
Dynamic set reasoning:

Specifying and optimizing monitor encodings

by

Christopher George Johannsen

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Kristin Y. Rozier, Major Professor

Phillip H. Jones
Tichakorn Wongpiromsarn

The student author, whose presentation of the scholarship herein was approved by the program of
study committee, is solely responsible for the content of this thesis. The Graduate College will

ensure this thesis is globally accessible and will not permit alterations after a degree is conferred.

Iowa State University

Ames, Iowa

2024

Copyright © Christopher George Johannsen, 2024. All rights reserved.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . iv

LIST OF FIGURES . v

ABSTRACT . vi

CHAPTER 1. INTRODUCTION . 1

CHAPTER 2. PRELIMINARIES . 5
2.1 Mission-time Linear Temporal Logic (MLTL) . 5
2.2 MLTL Monitoring . 7
2.3 Tree-based MLTL Monitoring Encoding . 8
2.4 Equality Saturation . 10

CHAPTER 3. FIRST-ORDER MLTL MONITORING . 11
3.1 First-order MLTL . 11
3.2 FO-MLTL Over Bounded Dynamic Sets . 14
3.3 FO-MLTL Monitoring . 17

3.3.1 Auxiliary Valuation Functions . 17
3.3.2 FO-MLTL Monitoring Algorithms . 18
3.3.3 FO-MLTL Monitor Space Bounds . 22

CHAPTER 4. MLTL MONITOR ENCODING OPTIMIZATIONS 23
4.1 MLTL Rewrite Rules . 23
4.2 Inapplicable LTL Equivalences . 27
4.3 Memory Effects of Rewrites on MLTL Monitor Encodings 28
4.4 Topological Optimization . 31

4.4.1 Heuristic-based Topological Optimization Algorithm 31
4.4.2 Single Expression Topology Analysis . 32

4.5 Optimizing MLTL Monitor Encodings via Equality Saturation 35
4.5.1 MLTL Equality Saturation Example . 35
4.5.2 MLTL Equality Saturation with egglog . 37
4.5.3 Optimal Encoding Extraction . 37

4.6 Experimental Evaluation . 40

CHAPTER 5. CONFIGURATION COMPILER FOR PROPERTY ORGANIZATION . . . 44
5.1 Input Language . 44
5.2 Passes . 47

iii

5.3 Serialization . 47
5.4 Assembly . 49

CHAPTER 6. CONCLUSION . 51

BIBLIOGRAPHY . 53

APPENDIX. MLTL REWRITE RULE PROOFS . 58

iv

LIST OF TABLES

Page

Table 4.1 MLTL Rewrite Rules . 24

Table 4.2 Worst-case Propagation Delay Assignments for Topological Optimization . . 33

Table 4.3 MLTL EqSat Experimental Data 1 . 41

Table 4.4 MLTL EqSat Experimental Data 2 . 41

Table 5.1 C2PO Compilation Passes . 48

v

LIST OF FIGURES

Page

Figure 2.1 Sample MLTL AST . 9

Figure 4.1 Topological Optimization Progression . 31

Figure 4.2 Topological Optimization Example Structure 32

Figure 4.3 Topological Optimization Analysis . 34

Figure 4.4 egglog Encoding of MLTL Rewrites . 38

Figure 4.5 Example egglog Representation . 38

Figure 4.6 MLTL EqSat Workflow with C2PO . 39

Figure 4.7 MLTL EqSat Experimental Data . 42

Figure 5.1 C2PO System Diagram . 44

Figure 5.2 Example C2PO Input File . 45

Figure 5.3 C2PO Supported Operators . 46

Figure 5.4 R2U2 Assembly . 49

vi

ABSTRACT

Specifying and monitoring temporal properties over sets on real-time embedded systems

requires a logic that offers sufficient expressiveness and acceptable worst-case performance. If a

system designer chooses to use a non-first-order logic, they sacrifice expressiveness; if they choose

a first-order logic, they sacrifice performance. To mitigate this tradeoff, we present a first-order

variant of Mission-time Linear Temporal Logic (MLTL) that can specify a wide range of behaviors

and offers efficient monitoring of those behaviors. We also present a set of MLTL rewrite rules and

use equality saturation to optimize MLTL monitor encodings automatically. After applying

equality saturation to a set of human-authored MLTL formulas, our experimental evaluation

found a ∼ 35% average monitor size reduction.

1

CHAPTER 1. INTRODUCTION

Safety-critical cyber-physical systems (CPSs) such as air- and space-craft have grown

increasingly complex, integrating many sensors and sub-systems into their designs. Although

system designers can rigorously test or verify their systems using industrial-proven techniques

such as model checking Clarke (1997); Baier and Katoen (2008); Jhala and Majumdar (2009);

Gario et al. (2016); Bozzano et al. (2015), static analysis Gurfinkel et al. (2015); Brat et al.

(2014), and theorem proving Davis et al. (1962), faults inevitably occur at runtime due to

environmental factors, e.g., radiation causing a sensor failure in a satellite. If a fault occurs, a

safety-critical CPS would ideally detect, diagnose, and mitigate the fault automatically.

One approach to fault detection is to deploy a monitor based on the system’s English-level

requirements that computes whether each requirement is satisfied or violated during runtime.

Ad-hoc monitors, such as those written directly in C/C++, are error-prone: they are challenging

to validate against the reference requirements, and adding new specifications to monitor is

non-trivial. Contrastingly, runtime verification (RV) is a generalizable technique that considers

whether a given system trace satisfies a formal specification. Designers need only translate their

English requirements into some formalism and have a tool automatically generate monitors from

the formalized representation.

In selecting an RV tool to use in the context of safety-critical CPSs, practitioners have the

following constraints to consider:

Realizability The monitor must use bounded memory and computational resources. It must

also be able to adapt to new specifications without re-compilation to allow different

monitoring configurations for the evolving stages of a mission. The RV tool must also offer a

sufficiently expressive and intuitive specification language for formalizing the English-level

requirements.

2

Responsiveness The monitor must run continuously on the system and provide results (i.e.,

violations) as soon as they are available.

Unobtrusiveness The monitor must not impact the certifiability of the overall system. Flight

certification is a lengthy, rigorous process for increasing confidence of software and

hardware, so a monitor must not require instrumentation that involves editing an already

certified sub-system.

As such, the Realizable Response Unobtrusiveness Unit (R2U2) Johannsen et al. (2023a) is

an RV tool that satisfies each of these constraints and has been proven to detect faults on

embedded, resource-constrained CPSs Kempa et al. (2020); Cauwels et al. (2020); Hertz et al.

(2021); Aurandt et al. (2022).

Despite R2U2 being a great candidate for monitoring CPSs, system designers still face

challenges in the formalization process. R2U2 uses Mission-time Linear Temporal Logic

(MLTL) Reinbacher et al. (2014) as its formalism. This logic admits properties expressed using

interval-bounded temporal operators. However, MLTL does not have first-order capabilities and

thus cannot effectively capture many requirements, such as:

• Each task in the scheduler shall execute within the next 3 seconds.

• Some request in the queue shall be granted or rejected within 10 seconds.

• Every active process shall make progress within 25 clock cycles.

A first-order extension to MLTL would allow the expression of such commonly seen requirement

patterns. Many challenges are associated with monitoring a first-order temporal logic, including

quantification over unbounded domains and efficiently storing intermediate results of

sub-formulas.

Barringer et al. (2012) presents a solution via a formalism for describing parametric

specifications called Quantified Event Automata (QEA), where events carry data. An event has a

name, such as start, and can be applied to parameters, such as start(x) or start(5). QEA

3

describe the runs of such events. While sufficiently expressive and efficient for our needs, QEA do

not provide a sufficiently intuitive specification language for system designers.

The authors of Bauer et al. (2015) introduce a logic named LTLFO, which they show is

undecidable. The paper outlines a sound but incomplete procedure for monitoring such formulas

using a specialized automata structure. The incompleteness and lack of time bounds on its

operators make it unfit for our target systems.

Havelund et al. (2020) offers a solution using Quantified Temporal Logic (QTL), a first-order

past-time temporal logic. In that work, the authors use binary decision diagrams Bryant (1992)

to represent predicates over time efficiently. Owing to QTL’s lack of future-tense and

interval-bounded temporal operators, the presented technique does not offer a sufficient

specification language for our needs.

The most immediately applicable approach to monitoring first-order temporal properties

within our constraints is given in Baier and Katoen (2008); Basin et al. (2015), which defines

Metric First Order Temporal Logic (MFOTL) and targets monitoring of large-scale databases.

This logic is similar to MLTL, where the provided monitoring algorithms compute an intermediate

relation for each temporal operator based on the techniques defined in Chomicki (1995). However,

this technique relies on access to efficient relational algebra operations, often implemented in

database management systems (DBMS) such as SQLite Hipp (2020). Further, their technique

requires some syntactic restrictions due to the challenge of representing complements, i.e., the

complement of a finite relation is infinite and cannot be directly represented using a finite relation.

Our solution addresses these issues by noting that many first-order specifications quantify

over bounded sets, e.g., a set of tasks in a scheduler, open files, or requests in a queue. Using this

knowledge, we can separate monitoring from the predicate evaluation, i.e., we leverage existing

MLTL monitoring techniques to evaluate multiple versions of a specification over time. This way,

we provide a future-tense, interval-bounded temporal logic as a specification language that we

monitor efficiently using R2U2.

4

Aside from efficient encodings of temporal logic monitors, little work exists on the automatic

optimization of tree-based monitors. Automata-based monitors may benefit from techniques used

by SPOT Duret-Lutz et al. (2022), but techniques using a syntax tree-based encoding (such as

R2U2 Kempa et al. (2020)) have no such literature. To the best of our knowledge, Kempa et al.

(2020) is the only work that addresses this problem, using common sub-expression elimination

(CSE), a common technique used in compiler optimization Cooper et al. (2008). CSE enables

sub-expressions to share the result of syntactically identical sub-expressions, reusing results that

do not need to be recomputed.

This work is organized as follows: Chapter 2 defines preliminaries, Chapter 3 presents a

first-order extension to MLTL and algorithms for monitoring formulas in this new logic, Chapter 4

defines a set of rewrite rules for MLTL formulas and both correctness and memory-reduction

proofs, as well as an automated technique for optimizing such monitors via equality

saturation Tate et al. (2009), Chapter 5 presents the Configuration Compiler for Property

Organization (C2PO), a tool for both encoding and optimizing MLTL monitors and Chapter 6

provides a discussion of this work’s impact and future research directions.

5

CHAPTER 2. PRELIMINARIES

This chapter presents previous work and the notation we will use when referencing that work

throughout. We start by defining the logic that R2U2 uses: MLTL.

2.1 Mission-time Linear Temporal Logic (MLTL)

First, let I = [l, u] be an (inclusive) interval where l, u ∈ N0 and l ≤ u.

Definition 1 (MLTL Syntax). The syntax of an MLTL formula φ over a set of atomic

propositions AP is recursively defined as:

φ ::= true | false | p | ¬φ | φ ∧ φ | φ ∨ φ | ♢Iφ | □Iφ | φ UI φ | φ RI φ

where p ∈ AP and I = [l, u].

We evaluate MLTL formulas over finite traces. A trace π is a (finite) sequence of states, where

each state defines a set of atomic propositions that are true in that state. A state at timestamp

τ ∈ N0 is given by π[τ] ⊆ AP such that |π| is the length of π where |π| < +∞ and πτ is the suffix

of π starting at and including τ .

Definition 2 (MLTL Semantics). The satisfaction of an MLTL formula by a trace π is defined

recursively as:

π |= p iff p ∈ π[0].

π |= ¬φ iff π ⊭ φ.

π |= φ ∧ ψ iff π |= φ and π |= ψ.

π |= φ ∨ ψ iff π |= φ or π |= ψ.

π |= ♢[l,u]φ iff |π| > l and ∃i ∈ [l, u] such that πi |= φ.

6

π |= □[l,u]φ iff |π| ≤ l or for all i ∈ [l, u], πi |= φ.

π |= φ U[l,u] ψ iff |π| > l and ∃i ∈ [l, u] such that πi |= ψ and ∀j ∈ [l, i− 1] it holds that πj |= φ.

π |= φ R[l,u] ψ iff |π| ≤ l or ∀i ∈ [l, u] it holds that πi |= ψ or ∃j ∈ [l, u] such that πj |= φ and

∀k ∈ [l, j] it holds that πk |= ψ.

We say two MLTL formulas φ,ψ are semantically equivalent (denoted as φ ≡ ψ) if and only if

π |= φ⇔ π |= ψ for all traces π over AP. MLTL keeps the standard operator equivalences from

LTL, including ♢Iφ = (true UI φ), □Iφ = (false RI φ). To complete the MLTL semantics, we

define false = ¬true, φ ∨ ψ = ¬(¬φ ∧ ¬ψ), ¬(φ UI ψ) ≡ (¬φ RI ¬ψ) and ¬♢Iφ = □I¬φ.

Notably, the duals for each temporal operator have different end-of-trace interpretations. For

example, consider a single-state trace π where |π| = 1 and the formulas ♢[1,1]p and □[1,1]p that

index a state off the end of the trace (i.e., π[1]). Interpreting the π over each formula we have

that π ⊭ ♢[1,1]p since |π| ≯ 1 but π |= □[1,1]p since |π| ≤ 1.

The notion of when a trace provides sufficient information to evaluate a formula is formalized

in Kempa et al. (2020) as propagation delay.

Definition 3 (Propagation Delay). The propagation delay of an MLTL formula φ is the

difference between the time τ for which φ is evaluated and when it is possible to know if the trace

starting at τ satisfies φ. A formula’s worst-case propagation delay (wpd(φ)) is its maximum

propagation delay, and the minimum value is its best-case propagation delay (bpd(φ)).

Definition 4 (Propagation Delay Semantics). Let φ,ψ, ψ1, ψ2 be MLTL formulas where bpd(φ)

and wpd(φ) are the best- and worst-case propagation delays of formula φ respectively:

if φ = p ∈ AP :


wpd(φ) = 0

bpd(φ) = 0

if φ = ¬ψ :


wpd(φ) = wpd(ψ)

bpd(φ) = bpd(ψ)

if φ = ψ1 ∧ ψ2 or φ = ψ1 ∨ ψ2


wpd(φ) = max(wpd(ψ1), wpd(ψ2))

bpd(φ) = min(bpd(ψ1), bpd(ψ2))

7

if φ = ♢[l,u]ψ or φ = □[l,u]ψ


wpd(φ) = wpd(ψ) + u

bpd(φ) = bpd(ψ) + l

if φ = ψ1 U[l,u] ψ2 or φ = ψ1 R[l,u] ψ2


wpd(φ) = max(wpd(ψ1), wpd(ψ2)) + u

bpd(φ) = min(bpd(ψ1), bpd(ψ2)) + l

2.2 MLTL Monitoring

MLTL monitoring is the problem of computing the value of πτ |= φ for each τ ∈ [0, |π| − 1]

where π is interpreted as a stream of data i.e., we compute π |= φ if π has sufficient information,

otherwise we wait for an extension to π that offers sufficient information. To compactly reason

about streams of results, we define a sequence of true/false verdicts and their respective

timestamps, which we can then use to define the behavior of an MLTL Monitor.

Definition 5 (Execution Sequence). An execution sequence ⟨Tφ⟩ is a sequence of verdict,

timestamp pairs Tφ = (b, τ) such that b ∈ {true, false} and τ ∈ N0. We access a pair’s values via

Tφ.b and Tφ.τ and the element at index i via ⟨Tφ⟩[i]. The timestamps in ⟨Tφ⟩ are monotonically

increasing i.e., for each i, j ∈ N0 where i < j, it holds that ⟨Tφ⟩[i].τ < ⟨Tφ⟩[j].τ .

An execution sequence ⟨Tφ⟩ has length |⟨Tφ⟩| and represents a sequence of truth values for an

MLTL formula φ with a length proportional to the last element’s timestamp. We can also query

an execution sequence for the verdict at a specific timestamp τ by finding the minimal timestamp

in ⟨Tφ⟩ that is greater than τ , returning ⊥ if no such value exists:

⟨Tφ⟩.find(τ) =


⊥ if ∀ Tφ ∈ ⟨Tφ⟩ : Tφ.τ < τ

Tφ.b otherwise, where Tφ = min{T | T ∈ ⟨Tφ⟩ ∧ T.τ ≥ τ}

Definition 6 (MLTL Monitor). Given an MLTL formula φ and trace π, an MLTL Monitor is an

algorithm that computes an execution sequence ⟨Tφ⟩ for φ over π such that if there is sufficient

information in π to evaluate πτ |= φ, then

∀τ : ⟨Tφ⟩.find(τ) = (πτ |= φ).

8

A naive implementation of an MLTL Monitor could evaluate πτ |= φ over every τ . An efficient

MLTL Monitor maintains its state for every suffix of π. See Reinbacher et al. (2014) and Kempa

et al. (2020) for presentations of efficient MLTL monitors. Reinbacher et al. (2014) defined both

synchronous and asynchronous MLTL monitors. Kempa et al. (2020) provided updated

asynchronous monitors, and since we build off of this work specifically, we also focus on

asynchronous monitors.

2.3 Tree-based MLTL Monitoring Encoding

We focus on encodings of MLTL monitors that use an Abstract Syntax Tree-based (AST)

representation. Each node in the AST of an MLTL formula φ computes and stores an execution

sequence ⟨Tφ⟩ in a Shared Connection Queue (SCQ) Kempa et al. (2020) for the corresponding

sub-formula with respect to an input trace. The following description is adapted from Kempa

et al. (2020).

SCQs have both read and write operations. The read operation for an SCQ Q takes as input

a timestamp τ and outputs true if a verdict for timestamp τ exists in Q and is true; otherwise, it

outputs false. The write operation takes as input a timestamp τ and Boolean b and returns an

updated SCQ such that

(Q.write(τ, b)).read(τ) = b.

For a complete description of SCQs and their operations, see Algorithms 1 and 2 of Kempa et al.

(2020).

To compute the required SCQ size for tree-based MLTL monitoring, consider an AST node g

and its set of sibling nodes Sg (not including g). A sibling of g is any node that shares a parent

with g. The minimum required number of verdict/timestamp pairs for g is

memnode(g) = max(max{s.wpd | s ∈ Sg} − g.bpd, 0) + 1. (2.1)

9

∧

□[2,3] ♢[4,9]

p q

Figure 2.1 AST for the MLTL formula (□[2,3]p) ∧ (♢[4,9]q) where p, q ∈ AP.

We can recursively compute the memory requirements of an AST rooted at g, where Cg is the set

of child nodes of g, as follows:

memAST (g) = memnode(g) +
∑
{memAST (c) | c ∈ Cg}. (2.2)

Formula 2.1 accounts for the worst-case input with respect to evaluating the parent of g.

