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ABSTRACT

The problem of studying the behaviour of a fluid moving past a body constitutes
a classical area of research in fluid dynamics. In this work, the unsteady and steady flow
of a viscous, incompressible fluid past a flat plate. situated normal to the flow and started
impulsively from rest, is considered. The Navier-Stokes equations and the continuity
equation are formulated in terms of the streumfunction and the vorticity.

For the case of flow in an unbounded region, transformational and perturbational
techniques are used to obtain exact solutions for initial and small time values. These
solutions are valid for large values of the Reynolds numbers.

Finite-differencing techniques are employed in solving the problem of channel-
contained steady flow of a viscous, incompressible fluid past an impulsively-started flat
plate. These solutions were found to be in close agreement with experimental work done

on the same problem. Calculations were carried out for small values of the Reynolds

number, ranging from 5 to 20.
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CHAPTER 1|

FORMULATION OF THE GENERAL PROBLEM

1.1 INTRODUCTION

The problem of fluid flow past a body constitutes a classical area of research in fluid
dynamics. Since the formulation in the last century of the Navier-Stokes equations, which
mathematically describe fluid flow, investigators have responded to the intractability of
these highly non-linear differential equations by fixing certain flow parameters and
specifying the flow geometry. Indeed, the resulting patchwork of successively better
approximations to simplified flow equations h~s marked the development of the subject
of fluid dynamics. The problem to be considered in this study is that of viscous flow of
an incompressible fluid past an impulsively-started flat plate normal to the direction of

flow.

In ideal fluid theory, the viscosity is assumed to be identically zero, and it is predicted
that the fluid will slip along a boundary. However, this theory is in disagreement with
experimental observations in that the fluid immediately adjacent to the boundary is in fact
at rest. One finds that for fluids with extremely small viscosity, the viscous forces are
usually negligible compared to the inertial forces, except in limited regions of flow where
they are locally very important. One such region is the thin layer adjacent to the body -

- termed the "boundary layer” (by L. Prandd) in 1904.

Prandtl noted that the order of the inviscid flow equations is less than the order of the

viscous flow equations. It follows that a solution of the inviscid equations will be

1




incapable of simultaneously satisfying all the boundary conditions. To resolve this
difficulty, Pranddl postulated a two-region theory. The first region is that of a thin
boundary layer immediately adjacent to the solid/fluid interface. In this region, the
tangential velocity changes from being zero on the boundary to attaining a freestream
value at the outer edge. The second region, external to the boundary layer, is then

considered to be inviscid in nature,

A further advantage offered by the two-region theory is that an order analysis of the terms
in the full Navier Stokes equations, based on the thinness of the boundary layer, reduces
these equations significantly to the simpler Prandd boundary-layer equations. These
equations are solved in the boundary layer subject to the conditions of no-slip on the

solid/fluid interface and potential flow on the edge of the boundary layer.

In 1908, Blasius used the boundary layer equations in considering the problem of fluid
flow past an impulsively started cylinder. He calculated the initial flow in terms of the
first two terms of a series in powers of time. Goldstein & Rosenhead (1936) later

extended these results by obtaining the third term in the power series expansion.

Subsequent to these classical works, various investigators have further expanded our
collective understanding of the theoretical approach to flow past impulsively started
bodies by focusing on particular cross-sections of the bodies. In 1967, Wang considered

symmetrical flow past a circular cylinder and asymmetrical flow past an elliptic cylinder.

Collins and Dennis (1971) studied the initial flow past a circular cylinder. Viscous flow




past a parallel flat plate was tackled by Dennis and Dunwoody in 1966.

Due to the non-linearity of the Navier-Stokes equations, rigorous theoretical treatment of
the general problem is still out of reach, while treatment of specific flow configurations
embodies a fascinating, but limited, body of work. While numerical approaches seem to
be most practical in attempting to obtain solutions, one serious drawback in these
approaches is their failure to accurately describe the initial flow profile. Such errors may

then propagate to yield inaccuracies in the description of the flow at subsequent times.

One notes that the problem of flow past an impulsively started body involves a singularity

in the vorticity at time t = 0. Indeed, from boundary layer theory, it is known that the

n
vorticity on the surface of the cylinder is proportional to (l:.} while the boundary layer

2
thickness is proportional to (.:?] . Thus at t = 0, an infinitesimally thin ring of infinite

vorticity is generated at the cylinder surface. It is difficult to incorporate this

circumstance into numerical procedures.

Groundbreaking work by Collins and Dennis (1971) and Dennis and Staniforth (1971)
employed boundary layer transformations to the full Navier Stokes equations which

virtually eliminated the singularity inherent in the equations at t = 0.




One motivation oi the present work is to apply the careful and rigorous techniques of
Collins, Dennis and Staniforth to the yet unsolved problem of flow past an impulsively-
started flat plate normal to the direction of flow. Indeed, a theoretical analysis has been
carried out to understand the nature of the initial flow of a viscous, incompressible fluid
past an impulsively started normal flat plate and an impulsively started thin ellipse.

These results are valid for very large values of the Reynolds number.

As well, a numerical study of the steady state solution of flow past an impulsively started
normal flat plate has been undertaken, and the results have been compared with existing
numerical studies and experimental work. In particular, Hudson and Dennis (1985) had
published work on the steady state flow past such a plate in an open-field. Theirs was
a strictly numerical study, based on flow equations given in terms of the primary
variables. By contrast, this study employs a streamfunction-vorticity formulation of the
governing equations, and we consider flow in a channel. Experimental work published
by Coutanceau and Launay (1993) offers data on channel flow with which our results are
compared. This segment of the work was carried out for small values of the Reynolds

number, S £ R < 20.

1.2 BASIC EQUATIONS GOVERNING THE FLOW

For a viscous, incompressible fluid, the Navier-Stokes equations can be written in the

usual dimensionless form




v

S @ V=T 2 g2 4 (1.2.1)

R

where V and p are, respectively, the dimensionless velocity vector and the pressure, t is
the dimensionless time and R is the Reynolds number based on the reference length and
reference velocity in the flow field.

Definitions of these quantities in terms of dimensional quantities are given in Appendix

I. Equation (1.2.1) together with the equation of continuity

div vV = 0, (1.2.2)
and the appropriate boundary conditions are assumed to govemn the flow.
Eiiminating the pressure term from the linear momentum equations of (1.2.1), and
introducing the vorticity vector function, &, we have the flow being governed by the

following system of equations (see Appendix I):

@ =curl v (1.2.3)

2

90 _ n(@x®) = - curl (curl @) (1.2.4)

divv =0 (1.2.2)

The above equations together with appropriate boundary conditions on ¥V and @ are taken
to govern the flow.
For two-dimensional motion, ¥ = (u,v) where u and v are the components in the

Cartesian-defined (x,y) directions, respectively. It is then possible to introduce the stream

function y(x,y.t) from the conservation of mass equation (1.2.2):




a(x.y,0) = %‘;’. v(x.y.1) = -% (1.2.5)

We further observe that the vorticity vector function, defined as the curl of the velocity

¥, will have only one non-zero component:

ax,y.t) = (0,0,5(x,y.0) (1.2.6)
Employing equations (1.2.5) and (1.2.6) in equations (1.2.3) and (1.2.4), we obtain the
following goveming equations, in terms of the streamfunction, y(x,y.t), and the scalar

vorticity function, {(x.y.t):

B 2o, . (0w _oyaL 5
'V (xwy 7;3;) (1.27)
Vy +{ =0 (1.2.8)

We shall refer to this formulation of the problem in terms of y(x.y.t) and {(x,y.t) as
Syste.a (I), and shall now seek the boundary conditions to be prescribed on these
dependent variables.

We consider flow past a normal flat plate which is started impulsively from rest att =0
and which continues to move with dimensionless velocity 1 along the direction of the x-
axis. The fluid at large enough distances from the plate is assumed to remain
undisturbed. In actuality, we adopt the following equivalent formulation of the problem.
For t < 0, the plate and the fluid are moving at velocity | in the direction of the positive

x-axis. At t = 0, the plate is immediately brought to rest. The fluid at large enough
distances from the plate is assumed to be moving with uniform velocity, ¥ = 1 { for ali

time t.




In defining the physical domain of the problem, we can consider two separate cases:

flow through a channel and flow in an open-field. By defining the parameter A (blockage
ratio) to be the ratio of the plate length to the channel width, the case of flow in an open-
field may be thought of merely as a limiting case of flow through a channel (A — 0).
Furthermore, taking the position at which the flat plate is brought to rest to be coincident
with the y-axis with the centre point on the plate being y = 0, we find that our problem
is symmetric with respect to the x-axis, and hence we need only consider one-half the
domain. This problem is illustrated in Fig. I.1a. The problem domain for the case of

flow in an open-field is illustrated in Figure L1b.

We consider, for the present, flow in an open-field. The boundary conditions for the
dimensionless vorticity and stream functions re:

t<O: y=y throughout the flow field.

t20: (i) Y= %1_’ =0 along the plate (no-slip condition),

.. oy oy s e
ii -1 , -=— => 0 far from the plate,
(i) ¥ o p
(iii) § — O far from the plate,

and (iv) vy =0, =0 along the x-axis

(anti-symmetric condition). (1.2.9)

System (I) must be solved subject to conditions (1.2.9).

To facilitate a more feasible computational domain and also to atiempt management of




the vorticity singularity at the top edge of the flat plate, it is advantageous to consider the
alternate curvilinear system of elliptical cylindrical coordinates (see Appendix II). The
relationship between the elliptical cylindrical coordinate system, and the cartesian system

is given by the conformal transformation equations:

x = sinh€ cosn
and y = cosh sinm. (1.2.10)

The use of such transformations is well established in the literature. Furthermore, under
the transformation (1.2.10), the domain of our problem becomes a semi-infinite strip
spanning a width of &t in the n-direction. The transformed domain is illustrated in Figure

|

Under the transformation (1.2.10), equations (1.2.7) and (1.2.8) of System (I) become

respectively
M2 .2 [ﬂi&]{ac v _ & Bw] 1.2.11)
o K| on'f|omE FEom
and
M2 = -[9’_‘4'_ Oy ] (1.2.12)
0T o’
where

M? = ..;..[cos 2 +cosh 2§]




Likewise, the boundary conditions given by (1.2.9) are transformed to the following set

of conditions:
t<O: v = cosh & sin n VEneD.
€2 0; Q) wv= %“'E =0 along the plate.
(ii)) w—coshEsinn as& — oo,
(i) {0 as& > oo
and (iv) ‘{;’ : g} alongn =0and = n, VE. (1.2.13)

We shall refer to the formulation of our flow problem involving equations (1.2.11) and

(1.2.12), together with the boundary and initial conditions given in (1.2.13), as System
{mn.




CHAPTER 11

SINE SERIES EXPANSIONS OF THE VORTICITY AND STREAMFUNCTION

2.1 D_OF SER N ON: __OBTAININ LOBA

CONDITION

It is assumed that the streamfunction w(%, n, t) and the vorticity {(x, 1, t) can be
represented by the following sine series expansions.

v(E.n.t) = i f(€.t)sinnn 2.1.1)

GEn.y = f: g, (E.\sinnn (2.1.2)
as}

Employing the above expansions in governing equations (1.2.11) and (1.2.12), we obtain

the differential equations for the functions (&, 1), gc(€, t) given by

o*f, 1
B_§:-K2fx =-7 {2 cosh 28 g, + g, + 8¢,y - £y} (2.1.3)
and
dg, Jg ag og
2 h 2 K K-2 Ke2 - 2-K
oshW S T e
. 8198 _ ., 2.14
A e R 149
where

10
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S0 =2 m 'ss' ifsf -a%e-]

agx- agx- _ 98, x

In the above, functions with negative subscripts are taken to be zero. The boundary

conditions for (2.1.3) and (2.1.4) follow from those given in (1.2.13). They are given by

i £ (0, t) af"(o )=0 VkeN
l; K ] =—aT b = 'y
ii, AsE > o, ge >0 VkeN,

and jii.i As& > oo

2t f, - §,

I - §

'5&' K.1

2e S
where

5 =g v K=l (2.1.5)
K.1 - Kel

In considering the boundary conditions on fi(€, t) and g.(&, t), we note that while there
is only one condition imposed on gy, an excess of conditions are imposed on f,. We
attempt to find an integral or global condition on gg(€, t) by employing the excess
conditions on fy(§, t). Dennis and Quartapelle (1989) have documented the theory
behind, and the manner in which, global conditions are sought.

