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of comemporary interest in flexible multibody systiem dynamics. They include a rotating
bcam which shows the stitfcning cffect on the vibration of the becam in the rotation plane,
a four bar mechanism which indicates the softening cffect, and a four body manipulator
system with two flexible links which investigates the influence of the flexibility on 2-D
and 3-D mancuvers. The significant advantages of the method developed in this thesis
arc the casc of modclling, particularly cvident in the casc of mixed cnergy domains. It
has been revealed from the solutions of these example problems, that the geometric
stiffening and sofiening of flexiblc bcams under large dynamic axial forces have
significant c¢ffects on the prediction of dynamic bchavior and digital simulation of the
ficxibic systems. It has also been shown that the inverse dynamic control of a ficxible
multibody systicm without considcration of the flexibility of the systcm would causc

unaccepted crrors in position control. These examples demonsirate the validity of this

multibond graph approach.
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- Chapter 1 -

Introduction

1.1 Introduction to Flexible Muitibody System Dynamics

The dynamic modcls of multibody systems with flexible members arc being
increasingly considered in the simulation of dynamics and control of mechanical
systems because of the trend towards higher operating speceds, hecavicer pay loads and
lighter weights used in the design of mechanical systems such as satcllites, aircraft,
trains, mechanisms and robots. This interest is duc to the fact that the dynamic loads
at the interconnections of the systems and the position accuracy of the bodies can be
influcnced significantly by the vibrational deformation of the flexible members in the
system.,

Flcxible multibody systems arc characterized by rigid and flexible bodics with
incrti¢ and springs, dampers, scrvomotors, intcrconnected by rigid or ficxible joints.
For multibody systems with all rigid bodics, the governing cquations of this kind of
system arc highly non-lincar cquations of motion. Many methods can be uscd to derive
these governing cquations, such as the Newton-Euler method [Gupta 1974}, Lagrange’s
cquation [Paul 1975), Lagrange’s multipliers [Nikravesh 1984], Kane’s cquations
[Kane 1968]. and Wittenburg’s approach [Wittenburg 1977]. For multibody systcms
with flexible members, vibrational deformation of these flexible members must be
considered in the dynamic analysis.

During the last two dccades, many investigators have been pursuing rescarch in
the arca of dynamics of multibody systems containing ficxible bodics. One approach
to model this problem was to cmploy finitc clements with large displacement

coordinates. Likins [1972] developed this method to formulate flexible appendages on
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satcllites. Similar work was done by Cavin and Dusto {1977]. In this mcthod, 10 model
a flexiblc member many clements would be requircd. This made the number of
coordinates, and degrees of freedom to be included. cxtremely large. An approach
which climinatcd many of these coordinates was presented by Dubowsky, et al. [1977}.
In this approach, componcnt mode synthesis was used 1o reduce the number of
coordinates by doing a modal reduction on the internal degrees of freedom. Modal
coordinates for the lower frequencics were used 10 represent the deformation of the
flexible bodics. Similar approaches were proposed using component modes by Shabana
[1982], Turcic [1984], and Wu and Haug [1989]. These methods used different
approachces to formulate the overall cquations and solution mcthods.

Another approach to formulate the vibrational dcformation of flexible members
is to attach a local reference frame to an assumed rigid body to the flexible body and
cmploy component normal modes defined relative o this reference (rame |Ho 1977,
Huston 1988, Wiclenga 1984, Singh 1985, Book 1984|. The differences between the
approaches used by these authors lic in the different principles used to derive the
governing cquations. This mcthod in fact is the same as the simpliticd finite clement
mcthod using component modes to reduce the number of coordinates. 1t is an issuc that
this method does not adequatcly consider the phenomenon called dynamic stiffening
and soficning, also called motion induced stiffncss of flexible members [Banerjee and
Dickens 1990]. It was first pointed out by Kanc [1987] and further investigated by
Amirouche {1989] and Bancrjee [1990] that the non-lincar gcomctric stiffness duc to
the axial force of becams and mid-surface force of platc has considerable effect on the
prediction of the dynamical behavior of these flexible members in a multibody system.
The typical cxamplcs arc bcams and platcs subject to high speed overall motion [Kance
1987, Barnerjce 1989].

The mcechanics of spin-stiffecning of bcams has long been known, for example,
Bisplinghoff ct al. {1955], and Mcirovitch [1967]. For a more gencral rotating
structurc, Likins {1974 was onc of the carlicst 10 suggest the usc of gcomcetric stiffness

to augment the structurc stiffness and hence correctly represent the dynamic response.
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This gecometric stiffness method was further developed by many other rescarchers
using diffcrent assumptions and approaches [Levinson and Kanc 1976, Turcic and
Midha 1984, Wu and Haug 1988, Idcr and Amirouche 1989, Bancrjce ct al. 1990,
1991). Among them, the way to cxtract gecometric stiffness by including non-lincar
strain-stress rclationship [Ider and Amirouche 1989] is thc most intcresting for

multibond graph modelling.

1.2 Introduction to Bond Graph Method

The bond graph is a unified approach to the modelling of dynamics of
multidisciplinary physical systcms. It was introduced by Paynter {1961] and developed
by Karnopp and Roscnberg (1968, 1975], and Thoma[1975]). The bond graph is an
cncrgy based graphical representation of physical systems. In a bond graph, every kind
of lumped physical system can be modelled by a bond graph element, such as storage,
dissipation or transformation of cncrgy. All elements are interconnected through
encrgy conscrving bonds or junction structures to perform cnergy cxchange between
these clements. A complete bond graph represents a physical system, gives insight into
its physical structurc and keeps all physical quantitics or states of the physical system.
Another important aspect of bond graph is its computation structure. Explicit or
implicit governing cquations of the system, and their form for numerical solution, can
be convenicntly extracted from the bond graph by a systematic proccdure. There have
been programs for the system simulation that usc bond graph as mcdia, such as
ENPORT |[Roscnberg 1974), CAMP [Grand 1982], TUTSIM [Mcerman 1981},
SYSBOND [Mcinnis and EIMaraghy 1989], CAMAS {Brocnink 1990}, and BONDYN
|Felez 1990)].

The application of bond graph tcchniques into particle dynamics was initiated
from the beginning of development of the bond graph technique [Karnopp and

Roscnberg 1968, Rosenberg 1972, Brown 1972]. However, the real application of the



bond graph tcchnique in multibody system dynamics was pioncered by Karnopp [ 1976
and improved by Bos [1986]. Karnopp proposcd a non-linear bond graph structure
called Modulated GYrator array (MGY) to modcl the rotation property of a rigid body
in spatial motion. This structurc was given a specific name Euler Junction Structure
(EJS) [Karmopp 1978] and was acccpted by most investigators [Breedveld 1985, Bos
1985, Tierncgo 1985]. Howcver, as the number of bodics in a multibody system
incrcascs, it becomes more and more cumbersome to usc the conventional bond graph.
Just as matrix algebra makes algebra much simpler in notation and digital computation,
the multibond graph was developed to reduce the complexity of a bond graph in
complex physical systems [Bonderson 1975, Breedveld 1982, 1984, 1985]. Bos applicd
this multibond notation into multibody system dynamics and discusscd many issucs in
this application {Bos 1986]. Rccently, a program developed by Felez [Felez 1991 for
modelling and simulation of multibody systems was identical in theory 1o Bos® thesis
[1986].

Until now, bond graphs were mostly used to model lumped parameler sysicms,
The application of bond graphs into ficxiblc multibody systecm dynamics started with
Margolis’s work [Margolis 1978], in which he used normal modcs of flexible structures
to turn distributcd systems into lumped systems which can then be represenied by bond
graphs for vibration analysis. This idca was developed in his latc work [Margolis 1980
and further cxtended into flexible multibody system dynamics [Margolis and Karnopp
1979]. They developed a bond graph to model a frece-moving beam undergoing planar
ovcrall translation and rotation with in planc vibrations. Although they did not
cxplicitly statc it in their paper, they used free-frece normal modes and a mean-axis
local reference frame to decouple the coupling between rotation and vibrations,
However, it has been shown [Wiclenga 1984 that this kind of choice results in a
significant crror for a flexiblc link undcr boundary conditions such as fixcd-free
(cantilever), fixed-hinged, and fixcd-fixed. Yoshimura [1989] and others proposed a
multibond graph rcprescntation for flexible multibody systems. In their work, however,

only clasticity of the flexible members is considered using compliance clements, whilce



the dynamic forces causcd by the vibration of the flexible bodics arc ignored. Samanta
11990] presented a bond graph mcthod for fiexible multibody system dynamics. In his
paper, the samc bond graph as Margolis’ [ 1979] for a planar moving ficxible body with
in-planc vibrations was used, which is subject to thc same restrictions in application.
The common problem of all bond graphs for ficxible multibody system dynamics
mentioned above is that they cannot deal with three dimensional problems. Three
dimensional problem involves coupling of accelerations between translational,
rotational and flexible vibration modes. A multibond graph representation for a 3-D
moving flexible body was developed by Yazman [1989]. However, many
simplifications have been assumed in the multibond graph rcpresentation and this may

causc problems in high spced motion.

1.3 Objectives of this Thesis

This thesis is intended to provide a gencral computer-aided modclling approach
and simulation of dynamics of a threc dimensional flexible multibody system including
mixcd cnergy domains. With consideration given to the state of the art in flexible
multibody systcm dynamics and multibond graph with its application into multibody
dynamics, the following objectives were formed.

- To investigate the vibration behavior of a flexible body in a multibody system
which is subjcct to high speed rotation and large axial forces. This will give a betier
understanding of the effect of non-linear geometric stiffness on the vibration of the
{lexible body in a multibody system.

- To dcrive the cquations of motion of a flexible body undergoing 3-D overall
motion with consideration of gcometric stiffness. in the form casy for multibond graph
represcentation which also lends itself to convenient computer-aided modelling.

- To discuss the simplitication of equations of motion by using diffcrent types of

body reference frames.




- To develop a general form of multibond graph, and other forms of multibond
graphs in terms of differcnt types of body refercnce frames, and a gencral procedure
for modelling a flcxible body.

- To develop multibond graphs for mechanical joints and a proccdure for
modelling of flexible multibody systems.

- To discuss the derivation of equations of motion from multibond graph and the
algorithm for their numerical solution.

- To develop a computer-aided modelling and simulation software for the
implementation of construction of multibond graphs and derivation of cquations of
motion.

- To use the developed techniques and computer software (0 study somc problems

in flexible multibody system dynamics.



- Chapter 2 -

Concepts from Multibond Graph for thé Dynamics of a
Single Rigid Body

2.1 Introduction

A ficxible multibody system usually consists of flexible members (bcams, plates,
mcmbrancs, ctc.) as well as rigid members. The rigid multibody dynamics has been
well developed in the literature for a long time. The bond graph technique has also been
applicd to rigid body dynamics for more than a decade. One of the reasons that this
chapter is included is to provide a review of principles and equations of rigid body
dynamics from which the basic principlc and many terms in the flexible body dynamics
will bc morc casily rccognized. It also provides a review of multibond graph
representation of rigid body kinematics and dynamics from which some of the
stratcgics used in the multibond graph representation of a single rigid body can be
carried over to a flexible body. In addition the notations of vectors, tensors as well as
matrices arc dcfined for coordinate systems, generalized displaccment, velocitics as

wcll as gencralized forces which will be used throughout the thesis.
2.2 Mathematical Preliminaries

2.2.1 Frames and Cartesian Coordinates

In classical mechanics, to describe geometrical and mechanical relations it is

required to deline a frame of axes spanning the space. It is common practice to use the



Cartesian framc which is characterized by the location of its origin o and by the
orientation of three perpcndicular axes, representicd by threc unit vectors é, é, é,
ordercd in a right-handed systcm. Thesc threc unit vectors are called the base of the

frame and the basc is identified in a compact form {é} which is defined as

In this thesis a frame will be referenced by its base with a speciticd number as
superscript.
Having cstablished a frame, the location of an arbitrary point P is specilicd with

respect to this frame by its Cartesian Coordinates p, p. p, shown in Figure 2-1.

P,

Figure 2-1 Frame, Cartesian coordinates and position vector



In multibody system dynamics, more than one frame is necessary. Usually cach
body has a frame attached to it and there is a global onc for the whole system. The
motion of the system and the relative motion between the bodies can be represented by
thc motion of thcse frames. In this thesis, the frame for the wholc multibody system
will be denoted as {é°}. The motion of trame {éi} with respect to frame {&°} can be
rcgarded as being composed of two simple motions called translation and rotation. The
translation can be determined by the coordinates of the origin of frame {éi} in frame
{é°} . The rotation can be rcpresented in different ways such as Euler angles, Braynt

angles or Euler paramcters [ Wittenburg 1977].

2.2.2 Vectors, Dyadics and their Matrix Representations

Vectors arc commonly used in classical mechanics, visualized as directed line
scgments having a specified length and direction. These kinds of vectors can be called
gecometric vectors and will be graphically identified by an arrow and symbolically by
an identificr with an arrow on top. Geometry of motion is at thc hcart of both the
kinecmatics and dynamics of mechanical systems. Vector analysis is the time-honored
tool for classical mechanics. In its geometric form, however, vector algebra is not wcll
suited for computer implementation. In all computer aided kinematic and dynamic
analysis, a systematic matrix formulation of vector algebra, referred to as algebraic
vector representation, is commonly used. This section gives the clementary properties
of matrix and algcbraic vectors.

A vecetor can be used Lo represent position of a point in space and be measurcd
with respect o different frames. For example, the position of point P in Figure 2-1 can
be represented by vector P.

When measured in frame {&}, thc vector P can be represented by a linear

combination of three unit base vectors

- N s . o s - 7
P=pe+pe+pé = {PY (&) = {& (P} 2.2)
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wherc column matrix {P} is the coordinatc component of vector P in basc {é}. In
this thesis, {P} will be called the algebraic vector of P. The original vector will be
distinguished as a geometric vector. These two forms of a vector will be simply called
vectors, while the diffcrence can be distinguished by the symbol.

An often uscd skew-symmetric matrix associatcd with a algebraic vector {P} is

defined as

) 0 -p, p,
(Pl =|p, 0 —p, (2.3
_py Py 0

where the tilde placed over the vector indicates that the components of the vector are
used to generate the skew-symmetric matrix. This opcration is uscd to represent cross
multiplication of vectors in a matrix form,

A dyadic is a mathematical notation which is dcfined as
Q=db+éd+... (2.4)
where d... arc arbitrary vectors. The dyadic is used in vector algebra, in which dot
multiplication (prc- or post-) of a dyadic with a vector producces a vector. Applying the

algebraic form of a vector to the right hand sidc of the dyadic with respect to the same

base, the algebraic form of a dyadic can be obtained as
2 » T T T & > T »
Q= {&} ({a} {b}+{c} {d}+..){e} = {e&} 1Q]{e} (2.5)

where matrix [Q] is made of the coordinates of the dyadic and is symmetric.

A special dyadic in rigid body dynamics is unit dyadic which is defincd as

- a2 > 2 a > » a, I . »
E =¢ee,+ee,+e.8, = {e} /[/Is{{e} (2.6)

.~
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where [E] is a unit matrix. The dot multiplication of a unit dyadic with a vector gives
the vector itsclf.

The application of a dyadic in rigid body dynamics is the simplification of double
cross multiplication of vectors. Recalling that a double cross multiplication of three
vectors can be simplified as two vectors, and using the properties of dyadic and unit
dyadic introduced above, a double cross multiplication of three vectors can be writlen

as a dot multiplication of a dyadic and a vector

ax (bx&) = (@-8)b-2(a-b)

; v X))
=[(d-8)E-¢4)-b

The basic relations between the vector, dyadic opcration and their algebraic forms
arc listed in Table 2-1. The verification of this relation can be found in textbooks

| Wittenberg 1977, Roberson 1988].

