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Abstract.

Let # = PG(2, F), where F is a field of characteristic 2 and of order greater than 2.
Given a conic, its tangents all pass through a common point, the nucleus. A coaic,
together with its nucleus, is called a hyperconic. All conics considered are non-

degenerate.

First, a relationship is established between hyperconics and certain symmetric unipo-

tent Latin squares for all finite projective planes.

Intersection properties of hyperconics in PG(2, F), Fano configurations containing
points of a hyperconic, as well as certain subplanes of PG(2, F) are studied. An
open question in * = PG(2, q), q even, is: what is the size and structure of a set of
maximum size of hyperovals (or hyperconics) pairwise intersecting in exactly 2 points?
In PG(2,4), such a set is shown to have size 16 and to have one of 2 ‘dual’ structures:
16 hyperconics missing a fixed line, or 16 hyperconics through a fixed point.

The former is a 2 — (16,6,2)-design of grid type which can be obtained from the
5—(24, 8, 1) Mathieu design, and which can be related to singular points of a Kummer
surface in PG(2,q) for q odd (see [Bruen 2}).

The latter is shown to be an affine plane in 2 ways:

i) taking the hyperconics which all contain the fixed point, as well as the lines through
that fixed point (in the original plane) to be the lines of an AG(2,4); and

ii) taking the hyperconics in the original plane to be the points, and the points
(except the fixed point in all 16 hyperconics) in the original plane to be the lines of
an AG(2,4).

In PG(2, F) let the field F contain a subfield of order 4. Then, in PG(2,F) we
describe certain sets of 6 points no 3 collinear called hexagons. It is then shown how
the much studied even intersection property in PG(2,4) can be lifted (extended) to
certain sets of hyperconics in PG(2, F).
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Chapter 1. Introduction.

A projective plane = consists of objects called points and subsets of points called
lines such that

1) given two points, there exists a unique line containing both;

2) given two lines, they meet in a unique point;

3) there exists a quadrangle. (See [Hartshorne 1].)

Let x be a classical or non-classical projective plane.

If = is a finite projective plane with n 4 1 points on lo, then each point of x has n + 1
lines through it; each line of x has n + 1 points on it; the total number of points is
n2 4+ n + 1; and the total number of lines is n2 + n + 1.

Denote » by PG(2.n).

A k-arc in a projective plane is a set of k points, no 3 collinear. It follows that & is at
most n + 1 if n is odd, and k is at most n + 2 if n is even. A hyperoval in PG(2,n)
is an (n + 2)-arc. Thus, hyperovals exist only if n is even. It follows that, for a fixed
line and a fixed hyperoval, the line is either disjoint from the hyperoval, or the line
intersects the hyperoval in exactly 2 points.

If n is a prime power, there exists a field of order n, and therefore there exists a
projective plane of order n. The question remains (prime power conjecture) as to

whether every finite projective plane must have prime power order.

Theorem 1.1. (Bruck-Ryser)
Ifn =1 or 2 (mod 4) then unless n = a? + ¥, for some integers @ and b, there is no

projective plane of order n.

The smallest integer which is not a prime power and which can’t be ruled out by the
Bruck-Ryser Theorem is n = 10. It was recently proved there is no PG(2,10). An
important part of the proof of the non-existence of a PG(2,10) is the non-existence
of hyperovals in a PG(2,10) via a computer search. The number of hyperovals was
connected to an incidence matrix of a PG(2,10) via weight enumerators and the
MacWilliams identities for algebraic codes.

Notation. PG(2, F) denotes the projective plane over the finite or infinite field F.
Using non-homogenous coordinates, its points are
{(a,b)|a,b € F} U {(m = a)|a € FU {x}}

1




and its lines are
Y=mX +b, X =c¢, and |, where m,b,c € F and I = {(m = d)|{d € FU >c}.

Using homogeneous coordinates its points are
{(ao,a1,a2) | a, € F, a, not all zero}, with (ag,a),ay), and (by, by, by) representing
the same point iff a, = cb; Vi, for some non-zero ¢ € F; using homogenous coordinates

its lines are

[ao, a1. a2} := {(z0, 21, 22) |aozo + a1z} + a2z2 =0, a; € F not all zero}
— p——

a point

with [ag,a;, a3, and [by, by, by] representing the same line iff a; = cb; Vi, for some
c€ F\ {0}.

A classical projective plane, denoted PG(2,q), is the projective plane over the
fieid F,.

A conic C over a field F is a set of points satisfying a quadratic equation a X2 +bY? +
cZ>+dXY +eXZ + fY Z = 0, where a,b,... , f € F- This conic is non-degenerate
if its equation does not factor. If charF = 2, a conic is non-degenerate if ( , e, d)¢C.
All conics considered here are non-degenerate.

Any 5-arc is on a unique conic. The celebrated theorem of B. Segre asserts that in
PG(2,F), if charF # 2, every ¢ + 1-arc is a conic, and conversely (see {Hirschfeld 1},
P-168). Also, if charF # 2, the tangents to a conic form a conic in the dual plane.

If charF = 2, Segre’s Theorem is false. Also, if char F = 2, the tangents to a conic form
a degenerate conic in the dual plane. The tangents to a conic form a pencil, i.e., they
all go through a single point, the nucleus. The nucleus of the non-degenerate conic
aX?4+b6Y2+cZ2>+dXY +eXZ + fYZ =0, where a,b,... , f € F, is (f,e,d). When
F = Fg, a conic has ¢ + 1 points, no 3 collinear. Further, we can adjoin the nucleus
to the conic to give a hyperconic. If F = F,, a hyperconic is a hyperoval; however,
not every hyperoval is a hyperconic. For example, Y = X4 U {(m = 0),(m = )} is

hyperoval but is not a hyperconic in PG(2,32) (sce [Segre 1]).

All fields considered here have characteristic 2.

All conics considered here are non-degenerate.



We will denote by H = C'U {.V'} a hyperconic where (" is a conic with nucleus N

A hyperoval is a affine if it is skew to (disjoint from) Ix. and is projective otherwise.

In Chapter 2, we investigate a connection between hyperovals and certain symmetric
Latin squares. Every hyperoval in a projective plane, classical or non-classical, gives
rise to a symmetric unipotent Latin square.

In Chapter 3, we investigate hyperovals in PG(2,4). We consider sets of hyperovals
that pairwise intersect one another in an even number of points, and the nature of
their intersections. The main result in that chapter is such a set has size less than or
equal to 16, with equality if the set has one of 2 ‘dual’ structures. These structures
yield designs.

Of course, PG(2,4) is a well studied object with connections to group theory.
“Among projective planes, PG(2, 4) is particularly remarkable. A 2-design, it is three
times extendable to a 5 — (24, 8,1) design admitting the 5-transitive Mathien group
My ... by far the most elementary construction [of this] emerges from a study of

the binary code of the projective plane. !

The finite projective plane PG(2, 4) is interesting because of its relationship to the Go-
lay code, the Conway group, the Mathieu group, and the Leech lattice (see [Cameron
1] and [van Lint 1)).

“5-(12,6,1) and 5—{24, 8, 1) designs . .. are intimately related to their automorphism
groups, the 5-fold transitive groups M2 and Ma4 discovered by Mathieu (1861),
(1873). ... The easiest way to construct (and prove uniqueness of) these designs is
via coding theory, using the ternary and binary Golay codes associated with them.
... Luneburg’s construction of the 5 — (24,8,1) design is based on ... combinatorial

properties of the unique projective plane of order 4 ...".2

In PG(2,4), one of the sets of maximum size of hyperovals pairwise intersecting in

exactly 2 points can be obtained from the 5 — (24,8, 1) Mathieu design.
“The [Mathieu] group M4 is one of the most remackable of all finite groups. Many

properties of the larger sporadic groups reduce on examination to properties of My4.
This centenarian group can still startle us with its youthful acrobatics. The automor-
phism group of the Leech lattice, modulo a centre of order 2, is the Conway group

YLander 1}, p. 53
2[Cameron 1), p. 22
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Co,, and by stabilizing sublattices of dimensions 1 and 2 we obtain the other Conway
groups C,,, C,,, the McLaughlin group McL, and the Higman-Sims group HS. The
sporadic Suzuki group Suz, and the Hall-Janko group HJ = Js, can also be obtained
from the Leech lattice by enlarging the ring of definition. The Leech lattice is a 24-
dimensional Euclidean lattice which is easily defined in terms of the Mathieu group
Mzy."3

In Chapter 4, we investigate intersect.on properties of hyperconics in proiective planes
over fields. Of particular interest are 6-arcs where the conic through every 5 of the
points has as nucleus the remaining point. These 6-arcs only occur in projective
planes over fields that have subfields of order 4. Of these 6-arcs, it is shown that
those contained in ¢ fixed hyperconic form a 3-design. (See theorem 4.37.)

Orbits of 5-tuples on the complex projective line have been studied by L. Renner (see
[Renner 1]). Here, we consider orbits of certain sets of 5 points on a projective line
which result from some special 6-arcs in a projective plane. The images of a set of

these 5 points under the Mobius group yield a 3-design (see theorem 4.41).

In Chapter 5, we show how the famous ‘even intersection property’ can be lifted (ex-
tended) from the 168 hyperconics in a subplane of order 4, to the (6)(168) hyperconics
in the larger plane containing them. This works in projective planes over fields that

do not have a subfield of order 8.

The Appendix contains some facts on hyperconics in PG(2,q), ¢ = 2! when ¢ = 4
and when ¢ > 16.

3[Conway 1], p. viii



Chapter 2. Hyperovals and Latin Squares.

Section 2.1. A relationship between hyperovals and certain symmetric
unipotent Latin squares.

Theorem 2.1. Let x be a classical or non-classical projective plane of order n even.
Then every hyperoval in x skew to (disjoint from) a fixed line | gives rise to a unique
(up to the reordering of the rows and columns) symmetric unipotent Latin square of
size (n +2) x (n + 2).

Also, every hyperoval in © intersecting ! gives rise to a unique (up to a reordering of

the rows and columns) symmetric unipotent Latin square of size n x n.

Proof: Let H = {P,,Ps,..., Pay2} be a hyperoval in . Let [ be a line missing H.
Let Q1,Q3,... ,@Qn+1 be the points of . Define a matrix

A = [aj5]
where .
{ t if the line P, P, intersects [ in Q,
a;; = e .
« ifi=j.
Clearly A is symmetric, and A is a Latin square with entries {+,1,2,... ,n + 1}
appearing exactly once in each row and column. Thinking of the symmetric Latin
square as the table of a quasigroup (see [Denes 1]) with identity #, it is unipotent,
ie., aj; = * Vi (the square of any element is the identity).
Suppose now that { is a line intersecting H. Let {Py, P;,..., Pa} be the points of H
off I, and let @;,Q2,... ,Qn-; be the points of { not on H. Define A as above. Then

A is a symmetric unipotent Latin square. O

Corollary 2.2. Suppose r = PG(2,n) is a classical or non-classical projective plane,
where n is even. Let H be a hyperoval in n. Let {P, P,,..., P} be the points of H
not on ly, wheret =n 4 2 if H is an affine hyperoval and t = n if H is a projective
hyperoval. Let Q1,Q3,... ,Q¢-1 be the points of | off H. Then {P2, Ps,... , P} can

5



be relabelled to give two standard forms for the resulting Latin square as follows.
1) Relabelling so that

PPy =@,
PIPyniy = Qy,

PPNy = Q-1

yields a Latin square with the form

PPNl =1

yields a Latin square of the form

h P P P
P, ( + 1
P |
P * 1
A= Py 1 =
Py
p o\

. )

A P B
P1 ( * 1 2
P 1 *
P3 2 *
p\t-1
2) Relabelling P2, Ps,. .. so that
PPNl =Q)
PsPyNily =@

Py P




Lemma 2.3. 1) There exist symmetric unipotent Latin squares which cannot be

constructed from a hyperoval in the way described above.

2) Different hyperovals may give rise to the same symmetric unipotent Latin square.

Proof: 1) For example, in PG(2,8), there is no hyperoval that gives rise to the
symmetric unipotent Latin square

Fo A P, P P, s P P Py Py

P (. 1 a a® a® a* a® a® 0 oo\
PBl1l * o' o ¢® a a® a°® o 0
PPle ot = 1 o a® 0 o o o
Pila? a* 1 *+ o0 0 a o' o o°
A= Pla® a2 @®* 0o * 1 o' 0 a af
Psla* a a® 0 1 =+ o0 a® o a?
Pslo® a® 0 a a* oo + a® o® 1
Pla® a® o0 a* 0 a® @® ¢+ 1 a
PRl 0 o0 o> a® a o & 1 +

Py \oo 0 o> a® o a2 1| a o' = }

where Fs \ {0} =< a >,a® =1 +a%

If we choose Py = (0,0) and P, = (1,1), then P, = (a,aa), P; = (b,a%b), Py =
(¢,a%¢), Ps = (d,a%d), Ps = (e,a’e), Pr = (f,a®f) Py = (9,0) and Py = (0, 1), for
some a,b,... . h € Fy. Write A = [A, ;] where i,j € {0,...,9}. Now g = 1 since
Ajs = 00, h = 1 since 419 =0,a = abe since A6 = 0, b = c since A34 = oo,
b = a?d since Azs =8, ¢c= a®f since Ag7 =0and d = ¢ As¢ = oc. This yields a
contradiction. Thus A does not arise from any hyperoval in PG(2,8).

2) For example, in PG(2,4), the 48 hyperovals skew to a line give rise to the same
symmetric unipotent Latin square; the 120 hyperovals intersecting a line give rise to
the same symmetric unipotent Latin square. ()

Note that in the proof of 1) in lemma 2.3, we needed to use a projective plane of
order at least 8.
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In PG(2,2), the unique symmetric unipotent Latin square with first row =,1,0. 5c is

Ph PR P, P
Pf » 1 0 oo
Pl 1l « oo ©
Pl 0 o s 1
Pai\co 0 1 =

Given a hyperoval H in PG(2,2) skew to line I, choose coordinates so H contains
(0,0) and (1,1) and so that ! = ;. Then H = {(0,0),(1,1),(1,0),(0,1)}. Each of
the 4 choices for P, amongst the points of H yields the Latin square above (if you
insist on having the standard form where the first row is +,1,0, o0).

Now consider PG(2,4) where Fy = {0,1,w,w?}. There are 6 symmetric unipotent

Latin squares with the first row #+,1,w,w?,0, 00. Consider

Po P] Pz P.‘! Pl PS

Po(xt 1 w @ 0 oo\
Py 1 * c

A= Pl w = a
Pl w? a =+
Pl O « b
Py \co b #j

Ifa =1 and A is a symmetric unipotent Latin square, then b = 1; moreover, c is 0
or oo, and for each of these choices of c, there is exactly one such Latin square.
Ifa#1,thena=140r5and b=2or 3. For each of these 4 possibilities, there is
a unique symmetric unipotent Latin square. Thus A extends in exactly 6 ways to a
symmetric unipotent Latin square.

Given a hyperoval H skew to I, choose [ = l,,. In theorem 2.7, there is an example
of a symmetric unipotent Latin square that H gives rise to. There are 6 choices for
labelling the points of H Py,... , P; so that they give rise to a symmetric unipotent
Latin square with first row =, 1,w,w?,0, 00 as there are 6 choices for Pp. O
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Section 2.2. Translations of Hyperovals.

Consider » = PG(2,F), where F is a field. Let H be a hyperoval in x, where F = F,,
q=2%

Define H + (a,b) := {(z +a,y+b) | (z,y) € H\ I} U(HNIy), where a.b€ F. le.,
H + (a,b) is an affine translation of H.

Lemma 2.4. Suppose r = PG(2, F), where F is a field.

If H is a hyperconic in =, the:: H + (k,1) is a hyperconic in n, where k,l € F.
Moreover, H and H + (k,l) give rise to the same symmetric unipotent Latin square.
If H is a hyperoval in x with F = F,, ¢ = 2!, then H + (k,) is a hyperoval in =.

Moreover, H and H + (k,l) give rise to the same symmetric unipotent Latin square.

Proof: Let H = C U {N} where
C:aX?4+bY2+cZ2 +dXY +eXZ + fYZ =0
and where N = (f,e,d). Consider the translation C’ of C where

C':a(X +kZP+ WY +12)% + c2°
+d(X +kZ)Y +1Z)+ (X +k2)Z + f(Y +12)Z = 0.

Now

C':aX?+bY? + (c+ ak? + bi® + ek + f1)2°
+dXY +(e+d)XZ +(f +dk)YZ =0

which has nucleus N’ = (f+dk,e+dl,d). Let H' = H+(k,1),i.e., H' is a translation
of H.

Now N ison Iy iff N’ is on lo; moreover, if N and N’ are on I, they are equal. Also,
N is affine iff N’ is affine; moreover, if NV and N’ are affine, then N' = N + (k,l).
Setting Z = 0 in the equations of C and C’ gives the same equation, i.e., these 2
conics have the same points on lo. For affine points of C and C', (X,Y) € C iff
(X,Y)+ (kD) e

Thus H' is a hyperconic in 7.

Next, for an arbitrary hyperoval H in PG(2,q), ¢ = 2, consider H + (k,l). Let P,
@, and R be 3 points of H. Since R + (k,1) is not on I if R is not on I, it follows
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that if P and Q are on Iy, then P, Q and R + (k,1) are not collinear. If P is on ls,
but Q and R are not on Iy, then P, Q@ + (k,1) and R + (k,!l) are not collinear as the
line joining Q + (k,1) and R + (k,!) intersects Iy, in the same point as the line QR
does. If P, Q and R are not on [, then P + (k,1), Q + (k,1) and R + (k,{) are not
collinear since the line joining P + (k,{) and Q + (k,!) intersects I, in the same point
as the line PQ does, and the line joining P + (k,!) and R + (k, 1) intersects /5 in the
same point as the line PR does. Thus H + (k,1) is a hyperoval.

Moreover, if H is a hyperconic or hyperoval, and if P and Q are affine points of H,
then the line joining P + (k,!) and Q + (k,{) meets ly, in the same point as the line
PQ does. Therefore, H and H + (k,l) give rise to the same symmetric unipotent
Latin square. O

Define a relation ~ amongst the hyperovals in PG(2,4) as follows.

Given 2 hyperovals, Hy and H,, define H, ~ H if |H, N H.| is even.

It is well known this is an equivalence relation with 3 equivalence classes of size
168/3 = 56 (see [Lander 1]).

Theorem 2.5. Let x = PG(2,4). If H is an affine hyperoval, then {H + (a, b)|a,b €
F4} is a set of 16 distinct hyperovals, any 2 of which have exactly 2 common points.

Proof: Let H = {Py,..., Ps} where P; = (a, b;).
First we need to establish the following claim.

Claim 1: |(H + (a,b)) N (H + (c,d))| is even.

If Pisin both H + (a,b) and H + (¢,d), then 3P, € H such that P = P, + (a,b).
Also P = Py + (a,b) € H + (c.d). Therefore P, + (a,b) + (¢,d) € H. Therefore
P + (¢,d) € H + (a,b). Therefore P + (a,b) + (c,d) € H + (a,b). Similarly P +
(a,b) + (c,d) € H + (c,d). This establishes Claim 1.

Next, we prove Claim 2.

Claim 2: The 15 differences P; — P; = (ai, b;) — (aj,b;), where P; # P;, are distinct.
If i+ Pj = P; + Py, then P; = P,.

Suppose by way of contradiction that Py + P, = P3 4+ P4. Let Q1 = PiP2 N lx. Let
Q2= PiIP3sNlix. Let Q3 = Py PyNix. Thus, hyperoval H gives rise to the symmetric
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unipotent Latin square

U SO O ™ #
[3-I I I
i A N 2
* — bt W

However, this can’t be completed to a symmetric unipotent Latin square, yielding a
contradiction. This proves Claim 2.

Next, we establish Claim 3.

Claim 3: (H + {a,b))N(H + (¢, d)) # 0.

We have (a,b) + (c,d) = P + P2, say, by claim 2. Consider Py + (a,b). Py +(a.b) =
P34+ (¢c,d). But P, and P are in H. Therefore, (H + (a, )N (H + (c,d)) # 0. This
establishes Claim 3.

We now prove Claim 4.

Claim 4: H + (a,b) # H + (c,d) unless (a,b) = (c,d).

If H+{a,b)=H+(c, d),“t.hen H + (a,b) + (c,d) = H. Therefore, suppose by way
of contradiction that H + (a,b) = H and (a,b) # (0,0). Therefore P; + (a,b) € H.
Say P, + (a,b) = P,. Say P3 + (a,b) = P4 Say Ps + (a,b) = Ps. Therefore
H = {P,, P, + (a,b), Py, Py + (a,b), Ps, P5 + (a, b}}. The line joining P, to P; + (a.b),
the line joining P; to P; + (a, ), and the line joining P; to P; + (a,b) each meet 5
in Qy, say. The line P P; and the line joining P; + (a,b) to P; + (a,b) both meet I
in Q2, say. The line Py Ps and the line joining P + (a,b) to Ps + (a,b) both meet I
in Q3, say. But, then H gives rise to a symmetric unipotent Latin square that looks
like

P P, 3 P Ps Pe

Pfs 1 2 3 4 5 )
Pl 1l = 2 4
Pl 2 = 1

P13 2 1 « 7 7
P}l ¢ « 1
Ps\s 4 1 o« )

This cannot be extended to a symmetric unipotent Latin square, thus yielding a
contradiction. This establishes Claim 4. O
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Theorem 2.8. Let 7 = PG(2,4). If H is a projective hyperoval, then {H +
(a,b)|a,b € Fy} contains exactly 4 different hyperovals. Any 2 hyperovals in this
set which are different meet in P, Q and no other points, where P and Q are the
points of intersection of H with l. Also, these 4 different hyperovals must belong to

the same equivalence class under the even intersection equivence relation.

Proof: Consider (H + (a,b)) N (H + (c,d)). If P is an affine point on both H + (a,b)
and H + {c,d), then so is P + (a,b) + (c,d). Therefore |(H + (a,d)) " (H + (¢,d))]| is
even. Since 4 points determine a unique hyperoval, if H + (a,b) and H + (¢, d) have
a common affine point, then they are equal. Let (a,b) be an affine point not in H.
Let (c,d) be an affine point not in H or H + (a,b). Let (e, f) be an affine point not
in H, H + (a,b) or H + (c,d). Each affine point is on exactly one of the 4 hyperovals
H, H + (a,b), H + (c,d),and H + (e, f). O
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Section 2.3. Translations of Hyperovals in PG(2,1).
Consider the classical plane PG(2,4). An easy counting argument (see [Lander 1)
shows there are 168 hyperovals in P((2,4). Also there are 12 hyperovals containing
a given pair of points. [, has 10 pairs of points. Therefore, there are exactly 120

projective hyperovals and 168 — 120 = 48 affine hyperovals. Also, every quadrangle
is contained in a unique hyperoval.

Under the equivalence relation for hyperovals defined in section 2.2,
Hy ~ Hy if |Hy N Hy| is even,

the 168 hyperovals fall into 3 equivalence classes of 56 hyperovals (see [Lander 1}).

Theorem 2.7. Let x = PG(2,4). The relation Hy ~ H; if |Hy N H;| is even,
where H, and H; are afline hyperovals in x, is an equivalence relation amongst the
48 affine hyperovals of x. There are 3 equivalence classes, each of which contains 16

affine hyperovals. Moreover, the 16 affine hyperovals in a fixed equivalence class are
translations of each other.

Also, all 48 affine hyperovals give rise to the same symmetric unipotent Latin square.

Proof: We use F¢ = {0,1,w,u?},w?® =1 +w.
Let

H, = {(0,0),(1,1),(1 +w,1),(1,1 +w), {1 +w,0),(0,1 + w)},
HZ = {(010)7(“"“’)’(1"4)’ (“-’,l)v(lao)s(ov l)},

and

H3 = {(0,0),(1 + w,1 + w),(w,1 + w), (1 + w,w),(w,0),(0,w)}.
Note that
HinH; = {(0,0)}, HNH; = {(0,0)}, and HyNn 3 = {(0,0)}.
Thus, Hy, Hy, and Hj are pairwise non-equivalent. Therefore, by theorem 2.5,

{Hy + (a,b)la,b € Fy} U {H: + (a,b)la, b€ F4} U {H3 + (a,b)la,b€ Fy}
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is a set of 48 distinct hyperovals; there are 16 hyperovals in each of the 3 equivalence

classes of x. Moreover, the 16 hyperovals in a fixed equivalence class are translations

of each other.

Also, all 3 of H;, H; and Hj give rise to the symmetric unipotent Latin square

Py
P
P
P
Py
Ps

Py

(

W N = a

4

\ 5

P

o W Y B N

P

2

»

w Ut e

P

3
5
1

*

4

Py

4

3
5
2

»

1

Py
5 )

2
3
4
1

y

Therefore, by lemma 2.4, all 48 affine hyperovals give rise to the same symmetric

unipotent Latin square.

