are used for both
self-consistent evaluation and FSW approximaiion. We find very good agreement
between the theoretical predictions and the experimental data for T ~ Ty. As we
approach Ty, both the self-consistent and FSW approximations overshoot. It is
interesting to see that self-consistent calculations are still quite good as compared
to FSW. Hereafter, it should be noted, that we have represented the z-component
of the spin at an arbitrary temperature ‘T’ by the notation M(T) while at zero

temperature as M(0).

In fig.(7.2), we show the crossover from 3D to quasi-2D behaviour by cal-
culating the variation of the magnetic moment vs. ratio of inter to intraplanar
coupling constant. It is shown that there is appreciable difference between the or-
dered moment for 3D and 2D limits in self-consistent and FSW theory at T~ 0.
The ordered moment for the self-consistent theory saturates at a quasi-2D value of
~ 0.718 while in case of FSW it saturates at 0.606. The crossover region appears
to be near ‘In(1/r) = 6.0’ which would correspond to a critical anisotropy ratio 6=
10~3. Above this critical value of anisotropy constant there is negligible change in
the ordered moment. The difference in these two approximations can be attributed
to the inherent self-consistency in our theory. It is worth ncting that the ratio of
inter to intraplanar coupling constants that we have used in this paper is different

from the anisotropy ratio used by others!

Fig.(7.3) shows that for a quasi two dimensional system 0 < r < 1 at T~ 0

{1t should be borne in mind that the ratio of interplanar to intraplanar coupiing ‘r’ that we
have used here is approximately equal to r? used by other authors viz. Ref.[76]. This is due to the
fact that in our formulation J,p = 2Jyand J. =2J;.
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the difference in the ordered moment is quite pronounced for RPA and FSW. We
show the variation of ordered moment 2 M(T) vs. T for self-consistent and FSW
theory near the crossover anisotropy value of 1072 and J,s= 0.120eV. Again, near

the Neel temperature, the FSW theory falls apart.

For the T-dependent crossover characteristics of magnetization, we have used
the spectral function of spin waves to calculate the sublattice magnetization as a
function of temperature from eqn.(6.10). To appreciate the role of the interplanar
coupling on the sublattice magnetization, we show that the sublattice magnetization
as a function of temperature for r = 1.0-10"* and r = 1 in Figs.(7.4) and (7.5)
respectively. We have calculated sublattice magnetization as a function of temper-

ature and found that it depends only on r, independent of the absolute value of

Jy-

We have studied the crossover behaviour of the magnetic properties as a
function of temperature. In figs.(7.4) and (7.5), the shape of the magnetization
vs. temperature curve changes drastically from 3D behaviour to quasi-two dimen-
sional behaviour. This was found to occur near the temperature JyZw,/2kg ~
2J|4\/2—r/k3, where Jj, is the intraplanar coupling constant and ‘r’ is the anisotropy
ratio (=J./J;). This is in agreement with AS results [76] who have on the basis of
a perturbative calculation shown that the sublattice magnetization has a crossover
from 3D (T?) behaviour to quasi-2D behaviour (TInT) at a temperature close to
2Jr/kp.
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Figure 7.1: Variation of normalized sublattice magnetization with temperature for
La;CuOq¢ with Ja=0.130 eV and r=2.0 x 10™* for both self-consistent RPA (solid
line) and FSW (dashed) and experimental results on 2-1-4 shown by open cizcles.




Figure 7.2: Variation of Local Magnetic moment 2M(T) vs. In(1/r) for both self-
consistent RPA (solid line) and FSW approximations (dashed).
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Figure 7.3: Variation of ordered moment 2M(T) vs. temperature for both self-
consistent RPA (solid line} and FSW approximations (dashed).
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Figure 7.4: Variation of M(T)/M(0) with T/Ty for quasi-2D antiferromagnet for
‘e’ = 1.00x1074.
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As the value of r decreases, the shape of M(T)/M(0) — T/Tn changes dras-
tically from 3D behavior to quasi-2D behav ‘r. The behavior of the sublattice
magnetization as a function of temperature near the Neel temperature, however, is
the same for 3D case and for 2D case. In both cases, near the Neel temperature,
the sublattice magnetization exhibits a square root of temperature behavior. These
results agree with the numerical calculations performed in Chapter V. Also, such a
temperature behaviour has been observed by '''In PAC experiment of Hohenemser

et al. [140] and the recent Schwinger boson analysis of Kopietz [119].

7.3 Results and Discussion

We have shown the variation of the magnetic moment [2M(T)] with the anisotropy
parameter in fig.(7.2). It clearly indicates the crossover from 3D to 2D behaviour.
It demonstrates that in the self-consistent theory the crossover has been exhausted
at r= 10~%, which corresponds to an anisotropy parameter of § = 1073. Further
increase in the value of the anisotropy parameter doesn't affect the moment. The
same behaviour was found in the FSW theory, although the value of the moment is
much less. Majlis et al. [74] have shown that in RPA, MRPA and FSW the value of
moment is indeed different. They also found that the sublattice magnetic moment
converges to it’s two dimensional value for ¢ = 107? in both RPA and MRPA, while
that same value is obtained in FSW theory for ¢ = 10~ [74]. These results are
consistent with our results of anisotropy parameter. The crossover from 3D to quasi-
2D behaviour for sublattice magnetization suggests that the critical anisotropy ratio
is indeed ~ 10~3. We have also shown that the estimate for the Neel temperature
obtained from such a calculation agrees very well with the experimental results while

those obtained from the FSW theory overestimates.
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We have shown in fig.(7.3) that as the temperature is increased or when the
system is between the 2-D and three dimensional extremes, differences show up in
the values of magnetic moment obtained from both the self-consistent theory and the
free-spin wave theory. However, once the anisotropy parameter becomes sufficiently

small the magnetic moment doesn’t change much.