Consider a trace π, time 0 ≤ i < |π|, and a node g such that g’s value is known at index i+ g.bpd

but the value of a sibling node smax is known at index i+ smax.wpd where

smax.wpd = max{s.wpd | s ∈ Sg}.

In order to evaluate g’s parent at i, we must know the evaluations of both g and smax at i and

therefore buffer the values of g from indices i+ g.bpd to i+ smax.wpd. If smax.wpd− g.bpd < 0 we

do not need to buffer values for g, otherwise g requires a buffer of size

(i+ smax.wpd)− (i+ g.bpd) = smax.wpd− g.bpd.

As an example, consider the AST in Figure 2.1. We see memnode(∧) = 1 since the ∧ node has

no siblings. Now, for each temporal node, we have

memnode(□[2,3]) = max(max{♢[4,9].wpd} −□[2,3].bpd, 0) + 1 = 8,

memnode(♢[4,9]) = max(max{□[2,3].wpd} − ♢[4,9].bpd, 0) + 1 = 1.

Finally, each memnode(p) = memnode(q) = 1. Putting this all together:

memAST (∧) = memnode(∧) +memnode(□[2,3]) +memnode(♢[4,9])+

memnode(p) +memnode(q) = 12.

10

2.4 Equality Saturation

Term rewriting is an optimization technique standard in many programs, including

compilers Joshi et al. (2002) and SMT solvers De Moura and Bjørner (2007). One problem with

traditional term rewriting is that the original term is lost once rewritten, causing the optimized

output to be order-sensitive to the rewrites applied. One technique to mitigate this is equality

saturation Tate et al. (2009) (EqSat), which uses a data structure called an e-graph Nelson (1980)

to represent the set of all terms seen throughout rewriting compactly, grouping equivalent terms.

The main idea is to apply rewrites to the terms in the e-graph until a fixed point is reached. The

resulting e-graph is deemed saturated, representing all derivable terms from the original term

using the rewrites provided.

Recently, the authors of Willsey et al. (2021) improved the performance of traditional EqSat

techniques by loosening the invariant requirements to be maintained after a certain number of

operations, thereby amortizing the cost of maintaining the invariants. Zhang et al. (2023) use

techniques from the database field to address the challenge of expression matching (i.e., finding

which rules can be applied to which e-nodes).

Formally, an e-graph E is a set of e-classes, where each e-class C maintains a set of e-nodes.

An e-node f(c1, . . . , cn) is a function symbol applied to a list of children e-classes. An e-class c

represents a term t if any e-node in c represents t and an e-node f(c1, . . . , cn) represents

t = f(t1, . . . , tn) if ci represents ti for each i ∈ [1, n]. Importantly, we say that any two terms in

the same e-class are equivalent.

Once an e-graph is saturated, we must extract an optimal term from the e-graph. Extraction

amounts to computing a cost for each e-node, denoting the minimum-cost e-node in an e-class as

the representative of that e-class, then constructing a term starting from the e-class that represents

the target expression using the representative from each e-class. For a detailed formalization of

e-graphs, equality saturation, and extraction, see Willsey et al. (2021) and Zhang et al. (2023).

11

CHAPTER 3. FIRST-ORDER MLTL MONITORING

To fill the need by RV practitioners for a first-order variant of MLTL, we introduce First Order

MLTL (FO-MLTL) and show how the resulting logic is insufficient for this purpose. We then define

a bounded variant of FO-MLTL that allows us to leverage existing MLTL monitoring algorithms.

3.1 First-order MLTL

Let S = (C,P) be a signature where C is a finite set of constant symbols, P is a finite set of

predicates such that C ∩ P = ∅, and ar : P ⇒ N0 is a function denoting the arity of the predicate

symbols in P . Then, let V be a countably infinite set of variable symbols such that

V ∩ (C ∪ P) = ∅.

Definition 7 (FO-MLTL Syntax). A FO-MLTL formula Φ over a signature S = (C,P) and set of

variable symbols V is defined as:

Φ ::= p(t1, . . . , tar(p)) | ¬Φ | Φ ∧ Φ | Φ UI Φ | ∀x : Φ

where t1, . . . , tar(p) ∈ V ∪ C, x ∈ V , p ∈ P , and I = [l, u].

Example 1. Consider a requirement that states that at least one task in the scheduler (Sched)

must execute at least once between 0 and 10 time steps from now. We can express this in

FO-MLTL using V = {t}, P = {Sched,Exec}, C = {}:

∀t : Sched(t)→ ♢[0,3]Exec(t)

where Sched is a predicate used to denote set membership in the queue, and Exec is a predicate

that denotes whether its argument is executing in the current timestamp.

A finite sequence of (first-order) structures ⟨M⟩ is called a first-order trace. We denote

|⟨M⟩| <∞ as the length of the sequence, dom(⟨M⟩) as its (fixed) domain, ⟨M⟩[τ] as the

12

first-order structure at index τ ∈ N0, and ⟨M⟩τ be the suffix of ⟨M⟩ starting at and including τ .

A first-order structureM has a (potentially empty or infinite) set for each predicate symbol

p ∈ P :

pM ⊆ dom(M)ar(p)

such that (o1, . . . , oar(p)) ∈ pM denotes that p(o1, . . . , oar(p)) is true with respect toM for

o1, . . . , oar(p) ∈ dom(M). Note that |pM| is the number of tuples that satisfy p forM. We abuse

notation and use p[τ] to denote p⟨M⟩[τ], i.e., the set of tuples in dom(M)ar(p) that satisfy p at τ .

Example 2. Consider the formula in Example 1 with the domain N0, where a task is identified

by a task ID (N0). An example first-order trace of length 4 might be:

τ = 0 τ = 1 τ = 2 τ = 3

Sched {1,2} {1,2} {1,2} {1}

Exec {} {} {2} {1}

This trace describes two tasks in the queue with IDs 1 and 2, where task 2 executes at time step

2, then leaves the queue and task 1 executes at time step 3. To illustrate our notation, this trace

defines Sched⟨M⟩[0] = {1, 2} so that the predicates Sched(1) and Sched(2) are true at τ = 0 and

Exec⟨M⟩[2] = {2} so that the predicate Exec(2) is true at τ = 2.

Example 3. Consider the English requirement: “At all times, each task in the scheduler shall

have started after the task with ID 1” and the corresponding FO-MLTL formula

∀t : Sched(t)→ StartedAfter(t, 1)

with same domain as in Example 2. The predicate StartedAfter has an arity of 2 and is true if

the first argument started after the second. An example first-order trace of length 3 might be:

τ = 0 τ = 1 τ = 2

Sched {2,3} {2,3} {3}

StartedAfter {(3,1),(2,1),(3,2)} {(3,1),(2,1),(3,2)} {(3,1)}

13

In this trace, both tasks 2 and 3 are in scheduler and started after task 1, where task 3 started

after task 2 as well. At τ = 0, this trace defines StartedAfter⟨M⟩[0] = {(3, 1), (2, 1), (3, 2)} so that

the predicates StartedAfter(3, 1), StartedAfter(2, 1) and StartedAfter(3, 2) are true at τ = 0.

To interpret constant and variable symbols in formulas, we define a valuation function

v : V ∪ C ⇒ dom(M) that maps constant and variable symbols to values in the relevant domain.

We use Φ[x 7→ y] to denote an FO-MLTL formula Φ where the variable x is renamed to y and

similarly for the valuation function v[x 7→ y] which updates v such that v[x 7→ y](x) = y.

FO-MLTL formulas also have propagation delays, a useful property for reasoning about the

logic similar to MLTL.

Definition 8 (Propagation Delay Semantics). Let Φ,Ψ be well-formed FO-MLTL formulas, then

bpd(Φ) and wpd(Φ) are defined the same as in Definition 4 along with:

if Φ = ∀x : Ψ


wpd(Φ) = wpd(Ψ)

bpd(Φ) = bpd(Ψ)

Definition 9 (FO-MLTL Semantics). The satisfaction of a FO-MLTL formula by ⟨M⟩, v is

defined recursively as:

⟨M⟩, v |= p(t1, . . . , tar(p)) iff (v(t1), . . . , v(tar(p))) ∈ p[0]

⟨M⟩, v |= ¬Φ iff ⟨M⟩, v ⊭ Φ.

⟨M⟩, v |= Φ ∧Ψ iff ⟨M⟩, v |= Φ and ⟨M⟩, v |= Ψ.

⟨M⟩, v |= Φ U[l,u] Ψ iff |⟨M⟩| ≥ l and there exists j ∈ [l, u] such that ⟨M⟩j , v |= Ψ and for all k ∈ [l, j − 1]

it holds that ⟨M⟩k, v |= Φ.

⟨M⟩, v |= ∀x : Φ iff for all d ∈ dom(M) it holds that ⟨M⟩, v[x 7→ d] |= Φ.

The following duals hold in FO-MLTL: Φ ∨Ψ ≡ ¬((¬Φ) ∧ (¬Ψ)), ∀x : Φ ≡ ¬∀x : ¬Φ,

Φ RI Ψ ≡ ¬((¬Φ) UI (¬Ψ)), ♢IΦ ≡ true UI Φ, □IΦ ≡ ¬♢I¬Φ. These semantics follow

14

Definition 2 except we interpret formulas over first-order traces and a valuation function, along

with the definition of the ∀ quantifier.

Example 4. Consider the formula and trace from Example 2. We would say that

⟨M⟩, v |= ∀t : Sched(t) ∧ ♢[0,3]Exec(t)

since if we update v[t 7→ 2], then ⟨M⟩, v |= Sched(t) since v(t) = 2 ∈ Sched[0] and

⟨M⟩, v |= ♢[0,3]Exec(t) since v(t) = 2 ∈ Exec[2]. Notice how we used v to provide meaning to the

symbol t, i.e., we mapped the symbol t to the concrete value 2, which we then checked against

each predicate.

Since FO-MLTL over a single time step can be interpreted as a standard first-order formula, its

SAT problem is undecidable.

Theorem 1. FO-MLTL -SAT is undecidable.

Proof. We can interpret a first-order logic formula as an FO-MLTL formula with a single state

(i.e., no temporal aspect). Since standard first-order logic satisfiability is undecidable Turing

et al. (1936), FO-MLTL -SAT is undecidable.

FO-MLTL is similar to MFOTL Basin et al. (2008), except for FO-MLTL’s finite-trace and U

semantics. In fact, MFOTL monitoring techniques could monitor FO-MLTL formulas Basin et al.

(2015). However, this approach comes with all the advantages and drawbacks discussed

previously (Chapter 1). The drawbacks make this logic insufficient for targeting embedded

platforms with hard resource constraints.

To address this, we must restrict FO-MLTL quantifiers somehow, particularly in what they can

quantify over. Once we do this, we can perform quantifier elimination and leverage existing MLTL

algorithms to reason about this logic.

3.2 FO-MLTL Over Bounded Dynamic Sets

Many logics that restrict first-order logic do so by restricting the domain, i.e., only admitting

finite or bounded domains Chen et al. (2022); Cerrito et al. (1999). In our case, we admit infinite

15

domains, but we restrict quantification to occur only over sets of bounded size that change over

time. We place a syntactic restriction and cardinality constraint onto quantifiers. In particular,

we require that all quantifiers be guarded Andréka et al. (1998) by a unary predicate as in

∃x :D(x) ∧ Φ or

∀x :D(x)→ Φ.

where we require |D| to be within some bound. We say that D represents a bounded Dynamic

set : a set with bounded size that changes over time Johannsen et al. (2023b). The resulting logic

is a variant of FO-MLTL, denoted as FO-MLTL.

Definition 10 (FO-MLTL Syntax). A FO-MLTL formula Φ over a signature S = (C,P) and set of

variable symbols V is defined as:

Φ ::= p(t1, . . . , tar(p)) | ¬Φ | Φ ∧ Φ | Φ UI Φ | ∀x ∈ D : Φ

where t1, . . . , tar(p) ∈ V ∪ C, x ∈ V , p,D ∈ P , ar(D) = 1, and I = [l, u].

D is a unary predicate intended to represent membership for some set of bounded cardinality,

i.e., we interpret x ∈ D[τ] as saying an object x is in the set D at time τ .

Example 5. The formula from Example 1 can be made into a corresponding FO-MLTL formula

via

∀t ∈ Sched : ♢[0,3]Exec(t)

and defining that max(Sched) = 2.

The semantics for FO-MLTL are essentially the same as in FO-MLTL, except for the

cardinality constraint in the quantifier semantics.

Definition 11 (FO-MLTL Semantics). The satisfaction of a FO-MLTL formula by ⟨M⟩, v and

function max : P → N0 where |D| is computable in O(1) is defined recursively as:

⟨M⟩, v |= p(t1, . . . , tar(p)) iff |⟨M⟩| > 0 and (v(t1), . . . , v(tar(p))) ∈ p[0].

16

⟨M⟩, v |= ¬Φ iff ⟨M⟩, v ⊭ Φ.

⟨M⟩, v |= Φ ∧Ψ iff ⟨M⟩, v |= Φ and ⟨M⟩, v |= Ψ.

⟨M⟩, v |= Φ U[l,u] Ψ iff |⟨M⟩| > i+ l and there exists j ∈ [i+ l + u] such that ⟨M⟩j , v |= Ψ and for all

k ∈ [i+ l + j − 1] it holds that ⟨M⟩k, v |= Φ.

⟨M⟩, v |= ∀x ∈ D : Φ iff |⟨M⟩| > 0, |D[0]| ≤ max(D), and for all d ∈ D[0] it holds that ⟨M⟩, v[x 7→ d] |= Φ.

Note that we require that computing the cardinality of D is O(1). Recall that the intention is

for D to represent the contents of a real-time data structure, which, in practice, has an easily

retrievable cardinality. Furthermore, if D were infinite, then it would necessarily always fail the

cardinality constraint. FO-MLTL admits all the duals from FO-MLTL, including the quantifier

dual:

∀x ∈ D : Φ = ¬∃x ∈ D : ¬Φ.

For completeness, we define the semantics of the existential quantifier:

⟨M⟩, v |= ∃x ∈ D : Φ iff |⟨M⟩| ≤ 0, |D[0]| > max(D), or (⟨M⟩, v[x 7→ d]) |= Φ for some d ∈ D[0].

Unintuitively, a trace where the set predicate D violates its cardinality constraint will satisfy

this expression due to the |D[0]| > max(D) clause. We can add an implicit cardinality constraint

to each ∃ operator instance.

Example 6. Consider the formula

∃t ∈ Sched : ♢[0,3]Exec(t),

which may be satisfied by a trace where |Sched| > max(Sched). We can express that only traces

where |Sched| ≤ max(Sched) shall satisfy the formula by adding the cardinality constraint on

Sched as a proposition:

(|Sched| ≤ max(Sched)) ∧ ∃t ∈ Sched : ♢[0,3]Exec(t).

17

3.3 FO-MLTL Monitoring

We now move on to defining efficient algorithms for monitoring FO-MLTL formulas. At a high

level, the presented approach monitors each quantified expression via unrolling and uses existing

MLTL monitors for the rest of the operators. For example, the monitor for a formula

Φ = ∀x ∈ D : Ψ functionally considers the formula

|D| ≤ max(D) ∧
∨

i∈[1,max(D)]

D(di)→ Ψ[x 7→ di].

We call this an unrolled formula and the newly-introduced variables di unrolled variables. A set of

unrolled variables (with associated set D) is denoted by UD. To ensure an unrolled formula is

well-formed, we add UD to V .

3.3.1 Auxiliary Valuation Functions

Currently, the variables in UD have no meaning. To provide such a meaning, we require a

mapping of each di ∈ U to an element in its associated set D at each timestamp.

Definition 12 (Auxiliary Valuation Function). An auxiliary valuation function for a FO-MLTL

formula Φ, set symbol D, unrolled variables UD, and domain dom is a function mapping unrolled

variable symbols to concrete values

uD : UD ⇒ dom ∪ ⊥

such that for all d ∈ dom:

1. d ∈ D iff there is some symbol di for which uD maps to d:

D(d)⇔ ∀di : uD(di) = d

2. Every symbol must map to a unique member of D, or ⊥ otherwise:

∀di, dj : di ̸= dj ∧ uD(di) ̸= ⊥ ⇒ uD(di) ̸= uD(dj)

18

Intuitively, uD is a function that maps indices of an array representing D to the members of

D (i.e., reads the element di at index i), where the return value is ⊥ if no element is at the given

index. So, unrolled variables take on a value in D or the ⊥ (empty) value. Importantly, any

predicate that takes ⊥ as an argument will evaluate to false.

However, since we are concerned with the behavior of D over time, we define a finite sequence

of auxiliary valuation functions ⟨uD⟩ where |⟨uD⟩| = |⟨M⟩| for a given first-order trace ⟨M⟩.

Example 7. Consider the set represented by the unary predicate Sched where max(Sched) = 3.

If we depict a single uSched function as an array, then the following trace shows a valid definition

for ⟨uSched⟩

τ = 0 τ = 1 τ = 2 τ = 3

Sched {2,3} {2,3} {3} {4,5}

⟨uSched⟩ [2,3⊥] [2,3,⊥] [⊥,3,⊥] [⊥,5,4]

Now we can query ⟨uSched⟩ at a timestamp and index. For example, we have that

⟨uSched⟩[0](d1) = 2, ⟨uSched⟩[0](d2) = 3, and ⟨uSched⟩[0](d3) = ⊥ at τ = 0.

3.3.2 FO-MLTL Monitoring Algorithms

Before we define the FO-MLTL monitor algorithms, we address the complexity raised by

including variables whose valuations change over time for quantified formulas; we need to consider

that we evaluate a different formula at every time step. Considering the formula from Example 5

and the trace in Example 7, at τ = 0 we evaluate the formula

(
Sched(2)→ ♢[0,3]Exec(2)

)
∧
(
Sched(3)→ ♢[0,3]Exec(3)

)
∧
(
Sched(⊥)→ ♢[0,3]Exec(⊥)

)
and at τ = 3 we evaluate

(
Sched(⊥)→ ♢[0,3]Exec(⊥)

)
∧
(
Sched(5)→ ♢[0,3]Exec(5)

)
∧
(
Sched(4)→ ♢[0,3]Exec(4)

)
.

To address this, we instantiate a new monitor for every time step. Thankfully, we only need at

most wpd(Φ) monitors at a given time. In our example, we instantiate a monitor for each time

19

Algorithm 1: FO-MLTL monitor initialization procedure. Assigns SCQ slots to sub-
formulas according to Definitions 4, 8.

