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ABSTRACT

In this dissertation, five topics related to the process and prediction of forward
stepwise logistic regression are investigated.

Forward stepwise logistic regression is involved with selection and stopping
criteria. Scven selection criteria are used: the likelihood ratio statistic, Lawless and
Singhal (1978)’s statistic, the Wald statistic, the score statistic, P:duzzi, Hardy, and
Holford (1980)’s statistic, Lee and Koval's statistic (LK), and a sweep operator’s
statistic (SW). Five stopping criteria are used: x> test based 01 a fixed a level,
minimum value of ERR. minimum value of the Cp statistic (Hosmer, 1989),
minimum value of the Akaike information criterion (Akaike, 1974), and minimum

value of Schwarz’s criterion (Schwarz, 1978).

Appaient error rate (ARR) tends to underestimate true error rate (ERR). In our
study, estimated true error rate (ERR) is obtained by ERR = ARR + ®, where @ is
Efron (1986)’s parametric estimate of bias for ARR.

We use Monte Carlo simulation with both multivariate normal and multivari-
ate binary independent variables; we implement the simulation with SAS/IML pro-
grams. We then analyze the experimental design to see which factors of the distri-

bution of independent v ariables affect various outcomes.

As a result, we recommend the best a level for the x,,f,, clopping criterion.
Second, we compare the order of variables selected by different selection criteria.
Third, we investigate the effects of different structures of predictor variables on
ARR, @, and ERR. Fourth, we compare the sizes of subset models determined by
different stopping criteria. Finally, we compare the performances of selection and

stopping criteria in terms of ERR.
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CHAPTER 1
INTRODUCTION AND REVIEW OF THE LITERATURE

1.1 Introduction of the logistic regression model

Regression methods have played a major role in data analysis concemed with
describing the relationship between a response (outcome or dependent) variable
and one or more predictor (explanatory or independent) variables. It is often the
case that the response variable is dichotomous, taking on one of two possible
values. The logistic regression model is a standard method of analysis in this situa-
tion. For example, in the Framingham heart study Truett, Comfield, and Kannel
(1967) used the logistic regression model to provide a multivariate analysis of the
risk of coronary heart disease in Framingham. The traditional analytic method of a
multiple cross-classification quickly becomes impracticable as the number of vari-
ables to be investigated increases. The logistic regression model provides a more
powerful form of analysis than inspection of the results of the multiple cross-

classification.

Let Y be a dichotomous response variable and let X be a px1 vector of predic-
tor variables. The logistic model specifies that the probability of Y=1 on a set of

variables X = (X1.X3.....Xp) in the following way:

(X) = Pr(Y=1|X) (1.1.1)

1
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Then the logit transformation of Pr(Y=1|X) is defined as

prov=11% | _ [ Proy=11%
'°3[pr(Y=OIX)] log 1-Pr(Y=lIX)] (.12
p
=Bo+ LBX,-
1

This transformation has the desirable property of transforming the (0,1) inter-
val for rt(X) to (—eo,4+o0).

Although this model is formulated in terms of the analysis of cohort studies, it
may be applied directly to the analysis of case-control studies. Furthermore, the
interpretation of the model parameters is the same with exception of the intercept
for both study designs (see e.g. Cornfield, 1951; Farewell, 1979; Prentice and Pyke,
1979).

The general shape of the logistic function, which may be considered as a basic
model for dose-response relationships, is the S-shaped curve. The higher the
cholesterol for instance, the greater the incidence of coronary hearnt disease. In
addition to simply postulating a logistic dose-response relationship between a set of
variables and the probability of disease, several different assumptions about the

variables x;, . . ., X, in diseased and nondiseased populations have been shown to

lead to the logistic model. These include

1) Assumption of multivariate normality with equal covariance matrices

(Cornfield, Gordon, and Smith, 1961).
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2) Multivariate independent dichotomous variables (Anderson, 1972).

3) Discrete variables following a loglinear model with second and higher order

effects the same in each population (Birch, 1963).

4) A combination of 1) and 3).

There is, in general, no theoretical justification for the form (1.1.2). Many
other choices for a transformation of ®(X) are possibie, the most common being the
inverse normal cumulative distribution function, leading to the probit model. The
probit model, based on the probability integral trarsformation, has been commonly
used to represent dose-response relationships in biological assay (Finney, 1971).
There is, however, little practical difference between the logistic model and the
probit model. The principal appeal to the logistic model and its widespread applica-
tion to the analysis of epidemiologic studies relative to the probit and other choices
of transformation can only be supported on grounds of mathematical convenience.
Preference for the log:stic model as opposed to the probit model is mainly based on
the existence of simpler computational methods for parameter estimation (Grizzle,
1971; Cox and Snell, 1989). Also, the interpretation of logistic regression
coefficients is easy and the odds ratio as a measure of association is usually the
parameter of interest in a logistic regression. This easy interpretability of the
coefficients is the fundamental reason why logistic regression has proven such a

powerful analytic tool for epidemiologic research.

1.1.1 Methods of parameter estimation

There are two basic approaches to estimating the logistic parameters: max-

imam likelihood estimation and discriminant function estimation.

The maximum likelihood estimates (MLE's) are based on large-sample theory

and are asymptotically unbiased. The MLE approach requires a function, called




the likelihood function. This function expresses the probability of the observed
data as a function of the unknown parameters. The MLE's of these parameter vec-
tor B in (1.1.1) are chosen to be those values which maximize this function. Thus,
the resulting estimators are those which agree most closely with the observed data.

The likelihood function of logistic regression is constructed as follows:
Suppose that we have a sample of N independent observations (Y X,).
i=1,2,...,N. The contribution to the likelihood function for an observation (Y;.X,) is

=(X,)(1 - &X' (1L.LLD

Since the observations are assumed to be independent, the likelihood fui«tion

is obtained as the product of the terms given in (1.1.1.1). That is

(B = [T(X)"{1 - =X (1.1.1.2)

=1
The log-likelihood function is then defined as

L(B) = log[1(B)] (1.1.1.3)

N
= ¥ {ylogr(X)]+(1-y)log[1-x(X,)}} .
=l
To find the value of B that maximizes L(B) we differentiate L(p) with respect
to B and set the resulting expressions equal to zero. These equations are called the

likelihood equations and expressed as follows:

N
=1
and
N
OLB) _ $x,fy,-r(X)] =0 for j=1.2....p. (1.1.1.5)
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The likelihood equations in (1.1.1.4) and (1.1.1.5) are nonlinear in Bs; thus
the solution of them requires special methods. Most computer packages such as
GLIM, BMDP, SAS, and SPSS use a method of iteratively reweighted least
squares to obtain this solution.

We now discuss how the estimates of the standard errors of the estimated
parameters are obuained. The method of estimating the variances and covariances
of the estimated coefficients follows from the theory of maximum likelihood esti-
mation (Rao, 1973). This theory states that the estimators are obtained from the
matrix of second partial derivatives of the log likelihood function. These partial

derivatives have the following general form

N
TLB) _ _ 5 x2n(1-x) (1.1.1.6)
aﬂj =1
and
PLPB) . _ $x X n(l-x) (1.1.17)
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for j.u=0.1,2,....p where =, denotes n(X,).

Let the (p+1) by (p+1) matrix containing the negative of the terms given in
(1.1.1.6) and (1.1.1.7) be denoted as I(B). This matrix is called Fisher’s information
matrix. The variances and covariances of the estimated coefficients are obtained

from the inverse of this matrix which we will denote as H(B) = I"(B).

The maximum likelihood estimator, ﬁ, of the parameter vector f in the logis-

tic regression model may be expressed in the iterative scheme as
B! = '+ (X'HX) 'X's , fort=0,1.2,....* (1.1.1.8)

where X is the design matrix, H is the diagonal matrix with general element

h, = x,(1-%), &, is the estimated logistic probability at x,, s is (y — X), and both H




and s are evaluated at B' (see e.g. Pregibon, 1981; McCullagh and Nelder, 1983).