Table 2-1 Vector, dyadic terms in geometric and matrix forms

Geometric Matrix

a {a}

a+b {a} + {b}

pa B{a}

i b {a}" {b}

axb lal {b}

Q-a 10 {a}

@x (bxé) ({a}" {c} (E] - {c} {a}) (B}

2.3 The Frames, Position Vectors and Orientation Definitions for a Body

In order to locate a body in space, an inertial frame fixed on the carth or moving
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relative to the earth at constant velocity and a body reference frame attached on the
body are usually used, which is shown in Figure 2-2. The unit vector array {é°} forms
a Cartesian coordinate system of the inertial frame, and the unit vector array { é‘} forms another
Cartesian coordinate system of the body reference frame for the body. which are

T

(&7} = {&.8,8) .8

(#y = (&8 2.9)

Figure 2-2 Coordinate systems and position vectors for a rigid body

Vector R locates the origin of the body reference frame in the inential frame, which
determines the position of the body in space. Vector # shows the position of an arbitrary
point P in the body reference frame. Vector 7. is the position vector of the mass center of the
body in the body reference frame. The instantancous position of the point P and the mass center
of the body in the inertial frame is P and P.. It is obvious that

=

P=R+} 2.1
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P.=R+}, 2.11)

The oricntation of the body in space can bc described by the oricntation of the
body refcrence frame relative to the inertial frame. There are scveral coordinate
systems for the description of this orientation.

In Euler's thcorem [Wittenberg 1977] it is stated that two arbitrarily oriented
bases with coinciding origins can be made to coincide with each other by rotating one
of them through a certain angle about an axis. So the orientation of a2 coordinate system
with respect to the other can be defined by a rotation angle and an axis of rotation.
Eulcr parameters are derived from this idca. In practice, oricntations are also described
in Bryant angles or Euler angles. Both Euler angles and Bryant angles usc sets of three
successive rotation angles as coordinates. Euler angles use so called 3-1-3 sequence,
or precessing, nutation and spin angles; Bryant angles use 1-2-3 sequence, or roll, pitch
and yaw. The advantages of thesc two coordinates are that it is casy for physical
implemcntation of thcse angles by three angular drivers corresponding to each angle.
Another advantage of Bryant angles lies in that the transformation matrix can be
lincarized when the angles are small. However, both Euler angles and Bryant angles
share two disadvantages

1. All terms in the transformation matrix arc trigonometric functions which are
incfficient in computer simulation.

2. Both anglcs have a critical situation in which two angles can not be idcntified
uniqucly. For Euler angles, when the nutation angle approaches nax, n =0,1, ...,
processing anglc and spin angle can not be determined uniquely. For Bryant anglcs,
when the pitch angle approaches to ; + nx, roll and yaw angles become indctcrminate.

Euler paramcters avoid these two disadvantages. The transformation matrix is
simply a quadratic function of parameters. And its parameters can always be
determined uniqucly. However, this coordinate system has four paramctcrs and a

constraint condition is attached to them. Another disadvantage of Euler parametcers is
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that they arc not as convenicnt as both Euler angles and Bryant angles to implement
rotation displaccment on gencral rotation of a body. Duc to their advantages and
difficulties, the question of which rotation coordinate system should be used in this
thesis will be answered by the practical problems.

A vector can be described in different frames and the relation between these
diffcrent descriptions is rcpresented by a transformation matrix. For the two frames

described in this scction, the rclation is

(&} = 14" {#} or (&} = 14" {&") 2.12)
where [Aml is the transformation matrix between these two frames. 1t is an orthogonal
matrix which has a property of

-1
O
A7)

T .
= [A”] = 14"} 2.13)
For vector V, for which column matrices {V"} and {V'} arc its coordinates in

frame {éu} and frame {éi}, the following rclation holds in terms of cquation (2.12)
V') = 14%) (v} (2.14)

In Figure 2-2, if vector P is described in incrtia frame {€°} and others are
described in body reference frame {&'}, the algebraic vector form of cquation (2.10)

can be also written as
{P} = [AYI (IR} + {r}) (2.15)

In different rotation coordinatcs, the transformation matrix is different. Let
v, 0, @ represent precessing, nutation and spin angles in Euler anglces, ¢,, 95, ¢4 as roll,
pitch and yaw in Bryant angles and {p} = {py, P, P2 P3} I as Euler parameicrs, The

transformation matriccs in these rotation coordinates arc as follows {Roberson 1988|:



Eulcr angle

. CYCP—sYcBs®  cysQ+syclcp sysO
A" = |- SYcQ—cychs@ —sysp+cycOce cysO
5059 —sOco co

where s( ) =sin( )and c( ) = cos( ).

Bryant anglcs

CO,¢0; O 5Oy + 59, 50,60, 50,50, — P, 50,0,
(4 = —C0,50; €0,cO;—59,50,50, 560,00, +c0,50,50,
50, -56,c¢, cd,cod,

Euler paramciers

r —

2. 2 1
Po*‘Pl-i P1P2+PoP3 P\Pa—PoP2

0, _ 2 1
(A7) = 2ip,p, - pPops P(2)+P2‘§ Pap3+ PP,

2. 2 1
\P3tPoPr PaP3—PoP Po"’Pa—i

2.4 Kinematics of a Rigid Body

15

(2.16)

2.17)

(2.18)

Vclocities arc the time derivatives of position vectors with respect to different

frames. Velocitics with respect to the inertial frame are called absolute velocities and

otherwisc arc relative velocities. In this thesis, velocitics arc denoted by a dot on the

top of thc position vectors.

The velocity of the point P and the center of mass P, of the rigid body can be
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obtaincd by taking the derivative of its position vector, which is

P=R+Qx# (2.19)
P. = R+8xk, (2.20)

where f’ is the absolute vclocity of thc mass point P, I-; is the absolule translational
velocity of the body reference framce {é‘} and £ is the absolute angular velocity of the
body referencc frame. The acceleration of the point P is the sccond derivative of the
position vectors, which is

.
- —

P=R+Qxi+0x (x5 2.21)
If vectors P and P, are described in the inertial frame {&°} and others arc described
in the body reference frame {é'}, the algebraic vector form of equations (2.19), (2.20)

and (2.21) can bc wrillcn as

{P} = |A%] ({R} - [F] {2}) (2.22)
{P.} = [AY] ({R} - 7] {Q}) (2.23)
{P} = {R} - [F] {Q} +8x (2 xF) (2.24)

The position of the point P in time can be obtaincd by integration of {P}. However,
this integration is mecaningless until the angular velocity is expressed in terms of
rotation coordinates because the finite rotation is not a vector. The angular velocities

in terms of diffcrent rotation coordinatc systems arc as follows [Roberson 1988]:

Euler angles

50s¢ co O {V}
0

c0 0 HY

{Q} = |s6cp ~sp 0] 6 (2.25)
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Bryant angles

ch,co, 56,0 2

{2} = [-ce,50, co, 0 {6, (2.26)
s¢, 01 0,
Euler parameters
=Py Po P3 P2
{Q} =2 ~py —Ps Py Py {pP} 2.27)
| “P3 P2 Py Py |

The inverse of these three relations can also be used 10 obtain the rotation coordinales

of the body reference frame in the inertial frame.

2.5 Dynamics of a Rigid Body

2.5.1 Mass Geometry of a Rigid Body

The motion of a rigid body depends not only on the forces and torques acting on
it, but also on the mass gcometry of the body. For the dynamics of a rigid body, it is
not nccessary to know in detail how mass is distributed throughout the body. All one
nceds to know is the location of the mass ccnter, as well as six quantities called
moments of inertia and products of inertia.

The mass center of a body is a unique and special point CM that meets the

following relation (referring to Figure 2-2)




o= ;'ﬁ j'i-pdv (2.28%)
v

where p is mass density of the body, v the volume of the body and m the mass of the

body which is

m = j pdv (2.29)

When the rcference point o' is located at the mass center, F. will be zero.
To define moments of incrtia and products of incrtia of a body, an inertia dyadic
should be first introduced. Referring to Figure 2-2, the inertia dyadic of the body

relative to reference point o' is defined as
J = J(k-hE-F)pav (2.30)

Assuming that the dyadic and vector are measured in the body refercnce frame

{&'}. the matrix form of this inertia dyadic can be writicn as

v gair T T T N
I= A& JednT-Arp) ki = {ry {r} Ty pdv {#)
v (2.31)

= (&} (&)

where matrix [J] is called the incrtia matrix. It is a symmetric matrix and thercfore
only six of its elcmecnts arc independcnt. The threc diagonal clements arc called
moments of inertia and the three off diagonal elecments are called products of inertia.

It should be noted that the inertia dyadic defined above is about reference point
o', the origin of the body refcrence frame. If the reference point changes, the inertia
dyadic will also change. It is very useful to find the relation between these inertia
dyadics about different reference points. The Huygens-Steiner rulc mcets this
requirement [Wittenburg 1977). It states that if J and J. arc inertia dyadics about

reference point ¢' and mass center CM respectively, the following relation holds
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J=TJ.+m((F. - bYE~}F.E,) (2.32)
or in matrix form

(2] = 1) +m(({r,}7- {r.}) [E] - {r,} {r}D (2.33)

2.5.2 Momentum

Lincar momentum of a mass clement in the rigid body is defincd as {P} pdv. The
definition of angular momentum Hy of a rigid body about a fixed point in an inertial

frame, say o, is
Hp = ji-x Ppav (2.34)
¥y

Substituting equations (2.10) and (2.19) for P. Pand using equation (2.20), the angular

momentum becomes
Hy= mRxP,+mi,xR+J -0 (2.35)

If the origin of the body reference frame coincides with the origin of the incrtial frame,

the angular momentum changes to about point o', which is
A=mtxR+] 03 (2.36)

Further, if the origin of body reference frame o' coincides with mass center CM, the

angular momentum becomes

A.=).-8Q 2.37)
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2.5.3 Dynamics of a Rigid Body

The motion of a single rigid body can be described completely in Cartesian
coordinates, such as {é‘} and {2°}. In these coordinatc systems, Ncewton-Euler laws
arc the best method to describe the motion of the rigid body.

Newton’s second law describes the relation between the resultant force on the

body and the translational acceleration of the body as
mP, = F (2.38)

where vector F is the resultant force which is resulted from volume force and surface

traction on the body, which can be defined as

F =j§pdv+jdi~',
v s (2.39)
=mg+F,

where # is gravity, f?, is resultant surface traction and s is the surface of the body.
The: matrix form of this equation can be obtained by referring to the carlicer
se.tion. Assuming that P, and § arc represented in the incrtial frame {6} and F is

given in the body reference frame, the matrix form of the cquation is
4 (mp,) = mig}+ A% {F,} (2.40)
Eulcr’s law states that the time derivative of the angular momentum of the body ¢quals

the resultant torque on the body, both being about the fixed point in the inertial framc,

say o,
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dH, .
a - 2.41
dt T, (2.41)
where
7,= Il_" x gpdv +ji’x dF,
v s
=P xmp+RxF,+ [FxdF, (2.42)
]

=Rx(mg+F,) +F.xmg+T

The term T above is the torque about the origin of the body reference frame duc to the

surfacc traction represented by T, which is
T = [rxdF, (2.43)
bl

According to cquation (2.35), the time derivative of the angular momentum can be

wrillen as

dH I = S P
E‘)=mePc+mi'ch+J-Q+Q><(J'Q) (2.44)

When this expression and cquation (2.42) are substituted into equation (2.41), the

Euler equation for a rigid body is obtained as

micxfl+]-ﬁ+ﬁx(j-ﬁ) =7‘+ic><m§ (2.45)
Equations (2.38) and (2.45) arc thc most general equations of motion for a rigid body.
When the origin of the body reference frame cnincides with the mass center of the body

the cquation (2.45) will have simpler form which is

7. -Q+0x(.-0) =T (2.46)




to
tJ

Equation (2.45) is not suitable for multibond graph representation. The rcason for this
will be discussed in next section. Here, the Huygens-Steiner rule is uscd to change the
inertia dyadic about the origin of the body reference frame to the inertia dyadic about
the mass center. When cquation (2.32) is substituted in equation (2.45), the cquation

becomes
mb x (R+Qx# +8x (xF,)) +m+), Q+0x (. -Q) = T+F.xmg (247

Noting that the terms in the large bracket forms the acceleration of the mass center, the

cquation can be written as
mb,xP,+), Q+83x J,-Q) = T+i. xm@ (2.48)

The matrix form of cquations (2.46) and (2.48) are, respectively

] {82} = [Ho {Q} = (T} (2.49)
.1 {9} + (7] (A1 S((mP)) - [H) {2} = (T} +mI7) {8} (2.50)

2.6 Multibond Graph Modelling of a Single Rigid Body

The bond graph is a symbolic representation of physical systicms. In this thesis,
it is assumed that the reader is familiar with the concepts of bond graphs. A dctailed
discussion can be found in textbooks written by Karnopp and Roscnberg {19785, 1983].
For mechanical systems, especially multibody systems, a morc concisc multibond

notation has becn used [Breeveld 1985, Bos, cic. 1985, 1986). Thc notation of
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multibond graphs which arc uscd in this thesis is given in Table 2-2. The multibond is
dcnoted by an arrow with a double lined tail. A number in between the two lines means
the dimension of the bond. Multiport elements are denoted by bold capital characters.
The matrices on the right side of or under the capital characters are the constitutive
rclations of the clements.

From Table 2-2, it can be scen that the constitutive laws of multiport elements are
bascd on matrix opcrations. This gives the fundamentals of multibond graph modelling
for the motion of a rigid body. The multibond graph modelling of a rigid body has been
exiensively discussed by Bos [1986]. This section lists the multibond graphs for
kinematics and dynamics of a single rigid body bascd on Bos’ rcsults.

Assuming that Figurc 2-2 represents a freely moving rigid body having its mass
center at point CM and a joint at point P, two coordinatc systems have been set up.
Framc {é&°} is thc inertial frame fixed on the ground and frame {é'} the body reference
framc attached to the body at an arbitrarily chosen reference point. The procedure to

cstablish multibond graphs for kinematics and dynamics of the rigid body is as follows:

1. To set up 1-junctions

In bond graphs, 1-junction represents flow which is velocilty in mechanical
systems. The multibond graph for a rigid body should include all important velocity
variables in kincmatics and dynamics of a rigid body. Referring to the last sevcral
scctions, these velocities should appear in the bond graph as: absolute velocity of the
reference point l—é angular vclocity of the body reference frame Q, absolute velocity
of the mass center i’( and absolutc velocity of the joint f’

For the convenience of bond graph representation, all velocities are measured in
the body reference frame cxcept the absolute velocity of the mass center, which is
mcasured in both frames. Therefore, there is a 1-junction array for each velocity
component vector except the absolute velocity of the mass center which has two 1-

junction arrays, onc is the component vector in body reference frame and the other in

the incrtial frame. These 1-junctions are plotted in Figurc 2-3 (a).




2. To set up multibond graph for kincmatics

This step sets up the rclations between the velocity variables through adding 3-
dimensional multibond, O-junction arrays and modulated transformations. The
relations are bascd on the kinematic equations (2.22) and (2.23). From cquation (2.23),
the component vector in the inertial frame of the absolute velocity of the center of mass
is the superposition of absolute velocity of the reference point and the velocity duc to
the rotation of the body, and then the transformation from the body reference frame to
the inertial frame. The velocity duc to rotation is directly proportional to the angular
velocity of the body which is represented by a transformation clement. The
superposition is represented by a 0-junction and the coordinatc transformation is
represented by a modulated transformation clement because the transformation matrix
is a function of the orientation of thc body. The velocity of the joint can be obtained
in the same procedure except the coordinaic transformation if the velocity is mcasured
in the body refercnce frame. Thes: two multibond graph structurcs form the multibond

graph for kinematics of a rigid body, which is drawn in Figurc 2-3 (b).

