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1. INTRODUCTION 

The recent advancements in computational methods along with faster computers have 

led many industries to use computer models and simulations as fundamental tools in design 

and manufacturing. In fact, many processes can only be studied accurately or developed with 

simulating procedures and mathematical algorithms. Among such processes is press forming. 

one of the most widely used methods in many industries. 

During press forming a punch with a defined geometrical shape deforms an initially 

flat sheet of metal against a die until its final deformed state. A detailed study and analysis of 

this process is very complex since it depends on material properties, friction between the sheet 

and the punch and forces of contact among other variables. Due to this fact, predicting results 

has been left up to design and tooling engineers with experience in the field and trial-and-error 

procedures are also employed. 

The initial procedure in the process of press forming is called blank development. The 

blank: is the initial flat sheet used to develop the final shape. The designer has to predict the 

approximate amount of material needed as well as the required shape of the blank in order t? 

ensure a smooth deformation without wrinkling or thinning during press forming. This is 

influenced by the draw binder ring, which is placed outside the trim line, i.e., the boundary 

between the formed surface and surrounding scrap material. In order to locate the trim line, 

the designer must determine the boundary of the area on the blank which is affected by the 

forming process. The developed blank is also used for press forming layout, punch contact 

analy;sis and to give an indication of material flow. 
I 
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The redesign of a product that fails in production can be very expensive in terms of 

time and capital investment, and so it would be useful for the designer to have some kind of 

manufacturing feedback in the early stages of the design process. The technique presented in 

this research is intended to do just that. It is far le:;s demanding in terms of computation than 

other techniques such as finite element methods and can therefore be used readily as an inter-

active tool to provide qualitative information about formability and surf ace construction. 

This thesis introduces improved methods for determining the approximate blank shape 
i 
' for the design surface. A new alternative mapping procedure is introduced that can be used for 

more complex surfaces. Simple cases of non-developable surfaces are addressed and then a 

new algorithm is used to handle more realistic shapes. A volume conservation technique for 

mapping is presented as an extension of a previous studied constant area transformation algo-

rithm. A methodology for calculating surface geometric strains is presented which is used as a 

validation tool in the determination of the blank. 

Algorithm implementations were written in C++ on Silicon Graphics workstations 

using Open Inventor for the graphical interface and View Kit, a X/Motif based toolkit for the 

user interface. 
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2. RELATED RESEARCH 

This chapter introduces some of the more significant achievements in the modeling of 

sheet metal forming processes and in the area of blank development. 

2.1 : Modeling of Sheet Metal Forming Processes 
! 

Due to the fact that sheet metal forming involves very complex interactions, it has 

been a challenge to develop accurate models that describe the process. The pioneering work 

done by Sachs [1] on the analysis of a deep drawn cup with a hemispherical punch motivated 

a series of studies such as Swift [2] and Hill [3], that improved significantly the understanding 

of sheet metal forming. 

Since then many researchers have concentrated in several areas of the forming process 

such) as the studies of material behavior [4], forming limit diagrams [5, 6, 7], constitutive 

equations for sheet forming analysis [8, 9, 10] and plastic flow [11]. 

Most of these studies have included both theoretical and experimental aspects aimed at 

predicting material behavior, states of stress and strain, and failure or wrinkling, and they 

focused on the analysis of the process rather than the designing procedure. 

Numerical methods such as the finite element method have also been applied to model 

sheet metal forming. Sheet metal deformation has been studied for several shapes and situa-

tions with finite element methods in order to analyze or predict results [12, 13, 14]. Other 

techniques such as the slip line field approach [15] and the upper bound approach [16] have 

also been applied. 
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Several companies mostly in the automobile and aerospace industries have developed 

modified finite element methods suited to their specific needs for the design and/or analysis of 

several products [17, 18]. 

2.2 jBiank Development 

The blank development of non-developable surfaces has been studied mostly with the 

aid of finite element methods [19]. Non-developable surfaces are part of a family of surfaces 

that have non-zero Gaussian curvatures and cannot be generated by bending a plane without 

some distortion [20]. The need for tools that can produce approximate answers to some of the 

questions raised by designers has led to the development of alternative ways to study the 

blank development process. Several studies for simple shapes have been done by Gerdeen and 

Chen [21] in which mathematical relationships were developed to describe thickness varia-

tions throughout the piece. Karima has studied the blank development for drawn parts using a 
slip-line field approach [15]. 

1 Chu. et al. introduced a mapping strategy that takes into account only geometrical 
l 

information [22]. Blount and Stevens have also applied this method to the study of forming of 

heavy gauge metal [23]. Chu's approach motivated the work done by Nair [20] from which 

the r~search presented in this thesis originates. 
" 

2.3 Research Background 

The presented research is motivated by the studies done by Nair [20]. What follows is 

a brief introduction to the constant area transformation technique developed by Nair. 

The fundamental characteristics of Nair's algorithm are: 

• A reversal of the forming process from the formed to the unformed state. 
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• A geometric conservation of area between the two states. 

Nair uses a uniform grid of points from a polygonal surface model to describe the sur-

face. Any three adjacent non-colinear vertices form the elemental area entities used for the 

cons~rvation of area between the formed and undeformed states. The basis of the algorithm is 

the following: 

i 

I 

• Given a triangle T( V ., V ., Vk) e E3 with area A and corresponding projected 
l ] 

locations of two vertices V'. and V'. in E2 , a family of triangles 
l J 

T( V' i' V'j' V' k) of area A is defined by the area locus l of the point V' k e E2 

which is a line parallel to V' .V'. at a distance h = 2AIIV' .V' J from V' .V' .. 
l ] l Jl l ] 

(See Figure 2.1.) 

V'i 

I Figure 2.1 Locus of the third vertex of a family of constant area triangles [2 

2 
sponding projected locations of any three of these vertices in a plane in E , say 

V' ., V'. and V'k, as shown in Figure 2.2, if the unknown common vertex 
l J 

V / e e2 is located at the intersection of area loci la t- T al V' i' V'j' V' 1) and 

lb t-Tbl V'k, V'i' V'1), then 
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(2.1) 

Figure 2.2 Area conservation principle [20]. 

In order to initialize the algorithm, the position of one vertex on the blank is necessary. 

Nair assumes the blank plane to be the global XY plane and that the punch travels parallel to 

the Z-axis. The point with the largest Z-value is then taken as the seed to the algorithm by pro-

jecting it directly onto the blank plane. The mapping proceeds then concentrically from the 

starting point. 