A most useful way to view the iterative process is by the method of iteratively
reweighted least squares. This is obtained by employing the pseudo-observation

vector z' = XB' + H™'s, upon which the above equation (1.1.1.8) becomes
B'*! = (XHX)'X'Hz' . (1.1.1.9)

At convergence (t = *), we have z = XB + H's. Thus we may write the MLE of B

as

= (XHX)"'X'Hz (1.1.1.10)

The discriminant function estimators of the logistic regression coefficients are
based on the normality assumption: X|Y=j~ Ny, Z) for j = 0,1. Under this
assumption the discriminant function estimates of B can be obtained as

BO_-___;-(il_io)'s_l(il_’_io)...log[-:—o-] (lllll)
1

and
=X, -Xps! (1.1.1.12)

where ny and n, are the number of observations with Y equal to 0 and 1, respec-
tively, and 5(‘, and S are the maximum likelihood estimates of y, and Z, respectively

(see e.g. Hosmer and Lemeshow, 1989, p35).

Halperin et al. (1971) and Seigel and Greenhouse (1973) discussed the conse-
quences of using the linear discriminant approach when the normality assumption
is violated, »d found that the discriminant estimates would remain biased in large
samples. In terms of bias, maximum likelihood approach is then preferable to the
linear discriminant function approach unless the normality assumption is satisfied.

On the other hand, when the normality assumption is appropriate, Efron (1975) has




shown that the discriminant estimates will be more efficient than the maximum
likelihood estimates.

The assumption of multivariate normality will rarely if ever be satisfied
because of the frequent occurrence of dichotomous independent variables in many
situations. Press and Wilson (1978) recommended the logistic regression model
with the maximum likelihood estimates in the case where the predictor variables
consist of a mixture of continuous and discrete variables. Hosmer et al. (1983)
have compared the two methods when the model contains a mixture of continuous
and discrete variables, with the general conclusion that the discriminant function
estimators are sensitive to the assumption of normality. The discriminant function
estimates of the parameters for nonnormally distributed independent variables,
especially dichotomous variables, are biased away from zero when the true value
of parameter is nonzero. The practical implication of this is that for dichotomous
independent variables the discriminant function estimators overestimate the magni-

tude of the association.

For these reasons, although estimating the logistic parameters based on the
discriminant model is much easier than the maximum likelihood approach, max-
imum likelihood is preferable to discriminant analysis.

In our study, the maximum likelihood estimator, f, was obtained by the
method of iteratively reweighted least squares for the parameter vector P in the

logistic model (1.1.1.1).

1.1.2 Subset selection procedures

One of the main goals in logistic regression is to find the best fitting and most

parsimonious, yet scientifically relevant model to describe the relationship between

a response variable and a set of predictor variables; this is called model-building.




The most common strategy of model-building is a subset selection procedure
which chooses a subset of predictor variables according to specific selection and
stopping criteria. There are basically two approaches in selecting subset variables,
namely ‘best subsets’ approach and ‘stepwise’ approach.

With best subsets approach a number of models containing one, two, three,
and so on, variables are examined which are considered the ‘best’ according to
some specified criteria (Furnival and Wilson, 1974; Lawless and Singhal, 1978).

The stepwise approach is a method in which variables are selected either for
inclusion or exclusion from the model in a sequential fashion (see e.g. Draper and
Smith, 1981). There are many variations, but the three main versions of the step-

wise procedures are:

1) Forward selection (FS)

2) Backward elimination (BE)

3) Efroymson’s procedure (Combination of FS and BE) (Efroymson, 1960)

These procedures have been widely used in epidemiologic studies in building a

subset model from a large number of variables.
In any case, we should bear in mind that procedure for selection or deletion of
variables from a model in any statistical package is solely based on a ‘statistical’

importance of variables.




1.2 Review of the literature
The literature will be separately reviewed in linear regression, discriminant
analysis, and logistic regression. Some additional references will be reviewed in

the context of the thesis.

1.2.1 Linear regression

The problem of selecting variables in linear regression has received consider-
able attention in the statistical literature. Among the more common procedures are
the forward selection method, the backward elimination method, and Efroymson’s
(1960) stepwise regression. These procedures are discussed in detail in Draper and
Smith (1981).

Garside (1965) and Schatzoff, Feinberg, and Tsao (1968) propose efficient
methods of enumerating all possible regression equations. Hocking and Leslie
(1967) and LaMontte and Hocking (1970) give a branch-and-bound procedure for
determining the subset of each size with minimum residual sum of squares(RSS)
without evaluating all possible regressions. Fumnival and Wilson’s algorithm
(1974) appears to be the fastest program, which combines the best features of the
branch-and-bound concepts and clever computing into a highly efficient algorithm.

The main property for so called ‘subset modeling’ is probably the one that
subset model has generally smaller variance and larger bias than full model. (see
e.g. Walls and Weeks, 1969; Rao, 1971; Narula and Ramberg, 1972; Rosenberg
and Levy, 1972; and Hocking, 1974 for more details). In other words, there is a
trade-off between the variance and the bias.

A selection criterion determines the order of inclusion or exclusion of the

predictor variables. The ‘standard’ selection criterion in stepwise regression,

namely the F-statistic, is based on the residual sum of squares (RSS).




Allen (1971) proposed the mean square error of predicion (MSEP) as a selec-
tion criterion. He claimed that when prediction is the main objective, the MSEP is
a more meaningful criterion than the commonly used criterion, the residual sum of
squares (RSS). This criterion utilizes the values of the predictor variables associ-
ated with the future observation and the magnitude of the estimated variance. It
means that the use of the mean square error (squared bias + variance) takes into

account bias and variability simultaneously.

The determination of the final subset size of model is generally referred to as
a stopping criterion. A number of stopping criteria have been proposed in linear

regression. Some of the more common ones are:

1)  Sequential F test based on a fixed a level (Fy)

2) Minimum value of residual mean square (RMS)

3) Maximum value of squared multiple correlation coefficient (R?)
4) Maximum value of adjusted R?

5) Minimum value of average prediction variance (Mallows, 1967; Rothman,

1968; and Hocking, 1972)
6) Minimum value of Mallows’ C; (Mallows, 1973)
7) Minimum value of average prediction mean squared error (Tukey, 1967)
8) Minimum value of standardized residual sum of squares (Schmidt, 1973)

9) Minimum value of prediction sum of squares (PRESS) (Allen, 1971a;
Schmidt, 1973; and Stone, 1974).

10) Minimum value of Akaike information criterion (Akaike, 1973)

Many of these stopping criteria are simple functions of the residual sum of squares

(RSS).

10




Forsythe et al. (1973) developed a stopping criterion in the forward stepwise
regression. At each step in the regression, the squared partial correlation is com-
puted and compared with a random sample of squared ‘permuted’ partial correla-
tions from N possible permutations of the Y vector. Stopping occurs whenever
S$%, say, of the squared ‘permuted’ partial correlations exceed the computed
squared partial correlation.

Kennedy and Bancroft (1971) sought to determine the best a level of
significance to be used for repeated sequential F tests made in model building.
They recommended, based upon the results of the simulation study, & =0.25 for

the forward selection and a = 0.10 for the backward elimination procedures.
Bendel and Afifi (1977) compared the unconditional mean square error of

prediction (UMSE) with eight different stopping criteria including the ‘standard’

criterion in forward stepwise linear regression. The selection criterion used, at a

given step, was to select the candidate variable that maximizes the squared partial

correlation coefficient with the dependent variable, given the independent variables

selected at previous steps. The eight stopping criteria were:

1) Minimum value of sample UMSE

2) Sequential Z test of equality of UMSE

3) Minimum value of conditional MSE

4) Minimum value of C, statistic

S) Sequential F test based on a fixed a level

6) Lack-of-fit F test (Morgan and Tatar, 1973)

7) Combination of the sequential F test and the lack-of-fit F test (Summerfield

and Lubin, 1951)

11




8) Maximum value of unbiased R? (Olkin and Pratt, 1958).