3. To add dynamic properties

The multibond graph for dynamics of a rigid body can be obtaincd by adding
multiport elements which represent clementary dynamic propertics of the body. These
clements arc the translational and rotational inertia, cffort source represcenting gravity
force and surface traction, and an Eulcr Junction Structure. The basic cquations arc
cquations (2.40) and (2.50). The cquation (2.40) can be rcpresented in the multibond
graph by adding an effort sourcc of gravily and an inertia array with unit constitutive
matrix multiplying the mass of the body at the 1-junction of velocity component in
inertial frame and adding an effort source of the resultant surface traction at the 1-
junction of translational velocity of the reference point. The cquation (2.50) can be
represented in the multibond graph by adding a multiport incriia clement of the

component matrix of the inertia dyadic, a Euler junction structure and a torquc duc to
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the surface traction at the angular velocity of the body. This is shown in Figure 2-3 (c).

Table 2-2 Multibond graph terminology

Multibond
Multibond Single Bond Equivalence
{e} e
{e] = {e e ¢} f 7
n / 1
1 T I § — f)
{1} e
f 4
Multiport Elements and Element Arravs
Multibond Graphs Constitutive laws
SUM: |D]
Bin Bout
3/ 7 D= [362] (Bout) = DT (Bin}
2 :7 10
(D]
{c} (1) =IMI Y te)ar
: or n :IM
mn ; l e f 1im or (e} =[MHd{f}/dt
e} {e} =fC1lf(fian
7 cicl or ::7'" CiC]
{f} or {f}=[Cld{e}/dt

(Table 2-2 continued on next page)
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{e}
n R :[R]
{f}

(e}

{e}I
MTF
(n, m

{e}, {c}

MGY
(0, 6 1,

(e},
{cl1 %
(fh {fl5

3}3

N (e} = [RI{T}
n .
:I R:IRI or {f} =R V{c)

{e} = {F}
S : [F} n or S_:{V n
G T o spv) [T . e

(f}

(fly =1THA, ey =TI (),

MTF __m
or T 7 or {ehy=ITi{el, (1}, =1T" (1},

(e),=1G1 (N, (e}, =1GI"{f),

or W ,7|MGY! M/ o (f,=1Glel, {1}, =1GI el

(1}, = (), = (1),

{c} ;
\% {e}y + (cly + (e)ly=0

lfh (fl;  Oor  fe)y=fcl,={cly
fels (), + {fly+ (f)3=0
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Figure 2-3 (a) 1-junctions for velocity variables
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Figure 2-3 (b) Multibond graph of kinematics of a rigid body with one joint
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Figure 2-3 (c) Multibond graph of dynamics of a rigid body with one joint



- Chapter 3 -

The Vibration Behavior of a Flexible Body in Multibody

Systems

3.1 Introduction

The motion of a flexible body in a2 multibody system has been considered as the
combination of a overall motion of the attached body reference frame and vibration of
the flexible body itself about the reference frame. At the beginning of the investigation
of this problem, the ovcrall motion and the vibration were analyzed scparately by
scveral rescarchers. The flexible body was trcated as a rigid body first. The motion of
the rigid multibody system was obtaincd through available techniques. Then the
incrtial forces duc to the rigid body motion were imposed on ficxible bodics to analyzc
thc vibra .on of these bodies [Erdman ctc. 1971, Winfrcy 1972]. The coupling between
the ovcrall motion and the vibrations of the fiexible body was ignored. This method
gives an approximation of the motion of the flexible multibody system. Later, the
ovcrall motion and vibrations of the flexible bodics werc considered together in the
derivation of the equations of motion of multibody systcms, in which lincar vibration
theory was adopted to account for the vibrational deformation of the fiexible bodics
[Likins 1972, Book 1982, 1984, Ho 1977, 1985, Huston, 1981]. This conccpt was
belicved valid until Kanc [1987] pointed out that there is a problem in this approach.
Kane investigated the motion of a cantilever beam attached to a rotating basc and found
that the vibrational dcformation based on the approach was unboundcd. Then, he 100k
into consideration the coupling cffect between transverse dcformation and axial
deformation and used non-linear vibration theory and obtaincd morc reliable results.

Later, Ider and Amirouche [1989], Wu and Haug | 1988] investigated the same problem
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in different ways and concluded that the coupling of the transverse deformation and
axial deformation can not bc ignorcd in flexible multibody system dynamics when
angular velocity is high. However, the considcration of this coupling makes the
analysis very complicated. Bancrjce and Dickens [1989] proposcd a method in which
only the axial deformation caused by inertial force due to rigid body motion was
considercd, which simplified the derivation of the equations of motion and gave results
which agree with Kane's results.

In this chapter, this phcnomenon is investigated from thc point of view of
vibrations of a continuous system. The vibrations of continuous beams and plates have
been extensively investigated for many years. This can give a better understanding of
the vibration behavior of a flexible body in a multibody system and leads to a

modclling mcthod for this problem.

3.2 Transverse Vibration of a Beam Under Axial Forces

Transverse vibrations of bars under static axial forces has been discussed by
Mcirovitch [1967]. In the vibration of a flexible beam in a multibody system, the axial
dcformation is causcd by axial forces. The axial forces can be either the inertial forces
of the ficxiblc body itsclf or the constraint forces acting on the joints of the body. These
axial forces will affect the transverse or bending vibration behavior of the bcam. The
terms duc to this cffect can be scen in the partial differential cquations for the vibration
of the beam.

Consider a beam connected to a multibody system through the joints at the ends
of the beam, which is shown in Figure 3-1. A body reference frame is attached at one
joint of the bcam in such a way that x axis is along the centroid axis of the bcam and
the other two axcs arc along the two principal axcs of the cross section of the beam,
The beam could vibrate in x—y plane and x-z planc. The cross scction is assumed

symmectric about the principal axes. Therefore the vibrations in these two planes are
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decoupled and can be analyzed separately. Since the vibrations are described relative
to the body reference frame, the forces acting on the body are the incrtial forces of the
body due to the motion of the body reference frame and the rcaction forces at the joints
of the body. The components of the forces perpendicular 10 the centroid axis of the
beam form the excitation of the transverse vibration and the componcents of the forces
along the ccntroid axis of the beam form the axial force. To investigate the effect of
the axial force on the transverse vibration of the beam, plane problems arc discussed
in this section. Spacial vibration problems will be discusscd later, in the next chapter,

together with the dynamics of a flexible body.

Figure 3-1 Frame and Cartesian coordinates of a beam
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e | y(x0)

Figure 3-2 Forces on an element of the beam

Let us takc a look at the schematic model of a beam segment in Figure 3-2. In the
figure, x is the coordinate of any cross section of the beam and y (x, ¢) is the transverse
dcflection ficld of the beam in x—y plane. M, Q and P are bending moment, shear force
and axial force, respectively. The letter p represents the distributed excitation. Vectors
R and § arc the position of the origin of the body reference frame in inertial frame and
the position of the becam segment in the body reference frame respectively, The body
reference frame is moving in the planc and the beam is vibrating about the body
reference frame in the planc. The position of the beam segment in the inertial frame

c¢an be detined as




i
1
L[

+§
= i+xé,+y(x.t)é, Aa.n

The Bernoulli-Euler beam theory is used, which assumcs that rotary inertia and shear
deformation effects can be neglected. This is truc for slender becams.

The vibration cquation of the beam can bc obtained by Hamilton’s principle or
Lag.ange’s cquation. For both it is necded (0 cvaluate the kinclic cnergy, potential

energy, and work function. The absolute velocity of the bcam clement is

V= Z‘: = R+{xg+q
4 = ay,
= R+Qx (xe,+y(x, t)ey) + 3.2)

where § is the angular velocity of the body reference frame which is

Q= Q¢ (3.3)
The dot multiplication of the velocity is nceded in the kinctic encrgy expression, which
is

2

V.V =R+ PP +y)+( ) +2Q (Ryx - Ry) +2R gy+2xﬂ

dy (3.4)

where R is the magnitude of the velocity R, R, and R, arc its componcnts in the body
reference frame.

With this expression, the kinctic energy of the becam can be written as

L

0

P’ : ay. 2 P

j (R +nz(x‘+y2)+(b_«:') +2Q(R,x-k,y)+2(R,+xn)5’i’)dx (3.5)
0

D]

=1
=3
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The potential encrgy should include the effect of the bending moment and the

axial force. The potential cnergy due to the bending moment is
L 2
1 d
Uy =3 J'El(x) (372’2) dx (3.6)
0

To cvaluate the potential encrgy due to the axial force, the change in the

proji>ction on the x axis of a beam segment dx needs 10 be calculated, this is

2 2
e = 2, Oy 2, 1 dy.*
dy~—dx = Aj(dJc) + (ax) (dx)* —dx 3 (a.x) dx 3.7
Here the assumption has been made that the transverse deformation is small
cnough that, in the binomial ecxpansion, the higher order can be neglected. Also based

on this assumption, the axial forcc and transverse load are considercd as unchanged

during the deformation. Then the potential energy due to the axial force P is
lL .2
= - = - y
U, = P(ds~-dx) 2_([1’(7}‘) dx (3.8)

The total potential cnergy is
U=U,+U, 39

The work donc by the external transverse load p is

L
W= jp(x. 0y (x,1)dx (3.10)
Q0

Hamilton's principle is used in this section to derive the partial diffcrential
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equation of this continuous system, which states
H

j(ar-au+SW)d: =0 (3.11)

H

In this problem the variation in kinetic energy duc 1o the vibrational deformation

and the vibrational velocity is

8T = jp[(a +R, +xQ)8( )+(Q) QR,)S)]

[(  +R +xQ)a (3y) + (sz—QR,)By] (3.12)

O'—.P

Therefore, since by definition, 8y (x, ¢) is zcro at ¢; and ¢,,

! {
f(ST)dt = jp{_f[ N,k +xﬂ)a (8y) + (§2%y — QR,)By]dl}

f o

L L)
dy . 4 _ iay . (O — OB .
_(,;p{(a—t+R,+xQ)6y|,‘ j[a:(é'z”’”“)sy (2% nR,)sy]m dx
4

2
(—f- +R +xQ)8y—(Qy S)R,)Sy]dxdt (3.13)

i

6Ho

The variations of the potential energy and work function can be written as

U = 85U, +8U,
L
2 2
=j{_@5(51ﬂ) 9 (P2 )Jﬁydx
o ox ox’
—51‘)’5( )I [ (El(;y) }z‘m'l (3.14)
X




37

L
8W = [p(x,0) 8ydx (3.15)

By substitution of cquations (3.13), (3.14) and (3.15) into Hamilton’s principle,

cquation (3.11) becomes

X

oL
3%y 2 oy a 9@ YY_2a pdy _
-j{j[ ( +R +xQ) p(Q%y QR,)+5;2-(E16—2) Tx(Pb;)-p]dxay

s [ [ (e2Y ) p2 15t
-E1% 252 9 (gfY |- p2 = 3.16
F’axzs(ax)‘(;+ 2 (E% )P jesra=0 (3.16)

The intcgral must vanish for any arbitrary values of 8y and 8(%) , SO these two
variations can be sct equal to zcro at x = 0 and x = L, and different from zero, in

between, throughout the domain. Therefore, the following is obtained

p(ay+R +x§2) p(Py— QR,)+—-—(F182'VJ 3(P 5 =P (3.17)
o i\ a2

%< dy, [t _
Elg;iﬁ(é-;)lo =0 (3.18)

[8x( az'y) 3 :ISyl(, =0 (3.19)

Equation (3.17) is the partial differential equation for the transverse vibration of the
bcam. Equations (3.18), and (3.19) indicate the natural and geomctric boundary

conditions, which take into account the possibility that either

ElI—==0 o ==0 at x=0andx =1L (3.20)

and that
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ax( g:y) ax or y=10 At x=0andx =L 3.2

The first of these two cquations represents the vanishing of the bending moment
and the vertical forces, and the second implies the vanishing of the deflection and its
slopc. These cxpressions cover the clamped, pinned, and free end conditions. It has
becn pointed out, carlicr, that the axial force in cquation (3.17) is caused by the
constraint forces at the joints and the inertial force of the beam itscif due 10 the motion
of the body reference frame. The axial force can be expressed in terms of these factors.

In Figure 3-2, applying Newton’s sccond law to the becam scgment in the x

dircction, the following is obtaincd

oP

ae 2
- = = 3.2
(R, — xQ°%) pdx axdx (3.22)
It can be integrated over the whole beam into
L X2
P(x) = p(xR, - EQ ) =P (0) (3.23)

where P (0) is the axial force at the origin of body reference frame which is determined
by constraint forces.
Substituting cquation (3.23) into cquation (3.17), the partial differential equation

beccomes

VY, 9%(pPY a[ 5 X 2 By]_ 2
p(—?-)+—-(Elax J“?)'i (p (xky~T0% - P(0) | - pt2’y

L . 3.24
= p-p(QR, +R, +x63) (3.24)

The partial differential equation of transverse vibration for a no-overall-motion
beam can be obtained from cquation (3.17) by climinating thc tcrms related to the

motion of the body reference frame R, €2, £ and R,, as well as the axial force P, that
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is

p@—?)-&—-‘?—z{(ﬂéﬁz) =p (3.25)
t ox dox

which is thc well-known Bernoulli-Euler equation for bending vibration of a slender
bcam.

From cquations (3.24) and (3.25), the differences between transversc vibrations
of a bcam in a multibody system and a beam in a fixed configuration can be found.
Firstly, the overall motion creates transverse loads on the beam which appear at the
right side of cquation (3.24). Sccondly, the Coriolis acccleration, due to the coupling
between rotation and vibration, and the axial force duc to the ecnd constraints and
incrtial force along the centroid axis, affect the property of the partial diffcrential
cquation of the transverse vibration of the beam. It can be secn that the cffect of this
on the transverse stiffness of the beam should be considered.

In practicc, it is not casy to solve the partial differential cquations, with the
gcometric and natural boundary conditions, in closed form. Instead, approximation
mcthods arc usually used to solve the eigenvalue problem and the dynamic response,
numerically. The assumed modes method is commonly used for such solutions and
simulation,

Assumc a solution in the form of a series
Y0 = Y (06, = (@)} {n(n} (3.26)
=1

where d)j(x) are the assumed modes and n; are the gencralized coordinates.

Basced on this serics the kinetic energy in equation (3.5) can be expressed as

L
T= 3ol +@ 2+ ()T (@} (@} (n)) + (1} {0} (@} {1} +
4]

+2Q(Rx-R, AN} {D}) +2(R,+1x02) {}} {®} 1dx (3.27
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The potential encrgy due to the work done by the internal forces is

L 2 L
2 (e (2 E
0 0
L

%{n}’GEt{w"} {«b"}’dx+jP{¢'} {¢'}’dx)ml
0

0

1
= 5 {n} (1K1 + (K1) {n} (3.28)
where
L
K] = jer{m"} {@" ) Tdx (3.29)
0

L
[K,) = [P{o} {@} ax
0

L
= [ (p (xkt = 3207 - P(0)) (@'} (&) ax
0

L L L
= ié,J'px{cb'} {d)'}rdx—%ﬂszxz{ib'} {cb'}"dx-f'(o)jw'} {0} dx
0 0 0

” 1 2
= RulKyy | =580 [Kppl = P(0) [ Kyl (3.30)

Matrix {K] is known as thc bending stiffness of the beam. Matrix Ile is the
cffcct, on the bending stiffness, of the axial forces which are caused by the ovcerall
motion of the bcam and the constraint forces. Some references call this matrix the
“gecometric stiffness matrix™ bascd on the fact that it depends only on the geometry of
the beam. In this problem, however, matrix [K, | not only depends on the geometry of
the beam, but also on the overall motion of the beam. Thercfore, it is suggested to call
matrix [K,] the “dynamic gcometric stiffness matrix™.

