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Abstract

In the first two chapters, a non-negative function defined on the class

of subsets of a finite set of players (or factors) describes the technology for

prodt 'ing a single good. Given this aggregate data, the problem of allocation
of surplus among individual players (or factors) is studied in two different
models.

In Chapter 1, an axiomatic approach is adopted to construct an allocation
rule that is immune to positive monotone transformations of the players’
utiiities. Under this rule, each player is paid a weighted average of his (or her)
marginal contributions to various coalitions. In fact, these weights coincide
with the Shapley weights. The model also provides a proper framework for
interpreting the Shapley value as the ex-ante evaluation of a conflict situation.

Chapter 2 studies an evolutionary bargaining model in which myopic
players with limited memory make simultaneous demands, naively based on
precedent. Necessary and sufficient conditions are provided under which

the long-run equilibria coincide with the core allocations. Refining the set




of equilibria by allowing for the possibility of mistakes, it is shown that
the unique limiting equilibrium allocation maximizes the product of players’

utilities subject to being in the core of the technology.

Chapter 3 studies the effect of different communication possibilities on
the coalitional stability of bargained outcomes. Formally, a graph with the
set of players as its vertices describes the communication possibilities. A
coalition can be a threat if and only if it is connected. It is then shown
that, for a large class of environments, stability with respect to coalition
formation ensues if each connected coalition is a tree. Conversely, if there
is a connected coalition that is not a tree, there are bargaining situations in

which no outcome is stable.
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Abstract

In the first two chapters, a non-negative function defined on the class of subsets of a
finite set of players (or factors) describes the technology for producing a single good.
Given this aggregate data, the problem of allocation of surplus among individual
players (or factors) is studied in two different models.

In Chapter 1, an axiomatic approach is adopted to construct an allocation rule
that is immune to positive monotone transformations of the players’ utilities. Under
this rule, each player is paid a weighted average of his (or her) marginal contributions
to various coalitions. In fact, these weights coincide with the Shapley weights. The
model also provides a proper framework for interpreting the Shapley value as the
ex-ante evaluation of a conflict situation.

Chapter 2 studies an evolutionary bargaining model in which myopic players with
limited memory make simultaneous demands, naively based on precedent. Necessary
and sufficient conditions are provided under which the long-run equilibria coincide
with the core allocations. Refining the set of equilibria by allowing for the possibility
of mistakes, it is shown that the unique limiting equilibrium allocation maximizes the
product of players’ utilities subject to being in the core of the technology.

Chapter 3 studies the effect of different communication possibilities on the coali-
tional stability of bargained outcomes. Formally, a graph with the set of players as its
vertices describes the communication possibilities. A coalition can be a threat if and
only if it is connected. It is then shown that, for a large class of environments, sta-

bility with respect to coalition formation ensues if each connected coalition is a tree.
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Conversely, if there is a connected coalition that is not a tree, there are bargaining

situations in which no outcome is stable.
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Chapter 1

Multiplayer Bargaining Situations:
A Decision Theoretic Approach

1.1 Introduction

Since the pioneering work of John Nash in the fifties, the formal analysis of the
bargaining problem has evolved in two different directions. One is axiomatic (e.g.,
Nash (1950); Kalai and Smordinsky (1975).). In this approach the bargaining process
is only implicit. One tries to characterize the negotiated outcome through a set of
axioms without formally modelling the process of settlement.

The other approach is to make explicit the strategic aspects of the bargaining
problem. Here, the negotiation procedure is described explicitly as a non-cooperative
game and the predictions are identified with its equilibrium points. For many years
following Nash’s seminal contributions, the axiomatic approach was the predominant
one. In recent years, following the work of Rubinstein (1982), the perspective has
shifted. The last decade has seen a flurry of research activity in non-cooperative
bargaining theory.

A central insight obtained from this literature is the importance of the ezact spec-

1




Multiplayer Bargaining 2

tfication of the bargaining process in determining the outcomes. It was discovered
early on that even slight changes in the bargaining procedure can yield quite dif-
ferent results. This insight questions the validity of the axiomatic approach which
endeavours to find a fruitful solution concept that is valid for a variety of negotia-
tion procedures. At the same time, the excruciating detail with which the rules of
the game need to be specified casts doubt on the appropriateness of the predictions
obtained as solutions to non-cooperative procedures.

If the rules of the game are well laid out for the players, a non- cooperative
game-theoretic model is appropriate. Although one does get to know the rules of the
game eventually, often a choice between various bargaining situations has to be made
before the rules are known. If ¢ ae subscribes to the basic tenet that agents make
consistent choices even in these situations, one is left with (at least to my mind) no
other alternative than to rely on a few basic rules of behaviour, i.e., resort to the
axiomatic approach in predicting their choice.

In this chapter, I adopt the axiomatic approach and analyze the choice of a single
individual amongst environments where side- payments are possible in a single good.
These environments are referred to as bargaining situations. Loosely speaking, a
bargaining situation consists a set of n players and a non- negative and super-additive
function f defined over the class of all coalitions of this set. Here, f(S) is the quantity
of a certain infinitely divisible and transferable commodity available to a coalition S.
I postulate a binary relation >; on the class of all bargaining situations. A player
anticipates how much of the good he will get should he find himself in any of the

bargaining situations. Thus by f ; g, we mean that player i expects to obtain at
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least as much of the good in situation f as in g. The strategy of this paper is to
impose restrictions on this binary relation. A representation of >; is the utility of a
certain bargaining situation for the player in terms of the underlying good itself. The
main resul: of the paper is as follows. For a bargaining situation f, [f(S) — f(S\ 1))
is the marginal contribution of player i to the coalition S. Under intuitive axioms 1
show that in choosing between bargaining situations, an agent maximizes a weighted
average of his marginal contributions to all the possible coalitions. Theorem 1.3 shows
that these weights in fact coincide with the Shapley weights ®.

That the weights obtained in Theorem 1.3 coincide with the Shapley weights may
lead one to interpret this representation theorem as a mere recharacterization of the
Shapley value itself. Theorem 1.3 is in fact more general. The initial construction
of the Shapley value is for games with transferable utility (TU). The assumption of
TU requires the existence of a single composite good for making side-payments and
the utility of this good be linear for all the players, with the same scales. While I do
assume that side-payments are made in a single good, I do not assume TU. In fact,
the exact utility for the good is irrelevant. The only thing that matters is the implicit
assumption that the players prefer more of the good to less of it.

This irrelevance of the exact specification of the players’ utilities for the underlying
good is interesting. For, a common feature of both the strategic and the axiomatic
approaches is the assumption that only utilities for the final outcome and not the
outcomes themselves that matter. In the words of Nash: ” What the actual courses

of action are among which the individuals must choose is not regarded as essential

1The literature on Shapley value is enormous. See Roth (1988) for a list of references.
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information ... Only the attitudes (like or dislike) of the two individuals towards
the ultimate results are considered.” This preoccupation with the utility and not the
outcomes is especially important because the ultimate result in both the approaches
is quite sensitive to the exact representation of preferences. In fact, the actual out-
comes are invariant only up to an affine transformation of the players’ utilities. For
this reason, it is often asserted that bargaining theory must involve interpersonal
comparisons of utility.

Restriction of players’ preferences to those that are invariant only up to an affine
transform is perhaps a reasonabic assumption when bargsining over indivisible goods
is carried out by means of lotteries. However, in many other instances this is not
the case. Often, we do have access to an (almost) perfectly divisible unit (such as
money), to compensate for the lack of divisibility in others. If one were to consider
induced preferences for this good, it is not clear why one should not allow for a much
larger class of preferences. Indeed, if we wish to construct a theory that is devoid of
interpersonal comparison of utilities, one must ensure that the outcome is invariant
under all positive monotone transforms of the utility for the underlying good.

The bargaining rule naturally implied by Theorem 1.3 is trivially immune to ords-
nal transformations of the players utility for this good. Thus the model here provides
a resolution to the Bargainers’ Paradoz. (See Shapley (1869) or Shubik (1982).) The
above bargaining solution also determines a Pareto-optimal allocation without actu-
ally imposing it as an axiom. Moreover, given that only side-payments are assumed,
the model characterizes a non-transferable utility (NTU) value for the above physical

environments. And finally, the approach adopted in this paper provides a framework
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for a proper interpretation of the value as the ex-ante evaluation of a game. To
ease exposition, an elaborate discussion of various issues raised in this paragraph is
deferred to Section 1.4. Section 1.4 also compares the present work to the relevant
literature. The model and the axioms are laid out in Section 1.2. Section 1.3 contains

all the results. Formal arguments, for the most part, appear in Appendix A.

1.2 The Model

Let N = {1,2,...n} be a finite set denoting the set of players. A coalition is a non-
empty subset of N. Given coalitions §,T,U,..., let s,¢,u... denote the number of
players in the respective coalitions. A non-negative function, f, defined on the class
of all coalitions is said to be super-additive, if for any two disjoint coalitions S and
T, f(SUT) 2 f(S)+ f(T). As is usual, let 2V denote the class of all subsets of N.
Furthermore, let II; denote the class of all coalitions that contain player i and II_;

denote the class of all coalitions that do not contain player i.

Definition 1.1 A n-player bargaining situation is a non-negative function f : 2V —

R, such tha!
1. f is super-additive
2 f(4)=0

Let G denote the class of all bargaining situations. We regard G as a subset ? of

R2"-1. By way of interpretation, given a bargaining situation f and a coalition §,

3Hence the addition of two bargaining situations or multiplication of a bargaining situation by a
scalar are well defined.
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f(S) is the quantity of a single good, say money, that is available to the members of
a coalition S if members of S leave 3. I assume that side- payments are made in this
good. It is worthwhile to re-emphasize that this is not the same as the assumption
of transferable utility.

A typical player i, is completely characterized by a complete, transitive and re-
flexive relation >; defined on G. Such a relation is called a preference relation. Thus,
given two bargaining situations f and g, by f >; g should be read as ” player i weakly
prefers the prospect of being in situation f to the prospect of being in situation g
". The symbols >; and ~; have the usual interpretation of strict preference and
indifference. Certain situations play a key role in the analysis. Let fy denote the
null situation, that is f4(S5) =0, for all S C N. Formally, this situation corresponds
to the origin of R3"-1 of which G is a subset. In f4, no coalition is productive. At
the other extreme, there are situations in which the presence of a certain coalition
is necessary and sufficient for production. Formally, given a coalition S, let §¢ the

following situation:

1 fSCT

5s(T) = { 0 otherwise

In the situation §g, the members of S are solely responsible for any surplus that
is available for a coalition T'. For a real number z > 0, I will refer to z6s as a pure
bargaining situation (PBS) of size z for S. A PBS is said to include player ¢ if it is a
PBS for a coalition S that contains 5. A PBS is easy to analyze. Hence the strategy

will be to impose intuitive axioms on the >; between various PBS and then extend

3See Hart and Mas- Colell (1992) for a discussion on this issue.
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this on to more complex bargaining situations.
The first axiom is a continuity assumption. It is well known that such an assump-

tion is a minimal requirement to ensure the existence of any real representation.
Axiom 1.1 (Continuity): The graph of >; is closed, for alli=1,2,...N.

Consider 65 and z6s where z is very close to one. Each is a PBS for S and
they are approximately of the same size. If a player i who is not in S is asked to
choose between the above two situations, it seems reasonable to assume that he will

be indifferent between the two. This is the content of the next axiom.
Axiom 1.2 (Nullity) Suppose S € II_;. There erists an z # 1 such that bg ~; z6s.

REMARK: A game with TU, say v, is said to be null for player ¢ if for every
coalition S, v(5) = v(S\ 1). In a related context, Roth (1988) requires that if any
two games v and w are null for player i, then v ~; w. Since vy, the game analogous
to f4 is null for a player, this assumption basically assumes that in a null situation,
a player obtains nothing. Although the implication of the Nullity axiom stated here
is the same, i.e. players outside S in a punre- bargaining situation for S evaluate it as
if they obtained nothing, I do not assume this outright. Technically the form of the
assumption here is weaker.

Now consider z6s and ySm\s with z > y. Suppose player ¢ is in S. The next
axiom requires that player i strictly prefer a larger PBS (that is z85) that includes

him to a PBS (that is ydy\s) of smaller size that does not include him.

Axiom 1.3 (Productivity) Suppose S € II;. Then for anyz >y 2 0, z8s >»; yém\s.
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An alternative interpretation is as follows: Player i has to choose between an
organization S \ ¢ and an organization N \ S. Player i’s presence will enable S\ i
produce z units and nothing otherwise. On joining N\ S, the production will continue
to be y units, which is strictly less than z. Productivity requires that player ¢ choose
S\i.

Suppose player s prefers f to g. Now suppose player i is informed that in both f
and g a coalition S is able to produce an extra unit of output. That is, he is now
asked to choose between f + §s and g + 65. The next axiom states that he does not

change his preference.

Axiom 1.4 (Strateqic Equivalence) Suppose f >; g. Then for anyz > 0, f+ zbg >

g+ zbs .

Axioms Axiom 1.5 and Axiom 1.6 below are of a different nature compared to
axioms Axiom 1.1-Axiom 1.4. The first four axioms are concerned with the preferences
of a single player. In the next two axioms I tie in the preferences of the various players.
Axiom 1.5 is a simple Symmetry assumption. Such an assumption is natural in many
instances.