Multiplying equation (2.1.3) by e®®, and integrating the resulting equation wrt & from &




12

=0 to & — oo, we deduce that

17 .
- f e ™ (2 cosh 2 g, +8, , *8x. -1 U6

z(I

g-b-

of
=le® X +Ke™f,

K3 se0
- _;. (1+K)5, ,

That is, the desired integral condition is

fe ‘Kﬁ{z cosh 2€ B¢ * k2 * Bk -gz-K} dg = -48K.l (2.1.6)
0

Equations (2.1.3) and (2.1.4), together with boundary conditions (2.1.5i,ii) and integral

condition (2.1.6) shall be referred to as System (III).
2.2 NDARY-LAYER NSFORMATION.

It is known from boundary-layer theory that in the initial boundary layer after an
impulsive start, the boundary-layer thickness is proportional to (VR)"2. Furthermore, the
vorticity { and streamfunction y are proportional to (VR)"? and (VR)" respectively.
Hence, to study the motion of fluid in the region near the flat plate, the boundary-layer
transformations together with tt= appropriate scaling of the dependent functions take the

form:




E=Ax, E(x) = ."tf_(g,x).
G,(x,t) = Ag (.0
(2.2.1)

where

Under the transformation (2.2.1), the equations (2.1.3) and (2.1.4) take the forms

PF,

ox?

K\’F, = '%{2 cosh(20)Gy +Gy; +Gy,, -Gy} (222)

and

13



)

-ZtaG‘- aG“-G
R

- O, OF,. OF,,
rarm G-[-a;— > T]

oG oG aG__
- F.[ K-m Kem ] K] (2.2.3)

Equations (2.2.2) and (2.2.3) govern the scaled coefficient functions, Fi(x. t) and Gg(x,
t), of the sine series expansions of the streamfunction and scalar vorticity, respectively.
The boundary and initial conditions to be imposed on Fy and G are obtained by applying

transformations (2.2.2) on conditions (2.1.5i), (2.1.5i1) and (2.1.6). We have

. oF,
L FR0.9=—X0.9=0,

ii, Gy(x,t) = 0 as x = oo,

14



and i, [e™* (2 cosh 2Ax G, 4Gy, +Gy,, -G, ) dx = 43, , 2.2.4)
0
where Ke N.

Hence, the flow inside the boundary layer may be determined by solving equations (2.2.2)
and (2.2.3), subject to conditions (2.2.4). We shall refer to this formulation as System
av).

Taking t = 0 in equations (2.2.2), (2.2.3) and in the conditions (2.2.4), we deduce the

formulation (System (V)) which govemns the initial flow.

*F 1 1
.ax_: - 'i Gy ’Z[Gx-z +Gy ., 'Gz—K] 22.9)

and

] @226)

govern the initial flow, subject (o0:

. 9F,
L FK(00 0) = -&- (0. 0) = 0-

i, G(x,0) 20 as x = oo,

15
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and i [ {2 Gg+Gy,+Gy, -Gy )dx = 45, @27
0

forallke N.




CHAPTER I

ANALYTICAL CONSIDERATIONS FOR INITIAL
AND SMALL-TIME FLOW OF A VISCOUS, INCOMPRESSIBLE FLUID PAST AN
IMPULSIVELY STARTED FLAT PLATE
3.1 R PROB OUND - R REGIO
The equations for unsteady, viscous, incompressible flow, expressed in terms of the

vorticity function, {(€,n.t) and the streamfunction, y(&,n,t) are

_[c032'q +cosh2§] = % [3’; B’C]

a€2 a.nz
[GC oy _ df av]
on ok '55"&‘ 3.1.1)
and
3.1.2)

oIy dv _1 .
W 3"_2 5[cos2n cosh 2&]{.

where the independent variables £ and n form the elliptical cylindrical coordina: . .et.
As noted earlier, the boundary conditions on § and vy are as follows:

i Along the flat plate (€ = 0):

v:_%g-o.

and

17




ii Far from the plate (§ — oo):

¥ = cosh&sinn ,
oy . .
— sinh&sinn ,
9

and 0.

From boundary-layer theory it is known that after an impulsive start of a body, in

the initial boundary-layer:
¢ y2
Aa (_} '
R
¢ 2
L+ B PR ,
“ox]
d tY?
an afe1! .
ve(z]
where A is the boundary-layer thickness.

Accordingly, we apply the following boundary-layer transformations wherein the vorticity

and streamfunction have been scaled appropriately:

E =2, wEn=A¥x0,1)]
CE.n = -;: Q(x,n.1)

where
(3.1.3)
n
A = ﬁ] .
R
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Under the transformation (3.1.3) the equations (3.1.1) and (3.1.2) take the forms

N ..3Q N
[ax: + A anz] + [cos 2n +cosh ux](x}?d))

= Zt{[cos 2n +cosh le].a;z

NIV Q¥ 3.1.49)
'§rTT TR
and
i 0CL i A
+A2__ = -_lcos2n +cosh 2Ax|Q. (3.1.5)
Y om? —2-[ ]

Along the flat plate, the transfor ed no-slip boundary condition takes the form

a¥

W’W

=0 at E=0. (3.1.6a)

Far from the plate, the condition on the vorticity function is:

Q-0 as § - 00, (3.1.6'))

The behaviour of the streamfunction far from the normal flat plate is considered.
i
AY¥Y — cosh Ax sinm as X — oo
i.e.
AY - [i’;_e'i] sinm  as X =3 oo

AS x o0, e™ 5 0



Thus,
e =AY o _;. silm as  x — ee, (3.1.6¢)
ii. Since %;’. — sinhAx sinm  as  x — oo,
therefore:
e M %\:: - _;. sin as X — oo, (3.1.6d)

Considering the boundary conditions on the vorticity and streamfunction given by (3.1.6),
it is observed that there is an excess of conditions on ‘¥(x, n, t). A global integral
condition on the vorticity function is sought in order to make compensation for this fact.

Taking t = 0, and hence A = 0, in equation (3.1.5), one has:

F¥ _ 1
57 = -5[c05211¢l]ﬂ.

Both sides of this equation are multiplied by e™* to obtain

2
e ¥ 1o [cos2n +1].
oxt 2

Since

20
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oM il 4 lim oM i 4 ax 0¥ «da-axd¥ 2 _ ax
ale_)o alee.&_le.g;le‘{‘

li d ') 4 -
“ag0 {3 [ v =]}

substitution of the above into the equation governing W(x, 0, t) yields

lim 0 | axo¥ Ax
A-»o{b‘,{[‘ = e \P]}
lim 1
" 230 {—.i[cosZ'q «1jQ } :
Integration of this equation wrt x, from x = 0 to x — o gives

y ) 3.1.7)
f(cosan)Q(x.n.t-O)dx = =2sinn .

0

This is the desired integral condition on the vorticity function, for time t = 0. This
condition is compatible with the condition (2.4.7) on Gg(x, n, 1=0) found earlier. Indeed,
multiplication of both sides of (3.1.7) by sin kn, and subsequent integration wrt ) from

n = 0 to N = % yields the following equivalent integral condition:

ot n

f (cos2n +)Q(x,n.t=0)sinkn dxdn = -n5, ,, (3.1.8)
[1]

where



3.2 THE INITIAL SOLUTION

At initial time t = O, the flow of a viscous, incompressible fluid past an impulsively

started flat plate, normal to the direction of the flow - in terms of the boundary-layer
transformed vorticity function (x, n, t) and streamfunction ‘P(x, N, t) - is govemned by

the systera of equations:

rQ Q 3.2.1)
_aF + (cos2n +1)(x.a;. +Q] =0
and
a4 3.2.2)

Ex_z = -%(cosZ'q +1)Q.

The boundary and global conditions given in (3.1.6a), (3.1.6b) and (3.1.7) constitute a
sufficient set of conditions with which to solve equations (3.2.1) and (3.2.2).

Applying the transformation

(3.2.3)
x = f(n)z
to equation (3.2.1) yields
%;% « m) «cosZn)[z%.?.*Q] =0,
By selecting
3.24)

f(n) = (1 +cos2n)~1?

<ie above equation reduces to
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’Q aQ (3.2.5)

By inspection,

Q,(z,n,t=0) = g(n) e 2%

is a solution of (3.2.5).

The second linearly independent solution of (3.2.5) is obtained through knowledge of the

properties of Wronskians:

Q,(z,n,t=0) = h(n)e "%’ femzwu_
0

Both Q, and Q, satisfy the condition 2 — 0 as z — oo, and hence a linear combination
of these functions would also satisfy this far-field condition. However, employing S,(z,
1, t=0) in the integral condition (3.1.7) yields a divergent integral. Hence, h(n) must be

taken to be zero, and thus the solution to (3.2.5) is

_ (1 +cos2n) 3
Q(x,n,t=0) = g(n)e

where g(n) may be determined through the integral condition (3.1.7).

f (cos2n +1)g(n) « e V2 eem2e? gy o 2ginn
0




Hence:
gn) = ~2sinn
(cos2n +1 fe “12(1 «cos2nie? 4o
0
Since
few otz
) 2N k
therefore
32 o
gm) = ——2 sinn__
vV (1 +cos2n)?
and hence
Q(x.n.1=0) = ~2*sinn e ~172(1 scos2m? (3.2.6)
VR (1 +cos2n)'?

A singularity in the vorticity exists at 1} = nt/2, i.e. at the top edge of the normal flat plate.
Employing (3.2.6) in the governing equation for ¥(x, n, t=0), yields
Fv _ |2

= = (1 +cos2n)'? sinn e
X

-172(1 +cos2n)x ?

Integration of this equation wrt x, from x = 0 to x = x, and employing the no-slip

condition (%.\:.1‘ = 0, gives

24




25

3; = (sinn) erf l l+c;)32n x

erf(gfk-x)-Zl.E fe"“'zdu.
L

Integrating again wrt x from x = 0 to x = x yields

Y(x,n,t=0) = sinn| x erf | 1+c;s2'q x
, _Qeconrm) 32.7)
- '12? (1 +cos2n)1?2 (l- e z ‘) )

where

3.3 ION POWERS OF

Equations (3.1.4) through (3.1.7) provide the mathematical formulation for the problem
of unsteady flow of a viscous, incompressible fluid past an impulsively started normal flat
plate. Furthermore, the expressions given in (3.2.6) and (3.2.7) describe the initial-time
behaviour of the fluid. We now embark on a study of the behaviour of the fluid for small
time t. This is facilitated by first assuming the following series expansions of the

vorticity and streamfunction in powers of A:

(33.1).
Qx,n0) = Q(x,N0) + AQ(x,n,0) + A2Q(x,1,0) + ...

and
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Y = Woxant) + AP (xn.0) + ATW,(x, 0.0 - .. 33.2)
We note that the dependence of the problem on the Reynolds number R can be considered
8t

/]
to be contained in the variable A = (_R-} . Thus if we consider flows of low viscosity

at small times, A will be small, and expansions (3.3.1) and (3.3.2) are viable.
Additionally, we replace the term cosh 2Ax in equations (3.1.4) and (3.1.5) by its power

series expansion, so that

M? = _;. (cos 2n +cosh 2Ax)

2 4
-l (1 +cos2n) +A? - 0x) a0 27, .
2 2! 4!