O




Section 2.4. Incidence Matrix of PG(2.4).

We now digress to consider the 2-rank of the incidence matrix of PG(2.4). Using
a hyperoval, the 2-rank is shown to be at most 10. It is known that the 2-rank is
exactly 10 (see [Assmus 1]). Suppose # = PG(2,n) has lines ly,... .l, and points
P,...,P,, where v =n? 4+ n + 1. Define an incidence matrix

1 ifPonl
0 otherwise.

N = [ny;), where n,; = {

Consider the rank of N over F,, denoted rank,N. (If N’ is a different incidence
matrix for x it differs from N by a relabelling of the P’s and !'s, i.e., by permutation
matrices with det = +1. Therefore, the rank is independent of the incidence matrix.)
It is known for * = PG(2,4) that rank; N = 10 (see [Assmus 1]). Here we now
provide a geometrical proof of this result.

Theorem 2.8. Let * = PG(2,4). Let N be the incidence matrix for . Then the
rank of N over F3 is at least 10 (see [Assmus 1]).

Proof: Note that if the lines of # = PG(2,4) are reordered so that {, contains a point
not on any of Iy, ... ,l;_y, then the corresponding rows in N are linearly independent
and rank;N 2 ;.

P P ... P,
n o1 o o )
0 0
10
L 1
lis

o\ )

The 10 lines in the geometric basis for PG(2, 4) can be chosen from the 15 lines hitting
a hyperoval H. These 10 lines can be chosen with the above property as follows.
Choose a hyperoval H = {P,...,Ps} in PG(2,4).

Letly = PP, la = P,P3,l3= P P3,ly = PyPs, Is = PsFs,

s = P4P1, I = PsP:;, Is = Pst, lg = P Ps, and lle = Py P;.

We now establish the following claim.
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Claim: /; contains at least one point not on ly,... ,li-}, i = 2,3,...,10.

{2 contains P3 which is not on {; since H is a hyperoval.

{3 contains Py and Pj; but, {3 contains no further points of ! or .

l4 contains Py, which is not on {}, {; or I3.

Is contains Fg, which is not on ,... ,[,.

l¢ contains P; and Py. lg also contains I; N[5 since it must intersect {;. lg contains
no further points of Iy,... ,Is.

I7 contains P; and Pg. Iy contains I} N I4 since it must intersect {;. I7 contains none
of Py =lgNly, P, =lgN 1, or lgN1z. Thus, I7 contains 1 of the 2 points of lg not on
anyof ly,...,Is.

ls contains P2, Ps and the unique point of I3 that is not on any of I3, Ig,Is,... 7. ls
either contains /g N {7 or both the point of lg not on I),... ,Is,l7 and the point of Iy
not on [i,... ,ls. Upon examining ly, we will find /g contains lg N I7. Therefore, Is
contains exactly one point that is not on any of I, ... ,I7.

ly = PyP; does not contain lg Ny, lg N1y, lg N1 or Ig N l7. Therefore, ly contains
the point of lg not on Iy,... ,Is,l. Also, lg intersects Is in Ps. Therefore, Iy does not
contain lg N Ig. Thus ls must contain lg N {7. Therefore I contains a point not on
any of ly,... ,{3. Also, Iy contains the point of I; not on l3,... ,ls. Thus, there is one
point of {g that is not on any of Iy,... . Is.

o = PyP3. lijo meets Iy in ) Nls. ljp meets I3 in the point of iz not on Iy,... , /5.
Thus l;9 contains one point not on any of ly,... ,ls. O
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Section 2.5. Hyperconics, hexagons, and symmetric unipotent Latin
squares.

We introduce hexagons in Chapter 4. By considering the hexagons contained in a
hyperconic, we can reorder the points of a hyperconic so that the hyperconic gives
rise to a symmetric unipotent Latin souare with identical square blocks of size { along

the main diagonal.

Corollary 2.9. Let x = PG(2, F) where F is a field of order greater than 4 which
contains a subfield of order 4. Let H = C U {N} be a hyperconic (where (' is a conic
with nucleus N). Let lx, be a line through the nucleus N and a point P on C'. Order
the affine points Py, P, ... of H so that N and P along with quadrangles Py P, I3 Py,
PsPsPi P, . .., are all hexagons. Then, by rearranging the order of the points within
each of these quadrangles, the symmetric unipotent Latin square resulting from H
will have identical 4 x 4 blocks along the diagonal.

Proof: Hexagons are defined in chapter 4, just before theorem 4.5. The Fano config-
urations through the quadrangles Py --- Py, Ps--- P, ... all intersect [y in the same
3 points by theorem 4.51. Thus, if the lines Py P, P3Py, ... intersect lo, in @), say;
and the lines P, P;, P, Py, Ps Py, PsPs, ... intersect I in Q2, say; and the lines Py Py,
P;P3, PsPy, PPy, ... intersect I, in Q3, say, then the symmetric unipotent Latin
square resulting from H is

where

Piist Paiv2 Puiss Pasa

Piigr [ = I 2 3
g= Puiez| 1 * 3 2 g
Piiys 2 * 1
3




Chapter 3. PG(2.4) hyperovals pairwise intersecting in 2 points

An open problem in # = PG(2,q9) q even is: what is the size and structure of a
set of maximum size of hyperovals (or hyperconics) pairwise intersecting in exactly 2
points?

It is known that the size is at least ¢? (see [Bruen 3]). An example of ¢* hyperconics

containing a common point that pairwise intersect in exactly 2 points is as follows.

Example 3.1. Consider the ¢? conics Cop : X2 + Y2 + aZ2 + XZ = 0 where
a,b € Fy. These conics all have nucleus (m = oc). We will now show that each pair
of these conics intersect in a unique point.

Let Hyp = Coy U {(m = o0)}. Now Cyp Nl = {(m = vB)}.

Consider C, 4 and C.4 where a,b,c,d € F, and (a,b) # (c,d). We have b = d iff
C.s and C, 4 intersect in a point on [y, since when Z =0, Cop : bX2 + Y2 = 0 and
Ceqd:dX?2+Vi=0.

€’onsider the affine points of C, 5 and C, 4. Let Z = 1.

There is no point (X,Y) satisfying both bX2 + Y2 =g+ X and bX? + Y2 =c+ X
unless a = ¢. Th s, if b = d, the only common points of Cqp and C,4 are on I,

Suppse next that b # d and consider

Y, = a+c)*
0T \b+d

- (X0+ b(a+c)+a(b+d))*‘

b+d

The point (Xo, }p) is on both C, 4 and C, 4. Conversely, this is the only solution to
botha+6X2+Y?=Xand c+dX?+Y?=X.

Thus H,y and H, 4 have exactly 2 points in common. O

The main result of this chapter is to show that in PG(2,4), the maximum size of a
set of hypeiovals, pairwise intersecting in 2 points, is 16; and moreover, to show that
there are only 2 possibilities for the structure (which are actually ‘dual’ structures)

for such a set with maximum size.

In this chapter, we will only consider hyperovals in PG(2,4).
It follows from the definition that every hyperoval in PG(2,4) is a hyperconic. Recall
the well known equivalence relation amongst the hyperovals of PG(2,4) discussed in

18
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section 2.2 and in section 2.3.

Two hyperovals are said to be equivalent if they intersect in an even number of points.
This equivalence relation has 3 equivalence classes. Fix on an equivalence class. Then
all hyperovals considered for the remainder of this chapter will be contained in this
equivalence class, which we refer to as Type L

Recall that in PG(2,4), every quadrangle is contained in a unique hyperoval. Also
recall that, given a hyperoval, a given line is either disjoint from that hyperoval, or it
intersects that hyperoval in exactly 2 points.

Also recall that there are 56 hyperovals per equivalence class of which 40 intersect
and 16 are skew to (disjoint from) a given line.

We have 56 = (40 projective + 16 affine) hyperovals of Type 1.

Let Sp be the set of all hyperovals of Type I through the point P. There are 16 such
hyperovals. The set Sp is called a Point-18.

Let S! be the set of all hyperovals of Type | skew to the line I. There are 16 such
hyperovals. The set S! is called an Affine-16.

A 2-intersecting family S is a set of hyperovals of Type I such that Hy, H; € S =
|[HiNHy| =2.

A point-16 and an affine-16 are examples of 2-intersecting families. Therefore, a

2-intersecting family of maximum size must have size at least 16.

We now consider 2-intersecting families of maximum size.

The main theorem in this chapter is theorem 3.2.

Theorem 3.2. Let 1 = PG(2,4). Let S be a 2-intersecting family of maximurm size.
Then either there exists a point common to all the hyperovals of S, i.e., S = Sp for

some P, or all hyperovals of S are skew to a unique line, i.e., S = S! for some I. In
both cases |S| = 16.

Thinking of the 6 lines skew to a hyperoval as the points of a ‘dual’ hyperoval, these

two structures are ‘dual’ to each other.

After we prove this theorem, we will show that the latter case is a 2 — (16,6,2)-
design of grid type, which can be related to singular points of a Kummer surface in
PG(2,q) for q odd (see [Bruen 2]). This design can also be obtained from the Mathieu
5~ (24,8,1) design M by taking only blocks of M meeting a fixed block B in exactly




2 points (see {Kantor 1] and [Hughes 1)).

We will also see that the first case of theorem 3.2 has each of the 21 points contained
in a hyperoval of S and yields an affine plane AG(2,4) in two different ways:

1) Let P be the point on all 16 hyperovals and I, be a line through P. Define the
structure x; to have points the affine points of . A line through two points P, and
P; in =) is defined to be the hyperoval in x through P;, P>, and P if there is one; or
the line P, P; in r if there is no hyperoval through P, P, and P in x. We will show
that x; is an affine plane.

2) A dual affine plane resuits by taking the hyperovals in = as points and the points
in x as lines.

We will see later that it can be proven (see [Cameron 2]) that a 2-intersecting family
has size at most 16 via Hoffman’s inequality for strongly regular graphs. (See section
3.8.)

To prove theorem 3.2 it is enough to prove theorem 3.3.

Theorem 3.3. Let x = PC(2,4). Suppose S is a 2-intersecting family of maximum
size. Either

1) there are at least 3 hyperovals in S through some pair of points; or

2) there are at most 2 hyperovals in S through each pair of points.

If 1) holds, then all hyperovals in S pass through a unique point (one of the 2 points
on the 3 hyperovals), and S is a point-16.

If 2) holds, then there exists a line which is skew to every hyperoval in S and S is an
affine-16.

Example 3.4. If H = {(a1,4),... ,(as,b6)},

then H + (a,b) = {(ay + a,bp +b),...,(as + a,bs + b)}.

We use Fq = {0,1,w,?}, w? =1 +w.

Let H = {(0,0),{1,1),(1 + w,1),(1,1 + w),(1 +w,0),(0,1 +w)}.

H is an affine hyperoval in PG(2,4). Therefore {H + (a,b)ja,b € Fy} is a set of 16
affine hyperovals pairwise meeting in exactly 2 points by theorem 2.5, i.e., this set is
an affine-16. O

Example 3.5. Let P = (m = oo). The following 16 hyperovals are a 2-intersecting
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family that all pass through P, i.e., these hyperovals are a point-16.

Ho = {(0,0), (1, 1), (w\w?), (w?,w),(m = 0),(m = 00)}
Ho + (0.1) = {(0,1),(1,0). (w\w), («?,w?),(m = 0),(m = o0)}
Ho + (0,w) = {(0,w), (1,w?), (w, 1), (w?,0), (m = 0),(m = co)}
Ho + (0,w%) = {(0,w?),(1,w), (w,0), (w?, 1), (m = 0),(m = o0)}
Hy = {(0,0),(m = 1), (w?, 1), (w, 1),(1,0),(m = c0)}
Hi +(0,1) = {{0,1),(m = 1), («?,0), (,0),(1,1),(m = 00))
Hy + (0,w) = {(0,w),(m = 1), (w?,w?), (w,w?), (1,w),(m = o0)}
Hy + (0,w?) = {(0,w?), (m = 1), (W, w), (w,w), (1,w?), (m = 20)}
H, = {(0,0), (w*,«?),(m = w),(1,&?),(«?,0),(m = 00)}
H, +(0,1) = {(0,1), (w?,w), (m = w),(1,w), (1), (m = o0)}
H, + (0,w) = {(0,w), (w?, 1),(m = w),(1, 1), (w?,w),(m = o0)}
H, +(0,?) = {(0,w?), («?,0),(m = w),(1,0), (w*,&?),(m = 00)}
H,2 = {(0,0), (w,w), (1,w),(m = &?), (w,0),(m = o)}
H, +(0,1) = {(0,1), (w,w?),(1,&?),(m = w?), (w,1),(m = o0)}
H,2 + (0.w) = {(0,w), (w,0),(1,0),(m = w?), (w,w), (m = o0)}
H, + (0,0%) = {{0,u?),(w,1),(1,1),(m = &*). (w,w?),(m = o0)}

Notice that the hyperovals Ho, Ho + (0,1), Ho + (0,w), Ho + (0,w?) all pass through
both (m = oo) and (m = 0), ..., the hyperovals H 2, H 2 + (0,1), H 2 + (0,w),
H_2 + (0,uw?) all pass through (m = o0) and (m = w?). O

To prove theorem 3.3 we need some lemmas describing how hyperovalis in a 2-inter
secting family inwersect each other.
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Section 3.1. Hyperovals through a pair of points.

In order to prove the main theorem of this chapter, theorem 3.2, we will investigate
the intersection of certain hyperovals. A result we will use frequently in considering
how various hyperovals intersect is the following.

Through every pair of points, P, Q, there are exactly { hyperovals of Type I; more-
over, each point not on the line PQ is on ezactly one of these § hyperovals. This is

theorem 3.7.

Example 3.8. Notice that in example 3.5, we had 16 hyperovals through (m = oc).
These consisted of the 4 hyperovals through both (m = o0) and (m = 0), the 4
hyperovals through both (m = oc) and (m = 1), the 4 hyperovals through both
(m = o0) and (m = w), and the 4 hyperovals through both (m = c0) and (m = w?).
This is also true for the points on any line through (m = o0). O

Theorem 3.7. Consider x* = PG(2,4). Let Py and P, be points of x. Then there
are exactly 4 hyperovals of Type I through both Py and P». Moreover, every point
not on the line P, P; is on exactly one of these hyperovals.

Proof: Recall that in * = PG(2,4), each quadrangle is contained in a unique hyper-
oval, and given a hyperoval, each line is either skew to that hyperoval, or intersects
that hyperoval in exactly 2 points.

First, we establish the following claim.

Claim: There are exactly 4 hyperovals of Type I through both P, and P;.

There are 56 hyperovals of Type I, 1_2_142_01 pairs of points, and 6 points/hyperoval.

Now

(15 pairs/hyperoval)(56 hyperovals) = ((2;) paira) (#hyperovals/pair).
This establishes the claim.
Each of these hyperovals contains the points P; and P, and 4 points not on the line
Py P;. Thus, each of the 16 = (4)(4) points not on the line P, P; is on exactly one of
these 4 hyperovals. O
Corollary 3.8. Let # = PG(2,4). Consider two points, P, and P; not on the line

lo. Then ly intersects exactly 2 of the 4 hyperovals of Type I that contain both P
and Pg.




0
Proof: Let | = P, P;. Let Hy,....H, be the 4 hyperovals through both P and #»
of Type 1. Therefore, of the 16 points off [, each is on exactly one of H;,... . H,
by theorem 3.7. Therefore, Iy, which has 4 points off I, must intersect H, (say) in

2 points. Therefore /g must intersect H», say. Therefore, lp cannot intersect H3 or

H,. O

We now consider the ‘affine-16 case’ of theorem 3.3.
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Section 3.2. A 2-intersecting family of maximum size of hyperovals of that
are skew to a fixed line.

Theorem 3.9. Let x = PG(2,4). If S is a 2-intersecting family of maximum size
with the property that each pair of points of x is on at most 2 hyperovals of S, then
S is an affine-16.

Proof: Let H € S,and H = {P,,... ,Pg}. Thereare 15 pairs £, P;, 1<i#j<6.
Now, by assumption, there are at moet 2 hyperovals in S through both F; and P;,
including H. Therefore, there are at most 1415 = 16 hyperovals of Type | intersecting
H. Therefore |S| < 16. But, by corollary 3.8, an affine-16 satisfies the hypothesis of
this theorem. Therefore, |S| = 16. Thus, for any H € S and for any pair F;, P; € H,
there exists a unique hyperoval, besides H, in S through both P, and P;. There are 5
pairs P, P; for fixed i. Therefore, there are exactly 6 hyperovals in S which contain
F;. This must be true for any point on any hyperoval in S.

Let z = # points of » mnt;ined in some hyperoval of S. Therefore,

16 - 6 = (#hyperovals)(#points/hyperoval)
= #incidences = Z #hyperovals of S containing P
P

= (#points contained in some hyperoval of S)(#hyperovals/point)
= (r)(6).

Therefore, £ = 16. Therefore 21 — 16 = 5 points are not contained in any of the
hyperovals of S.

We establish the following claim.

Claim: These 5 points are collinear.

Let Py,...,Ps be these 5 points. Let | = P;P. Suppose, by way of contradiction,
that Q is a point on [ which is not one of P;,...,Ps. Then there are exactly 6
hyperovals in S which contain Q; moreover, each of these 6 hyperovals intersects [ in
another point. However, there are at most 2 hyperovals in § through a pair of points
on . Therefore, there must be at least 4 points of { which are contained in some
hyperoval in S§. This is a contradiction.

This establishes the claim. O
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Section 3.3. Intersection properties of hyperovals that all intersect with a
fixed line.

We now prove a series of lemmas which will be used in proving the ‘point-16 case’ of
theorem 3.3. The following lemmas describe how hyperovals that all intersect a fixed

line intersect each other.

Lemma 3.10. Consider * = PG(2,4). Let Py, P, be points of x, let | = P, P, and
let the remaining points of | be Py, Py and Ps. Denote by Hy, Ha 2 of the 4 hyperovals
of Type I through both P, and P,. Then among the (3){(4) hyperovals which intersect
lin 2 of P3, Py or Ps, exactly 2 also intersect both Hy, and H,; moreover, these 2
hyperovals intersect | in the same 2 points.

Proof: Let Hy = {P, P;,Q1,Q2,Q3,Q4} and Hy = (P, P2, Ry, Ry, B3, R4}. By
corollary 3.8, exactly 2 of the 4 hyperovals of Type I through both R; and Q) intersect
l. Consider one of these 2 hyperovals. If it contains P, or P, then it contains no
more points in {Qy,... ,Q4, Ry,...,R4}. If it contains neither P, nor P;, then it
must contain exactly 2 of :Pa, P,, and Ps and also one more point in {Qy,... ,Q4},
and one more point in {R;,..., Ry}. Similarly for the other hyperoval through R,
and Q,; which intersects . '

There are 16 pairs R;,Q;. For each pair, as with the pair Ry, @), we have exactly 2
hyperovals of Type I containing them which intersect .

There are (4)(3) hyperovals of Type I through P, which do not contain P;. Each
of these must contain exactly one pair Q,, R; (¢, € {1,...,4}). Similarly, there
are (4)(3) hyperovals of Type I through P, which do not contain P;. Each of these
hyperovals must contain exactly one pair Q;,R; (i,7 € {1,...,4}). The remaining
hyperovals that contain a pair Q,, R; contain exactly 2 of @,...,Qq and exactly 2
of Ry,..., Ry, i.e., they contain 4 pairs of the form Q,, R,. Thus, there are exactly
Mﬂm = 2 hyperovals of Type I which intersect ! and which intersect both
H, and H> in points other that Py or P;.

We establish the following claim.

Claim: The 2 hyperovals of Type I which intersect ! and also intersect #; and H; in
points off |, must intersect [ in the same 2 points.

Write [, = {. Now H; = H; + (a,b), for some a,b € Fq by theorem 2.6. Thus, if
P € H,, then P + (a,b) € Hz, and if Q € Hz, then Q + (a,b) € H,. Therefore, if H
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is one of the hyperovals which intersects I \ { P}, P2} and H, and H;, then H + (a,b)
must the the other, i.e., the 2 hyperovals intersecting I \ {P,, P2}, and also H; and
H; must intersect [ in the same 2 points.

This establishes the claim. O

Lemma 3.11. Let x = PG(2,4) and let Py, ... , Ps be the points of a line . Suppose
H,, Hy, and H; are 3 of the 4 hyperovals of Type I containing both P, and P,. Then
there are no hyperovalis of Type I through both P; and P; that intersect all of H,, H,
and Hj, where i,j € {3,4,5}; moreover, all hyperovals of Type I intersecting each of
H,, Hy, Hy and ! must intersect Py and/or P;.

Proof: Suppose by way of contradiction that G is a hyperoval of Type I in S that
intersects H;, H> and H3 and also contains both P; and P;. Therefore G must
intersect each of H;, Hz, and Hj in points not on I. But then it must contain 2
points of Hy, 2 points of H2, and 2 points of H; with only its 4 points that are not
on [, yielding a contradiction. 0O

Corollary 3.12. Let S be a 2-intersecting family in * = PG(2,4). Let P,,... ,Ps
be the points of a line |. Suppose that at least 3 of the 4 hyperovals through both P
and P, are in S. Suppose further that at least 3 of the 4 hyperovals through both P,
and P; are in S, where ¢ € {3,4,5). Then there is no hyperoval in S through P, that
does not contain either Py or P;; all hyperovals in S intersecting | either contain P,
or contain both P and P,.

Proof: This is a corollary of lemma 3.11. O
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Section 3.4. Intersection properties of the 4 hyperovals through a pair of
points on a line ! with the 16 hyperovals skew to /.

We are still working towards proving the ‘point-16 case’ of theorem 3.3. The following
lemmas describe how the 16 hyperovals skew to a line intersect with the 4 hyperovals
through a pair of points on that line.

Lemma 3.13. Let * = PG(2,4). Let P, and P; be points in x and let | = P, P;.
Suppose H, ... ,H, are the 4 hyperovals of Type I through both Py and P;. Consider
a hyperoval H of Type I skew to I. Then exactly 3 of H,,... ,H, intersect H.

Proof: H has 6 points and each H; meets H in 0 or 2 points. Since each point off {
is on a unique H;, exactly 3 of Hy,... ,Hy meets H. O

Lemma 3.14. Let S be a 2-intersecting family in PG(2,4). Let l be a line through
both Py, and P», where P, and P, are points of x. Denote by H,,... ,H, the 4 hy-
perovals of Type I containing both P, and P;.

a) Exactly 12 of the 16 hyperovals of Type I skew to ! intersect H, lor a fixed 1, if there
is a hyperoval through both P, and P, in S, then there are at most 12 hyperovals
skew tolin S. '

b) Exactly 8 of the 16 hyperovals of Type I skew to l intersect both H, and H,
for fixed i and j; if there are at least 2 hyperovals through both Py and P in S, then
there are at most 8 hyperovals skew to l in S;

¢) Exactly 4 of the 16 hyperovals of Type [ skew to l intersect each of H,, H, and H;
for fixed i, j and k (0 < i # j # k < 4); if there are at least 3 hyperovals through
both P, and P; in S, then there are at most 4 hyperovals skew to l in S;

d) None of the hyperovals of Type I skew to | of intersects all of Hy,... ,Hy; if
there are 4 hyperovals through both Py and P;, then there is no hyperoval in S skew
tol.

Proof: There are 16 hyperovals skew to I ( i.e., S!). Therefore there are at most 16
hyperovals of Type I skew to { in S.




d) This is a corollary of lemma 3.13.

a) There are 4 points on Hy that are not on |, i.e., there are 6 pairs of points on Hy
that are not in . Now there are 2 hyperovals/(pair of points off {) of Type I that are
skew to ! by corollary 3.8. Therefore, there are exactly 12 hyperovals of Type I skew
to I that intersect Hy. Therefore, there are exactly 16 — 12 = 4 hyperovals of Type |
skew to both [ and H,.

b) There are exactly 4 hyperovals of Type I skew to ! which are also skew to H3. There
are exactly 4 hyperovals skew to [ which are also skew to H,. These 8 hyperovals are
distinct, i.e., 8 of the 16 hyperovals skew to ! are also skew to H3 or Hy. These 8
hyperovals are distinct because a hyperoval skew to [ is also skew to exactly one of
Hy,...,Hy. Therefore if Hy, Hy € S, then these 8 hyperovals missing [ are not in S.
c) Exactly 4 of the hyperovals of Type I skew to [ are also skew to Hy, and therefore
intersect each of H,, H3, H¢. O

We can combine lemma 3.11 and lemma 3.14 to give corollary 3.135.