In &;, one expects player ¢ to obtain the 1 unit. Consider a PBS that includes
players i and j. The Symmetry assumption requires that if the above PBS is large
enough for a player i to prefer it to §; (and hence player i expects to obtain more
than one unit), then the PBS is large enough for player j to at least weakly prefer it

to 5,‘.
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Axiom 1.5 (Symmetry): Suppose i,j € S. For any real number z, if 2bs >; §;, then

zbs >; b;

REMARK: In value theory, typically a Symmetry assumption is made (See Shap-
ley (1953)). The Symmeiry assumption made here is specific to a particular coalition.
To introduce the next axiom, it is useful to introduce some definitions. To under-
stand the motivation for the terminology, it is useful to recal! that in §;, one expects

player i to keep the entire surplus for himself.

Definition 1.2 Suppose i € S and z < |S|. Player i is said to be an optimist if

353 >; &
Similarly, one defines an pessimist as follows:

Definition 1.3 Suppose i € S and z > |S|. Player i is said to be a pessimist if

& >; z8g.

Suppose there are only two players, say A and B. Furthermore, suppose that, in
a loose and informal sense, that (>4, >p) are common-knowledge between the two
players. That is, both players know the preferences of the other player, both players
know that both players knows the preferences of the other player, ... and so on ad
snfinitum. Now consider 2 PBS of size z for the coalition AB, where z < 2. Suppose
that, at the chosen z if both A and B are optimists. So B expects to obtain more
than one unit z64p and so does A. Moreover both players know that each of them

expects to get more than one unit, and both players know that both players know
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that both of them expects more than one unit in 26,5. Since there is not enough
surplus to go around, this cannot happen.

Now suppose that z > 2 and player B is a pessimist. So B expects to obtain
less than one unit. Now, both players prefer more of the good to leis of it. If B is
a pessimist, it must be because he expects player A to obtain more than one unit.
If fact, given our assumption of common-knowledge, not only does B expect A to
obtain more than one unit, he knows that A obtains more than one unit. Hence when
A has to choose between 26,5 and §4, he will opt for the former. Axiom 6 formalizes

this intuition.

Axiom 1.8 (Consistency) For a PBS of size z for a coalition S,
1. If 2z < |S|. there ezists a player i € S who is not an optimist.
2. If 2 > |S|, there erists a playeri € S who is not a pessimist.

1.3 Representation Theorems

In this section, I state all Theorems. I provide a sketch of the proof for some of them.
The sketch also highlights the role of the various axioms. All formal arguments are
in the Appendix A.

Theorem 1.1 Consider a preference relation >; on §. The following are equivalent:

1. The preference relation >, satisfies Aziom 1.1-Aziom 1.4.
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2. There is a unique set of positive weights {p(i,S) : S € I} , such that
zsen; P(i, S) =1 and

frig == 3 p(i,SN(S) - £f(S\d)] > 3 p(i, $)a(S) - 9(S\i)l.

Sen; Sell;

PROOF: (Sketch) It is easy to sce that the second statement implies the first.
Suppose now that >; satisfies 2. We need to show that it satisfies 1. Towards this
end we show that there is an -:xtension >; of >; to the whole of R3V-1 guch that for
any three vectors f,g,andh € R™-1 f>rgifandonlyif f+h > g+h. Thisis
Lemma A.2 in the Appendix A. In particular, Lemma A.2 implies that for any two
bargaining situations f and g, f >; g if and only if f — g > 0. Now, let E; be the
set of all vectors that are strictly better than 0 under >;. Then clearly, f >; g if and
only if (f — g) € E;. It can be shown (Lemma A.5) that E; is an open and convex
subset of #2"-! that does not contain the origin. Hence there is a hyperplane that
strictly separates E; and the origin. It is now easy to obtain the following lemma:

Lemma A.8 There is a set of weights {A(3,S) : S C N} such that for any
fi9€g,

frig &= Y Mi,9f(5)> 3 AG,5)(S)

SCN SCN

Now, it may be verified that for any f,

3 A, 85)f(5) = ’Z%‘ A, S)f(S) - F(S\i)) + SGZ [AG, §) + A(s, S UIF(S).

SCN )
I use Axiom 1.2 to conclude that A(3,S) + A(i,SU4) =0,if S € I;. This

is Lemma A.7. Finally Lemma A.8 shows that A(:,5) > 0, if § € II;. Now, set

. oy _ i5
#0,5) = sl
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The uniqueness of the set of weights follows from the fact that the ordering is

complete and the weights are normalized to add up to one. This completes the proof.

Armed with Theorem 1.1, I now proceed to characterize the weights obtained
therein more completely by imposing other axioms. Theorem 1.2 below, states the

implication of the Symmetry axiom in addition to those stated in Theorem 1.1.

Theorem 1.2 Consider n' preference relations »;,i = 1,2,...n, defined on G such
that each of them satisfies Aziom 1.1-Aziom 1.5. Then the weights obtained in The-

orem 1.1 satisfy the following:
If§ e I;N 1N, then p(i, S) = p(7,5).
PROOF: See Appendix A.

Note that our assumption of Symmetry is specific to a given coalition. That is,
even under the Symmetry axiom, player i’s evaluation of a coalition with player k (and
not containing player j) may be different from player j's evaluation of a coalition with
player ¢ k (and not containing player ).

The assumption of Consistency (along with the assumptions of Theorem 1.2 ) is

sufficient to pin down weights exactly. Theorem 1.3 details the claim:

$Consider the following axiom: AXIOM® 5: ( Anonymity) Let S be a coalition that does
not contain the three distinct players ¢, and k. For any real number =2, if 28g.4; > &, then
283uis >¢ §i. Replacing the Symmetry axiom with the Anonymity axiom, one can show that, for
each player, the weights obtained in Theorem 1.1 must depend only on the sise of various coalitions.
However, different players may yet have different rets of weights. If one imposes Anonymity along
with the Symmetry, the weights coincide for all the players and depend only on the sise of the various
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Theorem 1.3 Consider n preference relations, {>; : 1 =1,2,...n} defined on G.

Then the following two statements are equivalent:

1. Each »; satisfies Aziom 1.1-Aziom 1.6.

2. For any two bargaining situations f and g, f »; g if and only if

> oW ps\ay > 3 EoMe— Dl gisvay

[
Sell; Sel; n

PROOF: See Appendix A.

1.4 Discussion

This section elaborates on the issues raised in the last paragraph of the Introduction.

There have been several formulations of the Shapley value for TU games besides
Shapley’s own seminal contribution. (See for e.g. Young (1988), Hart and Mas-Colell
(1987), Chun (1989) and Roth (1977).) A typical characterization involves imposing a
set of axioms on a cardinal function and showing that the Shapley value is the unique
function that satisfies these axioms. The different axioms in these characterizations
yieid alternative interpretations to the value. Young (1988) is motivated by ideas
of distributive justice while Hart and Mas-Colell (1987) is motivated by notions of
cost-allocation. However, the original motivation for the value (see Roth (1977)) is
to regard it as the utility of a game.

Every one of the formulations mentioned above, except Roth (1977), imposes

Efficiency as an axiom. Efficiency requires that the sum of the values of a game for
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various players add up to the worth of the grand coalition. If one were to interpret the
value as the utility of a game, efficiency ® requires summing up the utilities of different
players. It is then not clear as to what interpersonal comparisons of utility are being
made 8. For the present model, Theorem 1.3 provides the utility of a game situation.
Nowhere in my construction do I add the utilities or the representations of different
players. In fact, axioms Axiom 1.1-Axiom 1.4 are restrictions on the preferences of a
single player. It is only Axiom 1.5 and Axiom 1.6 that make a direct interpersonal
comparison. While Axiom 1.5 is a symmetry assumption, Axiom 1.6 is a statement
on the knowledge of the model among various players rather than a direct comparison
of utility. Hence, Thec *m 1.3 provides a proper basis for interpreting the value as
the utility of a conflict situation.

Roth (1977) also provides a framework in which he obtains the Shapley value
without using efficiency as an axiom. Roth (1977) is concerned with the preferences
of a single player who is uncertain about the TU game to be played and the position or
the role that the player may bein. Allowing for lotteries over this space of uncertainty,
he assumes that the player satisfies all the standard axioms of expected utility theory.
Thus he obtains a von Neumann- Morgenstern (VNM) utility function, say 6. If the
realized outcome of the lottery is a game v with the position i, then 8(v,1), is the
VNM utility. Neutrality to "strategic” and "ordinary” risk is shown to imply that

8(v,1) is in fact the Shapley value.

S Another important axiom used in most of the c:astructions is Additivity, that is the value of
the sum of two different games add up to the sum of the values of the games. This assumption too
is not meaningful in the present context.

6Nonetheless, some authors have associated the Shapley value with classical utilitarianism (See
Moulin (1988)), as it seems to maximize the sum of utilities of the various players.
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The present work differs from that of Roth (1977) in two important ways. In the
model presented in Section 1.2, there is no uncertaiuty about the games being played.
Players are involved in a conceptual exercise of ranking one bargaining situation over
another but never lotteries over bargaining situations. Consequently attitudes to risk
are irrelevant. Second, since the Shapley value is obtained only as a VNM utility
functional in Roth (1977), the representation is unique only up to a positive linear
transformation. On the other hand, the representation obtained in Theorem 1.3 is
ordinal; it is unique up to any positive monotone transform.

Theorem 1.3 also determines a bargaining solution when side- payments are made
in a single good. Players obtain a weighted average of their marginal contributions
with the weights being the Shapley weights. There are two interesting features of this
bargaining solution. First, we obtain a Pareto-optimal allocation without resorting
to efficiency as an axiom.

Second, for two player games, the Shapley value coincides with another widely
studied sharing rule; the Nash Bargaining solution (see Nash (1950)). One of the
axioms in the Nash bargaining solution requires that the physical outcome corre-
sponding to the agreed utility payoff be invariant to positive linear transforms of the
players’ utilities over the underlying set of alternatives. This invariance of the physi-
cal outcome with respect to positive linear transforms is a natural requirement if one
were bargaining over the exchange of goods by means of lotteries. Decision- theoret-
ically equivalent utility functions must yield the same physical outcome. However,
in the present context where the players are bargaining over a single infinitely divisi-

ble good, rather than lotteries over (perhaps indivisible) goods, one might naturally
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require that the physical outcome be invariant to ordinal transforms of the players’
utility for the underlying good.

However, it is shown in Shapley (1969) 7, that at least for two person games it is
impossible to construct a theory where the physical outcome is invariant to ordinal
transforms of utility. This is sometimes referred to as the Bargainers” Paradoz. In

fact, in the above paper, Shapley goes on to assert that:

Interpersonal comparability of utility ... enters naturally - and, I believe,
properly - as a nonbasic, derivative concept playing an important if some-

times hidden role in theories of bargaining...

The problem pointed out in Shapley (1969) appears since axiomatic bargaining
theory focuses on the shapes of the utility possibility frontiers and other such geomet-
ric criteria rather than the underlying physical or economic environment. This paper
studies a restricted yet an interesting class of physical environments. The procedure
adopted here yields a bargaining solution that is trivially immune to ordinal trans-
forms of utility of the underlying good. In fact, this is perhaps the central contribution
of the paper.

A by-product of this paper is an NTU value when side-payments are possible only
in a single good. The general NTU value was formulated in Harsanyi (1963) followed
by Shapley (1969). (See also Aumann (1985b) and Hart (1985).) The NTU value has
been a subject of considerable controversy in the last decade or so. This controversy

follows certain puzzling and counter-intuitive predictions the value offers for examples

7See also Chapter 5, Shubik (1982)
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presented in Roth (1980). (See also Aumann (1986) and Roth (1987)). In particular,
concern has also been expressed regarding two related issues: the interpersonal com-
parisons of utility implicit in the NTU value and how one might accommodate the
various interpretatiuns that are accorded to the value with transferable utility in the
case of NTU. It is clear from the preceding discussion that the model presented here

answers these concerns for the environments considered therein.

1.5 Conclusion

The primary aim of the paper has been to see how a player evaluates certain conflict
situations in the presence of other rational players. In the conflict situations that
we consider the evaluation is a weighted average of his marginal contributions to
the various coalitions. The interpersonal comparisons made are minimal and in our
opinion very natural. Three central insights have been obtained by studying the
preference ordering over bargaining situations. First, we have a proper framework
for interpreting the "Shapley value” as an ex-ante evaluation of 2 conflict situation.
Second, an extension of the original interpretation of the value to the NTU case. And
most significantly, a bargaining solution invariant to ordinal transforms of utility for
the underlying good.

Several extens’ 'ns can be suggested. All the results in this paper hinge very
critically on Strategic Equivalence. A weakening of this axiom would be of considerable
interest. One expects that any such weakening would lead to a loss of separability
between the weighting measure and the bargaining situation.

Another important extension would be to allow for side-payments in several goods.
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This extension seems rather complicated. This is because with several goods, how

the strategic position of a piayer changes when endowed with more of some of the

goods is not clear.




Chapter 2

An Evolutionary Bargaining
Model

2.1 Introduction

Analysis of strategic interaction normally requires either the assumption of common-
knowledge of preferences or at the very least that the agents have a prior on the
opponents preferences. These assumptions are certainly suspect when analysing mas-
kets with several anonymous participants. One might argue that the Walrasian mode]
is better suited to analyze such situations. Nonetheless in some markets, such as the
housing and the used car markets, although the players are relatively anonymous,
there is some scope for strategic interaction. In these situations, the prior a player
may have regarding the utilities of the other participants could be quite diffuse to be
of any value.

Individuals however, either through their friends who have been in such situations
before or through various magazines and newspapers, do have access to information
on how their opponents may have acted in similar situations in the past. Since there

is a lack of knowledge about the exact preferences of the opponents, it is not an

19




Evolutionary Bargaining 20

unreasonable hypothesis that agents rely on history to devise an optimal strategy.