1 Init(Φ: FO-MLTL formula, W : map of WPDs for unrolled variables, O: map of offsets for

unrolled variables): begin

2 if Φ = p(t) // predicate then

3 wΦ ←W (t) if t is unrolled variable ; // Store WPD of quantified formula

4 oΦ ← O(t) if t is unrolled variable ; // Store timestamp offset

5 else if Φ = ¬Ψ // unary operator then

6 Init(Ψ, w, o) ;

7 QΨ ← SCQ(1) ; // No siblings → no SCQ slots

8 else if Φ = ξ ∧Ψ or Φ = ξ U[l,u] Ψ // binary operator then

9 Init(ξ, w, o), Init(Ψ, w, o) ;

10 Qξ ← SCQ(max(wpd(Ψ)− bpd(ξ), 0) + 1) ; // Size SCQ via Equation 2.1

11 QΨ ← SCQ(max(wpd(ξ)− bpd(Ψ), 0) + 1) ; // Size SCQ via Equation 2.1

12 τ↓Ψ, τout ← 0 ; // Declare auxiliary vars

13 else if Φ = ∀x ∈ D : Ψ // quantifier then

14 CΦ ← CircSCQBuffer(wpd(Ψ) + 1) ; // Create SCQ buffer of size wpd(Ψ) + 1

15 foreach i ∈ [0, wpd(Φ)] do

16 QΨi ← Init(
∧
j∈[1,max(D)]D(di,j)→ Ψ[x 7→ di,j],W [di,j 7→ wpd(Φ)], O[di,j 7→ j]) ;

17 CΦ[i]← QΨi ;

18 end

19 curC ← 0 ;

20 end

from τ = 0 to τ = 3 = wpd(Φ), but at τ = 4 we can re-use the monitor used at τ = 0 since its

verdict is guaranteed to be computed. We store these monitors in a circular buffer of SCQs, as

shown in Algorithm 1 on line 14.

Additionally, we define the initialization procedure for each monitor in Algorithm 1. The

procedure recurses down the AST of the target formula, allocating SCQs for each non-unary

operator using Equation 2.1 and initializing necessary variables/buffers.

Next, we define the monitors for each of the FO-MLTL operators and show that each

implements the FO-MLTL monitoring semantics. The monitor algorithm for an operator

expression Φ with SCQ QΦ takes as input the SCQs of its child expressions and writes a

verdict/timestamp pair to QΦ if sufficient information is available.

20

Algorithm 2: FO-MLTL Φ = p(t) monitor algorithm. This algorithm only presents the
unary case for clarity.

Input: Timestamp τ , first-order trace ⟨M⟩, valuation function v, set of auxiliary

valuation function sequences DΨ

Var: SCQ QΦ, WPD wΦ, timestamp offset oΦ
1 if t is an unrolled variable from set symbol D then

2 τ ′ ← (τ − (τ % wΦ)) + oΦ ; // Compute timestamp to index ⟨uD⟩ with

3 val← ⟨uD⟩[τ ′](t) ; // Look up value of t using ⟨uD⟩ ∈ DΨ

4 else

5 val← v(t) ; // t is free, look up value using v

6 end

7 res← (val ∈ p[τ], τ) ; // Compute p(t)

8 wrSCQ(QΦ, res) ;

Algorithm 3: FO-MLTL Φ = ∀x ∈ D : Ψ monitor algorithm.

Input: Timestamp τ

Var: SCQ QΦ, Set symbol D, Circular SCQ buffer CΦ, Buffer index curC
1 // Only check available values with monotonically increasing timestamps

2 while CΦ.get(curC).τ ≥ τ do

3 verdict← CΦ.get(curC).read(τ) ∧ |D[τ]| ≤ max(D) ; // Check result of CΦ at τ

4 TΦ ← (verdict, τ) ; // Construct result

5 QΦ.write(TΦ) ; // Write result to SCQ

6 curC ← curC .next() ; // Move on to next value

7 end

The monitor for a unary predicate expression Φ = p(t) (Algorithm 2) writes the result of

v(t) ∈ p[τ] to QΦ at τ given a timestamp τ , first-order trace ⟨M⟩, and valuation function v. If t is

an unrolled variable, the monitor instead computes ⟨uD⟩[τ ′](t) ∈ p[τ] using the mapping supplied

via ⟨uD⟩ at an offset timestamp τ ′. The offset is determined by τ and the quantifier formula from

which t is unrolled (line 2).

We then define the monitor algorithm for the ∀ operator in Algorithm 3. The monitor

maintains an index in the buffer of SCQs (curC) for the SCQ with the minimal τ , representing

the “oldest” relevant formula without a verdict. If this SCQ has a verdict for τ , the algorithm

21

checks the verdict value and if the cardinality constraint holds (line 3). The monitor writes the

result of this check to its SCQ (lines 4-5) and moves on to the next SCQ in the buffer (line 6).

Kempa et al. (2020) defines monitors and proofs of correctness for the rest of the operators (¬,

∧, and U). We must then show that Algorithm 3 correctly implements the ∀ FO-MLTL semantics.

For clarity, we abstract away the circular nature of the underlying data structures such that

an SCQ QΦ defines an execution sequence ⟨TΦ⟩ and a circular buffer CΦ defines a sequence of

SCQs ⟨CΦ⟩.

Theorem 2 (∀ Monitor Correctness). Let ⟨M⟩ be a first-order trace, v be a valuation function,

⟨uD⟩ be a sequence of auxiliary valuation functions, Φ = ∀x ∈ D : Ψ be an FO-MLTL formula, QΦ

the SCQ for Φ, and ⟨TΦ⟩ be the execution sequence for QΦ. Then Algorithm 3 implements the ∀

FO-MLTL semantics, i.e., if |⟨M⟩τ | ≥ wpd(Φ), then

∀τ : ⟨TΦ⟩.find(τ) = (⟨M⟩τ , v |= ∀x ∈ D : Ψ).

Proof Sketch. For an arbitrary timestamp τ , Algorithm 3 considers the formula

Ψτ =
∧

j∈[1,max(D)]

D(dτ,j)→ Ψ[x 7→ dτ,j]

where we mark each unrolled variable with the timestamp τ and an index j. We note that

(⟨M⟩τ , v |= Ψτ)⇔ (⟨M⟩τ , v |= Φ) if v uses a well-defined auxiliary valuation function for dτ,j .

Inductively assuming that the execution sequence ⟨TΨτ ⟩ for this formula corresponds to the

FO-MLTL semantics, then

⟨TΨτ ⟩.find(τ)⇔ (⟨M⟩τ , v |= Ψτ).

Importantly, when monitoring a predicate sub-formula p(dτ,j) of Ψτ , Algorithm 2 will use ⟨uD⟩[τ]

to valuate dτ,j instead of v. Therefore, using ⟨uD⟩ over Ψτ , it holds that

⟨TΦ⟩.find(τ)⇔ ⟨TΨτ ⟩.find(τ) ∧ |D[τ]| ≤ max(D)⇔ (⟨M⟩τ , v |= Ψτ)⇔ (⟨M⟩τ , v |= Φ)

in other words, Algorithm 3 computes the ∀ operator using the unrolled formula Ψτ over ⟨M⟩, v

and ⟨uD⟩ and the necessary cardinality constraint.

22

3.3.3 FO-MLTL Monitor Space Bounds

While correctness is a necessary property for our algorithms, we must also provide bounds on

their required memory, especially in the context of resource-constrained systems that we consider.

We provide the memory bound via the number of required SCQ slots, recalling that one slot

includes a Boolean value and timestamp.

Theorem 3 (FO-MLTL Monitor Size). The size of the monitor for a FO-MLTL formula Φ is

bounded by

|Φ| · (3 ·m · (wpd(Φ) + 1)2)d

SCQ slots where |Φ| is the number of connectives in Φ, m is the largest of all maximum set sizes,

and d is the depth of Φ’s AST.

Proof. A quantifier formula ∀x ∈ D : Ψ creates at most wpd(Φ) + 1 SCQs for buffering (line 15 of

Algorithm 1). A buffered SCQ with index i represents the formula

∧
j∈[1,m]

D(di,j)→ Ψ[x 7→ di,j],

which using Equation 2.1 requires no more than 3 ·m SCQs (one for →, D(t), and Ψ[x 7→ t], then

m copies due to unrolling), where each SCQ has no more than wpd(Φ) slots. Therefore, a

quantifier formula requires no more than 3 ·m · (wpd(Φ)+1) · (wpd(Φ)) ≤ 3 ·m · (wpd(Φ)+1)2 SCQ

slots. No other node type requires more SCQ slots. Then, if Φ has a depth of d, in the worst-case

we have d nested quantifiers, and so Φ requires at most (3 ·m · (wpd(Φ) + 1)2)d SCQ slots.

One important note is that the size of the FO-MLTL monitors does not include the size of the

first-order structuresM. The monitors’ size is not dependent on the first-order structures, but

the predicate monitor in Algorithm 2 does rely on the existence of such structures to compute its

result. Automata or tables can encode such structures as in Basin et al. (2015), or, in practice,

arbitrary code that computes a Boolean result given a list of arguments.

23

CHAPTER 4. MLTL MONITOR ENCODING OPTIMIZATIONS

More than merely encoding specifications as MLTL monitors, we can automatically reduce a

monitor’s encoding size. We have already briefly mentioned one existing optimization, Common

Sub-expression Elimination (Chapter 1). In this chapter, we present a set of rewrite rules for

MLTL, prove that the rules maintain the MLTL semantics, prove that the rules either decrease or

do not impact the memory requirements of the resulting monitor, and use an existing tool to

perform equality saturation in order to compute an equivalent, maximally-memory-reduced

formula with respect to the rewrite rules.

4.1 MLTL Rewrite Rules1

We present rewriting rules for reducing the AST encoding size of MLTL formulas that can be

applied automatically during MLTL formula encoding to reduce its size. These rules are similar to

SPOT’s Duret-Lutz et al. (2022) optimizations for LTL, where SPOT minimizes an LTL formula’s

automata representation.

Before we present the rewrites, we recall that the MLTL semantics place some constraints on

the length of a trace π (Section 2). When monitoring, we ignore the end-of-trace semantics since

the monitors are stream-based, i.e., we assume that new information will eventually be provided.

As such, a rewrite must maintain the MLTL monitoring semantics between the original and

rewritten formula, where any end-of-trace behavior is ignored.

Figure 4.1 contains the MLTL rewrite rules. We first prove that both sides of each rewrite rule

are equivalent in the MLTL monitoring semantics using trivially derived equivalences from LTL

and the definitions of MLTL operators. We then show how each rewrite rule maintains or reduces

the memory of a given MLTL formula.

1Adapted from Johannsen et al. (2023b)

24

□[l1,u1]□[l2,u2]φ 7→ □[l1+l2,u1+u2]φ ♢[l1,u1]♢[l2,u2]φ 7→ ♢[l1+l2,u1+u2]φ (R1)

□[l1,u1]φ ∧□[l2,u2]ψ 7→ □[l3,u3](□[l1−l3,u1−u3]φ ∧□[l2−l3,u2−u3]ψ)

♢[l1,u1]φ ∨ ♢[l2,u2]ψ 7→ ♢[l3,u3](♢[l1−l3,u1−u3]φ ∨ ♢[l2−l3,u2−u3]ψ) (R2)

where l3 = min(l1, l2), u3 = l3 +min(u1 − l1, u2 − l2), l3 < u3

□[a,a]♢[l,u]φ 7→ ♢[l+a,u+a]φ ♢[l,u]□[a,a]φ 7→ ♢[l+a,u+a]φ

♢[a,a]□[l,u]φ 7→ □[l+a,u+a]φ □[l,u]♢[a,a]φ 7→ □[l+a,u+a]φ
(R3*)

□[l1,u1]φ ∧□[l2,u2]φ 7→ □[l1,u3]φ ♢[l1,u1]φ ∨ ♢[l2,u2]φ 7→ ♢[l1,u2]φ
(R4)

where l1 ≤ l2 ≤ u1 + 1, u3 = max(u1, u2)

□[l1,u1]φ ∨□[l2,u2]φ 7→ □[l2,u2]φ ♢[l1,u1]φ ∧ ♢[l2,u2]φ 7→ ♢[l2,u2]φ

where l1 ≤ l2 ≤ u2 ≤ u1
(R5)

□[a,a](φ U[l,u] ψ) 7→ φ U[l+a,u+a] ψ (□[a,a]φ) U[l,u] (□[a,a]ψ) 7→ φ U[l+a,u+a] ψ (R6*)

(φ1 U[l,u1] φ2) ∧ (φ3 U[l,u2] φ2) 7→ (φ1 ∧ φ3) U[l,u1] φ2 (R7)

where l ≤ u1, l ≤ u2, u1 ≤ u2
φ U[l1,u1] □[0,u2]φ 7→ □[l1,l1+u2]φ φ U[l1,u1] ♢[0,u2]φ 7→ ♢[l1,l1+u2]φ (R8*)

Table 4.1 Table of MLTL rewrite rules where φ,ψ, φ1, φ2, φ3 are well-formed MLTL formu-

las and a, l, u, l1, u2, l2, u2, l3, u3 ∈ N0 such that l ≤ u, l1 ≤ u1, l2 ≤ u2, l3 ≤ u3.

Each group of rules has identical constraints on their interval bounds. An as-

terisk next to a rule (ex: (R3)) means that the rule is only valid in the MLTL

monitoring semantics due to MLTL’s end-of-trace semantics.

In addition to the rewrite rules, recall that MLTL does not include a Next-time operator (X)

as in LTL because it is equivalent to □[1,1]. More generally, we can express a ∈ N0 nested X

operations with a singleton interval such as in □[a,a]. Therefore, we observe the following

equivalences:

□[a,a]φ ≡ ♢[a,a]φ ≡ ψ U[a,a] φ. (4.1)

The following directly follow from the semantics of UI :

false U[l,u] φ ≡ □[l,l]φ true U[l,u] φ ≡ ♢[l,u]φ φ U[l,u] φ ≡ □[l,l]φ. (4.2)

25

Theorem 4 (Equivalence of MLTL Rewrite Rules). Let φ,ψ, φ1, φ2, φ3 be well-formed MLTL

formulas and a, l, u, l1, u2, l2, u2, l3, u3 ∈ N0 such that l ≤ u, l1 ≤ u1, l2 ≤ u2, l3 ≤ u3. Then,

each rewrite relation (7→) in Fig 4.1 is also an equivalence relation according to the MLTL

monitoring semantics.

Proof Sketch. The proof shows that for a trace π and rewrite rule φ 7→ ψ, π |= φ⇔ π |= ψ. Most

cases follow directly from the MLTL monitoring semantics along with some interval arithmetic.

We do note that rules (R3), (R6), and (R8) do not hold in the MLTL semantics due to the

differences in trace length constraints between ♢,U and □,R, but do hold in the monitoring

semantics. We show the proof for the hardest case (R2) here, with the rest in the Appendix.

First, let φ,ψ be MLTL formulas and l1 ≤ u1, l2 ≤ u2. We prove

□[l1,u1]φ ∧□[l2,u2]ψ ≡ □[l3,u3](□[l1−l3,u1−u3]φ ∧□[l2−l3,u2−u3]ψ)

for any l3 = min(l1, l2), u3 = l3 +min(u1 − l1, u2 − l2), l3 < u3 using established equivalences and

the MLTL semantics. Using (R1), we see that

□[l1,u1]φ ∧□[l2,u2]ψ ≡ □[l3,l3]□[l1−l3,u1−l3]φ ∧□[l3,l3]□[l2−l3,u2−l3]ψ.

This follows if both intervals [l1 − l3, u1 − l3], [l2 − l3, u2 − l3] are valid i.e., (a) l1 − l3 ≥ 0, (b)

l2 − l3 ≥ 0, and (c) l1 − l3 ≤ u1 − l3, (d) l2 − l3 ≤ u2 − l3.

1. Recall that l3 = l1, then l3 ≤ l1.

2. Recall that l3 = l1 ≤ l2, then l2 − l3 ≥ 0→ l2 ≥ l3 → l3 ≤ l2 holds.

3. Since l1 ≤ u1, we see that l1 − l3 ≤ u1 − l3 → l1 ≤ u1 holds.

4. Since l2 ≤ u2, we see that l2 − l3 ≤ u2 − l3 → l2 ≤ u2 holds.

Now, let u3 = l3 +min(u1 − l1, u2 − l2). Applying (R1) once more, we have

□[l3,l3]□[l1−l3,u1−l3]φ ∧□[l3,l3]□[l2−l3,u2−l3]ψ ≡

□[l3,u3]□[l1−l3,u1−u3]φ ∧□[l3,u3]□[l2−l3,u2−u3]ψ

26

Since this only affects the upper bounds of the inner □ operators, we show that (a)

l1 − l3 ≤ u1 − u3 and (b) l2 − l3 ≤ u2 − u3.

1. Consider the two cases of u1 − l1 ≤ u2 − l2 and u2 − l2 < u1 − l1:

(a) Assume u1 − l1 ≤ u2 − l2, then u3 = u1 − l1 + l3. Replacing this in the target

inequality, we have

l1 − l3 ≤ u1 − (u1 − l1 + l3)→ l1 − l3 ≤ l1 − l3.

(b) Otherwise, u2 − l2 < u1 − l1. Then u3 = u2 − l2 + l3, and replacing this in the target

inequality, we have

l1 − l3 ≤ u1 − (u2 − l2 + l3)→ 0 ≤ u1 − l3 − (u2 − l2)→ u2 − l2 ≤ u1 − l3.

Since l3 = l1, we have u2 − l2 ≤ u1 − l1, which holds from our assumption.

2. Consider the two cases of u1 − l1 ≤ u2 − l2 and u2 − l2 < u1 − l1:

(a) Assume u1 − l1 ≤ u2 − l2, then u3 = u1 − l1 + l3. Replacing this in the target

inequality, we have

l2 − l3 ≤ u2 − (u1 − l1 + l3)→ l2 − l3 ≤ u2 − u1 + l1 − l3 →

l2 ≤ u2 − u1 + l1 → u1 − l1 ≤ u2 − l2,

which is true from our assumption.

(b) Otherwise, u2 − l2 < u1 − l1, then u3 = u2 − l2 + l3. Replacing this in the target

inequality, we have

l2 − l3 ≤ u2 − (u2 − l2 + l3)→ l2 − l3 ≤ u2 − u2 + l2 − l3 →

l2 ≤ u2 − u2 + l2 → l2 ≤ l2.

Finally, let π be a trace. We prove that

π |= □[l3,u3]□[l1−l3,u1−l3−u3]φ ∧□[l3,u3]□[l2−l3,u2−l3−u3]ψ ⇔

π |= □[l3,u3](□[l1−l3,u1−l3−u3]φ ∧□[l2−l3,u2−l3−u3]ψ).