Some of the assumptions and/or limitations of Nair's algorithm are: 

• The ideal process is assumed, i.e., the thickness is assumed to remain constant 

throughout the forming process. 

• For geometrically complex surfaces, the assumption of having only one starting 

point that retains the same X and Y coordinates is too simplistic. 

These considerations have led to further investigations on Nair's technique. The 

results are presented in the following chapters of this thesis. 
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3. MULTI-PEAK MAPPING 

, Nair's formulation is limited, in terms of realistic results, to the mapping of simple 

surfaces. The algorithm encounters problems when applied to more complex shapes with 

regions of high curvature, large indentations, etc. Also, the assumption that the starting point 

remains fixed, i.e., it maintains its X and Y coordinates, proves to be a simplistic approach. In 

many cases there might be several starting points with none of them maintaining its XY posi-
. -

tion. These concerns led to the investigation of several methods for the application of the con-

stant 
1
area transformation to more detailed and complex shapes. This chapter presents the 

studies done on the topic. 

3.1 Merging Fronts 

For the cases where the geometrical shape has more than one point with a maximum 

Z-value (see section 2.3) the logical and simple approach to take is to start the algorithm at 

those points simultaneously. The mapping would then proceed concentrically from those 

points. Nair addresses briefly the possibility of having a situation where two or more fronts 

merge [20], where cases would arise with five, six, or even seven neighbor vertices already 

mapped. This method, however proves to be unusable due to a problem of overlapping of the 

merging fronts. As a simple two-dimensional example, consider Figure 3.1. 

. The vertices V 1 and V 2 are the starting points. If these vertices are simply projected 
I 

onto the blank plane then the "unforming" of the remaining vertices will lead to possible over-

lapping. In a extreme case vertices b and c would switch positions. 
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blank plane • .J 4 
I \ 

I \ 
I 
I 

Figure 3.1 Two-dimensional example of the overlapping of two merging fronts. 

: After analyzing the figure, one can conclude that the simple projection of the starting 

points on the blank plane is not sufficient and that each developing front needs to have some 

kind of information· about other developing fronts and their positions. 

3.2 Peak Information and Connection 

The idea behind this method is to recognize the influential peaks on the surface and 

connect them in a graph. Peaks are sorted in terms of influence according to specific criteria, 

namely: 

• Height of the peak above a certain mean Z-value of the surface. 

• Curvature of the peak. 

• Distance from other peaks. 

Surfaces are cataloged depending on the number of peaks. The peaks can either be: 

• Major peaks: peaks with largest Z-value within some tolerances. 

• Minor peaks: peaks that meet the criteria in terms of curvature but have a lower Z-

value than major peaks. 

Given this categorization, two distinct situations can occur: 
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I.The surface has one major peak and several or no minor peaks. In this category are 

included the surfaces studied by Nair. 

2.The surface has two or more major peaks and several or no minor peaks. 

These situations were investigated separately as follows in the next sections. For each 

situation, the peaks taken into account were selected interactively. 

' 
3.2.1: One Major Peak 

I 
i 

1 When only the major peak is selected, then that peak is taken has the starting point and 

the mapping algorithm is similar to Nair's formulation. However if, in addition to the major 

peak, other minor peaks are selected the following procedure is applied: 

j, 
' 

I.Nair's algorithm is used to obtain a preliminary blank shape using the major peak 

as the starting point. The blank XY coordinates of all the minor peaks are noted. 

2.According to the influence of each minor peak, its XY coordinates on the final 

blank plane are found by weighed interpolation between its position in the prelimi-

nary blank shape and the position obtained by simply projecting the minor peak 

directly onto the blank plane (see Figure 3.2). The weight is calculated according to 

a normalized peak's influence. This influence is calculated by taking into account 

y r---,,,_u, 
=°nunary blank 

X •,---
'•~------- Major 

' --Mino~~ by - - - = == • peak 
simple projection Minor peak's 

final position 

Figure 3.2 Interpolation to find final blank position of minor peaks 
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each minor peak's height above the mean Z-value plane of the surface and its cur-

vature. The two factors are added and normalized against the major peak to which a 

normalized weight of 1.0 is assigned. The more influence, the closer the final posi-

tion is to the simply projected position. If the peak does not have any influence in 

the natural flow of the material then its position will be the one found in the prelim-

inary blank using Nair's formulation. The final weight also includes a normalized 

factor specified by the user that determines either full influence (factor equals 1) or 

no influence (factor equals zero) or anywhere in between. 

3.The shortest path from the major peak to each minor peak is found on the three-

dimensional shape. The vertices on each path must also-be interpolated in the same 

manner as the minor peaks. For each vertex in the path, the final XY position on the 

blank plane is found by interpolating the vertex obtained in the blank in step 1. and 

the XY position obtained by simply projecting the vertex onto the blank plane. 

4.Instead of having a starting point to initialize the algorithm, there is a topological 

graph of vertices mapped or constrained at the starting time. Nair's formulation is 

then applied to calculate the remaining points concentrically from the major peak 

taking into account that some vertices are already mapped. 

3.2.2 Two or More Major Peaks 

The only difference between the method applied to this situation and the one from the 

previous section is that in step 1, the starting point for the algorithm is the vertex closest to the 
I 

centroid, in terms of XY coordinates, of the major peaks. The other steps are the same as in 

the previous section treating the major peaks as minor peaks for the weight calculation and the 

vertex closest to the centroid as the major peak. 

1 This technique of connecting and constraining the peaks and the vertices in the paths 
I 

between them proved to be somewhat inadequate since it only allows small weights to be used 

(user 1factor of 0.3 or less) and also in the sense that there is no gradual change between con-
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strained vertices to unconstrained ones but a rather sudden one where constrained vertices' 

neighbors are totally unconstrained. This change introduces unbalances in the computation 

that are compounded as the mapped front extends. 

3.3 :Attraction and Repulsion Between Peaks 
I 
i 

! After analyzing the results from the two previous sections, some conclusions can be 
i 

drawn: 

• There should be only one developing front. More than one front leads to problems 

at the merging points due to the opposite flows of material. 

• There should be a priori information of positioning of influential peaks. 

• Each peak has a "zone" of influence where vertices in this area can possibly be con-

strained in their position. These constrained vertices are not limited to the ones 

lying on the path between two peaks. 