In a recent paper, Young (1993b) studies a model in which two players sample a
fraction of history and demand a share of the surplus simultaneously. The split is
enforced if and only if their demands are compatible. Different agents, drawn from a
finite population, play this game repeatedly. It is then shown that any eficient split
can be sustained as a long-run equilibrium. However, if one allows for the possibility
of mistakes in players’ responses, the set of divisions that one observes is considerably
smaller. In fact, when the probability of making mistakes is small, a single division will
be observed most of the time. This division is close to a generalized Nash bargaining
solution and the shares depend on the amount of information that each player has.

An interesting feature of the above model is the following: Suppose that a players’
type is completely specified by his utility for the underlying good and the extent of
his information of the past. If both agents are drawn from a set of common types,
the unique division of the surplus that is observed most often is a fifty-fifty split,
regardless of which two types are matched.

While the fifty-fifty split obtained by Young is interesting, it is perhaps not very
surprising in the following sense. If the common set of types is a singleton, then
all players are symmetric in terms of their preferences over the surplus (and the
information regarding the past). Since any solution concept that is unique treats
symmetric players exactly the same, the outcome follows.

In general, the final allocation in most allocation mechanisms depends on two fac-
tors. First it depends on the preferences of the players over the allocations. Second,

it depends on the strategic position of the players, usually manifest in their endow-
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ments of their contribution to the various coalitions. In the model of Young, while the
players are allowed to be different in terms of their preferences, they are symmetric
with respect to how much they contribute in physical terms; Two players have a pie
to share if they strike a bargain or they both get zero otherwise. It is then of interest
to study the allocation of scarce resources when players make demands optimally,
based only on precedent.

Section 2.2 studies 2 variant of the model due to Young (1993b). There is a
technology for producing an infinitely divisible good using the services of at least
two factors of production. At each date a representative for each of the factors is
drawn at random from a finite pool of representatives. One representative for each
of the factors are jointly matched. They simultaneously make wage demands. The
representatives are referred to as players.

The technology indicates the contribution of a player to various coalitions. Players
have varying preferences over this good. Thus, players are allowed to be different in
terms of their physical contributions to the various coalitions (or equivalently endow-
ments) as well as their preferences for various goods.

The main results are as follows. If the technology is convex (i.e., displays increas-
ing returns to the factors,) and one allows for the possibility of mistakes, the model
predicts & unique outcome (in the limit) that maximizes the product of players’ utili-
ties for the surplus, subject to being in the core of the technology. Of course, if an all
round equal split is in the core, this is the outcome provided the players are drawn
from a common set of types.

Consideration of examples without a convex technology generates some interesting
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results. For instance, consider the technology in which the first factor can produce a
hundred units of surplus with the help of one or both of the other factors. Then, while
the competitive solution would predict that the ivages for the first factor must be a
hundred and the other two zero, the prediction here is different. If all three players
have the same information and linear utilities the first factor obtains two thirds of the
surplus while the other two factors obtain a sixth each, in expectation. If the utilities
display constant absolute risk aversion, the return to player one is higher. Thus,
unlike in Young (1993), the outcome is quite sensitive to the exact specification of
the utilities of the players. The problem of existence of equilibria without convex
technologies is also discussed by means of an example.

Like in most models that study naive behaviour (See for e.g., Foster ard Young
(1990), Kandori et.al (1993), Young (1993a and 1993b)), I resort to the possibility
of players making mistakes in refining the set of equilibria. The model studied here
differs from all these models in that players are restricted to make only small trembles.
Intuitively, a small tremble is an action that is close to a best response in the physical
sense. This restriction creates a technical problem. The stochastic process induced by
the play of the game is not strongly ergodic, even after allowing for mistakes. Since
the refinements are typically based on the convergence properties of the invariant
distributions of the perturbed process, they are not immediately applicable.

Binmore (1987) and Carlsson (1991) analyze perturbations of the original Nash
demand game and study the properties of non- cooperative equilibria of the perturbed
game as the perturbations become very small. They show that the Pareto optimal

Nash equilibria of the perturbed game converge to the original Nash Bargaining so-
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lution. The model presented below (as does Young (1993b)) differs from the above
models in that they presuppose the equilibrium of both the original as well as the
unperturbed game. In this model, players reach a unique long-run equilibrium as the
likelihood of mistakes becomes very small, without any knowledge of the utilities of
other players.

For the most part, attention is restricted only to the case of three players. The
proofs, for the most part, can be generalized in a natural way for arbitrary (but
finitely many) players. This is not done with rigour for all the results because the
notation conceals more than what the increased generality reveals. However, brief
pointers that help towards this generalization are provided.

The rest of the paper is organized as follows. Section 2.2 presents the basic model.
The notion of a convention is presented in Section 2.3. Section 2.4 onwards, attention
is restricted only to the case of three players. In Section 2.4 presents conditions for the
convergence in probability to a convention. Section 2.5 then embarks on the problem
of refining the set of conventions. Section 2.6 compares the results obtained here to
those of Young (1993b) and the competitive outcomes. A short discussion in Section

2.7 concludes the chapter.

2.2 The Model

Time is discrete, £ = 1,2,.... At each datet, a single good y can be produced using the
services of at least two of n factors of production denoted by the set N = (1,2,...n}.
The technological possibilities are described by a non-negative function f defined on

the class of all coalitions of N. By way of interpretation, f($) is the total quantity of
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a single good that produced using the services of the factors in S alone. I will assume
the each f(S) is a rational number and f(i) = 0. Since f takes only finitely many
values, for a given f, we can redefine the units in which the good is being measured
such that f(S) is a positive integer for each SC N.

At each date, a representative for each of the factors is drawn at random from a
finite class of representatives for each factor. We will refer to them as players. At
a date ¢, player i demands a wage w; for the services of the factor i. To steer clear
of the complications that arise from infinite dimensional strategy spaces, I assume
that only finitely many demands are feasible. For a positive integer p, let D denote
the set of all p—decimal fractions that are positive and less than the maximum value
that f can take. D is the (finite) set of strategies for each player and § = 1077 is
the precision of the demands. A central concern of the paper is the behaviour of the
model for small values of §. In particular, we will be interested in the set of payoffs
that emerge as § — 0.

The factors are identified with the players. In particular, when we say that a
coalition S has formed at date ¢, we mean that only the services of the factors in
S have been used for production. Wages are paid in kind. Given a vector of wage
demands W, let W(S) denote the total wages demanded by the coalition S. The
demands of a coalition S are said to be compatible, if W(S) < £(S5).

Let w, and W* denote a typical demand of a player ¢ and the vector of wage
demands at date ¢ respectively. The complete Aistory up to and including period ¢ is
a sequence of demands W, W3,.. Wt

Consider a typical player i who has been chosen at date t. Players have no knowl-
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edge or a prior regarding the utility of the other players. To determine an optimal
response, they have to rely on the historical records. Formally, player ¢ samples at
random, a subset of size k; of the last m records, s= (W*'-™+} Wt-m+3  W*). It
is important for this model that every sample of size k; is sampled with a positive
probability. However one need make no assumptions on the relative probabilities with
which different parts of the history are sampled. The variable k/m is a measure of
player i's information.

Recall that the history up to date ¢ consisted of only past demands. In particular,
the history was silent as to which coalition has formed when similar demands were in
place. To proceed, then we will need to assume that the players have some subjective
beliefs regarding the likelihood of the formation of coalitions when the demands are
compatible in several coalitions. Consider a player who has picked the sample o; =
(W2, W3,...W"S). The probability with which the demand of player i is met is

Fwlo) = %[p.-(wIW.’..-) + pi(wlW2) + ... + piw|WH)],

where p;(w|W_;) is player i's subjective belief that his demand w is met when the
others have demanded W_;. Assuming that a player obtains zero if his demand is not

met, the expected payoff of player ¢ on sampling o; is
U(w)Fi(wle:) + Ui(0)[1 — Fiw|a)

where U;(w) is the utility derived from consuming w. U; is assumed to be a strictly

increasing, differentiable and concave function. Normalize U; so that U;(0) = 0.

Players maximize their expected utility. Hence if the state at time ¢ is s, the wage
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demand at ¢ + 1 is simply
w;e = arg max Uy(w)F(w|og,) (2.1)

for some sample oy, of sise k; from the state s. If there are several values of w that
solve 2.1 above, then each of them is played with a strictly positive probability.

The above model is similar to fictitious play in the sense that players make their
demands naively based on empirical distributions. Unlike in fictitious play, where
a player samples the entire history, in the above process, a player nqqn'pleo only a
feaction of the most recent history. This process has been termed adaptive play by
Young (1993a). Since players are sophisticated enough to actually play a best response
at each date, it seems that the above behavioural process, as is fictitious play, makes
sense only if one assumes that players do not know each other’s utility functions.

Fix m. The response rules of the players (determined by equation 2.1), determine
a stationary Markov chain. TL . state space 3 consists of all sequences s of length m.
Each entry of s, is a vector of wage demands by the agents. Let p;(w;|s) denote the
probability with which player i demands w; in the state s. For each ¢, pf is a best
respons : distribution, i.e., p*(w;|s) > 0 if and only if w; solves equation 2.1 for some
sample o; in 8.

For a state s= (W', W?3,...W™), a lates'= (W3, W3,..., W™, W) is said to be
its successor. The probability of transition from s to its successor s’ is

Pay = IL i)

andP:‘.=0,i£s'isnot a successor of s.
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Let P° denote the matrix of the above transition probabilities. As in Young
(1993b), the above Markov process, with the state space {2, and transition probability
matrix PO is said to be an evolutionary bargaining process (abbreviated EBP) with
memory m, precision §, information parameters {k;/m} and best reply distributions

{r}.

2.3 Evolutionary Bargaining Process and Con-
ventions

CONVENTION: A state s is said to be a convention if and only if it is an absorbing
state of the evolutionary bargaining process, s.e., P§g = 1.

Since there is a positive probability of reaching only an immediate successor from
any state, it is clear that a convention must involve of a sequence composed of m
repetetions of a single demand. Hence, once the EBP locks into a convention, it
becomes the unique way of playing a game. This is the primary concept of an equi-
librium that will be employed.

Let w denote the state in which each entry is the vector of demands W. Now
suppose that the process in state w at time £. Then regardless of which sample player

i samples, the probability with which his demand wil ° e met is simply given by

Fi(wlo) = pi(wilW_;).

Hence whether m repetitions of a single vector of demands constitutes a convention
or not, depends (besides the utility function) on what we assume of p;. The following

assumption will be maintained throughout this chapter.
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Assumption 2.1 The kikelihood of the formation of a coalition depends only on the
set of all coalitions in which the demands are compatible and not on the ezact demands

themnselves.

Given that the formation of a coalition depends only on the compatibility of the
demands and not on the demands themselves is indeed a strong assumption. However,
it is partially justified in the present context because the agents make their demands

simultaneously and are committed to whatever demands they make.

Definition 2.1 A vector of wage demands W is said to be in the core of the technol-
ogy £, if for every coalition S, W(S) = f(S) and W(N) = f(N)

At a first glance, it seems somewhat intuitive that conventions should consist of
elements of the core alone. Indeed, elements of the core are usually strong equilibria
and immune to even coalitional deviations. But this intuition is misguided in the
present context. Note that in our model, players make simultaneous demands, and
not proposals. When a player makes a proposal, not only does he seek a payoff for
himself, but also specifies a payoff for the a subset of other players as well. Hence,
he has not only specified a payoff, but also suggested which coalition is to form. In
the present model, players independently and simultaneously make their demands.
The demands are made based only on precedent. Hence, it is possible that individual
players may demand wages much higher than the grand coalition can afford but they
expect to obtain these smaller payoffs in smaller coalitions.

Changing the payofls at this stage may not be optimal because it may change

the number of coalitions in which the demands are compatible. For instance, if by
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demanding less, the number of coalitions in which the demands can be met does
not change, it is clearly sub-optimal because of Assumption 2.1. But by making a
smaller demand, it is possible that the number of coalitions in which the demand is
compatible does increase. Whether demanding less is optimal or not, depends on the
exact specification of the beliefs. Similarly for increasing the demands.

For further analysis, we need to make further assumptions on the beliefs of the
players regarding the formation of coalitions. An initially appealing assumption that
partly compensates the for the admittedly strong Assumption 2.1 is that each of the
coalitions in which the demands can be met forms with a strictly positive probability.

Such a hypothesis leads to fairly unintuitive results as the following example shows.

Example 2.1 Suppose the f(ij) = 1 for all £,7 and £(123) = 2, and Ui(w) = w
for all i. Consider the demands (1/2,1/2,1/2) repeated m times. These demands
are compatible in each of the two player coalitions as well as the grand coalition. By
carefully choosing the beliefs, we wish to show that these demands can be supported
in a convention if we assume that each of the coalitions in which the demands are
feasible has a positive probability of forming.

Let us assume that each of these coalitions are equally likely to form. The expected
utility of demanding 1/2 is then 3/8 for every player. Now suppose that in this state
player i raises his demand. Then the demands cannot be compatible in either of
the two player coalitions involving player i. The demands will still continue to be

compatible in the {jk} coalition and perhaps in the grand coalition depending on the

player i's demand. The best player i can do, given that players j and k continue to
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ask for 1/2 each, is to demand for 1. This will be met in the grand coalition with
some probability.

Now suppose that player ¢ believes that the jk coalition forms with probability
3/4 while grand coalition forms with probability 1/4. Then the expected utility of
asking for more than 1/2 is 1/4 which is less than what he would have obtained by
asking for 1/2.

It is clear that demanding less than half is dominated by asking for half. Hence,

with the above set of beliefs, each player demanding 1/2 can constitute a convention.