27

1. (→) Let π be defined such that π |= (□[l3,u3]□[l1,u1]φ) ∧ (□[l3,u3]□[l2,u2]ψ). We show that

π |= □[l3,u3](□[l1−l3,u1−l3−u3]φ ∧□[l2−l3,u2−l3−u3]ψ) using the MLTL semantics. We apply the

semantic definitions of ∧ and □I to see that πi |= □[l1,u1]φ and πi |= □[l2,u2]ψ for all

i ∈ [l3, u3]. Combining these relations using the semantics of ∧ once more, we see that

πi |= □[l1,u1]φ ∧□[l2,u2]ψ for all i ∈ [l3, u3]. Using the semantics of □I again, we see that

π |= □[l3,u3](□[l1,u1]φ ∧□[l2,u2]ψ).

2. (←) Conversely, let π be defined such that π |= □[l3,u3](□[l1,u1]φ ∧□[l2,u2]ψ). We show that

π |= (□[l3,u3]□[l1,u1]φ) ∧ (□[l3,u3]□[l2,u2]ψ) using the MLTL semantics. Then πi |= □[l1,u1]φ

and πi |= □[l2,u2]ψ for all i ∈ [l3, u3]. Using the semantic definitions of ∧ and □I , we see that

π |= □[l3,u3]□[l1,u1]φ and π |= □[l3,u3]□[l2,u2]ψ, so π |= (□[l3,u3]□[l1,u1]φ) ∧ (□[l3,u3]□[l2,u2]ψ).

The proof for the ♢ version of (R2) is symmetric.

4.2 Inapplicable LTL Equivalences2

While the equivalences discussed so far have corresponding equivalence relations in LTL, there

are some LTL equivalences without such a relation in MLTL. For instance, consider the LTL

formula ♢(φUψ) ≡ ♢ψ. Intuitively, so long as ψ holds at some timestamp i in a given trace, then

it is trivially true that φUψ holds at i in that trace. However, once we add interval bounds to

each temporal operator as in ♢[l1,u1](φ U[l2,u2] ψ) there is now a constraint on when ψ can hold in

a trace with respect to φ and still satisfy the formula. For example, if πl1+l2 ⊭ ψ for some trace π

that models this MLTL formula, then necessarily πl1+l2 |= φ i.e., the satisfaction of φ is still

relevant for some satisfying traces.

Similarly, consider the LTL equivalence ♢□φ ∧ ♢□ψ ≡ ♢□(φ ∧ ψ). Again, intuitively, the LTL

operators ♢ and □ do not specify when their operands must hold, just that they both eventually

always hold. When we add bounds to the left-hand side as in ♢[l1,u1]□[l2,u2]φ ∧ ♢[l3,u3]□[l4,u4]ψ,

both φ and ψ have constraints on when they must hold in order for a trace to satisfy this formula,

2Adapted from Johannsen et al. (2023b)

28

and when this is exactly may differ for either φ or ψ. Speaking generally, MLTL places more

constraints on the set of traces that satisfy a given formula than LTL.

4.3 Memory Effects of Rewrites on MLTL Monitor Encodings3

Applying these rewrite rules can reduce the overall memory requirements of the AST

encoding of the MLTL formula. These rules reduce memory requirements in one of two ways: (1)

by tightening propagation delays or (2) by reducing formula length.

From Equation 2.2, an AST node g’s required memory is the difference between that g.bpd

and the maximum wpd of its siblings. Therefore, reducing max{s.wpd | s ∈ Sg} for a set of

sibling nodes Sg can reduce the memory requirements of all other sibling nodes in Sg.

Furthermore, reducing g’s wpd can reduce its ancestors’ wpd, which in turn could reduce the

memory requirements for the ancestors’ set of siblings in the same manner. In the following, we

use φ(ψ1 7→ ψ2) to denote an MLTL formula that is identical to a formula φ where a sub-formula

ψ1 of φ is replaced with ψ2.

Lemma 1 (Memory Effect of Tighter BPD). Let φ, ψ1, ψ2 be well-formed MLTL formulas where

ψ1 is a sub-formula of φ, ψ2 is the sub-formula in φ(ψ1 7→ ψ2), and ψ1.bpd ≤ ψ2.bpd. Then

memnode(ψ1) ≥ memnode(ψ2).

Proof. We first note that ψ1, ψ2 have the same set of siblings i.e., Sψ1 = Sψ2 = S. Then from

Equation 2.1 we see that

memnode(ψ1) =max(max{s.wpd | s ∈ S} − ψ1.bpd, 0) + 1

≥max(max{s.wpd | s ∈ S} − ψ2.bpd, 0) + 1

=memnode(ψ2).

3Adapted from Johannsen et al. (2023b)

29

Lemma 2 (Memory Effect of Tighter WPD). Let φ, ψ1, ψ2 be well-formed MLTL formulas where

ψ1 is a sub-formula of φ, ψ2 is the sub-formula in φ(ψ1 7→ ψ2), and ψ2.wpd ≤ ψ1.wpd. Then

φ(ψ1 7→ ψ2) requires equal or lesser memory than φ when controlling for ψ1 and ψ2:

memAST (φ(ψ1 7→ ψ2))−memAST (ψ2) ≤ memAST (φ)−memAST (ψ1).

Proof Sketch. The proof considers two cases: when the rewritten sub-formula ψ1 has the

maximum wpd of all its sibling nodes and when it does not. In the case that ψ1 has the maximum

wpd, then its sibling nodes’ SCQ sizes will decrease, as shown by the formula for computing SCQ

sizes (Equation 2.1), thereby decreasing the size of the overall formula φ. Otherwise, ψ1 having a

lower wpd will not impact the SCQ sizes of any nodes, so the memory requirements of φ remain

the same. See the appendix for the full proof.

Intuitively, Lemma 1 and Lemma 2 express the notion that a semantically equivalent formula

with a tighter propagation delay results in reduced required memory. A tighter propagation delay

provides more information as to when the formula will be evaluated in the best and worst cases,

requiring less memory for storing intermediate results.

Theorem 5 (Memory Reduction of Rewriting Rules). Let φ, ψ1, ψ2 be MLTL formulas where ψ1

is a sub-formula of φ. Then applying a valid rewrite rule in Figure 4.1 to ψ1 will result in a new

formula φ(ψ1 7→ ψ2) such that φ ≡ φ(ψ1 7→ ψ2) and

memAST (φ(ψ1 7→ ψ2)) ≤ memAST (φ).

Proof Sketch. Similar to the proof for Theorem 4, we show that each rewrite rule φ 7→ ψ in

Table 4.1 reduces or maintains the memory required to encode φ as an MLTL monitor using

Lemmas 1 and 2 and removing a node from φ’s AST will reduce its memory by at least the +1

constant of Equation 2.1. Similar to the proof for Theorem 4, we show the proof for (R2) with the

rest being in the Appendix.

First, let ψ1 = □[l1,u1]φ1 ∧□[l2,u2]φ2 and ψ2 = □[l3,u3](□[l1−l3,u1−u3]φ1 ∧□[l2−l3,u2−u3]φ2) where

l1 ≤ u1, l2 ≤ u2, l3 = min(l1, l2), u3 = l3 +min(u1 − l1, u2 − l2), and l3 < u3. We show that

ψ1.wpd =max(φ1.wpd+ u1, φ2.wpd+ u2)

30

=max(φ1.wpd+ u1 + (u3 − u3), φ2.wpd+ u2 + (u3 − u3))

=max(φ1.wpd+ u3 + (u1 − u3), φ2.wpd+ u3 + (u2 − u3))

=u3 +max(φ1.wpd+ (u1 − u3), φ2.wpd+ (u2 − u3))

=ψ2.wpd.

Therefore we have memAST (φ(ψ1 7→ ψ2))−memAST (ψ2) ≤ memAST (φ)−memAST (ψ1) by

Lemma 2. A similar derivation is used to show that ψ1.bpd = ψ2.bpd, so

memnode(∧1) ≥ memnode(□[l3,u3]) by Lemma 1 where ∧1,∧2 denote the ∧-nodes in ψ1, ψ2

respectively.

Next we show that memAST (ψ1) ≥ memAST (ψ2). First, we see that because l3 < u3:

memnode(□[l1,u1]) =((φ2.wpd+ u2)− (φ1.bpd+ l1) + 1)

>((φ2.wpd+ (u2 − u3))− (φ1.bpd+ l1 − l3) + 1)

=((φ2.wpd+ u2)− (φ1.bpd+ l1) + 1) + (l3 − u3)

=memnode(□[l1−l3,u1−u3]).

Similarly, memnode(□[l2,u2]) ≥ memnode(□[l1−l3,u1−u3]). Then

memAST (ψ1) =memnode(∧1) +memnode(□[l1,u1]) +memnode(□[l2,u2])

memAST (φ1) +memAST (φ2)

≥memnode(□[l3,u3]) +memnode(□[l1,u1]) +memnode(□[l2,u2])

memAST (φ1) +memAST (φ2)

≥memnode(□[l3,u3]) +memnode(□[l1−l3,u1−u3]) + 1+

memnode(□[l2−l3,u2−u3]) +memAST (φ1) +memAST (φ2)

=memnode(□[l3,u3]) +memnode(□[l1−l3,u1−u3]) +memnode(∧2)

memnode(□[l2−l3,u2−u3]) +memAST (φ1) +memAST (φ2)

=memAST (ψ2).

31

∧

φ1 · · · φn

A

∧

∧

φ1 · · · φn−1

φn

B

∧

∧

∧

φ1 · · · φn−2

φn−1

φn

C

Figure 4.1 Example showing the progression of AST structures of a conjunction with n

operands.

Combining Lemma 2 and the previous result, we have that memAST (φ(ψ1 7→ ψ2)) ≤ memAST (φ)

for (2). The rest of the rules rely on either tightening the propagation delay or reducing the

number of nodes in the rewritten AST in order to reduce memory requirements.

4.4 Topological Optimization

The memory requirements for associative, multi-arity operators such as conjunction and

disjunction depend on the structure of their AST. Consider that we calculate memory

requirements using the largest of all siblings’ worst-case propagation delay. If there is a

conjunction operator with n operands, then n− 1 of those operands will depend on the maximal

wpd of the operands. Where the operand with the maximal wpd is in the AST can drastically

impact the memory requirements of the overall formula.

4.4.1 Heuristic-based Topological Optimization Algorithm

To explain a simple approach to optimizing such ASTs, refer to Figure 4.1 where wi, bi are the

wpd and bpd of each φi respectively. Assume that the operands are ordered by wpd, i.e., wi ≥ wj
for all i, j ∈ [1, n] such that i > j. Using Equation 2.1, the memory requirement of structure A is

(wn − b1) + (wn − b2) + · · ·+ (wn − bn−1) + (wn−1 − bn)

and for structure C is

32

∧

∧

φ1 φ2

∧

φ3 φ4

D

∧

∧

φ1 φ2 φ3

φ4

E

∧

φ1 φ2 φ3 φ4

F

∧

∧

∧

φ1 φ2

φ3

φ4

G

Figure 4.2 Given a formula (φ1 ∧ φ2 ∧ φ3 ∧ φ4) where φ1 to φ4 are ordered by wpd, there

are four relevant structures that may be optimal with respect to each formulas’

wpd.

(wn−1 − b1) + (wn−1 − b2) + · · ·+ (wn−1 − bn−2) + (wn−2 − bn−1)+

(wn−1 − bn) + (wn −min(b1, . . . , bn−1)).

The memory difference between these two structures (i.e., memAST (A)−memAST (C)) is thus

∆ = (n− 2)(wn − wn−1)− wn−2 +min(b1, . . . , bn−1).

We can algorithmically lower the memory requirements for the encoding of an associative

operator with n operands by first flattening the conjunction to obtain an A structure, then

recursively restructuring the AST of the operator by:

(φ1 ∧ · · · ∧ φn) 7→ ((φ1 ∧ · · · ∧ φn−1) ∧ φn) 7→ . . .

as in Figure 4.1, stopping when ∆ ≤ 0 or n = 2. This heuristic-based technique does not

guarantee the optimal formula encoding but may decrease its size nonetheless.

4.4.2 Single Expression Topology Analysis

In searching for an algorithm that finds the optimal topology for associative, multi-arity

operators, we performed an exhaustive analysis of a subset of such operators. In particular, we

consider a set of AST structures for the formula (φ1 ∧ φ2 ∧ φ3 ∧ φ4) where each sub-formula φi

has a constant bpd = 0 and, without loss of generality, is sorted by increasing wpd, i.e.,

33

wpd(φ1) wpd(φ2) wpd(φ3) wpd(φ4)

1 1 1 37

1 1 2 36

...

1 1 12 26

1 2 2 35

1 2 3 34

...

1 11 14 14

2 2 2 34

2 2 3 33

...

9 10 10 11

10 10 10 10

Table 4.2 The set of wpd assignments considered for each φi in φ1 ∧ φ2 ∧ φ3 ∧ φ4 can be

sorted in lexicographic order. We also consider sorting the wdp assignments by

standard deviation, breaking ties via lexicographic ordering.

wpd(φ1) ≤ · · · ≤ wpd(φ4). With that restriction, Figure 4.2 depicts all four relevant structures,

with labels ranging from D-G. No other structure will result in less required SCQ slots than these.

We explored all possible assignments of wpd for each node, respecting the nodes’ ordering,

where the wpds of all nodes sum to 40, given in Table 4.2. We then computed the total SCQ costs

for each configuration in Figure 4.2. Finally, in order to determine if there was some trend in

those costs that we can use for computing/estimating the structure with minimal SCQ cost, we

plotted each cost for each configuration and wpd assignment in both lexicographic order and in

order of increasing standard deviation. The motivation behind using standard deviation is that

assignments with similar standard deviations may cost the least with similar structures. For

example, the first assignment in Table 4.2 may favor an F structure (which has a very high

standard deviation), a middle assignment may favor a D assignment, and the last assignment a G

structure (which has a very low standard deviation).

We found that of the 478 possible assignments, 9 (1.88%) were optimal with D, 185 (38.70%)

with E, 107 (22.38%) with F, and 177 (37.03%) with G. Importantly, the 9 assignments that

34

40

60

80

100

120

#
S
C
Q

S
lo
ts

R
eq
u
ir
ed

D
E
F
G

0 50 100 150 200 250 300 350 400 450 500
40

60

80

100

120

wpd Assignment Index

#
S
C
Q

S
lo
ts

R
eq
u
ir
ed

Figure 4.3 (Top) The SCQ cost of each structure in Figure 4.2 where the wpd assignment index
is based off the ordering in Table 4.2. There appears to be some trend in finding the
structure with minimal SCQ cost for any assignment but with some other non-standard
lexicographic ordering. (Bottom) The SCQ cost of each structure in Figure 4.2 where
the wpd assignment index is ordered based on the standard deviation of the value in
Table 4.2. Standard deviation provides a better heuristic than the top figure but does
guarantee a minimal cost structure. For example, in the 0-50 index range, both E and
G are of minimal cost.

claimed optimality with D would also be optimal with G, implying that D is not a relevant

structure for an operator with four operands.

As Figure 4.3 shows, the lexicographic ordering does not provide an effective metric for

estimating the optimal structure – though the graph does have some structure, implying that

another (non-standard) lexicographic ordering may better suit this task. The ordering based on

standard deviation better estimates of the optimal structure. There are still outliers in the graph

at many points. However, we can potentially use the standard deviation of the wpds of all

operands as a heuristic to estimate the minimal cost structure.

35

While such heuristics are a valuable exploration of the problem of optimizing the encoding for

associative MLTL operators, we present an approach in the following section that computes the

actual minimal structure in general.

4.5 Optimizing MLTL Monitor Encodings via Equality Saturation

We use equality saturation (Section 2.4) in the context of MLTL monitor optimization to

algorithmically rewrite a formula and find its optimal equivalent representation provided the

rewrite rules defined in Section 4.1.

One important note is that EqSat subsumes the previously discussed optimization techniques

of CSE and Topological Optimization. In other words, EqSat automatically performs CSE and

Topological Optimizations. As opposed to the heuristic-based approach presented in

Section 4.4.1, this technique computes the optimal encoding for associative, multi-arity operators.

4.5.1 MLTL Equality Saturation Example

To illustrate MLTL EqSat, we will walk through how to use e-graphs to represent MLTL

formulas and apply rewrites to e-graphs. Consider the formula

□[0,3]p ∧□[0,5]q.

The first step in MLTL EqSat is to construct the e-graph for this formula, which we can do using

the formula’s AST, where every node of the AST is an e-node (color boxes), and every e-node is

assigned its own e-class (grey, dashed boxes):

Then, we apply as many rewrites to the e-graph as possible until no more can be applied. Each

rewrite will alter the e-graph by adding new e-nodes and e-classes as needed and merging e-classes

36

as new equivalence relations are found. Given the initial e-graph, we can apply the rewrite

□[0,3]p ∧□[0,5]q 7→ □0,3(□[0,0]p ∧□[0,2]q) (R2)

since the root of the e-graph matches the pattern □[l1,u1]φ ∧□[l2,u2]ψ. The resulting e-graph will

require three new e-nodes, one for each new syntactically distinct sub-formula

(□0,3(□[0,0]p∧□[0,2]q), □[0,0]p, and □[0,2]q). Because we know that the two formulas are equivalent,

we place the root of the rewritten formula in the same e-class as the root of the original formula:

Next, we apply the rewrite □[0,0]p 7→ p since the □[0,0] e-node matches the pattern □[0,0]φ. The

resulting e-graph requires no new e-nodes since the e-graph already contains all of the e-nodes

from the original and rewritten formulas. Instead, we merely merge the e-classes of the □[0,0] and

p e-nodes:

The self-loop from the □[0,0] encodes the infinite equivalence relation:

p ≡ □[0,0]p ≡ □[0,0]□[0,0]p ≡ . . .

37

The e-graph is now saturated ; subsequent rewrites would not alter the e-graph. This e-graph,

therefore, represents the set of all equivalent MLTL formulas derivable from the supplied rewrite

rules.

4.5.2 MLTL Equality Saturation with egglog

The provided example does not address the most difficult aspects of EqSat, namely invariant

maintenance and pattern matching. egglog Zhang et al. (2023) is a tool that performs EqSat and

addresses both of these problems. We therefore encode the presented MLTL rewrite rules and

formulas into egglog to perform EqSat automatically. The output of egglog is a saturated

e-graph, from which we manually extract the formula with the lowest number of required SCQ

slots.

egglog is a tool and language that combines Datalog Ceri et al. (1989), a

logic-programming-style database query language, with e-graphs. To encode an MLTL formula

into egglog, we define a language that supports each operator and then define each rewrite rule

as in Table 4.1. Importantly, we support multi-arity conjunction and disjunction in our

optimizations to address Section 4.4, but only up to an arity of 4. A snippet of this encoding can

be found in Figure 4.4. Figure 4.5 depicts the result of EqSat using the egglog web demo4. All

this is implemented in C2PO as an optimization pass, as depicted in Figure 4.6.