All of these stopping criteria are a simple functions of the partial correlation
coefficient which requires only the correlation matrix for computation. They did
not consider other stopping criteria such as PRESS and Akaike information cri-
terion which require the actual values of the dependent and predictor variables for
their computation. They showed that the Mallow’s C,, statistic and the minimum
value of sample UMSE are preferred to other stopping rules for higher degrees of
freedom (40 or more), but the sequential Z test of equality of UMSE with
0.25 S ¢ £0.35 is preferred for smaller degrees of freedom (20 or less). They also
found that the best overall test is the sequential F test with a = 0.15. These results
on the significant level are consistent with those reported by Kennedy and Bancroft
(1971).

The question of how these many selection and stopping criteria suggested in
the literature should be used in view of the intended use of the final subset model
remains largely to be answered. The availability of good computer algorithms for
computing subset regressions and the use of high speed computers would allow this

area to be investigated.

1.2.2 Discriminant analysis

Discriminant analysis is a statistical technique for classifying individuals or
objects into mutually exclusive and exhaustive groups on the basis of a set of
independent variables. It involves the derivation of linear combinations of the
independent variables, called the linear discriminant function (LDF), that discrim-
inates between a priori defined groups in such a way that the misclassification error

rates are minimized. This is accomplished by maximizing the between-group vari-

ance relative to the within-group variance. The LDF developed by Fisher (1936) is

12




‘best’ in that the misclassification error rates obtained with Fisher's LDF are
smaller than those obtained with any other linear combination. However, the
optimality of Fisher's LDF is conditional upon certain assumptions being met. In
particular, the p independent variables must be a multivariate normal distribution

with a common variance-covariance matrix in each of the two groups.

Fisher's LDF has become very popular in the field of multivariate analysis,
and has consequently attracted a large amount of methodological research. The
main areas of research have included the distribution of classification statistic, esti-
mation of probabilities of misclassification, and the performance under non-

optimal conditions.

The selection of the most useful variables in discriminant analysis is an
important and difficult problem in practice. There are a number of various
approaches which have been used for selecting a subset of variables from a larger
set of variables in discriminant analysis. These approaches range from the univari-
ate methods, which largely ignore the correlations among variables (Kendall and
Stuart, 1968, p329: Lachenbruch, 1975, p73), to methods that consider all possible
subsets (McCabe, 1975). Intermediate to these extremes are the popular stepwise
procedures. Stepwise procedures such as forward selection, backward elimination,
and combination of forward selection and backward eliminadon in discriminant
analysis are available in program packages such as SPSS, BMDP, and SAS.

Discriminant analysis generally has two goals, namely description and predic-
tion. The sense in which variable subsets are considered important should depend
on the intended use of discriminant analysis. This point is often overlooked,

although it has been stressed by writers such as Huberty (1975), Habbema and Her-

mans (1977), and Schaafsma and van Vark (1979).
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In descriptive discriminant analysis, the primary aim may be to obtain a more
parsimonious description, and hence a clearer understanding, of the nature " the
differences among the populations in question. This may involve the construction
and interpretation of discriminant functions. The importance of a variable subset
should then be assessed in terms of the extent to which the populations are
separated by that subset, a subset being considered adequate if it provides the same

separation as the original set of variables.

Predictive discriminant analysis is concerned with the problem of assigning
future observations to the appropriate populations. The importance of variables and
the adequacy of subsets should then be assessed in terms of appropriate probabili-

ties of misallocation.

Subset selection procedures of discriminant analysis in SPSS, BMDP, and
SAS are associated with the descriptive rather than the predictive case. However,
when prediction is the main goal, the ‘standard’ selection procedure based on
Wilks' A (or the associated F-statistic for two groups) or related criteria do not
necessarily yield a subset with maximum rate of correct classification (Habbema

and Hermans, 1977).

McLachlan (1976) presented a different concept of selecting variables for
prediction problems in stepwise discriminant analysis. His selection procedure is
based on the conditional risk of misclassification and provides a confidence level
that the conditional nisk is not increased by deleting a given variable or subset of
variables.

Costanza and Afifi (1979) used a simulation study to compare seven different
stopping criteria in forward stepwise discriminant analysis. Four of their seven

stopping criteria are based on A(f,,. the ¢-variate Mahalanobis distance:

14




1) Sequential tail F test of A2, = A2, based on a fixed « level

2) Sequential F test of A3, = A2, based on a fixed o level

3) Combination of 1) and 2) based on a fixed a level

4) Maximum value of unbiased estimate of A

The other three stopping criteria are based on P (q).the unconditional probability of
correct classification:

$) Maximum value of estimate of P,(q) based on ‘usual’ estimate of A2,

6) Maximum value of estimate of P (q) based on ‘almost unbiased’ estimate of
A%
7) Maximum value of estimate of P,(q) based on unbiased estimate of A&l,.
The forward selection method used in their study determines the candidate variable
to be included in the discriminant function, based on maximizing the Mahalanobis
distance given the variables selected at previous steps. They employed conditional
and estimated unconditional probabilities of correct classification to compare the
stopping rules that can be .sed in the two-group multivariate normal classification
problem. Based on Monte Carlo simulation, they generaliy recommended using
0.10 S @ £ 0.25 as optimal & levels for the sequential F test which is the most com-
monly used stopping rule. The sequential F test uses a sequence of standard F tests
to determine the significance of the additional distance contributed by each forward
stepwise entry.
Costanza and Ashikaga (1986) explored choice of significance level for for-
ward stepwise discrimination on small samples (10< N <65). 0.10 < a <0.25 for F,

test were generally recommended.
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1.2.3 Logistic regression

The literature associated with subset procedures in logistic regression is far

less extensive than that of linear regression or discriminant analysis.

Lawless and Singhal (1978) proposed a statistic that approximates the likeli-
hood ratio statistic for tests of submodels against the full model in nonnormal
regression models such as exponential, Poisson, and logistic models. They com-
pared the likelihood ratio statistic, Wald statistic, and their proposed statistic in
‘best subsets’ procedure with application to some epidemiologic data. They found
that use of the three different statistics produced exacuy the same best models in

logistic model.

Peduzzi, Hardy, and Holford (1980) proposed a statistic that is similar to
Rao’s score statistic (Rao, 1973). Both can be used in stepwise selection procedure
in nonlinear regression models including survival models and logistic model. They
applied their statistic 1o data on survival from multiple myeloma (Krall et al., 1975)
in an exponential regression model. They found that their statistic selected the

same variables as the likelihood ratio statistic in forward stepwise procedure.

Lawless and Singhal (1987a, 1987b) developed an all-subsets regression pro-
gram ISMOD for generalized linear models. They adopted the Fumival and
Wilson's algorithm (1974) which is considered 10 be the most efficient computa-
tional algorithm.

Hosmer et al. (1989a) showed that best subsets procedure in logistic regres-
sion may be performed in a straightforward manuer with any best subsets linear

regression program that allows for case weights.

Over the last several years the logistic model derived from a subset procedure

with application to a large number of predictor variables has been used with

16




increasing frequency for the purpose of prediction in medical and epidemiologic
studies. Although discriminant analyses have been used for the purpose of predic-
tion (e.g., Afifi et al., 1971; Hans et al., 1986; Gardlund, 1986; Schaefer et al.,
1991; and Ashutosh et al., 1992), these may not be appropriate when many of the
predictor variatles are binary or ordinal scaled. Ordinary least-squares multiple
regression analyses have also been used (e.g.. Snyder et al., 1981), which may not
be appropriate when the response variable is binary. Since most of the practical
data in medical and epidemiologic studies have the binary response variable and
the mixture of discrete and continuous predictor variables, the logistic model is
more appropriate than discriminant analysis and linear regression.