Employing the above expansion along with expansions (3.3.1), (3.3.2) in equations (3.1.4)
and (3.1.5), and equating the coefficients of like powers of A to zero, we have tHe

following equations govemning the behaviour of coefficient functions ¥x(x. n, t) and

QK(X. n
& ¥y 4 W-2 |
P 3 -i-{(l cos2n)Q,
. 2 ™'y L, @7 (3.3.3)
2! Qs - rY, LW g — Qg m
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BZQK aQy,

53 . (l+cosZn)[x - + (1 -k)Qk]
a0y B’QK,,
at on?

k)
« 2 Lt a{;“" 202 L k-ng,,

= (l+cos2n) - 2t -

2! ax

2x)¢ | o 0N
PR Ll P My _ X % m

m! ot dx

+.

+ (k'm'l)nx_n]

K
4 E BQ, 8‘!’,(1, _ aw, BQK.P .
™ ox Mk (33.4)
where
m = K ; Kiseven
K-1; Kisodd .
The boundary conditions for ‘¢(x, 1, t) and Qg(x, n, 1) are
ov
\PK = _arx_ =0 on x=0, 33.5)
and
(3.3.6)

Q20 as x — oo,

The integral conditions on the vorticity coefficient functions, Qx(x, 1, t), are obtained by
expressing the coefficients of the sine series expansion of the vorticity in the following

manner:
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G,(x.) = % Q(x.n.t)sinnn dn,

o'_ﬁa

and substituting in the integral conditions given in (1.4.4).

With the resulting expression,

o"‘a

fe A {5 cosh2Ax sinkn + sin(k-2)n
°

+ sink+2n - sin(2-k)N}Qx.n.0dx dn

= -218, ;.

we expand the functions of A contained in the equations in powers of A to obtain:

O&.—‘ﬂ

f {2 sinkn + sin(k-2)n + sin@k+2)n - sin(2-k)n)
0

+ A [(-kx)(2 sinkn + sin(k-2)n + sin(k+2)n - sin(2-k)n)]

2
. l’-’;—, [((2-k)2 + (-2-k)Y)sinkn

+ k2 (sin(k-2)n + sink+2)n - Sin(2-k)ﬂ)]

3
+ A3 .’;_' [((2-1‘)3 + (-2-k)’)sinkn

-k ¥sin(k-2)n + sin(k+2)n - sin(2-k)n)]
o HEp+A0, +A? 0, +... } dx dn
= -2n4, ;.



Now, equating coefficients of like powers of A in this equation, we generate the following

desired set of integral conditions on the coefficient vorticity functions:

2 sinkn +sin(k-2)n +sin(k+2)n -sin2-km},} dx dn

e\.—‘.n

i ° (3.3.71)
=-2rn 5, ,,

f f {[2 sinkn +sin(k-2)n +sin(k +2)n -sin(2 —k)n]

ii o0 (3.3.7ii)
[@, -kxQ,]} dx dn =0,

i , f {[2 sinkn +sin(R-2)n +sin(k +2)n -sin(z—k)'q]

00

(@, -]
(3.3.7iii)

+ _’;;[((2 —k)? + (-2 -k)} sinkn +k X(sin(k-2)n

+ sin(k+2)n -sin(z-km)]n,,} dx dn =0,
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34 ION W OF IN [0) A
In the boundary-layer case (A = 0), it is known that for small time t, the functions Wy(x,
n. t) and (x, M, t) can be expressed in series of powers of time, with functional

coefficients depending on x and . That is,

(3.4.1)
Yo(x.n,t) = P(x,n) +t W, (x,n) + 12¥,(x,1) + ...

and

3.4.2)
Qy(x,Mt) = Qo (x,N) + t Q(x.n) + 2Q(x,M) + ... .

These expansions, when employed in the governing equations, facilitate the isolation of
time-dependence. Taking k = 0 in equations (3.3.3) and (3.3.4), we have the equations
which govern the boundary-layer coefficient functions, Wo(x. N, t) and Q4(x, 1, t):

o

Ly -% (1+cos 2m)Q, (3.4.3)

and

rQ, aQ,
e (1 +cos 2n) [x_a;. ]

(3.4.4)

X X on

We substitute expansions (3.4.1) and (3.4.2) into the above equations.

From (3.4.3):



ox? ox? ox?
!

(1 +cos 20)Qy, +1Q, +1°0y, +..

(N1}

Equating coefficicnts of like powers of t on either side of this equation, we find that

C o 1
— , (3.4.59)
57 5 (1 +cos 2n)Q2,

forn =0,1,2,3....

From (3.4.4):

LHS of 3.44) = ..2-:0 t* {i;%dl +COS Zn{x.?.g‘l'. +Q].

2t.8.?‘t; = 2t[Q,, +2tQ,, +3t°Q,, +...]

=2y mQ,,
n=)
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)
2t _;2 = [0 +210; #3120y +..] - 2t
=2 E nt "€, ,
n=0

890 a\*’o {[anw ot aQOI *_tzﬂoz *'...]

el | e
.| 9%¥o0 , 9¥0r , 29%0r .
['a;' T T ” .

_ 4[t [anoo avw]ﬂz[anw ¥, 30y, MY ]
on  ox om ox om ox

. 982y 0¥y, . 08y, 9'¥y, . 08y, ¥y,
N TR T Ta T T

..}

= nl (50 aq:o’n‘m_ll
Ly (‘WT

and

RHS of (3.44) =

t®12n (1+cos 2n)Q_ + 4
n=0 mE'O ox % on ox

5 = My, M0 - 082, ¥4 0-1 ] }
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Hence. equating coefficients of like powers of t on the LHS and RHS of equation (3.4.4),

we have that for n = 0,1,2,3,...:

Q,, Q,,
33 (1 +cos 211{7&7);_ Qo_]

n-1
= 2n(l + cos 2n)Q,, + 4 Z [anﬁ ¥ 0a-s - 0Q,, ¥, . )

m=0)

That is,

’Q,,

ox?

A
=4 nE_l aQ(h a‘yo.a-n-l - aﬂh a\!’o.ll'll'l
= \x on  om  oax )

a0
+ (1+ cos 2n)[x ® o+ (1-20)0Q
ox ”| (3.4.6)

The associated boundary conditions obtained from (3.3.5) and (3.3.6) are that:

ov 3.4.7
¥, = ax"" =0 when x=0, ( )

and

(3.4.8)
Q, 20 as x — o,

The integral conditions on the coefficient functions £,,(x, n) are obtained by substitution

of the expansion (3.4.2) into condition (3.1.7). We get:




f(l +cos 2n)Q,(x.n) dx = -2sin7,

and

[ (1 +cos 2mQx.m) dx = 0, VneN
0
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(3.4.9)

(3.4.10)

Multiplying equations (3.4.9) by sin p n| and integrating wrt n fromn =0to n =&, we

may rewrite this integral condition in the following equivalent form:

ok.._..a

where

I 5 p=l
- 0 ; p=l

f (1+cos 2n)sinpn Q, dx dn = -x §_,
0

3.4.11)

Likewise, we integrate cquation (3.4.10) wrt i from n = 0 to n = & to obtain the

following form of that integral condition

f (I+cos 2n) Q,_ dx dn =0 .
0o 0

(3.4.12)

From the preceding analysis, it is clear that the zeroth order coefficient functions W (x,

n) and Qy(x, ) are governed by the equations




P¥,,

ox?

= -.%(l +cos 2n)L,,,
and

Py,

ox

3%y,
+ (1 +cos Zn)[x_&_ +QMJ =0,

subject to the conditions

X e
ff(l +cos 2n)sin pn £, dx dn =-x §_ ,.
00

The exact solutions to this system were obtained earlier ((3.2.6) and (3.2.7)), and are

given here again. We have

%sinn___ -1 +con 23 (3.4.13)

Qoo(x,n) = -
Vx (1 «cos 2n)'2

and

A
(1+cos 2m) 7
Foo(x.n) = [x erf l_l:f%i@.x - ,.;2‘.

( 1 +cos 211)‘;} (3.4.14)
1-e : sin n.

The first-order coefficient equations are governed by the equations
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4
9*¥,,
2

1
> = --2-(1 +cos 21n)Q,,

2’Q, aQ
) 1+~ o _
—=-7 (1 +cos Zn{xTx Qo,]

[anw ¥y, enw 9¥oo
“ox on oan  ox

subject to the conditions

a¥,,

\Vo,-_&_-o when x

=0,

Q5 20 as x — e,

and

Ot A
ok_‘t

(1+cos 2n)Q2,, dx dn = 0.

We apply the transformation obtained earlier, i.e. z = (1 + cos 2n) '? x, to the above.

Since

- 237sin n 1R
Q(z.M) = — ¢
(1 +cos 2n)

Yoolzum) = — S0 of | | - ,
» (1 +cos 2n)'? ‘e (l ¢

and

therefore:
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i

d k17 .y z?

9‘:‘00 = -ZJ" e 2z sinm Sian] (1 +cos 27‘)‘3’2 + cosn(l +cos 2“)-“2} .

n
d »
—‘}5‘2 = 2—. sinny (1 +cos 211)'"2 ze-2 P .
n
k¢
S et | 2 |- li(l-e-me)
vz n

and
iv,

9¥o sinn 1
3z = erf 2
z (1 +cos 2n)'? 2

Hence, the transformed system of equations govemning the behaviour of ¥y,(z. n) and

€0,(z, n) takes the form

Moy 1 (3.4.15)
oz? 2 o -

and




’Qy 9, 2
T i Qut sJ? siam

[sinm sin2n (1 +cos 2n)™? + cosn(1 +cos 2n)32]

1 l
‘e -’ 2? . (zz_’l) e"{%] - ?zt_ z (1 -e -llZzz) . (3-4-16)
2

The transformed boundary conditions take the form

Yo = 3;'5-1- =0 when z =0, 3.4.17)
Qy >0 as z->oe, (3.4.18)
and
. -
[ [ +cos 2m)2Qy, dz dn = 0. (3.4.19)
00

In order to facilitate a fuller understanding of the solution of the system of goveming
equations and boundary/integral conditions describing the behaviour of ¥,,(z, n) and
€201(z, M), we consider again the system of equations describing the general functions
Woa(x, M) and €,(x, M), given by equations (3.4.5) to (3.4.10). Applying the

transformation z = (1 + cos 2 )" x to the governing equations (3.4.5) and (3.4.6), we

have
a;\v:, = -_21_ Q. (3.4.20)
’ 4

and

38
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a=n0 aQ,,
n - (1= = 3.4.21)
. z 5 (1-2n)Q, = S (z.n).

where

-3 -l aQ,, ¥ Q,, o¥
=4 (] + m) 2 On-m-1 _ O.8-m-1 |
S, (zn) (1+cos 2n) * ¥° [Bz o =

The corresponding boundary and integral conditions are transformed likewise:

Yoo = Etron =0 at z =0, (3.4.22)
Qp 20 as z oo, (3.4.23)
and
x -
f f (1+cos 2n)'2Q, dz dn = 0. (3.4.29)
00

In constructing exact solutions for ‘¥.(z. n) and Q(z, n). we first consider the

homogeneous differential equation corresponding to (3.4.21):

3*(Qy,) A,
a‘;‘;"" +Z ‘;: e (1-2n)(Q,), = 0. (3.4.25)

Assuming a solution of the form

(), @M = e’ F(zn),

we have
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9'_': + (4a~1)zi‘i + (4a2z2+2az%+22+1-2n)F = 0.
dz? dz

Taking a = -1/4, we have

FF _ (.‘.zz .20 - .l.)F .0 (3.4.26)
4 2

Equation (3.4.26) is a differential equation of the standard form:

y” + (ax? +bx +c)y =0,

which is well-kiltown to have solutions which are parabolic cylindrical functions (see
Appendix II).