These theoretical results suggest to us that apart from the Neel temperature
that has to scale to zero as r — 0, other magnetic properties like the magnetic
moment saturate to their two dimensional values at a critical anisotropy parameter.
It is also found that the value of these magnetic properties depend crucially on the
approximation chosen. Our study thus concludes that in order to extract crucial
information about the values of some of the macroscopic parameters of anisotropic
antiferromagnets, simple minded use of the linear spin wave theory is inadequate.
The comparisons of our theoretical results with experiments have shown that this
self-consistent theory gives much better results for anisotropic antiferromagnets like

1-2-3 and 2-1-4.

AS [76] have demonstrated that the temperature dependence of sublattice
magnetization contains crucial information about the thermal excitations of spin
waves in anisotropic antiferromagnets. They identified two energy scales viz. ‘J’
and ‘Jr’ where ‘J’ and ‘Jr*’ are the intraplanar and interplanar exchange coupling
respectively. This temperature dependence of sublattice magnetization revealed
that there is a crossover from 3D to quasi-2D with temperature characteristics of T2
(3D) to T In T (quasi-2D) near the transition temperature ~ 2Jr/kg. However, such
perturbative calculations that are used by AS are only valid at low temperatures. We
also found this crossover in the magnetic properties but the temperature dependence

was found to be square root of temperature.
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In a recent letter Kopietz [119] has shown that if the magnetization is close to
its zero temperature value M,, T In T 1s a fairly accurate approximation, however,
as one moves towards the Neel temperature, this law clearly breaks down. By means
of a Schwinger-Boson approach they have shown that for temperatures close to the
Neel temperature, the staggered magnetization is proportional to (1 — T/Tx)'/2.

Our theory also gives a similar square root behaviour.

According to Kopietz, the value of 3 is a manifestation of the dimensional
crossover between two and three dimensionality and should be observed in the tem-
perature regime 1 3> 1 — T/Ty > r. The parameter r iz the ratio of the interplanar
to intraplanar exchange coupling constant. They have reiterated that a value of
0.5 for B would give an affirmation to the notion that the Heisenberg model is the
realistic model for La;CuO,. These results were initially supported experimentally

by Perturbed Angular correlation measurements (PAC).

Very recently, even this observation has come under severe scrutiny with
different results. Peter Imbert et al. [122] have concluded from their 57 e Mossbauer
measurements that the value of mean-field exponent 3 = % is in fact fictitious and
is much bigger than the real local value. A different set of PAC measurements [123]
do not support the dependence put forth by Kopietz either. The results of Imbert
et al. though do not challenge the correctness of Kopietz theoretical model but at
the same time give birth to the notion that the inhomogeneities in the sample of

2-1-4 make them a bad example of quasi-two dimensional Heisenberg model with

nearest neighbour interactions [119].

In spite of all this controversy surrounding the dependence of magnetization

over temperature, a definitive and conclusive experimental determination of the
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mean-field exponent is still not available. It has to be noted here that even the 3’ Fe
Mossbauer resulis of Imbert et al. are not considered totally reliable. Arguments
have been put forward against Mossbauer spectroscopic data by Rosov [124] and the
scientific community has yet to come up to a consensus regarding the experimental
procedure that gives the most accurate information. In light of the information now
available on 2-1-4 like the reduced zero temperature moment M(0) compared to the
mean-field value the criticisms of Rosov will have to wait for more experimental
results to clarify these apparent discrepancies. The relative merits of local probes
like MES and uSR versus the ncutron diffraction in determining M(T) is an old
debate and the scientific community is still waiting for the last word about this

subject.

We have shown here with the general use of the spectral function of spin
waves that the variation of sublattice magnetization versus temperature is a func-
tion of the ratio of the interplanar to the intraplanar coupling constant. We have
deduced from the characteristics of the figs.(7.4) and (7.5) that the sublattice mag-
netization has a square root of temperature dependence near the Neel temperature.
As already mentioned in Chapter III, this result is quite consistent with the recent
PAC experiments and theoretical predictions of Kopietz that we have discussed
above (119, 140]. In light of the recent controversies involving the authenticity of
the "' In PAC experiments of Hohcnemser et al. it is difficult to pass judgements
about the criticisms of Imbert et al{122]. However, the results obtained from this
self-consistent theory are in agreement with the Schwinger-Boson Mean field ap-
proach. It will take some time and some careful experiments for a clear picture to

emerge.

Our analysis here, suggests that for sublattice magnetization close to the
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saturation value of M(0), Tln T could be a good approximation but as the value
of M(T)/M(0) deviates significantly from unity, the ordering transiticn has to be
described by a Mean-field nature and the dependence should be square root of tem-
perature. We have also deduced from our results that the sublattice magnetization,
at a low temperature sl.ows . crossover from 3D behaviour to quasi-2D behaviour.

The temperature at which this crossover happens is found to be in the vicinity of

JyZwy/2kp ~ 2JV/2r [kp.