Corollary 8.15. Let x = PG(2,4). Let S be a 2-intersecting family containing H,
H2, and H3, where Hy, Hy, and Hj are hyperovals of Type I which contain both
P, and P». Let |l be a line through P,,... ,Ps. Then by lemma 3.11, there are no
hyperovals in S through both P; and Pj, 3 <i # j <5, and by lemma 3.14, there
are at most 4 hyperovals in S skew to l.

o




Section 3.5. Some more intersection properties of hyperovals.

These are the remaining lemmas we will use in proving the ‘point-16 case’ of theo-
rem 3.3.

Lemma 3.16. Let x = PG(2,4). Suppose Pi,... , Py are the points of l,. Denote
by H,, Hy and H3 3 of the 4 hyperovals of Type I through both Py and P;. and let
G be & hyperoval of Type I through both Py and Ps. Then there are exactly 3 affine
hyperovals of Type I intersecting each of Hy, Ha, Hj, G,.

Further, if S is a 2-intersecting family containing Hy, Hz, H3, and Gy, then S contains
at most 3 affine hyperovals.

Proof: Let Hy,...,H; be the hyperovals of Type I through both P, and P;. Let
Gy,... ,G4 be the hyperovals of Type I through both P; and P;. Now exactly 12 of
the 16 affine hyperovals of Type I intersect Hy; each of these 12 hyperovals is skew
to exactly one of Hy, H,, or H3.
We establish the following claim.

Claim: Exactly nine of these 12 hyperovals intersect G.

Let Q; be the affine point where H and G, intersect (i = 1,2,3,4). There are exactly
6 affine hyperovals containing Q; and thus intersecting both Hy and G;. Recall that
there are exactly 12 affine hyperovals of Type I intersecting Hy, of which there are
exactly 2 through each pair Q;,Q;. Consider the 6 affine hyperovals of Type 1 which
either contain both Q2 and Q;, or both Q2 and Qq, or both Q3 and Q4. The 2
through both Q2 and @3 must intersect G2 and G3 again, which ineans one of these
hyperovals intersects G) but not Gy, the other intersects G4 but not Gy. Therefore,
of the 12 affine hyperovals of Type I intersecting Hy, exactly 9 intersect G; (6 through
@1 and 3 others).

This establishes the claim.

Therefore, there are exactly 3 affine hyperovals of Type | intersecting Hy bit which
are skew to G1; however, there are a total of 4 affine hyperovals of Type I missing
G1. Therefore, exactly one affine hyperoval of Type | is skew to both Gy and Hy. An
affine hyperoval of Type I skew to H is an affine hyperoval hitting Hy, Hz, Hy. Thus
there is a unique affine hyperoval of Type [ intersecting each of H), H3, H3 but which
is skew to Gy4. Le., 3 of the 4 affine hyperovals of Type I intersecting Hy, Hz, H3 also




intersects G5,. 0O

Lemma 3.17. Let P;,... , Ps be the points of a line l in * = PG(2,4). Let S be a
2-intersecting family containing Hy, Hz, G\ ,G3 where H,, Hy are hyperovals of Type 1
through both P, and P3; and G,,G; are hyperovals of Type I through both P; and
Py, say. Then there is no hyperoval through Ps in S.

Proof: This is a corollary of lemma 3.10. O

Lemma 3.18. Let x = PG(2,4). Suppose H is a hyperoval of Type I through both
P and P;. Consider 2 points, P3, P;, on the line P, P; with P,,... , P distinct. Then
exactly 2 of the 4 hyperovals of Type I through both P; and P, intersect H. If S is a
2-intersecting family containing H, then it contains at most 2 of these 4 hyperovals
of Type I through both Py and Fy.

Proof: Each point off / is on a unique hyperoval of Type I through both P; and 7y,
there are 4 points on H that are not on the linel. O

We are now ready to prove theorem 3.3.
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Section 3.8. Sets of maximum size of hyperovals pairwise meeting in 2
points.

Theorem 3.8. Let x = PG(2,4). Suppos> S is a 2-intersecting family of maximum
size. Either

1) there are at least 3 hyperovals in S through some pair of points; or

2) there are at most 2 hyperovalis in S through every pair of points.

If 1) holds, then all hyperovals in S pass through a unique point (one of the 2 points
on the 3 hyperovals), i.e., S is a point-16.

If 2) holds, then there exists a line which is skew to every hyperoval in S, i.e.. S is an
affine-16.

Proof: If each pair of points is on at most 2 hyperovals of S, then S is an affine-16
and |S| = 16 by theorem 3.9.

Suppose now that H;, Ha, and Hj are in S and each contains both Py and P;. Let
the points of the line l := PP, be P,,..., Ps, say. The point-16 through P; and also
the point-16 through P, satisfy the hypothesis of this theorem. Therefore |S| > 16.
We establish the following claim.

Claim 1: |S]| < (4)(8).

By lemma 3.14, there are at most 4 hyperovals in S which are skew to . By lemma
3.11 there are no hyperovals in S through both P, and P;, where3 <: #; <5. By
theorem 3.7 there are exactly 4 hyperovals of Type I that contain both P, and P,.
Therefore,

possibilities for # hyperovals in S through the pair...

PP PP PP P Ps PP PPy Py Ps # skew

to {
3,4 0...,4 0,...,4 0,...,40..,40,...,40,...,40,....,4
are the only possibilities for hyperovals in S.
This establishes the claim.

We also know that |S| > 16. Since H;, H;, and H3 are in S, there must be another
hyperoval in S, denoted by H, through both P; and P, say, which intersects [.
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Therefore, by lemma 3.16, the number of hyperovals in S skew to [ is at most 3.
Also, by lemma 3.11 (all hyperovals intersecting { in § must contain P; and/or P, if
there are 3 hyperovals in S through botk these points), the number of hyperovals in
S through both P; and P;, i = 4,5, is at most 2.

We now prove the following claim.

Claim 2: There are at most 2 hyperovals in S through both P, and P;.

For otherwise suppose there are 3 through both P; and P;. Then, by Lemma 3.11
there are no hyperovals in S through both P, and P, nor through both P; and Ps.
Also if there is a hyperoval through both P, and P, in S, then there are at most 2
hyperovals in S through both P; and P;. Therefore |S| < 15.

This proves claim 2.

Thus
possibilities for # hyperovals in S through the pair...

PP, PP P, P P, Ps PPy PPy PyPs # skew
' to |
34 i1,...,4 0,...,4 0,...,4 0,1,2 0,1,2 0,1,2 0,....3

By way of contradiction, suppose that S contains H,... , H¢ but S is not the point-16
through P;.

We establish the following claim.

Claim 3: there exists a hyperoval through P; (and not P,)in S.

Suppose, by way of contradiction, that the only hyperovals in S containing P, also
contain P;. Therefore, there is a hyperoval in S skew to /, and thus by lemma 3.14
there are at most 12 hyperovals in S which intersect /, and by lemma 3.16 there are

at most 3 hyperovals in S which are skew to .

possibilities for # hyperovals in S through the pair...

P] Pz P] P:; P] P4 P1P5 P2P3 P2P4 P2P5 # skew

to !
3 1.2,3 0,....3 0,...,3 0 0 0 1,2,3
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Therefore, |S| < 15 and $ is not a maximum 2-intersecting family, a contradiction.

This establishes the claim.

Therefore, let Gy be a hyperoval in S through both P; and P;, for some i # 1,2.
Say {P,...,Ps} = {P,P,,P,,P,, P.}. Now by lemma 3.18, there are at most 2
hyperovals in S through both P, and P;, and at most 2 hyperovals in S through both
P, and P;.
TLerefore,
possibilities for # hyperovals in S through the pair...

AP P P; PiP; PPy PP, P,P; PP. # skew

‘ol

3,4 0....,4 0,1,2 0,1,2 1,2 o0,1,2 0,1,2 0,...,3

Now, by lemma 3.14, if there are 4 hyperovals in S through both P, and P, and/or
4 hyperovals in S through both P, and P;, then there are no hyperovals in S skew to
l. Therefore, there exists a hyperoval in S through P, but which does not contain P,
or F;. Say G; is a hyperoval through both P, and P; in S.

Therefore, by lemma 3.18, the number of hyperovals in S through both P; and P, is
at most 2. Therefore, '

possibilities for # hyperovals in S through the pair...
AP, PP PP PP PP PP, PPi  # skew

to
34 0,1,2 0,1,2 0,1,2 1,2 1,2 0,1,2 0,...,3

Recall that if there are 4 hyperovals in S through both P; and P,, then there are
no hyperovals in S skew to [; therefore, there must be 2 hyperovals in S through
both P; and Pj; and also 2 through both P; and P,,, for some 3 <l # m < 5. Let
{Ps, Py, Ps} = {P1, P, Py}.

Therefore, by lemma 3.17, there are no hyperovals in S through both P, and P, and
none through both P and P,. Therefore,

possibilities for # hyperovals in S through the pair ...

PP, PP PiPn PPy PP PPy PPy # skew

to l
3,4 2 01,2 0 01,2 2 0o o,...,3
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Therefore |S| < 15, yielding a contradiction. Thus S is the point-16 through P,. O

We have therefore proved the following main theorem:

Theorem 3.2. Let » = PG(2,4). Let S be a 2-intersecting family of maximum size
in x. Then either all the hyperovals of S contain a unique point, or all hyperovals of
S are skew to a unique line. In both cases |S| = 16.

O

In the next section we will see that both cases yield designs.
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Section 3.7. Some designs resulting from the 16 hyperovals through a
point and from the 16 hyperovals skew to a line.

In the previous sections we proved theorem 3.2.

Theorem 3.2. Let # = PG(2,4). Let S be a 2-intersecting family of maximum size
in x. Then either all the hyperovals of S contain a unique point, or all hyperovals of
S are skew to a unique line. In both cases |S| = 16.

a

We will now show that both cases in theorem 3.2 yield designs.

The latter case is a 2 — (16,6, 2)-design of grid type which can be related to singular
points of a Kummer surface in PG(2, ¢) for g odd (see [Bruen 2]). This design can be
obtained from the Mathieu 5 — (24, 8,1) design M by taking only blocks of M that
intersect a fixed block B in exactly 2 points.

Theorem 3.19. The 2-intersecting family consisting of 16 hyperovals skew to a fixed
line is a 2 - (16,6,2)-design of grid type which can be obtained from the Mathieu
5 —(24,8,1) design M by taking only the blocks of M that intersect a fixed block B
in exactly 2 points.

Proof: Consider

w0 (Lw) (w0 (0,w)

(w,1)  (0,w?) (W?%,1) (1,w?)

(1,1) (We?) (0,1) (w,w?)

(0,0) (w,w) (1,0) (w?w)

The 2 — (16, 6,2)-design of grid type obtained from this, with each point defining a
block through it to be the other elements in its row and column, has blocks the 16
affine hyperovals which are the affine translations of

H = {(w?,0),(w,1),(1,1),(w,w),(1,0), (w?,w)}.

These 16 affine hyperovals pairwise meet in 2 points.
Now consider the Mathieu 5 — (24,8, 1) design M. Recall that of the 77 blocks of M
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through 2 fixed points P, and P;, Py # P3, the 21 through a point P3 (P3 # P\, P2)
are isomorphic to a projective plane P = PG(2,4); moreover, the remaining 56 blocks
are the hyperovals of one equivalence class of P. Therefore, consider all the blocks of
M through two fixed points P, and P, (P, # P2) in a fixed block By of M. Let P;
be another point of By (Ps # P;, P;). Then the blocks through P, P; and P; form a
projective plane P = PG(2,4) and the remaining blocks (through P, and P; but not
containing P;) are the hyperovals of one equivalence class of P. Thus By is a line in
P (actually the points of By, except P, and P,, form a line) and the blocks through
P, and P; and no other points of By are the hyperovals of one equivalence class of P
that miss that line. O

The former case of theorem 3.2 has each of the 21 points of x contained in a hyperoval
of S, and yields an affine plane AG(2,4) in two different ways.

1) Let P be the point on all 16 hyperovals, and let [, be a line through P. Consider
the structure x; whose points are the affine points of x. The line in 7; through the
points P; and P, is defined to be the hyperoval of Type I in = containing each of
Py, P;, and P, if there is one, and is defined to be the line P P; in ~ if there is no
hyperoval of Type I in  containing the 3 points Py, P» and P. Then =, is an affine
plane.

2) A dual affine plane results by taking the hyperovals of Type I through a fixed point

P in x as points, and the points in x as lines.
Consider the structure 1) first:

Theorem 3.20. Consider xr = PG(2,4). Let P be the point on 16 hyperovals of
one equivalence class and let |, be a line through P. Define the structure x; to have
as points the affine points of x. A line through two affine points Py and P; in 7, is
defined to contain the points of the hyperoval of Type I in x through P,, P> and P if
there is one, and is defined to contain the points of the line Py P in = if there is no

hyperoval of Type I through Py, P; and P in x. Then =y is an affine plane.

Proof: Through any pair Q1,Q2 of points of x, there are exactly 4 hyperovals of
Type 1. Any line [ not containing Q1 or Q2 intersects exactly 2 of these 4 hyperovals;
each of the 4 points of ! not on the line Q1Q2 are on one of these 2 hyperovals. Thus,
given affine points P, and P, either exactly one of the 4 hyperovals of Type I through
both P; and P; contains P, or else P, P, and P, are collinear.
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Thus, let the points of x; be the affine points of x. A line through two points, P; and
P, in 7}, is defined to be the hyperoval of Type | in x through P;, P; and P if there is
one, and the line P} P; in r if there is no hyperoval of Type I containing all of P, P,
and P in r. Thus »; has 16 points, 20 lines, 1 line/pair of points, 4 points/line and
5 lines/point. Therefore x; is a 2 — (16,4, 1) design, an affine plane of order 4. O

Now, consider the second structure, 2):

Theorem 38.21. Let * = PG(2,4). Let P be a point on 16 hyperovals of one
equivalence class. A dual affine plane x; results by taking these 16 hyperovals in
as points and the points in x as lines.

Proof: Define the structure 73 to have as points the hyperovals of Type I through
P in x, and as blocks the points of x, except for point P. There are 16 points and
20 blocks in x;. There is one block through each pair of points in x; as there are 2
points, one of which is P, on each pair of hyperovals through P of Type I in x. There
are 4 points on a block in 72 since in x there are 4 hyperovals of Type I through
P and any other fixed poi‘nt of x. There are 5 blocks on a point in 72 since each
hyperoval of Type I through P in x has 6 points, of which one is P. Thus x; is a
2 — (16,4, 1)-design, i.e., an affine plane of order 4. O




Section 3.8. A strongly regular graph.

It is known that the 56 hyperovals in PG(2,4) from one equivalence class form a

strongly regular graph as follows. Here we prove this well known fact.

Theorem 3.22. Let [ be the graph with vertices the hyperovals of one fixed equiv-
alence class of PG(2,4). Define 2 hyperovals to be adjacent if they are skew and
distinct. Then v = 56, d = 10, u = 2, v = 0, where v is the number of vertices, d is
the number of vertices adjacent to a given vertex, v is the number of vertices adja-
cent to 2 adjacent vertices, and p is the number of vertices adjacent to 2 non-adjacent

vertices.

Proof: v = 56 as there are 56 hyperovals.

We now establish the following claim.

Claim 1: d = 10.

There are 4 hyperovals through each pair of points. For each pair of points on a
fixed hyperoval H, there are 3 hyperovals through that pair that are distinct from H.
Therefore there are 3(2) + 1 = 46 hyperovals hitting a fixed hyperoval. Therefore,
there are 56 — 46 = 10 hyperovals skew to a given hyperoval.

This establishes claim 1. Next, we prove claim 2.

Claim 2: v = 0.

It is well known that there do not exist 3 pairwise skew hyperovals; for check the 5
lines through one point of one hyperoval.

This proves claim 2. Finally, we establish claim 3.

Claim 3: g = 2.

Given 2 hyperovals meeting in 2 points, let H; N Hy = {P,P;}. Let loc = P P;.
There are no affine hyperovals missing both H; and H> by lemma 3.13.

Consider the hyperovals hitting lo,. Let H3, Hs be the other 2 hyperovals through
both P, and P;. Let P;, Py, and Ps be the other points on l. Exactly 2 of the
hyperovals through both P; and P;, i # j € {3,4,5}, intersect both H; and Hy by
lemma 3.10; say both P; and Ps. Thus the other 2 hyperovals through P; and Py are
the only hyperovals to miss both H; and H>.

This establishes claim 3.

Thus T is a strongly regular graph. O
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In a graph I', an independent set is a set of vertices of I' with the property that
no 2 of the vertices are adjacent. The independence number a of a graph I' is the
size of an independent set of maximum size. The adjacency matrix A of I has i,

entry 1 if the ith vertex is adjacent to the jth vertex, and i, j entry 0 otherwise (see
[Bondy 1)).

Theorem 3.23. (Hoffman)
Suppose I is a regular graph with v vertices and independence number a. Denote by

A the adjacency matrix for T'. Let A\; > .-« > A, be the eigenvalues of A. Then

v]Ae|
QS ——————
= A1+ [A

Proof: See [Tonchev 1]. O

This gives us an alternative proof that the size of a maximum: set of hyperovals in
PG(2,4) pairwise intersecting in exactly 2 points is 16; however, it tells nothing of
the structure of such a set.

Corollary 3.24. ([Cameron 2])

A 2-intersecting family of maximum size in PG(2,4)_has size 16.

Proof: We use the notation of theorem 3.22 and theorem 3.23. Let ' be the strongly
regular graph of theorem 3.22. Let S be a 2-intersecting family of maximum size of
hyperovals. Then S is an independent set in T, as it is a set of vertices, pairwise
non-adjacent. Let a be the independence number of T', the size of a maximum inde-
pendence set. Let A be the adjacency matrix for the graph I'. Let Ay > --- > A, be
the eigenvalues of A. Here Ay = 10, the degree of I', and As¢ = —4 (see [Tonchev 1}).
Then by Hofflman's inequality,

vidol  _ (56)(4) _

< = = 16.
=+l - 10+4

However, a point-16 has size 16. O




Section 3.9. Hoffman’s Inequality.

In this section we digress to prove an inequality using Hoffman'’s inequality and some
results on strongly regular graphs. We now prove an inequality for a strongly regular
graph which involves the independence number of the graph but which does not
involve the eigenvalues of an adjacency matrix of the graph.

Theorem 3.25. Let T’ be a strongly regular graph with v vertices and independence

number a. Denote by v the number of vertices adjacent to 2 adjacent vertices, and
by u the number of vertices adjacent to 2 non-adjacent vertices. Then

(v—a)

d
Proof: Let Ay > --- > A, be the eigenvalues of the adjacency matrix A for I'. Now
Ay is the degree of I (see [Tonchev 1]). Therefore, Hoffman’s inequality

v"‘v'
a € ———
= A+ A

(d+ (a-1)p) 2 da.

can be rewritten as

”"\v'
< -
=33
or

ol > 22
v-a

We also have

[Aof? + (v = p)|Ael + (¢ —=d) =0 (see [Tonchev 1}).
This gives

( ad )2+(V“ﬂ)( ad )+(u—d)50

v—-a v—a
which can be rewritten as

(ad)? + (v — a)(v - p)(ad) + (v - a)*(u ~ d) < 0

or as
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(d? = vd + pd — d)a? + (vvd — pvd = 2uv + 2dv)a + (pv? = dv?) < 0.

However, d? +du —dv + p — d = pv since d(d - v — 1) = u(v ~ 1 — d) (see [Tonchev 1]).
Therefore

pva? + (ved — pvd — 2uv + 2dv)a + (pv® - dv?) <0

which can be rewritten as

pat — (d(p ~v) - 2(d - p))a — (d - p)v < 0.

However, d(p—v—1) = vu—p—d° since d(d—v —1) = (v —1 —d)u (see [Tonchev 1]).
Therefore
pa’ — (vp+p—d* - dja — (d — p)v < 0.

Rearranging this gives vd + (a — 1)vu — ad — a{a — 1)u > d*a. Factoring this yields
(v—a)(d +(a - 1)u) 2 d*a. Therefore

(v-;a) (d+(a—1)pu) 2da. O

Lemma 3.26. With the notation of theorem 3.25, if {vy,... ,vqa} are the vertices
of an independent set of maximum size, and {w; ... ,wq} are the vertices adjacent
to vy, then there are d + (a — 1)y edges between the set {v,...,ve} and the set

{w,,. . ,w‘}.

Proof: v is adjacent to each of wy,...,wq giving d edges. Each of v,,... ,uq is

adjacent to exactly u of the vertices wy,... ,wq giving (a — 1)u edges. O




Chapter 4. Hexagons.

Section 4.1. Subplanes of order 4 of a projective plane.

Lemma 4.1. Let * = PG(2,F), where F is a field of order greater than 2. Let
H = CU (N} be a hyperconic in x. Then given any hyperconic H' = C' U {N'},
there exists ¢ in PGL(3, F) such that ¢N' = N, ¢C' = C and ¢H' = H, where
PGL(3, F) is the projective general linear group of x.

Proof: See [Hirschfeld 1], p.179. O

Given any quadrangle PyP,P3;N, in * = PG(2, F), it is known also that there is
a unique conic through P;, P, and P; which has nucleus N (see [Hirschfeld 1)).
Therefore, using lemma 4.1, if we consider an arbitrary conic, we may choose its
coordinates by specifying the coordinates of any 3 points on the conic as well as the
coordinates of its nucleus.

Two choices we will use fMumtly are conics of the form given in the next two

examples.

Example 4.2. Let x = PG(2, F) where F is a field. A conic through (0,0), (1,0),
(0,1), (1,1) has equation a(X2 + XZ) = Y*? + YZ where a € F. This conic C, :
a(X? + XZ) = Y2 + YZ also contains the point (m = a*) and has as nucleus
N, = (m = a). If F contains a subfield {0,1,w,w?} of order 4, then two such conics
areC,:w(X?*+ X2Z)=Y2+YZ andC3: X2+ X2)=Y?+YZ. O

Example 4.3. Let x = PG(2, F) where F is a field. The conic {(v*,v)|y € F} U
{(m = 0)} has equation Y> = XZ. This conic contains the points (0,0), (1,1),
(m = 0) and has as nucleus (m = o0). If F contains a subfield {0,1,w,w?} of order

4, then this conic also contains the points (w,w?) and (?,w). O

Proposition 4.4. Let x = PG(2, F) where F is any field. If F contains a subfield
F¢ of order 4, then every quadrangle in x is contained in a unique PG(2,4)-subplane

of x. Conversely, if * contains a PG(2,4)-subplane then F contains a subfield of
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order 4. In particular, for F = Fq, ¢ = 2, a quadrangle is contained in a unique
PG(2,4)-subplane of x if t even.

Proof: Let x = PG(2, F), where F is a field containing a subfield ¥y of order 4. Given
a quadrangle @ = {(0,0),(1,0),(0,1),(1,1)} in », Q is contained in the PG(2,4)-
subplane xy with points

{(a,b)la,b€ Fi} U {(m = a)la € Fy U {oo} }.

There is at most one subfield of order 4 in F. Thus, if Q is contained in a PG(2,4)-
subplane of x containing the point (5,0), b £ 0,1, then b2 = 1 + band s0o b = w or
w?. Therefore Q is contained in a unique PG(2,4)-subplane of r.

Conversely, if xg is a PG(2, 4)-subplane of r, then let (0,0), (1,0), (0,1), (1,1) be in
x9. Therefore

(m = o0) = (0,0)(0,1) N (1,0)(1,1),
(m = 0) = (0’0)(190) n (0, l)(lvl)v
and (m = 1) = (0,0)(1,1) N (0,1)(1,0)

are on Iy N xp.

We establish the following claim.

Claim: If (a,0) and (b,0) are points in xo, then (a + b,0) is a point in xo (see
[Hartshorne 1}).

(0,0), (m = 1), (5,0) and (m = oo) are all points in xg. Therefore

(b,5) = (0,0)(m = 1) N (b,0)(m = oo)

is a point in xgo. Thus, (m = 0), (5,b), (0,0) and (m = oc) are all points in .
Therefore
(0,6) = (m = 0)(b,b) N (0,0)(m = o0)

is a point in 9. Now we know that (m = 0), (m = 1), (a,0) and (0, b) are all points
in 7g. Therefore
(m =bfa) = (m =0)(m =1)N(a,0)(0,b)
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is a point in xg. Thus we know that (m = b/a), (b,b), (0,0) and (1,0) are all points
in xg. Therefore
(a+5,0) = (m = b/a)(b,b) N (0,0)(1,0)
is also a point in xy.
This establishes the claim.