Even and odd power solutions of (3.4.26) are given by

f(z) =e1H% 1+(2n)22 +("n)("n+2)z4 -+
l -—2-!— - - 4—! .o

=clhe l,(zn-l)zz +(2n-1)(2n-3) 2t -

and

f(z) =e 4 ‘“z+(2n*l)zj Jr("n+l)(2n+3)zs +
2 3T ST

.

,

3 s
il STcL S LI e DL

.




and standard solutions of the differential equation are constructed from these sedes

solutions. Two linearly independent solutions of (3.4.26) are:

U(2n -%.z) = cos(nx) * F,

and
v[2n -] 1 :
n-.2 =mcos(nn) F,.
where
]
Fj = T ;, f,
r
and
F,= L Tli-n) o
"o
2 2

Hence the solution of the homogeneous differential equation governing the behaviour of

(£04(z. M), and given by (3.4.25), may be written as

R |

7 1 _1
[Qou@W], = ¢ [A.(n) U@n-=.2) + B,(n) V(2 5.:)],

where A () and B,(n) are functions of 1} to be determined through use of the far-field
condition on €y, (3.4.23) and the global integral condition, (3.4.24). Using the method
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of undetermined coefficients, a particular solution can be found for the non-homogeneous

differential equation in (3.4.21), and a complete solution for £24,(z, n) is then

3
Q, =¢? ' [An(“) U(2n-;..z) + B,(n) V(Zn-%.z)] * (oa), -

Returning our consideration to equations (3.4.15) and (3.4.16) which govern the behaviour
of the functions Wy, (z, n) and Q4 (z, ), we mimic the construction of the general

solutions and write
L
(Qu), =¢ KM w(2).
Then, w(z) satisfies the simpler ordinary differential equation
w” (z) - (%zh.;) w(@) =0

Employing the theory of parabolic cylinder functions, we find that

wz) = —L_ e 7'z . cz[ mze "“zerf(_!_z] + 2 ""‘z] .

2% \/'2'

where c,, ¢; eR. Since w(z) — 0 as z — oo, therefore ¢; = -2x c,.

The homogeneous solution

(), = KM) |z et [71_2_.2] + J-%_ e-_;,: -z

will satisfy the necessary anti-symmetric conditions. The function K(n) shall be

determined later through use of the integral condition (3.4.19) on the complete solution.
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A particular solution of the non-homogeneous differential equation (3.4.16) is easily

determined and is given here:

-.I_J_lt.'ze’{l ZW
2N 2 "/_5"}

where

Nl-—-

( I
.}]erf _l_.z}e 7t

V2

prmsesanmw

2 ze™®

1
44 =

I (]

o)A

)

M) = 8 ‘% (1 + cos 2n)"%2(sinn cosn (1 + cos 2n) « sin’n sin 2n}.

A complete solution for £,(z, 1) is then
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The integral condition (3.4.19) shall be satisfied if K(n) is taken to be M(n) in the above.

4,(z.n) = M(n) - !%J%_z[eﬂ[:/_lfz]]— %J—_’;-z e«[.;_Tz)
+ zerf _!_z e -l [-122’—[]6 _Lz e 122!
V2 4 4 3
- __;‘_J_%-z__;_ -z J—_;z: o Mzt _ %Ez et

-1/42?
_zeluz}.

Hence,

(3.4.27)
The solution for ‘¥, is obtained by integrating (3.4.27) twice with respect to z, subject

to conditions (3.4.17). We have

44







That is,

i;‘l‘. - M(n){%g [(z’-l)(erf[_'z_z]] - (z’*l)erf[_‘/lfz]]

46



Integrating again wrt z from z = 0 to z = z, we obtain the expression for ¥,,(z. n)

= . 1 R 1 3 1 I . 2 -z2
¥,,(z.M) = M(n) Ll-i- 32 (erf(_ﬁ_-]] 3 2

2
. =
3N

—zerfl Llz{+ |2 - |2 e-ime
\/2‘ T n
.3 erf(z) = 2 e V27 erf A2
42 V2
e deama J 1 L g1,
4 4 3 Jz—
02\/; erf(_ll’. z)».l_ﬁ- erf(z)
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The process can be repeated to obtain higher order solutions in the boundary layer region.

The homogeneous solution, (£2 ), . of (3.4.21) will simply be a parabolic cylindrical

function, and the particular solution, (Q,),. is obtined using the method of

undetermined coefficients. Iniegrating the - orticity twice, as per equation (3.4.20), gives

us the streamfunction ¥, .

3.5 THE FIRST-ORDER CORRECTION TO BOUNDARY-LAYER THEORY

Putting K = 1 in equations (3.3.3) and 93.3.4), we obuin equations for ‘¥, and Q, given

by

b
= - -%(1 ~cos2n)Q, 35.1)
E

! (l cos2 ) L= 2t (l +cos2 ) !
— P + X

s i N, M, N, M, (3.5.2)
9x  on am  ox ]

Series for ¥, and Q, in power of time may be taken. We write these expansions as

¥ (x.n.0) = ¥ioxm) « 1 ¥,0n) ¢ ¥ -, (3.5.3)

Qy(x.n,1) = Qye(x.n) + 1 Q(x.M) + °Q,(x,M) + ... . (3.5.9)
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In 1
P "3 (1 + cos2n)Q,,. 3.5.3)
N
in In
+* l 2 - 2 = ; (30505)
53 x(1 + cos n)_&_ nQQ, =r,
where
1 sl 193Q 'k 4 aQ__o¥
.. =4 E E m,.p 1-mpn-l-p _ m.p 1-ma-1-p . N

and

fio = 0.

Here, as in the case of the boundary-layer expansion, the functions r,, for a given n > 0
can be expressed entirely in terms of functions Q;, ¥, for j < n. Hence, the equations

(3.5.5), (3.5.6) can be solved successively.

The functions '¥';, must satisfy

a¥
\P,,-_a_‘:-o when x =0,
X

and the farstream vorticity condition is expressed thus:

Q. -0 as X = oo,

1n
Employing expansions (3.5.3), (3.5.4) in integral condition (3.3.7ii), we obtain the

following global condition on ¥, (x, n):
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[2 sinkn +sin(k-2)n +sin(k+2)n -sin(2-k)n]0,n dx deta

Sl
c'ﬁ [ ]

- f kalz sinkn +sin(k-2)n +sin(k +2)n -sin(2-k)n] Q,, dxdn .

Now, taking n = 0 in the above, we have the following equations for ¥ 4 and Q,,:

almym |

s -__(] + .
53 2( cos 2n)Q,,
Bzﬂ,o aQ

+ x(1 + cos 2 19 =0,
axz ( n) T-x—

Applying the transformation

x = (1 + cos 2n)"2

to this system of equations, we have

it |

:o = -0,
oz’ 2
22 9z

the latter equation may be written as

%[e 2z an,o] =0

Integrating twice with respect to z yields
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I n 1
Q.o(z-ﬂ) = C|(r|) : 5 er{ﬁ Z] * Cz(n)-

Qozn) 20 as z- e,

Since

therefore we must take

C(m) = -C,(n)

Hence,

Q,0(z.M) =C,(n) l_z. crf(Tz_. z) 1,

where C,(n is an arbitrary function of n which may be determined from the integral

condition on ,4(z, n).

Integrating twice with respect to z yields the expression for ‘¥ y(z, n).

'ym(z"\) = '71" C|(ﬂ) l-;— (zz*l)crf[%z] +ze -12z? 22

That is,

Q,.(x,n) = C,( X o] L1 +cos 2m2x |- 1
|o( ﬂ) |n)\2 l'f[J,z_( fl) X]

and



¥o(x.m) = '%Cl(ﬂ) (1 + cos 2n)x? + 1) erf I_l*-c;s_ 2n

+ I+cos2n x e “VAiscos2x? _ (4 cos2n) x? } )

For n > 0, we have:

ro, + (1 + cos 2n) |x o, -2nQ, |=r,. .
2 T In in

ox

Employing the transformation

x = (1 +cos2n)? 2

in the above equation, we have

rQ, my, y 2 R e
+ Z -2nQ), = + COs R, (z,
dz? oz In N a0

where

l
Ryszm) = 4(1 +cos 2m)'® 3 32 | —= P n o

— an.p a\l"l-m.n-l-p agm.p a‘l’l—m.u-l—p
m=0 p=0

Hence, for n > O, the equation governing Q,(z. n) is

P vz - 2nQ
dz? oz

I n-1 n \I} q’
=41 +cos2m)™? Y ¥ {aa:"’ 2 '3:"""’ -a_?:"’ o "5";;““"?].

m=) p=0
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We consider the homogeneous differential equation corresponding to this equation:

az(glln)h + 2 a(ﬂin)h
T

- 2n(Q =0,
azz ( In)h

Assuming a solution of the form

Q) (zn) = e*”’ Fzm),

we have:
,
%; + (4a»l)z.?r: + (4a2z2+222%+22-2n)F = 0.
Taking a = -% yields
2
ii- 2.1 ionE=o (3.57)
dz? 4 2

Equation (3.5.7) is a differential equation of the standard form

y” + (ax2+bx +c)y = 0.

The solutions of such equations are parabolic cylindrical functions. Hence, we will have
the homogeneous part of the vorticity coefficient functions being various indices of
parabolic cylindrical functions. The particular solutions may be sought using the methods

of undetermined coefficients.




CHAPTER IV
FLOW PAST AN ELLIPTIC CYLINDER

4.1 EQUATION. VERNI YMMETRICAL FLOW PAST AN
IMPULSIVELY-STARTED ELLIPTIC CYLINDER

In this chapter, we apply the techniques employed in Chapter 3 for initial flow past an
impulsively-started normal flat plate, to the case of initial flow past an elliptic cylinder
which is started impulsively from rest. The elliptic cylinder is given, in Cartesian

coordinates, by the equation

2 2
X+ .,
a2 b2
where b > a.
The transformation
E «in = sinh (x+y)-&", (4.L1)

where tanh £ = a/b, is employed to transform the physical domain of the problem from
the upper-half of the xy-plane to a semi-infinite strip of width x. The inverse

transformation equations of (4.1.1) are given by

x = sinh(§ +&")cosn,

and

y = cosh(E +&")sinn. (4.1.2)
This transformation successfully maps the surface of the elliptic cylinder to § = 0, with
1 varying from O to x and also ensures the periodicity of the physical properties of the

fluid.
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Application of transformation equations (4.1.2) to the eguations governing flow of
viscous, incompressible fluids given by (3.1.1) and (3.1.2) yields the following set of
equations. Here, the streamfunction and vorticity, both functions of spatial variables &

and n, and time t, determine the flow past an elliptic cylinder. We have:

9 g2 |2[98,9%0 |, (dwaL oy 4.1.3)
ot R (98 on?| (95om OEom
and
A AP P B 4.1.4)
o&? on? H?
where
H? = a8 + a5
GG
= 2 [cosh 2(E +£") + cos 2n]". (4.1.5)

It has been noted by Staniforth (1971) that for the transformation performed, as § — oo,

the following relationships exist between the Cartesian and elliptic cylindrical coordinates:
X~ .le 5 cosn,
2
and

y ~ § sinn. (4.‘.6)

Nl-—-




In specifying the boundary conditions to be satisfied by the vorticity and streamfunction,

in the transformed coordinate system, we employ the original boundary conditions given

by (1.2.9) together with relations (4.1.6) and

dv . dvax | vy
9 OxoE dy 9%

oy _9vdx | dydy 4.1.7
T T @1n

The transformed formulation of the problem may then be summarized as follows.

For t < 0: { = 0 throughout the flow field.