1 These considerations led to a different approach. One can think of each pair of peaks 

as a ~ort of "magnets" possessing a mutually repulsive force. In this approach, each peak tries 

to influence the fl.ow of material outwards from the interior. When a vertex is in one or more 

zones of influence, then the resulting position will depend on the resultant of all the "forces" 

acting on it. The fl.ow of material within the zone of influence will tend to be move perpendic-

ularly from the line connecting the peaks (see Figure 3.3.) 
' 

: This method proved to be more successful than the previous one. However, vertex 

location will depend not only on area considerations but also on the influence of the peaks. 

J The concern that the area conservation will be lost needs to be addressed. The conser-
1 
1-

vation of area of every triangular element does not provide enough :flexibility for dealing with 
i 

this multiple peak method. Due to the presence of very influential peaks in the fl.ow of mate-

rial there might be some large shearing involved resulting in area changes for some triangular 
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Figure 3.3 Flow of material within the zone of influence of two peaks . 

. entities. For this reason an alternative method that still preserves the overall area was devel-

oped and employed to surfaces with more than one major peak. The next chapter introduces 

this method and shows the results obtained for some example surfaces. 
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4. ALTERNATIVE MAPPING STRATEGY 

4.1 General Description 

The development of this new strategy evolved from the concepts dealing with the 

mapping of surfaces with several peaks presented in the previous chapter. As mentioned in the 

previous chapter the handling of complex surfaces with multiple peaks requires a mapping 

strategy that allows the flexibility to move the mapped vertex without losing, to a certain 

degree, the conservation of area in relation to its neighbors. This has triggered the idea of 

mapping the vertex preserving the area of the quadrilateral formed by the vertex in question 

and the three mapped neighbors, as opposed to preserving the area of each individual triangle 

(see Figure 4.1.) 

Figure 4.1 Mapping principle for conserving the area of the quadrilateral. 

: As shown in Figure 4.1, the position of a vertex can be defined in a locus line that pre-
1 

serves the total area of the quadrilateral. Given the three mapped vertices a, b and c, the vertex 

to be mapped is originally placed at d by using Nair's area preserving technique. The vertex 

can however be moved to position d', based on a constrainment criteria determined by the 

influence of a given peak, withouf changing the area of the quadrilateral formed by the verti-
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ces a, b, c and d. Since the area of each quadrilateral is preserved, the total area of the surface 

is also preserved and so the assumption of an ideal process with no change in thickness (plane 

strain) is still true. 

4.2 1Applica.tion to Multi-Peak Mapping 

This mapping strategy can now be applied in conjunction with the method described in 

Section 3.3 for mapping surfaces with multiple peaks. At this point however, before this 

method is described in more detail, a few concepts referred to in the last Chapter, need to be 

more clearly defined. 

For the remainder of this chapter, the term "constrained vertices" refers to vertices 

whose mapped position is found by 1) calculating a preliminary position using a constant area 

transformation and 2) modifying that position using the method described in Section 4.1 to 

take into account possible multiple peak influence. "Zone" of influence of two peaks is a 

region calculated on the blank where vertices which lie inside this region will be constrained 

or modified from their original position. The procedure used to find these areas will be 

described later in the chapter. 

When two peaks are constraining, the flow of material will be outwards from the line 

connecting the peaks. This is equivalent to assuming that when the forming operation occurs, 

the material necessary to fill in the cavity between the peaks flows in primarily from a direc-

tion perpendicular to the connecting line between them, and not so much from sliding of 

material over the peaks. 

The influence created by the peaks has a dipolar characteristic, i. e., only when two 

peaks are present will there be some sort of influence on a given vertex. The factors involved 
I 

in thejcalculation of the amount of influence exerted on that vertex are the following: 
i 
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• Differences in the areas of each triangle formed by two mapped vertices and the 

vertex in question as in Nair's constant area transformation (see section 2.3.) 

• The perpendicular distance from the vertex to the line connecting the two peaks. 

• The distance of the from each peak. 

! The reasoning behind the use of these factors follows from the considerations stated in 

Chapter 3. Vertices that are closer to the line connecting the two peaks are less influenced than 

vertices that are off set from the connecting line due to the dipolar characteristics, and vertices 

that lie on the connecting line will not be constrained at all except to the usual area constrain-

ment. Also the influence will be strongest at a distance half way from each peak. By observing 

Figure 4.2 one can notice that vertex c will be less affected than vertex a since it is closer to 

the line connecting the peaks ( the vectors applied at a and c represent the repulsive forces 

exerted by each peak. One can see that the resultant force will be larger at a than at c.) Also 

Figure 4.2 Influence of peaks on the positioning of vertices within the area of 
influence. 

vertex b is more influenced than vertex a due to its position closer to the middle line l. The 

semi-circumferential line connecting the peaks shown in the figure is a boundary line that 

determines which vertices will be under the influence of the peaks. The following heuristic 

mapping algorithm was formulated according to these assumptions. 
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Distances between mapped vertices and peaks are taken as the XY distances between 

the already mapped vertices via constant area transformation and the projections of the peaks 

onto the blank plane. The steps involved in the positioning of constrained vertices are as fol-

lows: 

I 
1 

I.Given a vertex V calculate the mapped position V' of the vertex V according to the 

unconstrained constant area transformation (Section 2.3). 

2.Determine which are the two closest peaks to V'. Determine if V' is inside the area 

of influence of these peaks (see Figure 4.2.) If so, then the peaks are labeled P 1 and 

P 2 and the vertex V' needs to be additionally constrained. If the vertex V' does not 

lie inside the zone of influence then repeat step 2 using the second and third closest 

peaks. Do this-until the vertex is determined to be constrained or if the vertex can-

not be influenced by any two peaks then it is unconstrained and V' is its final posi-

tion. 

3.If the vertex V' is determined to be constrained according to step 2, then four posi-

tion modifying factors are computed: 

• Area factor. This factor takes into account large area differences in adjacent trian-

gles that can result from large shearing. It is determined based on the area differ-

ences of the two triangles used for the constant area transformation (see Section 

2.3.) Given the triangular ~eas A 1 and A 2, the area factor is: 

ka = 1 -A1JA 2 

ka = l -AiA1 

forA 1 <A2 

forA 1 >A2 

• Distance factor. This factor takes into account the perpendicular distance from the 

line connecting the two peaks. It is computed using the angle described between 

the lines connecting vertex V and the two peaks. From figure 4.2 one can see that 

if this angle is greater than 90 degrees then the vertex lies outside the zone of 

influence. Given an angle 0, the distance factor is: 
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• Center factor. This factor depends on the distance of the vertex V from the center 

line dividing the two peaks (line l in figure 4.2.) Given the distances d1 and d2 

defined from V to P1 and P2, the center .factor is defined as: _ 

kc= 1/2 ( 1 + d1/d2 ) 

kc= 1/2 ( 1 + d2/d1 ) 

for d1 < d2 

for d1 > d2 

• Projection factor. It is determined based on the projection of the resulting "force" 

vector onto the locus line that defines the a constant area quadrilateral (see 

Figure 4.3). Given two vectors u1 = V - P1 and u2 = V -P2, the resultant vector u 

= u1 + u2 and the projection up onto the locus linen as defined in Figure 4.3, then 

the projection factor is defined as: 

Figure 4.3 Calculation of the projection factor. 