Here are several examples which used a subset procedure to develop the
logistic model for the purpose of prediction in their studies.

Pozen et al. (1984) used a stepwise logistic regression to develop a predictive
model for acute ischemic heant disease with patients admitted to coronary care
units (CCUs). Lemeshow et al. (1985 and 1987) used a forward stepwise logistic
regression to predict montality of intensive care unit (ICU) patients. Tierney et al.
(1985) used a backward elimination logistic regression to develop a predictive
model for myocardial infarction in emergency rocm patients. Viviand et al. (1991)
used a forward stepwise logistic regression to develop a predictive model for mor-
tality of multidisciplinary intensive care unit (ICU) patients. Ferraris et al. (1992)
used a stepwise logistic regression to develop a predictive model for an
unimproved outcome in critical care patients. Horbar et al. (1993) used a backward
elimination logistic regression to develop a predictive model for monrtality of

infants weighing 501 to 1500 grams at birth.

As can be seen in the above examples, computer-based stepwise procedures

based on testing hypotheses have been the dominant approach in data analyses. All




of the above examples used a procedure either in SAS or BMDP statistical software
with a = 0.05 as a cutoff level of significance. There are two logical drawbacks to
this approach. First, the selection of significance level is necessarily subjective.
Second, the test statistic used is the likelihood ratio or an asymptotically equivalent
the score statistic with critical values that are appropriate only in the comparison of

nesteu models.

It was not until Akaike (1973) introduced a model selection criterion, called
Akaike information criterion (AIC), that issues such as the philosophical
justifications and the asymptotic properties of the AIC and its variants were «nvesti-
gated (see e.g., Shibata, 1976; Stone, 1977 and 1979; Bhansali and Downham,
1977, Sawa, 1978; Schwarz, 1978, Kitagawa, 1979; Leamer, 1979; Atkinson,
1980; and Chow, 1981). Although these model selection criteria have been pro-
posed in linear regression and time series contexts, they can also be applied to
other areas. For example, AIC criterion and Schwarz cniterion (Schwarz, 1978) are
used as model selection criteria in the LOGISTIC procedure in SAS; lower values

of the statistic indicate a more desirable model.

Where the logistic model is concemed, there has been no study to compare
these nonparametric approach with the standard parametric approach that is, x&,,

based on a fixed a level in selecting a model for the purpose of prediction.

We note that a model selection criterion is different from a vaniable selection
criterion, a model selection criterion may be considered as a stopping criterion
which determines subset variables in a model, whereas a variable selection cri-

terion determines the order of variables in a subset procedure.
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CHAPTER 2
BACKGROUND AND OBJECTIVES OF STUDY

2.1 Motivation for using subset variables for the prediction
There are a variety of practical and economical reasons for reducing the

number of predictor variables in the final model. Reasons for preferring a subset

mode! to the full model include:

a. The subset model is more likely to be numerically stable than the full model.
When some of the predictor variables are highly correlated (multicollinearity),
they give rise to unstable parameter estimates (see e.g. Hoerl and Kennard,
1970).

b. The subset model is more easily interpretable than the full model. It describes
a multivariate data set parsimoniously.

¢.  The subset model provides a reduced number of variables on which data are
collected in a future study, thus lowering the cost of that study.

In addition to the above reasons, the subset model may be desirable in terms of

predictive ability. The subset model may predict more accurately than the full

model by eliminating uninformative variables.

In chapter 3 the true error rate of prediction (ERR) will be defined as
ERR = ARR +Bias 2.1.1)

where ARR is the apparent error rate of prediction. The apparent error rate, origi-
nally named by Hills (1966), is estimatcd by the ‘resubstitution’ method. The
apparent error rate tends to underestimate the true error rate because the data is
used twice, both 1o fit the model and to evaluate its accuracy (Glick, 1972 and

1973). In the case of logistic regression the apparent error rate can be measured by
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the proportion of misclassified cases. Let m, be the prediction rule defined as

. 1 if ;t| >C0
n= 2.1.2)

0 ifr, <C,
where &, is the MLE of x, and Cj, is the cutoff point. The choice Cg = 0.5 is com-

mon. Then the apparent error rate is

#{y =1
ARR=-{—YIN—“£- (2.1.3)

which is the proportion of cases in the original data sct Y incorrectly predicted by
n

The apparent error rate is a monotonically decreasing function of the number
of variables in the model and is an optimistically biased estimate of the true error
rate. Its bias becomes larger as the number of variables in the model increases. Bias
is an important measure of how optimistic the apparent error raie is to the size of

the model. A large value of bias suggests retreating to a more parsimonious model.

It may be possible that the rate of decrease for the apparent error rate may be
small compared to that of increase for its bias after some number of vanables, say
g. have been included in the model. In other words, the true error rate depends on
the ‘trade-offs’ between these two opposite rates and we may obtain smaller true
error rate with a subset mode! than with the full model. This provides the motiva-

tion for using subset variables for the prediction in the logistic model.
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2.2 Objectives of study

The principal aim in this study is to address the problem of building a model
with a subset of predictor variables in forward stepwise logistic regression. Special
attention will be given to the prediction problem. Prediction is one of the most
important objectives of the logistic regression. In epidemiologic studies, for
instance, given a new individual whose medical indicators are measured on a
number of predictor variables, we want to predict whether or not the individual has
cancer.

Since the logistic model requires less restriction on the distribution of predic-
tor variables than discriminant analysis, the logistic model can be used in many
practical situations in medical and epidemiologic studies. However, little attention
has been given to issues surrounding the problem of selecting subset variables and
assessing the performance of the logistic model with subset variables.

For prediction purposes, the valid estimate of an individual regression
coefficient in the logistic n;odel is not of the primary interest. The selection of
predictor vadiables which yield a good prediction is of the primary interest. It is,
therefore, of vital importance to understand the nature of how the prediction is

changed when a different subset of predictor variables is selected.
The processes of building a subset model can be separated into two steps:
Step 1. A selection criterion which defines the order in which the predictor vari-
ables enter the logistic model.
Step 2. A stopping criterion which determines how many predictor variables are

included in the final logistic regression model.
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In this dissertation, we explore five topics which are related to the process and

prediction of forward stepwise logistic regression:
1. Investigation of the best a level of significance for the x(f,, stopping criterion.
2. Comparison of the order of variables selected by different selection criteria.

3. Investigation of the effects of different structures of predictor variables on the
apparent error rate of prediction, its bias, and the estimated error rate of pred-
iction.

4. Comparison of the sizes of subset models determined by different stopping
criteria.

5. Comparison of the performances of the selection and stopping criteria in

terms of the estimated true error rate of prediction.

Monte Carlo simulations with both multivariate normal and multivariate binary
distributions for predictor variables will be used to investigate them. In this disser-
tation we shall learn more about modeling logistic regression for the use of predic-

tion.