Fort 2 0;
X . q212|9% . 9|, aw.D (4.1.3)
o R|3E2 an’| OG&W
and
v dv 1, 4.1.9)
d&? om> H? ’
subject to the conditions
- oV _
V=g =0 on § =0, (4.1.8)
4.1.9)

and
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e %" - % e¥cosn as &~ e, (4.1.10)

and

c —0 as g - oo, 4.1.11)

We observe that apart from the anti-symmetric condition expressed in (4.1.9) and
the far-field condition of (4.1.11), all the boundary conditions of the problem can be
considered as being imposed solely on the streamfunction y. However, conditions on the
vorticity { are contained implicitly in the non-linear coupling of the two equations (4.1.3)
and (4.1.4). While the uncoupling of these equations is difficult, we can extract from the
equations the desired information in the form of global integral conditions on the vorticity
function.

We assume sine series expansions for the streamfunction and the vorticity of the

following form:

vEn) = Y f,E.0) sinnn, 4.1.12)
n=]
and
GENY = Y &0 sinnn. (4.1.13)
n=]

Substitution of the above series in equations (4.1.3) and (4.1.4) yields the following

equations in £ (§.t) and g (&, t).
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ms=]
and
B;f?; -ntf, - —l-z- 8. - (4.1.185)
H

Employing (4.1.12) and (4.1.13) in boundary conditions (4.1.8), (4.1.10) and (4.1.11), we

obtain the following boundary conditions on the coefficient functions f (€, t) and g (€, t):

f = af' =0 on § = (), (4.1.16)

]

of

< 1 e
e - - e ) and
;E 2 Il.l

1

edf, - 3 e¥ 5, a & e, 4.1.17)
and
g, 20 as § — oo, (4.1.18)
where
1 : n=}
Ou1 =



We consider equation (4.1.15), and in particular, we observe that the LHS of this equation

can be manipulated as follows:

_'.-n’f_-e"‘[e"‘%-ne"‘%fé ¢ne“‘.a;g:-n2e"‘f.]

-e"{.;s[e“‘;% +ne™ f.]}.

Then, equation (4.1.15) may be expressed as

% E’ne H?

which is integrated wrt &, from § = 0 to £ — oo , t0 yield the integral condition:

9 ':e’*af' "‘f.]-..l_e"" g,

[leosh 25 +£ + cos 2n] e g,E.0E = 26 5,,. (4119
(]
Since

¢En.y = Y g, &0 sin nn,

n=|
therefore

[tsinindn =¥ |g,&0 - [ sin on sin kn an
0

and we have:



g, (&) = §(E.n.Usin kn dn.

Al
°"'ﬁ'

Employing the above in the integral condition given in (4.1.19), we have the following

equivalent double integral expression of that global condition:

[cosh 2(& +E*) + cos 2n] sin nn e ™ {(E.n.1) dE dn

oﬂ..-. L]
o'-._.‘ |

=ne’ . (4.1.20)

42 B ARY-LAYER TYPE TRANSFORMATION

Application of boundary-layer transformations through introduction of the scaled variable
zs= 7{. §

allows scrutiny of the details of the flow for small time t, and close to the surface of the

elliptic cylinder. Here, A is the boundary-layer thickness, given by A = 2QUR)'2. Itis

known from the boundary-layer theory of this problem that the streamfunction is

proportional to A, while the vorticity is inversely proportional to A. Thus, these functions

are also scaled accordingly. The following transformations are used:

€ =2z, wE.n0)=A¥(@zn.), C(&.n.t)t% Q(z.n.v). 4.2.1)

where
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A= z(_"i)r". 4.2.2)
R

The coefficient functions are scaled in a like manner:

f&) =AFzn . gG&v= 7 Gal2.0- (4.2.3)

Employing transformation equations (4.2.3) in equations (4.1.15) and (4.1.14), we obtain

the following equations:

2
I a2 F, =1 G, 4.2.4)
dz? H?
and
°G aG s 3
T2t . T2 ca-Lunzayg,
2 oz’ dz 2
3G - F, 3G,
=;2t.§.;.“.-2tl{2"§:l me.gz_ _mF"‘T cos mn. (4.2.5)

The boundary conditions given in (4.1.16) to (4.1.18) are easily scaled ac “ording to the

boundary-layer variables to obtain conditions on F,(z, t) and G,(z, 1):

oF
F = S =0 alon z =0, 4.2.6)
k3 ’
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LA
e™ A.Fn—)%ei'SM as  z o e, 42.7)
and
G,»>0 as z > oo, (4.2.8)

The integral conditions on the coefticient functions G,(z, t) are obtained through similar

alterations of (4.1.19):

[cosh 2(Az+E&") + cos Zn] e ™ Gzt dz = 2% §_,. (4.2.9)

ok._ﬁl

Scaling of (4.1.20) yields a global integral condition on the vorticity function, Q(z. n. t):

f

[cosh 2(Az +E") +cos 211] sin nn e "MQ(z,n,t) dz dn

ok-\(

=res § . (4.2.10)

ol

4.3 THE INITIAL SOLUTION

While the introduction of sine series expansions tor the vorticity and streamfunctions
facilitated the development of the global integral condition on the vorticity function, it is
useful to again consider the equations governing {(S. n, t) and y(&, n. t). Applying now

the boundary layer transformations to equations (3.1.3) and (3.1.4). we obtain
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Q2 9 2,

S5 gr s o 1 92 | AP.Q); _,2 Pa @3
9z H z H

HZ ot oM.2) o

and

CadUevit AN By (43.2)
azz anz Hz

Taking t = 0, and hence A = 0, in the above equations, we arrive at equations goveming

the iniual vorticity and streamfunction in the boundary-layer.

QL. 2,90, 2 qg.9 43.3)
9z2 H? odz H?
and
¥ _1 g (4.3.9)
gz H?

The boundary conditions 0 be satisfied by ¥(z, n, t = 0) and (z, n, t = 0) are easily

derived from conditions (4.1.8) and (4.1.11):
v-%‘zﬁ-o along z =0 4.3.9)

and

N 90 as z - oo, (4.3.6)

Taking A = 0 in the integral equation expressed in (4.2.10) yields the integral condition



to be satisfied by the initial vorticity function.

O\—-‘ﬂ

f (cosh 28" + cos 2n)sin M Q(z,n,t=0) dzdn = e’ 5, (43.7)
0

Using the expression for the metric H? given in (4.1.5) in equations (4.3.3) and (4.3.4),

we rewrite these equations as

2
%‘.}. + [cosh 2E* + cos 2n)] {z%‘;‘.m} =0 (4.3.8)
and
221 = [cosh 2E° + cos 2n]Q. 4.39)
dz?

Applying the transformation

zZ = f(f')u (4.3.10)
to equation (4.3.8), we get
%z'l',gz + £¥m) [cosh 2&* +cos 2n] {u%‘uld) } = 0,
Taking
£2(m) = [cosh 2&° +cos 20", (4.3.11)

ie. z = (cosh 28°+cos 2n)'2 u,
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we have

’Q aQ

Likewise, equation (4.3.9) is transformed to yield

2
o 1qg. (4.3.13)
u: 2

Two linearly independent solutions of equation (4.3.12) which satisfy Q = 0 as u — o

are given by

Q,(u,n,1=0) = g(n) ¢ 2’

and

u

3
Q,u.n,t0) = k) ¢ 122" [e** av.

0

Employing £, in the integral condition (4.3.7) yields a divergent integral. Thus, h(n)

must be taken to be zero, and hence, the solution to (4.3.12) is

Q(u,n.1=0) = g(n) e 12 %’ (4.3.19)

That is,



Q(z.N,t=0) = g(n) e ~AcoshR scos2mz® (4.3.15)

In the above, g(n) may be determined through the integral condition (4.3.7). That is,

O'—. n

f(cosh 2E° +cos 2n)sin N - g(n) e "ok Biecos 2t g,y gy 2 gp ¥ 5, 1-
o
We have:

£ -
f(cosh 2E* +cos 2n)sin nn g(n) - fc -M2Acosh 257 vcos 2z? g, gy
) o

=nedd, . (4.3.16)
We consider the integral:

I = fe-lf.’(cosh 28° +cos 222 dz.
0

n r
Letting w.l:cosh 2§2+cos 211] z. dw = [cosh 25‘2+ cos 211] dz

r
and dz = 2 dw.
cosh 2E° + cos 2n

Therefore:
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0 cosh 28° +cos 2n

n
. 2 .V
cosh 2&° +cos 2n 2

= l.’z.‘. (cosh 2&* +cos 2n) 2.

Employing the above in (4.3.16), we have

o g

x
IZZE f(cosh 28° +cos 211)"2 sin nn g) dn = e¥ 5, , (4.3.17)
0

Forn=1,

x
f (cosh 2&° +cos 21'|)"2 sinn g(n) dn = ,[2'? e’ (4.3.18)
0

Observing that

(4.3.19)

gm) =2 X .’2? (cosh 2&°+cos 2n)™? &% sinn

satisfies equation (4.3.18), we have the following expression for the initial vorticity:



Qz,n.t=0) = 2 I..z. e’ (cosh 2E*+cos 2n)™? sin N
x (4.3.20)

‘e ~172 (cosh 2E° +cos 2nz?

Taking n # | in (4.3.17), we have
f(cosh 28° +cos 2m)"? sin nm gMm) dn = 0
0

Employing (4.3.19) in the above, the integral on the LHS takes the form

[ =2 l?_ e? fsimm sinn dn = 0.
“ 0

Hence, the integral condition expressed in equation (4.3.17) is satisfied by the expression
for g(n) given by (4.3.19). Furthermore, equation (4.3.8) is satistied by the expression
for the initial vorticity function given in (4.3.20). As well, this expression satisfies the
far-field condition of zero vorticity as z — es. It is valuable to plot the expression for
initial vorticity for decreasing values of &', corresponding to slimmer and slimmer

ellipses.

Employing (4.3.20) in equation (4.3.13) yields

?.2.! = '.2_ (cosh 2&° +cos 2n)'2 e¥ sinn e "7V,
du? .4

Integrating this equation twice wrt u, we can obtain an expression for the initial

streamfunction. Taking u = () and u = u as the limits of integration, we have first
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_a; - |2 (cosh 2E° +cos 2n)"'2 e%’ sinn j‘e"’“z dt.
u n .

That is,

%\{. = (cosh 2E° +cos 2n)"'2 % sinn erf [_l_. u}

V2

Integrating again wrt u from u = 0 to u = u yields:

2 (V2

[']
¥ = (cosh 2&°+cos 21V 7'? e% sint jerf (_l_t] de,

ie.
¥ = et sinn verf [ u|+ l_z. [e"’z"‘z-l]
(cosh 2E° +cos 2n)'? V2 x
Hence,

. . 12
¥Y(z,n,t=0) = e¥ sinn Yz erf [_l_(m”t' cos 20 z]

V2

2 . -2 -12(cosh 2L° ecos 2n) 2z _
. I.u.. (cosh 2E° +cos 2n) [e 1 ] - (43.21)

4.4 ERIES EXPANSIONS IN POWERS OF
Equations (4.3.1) and (4.3.2) are the governing equations - in terms of the boundary-layer-
transformed streamfunction, ¥(z, 1, t) and vorticity, £2(z, 1, t) - for the unsteady, two-

dimensional flow of a viscous, incompressible fluid past an impulsively-started elliptic



cylinder. The expressions given in (4.3.20) and (4.3.21) describe the initial behaviour
of the fluid. As in the previous chapter, it is possible 10 undertake a study of the
behaviour of the fluid for small values of the time. Expansions of the streamfunction and

vorticity in powers of A are assumed:

‘*‘(zvﬂ't) = \Po(l-'ﬂ'l) + l\yl(zvn’t) + Az\l’z(zvn’t) + .. (4'4'1)

and

QznY = Qlz.n) + AQzN.0) + A2Qan.) + .. (4.4.2)
These expansions are employed in the goveming equations (4.3.1) and (4.3.2), and the

coefficients of successive powers of A are equated to zero. We first observe that
H?= %[cosh 2(Ax +E") + cos 2n)
= .%[cosh 2hz cosh 28* + sin 2Az sinh 2E° + cos 27].
Since
cosh 24z = 1 + L(2A2)* « L2ho)* + ..
2! 4!
and
sinh 2Az = (2Az) + %(27\1)’ . %(2).1)’ s

hence
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H? = .;.{[cosh 2E* +cos 2n) + A[2zsinh 287

+ A2 [?".(u)z cosh 2§‘] + N [317(2’)’ sinh 26‘]

+.}.