4.The overall correction factor for the repositioning of V' is obtained by multiplying 

all the factors defined in step 3. The new position of V' is calculated by applying the 

correction factor to the preliminary mapped vertex along the locus line of conserva-

tion of the quadrilateral area n. 
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k = kakdkcfap 

V' corrected= V' + k up I I u pl 

The algorithm is initialized in the same manner as described in section 3.2. Depending 

on the number of major peaks, the starting point will be either a major peak i:r the case there is 

only one present, or the vertex closest to the centroidal XY position of all the major peaks. 

4.3 Mapping Examples 

This modified multi-peak constant area transformation algorithm was applied to two 

example surfaces and the results are compared to the ones obtained using Nair's original for-

mulation. 

4.3.1 Surface With Two Peaks 

Figure 4.4 represents a non-uniform rational B-spline surface with two major peaks. 

This surface was used as an example to illustrate the differences between Nair's constant area 

formulation and the multi-peak formulation presented above. In the multi-peak method only 

Figure 4.4 NURBS surface with two major peaks. 
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the two major peaks were selected. The minor peaks that are also present are of small influ-

ence and therefore were not accounted for. The starting point for Nair's algorithm is selected 

as either one of the two major peaks. Using Nair's algorithm, selection of either starting point 

will result in some non-symmetries despite the fact that the original surface is symmetric. The 

resulting blank is shown in Figure 4.5. 

:::: 

------_; __ , ____ , ___ , __ , _______ , __ _ -- .......................... \ ...... , ................................... ......_......_ ..... ...... ::::: 

Figure 4.5 Developed blank using Nair's constant area transformation. 

Using the new algorithm applied to the surface in Figure 4.4, the starting point will be 

the vertex closest to the centroid of the two major peaks projected onto the blank plane. This 

ensures that symmetry is preserved. The flow of material is constrained by the two peaks. 

Figure 4.6 shows the resultant blank. When comparing this result to Figure 4.5, it is observed 

that there is more flow of material towards the top and bottom. This is in agreement with the 

assumptions made about the effects of multiple peaks. 

4.3.2 Surface With Multiple Minor Peaks 

The following example was chosen to illustrate how the multi-peak algorithm can be 

applied to more complex surfaces. Figure 4.7 shows a NURBS surface with one major peak 

and several minor peaks. This surface has been previously studied by Nair [20] but due to its 

complex shape, it is the belief of the author that the simple constant area transformation is not 
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Figure 4.6 Developed blank using the multi-peak algorithm accounting for the 
two major peaks. 

Figure 4. 7 NURBS surface with several minor peaks. 
realistic enough in terms of results. The developed blank obtained by Nair is shown m 

Figure 4.8. 

One can see in Figure 4.8 that, although the constant area formulation handles this 

complex shape reasonably well, there are a few problematic regions on the left hand side. This 

region corresponds to the front of the car model and apparently induces high strains where 
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Figure 4.8 Developed blank using Nair's constant are formulation. 

large shear could occur. If the geometry of the two front peaks is taken into account (see 

Figure 4.7) and also if friction is present, those regions might create even more problems. 

The same surface was then used as the input for the multi-peak algorithm. Five peaks 

were selected. The major peak in the center, the two peaks over the front wheels and two 

peaks over the rear wheels. The resulting blank can be seen in Figure 4.9. 

As predicted the problems encountered previously in the regions of high shear are 

aggravated using the multi-peak algorithm. The wrinkling that occurs in those areas can give 

an indication that the given design surface of Figure 4.7 cannot be manufactured by press 

forming only. The designer may then redesign the surface to account for these problems. 

However, the rear bumps on the surface do not seem to present many problems. 

The multi-peak method presented in this chapter proved to be more successful when 

dealing with complex surfaces than previous ones. It is the opinion of the author, however, 



22 

Figure 4.9 Calculated blank using the multi-peak algorithm. 

that the limiting factor in this studies, more than the conservation of triangular area as pre-

sented by Nair, is the assumption of an ideal process without any thickness change. These 

concerns were addressed during the course of this research and some of the observations and 

results are presented in Chapter 6. 
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5. GEOMETRIC SURFACE STRAINS 

This chapter presents a method of determining the geometric surface strains which can 

be used with both Nair's constant area transformation or the algorithms presented in this the-

sis to: provide additional information about the formability of a given surface as well as vali-

date the results obtained by the blank development algorithms presented. The theory of finite 

strain based on the homogeneous deformation mode is used to formulate the algorithm. 

5.1 Strain Theory 

! The deformation of a rigid body produces a change in its norcinal dimensions. These 

changes can be measured or determined analytically for many cases. Consider a length 10 

which under loading changes to l such that l =fa 10 . Although, both translation and rotation may 

occur;during the loading process, it is the change in length that is used to define strain as, 

e = (5.1) 

: where e is the nominal or engineering strain. For large strains, however, the logarith-

mic, natural, or true strain E is more commonly used. True strain is defined such that every 

incremental length change is divided by the current length, 

; which after integrating gives, 

dl de= -
l 

(5.2) 
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l 
E = ln-

/0 
(5.3) 

: True strains are more convenient than engineering strains because: 

I.True strains for equivalent deformation in tension and compression are identical 

except in sign. 

2. True strains are additive, the total strain being the sum of the incremental strains. 

This is not true for engineering strains. 

3.The volume change is related to the sum of the three normal strains, and the vol-

ume conservation relationship is given by, 

E +E +c = 0 X y Z 

4.If the strains are small, then true and engineering strains are nearly equal. 

Expressing equation (5.3) as, 

a series expansion results in 

as e 0, E e [24]. 

2 3 e e <>=e--+-+ 
C, 2 3! ..... . 

(5.4) 

(5.5) 

(5.6) 

5.2 Finite Strain 

In forming metals, deformations may be large and the instantaneous strength of any 

material element varies during the process. The strain itself is a function of the deformation 

i 1. 