Given the kinetic energy and potential energy, Lagrange’s equation can then be
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uscd to obtain the equation of motion, which is

a7 aT . oU

aG @y "oy fagmy - ¢ (3.31)

Based on the kinctic energy in equation (3.27), the first term in Lagrange’s cquation is

)|

L
dT_) = di,{jpl{o} (@} {1} + (R, +10) {wmx}
0

di'3 {q}
L L

= Gpm} {o}de)m} +R,[p (@} dx+sifpx (@} dx

0 0 0

= |M] {ii} +mR,{S} + m& {D} (3.32)

where m is the mass of the beam and

L
Ml = fp{®} (@} dx (3.33)
0
L
1
{s} = EIp{d’}dx (3.34)
0
]L
{D} = '—’;Ipx{dﬂdx (3.35)
0

The other terms in Lagrange’s equation arc

L
o _ 2 T COR
Iy - 10 QPN’} {®} dx){n} ﬂR,_!P{d’}dx
= 2 [M} {n} - mQR,_{S} (3.36)
U
a——n—}-'- (1K1 + [K,;]) {n} (3.37)




L
{0} = [p(x.n) {®hx (3.38)
0

Substituting all these terms into Lagrange’s cquation, the cquation of the

transverse vibration is obtained
IM] {1} + (IK] + [K,l -Qlel) {n} = {Q} + (ka-k,)"l{S} -Qm{D} (3.39)

To verify the partial differential equation and the vibration cquation, basced on the
assumed mode mcthod, derived in this section, and to investigate the characteristics of
the transverse vibration of a bcam under general motion, a special case of transverse

vibrations of rotating bars is discusscd in the following scctions

3.3 In-Plane Transverse Vibrations of Rotating Bars

A slender beam built into a rigid shaft is shown in Figure 3-3. The shaft is driven
and rotates about the z-axis at the angular velocity £ and the becam vibrates in the x-y
plane (in the planc of rotation). The initial position of the x axis coincides with the undcformed
bar. This rotating bar modcl is applicable to helicopter blades, turbinc blades,
spacccraft antennac and flexible robot arms. In such applications, the dynamic
stiffening effeccts duc to the presence of axial centrifugal forces have significant
influence on the prediction of transverse vibrations of the beam,

The partial diffcrential cquation of the rotating bar can be obtaincd from cquation
(3.24) by eliminating terms rclated to the translational motion of the body reference
frame. Becausc there is no translational motion for the body reference frame, the terms
R, and R, arc climinatcd from equations (3.24) and (3.23). The axial forcc at the origin

of the body refercnce frame can be casily found as
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L
P(0) = -J'pnzgdg = -%pﬂsz (3.40)
[

e |4 y

Figure 3-3 Rotating bar example

Thercfore, the partial differential equation for the transverse vibration of the rotating

bar is

%Y. 32(.9%) 1. _3rw2,,2 2.0y 2 _ 3
p(;)—;f)+;);i(E’5?)- EPZTJE[Q (L"-x )5;] -pQQy = -pxf2 (341

The boundary conditions for this problem arc

v=% ¢ at x=0 (3.42)
- X
Elazy = 9—(519—2%) =0 at x=1L (3.43)
o 99X\ oy

This is a forced vibration problem even though there is no cxternal excitation.

The angular acceleration will excite the transverse vibration. To investigate the
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vibration characicristics of the rotating bar, the cigenvalue problem of the
corresponding frce vibration system is of interest. The corresponding free vibration
system can be obtaincd by assuming a constant angular velocity, in which the partial

diffcrential equation becomcs
2%y Yy 1 2, 9y 2
—= El L"=-x")=—1{~ =0 34
) S gl r e
Using the scparation of variable method and assuming
y(x,t) = Y (x)sin(wr) (3.45%

the following characteristic cquation and boundary conditions can be obtained from

cquation (3.41) and thc boundary conditions given by cquations. (3.42) and (3.43)

d‘Y T 2d dY 2 2
Bl - 3000 [(L )Zii] - pSY = WlpY (3.46)
Y = % =0 atx=0 (347
d—732'-=f-3§=0 at x =L (3.48)
dx dx

To solve above the cigenvalue problem, an approximation mcthod, the Ralecigh-

Ritz method is used. To this end a solution is assumed in the form of a scrics

Yo = Yae (0= {0} {a} (3.49)
1

J=

where a, arc cocfficients to be detecrmined and 0, are comparison functions which
satisfy all gcometric and natural boundary conditions.

Substituting this expression into cquation (3.46), then premultipling {®(x)} to
the equation, and taking the intcgration of the cquation over the whole beam, the

following discrete cigenvalue problem is obtained
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LK)+ (1K1 - IM])] {a} = & [M] {a} (3.50)

where the clements of matrices [K]. [K,] and [M] are obtained as the follows

L 4
de;
- - J
kil = kl‘ = IElo‘d——x—‘- dx

L
L A vy,
0 ‘& d’ 5 dr P
L 2
d%.d%.
= |E1—'—dx
L
. _ (] d{ a_zfﬂ
kg‘l = kgjl = 0§p¢‘d—x (L -x x dx
L L
- ___‘_ 2 2 /] }_ 2_ 2 ;“j_l
= ZM,[(L ) +2£pu. )5
' db,dé
- 1 2_ 2 _J_i
=3 {p(L ) 5/ (3.52)
L
m,=m,= J.p¢5¢,dx (3.53)
0

Notc that the houndary conditions (equations (3.47) and (3.48)) are used in the
derivation,
The cigenvaluc problem for a bcam without the overall motion can be obtaincd

from cquation (3.46) by climinating the terms related to the motion of the body

reference frame, €Q and 2, as well as the axial force P. that is
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K] {a} = &°[M] {a} (3.54)

Comparing with equation (3.50), it can be found that the term |K‘l £ increases
the stiffness of the system and the term IM]Q? decreases the stiffness of the system,
Recalling from the derivation of the cquations, the term IK'IQ2 is due to the work
donc by the axial force caused by transverse deformation, and the term [M] @’ is duce
to the centrifugal acceleration caused by the overall rotation of the beam shaft sysiem.
The combination of these two terms will stiffen the transverse stiffncess of the beam.

In some former rescarch in dynamics of multibody systems with ficxible members
[Likins 1972, Book 1982, 1984, Ho 1977, 1985, Huston, 1981}, the cffect of the axial
forces was not included in the cquations of motion for flexible members. With those
models unbounded transverse deformation for this rotating becam were obtained when
angular velocity excceded a certain value. This can be scen very clearly here. If the
cffect of the axial force is neglected, the transverse stiffness of the rotating bar

becomes
K] - QM) (3.55)

Since matrix [K] is constant, thec combined transverse stiffness of the system will
bccome ncgative when rotation speed £ exceeds a certain number. This turns the
vibration system unstable and the dcformation will bc unbounded if there is an

cxcitation. This will be shown in Chapter 9.




- Chapter 4 -

Equations of Motion of a Free Moving Flexible Body

4.1 Introduction

Corrcct prediction of the bechavior of a flexible body in a multibody system is the
foundation of flexiblec multibody system dynamics. To formulatc the motion of a
ficxible body undcrgoing translation and rotation, a number of investigators have uscd
different methods and various assumptions about flexibility to derive the equations of
motion. Onc of these modecls is to idealize a flexible member as a collection of small
rigid bodies interconnected by massless springs and then to set up the equations of
motion using rigid body dynamics [Huang and Leec 1988]. Another model suggests the
usc of the finitc clement mcthod [Likins 1972, Shabana and Wchage 1983, Wu ct al
1989]. In this approach the finite clement method is used to calculate the deformation
of the fiexible members, then the results are included with Lagrange’s equations or
variational analysis to obtain the equations of motion of the system, the condensed
mass technique and modal deduction being used. In the third approach the
superposition of the mode shapes for a flexible body is used to represent the vibrational
dceformation, and then Lagrange’s equations or Hamilton's principle are used to obtain
the equations of motion | Wiclenga 1984, Kane ct al 1987, Low 1987].

Recently, it has been shown [ Kane 1987, 1der and Amirouche 1988, and Banerjee
and Dickens 1990] that the gcometric stiffness or dynamic stiffness of beams and plates
arising from the axial and mid-surface inertial force has considerable effect on the
prediction of the dynamical behavior of beams and plates in a high-speed system. This
phcnomenon can be understood by studying the transverse vibrations of a bcam

undergoing axial forces as discussed in Chapter 3. The mode shapes and natural

47




48

frequencics of the beam with the axial force are different from those of the beam
without axial forcc. So is the response to external excitation as the constraint forces
and incrtial forces, due to the translation and rotation, will form axial forces or mid-
surface forces in the flexible members. In flexible multibody systems, ficxible
members arc most likely beam or plate type members, which arc connected to other
members and undergo large scale translation and rotation, this cffect should be
considered in the formulation of motion of a flexible member, especially for high speed

systems.

4.2 Kinematics of a Flexible Body

To determine the motion of a flexible body, a body reference {rame and an inertial
framc are necessary. The geomctry and the deformation of the flexible body arc
represented in the body reference frame and the global position and oricntation of the
body arc given in the inertial framc. Consider a frec-moving flexible body and these
two frames, as shown in Figure 4-1. In this figure, the vector array {é°} is a Cartesian
coordinate system of the inertial frame, {&'} is a Ceetesian coordinate system of the
body reference frame for the body. Vector R locaics the origin of the body reference
frame in the iaertial frame. Vector § sh.ws the position of an arbitrary point P of the
body, in the body reference framc, after deformation occurs. The vector § can be
resolved into # and #. Vector F represents the position of the point before the body
deforms and the vector i is the displacement of the point duc to clastic deformation of
the body. Vector g, is the position vcctor of the mass center of the body in the body
reference frame. The instantancous position of point P in the incrtial frame can be
represented by vector P, which is the sum of R and §. These relations can be

represcnied as follows:

§g=F+i 4.1)
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Figure 4-1 Coordinate System and Position Vectors

P=R+§

To reduce the coordinates necded to determine the vibrational deformation, ihe

4.2)

assumcd modcs method {Meirovitch 1967) is employed. By assuming a sct of
deformation modes of the body, the deformation # can bc wnitten as

o -, T3 /2 = T,
=Y ® AN = (' {®H} = (BB} i} 4.3)
J

b » - at
Q(r) = .y, 0,0} {€} 4.4)
where the I]J(l)'s arc gencralized coordinales and &')J(i')'s are assumcd mode shape
vectors defined in body reference frame {é‘} . The assumed modc shapes are admissiblc
functions which satisfy the gcometric boundary conditions of the body. For the sake of
simplification, {ff)(i')} will be writicn as {&;} later in the thesis.

By dcefinition, the position vector of the mass center of a body §, can be expressed




S0

in tcrms of modc shapes

FY > l T,z N 1 A

i = —[apdv = —[(k+ (M} {BPypdv = b+ {n}t 7§} @.5)
v v

where m and V are mass and volume of the body, p the density of the material, #, the
position of thc mass ccnter of the body before deformation occurs, and vector array

{§} is a constant vector array defined as

{8} =

i —a
—~ 1 {®} pdv (4.0)
)

which indicates the displacement of the mass center duc to the deformation «f the
flexiblc body.
Finally, the position vector of the mass center of the detormed body in the inertial

frame is

-
N

I

=L

+
o3
-

4.7)

The absolule velocity of point P of the body is the first order derivative of P with
respect to time in the inertial frame, which is

-8

P=R+ 2x&+é (4.8)

where 5 is the relative velocity of point P to the body reference frame, R and £ arc
absolute lincar velocity and angular velocity of the body reference frame relative to
the inertial framc.

The absolute acceicration of point P is the second order derivative of P with

respect to time in the inertial framc, which is

- s

i’=ii+§+s xé+£2x(ﬁxa)+2ﬁri} 4.9)
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where term Zﬁx?; is the Coriolis accelcration, and Q x (ﬁxé) is the centripetal
accelcration.

The velocity and acceleration of the mass center can be obtained in the same way
P.=R+Dx§ +4. (4.10)
P.=R+§.+Qxg,+8x (xg,) +20x§, @.11)

For a rigid body, the angular velocity of a small mass element at point P is cxactly
the samc as that of the body reference frame fixed on the body. For a flicxible body, this
is no longer truc. The dcformation of the body will cause an additional angular
displaccment to the mass clecment. Using the elastic theory {Boresi and Chong 1987],
the small additional angular displacement, duc to the deformation, can be trcated as a

vector which is

é, &
. e i
ft=-Vxii==|0 K 4.12)
2 219x dy
u, u,

where ¥ is the curl opcerator.
The angular velocity at any point in the flexible body duc to thc vibrational
deformation is the first order derivative of the angular displacement # with respect 1o

time in the body reference frame, which is

A
I
X
1

. LT
Vx{®} {1} 4.13)

T
$I]

The absolute angular velocity of point P, therefore, can be written as

— —

Q,=0+mn, (4.14)



A
t

where iép is the relative angular velocity of point P duc to the vibrational deformation.

To use the variational principlc for dcrivation of the governing cquations, the
virtual displacement of any point P in the flcxible body is given here. The virtual
displacemcent is a possible displacement which is compatible with all constraints of the
body. According to equations (4.2) and (4.12), the virtual displaccmeni for point P in

a free-moving ficxiblc body is

8P = SR+8px§+83

- - > ',* -
where 8@ is the virtual infinitesimal rowation of the body reference frame, 8R the
virtual linear displacement of frame {&'} and 8§ the variation of position of any point

of the bodv in framc {é'} duc to the deformation.

4.3 Dynamics of a Free-Moving Flexible Body
4.3.1 Variationa) Principle and Non-Linear Strain

The dynamic cquations of motion of the flexible body can be derived by Hamilion'’s
principle, the Euler-Lagrange cquations, Kane’s equations, as well as the variational
principlc. In this chaptcr, the variational principlc is uscd to derive the equations in the
form which can be represcnted by multibond graphs.

The vectorial form of the variational principle for a deformable body can be

written as [Shames and Dym 1985]
J'(Si"- (dF - Ppdv)) = jS{e}' {o}dv (4.16)
v v

where P, P, 5P and P havc been delined beforc. The vector dF represents the
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infinitesimal element of body force and surface traction acting on the point P. {€} and
{©} are strain and stress column matrices of the deformed body. The integral is taken
over the total body volume.

The right side of the cquation is the virtual work done by stress. It has been shown
that the geometric stiffness or dynamic stiffness of the flexible body duc to the high
specd overall translation and rotation can be dealt with by considering the nonlincar
strain-displacement relations {Modi and Ibrahim 1988, Banerjecc and Dickens 1990].
Modi and Ibrahim [ 1988] considercd fully the nonlinear strain displaccment relations
for gencral ficxible bodies, and this sccms to be computationally intensive. Banerjee
and Dickens [1990] considered the inertial forces duc to the overall translation and
rotation of the undcformcd flexible body as cxisting loads on the body. They then
included the work done by these forces on the nonlincar part of the strain displacement
rclations 10 obtain the gecomctric stiffness matrix. This method requires the calculation
of the stress in the body duc to the incrtial forces, which is not convcnient for bond
graph representation. In this thesis, a method similar to that of Modi and Ibrahim
[1988| is used. A further simplification is adopted by ignoring higher order
displacement terms, in the virtual work, based on the nonlinear strain displacement
relations.

The nonlincar strain displacement relations (Green-Lagrange strain) are defined as

|Boresi and Chong 1987

1 -
€ =u,+ 3 (u:+vi+wi) (4.17a)
o b2 2 2
£ = v,y+§(u’y+v'y+w’y) (4.17b)
_ I, 2 2. 2
sz-w1+§(u'z+v.z+w.z) 4.17¢)

T” = U +v, + (U, + v'yv't+w4w.y) 4.17d)



5

Y e = Vs +w, + (“.z“.y +V v+ “'J“',,) (1.17¢)

Tu =u,+w,+ (“,x“,z*“’,;"_;*w,;w_z) @7
where u, v and w are deformations of the fliexible body in x, y and z axcs of the body
rcference frame, and the variable in the subscript preceded by a comma indicatcs
diffcrentiation with respect to that variable.
Let
T

{e}’ ={e, e ¢, Y, T, T,} (4.18)

r

18} = (uymyu, vy vy v, w, w, w,))

4.19)

By the assumcd modes mcthod, {8} can be cxpressed as a lincar function of n

gencralized coordinates {n}, which is

{8} = [N] {n} (4.20)

Here [N] is a 9 by n matrix which is

909 000 000
[N} =|9xdydz 3 93 000 [{o}, ... 10} 4.21)
000 dxdyodz 3 9 9 ?