7.4 Conclusions

In conclusion, we have shown here that the ordered moment for 2-1-4 systems are well
described within a framework of self-consistent theory rather in FSW. We have also
shown that there is a dimensional crossover from 3D to quasi-2D behaviour in the
magnetic properties of 2-1-4 compounds at a critical value of anisotropy parameter
~ 1073, We have also shown that our theoretical results are in good agreement with
the experimental results. The T-dependent crossover has been a subject of recent
controversies discussed above. However, our square root of temperature behaviour
for the sublattice magnetization has been observed experimentally and the crossover
temperature of ~ JyZw, /2kg ~ 2J||\/§;/k3 has also been evaluated within the spin-
wave approximation. In the next chapter, we will study the magnetic correlation

length and will study the variation of it with the ratio of inter to intralayer couplings.



Chapter 8

Magnetic Correlation Length

In the previous chapter we saw that the magnetic properties undergo a dimensionai
and T-dependent crossover from 3-dimensional behaviour to quasi-two dimensional
behaviour. Sofar, we have evaluated some important magnetic properties on the
basis of our self-consistent approach and have shown that these results are in good
agreement with the experimental results. Lately, magnetic correlation length has
been the subject of much attention. The theoretical efforts to explain these exper-
imental results for correlation length in the 2-1-4 compounds has only met with
partial success. In this chapter, therefore, we will use our self-consistent theory to
calculate the magnetic correlation length and will compare our theoretical results

with the experimental results.

8.1 Introduction

We have already explained in Chapter III, about the manner in which the infor-
mation about the magnetic correlation length can be obtained from the Neutron

scattering. We have also mentioned about some of the experiments that have been
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performed to extract information about the magnetic correlation length. Neutron
scattering experiments have shown that the magnetic correlation length decreases
as the temperature is increased [17, 15, 114, 61]. Keimer et al.[114] have studied the
rorrelation length or 2-1-4 in the doping range 0 < x < 0.04 (114]. They have also

found identical results.

Ever since these experiments were performed various groups have tried to fit
these experimental results with their theoretical models{63, 74, 67]. Chakravarty
et al. [67] have calculated the temperature dependence of the magnetic correlation
length of spin-1/2 Heisenberg antiferromagnet by the renormalized group analysis
of the Quantum non-linear sigma model. Their theory gives good fit for the experi-
mental data in case of undoped compounds. They have used two fitting parameters.
Birgeneau et al. [61] have shown that the correlation length is limited by the average
hole distance, namely, £(z) = 3.8;1/\/(:). They have shown that a tiny amount of

hole concentration is enough to limit the correlation length [61].

It was soon confirmed that even a small amount of excess holes in 2-1-4 can
alter the magnetic correlation length to a large extent [61]. Hence, the theory of
Chakravarty et al. could not explain the experiments for doped cuprates. This
theory was later modified by doing an exact analytic calculation including the first
order corrections in temperature by Hasenfratz and Neidermayer and others {148,

149, 150].

Manousakis [63] has obtained the magnetic correlation length by a direct
simulation of the quantum nonlinear o model. The fitting to the experimental
results is achieved by varying the values of both the interplanar and intraplanar

couplings separately. The experimental results of Endoh et al. is fitted by choosing
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different values of J for different samples of 2-1-4. Manousakis has also pointed out

that samples with higher Neel temperature give different values of correlation length

(63].

Numerical simulations of the nearest neighbour spin-1/2 quantum Heisenberg
antiferromagnet at low temperatures, has been considerably improved by the work
of Ding and Makivic. They have obtained the correlation length via a large scale
Monte Carlo simulation on latices up to 128x128. They have, in their simulations,
reached temperatures as low as J/4. Their fits to the neutron scattering data has
provided an estimate of J = 1450+ 30 K [147]. Green’s function methods are used by
Majlis et al. tecently to fit the experimental results of magnetic correlation length

for doped and undoped samples of 2-1-4.

We have calculated the magnetic correlation length for 2-1-4 samples using
our self-consistent theory, in this chapter. We have followed the method used by
Ma;lis et al. to obtain expression the magnetic correlation length. Our expression
bas the advantage of being more accurate than the mean-field expression and also
it is a sole function of the ratio of inter to intraplanar coupling. This expression,
hence, can be used to provide us with crucial dependence of magnetic correlation
length with doping. an expression for the magnetic correlation length and will then

compare our numerical results with the available experiments.

8.2 Theoretical formulation

We have borrowed some of the expressions already derived under the premises of
self-consistent theory in Chapter IV to find an expression for the magnetic corre-

lation length. The correlation length is achieved by the asymptotic form of the
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instantaneous spin correlation function < S;'(¢)S; (t') >. We have already calcu-
lated the correlation function in the absence and in the presence of the magnetic field
in Chapters IV and V respectively. We will follow the method of Majlis et al.[T4]
and Yablonskiy [73] to derive the expression for the magnetic correlation length.