Let (a,0) be a point in x¢ on (0,0)(m = 0), where a # 0, 1.
Now (0, 1), (a,0), (m = 0) and (m = 1) are all points in x9. Therefore

(m = =) = (0, 1)(@,0) N (m = 0)(m = 1)

is a point in xg. Also, in proving the above claim we saw that if (a,0) is a point in
7o, then (0,a) is a point in xg. Thus, (m = 1), (0,a), (0,0) and (1,0) are all points
in xp. Therefore

(a%,0) = (m = =)(0,a) 1 (0,0)(1,0)

is & point in xo. Now we have (a,0) and (a?,0) are both points in xo. Therefore, by
the above claim, (a? + a,0) must be a point of xg. Therefore a?+a+1=0. Therefore
F contains a subfield of order 4. O

Let x = PG(2, F) where F is a field of order greater than 2. Let A be a 5-arc in
x. Let C be the unique conic containing A. Let N be the nucleus of C. If the conic
through N and some { points of A has as nucleus the remaining point of A, then
AU {N} is called a hexagon.

Theorem 4.5. Let x = PG(2, F) where F is a field. If {0,1,w,w?} is a subfield of
order 4 of F, then {(0,0),(1,0),(0,1),(1,1),(m = w),(m = w?)} is a hexagon in .

Proof: Suppose {0,1,w,w?} is a subfield of order 4 of F. Consider
{(0,0),(1,0),(0,1),(1,1),(m =w),(m = “"2)}'

The conic through any 5 of these points has as nucleus the sixth point. O

Theorem 4.6. Let * = PG(2, F) where F is a field. Let A be a 5-arc and let C
be the unique conic through A. Let N be the nucleus of C. Suppose AU {N} is a
hexagon, i.e., suppose for some 4 points of A, the conic through those points as well
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as N has nucleus as the remaining point of A.
Then 1) F must contain a subfield of order 4;
2) The conic through N and each quadrangle of A has as nucleus the remaining point
of A, i.e., the conic through 5 points of AU {N} has as nucleus the remaining point
of AU {N}; and
3) AU {N} is a hyperconic in a PG(2,4)-subplane of =.
Conversely, if F has a subplane of order 4, then any hyperoval (hyperconic) in a
PG(2,4)-subplane is a hexagon in x.

Proof: Let A be a 5-arc, A = {Py,... , P}, say. Let C be the conic through A. Let
N be the nucleus of C. Suppose the conic C’' through N, P,.... , P, has nucleus Ps.
Since the projective linear group PGL(3, F) of = is transitive on the quadrangles of =,
we may assume {Py,..., Py} = {(0,0),(1,0),(0,1),(1.1)}. Thus, the conics through
P,...,Piarea(X?+XZ)=Y2+YZ, where a € F. Therefore 3a € F such that C
is the conic a( X2+ XZ) = Y?+YZ. Thus N = (m = a). Also the conic ' through
N,P,...,Piis(X24+ XZ)=Y%2+YZ, forsome b€ F. N is a point on the conic
C'. Therefore b = a?. The nucleus of the conic C' : X2+ XZ)=Y? +YZ is Ps.
Thereforea = b?. Thusa® =b3=1,a2 =144, =1+ b, b = a. Thus {0,1,a,a%}
is a subfield of order 4 of F. We have 4 = {(0,0),(1,0),(0,1),(1,1),(m = a?)} and
N = (m = a). The conic through N and any 4 of the points of A has as nucleus the
fifth point of A. Also,

AU {N} = {(0,0),(1,0),(0,1),(1,1),(m = a?),(m = a)}

is a hyperconic in a PG(2, 4)-subplane of x. O

Theorem 4.7. Let x = PG(2, F) where F is a field.

1) An equivalent definition of a hexagon is a hyperconic in a PG(2,4)-subplane of .
2) I F contains a subfield of order 4, then every quadrangle is contained in a unique
hexagon.

Proof: 1) A hyperconic in a PG(2,4)-subplane is a 6-arc such that the conic through
every 5 points of these points has as nucleus the sixth. Thus, a hyperconic in a
PG(2,4)-subplane is a hexagon.

Conversely, by theorem 4.6, a hexagon is a hyperconic in a PG(2,4)-subplane.

2) If F contains a subfield of order 4, then every quadrangle is ccntained in a unique
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PG(2,4)-subplane; this subplane contains a unique PG(2,4)-hyperconic through that

quadrangle. Thus every quadrangle is contained in a unique hexagon. [

Proposition 4.8. Let x = PG(2, F) where F is a field. Suppose H is a hexagon in
x. H=1{P,...,Ps)}, say. Since PGL(3,F) is transitive on the quadrangles of =,
we may take P,... , P, to be (0.0),(1,0),(0,1),(1,1). The unique hexagon through
these 4 points is

{(0,0),(1,0),(0,1),(1,1),(m = w),(m = w?)},

where {0,1,w,w?} is the subfield of order 4 of F.
Alternatively, we could have chosen Py,... , P4 to be (m = o0),(m = 0),(0,0),(1,1).
The unique hexagon through these 4 points is

{(m = o0),{m = 0),(0,0), (1, 1), (w,w?), (w?,w)}.

Example 4.9. Suppose * = PG(2,F) where F is_ a field containing the subfield
{0,1,w,w?}. The hexagon

{(0,0),(1,0),(0,1),(1,1),(m = w),(m = w?)}

is contained in the 6 hyperconics

X +Y*+Z24+ XY =0 u {0,0)}

X2+Y24+XY+YZ=0 U {(1,0)}

X24+Y 4 XY+YZ=0 U {(0,1)}

X +Y24 XY +XZ+YZ=0 U {(1,1)}
wX?+ Y 4+wXZ+YZ=0 U {(m=w)}
FPXP+Y 4+XZ4YZ=0 U {(m=u))




Example 4.10. Suppose © = PG(2, F) where F is a field containing the subfield
{0,1,w,w?}. The hexagon

{(m = 00),(m = 0),(0,0).(1,1), (w,w?), (w?.u)}

is contained in the 6 hyperconics

Y?=XZU(m = o0)
X2=YZu(m=0)
Z% = XY u(0,0)
XY +wXZ+wW?YZ =0U (WP w)
XY +wXZ +w¥YZ =0U (w,o?)
XY+ XZ+YZ=0uU(1,1). O

We will call the hexagons

{(0,0),(1,0),(0,1),(1,1),(m = w),(m = w?)}

= {(0,0,1),(1,0,1),(0,1,1),(1,1,1),(1,w,0), (1,u?,0)}
{(m = 00),(m =0),(0,0),(1,1), (w,w?), (w?,w)}

= {(0,1,0),(1,0,0),(0,0,1),(1,1,1), (w,w?, 1), (w?,w, 1)}

fundamental hexagons.




Section 4.2. Most 5-arcs are not contained in hexagons.

Example 4.11. In x = PG(2, F) where F is a field of order greater than 4 which
does not contain a subfield of order 4, there are no hexagons by theorem 4.6. Thus

no 5-arc in x is contained in a hexagon. O

Example 4.12. In PG(2, F) where F is a field of order greater than 4 that contains

a subfield F¢ = {0, 1,w,w?} of order 4, none of the 5-arcs

{(0,0),(1,0),(0,1),(1,1),(m = a)},
is contained in a hexagon, wherea € F\F,. O

Let * = PG(2, F) where F is a field. Let Py,...,P; be a quadrangle. The Fano
plane or Fano configuration containing the points Py,..., P, is the projective
plane of order 2 that contains P,,... , Py. This plane contains the 7 points Py,... , Py,
PiPNPPy, PiPsN PPy and PLPyN PoP3. The 3 points PPN P3Py, PPsN PPy
and PPy N P, P; are the 6oints of one of the lines in this plane. The Fano line of
the quadrangle P, - - - Py is the unique line of the Fano plane through B,,... , P; that
contains none of Py,... . Py, i.e., the Fano lineof P, - - Py is the line joining the points
(PiPan P3Py) and (Py P3N Py Py,). This line also contains the point PPy N P2 P;.

Example 4.13. The Fano line of the quadrangle (0,0), (1,0), (0,1), (1,1) is ly; the
Fano configuration through this quadrangle has points

(0,0),(1,0),(0,1),(1,1),(m =0),(m=1),(m=00). O

Lemma 4.14. Let # = PG(2, F) where F is a field of order greater than 2. Then
given any 4 points on a conic, the Fano line of those 4 points contains the nucleus of
that conic. Thus, the Fano lines of the quadrangles of a conic form a pencil of lines

through the nucleus of that conic.

Proof: Let (0,0),(1,0),(0,1),(1,1) be 4 points of a conic. Thus the nucleus of this

conic must be (m = a), for some a € F. Thus the nucleus is on [ which is the



Fano line of Py,... , P,.

Alternatively, consider Pascal’s theorem, which states that given any 6 points on a
conic, R1,...,Re, the points Ry Rs N RyRy, RiRs N R3Ry and R;Rg N R3Rs are
collinear (see [Samuel 1)).

Consider Py,... ,Ps where Py = Ps and P; = Ps. Let Qy := P,Ps N\ P2P, and Q2 :=
PPN P3Py, Q1, Q2 and Q3 are on the Fano line (and in the Fano configuration) of
Py,...,Ps. Now, by Pascal’s theorem, PP N P3Py, PiPs N PyPs and P3Pg N P Ps
are collinear. Le., AP, N P3Py, PyP3s N PPy and Py P3N Py P; are collinear. le., @),
Q2 and N are collinear. O

Lemma 4.15. Let x = PG(2, F) where F is a field of order greater than 2. Given

a 5-arc P,... , Ps, the quadrangles in this 5-arc have distinct Fano lines.

Proof: Consider the quadrangles P;--- Py and PiP,P3Ps. Suppose by way of con-
tradiction that ! is the Fano line of both. Since P; .- - Py has Fano line [, the point
PBPsNPiPsison l. Sincez Py P, P; Ps has Fano line /, the point PP3; N PyPs is on |.
Thus PPy = P, Ps. Thus Py, = Ps, a contradiction. O

Theorem 4.16. Let * = PG(2,F), where F is a field of order greater than 2.
Suppose A is a 5-arc. Let N be the nucleus of the conic through A. There is a unique
conic through any 5 of the 6 points in the 6-arc AU {N}. The set of nuclei of these
conics is a 6-arc, B say. Moreover, this 6-arc is AU{N} iff AU{NY} is a hexagon. If

AU {N} is not a hexagon, then the 6-arc B does not necessarily lie on a conic.

Proof: Write A = {P2,...,Ps}. Let P, = N be the nucleus of the conic through
A. Py,..., Ps is a hexagon iff the conic through any 5 of these points has as nucleus
the sixth point. Let P§ be the nucleus of the conic through P, ..., Ps; let P% be the
nucleus of the conic through Py, P, P3, Py, Ps; etc. Thus Pj = Py is the nucleus of
the conic through P;,..., Ps. Suppose by way of contradiction that three of these
nuclei are collinear. Say Pi, Pi and P} are collinear. Let [/ be this line. Now the

nucleus of the conic through a quadrangle lies on the Fano line of that quadrangle.
Thus both P{ and P} are on the Fano line of P;P4PsFPs; and both P{ and P; are on
the Fano line of P3PyPsPs. But as P;,...,Ps is a 5-arc, P3P4yPsPs and Pz Py PsPe

must have different Fano lines (by lemma 4.15), yielding a contradiction.
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Suppose AU {N} is not a hexagon. Then B = {P],..., P} does not necessarily lie

on a conic as the next example shows. O

Example 4.17. Let * = PG(2,16), where Fig \ {0} =< a >, and e* = 1 + a.
Let A = {P:,...,Ps} where P, = (1,0), Py = (0,1), Py = (1,1), Ps = (a’,a"),
Ps = (a’,a®). The conic through this 5-arc is X2 + Y2 4+ Z2 + XY = 0; this conic
has nucleus P, = (0,0).

The conic through Py,...,Ps is aX? + Y? + aXZ + YZ = 0; the nucleus of this
conic is Py = (m = a).

The conic through P\PaP3PyPs is a’4 X2 + Y2 + a4 X Z + YZ = 0; the nucleus of
this conic is P§ = (m = a'*).

The conic through P,PyPsPsPs is a® X% + a®Y? + XY + a®XZ + a®YZ = 0; the
nucleus of this conic is P{ = (a®,a?).

The conic through PiP;PyPsPs is X2 +a®Y2 + XY + XZ + a®Y Z = 0; the nucleus
of this conic is P} = (a°1). The conic through P\P3PyPsPs is o’ X2 +Y* + XZ +
o’ XZ + Y Z = 0; the nucleus of this conic is P} = (1,a®).

There is no conic through Py Pi,... , Pi since the conic through P},... , P} isa®X?+
a®Y? + aZ? + XY + a'?XZ + a'?Y Z = 0 which does not contain (0,0). O

The proof given for the following theorem depends on theorem 4.20. Theorem 4.18 is
not used in the future, and thus can be omitted. However, this theorem fits nicely in

this section.

Theorem 4.18. Let * = PG(2, F) where F is a field of order greater than 2. Let
C be the conic through the 5-arc A= {P;,... ,Ps}. Let P, be the nucleus of C. Let
P! be the nucleus of the conic through the 5 points P,--- P\ {Pi}, i=2,...,6. If
one of the P!’s is in C, say Py € C, then replacing Ps with Pg in A yields a hexagon
P---BP,

Proof: Consider the 6-arc Pi,...,Ps,P{. P, is the nucleus of the conic through
the 5-arc Py,..., Ps, Ps. P; is the nucleus of the conic through Py,...,Ps. Thus
Pi,... ,Ps,Pg is a 6-arc contained in at least 2 hyperconics. We will see in the
next section that an equivalent definition of a hexagon is a 6-arc contained in 2

hyperconics. 0O
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Section 4.3. An equivalent definition of hexagon in terms of hyperconics
through a 6-arc.

Recall example 4.9.

Example 4.19. In PG(2, F) where F contains the subfield {0,1,w,w?},
the fundamental hexagon

{(0,0),(1,0),(0,1),(1, 1), (m = w),(m = w?)}

is contained in the 6 hyperconics

X2+Y24+22+4XY =0 U {(0,0)}

X’+Y24+XY+YZ=0 U {(1,0)}

X2+Y24+XY+YZ=0 U {(0,1)}

X +Y 4+ XY+XZ+YZ=0 U {(1.1)}
wX2+=Y2+wXZ+YZ=0 U {(m=w)}
PX4HY 4D XZ4YZ =0 U {(m=dP)).

The set of nuclei of these hyperconics is a fundamental hexagon; this hexagon is

contained in each of these hyperconics. O

Theorem 4.20. Let * = PG(2, F) where F is a field of order greater than 4 and
containing a subfield of order 4. Then an equivalent definition of a hexagon is a
6-arc contained in 2 hyperconics. Moreover, given a hexagon, there are exactly 6
hyperconics pairwise intersecting in that hexagon. The hexagon is the set of nuclei

of these 6 hyperconics.

Proof: The fundamental hexagon in example 4.19 is contained in 6 hyperconics; the
set of nuclei of these hyperconics is this fundamental hexagon.

Suppose Hy = C; U {N1} and H, = C2 U { N2} are 2 hyperconics and Hy N Hy =
{P,...,Ps}. Say Py = N; and P, = N;. Suppose

{P39-'- 9P6} = {(000)*(110)9(0! l)o(lsl)}
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Therefore Ny = (m = a), N = (m = b), for some a,b € F. Now a® = b since
Ny € C3; b? = a since N; € Cy. Therefore P,,... , Ps is the fundamental hexagon in
example 4.19. O

Corollary 4.21. Let x = PG(2, F) where F is a field containing a subfield of order 4.
Through every quadrangle there are exactly 2 conics whose corresponding hyperconics
contain the hexagon through the given quadrangle.

Proof: Given quadrangle P, - - - F,, it is contained in a unique hexagon by theorem 4.7.
Let Ps and Ps be the other points of this hexagon. There are exactly 6 hyperconics
through Py,... , Ps of which exactly 2 have nuclei in {Ps, Ps}. O
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Section 4.4. Fano configurations and quadrangles in a hyperconic.

Lemma 4.22. Let x = PG(2, F) where F is a field of order greater than 2. Let
H = C U {N}. If F contains a subfield of order 4, then given any 3 points P, P;
and P; in C, there are exactly 2 points of C on the Fano line of NP, P;P;. If F does
not contain a subfield of order 4, then given any 3 points Py, P, P in C. there is no
point of C on the Fano line of NP, P, P;.

Proof: Let N =(0,0), P, = (1,0), P, =(0,1), Ps = (1,1). Therefore C: X% + ¥? +
Z? + XY = 0. All points on C Ny satisfy X2 + Y2 + XY = 0. Choose X = 1.
Therefore Y2 = Y + 1. Therefore there exists points on C N log iff IY € F such that
Y2 =Y 41, i.e.,iff Fcontains a subfield of order 4. OJ

Let * = PG(2,F) where F is a field. Given affine points P, = (a,by) and P; =
(a2, b2) of x, where a;,b; € F, we denote P, + P; := (ay + a2, b + by).

Lemma 4.23. Let x = PG(2,F) where F is a field. Suppose Py --- Py is an affine
quadrangle (quadrangle of affine points) of points of C. Write P; = (a;,b;), where
a;,b; € F, say. Then Py +--- + Py = (0,0) iff P, --- Py has Fano line | .

Proof: Let m(P,, Pj) := P,P; N l.
Suppose Py +--- + Py = (0,0). Therefore, P; + P, = P; + P, and thus m(P,, P;) =
m(P3, Py). Also, Py + P; = P, + Py, so that m(Py, P3) = m(Ps, P). Also, P, + P,
Pz + P3, so that m( Py, Py) = m(P,, P3). Therefore P, - -- P4 has Fano line ...
Conversely, let P; - - - Py be an affine quadrangle such that m(P;, P;) = m(P;, P,),
m(Py, P3) = m(Pp, Py) and m( Py, Py) = m(P,, P;). Write P, = (a;,b;) where a;,b; €
F.
Suppose first that a; = a;. Therefore m(Py, P;) = (m = oo) and thus a3 = a,.
Therefore: a) + - - - + a4 = 0. Since m(Py, P3) = m(P,, P;), we have

bitby _ba+by _ bat by

ay+az az+ay a; + a3
It follows that b; 4 b3 = b2 + bg. Thus Py +--- + Py = (0,0).
Now suppose that b) = b;. Therefore, m(P;, Pz) = (m = 0) and so b3 = by. Therefore




by +--- 4+ by = 0. Since m(Py, P3) = m(Py, Py), we have a; + a3 = a2 + aq4.
Therefore, without loas of generality, assume that all the a,’s are distinct and all the
b;’s are distinct.
Now PPy isthelineY = kX +¢, and P3Py isthelineY = kX +d, for somec,d, k € F
where d # c. Therefore, P, = (ay, kay + ¢), P; = (a3,kaz + ¢), P3 = (a3, ka3 + d),
and F; = (a4, kaq + d). Now m(P,, P3) = m(P,, Ps). Therefore

k(ai +a3) +(c+d) _ k(az +a4) +(c+d)

a; +a3 az +ay

Therefore (¢ + d)(az + a4) = (¢ + d)(a; + a3). Therefore a; + - - - + ag = 0. Therefore

h+:---+b6=0 0O

Suppose we have a hyperconic H in PG(2, F), with nucleus N on the line {. The
following theorem shows that given any two points Py and P; of H that are not on [,
the remaining points of H \ [ can be partioned into pairs yielding quadrangles each
of which contain both P; and P, and each of which has Fano line I. Moreover, no
other quadrangle of pointsicontaining both P; and P; has Fano line .

Theorem 4.24. Let x = PG(2, F) where F is a field of order greater than 2. Let
H = C U {N} be any hyperconic with its nucleus N on los. Then given any pair
Py, P; of points in C\ lx, the remaining points P3, Py, ... of C \ lx can be reordered
such that

PyP,P;P;s, P,P;PsPs, ...

all have Fano line lo; moreover, no other quadrangle P, P, P, P; has Fano line ..
Proof: Suppose the point N = (m = k) is on I and also suppose C contains
(0,0), (0,1), and (1,0). Therefore C : k(X? + XZ) = Y? + YZ. Given (a3,b),
(az,b02) € C\ I, then for any point (a3,b3) € C \ loo,
(a1,81) + (a2,b2) + (a3, b3) = (a1 + a2 + a3, b1 + by + b3)
which is a point on C since
k((a1 + az + a3)* + (a1 + a2 + a3)

= k(a} +a? + a3 + a; + a3 + a3)

= k(a} + a1) + k(a2 + a3) + k(a3 + a3)

= (6 + b1) + (63 + b2) + (B + bs)

= (by + by + b3)% + (b + by + b).
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Therefore, by lemma 4.23, the quadrangie through (aj.b;), (a2,82). (a3,b3) and
(aq,bq) has Fano line lo,. Moreover, if the quadrangle through (ay,b), (a2.b2),
(as,b3), and (a4, bg) has Fano line /o, then by lemma 4.23,

(G], bl) + (02962) + (a-'ls b3) + (04' b‘) = (o' 0)

Therefore a4 = a) + a3 + a3 and by = by + by + b3. Therefore (aq,b4) = (ay 4+ a2 +
a3, b + b2+ 83). O

Corollary 4.25. Let x = PG(2, F) where F is a field of order greater than 2. Let
H = CU{N} be any hyperconic with its nucleus N on l. Given P\, P, P; € C\ lx,
there exists a unique affine point P of C such that the quadrangle PyP; P3P has
Fano line l; this is the unique point P of C \ Iy such that Py + P; + P34+ P = (0,0)
and P=P, + P, + B;.

0

Let * = PG(2, F) where F is a field of order greater than 2. Suppose H is a hyperconic
in x with its nucleus N not on the line I. Suppose further that either F' does not
contain a subfield of order 4 and { is skew to H, or F does contain a subfield of order
4 and [ intersects H. The following theorem shows that the points of C' \ [ can be
partitioned into triples yielding quadrangles through N in H that all have Fano line
l. Moreover, no other quadrangles in H through N have Fano line .

Theorem 4.26. Let x = PG(2, F) where F is a field of order greater than 2. Let
H = C U {N} be a hyperconic with its nucleus N not on the line lo. If F does
not contain a subfield of order 4 and also H is affine, or if F' does contain a subfield
of order 4 and also H is projective, then the affine points Py, Ps,... of C can be
reordered such that the quadrangles

NPP,P3, NP PsPhs, ...

all have Fano line lo; moreover, no other quadrangles N P, P; Py have Fano line le.

We will see in theorem 4.31 that if F contains a subfield of order 4, then each of these
quadrangles together with the two points of H on ly are hexagons in H through
those 2 points on .
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Proof: Let N = (0,0). Let P, = (1,0), P, = (0,1) and P; = (1,1) be 3 points in
C. Therefore N + P, + P, + P3 = (0,0). C is the conic X2+ Y? 4 2% + XY = 0.
Therefore, given (a,b) in C, the points (b,a + b) and (a + b,a) are also in C. Now
(0,0) + (a,d) + (b,a + b) + (a + b,a) = (0,0). Therefore, given N = (0,0), P, = (1,0),
P; =(0,1) and P; = (1,1), pick any affine point I’y = (a4, b4) from the remaining
elements of C \ loo. Let Ps = (b, a4 + bg), Ps = (aq + bg,aq). Pick any affine point
P; from the remaining elements of C \ l. Etc. Therefore

N+P+P+P=(00)
N+ P+ Ps + Ps = (0,0)

Therefore, by lemma 4.23, the quadrangles NP, P, Py, NPy PsFs, ... all have Fano line

'm.
Suppose, by way of contradiction, that NP;QR and NP,Q'R' are 2 quadrangles
through both N and P, with Fano line I, where Q, R, Q’, and R’ are affine points

in C. Then
N+P+Q+R=(0,0)
and N+ P +Q + R =(0,0).

Therefore
Q+R+Q + R =(0,0).

Therefore

Q.R,Q, R is a quadrangle with Fano line /oo.

But then, by lemma 4.14, N must be on the Fano line of QRQ’'R', yielding a contra-
diction. O

Let x = PG(2, F) where F is a field. Suppose H is a hyperconic in x with nucleus N
a point not on the line l. Suppose further that either F does not contain a subfield
of order 4 and [ intersects H, or F does contain a subfield of order 4 and [ is skew
to H. Then the following theorem shows that no quadrangle in H, that contains N,

has Fano line [.
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Theorem 4.27. Let x = PG(2, F) where F is a field of order greater than 2. Let
H = CU{N} be a hyperconic with its nucleus N not on lx. If F' does not contain a
subfield of order 4 and H is projective, or if F contains a subfield of order 4 and H
is affine, then there is no quadrangle of points of H that has Fano line .

Proof: This is a corollary of lemma 4.14 and lemma 4.22. DO




Section 4.5. Hyperconics intersecting in exactly 5 points.

Theorem 4.28. Let x = PG(2, F) where F is a field of order greater than 2. Let
Hy = CyU{N,} and H; = C; U {N;} be hyperconics in x with |Hy N Hy| = 5. Then
ICiNCy| =4.

Proof: We have |[C) NC3| = 3, 4 or 5 since |[Hy N H| = 5.

Now N; # N; since there is a unique conic through 3 points with a given point as
nucleus.

Also, |Cy N C,| # 5 since Hy # H;.