4.5.3 Optimal Encoding Extraction

egglog only supports extracting optimal expressions from a saturated e-graph if the e-nodes

have a constant cost function, i.e., each operator has a constant cost. This feature makes sense in

some applications like program optimization, where multiplication may be a constant factor more

expensive than addition, for example.5

4https://egraphs-good.github.io/egglog/
5We note here that the tool that egglog builds off of, egg Willsey et al. (2021), provides a feature called analyses

that enables non-constant cost assignment. However, egg is implemented in Rust and would have required deeper
code integration with C2PO than merely encoding the problem into an easy-to-use input language.

https://egraphs-good.github.io/egglog/

38

(sort IntervalSort)
(function Interval (i64 i64)

IntervalSort)

(datatype MLTL
(Bool bool)
(Var String)
(Not MLTL)
(Implies MLTL MLTL)
(Equiv MLTL MLTL)
(And2 MLTL MLTL)
(And3 MLTL MLTL MLTL)
(And4 MLTL MLTL MLTL MLTL)
(Or2 MLTL MLTL)
(Or3 MLTL MLTL MLTL)
(Or4 MLTL MLTL MLTL MLTL)
(Global IntervalSort MLTL)
(Future IntervalSort MLTL)
(Until IntervalSort MLTL MLTL)

)

; Constant propagation
(rewrite

(And2 (Bool true) a)
a

)

; R1 Global
(rewrite

(Global (Interval l1 u1)
(Global (Interval l2 u2) a))

(Global (Interval (+ l1 l2)
(+ u1 u2)) a)

)

; R5 Global
(rewrite

(Or2 (Global (Interval l1 u1) a)
(Global (Interval l2 u2) a))

(Global (Interval l2 u2) a)
:when ((>= l2 l1) (<= u2 u1))

)

Figure 4.4 (Left) The presented egglog encoding defines a datatype MLTL to describe the

language of MLTL. (Right) Each rewrite rules requires one expression to pattern

match against, another to rewrite a matched expression to, and an optional

condition that must be met in order to apply the rule.

Figure 4.5 The web demo for egglog provides a visualization for how the tool performs

EqSat. (Left) The initial e-graph for the MLTL formula □[0,5]□[2,6](a0 ∧ a1) has
e-nodes for each node in the AST as well as different sorted e-nodes for each

interval. (Right) After performing EqSat by applying (R5) and flipping the

operands of the ∧, the e-graph includes new e-nodes for the MLTL formulas

□[2,11](a0 ∧ a1) and a1 ∧ a0.

39

C2PO

Equality Saturation (Optional) Validation

φ

egglog egglog e-graph

φoptim ¬(φ⇔ φoptim)

Z3

equiv

unknown
not equiv

Figure 4.6 Grey boxes denote data and black boxes denote tools. Starting with an MLTL

formula φ, C2PO encodes this into an egglog query à la Figure 4.5. egglog

then produces a JSON representation of the saturated e-graph, from which

C2PO extracts an optimized formula φoptim. C2PO then optionally encodes this

into an SMTLIB2 query and uses Z3 to check if ¬(φ⇔ φoptim) is satisfiable and

therefore equivalent or not.

In our case, the cost of e-nodes is the total number of required SCQ slots for an e-node and its

children, which is not constant. To perform the extraction, we find the root of the e-graph,

compute the propagation delays of each e-node and remove those with non-tight delays, then the

cost of each e-node, then find the minimal-cost e-node in each e-class, then finally extract the

optimized expression by choosing the minimal cost e-node from each e-class starting from the root

of the e-graph.

Root e-node: One oddity of using egglog is that the resulting representation of the saturated

e-graph does not include information on the root e-class, i.e., the e-class that includes the root

node of the original input. Therefore, to find this e-class, we manually pattern match all e-nodes

in the e-graph against the original AST to find the e-node representing the root.

Propagation Delays: Due to rule (R5), not all e-nodes in an e-class have equal propagation

delays for their representative formulas. In other words, not all equivalent MLTL formulas have

the same propagation delays. Therefore, we compute the propagation delay of each e-node and

remove any e-node with a bpd lower than the minimal bpd in the e-class or with a wpd higher than

the maximal wpd in the e-class. The resulting e-graph is the same as before, except with only the

e-nodes with the tightest propagation delays in their respective equivalence classes. The removed

nodes will not be of minimal cost due to Lemmas 1 and 2.

40

e-node Costs: We compute the cost of each e-node by traversing the e-graph (leaf-to-root) and

use each e-class’ propagation delays to compute how many SCQ slots each of a node’s children

require. Therefore, each node’s cost is not how many SCQ slots it requires but how many its

children require. This representation is sufficient since the root e-node does not have any siblings.

e-class Representatives: The representative for an e-class is the e-node with minimal cost,

which we compute in a single traversal of the e-graph.

Final Extraction: To extract the final, optimized formula, we recurse down the e-graph from the

root node, constructing an MLTL formula from the representative of each e-class and its children.

4.6 Experimental Evaluation

For evaluating the presented technique, we collected a set of benchmarks of MLTL formula,

compiled from various sources. These benchmarks are useful as MLTL benchmarks for problems

including monitoring or satisfiability. The benchmark sets are:

• Random-0 Li et al. (2019): 500 randomly-generated MLTL formulas with 0-rooted

temporal operators.

• Random Li et al. (2019): 10,000 randomly-generated MLTL formulas.

• Boeing WBS Bozzano et al. (2015)Li et al. (2019): 147 MLTL formulas derived from

a set of real-world LTL formulas for verifying a Boeing Wheel Brake System (WBS) design

with random interval bounds placed on each temporal operator.

• NASA ATC Gario et al. (2016)Li et al. (2019): 36 MLTL formulas derived from a set

of real-world LTL formulas for verifying a NASA Air-Traffic Control design with random

interval bounds placed on each temporal operator.

• UTM Cauwels et al. (2020): 124 real-world MLTL formulas from a set of MLTL

specifications for an automated UAS Traffic Manager. Most formulas are either

non-temporal or follow a simple structure, such as □[0,3](p ∧ q).

41

Benchmark # Formulas # Proven Equiv Avg % Reduction Avg Optim Time

Random-0 500 177 8.54% 0.02s

Random 10,000 3077 8.64% 0.02s

Boeing WBS 147 68 34.55% 148.25s

NASA ATC 36 26 23.90% 0.28s

UTM 124 124 2.90% 0.02s

FMSD17 7 6 13.95% 0.02s

RV14 6 6 5.72% 0.02s

Table 4.3 Experimental results show a noticeable reduction in SCQ slots for each benchmark and
reasonable average time to perform EqSat. EqSat resulted in no timeouts. Not all opti-
mized formulas were proven equivalent, but all other formulas were deemed “unknown”
by Z3. More human-authored and semi-synthetic formulas were proven equivalent than
randomly-generated.

Formulas with % SCQ Reduction
Benchmark

<1 <10 <20 <30 <40 <50 <60 <70 <80 <90 <100

Random-0 59 298 96 33 5 4 3 0 0 2 0

Random 1604 4884 2680 651 120 29 14 8 2 0 5

Boeing WBS 12 5 0 2 79 40 6 3 0 0 0

NASA ATC 6 1 5 9 14 0 1 0 0 0 0

UTM 107 3 6 6 1 1 0 0 0 0 0

FMSD17 3 1 1 1 0 0 0 0 0 0 0

RV14 4 1 0 0 1 0 0 0 0 0 0

Table 4.4 Each column represents a bucket of formulas from each benchmark that was reduced by
that amount. For example, the column “ <20” denotes the number of formulas that were
reduced by more than 10 but less than 20 percent. The highlighted cells showcase that
some formulas were reduced by as much as 50-99%.

• FMSD17 Moosbrugger et al. (2017): 7 real-world MLTL formulas specifying behavior

to catch dangerous MAVLink Protocol commands and a Denial of Service hijack attack.

• RV14 Geist et al. (2014): 6 real-world MLTL formulas designed to monitor for a fluxgate

magnetometer buffer overflow error on an in-flight UAS.

When running the optimizations on the benchmarks, we computed the required SCQ slots of

the original and optimized formulas and performed validation by checking that both the original

and optimized formulas were equivalent. We checked equivalence using the first-order logic

encoding of Li et al. (2019) and checking that the formula ¬(φ⇔ optim(φ)) was unsatisfiable

42

0 10 20 30 40 50 60 70 80 90 100
0

10

20

#
F
or
m
u
la
s

Boeing WBS
NASA ATC

UTM
FMSD17
RV14

0 10 20 30 40 50 60 70 80 90 100
0

500

1,000

1,500

% SCQ Slots Removed

#
F
or
m
u
la
s

Random
Random-0

Figure 4.7 A visualization of Table 4.4 shows how much was saved in more detail, with the x-axis
representing percentage of SCQ slots reduced (rounded to nearest percentage) and y-axis
representing the number of formulas with that percentage. (Top) The graph semi-syn-
thetic and human-authored formulas does not include formulas with <1% re-
duction for clarity. (Bottom) Both 0-rooted and fully randomly-generated formulas
follow the same distribution as one another with the majority of formulas seeing at least
some savings.

using the SMT solver Z3 De Moura and Bjørner (2008) with a timeout of one hour (3600s). This

equivalence check corresponds to the “(Optional) validation” box of Figure 4.6. In all problem

instances, we found a reduction in required SCQ slots and either found that the formulas were

equivalent or unknown due to timeout or Z3 terminating early. As a result of using the encoding

from Li et al. (2019), we did not enable the rewrites (R3), (R6), or (R8) since they do not hold in

the standard MLTL semantics.

The results show that both randomly generated benchmark sets see an average percent

reduction in SCQ slots of 8.5%. The Boeing WBS and NASA ATC benchmarks see a much

43

higher average savings of 34.5% and 23.90%, respectively. For the human-authored sets, note that

the sample sizes are relatively small (FMSD17, RV14) or contain many copies of the same formula

pattern (UTM).

These results are promising as we expect real-world specifications to adhere to patterns that

equality saturation can leverage. In an embedded, resource-constrained environment, any amount

of memory savings is critical and can be the difference between some specifications fitting

on-board or not. On real-world specifications, this automated technique reduces memory

requirements for encoding MLTL monitors.

44

CHAPTER 5. CONFIGURATION COMPILER FOR PROPERTY

ORGANIZATION1

The Configuration Compiler for Property Organization (C2PO) is the standard formula

compiler for R2U2 Johannsen et al. (2023a). C2PO encodes a set of MLTL formulas specified in a

custom input language into a R2U2-compatible binary format. Much like other compilers, C2PO

takes in a file, performs input validation, parses the file contents, generates a corresponding AST,

type checks the AST, performs a series of passes over the AST, then assembles the final AST into

an R2U2-compatible binary. Figure 5.1 depicts this pipeline.

5.1 Input Language

C2PO’s input language composes several sections for defining structures, declaring input

signals and their types, macro-style definitions, defining atomic checker components, and defining

future- and past-time specifications. Figure 5.2 contains an example file that uses most of these

capabilities. We highlight features of the language here.

1Adapted from Johannsen et al. (2023a)

Spec

Config

Validate
Input

Parse
Type
Check

Passes Assemble .bin

Serialize .c2po .mltl prefix .pickle

Figure 5.1 Given a specification (in a .c2po or .mltl file) and a configuration, C2PO validates

the configuration, parses, and type checks the specification, applies the passes

in Figure 5.1, and assembles the final R2U2-compatible binary. C2PO can exit

and/or serialize its input after parsing, type checking, or passes.

45

1 STRUCT
2 Request: { state: int; time_active: float; };
3 Arbiter: { ReqSet: set <Request >; };
4

5 INPUT
6 state_0 , state_1 , state_2 , state_3: int;
7 time_active_0 , time_active_1 , time_active_2 , time_active_3: float;
8

9 DEFINE
10 Wt := 0; Gr := 1; Rj := 2; -- wait , grant , reject
11

12 req_0 := Request(state_0 , time_active_0);
13 req_1 := Request(state_1 , time_active_1);
14 req_2 := Request(state_2 , time_active_2);
15 req_3 := Request(state_3 , time_active_3);
16

17 Arb0 := Arbiter ({req_0 , req_1 });
18 Arb1 := Arbiter ({req_2 , req_3 });
19 ArbSet := {Arb0 , Arb1};
20

21 FTSPEC
22 (req_0.time_active - req_1.time_active) < 10.0 &&
23 (req_1.time_active - req_0.time_active) < 10.0;
24

25 foreach(arb: ArbSet)(
26 foreach(req: arb.ReqSet)(
27 (req.state == Wt) U[0,5] (req.state == Gr || req.state == Rj)
28)
29);

Figure 5.2 An example C2PO specification file uses structs (lines 2−3, 12−13), sets (lines 3,
15− 16), and set aggregation operators (lines 22− 23) to formalize the English

requirements, “The active times for req0 and req1 shall differ by no more than

10.0 seconds,” (lines 19 − 20) and, “For each request req of each arbiter in

ArbSet, req’s status shall be Grant or Reject within the next 5 seconds and,

until then, shall be Waiting” (lines 25-29)

Types: C2PO supports Boolean, contract, user-definable struct, parametric set, and integer and

floating point types with configurable widths.

Atomic Checkers: Atomic Checkers are a construct for generating Boolean values from sensor

data by applying a filter to some signal and comparing the filter output to some constant. C2PO

support the definition of such construct via the ATOMICS section, for example:

ATOMIC

a0 := int(temp) <= 5;

a1 := rate(speed) < 100;

46

Bitwise Arithmetic Relational Logical Temporal

&, |, ^, ~, <<, >> +, -, *, /, % ==, !=, >, <, >=,

<=

&&, ||, xor, ->,

<->

F, G, U, R

Figure 5.3 C2PO supports the operators above, where the Booleanizer computes the oper-

ators in red cells and the Temporal Logic engine computes those in blue cells.

Atomic Checkers are particularly useful in hardware implementations of R2U2 but are also

supported by the C implementation.

Booleanizer Expressions: C2PO also supports a more powerful R2U2 engine for computing

Boolean values called the Booleanizer. This engine allows for arbitrary expressions over integer

and floating point types with any of the operations listed in Figure 5.3.

Assume-Guarantee Contracts (AGCs): Assume Guarantee Contracts (AGCs) provide a

template for structuring and validating complex requirements in aerospace operational concepts

Badger et al. (2019). AGCs feature a guard or trigger clause called the “assumption” and a

system invariant called the “guarantee;” they have been used to structure both English and

formal (e.g., temporal logic) requirements by projects, including the NASA Lunar Gateway

Vehicle System Manager Dabney et al. (2022).

C2PO supports an input syntax for expressing AGCs, as presented in Kempa et al. (2022). The

input syntax for declaring an AGC is ’assumption’ => ’guarantee’ where the semantics provides

three distinct cases: the AGC is “inactive” if the assumption is false, “true” if both the

assumption and guarantee are “true”, and “false” otherwise.

Set Aggregation: A typical pattern in real-world specifications applies an identical formula to

various input signals, such as testing all temperature sensors for an overheating condition. A

naive encoding of these specifications in MLTL can be large to the point of obscuring intent while

providing ample opportunity for copy-paste errors, typos, or incomplete updates to variables –

which are difficult for humans to spot during validation. C2PO mitigates this issue by supporting

set aggregation operators that compactly encode these expressions as sets of streams with a

predicate applied to each element Hammer et al. (2021).

47

To illustrate, consider the specification in Fig. 5.2. The direct encoding of this specification

without the “foreach” operator is

(rq0.status == W) U[0,5] (rq0.status == G || rq0.status == R) &&

(rq1.status == W) U[0,5] (rq1.status == G || rq1.status == R) &&

(rq2.status == W) U[0,5] (rq2.status == G || rq2.status == R) &&

(rq3.status == W) U[0,5] (rq3.status == G || rq3.status == R)

Contrast this with the more compact encoding using the foreach operator on lines 22− 26 in

Fig. 5.2. The latter retains the intent of the English-level requirement while being semantically

equivalent to the direct encoding. This concise representation eases validation by improving

readability and reduces the potential for errors by avoiding replicated values that require

simultaneous updates.

5.2 Passes

C2PO performs its core capabilities via passes of its AST, just like many other compilers.

Figure 5.1 provides a list of all supported passes, which passes each is incompatible with, and a

description of each pass.

5.3 Serialization

C2PO supports many formats for serializing specifications. These formats support easier

debugging and usage of outside tools. Supported formats include SMT (for SAT queries) Li et al.

(2019), egglog (Section 4.1), the MLTL Standard, C2PO input, prefix-notation C2PO, and Python’s

pickle format.

The MLTL Standard format is used by other tools, including WEST Elwing et al. (2023) and

previous versions of MLTL-based tools Kempa et al. (2020); Li et al. (2019). This format is

relatively restrictive; users define MLTL formulas one per line. An example specification set in this

format could look like:

G[0,10] a0

48

ID Pass Name Incomp.
Passes

Description

1 Expand Definitions Perform macro-expansion of definition symbols.
2 Convert Function Calls Convert function calls to struct instantiations.
3 Resolve Contracts Replaces contracts withMLTL formulas for each out-

put value.
4 Unroll Set Aggregation Replaces set aggregation operators with equivalent

MLTL expression.
5 Resolve Struct Accesses Resolves struct access operations to underlying

member expression.
6 Compute Atomics Compute atomic proposition expressions for AST.
7 Apply Rewrite Rules 9, 10 Perform single-pass rewrite rule optimization.
8 Equality Saturation 9, 10 Perform equality saturation.
9 To NNF 7, 8, 10 Convert output to negation normal form.
10 To BNF 7, 8, 10 Convert output to Boolean normal form.
11 Remove Extended Opera-

tors
9, 10 Reduces to minimum set of MLTL operators (p, ¬,

∨, U)
12 Multi-Arity to Binary Converts all multi-arity operators (∧, ∨) to binary

variants.
13 CSE Perform Common Sub-expression Elimination.
14 Check Satisfiable Check if formulas are satisfiable using SMT encod-

ing.
15 Compute SCQs Compute SCQ size for each AST node.

Table 5.1 C2PO’s compilation pipeline contains the 15 passes above, presented in order of execution.
Each row defines for each pass its name, which other passes it is incompatible with, and
a high-level description. Red rows denote required passes, green rows denote optional
passes, and blue rows denote optimizations. Unlike rewrite-based optimizations, CSE
does not alter the syntax of the encodedMLTL, so passes that rely on a syntactic structure
like NNF can also undergo CSE.

a1 U[0,15] (a0 & a1)

(F[0,3] a2) R[0,5] a3

As compared to C2PO’s input language, this format lacks support for non-Boolean types and other

convenience features discussed previously but are useful for purely machine-readable benchmarks.

C2PO can also output its input language, which helps translate between the MLTL Standard

and C2PO, or for debugging between compiler passes. Similarly, prefix-notation C2PO is useful

when debugging an arity-based optimization like that presented in Section 4.4.