Then, equation (4.3.2) yields:

a=~r°+kaz\v,d ¥, a=~r Y kad Y, az\r .
2zt aqz 227 anz

dz? 0z?
% { [cosh 2&° +cos 2n] + A[(22)sinh 2&°]

. A’[—ilT(Zz)’ cosh 2§°] . } {o,«20,+3q, + ..},

= % { [cosh 2E* +cos 2n)Q, + A.[(cosh 28 +cos 2n)Q, + (2z sinh 2§‘)Qo]

+ A2 [(cosh 2E° +cos 211)9; + (2z sinh 2§‘)Q, + (..21'. 22 z2 cosh 2§‘)ﬂ0]

+ Al [ (cosh 2&* +cos Zn)ﬂ + (2z sinh 26°)Q,

(_ 22 z? cosh 2&° )ﬂ (_. 2% z? sinh 2§&° ]ﬂ]

Hence, we can generate the following equations:

Y

t .
5 2° = 3[cosh 2E* +cos 21)Q,
h i 4 | ] . .
-7 z‘ = _2.{ [cosh 2E° +cos 211](2l + [Zz sinh 2§ ]Qo } .




y Py
.a_...i + %;s .%{ [cosh 2&* +cos 2njQ, + [2z sinh 2£°]Q,

oz?

+ [_1. 22 22 cosh 2§'}“0} .
2!

2 v
%;.’. + %s .;.{ [cosh 2&" +cos Q, + [22 sinh 28,
c

I 42 .2 . b ogs L3 .
*[_2.!.2 z osh2§}1|+[_3.!.2 . smh2§]ﬂo}.

In general, we have the following governing equations for W(z, n. ), where K € N

7Y, Y,

-*

azz anz
+ [2z sinh 28710, ., + [_21_' 2 z? cosh 2&‘](2,‘_2

+ ..t [ﬁ_}ﬁ? 2K 2K cs(l(-—l)]ﬂl

+ 1 K
[..(_K_)! 2K z X cs(l()]l'),l } ' (4.4.3)

1 .
"3 {[cosh 28" +cos 2M)Q,

where

cosh(26) : Kis even
cs(K) =
sinh(28) : K is odd.

Likewise, equation (4.3.1) implies:
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3290 rQ, + A2 1, * ..
dz2 az 0z?

{ [cosh 2E° +cos 2n] + A[2 z sinh 28] « 3\’[ 22 22 cosh 2F,] }

. aﬂo-‘- + zaﬂl+ + zzaﬂz# +
b o] fma] o)

= {[cosh 2E° +cos 2n) + A[2 z sinh 287 +A % 2% z? cosh 2§'] + . }

L

[ °%, = At w%‘f_z * o } 20+ AQ, + 222, « W, « .. }J

[ 20, ¥ ¥, |
on’ 311

7]
= av, o, a\r aQ,
4 nz-o: p=0 [3‘-1- az oz o }

That is,



74

# (3
[ 3:220 +(cosh 2&°* +cos 2n) \z_;z_" *Qo]]

A

. l[aa’n; + {cosh 2&° +cosh 2n) [z%‘;.'. +Q, | + (2 z sinh 28%) ( z%‘z_‘l*a,,”

z y,
- Az[a;::z + :‘:0 + (COSI'I 2§' +C0OS Zn)(z% +Q2] + (2 z sinh 2&‘)[2:;;‘. #QI}

+ [% 2% 22 cosh 2§') [z_a;?% +Q°]]

o s ;."[‘m" - P

oz 2 a.nz

+ {cosh 2E° +cos 2n) [z?.%'ﬁ*ﬁx]

+ {2 z sinh 28°) [zf_ff':r*«nx_,]

‘s (% K K. cs(K)) (z%’ioQoJ]

+ ...
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2t l[(cosh 28" +cos 211)2;?}

+ A[(cosh 2E° +cos 2n)

9, ) « 9%
5 (2 z sinh 2§ )'aTJ

aQ Q
+ Az[(cosh 28° +cos 211).7‘1_2. + {2 z sinh 2§‘)3§{’.

L1 s2 2 )9
(.2_! 2° z* cosh 2§ '—at]

..+ l"[(cosh 28" +cos 21]) + {2

z sinh 2§ )_3_-

..+ (T(!T 2K cs(K)}_;_z'L J }

.4 oY, 09, ) 0¥, 99, i d\¥, 0Q, . a¥, aQ,
an dz dz odn on oz on oz

_3_

) dY¥, oQ, aw an,, K f: avp BQK_p _awp BQK_P
"9z on oz on p0 L dn oz dz dn



+ {l[(cosh 28° +cosZn)Q|] + 12[(cosh 28° +cos 2n) - 2Q,

+ (2 z sinh 269Q,| + Alcosh 267 +cos 21) - 30,
+ (2 z sinh 28" - (2Q,) + ('ilT 22 22 cosh 2§')ﬂ|]

+ .. + AXlcosh 28" +cos 2n)kQy) + (2 z sinh 28 (K-1)Qy )

1 - -
‘s (TK:D_' 2K-1 g K-l cs(K-l))ﬂ,] + . } :

Equating the coefficients of the like powers of A to zero, we have the following equation
governing the behaviour of Qy(z, 0, t):
2 2
9°Qy . a'Q

oQ
K-2 h 2E° +cos 2 K.Q
=3 P (cosh 2E* +cos 2n) z_a_z. K

aQ
+ (22 sinh zg')(z a‘;" +Q,H}

-+ + l K K aQoo
(_K_'.Z z cs(k){z_az._ Qo]
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o0y,

ot ot

..+ (_l 2K 2K cs(k))%oﬂ }
K! t

.2 )E My Xy _ Yy Ay
s \on oz dz on

+ [lcosh 257 +cos 2)kQy) + (22 sinh 28 (K- )

..+ [-(-Ki'T)' 2K-1 zK-1 cs(K-l)Q,]].

= 2t {[(cosh 2E° +cos 211) GQK * (Zz sinh 25')

That is,

Q. Q
X« %2 . (cosh 28" +cos 2n) [—2!
oz* on?

30, o0,
+ + (1-k)
st ”“]

y A

. . Q.
(2z sinh 28 )[ 2t > z = (2 K)Q,(_l

+(L -2 . + 3-K)Qy ,

L et x Q, o,
T P K-1)|[- +
((x-m 22 el )][ e

N - anh th
o “"")[”T T

-4 ZK: {aw, oy, Y, aﬂx-,] (4.4.4)
p=0 W 52 TZ- a‘l



The boundary conditions for Wk(z. n, t) and Qy(z. n, 1) are easily derived by employing

expansions (4.1.1) and (4.2.2) in conditions (4.3.5) and (4.3.6). We have:

¥
Y, = K=o =0 (4.4.5)
K az on Z
and
Q>0 as zoe . (4.4.6)

In a like manner, we employ the power series expansion for (z, 1, t) in the integral

condition (4.2.10) to generate global conditions on Qy(z, 0, t). Since

[cosh 2(Az+E") +cos 2n] e ™

{[cosh 2E° +cos 2n) + M2z sinh 2E°) + 3\.2(.51. 2% 22 cosh 25‘) + .. }
. {l-nlz+i n2A2z3 .+ .. }
2!

= [cosh 2E° +cos 211] + l[(cosh 2E° +cos 2n)(-nz) + (2z sinh 2§‘)]

+Z.2[(cosh2§ +cos Zn)[_n z )+(Zzsmh2§ )(-nz) + ( 2222cosh 28" J:I
+7L"[(cosh2§ »coszn)(( 1)“_n Kz ") (2zsinh2§‘)((-1)""._'_n""z"")

(K-1)!
...+ (% 2K 2K cs(K))] .

therefore
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[cosh 2(Az+E")+cos Zn]e 2 Oz,
= [cosh 2&° +cos m)Q,

+ A { [cosh 28" +cos 2n)Q, +[(cosh 28" +cos 2n)(-nz) +(2z sinh 2&7) ]Qo }
+ A2 { [cosh 2E° +cos Zn]ﬂ, + [(cosh 2E" +cos 2n)(-nz) + (2z sinh §')]Ql
+ l:(cosh 2E" +cos 211)(.21_'. n? zz) . (Zzsinh 2&‘)(-nz) + (% 22 22 cosh 25') ]ﬂo}

+ .. +AK { [cosh 28* ~cos 2n)Q, « [ (cosh 2E* +cos 2n)(-nz) + (2z sinh 2§')]

K!

(_Kéi.)_' nk-! zx"J ‘.. (%'. 2K 2K cs(k))]n,, } ..

We thus generate the following set of integral conditions

Qe+ + [(cosh 2E* +cos 2n)((-l)" 1 ak, ") + (2z sinh 2&°)(-1)%!

@) f I(cosh 28" +cos Zn) sinnn Qo(z.n.t)dzdn =geb 5,,,,.
00

(i)
(cosh 2&° +cos 2n) sinnn Q,(z.n.t)dz dn

ot n
Ot 8

[(cosh 28° +cos 2n)(-uz) + (2z sinh 2§‘)]sin nm Q, dzdn

.

o1

+ e’ 8,1
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(i) X -
ff(cosh 28" +cos 2n)sinnn Q,(z.n.1)dz dn
00
= 'ff{[(COSh 28° +cos 2n)(-nz) +(2z sinh 2§‘)]f2l
20
+ [(cosh 28° +cos Zn)(% n? zz) + (22 sinh 2§‘)(-nz)
. (_1. n? z2 cosh 2&‘)}‘5 }
2!
sinnn dzdn + et § ;.
et cetera.

In general, we have the following integral condition on the Q(z, 0. 1)

(cosh 2&* +cos 2n)siann Qu(z.n,t)dz dn

o's_'a
o% ]

) '! I {licoshg: +cos 2nk-na) « (22 sinh 267 )2

+ ..+ [(cosh 2E° +cos 2n)((-l)" T(lT nkz K)

(K-1)!

..+ [% 2K 2K cs(K)J}ﬂo } sinnn dz dn

+xet s, . (4.4.7)

+ (2zsinh zg')((-n"" ! nK"zK"J



45  SERIES EXPANSIONS IN POWERS OF TIME IN THE BOUNDARY LAYER

We consider the boundary-layer case of A = 0. In order to isolate the t-dependence we

make further expansions in powers of time as follows:

and

Yzt = Pzn) + t¥ (zn) + 12¥,(zn) + ...

Qzn.t) = Q. (z.,n) +tQ (z.n) + t:Q,zn) + ..

(4.5.1)

(4.5.2)

We substitute these expansions, which are valid for small values of t, in equations (4.4.3)

and (4.4.4) after taking K = 0 in those equations.

Equation (4.4.3) implies:

for p=0,1,2,3.....

Since

therefore

i 4 1
® = _ |cosh 2E*+cos 2n{Q_
dz’ 2[ . | o
aQ
TO' =Q, +2Q,+32Q, + ..,

o
2t(cosh 2E* + cos 211)_.9_(‘1

= 2(cosh 2E"+cos 2n) [ﬂmt + 2070, +3°Q .+ . ].

and so equation (4.4.4) yields:

(4.5.3)




30,
dz?