Suppose, by way of contradiction, that |C; N Cy| = 3.

Therefore, N} € C, and N; € C;. Let I, = N|N; and consider C; N C; =
{P,P,P;}. Py, P, and P; must be affine points. Therefore P, + P; + P; is a
point in both C; and C; by corollary 4.25. Therefore |C; N C3| > 4 — a contradic-
tion.

Thus [C;NCy|=4. O

Note that if F contains a subfield of order 4, then of the conics through the quadrangle
(0,0), (1,0), (0,1), (1,1), only the two containing a hexagon through this quadrangle
contain any more points of the PG(2,4) subplane through that quadrangle. This is
true since in PG(2,4), 4 points determine a unique hyperoval through them. See also

section 4.10.
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Section 4.6. Hyperconics and quadrangles.

Let x = PG(2, F) where F is a field containing a subfield of order 4. Let H = CU{N}
be a hyperconic in . Then, the hexagon through N and 3 points of C is contained

in H. This important result is the following lemma.

Lemma 4.29. Let x = PG(2, F) where F is a field containing a subfield of order 4.
Let H = CU {N} be a hyperconic in F. Every hexagon through N and 3 points of
C is contained in H.

Proof: Let P, P;, Py be 3 points of C. Let Py = N. There is a unique hexagon
through the quadrangle P,...,P; by theorem 4.7. Let Ps and Ps be the other
2 points of this hexagon. There are 6 hyperconics through P,,..., Ps; moreover,
Py,...,Ps is the set of their nuclei by theorem 4.20. Therefore, the unique conic
through P,,... , Ps with nucleus P; must be C. Thus, any hexagon through N and
3 points of C is contained in H. 0O

Let # = PG(2, F) where F'is a field of order greater than 4 which contains a subfield
of order 4. We now show that if two hyperconics intersect in exactly 4 points, then

the nucleus of a conic is not on the other conic.

Theorem 4.30. Let x = PG(2,F) where F is a field of order more than 4 >nd
containing a subfield of order 4. Let Hy = Cy U {N,} and Hy = C2 U {N;}. Then
|[HiNHy| =4 iff |CyNC,| =4 and N, ¢ Ca, N2 ¢ C.

Proof: Suppose first that H; and H; have the same nucleus. Then H; = H; as there
is a unique conic through 3 points with a given point as nucleus.

Next suppose, by way of contradiction, that Ny € C; and N2 € C) ard Ny # N,.
Therefore Hy N H = {Ny, N;, P3, Py} where P3, P, € Cy N C3. There is a unique
hexagon through this quadrangle by theorem 4.7. Moreover, it is contained in both
H, and H; by lemma 4.29, i.e., |H; N H3| = 6 — a contradiction.

Now, suppose by way of contradiction that Ny € C; but N, ¢ ().
HiNnH; = {N],Pz,Ps,Pg}, where P, P3, Py € Cy nC,.

Let lo = NiN2. Thus Py, P, and Py are affine points. Now there exists a unique
point P in H; such that P, + P; + Py + P = (0,0) by corollary 4.25. Also, there
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exists a unique point Q in Hy such that Py + P; + Py + Q = (0,0). Therefore P = Q.
Therefore P € i{fy N Hy — a contradiction. O

Thus two hyperconics meet in exactly 4 points iff their conics meet in exactly 4 points

and the nucleus of each is not on the other conic.

Theorem 4.31. Let * = PG(2, F) where F is a field containing a subfield of order
4. Let H = C U {N} be a hyperconic and suppose the points Q and R of C are on
le. Then, adjoining Q and R to each of the quadrangles NPy PPy, NP{P:sPFs, ... of
points of H that have Fano line l,;, gives all the hexagons in H that contain Q and
R.

Prcof: By theorem 4.26, the affine points Py, P;,... of C can be reordered such that
the quadrangles NP, P, Py, NP4PsPs, ... all have Fano line l.

Consider the quadrangle N P, P, P; which has Fano line l,. There is a unique hexagon
containing NP, P, P; by theorem 4.7. Moreover, this hexagon is contained in H by
lemma 4.29. Let N = (0,0), P, = (1,0), P» = (0,1) and P; = (1,1). Then the unique
hexagon containing N P, P, P; has its remaining 2 points on l»,. Thus Q and R must
be on the hexagon containing the quadrangle NP, P, P;s.

Since there is a unique hexagon containing N and any 3 points of C, the hexagons
containing Q and R and one of the quadrangles NPy P, P3, NPy PP, ... are all the
hexagons in H that contain Q and R. O
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Section 4.7. Canonical forms for pairs of hyperconics.

Theorem 4.32. Let # = PG(2, F) where F is a field of order greater than 4 which
contains a subfield of order 4. Then

1) A hexagon contained in a hyperconic must contain the nucleus of that hyperconic;
2) Every hexagon in r can be extended in exactly 6 ways to a hyperconic in x that
contains it, i.e., every hyperconic in a PG(2,4)-subplane of a projective plane = is

contained in (can be ‘lifted to’) exactly 6 hyperconics in the projective plane «.

Proof: 1) This is a corollary of theorem 4.20.
2) For each point P in a hexagon, there is 2 unique hyperconic with nucleus P

containing that hexagon by theorem 4.20. O

Thus, to summarize, in # = PG(2, F) where F is a field of order greater that 4,
suppose Hy = C1 U { M} and Hz = C; U { N2} are hyperconics. Then |C; N C2| < 4.
|Hy N Hy| = 5 iff the nucleus of exactly one of the conics Cy, C; is on the other conic.
If F contains no subfield of order 4, then |H) N Hy| < 5. If |Hy N Hy| = 6, then F
contains a subfield of order 4 and the hexagon H) N H; is contained in 6 hyperconics
(including H, and H,) as the set of their nuclei; the hexagon H; N H, is a hyperconic
in a unique PG(2, 4)-subplane of x. A hexagon contained in a hyperconic contains the
nucleus of that hyperconic. Every hexagon can be extended to exactly 6 hyperconics

containing that hexagon.

Theorem 4.33. Suppose * = PG(2, F) where F is a field containing a subfield
{0,1,w,w?} of order 4. Let Hy = Cy U {M}, and H, = C) U {N;} be hyperconics
intersecting in a hexagon. Then there exists ¢ in PGL(3, F) (where PGL(3,F) is

the projective general linear group on x) such that

6Cr: (X +X2Z)=Y24+YZ

and

oCy: WA (X P+ XZ)=Y?+YZ




These hyperconics,

WX2+XZ)=Y? +YZU(m=w)
G(X2+X2)=Y24+YZU(Mm=W?),

meet in the fundamental hexagon
{(0,0),(1,0),(0,1),(1,1),(m =w),(m = “"2)}°
Thus, if we are given two hyperconics meeting in a hexagon, we may change coordi-

nates so these are the two hyperconics.

Proof: Let H; and H; be 2 hyperconics intersecting in the hexagon {Py,...,FPs},
where P, is the nucleus of H; and P; is the nucleus of H;. Now there exists ¢ in
PGL(3, F) such that

#Ps,... , P} = {(0,0),(1,0),(0,1),(1,1)}.

Thus ¢{P,, P2} = {(m = w),(m =w?)}. O

The hyperconics

WX+ XZ)=Y2+YZU(m=uw)
G(XP+XZ)=Y +YZU(Mm =u?)

will be used as a canonical form for two hyperconics that meet in a hexagon.

The following proposition is used to determine common points of the conic Y2 = XZ

and another conic. It will be used extensively in chapter 5.

Proposition 4.34. Let r = PG(2, F) where F is a field of order greater that 2. Let
Hy = Cy U {M} and H; = C; U {N;} be hyperconics in = where

C,:Y*=XZ
Ca:aX2 40 +c22+dXY +eXZ+ fYZ =0, a,b,...,f€EF.

Consider any common points on Hy and Hy. Ny € C2 iff b=0. N2 € Cy iff & = df.

There is at most one common point, (m = 0), on ly. (m = 0) is 8 common point of
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C) and C; iff a = 0. An affine point (X, Y’) is on both Cy and Crif X =Yand Y

is a root of the polynomial
p(t)y=at* +dt* + (b+ e} + ft +c.

Proof: Ny € C2iff b=0. N2 € C, iff €2 = df. If C; N C; has a common point on {y,
it must be(m=0). (m=0)e CiNC;iff a =0. If C; N C; has common points off
loo, say (X,Y) € C1NC3, then Y2 = X and a X2 +bY2 422 +dXY +eX+ fY =c.
Thus aY* + Y2 + dY3 + eY2 + fY +¢c = 0. Thus Y is a root of the polynomial
p(t) = at* + dt® + (b+ e)t® + ft +c.

Conversely, if Y is a root of p(t), then aY* + dY3 + (b+e)Y2 + fY +¢ = 0; so
aY?Y? +dY%Y + bY2 + e¥2 + fY +a = 0. Then (Y2, Y)is a point on Y2 = XZ
and aX? +bY? +cZ2 +dXY +eXZ + fYZ =0. O

Theorem 4.35. Let x = PG(2, F) where F is a field of order greater than 4. F may
or may not contain a subfield of order 4. Let Hy, = C, U {N,} and H, = C; U { N3}
be hyperconics intersecting in exactly 5 points. Say Ny € Cy but Ny ¢ C;.

Then, up to a collineation, C, : Y? = XZ and Cy : XY +kXZ + (1 + k)Y Z = 0,
where k € F \ {0,1} and k is not contained in a subfield of order 4, and

HyN Hy = {(m = 00),(m = 0),(0,0),/:.1),(1 + k*,1 + k)}.

Alternatively, up to a collineation Cy : a(X* + XZ) = Y2 +YZ and C; : *(X?* +
XZ)=Y2+YZ, wherea€ F\{0,1} and a is not contained in a subfield of order 4
of F, and H, N Hy = {(0,0),(1,0),(0,1),(L,1),(m = a)}.

Proof: [HyN H| = 5. Let Ny = (m = 00). Let C;NC, = {P,,...,Ps}. Therefore
hnNnH ={MP,... ,P}. Let P, = (m = 0), P3 = (0,0), Py = (1,1). Therefore
Ci:Y2=XZand C3: aX?2 +bY% 4+ c22 + dXY + eXZ + fYZ = 0 for some
a,b,...,f € F. Let p(t) = at* +dt3 + (b+e€)t?+ ft+c. Then (Y2,Y) € C1NCa\ln iff
p(Y') = 0 by proposition 4.34. b = 0 since (m = o0) € C;. a = 0 since (m = 0) € C,.
c =0 since (0,0) € C2. d+e+ f = 0since (1,1) € C;. d = 1 since Na ¢ lo,. Thus
C2: XY +eXZ+(1+¢)YZ =0 and

p(t)=t3+ct2+(1+e)t
=t +et+(1+e))
=tt+1)t+1+e).
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Thus (1 + €%,1 +¢€) € CyNCy. The nucleus of XY +eZ2+ (1 +¢€e)YZ =0 is
Ny = (1 + e,e). We know N, ¢ C} and C, contains (0,0) and (1,1). Thus ¢ #0,1.
If F contains a subfield {0,1,w,w?} of order 4, then (w,w?) and (w?,w) are also in
C). Therefore e # w,w?. Therefore e # 0,1 and e is not contained in a subfield of
order 4 of F (if there is one). Thus

Hy N Hy = {(m = 00),(m = 0),(0,0),(1,1),(1 + ¢2,1 + ¢)} where e € F.

Alternatively, if M) € C; but N2 ¢ Cy, then let CyNC,; = {(0,0),(1,0),(0,1),(1,1)}.
Therefore Cy : a(X2 + XZ)=Y2 4+ YZ and C3 : }(X?* + XZ) = Y? + Y Z, for some
a,b€ F. Thus b= a? since N} € Cp; but, a # b®> since N ¢ C;. Thusa® £ 1, 6% #1
and

Hy N Hp = {(0,0),(1,0),(0,1),(1,1),(m = e)}

where a € F \ {0,1} but a is not in a subfield of order 4 of F. O

Theorem 4.36. Let » = .PG(2, F) where F is a field of order greater than 4 and
containing a subfield of order 4. Let Hy = C, U {N;} and H, = Ca U {N;} be
hyperconics meeting in 4 exactly points. Then, up to a collineation, C) : a(X? +
XZ2)=Y2+YZ and Cy: X2+ X2Z)=Y? 4 Y wherea,b€ F\{0,1} and where
a’#b, and b* # a.

Proof: By theorem 4.30, |[Cy N C,| =4 and N, ¢ C,, N> ¢ C).

Let C; N C; = {(0,0),(1,0),(0,1),(1,1)}. Therefore C; : a(X%2 + XZ)=Y24+YZ
and Cy: X2+ XZ,=Y%+YZ for somea,be F\{0,1}. Now Ny =(m=1) ¢ Cs.
Therefore b # a. Also Ny = (m = b) ¢ C;. Therefore a® # b.

Conversely, if Cy : a(X?+ XZ)=Y?2+YZ and C2 : (X% + XZ) = Y? + Y Z where
a,be F\{0,1)} and where a® # band b # a, then |HiNHz| =|C;NCe)=4. O




Section 4.8. Hexagons contained in a hyperconic.

Let H = CU{N} be a hyperconic in PG(2, F) where F is a field containing a subfield
of order 4. Consider the hexagons contained in H.

Theorem 4.37. Let x = PG(2, F) where F is a field with a subfield of order 4. Let
H = C U {N} be a hyperconic in . Consider the structure D where the points of
D are the points of C, and the blocks of D are those 5-arcs in C that are contained
in hexagons of H. A given point of D is on a given block of D if the point is on the
hexagon containing that block. If F = Fg, then D is 3 — (q + 1,5, 1)-design.

Proof: Let F' = F,. This is a well defined structure since every 5-arc of C is contained
in at most one hexagon of H.

There are q + 1 points on every conic in 7. Thus, the number of points in D is ¢+ 1.
Each hexagon in H consists of 5 points of C plus the nucleus N of C. Thus, each
block in D contains 5 points.

Let Py, P2, P; be any 3 pofnts of D, i.e., P, P>, P; are any 3 points of C. Thereis a
unique hexagon through N, Py, P2, P; since by theorem 4.7 every quadrangle in r is
contained in a unique hexagon in x. Moreover, this hexagon through N, P, P>, P3 is
contained in H by lemma 4.29. Let NV, P;,... , Ps be this unique hexagon. P,... ,Ps
must all be in C. {Py,..., Ps} is the block through P, P;, Ps. Further, since every
3 points of Py,...,Ps are contained in the unique hexagon N, P,,... , Ps, those 3
points are also on the block {P,,..., Ps}. Thus, there is exactly one block through
each set of 3 points of C. Thus Disa3 - (¢ +1,5,1)-design. O

Theorem 4.38. With the notation of the previous theorem, the design D has
ﬁﬂ)‘l}ﬂl blocks and each point is in exactly ’-(’5—'2 blocks.

Proof: Every three points of D are contained in a unique block; each triple of the
5 points of a block are contained in that block only. Thus, the number of hexagons

contained in a hyperconic

= # blocks of D

(3)
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Given a point P of D, the number of blocks of D through P is the number of triples
through P of points of D divided by the number of triples through P of pointson a
block through P. Thus, the number of blocks through a point is

-8 g

)

Proposition 4.39. Let » = PG(2,q) where g = 2'. Let C be the conic Y? = X Z.
Denote by PGL(3, q) the projective linear group of x and by PGO(3, q) the subgroup
of PGL(3,q) fixing C. Then

a’ ab b?
PGO(3,q)={(0 ad + bc 0) :a,b,c,d€Fy, ad#bc}.
c? ed &2

Proof: See [Hirschfeld 1}. O

Let x = PG(2,q) where ¢ = 2f and ¢ is even. Consider the structure J whose
points consist of the point;e of PG(1,q), and whose blocks consist of the images of
PG(1,4) under the Mobius group of appropriate dimension. It is known that this is
a3 —(g+1,5 1)-design. (See [Hughes 1].) ’

Theorem 4.41. Let x = PG(2,q) where g = 2! and t is even. Let D be the 3 —(q+
1,5,1)-design described in theorem 4.37 and theorem 4.38. Then D is isomorphic to
J where J is the design described above.

Proof: Let Fy = {0,1,w,w?} be the subfield of order 4 of F,. Let H = CU{N} bea
hyperconic. Consider the hexagons ir H. Without loss of generality we can take C to
be the conic Y? = XZ with nucleus (0,1,0) (in homogenous coordinates). Consider

the map

¢ : points of C — points of PG(1,q)
given by ¢(¢%,¢,1) = (1,1)
and ¢(1,0,0) = (1,0).

Let Gy be the block

Go = {(1,0,0),(0,0,1),(1,1,1), (w?,w, 1), (w,w?, 1)}




in D. Therefore

$Go = {(1.0).(0,1), (1. 1), (w. 1), (*, 1)}
which is PG(1,4). Let PGO(3.q) be the subgroup of PGL(3,q) fixing C (and thus
N and H). Consider

T : PGO(3,q) — PGL(2,q)
a’ ab b? « b
defined byT(O ad 4+ be 0) =(c d) where a,b,¢,d € Fq and ad # be.
2 cd d?

T is an isomorphism (see [Hirschfeld 1]). Given block G in D,

a® ab b*
2 cd &2

for some a,b,c,d € Fy with ad # bc by proposition 4.39. Thus
a? ab b
¢G=¢(0 ad + be O)Go
c cd d?
a b
= (c d) ¢Go

which is the Mobius transformation
a b
c d

applied to ¢Gp = PG(1,4). O




Section 4.9 Fano configurations and hexagons.

We now determine the number of quadrangles in a conic which have the Fano line [,

where [ is a line containing the nucleus of that conic.
Lemma 4.42. Let x = PG(2,q). Suppose H = C U {N} is a hyperconic in x. Let
loc be the line through N and one point, Py say, of C. Then there are

('t‘) quadrangles in C
g + 1 lines through N

quadrangles in C which have Fano line l.

Proof: If the point Pyy) of C is on [, we may reorder the remaining points,
Py,... Py, of C such that PPy, PP, ..., Py_yP, are the lines (# l) through
P intersecting C. Thus P;Piy) PjPj4), i # j € {1,3,... ,q — 1} are the quadrangles
in C with Fano configurations containing P and Fano line l. There are

9-2  (q-2 ) _q(g—2)
5 +( 5 1)+ +1=20—

such quadrangles (153 through each pair P}, Pi41). Thus there are

9Wg—-2)\ fq—-1\ _qlg—-1)g-2)
( 8 )( 3 )_ (4)(3)(2)
+1)g(g—11g-2)
4)(3)(2)

q+1
(":‘) quadrangles in C
- g + 1 lines through N

quadrangles in C which have Fano line lo, (as expected). O

The following theorem gives an equivalent definition of a hexagon.

Theorem 4.43. Let x = PG(2,F) where F is any field containing a subfield of
order 4. An equivalent definition of hexagon is a 6-arc such that the Fano line of each

quadrangle of the 6-arc contains the remaining 2 points of the 6-arc.

Proof: Suppose Pi,...,Ps is a 6-arc such that each quadrangle of these points has
Fano line through the other two points. Let P, = (0,0), P, = (1,0), P; = (0,1), and
Py = (1,1). Py--- Py has Fano line l. Therefore Ps = (m = a), Ps = (m = b),
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for some a,b € F\ {0,1}. Also, PsP, P;P; has Fano line ¥’ = a*X + a which must
contain Py and Pg. Therefore (1,1)ison ¥ = a’X 4 a. Therefore, a? = | + a. i.e.,
a is contained in a subfield Fy = {0,1,w,w?} of F of order 4. Also, (m = b) is on
Y = a®X + a. Therefore, a® = b. Therefore P,,... , Ps is a fundamental hexagon.
Conversely, given a hexagon, we may choose coordinates so this is a fundamental
hexagon. This fundamental hexagon has the property that the Fano line ofeach quad-
rangle of the hexagon contains the remaining 2 points of the hexagon. 0O

Example 4.44. Consider Fig, where Fig \ {0} =<a>,and a* =1 + a. Let

Ql = {(0.0),(1.0), (0. l)v(lo l)}
Q2 = {(aasa‘)w (azva‘)a (asoa)v (0290)}
Qs = {(a®,0%),(a'?,a%),(a%,a%),(a'%,a?))

Q4 = {(a‘v as)v (O, 05), (04i alO)’ (0, alO)}'

Then {(m = w)} UQ; UQ2UQ; UQy is the conic w?(X? + XZ) = Y2 + Y Z; this

conic has nucleus (m = w?). Note that {(m = w?),(m = w)} UQ, is a hexagon,

i=1,...,4,and

Q2 = Q1 +(a%,a)
Q3 = Ql + (05’ 08)
Q4 =Q1+(a',a”). O

Example 4.45. Consider Fg, where Fi\ {0} =< a >,and a' = 1 +o. Let w = a®.
Let

Q1 = {(0,0),(1,1), (w,w?), (@?,w)}
Q2 = {(a?,a),(a® a%),(a,a®),(c*,a%))
Q3 = {(06903)1 (013,014),(09’012)’ (01"’!‘”

Then {(m = 0)} U Q; U Q2 U Q3 U Q4 is the conic Y? = XZ; this conic has nucleus

(m=oo). O
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Lemma 4.46. Consider # = PG(2, F) where F is a field of order greater than 2.
Let P,,... ,Ps be a 5-arc. Let | be the Fano lineof P, - -- P4 and m be the Fano line
of P,P,P3Ps. Then INm is the nucleus of the conic through Py,... , Ps.

Proof: Given a quadrangle, the nucleus of each conic through that quadrangle lies on
the Fano line of the quadrangle by lemma 4.14. O

Theorem 4.47. Let x = PG(2, F) where F is a field of order greater than 2. Given
a 5-arc, we can geometrically construct the points of the conic through that 5-arc
using Fano configurations. Also, given a quadrangle, we can geometrically construct
the points of the conic through any 3 of the points with nucleus the fourth.

Proof: A 5-arc determines a conic C. We can find the nucleus N by lemma 4.46.
Using N with three of the original points, say P, P;, P3, we can construct any point
on the conic.

Given N, Py, P,,P;, let C be the conic through P;, P;, P with nucleus N. Let
l¢,ls, ... be the lines throu;h N different from NP,, NP, NP;. Let

Pi=((APNLP)N((PANL)-P), i=4,5...;

i.e., let P, be the unique point such that P, P, P3P, has Fano line ;. Thus

N,P,P, P, P isa 5-arc, 1 = 4,5,....

We now establish the following claim.
Claim: Piison C,1=4,5,....
There is a unique point P on C such that Py P, P3P has Fano line /; by corollary 4.25.

This establishes the claim.

Py, Ps,. .. are distinct since lg,Is, ... are distinct. Therefore C = {P,P;,...}. O

Theorem 4.48. Let » = PG(2, F) where F is a field of order greater than 4 and
containing a subfield of order 4. Given a triangle P\, P:, N, consider the conics
through Py and P; with nucleus N. There is a partition of the points that are not on
the triangle through Py, P;, N into 3's yielding distinct hexagons through N P, P;.

Thus, if F = F,. there are q — | conics through P, and P; with nucleus N; moreover,
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they partition the (q — 1)? points that are not on the triangle through Py, P:. N into
3’s yielding distinct hexagons through NP, P,.

Proof: Pick a point P not on the triaagle through N, Py, P;. There is a unique conic
C containing P, Pj,and P; with nucleus N. Write C = {Py. P;, P;,...} say. There
is a partition of the points of C \ { P;, P} into 3's by theorem 4.26. Reorder P3, P,

.. if necessary so that the quadrangles NP; Py Ps, NPsP; Py, ... all have Fano line [.
These quadrangles are in distinct hexagons all of which contain Py and P; by theorem
4.31. Pick a point P’ not on C, such that P’ is not on the triangle through N, Py, P
There is a unique conic C' througa P, Py, P; with nucleus N. As with C, there is a
similar partition of the points of C'\ { P, P2}. into 3's. Moreover CNC' = { P, P2}
since there is a unique conic through 3 points with nucleus N. This can be repeated
for all points of x not on the triangle through N, Py, P. Thus we have a partition of
the points of x not on the triangle through N, Py, P; into triples. O

We return to this discussion in section 4.17 to obtain yet another consequence of
theorem 4.47.




Section 4.10. Hexagons and the corresponding PG(2,4)-subplanes of r.

Recall some results about hexagons.

Let # = PG(2, F) where F is a field of order greater than 4 which contains a sabfield
of order 4.

1) A hexagon contained in a hyperconic contains the nucleus of that hyperconic.

2) There is a unique hexagon through three points of a conic that is contained in the
hyperconic through that conic.

3) Every hexagon can be extended in exactly 6 ways to a hyperconic in =.

4) Every hexagon is contained in a unique PG(2, 4)-subplane of .