In the above example, player ¢ believes that a smaller coalition will form with a
higher probability although the demands of all three players are compatible within a
larger coalition leading to the non-intuitive, Pareto sub-optimal outcome. In order to

rule out such non-intuitive behaviour, we make the following assumption:
Assumption 2.2 Suppose that there is a set S* such that

For every S such that W(S) < f(S) implies W(SUS*) < f(SU S§*).
Then p;(w;|W_;) =1 for alli € S*.

The above assumption is equivalent to the assumption that the largest coalition
forms, if there is a single largest coalition in which the demands are compatible. But,

more generally this is not the case as the following example shows:

Example 2.2 Let n = 4 and let the demands W be compatible in the coalitions
{123,12,13,234}. Assumption 2.2 only requires that player 2’s demand must be met
with probability 1. Indeed, this merely implies that {13} does not form.
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Both Assumptions 2.1 and 2.2 are sufficient to ensure that for example 2.1 the

set of conventions coincide with the core. This is however not always the case.

Example 2.3 Let f(12) = f(13) = 300, f(123) = 300 + 2¢ where 0 < ¢ < 75,
Ui(w) = w and k; = k for all i. Here, player 1 is essential for production. The set of

demands that players 2 and 3 make in conventions is shown in the figure below:

4¢

Figure 2.1: Demands in Conventions

The demands made in the core correspond to the square formed with (§,6),
(8,2¢),(2¢,8) and (2¢,2¢) as its vertices. The set of conventions must include these
demands. The set of points on the line of slope 1 starting from (4e, 4¢), correspond to
the demands of the form, (300 — w, w, w) for all w > 4e¢. I now claim that these are

conventions as well. Indeed, let w denote the state in which one of these demands has

been repeated m times. Regardless of which sample of size k player 1 samples from
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w, a demand of w is compatible in both the two player coalitions whereas a higher
demand cannot be met in any coalition. Hence, demanding more is not optimal.
Demanding less is of course not optimal either.

For player 2, demanding more than w is not optimal. On the other hand demand-
ing less than w may be optimal, if the likelihood of obtaining a lower wage for sure
in the grand coalition exceeds getting w with some probability. But the most that he
can get from the grand coalition, given players 1 and 3's demands is 2¢. Let us take
his beliefs to be such that all the coalitions in which the demands are compatible are
equally likely to form. In the present context this does not seem unreasonable. Then,
player 2 will weigh the chances of obtaining w with a probability half against the sure
option of 2¢. Indeed, fo:! all w > 4¢, he must continue with the above strategy and
demand w. The analysis is similar tor player 3.

It is also useful to point out that conventions with demands such as (300 —w, w, w)

are semi-stable (See Selten (1972))

Proposition 2.1 below identifies sufficient conditions for the set of conventions to

coincide with the core.
Proposition 2.1 Suppose that the technology is convez, i.c.,
S+ fF(T)Sf(SUT)+ f(SNT) for all S, T

Then w is a convention if and only if w is in the core of the technology f.

1However, note that (300 — 4¢, 4¢, 4¢) cannot be part of any convention. In a state involving made
m tepetitions of these demands, the best response for player 2 (and 3) is not unique. Demanding
4¢ and obtaining it with probability half or demanding 2¢ and obtaining it for sure are both best
responses. By our earlier assumption that all best responses ase played with a strictly positive
probability, the above will not be an absorbing state.
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Proof: See Appendix B.

2.4 Convergence of the EBP with three players

From this section onwards, rigorous proofs are provided only for the case of three
players. It will be evident from the proofs that generalization for arbitrary number
of players is fairly straightforward, except for Theorem 2.1.

In a Markov Process the set of all aperiodic states are either transient or persistent.
If the set of all persistent states are absorbing, then the EBP converges from an
arbitrary state to some convention. Theorem 2.1 below, uses some of the ideas from
Young (1993a), the only persistent states are the conventions, thereby ruling out

cycles and establishing global convergence in probability.

Theorem 2.1 Suppose that k;/m < 1/3 for all i. Ther, the EBP converges with

probability one to a convention.

PROOF: Assume, for ease of exposition, that & = k for all 1. Let the process be in
state s (t) at date t. Let o denote the last k elements of this state. Let W?* denote
a best-response vector to the sample 0. Since every sample of size k has a positive
probability of being sampled, there is a positive probability of observing W! at date
t+1. In fact, there is & positive probability of observing a run of W?! between ¢+1 and
t+ k. If w! is a convention, we are done. For, between £ + 1 and £ + 2k all the players
will sample the records containing W* alone and respond with w}. Hence thereis a
positive probability p of reaching a convention in m + 2k periods. So the probability

of not reaching a convention in #(m + 2k) perids at most (1 —p)’, which goes to zero
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as r — co. Suppose that W? is not in the core but is compatible in at least one of
the three two player coalitions say {12}. Then, between ¢t + k + 1 and ¢ + 2k, there
is a positive probability that players 1 and 2 will continue to sample &, while player
three will sample the records consisting of W?! alone. His best response?, by virtue
of Assumption 2.2 is f(123) — w, — ws. Hence, between period ¢t + k + 1 and ¢ + 2k,
there is a positive probability of seeing a run of W? = (w, wy, £(123) — w; — ws).

It is useful to note that until now we needed a history of length at most 3k. From
now on will make use of samples of size k that appear from dates ¢t + k + 1 onwards.

Now between t+2k+1 and t+ 3k, there is a positive probability all the three players
will sample demand W3. The best response of player 3 continues to be £(123)—w, —w;
while player 1 and player 2 must demand f(12) — wy and f(12) — w, respectively.
Hence we will see a run of W3 = (£(12) — w,, £(12) — w4, £(123) — wy, — w,) for k
periods with a positive probability.

Between t + 3k + 1 and ¢ + 4k, there is a positive probability of players 2 and
3 continuing to sample demands of W? alone while player 1 samples W*. The best
responses of players 2 and 3 remain unchanged while that of player 1 is now w,. Hence,
there is a positive probability of seeing a run of W* = (w,, £(12)—un, £(123) - £(12)).

Finally, there is a positive probability of all three players sampling the most recent
k records consisting of W* alone. The best response of players 1 and 2 continue to be
wy and f(12) — w, respectively while player three must now demand f(123) — f(12).
It may be verified that the demands W* = (wy, f(12) — w,, f(123) — £(12)) is an

21t may be verified that since the technology is convex, f(123) — wy is not feasible in either of
the smaller coalitions that contain player 3.
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element of the core. Now we repeat arguments similar to those found in the first
paragraph of this proof to conclude that we the EBP converges with probability one
to a convention if the information is less than or equal to 1/3.

The only other case to consider is when W? is feasible is strictly compatible in the
grand coalition but is not compatible in any of the smaller coalitions. In this case, it

is clear that W? above is in the core.

Remark 2.1 Although Theorem 1 requires an upper bound of only 1/3 on the infor-
mation parameters of the players, I will in fact assume that k;/m < 1/4. This bound
considerably simplifies later analysis. The tighter bound that n players require would

make this assumption unnecessary in general.

Remark 2.2 With n-players, the bound depends on the size of smallest coalition
in which positive demands can be met. For example, for a pure bargaining game for
N, it can be proved that a bound of 1/n is sufficient. However, for more complicated
games, a sufficient condition would be ﬁ < 2/n(n — 1). This number is simply the
reciprocal of the number of two player coalitions that can be formed with n players.
The rather cumbersome proof is omitted. The idea of the proof, however, will be

evident from that of Theorem 2.1 and Proposition 2.1.

Remark 2.3 Note that for Example 2.3, although the set of conventions correspond
to those depicted in Figure 2.1, it does not mean that all other states are transient.

Cyecles are a possibility.
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2.5 Stochastically Stable Conventions

The core of a typical game can be quite large. Hence, the set of conventions is very
large as well. In order to select among the set of conventions, in the spirit of the models
in Kandori, et. al (1993), Young (1993a) and Young (1993b), I consider the possibility
of players making mistakes and study the conventions that are stochastically stable.
To illustrate the notion of stochastic stability, certain definitions are in order.

Fix the sample sizes k; and the memory m.

Definition 2.2 Mistgke: Suppose that the EBP is in state s= (W41 [t-m+3..W")
at time ¢ and 8'= (W*™+3, Wt-"+3 _ W* W). The transition s to s is said to in-
volve a mistake on th part of player i if there is no sample in s of size k; for which
w; is a best-response, i.e., p;(w;is) = 0. Clearly the number of mistakes involved in a
transition from a state to its successor can only be zero one, two or three depending

on the number of players that have made a mistake.

Suppose that the probability with which player s makes a mistake is given by
e); > 0. Conditional on the fact that player i has made a mistake, let g;(w;|s) be the
probability with which he demands the wage w; in state s. Clearly, ¢; is different from
9. The parameter ¢ is the absoluie probability with which players make mistakes
and );/); is the relative probability of players ¢ and j making mistakes. The event
that player i makes a mistake is assumed to be independent of the that event j makes
a mistake.

Now suppose that the process is in state s at time ¢. The probability that exactly
the members in the coalition S make mistakes is €([T;es Ai)(Tligs(1 — €X;)). Condi-
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tional on this event, the transition probability of moving from a state s to a state s’

is

Lies ai(wils) Tligs P} (wils) if 8" is a successor of s
QS = and the demands to the far right are w

0 otherwise.

If none of the players make mistakes, then the transition probability of moving
from state s to a state 8’ is given by the earlier transition probabilities Pf. +. This
event has the probability [];-; 23(1 — €A;).

Allowing for the possibility of mistakes, we now obtain a new Markov process with

the same state space () as before but with the transition function:

P, = ( Il - exa) P+ 3 AN - @S

i=1,2,3 SCN eS8  ifs

Let P* denote the above matrix of transition probabilities. In most models similar
to the one presented here, including Kandori, et. al. (1993) and Young (1993a)
and Young (1993b), it is assumed that when players make mistakes, every feasible
strategy is played with a strictly positive probability. Mistakes then, constantly
perturb the process away from a convention. Now there are no absorbing states.
However, since the transition probabilities of the perturbed process converge to those
of the unperturbed process as ¢ converges to zero, for small values of ¢, the perturbed
process continues to be attracted to conventions, without actually settling down.
Which of the conventions that the process stays at for the most part depends on the
number of mistakes that are required to move it far enough to a state from which

it would gravitate toward a different another convention. Hence, in the long run, if
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when the probability of mistakes is very small, the convention that is observed most
of the time will be the one that requires the largest number of mistakes to displace.

The asymptotic (or long run) behaviour of a Markov Process is captured com-
pletely by its invariant distributions. When one assumes that there is a positive
probability of every strategy being played, the perturbed process is irreducible. It
is easy to show that each of the states is aperiodic as well. Hence there is a unique
invariant distribution u® for the perturbed process, for each ¢ > 0. For a state s,
#% is the relative frequency with which it will be observed in the first ¢ periods as
t — co. Since the invariant distributions (perhaps along a subsequence), converge to
the invariant distribution of the unperturbed process, the convention that will be ob-
served most often when the probability of mistakes is small in the one corresponding
to the invariant distribution that the invariant distributions of the perturbed process
converge to.

This motivates the following refinement of the set of conventions, first introduced

by Foster and Young (1990).

Deflnition 2.3 STOCHASTICALLY STABLE CONVENTION: A convention s is
stochastically stable if lim,_, u$ exists and is positive. A state is strongly stable, if

Lim, 4 = 1.

While the assumption that players may play any strategy, when they make mis-
takes is an alternative, I will assume that the players’ make small trembles.

Definition 2.4 _Smgll Trembies:Let s be the state at date t. A mistake w; on the

part player i is said to be a small tremble if there is a & such that (i). pf(i|s) > 0,
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In other words, a player is deemed to have made a small tremble, if his demand
differs from a best-response by at most §. The support of ¢;(.|s) consists of best-
responses and demands that are a § distance away from them.

While the results in the sequel will probably hold under more general assumptions
with regard to the trembles or mistakes, such a characterisation is left open as a
possibility for future research.

It must be pointed out that we are assuming that the trembles are with regard to
the actions rather than payoffs (and hence the terminology trembles rather than mis-
takes). The set of stochastically stable outcomes can be characterized with trembles
in payofis rather than actions. This will be elaborated in a later section.

When players make only small trembles the matrix of transition probabilities P¢
is no longer irreducible nor is it clear that the states are aperiodic. Consequently, it
is now not immediate that a unique invariant distribution exists and the notion of
stochastic stability may not be a proper refinement concept. However, we have the

following theorem:

Theorem 2.3 Suppose that players only make small trembles. Then for each ¢ > 0,
P* admits a unigque invariant distribution u*. Moreover, the support of u* contains

the set of all conventions.

Sketch of the Proof: It can be shown that even allowing for only small trembles,

starting in an arbitrary convention w, there is a positive probability of reaching

another arbitrary convention (See Corollary B.2). Now, let f); denote the set of all
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states that can be reached from some convention with a positive probability when
one allows for small trembles. Let s be an arbitrary state in §),. From any other
state s', there is positive probability of reaching s. For, by definition s can be reached
from some convention, say w. But from Theorem 2.1, we already know that some
convention w' can be reached with positive probability from state s’. Since we have
already proved that we can reach any two conventions with a positive probability
when allowing for small trembles, it follows that one can reach w from w’, thereby
reaching the state s. Hence, the matrix of transition probabilities associated with the
states in {, is irreducible.

Recall that as long as players have sufficiently small information, it is possible to
reach any convention with a positive probability from an arbitrary state. Since 1, is
a closed set, each state §I; = (If is transient.