25 

history. In sheet metal forming, strain measurements are often made by marking a grid on the 

surface. If the grid is measured after a small increment in deformation, the strain increment is, 

in general, easily determined. The mode of deformation will dictate how readily the strain 

increment in each successive deformation step can be evaluated from the distorted grid, and 

how easily the strain increments can be integrated. In many instances, however, it is either too 

time consuming or difficult to make incremental measures and only measurements of the ini-

tial and final shape of the grid are made. 

' 
5.3 lcircular Grid Analysis 

I' 
; Largely by convention, in sheet metal stamping it is assumed that one principal axis of 

plastic strain increment is normal to the material surface, with the other two principal direc-

tions'. lying in the plane of the sheet. The well known circular-grid analysis technique [26] for 

determining strains in sheet metal pressings is based on this hypothesis. The method also 

assumes that a grid circle, etched or printed on an un-deformed blank, is transformed into an 

ellipse on the surface of the pressing. 

By measuring the major and minor diameter of the ellipse, the principal surface strains 

are determined. Although over a large portion of the surface, circles transform into approxi-

mate ellipses, not every element deforms in this manner. In general, the deformation path of 

an element in an industrial pressing is not known precisely. The degree to which the measure-

ments of a grid circle reflect the actual strain is a matter of conjecture and actually depends 

upon the complexity of the strain path. In the presence of high strain gradients the grid circle 

method is inadequate, since a grid circle will undergo severe distortion and no longer resem-

bles an ellipse after deformation. The grid circle analysis technique however, reduces the 
1 
I 

strain idetermination to a two dimensional problem since the deformed ellipse lies on a rela-
' I 

tivelylflat surface. 

l 
I ij 

Ji 

l: 
1 
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Another major limitation of the circular grid analysis procedure is the physical limit of 

the circle size due to the equipment capability for etching or printing the circle on the blank. 

Ideally, if the circles are small enough, then even in the areas of high strain gradients, the grid 
I 

circles will undergo only plane, strain along the principal directions. 

: If this technique is used incrementally it will indicate whether the principal strain 

ratios are in constant proportion, however it will not demonstrate whether the principal axes 

remain fixed with respect to the material element. This is because rotation of the major and 

minor axes around the deformed circle cannot be determined. 

5.4 Homogeneous Deformation 

The deformation process which transforms straight lines into -straight lines and circles 

into ellipses is usually referred to as homogenous deformation [25]. As the region is deform-

ing in a pure homogeneous mode, the element remains orthogonal and principal directions 

remain fixed with respect to the material element. This is exemplified by the pure shear mode. 

Only I the principal axes remain fixed in direction, all other line elements rotate. It is well 

known that the final shape of a material element following a prescribed homogenous strain, 

can also be realized by imposing a pure homogenous mode followed by a rigid body rotation. 

This poses the question of equivalence of the strain paths. Sowerby et al. show that the pure 

homogenous deformation mode leads to a simple finite strain tensor, analogous to the infini-

tesimal strain tensor but without the need to introduce any simplifying assumptions [27]. 

: Sowerby's method eliminates some of the problems encountered in strain calculations 

using the circular grid analysis [27]. Specifically, the uncertainty of assessing the major and 

minor, axis of an ellipse is eliminated, and an improved averaging of the strain within an ele-

ment becomes available. Emphasis is placed on the pure homogenous mode, since it leads to 3: 

simpler finite strain tensor. Marciniak and Duncan also introduce a nodal strain analysis very 
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similar to Sowerby~s in which a pure homogeneous mode of deformation is considered [28]. 

The strain distribution is determined from the initial and final configuration of an array of 

points on the surface. 

5.5: Two Dimensional Homogeneous Strain 

The method presented applies in two dimensions only and is based on Marciniak's 

studies in experimental strain analysis [28] and Sowerby's analytical method [27]. In sheet 

metal forming, the third principal stress is generally perpendicular to the surface of the sheet 

and strain is deterniined from grid markings made on the surface so that the two-dimensional 

description will apply. 

1 As shown in Figure 5.1, the initial grid defines locally an orthogonal set of axes OX1, 

OX2;in which the unknown principal axes, 1, 2, are oriented at an angle 0. A general point 
I • 

2 

I 

I 
I 

I 

x7' 

I 
I 

I 

I 
I 

I 

1 

Figure 5.1 Displacement PP' of a point in the grid axes and in the measuring axes 

I, ,· 
I 

I ' 
I : 

. 
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' P(x1,x2), after deformation will have some position P' which is measured in the frame defined 

by an arbitrary set of measuring axes OU1, OU2• The angle <I> between the measuring axes and 

the grid axes is not known because any grid marks on the material initially along the OX 1 and 

OX21 axes will have rotated with deformation. If the initial array consists of the points DAB in 
I 

' Figure 5.2(a), the problem is to find the principal elongations e1 and e2 and the orientation 0 of 

2 • 

A,O 
I 

-----• 1 

(a) 

I 
l 

I 
I 

I 
I 

I 
I 

X2 

' I 

I B' 
I 

A'O ____ ,. 
, 1 

u 
... .. ..._Xl 

(b) 

Figure 5.2 (a) Initial square grid in the undeformed sheet; (b) deformed points B' 
and D' in the arbitrary measuring axes OU1, OU2 [28]. 

the principal directions in terms of the coordinates u1 and u2 of the deformed array in the arbi-

trary measuring axes as seen in Figure 5.2(b). The solution is more easily expressed in tensor 

notation. 

The coordinates (u1, u2) of a vertex can be expressed as a linear function of its coordi-

nates in the unformed state (x 1, x2) as 

\' 

.1 
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ul = F llxl +F l2x2 

u2 = F2lxl +F22x2 (5.7) 

u = f·x 

or 

e:} rll F12Jf1} (5.8) = 
F2l F22 x2 

i 

whei-e the coefficients of (5.8) represent the displacements of the initial point to the final con-

figuration. These coefficients can be determined with reference to Figure 5.2 using, 

or, using matrix form, 

u1 (B') 

u1 (D') 

u2 (B') 

u2 (D') 

u1 (B') = F 11x1 (B') + F 12x2 (B') 

u2 (B') = F 21x1 (B') + F 22x2 (B') 

u1 (D') = F 11x1 (D') + F 12x2 (D') 

u2 (D') = F 21x1 (D') +F22x2 (D') 

x1 (B') x2 (B') 0 0 

x1 (D') x2 (D') 0 0 
= 

0 0 ·x1 (B') x2 (B') 

0 0 x l (D') x2 (D') 

Fll 

Fl2 

F2l 

F22 

By inverting this matrix the four coefficients can be determined as, 

(5.9) 