Theorem 4.49. Let x = PG(2, F) where F is a field of order greater than 4 which
contains a subfield of order 4. Let H = CU{N} be a hyperconic in x. Given 2 distinct
hexagons in H, the corresponding PG(2,4)-subplanes containing them are distinct.
Thus, each of the hexagons in a hyperconic gives rise to a distinct PG(2,4)-subplane
containing the point N.

Proof: Let G), and G be hexagons in H. Therefore N € G; N G3. In a projective
plane of order 4, a maximum set of points, no 3 collinear is a hyperconic containing
6 points. Thus Gy, G2 are in distinct PG(2,4)-subplanes. 0O

Lemma 4.50. Let x = PG(2, F) where F is a field of order greater than 4 which
contains a subfield of order 4. Let H = C U {N} be a hyperconic in x. Let lo be a
line containing the nucleus N of C and also a point Py of C. Let NPyP,--- P4 be a
hexagon contained in H. Then given any affine point P in C, the 6-arc containing
N, Py, and also the quadrangle P, + P,... , Py + P is also a hexagon in H.

Proof: Let N = (m = w?), P = (m = w), P, = (0,0) and P, = (1,0). Therefore
Py =(0,1), Py =(1,1)and C : *(X?+ X2Z) = Y24+ YZ. Let P = (a,b) be an affine
point of C. Consider Py + P,... , Py + P. These are all affine points of C. Moreover,
N.Pyand Pi+P....,Py+P are all points on the hyperconic w( X2+ XZ) = Y2+YZ
U {(m = w)}. Therefore NPoP) + P--- Py + P is a hexagon. O

Theorem 4.51. Let * = PG(2, F) where F is a field containing a subfield of order
4. Suppose H = CU{NY} is a hyperconic in . Let lo, be the line through N and one
point, Py say, of C. Then the remaining points Py, P»,... of C can be rearranged so
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that
NPy PP, P3Py, NPy Ps P4 P P, . ..

are hexagons through N and Py with the property that the Fano configurations
through

PyPy P3Py, PsPsFo Py, . ..

all meet l, in the same 3 points. Thus the hexagons of C that contain both N and
Py partition the points of Iy, \ {N, Py} iniv 3's.

Proof: Let I, = N{y. Given any point Q on the line NP, which is not N or P, let
{y be any line through Q that meets [ in 2 points. Let P; and P, be these 2 points.
There is a unique hexagon through NPP P>. Let P; and Py be the other points on
this hexagon. By lemma 4.50, the remaining points of (" can be partitioned giving
hexagons NPP;--- Py, NPPs--- P, ... such that the Fano configurations through
Py--- Py, Ps--- Pg, ... all meet the line NP in Q and 2 other fixed points. O

Corollary 4.352. With the notation of the previous theorem, consider the hexagons
in H through N and P. Each of these hexagons is contained in a PG(2,4)-subplane
of x. Moreover, given any 2 of these subplanes, their lines through N and P either

have only points N and P in common, or else they are equal with 5 points in coanmon.

Proof: Let the 2 hexagons through N and P be NPP,--- Py and NPP;--- P;. The
Fano configurations through P --- P, and Pj- .- P; either meet the line NP in the
same 3 points, or in different 3 points by theorem 4.31. O

Corollary 4.33. With the notation of theorem 4.31, consider the hexagons in H
through N and P. Each of these hcxagons is contained in a PG(2,4)-subplane of
x. For each hexagon H through N and P in PG(2,q), there are exactly  of these
hexagons, including H, such that the corresponding P(G(2,4)-subplanes all have the

same line NP.

Proof: Each hexagon through N ana P contains 4 of tne ¢ points of H \ {N, P}.
Thus, there are § such subpianes. O
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Section 4.11. Involutions on a line resulting from the conics through a

quadrangle.

Let x = PG(2, F') where F is a field. Choose a quadrangle Q in x. Let { be any
line skew to Q. Consider the conics through Q. A conic through Q intersects [ in 0,
1 or 2 points. Define th- mapping ¢ on the points of | by ¢ : P +— P’ if there is a
conic through Q and both P and P’; and by ¢ : P~ P if there is a conic through Q
tangent to P.

We now examine Desargues’ involution theorem. We will show the following:

1) If 1 is the Fano line of @, then ¢ fixes all point: of I, i.e., all conics through Q
intersecting ! are tangent to [.

2) If ! passes through exactly one of the three points where the Fano configuration
through Q meets the Fano line of @, then this is the unique fixed point of I. l.e.,
rione of the non-degenerate conics through @ are tangent to L.

3) If | misses all 3 of these points, then there is a unique point on [ which is fixed
by ¢. lLe., there is a unique (non-degenerate) conic through Q which is tengent to /

since there is a unique point on [ which is the nucleus of a conic through Q.

Lemma 4.54. Let r = PG(2,F) where F is a field. Let Q be a quadrangle in
v with Fano line . Then for every point N on | which is not a point in the Fano

configuration through Q, there exists a conic through Q with nucleus .V.

Proof: Let [ be the Fano line of the quadrangle Q. Let N be a point on ! which is
not a point in the Fano configuration of Q. Suppose Q@ = {P,... ,P1}. There is a
unique conic C through Py. P, and P; with nucleus N. This conic intersects [ in
a point P Consider the conic C, through P, Py,...,P,;. C2 has nucleus on [ since
{ is the Fano line of P,--- P;. Thus C; and C3 have nuclei on . C; and C; also
have nuclei on the Fano line of P, Py, P;, P;. Therefore they have the same nuclei.
Therefore Cy = C. O

Theorem 4.58. Let * = PG(2.F) where F is a field. Choose a nuadrangle Q in
7. Let @1.Q2.Q3 be the points where the Fano configuration thr gh Q meets the
Fano line of Q. Let | be a line skew to Q and let I be the Fano line of Q. Then
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the conics (including both degenerate and non-degenerate conics) through Q define
an involution on the points of | which either fixes every point of l, or fixes a unique

point of .

Proof: Define the mapping ¢ on points of [ by ¢ : P — P’ if there is a conic through
Q and both P and P'; and by ¢ : P = P if there is a conic through Q tangent to P.
Suppose Q = {(0,0),(1,0),(0,1).(1,1)}. I is the Fano line of Q. @, = (m = o0),
Q2 = (m =0) and Q3 = (m = 1) are the points on /o, where the Fano configuration
through Q meets the Fano line of Q. The nucleus of each conic through Q is on ls.
1) Suppose ! = l,,. Then for every conic through Q intersecting [, the nucleus must
be on I. Thus those conics are tangent to [, and ¢ fixes every point of .

2) Suppose [ intersects @), say, but does not contain the points Q; or @3. Then of
the conics through Q intersecting I, only the one with nucleus @, (a degenerate conic
through @Q;) has nucleus on I. Thus Q) is the only point fixed by ¢; none of the conics
intersecting ! are not tangent to [, except the degenerate one through Q.

3) Suppose ! does not contain @1, @2, or Q3. Let R = INlx. There is a unique conic
through Q with nucleus R. This conic is tangent to [, and intersects ! in R', say. All
the other conics through Q have nucleus on lx \ | and are therefore not tangent to /.
Thus R’ is the unique fixed point of ¢. O




Section 4.12. Orbits of the conics that contain a fixed quadrangle.

To summarize some results in PG(2, F), where F is a field of order more than 4, if 2
conics intersect in exactly 4 points, then either

1) their hyperconics intersect in a hexagon, i.e., their hyperconics intersect in 6 points;
or

2) their hyperconics intersect in 5 points and the nucleus of one conic is on the second
conic, but the nucleus of that second conic is not contained in the first conic; or

3) their hyperconics meet in 4 points and the nucleus of each conic is not on the other

conic.

Let us consider the conics through a fixed quadrangle. Given quadrangle Q and one
conic Cp through @Q let us define a new conic Cy to be the conic containing both the
quadrangle Q and the nucleus of Cy. Now we can look at the conic C> defined to be
the conic containing both the quacrangle Q and the nucleus of C. Etc. This gives us
an ‘orbit’ of a conic through a quadrangle. We will see that in PG(2, F), when F has
a subfield of order 4, there is a unique orbit of length 2 (i.e., only 2 distinct conics in
that orbit) corresponding to the 2 conics through @ whose hyperconics meet in the
hexagon through Q. The other orbits will have lengtﬁ s where F2: is a subfield of the
given field.

Theorem 4.56. Let # = PG(2, F), where F is a field of order greater than four.
Let Q be a quadrangle in =. Given a conic C containing Q, define ¢C to be the conic
containing the 4 points of the quadrangle Q as well as point that is the nucleus of C.
Let the orbit of C be {C,¢C, ¢°C,...}. Then there is an orbit of conics through Q of
length s iff F' contains a subfield of order 2°. When it exists, it is unique. Moreover,
if F contains a subfield of order 4, then the orbit of length 2 contains the 2 conics

through Q whose hyperconics contain the hexagon through Q.

Prou.. Let @ = {(0,0).(1,0),(0.1).(1,1)}. Then the conics through Q are C, :
a(X?’+X2)=Y2+YZ wherea € F. Consider themap ¢ :a — a?or ¢: Cs = C,2.
Le.. C is the conic containing the quadrangle ¢ as well as the nucleus of C. Note
that if a € F, where F, is a subfield of F, then a2’ = a. Conversely, suppose Fos is the
smallest subfield of F containing a. Then C, is in an orbit of length s. Note that C,
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is in an orbit of length 2 iff (0,0).(1,0),(0,1),(1.1).(;m = a).(m = &°) is the unique
hexagon through (0,0),(1.0),(0,1),(1,1). Therefore there is an orbit of length s if
F contains a subfield of order 2°. In particular, if F contains a subfield of order 4,
there is a unique orbit of length 2 corresponding to the 2 hyperconics containing the
hexagon through Q with nuclei on the Fano line of Q. In F = F,, where ¢ = 2¢, there
is an orbit of length t. O
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Section 4.13. Intersection of a hyperconic with certain lines through a
fixed point.

Consider a hexagon H = CU{N} and a line I, through the nucleus of this hyperconic.
Let Py be the point of C that is on l. Now the hexagons in H containing N and P,
partition the points of I \ {N, Py} into 3’s (see theorem 4.51). Consider one of these
triples. Recall that this triple along with Py and N are in some PG(2,4)-subplanes
that contain some of the hexagons in H. Consider the lines through a given point
not on I, that hit this triple. Then, either exactly one, or exactly 3 of these lines

intersects H. This is the nizir {heorem of this section.

Theorem 4.57. Let * = PG(2, F) where F contains a subfield of order 4. Suppore
H = CU{N} is a hyperconic containing a hexagon G. Let mg be the PG(2, 4)-subplane
of = containing G. Choose ly, to be a line through N. WriteG = {P,,... ,Ps}, where
P := N and |, = P P;. Let the other points of I, in 7y be @y,Q2,Q3. Let P be a
point of . Then, of the lines PQ,, PQ2, PQ3, either exactly 1 or exactly 3 intersects
H.

In theorem 4.57 P, - - - Py N Py must be a hexagon a.s‘lemma 4.58 shows.

Lemma 4.58. Let * = PG(2, F) where F is a field of order greater than 2. Let
H = CU{N}. Let lx be a line containing N and a point Py, say, of C. Suppose
Py,..., Py are points of C such that the quadrangle P, - - - Py has Fano line ly, but
the 6-arc Py --- P4PyN is not a hexagon. Let Qy, Q2, Q3 be the points on I in the
Fano plane through P, --- Py. lLe.,

Qi=PP,NPP, Q:=P P3N PP, Q3= PPN PP, say.

Then there may exist a point P € r such that PQ,, PQ2, and PQj all are skew to
H.

Proof: Consider, for example, C : a®X? + Y2 4+ a®’XZ +YZ = 0in 7 = PG(2,16)
where Fi6 \ {0} =< a >,a* =1+a. Let H = CU{N} where N = (m = a®). Now
Py := CNly = (m = Vad). Consider the quadrangle

Py =(0,0), A =(1.0), ,=(0,1), Py =(1,1)
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of points in C. The 6-arc Py --- P4FPp.V is not a hexagon. Q1 =(m=0). @2 =(m =
oc), and Q3 = (m = 1) are the points of / in the Fano plane containing P, --- Fy.
Let P be the point (a?,a®). Therefore PQ; is the line ¥ = a®, PQ; is the line
X = a?, and PQ; is the line Y = X +a'l. All three of these lines are skew to . O

To prove the main theorem of this section, theorem 4.57, we need some other results
first.

Proposition 4.59. Let F be a field. Let S = {2 +clc€ F}. f FNS # F, then let
Ty ={2+c+k|ce F) whereke F\S. Then

1) 1 € S iff F contains a subfield of order 4. Thus T is non-empty if F contains a
subfield of order 4.

2)a,beS=>a+beS.

Suppose Ty is non-empty. Then

3)a, beTy=>a+bes.

4)a€ S, beTy =>a+beT;.

5)SNT,=0. -

6) F=SUT;.

Proof: 1) F contains a subfield of order 4 iff 3w € F such that w? +w +1 =0, i.e.,
iff1€ 8.

2)Ifa,be Sthena = al +ay, b = b3 + by, for some aj, by € F. Therefore
a+b=(a1 +5) +(a1+b)€S.

3) If a, b € Ty then a = a? + a1 + k, b = b2 + by + k, for some a;, by € F. Therefore
a+b=(a1+b)?+(ar+b)€S.

4) Ifa € S, b€ T, then 3ay, by € Fsuchthata =al +a,, b= b% + by + k. Therefore
a+b=(a1+6)+ (a1 + b))+ k€T

51 SNT: # 0, 3a € F such that a = b* + b = ¢? + ¢ + k where b,c € F. l.e,
0=(b+cP+b+c)+k le,(b+c)+(b+c)=k Butke F\S. Thisisa
contradiction.

6) Given a € F, consider a, and a + k. Now @+ (a + k) = k € T;. Thus by 2), 3), 4),
and 5), exactly one of a, and @ + k is in S; the other is in Tx. Therefore Fg = SU T}
and SNTy=0. O

We now prove the main theorem of this section.
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Theorem 4.60. Suppose # = PG(2, F), where F is a field containing the subfield
{0,1,w,w?)} of order 4. Let H = CU{N}. Let ly, be a line through N and Py, where
Py is a point in C. Suppose P,,... , Py are points in C such that P,--- P4PoN is a
hexagon. Let Qy, Q2, Q3 be the points on lo, in the Fano plane of the quadrangle
P ---P. lLe, N, Po,Q1,Q2,Q3 are the points of ly, in the PG(2,4)-subplane con-
taining the hexagon Py,... ,Py, N, Py. Then, for any point P, exactly 1 or 3 of PQ:,
PQ2, PQ3 intersects H.

Proof: Let N = (m = w?), Py = (m = w?), P; = (0,0), and P, = (1,0). Therefore
Py =(0,1), Py =(1,1) and C : w(X? + XZ) = Y2 4+ YZ. Therefore @, = (m = 0),
Q2 =(m =o00),and Q3 = (m = 1).

If Pe Hort P € ly, the result is immediate.

Suppose P ¢ H, and P ¢ ly. Suppose P = (a,b). Therefore PQ is the line Y = b,
PQ; is the line X = a, and PQ;3 isthelineY = X +a+b. Let S = {c*+c|c€ F},
Ty={¢+c+1l|c€eF}.

Y = b misses C iff there is no solution to «i{ X2 + X) = b* + b
iff there is no solution to X2 + X = w?(b® + b)
iff (b2 +b) ¢ S
X = a misses C iff there is no solution to w(a® +a) = Y2 +Y
ifwa®+a)¢ s
Y =X +a+ bmisses C
iff there is no solution to w(X? + X) = (X +a+b)*+ (X +a+b)
iff there is no solution to w?(X? + X) = ((a + b)? + (a + b))
iff w((a+b)?+(a+b) ¢S

We now establish the following claim.

Claim: Y =b, X =aand Y = X 4+ a + b cannot all be skew to H.
Let d = w?(B? +b), e = w(a®+ 1), and f = w((a®+a)+ 6%+ b) = w(a® +a) +w(H? +b).
Ifallof Y =b, X =aand Y = X + a+ b are skew to C, then the sum of 2 of d, e
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and f is in §; thus, the sum d + ¢ + f is not in S. However, the sum of these is

d+e+ f=uw?(b®+b)+w(a®+a)+ (w(a® +a) +w(b + b))
= (w® + )b +b)
= (b® + b) which is in S.

This establishes the claim.

Moreover,asd+e = (b* +b)+ f,d+ f=(b* +b)+e.and e + f = (b* + b) + d,
then if 2 of the lines Y = b, X = a,and Y = X + a + b intersect H it follows that
the third line does too, since S is closed under addition.

a
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Section 4.14. Hyperconics pairwise meeting in distinct hexagons.

Example 4.81. Let » = PG(2,16), where Fis\ {0} =< a >, a* = | + a. Let

w = a®. Consider the hyperconics

H: (WX +X2)=Y +YZ)U{(m =w?)}
and

Hy: (w(X?*+X2)=Y?+YZ)U {(m=w)}.

Hy: (W3(X2+ X2)=Y31YZ) U {(m = u?)}
= {(m = w?)(m = ),(0,0),(1,0),(0,1),(1,1),
(a®.a%),(at,a’),(a?,a?),
(a®,a),(a,a'?),(a'’,a%),
(02'04)' (04,010)’(a10,a2),
(o,a), (@,0%), (a%,a?))
Hy: (PA(X2+X2)=Yi 4+ VYZ)U {(m = w?)}
= {(m = w),(m = w?),(0,0),(0,1),(1,0),(1,1),
(a«l,as),(asvaﬂ,(as’oﬁ)’
(a,0%),(a',a),(c?,a'),
(04’012), (010,04)’ (az’a.‘,),

(a,a?),(a®, a),(a?,a®)}.

Hy and H; intersect in the hexagon {(m = w?),(m = w),(0,0),(1,0),(0,1),(1,1)}.
Each of the 4 hyperconics

Hop: X+ Y% 4 (a® + 6° + ab)Z2 + XY =0U(0,0),

where (a.b) € {(a®.a').(a% a),(a?,a%),(a?. a)}, intersects
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H, and H; in different hexagons.

HiN Hyp oo = {(m = w?),(m = w),(0,0),(a’.a'). (a'. a%).(a®,a®)}
Hz N Hys oo = {(m = w),(m = w?),(0,0),(a*. ), (a’,a').(a® o)}
HiNHp,={(m= w?), (m = w),(0,0),(a?,a),(a,a'?),(a', a®)}
HyN Has o = {(m = w),(m = w?),(0,0),(a,a®),(a',a).(a?,a'")}
Hi N Hyz 00 = {(m = &), (m =w),(0,0), (e?,a?),(a*,a'’).(a'®. a*)}
Hz N Hp2 g4 = {(m = w), (m = w?),(0,0), (a*,0?), (', a%), (a?,a'")}
H1 0 Hys o = {(m = w?),(m = w),(0,0),(a% a). (a,a%),(a®, a?)}
H;N H,2 6 = {(m = w).(m = w?),(0,0),(a,a®),(a®,a),(c*,a®)}. O

Theorem 4.62. Let = PG(2, F), where F is a field of order greater than. Given 2
hyperconics, Hy = CyU {N,} and H, = C2U {N:} that intersect in a hexagon, let N3
be any point of Hy 0\ H, other than N, or N;. Then, for any point P of H, different
from Ny, Ny and Nj, the hyperconic containing Ny, N> and P that has nucleus N,
intersects Hy in a hexagon and intersects H is a (possibly different) hexagon. These
2 hexagons are different if P ¢ Hy N Ha. This gives a partition of Hy and H; into
triples. If F = Fg, there are exactly ’%‘- hyperconics through Ny and Ny with nuclei

Nj that intersect Hy in a hexagon, and H; in a different hexagon.

Proof: There are exactly 6 hyperconics containing the hexagon I} N H; by theorem
4.20.

Recall that a hexagon contained in a hyperconic must contain the nucleus of that
hyperconic by theorem 4.32. Thus, if H; is a hypercnoic that intersects H, in a
hexagon, H3 must contain the nucleus of Hz, and H; and H2 must both contain the
nucleus of H;. Since Hy N H; is a hexagon, H, contains the nucleus of H; and H;
contains the nucleus of H;. Therefore the nuclei of Hy, H; and Hj are all contained
in Hy N Hy N Hy. There can be no more points in Hy N Hy N Hy as a quadrangle in
contained in a unique hexagon.

We are given that N is the nucleus of Hy, N; is the nucieus of H2, and N3 is one
other point of Hy; N H,. Now, every quadrangle is contained in a unique hexagon by
theorem 4.7, and the hexagon through N} and 3 more points of H, is contained in H,
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by lemma 4.29. Thus, the points of H), other that \Vy;, N2 and N3, can be partitioned
into triples each of which, together with Ny, N2 and Nj is a hexagon in H.
Let Ny = (m = w), N2 = (m = w?), and N3 = (0,0). Suppose (1,0) € H, N H,.

Therefore
HMnH; = {(m = wz)v(m =u),(0,0),(l.0), (0!1)1(1’1)}-

Thus H; : W¥(X?*+ XZ)=Y24+YZ and H2 : (X2 + XZ) = Y2 4+ YZ. Let (a,b)
be a point of H, that is not on the hexagon Hy N H,. Define Hy : 2 + Y2 4+ (a? +
b + ab)Z% + XY = 0. Now

(m = w?),(m = w),(0,0), (a,b),(b,a + b),(a + b,a) € Hy N Hj.
Therefore Hy, N Hj is a hexagon in Hy and Hj. Also
(m = w?).(m = w),(0,0),(b,a),(a+b,b),(a,a+b) € H; N H;

Therefore H» N Hj is a hexagon in H; and H3. Thus every point (a, ) of Hy not on
the hexagon H), N H, gives rise to a hyperconic intersecting Hy and H; in different
hexagons; (a,b), (b,a + b), (a + b, a) along with Ny, N3, and (0,0) are the points of a

hexagon in H;.
In Fg, there are ¢ + 2 — 6 points of A} \ (H1 N H3). Thus there are ’i—‘! hyperconics
with nuvclei (0,0) that intersect Hy and H; in distinct hexagons. 0O
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Section 4.15. Maximum sets of hyperconics pairwise meeting in six points.

Lemma 4.63. Let r = PG(2,q), q =2, t even, and suppose g > 16. Let S be a set
of hyperconics any 2 of which pairwise meet in 6 points. If |S| > 4 then thev have a
common hexagon.

Proof: Suppose H),...,H, € S, where H; = C; U {N,}. Suppose |H, N H,| = 6.
Therefore H; N H, is a hexagon and N; € G, N; € C; by theorem 4.32, ¢t £ j €
{1,... .4}. Therefore Ny, N3, Ny € C;. Therefore the hexagon through N;,... . N,
is contained in H) by lemma 4.29. Similarly, the hexagon through N;.....N is
contained in Hy, H3, and Hy. Therefore H,N H , is the hexagon through Ny Ny N3Ny,
i#je{l,...,4}. O

Corollary 4.64. Let # = PG(2.q). q = 2!, t even, and suppose ¢ > 16. If S is
a maximum set of hyperconics pairwise meeting in 6 points, then |S| = 6 and all

hyperconics in S contain the hexagon which is the set of their nuclei.
O



Section 4.16. Two conics with no common hexagon that have the nucleus

of each conic on the other conic.

Theorem 4.68. Let x = PG(2, F) where F is a field of order greater than 2. Suppose
we have two conics with the nucleus of each conic on the other conic, but with no

common hexagons. Then the two conics can have at most 2 points in common.

Proof: Suppose Hy, = Cy U {N;} and H, = C U { N3} are hyperconics with N, € C)
and N; € C.

If |C),NC;| = 4, then |Hy N Hy| =6, i.e., Hy N H; ia a hexagon. Thus |C), N C;| # 4.
If |Cy NC,| = 3, then |H; N Ha| = 5. But then Lty theorem 4.28 we can’t have both
Ny € Cz and N; € Cy. Thus [C; NC,) # 3.

Therefore |C) N C3) < 2.

It is possible here that |C)NC,| = 2, for consider PG(2, F') where F is a field of order
more than 2 but not containing a subfield of order 4. Consider C} : Y? = XZ and
Cy:X*=YZ. Then |C; NC,| =2.

If F contains a subfield of order 4, then |C)} N C;| < 1 since Ny, Ny and 2 points of
Cy N C3 would be contained in a hexagon which is in both H; and H,. O




Section 4.17. Conics through 2 fi.ed points with a common nucleus.

Theorem 4.66. Let x = PG(2, F) where F is a field of order greater than 2. The
conics through 2 fixed points with a fixed point as nucleus contain no further common
points and thus partition the points oft the triangle through P,Q.N. If F = F,, there
are exactly ¢ — 1 conics through two fixed points that have a common nucleus. No
two of these conics have a further point in common. These conics throughk points P
and Q with nucleus N partition the points of = that are off the triangle PQN into
(¢ — 1)-tuples.