The Fourier transform of the spin correlation function at t=t’ is written as

T 1 (o e(R-Ry)
ror > —— S ——
<St5;>=gg D X CIE (8.1)

where
2,8 (q) + r2,.6.(q)
2 +rz;

5.(q) =

(8.2)

&(q) = —Ze"""

£ L

6.(q) = —‘Z‘—’"'h

Z; 5.
The dominant contribution to this correlation function comes from the |R; — R,| —

oo and in the neighbourhood of q=0. We can hence write
+ o ~ !6‘1'
<S55 > = f qn-fo(anu)dqn
/o' [Eqﬁb'ﬁ + quai] ' da, (8.3)

where, Jy(z) is the Bessel function of zero order 7,, and r. are the cutoff parameters.
Ry = |R; — R} for i and j belonging to the same basal plane. The constants A and
B are defined as A = z;/(zy + rz.) and B = rz, /(2 + rz,.). We can change the
integration variables by introducing at this point § = \/;1_/5q”6” and ¢ = VBq,6,.

By doing this the above expression comes out to be [74]

bg- o T2 1 w EJo(\/2/AERy /&)  _ [VBS,*.
< S5/S; Ty n? AVE b ¢ tan [——_f }d{ (8.4)
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There can only be two extreme cases when the argument of tan~! is either (a) very
large or (b) very small. In conditions like this one gets

(A 1/2 _ .
147 Re it (a) ©3)

VBS_ rcKo(Ry /&) (b)

here, Ko{z) is the modified Bessel function of zero order which for large argument
z behaves as Ky(z) ~ Me“. We can see that we have obtained the same
exponential decay of the correlation function in both the extremities and hence can
identify €. as the correlation length for all values of T and r. Hence, the correlation

length in the self-consistent theory is given by
T,
€. = Cexp [——D ;(T)] (8.6)

where C = r,,/4y/2 and D = 4y x/2. Here, v is a constant. The expression for the
Neel temperature is given by eqn.(4.28) and it is a function of the doping parameter.
Once the value of Neel temperature is obtained at a specific value of the interplanar
to intraplanar coupling ratio we can easily find the correlation length by choosing
proper values for the parameters C and D. This equation also suggests a novel way
to calculate the dependence of doping on the magnetic correlation length. Once
we have obtained the values of constants C and D we can plot the variation of

correlation length by varying the Neel temperature with r.

8.3 Results and Discussion

We have calculated the magnetic correlation length for the undoped and doped
samples of 2-1-4 compounds. Fig.(8.1) shows the variation of the inverse magnetic

correlation length for doped and undoped samples of 2-1-4. The stars and solid
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squares represent the experimental results of undoped (Txy = 325K ) and doped
( Tw = 190K ) samples of 2-1-4 obtained from neutron scattering experiments of

Keimer et al[114].

The curves in fig.(8.1) show the theoretical results obtained from the self-
consistent theory. We have chosen C such that it is close to the value calculated
above ie. 74/4v/2 and have varied D to obtain good agreement with experimental
results. For the doped sample, reasonable agreement with the experimental results
have given a value for C=1.27 and D=8.909 while for the undoped sample C=1.67
and D=5.62. It is obvious from the figure that the self-consistent theory gives
excellent fitting to the experimental data of Keimer et al. Our parameters are very

close to the ones obtained from Monte Carlo studies of Ding and Makivic [147].

In fig. (8.2), we have shown the variation of the inverse magnetic correlation
length with the ratio of interplanar to intraplanar couplings. We have, for the same
values of C and D obtained in fig./8.1), varied the Neel temperature with the ratio
of inter to intraplanar couplings. This gives us an indication that the magnetic
correlation length increases with the increase of the interlayer couplings between
the two dimensional planes in 2-1-4 compounds. It has to be kept in mind, tha:
a doping dependent correlation length can be obtained from this expression since
we have already established in Chapter IV that this ratio depends almost linearly
with the doping. We couldn’t find the experimental results of the correlation length

measurements for 1-2-3 compounds to compare with our theoretical results.

Recently, various groups have used different methods to find the magnetic
correlation length. Chakravarty et al. have found in the renormalization group

approach on a quantum non-linear sigma model, that to the first order the magnetic
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Figure 8.1: Variation of Magnetic Correlation length with temperature stars and

squares are the experimental points from Keimer et. al {114] and solid and dashed
lines are the self-consistent results for Ty = 325K and 190K respectively.
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I

Figure 8.2: Variation of Magnetic Correlation length with ratio of inter to intra-
planar couplings. Curves 1, 2, 3 are the self-consistent results for f’,-‘- from 10°* to

1.0 at temperatures 300K, 400K and 500K respectively. The fitting parameters are
C=1.67 and D=5.62.
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correlation length can be suitably represented by
¢ = 0.245 C S (8.7)

where, c is the spin-wave velocity and 2xp, is the spin-stiffiness constant. The pre
exponential factor was calculated by approximately matching the renormalization
group analysis with a Monte-Carlo simulation of the 2D Heisenberg model. The
above expression can only be applied to the undoped samples and can’t be applied
to the doped samples. Once it was realized that the doping greatly suppresses the
magnetic correlation length, the above theory was modified by others [148, 149,
150]. Higher order terms were included to find an exact analytic expression for the

magnetic correlation length.

So far, one of the most accurate simulation studies performed on the spin-1/2
quantum Heisenberg antiferromagnet, by Ding and Makivic {147] have found that

their numerical data can be best fitted by an expression of the kind

£ = 0270 expl 2" | (8.8)

We have compared our theoretical results with these simulation results. According
to our theory [cf. eqn.(8.6)], 0.27a in the exptession above is replaced by a constant
C while 1.25] is replaced by DTy. The numerical results have shown that C=1.62
while simulation results have a value of 1.03 (~ 0.27 a). Our estimates give a value of
D Tn=1826.5K while the simulation results are 1812.5K (1.25]). Hence, the results
obtained from our self-consistent theory are in excellent agreement with the Monte

Carlo simulation results of Ding and Makivic.