(5.10) 
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Fll x2 (D') -x2 (B') 0 0 u1 (B') 

FI2 -x1 (D') x 1 (B') 0 0 u1 (D') 
= Det (5.11) 

F21 0 0 x2 (D') -x2 (B') u2 (B') 

F22 0 0 -x1 (D') x1 (B') u2 (D') 

The coefficients F 11 , F 12, F21 and F22 can be combined in such a way that they always 

yield the same components of a symmetric second order tensor, c;;, known as Green's defor-

mation tensor such that, 

T (;=f ·f_ 

Expanding the above equation, the components of the symmetric tensor are, 

2 2 
bll = FII +F21 

b12 = b21 = FlIFI2+F2IF22 

2 2 
b 22 = F 12 + F 22 

(5.12) 

(5.13) 

· Notice that if the initial square DAB in Figure 5.2 is a unit square then equation (5.13) 

reduces to, 

(5.14) 

which is the form used by Marciniak [28]. The principal values are then given by, 



31 

(5.15) 

and the orientation is determined according to, 

(5.16) 

The logarithmic strains are found using, 

(5.17) 

This strain calculation procedure was implemented and applied to the constant area 

algorithms previously discussed. See the details in the Appendix on page 49. The results for 

two examples surfaces used previously are shown in the next section. 

5.6 Discussion 

The strains are displayed as color coded images for emphasis and ease of interpreta-

tion. Strains were colored in the standard color spectrum range between violet and red signify-

ing pure tension and compression respectively. 

The geometric strain algorithm was applied to the surface of Figure 4.4 assuming there 

was no thickness change throughout the forming process. The two major peaks were selected 

and the multi-peak algorithm described in Chapter 4 was used to calculate the blank. The 

computed major and minor strains are shown in Figure 5.3. The strain analysis shows a rather 

uniform spread of surface strains with the largest shear occurring closer to the corners. 

The second example surface is the one from Figure 4.7. For this example, only the 

major peak was selected ignoring the influences of the minor peaks. The resulting strain distri-

bution is shown in Figure 5.4. As expected, the areas of larger strain are the regions in the 
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(a) (b) 

Figure 5.3 Surface with two peaks. (a) Major strain. (b) Minor strain. 

(a) (b) 

Figure 5.4 Surface with multiple peaks. (a) Major strain. (b) Minor strain. 
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front, implying that fracture might occur at those points during forming. These results agree 

with the observations made in Chapter 4 for the same surface. 

If the major strain is plotted against the minor strain the points fall on a straight line 

with! a slope of minus 45 degrees. This validates the assumption of pure shear and of the con-

stancy of area throughout the surface. The information provided by the strain analysis can also 

be useful for the designer to locate potential fracture regions in the piece. As the constant area 

algorithm, the geometric strain algorithm is computationally inexpensive and suitable for 

interactive use. 
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6. VOLUME CONSERVATION MAPPING 

• The analysis of the constant area mapping algorithm for multiple peaks indicates that 

the assumption of an ideal forming operation without thinning is too restrictive and not very 

realistic in some cases. The volume conservation mapping procedure is an attempt to general-

ize the mapping to take into account possible thickness changes in the part during forming. 

The method developed in this research is based on the constant area transformation 

algorithm developed by Nair [20] and briefly discussed in Chapter 2. Nair assumes an ideal 

process, in which there is no thinning and therefore the volume of material contained within 

any triangle remains constant throughout the forming process. Nair's algorithm transforms the 

formed three dimensional geometry into an initial planar shape. 

6.1 General Considerations 

The constant volume algorithm can be considered as an extension of Nair's formula-

tion. Here the thickness is allowed to vary at each point and the unformed shape of the blank 

is calculated on the basis of a constancy of volume. The algorithm has linear time complexity, 

an attractive feature also present in Nair's algorithm. The constant volume transformation 

algorithm, however, produces more realistic results since it does not assume a state of plane 

strain,' i.e., no change in thickness during the process. 

In addition to the formed surface geometry in polygonal form, this method requires 

specification of a thickness distribution which is generally not constant. With only the geo-

metric information, the design engineer can predict variations in thickness on the final 
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(formed) piece and use those predictions as input to the algorithm or, if there is a prototype 

part available, it could be measured and used as input. 

This algorithm was only applied to simple geometrical shapes with one starting point. 

The techniques discussed in Chapter 3 and 4 on multiple peak method were not implemented 

with this algorithm. 
I 

1 Some of the basic assumptions found in Nair's algorithm are also used here, such as: 
I ', 
I 

•The initial surface is represented by a grid of points (vertices) which are considered 

as the elementary surface entities. 

• The surface is continuous, homogeneous and isotropic. 

• Only plastic deformation is considered. 
I 

1 The new assumptions underlying the constant volume mapping algorithm are as fol-
1 
! 

lows: j 

, I 
i 

I 

•The formed shape is defined by two surfaces. The initial design (upper) surface 

characterizes the geometrical shape. The second (lower) surface has the same num-

ber of vertices as the upper surface which are projected from the original ones along· 

the normal vectors relative to the design surface, producing a formed shape with a 

defined thickness at each point. 

• Elemental volume entities (triangular prisms) are formed from any three adjacent 

non-colinear vertices of the upper surface and the topologically corresponding (i.e., 

same ith and jth values) three vertices of the lower surface. 

• At the final or undeformed state of the algorithm the vertices on the upper surface 

will have the same X and Y coordinates as the ones on the lower surface. The Z-

coordinate of the vertices on the lower surface will be offset from the Z-value of the 

corresponding vertex on the upper surface by a certain average thickness value. 

This average thickness is calculated as an average of the initial thickness distribu-

tion of the part. 
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6.2 Volume Geometry Representation 

6.2.1 Design (upper) surface 

· The upper surface may be represented using a non-uniform rational B-spline 

(NURBS) surface. This surface is represented as 

m n 

s (u, v) = I, I, P;,Jl;,k (u) Ni, 1 (v) U, VE [0,1] (6.1) 
i = Oj = 0 

where S(u,v) is a three dimensional vector function of control points Pij arranged in a topo-

logically rectangular grid and Niiu) and Nj,z(v) are the degree k and I B-spline basis func-

tions, ~espectively [29] . 