Hence, the matrix P¢ can be decomposed as follows:

=[5 7]
where Q is an irreducible square matrix corresponding to the states in {1, while the
matrix V is a square matrix correspond to the states in ;.

There?® is a unique invariant distribution corresponding to Q since the matrix is
irreducible and the states are aperiodic. By extending this vector with zeroes, we
obtain an invariant distribution for P°. Furthermore, since the support of any other
invariant distribution for the matrix P¢ must have 2, as its support, it follows that

there is the unique distribution. O

3All the following assertions that follow are applications of well known results from Stochastic
Processes. See for e.~. Feller (1957)
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Following Theorem 2.2, the use of stochastic stability as a refinement concept is
justified. In fact, we will be interested in something more than stochastic stability.
Let a; be a positive rational number. Suppose that player i samples at most a fraction
oy of the records. We will say that m is admissible if and only if ma; is an integer.
We are interested in conventions that are stochastically stable for every admissible

Theorem 2.3 There exists a level of precision §° > 0 such that for every level of
precision § < §°,

1. There are at most siz conventions that are stochastically stable for all admissible
values of m. Furthermore, for every if w' and w? are any stochastically stable
conventions,

I w' —w? IS 2V26.

2. A convention w; is stochastically stable for every admissible m if and only if it

mazimizes the function rs over the set of all conventions, where
_o o Uw - 8)
re(w) = min, {"“[1 Vi) ]} ‘

The above result is formally weaker than a corresponding result obtained by Young
(1993b) in the case of two players. The difference is that an upper bound §* is
required on the level of precision. Although the theorem holds true from somewhat
higher values of §, £(123)/8 is a sufficient upper bound in Theotem 2.3. This bound

however, depends on the number of players.
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The intuition for the theorem is as follows. Starting in a convention, the integer*
[mrs(w)] is the minimum number of trembles required for some player to have a
best-response different from the conventional demand. It turns out that for a convex
technology, this minimum number of trembles is sufficient to lead one away from the
current convention to another, with no further trembles. Now when rs is maximized
at a point such as w;, the number of trembles required to displace it is the largest.
Hence, when the likelihood of trembling is very small, this is the one convention that
is the hardest to displace and consequently is observed most often.

Even when the technology is not convex, it is still relatively easy to compute the
minimum number of trembles that are required before some player has a best response
different from the conventional one. These turn out to be functions that look like rs.
But now, this minimum number of trembles is no longer sufficient for the players
.o continue with demands (as best response,) that would lead them to a different

convention. Consider the following example:

Example 2.4 In Example 2.3, set a; = 1/4 for all i. The minimum number of
trembles #5(w) before which some player has a best response different from the con-

ventional demand in a convention w is

4 min;_; 33 & if W is in the core
F76(w) =
min{, 54—} for a convention such as W = (300 ~ w,w,w)

where w > 4e. This bound may be obtained by constructing arguments similar

to those found in Lemma B.1 and Lemma 3.3 in the Appendix B. For el¢ments

9For a real number 2z, [z] is the smallest integer larger than z.
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in the core, #5 coincides with r; that appears in Theorem 2.3. Among the set of
conventions that are not in the core, the fewest number of trembles required before
player 1 demands a § less is 2/w,, whereas for players 2 and 3 the minimum number
of trembles continues to be 1/w;. This is because for player 1 to demand § less as a
best response in a convention such as (300 — w, w, w), we require both player 2 and
player 3 to make the mistake of asking for § more than w. Hence, the correction of 2
for player 1.

The least player 1 obtains in the core is in the allocation (300 — 2¢, 2¢, 2¢). In the
convention involving these demands, the minimum number of trembles may no longer
be sufficient to displace it from the convention. To see this let us, for concreteness,
first suppose that ¢ = 1. Then, for a large enough m, it is player 1 who has a best
response for the first time. This corresponds to the case where both players 2 and 3
have made the mistake of asking for 2¢ + §. Let 1* be the number of entries in which
players 2 and 3 have demanded 2 + §. To this, the best response for player 1 is to
demand 298 — §. Suppose that from this point in time, say T, onwards no further
trembles are made. We may assume, without loss of generality, that the trembles
actually occurred in the last T — 1* periods.

Now, for every sample of size m/4 that player 1 chooses that does not include the
last T — 1° records, he must demand 298. If the sample includes that last T — 1°
records, he demands 298 — . Now consider a sample of size m/4 chosen by player
2. Furthermore suppose that in i entries of sample, player 1 has asked for 298 — §.
For both players 2 and 3, demanding 2 dominates (strictly) a demand smaller than

2. Furthermore, since both of them (players 2 and 3) are demanding at least 2 and
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player 1 is demanding either 298 or 298 ~ §, asking for more than 2 + § is a strictly
dominated strategy.

Now, suppose that in the sample drawn by player 2, every demand of player 1 is
298 — § while all but one demand of player 3 is 2. The other demand is of course,
2 4+ 8. Then, if player 2 demands 2, he gets it for sure, while if he demands 2 + §,
be would obtain 2 + § on m/4 — 1 occasions but obtain only (2 + §)/2 on the one
occasion. Hence, demanding 2 is a unique best-response if

(m/4-1) 1
Yy (2+8)+——=(2+68)/2 or

2 > —
2 > (1-2/m)2+96)

For an appropriate § the last inequality will hold. Since two and three are sym-
metric, for such levels of precision, both players 2 and 3, will continue to demand 2
units. In due course, the process returns to the convention involving the original set

of demands namely, (298, 2, 2).

The problem in this example appears due to the fact that the set of conventions
is not connected. In fact, a similar analysis can be carried out for ever 0 < ¢ < 50.
For € > 50, player 1 is no longer the one who deviates with the minimum number of
trembles.

When § is small, the number of trembles required to reach a convention involving
demands of the form (300 — w, w, w), starting from a demand in the core, turns out
to be very large. This is because we require a series of trembles on the part of players
2 and 3 each of them demanding a § higher at each instant. On the other hand, the

number of trembles required to reach an element of the core from the convention with
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demands (296, 4, 4) is at least 298m/[4(298 + §)]. For a fixed &, this is a large number.
Hence, one cannot obtain a2 bound independent of § and m. Questions of existence
and characterization of stochastically stable conventions for examples such as these
are left open as possibilities for future research.

COROLLARY TO THEOREM 2.3: Suppose that § — 0. Then the set of conven-

tions obtained in Theorem 2.3 converge to w*, where
W* =ar max UM (wi
e weCore of f ,-=]i-£,3 ()

The proof of this corollary is a straightforward application of Lemma 3 in Young

(1993b).

2.6 Competition and Evolution

As in Young (1993b), let us define the type of a player by the his utility function and
the extent of his information. To assert that players are drawn from a common set of
types, is in the present context equivalent to saying that (U;, a;) = (Uj, a;) for all 4, 5.
If the technology is convex, by virtue of the above corollary, the stochastically stable
outcomes converge to a three-way even split of the surplus generated by all three fac-
tors of production, i.e., (£(123/3, £(123)/3, f(123)/3)). The outcome is independent
of the specification of the utilities, as articulated in Young (1993b).

This outcome can be quite different from the competitive outcome in the following
sense. Assume that the utilities of the three agents are linear. Then, the technology f
can be thought of as being the representation of market game induced by an economy

with quasi-linear preferences. Several different economies can induce the same market
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game. Now, suppose that only two of the three players are symmetric and the induced
technology is convex. Then, the competitive outcome does not treat all three players
symmetrically, in contrast to the evolutionary model.

When the technology is not convex, the deviation from the competitive norm is

much more conspicuous. This is shown by means of the following examples.

Example 2.5 Consider the limiting case of Example 2.3 when ¢ — 0. Here, £(12) =
f(13) = f(123) = 300. The remaining variables are as in Example 2.4. This tech-
nology corresponds to the well-known representation of a game with two sellers and
one buyer. When one does not allow for zero demands, the core of this technology
is empty. But the set of absorbing states corresponds to m repetitions of the form
(300 — w,w,w), where § < w < 300 — §. Player 1 obtains 300 — w in one of the
two smaller coalitions while 2 and 3 obtain w with some probability. It can also be
shown that, with the same bound as in Theorem 2.1, all other states are transient.
Of course, it is being assumed that both the two player coalitions form with positive
probabilities.

As mentioned before, the problem in Example 2.4 appears because the set of
absorbing states is not a connected set. However, when the set of absorbing states is
a connected set, as it is here, the techniques in the proof of Theorem 2.3 can still be

applied. A stochastically stable convention maximizes the function 75 below:

Fe(w ) = £min{ 2 -1-}
s T4 300 -w'w)’
The competitive outcome on the other hand, is one in which player 1 yields the

least amount to either player 2 or 3. In the present case this corresponds to (300 —
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5,6,9).

Wken § — 0, the stochastically stable outcomes converge to (200, 100, 100) whereas
the competitive outcome is the one in which player 1 gets the whole surplus, i.e,
(300,0,0). In expected terms, players 2 and 3 obtain 50 in the bargained outcome

while the competitive outcome gives them 0.

Example 2.6 In Example 2.5 let U;(w) = 1 — e™¥. Then the minimum number of
trembles that are required before some player has a best response different from the

conventional one is given by

A -1 . 2 1
fo(w)=—3 mm{e’“"'—l’e"-l}'

The stochastically stable outcome is the convention that maximizes the above
function. When § — 0, the stochastically stable outcome converge to (300—w*, w*,w")

where w* solves

2(e*” — 1) = (2% - 1).

It may be checked that w* > 100.

The competitive outcome on the other hand, converges to be (300,0,0). Relative

to the competitive outcome, player 1 continues to fare worse in the stochastically
stable outcome. In fact, he does worse in the stochastically stable outcomes with
constant absolute risk-aversion than he did with under similar outcomes when all the
players had linear utilities in Example 2.5. This is in contrast to Young (1993) where

the outcomes were invariant under the specification of utilities.
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2.7 Discussion

The preceding analysis has been admittedly vague for the general n player case. But
it will be evident from the proofs of various results, that an extension to the general
n player case is fairly straight-forward, except for perhaps Theorem 2.1. As indicated
in a remark following the proof of that theorem, it is possible to prove it albeit with
a much less interesting bound on the information parameters than is available for the
general 3 player technology. See Remark 2.2 for further discussion.

Another criticism is perhaps that one should be looking at small mistakes in
terms of payoffs rather than small trembles that concentrate on actions. Note that in
a convention w , if player i demands w;+ §, his payoff is zero. But a demand of w; —§
will be met for sure, and hence the difference in payoff is only U;(w;)— U;(w;—§). Thus
a small tremble w; + § is "big” mistake whereas a tremble w; — § is a small mistake
as well. In fact since any demand less than or equal to the conventional demand will
be met with probability one and no demand greater than the conventional demand is
compatible in any coalition, the smallest mistake in a convention (in terms of payofis)
is a tremble that is a § less than the conventional demand.

The entire model can be redone with the assumption of small mistakes rather than
small trembles. Following the observations from the preceding paragraph, a careful
reinterpretation of the various lemmas that appear in Appendix B, yield the following

result:

Theorem 2.4 If one permits only small mistakes, then

1. There are at most siz conventions that are stochastically stable for all admissible
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values of m. Furthermore, for if w' and w? are any two stochastically stable

conventions,

| w* —w? ||<2V26.

2. A convention w; is stochastically stable for every admissible m if and only if it

mazimizes the function r; over the set of all conventions, where

e Ui(w;)
r5(w) = ,-,‘_‘}g‘,,{a"[]..(w‘ + 5)]} .

A limiting result that corresponds to the Corollary to Theorem 2.3 is a subject of

current research by the author.




Chapter 3

Negotiation Schemes and Stability
of Bargained Outcomes

3.1 Introduction

The concept of an equilibrium is inextricably linked to some notion of stability. While
in non-cooperative games stability of strategies is demanded against individual de-
fections, it assumes a much more stringent form in cooperative and semi-cooperative
solution concepts such as the strong equilibrium and coalition-proof Nash equilib-
rium. In such solution concepts the suggested equilibrium payoffs (and hence the
strategies that induce them) are required to be stable against coalitional deviations
besides being individually rational.

Stability of equilibrium payoffs against coalitional deviations is an attempt to
extend the concept of individual rationality to groups. However, as Luce and Raiffa
point out (See Luce and Raiffa(1954)), "the notion of group rationality is neither a
basic postulate of the model nor does it appear to follow as a logical consequence
of individual rationality.” Moreover, the nature of a coalitional deviation is quite

different from that of individual defections. To see this, suppose that the current

50
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status-quo lies in the interior of the set of all utility payoffs that a coalition can
guarantee its members. Should we expect a deviation? The answer obviously depends
on what we assume of the bargaining process. If we assume that bargaining follows
the coalitional deviation, then it is not clear what the threat points for the members
are. In particular, the status-quo may not continue to be the threat point as this
may not be attained once the coalitional deviation is effected. Hence, if a coalitional
deviation is effected before an agreement is reached, some of the members of the
deviating coalition could be worse off relative to the status-quo. Hence, we may not
observe a deviation in the first place.

Considerations such as above suggest that coalitional deviations (and group ra-
tionality) must at a minimum involve considerable communication between various
players regarding the payoffs that will be obtained following a deviation. Further-
more, this agreement must be reached while the status-quo is still a valid threat point.
Now, if we take as axiomatic that a coalition cannot be a threat unless its members
can communicate between themselves at the status-quo, a question of interest is the
maximum extent of communication a designer can permit among a set of players
and still hope for stability against coalitional deviations, regardless of the economic
possibilities.