Keimer et al. have used the XY Heisenberg model to explain their neutron




129

scattering experiments. They have used a generic mean-field expression

&(T)
V1 = aersbo(T)?

where £,(T') is the correlation iength for the unperturbed Heisenberg system. They

€(aess, T) = (8.9)

have varied both stiffness constant and a in the above equation to obtain fitting
to the experimental curves for carrier free 2-1-4. A best fit was obtained for
a = 6.5-10"* and 27p,= 140 meV for pure samples of 2-1-4. Majlis et al. have
calculated the magnetic correlation length using RPA and MRPA. They have chosen
a parameter, the ratio of interplanar to intraplanar couplings to fit the experimental
curves. However, their approach takes the mean field theory to calculate the Neel

temperature [74].

Some of other calculations [68, 69, 70, 148] although based on different meth-
ods have all arrived at the following form for the magnetic correlation length in

two-dimensions:

(T - 0) =

Be 2"”‘] (8.10)

kaT 7 [ka T
where B is a numerical coefficient, ¢ is the spin-wave velocity and p, is the spin
stiffness constant. These results are similar to the results of Chakravarty et al.
which we have described above. Our values for C and D Ty are very close to the

values obtained by all these methods.

The elaborate methods such as Quantum non-linear ¢ model, Monte Carlo
studies etc. have still not yielded in a perfect fit of the experimental results. Our
method requires just two constants as the fitting parameter and can be used for
both undoped and doped samples of 2-1-4. It’s a simple method not as elaborate as
the QNLo model but yet it gives very good fitting to the neutron scattering results

of Keimer et al. The evaluation of magnetic correlation has given us an exponential
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dependence of §, which agrees with the results of non-linear & model and also the
Monte Carlo simulation studies. So, in essence, we have found a simple analytical
expression for the magnetic correlation length by using the self-consistent theory
derived in Chapters IV and V. Our expression gives very good results both for the
variation of magnetic correlation length with temperature and also with the doping

concentration in 2-1-4 compounds.




Chapter 9

SUMMARY AND
CONCLUSIONS

Antiferromagnetism and Superconductivity are so intimately connected with each
other that a study of one without the other is incomplete. The subject has developed
so much during the past seven years that a complete study of all the aspects has
become a virtual impossibility. We have in this study chosen to focus our attention
to the Normal state magnetic properties since it provides us with the knowledge
that eventually would prove to be the building block for any future theory for High

temperature Superconduclivity.

In case of these High temperature superconductors, study of the normal state
has given very important clues. It was Anderson {13! who first pointed out that the
superexchange interactions between nearest neighbour copper within a Cu(); plane
would be unusually strong, and the magnetism would essentially be two-dimensional
in character. Some of these speculations have now been confirmed in 2-1-4 '16] It
i1s however, stiil not confirmed if these strong antiferromagnetic correlations are 1n
some way related to the pairing mechanism. Several theories have assumed that

significant fluctuations of a magnetic type persist from the insulating phase to the
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metallic and superconducting phase.

There has been few efforts which took these antiferromagnetic correlations
to explain the pairing mechanism but still a lot is to be desired for a complete
understanding. Fortunately, there are compelling evidences pointing to the fact
that antiferromagnetic correlations do sustain in the Superconducting phase too. In
quasi-one dimensional organic superconductors as well as in some two-dimensional
layered superconductors, it has been reported that the antiferromagnetic ordering
pertains in the metallic sugerconducting state. Without a tinge of doubt, it has now
been established that these correlations are one of the strongest in the normal state
and they do play a very important role in the onset of superconductivity. Preciscly,
what role do they play and how far are they responsible for the High temperature

superconductivity in layered antiferromagnets is still anybody’s guess.

Amidst this confusion and chaos, we have presented here a comprehensive
study with cur own tools to explain some of the interesting magnetic properties of
HTS in the Normal state. The iheory is built for quasi-two dimensional antiferro-
magnets and is shown to work well in explaining the magnetic properties of HTS.
We have used the quasi-two dimensional Heisenberg model to encompass the lay-
ered structure of 1-2-3 and 2-1-4 type of compounds with weak but finite interlayer
coupling. We have used the equation of motion method for the Green’s function on
a quasi-two dimensional Heisenberg Hamiltonian to obtain the correlation function
between spins. Decoupling of the series of equations is obtained via the Random
Phase Approximation which ignores the fluctuations in the z-component of spin and
replaces it with corresponding average value. A variety of magnetic properties in
the normal state are calculated using this self-consistent theory and the results are

compared with the available experiments. We have established with the help of our
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deliberations that:

e The self-consistent theory is consistent with the Mermin-Wagner

theory for Antiferromagnets.

According to Mermin and Wagner (1960) there cannot be long range order at any
finite temperature in 2-D antiferromagnets. We have shown that our theory also
comes to the same conclusion when r, the interlayer coupling, becomes zero. The

Neel temperature for strictly 2-D antiferromagnets is zero.

¢ The theory gives a good estimate for the Neel temperature.