. The surface is approximated by a faceted polyhedron composed of a (M x N) set of 

three dimensional vertices Vij = S(ui,v}, i = 1, ... ,M andj = 1, ... ,N. In this application, the sur-

face is triangulated in uniform parametric intervals to form a topologically rectangular mesh, 

which, after mapping through S(u,v) generates a uniform network. In the topology created, 

each internal vertex has eight surrounding vertices as shown in Figure 6.1. 

i The topological information is stored independently of the geometric information, a 

useful• advantage of the parametric surf ace representation. Any surface vertex in Euclidean 
i 

Figure 6.1 Discretized surface model with vertex adjacency relationships and 
numbering system 
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space has a dual in the parametric space [20]. The topology of the surface approximation is 

defined in the parameter space while the corresponding geometrical information, which is 

used mostly for area and volume calculations, is defined in Euclidean space. 

6.2.2 Lower ( created) surface 

: This surface is created using the following procedure: 

, • the normal vector nij at each vertex of the design surface is calculated. If the surface 

input is in the polygonal form, nij can be computed from neighboring faces. 

• a point of the lower surface Vij is calculated by multiplying the corresponding nor-

mal vector (nij) by an input thickness amount (predicted or based on some previous 

information). 

6.3 Algorithm Basis 

1 The following terminology will be used for the remainder of this thesis in order to 

facilitate the description of the algorithm. 

N. 

yu .. • 
lj 

yl .. 
lj 

l T·· lJ 

Adj(Vij) 

Flag(Vij) 

Total number of vertices on the surface 

Address and coordinates of a specific vertex on the upper surface, i and j 
correspond to surface parametric directions u and v 

Address and coordinates of a specific vertex on the lower surface, i and j 
correspond to surface parametric directions u and v 

Address and coordinates of a specific transformed vertex on the upper sur-
face, i and j correspond to surface parametric directions u and v 

Address and coordinates of a specific transformed vertex on the lower sur-
face, i and j correspond to surface parametric directions u and v 

Vertex adjacency list for each Vij 

1 - if vertex Vij is transformed, 0 - otherwise 



Primary 
neighbors 
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Vertices in Adj(Vij) which are topol?gically adjacent to Vij in parameter 
space, i.e., Vi-Jj, Vi+Jj, Vij-1 and Vij+l 

Secondary 
neighbors Other vertices in the Adj(Vij) list 

The algorithm uses a basic geometrical shape, a tetrahedron. Three tetrahedra com-

bined. form a triangular prism. These prisms form the elemental volume entities in the algo-

rithm !(see Figure 6.2). 

b 

Figure 6.2 Elemental volume entity 

In Figure 6.2, vertices a, band c belong to the upper surface and d, e and/to the lower 

surface. In the undeformed state (final stage of the algorithm), these vertices define three ver-

tical planes (perpendicular to the XY plane) and two horizontal planes (parallel to the XY 

plane). Taking this into consideration, the interpretation of the algorithm can be summarized 

as follows: 

•Given the location of four vertices (two adjacent vertices on the top surface and two. 

on the lower surface) that lie on the same vertical plane, a family of triangular 

prisms with volume V = Vol(Vui, vuj, vuk>V1i) + Vol(V\, vuj, V1k>V1i) + Vol(V1i, V1j, 

vz k, vuj) can be defined by the volume locus L of the points vu k and vz k which is a 

plane parallel to the planeP defined by (Vui, vuj, vzi and vzj) at a distance h = 2V/ 

Area(Vui, vuj, vzi,V1j) from the plane P (see Figure 6.3.) 
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.. -------- , p____ ,• 

!Figure 6.3 Locus of the third vertices of a family of constant volume prisms or 
''slices". 

•Given two adjacent prisms S1 (Vui, V"j, V"1, V1i, V1j, V11) and S2(V"k, yui, V"1, V1k, 

V1i, V11) in the initial state and corresponding projected locations of any three of the. 

vertices on the upper surface, say rub ruj and ruk along with the projected locations 

of the three corresponding vertices on the lower surface, T1b Tj and T1 k as shown in 

Figure 6.4, if the line defined by the unknown common vertices T'-' z and T1 z is 

located at the intersection of the volume loci P1+-S 1 and P2+-S2, then 

Figure 6.4 Volume conservation principle. 
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Volume(Vui> yuj, Vuz, V1b V~, V1z) = Volume(T'\, Tuj, Tuz, T1b Tj, T1z) 
and 
Volume(Vuk, V\, Vuz, V1k, V1b V11) = Volume(Tuk, T\, Tuz, T1k, T1i, T1z) 

: This represents a generalization of Nair's formulation which used only one surface 
I 

and the calculations were performed in terms of triangles and area loci. Since it ignored thick-

ness, the problem was one of mapping E3 space to a E2 space. This is not true in this algorithm 

but the extra degree of freedom is nevertheless constrained by the assumption that the trans-

formed vertices of the lower surface have the same planar coordinates as the corresponding 

ones on the upper surface. All other characteristics of the algorithm are very similar to Nair's 

formulation and are described in detail in the following sections. 

6.4 Transformation Initialization 

j It is assumed that the point of initial punch contact on the blank is the furthest from the 
I 

blank !plane, an assumption that can be used since we are ignoring friction. Thus the vertex 

with the largest Z-value is chosen as the starting point of the algorithm. To reverse the forming 

process, "un-forming" of the surface creates the effect of reversing the flow of material in the 
' actual process. This flow is achieved by allowing the elemental volume entities to transform 

in a concentric manner starting with the vertices immediately surrounding the starting point as 

shown in Figure 6.5. 

The transformation is initiated by projecting the starting point parallel to the Z-axis, 

onto the blank plane. The corresponding point on the lower surface is projected along the 

same vector and is offset from the one on the upper surface by the average thickness calcu-

lated from the inputted formed shape as described at the end of Section 6.1. In order to initial-

ize the algorithm the locations of at least four adjacent vertices, two on the upper surface and 

two on the lower surface. However, a boundary-less deformation implies uniform flow of vol-
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Figure 6.5 Initial vertex and four primary neighbors. 

ume in all directions. Thus, the locations of all four primary neighbors of the starting point are 

required. Since volume techniques cannot be used to find the projected locations of these ver-
, 

tices, we apply a vertical area preservation technique to all four primary neighbors of the start-
1 

ing point. This technique consists of the following (see Figure 6.6): 

• the XY-direction of the vector T 1 TO is an average of the XY-directions of vu 1 vu o 

and vtl vto 

• the length h of the vector T 1 TO is calculated as,_ 

h = Area(Vu 1, vu 0, V11, V1 o) I A verageThickness 

z z. . -- -. 
H'y . ,.Y . . 

vuo 
. Tua . . . 

I --~ : ,---Tu . .. 
I,,,- vu -,,,: 1 Average Thickness ~...... 1 " " ..... :I',. . 