Python’s pickle format serializes the internal data structures that represent an MLTL AST

and its current state during compilation, which enables AST property comparison across multiple

runs through the compiler, where each run’s data must be persistent. For example, a developer

49

small.c2po

1 INPUT
2 b0: bool;
3 i0: int;
4

5 FTSPEC
6 G[1,2] (i0 > 5) &&
7 F[0,5] b0;

small.map

b0:0
i0:1

small.asm

BZ b0 iload 1
BZ b1 iconst 5
BZ b2 igt 0 1 a0
BZ b3 iload 0 a1
TL n0 load a0
TL n1 global n0
TL n2 load a1
TL n3 until True n2
TL n4 and n1 n3
TL n5 return n4 0
CG TL SCQ n0 (0, 3)
CG TL SCQ n1 (3, 10)
CG TL LB n1 1
CG TL UB n1 2
CG TL SCQ n2 (10, 13)
CG TL SCQ n3 (13, 18)
CG TL LB n3 0
CG TL UB n3 5
CG TL SCQ n4 (18, 21)
CG TL SCQ n5 (21, 22)

Figure 5.4 C2PO generates small.asm given the command

python c2po.py --map small.map small.c2po. The map file is necessary for

R2U2 to load the correct values from the signal buffer during runtime. Without

the --extops option enabled, the F operator is converted to a U operator as

node n3 in the assembly.

can run C2PO on a specification with a new optimization turned on and off, pickling their ASTs,

then compare the ASTs’ properties, such as their sizes, required SCQ slots, or worst-case

computation time.

5.4 Assembly

Finally, C2PO assembles the final AST into an R2U2-compatible binary. R2U2’s binary format

largely follows the structure of the AST already, so C2PO merely performs a topological sort of the

AST and generates an instruction for each node. Note that due to CSE we cannot perform a tree

traversal since the AST is not a tree, i.e., CSE may combine nodes and, therefore, a node may

have multiple parents.

Each AST node type has an instruction type, grouped into one of four categories: an Atomic

Checker, Booleanizer, Temporal Logic, or Configuration. We have already discussed the Atomic

50

Checker, Booleanizer, Temporal Logic types. Configuration instructions define the memory layout

for SCQs and temporal operators, i.e., how much memory each node in the AST requires and

where that memory should be. Figure 5.4 shows a small example, where the assembly on the right

includes Booleanizer (BZ), Temporal Logic (TL), and Configuration (CG) instructions. A .map

file defines where each input signal will be in the signal buffer for R2U2 during runtime.

51

CHAPTER 6. CONCLUSION

The techniques presented offer a novel way of expressing, optimizing, and monitoring MLTL

formulas that reason over bounded dynamic sets. In doing so, specification authors can be more

confident that the formalizations of their requirements are correct. Further, by using the MLTL

monitor optimizations, practitioners can automatically reduce the size of their MLTL monitors in

R2U2. This automated technique may allow users to fit more specifications on board without

manually tuning their formulas’ syntax. The interface and automation provided by C2PO make

these techniques more approachable than without C2PO, including by allowing users to specify

their requirements in an intuitive, high-level language.

Soon, we plan to implement the FO-MLTL monitoring algorithms into R2U2 and provide an

easy-to-specify interface via C2PO. We will also explore the possibility of encoding FO-MLTL

formulas to MLTL, which would allow the usage of MLTL-based techniques more broadly, such as

MLTL-SAT Li et al. (2019) and benchmark generation Li and Rozier (2018). Such an encoding

could place a syntactic restriction on FO-MLTL formulas, where objects in dynamic sets remain in

their set until each relevant temporal sub-formula is finished evaluating, similar to the encoding

provided in Johannsen et al. (2023b). This restriction may relax the requirement to store

auxiliary results for the quantifier monitor.

There is also an opportunity to define more rewrite rules, especially using U . More rules could

inspire rewrites into other metric temporal logics. The impact of the rewrites on other properties

of MLTL formulas, like satisfiability checking, bounded model checking, and an automata-based

encoding size would also be of interest.

Further MLTL optimizations may be had from combining the presented approach with

assumption-based runtime verification Cimatti et al. (2022). Assumptions could allow us to

perform vacuity checking and reduce sub-formulas that are never exercised.

52

The equality saturation optimizations also only work with single-formula specifications, and

we plan to extend this capability to multi-formula specifications soon. This ability would make

MLTL EqSat faster, where an e-graph can reuse rewritten expressions from other formulas instead

of performing a separate equality saturation computation for both formulas separately.

We will also explore connecting C2PO to WEST Elwing et al. (2023), a tool for exploring

satisfying trace sof MLTL formulas using regular expressions, and FPROGG, a tool implementing

the MLTL benchmark-generating algorithms in Li and Rozier (2018). These connections will

create opportunities for new workflows in the design process for specification authors, allowing

users to explore the traces that satisfy a set of specifications and generate particular traces of

interest.

53

BIBLIOGRAPHY

Andréka, H., Németi, I., and Van Benthem, J. (1998). Modal languages and bounded fragments
of predicate logic. Journal of philosophical logic, 27:217–274.

Aurandt, A., Jones, P., and Rozier, K. Y. (2022). Runtime Verification Triggers Real-time,
Autonomous Fault Recovery on the CySat-I. In Proceedings of the 14th NASA Formal Methods
Symposium (NFM 2022), volume 13260 of Lecture Notes in Computer Science (LNCS),
Caltech, California, USA. Springer, Cham.

Badger, J. M., Strawser, P., and Claunch, C. (2019). A distributed hierarchical framework for
autonomous spacecraft control. In 2019 IEEE Aerospace Conference, pages 1–8. IEEE.

Baier, C. and Katoen, J.-P. (2008). Principles of model checking. MIT press.

Barringer, H., Falcone, Y., Havelund, K., Reger, G., and Rydeheard, D. (2012). Quantified event
automata: Towards expressive and efficient runtime monitors. In FM 2012: Formal Methods:
18th International Symposium, Paris, France, August 27-31, 2012. Proceedings 18, pages 68–84.
Springer.

Basin, D., Klaedtke, F., Müller, S., and Pfitzmann, B. (2008). Runtime monitoring of metric
first-order temporal properties. In IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science. Schloss Dagstuhl-Leibniz-Zentrum für
Informatik.

Basin, D., Klaedtke, F., Müller, S., and Zălinescu, E. (2015). Monitoring metric first-order
temporal properties. Journal of the ACM (JACM), 62(2):1–45.

Bauer, A., Küster, J.-C., and Vegliach, G. (2015). The ins and outs of first-order runtime
verification. Formal Methods in System Design, 46(3):286–316.

Bozzano, M., Cimatti, A., Fernandes Pires, A., Jones, D., Kimberly, G., Petri, T., Robinson, R.,
and Tonetta, S. (2015). Formal design and safety analysis of air6110 wheel brake system. In
Computer Aided Verification: 27th International Conference, CAV 2015, San Francisco, CA,
USA, July 18-24, 2015, Proceedings, Part I 27, pages 518–535. Springer.

Brat, G., Navas, J. A., Shi, N., and Venet, A. (2014). Ikos: A framework for static analysis based
on abstract interpretation. In Software Engineering and Formal Methods: 12th International
Conference, SEFM 2014, Grenoble, France, September 1-5, 2014. Proceedings 12, pages
271–277. Springer.

54

Bryant, R. E. (1992). Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys (CSUR), 24(3):293–318.

Cauwels, M., Hammer, A., Hertz, B., Jones, P., and Rozier, K. Y. (2020). Integrating Runtime
Verification into an Automated UAS Traffic Management System. In Proceedings of DETECT:
international workshop on moDeling, vErification and Testing of dEpendable CriTical systems,
Communications in Computer and Information Science (CCIS), L’Aquila, Italy. Springer.

Ceri, S., Gottlob, G., Tanca, L., et al. (1989). What you always wanted to know about
datalog(and never dared to ask). IEEE transactions on knowledge and data engineering,
1(1):146–166.

Cerrito, S., Mayer, M. C., and Praud, S. (1999). First order linear temporal logic over finite time
structures. In Logic for Programming and Automated Reasoning: 6th International Conference,
LPAR’99 Tbilisi, Georgia, September 6–10, 1999 Proceedings 6, pages 62–76. Springer.

Chen, Y., Zhang, X., and Li, J. (2022). Finite quantified linear temporal logic and its satisfiability
checking. In Artificial Intelligence Logic and Applications: The 2nd International Conference,
AILA 2022, Shanghai, China, August 26–28, 2022, Proceedings, pages 3–18. Springer.

Chomicki, J. (1995). Efficient checking of temporal integrity constraints using bounded history
encoding. ACM Transactions on Database Systems (TODS), 20(2):149–186.

Cimatti, A., Tian, C., and Tonetta, S. (2022). Assumption-based runtime verification. Formal
Methods in System Design, 60(2):277–324.

Clarke, E. M. (1997). Model checking. In Foundations of Software Technology and Theoretical
Computer Science: 17th Conference Kharagpur, India, December 18–20, 1997 Proceedings 17,
pages 54–56. Springer.

Cooper, K., Eckhardt, J., and Kennedy, K. (2008). Redundancy elimination revisited. In 2008
International Conference on Parallel Architectures and Compilation Techniques (PACT), pages
12–21.

Dabney, J. B., Rajagopal, P., and Badger, J. M. (2022). Using assume-guarantee contracts for
developmental verification of autonomous spacecraft. Flight Software Workshop (FSW) Online:
https://www.youtube.com/watch?v=HFnn6TzblPg.

Davis, M., Logemann, G., and Loveland, D. (1962). A machine program for theorem-proving.
Communications of the ACM, 5(7):394–397.

De Moura, L. and Bjørner, N. (2007). Efficient e-matching for smt solvers. In Automated
Deduction–CADE-21: 21st International Conference on Automated Deduction Bremen,
Germany, July 17-20, 2007 Proceedings 21, pages 183–198. Springer.

https://www.youtube.com/watch?v=HFnn6TzblPg

55

De Moura, L. and Bjørner, N. (2008). Z3: An efficient smt solver. In International conference on
Tools and Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer.

Duret-Lutz, A., Renault, E., Colange, M., Renkin, F., Gbaguidi Aisse, A., Schlehuber-Caissier, P.,
Medioni, T., Martin, A., Dubois, J., Gillard, C., et al. (2022). From spot 2.0 to spot 2.10:
What’s new? In Computer Aided Verification: 34th International Conference, CAV 2022,
Haifa, Israel, August 7–10, 2022, Proceedings, Part II, pages 174–187. Springer.

Elwing, J., Gamboa-Guzman, L., Sorkin, J., Travesset, C., Wang, Z., and Rozier, K. Y. (2023).
Mission-time ltl (mltl) formula validation via regular expressions. In International Conference
on Integrated Formal Methods, pages 279–301. Springer.

Gario, M., Cimatti, A., Mattarei, C., Tonetta, S., and Rozier, K. Y. (2016). Model checking at
scale: Automated air traffic control design space exploration. In Proceedings of 28th
International Conference on Computer Aided Verification (CAV 2016), volume 9780 of LNCS,
pages 3–22, Toronto, ON, Canada. Springer.

Geist, J., Rozier, K. Y., and Schumann, J. (2014). Runtime Observer Pairs and Bayesian Network
Reasoners On-board FPGAs: Flight-Certifiable System Health Management for Embedded
Systems. In Proceedings of the 14th International Conference on Runtime Verification (RV14),
volume 8734, pages 215–230. Springer-Verlag.

Gurfinkel, A., Kahsai, T., Komuravelli, A., and Navas, J. A. (2015). The seahorn verification
framework. In International Conference on Computer Aided Verification, pages 343–361.
Springer.

Hammer, A., Cauwels, M., Hertz, B., Jones, P., and Rozier, K. Y. (2021). Integrating runtime
verification into an automated uas traffic management system.

Havelund, K., Peled, D., and Ulus, D. (2020). First-order temporal logic monitoring with bdds.
Formal Methods in System Design, 56(1):1–21.

Hertz, B., Luppen, Z., and Rozier, K. Y. (2021). Integrating runtime verification into a sounding
rocket control system. In Proceedings of the 13th NASA Formal Methods Symposium (NFM
2021). Available online at http://temporallogic.org/research/NFM21/.

Hipp, R. D. (2020). SQLite.

Jhala, R. and Majumdar, R. (2009). Software model checking. ACM Computing Surveys (CSUR),
41(4):1–54.

Johannsen, C., Jones, P., Kempa, B., Rozier, K. Y., and Zhang, P. (2023a). R2u2 version 3.0:
Re-imagining a toolchain for specification, resource estimation, and optimized observer
generation for runtime verification in hardware and software. In International Conference on
Computer Aided Verification, pages 483–497. Springer.

http://temporallogic.org/research/NFM21/

56

Johannsen, C., Kempa, B., Jones, P. H., Rozier, K. Y., and Wongpiromsarn, T. (2023b).
Impossible made possible: Encoding intractable specifications via implied domain constraints.
In International Conference on Formal Methods for Industrial Critical Systems, pages 151–169.
Springer.

Joshi, R., Nelson, G., and Randall, K. (2002). Denali: A goal-directed superoptimizer. In
Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design and
Implementation, PLDI ’02, page 304–314, New York, NY, USA. Association for Computing
Machinery.

Kempa, B., Johannsen, C., and Rozier, K. Y. (2022). Improving Usability and Trust in Real-Time
Verification of a Large-Scale Complex Safety-Critical System. Ada User Journal, September.

Kempa, B., Zhang, P., Jones, P. H., Zambreno, J., and Rozier, K. Y. (2020). Embedding Online
Runtime Verification for Fault Disambiguation on Robonaut2. In Proceedings of the 18th
International Conference on Formal Modeling and Analysis of Timed Systems (FORMATS),
Lecture Notes in Computer Science (LNCS), pages 196–214, Vienna, Austria. Springer.

Li, J. and Rozier, K. Y. (2018). Mltl benchmark generation via formula progression. In
International Conference on Runtime Verification, pages 426–433. Springer.

Li, J., Vardi, M. Y., and Rozier, K. Y. (2019). Satisfiability checking for mission-time ltl. In
Proceedings of 31st International Conference on Computer Aided Verification (CAV 2019),
LNCS, New York, NY, USA. Springer.

Moosbrugger, P., Rozier, K. Y., and Schumann, J. (2017). R2U2: Monitoring and Diagnosis of
Security Threats for Unmanned Aerial Systems. pages 1–31.

Nelson, C. G. (1980). Techniques for Program Verification. PhD thesis, Stanford, CA, USA.
AAI8011683.

Reinbacher, T., Rozier, K. Y., and Schumann, J. (2014). Temporal-logic based runtime observer
pairs for system health management of real-time systems. In Proceedings of the 20th
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), volume 8413 of Lecture Notes in Computer Science (LNCS), pages 357–372.
Springer-Verlag.

Tate, R., Stepp, M., Tatlock, Z., and Lerner, S. (2009). Equality saturation: a new approach to
optimization. In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 264–276.

Turing, A. M. et al. (1936). On computable numbers, with an application to the
entscheidungsproblem. J. of Math, 58(345-363):5.

57

Willsey, M., Nandi, C., Wang, Y. R., Flatt, O., Tatlock, Z., and Panchekha, P. (2021). Egg: Fast
and extensible equality saturation. volume 5, pages 1–29. ACM New York, NY, USA.

Zhang, Y., Wang, Y. R., Flatt, O., Cao, D., Zucker, P., Rosenthal, E., Tatlock, Z., and Willsey,
M. (2023). Better together: Unifying datalog and equality saturation. volume 7, New York,
NY, USA. Association for Computing Machinery.

58

APPENDIX. MLTL REWRITE RULE PROOFS

Lemma 2 (Memory Effect of Tighter WPD). Let φ, ψ1, ψ2 be well-formed MLTL formulas where

ψ1 is a sub-formula of φ, ψ2 is the sub-formula in φ(ψ1 7→ ψ2), and ψ2.wpd ≤ ψ1.wpd. Then

φ(ψ1 7→ ψ2) requires equal or lesser memory than φ when controlling for ψ1 and ψ2:

memAST (φ(ψ1 7→ ψ2))−memAST (ψ2) ≤ memAST (φ)−memAST (ψ1).

Proof. As in the proof for Lemma 1, ψ1, ψ2 have the same set of siblings i.e., Sψ1 = Sψ2 = S.

First, assume ψ1.wpd ≤ max{sψ1 .wpd | sψ1 ∈ Sψ1} i.e., ψ1 does not have the maximum wpd of all

of its sibling nodes. Then

max{sψ1 .wpd | sψ1 ∈ Sψ1} = max{sψ2 .wpd | sψ2 ∈ Sψ2}

since rewriting φ from ψ1 to ψ2 does not affect the sibling nodes for either ψ1, ψ2. Therefore

memAST (φ(ψ1 7→ ψ2))−memAST (ψ2) = memAST (φ)−memAST (ψ1).

Otherwise, ψ1 has the maximum wpd of all of its sibling nodes i.e.,

ψ1.wpd > max{sψ1 .wpd | sψ1 ∈ Sψ1}

Then, the amount of memory required for each node sψ1 ∈ Sψ1 is

memnode(sψ1) = max(ψ1.wpd− sψ1 .bpd, 0).

Importantly, each node sψ1 ∈ Sψ1 has a structurally identical counterpart in Sψ2 since we defined

φ as identical to φ(ψ1 7→ ψ2), except where ψ1 is replaced with ψ2. We define a mapping

Sib : Sψ1 → Sψ2 such that Sib(sψ1) = sψ2 . This implies that sψ1 .bpd = Sib(sψ1).bpd for each

s ∈ Sψ1 . Therefore, we see that each sibling node of ψ2 has a lower memory requirement than the

corresponding sibling node of ψ1 for all s ∈ Sψ1 :

memnode(sψ1) = max(ψ1.wpd− sψ1 .bpd, 0) ≤ max(ψ2.wpd− Sib(sψ1).bpd, 0).

59

Further, the propagation delay semantics (Def. 4) dictate that the wpd of a node is greater

than or equal to the maximum wpd of all its children. Since we assumed that ψ1 has the

maximum wpd of its parent’s children (i.e., ψ1’s siblings) and ψ2.wpd ≤ ψ1.wpd, it follows that

the ψ2’s parent would have a lower wpd than ψ1’s parent. We can apply this argument recursively

to each ancestor of ψ2 such that every ancestor of ψ2 will have a lower or equal wpd than the

corresponding ancestor of ψ1, where the preceding relation holds if the wpd is lowered. The first

assumption of the proof holds otherwise.

Then, the sibling nodes of each ancestor of ψ2 will have a lower or equal memory requirement

than the sibling nodes of each ancestor of ψ1. The proof follows.