The expression for Neel temperature given in Chapter IV was tested for 1-2-3 and
2-1-4 compounds. With known values for intralayer coupling and the ratio for inter-
layer to intralayer coupling, reasonably good approximation for the Neel temperature
was obtained in both these cases. By assuming a linear dependence of 'r’, the ratio
of interlayer to intralayer coupling, on the doping parameter 'x’ we get reasonable

values for the doping dependent Neel temperature.

e An analytical expression for the Neel temperature is proposed and
its dependence on the ratio of inter to intraplanar coupling and tem-

perature is studied.

From our numerical calculations we have found that the Neel temperature 1s 1n-

versely proportional to logarithmic dependence on 'r’, the ratio of interlayer to
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intralayer coupling. The analytical expression which gives this dependence is:

Jj
~ 2kg [0.1616 In(J/JL) + 0.5055]

Tn

Similar logarithmic term has been reported by various groups in the premises of a

' as a function of 'x’ with

spin-wave theory. We have compared the variation of 'r
the linear dependence of 'r’ and ’x’ and the fitting is pretty good. The analytical
expression can be used for all practical purposes to evaluate the Neel temperature

for layered antiferromagnets.

e Self-consistent expression for the sublattice Magnetization is ob-
tained and it is shown that the estimates obtained are in full agree-

ment with the results of Anderson’s spin-wave theory and others.

The theory is used to find a self-consistent expression for the sublattice magnetiza-
tion. The expression is numerically evaluated and the dependence of magnetization
on the ratio of interlayer to intralayer coupling is studied. The temperature vari-
ation of sublattice magnetization is also studied. It is shown that the sublattice
magnetization depends heavily on the interlayer coupling and the effect of the in-
tralayer coupling is minimal. The theoretical predictions are quite consistent with
the experimental observations and it is observed that the theory gives very good
values for the fractional spin as observed by Anderson. The theoretical results are
also compared with the spin-wave results and exceptional consistency at low temper-
atures is observed. Towards the Neel temperature it 1s established that our theory

gives better estimate for the magnetization than the spin-wave theory.
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e Spectral function of spin waves is used to explain the magnetic sus-

ceptibility at high temperatures.

We have introduced the spectral function of spin waves to calculate the magnetic
Susceptibility in the presence of an external magnetic field. The Susceptibility
i1s evaluated numerically and the results thus obtained are compared with other
experimental results. At high enough temperatures, our results are quite consistent
with the experiments. At low temperatures ~ 2J)/ Kg there is a maximum observed
experimentally which is totally missed by our results. It is also shown that for 3D
case the magnetic susceptibility is a T2 function of the temperature while for quasi-

2D case it has a linear temperature dependence.

e Use of self-consistent theory to study dimensional crossover and de-

termination of a critical anisotropy ratio in layered antiferromagnets

It is shown from the study of magnetization that the magnetic properties undergo
a dimensional crossover as the ratio of inter to intraplanar coupling approaches a
value ‘r~ 1073. Most of the magnetic properties in the normal state are solely a
function of ‘r’ and thus the determination of this critical ratio is a crucial one. Most
of the recent experimental results and other theoretical approaches give an estimate

which is exactly like ours.

e Use of spectral function of spin waves to demonstrate that the mag-
netic properties have a T-dependent crossover from 3D to quasi-2D

behaviour.
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It is shown rather generally by use of the spectral function that most of the magnetic
properties in HTS have a crossover from 3D to quasi-2D behaviour near the temper-
ature (~ 2Jin/2r/ Kp). We show that the sublattice magnetization normalized to its
value at zero temperature ie. M(T)/M(0) as a function of temperature normalized
to the Neel temperature ie. T/ Ty is a sole function of r, the ratio between the inter-
layer to intralayer coupling. The variation of M(T)/M(0) vs. T/Tx is independent
of the value of J;. As the value of ’r’ decreases, the shape of M(T)/M(0) - T/Tx
changes drastically from the 3D behaviour to 2D behaviour. Identical crossover

behaviour is also observed in the magnetic susceptibility calculations.

e Magnetic correlation length is explained and it’s variation with tem-

perature and doping is studied.

We have obtained an expression for the magnetic correlation length for doped and
undoped 2-1-4 compounds. We have numerically evaluated the expression using two
independent fitting parameters and found good agreement with the experimental re-
sults on 2-1-4. We have also compared our fitting parameters with other theoretical
resvits and have found good agreement with results published to date. Our ex-
pression gives a correlation length which has a dependence over ‘r’ hidden in the
expression for the Neel temperature. We have hence calculated the variation of
correlation length with ‘r’ and show that near and above the Neel temperature the

magnetic correlation increases drastically as ‘r’ increases.