Proof: There are

(@P+e+)—((g+ D) +q+(¢— 1)
=¢*-29+1
=(¢—1)?

points < the triangle through PQN. Thus, there are (g — 1)* choices for a point R
off this triangle which gives a conic through P,Q, R with nucleus N. (¢ — 1) of these
choices yield the same hvperconic. Thus there are ¢ — 1 distinct conics through P
and Q with nucleus V.

No two of these conics can have a further point in common since 3 points together

with a nucleus uniquely determines a conic. O
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Section 4.18. Intersection of an arbitrary hyperconic with an arbitrary
PG(2,4)-subplane.

Theorem 4.87. Let x = PG(2, F) where F is a field containing a subfield of order
4. Consider the inters=ction of an arbitrary subplane of order 4 of » with an arbitrary
hyperconic in x. If there are 6 common points, then the common points are a hexagon

and one of these points must be the nucleus of H.
Proof: A 6-arc in mp is a hexagon. A hexagon in H cuntains the nucleus. O

Theorem 4.68. Let » = PG(2, F) where F is a field containing a subfield of order
4. Consider the intersection of an arbitrary subplane of order 4 of x with an arbitrary

hyperconic in x. There cannot be exactly 5 common points.

Proof: Suppose the hyperconic H = C U { N} meets the subplane x¢ in 5 points.
These 5 points extend uniquely to a hyperconic in the subplane, i.e., to a hexagon. If
the nucleus of the hyperconic is in the subplane, then this hexagon must be contained
ir the hyperconic, yielding a contradiction. Otherwise, the 5 points common points
of the hyperconic H and the subplane must be on C and thus the nucleus is in the
subplane. 0O

Theorem 4.89. Let » = PG(2, F) where F is a field containing a subfield of order
4. Consider the intersection of an arbitrary subplane of order 4 of * with an arbitrary
hyperconic in . If there are exactly 4 common points, then the nucleus of the
hyperconic is not contained in the subplane; moreover, the 4 common points are not

contained in arv hexagon with the nucleus.

Proof: Suppose by way of contradiction that hyperconic H and a PG(2,4)-subplane
xo have exactly 4 common points. If the nucleus of the hyperconic were one of these
points, then the hexagon through those points would be contained in the hyperconic
— a contradiction. If H N xg is contained in a hexagon through N, then the hexagon
is in H — a contradiction. {J

Theorem 4.70. Let r = PG(2, F) where F is a field containing a subfield of order 4.
Consider the intersection of an arbitrary subplane ng of 7 of order 4 with an arbitrary

hyperconic H in =. If there are exactly 4 common points, these points _xtend uniquely
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to a hexagon G in the subplane. This hexagon is not in the hyperconic H. This
hexagon can be extended in 6 ways to distinct hyperconics in = (six choices for a
nucleus). Of these 6 hyperconics, 2 meet H in exactly 4 points and 4 meet H in

exaclty 5 points.

Proof: Let G),...G4 be the hyperconics with nuclei in H N xg. Let Gs,Gg be the
hyperconics with nuclei in G \ (H N xp). Note that the nuclei of Gs,Gs are not in
H; the nucleus of H is not on Gs,Gg. Therefore |H N Gs| < 5 and |H N Gs| < 5.

Therefore
HnNnGs=HNGg = HN xp.

Note that the nuclei of Gy ... ,Gg are in H. Also |[G;NH| >4, i =1,...,4, since
xo N H C G;. Thus, as two hyperconics meeting in exactly 4 points can’t have the

nucleus of one conic on the other conic, we have |GiNH| =5, i=1,...,4. O



Chapter 5. Hyperconics containing hrxagons from the same subplane of
order 4.

The main result of this chapter (see section 5.3) is a generalization of the famous
even-intersection property of hyperconics in PG(2,4). In PG{2,4), even intersection

amongst hyperconics is an equivalence relation.

Let x = PG(2, F) where F is a field containing a subfield of order 4. Two hexagons
are coplanar if they are in the same subplane of order 4 of r.

Theorem 5.1. Let # = PG(2, F) where F is a field containing a subfield of order
4 but not containing a subfield of order 8. Suppose H, and H; are hyperconics in =
and G, and G are coplanar hexagons with G, a hexggon inH,, 1 =12 IfG) and
G2 meet in an even number of points, then so do Hy and H»; if G, and G2 meet in
an odd number of points, then so do H, and H,. le., we have a ‘lifting’ of the even
intersection property of a plane of order 4.

If F contains a subfield of order 8, then the above lifting fails in three cases. If
|G1 N G2| = 2 and Gy N G2 contains exactly one of the nuclei of Hy and H., then
|Hy N Hy| = 5 iff F contains a subfield of order 8. If |G1 N G3| = 1 and the nuclei
of Hy and H; along with the point Gy N G2 are 3 distinct points not on a line, then
|Hy N H3| = 4 iff F contains a subfield of order 8. If |G} N G| = 3 and the nuclei of
H, and H; are 2 of the 3 points of Gy NG, then Hy N H; is a hexagon iff F contains
a subfield of order 8.

In section 5.1 we will prove this for the case where G; N G is even. In section 5.2
we will prove tt.is for the case where G; NG, is odd. In section 5.3 we will obtain a

generalization of the even intersection property for hyperconics in PG/(2,4).

To prove this theorem, we will consider the different possibilities of how two hyper-
conics in a PG(2,4) plane intersect. We will then regard the PG(2,4) hyperconics
as hexagons in a PG(2,4)- subplane of a projective plane. We will consider the 6
hyperconics through each of the hexagons to see how pairs of these hyperconics meet.

A result that will be used frequently in this chapter is proposition 4.34. Recall this
proposition.
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Proposition 4.34. Let 7 = PG(2, F) where F is a field of order greater than 2. Let
Hy = C1 U {N,} and H; = C2 U { Nz} be hyperconics in x where

C,:Y*=XZ

Cr:aX? 4 bY? +¢2? + dXY +eXZ + fYZ =0, a,b,... ,f€F.
Consider any common points on Hy and Hy. Ny € C; if b= 0. N3 € C, iff € = df.
C) and C; have at most one common point, (m = 0), on le. (m = 0) is a common

point of Cy and C; iff a = 0. An affine point (X,Y’) is on both C, and C; iff X = y?
and Y is a root of the polynomial

pt)y=at* +dt> + (b+e)t? + ft+c.
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Section 5.1. ‘Lifting’ hyperconics in PG(2,1) that meet in an even number
of points.

Theorem 5.8. Consider » = PG(2, F), where F is a field containing a subfield of
order 4. Let Hy = Cy U {N1} and Hy = C2 U { N2} be hyperconics in x. Let G} and
G2 be coplanar hexagons satisfying Gy C Hy, G» C Hz. If |Gy N G,| is even and F
does not contain a subfield of order 8, then |Hy N H,| is even.

We will prove this via 3 separate theorems, theorems 5.4 through 5.6, depending on
whether |G1 NG| is 0, 2 or 6.

Theorem 5.4. Consider r = PG(2, F), where F is a field containing a subfield of
order 4. Let Hy = Cy U {N} and H, = C, U {N2} be hyperconics in . Let G and
G2 be coplanar hexagons satisfying Gy C Hy, G2 C H,. Suppose Gy = G». Then
HinH, =Gi1NG,.

Proof: |HiNH2|=6. O

Theorem 5.5. Consider x = PG(2, F), where F is a field containing a subfield of
order 4. Let Hy = C1 U {N1} and Hy = C2 U { N2} be hyperconics in x. Let Gy and
G2 be coplanar hexagons satisfying Gy C Hy, Gy C Hs. Suppose |Gy N G| = 2.

1) If Ny = N then Hy 1 Hy = G, NG,.

2) Suppose N1, N2 € G1NG; but Ny # N;. If F contains a subfield of order 16, then
Hy N H; is a hexagon; otherwise, H) N Hy = G1 N Ga.

3) If N1, N2 ¢ G1 NG then either some three of the four points { Ny, N2} U (G NG?y)
are collinear and Hy N H; = Gy N Gy, or { Ny, N2} U (Gy N G2) is a quadrangle and
|Hy N Hy| = 4.

4) Suppose exactly one of Ny and N; is on both Gy and G3. If F comtais.- .. -wtfeld
of order 8 then |Hy N Ha| = 5; otherwise, Hy N H; = G; N Gs.

Proof: Let Fy = {0,1,w,w?} be the subfield of F of order 4.
1) Let Ny = N; = (m = o0). Let (m = 0) € G; NG,. Let (0,0) and (1,1) € G).
Therefore
Gy = {(m = 00),(m = 0),(0,0),(1,1), (w,w?), (w?,w)}
and C; : Y? = XZ. By theorem 2.6, G; = G + (a, b) for some a,b € Fy. Therefore

Gz = {(m = oo),(m = 0),(a,b),(a + 1,b),(a,b+1),(a + 1,6+ 1)}
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and Cp:Y? 4+ (a+ b%)Z% + XZ = 0. Therefore Hy N Hy, = G, N G,

2) Let Ny = (m = oc) and N3 = (m = 0). Pick P € G2\ {(m = o0)}. Let (0,0) and
N; be the points of G; on the line N} P. Let (1,1) and N5 be the points of Gy on the
line NoP. Thus P = (0,1) and

Gy = {{m = oc),(m = 0),(0,0), (1, 1), (w,w?), (w?,w)}.

There are exactly 4 hyperconics in the PG(2, 4)-subplane of 7 through G) that meets
G only in the points (m = oc) and (m = .), and only one of these contains P by
theorem 3.7. Thus

G; = {(m = o0),(m = 0),(0,1),(1,0), (w,w), (w?,?)}.

Thus C) : Y2 = XZ. Now C2 : aX? +bY?2 4+ cZ2 +dXY +eXZ + fYZ = 0, for
some a,b,...,f € Fy. Let p(t) = at* + dt3 + (b+ e)t? + ft + c. By proposition 4.34
(Y2LY)eCi1NCa\lo iff p(¥Y) = 0. Now f = 1,d = 0, e = 0 since N2 = (m = 0),
b =0 since (m = o0) € G2, b+c+ f = 0 since (0,1) € G2, and a+c+e =0
since (1,0) € G2. Thusc=1and a = 1. Therefore C2 : X2 + 22 +YZ = 0 and
p(t) = t4 + ¢t + 1. Thus p(t) has 4 roots if F contains a subfield of order 16; p(t) has
no roots otherwise. Therefore, by proposition 4.34, |H) N Ha| = 6 if F contains a
subfield of order 16; otherwise Hy N H, = Gy N G;.

3) In this case Ny, N2 ¢ G1 N G;. Let Gy NG, = {A, P2}.

Suppose first that NyN, P, P; is a quadrangle.

Let Ny = (m = &), Py = (m = 0), and P, = (0,0). Let N} and (1,1) be the points
of Gy on N3Nz so that Nz ison X = 1. Thus

Gi = {(m = o0),(m = 0),(0,0),(1,1), (w,w?), (w?.w)}.

Therefore Cy : Y2 = XZ. Now C2 : aX? + Y2 4+ cZ2 +dXY +eXZ + fYZ = 0, for
some a,b,...,f € Fy. Let p(t) = at* + dt® + (b + e)t? + ft + c. By proposition 4.34,
(Y2,Y) € CiNCa\lx iff Y is a root of p(t). Now a = 0 since (m = 0) € G2, c = 0 since
(0,0)€ G2,andd = f =1since Nyison X = 1. Thus C3 : Y2+ XY +eXZ+YZ =
0,and p(¢) = t34 (b+e)t?> +t = t{t>+ (b+e)t+1. Let p1(t) = t? + (b+e¢)t + 1. Notice
that p1(0) = 1 #0, py(1) = b+e # 0since (1,1) ¢ Ca, pi(w) =w? + (b+e)w+1 #0
since (w,w?) ¢ C2, and py(«?) = w + (b+ €)w?® + 1 # 0 since (w?,w) ¢ C2. Thus p(t)
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has one root in Fy. p(t) has exactly 3 roots in F if Fyg is a subfield of F and exactly
one root otherwise. Therefore, by proposition 1.34, if F contains a subfield of order
16 then |H; N H| = 4: otherwise, Hy N Hy = G, N G>.
Now suppose N, N2 and P, are collinear.
Let Ny = (m = o), P, = (m = 0) and P, = (0,0). Let (1.1) be on Gy also.
Therefore G; = {(m = x),(m = 0),(0,0).(1,1), (w.w?), (w*,w)}. Now N,. N,
and P, are collinear. Therefore N2 is on lyx. Therefore C; : Y2 = XZ. Now
C::aX? +bY? 4+ cZ® + dXY + eXZ + fYZ = 0 for some a,b,... ,f € Fy. Let
p(t) = at* + dt® + (b+ e)t? + ft + c. By proposition 4.34, (Y2.Y) € C; N 2\ I
iff Y is a root of p(t). Now a = 0 since (m = 0) € G2, ¢ = 0 since (0,0) € G;,
and d = 0, f = 1 since Nz is on los. Thus C2 : bY?2 4+ ¢XZ + YZ = 0, and
p(t) = (b+e)t® +t = t((b+e)t+1). Now b+e+1 # 0 since (0,0) ¢ Ca, (bt e)w # P
since (w,w?) ¢ C3, and (b + €)w? # w since (w?,w) ¢ Ca. Therefore b = ¢. Thus
p(t) = t. Therefore, by proposition 4.34, H; N Hy = G, N G>.

4) Suppose N} € G1 NGy, but N2 ¢ G; NG,. Let Ny = (m = o0). Let P = (m = 0)
be the other point of G; N G,. N1 N; meets Gy in Ny and one other point, (0,0),
say. PN; meets G in P and one other point, (1,1), say. Thus N; = (0,1) and
G1 = {(m = o0),(m = 0),(0,0),(1,1), (w,w?), (w?,«)}. Therefore C; : Y? = X Z.
There are 4 hyperconics in the PG(2,4)-subplane through G; that meet G, only in
(m = oo) and (m = 0) by theorem 3.7. The one that also passes through (0,1) is
G2 = {{m = 00),(m =0),(0,1),(1,0), (w,w),(w?,w?)}. Now C; : a X2 +bY2 + 2% ¢
dXY +eXZ+fYZ = 0,forsomea,b,...,f € F. Let p(t) = at*+dt3+(b+e)t*+ ft +c.
By proposition 4.34, (Y2,Y) € C;NCa \lo if p(Y) = 0. Now f = 0, ¢ = 1, and
d = 1 since N = (0,1), b = 0 since (m = o0) € G3, a = 0 since (m = 0) € G,
and ¢ = 1 since (1,0) € G;. Thus C; : Z2 + XY + XZ =0 and p(t) = 3 + t? + 1.
Thus p(t) has 3 roots if F contains a subfield of order 8; otherwise, p(t) has no roots.
Therefore, by proposition 4.34, if £ contains a subfield of order 8 then |Hy N ;] = 5;
otherwise HiN H, =G 1NG,. O

Theorem 5.8. Consider # = PG(2, F), where F is a field containing a subfield of
order 4. Let Hy = C U {N1} and Hj = C, U {N;} be hyperconics in x. Let (G and
G2 be coplanar hexagons satisfying Gy C Hy, G2 C H;. Suppose Gy NGy, = 0. If F
contain3 a subfield of order 256, then |H, N H,| = 4; otherwise, Hy N Hy = 0.
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Proof: Let Fy = {0,1,w,w’} be the subfield of F of order 4.

Given hyperconics Gy, G2, D, and D; in PG(2,4) such that G, N G; = @ and
D, N D, = @, and given points P, € Gy, P; € G2, @, € D, and Q3 € D, there is a
unique element ¢ of PG(3,4) such that ¢(P) = @y, ¢(P2) = Q; and also ¢(G1) = D,
and ¢(Gy) = D; (see [Brouwer 1]).

Therefore, without loss of generality we can choose

Gl = {(m = w)o (m = D)e (09 0)9(1, 1)9 (‘*’9“’2)’ (“’29“’)}
Gr = {(m =1),(m = wz)a(oo 1), (w,w), (w, 1), (va)}

and also N} = (m = o) and N = (m = 1). Therefore C; : Y2 = XZ and
Cy: X2 +w¥Y?4+w?Z% + XZ =0. Let p(t) = Wt + w?t? + t + w?. Therefore, by
proposition 4.34, (Y2,YV) € C1 N\l iff p(Y) = 0. Let py(t) = t4 + 2 + wt + 1.
Therefore p(t) = w?p(?).

We now establish the following claim.

Claim: py(t) is irreducible over Fy.

Differentiating py(t) yields w, which is not 0. Thus p;(¢) has no multiple roots. Also,

2

none of 0, 1, w, or w* is a root of p;(t). Suppuse, by-way of contradiction, that pl({)’

factors as a product of quadratics.

e rwt+1 =2+t +72)(t + 93t + %), for some 11,...,74 € {0,1,w,u?)

=+ (m+1) + (m+u+11)E + (mn+ nnit+ rn.

Thus y; = 93. Therefore 72 + 74 = 1 + 9%, (72 + ) = k and v274 = 1. Now 72,
v¢ # 0,1 since 1 (72 + 7¢) = k and y29¢ = 1. Therefore 72,y € {w,uw?}. We also
know y294 = 1. Thus 94 = 7;". Therefore 72 + 74 = 1. Therefore 43 = w. Therefore
l = v2 4% =1 +w? =w, yielding a contradiction.

This establishes the claim.

Thus p(t) is irreducible over {0, 1,w, w?}. Therefore, by proposition 4.34, if F contains
a subfield of order 256, then |H; N H| = 4; otherwise H N H; =9. O

The previous 3 theorems combine to give this main result.

Theorem 5.3. Consider # = PG(2, F), where F is a field containing a subfield of
order 4. Let Hy = Cy U {N,} and Hz = C3 U { N2} be hyperconics in x. Let Gy and




s

G2 be coplanar hexagons satisfying Gy C Hy, G2 C Hy. If |Gy NG| is even and F
does not contain a subfield of order 8. then |Hy N H,| is even.

a
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Section $.2. ‘Lifting’ hyperconics in PG(2.4) that meet in an odd number

of points.

Theorem 5.7. Consider r = PG(2, F), where F is a field containing a subfield of
order 4. Let Hy = Cy U {N,} and H; = C2 U {N;} be hyperconics in x. Let Gy and
G, be coplanar hexagons satisfying Gy C H,, G2 C Hp. If |Gy N G| is odd and F
does not contain a subfield of order 8, then |H, N H3| is odd.

We will prove this via 2 separate theorems, theorems 5.8 and 5.9, depending on
whether |Gy NGa}is 1 or 3.

Theorem 5.8. Consider x = PG(2, F), where F is a field containing a subfield of
order 4. Let Hy = C1 U {N,} and H; = Ca U {N2} be hyperconics in x. Let Gy and
G, be coplanar hexagons satisfying Gy C Hy, G2 C Hz. Suppose |Gy N Gz| = 1.

1) Suppose Ny = N,, i.e., suppose C, and C; have common tangents. If F contains
a subfield of order 186, then |Hy N Hy| = 3; otherwise, Hy N Hy = Gy N G.

2) Suppaose exactly one of Ny and N3 is on both Gy and Ga. If F contains a subfield
of order 256, then |Hy N Hy| = 3; otherwise Hy N Hz = G1 N G3.

3) Suppose Ny and N> are not the common point of Gy and G2, and further that this
common point is on a common tangent to both C) and C3, i.e., the line Ny N2 passes
through Gy NGs. If F contains a subfield of order 16, then |Hy, N H2| = 3; otherwise,
HinH, =G NG,.

4) Suppose Ny and N are not the common point of Gy and G2, and further that
this common point is not on a tangent to both Cy and C3, i.e., the line Ny N, does
not pass through Gy N G». If F contains a subfield of order 8, then |Hy N Ha| = 4;
otherwise, Hy N Hy = G1 N G;,.

We will prove this via 4 separate lemmas, lemmas 5.11 through 5.14. Also, we need

to look at coplanar hexagons that meet in exactly 3 points.

Theorem 5.9. Consider * = PG(2, F), where F is a field containing a subfield of
order 4. Let Hy = Cy U {N:} and Hz = C2 U {N;} be hyperconics in x. Let Gy and
G, be coplanar hexagons satisfying Gy C Hy, G2 C H;. Suppose |G1 N G2| = 3.

1) If Ny = N3 then Hy N Hy = Gy NGs.

2) Suppose GiNG2 = {N1, N3, P}. If F contains a subfield of order 8, then |HiNH>| =




6: otherwise Hy N H> = G, N G,.

3) Suppose exactly one of Ny and V3 is on both G) and Ga. If F contains a subfield
of order 16, then |H) N H;| = 5; otherwise, Hy N Hz = G, N G).

4) Suppose N) and N; ¢ Gy N G,. Exactly one of the points of Gy} N (7; must be on
the common tangent to Cy and Cy. Thus Hy N H, = Gy N Gs.

We will also prove this via 4 separate lemmas, lemmas 5.15 through 5.18.

First, we need to know what two hyperconics in PG(2,4) look like when they meet
in a single point.

In PG(2,4), recall that two hyperconics are equivalent if they meet in an even number
of points. This equivalence relation has 3 equivalence classes. Thus, given a fixed
hyperconic G in PG(2,4), there are 6 hyperconics from each of the 2 equivalence
classes that do not contain G that intersect G only in the point P (see {Lander
1]). If we fix the hyperconic G and a point P on G, and pick an equivalence class
not containing 7, then we can consider the 6 hyperconics D;,...,Dg such that
IGNDjl=1,i=1,...,6.

Proposition 5.10. Let = = PG(2,4). Let

G = {(m = oc),(m = 0),(0,0), (1, 1), (w,w?), (w*,w)},

let

Dy = {(m = o0),(m = 1),(0,1),(1,w?),(w, 1), (W, 0*)}
Dz = {(m = 00),(m = 1),(0,w),(1,0). (w,w), (*,0)}
D3 = {(m = ),(m = w),(0,1),(1,0), (w,0), («*, 1)}

Dy = {(m = <), (m = w),(0,°), (1,w), (w,w), (w?,w’)}
D5 = {(m = %0),(m = «*),(0,u*),(1,w?), (w,0),(w?,0)}
Ds = {(m = o0), (m = &?),(0,w), (Lw), (w, 1), (*,1)}

and let




Ey = {(m = x},(m = 1),(0,1),(1,w), (w,w). (w?, 1)}

E; = {(m = oc).(m = 1),(0,w?),(1,0), (w,0), (w?,w?)}
E; = {(m = 00),(m = w),(0,w), (1,w), (w,0), (w?,0)}

Ey = {{m = 00),(m = «),(0,w?),(1,w?), (w,1),(w?, 1)}
Es = {(m = o), (m = w?),(0,w), (1,w?), (w,w), (w?,w?)}

E¢ = {(m = o0),(m = “2)9 (0,1),(1,0), (w, 1), (“’zao)}'

Dy,... ,Dg and E,,. .. ,Eg are hyperconics in = that meet the hyperconic G only in
the point (m = oo). Dy,... ,De¢ are in the same equivalence class, E\, ... , Eg are in
a different equivalence class, and G is in the remaining equivalence class. Moreover,

Dy,... ,Dg and E,, ... , Eg are the only hyperconics intersecting G only in (m = oo).

Proof: Given a hyperconic, and a fixed point on that hyperconic, there are exactly 6
hyperconics in each of the other 2 equivalence classes that meet the given hyperconic

only in the one fixed point. 0O
We now look at four cases where coplanar hexagon intersect in exactly one point.

Lemma 8.11. Consider * = PG(2, F), where F is a field containing a subfield
{0,1,w,w?)} of order 4. Let Hy = Cy U {N;} and H,; = C; U {N;} be hyperconics
in x. Let Gy and G, be coplanar hexagons satisfying Gy C Hy, G2 C H2. Suppose
() and G, have only one point in common, and that this point is the nucleus of
both of the conics Cy and C,. If F does not contain a subfield of order 16, then
Hy N Hz = Gy NGy; otherwise, F contains a subfield of order 16, and |Hy N H,| = 3.