000 000 dxdyoa:z

where the assumed modces are

9
{‘D}‘ = {¢y} (4.22)
%,

With these definitions, the nonlinear strain displacement relations can be written into

matrix form
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{8}7(H'1 {3}
{8}T1H°) 18)
where [H'] to |H°] are Boolcan matrices, which arc
r‘ pu
100 000 000
000 010 000
() = | 000 000 001 @24
010 100 000
000 001 010
001 000 100)]
[ 1
C L en . 100
1H] =5 10') 10) 10" =]ooo (4.24b)
‘—sym lull 000
ro, 1
, | (s} 101 o) , 000
Il =5 (V%1 10] U1 =010 (4.24¢)
- ]
,, vl ool . [ooo
H1 =5 (s 10] (U1 =000 (4.24d)
| sym |U3|_ 001
r —
iU 101 10y 010
y |
IH) =5 10y 10 101 ={100 (4.24¢)
| sym a] 000
B 5 ~
. |tvrter ol ;. fooo
111 =5 ' 10 U1 = |00 1 (4.241)
sym ) 010
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1 “Jbl o1 101 001
H) = 2 o 1ol 11 = looo (4.24p)
sym (U} 100

Note that lH'l 10 |H°] arc symmetric.
Substituting equation (4.20) into cquation (4.23), the relation between strain and

gencralized coordinates is obtaincd

{n}71B'} {n}
{e} = (B°) {n} +{ : } (4.25)
Iny’18% {n}
where
18°] = [H'] IN} (4.26)
1B} = INITIHIINI  j=1..6 (4.2

Notc that matrices {B'] to [B®] arc symmetric.
4.3.2 Equations of Motion of a Flexible Body

In this scction, both left and right sides of cquation (4.16) are derived to obtain the
cquations of motion of a flexiblc body.

By Hooke's law, the stress can be written in terms of the strain, which is

{o} = |E] {&} (4.28)

where [E] is elasticity matrix.

Substituting cquations (4.25) and (4.28) into the right sidc of cquation (4.16), and

ignoring 4th order terms of {n}, the following is obtaincd
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[s1er"(orav = B{n}" (1K) + (K, (D) {n} 4.29)
14
where stiffness matrices are
0,7 0
1K) =JIBI [E) 1B%) dv (4.30)
{ni"18"
0 o, 7T
1K, | =j 2(...18') {n}...] LE) [B°] + 1B°] IEI{ } dv @.31)
v

mi718%

Substituting cquations (4.15) and (4.29) into equation (4.16), and grouping tcrms

with respect to different virtual displacements, the following is obtained:

I (di"‘ - ;"pdv)
v

[5,?. St 5{,“"] jéx(di:‘—-;pdv) =0 (432
v

[J(1®1 - @F=Poan) - (k1 + 1K1y (it
v

")

Since the variations are arbitrary for a free moving flexible body, this equa‘ion can

be written into three independent equations which are

{ (dF = Ppdv) = 0 4.33)
v
jax (dF - Ppdv) = 0 (4.39)
‘l
J (181 - (P -Ppav)) - (1K1 + 1K,1) {n} = {0} (4.35)
!

The force terms in the above cquations can be integrated as
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!di‘ = F,+mg (4.36)
[axdF = T+ xmg @.37)
‘.’
f(i®y - @Fy) = {Q} + (S} -mi 4.38)
v

where i:‘,, and f’o arc resultant force and torque due to surface tractions acting at the
origin of the body refercnce frame, and {Q} is the generalized force column matrix
due to surface tractions which will cxcite vibrations of the flexiblc body.

Substituting cquation (4.9) for thc acccleration into cquation (4.33), noling

cquations (4.5). (4.11) and that

i N a T
Jquv = mg. = m{8} {n} (4.39)
N 3 a7
jquv = mg. = m{8} {ii} (4.40)
v
cquation (4.33) bccomes
m(§+$c+ﬁxic+ﬁx(ﬁxic)+2ﬁxéc) = F,+mg (4.41)

or

3 . T 4 « T o . LT - .l
m(R+ {S} {fi}+(2x {8} +Qx (Qx {S} )) {n} +202x {S} {n}) ,
(4.42)
= F,+mg
Substituting cquations (4.9, and (4.36) ino cquation (4.34), complcting all

integrations over the whole body and rearranging, cquation (4.34) can be writien as

jaxi’pdv J’axiipdwjax (ﬁxi)pdv+!éx (€ x (% §) | pdv
v v v
+IZ¢‘;x (ﬁxé)pdv+jéxapdv

[ 4 v

=T, +§.xmi (4.43)
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Each term in the cquation can be intcgrated as

jaxi‘ipdv = {apdvxfi = my, xR (4.44)
v
{éx(ﬁxa)pdv=£<(6-6)E-aé)p4v-ﬁ=i-ﬁ (4.45)
Iéx (fix (S x§) lpdv = ﬁx[jﬁx(ﬁxa)pdv]
14 v
={x(J-Q) = -HxD (4.46)
[2ax @ixdpav = 2[ (@ DE-Gipav- G =T B @47
1% v
. . o T .
[axapav = ( ix {®) pdv){n}
v
— Y T .e =% T s
= [+ 7181 (8) pdv)m} = {D} (i} @.48)
v

where £ is a unit dyadic, J is the dyadic of moment of incrtia of the flexible body about
the origin of the body reference frame, H is the angular momentum of the body about
the same reference point, and {D} is a vector array related to the assumcd modes.

With cxpressions (4.44) to (4.48), cquation (4.34) becomes

Y T | .
mi, xR+] -Q-FAxQ3+] -G+ (D} {{i} = T,+§,xm 4.49)
For cquation (4.35), substituting cquation (4.9) for acceleration yiclds
J(181 - Prpav = [(18) - Brpdv+ [ (18} - D pdv+2[({B} - (Shxq))pav
v v v v
4.50)

+ (18} - @x (@x))pdv+ [(1B) - @ x))pdv
v v

By the detinition of equation (4.6), the first integral at the right side of the cquation
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abovc is
JLi®) Rlpdv = mi3) -k @51
8
And the other terms are intcgrated as follows:
[(1Br-dpav = [[(13) {$}T)pdv]{m = 1M {11} @52

[(1®) - @xd)pdv = [ix (Brpdv-02 = {B({nh)} -0 4.5%)
v v

]

—t — — — g 3 — - T
[(i®y - @x @xd)))pav U(m-mxmx {®) )))pdv)m
v

= [K ()] {n} (4.54)

— - 2 - - O .
2[ (48} - (Gixd))pdv 2([({¢}-(:zx (81))pav ) 1)
v {4

G ()] {1} (4.55)

where |[M] is a gencralized mass matrix which is constant, ll(,,(ﬁ)l is a stiffness
matrix duc to the centrifugal acceleration, and lG(ﬁ) | is a damping matrix duc to the
gyroscopic cffect.

With these integrated terms in cquations (4.51) to (4.55), cquation (4.50) becomes
{( (B} -Pypdv = m{S} -R+ IMI{ii} + {Dy -6+ [K,] {n} + 1G] {0}  (4.50)

Substituting cquations (4.56) and (4.38) into cquation (4.35). thc cquation becomes

m{§} R+ (M| {fi} + {B} - Q+ (G| {1} + (IKI + 1K ]+ 1K) {n}

= {Q} + {S} -mg (4.57)
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Equations (4.57), (4.49) and (4.41) arc the cquations of motion of a frec-moving

ficxible body in vectorial form. For convenience, they are listed together here,

FOE § U R | - a7
m(R+{S}1{ii}+(0><{S} +Qx (2% {S} )) {n} +2Qx {S} {n})

= F,+mg (4.58)

macx)‘i+]-3-ﬁxﬁ;]'-ﬁ+{B}T{ﬁ} =T, +§.xmg 4.59)

mi§}. R+ [M]{ii} + 1B} @+ (GI {1} + (1K] + 1K1 + [K,]) {n}

= {Q} + {8} -m@ (4.60)

It can be scen that these three cquations are coupled for all displacement, velocity

and acccleration terms and are highly nonlincar.
4.3.3 Equations of Motion of a Flexible Body in Matrix form

The mathematical relations in multibond graphs are based on matrix operations.
To be represented by multibond graphs, the vectorial form of the equations of motion
in the last scction should be first changed to matrix form.

A vcctor in a 3-D space can be represented in different frames, or different
coordinate systems, resulting in different componcents in its matrix form. In this thesis,
angular velocity flofa body refcrence frame and the velocity 6 of the deformed body
rclative to the body reference frame are given .n the body reference frame. The
assumcd mode shapes and the resultant external forces due to the surface tractions are
also given in the body reference frame. The gravity accelcration g and the absolute
vclocity of the center of mass of the body ;’c are mcasurcd in the incrtial frame because
in this framc g has fixed dircction.

The rotation transformation betwecen the inertial frame {i’"} and the body



reference frame {€'} can be defined as
(&% = (AY1{&) or (&) = 14°) (8"} 4.61)

where [A"‘] is the transform matrix from body reference frame to inertial frame. Matrix

[A%] is an orthogonal matrix which has the property

. -1 T .
1A% = 1A% = 147 (4.62)

For any vector ¥, for which column matrices {V’} and {V} are its coordinates

in framc {&} and frame {&'}, the follov ag relation holds in terms of cquation (4.61)

{V'} = 1A% {V}} (4.63)

The matrix form of dot multiplication of two vectors V and W, in the same frame,
is {V} T{W}. and the matrix form of cross multiplication of two vectors Vand W, in

the same frame, is [f’] { W}. where the tilde mutrix is formed as

0O -, vy
VI ={v, 0 -, (4.64)
=-v, v, 0

For any vector array, say {3} . its matrix form in framc {é'} can be represented

as [§], which means

{8} = IS]{&'} (4.65)

For any dyadic, say J, its matrix form in framc {é'} can bc represcnicd as [J]

which means
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. T
J = {&) J){&} (4.66)

The matrix form of the multiplication of J and a vector Q mcasured in the same
framc is |J] {82} .
In tcrms of these relations, the kinematic cquations (4.8) and (4.14) can be

writtcn as

{P} = ({R}-1q) {Q)}+{4})
= ({R} - [q] {2} + (@] {A}) 4.67)
() = {9 +%|61|¢P|"'m} (4.68)

Note that these vectors are all represented in the frame {é'}.
Assuming that all vectors in the equations of motion are represented in body

reference frame {é'}) except g which is always given in the inertial frame for

convenience, the matrix form of cquation (4.58), (4.49) and (4.57) can be expressed as

m({RY +1S1" {1} - 1q.1 {82} +1Q) 1Q1[S1T {n} +2121 (517 {"})

= {F.} +m|A"] {g} (4.69)

mlg | {RY + 1J] {Q} — [H] {Q} + 17 1{Q} + [D]" {#}

= (T, +mlq,] 14 {g} (4.70)

mlISI{R} + (M) {71} + [D1{Q} + G| {n} + [K,,] {n}

i0

= {Q} +mISI|A7] {g} @.m)

where the cquivalent stiffness matrix |Keql is

K, = |K|+|K8|+[Kn] (6.72)




Matrices [D] and [S] arc n by 3 matrices. [J]. |J*] and |[M] arc symmetric, |H)
and [G] arc skew-symmetric. By definition, matrices |J] and [M], arc not singular.
In the discussion of numerical solution, later in Chapter 8, a compact form of

these cquations is given. Letting
{R}
{h} = {{Q}} 4.73)
{n}
these three equations of motion can be further written into a compact form as
(M| {h} = (W)} + {F} (4.74)

where |[M™ | is the matrix of gencralized mass of the flexible body which iy

-7 "
mill ml|q. m|S})

mla] 1 D)}
m{S| |D| M| |

IM*| = 4.75)

{W(h,n)} consists of all other terms consisting of velocity and displacement of

coordinates, which is

1 1s)’ {nt -21211851” {0}
{(W(h,n)} = { ~1S 1 {Q} } (4.70)
(1G] {A} + IK, ) {n})

{F} consists of all external forces which is
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£ {F,} +m|A”] {g}
{F} = {{T,} +mlq.) 1A”) {g} 4.77

i0

{OQ} +m(S} (A7} {g}

4.4 Form of Equations of Motion of a Flexible Body for Multibond Graph

Representation

In multibond graph of rigid body dynamics, the translation and angular velocitics
arc represented by separated multibonds [Tiernego and Bos 1985; Bos 1986]. This is
morc convenient when dealing with constraints and cxcitation. To kcep the same
multibond graph mcthodology, in the multibond graph of ficxible body dynamics, the
transiation, angular and vibrational velocities will be considered to be represented by
three separated multibonds. This makes it casy to represent multibody systems wilt..
both rigid and flexible bodics. However, the cquations of motion gencrated above arc
not suitabfe for multibond graph representation because they arc coupled in the
acceleration terms. A slight modification to the form of these cquations makes it
possible for the cquations to be represented by multibond graphs.

First examine cquation (4.41). The acceleration terms in the bracket are actually
the acceleration of the center of mass of the flexible body, which is cxpressed in
cquation (4.11). So cquation (4.41) can also be written as

ey

mP, = F,+mg (4.78)

Assuming that the velocity of the center of mass of the flexible body is represented

in the incrtial frame, the matrix form of equation (4.78) will be

ma‘i,u",} = [AY| {F } +m{g} (4.79)




where

{Pc} = IAOi

LC{RY - 1g 14} + 1517 {n}) (4.80)
Sccondly, terms referring to the origin of the body reference frame in the left side
of cquation (4.49) arc changcd to refer to the center of mass of the Hlexible body. To

do so, the Huygens-Stciner rule | Witienburg, 1977] is uscd, which states
J=J+ml (@ 4)E-q4.] (481
where J, is the dyadic of moment of incriia of the flexible body about its center ol

mass.

Substituting this rclation into cquation (4.49), H becomes

H=H+m((§ §)E-3.4. Q) (4.82)
.
J becomes
K R a s 'S P
J =J A+2ml|(§, 4)E-q.3.| (4.83)

and {1—5} d can also be changed to
O . I . I ..
{B} {ii} = (j(q—éc)xm pdv+ [§, x {®) pva{n}
v [4

-, e
= {B.} {ii} +mi,x {8} (it}

- T . i
{D:} {n}+mg . xq. (4.84)

Substituting cquations (4.81) to (4.84) into equation (4.49) and noting cquation (4.11)

and
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(G, §)E-d.4.0 0 = §.x (§xq,) (4.85)
1§, §)E-q.4.) -8 = §.x (2x7,) (4.86)

cquation (4.49) can be written into the form as

- - 3 > ¥ -

=3 T - =y "~ 3
7, Q-H.xQ+J . Q1+ {D.} {ii} =T, +§.xm@-P.)

2

=7,-§.xF, 4.87)

where cquation (4.78) is uscd.

The matrix form of this cquation can be written as
(20 {82} + (1d.) = [H D) {Q} + DT {AA} = {T,} - 1q]{F,} (4.88)

Thirdly, repcating integration (4.50) with @, 3 and i} replaced by (§-4,) +4..