Appendix I

Equation of Motion method

In what follows, we would briefly outline the Equation of motion method for the
Green’s function that has been used in our formulation for the normal state proper-
ties of layered antiferromagnets. This method was initially proposed by Bogoliubov
to study ferromagnetism [145]. Later it was used by Hewson to study the mag-
netic properties of the antiferromagnet CuCl, - H,O [146]. Over the years, Green’s
function has been extensively used in the study of isotropic ferromagnets and antifer-
romagnets {77, 132, 133, 134, 135, 131, 136]. Although recently, after the emergence
of HTSc, a successful application of the equation of motion method for the Green’s
function to layered antiferromagnets have made it possible for us to understand lot
of normal state properties in these compounds. We present here a very brief outline,
however, interested researchers can find the details about this method 1n standard

texts.
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I.1 Green’s function

We can define the double-time temperature dependent retarded Green’s function

<< A(t); B(t') >> involving two Heisenberg operators A(t) and B(t') by :
G(t,t') =<< A(t); B(t') >>= —ib(t — t') < [A(t); B(t')] > (L1)

where the square brackets represent the commutator; single pointed brackets denote
a thermal average over a canonical ensemble and §(t —¢t') is a step function with the
value unity when t > t’ and zero when ¢ < t’. We shall obtain a set of equations for
the Green’s function in equationl.1. The operators A(t) and B(t') satisfy equations
of motion of the form

dA

i— = AH — HA (1.2)

Differentiating the Green'’s function given in equation ( I.1) with respect to 't’ we

get

4G d o dB(t—#)
I.Ti? —lzz << A; B >>= T

< [A(¢), B(t')] > + << id‘zgt); B(t') >>
(1.3)

This equation is called the Equation of motion for the Green'’s function. Also, it

should be noted that the relation between the step functionf(t) and the é function

of ’t’ is given by

8(t) = /o 5(t)dt (14)
Using this identity we can now write the equation for the Green’s function G in the
form
dG
== 5(t — t') < [A(t), B(t')] > + << {A(#)H(t) — H(t)A(t)}; B(t') >> (1.5)

The double time Green’s function on the right hand side of above equation are, gener-

ally speaking, of higher order than the initial one. We now can construct equations
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of the kind (I.3) and thus can obtain a system of coupled equations for different
Green’s functions. These chains should be supplemented with actual boundary con-
ditions which would be done with the help of ‘Spectral theorems’. These coupled
chain of equations are exact and the solution of these are extremely complicated.
One chooses to use some approximations to decouple this chain and reduce it to fi-
nite set of equations which can then be solved. This however, can be done in limiting
cases of model Hamiltonians and as it turns out we would be using some of these
approximations in case of Heisenberg Hamiltonian to solve for Antiferromagnetic

matenals.

I.1.1 Correlation functions

Particles in quantum system either follow Fermi or Bose statistics. They interact
with each other. If there were no correlation between the probabilities of finding a

particle at ‘r’ and other at ‘" we should have

< p(r)p(r') >=< p(r) >< p(r'}) > (1.6)

If ‘A’ and ‘B’ are two commuting operators then the correlation function can be
defined as < AB >. However, if they do not commute then the simultaneocus
measurement is impossible and it’s not possible to talk about correlation in such
a situation. Yet, measurement of one may not affect the other and so it can be
written and it is in fact written. The correlation between two commuting operators

is defined as
< p(r)p(r') > — < p(r} >< p(r") > (1.7)

Correlation functions can be either spatial or temporal. The Green’s function de-

pends on the correlation functions. There is a basic difference between the two
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though. The Green’s function or its time derivatives are discontinuous at ‘ t=¢' but

the correlation functions aren’t.

Time correlation functions are the averages of the product of operators in

the Heisenberg 1cpresentation over a statistical ensemble. They are represented by
Fpa(t — t') =< B(t')A(t) >; Fap =< A(t)B(t') >> (1.8)

In case of statistical equilibrium the functions Fg4 and F4p depend, as do the
Green's functions, on (t-t'). The difference with Green’s functions is that they do
not contain any discontinuous function and can also be defined when the times are
same. At t=¢t' they give the average values of the product of operators. Hence these
correlation functions or the distribution functions of statistical mechanics would

enable us to evaluate the average values of some dynamical properties of the system.

I.1.2 Spectral Representation

For solving the equations for the Green’s function it is important to have the spectral
representations that supplement the set of equations with the necessary boundary
conditions. We obtain these spectral relations for the Green’s functions and for the
corresponding correlation functions. The required spectral representations for the
time correlation functions are defined as

00

Fpa(t - t') =< B(t')A(t) >= / J(w)e= =) dyy (1.9)

oo

Fa(t —t') =< A(t)B(t') >= / J(w)e¥ e dy (L10)

These are the required spectral representations for the time correlation functions

where J(w) is called the spectral intensity of the function Fg4(t) [136].
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Spectral Representation for the Green’s function

If G(E) is the Fourier component of the Green's function G(t-t') then

Gt —t') = / ¥ G(E)e *E¢-E (L11)

G(E) = 2% / ~ G(t)eBtat (1.12)

Putting the value of G(t) from eqn.( I.1) into the above equation we obtain
G(E) = 511; f = dte B9t — ') < A(t)B(t') — B(t')A(t) > (1.13)
—o0

Under the above integral we have the time correlation functions. Introducing the

spectral representation for them we get
G(E) = / ~ dwl(w)(e¥ — 1) f " dte'E-)g(¢) (1.14)
-~ 00 27ri — o0

We can write the discontinuous step function 8(t) in the form

8(¢) = '/_' et 5(2)dt (L15)
Now since
5(t) = 51;/_” e*dz (1.16)

or in the integral form we can write for the step function

00 e—izt

a(t) =

dz (1.17)

27!' ooz+i6

Using the above two equations we get

1
W(E-w)t
/ dteNE-wg(¢) = h T (118)
The Fourier component G(E) of the Green’s function G(t) is thus equal to
G(E) = —f (% - l)J(w)E = (1.19)
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Sofar, we have considered E to be a real quantity. The above function can be
analytically continued in the complex E plane. Assuming, E to be complex, we have