In this Chapter, I consider a large class of NTU games and study the effect of

different communication possibilities on the stability of bargained outcomes against

coalitional deviations. More precisely, I take as given which pairs of agents can

communicate between themselves. A coalition involving some two players, say &

and j, can be a potential threat to a suggested payoff only if either ¢ can directly
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communicate with j or there is a sequence of players in the threatening coalition
through which player i can transmit (receive) a message to (from) player j. If neither
of these possibilities exist, a coalition involving § and § cannot be a threat regardless
of its economic possibilities described by the characteristic function.

The main result in this chapter is as follows. Suppose the communication pos-
sibilities are such that for any two players there is & unigue set of players who are
involved in transmitting a message between them. Then, a stable coalition structure
exists. That is, there is a vector of payoffs 2° and a partition of the set of players such
that each player obtains = in a single coalition. Furthermore, this configuration of
coalitions is stable against further deviations by coalitions in which players ce~ com-
municate between themselves. Of course, when one assumes that the characteristic
form is super-additive, the payoff vector 2° can be achieved in the grand coalition.
Then, the above is nothing but an assertion that the core is not-empty.

Communication possibilities offer a natural restriction on coalition formation. At
the same time, in several economic instances certain coalitions do not have any power
even if they did form. For example, in labour markets, coalitions consisting of only
employers or only employees cannot achieve anything on their own. For these situa-
tions, we might as well assume that these coalitions cannot form. Motivated in the
above manner, Kaneko and Wooders(1982) take as exogenous a given set of coalitions
that can form. Such coalitions were described as effective coalitions. Then, they pro-
vide a list of necessary and sufficient conditions for a partitioning game to bave a
non-empty core regardiess of the payoff functions of the effective coalitions. Their

main conclusion is that as long as the set of effective coalitions is strongly balanced,
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the core of a "partitioning game” non-empty regardless of the economic possibilities
described by the characteristic form. Hence, the results in this chapter provide a
natural geometric (graph theoretic) interpretation of their results.

In a recent paper Le Breton et. al(1992) independently provide a slightly different
proof of the results obtained in this paper. They also discuss the notion of strong
balancedness for various kinds of games including communication games.

The model is laid out in Section 3.2. It also contains a formal statement of the

main result. Proofs of formal statements appear in Section 3.3.

3.2 The Model

Let N = {1,2,...n} be a finite set of players. A coalition S is a non-empty subset of
N. As usual, let 2V denote the class of all coalitions. A communication structure (CS)
is a subset of N x N . Given a typical CS R, player iy can communicate with i,, if
there is a sequence of players 4,, 13, ...%, such that (3;-1,%) € R, forall = 1,2,... k.
The above sequence of players between 3, j = 1,2,n — 1, is said to be a path between
to and §,,. A coalition S is said to be connected if and only if there is a path between

any two of its members that is completely contained in S.

Definition 3.1 An N-player game V with non-transferable utility (NTU) in charac-
teristic function form associates with each coalition S, a set V(S) C R

V(S) is the set of all utility levels that a coalition S can guarantee its members if
it should form, regardless of the activities of 5°. However, for a coalition S to form,

as articulated in the introduction, the players in S must be able to communicate with
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each other. A connected coalition formalises the notion of communication between
players. We take as a given which pairs of players can directly communicate with
each other. Player i can transmit (receive) a certain proposal for deviation to (from)
player j only if he there is a path between i and j. Hence, if a coalitional deviation
containing i and j is to take place, the coalition must involve every player on some

path between i and j.

Definition 3.2 Given a CS R, a partition {S;} of N is said to be a stable coalition
structure if and only if there exists an z° € R" such that,

1. Each S; is connected.
2. 25, € V(51),forall k=1,2... K.

3. fy € V(S) and y; 2 2} for all i € S with a strict inequality for at least one
player, then S is not connected.

The above definition is a direct generalisation of the notion of a stable coalition
structure due to Aumann and Drese(1972), to the case where there is an associated
CS. In fact, if one sets R = N x N, thereby allowing every coalition to form, our
definition coincides with that of Aumann and Dreze. If one further requires that the
players obtain the payoffs only in the grand coalition, then stable payoffs coincide
with that of the core.

Note that the existence of a stable coalition structure is in general not an issue

when one is at a liberty to specify the communication structure. For example, if

R = {(i,5) : i € N}, then one only need to check the stability of an allocation
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against individual defections. Indeed, in this case we are preventing all communication
between agents. Consequently, no coalition would ever form. In fact, any partition ot.'
N that awards at least the individually rational payoffs corstitutes a stable coalition
structure. The main question of interest is the largest extent of communication that
one can permit and yet ensure existence. The Theorem 3.1 below provides a complete

characterization.

Definition 3.3 A connected coalition S is said to be a tree if there is a unique path

between any two of its members.

Theorem 3.1 Let V be an n-player NTU game in characteristic form such that
1. V({s})=R_
2. V(S) is closed and bounded from above,

8. Each V(S) is comprehensive, i.e. if z € V(S) and y € R'®! such that y; < 3,
foralli € S, theny € V(S).

Given a CS R, a stable coalition structure of V ezists if every connected coalition S

t# a free.

Furthermore, if the CS R is not a tree, there is an NTU game statisfying 1,2 and
3 above that does not admit a stable coalition structure.

3.3 Proof of Theorem 3.1

Several concepts from the theory of cooperative games are required to prove the above
theorem. Many of the definitions are taken straight from Border(1985).
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Definition 3.4 A family B of subsets of N is said to be balanced if for each S € 8,
there is a positive real number Ag (called a balancing weight) such that for each ¢ € N,
24\3 =1,

B(3)
where B(i) = {S€B: i€ S}

Note that in particular, any partition of N constitutes a balanced family with a
unit weight assigned to each of its elements.

The following lemma relates balancedness to connectedness.

Lemma 3.1 Let R be a CS such that every connected coalition is a tree. Then a

balanced collection of connected coalitions contains a partition of N .

PROOF: Assume without loss of generality that N is connected. Let {S;}i=? be a
balanced collection of connected coalitions such that each S; is a tree. If 5; = N, we
are done. Suppose S; # N. Since N is connected, there is a player ¢, € S; and an
i3 & S, such that (i,,i3) € R.

I now claim that there is a set, say S; such that i3 € S; but i; € S;. Suppose this
claim were false. Then i; appears in every coalition in the collection that i, appears
ezxcept in S;. Hence, the following holds:

Y As= 3 As+ s,
i1€S i2€S
where the A’s are the balancing weights. Using the above relation and balancedness,

we conclude that Ag, = 0. But this contradicts the fact that the above collection is

balanced.
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Note that S; U S; is a connected coalition. Furthermore, S; N S; is empty. For,
suppose by way of contradiction, that there is an i3 € S; N S,. Clearly, iy is distinct
from 4, and #;. Since S; is a connected coalition, there is a path between i; and i3
that does not involve i3. Furthermore, since S; is a conaected coalition, there is a
path between i; and i5 that does not involve 1,. Since i, can directly communicate
with 13, it follows that there are two paths between i, and i3, one that involves iy
and another that does not. Hence, S; U S; is not a tree. But this contradicts our
hypothesis that every connected coalition is a tree. Hence, it must be the case that
Si1NS;=¢.

If S, U S3 = N, we are done. Suppose this were not the case. we repeat the above
procedure to obtain a connected coalition Ss such that S;, S; and S5 and mutually
disjoint, and S; U S3 U Sy is connected. The proof is complete on observing that N is

finite (and hence the above process stops in finitely many steps).

Lemma 3.2 K.K.M.S (Shapley(1978)) Let {a'*:i € N} C R™ and let {I'(S): S C
N} be a family of closed subsets of R* such that for each nonempty AC N,

co {a’:i € A} C UgcaI(S).
Then there is a balanced family B of subsets of N such that
Nsesl'(S)  is nonempty and conpact.

PROOF: See Border(1985).
PROOF OF THEOREM 3.1: The proof of necessity is by means of a counter-example.

Let R be a CS such that there is a coalition S that is not a tree. Hence there is a
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sequence of players 1;,1;, .. .3 such that (3;,4;4,) € Rforall j=1,2,...k — 1. Note
that k > 3. Let k= 2]+ 1 or k = 2]. Now consider the following TU game:

1 if T C S is connected and |T| > |5]| -1
0 otherwise.

vir)={

It is easy to check that the above game does not have a stable payoff vector. Clearly

partition involving S is not stable if all the players in S receive strictly positive payoff.

A strictly smaller subset can share the same amount of surplus. If at one of the players

in S receive a zero payoff, he can ask for a surplus slightly smalle: than one of the

players receiving a positive surplus and a coalition of size |S| — 1 that is connected
dominates the status-quo.

To prove the converse, let R be a CS. Fix an ¢ > 0. Consider the correspondence

W : 2N — R™ as follows:

w(s)={ {z€ £ :7s(z) € V(S)} if 5 is connected
" | {z€R":2, < —¢, Vi€ N} otherwise

Since each V(S) is bounded from above, there is & uniform bound, say M such

that z € W(S), implies z; < M. Now, for each unit coordinate vector ¢’ of R", set

g' = —nMé'. Let K = con{g* : i = 1,2...n}, where con{X} denotes the convex hull
of the set X. Definer: K — R

r(z)=max{AeR:z+Au € UscaW(5)},

where u is the unit vector in R".

Finally, for each coalition S, define

P(S)={z€ K:z+r(z)ue W(S)}.
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Since each V(S) is closed and bounded from above, 7 is finite and continuous.
Consequently, {I'(S): S C N} is a family of closed sets. We will now show that the
above collection satisfies the hypothesis of the K.K.M.S lemma.

Suppose that z € I'(S) Ncon{g’ : i € A}. We need to show that S C A. Without

loss of generality, assume that A # N. If individual rationality is to hold,

z+7(z) 20 VieN (3.1)

z;+1(z) <M Vies$ (3.2)

Equation 3.1 holds due to individual rationality whereas equation 3.2 because
W(S) is bounded above by M .Since z € con{g* : i € A}, it follows that ;. , 2; =

—nM. Using this fact and equation 1 above,

Yiea zi + |Alr(2) 0

=> -nM+|Alr(z) =2 0

A%

= (z) > M
Using equation 3.2 above and the fact that r(z) > M it follows that z; < 0 for

all i € S. But since z; =0 for all 1 € A, it follows that S C A.
Hence we have proved that the family of sets {I'(S) : § € N} satisfies the hy-

pothesis of K.K.M.S. lemma. Hence, there is a balanced family 3, such that
Nses I'(S) is non-empty and compact.

Now by virtue of equation 3.1 and the construction of W(S), each I'(S) is empty

if S is not a connected coalition. Thus the balanced family obtained above consists of
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connected coalitions alone. By virtue of the Lemma 3.1, this balanced family contains

a partition. O




Appendix A
Proofs of Chapter 1

The set §s : S C N constitutes a basis for 82" ~1. Hence every bargaining situation
f € G, can be expressed a a unique linear combination of the elements of the above

set. That is to say

3 4(5)8s

SCN

Y u(S)s+ Y. 14(8)ss

74(5)20 74(S)<0

fr-f

Note that both f* and f~ are both made up of non-negative linear combinations
of the situations §s. I will assume that »; satisfies Axioms 1-4, although some of

them are superflous for certain lemmas.
Lemma A.3 For any two bargaining situations f and g,
1. Suppose h = h*. Then f »; g ifand onlyif f + h >; g+ h.

2 frigifandonlyif f* +9- »ig* + .
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Proof: Part 1 of the Lemma follows follows from a repeated application of Strategic

Eguivalence. The proof of Part 2 is complete by taking A = f~ + g~

Now consider the extension >; of >; from G to R,
For any fand g in B2, f >igifandonlysffr+g- »ig*+ f~.

By virtue of the fact that &5 constitutes a basis for the space 2" -1, > is indeed an

extension of »;.

Lemma A.4 The relation >; is complete and for any three vectors f,g and h in

R f >Igifandonlyiff+h>;g+h.

Proof: Completeness of > follows from completeness of »;. To prove the latter
part of the lemma, I first prove that for any two vectors f,9 € R*"-, f >F g if
and only if f — g > 0. Note that the following equation holds because both sides

represent the same vector, (f — g):
(f-a)y-(f-a) =(f"-fF)-(¢"-97)

or,
(Ff-a)r=(+g7)-(e"+f)+(f-9) (A.3)
Now consider the following sequence obtained on using equation A.3:

f-9>;0
& (f-9t»(f-9)
o fr4g7)-(gt+f)+(f-9) »i(f—9)

Adding (g*+f~) to both cides of the last relation , and using part 1 of Lemma A.1,
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(f—g)>;0
& (ff+97)+(f-9) »i(g*+Ff)+(f-9)
& (fr+97)=i(gt+1)
& f>g

Now since f and g are arbitrary vectors, we have the following sequence:
f>9 & f-g>/0
o (f+Rh)-(g+R)>;0

& (f+h)>;(g+h),

REMARK: Lemma A.2 shows that if »; satisfies Strategic Egquivalence on §,
there is an extension > to the entire space R2" ! that satisfies an analouge Part 1
of Lemma A.1. Although the relation >} is complete, it need not be transitive. The

following lemma, however isolates the property sufficient for our purposes.
Lemma A.5 Suppose ;' >; g and g >; 0. Then f > 0.

Proof: Suppose that, by way of contradiction, 0 >; f. Then using Lemma 1,
f-+g* = f*+g9*. Now, g* >; g~ by hypothesis. Hence using Lemma A.1,
Iget gt + f* »; g + f*. The previous two expressions and transitivity imply,
f~+g* »i f* + g7, or g >}. This is not compatible with the hypothesis f > g.

Hence, f >} g. O.
Lemma A.8 Suppose f > 0. Then for anya 20, af 2; 0.