(é—é’r) "’4;1( and (5—&) +éc yiclds
j( {®} -f’)pdv = I( [ D} - (é+;}.c+ﬁxéc+ﬁx (ﬁx&c) +2ﬁxéc))pdv
1% [%
+‘[({$}'(é“ar,))PdV+I({‘_f’}'(ﬁx(ﬁx(a"‘flc))))l)dv
14
Hf B - @x (G-30) pdv+2[ (1B} - @x (G-§0))pdv @89
v 14

With cquations (4.6) and (4.9), the first integral at the right side of the equation

above is
j[{fﬁ} . (§+5c+f‘2xac+ﬁx (ﬁxéc) +2ﬁxéc)]pdv =m{8} -i"c (4.90)
v

And the other terms arc intcgrated as follows:

JU®) - (@-a0)pav = 1M, (i} @491
!
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[(4® - (@x @-a2)pdv = [(@-8) x{Bpdv-Gd = {DB.((nhH} Q@9
v Vv
[ @x (@ x @-dpdv = (K, (D] {n) (4.93)
‘l
2f (4B} - @ix (@-3))pdv = 1G,(ED) | {1} (3.94)
v

With thesc integrated terms, cquation (4.57) bccomes
IM ] {ii} + {D.} - Q+ 1G] {0} + (IKE+ 1K} + 1K, 1) {0}

= {0} + {8} -m(z-P) = {0} - ({8} -F,) 4.95)
Its matrix form is
[M,] (i1} + D] {8} + (G, {0} + K, 10} = {Q} — IS] {F,} 4.96)
where

K.l = 1Kl +1K,]+1K,]| 4.97)

eqc

For convenicnce, the dynamic equations of motion, in their multibond graph

representation form are listed together
midp.} = (A" {F,} +mig) (4.98)
[J.) {82} + (1S ) = (H ) {2} + DT {iR} = {T,} - 1§, {F} 4.99)

IM_]{ii} + (D] {Q} + (Gl {n} + 1K, 1in} = {Q} - (SI{F,} (4.100)



- Chapter 5 -

The Application of Floating Frames

§.1 Introduction

The cquations of motion and the multibond graphs of a flexibic body described in
the previous chapters are for the general case. They are coupled in translation, rotation
and vibrations and are therefore fairly complicated. Even though there have becn many
powerful numecrical intcgration mcthods, to solve different kinds of diffcrential
cquations that have been developed, the numerical solution of flexiblc multibody
systems is still difficult and challenging for numerical ini  ration. In addition to the
development of more powerful numerical integration algorithms, another way to
rcducce this difficulty is to simplify the equations of motion themselves.

In the derivation of thesce equations of motion, the body refecrence fraries arc
chosen arbitrarily. In rigid body dynamics, the local reference frame attached at the
center of mass of the body can simplify the equations »f motion significantly. This is
also true for flexible body dynamics. The kinds of reference frames which simplify the
cxpression of the cquations of motion of a flexible body are called floating reference
frames [Canavin and Likins 1977].

Floating rcference frames have long been usced in spacecraft dynamics. With the
developme *t of analysis techniques for spacccraft 1ynamics, several types of floating
frames were developed. This chapter will first review these floating frames and then
discuss the application of a major type of floating reference frame, the Buckens frame,

into flexible body dynamics and its multibond graph represcntations.
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5.2 Floating Frames for Flexible Bodies

The motion of a flexiblc body in an incrtial frame can be determined by the
position and the orientation of a body reference frame which moves with the body and
the vibrational deformation of the body relative to this body reference frame. The way
th¢ body rcfcrence frame moves with the body is featured by the position and
orientation of the body reference frame related to the body. Different approaches form
diffcrent floating frames and possess different charactesistics and ability to simplify

the cquations of motion. Four types of floating framces are discusscd in this scection.

§.2.1 Body-Fixed Frame

This type of body reference frame is rigidly attached at a point of the flexible
body. It implics that the displaccment and rotation of this point of the body due 10 the
deformation of the body mecasured relative to the frame are equal to zcro. This

condition can be mathematically written as

[P} = (0] at xy,z=0 (5.1)

-

Vie] = (0] a x,yz2

0 (5.2)

This condition can be satisficd in sclection of assumecd modcs and no more
constraint cquations nced to be included. Therefore, it is widely used [Skabana, 1982].
However, this type of reference frame yields no simplification for the equations of
motion of a flexible body when it is not located at the center of mass and gives limited
simplification when it is located at the center of mass.

When the origin of the body refercnce frame is located at the center of mass, the
position vector g, is equal 10 zero. This means that a constraint condition about the

location of the body rcference frame is forced which is




7

- T - T
b = faav = jmv+(j{o} dv){n} = (8} (ny =0 5.3)
/ v v

Notc that the integral [#dv is cqual to zcro when the body refercnce frame is located
- T
at the center of mass of the flexible body before deformation occurs. {§} {n} =0

implics that the gencralized coordinates arc not indcpendent if
Y T T
{s} = {0} (5.4)

With cquation (5.3) the velocity and acceleration of the center of mass are simplificd

from cquations (4.10) and (4.11) to

P.=R (5.5)
P.=R (5.6)

and so the cquations of motion (4.58), (4.49) and (4.57) in chaptcr 4 arc simplificd to

mR = F,+mg (5.7)
].ﬁ-iixf‘n.‘f Q4+ {E}T{ﬁ} =7, (5.8)
IM] {#i} + {D} - Q+ 1G] {fi} + (K] {n} = {Q} + {8} m(-K) (5.9)

It should be noted that the cquations of motion of an unconstraincd flexible body
undcr the body fixed frame arc not only the above threc cquations. They include a
holonomic constraint cquation about the gencralized coordinates of equation (5.3) if
cquation (5.4) holds. This mcans that the mass center fixed body rcference frame has
limited benefits because it simplifies the differential equations of the motion but adds

algebraic cquations and lets the cquations become differential-algebraic cquations.



72

The rcal advantage of applying a mass center located body tixed frame lies in the
fact that when the lcft side of cquation (5.4) is cqual to zcro the constraint on the
gencralized coordinatcs of equation (5.3) can be always satisfied. This can be done by

choosing appropriatc assumed modcs and lctting
IM’} dv = {S} = {0} (5.10)
v

At lcast one sct of modes which satisfies this condition can be found: free-free
clastic normal modes of an unconstrained flexible body [Canavin and Likins 1977]. It
has been proved that free-free clastic normal modes of an unconstrained ficxible body

satisfy the following two conditions |Canavin and Likins 1977)
j{&':}dv = {8} = {0} (5.11)
v

_[(ix (B = {0} (5.12)
v

With the first condition, the constraint conditions for the gencralized coordinates can

be always satisficd and the cquation of motion (5.9) can be further simplified as

IM) {#} + {B} -+ Gl {1} + IK,,1 {n} = {Q} (5.13)

The second condition is not necessary for this body-fixed frame. It will be scen that it
is useful in the Buckens frame and the Tisserand frame for further simplification.
However, when free-free elastic normal modes of an unconstrained flexible body
arc uscd as the assumed modes, for a constraincd ficxible body in multibody sysicms,
the geometric boundary conditions of the body arc not guarantced to be satisficd. This
will incorrectly predict the vibrations of the flexible bodics and the misprediction is
dependent on how serious the violation of the boundary conditions is. Therefore, it can

be concluded that only when the clastic normal modes of a flexible body in multibody
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systems can be well approximated by the free-frec clastic normal modes of the body or
by other assumed modcs which meet equation (5.10), does the application of this mass

center located body flixed frame work well.

5.2.2 Principal-axis Frame

The principal-axis frame is so defined that the origin of the body reference frame
is located at the center of mass and the orientation of the coordinate axes coincides
with the principal axes of the moment of incrtia of the fiexible body. This condition

can be expressed as

Jyy ==~ j' q,4,pdv = 0 (5.142)
v

Iy = Jy = =[a,q,0dv = 0 (5.14b)
v

=ty = =fa.a0dv = 0 (5.14c)
v

Compared w 'th the body-fixed framc located at the center of mass, this type of
body reference frame only makes the inertia matrix of the flexible body diagonal.
Howcver, it also adds three constraint conditions for the gencralized coordinatcs,
which makces the gencralized coordinates for the vibrational deformation dependcnt.
This type of body reference frame has no significance in terms of simplification of the

equations of motion.

§.2.3 The Buckens Frame

The Buckens frame is derived from the idea that the vibrational deformation of

the ficxible body over the whole volume should be minimized through the appropriate

adjustment of the body reference frame. This idea can be formulated as the following

cxpression




I&

minimize %!(ﬁ - it) pdv (5.1%

The position and the oricntation of the body reference frame which satisfies this
conaition can be obtained through the perturbation of the position and the orientation

of the body rcference frame. This lcads to
S%I(ﬁ-ﬁ)pdv = J(ﬁ-&ﬁ)pdv =0 (5.16)
v
Since the position of an arbitrary point of the flexible body in the incrtia frame does

not changc when the body reference frame is perturbed, the variation of the position

vector should be zero

1] ]
S O
=

+
S

X

L

+
g

=

S

Solving this cquation for §if and substituting into cquation (5.17). equation (5.17)

becomes
jﬁpdv-ﬁi-#-f(ﬁxii)pdv-ﬁi{) =0 (5.18)
v v
Since the variations 8R and 3 arc arbitrary and independent, cquation (5.18) can be
writlen as two constraint equations for the location and the orientation of the body

refesence frame

J' iipdy = 0 (5.19)

<

(Fx@i)pdv = 0 (5.20)

I(dxﬂ)pdv = l(ixﬁ)pdv+!(ﬁxii)pdv
v v
v
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For the first constraint condition, note that
{ipdv = J’(nﬁ)pdv =0 (5.21)
v

when the origin of the body reference framc is located at the center of mass of the
ficxible body. This mcans that locating the body referecnce frame at the center of mass
is onc way to satisfy this constraint. Recalling cquation (4.3), in Chapter 4, the
cxpression of cquation (5.19) in terms of the assumed modes puts a constraint on the

gencralized coordinates, which is
- T - T
[apav = (jm pdv]m} =m{$} {n} =0 (5.22)
v v

The sccond constraint cquation can be further expressed in terms of the assumed modes

!(ixﬁ)pdv - Q(ix {&5}T)pdv){n} =0 (5.23)

These two constraints imply that the generalized coordinates n’s for the vibrations of

the flexible body arc not independent if

LT T
{8} = {0} (5.24)
and

s T T
J'(rx (B} )dv= {0} (5.25)
v

This gives rise to the same problcm as for the mass center located body-fixed frame,
i.c. that the differential cquations of motion are changed to differential-algebraic
cquations. This docs not give significant simplification to the equations of motion
unless the free-free clastic modes of an unconstrained flexible body are adopted.

If the free-free elastic modes of an unconstrained flexible body are adopted, the

left side of equations (5.24) and (5.25) are equal to zero and the equations of motion
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of a flexible body can be simplificd to the same form as cquations (5.7), (5.8) and (5.9)

with simplified matrix {1'3} in equations (5.8) and (5.9), which is
- T N - T
{B} = 1(qx {B) )pdv

O e = o T
= \[(rx {®1) pdv+ {n} 1{01 x {®) pdv

{0} + {n}TG) (5.26)

5.2.4 The Tesserand Frame

The Tisscrand frame, also known as mcan axcs framc [ Ashlcy 1967, Likins 1967],
is defined such that the lincar and angular momentum of the flexible body, duc to the
vibrational dcformation rclative Lo the body refcrence frame, arc cqual to zero. These
conditions are derived from minimizing the componcent of kinctic cnersy causcd by the
vibrations through adjusting the location and oricntation of the body referen<e frume.

To minimize the kinetic energy caused by the vibrations of the flexible body
through adjusting the location and oricntation of the body rcference frame, the body

reference frame is perturbed and the following will hold

8(%!(3 - pdv) = [a 53) pdv = 0 (5.27)
v
The absolute velocity of any point in the flexihic body is givea by equation (4.8).

Since the perturbations of the position and the orientation of the body reference frame

does not affect the absolute velocity, there is
8P = SR+50x§+8§ = 0 (5.28)

Solving this equation for 85. equation (5.27) becomes




m

j?}pdv SR+ | (§x§)pdv 58 = 0 (5.29)
v 14

Since 88 and SE arc arbitrary and indcpendent, equation (5.29) Icads to the constraint

conditions for the Tisscrand framc
| gpdv = 0 (5.30)
v
jax?}pdv = Iaxépdv = J(F‘xi}+ﬁx§)pdv =0 (5.31)

Note that the left side of the first constraint condition is the lincar momentum of the
ficxible body duc to the vibrational motion rclative to the body refcrence frame. It can

be further integrated against time to
japdv =0 (5.32)
v

This means that the origin of the body reference frame is located at the cenier of
the mass of the body. Once the body reference frame is located at the center of mass,
this constraint is always satisfied.

The left side of the seccond constraint condition is the angular momentum of the
flexible body duc to the vibrational motion relative to the origin of the body reference
frame. It can be further expressed in terms of the generalized coordinates for the

vibrational deformation. Using the assumed modes, cquation (5.31) can be written as
[xivixiypar = ([irx (B + )" (B} (Bhypav) {7} =0 (5.33)

If the assumed modcs satisfy the condition (5.12), i.c. free-free elastic modes, the first

part of the intcgral cquals to zcro and the integral becomes
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jépdv - si+j(ax$) pdv-88 = 0 (5.29
|4 1 4

Since 5§} and SR arc arbitrary and independent, cquation (5.29) leads to the constraint

conditions for the Tisscrand frame

fapav =0 (5.30)
jaxépdv=_[ax.‘ipdv=J'(ixé+ﬁxii)pdv=o (5.31)

Note that the left side of the first constraint condition is the lincar momentum of the
fiexiblc body duc to the vibrational motion relative to the body rcference frame. It can

be further integrated against time to

japdv =0 (5.32)

This mcans that the origin of the body reference frame is located at the center of
the mass of the body. Once the body reference frame is located at the center of mass,
this constraint is always satisficd.

The left side of the second constraint condition is the angular momentum of the
flexible body due to the vibrational motion relative to the origin of the body reference
frame. It can be further expressed in terms of the gencralized coordinates for the

vibrational deformation. Using the assumed modes, cquation (5.31) can be written as
[xa+axippdy = ([(rx (B} + {n}" (B} x {B))pav) {0} =0 (533

If the assumed modes satisfy the condition (5.12), i.c. free-free clastic modcs, the first

part of the integral equals to zcro and the integral becomes
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Jirxivaxippdy = ((n}7[(1B} x {B})pdv) {1}

MmiT1G1 {n} =0 (5.34)

This constraint cquation about thc gencralized coordinates docs not have an
intcgrated form and is thereforc a nonholonomic constraint condition.

With the Tisscrand frame and free-free clastic modes, the equations of motion of
a flexible body can be further simplified as the following differential equations and the

algebraic cquation (5.34)

mR = F,+mg (5.35)
7 Q-Fx0+) G=1, (5.36)
IMI{ﬁ}+|G|{ﬁ}+|K,,,] {n} = {0} (5.37)

In some cases the intcgral j( {fﬁ} X {('f)} Jdv will be zero duc to the nature of the
ficxiblc body, for cxample, the planar transversc vibration of beams and plates, but it
is not generally true. If it is true, the constraint equation (5.34) is met always and the
cquations of motion with Tisserand frame can be further simplified as cquations (5.7),

(5.8) and

IM] {1t} + (IK] + (K] +[K,]) {n} = {Q} (5.38)

This is the simplest form of the cquations of motion of a free-moving flexible body.




- Chapter 6 -

Multibond Graphs of a Flexible Body

6.1 Introduction

The bond graph is a modelling technique used to represent physical systems
graphically. It has the added advantage of using a unificd approach and a systcmatic
procedure which arc very suitable for computer implementation. Multibond graphs
were introduced as a shorthand notation for systems which can be represented by
regular, repetitive single bond structures of which multibody system dynamics is a casc
[Breedveld 1982, 1984; Tiernego and Bos 1985). There arc significant advantages in
representation of multibody systems using multibond graphs over using single bond
graphs [Tierncgo and Bos 1985; Bos 1986]. In this thesis, multibond graphs arc

cmployed to rcpresent the 3-D motion of ‘lexible multibody systcms.