~N
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CHAPTER 3

PERFORMANCE, SELECTION, AND STOPPING CRITERIA

3.1 Performance criterion

3.1.1 Bias of the apparent error rate of prediction

A common goal in medical studies is prediction. Suppose we observe n
patients, (y;.X,) . ..., (Y,.Xp), Where y; is a binary response variable and x, is a vec-
tor of predictors. For example, x; might describe a medical patient’s age, weight,
sex, race, previous disease history, and so on, and y, might indicate whether the
patient survived a certain operation. These n patients are called the sample set. On
the basis of the sample set, a prediction rule n(y.x) is constructed. The intention is
to use N{yo.Xo) to predict a future unobserved response y, on the basis of its predictor

vector X

Specifically, we will consider a prediction rule based on forward stepwise
logistic regression. The true error rate of prediction (ERR) is the probability of
predicting a future observation incorrectly. Our goal is to estimate ERR on the basis
of the sample set x. The most obvious estimate is the apparent error rate of predic-
tion (ARR), which is the proportion of misclassified observations made by the pred-
iction rule on its own sample set. Usually the apparent error rate tends to be smaller
than the true error rate, because the same data have been used both to construct and
to evaluate the prediction rule. Denoting w as the bias of the apparent error rate, the

true error rate is
ERR=ARR+®. (3.1.1.1)

There are several nonparametric methods of estimating w such as cross-validation,

the jackknife. and the bootstrap (see e.g. Efron, 1982). Cross-validation is a
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traditional method of estimating w. The jackknife method relates cross-validation to
the bootstrap method and its estimate is a quadratic approximation to the bootstrap
estimate. The bootstrap method gives the nonparametric maximum likelihood esti-
mate (MLE) of w. Gong (1986) compared these three nonparametric methods of
estimating  in logistic regression. Her conclusion, based on Monte Carlo simula-
tions, is that whereas the jackknife and cross-validation do not offer significant

improvement over the apparent error rate, the bootstrap shows substantial gain.

All three nonparametric estimates require substantial computing time and cost.
Although computers are becoming faster and cheaper, these nonparametric methods
of estimating ® are not feasible in our situation because estimates of @ must be com-

puted at each step in forward stepwise logistic regression.

3.1.2 Efron’s parametric estimate for bias of ARR

Efron (1986) derived the parametric MLE's for bias of the apparent error rate in
the general exponential family linear models including the logistic regression. The

bias estimate for the logistic regression is

) R
o = 23 0-7)z| == |\ (3.1.2.1)

Ny ‘H,

where

Z(a) = (21:)“’2exp(—-;-a2) .

) .
ei -log[l-Co]-"B'
a'l =xi’£-l‘i'

N o, - .
Z = ZKj(l—KJ)xjxj .
=1

The matrix £ is the usual estimate for the covariance matrix of f, so d, = Var(x,B).
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For a subset the basic form of the bias estimate w(r) is not altered. Suppose that

B is partitioned into (By.B,), and likewise x = (x,,X,). The bias estimate in the subset

is

w(F) = %f;ii(n-&,)z (3.12.2)

o | &
&N VB,

Here

2, =log[ S ]-x,ﬁ

1-C,
4% = x5, 8% x, .
~ n - -~ ’
£= Zl"JO( 1'“Jo)x<hx01 ’
F
D, = x6 2 188% 1x,, .

n - ~ Ld
£ =T r(1-7)x,X,, -
Fl
In both situations the estimated true error rate of prediction ERR is given by

ERR = ARR + (). (3.1.2.3)

Efron (1986) compared () with the cross-validation estimate and showed that
w(x) performs better than the cross-validation estimate in terms of the mean squared
error (MSE) of an estimate for ERR. In addition to the better performance of ®, we
can obtain the estimates of ® at each step in forward stepwise logistic regression
with simple calculations relative 10 those required for the nonparametric estimators.

Hence ERR is used as the performance criterion in this study.
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3.2 Selection criteria

In this section we discuss the statistics which will be used for selecting predic-
tor variables for the model. Suppose k-1 variables have been previously selected

and a k-th variable is considered for inclusion into the model. Then the com-

B= [::"] (G2.1)

Hy: B,=0 (3.2.2)

ponents of B can be partioned as:

and the hypotheses of interest are

Hl:Bk*o

Note that B,_, is a vector of k-1 parameters and B, is a scalar of the k-th
parameter. Since P can be estimated under both the null and alternative
hypotheses, we need additional notation: let f denote the maximum likelihood
estimation under the null hypothesis (restricted MLE), and B' denote the maximum

likelihood estimation under the alternative hypothesis (unrestricted MLE). That is,

0.
B’=1o (3.23)

i
= (3.2.4)
B'=1a,

There are several large-sample statistics used to test the null hypothesis that

the parameter value of the k-th variable is zero.

We describe four asymptotically equivalent statistics in distribution under the

null hypothesis which will be defined as selection criteria of predictor variables in
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sections 3.2.1 - 3.2.4: the likelihood rauo statistic (LR), the Lawless and Singhal
statistic (LS), Wald's statistic (WD), and Rao’s score statistic (SC). Peduazzi,
Hardy, and Holford's statistic (PH) will be described in section 3.2.5. We propose
a statistic (LK) similar in form to Rao’s score statistic but requiring less computa-
tion in section 3.2.6. ~e develop a stepwise procedure which adapts the SWEEP
operator in section 3.2.7. This procedure is based on a statistic (SW) which is simi-

lar to the residual sum of squares in the linear regression.

3.2.1 The likelihood ratio statistic (LR)

The likelihood ratio statistic for testing (3.2.2) is

LR = 2[L(B") - L") (32.11)

=2[L(B,_; B0 - LB\, 00)

We need to compute MLE's for B under both the nuli and alternative
hypotheses.

We compute LR statistics for each of q non-selected variables, LR(x)),
j=1.....q where LR(x;) is the LR statistic when variable x, is added to the k-1 vari-

ables previously selected. We then select variable x such that
LR(x) = Max{LR(x))}. 1<jsq.

3.2.2 The Lawless and Singhal statistic (LS)
Lawless and Singhal (1978) proposed a statistic that approximates the likeli-
hood ratio statistic. Let H(B) be partitioned as

I H. k-1 .
~ [Hioqt....k-1) Hpg . 3.2.2.1)

They showed that f8° can be approximated by
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B-1 - Hu....x-m(B‘)H;,}.(ﬁ‘)B\ . (3.2.2.2)
That is,

LS = 2{L(BY - LB (3.2.2.3)

= 2[L(By-1.Bo - LByt - Hyy, x-1paBHHSGB B

We need compute MLE's for B only under the altemative hypothesis.

We compute statistics for each of q non-selected variables, LS(x)). j=1....q
where LS(x;) is the value of the LS statistic when variable x; is added to the k-1

variables previously selected. We then select variable x such that
LS(x) = Max{LS(x,)}. 1Sjsq.

3.2.3 Wald’s statistic (WD)

Wald's statistic depends only on MLE's for B under the aliernative
hypothesis, but does require the inverse H{,&(ﬁ') for each step. For the partitioned

matrix H described ia (3.2.2.1), Wald's statistic is defined as

wD = f,HL (BB, (3.23.1)

We compute statistics for each of q non-selected variables, WD(x)), j=1....q
where WD(x)) is the value of the WD statistic when variable x, is added to the k-1

variables previously selected. We then select variable x such that
WD(x) = Max{WD(x))}. 1sjsq.

3.2.4 Score statistic (SC)

The score statistic, also known as the efficient score statistic is due to Rao

(1947); it requires a knowledge of MLE's only under the null hypothesis.

Let U(ﬁ)=—a—-L(D) denote the efficient score vector, and I(B) = -E [—a-U(D)}

op

op
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denote the Fisher's information matrix. The score statistic is

sc = U @%uP® (3.2.4.1)

=U'PB,_,. 0 B, 0UPB,-..0)

We compute statistics for each of q non-selected variables, SC(x)), j=1.....q
where SC(x;) is the value of the SC statistic when variable x; is added to the k-1

variables previously selected. We then select variable x such that
SC(x) = Max({SC(x;)}, i<jsq.

3.2.5 Peduzzi, Hardy, and Holford statistic (PH)

Peduzzi, Hardy, and Holford (1980) proposed a statistic which is a
modification of the Rao's score statistic. The statistic, which we call the PH,

requires MLE's for B only under the null hypothesis and is given by

PH= (0, 41, U(Bis O T By 00004y 1) Us(Bey 0} . (3.2.5.1)
where 0, y_;, is a k-1 dimensional vector of zeros, and Uk(ﬁk_l.O) is a scalar that
is the efficient score of the k-th variable.