X X Tio 
Tl1 

Vl1 (a) (b) 

Figure 6.6 Vertical area preservation technique.(a) Formed (initial)state; (b) 
Unformed (final) state. 
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i 
• The remaining vertices of the two surfaces are then transformed by concentric layers 

' propagating outwards from the starting point. Each layer is initialized by computing four ref-

erence points in the same manner as the four initial primary neighbors of the starting point. 

These reference points are topologically along the same ith line or jth column of the starting 

point. The remaining points in that layer are then calculated along a given ith line or jth col-

umn as long as there are at least three adjacent vertices already transformed (see Figure 6.7 .) 

I 

-
-__ ., 

l 

:vref 
Figure 6.7 Concentric mapping showing reference points. 

In most cases, along a given ith line or jth column, there are four adjacent vertices 

already mapped or transformed. In this situation the fourth overhanging vertex is ignored to 

prevent an imbalance that would be introduced by including it in the calculations [20] (see 

Figure 6.8.) 

5 4 3 

£ 
p 

2 

7 0 

Figure 6.8 Four neighbor case. Vertices 7, 0, 1 and 2 are mapped [20]. 
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6.5 Mapping Example 

An example application is presented that demonstrates the differences between Nair's 

formulation (constant area transformation) and the present constant volume transformation 

algorithm. These example applications were run on a Silicon Graphics 200MHz R4400 work-

station with 64MB of RAM. 

As shown in Figure 6.9, a surface was constructed that resembles an actual deep draw-

ing operation of a square box. This surface was represented by a 40 by 40 parametric subdivi-

sion. Due to the fact that only one NURBS surface was used to model the entire piece, the 

resultant surface was not exactly what one might get from drawing a square box but only an 

approximation. 

Figure 6.9 B-Spline surface (top) and corresponding lower surface. 

6.5.1 Constant Area algorithm 

This algorithm assumes an ideal process with no change in thickness. The resulting 

blank can be seen in Figure 6.10. Clearly the algorithm has some difficulties in the area calcu-

lations close to the corners of the surface. This is due to fact that the area loci are almost par-
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Figure 6.10 Mapped surface, constant area transformation algorithm. 

allel in these regions resulting in floating point errors in finding the interception point. This 

algorithm does not account for the fact that in a real operation, the corners and the edges of the 

surface are necessarily thicker than the flange (vertical) areas or the corners of the box. 

6.5.2 Constant Volume Algorithm 

The thickness of the formed piece was estimated using information on thickness 

strains from a previous study done on this type of press forming, more specifically on the deep 

drawing of a square box using a modified finite element algorithm by Jiang and Lee [30]. As 

shown in Figure 6.9, along the section A-A and B-B, the computed thickness is based on the 

plots on Figure 6.11 and 6.12. The thickness at all the other points was interpolated from these 

values. 

The resulting blank is shown in Figure 6.13. It more closely resembles a square blank, 

which was the initial assumption of this example. This algorithm especially handles better the 

calculations of the corners of the surface because of the added flexibility of the extra degree of 

freedom. 
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0.5 

Figure 6.11 Thickness strain distribution along the diagonal direction for the deep 
drawing of a square box (section B-B.) [30] 
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Figure 6.12 Thickness distribution along the transverse direction for the deep 
drawing of a square box (section A-A.) [30] 

Figure 6.13 Mapped surface, constant volume transformation algorithm. 
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1 This example was used only to illustrate the differences between the two algorithms 

and the calculated blank is only the result of the hypothetical surface presented in Figure 6.9. 

It does not, however present any relation to the deep drawing of a square box studied by Jiang 

and Lee. 
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7. CONCLUSIONS AND FUTURE RESEARCH 

7 .1 Conclusions 

Two major techniques that enhance the formability assessment tools developed by 

Nair were presented. The algorithms developed allow designers to interactively gather quali-

tative information about blank development in press forming. The first technique deals with 

the application of a modified constant area transformation technique to more complex sur-

faces common in industry. The second technique extends Nair's formulation by allowing 

thickness variations. An efficient algorithm for the calculation of geometric surface strains 

was presented and was used as a validation tool in Nair's constant area formulation and the 

new techniques introduced in this research. This algorithm used an approach based mostly on 

Marciniak's studies on surface strains as opposed to the technique presented by Nair which 

was solely based on Sowerby's model. 

These new algorithms addressed some of the problems encountered by Nair. The 

multi-peak technique provides more flexibility when dealing with geometrical shapes that 

have several peaks. The volume conservation technique is a natural extension of Nair's for-

mulation and possesses most of the attractive properties of the constant area transformation 

such as linear time complexity and no dependence on material properties. It is, however, more 

realistic since it takes into account the fact that in most cases, the sheet does not maintain its • 
thickness throughout the entire workpiece during the forming process. The calculated values 

of geometric surface strains are a good indicator of the amount of shear involved in the pro-

cess and can be used to determine regions where fracture might occur. 
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7.2 Future Research 

Research in this field is continuing by trying to join both of the presented techniques 

into a single more complete assessment tool. The first step, however, is to incorporate more 

accurate thickness information into the volume conservation technique for several types of 

shapes. It is also hoped that the presented mapping strategy can be improved by using irregu-

lar meshes and multiple surface descriptions, thus being able to handle more complex and 

realistic surfaces. 
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APPENDIX . DETAILS OF GEOMETRICAL STRAINS 
CALCULATION 

The (u1, -ui) coordinates of the deformed grid need to be determined in order to obtain 

the strain coefficients seen in chapter 5. For that purpose, the set of arbitrary coordinate axes 

OU1 and OU2 (see figure 5.2(b)) was chosen in the deformed shape (which is the input shape 
J 

in the! algorithms presented in this thesis) according to figure I. The axis OU 1 was chosen has 

Figure Al Deformed grid measured in the U i, U2 frame. 

the direction of OD' with the axis OU 2 lying on the same plane as the triangle D' A'B '. The 

(u1, u2) coordinates of B' and D' are therefore given by 

U1 (D') = IOD'I 

u2 (D') = 0 

u1 (B') = IOB'I cos0 

U2 (B') = IOB'I sine 

(0.1) 

where 0 is the intended angle between OD' and OB'. The same calculation was performed for 
i 

the upper triangle in figure 1 using vertices B', C' and D'. The resulting strain values for the 

I 
I . 
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quadrilateral formed by A', B', C' and D' were averaged from the two triangles. Those are the 

values shown in figure 5.3 and figure 5.4. 
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