Proof: I will first prove the lemma when a is an integer. Suppose f > 0. Then

f* =i f~. The proof is by induction. Suppose the lemma is true for any integer
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a < k. Then kf* >=; kf~. Now let « = k + 1. By Strategic Equivalence
fr+kft = f-+kfY
kf*+f~ =i kfT+ S

The above two equations together with transitivity yield (k+ 1)f+ >; (k+1)f".

I now claim that for any integer k, (3)f* >=; (1)f~. Suppose not. Then (})f~ »:
(3)f*. But then multiplying both sides by k, f~ »; f*, a contradiction.

Using these two facts, it is casy to see that the lemma holds when « is a ratio-
nal number. For a general a, choose a seqence of rational numbers a, such that
lim, ..oan = a. Then a,f* >; anf~. Since >; is continuous, it follows that
aft »;af", or af > 0. This proves the lemma.

Let E; denote the set of all f that are strictly better than 0, t.e.,

Ei={fe®": f>;0}
Lemma A.7T The set E; is an open and convez subset of RV,

Proof: I will first show that E; is open. Let f, be a limit point of Ef. Then there
is an infinite sequence of points f, in Ef, such that lim, ., fa = f.. For each n,
fo =i f1. So the pair (f;, fa+) is a point in the graph of >;. Since f, converges
to f., it follows that f! converges to f} and f; converges to f.,. By continuity, it
follows that (f., f}) is in the graph of >;. That is to say f7 >; f}, or f, € Ef.
Hence Ef is closed, or E; is open.

Let f,g € E;. By virtue of Lemma A 4, for any a € (0,1),

af >; 0 and (1-a)g>"0.
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Adding af to both sides of the expression on the far right and using Lemma A.2
(1 -a)g +af > af.

Now using Lemma A.3 I conclude that (1 — a)g + af € E;. Hence E; is convex.
Q.E.D.

Lemma A.8 There is a set of weights {A(1,S) : S C N}, such that forany f,g€ @,

frig &= Y M, 5)f(5)> 3 Al 5)e(S)
SCN SCN
Proof: By Lemma 5, the set E; is an open and convex subset of R*"~? that does
not contain the origin. Hence the separating hype-plane theorem applies. There is a
hyperplane that strictly separates the origin and the set E;. Let {A(i,S) : § C N}
denote this hyperplane. Hence f € E; if and only if Tgcn A(3, S)£(S) > 0.
Now consider any two Largaining situations f and g such that f »; g. By virtue
of Lemma A.2, this is true if and only if f — g >] 0,1.e. f —g € E;, ot
Y AG, S)IA(S) - 9(8)] > o,
SCN

This completes the proof. O.
Lemma A.9 Suppose that S € II_;. Then A(i,S) + A(5,5Us) = 0.

Proof: The proof is by induction on the size of the coalition. By Nullity, there is

an z # 1 such that §y\; ~; aén\;. Using the representation in the previous lemma,

23: A(E, S)om; =2 Z’:'\(i: S)bwi
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Or,
A(L, N)+ A5, N \é) =0.
Now suppose that we have proved the lemma for every coalition S € II_; of size
k, N—12> k > 2. It remains to prove for the lemma for a coalition of sise & — 1. Let
S € I, be a coalition of sise k — 1. By Nullity, it follows that there is an z # 1 such

that §s ~; 26s. Hence,

Y AG,TYs(T) =z 3 A6, T)bs.

TCN TCN
Or,

A, S)+A(,5ud)+ Y. AME,T)+A(G,Tuid)=0.
TeN_,, TOS2k

But by the induction hypothesis, second expression on the left hand side is sero.

Hence,

A3, S)+ A(5,Sui)=0.
This completes the proof. O
Corollary A.1 Forany S,T € _; andz 2 0, 265 ~; ép.

PROOF: For any bargaining situation f, the following is true:

Y AENF(S) = Y AEOS(S)+ Y AG,S)H(S)

SCN Sen; Seé,

= Y AMLS(S)- X A5, SUd)f(S) +
Sen; Sell_;
3 MG, SUDF(S)+ Y MG, 8)(S)
Sell..; Sell;

= s)e_“ﬁ_ AG, S)A(S) - f(S\9)] +
3 1A, 8) + AG, S Vi)l £(S)
Sen..;
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By virtue of Lemma A.7, it follows that the very last expression above is zero. Hence
2 AGES)(S) = X AG, S)FS) - £(S\d))
Sel; Sell;

The corollary is now an easy implication of the above expression. O
Lemma A.10 For every coalition S € II;, A(s3, S) > 0.

PROOF: We will first prove the statment when S # i. By virtue of Lemma A.7,
it is sufficient to show that A(i, SUs) > A(s, S) for each S € II;. Suppose, by way of
contradiction, that A(, §) > A(s, S Us). Now by virtue of the previous lemma,

Y AMELT)+A(5,Tui)=0
SCT.Tel_;
Hence,

AG, ) > AG, S Ui),

Or,
AG, S+ Y DGT)+A6,TUi) 2A(6,SUi)+2 ) [A(E,T)+ A6, T i)
SCT.Ten_; SCT.Tell_;
Or,
AGG, S)+A3, SUid+ Y. [AG, T)+A(, TUi) > 2X(, SUi)+2 Y- [AG, T)+A(3i, TUi)|
ScTren.; SCT.Ten_;

Or,

YMiT)22 3 AG,T)
Y Y TIsUi

But this is the same as saying,

s =i 26sui
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By virtue Corollary A.1, the above is equivalent to

Smnsui =i 2850

This, contradicts Productivity. O
We are now all set to prove Theorem 1.

PROOF OF THEOREM 1.1: It is easy to verify that 2 implies 1. Now suppose 1
holds. I will show that 2 must hold as well. Lemma A.6 and the expression obtained
in the Corol.la;ty A.l imply the following:

frig = Y Mi,S)f(S) - F(S\)] > 3 AG,5)l9(S) - 9(5\9)]
Sel; Sell;
By virtue of Lemma A .8, each of the weights in the above expression is positive.

Now we may obtain the weights statement of theorem 1 by defining p(3, ) as follows:

AG, 5)
Tsen; A(3, 5)

The set of weights p(3) = {p(i,S) : S € IL} is said to represent »;. It remains

p(i,S) =

to demonstrate the uniqueness of these weights. To do this, it is useful to introduce
some notation. Given a set of weights p(i), such the p(s, S) > 0 and Tgep, (5, 5) = 1,
define:

api)(S) = Y p(i, T)[85(T) — 85(T \ 4).
Ten,

For any S € II;, ay)(S) denotes the evaluation of the situation 85 by player § under
the weights p(i). Note that ay;)(f) = 1 and ay;)(S) > 0. Now label the sets S € II;

and fix the order. Let ay) denote the vector in R2""" whose entries correspond to
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ay)(S) and the order is as per the earlier labelling of the coalitions. Assume without
loss of generality that ay)(i) is the first coordinate.

Now for each S € II;, let §5 be the vector in 2" obtained from each s € U; by
restricting to the coalitions that contain player! i. Let M; denote the matrix? whose
rows are composed of the vectors §°(S). The k** row correponds to the k*» set S € II;
as per the earlier labelling.

Then, by construction,

M;p(i) = o).
Now let if possible g(i) be another set of positive weights that sum to one and represent
>;. It is easy to see that M; has full rank. Hence, p(i) # q(i), implies that there is
a coalition S such that ay;)(S) # ay)(S). Assume, without loss of generality, that
api)(S) > ayi)(S). Now consider the situation f* defined as follows:
1

.o p
! ;%(-')(5)“«(-')(5) :

Now, using p(3),

i - -f° s)| = g!:)-(-s—)
sg‘_p( S)E(S) = £(S\id)] e (3) > "

Or,
=i %
Now using ¢(i) instead of p(i, we obtain

&> f°,

1Por e.g. with two players A and B, (64(4),64(3) 64(.48)) =(1,0, 1) and (64(A),64(AB)) =
(1,1) ; (648(A),648(B),648(AB)) = (0 0,1) and (5431(-4)’545(4)) = (o,

3For the two player case, M4 = ( 6"‘

01
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which is a contradiction. It is now easy to see that? Qp(i) = Qqi). This concludes the

proof. O

PROOF OF THEOREM 1.2: Let i,5 € S. We will first show that ayi)(S) =

apj)(S). Assume, by way of contradiction, tiat ay;)(S) > ap;)(S). Set a =

1
Vi (S)ag)(S) Now,

Tell, ag(i)(S)
Hence abg »; §;. A similar exercise as above yields §; »; ads. This violates Symme-
try.
Hence ap()(S) < ag:)(S). Since a strict inequality yields a contradiction as the
one above, it follows that
api)(S) = ag(;)(S5)

To show that p(i, S) = p(j, S), first note that when S = N,

P(3, N) = ay;)(N) = ap;)(N) = p(4, N).

Now suppose that we have proven p(i, S) = p(j, S) for every coalition S of size k+ 1,
1< k< N —1. If we show that the equality must hold for a coaltion of size k, then
the proof is complete by induction on the size of the coalitions.

Let S be a .oalition of size k. Then by the induction hypothesis,

Y- p(i, T)As(T) — 8s(T \ i) = 3 p(4, T)[6s(T) — 85(T \ 5)
T-» Tos

3Note that we have critically used the fact that the set of weights sum up to one, or ay(;)(f) =
ag(t)=1.
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Assume by way of contradiction that p(3,S) > p(j,S). Then,

Y 2(3, T)6s(T) — &s(T \ §) > Y p(4, T)[6s(T) — 6s(T \ 4)
T2S T3S

Or, ai)(S) > ap;)(S), a contradiction. Hence, p(i,S) < p(7,5). Since a strict
inequality yields a similar contradiction, if follows that p(i, S) = p(j, S).

PROOF OF THEOREM 1.3: From Theorem 2, it is clear that for every coalition
S, there is a unique number a(S), such that i € §, a(S)és ~ §. I now claim that
Consistency implies that a(S) = |5|.

Suppose that, by way of contradiction, that a(S) > |S|. Hence,
& ~ 0(5)53 > |S|63 foralli € S,

for some a > |S|. But clearly, this implies all the players in S are pessimists. This
violates Part 2 of Consistency. Hence a(S) < |S|. Since a strict inequality leads to a
contradiction of Part 1 of the Consistency, one concludes that a(S) = |S|.

Hence |S|bés ~; §;, or

151 3 25, T)Es(T) - 6s(T \i)] = 3 (i, T)E&(T) — &(T)]

Tem; Tel

Or,
S o, 5)6s(T) = = SelL
Tel; 51

The Shapley weights solve the above system of equations. Since the solution must

be unique, it follows that:

P g ‘)1’1(!‘ -1

This completes the proof. O.




Appendix B
Proofs of Chapter 2

Lemma B.11 Let the technology be convezr. Fiz W. Suppose that for some two
coalitions S and T,

1. W(S) < £(5),
2. W(T) < £(T) and
8. W(SUT)> f(SUT).
Then, SNT £ ¢ and W(SNT) < f(5NT).
PROOF: That SN T # ¢ is clear. Furthermore, using convextity,

W(SNnT) = W(S)+W(T)-W(SuUT)
< f(S)+f(T)-W(5UT)
< f(S)+ f(SUT)-W(SuUT)

< ASnT)
Let P be the following statement defined on the class of all coalitions.

P(S). W(T) < f(T) implies W(SUT) < f(SUT).

72
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Lemma B.12 Fiz W and let the technology be convez. If there is a coalition S,
such that W(S5,) < f(S,), then there is a coalition S* such that W(S*) < f(S°) and
P(S*) holds.

PROOF: By hypothesis, W(5,) < f(S5:). If P(S:) holds, we are done. If not, there
is a coalition T; such that S; and T satisfy the hypothesis of Lemma B.11. Hence
S3 = 8, N T, is not empty and W(S3) < f(S2). f P(S3) holds set S* = S; and we
are done. Or else we repeat the above procedure. In finitely many steps, we obtain a
set S* that proves the lemma or arrive at a set S, = {ij} such that w; + w; < f(ij).
I now claim that P({ij}) must hold.

Suppose not. Then, there is a set T such that W(T) < f(T') but W(T U {ij}) >
f(T U {ij}). Clearly, this cannot be true if T does not contain both i and j. Suppose

that j € T. Then the preceeding two inequalities imply

W(TUi)-W(T) 2 [f(TUi)- f(T)
[F(TU3) - A(T)]
f(ij)

w;

v Vv

Vv

wy

which is a contradiction. Hence P({ij}) holds. This proves the lemma. O
Proof of Proposition 2.1: Suppose that the EBP is in state w at time ¢ and let
W be an element of the core. Then, by taking S = N in Assumption 2.2, we ncie

that every players’ demand is met with probability one. Hence, there is no incentive
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to lower a demand. Since raising the demand would lead to an incomptibility in
every coalition, it follows that responding with the the same demand is the unique
best-response. Hence w is a convention.

Conversly, let w denote a convention. Now, by virtue of Lemma B.12, if there is
a coalition S for which W(S) < f(S), then by Assumption 2.2, there is player who
can increase his demand by a small amount, and still obtain it with probability one.
This contradicts the fact that w is a convention. Hence, W(S) 2 f(S) for all S.

The proof is now complete if we show that W(N) = f(N). Let S(W) denote the
set of all largest coalitions in which the demands are compatible. It is clear that for
w to be a convention, for every player there is at least one coalition in which the
demands are compatible. Or else, his current expected payoff is zero and any other
demand is weakly dominates the one in the candidate convention.