(
a0
+ (cosh 2&* +cos 2n) [[2.3210. . Qoo\] +t

aQ
+ 12 2 . ...
t [ZTZ— Qoz] J

r

Mgy 0y  9Wgg 30y,
[lon 9z dz on

-

4
Moy 30y, o 3, 3,
9z 9z o

\

& ( Moy My ¥, 30,
e '\51 oz dz on )

. e Zpi I, 3y, , Yy, 30,
S\ e &M

s )

+ 2t{cosh 2&* +cos 2n){ ;o AQy, Q¢ .« (P+DL?PQq ., + .. } .
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Equating coefficients of like powers of t, we have, for p=0,1,2,3....:

& )
a‘::" + (cosh 2&° +cos 2n) [z 2, + (1 ~2p)00']

oz
-4 E a\v anm a\voq aQ,, (4.5.4)
dz dz  on

Thus, equations (4.5.3) and (4.5.4) govern the behaviour of the coefficient functions
Yo(z, M) and £2,(z, 1). The associated boundary conditions obtained from (4.4.5) and

(4.4.6) are that, for p=0,1,2,3,...:

¥

¥, = 7;‘1 =0 when z=0, (4.5.5)
and
Q,20 a5 z- . (4.5.6)

The integral conditions on the coefficient functions £,(z, n) are obtained by substitution

of the expansion (4.5.2) into condition (4.4.7). We obtain:

T . (4.5.7)
ff(cosh 2E* +cos 2n) sinnm Q(z.n) dzdn = e¥ §
0 0
and for p=1,2,3,...:
1 (4.5.8)
f f cosh 2E°+cos 2n) sinnn Q o (Z:T) dzdn =0
[ 1}




Focusing our attention on the zeroth order coefficient functions, Wes(z. N) and ez, N).
it is clear from the preceding analysis that the mathematical formulation for this sub-
problem can be summarized as follows:

W,
dz?

= .;.[cosh 2E° +cos 2n)8y,

and

A

azz

30,
Tz—“’w] =0

+ (cosh 2&° +cos Zn)[z

subject to the conditions

z

=0 on z=0,
Qp 20 as z o e,

and

(cosh 2&° +cos 2n) sinm Qu(z.n) dzdn = e¥ 8ot -

LN
OH ]

In fact, this formulation duplicates the system of governing equations and conditions for
the initial solution of flow past an impulsively-started elliptic cylinder. The solutions,

obtained earlier and summarized in equations (4.3.20) and (4.3.21), are given here again:

Q(z.M) =2 I% e% (cosh 2E*+cos 2n)Zsinn

- ‘e 3
‘e 1/2(cosh 28° +cos 2n)z (4.5.9)
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and

Yo = ¢ sinniz cﬁ[_;__(cosh 2§'+c052n)mz]
2

2 . <12{ | 1722 %cosh 28° +cos 2n)
l_ h 2 2 = .
+ - (cos E* +cos 11) [c l] (4.5.10)

The first-order coefficient equations are governed by the equations:

o2Y¥,
5 :' - _;.(cosh 2E° +cos Zn)ﬂm.
and
Qg oy,

= * (cosh 2&° +cos Zn){zT-Qm]

oz

[alv,,o 3y MV, I,
I e el el

subject to the conditions

‘l’o,=T on z=0,

and

X e
f ! (cosh 2E° +cos 2n)sinnn Qy dx dn = C.
)

We employ the transformation u = (cosh 2 & + cos 2 0)'? z 1o the preceding

formulation.
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Since

Qgo(un) =2 I% e% sinn(cosh 2&* +cos 2n)'? e 12 v?

and

Woolun) = e% sinn{cosh 28* +cos 211)'"2 u erf [.‘/l_. u] + ’3 (c -2 "’_1) \
3

2
therefore:
i
9Q,, 2 . -1n ?
= =2 | £ e¥% sinnfcosh 28°+cos 2n)" u e 1R,
— = n(cosh 2§ n)

d . .
0o 2|2 et e"’z“z{cosn(cosh 2E° +cos 2n)?

“on n

+ sinn sin2n{cosh 2&° +cos 2n) " } .

v,

—— = e® sinn(cosh 2&* +cos 2n)'? erf[._l. u] .
u

vz

and
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d¥y, . 1 2 [ .ne?
- e® (uerf (_ﬁuJa-J;—(c -l)

. { cosn(cosh 2E° «cos 2n)™? + sinn sin2n(cosh 2E° +cos Zn)'m } .

Hence, the transformed system of equations goveming the behaviour of ‘¥, (un) and

€, (u,n) takes the form

Mu 1o 4.5.11)
n: 2
and
ro, o,
azz z dz ﬂOI

= 4(cosh 2E° +cos 211)""[3;{2 %f?; } 3;:,;” %] (4.5.12)

The transformed boundary conditions take the form:

¥
¥, = _;:)_' =0 at u=0, (4.5.13)
Q>0 as u-— e, (4.5.19)
and
K o
f f (cosh 2&*+cos 2n)"? sinnn £y, du dn = 0. (4.5.15)
00




The functions ‘¥, (&, 1) and €,,(§. n) may be obtained from this system of governing
equations and boundary conditions. These solutions may then be used to compute the
right hand sides of equations (4.5.3) and (4.5.4), hence defining the equations goveming
the functions ¥4, and €2,. It is possible to proceed in this manner, and thus exact
solutions are in principle obtainable for any power of t. Clearly, however, such solutions

are too cumbersome to obtain and would be more easily obtained numerically.
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CHAPTER V

NUMERICAL INTEGRATION OF THE EQUATIONS FOR STEADY FLOW
THROUGH A CHANNEL

5.. BASIC THEORETICAL EQUATIONS AND GENERAL METHOD OF
SOLUTION

In this chapter, we consider the steady two-dimensional viscous flow of an incompressible
fluid normal to an infinite flat plate of finite breadth in a fluid bounded by channel walls
(Figure L. 1a). The corresponding problem of flow in an unbounded region was studied by
Hudson and Dennis (1985), wherein numerical computations were carried out on a
prima-y variable formulation of the governing equations. By contrast, this study involves
calculations based on a solution procedure in terms of the vorticity and streamfunction.
Singularities in the vorticity at the edges of the plate are driven to the perimeter of the
flow domain by the introduction of the elliptical cylindrical coordinates & and n (Figure
V.1). Furthermore, a strategy of numerical handling by L.C. Woods (1954) allows for

complete avoidance of the effects of the vorticity singularities.

A comparable experimental study of this problem was carried out by Coutanceau &
Launay (1993). In particular, this work examincd the influence of the ratio of the plate
length to the channel width - termed the blockage ratio, A - on the nature of the flow.
Corresponding to this study, numerical calculations have been carried out for A = 0.05,
A =0.1 and A = 0.2. Solutions have been obtained in the Reynolds number range 5 SR
S 20.

The governing equations for the flow are:
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dy , Py _ _1 . "
o o’ "2'(c°5h2§ cos2n){ (5.1.1)
ic. + _az_g. x® l [av ac - a"’ ac ] 5.1.2
3w T ME EWm ] (5.1.2)

The solution of these equations is required, subject to the conditions

A 0 when E=0; (5.1.3a)

V=

v={ when n=0,n; (5.1.3b)

1 a\]l . i a\v oo (5.1.4a)
mja.g_—)smn, m_a.n_ﬁcosn as & — oo;

vy _ . . oy : 1
— =sinh , ——=coshf ¢ hen cosh =_. (5.1.4b)
5 inhE sinn p= € cosn when coshg sinn X

A viable computational domain is created by imposing the conditions of (5.1.4a) along
E=E, .. where &, is taken 10 be sufficiently far form the flat plate that its intluence is

negligible. As well, the introduction of a modified streamfunction:

Y(E&.n) = y(En) - coshE sinn (5.1.5)

preserves the governing equation(5.1.1) while simplifying the far stream conditions and

the conditions along the channel wall. Our modified streamfunction equation is:

%.2;_ + %_:]?2. = - ..:12. (cosh2§ + cos2n){ . (5.1.1)

and this must be solved subject to the conditions:




: ¥
¥ = -sinm , =0 when § =0; (5.1.3a)
E3

¥ =0 when n-= 0,x; (5.1.3b)

MW _

3

A solution to our mathematically-defined problem is sought through finite-differencing

0, %% =0 when coshg sinm =% and when E§=§ _ . (5.14)

techniques. A grid is imposed over the computational domain as a series of lines parallel
to the € and n coordinate axes, spaced equally a distance of "h° units apart. In terms
of numerical handling, the region may be regarded as being composed of three
subregions: (i) the set of three grid points in the direct neighbourhood of the vorticity
singularity at § = 0, 1 = n/2, (ii) the set of grid points adjacent to the channel wall, and
(iii) the remaining grid points which constitute the bulk of the computational domain.
The general strategy of solution involves approximating the derivatives of equations
(5.1.1) and (5.1.2) with differences (appropriate to the particular subregion), and hence
the differential equations with difference equations. A "two-diagram" approach is
undertaken, wherein the difference equation for the streamfunction is solved at all of the
grid points in the computational domain. Then, the difference equation for the vorticity
is solved at all of the grid points. This sequence is repeated until the difference between
two successive iterates, summed over the entire flow field, falls below a prescribed

tolerance.

5.2 MERICAL TECHNIQUES USED IN THE INTEGRATIONS

The numerical strategies involved in integrating equations (5.1.1) and (5.1.2), subject to
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conditions (5.1.3a,b) and (5.1.4) are summarized in Figure V.2

1 ing with the Channel Wall

Along the channel wall, we have that:

Using this knowledge, it is possible to derive simplified expressions of the Taylor series
expansions of ‘¥(§n), in both the § and n directions, about appropriate points on the
channel wall. We have:

¥, = 0.5 (1+a)? h? (ﬂl .o

dt?

2
¥, = 0.5 =(cth)? [aa_::} + ..

v =05 1-opn| ¥ | L
0&?

Here, the subscripts b and a ¢« xpress respectively the grid points which are left-adjacent
and right-adjacent to the channel wall, while the subscript ¢ indicates the grid point to the
left of b. The subscript w indicates the point on the channel wall itself, and a expresses
the fraction of one grid spacing which is on the left side of the channel wall,

From the above, we can ecasily obtain formulae relating the value of ¥ at internal grid
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points directly adjacent tu the channel wall to the grid point further inside the flow field,
and relating the value of ‘¥ at the external grid point directly adjacent to the channel wall
to the internal grid point one removed from the channel wall. For example, for fixed 7,

we have:

. (1-o)?
¥Y(n*,b) =
4 m>.p) (1+0)?

az
+a1)?

¥Y(n".a)

¥Y(n".a)

¥(n'.c) =
m*.c) T

\

2. Streamfunction Computations

At the internal grid points, the modified streamfunction ¥ is computed using difference
approximations developed by Hudson and Dennis (1989). Thfe differential equation
(5.1.1) is replaced by a nine-point difference approximation. In accordance with
Southwell’s notation (1946), illustrated in Figure V.2, this fourth-order accurate formula

applied at a typical grid point (;, 1,) is

¥, = {B(q‘l +\¥, +¥, "'\?4) *2('*'5 +Wo ¥, 4-‘!")}
- -;— h 2{20 (M:)Co +M5’C, +M:C¢. "'M72§1 +M81;‘} ’ (58.2.1)

where h is the grid size and M? = .:;.(coshzg + cos2n) .

Vortici m ion

The vorticity function is computed at internal grid points of the computational domain
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using the h“-accuracy finite differencing schemes developed by Hudson and Dennis

(1989). Equation (5.1.2) is replaced by the approximating difference equation

a - .%hfo + oh A0, + (1 - .%hgo + ah?gd),

o1+ %hfo « oh?), + (1 + .;.hgo + ah2gd),
- (4+2ah?.,+g/ g, = 0, (5.2.2)

where f = _;.R% , g = —_;R%.WE. and o is a parameter to be defined. If o =0, the
approximation given above reduces to the standard central difference scheme. The point
however is to take non-zero values of & (o 2 1/16) which will cause the associated
matrices to be diagonally dominant. This guarantees the convergence of a successive
over-relaxation iterative method of solution. In the computations documented here, the

value of a was taken to be 1/12.