6.2 Muitibond Graph Representation of a Flexible Body

It has been pointed out that the kinematic and dynamic cquations of a flcxiblc
body arc all nonlinear equations. The bond graph was initially devcloped to represent
lincar systems. Only when modulated multiport clements [Roscnberg and Karnopp,
1975} and block bond graph [Thoma, 1985] were introduccd into bond graphs, did the
bond graph method become uscd to represent nonlincar systems. Therefore, the
multibond graphs for modelling dynamics of an arbitrary flcxible body developed in
this thesis adopt modulatcd multiport elcments.

In terms of equations (4.67), (4.68) and (4.80) in Chapter 4, the kinematics of a
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flexible body with one joint can be represented by the multibond graph in Figure 6-1,
assuming that the origin of the body reference frame is not located at the joint. In the
figure, threce 1" junctions represent translation and rotation velocitics of the body
reference frame and the velocities of generalized coordinates for vibrational
dcformation. The upper “0” junction gives the linear velocity of the mass center of the
body in the body reference frame. Passing over a transform element of coordinate
transformation, it becomes the absolute linear velocity of the mass center of the body
measured in the inertial frame. The lower two “0” junctions give the linear and angular
velocities of the joint of the body measured in the body reference frame. If the origin
of the body reference frame is fixed at the joint, then the lower two “0” junctions will

merge in “1” junctions of {R} and {Q}. The subscript d in the figure refers to the

joint.

1 {®) ] (a} I (1}

Figure 6-1 Muliibond graph of kincmatics of a flexible body with one joint
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To confirm that this multibond graph actually represents the kinematics of a
flexible body, the velocity outputs of this bond graph structurc were written in terms
of the constitutive laws of multibond graphs. At the upper side, the velocity oulput

{P.} is the sum of three velocities

{P;} = [A%) ({R} + IS} {1} - 1q] {QD) 6.1)

which is exactly the same as equation (4.80). At the lower side, velocity outputs are
{Pg} = {R}+ 10,17 {1} - (g4l {02} 6.2)

(0.} = (0} +519110,17 {0} 6.3)

These equations do give the same results as cquations (4.67) and (4.68).
Bascd on cquations (4.98), (4.99) and (4.100) in Chaptcr 4, thc dynamics of a
ficxible body with a joint can be represcnted by the multibond graph in Figure 6-2.
Note that since the equations (4.99) and (4.100) are coupled in acceleration terms,
a summation clement of multibond graphs is cmploycd to form a ncw velocity column
matrix {F;} which is defined as
{02}

} (6.4)

{§&} = {{f]}

And an incrtia multiport clement Ing is formed as

(Me) = | el 1D (6.5)
ID,] IM,]

which is symmetric.
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Also note that the multibond graph has concentrated the surface tractions at the
joint into a resultant force F, and a torque T, The relations between these resultant

forces and the generalized forces are

{Fo} = {Fd} (6.6)
{To} = {T,} + [q4) {F,} (6.7
- T
(0} = (D) {F} +5 (191197 (T} 6.8)

It is casy to confirm that this bond graph actuaily represents the dynamics of a
fiexible body by summing up the cfforts at all “1” junctions. For example, the effort
sum at the upper “1” junction is

d g 0i
mE{P:} = [A”] {Fg} +m{g} (6.9)

The cffort sums at two right middle “1” junctions (e.g. the velocities {Q} and {1}}) are

{0} (6.10)

[J {82} + (S 1 - 1H)) {Q} + DT {#i} - (3.) {F,} - {T,}
IM) (i} + (D) {82} + 1G] {d} + (K, ] {n} - IS} {F} - {Q} = {0} (6.1D)

These two cquations arc cxactly same as equations (4.99) and (4.100).

The multibond graph in Figure 6-2 is the multibond graph of a free moving
flexible body in the general case. The procedure to set up the multibond graph can be
summed as following:

Step 1: set up three “1” multiport junctions for velocitics variables {R}, {Q}, {1}
and a “1” junction for ihe velocity of the center of mass {P.}, as well as

corresponding “0” junctions for the velocities of the joints of the body which
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will cause energy exchange with the environment.

TF:A% I: My
1%}
SUM
TF:sT 0
C:K,,
1 (R} \l (Q} I {n}

EJS:G,

0
ﬂ(’})

Se:l-'d SG.'TJ
Figure 6-2 Muliibond graph for thc dynamics of a flexible body with onc joint

Step 2: Conncct these junctions through multibond and multiport transform clements
bascd on the kinematic relationship of cquations (4.67), (4.68) and (4.8()).

Note the directions of each multibond which point away from these three “1”



velocity variables.
Step 3: Add a summation clement and a *“1” junction to form a ncw velocity variable

l‘l"

{i} from {2}, {n} and attach dynamic terms to the rclative junctions
following Figurc 6-2.

The multibond graph in Figure 6-2 is for the general case. Once a floating frame

is applicd as the body reference frame, the multibond graphs will change. The

following scctions discuss these kinds of multibond graphs.

6.3 Maltibond Graphs of a Flexible Body under Floating Frames

In Chapter S, the cquations of motion of a flexible body have been simplified
through the introduction of the floating frames. The multibond graphs corresponding

to these simplificd cquations can .. oc obtained.
6.3.1 The Mass Center Located Body Fixed Frame

It has been discussed in Chapter § that if the body fixed frame is not located at
the center of mass of the ficxible body, the frame does not simplify the cquations.
Thercfore only “the mass center located body fixed frame” is discussed in this scction.

in Chapter 5, cquation (5.5) indicates that, with the mass center located body
rcference frame, the velocity of the mass center of the flexible body is the velocity of
the body reference frame itsclf. Once the free-free normal modes of the flexible body
arc adopted, the translation of the flexible body is decoupled from rotation and
vibrations. In this case, the cquations of motion in vectorial form are cquations (5.7),
(5.8) and (5.9). The multibond graph of a flexible body undcr this kind of body
reference frame can be obtained by modifying the multibond graph in Figurc 6-2. Since
the velocity of the body reference frame is the only contribution to the velocity of the

. ~T
mass center of the flexible body, two transform elements of g, and s" can be
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climinated. The mass center body fixed frame does not decouple the coupling between
rotation and vibrations, so the multibond graph about rotation and vibrations in Figurc
6-2 is unchanged. Carrying out these changes in Figurc 6-2, the multibond graph of a
fiexible body under mass center located body fixed frame with frce-free normal modes
can bc illustrated as in Figurc 6-3. In this multibond graph, the translation of the

flexible body is scparated from rotation and vibrations, and is driven by the constraint

force at the joint.

I M&
Se: mg
1!
il SUM
lira—— I:'m
TF:AY% ) C:K,
- EJS: -”f /
1%} TRCY ! ""\
EJS:G,

Se:F4 Se:Ty

Figure 6-3 Multibond graph of dynamics of a ficxible body with onc joint undcr mass center
located body fixed reference frame and free-free modes
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6.3.2 The Buckens Frame

In scction 5.2.3, it has becn shown that the Buckens frame with free-frec modes
not only keeps all simplification of equations of motion of a fiexible body in the mass
center located body fixed frame, but also weakens the acceleration coupling between
the rotation and vibrations. The weakened coupling between rotation and vibrations is
indicated by the simplified matrix {D} in cquation (5.26). As the matrix {D} is
combined into matrix [Mg] which is represented by a multiport incrtia element in
Figurc 6-2, the multibond graph of a flexible body under the Buckens frame with free-
free modes remains in the same form as in Figure 6-3 except the simplified incrtia

clement IMEI.
6.3.3 The Tisserand Frame

In scction 5.2.4, it has been shown that with the free-free modes of the flexible
body. the Tisserand frame decouples the rotations and vibration accelerations and
hence lcads to the simplest form of differential equations of motion of a flexible body.
Thcrefore, the combined velocity {é} and the inertia element [Mg] in the muliibond
graph of a flexible body arc not nceded. However, the added cost of simplification is
the adding of a nonholonomic constraint conditiun, equation (5.34), in gencralized
coordinates for vibrational deformation. Although not generally truc, in some cases the
matrix {G] will be zero due to the nature of the flexible body, for example, for planar
transverse vibrations of becams and plates. This constraint condition about the
gencralized coordinates can be represented by a zero multiple flow source acting on
the “17 junction of the velocitics of the generalized coordinates through a multiport
transform clement modulated by the gencralized coordinates. This is shown in Figure
6-4. With this multibond graph expression, the multibond graph of a ficxible body in

the Tisscrand framc with free-frec modes can be drawn as in the Figure 6-5, in which
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the acccleration coupling between translation, rotation and vibrations has been

decoupled.

1 (%)

S,: 0

Figure 6-4 Multibond graph of constraint condition on gencralized coordinates
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Se:Fy Se:T,

Figure 6-5 Multibond graph of dynamics of a flexible body with one joint under the Tisserand
reference frame and free-free modes



- Chapter 7 -

Multibond Graphs of Mechanical Constraints and
Whole Flexible Multibody Systems

7.1 Introduction

The equations of motion and the multibond graph of a frec moving ficxible body
havc been devcloped above. This multibond graph is also valid for a single body in a
multibody system if the external resultant force and torque include constraint forces
and torques at the joints. The multibond graph of the whole flexible multibody sysiem
can be obtaincd by connecting these multibond graphs of single flexible bodics
together through multibond graphs of constraints between thesc bodics. Constraints on
a body in a multibody system result cither from direct physical contact of uic body and
other bodics or ground, or from an interconncction of the body with other bodics or
ground by mcans of a kinematic constraint mecchanism. Constraints restrici the
translation and rotation motion of the body, thus reducing the degrees of freedom of
the body. They also influencc the vibrations of a flexible body. For bond graph
modeling of multibody system dynamics, thesc constraints can be modclled by
restrictions on the relative velocities between connected bodies at the joints. This
chapter discussecs the multibond graphs of mechanical constraints and the procedure of

setting up the multibond graphs for whole flexible multibody systecms.

7.2 The Multibond Graph Structure of Mechanical Constraints

Mechanical constraints result from direct physical contact between connccted

89
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bodics. Diffcrent configurations of the contact lead to different types of joints and
different cu. straints. This section discusses some commonly used joints in mechanical

systems and their multibond graph representat.ons.

7.2.1 Spherical Joints

The general idea in modelling mechanical constraints by bond graph is the
relative velocity restriction. To describe this idea, consider a spherical joint, described

by D, between two flexible bodics as shown in Figure 7-1.

Figure 7-1 Sketch of a spherical joint between two bodics

The position vector of the spherical joint D represented in two different body

reference frames attached at the connected bodies are, respectively

Py =R+ F,=R+# .1




9

The absolute velocity of the joint D represented in two body reference frames is:

i T .
Py=R +4,+Q' %@, (1.2
I Y R
Pi=R+q,+ <, (1.3

The constraint condition due to the joint is that the points of the two bodics at the
joint always coincide with each other, or the relative lincar velocity between the two
bodies at the point of the joint is always zcro. This gives
i

LY
da—Pa =0 (7.4)

Since vectors R, g and Q are measured in their own local reference frames indicated

by their supcrscripts, the matrix form of this cquation should be
(LR} + (4a) = 10 (X)) - 147} ({R} + (@} - 1@ {¥) = {0} (1.5)
or simply
{Pa} - 147} (P} = {0) (7.6)

where [AY] is the rotation transformation between the two body rcfcrence frames,

which is
(A7) = [A°) 1AY] (1.7

This velocity restriction can be represcnied by a ‘0’ junction in multibond graphs.
Using two blocks to represent the connected bodics, the multibond graph for the
spherical joint can be represcnicd in Figure 7-2. In the figure, P and P} arc the Jincar

velocities of the poinis of the connected bodies at the joint and the transformer AY
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indicates the rotation transformation betwceen the two body reference frames.

body j

3 JTFAY T 05T JTF:AM )
Py

Sy

Figure 7-2 Multibond graph of a spherical joint

7.2.2 Pin Joints

Pin joints arc widcly used in mechanical systems. Figure 7-3 shows a sketch of a
pin joint. A frame {ed} is attached on the pin with onc base axis along the longitudinal
axis of the pin and the othcr two base axes perpendicular to the longitudinal axis. The
rclative velocitics of the two bodies at the joint are measured in this pin attached frame.
It can be sccn that a pin joint restricts the translational relative velocities in three
dircctions and thc rotational rclative velocities in two dircctions between the
connected bodics. It only allows relative rotation of the connected bodies along the
longitudinal axis of the pin. Based on the analysis in the last section, the multibond
graph for a pin joint can be set as in Figure 7-4. In the figure, f’f,, Q{‘ and l",';, Qf, arc
the lincar and angular velocities of the points of the connected bodies at the joint and
the transformers AY and A* indicate the rotation transformation between the two body
reference frames and the pin attached frame, which include the rotation caused by the

deformation of the flexible bodies. Note that the multibonds to the “0” junction of

relative angular velocities consists of only two single bonds.




{e)}
Figure 7-3 Sketch of a pin joint
Sf.‘ 0

i z .

4] Q

5 TF:AY 70T TF:AY TS

body j i i body i

T JTFAT 7057 TF:A“___?

P, H P,

S0

Figure 7-4 Multibond graph of a pin joint

7.2.3 Cylindrical Joints

A cylindrical joint is similar to a pin joint, in that it allows relative rotation about
the longitudinal axis of the cylinder. However, it does not restrict all relative
translations betwecen the two connected bodies. The connected bodies can move

relatively along the longitudinal axis of the cylinder, as shown in Figurc 7-5.
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Thercfore, the constraint conditions of this kind of joint to the relative motion of the
connccted bodics are zero rclative linear and angular velocities along the two base axcs
of the joint frame {ed) perpendicular to the longitudinal axis of the cylinder. These
conditions can be represented by the multibond graph in Figure 7-6. In the figure, all
flows have the same meaning as in Figure 7-4, except that the multibonds to the “0”

junction, of rclative linear velocities, decrease to two single bonds.

Figure 7-5 Sketch of a cylindrical joint

S0
- _
(%)) o
d
= JTF:AY 770757 TF:A“ '_‘_‘b.:
3 JTF:AY" 3]0 'JTF:A“'E_ 7
) H ;

Sf'l)

body i

Figure 7-6 Multibond graph of a cylindrical joint
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7.2.4 Translational Joints

Translational joints arc the kinds of connections that only allow the rclative
translation of the connected bodies along one direction. This kind of joint can have a
variety of forms, but it can be represented as in Figure 7-7. The joint attached frame is
defined such that one base axis of it is aligned with the dircction of allowed relative
translation of the connected bodics and two others arc in arbitrary directions. The
constraint conditions of this kind of joint can be expressed as zero rclative angular
velocitics along all base axes and zero relative lincar velocities along the two basc axces
perpendicular to the direction of allowed relative translation. The multibond graph of
this kind of joint is plotted in Figure 7-8. The meaning of all symbols is the same as in
Figure 7-5, except that the multibonds to the *“0” junction of rclative angular velocities

increase to three singlc bonds.

{e}

e 1}

{e}

Figure 7-7 Skeich of a translational joint
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body j ‘ body i
/TR AY T J 0T ] TF:AY "5
P Pa
2
Sf:0

Figure 7-8 Multibond graph of a translational joint

7.2.5 Screw Joint

Screw joints are a type of joint in which the translational constraints are coupled
with rotational constraints. The sketch of a screw joint is shown in Figure 7-9. A joint
attached frame is so defined such that one base axis is along the longitudinal axis of
the screw. Let the relative translation be s, relative rotation be 0, the slope of the screw
bec angle o, and the radius of the screw be p, the coupled condition beciween relative

rotation and translation can be written as

§ = (ptanc) 9 (7.8)

Because the two relative velocities represented by the § and 0 arc coupled by the
rclation (7.8), there is only one degrec of freedom of relative motion in the joint. Either
of the two motions can be selected as the active motion and the other the passive one.
Except for these two relalive motions, there are no other relative motions allowed by
the screw joint. Therefore, the constraint conditions for a screw joint can be described
as two zcro relative linear velocities and two zero relative angular velocities, along the

two base axes of the joint attached frame which are not along the longitudinal axis of
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the frame, and a coupled relation between the relative linear velocity and angular
velocity along the third base axis along the longitudinal axis of thc screw. These
conditions can be represented by the multibond graph in Figure 7-10, in which the
coupled relation between the relative rotation and translation is represented by a

transform element.