_21; [:(e% - 1)J(u)Ed‘_"w = G(E) ImE >0 (1.20)

The above function can be considered to be analytical function in the complex plane
with a singularity on the real axis. It can be shown that the function G(E) can be
analytically continued in the region of complex E. If we know the function G(E), we

can also find the spectral intensity J(w) from the relation
G(w + i€) — G(w — ie) = —i(e¥ — 1)J(w) (1.21)

where w is real. Taking the difference of the two expressions we get

1 1
w~E+te w-—FE —1e

Glw-+ie)—G(w—ie) = 51; NG baE (122)

and then using the § function representation

- 2 - )

2m z + te
we arrive at equation ( [.21). If we could decouple the chain of equations for the

Green’s function we can easily construct from G(E) the spectral intensity J(w) and

then find the time correlation functions. We’'ll then have

Foa(t— ) =< B(t — )A() >=i [ Glw +ie) = Clw —ie) -1y, (1.24)

—o0 C% - 1)
The above formula has been used in earlier chapters for the formulation of the theory

for antiferromagnets and also to find the correlation function for two spin operators.



Appendix II

Second Quantization

Second quantization allows one to deal with variable number of particles as con-
veniently as with numbers. The particles can be electrons, phonons magnons de-
pending upon the nature of the problem at hand. Here, we would use it in terms
of electrons to find a correspondence between this notation and the spin operators

that we have used throughout this study.

If we have an electron at site ‘m’ with spin ‘0’’ and another electron at site

‘1’ with spin ‘e’, the electron part of the ha- ultonian can be written as

H=H,+H.,+H.,, +H, (I1.1)
where
1
H,=3Y aCl,Clo + 5 3. KinCiyCioClyiCons (11.2)
lo imcoo’

Here, the ¢ is the one-electron orbital energy term and the first term is the kinetic
energy term of the individual electrons while the second part is the coulomb repulsion
energy between the two electrons. The K, is defined as the two-body Coulomb
integral given as

2
Kim =< ¢,(r,)¢m(rz);-f;1¢:(n)¢m(r2) > (113

143
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The second term in equation (II.1) is the ‘Exchange Energy’ while the third and the
fourth terms are ‘Correlation term’ and ‘Transfer term’ which we won’t be dealing
with here. The Exchange energy term on the other hand can be written as

1

Hez =
2

Y JimCL.Cl,ClaComo (I1.4)

i#moo’

where the exchange coupling constant J,, is denoted as

Jim =< ¢.(r1)¢m(rz)|§;1¢m(r1)¢.(r2) > (IL5)

The exchange hamiltonian describes the annihilation of two fermions at sites ‘m’
and ‘I’ with spins ‘o’ and ‘0"’ and creation of two fermions at sites 1’ and ‘m’ with
spins interchanged. These fermion creation and annihilation operators follow the

anticommutation relation

{Cit,C;i} = {C;,C;}=0
{Ci, G5} = bijbr,

. 1 .
For spin 3 we have :

C."ICI'T + C,-*lC’.-l =1= NiT + Nil (IIG)

where N is the ‘Number operator’.

clCiy - CLCiy = 25F (IL.7)
chCi = 8 = 57 +iS? (11.8)
ClCi = S7 = 57 —iSY (11.9)

Now,

Z Cl',a’cftn,acl.dcm,v’ = Cgtfc,fnrcncmr + CIfTCJnLCIlCmT

oo

+C},CntCitCrmy + CLCL,ClComy (11.10)



145
Here, we have replaced o and ¢’ with the two possible orientations of spins in these
states ie ‘up (1)’ and ‘down (!)’ Solving the right hand side (RHS) of the above

equation we obtain

1
RHS = _E[‘zcltrc:nTClTCmT“201'1(7:'10‘1le

520:70;10, \Crmy — 20,10,,.10,,0,..{]
X

1
= —5[X = 2(C{ChCitCrmi + C},C C1uCrn)]

Y

1
= —3[X =Y - ChCp1CiCrmt — C/,CL, CiCrm))

_ _%[x — Y + CHCCY Crmt + C/LCUC), Cmi]
= ‘%[X =Y + CliCiy(1 = €}, ,Cm)) + CCyy(1 - €11 Cray)]
= —%[X -Y+14 C,tTCLLCnCmL + Cl'va'nTC“C'"T]
= —%[1 - 2CHC Ci Crmy - 2C] CL,CLCm,
—ClCH1CitCmy — CLC, ClComy + CLC, CitComy + CFChy CriCons]
- —%[1 +2C}CiiCL Comt + 2C/,CyCL1Comy
+(ChCir — CLCU)(CLL Cmt — CL, Cm )]

_ [—% _ S#S= — S7St - %25{25:,,]

= [~ ~ 25(S7Sn + ST S5 + 555
1
= -—[5 + 25 - Sm]

So now, we have for the exchange hamiltonian :

He = 2 3 Jimls + 25+ 5 (ani,
2‘#”‘ 2
|
I{ez = "'Z Z Jlm - Z JlmSl . Sm (ll[z)

{#m I£m
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The first term is a constant energy term and the exchange term in terms of spin

operators can be written as

Hee ==Y JimSi - Sm (IL13)
l#n

This is infact the Heisenberg hamiltonian which plays an important role in studying

Ferro and Antiferromagnetic materials.
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