Theorem 4 (Equivalence of MLTL Rewrite Rules). Let φ,ψ, φ1, φ2, φ3 be well-formed MLTL

formulas and a, l, u, l1, u2, l2, u2, l3, u3 ∈ N0 such that l ≤ u, l1 ≤ u1, l2 ≤ u2, l3 ≤ u3. Then,

each rewrite relation (7→) in Fig 4.1 is also an equivalence relation according to the MLTL

monitoring semantics.

Proof. We prove each rule in Figure 4.1 is semantics-preserving, i.e., the right- and left-hand sides

of the 7→ operator are equivalent with respect to the MLTL monitoring semantics. Recall that two

MLTL formulas φ,ψ are equivalent only if π |= φ⇔ π |= ψ for all π.

(R1) Let φ be an MLTL formula, π be a trace, and l1 ≤ u1, l2 ≤ u2. We prove

π |= □[l1,u1]□[l2,u2]φ⇔ π |= □[l1+l2,u1+u2]φ.

(→) Let π be defined such that π |= □[l1,u1]□[l2,u2]φ. We show that π |= □[l1+l2,u1+u2]φ

using the MLTL semantics. By the semantics of □I , we know that for each i ∈ [l1, u1],

πi |= □[l2,u2]φ. Intuitively, this means that π satisfies φ at timestamps [l2, u2] relative

to i i.e., π |= φ starting at timestamp i+ l2 and ending at timestamp i+ u2. So,

applying the semantics of □I again, we have that πi+j |= φ for each i ∈ [l1, u1],

j ∈ [l2, u2]. By the definition of trace suffixes, this means that πk |= φ for each

k ∈ [l1 + l2, u1 + u2]. Therefore π |= □[l1+l2,u1+u2]φ.

60

(←) Let π be defined such that π |= □[l1+l2,u1+u2]φ. We show that π |= □[l1,u1]□[l2,u2]φ.

Then πk |= φ for all k ∈ [l1 + l2, u1 + u2]. Splitting this interval into two intervals, we

have that πi+j |= φ for each i ∈ [l1, u1], j ∈ [l2, u2], as in the converse proof. Then

π |= □[l1,u1]□[l2,u2]φ by the semantics of □I .

The proof for the ♢ version of (R1) is symmetric.

(R2): Let φ,ψ be MLTL formulas and l1 ≤ u1, l2 ≤ u2. We prove

□[l1,u1]φ ∧□[l2,u2]ψ ≡ □[l3,u3](□[l1−l3,u1−u3]φ ∧□[l2−l3,u2−u3]ψ)

for any l3 = min(l1, l2), u3 = l3 +min(u1 − l1, u2 − l2), l3 < u3 using established

equivalences and the MLTL semantics. Using (R1), we see that

□[l1,u1]φ ∧□[l2,u2]ψ ≡ □[l3,l3]□[l1−l3,u1−l3]φ ∧□[l3,l3]□[l2−l3,u2−l3]ψ.

This follows if both intervals [l1 − l3, u1 − l3], [l2 − l3, u2 − l3] are valid i.e., (a) l1 − l3 ≥ 0,

(b) l2 − l3 ≥ 0, and (c) l1 − l3 ≤ u1 − l3, (d) l2 − l3 ≤ u2 − l3.

(a) Recall that l3 = l1, then l3 ≤ l1.

(b) Recall that l3 = l1 ≤ l2, then l2 − l3 ≥ 0→ l2 ≥ l3 → l3 ≤ l2 holds.

(c) Since l1 ≤ u1, we see that l1 − l3 ≤ u1 − l3 → l1 ≤ u1 holds.

(d) Since l2 ≤ u2, we see that l2 − l3 ≤ u2 − l3 → l2 ≤ u2 holds.

Now, let u3 = l3 +min(u1 − l1, u2 − l2). Applying (R1) once more, we have

□[l3,l3]□[l1−l3,u1−l3]φ ∧□[l3,l3]□[l2−l3,u2−l3]ψ ≡

□[l3,u3]□[l1−l3,u1−u3]φ ∧□[l3,u3]□[l2−l3,u2−u3]ψ

Since this only affects the upper bounds of the inner □ operators, we show that (a)

l1 − l3 ≤ u1 − u3 and (b) l2 − l3 ≤ u2 − u3.

(a) Consider the two cases of u1 − l1 ≤ u2 − l2 and u2 − l2 < u1 − l1:

61

i. Assume u1 − l1 ≤ u2 − l2, then u3 = u1 − l1 + l3. Replacing this in the target

inequality, we have

l1 − l3 ≤ u1 − (u1 − l1 + l3)→ l1 − l3 ≤ l1 − l3.

ii. Otherwise, u2 − l2 < u1 − l1. Then u3 = u2 − l2 + l3, and replacing this in the

target inequality, we have

l1 − l3 ≤ u1 − (u2 − l2 + l3)→ 0 ≤ u1 − l3 − (u2 − l2)→ u2 − l2 ≤ u1 − l3.

Now, since l3 = l1, we have u2 − l2 ≤ u1 − l1 which is true from our assumption.

(b) Consider the two cases of u1 − l1 ≤ u2 − l2 and u2 − l2 < u1 − l1:

i. Assume u1 − l1 ≤ u2 − l2, then u3 = u1 − l1 + l3. Replacing this in the target

inequality, we have

l2 − l3 ≤ u2 − (u1 − l1 + l3)→ l2 − l3 ≤ u2 − u1 + l1 − l3 →

l2 ≤ u2 − u1 + l1 → u1 − l1 ≤ u2 − l2,

which is true from our assumption.

ii. Otherwise, u2 − l2 < u1 − l1, then u3 = u2 − l2 + l3. Replacing this in the target

inequality, we have

l2 − l3 ≤ u2 − (u2 − l2 + l3)→ l2 − l3 ≤ u2 − u2 + l2 − l3 →

l2 ≤ u2 − u2 + l2 → l2 ≤ l2.

Finally, let π be a trace. We prove that

π |= □[l3,u3]□[l1−l3,u1−l3−u3]φ ∧□[l3,u3]□[l2−l3,u2−l3−u3]ψ ⇔

π |= □[l3,u3](□[l1−l3,u1−l3−u3]φ ∧□[l2−l3,u2−l3−u3]ψ).

(a) (→) Let π be defined such that π |= (□[l3,u3]□[l1,u1]φ) ∧ (□[l3,u3]□[l2,u2]ψ). We show

that π |= □[l3,u3](□[l1−l3,u1−l3−u3]φ ∧□[l2−l3,u2−l3−u3]ψ) using the MLTL semantics. We

62

apply the semantic definitions of ∧ and □I to see that πi |= □[l1,u1]φ and πi |= □[l2,u2]ψ

for all i ∈ [l3, u3]. Combining these relations using the semantics of ∧ once more, we

see that πi |= □[l1,u1]φ ∧□[l2,u2]ψ for all i ∈ [l3, u3]. Using the semantics of □I again,

we see that π |= □[l3,u3](□[l1,u1]φ ∧□[l2,u2]ψ).

(b) (←) Conversely, let π be defined such that π |= □[l3,u3](□[l1,u1]φ ∧□[l2,u2]ψ). We show

that π |= (□[l3,u3]□[l1,u1]φ) ∧ (□[l3,u3]□[l2,u2]ψ) using the MLTL semantics. Then

πi |= □[l1,u1]φ and πi |= □[l2,u2]ψ for all i ∈ [l3, u3]. Using the semantic definitions of ∧

and □I , we see that π |= □[l3,u3]□[l1,u1]φ and π |= □[l3,u3]□[l2,u2]ψ, so

π |= (□[l3,u3]□[l1,u1]φ) ∧ (□[l3,u3]□[l2,u2]ψ).

The proof for the ♢ version of (R2) is symmetric.

(R3): Let φ be a MLTL formula and l ≤ u. We prove

□[a,a]♢[l,u]φ ≡ ♢[l,u]□[a,a]φ

using established MLTL equivalences. Using Equation 4.1 and (R1) to expand the expression

until we have a of the □[1,1] operators in lines 3 and 9 of the following proof we can show:

□[a,a]♢[l,u]φ ≡ □[1,1]□[a−1,a−1]♢[l,u]φ

≡ · · ·Applying a times

≡ □[1,1] · · ·□[1,1]♢[l,u]φ

≡ ♢[1,1] · · ·♢[1,1]♢[l,u]φ

≡ ♢[l+a,u+a]φ

≡ ♢[l+a−1,u+a−1]♢[1,1]φ

≡ · · ·Applying a times

≡ ♢[l,u]♢[1,1] · · ·♢[1,1]φ

≡ ♢[l,u]□[1,1] · · ·□[1,1]φ

≡ ♢[l,u]□[a,a]φ.

63

The proof for the ♢[a,a] version of (R3) is symmetric.

(R4): Let φ be a MLTL formula and l1 ≤ u1, l2 ≤ u2, l1 ≤ l2 ≤ u1 +1, u3 = max(u1, u2). We prove

that

□[l1,u1]φ ∧□[l2,u2]φ ≡ □[l1,u3]φ.

We first show that π |= □[l,l]φ ∧□[l+1,u]φ⇔ π |= □[l,u]φ for any trace pi and l < u.

(a) (→) Let π be a trace such that π |= □[l,l]φ ∧□[l+1,u]φ. We show that π |= □[l,u]φ.

From the semantics of □ and (R1), we see that πi |= φ for all i ∈ [l, l] and πj |= φ for

all j ∈ [l + 1, u]. Now, since [l, l] ∪ [l + 1, u] = [l, u], it follows that πk |= φ for all

k ∈ [l, u]. This matches the semantic definition of □ and therefore π |= □[l,u]φ.

(b) (←) Conversely, if π is a trace such that π |= □[l,u]φ, then π |= □[l,l]φ ∧□[l+1,u]φ

because πi |= φ for all i ∈ [l, u] where [l, l] ∪ [l + 1, u] = [l, u] as before.

From above, we can expand each □I operator to a conjunction of singleton intervals, remove

repeated conjunctive clauses, then use the above equivalence again to simplify:

□[l1,u1]φ ∧□[l2,u2]φ ≡(□[l1,l1]φ ∧□[l1+1,u1]) ∧□[l2,u2]φ

≡ · · ·Applying u1 − l1 times

≡(□[l1,l1]φ ∧ · · · ∧□[u1,u1]φ) ∧□[l2,u2]φ

≡(□[l1,l1]φ ∧ · · · ∧□[u1,u1]φ) ∧ (□[l2,l2]φ ∧□[l2+1,u2]φ)

≡ · · ·Applying u2 − l2 times

≡□[l1,l1]φ ∧ · · · ∧□[u1,u1]φ ∧ (□[l2,l2]φ ∧ · · · ∧□[u2,u2]φ)

≡□[l1,l1]φ ∧ · · · ∧□[l2−1,l2−1]φ ∧□[l2,l2]φ ∧ · · · ∧□[u2,u2]φ

≡□[l1,l1+1]φ ∧ · · · ∧□[l2−1,l2−1]φ ∧□[l2,l2]φ ∧ · · · ∧□[u2,u2]φ

≡ · · ·Applying l2 − l1 − 1 times

≡□[l1,l2−1]φ ∧□[l2,l2]φ ∧ · · · ∧□[u2,u2]φ

≡ · · ·Applying u2 − l2 + 1 times

64

≡□[l1,u2]φ

Note that from lines 6 to 7 we remove repeated clauses e.g., l2 ≤ u1 ≤ u2 so there must be

two instances of the expression □[u1,u1]φ in the formula.

The proof for the ♢ version of (R4) is symmetric.

(R5): Let φ be a MLTL formula and l1 ≤ l2 ≤ u2 ≤ u1. We prove that

□[l1,u1]φ ∨□[l2,u2]φ ≡ □[l2,u2]φ.

We first show that

π |= □[l,u1]φ ∨□[l,u2]φ⇔ π |= □[l,u1]φ

for any trace π.

(a) (→) Assume for the purposes of contraction that π is a trace such that

π |= □[l,u1]φ ∨□[l,u2]φ but π ⊭ □[l,u1]φ. Therefore there is some i ∈ [l, u1] such that

πi ⊭ φ. By (R1), we see that

□[l,u1]φ ∨□[l,u2]φ ≡ □[l,u1]φ ∨□[0,u2−u1]□[l,u1]φ

But π ⊭ □[l,u1]φ ∨□0,u2−u1□[l,u1]φ since π ⊭ □[l,u1]φ. Therefore if

π |= □[l,u1]φ ∨□[l,u2]φ, then π |= □[l,u1]φ.

(b) (←) Conversely, assume that π is a trace such that π |= □[l,u1]φ but

π ⊭ □[l,u1]φ∨□[l,u2]φ. But this is a contradiction, since by the definition of disjunction,

if π |= □[l,u1]φ, then π |= □[l,u1]φ∨□[l,u2]φ since the left-hand disjunctive clause models

π. Therefore if π |= □[l,u1]φ, then π |= □[l,u1]φ ∨□[l,u2]φ.

Next we consider the cases for when l1 < l2 and l1 = l2.

(a) (l1 < l2) Starting from the left-hand side of the equivalence, we use (R3), the above

equivalence, and the Absorption Law of Propositional Logic to show that:

□[l1,u1]φ ∨□[l2,u2]φ ≡ (□[l1,l2−1]φ ∧□[l2,u1]φ) ∨□[l2,u2]φ

65

≡ (□[l1,l2−1]φ ∧□[l2,u1]φ) ∨□[l2,u2]φ

≡ (□[l1,l2−1]φ ∨□[l2,u2]φ) ∧ (□[l2,u1]φ ∨□[l2,u2]φ)

≡ (□[l1,l2−1]φ ∨□[l2,u2]φ) ∧□[l2,u2]φ

≡ □[l2,u2]φ

(b) (l1 = l2) Then starting with the left-hand side, replacing l2 with l1 and using the above

equivalence we show:

□[l1,u1]φ ∨□[l2,u2]φ ≡ □[l1,u1]φ ∨□[l1,u2]φ

≡ □[l2,u2]φ

(R6): Let φ,ψ be MLTL formulas, π be a trace, and l ≤ u. We prove that

π |= □[a,a](φ U[l,u]ψ)⇔ π |= φ U[l+a,u+a]ψ

(a) (→) Let π be a trace such that π |= □[a,a](φ U[l,u]ψ). We show that π |= φ U[l+a,u+a]ψ.

By the semantics of □[a,a], we see that πa |= φ U[l,u]ψ. Similar to the proof for (R1), we

say that πa |= φ U[l,u]ψ relative to the bounds of [l, u]. For instance, if πa+l |= ψ, then

πa |= φ U[l,u]ψ. We then say that there is some i ∈ [l, u] such that πa+i |= ψ and for all

j ∈ [l, u] such that j < i, πa+j |= φ. This directly corresponds to the semantics of

U[l+a,u+a], so therefore π |= φ U[l+a,u+a]ψ.

(b) (←) Conversely, let π be a trace such that π |= φ U[l+a,u+a]ψ. Then πi |= ψ for some

i ∈ [l + a, u+ a] and πj |= φ for all j ∈ [l + a, u+ a] such that j < i. Therefore it

follows that π |= □[a,a](φ U[l,u]ψ) from the MLTL semantics.

The proof for the ♢[a,a] version of (R6) is symmetric.

(R7): Let φ1, φ2, φ3 be MLTL formulas, π be a trace, and l ≤ u1, l ≤ u2, u1 ≤ u2. We prove that

π |= (φ1 U[l,u1]φ2) ∧ (φ3 U[l,u2]φ2)⇔ π |= (φ1 ∧ φ3) U[l,u1]φ2.

66

(a) (→) Let π be such that π |= (φ1 U[l,u1]φ2) ∧ (φ3 U[l,u2]φ2). We show that

π |= (φ1 ∧ φ3) U[l,u1]φ2. From the semantics of UI , there must be some i ∈ [l, u1] such

that πi |= φ2 in order to satisfy the clause φ1 U[l,u1]φ2. Further, using the relation

u1 ≤ u2, we know that πj |= φ1 and πj |= φ3 for all j ∈ [l, u1] ⊆ [l, u2] such that j < i.

Putting this all together using the semantic definition of UI , π |= (φ1 ∧ φ3) U[l,u1]φ2.

(b) (←) Conversely, let π be such that π |= (φ1 ∧ φ3) U[l,u1]φ2. Then

π |= (φ1 U[l,u1]φ2) ∧ (φ3 U[l,u2]φ2) because πi |= φ2 for some i ∈ [l, u1] ⊆ [l, u2] and

πj |= φ1 and πj |= φ3 for all j ∈ [l, u1] such that j < i.

(R8): Let φ be a MLTL formula, and l1 ≤ u1. We prove that

φ U[l1,u1]□[0,u2]φ ≡ □[l1,l1+u2]φ.

We first show that

□[l,l]ψ ∨ (□[l,l]φ ∧ (φ U[l+1,u]ψ)) ≡ φ U[l,u]ψ

for any trace π.

(a) Let π be such that π |= □[l,l]ψ ∨ (□[l,l]φ ∧ (φ U[l+1,u]ψ)). We show that π |= φ U[l,u]ψ.

Distributing the □[l,l]ψ in the left-hand expression, we obtain the formula

(□[l,l]ψ ∨□[l,l]φ) ∧ (□[l,l]ψ ∨ φ U[l+1,u]ψ). Consider the case where πl |= ψ, then

π |= φ U[l,u]ψ by the semantics of UI . Otherwise, πl ̸|= ψ, then πl |= φ and φ U[l+1,u]ψ.

It follows that π |= φ U[l,u]ψ by the semantics of UI .

(b) Conversely, let π be a trace such that π ̸|= □[l,l]ψ ∨ (□[l,l]φ ∧ (φ U[l+1,u]ψ)). Then

π ̸|= φ U[l,u]ψ because either πl ̸|= ψ and πl ̸|= φ or π ̸|= φ U[l+1,u]ψ.