To compute the vorticity at the three grid points directly in the neighbourhood of the
point of singularity, strategies which avoided the singularity were employed. In
particular, the technique of “cross-differencing” was employed whereby the differences
involving the point of singularity were replaced by equivalent differences obtained by
considering the coordinate system arrived at by rotating in the counterclockwise direction
the x- and y-axes 45 degrees. Employing this strategy, the standard h’-accurate central

differencing approximation for the Laplacian of a function:
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of, I, 1 ,
5 5 T g (R4 - 00)

would be replaced by:

af,

0

d*f, 1
Ix 2 * dy

= (64606 06, -40) + O,

Using the alternative difference formula allows for the avoidance of problematic (singular)

points.

At the flat plate itself, the vorticity was computed using a simple condition formulated
by L.C. Woods (1954)

3 1 1
Cwms_ ¥ T =

| ; . (5.2.3)
h?® (cosh 2& + cos 2n) Cuxe 3 Cadncm

53 RESULTS

Calculations were carried out over the range of Reynolds numbers S < R < 20, and for
blockage ratios A = 0.05, 0.1, 0.2. An iterative procedure of solution was employed in
which relaxation parameters speeded the rate of convergence. Initializing to zero the
values of the streamfunction and vorticity in the flow domain, equation (5.2.1) was solved
at all of the interior grid points. The surface vorticity was then computed using (5.2.3).
This was followed by a complete sweep of the equations (5.2.2). Incorporating as well
the special considerations made near the channel wall and the point of singularity, the
entire sequence was repeated until convergence, determined by the criteria that the sum

of all the differences between succes§ive iterates would fall below (0.001.



In their experimental work, Coutanceau and Launay studied the effect of the blockage

ratio on the nature of the flow. In particular, they examined the variation of the length
of the closed wake as the blockage ratio increased (Fig. V.4), the distance of the vortex
centres from the plate (fig. V.5) and the distance between the two vortex centres (Fig.
V.6). Experimental results by Taneda (1968) are also given in the figures, as are
numerical results obtained by Dennis & Qiang (1993) and Hudson & Dennis (1985), for

the case of flow in an open field.




CHAPTER VI
SUMMARY AND CONCLUSION
The objective of this thesis is to consider symmetrical viscous fluid flow past a normal
flat plate started impulsively from rest. We have obtained the initial profile of the flow,
as well as analytical solutions for small values of time. In addition, a theoretical basis
has been developed from which a numerical forward march in time can be carried out to
understand the nature of the flow at subsequent stages. The soundness of the exact
solutions obtained seems to be confirmed through comparison with the spatial-singularity-
free problem of flow past a thin ellipse. It appears that the normal flat plate may be

regarded as a limiting case of increasingly thinner ellipses.

For small values of the Reynolds number, we have obtained numerical solutions for the
steady state achieved by fluid passing a normal flat plate whilst confined by channel
walls. The solutions obtained are in close agreement with existing solutions derived

experimentally.
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APPENDIX I: DERIVATION OF GOVERNING EQUATIONS

Obtaining the Dimensionless Form

For a viscous, incompressible fluid, the Navier-Gtokes equations, expressed in terms of
dimensional quantities, take the familiar form:

v’

=7 " @ - V)V = -% gradp’ + -::-V” v. (L1)

In the above formulation, ¥/ and p’ are, respectively, the dimensional velocity vector

field and the dimensional pressure function. The operator V’/ denotes the dimensional

del operator based on the dimensional coordinates, x” and y’. Also, t is the dimensional

(or actual) time.

We assume a flow field in which 'd’ is the representative length and ‘U’ is the

representative velocity. We may then define the following dimensionless quantities:

/ / o/ I /
X = XT » y = yT ] v = VF ’ p = —g‘ﬁ ’ Lt = U—t - (1'2)
p

Employing the above transformations in equation (I.1) yields

av 2

— +(V-V)¥ = -grad - V2 ¥, L3
= V) gradp + = V° ¥ (L3)
Here, the Reynolds number R is defined as R = $ , where v is the coefficient of

kinematic viscosity. Equation (I.3) along with the equation of continuity:
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subject to the appropriate boundary conditions, forms the required system of non-

dimensional goveming equations in terms of the basic variables, ¥ and p.

Introduction of the Vorticity Functio
We employ the following well-known vector identities in equation (1.3):
BALE V(_;.vz) - ¥ x (curl V)

V2 ¥ = V(div¥) - curl(curl V)
and obtain

2

%g - V(%v 2) - ¥V x (curl ¥) = -gradp - % curl(curl V) .

Taking the curl of this equation, and further defining the vorticity function as

D =cul Vv, (LS)
we have
%? - curl(¥ x @) = —% curl(curl @) . (L6)

Hence, equations (LS5), (1.6) and (1.4) form a system of three equations in the three

unknowns, @& = (0, 0, {(x,y.t)) and ¥ = (u(x.y,t) , v(x,y.1).0).
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Introduction of the Streamfunction

The continuity equation (1.4), for the case of two-dimensional flow, implies the existence

of the streamfunction y(x,y.t), such that
U=y o, V=Y (L7)

Employing (1.7) in (1.5) and (1.6), we obtain the vorticity-streamfunction formulation of

the flow problem. That is,

K 2 oo . (3w _dw
LEERE [‘5;'337 7;3;) (L.8)
and
Vig +{=0. (L9)

Elliptical Cylindrical Coordinates: Transformation of the Independent Variables

Introduction of the elliptic cylindrical coordinates (§.n). related to the rectangular

coordinates (x,y) by the equations

x = sinh € cosn (L10)
y = cosh & sinn *

transforms the upper-half of the Cartesian plane to a semi-infinite strip of width x. From

equations (1.10), it is clear that

dx = cosh cosn d€ - sinh§ sinn dn

and



dy = sinh§ sinn d€ « cosh§ cosn dn.

Thus,
(ds)? = (dx)? + (dy)?
= [cosh2E cos™m + sinh*E sinn][(dE)? +(dn)?]
= M 2(E.n)[(d8)? ~(dn)?).
where

M? = [cosh:g coszn + sinh2§ sinzn]

= %(cosZn +cosh 28). (1.11)
From differential geometry, it is well known that if

(ds)’ = g2E.M)(AE)? + g (E.m)(dn)?,

Then:

101



)

(i)

(iii)

and (iv)

102

div F = _L_ ((g,F)) + (7,Fy),} .
88

1 1
grad ¢ =|_ ¢, , — .

curl Ea _l.. d

d =0 ]
818, | ¢ O9n 9z
g,F, gF, ©
Vi = _l.. d _83¢ + J _g.l..db .
8.8 3 onlg " (L12)

In our case, g,(§, n) = g,(§. n) = M(&, n), where M2 is given in (L11).

Letting velocity vector, ¥ = ud +v&, and vortcity vector & = O& +0g, +{k, we

employ the formulae in (1.12) to compute the following:

M divy = —f Mu) + Mv), )

MZ

Since

div vs= 0,

Mu), + (Mv), = 0.



This equation implies that 3 a function y = y(&. 1, t) such that

a\"-Mu
o
and av
= -Mv.
3
(i1) ® =curl v
| MegMe, &
=___] 9 9 9
M T
Mu Mv 0
Meg Me, &k
=113 a3 3
v x W .gs()
Vn '\Vg 0

1

= ; [Mﬁgwl + M_e_n{Ol + k {ygy -y, ) ]

1
= "ﬁ‘f("’t& *Vnn) K
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(iii)

(iv)

MegMe, &
o=t |3 9 9 20
T MW ®

0 o g
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v)

curl(curl ) =

z|._
J‘ ,%:Iq.o .A‘%

(vi)

curl(vxw) =

5/~
Mo
g’lw
1KY
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Employing the above results in equations (I.6) and (L.5), we obtain the following

equations govemning the behaviour of Ww(€n.t) and {(&.n.¢):

RM? & .[ama*r.J. R (ac ay_ av) L12)

% () T E Ew

and

Mz

£ =<t (6"4! ,,azv} (L13)

a§2 anz
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APPENDIX II: PARABOLIC CYLINDRICAL FUNCTIONS

The parabolic cylindrical functions are solutions of the differential equation

Y . (axZebxec)y =0 . .y
dx?

Two real and distinct forms of equation (I1.1) are

d% . (%xz . a}, =0 (I.2)

and

dly L(1,2.,) -
.a;_z.*(z.x a}« 0. (IL.3)

In fact, taking a = -(n +%) in (I1.2), we have the differential equation whose solution

is the parabolic cylindrical function of index n — denoted D,(x). That is,

2p
.9_"().‘.). - (.l.xz -n - _l.) D(x) =0. (11.4)
dx? 4 2

Even and odd power solutions of (I1.4) are given by
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-ox 2 4
= 7 > (= X - - - X
y, =e 1 +( n)-fi' (-n)(2 n).‘E + ..
1l"1 x?2 x4
y, =¢ 1+ (-ﬂ-l)—zT + (-n-l)(-n-3).5 + .
and
7 x3 x3
Yy, =¢ X + (l'n)-—s—!- + (l-n)(3—n).5!_ * .

lxz

Standard solutions of the differential equation (11.4) are constructed from these series

solutions. Two linearly independent solutions of (I1.4) are

fordix)e oo () 22)

and the Wronskian of these two functions is known to satisfy

w(Uu,V) = J—_’z? )

3 s
= T + {(-n-~ X + (-n- -] X +
e X +(-n 2)?!. (-n-=2)( n—4)_s.§.

(I1.5)

(11.6)

(I1.7)

(I1.8)

(1L9)

(11.10)

(I1.11)
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Taking n = -2 in (I1.4), we have the differential equation which govems a component of

the solution for (£}, :

dzy 1 1 3'
— e X7 =0, I1.12
3 ( ( )

From (11.10), we have that

Employing this expression for V(.;_ : x] in (IL11), U(.;. ; x) is found to be governed

by the equation
Hence,

and the general solution of (11.12) is

1 T 7 n{ 1 ] % o
y=c - Xxe +C 2n xe erfl—x | + 2¢ N
V2n V2

where ¢, and c, can be determined through the application of appropriate boundary

conditions.
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Initialize:
v=4=0
V grid points.

1. DEALING WITH THE CHANNEL WALL

(a) Using Taylor series expansions in the E-direction and
knowledge of the streamfunction at the channel wall, compute

§ YM,b) & ¥Y(M.c) from ¥Y(M.a).

(b) Using Taylor series expansions in the n-direction and
knowledge of the streamfunction at the channel wall, compute
¥Y(b,N) & W(c,N) from W(@a.N).

(c) From the streamfunction equation, compute { at the points
adjacent to the channel wall, i.e. compute {(M,b) & {(b,N) .

2. STREAMFUNCTION COMPUTATIONS

(a) Compute ¥ at all the remaining internal grid points, using
h*-technique.

(b) Determine differences between present and previous
iterates.

DIFF = ABS (¥ [# -] )
iJ
Z1 = Z1 +DIFF

(c) Compute ¥ = y + cosh § sinn
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3. VORTICITY COMPUTATIONS
(a) Set ZZ = 0.0 (error in vorticity)

(b) Use "avoidance strategies” (cross-differencing, etc.)
to compute vorticity at (M2, 2), (M3, 2) & (MS, 2).

(¢) Use h*-technique to compute vorticity at remaining

grid points. Determine differences between present and
previous iterates.

oiFE = A8 (3 (- 6 )
ij
ZZ = ZZ + DIFF

(d) Use Woods’ condition to compute the vorticity along

E=0.
!
, - s
(Z1+ZZ)<TOL | ' @
l NO

Figure V.7: Program Flow Chart
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