We compute statistics for each of q non-selected variables, PH(x)), j=1.....
where PH(x,) is the value of the PH statistic when variable x; is added (o the k-1

variables previously selected. We then select variable x such that
PH(x) = Max{PH(x))}, 1sjsq.

3.2.6 Lee and Koval statistic (LK)

We propose a statistic similar in form to the Rao’s score statistic, but one

requiring less computation. The statistic, which we call the LK, is given by

LK = U(B,_;.0) Diag(I"'B,_;.00}U(B,_,.0) . (3.26.1)
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where Diag(l"(ﬂ»k_,.O)} is the diagonal matrix of the inverse of the Fisher's infor-
mation matrix I defined in the section 3.2.4 and evaluated under the null
hypothesis. This is an effort (o approximate the score statistic but ignoring the

covariance among the elements of p.

We compute statistics for each of q non-selected variabies, LK(x), j=1.....q
where LK(x)) is the value of the LK statistic when variable X, is added to the k-1

variables previously selected. We then select variable x such that
LK(x) = Max{LK(x)}. 1sjsqg.

3.2.7 Sweep operator statistic (SW)

The SWEEP operator is perhaps the most versatile of all statistical operators,
It has been extensively adapted for use in statistical computations such as all possi-
ble regressions, regression by leaps and bounds, stepwise regression, and etc. One
of the first references to SWEEP operations may be found in Ralston (1960), but
the term "SWEEP" operator was coined by Beaton (1964). We do not explain the
actual processes of the SWEEP operator in detail; an excellent tutorial on the
SWEEP operator may be found in Goodnight (1979).

Basically the SWEEP operator is a technique for the inversion of matrices.

For example, let

A App Ap
A= AZI An Az; (327”
A3 Ay Aj;

Sweeping A on the columns associated with A, yields

r 3

Afl ATlA; AflA;
B=|-AnARl Ap-AjAilA; Ap-AyAfAg (3.27.2)
—AuATY Az -AyjAffA Ap-AyAfAg,

~
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Now we describe our variable selection procedure which adapts the SWEEP

operator. Let X be partitioned as

X=X, | X, (3.2.7.3)

= [xO,xl. “ e .xk_’,xk ' xk*l. “ .. .XP]

where k-1 variables are previously selected into the model and x, is considered for

inclusion into the model. Let G denote 2(X) = log I"S’(‘)’(). and let W denote
-t

r(X)x(1-n(X)). Note that G and W are obtained from the full model with p vari-

ables. Then we form the augmented matrix

XWX, XWX, X,/WG
A= Xz'WX, XZ'WX2 XZ’WG (3274)
G'WX, GWX, GG

We sweep A on the columns of X,"WX,, and it gives

Bll Biz Bl3
B= BZl Bn B23 (3.2.7.5)
B;; B;; Bs;

where

B” = (xl’WX|)-l
Bz] = ‘Xz'wxl(xl'wxl)-l
B;, = -G'WX,(X,'WX,)™}

B,; = (X,'WX ) 'X,"WX,

822 = Xz'\sz - X{WX,(‘(,'\VX‘)"XI'WXZ
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32
B;, = G'WX,; - GWX,(X,"'WX ) 'X,"WX,
B,; = (X, WX)"!X,'WG
By = X,' WG - X, WX, (X,'WX,)'X,"WG
By; = G'G - G'WX,(X,"'WX ) 'X,"'WG

Let B, be called SW, that is,

SW =G'G - G'WX,(X,'WX,)"'X,"WG (3.2.7.6)

We compute statistics for each of q non-selected variables, SW(x)). j=1....q
where SW(x)) is the value of the SW statistic when variable x, is added to the k-1

vaniables previously selected. We then select variable x such that

SW(x) = Min{SW(x)}, 1sj<q.

Note that in the linear regression situation SW is a kind of weighted residual

sum of squares (RSS) for the model

G = (xg.Xp, . . . 1 X) 3.21.7)

The amount of time it takes to compute (X'X)™}, consequently RSS, using the
SWEEP operator is only a fraction of the time it takes to form the sum of squares
and cross-product matrix. This can be verified by counting the number of multipli-

cations and additions that are performed. Thus, the approximate computing time
ratio of doing an inversion to building the X’X is approximately %, where p is the
total number of independent variables and N is the number of observations.

Because N is usually much larger than p, inversion represents only a fraction of the

cost of regression analysis (Goodnight, 1979).




Our procedure requires only a small additional computation to fit the full
model with p variables in order to obtain G and W. The remaining computations
needed to perform the stepwise procedure in the logistic situation are the same as
in the lincar regression situation. Given that the ‘conventional’ selection pro-
cedures defined in sections 3.2.1 - 3.2.6 require f° orfand B! which must be
obtained by iterative calculations, our procedure based on the SW statistic is much

faster than the ‘conventional’ selection procedures.

33




3.3 Stopping criteria

In this section five stopping criteria are defined. Mnemonics for each of the

stopping criteria are defined as follows:

1) x&,:x?testbased on a fixed o level

2) Eg : Minimum value of ERR

3) Com:Minimum value of C,

4) AIC_ : Minimum value of Akaike information criterion
5) SCHp, : Minimum value of Schwarz'’s criterion

As indicated by the subscript, the stopping criterion x(f,, depends on a choice
of the significant level o for its application. We use the best o whose computation
is described in section S.1. The stopping criterion xfa, is the one used by most
computer programs; the selection process is stopped at any step whenever the

corresponding p-value exceeds the pre-specified o level.

The application of the other four stopping criteria E,, Co, AIC,,, and SCH,
is slightly more general than x(f,,. In their application, variable selection is contin-
ued until all variables are in the model, then the best model is determined by look-

ing at values of the criterion for each subset selected.

3.3.1 x? test based on a fixed a level, 2,

In sections 3.2.1 - 3.2.7, seven selection criteria were defined. Four of the
seven selection criteria in sections 3.2.1 - 3.2.4 are asymptotically equivalent statis-
tics, namely the likelihood ratio statistic LR, the Lawless and Singhal statistic(LS),
the Wald's statistic(WD), and the Rao’s score statistic(SC), are asymptotically

equivalent statistics. Under the null hypothesis, Hy, : B, = 0, their asymptotic distsi-

bution is a chi-square on 1 degree of freedom.
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The distribution of the PH statistic described in section 3.2.5 is not known.
Peduzzi, Hardy, and Holford (1980) assumed that because of its similarity to the

Rao’s score statistic it had follow a chi-square distribution on 1 degree of freedom.
The distribution of the LK statistic described in section 3.2.6 is unknown; in
this study because of its similarity to the Rao’s score statistic it assumed to follow a
chi-square distribution on 1 degree of freedom.
The SW statistic described in section 3.2.7 is a very different one. Its distri-

bution is unknown. Therefore, the SW statistic is solely used as a tool for selecting

a variable, and the corresponding likelihood ratio statistic A is used to test the null
hypothesis.

The general application of the y? test to all seven selection criteria is as fol-

lows: if ., denotes the value of a selection criterion associated with the predictor

variable selected and the associated p-value is
P=Prix? > Xml 3.3.1.1)

then model building is stopped whenever p exceeds the pre-specified a level and

the model is that with the previously selected k-1 variables.

3.3.2 Minimum value of ERR, E,,

The expressioh for the estimated true eror rate of prediction, ERR, was given
in (3.1.2.3).