Now using the above equivalence, (R4), (R5), and Equation 4.1:

φ U[l,u1](□[0,u2]φ) ≡□[l,l]□[0,u2]φ ∨ (□[l,l]φ ∧ (φ U[l+1,u1]□[0,u2]φ))

≡□[l,l+u2]φ ∨ (□[l,l]φ ∧ (φ U[l+1,u1]□[0,u2]φ))

≡□[l,l+u2]φ ∨ (□[l,l]φ ∧ (□[l+1,l+1+u2]φ

67

∨ (□[l+1,l+1]φ ∧ (φ U[l+2,u1]□[0,u2]φ)))

≡ · · · (Applying u1 times)

≡□[l,l+u2]φ ∨ (□[l,l]φ ∧ (· · · ∧ (□[u1−1,u1+u2−1]φ∨

(□[u1−1,u1−1]φ ∧ φ U[u1,u1]□[0,u2]φ))))

≡□[l,l+u2]φ ∨ (□[l,l]φ ∧ (· · · ∧ (□[u1−1,u1+u2−1]φ∨

(□[u1−1,u1−1]φ ∧□[u1,u1]□[0,u2]φ))))

≡□[l,l+u2]φ ∨ (□[l,l]φ ∧ (· · · ∧ (□[u1−1,u1+u2−1]φ∨

(□[u1−1,u1−1]φ ∧□[u1,u1+u2]φ))))

≡□[l,l+u2]φ ∨ (□[l,l]φ ∧ (· · · ∧ (□[u1−1,u1+u2−1]φ∨

□[u1−1,u1+u2]φ)))

≡□[l,l+u2]φ ∨ (□[l,l]φ ∧ (· · · ∧□[u1−1,u1+u2]φ))

≡ · · · (Applying u1 times)

≡□[l,l+u2]φ ∨ (□[l,u1+u2]φ)

≡□[l,l+u2]φ

Theorem 5 (Memory Reduction of Rewriting Rules). Let φ, ψ1, ψ2 be MLTL formulas where ψ1

is a sub-formula of φ. Then applying a valid rewrite rule in Figure 4.1 to ψ1 will result in a new

formula φ(ψ1 7→ ψ2) such that φ ≡ φ(ψ1 7→ ψ2) and

memAST (φ(ψ1 7→ ψ2)) ≤ memAST (φ).

Proof. (R1): Then ψ1 = □[l1,u1]□[l2,u2]φ and ψ2 = □[l1+l2,u1+u2]φ where l1 ≤ u1 and l2 ≤ u2.

Therefore, because ψ1.wpd = φ.wpd+ u1 + u2 = ψ2.wpd and ψ1 ≡ ψ2 by Theorem 4, we

have memAST (φ(ψ1 7→ ψ2))−memAST (ψ2) ≤ memAST (φ)−memAST (ψ1).

68

Next, using Lemma 1 we see that memnode(□[l1,u1]) = memnode(□[l1+l2,u1+u2]) since

ψ1.bpd = φ.bpd+ l1 + l2 = ψ2.bpd. Then

memAST (φ(ψ1 7→ ψ2)) =(memAST (φ(ψ1 7→ ψ2))−memAST (ψ2)) +memAST (ψ2)

=(memAST (φ(ψ1 7→ ψ2))−memAST (ψ2))+

memnode(□[l1+l2,u1+u2]) +memAST (φ)

≤(memAST (φ)−memAST (ψ1))+

memnode(□[l1+l2,u1+u2]) +memAST (φ)

=(memAST (φ)−memAST (ψ1))+

memnode(□[l1,u1]) +memAST (φ)

≤(memAST (φ)−memAST (ψ1)) +memnode(□[l1,u1])+

memnode(□[l2,u2]) +memAST (φ)

=(memAST (φ)−memAST (ψ1)) +memAST (ψ1)

=memAST (φ)

The proof for the rule ♢[l1,u1]♢[l2,u2]φ→ ♢[l1+l2,u1+u2]φ follows.

(R2): First, let ψ1 = □[l1,u1]φ1 ∧□[l2,u2]φ2 and ψ2 = □[l3,u3](□[l1−l3,u1−u3]φ1 ∧□[l2−l3,u2−u3]φ2)

where l1 ≤ u1, l2 ≤ u2, l3 = min(l1, l2), u3 = l3 +min(u1 − l1, u2 − l2), and l3 < u3. We

show that

ψ1.wpd =max(φ1.wpd+ u1, φ2.wpd+ u2)

=max(φ1.wpd+ u1 + (u3 − u3), φ2.wpd+ u2 + (u3 − u3))

=max(φ1.wpd+ u3 + (u1 − u3), φ2.wpd+ u3 + (u2 − u3))

=u3 +max(φ1.wpd+ (u1 − u3), φ2.wpd+ (u2 − u3))

=ψ2.wpd.

Therefore we have memAST (φ(ψ1 7→ ψ2))−memAST (ψ2) ≤ memAST (φ)−memAST (ψ1) by

Lemma 2. A similar derivation is used to show that ψ1.bpd = ψ2.bpd, so

69

memnode(∧1) ≥ memnode(□[l3,u3]) by Lemma 1 where ∧1,∧2 denote the ∧-nodes in ψ1, ψ2

respectively.

Next we show that memAST (ψ1) ≥ memAST (ψ2). First, we see that because l3 < u3:

memnode(□[l1,u1]) =((φ2.wpd+ u2)− (φ1.bpd+ l1) + 1)

>((φ2.wpd+ (u2 − u3))− (φ1.bpd+ l1 − l3) + 1)

=((φ2.wpd+ u2)− (φ1.bpd+ l1) + 1) + (l3 − u3)

=memnode(□[l1−l3,u1−u3]).

Similarly, memnode(□[l2,u2]) ≥ memnode(□[l1−l3,u1−u3]). Then

memAST (ψ1) =memnode(∧1) +memnode(□[l1,u1]) +memnode(□[l2,u2])

memAST (φ1) +memAST (φ2)

≥memnode(□[l3,u3]) +memnode(□[l1,u1]) +memnode(□[l2,u2])

memAST (φ1) +memAST (φ2)

≥memnode(□[l3,u3]) +memnode(□[l1−l3,u1−u3]) + 1+

memnode(□[l2−l3,u2−u3]) +memAST (φ1) +memAST (φ2)

=memnode(□[l3,u3]) +memnode(□[l1−l3,u1−u3]) +memnode(∧2)

memnode(□[l2−l3,u2−u3]) +memAST (φ1) +memAST (φ2)

=memAST (ψ2).

Combining Lemma 2 and the previous result, we have that

memAST (φ(ψ1 7→ ψ2)) ≤ memAST (φ) for (2). The rest of the rules rely on either tightening

the propagation delay or reducing the number of nodes in the rewritten AST in order to

reduce memory requirements.

(R3): Then ψ1 = □[a,a]♢[l,u]φ and ψ2 = ♢[l+a,u+a]φ where l ≤ u. Therefore, because

ψ1.wpd = φ.wpd+ u+ a = ψ2.wpd and ψ1 ≡ ψ2 by Theorem 4, we have

memAST (φ(ψ1 7→ ψ2))−memAST (ψ2) ≤ memAST (φ)−memAST (ψ1) by Lemma 2.

70

Next, using Lemma 1 we see that memnode(□[a,a]) = memnode(♢[l+a,u+a]) since

ψ1.bpd = φ.bpd+ l + a = ψ2.bpd. Then

memAST (φ(ψ1 7→ ψ2)) =(memAST (φ(ψ1 7→ ψ2))−memAST (ψ2)) +memAST (ψ2)

=(memAST (φ(ψ1 7→ ψ2))−memAST (ψ2))+

memnode(♢[l+a,u+a]) +memAST (φ)

≤(memAST (φ)−memAST (ψ1))+

memnode(♢[l+a,u+a]) +memAST (φ)

=(memAST (φ)−memAST (ψ1))+

memnode(□[a,a]) +memAST (φ)

≤(memAST (φ)−memAST (ψ1)) +memnode(□[a,a])+

memnode(♢[l,u]) +memAST (φ)

=(memAST (φ)−memAST (ψ1)) +memAST (ψ1)

=memAST (φ)

The proof follows for ♢[l,u]□[a,a]φ→ ♢[l+a,u+a]φ, ♢[a,a]□[l,u]φ→ □[l+a,u+a]φ,

□[l,u]♢[a,a]φ→ □[l+a,u+a]φ follows.

(R4): Then ψ1 = □[l1,u1]φ ∧□[l2,u2]φ and ψ2 = □[l1,u3]φ where l1 ≤ u1, l2 ≤ u2, l1 ≤ l2 ≤ u1 + 1,

and u3 = max(u1, u2). We show that

ψ1.wpd =max(φ.wpd+ u1, φ.wpd+ u2)

=φ.wpd+max(u1, u2)

=φ.wpd+ u3

=ψ2.wpd

Therefore we have ψ1 ≡ ψ2 by Theorem 4 so that

memAST (φ(ψ1 7→ ψ2))−memAST (ψ2) ≤ memAST (φ)−memAST (ψ1) by Lemma 2.

71

Next we show that

ψ1.bpd =min(φ.bpd+ l1, φ.wpd+ l2)

=φ.bpd+min(l1, l2)

=φ.bpd+ l1

=ψ2.bpd

Using Lemma 1 we see that memnode(∧) = memnode(□[l1,u3]) since ψ1.bpd = ψ2.bpd. Then

memAST (φ(ψ1 7→ ψ2)) =(memAST (φ(ψ1 7→ ψ2))−memAST (ψ2)) +memAST (ψ2)

=(memAST (φ(ψ1 7→ ψ2))−memAST (ψ2))+

memnode(□[l1,u3]) +memAST (φ)

≤(memAST (φ)−memAST (ψ1))+

memnode(□[l3,u3]) +memAST (φ)

=(memAST (φ)−memAST (ψ1))+

memnode(∧) +memAST (φ)

≤(memAST (φ)−memAST (ψ1)) +memnode(∧)+

memnode(□[l1,u1]) +memnode(□[l2,u2]) + 2 ·memAST (φ)

=(memAST (φ)−memAST (ψ1)) +memAST (ψ1)

=memAST (φ)

The proof follows for ♢[l1,u1]φ ∨ ♢[l2,u2]φ→ ♢[l1,u3]φ.

(R5): Let ψ1 = □[l1,u1]φ ∨□[l2,u2]φ and ψ2 = □[l3,u3]φ where l1 ≤ l2 ≤ u2 ≤ u1 and l2 = l3,

u2 = u3. We show that

ψ1.wpd =max(φ.wpd+ u1, φ.wpd+ u2)

=φ.wpd+max(u1, u2)

=φ.wpd+ u1

72

≥φ.wpd+ u2

=φ.wpd+ u3

=ψ2.wpd

Therefore we have ψ1 ≡ ψ2 by Theorem 4 so that

memAST (φ(ψ1 7→ ψ2))−memAST (ψ2) ≤ memAST (φ)−memAST (ψ1) by Lemma 2.

Next we show that

ψ1.bpd =min(φ.bpd+ l1, φ.wpd+ l2)

=φ.bpd+min(l1, l2)

=φ.bpd+ l1

≤φ.bpd+ l2

=φ.bpd+ l3

=ψ2.bpd

Using Lemma 1 we see that memnode(∨) = memnode(□[l3,u3]) since ψ1.bpd ≤ ψ2.bpd. Then

memAST (φ(ψ1 7→ ψ2)) =(memAST (φ(ψ1 7→ ψ2))−memAST (ψ2)) +memAST (ψ2)

=(memAST (φ(ψ1 7→ ψ2))−memAST (ψ2))+

memnode(□[l3,u3],ψ2
) +memAST (φ)

≤(memAST (φ)−memAST (ψ1))+

memnode(□[l3,u3],ψ2
) +memAST (φ)

=(memAST (φ)−memAST (ψ1))+

memnode(∨) +memAST (φ)

≤(memAST (φ)−memAST (ψ1)) +memnode(∨)+

memnode(□[l1,u1]) +memnode(□[l2,u2]) + 2 ·memAST (φ)

=(memAST (φ)−memAST (ψ1)) +memAST (ψ1)

73

=memAST (φ)

(R6): Let ψ1 = □[a,a](φU[l,u]ψ) and ψ2 = φU[l+a,u+a]ψ where l ≤ u. Therefore, because

ψ1.wpd = max(φ.wpd, ψ.wpd) + u+ a = max(φ.wpd+ u+ a, ψ.wpd+ u+ a) = ψ2.wpd and

ψ1 ≡ ψ2 by Theorem 4, we have

memAST (φ(ψ1 7→ ψ2))−memAST (ψ2) ≤ memAST (φ)−memAST (ψ1) by Lemma 2.

Next, using Lemma 1 we see that memnode(□[a,a]) = memnode(U[l+a,u+a]) since

ψ1.bpd = min(φ.bpd, ψ.bpd) + l + a = min(φ.bpd+ l + a, ψ.bpd+ l + a) = ψ2.bpd. Then

memAST (φ(ψ1 7→ ψ2)) =(memAST (φ(ψ1 7→ ψ2))−memAST (ψ2)) +memAST (ψ2)

=(memAST (φ(ψ1 7→ ψ2))−memAST (ψ2))+

memnode(U[l+a,u+a]) +memAST (φ) +memAST (ψ)

≤(memAST (φ)−memAST (ψ1))+

memnode(U[l+a,u+a]) +memAST (φ) +memAST (ψ)

=(memAST (φ)−memAST (ψ1))+

memnode(□[a,a]) +memAST (φ) +memAST (ψ)

≤(memAST (φ)−memAST (ψ1)) +memnode(□[a,a])+

memnode(U[l,u]) +memAST (φ) +memAST (ψ)

=(memAST (φ)−memAST (ψ1)) +memAST (ψ1)

=memAST (φ)

The proof follows for (□[a,a]φ)U[l,u](□[a,a]ψ)→ φU[l+a,u+a]ψ.

(R7): Let ψ1 = (φ1U[l,u1]φ2) ∧ (φ3U[l,u2]φ2) and ψ2 = (φ1 ∧ φ3)U[l,u3]φ2 where l ≤ u1, l ≤ u2,

u1 ≤ u2, and u3 = u1. We show that

ψ1.wpd =max(max(φ1.wpd, φ2.wpd) + u1,max(φ3.wpd, φ2.wpd) + u2)

≥max(max(φ1.wpd, φ2.wpd) + u1,max(φ3.wpd, φ2.wpd) + u1)

74

=max(max(φ1.wpd, φ2.wpd),max(φ3.wpd, φ2.wpd)) + u1

=max(max(φ1.wpd, φ3.wpd), φ2.wpd) + u1

=max(max(φ1.wpd, φ3.wpd), φ2.wpd) + u3

=ψ2.wpd

Therefore we have ψ1 ≡ ψ2 by Theorem 4 so that

memAST (φ(ψ1 7→ ψ2))−memAST (ψ2) ≤ memAST (φ)−memAST (ψ1) by Lemma 2.

Next we show that

ψ1.bpd =min(min(φ1.bpd, φ2.bpd) + l,min(φ3.bpd, φ2.bpd) + l)

=min(min(φ1.bpd, φ2.bpd),min(φ3.bpd, φ2.bpd)) + l

=min(min(φ1.bpd, φ3.bpd), φ2.bpd) + l

=ψ2.bpd

Using Lemma 1 we see that memnode(∧ψ1) = memnode(U[l,u3]) since ψ1.bpd ≤ ψ2.bpd. Then

memAST (φ(ψ1 7→ ψ2)) =(memAST (φ(ψ1 7→ ψ2))−memAST (ψ2)) +memAST (ψ2)

=(memAST (φ(ψ1 7→ ψ2))−memAST (ψ2))+

memnode(U[l,u3]) +memnode(∧ψ2)+

memAST (φ1) +memAST (φ2) +memAST (φ3)

≤(memAST (φ)−memAST (ψ1))+

memnode(U[l,u3]) +memnode(∧ψ2)+

memAST (φ1) +memAST (φ2) +memAST (φ3)

=(memAST (φ)−memAST (ψ1))+

memnode(∧ψ1) +memnode(∧ψ2)+

memAST (φ1) +memAST (φ2) +memAST (φ3)

≤(memAST (φ)−memAST (ψ1)) +memnode(∧ψ1)+

75

memnode(U[l,u1]) +memnode(U[l,u2])

memAST (φ1) +memAST (φ2) +memAST (φ3)

=(memAST (φ)−memAST (ψ1)) +memAST (ψ1)

=memAST (φ)

The proof follows for (φ1U[l,u1]φ2) ∨ (φ1U[l,u2]φ3)→ φ1U[l,u1](φ2 ∨ φ3).

(R8): Let ψ1 = φU[l,u1]□[0,u2]φ, ψ2 = □[l,l+u2]φ where l ≤ u1. We show that

ψ1.wpd =max(φ.wpd, φ.wpd+ u1) + u2

=φ.wpd+ u1 + u2

≥φ.wpd+ l + u2

=ψ2.wpd

Therefore we have ψ1 ≡ ψ2 by Theorem 4 so that

memAST (φ(ψ1 7→ ψ2))−memAST (ψ2) ≤ memAST (φ)−memAST (ψ1)

by Lemma 2. Next we show that

ψ1.bpd =min(φ.bpd, φ.bpd+ 0) + l

=φ.bpd+ l

=ψ2.bpd

Using Lemma 1 we see that memnode(U[l,u1]) = memnode(□[l,l+u2]) since ψ1.bpd ≤ ψ2.bpd.

Then

memAST (φ(ψ1 7→ ψ2)) =(memAST (φ(ψ1 7→ ψ2))−memAST (ψ2)) +memAST (ψ2)

=(memAST (φ(ψ1 7→ ψ2))−memAST (ψ2))+

memnode(□[l,l+u2]) +memnode(φ)+

≤(memAST (φ)−memAST (ψ1))+

76

memnode(□[l,l+u2]) +memnode(φ)+

=(memAST (φ)−memAST (ψ1))+

memnode(U[l,u1]) +memnode(φ)+

≤(memAST (φ)−memAST (ψ1)) +memnode(U[l,u1])+

memnode(□[0,u2]) + 2 ·memnode(φ)

=(memAST (φ)−memAST (ψ1)) +memAST (ψ1)

=memAST (φ)

The proof follows for φU[l,u1]♢[0,u2]φ→ ♢[l,l+u2]φ.

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1. INTRODUCTION
	2. PRELIMINARIES
	2.1 Mission-time Linear Temporal Logic (MLTL)
	2.2 MLTL Monitoring
	2.3 Tree-based MLTL Monitoring Encoding
	2.4 Equality Saturation

	3. FIRST-ORDER MLTL MONITORING
	3.1 First-order MLTL
	3.2 FO-MLTL Over Bounded Dynamic Sets
	3.3 FO-MLTL Monitoring
	3.3.1 Auxiliary Valuation Functions
	3.3.2 FO-MLTL Monitoring Algorithms
	3.3.3 FO-MLTL Monitor Space Bounds

	4. MLTL MONITOR ENCODING OPTIMIZATIONS
	4.1 MLTL Rewrite Rules
	4.2 Inapplicable LTL Equivalences
	4.3 Memory Effects of Rewrites on MLTL Monitor Encodings
	4.4 Topological Optimization
	4.4.1 Heuristic-based Topological Optimization Algorithm
	4.4.2 Single Expression Topology Analysis

	4.5 Optimizing MLTL Monitor Encodings via Equality Saturation
	4.5.1 MLTL Equality Saturation Example
	4.5.2 MLTL Equality Saturation with egglog
	4.5.3 Optimal Encoding Extraction

	4.6 Experimental Evaluation

	5. CONFIGURATION COMPILER FOR PROPERTY ORGANIZATION
	5.1 Input Language
	5.2 Passes
	5.3 Serialization
	5.4 Assembly

	6. CONCLUSION
	BIBLIOGRAPHY
	. MLTL REWRITE RULE PROOFS