Let S,T € B(W) be two distinct coalitions. Then, we have W(S) < f(S) and
W(T) < f(T) but W(SUT) > f(SU). Proceeding as in Lemma B.11, we can
conclude that this implies W(S N T) < f(S N T), which, by the arguments of the
preceeding paragraph, is not true. Now setting S = SNT in Lemma B.12, we arrive
at a contradiction. Hence, there is a single largest coalition in which the demands are

compatible. O

Lemma B.13 The number of small trembles required by others in a convention w

such that player i is the first to have a best response different from w; is at least

. Usi(w;) U(w. §)
mink G, + 28~ 0w

PROOF: Starting from a convention w, let s be the first state in which player 1
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is the first player to have a best-response different from w;. Hence, there is a sample
of size k; in which for ¢ < k, of the periods player 2 and/or player 3 have demanded
something different from w; or wy respectively. By the definition of s, it follows that
these i entries must constitute trembles on the part of players 2 and(or) 3. Of these s
entries, let ¢, of them be the ones in which both players 2 and 3 have made different
demands, i; of them in which player 2 alone has made a different demand and iy
where only player 3 has made a different demand. Of course, i = 1o + i3 + i5. The
total number of trembles however, is 2iy + 13 + 1+3.

Since we are allowing for only small trembles, the best response of player 1, w)
must be in the set {w; — 26, w; — §,w, + §,w, + 26}.

Casge 1a: w; = w; + §: Consider the following sample & of size k,, constructed
from the original sample drawn by player 1. Replace each of the i demands of player
2 with w; — § and those of player 3 with wy. This sample o has only i (and hence
fewer) trembles than the original sample. Furthermore, if w; + § was a best- response
in the original sample, it continues to be a best-response to be a best-response in the
sample 0. Since, player 1 would obtain w, + § with probability i/k, while he would

obtain w, for sure, it follows that
2 Us(ws +6) 2 Uy(wn),

or
Ul(wl)
Ux(‘llh + 5)

Case 1b: w' = w; + 25: Note that the only instances in which the demand of

i>k (B.4)

player 1 is met are those inst .nces where both players have made a mistake and
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in the same direction. So construct a sample o of size k, from the original sample
as follows. Replace each the i{; demands of player 2 and i3 demands of the player 3
among the ¢ entries with w; and ws respectively. Furthermore, replace the io demands
of players 2 and 3 with w; - §, i = 2,3. Now, note that if w, + 25 was a best response
to the original sample, it continues to be a best response to o. Hence, it must be the
case that

%Ux(w; +28) 2 Uy(w1),

or

12> k1U1(‘w1)/U1(wl + 25) (B5)

Case 23 w, = w;, —§: This case may be analyzed like we ¢-d the earlier two cases.
Ingore the trembles of player 3 and let player 2 tremble by demanding w; + § in each
of the i entries. Then, if w; — § were a best-response for player 1 in the original
sample, it continues to be a best response now. Then, player 1 gets wy — § for sure

in this sample, but obtains w; only k; — i of the times. Hence,

Ui(w: - 6) 2 (1 - 'kil)Ux(wt),

or
. U}(W; 5)

2 ki1 - B.6

P2kl - = T (B-6)

Case 2b: w, = w; — 2§: Following in a simlar vein for this case, we get

. U;(w; 26)

>kl - B.7

2k Ur(wy) ~ UGy (B7)

Note that the RHS of equation B.5 i: less than the RHS of equation B.4. Similarly,

the RHS of equation B.6 is less than the RHS of equztion B.7. Since we can carry out
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this construction for every player, the bound stated in the statement of the lemma

holds. O.

Le na B.14 Let w be a convention. There is a level of precision §* > 0 such that

for a level of precision § < §°,
kiUs(ws)/Ui(w; + 26) 2 min_k;[1 - Uj(w; — 8)/Uj(w;)]

PROOF: The following two inequalitities are a straightforward implication of con-

cavity of the utility functions and the fact that U;(0) = 0.

aiUi(ws)/[Uwi + 26) 2> oqwif(wi + 6)

a;fl — Uw; - 8)/Ui(w;)] < aib/w;

Assume, with~ut loss of generality that k;, > k; > k3. Recall that the minimum
that can be demanded is §. Then, the RHS of the first inequality above, is bounded
below by k;/3. Suppose that, in this convention, ws > 35. Then, the RHS of the
second inequality is bounded above by k;/3. It is obvious that in this case, the
assertion of the lemma holds for every § > 0.

Now consider the case when wy < 2§. Then w; = max{w,, w3} > f(123) - 24.

Now, choose §° so that for all § < §* the following inequality holds:

k126/{f(123) — 28] < ks/3.

For this §°, it may be verified that the assertion of the lemma holds. O
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COROLLARY: In a convention w, if § € §*, the number of trembles that are
required before some player has a best-response cannot fall below [mrs(w)], where m

is admissible and

re(w) = mip, oill - U‘l(f?w_.-)s)]'

The proof of the above corollary is immediate.

Definition B.5 Resistance: Let 8’ be a successor of 8. The resistance between these
two states, denoted by r(s,s’) is the minimum number of small trembles required in
the one period transition 8 —» s'. If 8’ can be obtained from a small mistake, then
r(s,s’) takes the value 0,1,2 or 3. Otherwise, r(s,s’) is co. Similarly, for any two
states s! and s?, r(s!,s?) is the minimum number of small trembles required to reach

s? from 8! through a sequence of one period transitions involving small trembles.

Now, let e;; denote the vector in R} such that the ith component is §, the jth
component is —§ and the kth component is zero. For a convention w, if w + ¢;;
is in the core, w+e;; is the convention in which player i demands a § less and j
demands a § more than their respective demands in w. The following lemma shows
that conventions such as those can be reached with the minimum number of small
trembles. This is one place where the upper bound of 1/4 rather than 1/3 is of the

players information parameters.

Lemma B.15 Let w and w' be any two conventions such that w' = w+ e;; for some

i#j. I §< 6 then

Ui(wi - 5)]
Ui(w:)

r(w’wl) = k;ll -
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PROOF: Suppose that the process is in the convention w at time ¢. Between
date ¢t + 1 and date ¢ + k;, there is a positive probability that player j demands a §
more than his conventional demand, w; exactly j* times while the other two players
continue to demand w_;. This is a best response for them because they can sample
the earlier records where player j has not made trembles.

At time ¢ + k;, the players have a memory in which at least 3k of the records
consist of conventional demands and k; demands some of which involve trembles on
part of player j. There is a positive probability the between period t + k; and period
t + k; + kj, player i samples these k; most recent records while player j and k sample
only records consisting of the conventional demands only. So between t + k; + kj,
there is positive probability the player i will respond with w; — § while players j and
k continue with their conventional demands.

But between t + k; + k; + 1 and ¢t + k; + k; + k, there is a positive probability
that player ¢ will continue to sample the records consisting of trembles due to player
j, while player j now samples the most recent records consisting of player i lower
demand. Conditional on the above event, there is a positive probability that player
k will continue to play the conventional demands alone, at least 2k of which are left
at ¢ + k; + k;. This leads to a run of k demands of the form w + e;;.

Now, there is a positive probability the players will sample the k most demands
and the convention w4 ¢;; will soon be established.

All this is conditional on the fact that the j* trembles in the initial k; imply the

the best response for player i is in fact w; — §. But the point of indifference is given
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by
3"k = [1 = Uy(w; — 6)/Us(w;))

as was derived in Lemma B.13, equation B.6.

Similarly, if one were to reach the convention w--e;; with player ¢+ making the
mistake of asking for a § less to start with, then the number of trembles is given by
considering equation B.4. The lemma follows by virtue of.

Now, it can be shown in the spirit of Lemma B.13 that any other path must in-
volve at least as many trembles as this path. The proof is complete by resorting to

Lemma B.14. O

Corollary B.2 Suppose that w! and w? are two conventions. Then, r(w',w?) is

finite, i.e., with smal’ trembles it is possible to reach one convention from another.

PROOF: Siraightforward verification shows that if w; > 26 can be met in the

core, then the demand w; — § can also be met.

Definition B.6 w-tree: A w-tree is a graph with the set of conventions as vertices
such that from every vertex w' #w there is a unique path directed to w, and there

are no cycle. Let 7, denote the set of all w-trees.

Definition B.7 Stochastic Potential: The stochastic potential of a convention w is

the least resistance among all w-trees:
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The following theorem is proved in Young(1993a).

THEOREM A: The sequence of stationary distributions u* converges to a stationary
distribution p® of P® as ¢ — 0. Moreover a state s is stochastically stable if and only
if s=w is a convention and y(w) has the minimum stochastic potential among all

conventions.

We now use this theorem and the information gathered about the number of
trembles required to go from one convention to another to prove Theorem 3.

For each convention w, let Rs(w) denote the player who requires the minimum
number of trembles before he demands & less than in the convention w as a best-

response. That is,

Re(w) = arg min {mll - —Uﬁ"’—‘:’l} .

=1,2,3 U.-(w‘-)

Lemma B.16 Suppose w* mazimizes rs. Then if in a convention w , w; < w},

then Rs(w ) #i.

PROOF: Suppose not. Then

r(w) = m[l-ﬂ%ﬂ
s ot - =0
2 r;(w‘ )

This contradicts tue fact that w* maximizes r5. O
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Lemma B.17 Suppose w* mazimizes r; and Rs(w" ) =i. Then, if w is another

mazimum of ry, then w; < w; and w; < wj + 26, j #i.

PROOF: Assume without loss of generality that Rs(w) = 1. If w§ < w,, since
Rs(w ) = 1, we contradict Lemma B.16.

Observe that at W (2) = (w; — §, wj + 26, w3 — §) Re(w(2) ) =2 and at W(3) =
(w; -8, w; — 6, w3 +25), Rg(w(3)) = 3 to conclude as above the other two inequalities.
a
PROOF OF THEOREM 2.3:

We first prove 1. Let M be the set of maximizers of rs. If Ry(w ) = i for all w
€ M, then player s makes the same demand in each of those conventions. Hence, by
virtue of Lemma B.17, there are at most five conventions.

Suppose that for some two conventions w! and w? € M, Rg(w) = 1 and
R4(w? ) = 2. From Lemma B.16 and Lemma B.17, it follows that w} < w} < w} +26.
Hence there are three cases to analyze.

Suppose that w] = w}. Since ws < w} + 26 and vy, < w} in every convention,
there are at most six conventions.

Let W(2) = (w} - §,w} + 26,w} — §). Note that Rs(w(2) ) = 2. Hence if
w] = w} + 26, it must be because Rs(w(3) ) = 3 where W(3) = (w} — 6, w} + §, w}).
Hence, again from Lemma B.16 it follows that ws > w} in any convention that

maximizes rs. Hence, there are again at most six conventions. The final case may be
analyzed similarly.

The bound is obtained on the distance is clear from the above arguments.
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Now let w* be a maximum of r;. To prove 2 we need to exhibit a w* that
has the lowest stochastic potential among all w -trees. Let A; denote the set of all
conventions in which player i demands at least a § less than in the convention w*.
By Lemma B.16, if W € A;, then Rg(w) #i.

Fix a demand w, on the part of player k. Let w (w,.) be such that

Uz - 8)
Ui(=)

ifand only if z > wf, i < j.

Uz —8)) < oyt - U;(f(123)—w:.—z-6)]

@l ~ Uj(f(l23) -wy —z)

Then, w{(ws) is largest demand of player § for which the number of trembles
required for him to demand § less as a best response is lower than the number of
trembles required before player j has a best response that involves a demand of § less

than in W. That is, given in W and & < j,

Ui(w; — 6) U(£(123) — wp — w; - i if w2 wi(w)

' { - 11 - 2 -
arg min § a; Udw;) ) &j U/ f(123) —wy —w;) | | j otherwise

Now construct the w*-tree & of minimum reisistance as follows:

(3). Let W € A;N A;, 4 < j. In this region Rs(w) = k.
1. Suppose that w; < w; — §. Then

W — W+ €.

2. If w; = w} -- §, then
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The resistance of each edge is [m(rs(w)]. Note well that this is the mirimum
number of trembles required to reach one convention to any other state and not just
the convention that it is directed towards.

By construction, there is now a unique path from every convention in this region
to w"+ey.

(51). Let W € A. N (A; U 4;), i < j. In this region Rs(w) is either i or j.

1. If w; > wy(wy), then Rg(w) = i. In this case,

w-——.w+e.-,-

2. If w; > w§(wn), then Rs(w) = j. For these conventions,

W — W + €.

3. If w; = wy, then

W — W + €k

The above construction yields a unique path that ends in either w”+e,; or w*+e¢,,;.
($i3). For each of the six conventions of the form w*+e¢;; for some i, j, place a unique
outgoing edge directed towards w".

Now, by construction, there is a unique edge directed away from each convention
except w*. Moreover, the construction yields a unique path from every convention
to w*. The resistance between any two edges is given by the function rs, which is a
lower bound on the resistance along any edge. Hence stochastic potential of this tree
is

7(9) = ;u(w )-
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Now, consider any other w-tree. Let e denote the edge directed away from w* and
r its resistance. By virtue of the corollary to Lemma B.13, » > [mrs(w")]. But on
the other hand, in the construction of the graph <, the resistance of the edge directed
away from the convention w it m[rs(w)]. Since, r; is maximized at w*, it follows that
the resistance of this w-tree must exceed that of the tree S by at least r — m[rs(w)).

For large enough m, the above difference will be positive if w* is the unique
maximum. In that case $ will have the least stochastic potential and by virtue of
Theorem A, the unique stochastically stable convention for all admissible m. If there
are several conventions, that maximize r;, each of them will be a stochastically stable

convention for large enough m. This proves 2.
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