We compute ERR(q) for q = 0, 1,...,p where ERR(q) is the value of the ERR

with q variables. The E_, stopping criterion chooses a model with § variables such

that

ERR(J) = Min {ERR(q)} . (3.3.2.1)
O<qsp
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3.3.3 Minimum value of Cp, Cp,,,

In the linear regression case Mallows' measure of predictive squared error,

known as the C,, statistic, for a particular subset of q variables is given by

SSE(q)
SSE(p)/(n-p-1)

Cy(q) = +2(q+1) -n (3.33.1)

where SSE(q) is the residual sum of squares for the fitted linear regression model
containing the subset of q variables (Mallows, 1973).

A C, statistic for logistic regression was given by Hosmer (1989a). The
expression for a particular subset of q variables is

X2+ A

5 +2(g+1) -n (3.3.3.2)
X“/(n-p—-1)

Cq) =

where X2 is the Pearson chi-square goodness-of-fit statistic for the model with P
variables that is,

X?= ﬁ{(y,—:‘c.)’/[i.(l-i.)n . (3.3.3.3)

=1

and A is the Wald’s statistic for the hypothesis that the coefficients for the (p - q)

variables not in the model are equal to zero.

Under the null hypothesis that all (p~q) coefficients in the vector B, are
equal to zero, the appropriate expected values of X2 and A are (n-p-1) and
(p —q) respectively. Substitution of these two quantities in (3.3.3.2) yields
C,(q) =q+1. If the subset of variables under consideration has excluded important
variables the A will follow a noncentral chi-square distribution and we wouid
expect Cp(q) to be larger than (q + 1). Thus, good subsets of variables will be those
with small values of C(q).

We compute C,(q) forq =0, 1, ..., p where C(q) is the value of the C, with g
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variables. The Cp,, stopping criterion chooses § variables such that

Cy(@ = Min (C,@)} - (3.3.3.49)

3.3.4 Minimum value of Akaike information criterion, AIC,,

In this section, we introduce the Akaike information criteria (AIC) as a basis
of comparison and selection among several models.

AIC was introduced by Akaike (1973). He showed the important role of the
Kullback-Leibler information quantity in statistics and also derived AIC as its esti-
mator.

Without loss of generality, let the true distribution be given a discrete distri-
bution p = {p,.pa. . . . . Px} where p, is the probability that the event w, occurs and
satisfies p, > 0 and p;+ - - - +p, = 1. Our problem is when there are many models
that approximate this true distribution, how do we evaluate the goodness of the
approximation of these models to the true distribution? To answer this problem, we
need an objective criterion that measures the distance between the true distribution
and the model.

Suppose p = {p1.p2. - - - » Px} is the true distribution and q = {q;.Q5, . ...q;) 2
discrete distribution model, log(p/q) is a random variable that takes the value

log(p/q,) when the event w, occurs. The expectation of log(p/q),

I(p:q) = E[log(p/q)] 3.34.1)

k
= ¥ plog(p/q,)
=1

k k
= Y plog(p) - X pjog(q,

=1 1=1

is called the Kullback-Leibler quantity of information (K-L information quantity)
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of the true distribution p with respect 0 the model q. Here the first term on the
right hand side is a constant that depends on the true distribution p only. Therefore,
the larger the second term, the smaller the K-L information quantity becomes. This

means that for the comparison of models by the K-L information quantity, we just

k
need to estimate the value of ¥ p,log(q,).

1=1
Suppose n independent observations {x,,....x,} are obtained from the true
distribution p ={p;.....p}. Each observation results in one of the events

wi, . ... w. If we define n; as the number of occurrences of the events w,, then we

k
have n; + ...+ ng = n. Since p, is the true probability, ¥ p,log(q,) is the expectation
=1

of the random variable log(q) that takes the value log(q,) when the event w, occurs.
This is called the expected log-likelihood. Given that the number of times that the
random variable log(q) takes the value log(q,) is n,, the log-likelihood of the model

qis

k
I(q) = i—}:n,log(q,) (3.34.2)

1=l

By the law of large numbers l(q) converges to the expected log-likelihood as
n — oo, It is considered that the larger the log-likelihood of the model q is, the
closer the model q is 10 the true distribution p. Thus the comparison of the K-L
information quantity is essentially equivalent to the comparison of the log-

likelihood estimated from the data.

We use: the mean expected log-likelihood as a measure for the goodness-of-fit
of a model. This quantity is defined as the mean, with respect to the data X, of the
expected log-likelihood of the maximum likelihood model. The larger the mean
expected log-likelihood the better the fit of the model. It would seem that the mean

38




expected log-likelihood can be estimated by the maximum log-likelihood, but the
maximum log-likelihood can be shown to be a biased estimator of the mean
expected log-likelihood. The maximum log-likelihood has a general tendency w
over estimate the true value of the mean e»pected log-likelihood. This tendency is
more prominent for models with a larger number of parameters. This means that if
we choose the model with the largest maximum log-likelihood, a model with an
unnecessarily large number of parameters is likely to be chosen. By a close exami-
nation of the relationship between the bias and the number of parameters of a
model, Akaike found that (maximum log-likelihood of a model) - (number of
parameters of the model) is an asymptotically unbiased estimator of the mean
expected log-likelihood.
Akaike (1973) proposed the use of

AIC = -2x(maximum log-likelihood of the model) (3.34.3)

+2x(number of parameters of the model)

as the criterion for model selection. A model which minimizes the AIC is con-
sidered 10 be the most appropriate model. Definition (3.3.4.3) implies that when
there are several models whose values of maximum likelihood are about the same

level, we choose the one with the smallest number of parameters. In this sense AIC
realizes the principle of parsimony.

We compute AIC(q) for q = 0, 1.....p where AIC(q) is the value of the AIC
with q vaniables. The AIC,, stopping criterion chooses a model with § variables

such that

uUCG) = Min {AIC(q)} . 3.3.44)
Osqsp
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3.3.5 Minimum value of Schwarz’s criterion, SCH_,

Schwarz (1978) proposed a different way of adjusting the log-likelihood
statistic. If the log-likelihood maximized over q parameters is L, Schwartz's cri-

terion is defined as
SCH(q) = -2L + gxdogN 3.35.1H)

where N is the number of observations in the data set.

We compute SCH(q) for q = 0, 1.....p. The SCH,, stopping criterion chooses a

model with g variables such that

SCH(d) = Min {SCH(g)} . (3.35.2)
0sqsp
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CHAPTER 4

MONTE CARLO EXPERIMENTAL DESIGN

Real data sets are limited in their usefulness in that they limit consideration of
the effect of sample size, number of predictor variables, distribution of dependent
and predictor variables, etc. The choice of data sets may also influence conclusions,
hence the generalizability of the results may be limited. Simulation studies can be
used to obtain results over a wide range of sampling situations.

In the general design of the simulation experiments there are four steps.

Step 1. Generation of predictor variables, X,, i=1,2,....N.

(X, | Y=0).i=1.2....ng, and (X, | Y=1),i=1.2.....n, are generated from

populations I, and [1,, respectively. Note that N = ny + n;.
Step 2. Computation of B the maximum likelihood estimates of .

» 1=0,1,2,....p are oblained via iteratively reweighted least squares.

Step3. Computation of estimated probabilities, Pr(Y=1|X,) = x,(X).

(X), i=1,2,....N, are computed using X, from Step 1 and f§ from Step 2.
Step4.  Generation of predicted dependent variable, Y.

Y, is equal to 0 if £,(X) < 1/2 and Y, is equal t0 1 if 7,(X) > 1/2.

Repeat Steps 1-4 R=20 times.

We consider two multivariate distribution cases of predictor variables: 1) mul-

tivariate normal case and 2) multivariate binary case.

4.1 Multivariate normal case

In secton 4.1.1 we describe how multivariate normal variables were gen-

erated; this follows the reparameterization method of Bendel and Afifi (1977) in

41




which | and X are reparameterized by several factors.

In section 4.1.2 we describe an experimental design in which a variety of
values of the factors are specified to generate different sampling situations.
Specifically, we use a second-order central response surface design (Cochran and

Cox 1957, chapter 8A).