Proof: Let Fy = {0,1,w,w?} be the subfield of order 4 of F. Let N} = (m = o0). Let
Gy = {(m = oo),(m = 0),(0,0),(1,1), (w,w?), (w? w)}. Thus Cy : Y? = XZ. Then
there are exactly 12 choices for G>. Either G2 must be one of Dy,... , Dg, or G2 must
be one of £),... ,Es where Dy,... ,Dg and Ey,... , Eg were defined in proposition
5.10. We will only consider Dy,... ,Dg. Ey,... , Eg can similarly be considered.
Now C2:aX? +bY2 +¢Z2 +dXY +eXZ + fYZ = 0 for some a,b,... ,f € Fq. Let
p(t) = at + dt? + (b + e)t2 + ft + c. By proposition 4.34, (Y2,Y) € C1 N2 \ I iff
pP(Y)=0. Nowd = f =0, and e = 1 since N = (m = o0). Thus

plt)=at' + (b+ 1) +c= (ab? + (b 4+ 1)t + )2
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Case 1): G; = Dy.
Now a = b since (m = 0) € G3. b= c since (0,1) € G2, and a + wb+ ¢ + 1 = 0 since
(1Lu?)€Gr2. Thusa=b=c=u.%d= J=0,and e =1. Let py(t) = t* + wt + 1.
Thus p(t) = (wpi(t))?. pi(t) has no roots in Fy and exactly 2 roots iff F' contains a
subfield of order 16.
Case 2): Gy = D,.
Now a = b since (m = 0) € Gy, a + ¢ = 1 since (1,0) € G,. and ks? = ¢ since
Ow)€G:. Thusa=b=uw? c=w,d=f=0,and e = 1. Let p2(t) = 2 + wt + w.
Thus p(t) = (wp2(t))®. p2(t) has no roots in F; and exactly 2 roots iff F' contains a
subfield of order 16.
Case 3): G2 = Ds.
Now @ = w?b since (m = w) € Gy, b = csince (0,1) € G, and a + ¢ = | since
(1,0)€G2. Thusa=w,b=c=uw?,d=f=0,and e = 1. Let palt) = 2+t + Wl
Then p(t) = (w?ps(t))>. ps(t) has no roots in Fy and exactly 2 roots iffl F' contains a
subfield of order 16.
Case 4): G2 = D,.
a = w?b since (m = w) € Gs, wb = ¢ since (0,w?) € Gz, and a + w?b + ¢ = | since
(Lw)€G,. Thusa=w,b=uw?, c=1,d=f=0,and e = 1. Let pt) =+t 4w
Then p(t) = (w?pa(t))2. pa(t) contains no roots in Fy and exactly 2 roots iff F contains
a subfield of order 16.
Case 5): Gz = D5.
a = wb since (m = w?) € Gz, wb = ¢ since (0,w?) € Gz, and a + wb + ¢ = 1 since
(1,?)€G,. Thusa=w,b=w? c=1,d= f=0,ande=1 Letps{t) =t + 1 +w.
Then p(t) = («w?ps(t))2. ps(t) has no roots in ¥ and exactly 2 roots iff F' contains a
subfield of order 16.
Case 6): G, = Dg.
a = wb since (m = w?) € Gy, Wb+ ¢ = 0 since (0,w?) € G, and @ + w?b+ ¢ = |
since (1,w) € G2. Let pg(t) = 2 +w?t 4+ 1. Then p(t) = (ps(t))®. ps(t) has no roots
in Fy and exactly 2 roots iff F contains a subfield of order 16.
Therefore, by proposition 4.34, if F contains a subfield of order 16, then |HyNH,| = 3;
otherwise HHNH, =Gy NG,. O

Lemma 8.12. Consider # = PG(2, F), where F is a field containing a subfield of



101

order 4. Let Hy = Cy U { N1} and Hy = C2 U {.V2} be hyperconics in n. Let GG, and
G2 be coplanar hexagons satisfying Gy C Hy, G; C Hz. Suppose Gy NG, = { N}
but N; ¢ G,. If F contains a subfield of order 256, then |Hy N H3| = 5; otherwise
HinH =Gy NG,

Proof: Let Fy = {0,1,w.w?} be the subfield of F of order 4. Let N} = (m =
o). Let (m = 0) be the other point of G, on the line NyN;. Let Gy = {(m =
0o0),(m = 0),(0,0),(1,1),(w,w?), (w? w)}. Therefore C; : Y2 = XZ. Then there
are exactly 12 choices for G;. G2 must be one of Dy,... ,Lg or one of E;,. .., Eg
defined in proposition 5.10. We will consider Dy,...,Dg; E,,...,Eg can similarly
be considered. Now C; : aX? 4+ bY? 4 ¢Z? + dXY + eXZ + fYZ = 0 for some
a,b,....f €Fy. Let p(t) = at' + dt® + (b + )t + ft + c. Therefore, by proposition
4.3, (YY) €C1NC2\lo iff p(Y) = 0. b= 0 since (m = o0) € Cz, and d = 0 and
f = 1 since the nucleus of C3 is on leo. Thus C : a X2 4+ ¢Z2 +eXZ+YZ =0 and
pit)y=at* + et +t+ec.

Case 1) G; = Dy.

e =1since N2 =(m =1),c = 1since (0,1) € Gz, anda+c+e+w? =0
since (1,uw?) € G2. Thusa =uw?, b=0,e=1,d=0,e=1,and f = 1. Let
Pi(t) = t* + wi? + wt + w. Thus p(t) = wip(t).

Case 2) G = D».

e =1since N2 = (m = 1), a+c+e = 0since (1,0) € G2, and ¢ = w since (0,w) € Gs.
Thusa=w? b=0,c=wd=0,e=1,and f = 1. Let pp(t) = t* + wt® + wt + w2
Thus p(t) = «?pa(t).

Case 3) Gy = Ds.

e = w since N2 = (m = w), ¢ = 1 since (0,1) € G2, and a+c+e¢ = 0 since (1,0) € G,.
Thuse=w?, b=0,c=1,d=0,e=w.and f = 1. Let p3(t) = t* + w?t? + wt + 1.
Thus p(t) = w?p3(t).

Case 4) G; = Dq.

e = wsince N = (m = w), ¢ = w? since (0,w?) € Gz, and a+c+e+w =20
since (Lw) € G. Thusa=w?, b=0,c=w?, d=0,e=w,and f = 1. Let
pa(t) = t4 + W% 4+ wt + 1. Thus p(t) = wPpy(2).

Case 5) G = Ds.

e = w¥ since N2 = (m = w?), ¢ = w? since (0,w®) € G, and a+c+e+w? =0
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since (1,w®) € G2. Thusa=uw? b=0,c=w’,d=0,¢=u’ and f = 1. Let
ps(t) = t* + 12 + wt + 1. Thus p(t) = ?ps(t).

Case 6) G2 = Dg.

e = w?since Ny = (m = w?), ¢ = w? since (O,w) € Ga.anda+c+e+w =20
since (1,w) € G2. Thusa=w?, b=0,c=w,d=0,¢e =w* and f = 1. Let
pe(t) = t* + 2 4+ wt + w2, Thus p(t) = wips(t).

We now establish the following claim.

Claim 1: Either all or none of py(t),... ,pe(t) is irreducible over {0, 1,w,w?}. .
v is a root of py(t) iff v+ 1 is a root of pp(¢). v is a root of p3(t) iff v + w is a root
of pe(t). v is a root of ps(t) iff v + 1 is a root of pg(t). v is a root of py(t) iff wyis a
root of pi(t). v is a root of pg(t) iff w7 is a root of py(t).

This establishes claim 1.

We now establish claim 2.

Claim 2: p;(t) is irreducible over {0,1,w,w?}.
There are no multiple roots (differentiating py(t) yields w).
Suppose

pi(t) =+t +1)Nt* + vt + %)
=t (M +1)+ (u+ 12+ 111 + (i + 2Hit+ 2.

Thus 41 = 73. Thus 11 + %4 = w, 7274 = w. These equations have no solutions in
{0,1,w,w?}.

This establishes claim 2.

Thus p(t) is irreducible in all 6 cases. Therefore, by proposition 4.34, if F' contains a
subfield of order 256, then |H; N H;| = 5; otherwise HiNH; = GiyNG,. O

Lemma 5.13. Consider * = PG(2, F), where F is a field containing a subfield of
order 4. Let Hy = C; U {N1} and H, = C; U {N;} be hyperconics in x. Let G and
G, be coplanar hexagons satisfying Gy C Hy, G2 C Ha. Suppose |G1 NG2| = 1 but
N; and N; are not the common point of Gy and G;. Suppose further that there is
a common tangent to both Cy and C; through this point, i.e., the line Ny N, passes
through Gy N Gs. If F contains a subfield of order 16, then |Hy N Hy| = 3; otherwise,
HinH; =Gy NG,
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Proof: Let Fy = {0,1,w,w?} be the subfield of order 4 of F. Let G; NGy = {(m =
oc)}. Let Ny = (m = 0). Let G = {{m = o),(m = 0),(0,0),(1,1), (w,w?), (w?,w)}.
Thus Cy : Y2 = XZ. There are exactly 12 choices for G,. G2 must be one of
D,,...,Dg or one of E,,... , Eg defined in proposition 5.10. Now Cs : a X2 + bY? +
cZ? +dXY +eXZ + fYZ =0 for some a,b, ... ,f € Fy. Let g(t) = bt +dt® + (a +
)t? + et + c. By a slight modification of proposition 4.34, (X, X2?) € C; N C; \ loo iff
9(X) = 0. Now b = 0 since (m = 00) € C3,and d = 0, f = 1 since the nucleus of C;
is on ly,. Thus C; : aX2? + cZ% 4+ ¢XZ + YZ = 0 is identical to the conic in lemma
5.12 for corresponding cases. However, C) is different here. C; : X? = YZ. Thus we
are using the polynomial

gt)y=bt'+dt’ + (a+ )t +et+c=(a+ )P +et+c

instead of p(t).

Case 1) G = Dy. Thus, by lemma 5.12, ¢(t) = wt® + t + 1.

Case 2) G = D;. q(t) = wt® + t + w.

Case 3) G = Dj. q(t) = w2 + wt + 1.

Case 4) G = Dy. q(t) = wt? 4+ wit + 2.

Case 5) G = Ds. q(t) = wt? + Wt + 2.

Case 6) G = Dg. q(¢) = wt® + WPt +w.

In each of these cases, |H; N H3| = 3 iff F contains a subfield of order 16; and
Hy N Hy = Gy NG, iff F does not contain a subfield of order 16. O

Lemma 5.14. Suppose x = PG(2, F), where F is a field containing a subfield of
order 4. Let Hy = Cy U {N,} and H; = C; U {N,} be hyperconics in x. Let Gy
and G be coplanar hexagons satisfying G, C Hy, G3 C H,. Suppose |G; N Ga| = 1
but Ny and N, are not the common point of G; and G;. Suppose further that this
comimnon point is not on a tangent to both Cy and C,, i.e., the line Ny N; does not pass
through G N G;. If F contains a subfield of order 8, then |Hy N H;| = 4; otherwise,
HinNnH; =G NG;,.

Proof: We can choose coordinates so there are only 2 possibilities. We will choose
coordinates for the following quadrangle in Gy: the nucleus Ny of Cj; the common
point P of G1 and Gy; the point of Gy \ {N;} on the line NyN;; and the point of
G1\ G; on the line through N; and P. In this way, we know the coordinates of C;,
the nucleus N; of C; and P € C2. Thus, there will only be 2 choices for C;.
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Let Ny = (m = 0). Let (m = 00) = G1 N Ga. Let {(0,0), N} = G, N (N, N2). Let
{(1,1),(m = 00)} = G) N (m = 00)N;. Therefore Ny = (X =1Dn(Y =0) =(1,0).
Thus Gy = {(m = oo),(m = 0),(0,0), (1,1), (w,w?), (w?,w)}. Therefore Cy : X2 =
YZ. Now C2:aX? +bY2 +¢cZ24+dXY +eXZ + fY Z = 0, for some ab,....fel.
Let g(t) = bt* + dt® + (a + f)t® + et + c. By a slight modification of proposition 4.34,
(X, X%) e C1NCy \ Il iff ¢(X) =0. Now d = f =1, e = 0since N2 = (1,0), and
b = 0 since (m = oo) is on C;. Thus C; : aX? +¢Z2 4+ XY + YZ =0 and ¢(t) =
t3+(a+1)t?+c. Since N3 = (1,0), only 2 of the 6 choices for G2 amongst D,,... ,Ds
defined in proposition 5.10 are possible (E),... , Eg can be similarly considered). G
must be either D, or Dj.
If G2 = D3 then a = 1 since (m = 1) € C2, and ¢ = w since (0,u’) € C2. Thus
q(t) = 3 + w.
If G2 = D; then @ = w since (m = w) € C;, and ¢ = | since (0,1) € C2. Thus
q(t) =3 + w22 +1.
In both cases, |[HiNH3| = 4 iff F contains a subfield of order 8; and H;NH; = G1NG;
iff F does not contain a sui)ﬁeld of order 8. O

The previous 4 lemmas prove the following theorem.

Theorem 5.8. Consider * = PG(2, F), where F is a field containing a subfield of
order 4. Let Hy = C1 U {N1} and Hy = C3 U {N2} be hyperconics in x. Let Gy and
G2 be coplanar hexagons satisfying Gy C Hy, G2 C H,. Suppose |Gy N Gz| = 1.

1) Suppose Ny = Nz. If F contains a subfield of order 16, then |H, 0 H,| = 3;
otherwise, Hy N H; = Gy N G;.

2) Suppose exactly one of Ny and N, is on both G, and G;. If F contains a subfield
of order 256, then |Hy N H3| = 5; otherwise Hy N H, = Gy N G5

3) Suppose Ny and N; are not the common point of Gy and G; and further that this
common point is on a common tangent to both Cy and C3, i.e., the line Ny N; passes
through Gy NG;. If F contains a subfield of order 16, then |Hy N H;| = 3; otherwise,
HinH =GiNG,.

4) Suppose Ny and N; are not the common point of Gy and G2 and further that this
common point is not a tangent to both Cy and C», i.e., the line Ny N3 does not pass
through G N G;. If F contains a subfield of order 8, then |Hy N Ha2| = 4; otherwise,
Hin H; =Gy NG;.
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(]

We now consider the 4 cases where 2 coplanar hexagons intersect in exactly 3 points.

Lemma 5.15. Consider * = PG(2,F) where F is a field containing a subfield of
order 4. Let Hy = C1 U {N:}, H2» = C2 U {N;} be hyperconics in . Let G, and
G2 be coplanar hexagons satisfying Gy C Hy, G2 C Hz. Suppose |Gy NG| = 3 and
Ny = N2 € Gy NGa. Then HyN Hy = Gy NG,.

Proof: Let By = {0, 1,w,w?} be the subfield of order 4 of F. Let N} = N2 = (m = o0).
Let (m = 0) and (0,0) be the other 2 points of G) N G2. Let Gy = {(m = 00),(m =
0),(0,0),(1,1), (w,w?), (w?,w)}. Thus C; : Y2 = XZ. Now C2 : a X% + bY2 4+ cZ% +
dXY +eXZ+fYZ = 0forsomea,b,... ,f € F. Let p(t) = at*+dt3 +(b+e)t2+ ft+c.
By proposition 4.34, (Y2,Y) € CiNCa\ il if p(Y) =0. Nowd = f=0and e =1
since N2 = (m = o0}, a = 0 since (m = 0) € C2, and ¢ = 0 since (0,0) € C.
Thus C; : bY2 + XZ = 0 and p(t) = (b + 1)t2. Therefore, by proposition 4.34,
HiNnH=GiNnG,. O

Lemma 5.16. Consider * = PG(2,F) where F is a field containing a subfield of
order 4. Let H; = C) U (N}, H, = C2 U {N;} be hyperconics in x. Let Gy and
G2 be coplanar hexagons satisfying Gy C Hy, G2 C H,. Suppose |Gy N G2| = 3 and
Ni, N2 € Gy N Gs. If F contains a subfield of order 8, then |Hy N H3| = 6; otherwise
HinH, =Gy NGs.

Proof: Let Fy = {0,1,w, wz} be the subfield of order 4 of F. Let N; = (m = o0) and
N2 = (m = 0). Let the remaining point of Gy N G2 be (0,0). Suppose (1,1) € G.
Therzfore Gy = {(m = oo),(m = 0),(0,0),(1,1), (w,w?), (w?,w)}. Thus Cy : Y? =
XZ. Now C : aX?2 4+ bY2+cZ2+dXY +eXZ + fYZ = 0 for some a,b,... ,f € Fy.
Let p(t) = at* +dt® + (b+e)t? + ft + c. By proposition 4.34, (Y2,Y) € C1NC2\ lo iff
p(Y)=0. Nowd =¢ =0, and f = 1 since N; = (m = 0), b = 0 since (m = o) € 3,
and c = 0 since (0,0) € C;. Thus C3 : aX?+YZ =0, p(t) = at*+t = t(at®+1). Also
a # 0,1 since C; is non-degenerate and (1,1) is not in C;. Therefore at® + 1 contains
no roots in the subfield {0,1,w,w?} of F. Thus at® + 1 has 3 solutions in F if F
contains a subfield of order 8 and no solutions otherwise. Thus, by proposition 4.34,
|Hy N Hz| = 6 if F contains a subfield of order 8; otherwise Hi N H, = G1NG2. O

Lemma 8.17. Consider x = PG(2, F) where F is a field containing a subfield of
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order 4. Let Hy = C; U {N}, Hy = C U { N2} be hyperconics in x. Let Gy and
Gy be coplanar hexagons satisfying G, C Hy, G2 C Hz. Suppose |Gy NGz = 3
and N} € G1 NG, but N2 ¢ Gy NGz. If F contains a subfield of order 16, then
|Hy N Hy| = 5; otherwise Hy N Hy = Gy N Ga.

Proof: Let Fy = {0,1,w,w?} be the subfield of order 4 of F. Let N} = (m = o0).
Let the other 2 pcints of Gy NG be (m = 0) and (0,0). Let Gy = {(m = o0),(m =
0),(0,0),(1,1), (w,w?), (w?,w)}. Thus Cy : Y2 = XZ. Now Cz : aX? + Y2 +c2% +
dXY +eXZ + fYZ =0, for some a,b,...,f € Fy. Let p(t) = at* +dt3 + (b+e)t* +
ft 4 c. By proposition 4.34, (Y2,Y) € C; NC2\ lw iff p(Y) = 0. Now b = 0 since
(m = 00) € C3, a = 0 since (m = 0) € C2, ¢ = 0 since (0,0) € C2, and d = 1 since
N2¢lo. Thus C2: XY +eXZ+ fYZ =0and p(t) = t3 +et? + ft = t(t* + et + f).
Now (m = o0) and (0,0) are on X = 0 and C3. Thus (0,1) ¢ C>. Thus f # 0. Also
(m = 0) and (0,0) are on Y = 0 and C2. Thus (1,0) ¢ Cz. Therefoie e # 0. Also,
14 ew+ fw? # 0 since (w?,w) € C)\Cs, and 1 +ew? + fw # 0 since (w,w?) € C1\Ca.
Therefore t2+et+ f has 2 sqlutions in F iff F contains a subfield of order 16; otherwise,
t?+et+ f has no solutions in F. Therefore, by proposition 4.34, if F contains a subfield
of order 16, then |Hy N H3| = 5; otherwise HyNHy = G1 NG,;. O

Lemma 5.18. Consider x = PG(2, F) where F is a field containing a subfield of
order 4. Let Hy = C, U {M}, H; = C3 U {N;} be hyperconics in x. Let G, and
G, be coplanar hexagons satisfying Gy C Hy, G2 C Ha. If |GiNG;| = 3 and
N, N2 ¢ G1 NG, then HyN Hy = Gy NGs.

Proof: Let Fy = {0,1,w,w?} be the subfield of order 4 of F. Let N} = (m = o0). Let
{(m = 0),(0,0),(1,1)} = G1 N G;. Thus

Gy = {(m = ),(m = 0),(0,0),(1,1), (w,o?), (w?,w)}.

Therefore Cy : Y2 = XZ. Now C; : aX? + bY? + ¢Z? + dXY + eXZ + fYZ = 0,
for some a,b,...,f € Fy. Let p(t) = at® + dt® + (b + ¢)t? + ft + c. By proposition
434, (Y2,Y) € CiNC2\ I iff p(Y) = 0. Now a = 0 since (m = 0) € Cy,
¢ = 0 since (0,0) € Cz, and a + b+ --- + f = 0 since (1,1) € C;. Therefore
Cz:0Y?+dXY +eXZ+fYZ = 0and p(t) = d3 +(b+e) + ft = t(dt? +(b+e)t + f)
and b+ d+ e+ f = 0. Note that the line Ny Ny meets exactly one of the 3 points on
both G; and G3.
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Suppose first that (m = 0) is on NyN2. Thus N2 is on . Therefore f = 1 and
d = 0. Therefore C2 : bY? + (1 + b)XZ +YZ = 0 and p(t) = t(t + 1). Thus
CiNnCy=GiNG,y.

Suppose next that (0,0) is on Ny N;. Therefore Nz is on X = 0. Therefore f = 0 and
d=1and thus0 = b+d+e+ f = b+e+1. Therefore Cy : bY?+ XY +eXZ = 0 and
pt) =2+ (b+e)t? =t3(t+ (b+e)) and b+ e = 1. Therefore C; NCz = G; N Ga.
Lastly, suppose that (1,1) is on NyN;. Therefore N3 ison X = 1. Therefore f =1
and d =1 and thus 0 = b+d+e+f = b+e. Therefore Cy : bY?+ XY +eXZ+YZ =0
and p(t) = t3 + t = t(t + 1)®. Therefore C; NC2 = G; NG,.

Therefore, by proposition 4.34, N H; =G1NG;. O

The previous 4 lemmas prove the following theorem:

Theorem 5.9. Consider r = PG(2, F), where F is a field containing a subfield of
order 4. Let Hy = Cy U {N;} and Hy = C U { N>} be hyperconics in . Let G, and
G2 be coplanar hexagons satisfying Gy C Hy, G> C H,. Suppose |G N G3| = 3.
1)IfNy =Ny, then HiNn Hy = Gi1 NG,.

2) Suppose GiNG2 = {Ny, N2, P}. If F contains a subfield of order 8, then |HyNH,| =
6; otherwise Hy N Hy = G; N G,. :

3) Suppose exactly one of Ny and N: is on both G and G2. If F contains a subfield
of order 16, then |Hy N H3| = 5; otherwise, H, N Hy = G1 N G,.

4) Suppose Ny and N; ¢ Gy N G,2. Exactly one of the points of Gi N G2 must be on
the common tangent to Cy and C;. Then Hi N Hy = G, N G,.

(]

Theorems 5.8 and 5.9 combine to give us our main result:

Theorem 5.7. Consider x = PG(2, F), where F is a field containing a subfield of
order 4. Let Hy = Cy U {N,} and Hy = C2 U { N2} be hyperconics in x. Let G; and
G2 be coplanar hexagons satisfying G, C H;, G C H;. If |Gy N G;| is odd and F
does not contain a subfield of order 8, then |Hy N H,) is odd.

0
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Section 5.3. A generalization of the ‘even intersection’ property of a pro-
jective plane of order 4.

The main results of the previous 2 sections, theorems 5.3 and 5.7, combine to give us

the following results regarding a lifting of the even intersection property of hyperconics
in PG(2,4).

Theorem 5.19. Let * = PG(2, F), where F is a field containing a subfield of order 4
but containing no subfield of order 8. Given any 2 hyperconics, if there is a PG(2, 4)-
subplane intersecting each of the hyperconics in 6 points, i.e., a PG(2,4)-subplane
containing a hexagon from each hyperconic, then either both the 2 hyperconics inter-
sect evenly and the 2 hexagons intersect evenly; or, both hyperconics intersect in an

odd number of points, and both hexagons intersect in an odd number of points.
O

The following theorem is a generalization of the even intersection property of hyper-
conics in PG(2,4).

Theorem 5.20. Let x = PG(2, F), where F is a field containing a subfield of order 4
but containing no subfield of order 8. Given any subplane of x of order 4, each of the
168 hyperconics in the subplane are contained in exactly 6 hyperconics in x. These
168 - 6 hyperconics in x are distinct. Define a relation ~ on these hyperconics by
two hyperconics are related if they meet in an even number of points. Then ~ is an
equivalence relation, i.e., we have an extension of the ‘even intersection’ property of
the hyperconics in PG(2,4).

O




Appendix

In x = PG(2,q), ¢ = 2!, t even, where ¢ > 16, we have the following.

#pointsinr=¢>+q+1=#linesin~r
#points/line = ¢ + 1 = #lines/point

#hyperconics = ¢%(¢* — 1)

(¢ +q+1)(q® +q)g*(q> — 29 + 1)
(4)(3)(2)

#4-arcs =
#4-arcs
(¢)
(g+1)g(g—1)
(3)(2)

#triples/conic

()
#hyperconics/hexagon = 6

#PG(2,4)-subplanes = -#-*5%23.

#hexagons =

#triples/conic =

#hexagons/hyperconic =

In PG(2,4),

#hyperconics = 168
and #hyperconics/equivalence class = 56.

In a fixed equivalence class of the hyperconics in PG(2,4),

#hyperconics/pair of points = 4
#hyperconics/point = 16
#hyperconics skew to a line = 16
#hyperconics intersecting a line = 56 — 16 = 40
#hyperconics/3-arc = 1

2
#hyperconics skew to a given hyperconic = 56 — 46 = 10.

#hyperconics intersecting a fixed hyperconic =1 + 3 (6) = 46
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