4.1.1 Generation of multivariate normal variables, X

We assume that X ~ N(0.Z) in population [Ty and X ~ N,(u.X) in population

M,. We reparameterize p and X in terms of four factors P, V, A%, and D.

The first factor is the number of predictor variables, P. Given a value of P, we
then specify a value of the second factor, V € (0.1]. It determines the cigenvalues

A, of Z by means of the expression
A, =aV'"~!+§, for i=12...P 4.1.1.1)

where

(“.1.1.2)

0.9P(1-V)/(1-VP) if 0<V<l
3=11-8 if V=1

A value of 8=0.1 is chosen as a lower bound on the smallest eigenvalue lp in order

to avoid the numerical difficulties encountered with nearly singular matrices.

This model arises from the observed behavior of the eigenvalues in a principal
component or factor analysis of a sample correlation matrix. When the predictor
variables are highly intercorrelated, there are usually a few large eigenvalues which
exceed the value one. On the other hand, if the variables are nearly independent,
the eigenvalues do not extensively deviate from the value one. The eigenvalues

therefore reflect the degree of interdependence among the predictor variables. The

possible values of V represent a continuum such that the dependence among the




variates increases as V decreases from 1, the variables are highly interdependent
ncar V = () and mutually independent at V = 1 (in this case all eigenvalues are
equal to one).

Since L =LAL’, where L is the matrix of eigenvectors of Z and A is the diag-

onal matrix of eigenvalues A, then once the A, have been specified a random
orthogonal matrix L is generated and used to create L.

The third factor is the Mahalanobis distance between I, and I1; defined by
A% = n’Z~'y; It describes the separation of the two populations.

The fourth factor D determines the elements W, of . It is an attempt to pro-
duce more realistic patierns than the canonical case which has zeros in all positions
except the first.

Let

' = (D" for i=1.2....P and 0<Dsl, (4.1.1.3)

where

AY1-DY(1-DP) if 0<D<«I
4.1.1.9)

b=4s2p if D=1
Elements y, of p are then obtained from | = Ry’ where I =RR’ is the Chole-
sky decomposition of X.
As D varies from 0 to 1, the rates of increase in A decreases as the number of
included variables increases from 1 to P.

To generate a P-variate observation X froin Ny ~ ().Z), P independent N(0,1)

values Z's are first generated. The vector Z is then transformed to the required vec-

tor X by X = pt + RZ. with £ =RR as above.
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4.1.2 Second-order central response surface design

The levels of five factors P, V, A2, D, and N must be specified. The simplest
design is to specify each of S factors at 2 levels each: this is a 2* factorial design.

With only two levels it is not possible to determine if the etfect of a factor is linear.

Specifying a 3% factorial design leads to 243 combinaiions, although a one-
third replicate would reduce the number to 81. A one-ninth replicate has only 27
combinations but, as explained in Davis (1956), "only two main effects are clear of

two-factor interactions”.

In any case, the fractional design approach was abandoned in favor of a
response surface design, which has the advantage of specifying each factor at more

than 2 leveis while not requiring as many combinations as a {full factorial design.

An introduction to response surfaces is given in Davis (1956) and various
‘plans’ are available in Cochran and Cox (1957, chapter 8A). In our study a
second-order central rasponse surface design was chosen because this design is typ-
ically used in practice (Cochran and Cox, 1957, p347). In this design a quadratic
surface or second degree polynomial is fitted by the method of least squares. The
fitted second degree polynomial may be expressed as:

k k&
y=bo+ Tbx,+ TIb xx, . 4.1.2.1H
=1 =l
where k=number of factors. For five factors there are 14+5+5+10=21 coefficients to
be estimated.

We define a sampling situation to be the particular X obtained by specifying

levels for the factors P. V., A%, D, and N. A sampling situation is often called a run

in the experiment. The method used to specify the sampling situations is referred to

as the experimental design.
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The factors may be viewed as spanning a five dimensional factor space in
which a ‘point’ represents the set of all sampling situations which can be character-
ized by the given levels of the five factors; thus specification of a number of sam-
pling situations is equivalent to specifying a set of points in the factor space. The
idea of the design is to specify the sampling sitvations in a symmetrical
configuration about a reasonable ‘centre point’, such that the region defined pro-
vides adequate coverage of the possible factor levels.

To describe the experimental design, each point in the factor space is regarded

as a quiniuplet of factor levels, written symbclically as

(P.V,AZ. D.N). (4.1.2.2)

Each factor has five levels, which are taken to be equally spaced on a suitable scale

and are coded as

-2,-1,0.+1, +2. (4.1.2.3)

These levels are termed ‘low star’, ‘low factonal’, ‘centre’, ‘high factorial’, and
*high star’, respectively.

The values of the S factors for this study are given in Table 4.1.2.1. The
values of P from S through 25 represent a range from a small number of variables
10 a large number ot variables; V from 0.2 through 1.0 represents a -ange of depen-
dency from highly dependent to perfectly independent; A? from 1.0 through 3.0
represents a range ol distances between populations from close to well-separated;
D from 0.2 through 1.0 represents rates of increases of A{fv to A&,, from fast to
slow; and N from 100 through 300 represents from a small sample t0 a moderate
sample.

The design consists of 48 sampling situations or points of three types: a)

25232 factorial poinis which are all possible combinations of the £1 levels for each
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factor; b) 10 star points which have the -2 or +2 level; and ¢) 6 centre points which
have the O levels (see Table 4.1.2.2). This is a second-order central response sur-
face design.

The star and centre points are added to the basic full factorial points in order
to give the design the characteristic of rotatability. If §, is the estimated regression
function in (4.1.2.1) for the j-th observation, then rotatability means that, for all

points for which

5
Zx,f = constant , (4.1.2.4)
=1
the standard error of response,
S.E.(§)) = Yvar(§)) (4.1.2.5)

is also constant.

For five factors a value of ‘high star’ and ‘low star’ = £2.378 would make the
design rotatable if the basic factorial is a full factorial. Since the nroperty of rotata-
bility is desirable rather than critical to the analysis of data (Box and Bechnken
1960), a full factorial with a convenient value of £2 is chosen. The use of 6 centre
points enables us to obtain a fairly stable picture of the results of the simulations in
this ‘intermediate’ region. On the other hand, the 10 star points serve to extend the

region covered by the factorial points.
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Table 4.1.2.1

The values of the tive tactors in the response surface design

Level
( Code)

low star  low factoriul  cenure high factorial — high star

Factor (-2) (-1) () (+1) (+2)
P 5 10 15 20) 25
\Y 0.2 0.4 0.6 0.8 1.0
Al 1.0 1.5 2.0 25 3.0
D 0.2 0.4 0.6 0.8 1.0

N 100 150 200 250 300

‘;-)
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4.2 Multivariate binary case
The generation of multivariate binary variables from the second-order Baha-
dur (1961) model is described in section 4.2.1. The full factorial design is specified

in section 4.2.2.

4.2.1 Generation of multivariate binary variables

For data generated by discrete random variables X;.X,, . . ., X, each assum-

ing at most a finite number of distinct values s,.5,, . . . , s, the sample space S con-

p
sists of S = [Ts, states and may be assumed to be generated by the random vector
)=l

X, = (XX ... . Xp). i=1.2,....N, with a multinomial distribution. Assume also that
the data X can arise from one of the two multinomial populations I1, and I, with
sample size n; and n,, respectively.

The ‘full’ multinomial model has the problem of a rapid increase in number
of states which is troublesome in practice because of sinail sample sizes. For exam-
ple, five variables, each assuming only three distinct values, generates 3° = 243
states. Obviously, a large number of observations relative to the number of vari-
ables is required if sufficient data in each state are to be available for the estimation
of state proba