{e}

VAN
A
-

fed}

A AWA
P T W §

{e}
Figure 7-9 Sketch of a screw joint
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| —— 2 3 7] TF:A4 =

body j TF: ptana body i

7 TF:AY T 0T ] TF:AY T

P, 'H P,

S,: 0

Figure 7-10 Multibond graph of a screw joint
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7.2.6 Planar Joint

A skctch of a planar joint is shown in Figure 7-11. The joint attached frame is
defin.d on the contact planc in a way that one of its threc base axcs is normal to the
planc and thc other two are in the plane. So the constraint conditions provided by this
kind of joint arc zero relative linear velocity along the normal base axis and zero
relative angular velocities along the other two in-plane base axes. These constraint
conditions can be represented by the multibond graph in Figure 7-12, where all lctiers

have the samc mcaning as those in previous figures.

Figure 7-11 Sketch of a planar joint




s,.-o

I{ -
Q

9, 4
3 7TFAY T ] 0T ]TF:A
body j body i
3 JTF:AY >0 > TF:A¥ 3
P, ] Py

Figure 7-12 Muliibond graph of a planar joint

7.2.7 Universal Joint

Figure 7-13 is a schematic representation of a universal joint. Two bodies ¢ and
J are connected through an intermediate body d known as the “spider”. The joint
attached frame is located on the intermediate body in the way shown in the figure, two
basc axes being along the cross and the third being normal to the plane of the cross.
Each body has only one rotation degree of freedom, about diffcrent basc axis of the
intermediate body, and so the relative motions between these two connccted bodies arc
the rotations along the two basc axes on the cross. Thercefore, the universal joint
restricts all relative translations along three base axes of the joint frame and one
relative rotation along the base axis normal to the cross of the intermediate body
between the connccted bodies. These constraint conditions can be represented in a

multibond graph as shown in Figure 7-14,



{ed) {el}

{e}

Figure 7-13 Sketch of a universal joint

s,:o

Figure 7-14 Multibond graph of a universal joint




7.3 Lagrange Multipliers and Artificial Constraint Element

From the discussion of section 7.2, it is clear that all constraint conditions

represented by multibond graphs can be expressed in the form

h.
(H,) thy} = [H; H]{} = {0} (1.9
)
where
{R}
{h;} = {{0}} (7.10)
{q}’;

(H;] isa matrix consisting of position, oricntation and vibrational displacement of the
connected flexible bodies. This matrix is the well known Jacobian matrix for constraint
conditions.

By Farkas Lemna [Haug 1989], for constraint equation (7.9), there exist unknown
Lagrange multiplier vectors {A.} and {l.j} such that the constraint forces acting on

the connected bodies can be expressed as

{F. .} = IH1T{X} (7.11)

{F;.} = (H)T{A} (7.12)

Noting that matrices [H,;] and [H,] are simply the transformation betwceen velocitics
at the joint and the body referencc frames, equations (7.11) and (7.12) mean that the
constraint forces are the transformation of unknown forces {A.} and {3.,} acting at
the joint. Therefore, these Lagrange multipliers can be trcated as cffort inputs at the
“Q” junctions of the joint in all multibond graphs in section 7.2. Samanta {1990] used
this idea in his work. The advantage of this concept is that all derivative causalitics

caused by the velocity constraint mentioned in the previous scctions will be
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climinated. This will be discusscd in Chapter 8.

Combined with the velocity conditions provided by the joints discussed in section
7.2, the bond graph of a joint using this idea can be represented by an element of zero
compliance C, or infinite resistor R, with causal stroke away from the elements, as

shown in Figurc 7-15.

body j ———7 TF:AY 7 0 ,ﬁl body i
P, Py
I
Co(R,)

Figure 7-15 Muliibond graph of a joint with Lagrange Multiplier

For zero compliance, the constitutive law is

[cg {A} = {0} = {1} (7.13)

For infinite resistor, the constitutive law is

(R {A} = {0} = {s} (7.14)

Notc that flow {f} at the element is the sum of the flows of all other bonds, i.e. the
relative vcelocities of the connccted bodies. The equations above mean that the
cmployment of clements C, and R, satisfy the constraint conditions in velocity form.

Examining the functions of clements C, and R, in bond graphs, it can be seen
that they merely provide velocity constraints and unknown effort inputs. Their

constitutive laws cannot be used to calculate the outputs from the inputs of the
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clements. Thercfore, they can be treated as a special kind of artificial element, which
only provides velocity constraint and unknown cffort. In this thesis, it is called
Constraintor and represented by CN in multibond graphs. The bond graphs of different
kinds of joints discussed above can be represented by clement CN simply by * 'acing

all zero S, elements with CN elements and letting the causal stroke be away from them.

7.4 Multibond Graph of Flexible Multibody Systems

With the multibond graphs of single flexible bodics and mechanical constraints
in hand, the multibond graph of a flexible multibody system can be obtained by
assembling these individual bond graphs together. This assembly concept is somewhat
similar to the finite element analysis methods. This procedure is illustrated in Figure
7-16, in which each block and cach circle means the multibond graph recpresentation of
that body or joint. The issue in this step is the causal conflict, in which the integral
causalitics of cach single body can not be kept unchanged in the muliibond graph of
the multibody system. Derivative causalitics will appe: ‘o some “I"” and “C” clements.
This is caused by the “0” junctions and velocity sourccs at the constraints. The physical
meaning is that the constraints reduce the degree of freedom of the multibody system.
The methods which are proposed to deal with this issuc will be discussed in the next

chapter.

body 1 body 2 body3 | ...

Figure 7-16 The structure of multibond graph of multibond systems
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Derivation of Equations from Multibond Graphs and

Numerical Algorithms for Simulation

8.1 Introduction

After the multibond graph of a flexible multibody system has been set up, the
cquations of motion can be derived in a systematic procedure. This procedure includes
two steps, the first is causal assignment, and the other is the establishment of the
cquations from the causaled multibond graph.

Numerical integration of the resulting equations will finally give the dynamic
responsc of a flexible multibody system. The stability of numerical integration is the
most important factor which needs to be considered.

This chapter will first discuss the causal assignment for multibond graphs of
flexible multibody systems, then the procedure to derive the cquations of motion will
be explained. Finally, the chapter will compare existing numerical algorithms, for

multibody systcm dynamics, and discuss their use.

8.2 Causality Consideration

From Table 2-2 (Chapter 2), it can be seen that each multiport element represents
onc or morc mathcmatical relations between the effort and flow vectors, according to
their causal signs. The direction of the causal sign has certain physical meanings. For

cxample, an inertia clement with integral causality means that the effort (force for

mcchanics) is given and the flow (velocity) can be determined from the constitutive
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law of the element. This is the first type of dynamic problem, or forward dynamics. On
the other hand, an inertia element with derivative causal sign mecans the flow (velocity)
is given to the incrtia and the unknown force can be found in terms of the constitutive
law. This represents the second type of dynamic problem, or inverse dynamics.

In these multibond graph elements, some elements have an arbitrary choice for
their causal signs, some have preferred choice, and some have only one choice. The
systematic procedure for assigning causalitly in a multibond graph has been described
in detail by Karnopp and Rosenberg [1975, 1983].

The multibond graph of a single ficxible body without kinematic constraints has
totally integral causality, which is shown in Figure 8-1. When a ficxible body is
interconnected to other bodies, it is subjected the constraint conditions described in
Chapter 7; the total integral causality does not hold anymore. It can be scen that cach
constraint introduces a flow sourcc which has causal stroke towards the flow source.
Due to the causal property of the “0” junction that there must be one effort input to a
“0” junction, one stroke at the bonds {f,} and {Q2,} must change dircction and so0
some strokes in Figurc 8-1 must change directions too. This will causc some incrtia
elements to have derivative causal signs.

This procedure can be indicated by an example of a two flexible link manipulator
in Figure 8-2. Each link is a bcam and they are connected to cach other through a
spherical joint. One link is also connected to the ground through a spherical joint. An
inertial frame X-Y-Z is fixed on the ground. The body reference frames of these two
flexible links arc attached at the inboard ends of the links, as shown in the figure. The
multibond graphs of these separated ficxible links and spherical joints arc shown in
Figurc 8-3. It is obvious .hat the multibond graphs of thecsc two links have integral
causal signs for all cnergy storage clements. To connect the muitibond graphs of the
links and joints together, the translation velocitics of the two links at their joints which
are restricted by the spherical joints must be represented in the multibond graph. For
link 1, all translation velocities at the joint to the ground arc {R}, which is restrained

o zero through the joint 1. The translation velocities of the other joint {R;} can be
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Fizurc 8-1 Multibond graph of a flexible body with integral causality
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7 joint 2

flexible links

Figurc 8-2 A flexible manipulator systcm
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cxpressed in the multibond graph as in Figure 8-4 according to the gencral multibond
graph of a flexible body in Figure 6-2. For link 2, the translation velocities of the joint
connected to link 1 are {R}. So the connection can be fulfilled by conncciing the right
sides of two joints to two velocities {R} and connecting the left side of joint 1 10 a
zero flow source (ground) and the left side of joint 2 to the velocity {R;}. The
multibond graph of joint 1 with the zero flow source (ground) can be simplificd as a
single zero flow source vector directed to the velocity {R} of the link 1, as is shown
in Figure 8-4. The procedurc of causal assignment of this multibond graph can be
carried out according to the Systematic Causal Assignment Procedure (SCAP)
[Karnopp and Rosenberg 1975]. The causaled multibond graph of this system is shown
in Figure 8-5. It can be secn that two derivative causal signs arc at the inertia multiport
clement representing the translation of the two links. The physical mcaning is obvious;
since each spherical joint restricts three degrees of freedom for each link, the total
degrees of freedom of the two link system are no longer 2x6 degrees of freedom.

The paragraphs abovce described the procedurc of causal assignment of a
constrained multibody system and the cxistence of derivative causality in cnergy
storage clements. From Table 2-Z, it can be scen that the derivative causalitics in
energy storage clements represent differentiation operations which may causc
instability in numerical solution of the system if the numcrical algorithm is not
appropriately selected [Bos, 1986]. Several methods have been introduced to overcome
this problem. They can be divided into two groups. Onc is to eliminate derivative
causalities and use common numerical integrations and the other is 10 accept derivative
causalitics and adopt special numerical algorithms.

Among the first group is a method to add artificial stiff springs at constraints
[Margolis and Karnopp 1979]. In this method, the idcal constraints arc adjusted into
real elastic constraints. Each body is connected through clastic joints. Therefore, cach
body has all degrees of freedom as a unconstrained singlc body and no derivative
causality will appear. However, this method is only suitable for simple multibody

systems because once the systems contain many bodies, this method incrcases the
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number of degrees of freedom significantly.

The sccond method of the first group is to transfer the inertia elements with
derivative causalities over some other elements to the inertia elements with integral
causalities [Allen 1979, Bos 1986]. By this transfer, the derivative causalities are
climinated from the bond graph. From the point of view of establishing equations of
motion, what this transfcr docs is to replace the dependent variables with independent
ones according to the kinematic constraints. In general, however, this transfer is very
complicated and needs tedious algebraic operations [Bos, 1986].

The third method of the first group is to employ Lagrange multipliers as the effort
sources in the bond graph which represent the constraint forces at the constraints
[Samcnto 1990]. This method retains the ideal constraints in the multibody system and
also climinatcs derivative causalitics in the bond graph, in the sense that unknown
constraint forces can appear in the bond graphs as the known effort sources. Since these
unknown Lagrange multiplicrs need to be determined before they can be used as effort
sources 1o the bond graphs, a pre-calculation for these Lagrange multipliers at each
time step is necded. Therefore this method symbolically eliminates the derivative
causal signs in the bond graphs which helps in the numerical algorithm as the second
group docs.

An alternative of this method is to employ the artificial constraint element CN
introduced in the last chapter. This type of element provides velocity constraints and
unknown cifort sources at the joint. The velocity constraints represent the constraint
conditions and the effort sources ensure total integral causality to the bond graph.
These unknown cffort sources (Lagrange multipliers) arc left to the numerical
algorithm to determine. This will be discussed in section 8.4.

The sccond group of methods dealing with the constraints is to accept the
derivative causalities and adopt special numerical algorithms for simulation [Karnopp
and Rosenberg 1983, Bos 1986, Felez 1990]. In Karnopp and Rosenberg’s book [1983],
the cquations of system generated from a bond graph with derivatively causaled

storage elements arc a set of differential and algebraic equations (DAE) with
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independent and dcpendent variables. The solution can be found by replacing
dependent variables with independent ones analytically according to the algebraic
equations. Bos’s method lcaves derivative causalitics in the bond graphs and scts up a
group of equations according to the constitutive laws of cach bond graph clement. This
set of equations represents a set of implicit differential equations and algebraic
cquations of the whole system. The difference between Bos® [1986] mcthod and
Karnopp and Rosenberg’s [1983] is that instecad of replacing the dependent variables
with independent ones, a special numerical integration algorithm for simulation of the
DAE systems [Pctzold, 1982] has to be employed [Gear 1971, Orlandeca 1977, Petzold
1982] in Bos® method.

8.3 The Equations of Motion of Multibody Systems and Numerical
Algorithms in Other Computer-Aided Modelling Methods

There cxist a number of computer programs in multibody sysicm dynamics
[Schiehlen, 1990]. Some of them possess the ability to consider flexible bodies. All
these programs arc based on analytical methods, e.g. Lagrange's equations, Newton-
Euler equations, D’Alembert’s principle, Kane's cquations and so on. This section
summarizes the forms of equations of motion gencrated from these mcthods and their
numerical algorithms for simulation. This can give a better understanding of the
cquations of motion generated from multibond graphs.

The forms of equations of motion of a multibody systcm with holonomic
constraints generated from analytical methods can be divided into two groups. Onc is
a set of pure differential cquations. The other is a sct of differcntial and algcbraic
equations. The equations of motion generated from the Ncwion-Euler mcthod,
Lagrange’s equation with Lagrange multipliers and D’Alembert’s principle arc in the
second group. The equations of motion in this group can use Cartesian coordinates or

relative coordinates directly as the generalized coordinates in the program. It is casicr
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for computer-aided modelling program to implement. The form of the equations of

motion usually is
IM] {43} = {Q(a. @)} + [H1T{A} + {F} (8.1)
{8(9.4)} = {0} (8.2)

In the first cquation, {g} arc the variables to describe the position, orientation and
vibrationa! deformation of the each body in the system, [M] is a timec-variant mass
matrix, {Q(q.¢)} arc the gencralized forces caused by displacement and velocities of
the bodies, {F} are the gencralized external forces, {A} arc the Lagrange multipliers,

and (/] is the Jacobian matrix of the constraint equation (8.2) which means

(H) = [%%] (8.3)

Since the cquations of motion of this kind are Differential/Algebraic Equations
(DAE), most well developed numerical algorithms for solving Ordinary Differential
Equations (ODE) cannot be simply used for their numerical solution [Petzold, 1982].
Scveral algorithms have been developed to solve this kind of DAE. They can be
summarized into two strategies. One is to change the DAE system to an ODE system
by differentiating the algebraic constraint equation and employ any numerical methods
for ODE systems. The other is to use a specially developed algorithm to solve the DAE
dircctly.

In the first strategy, the constraint equation (8.2) is differentiated into
{8} = [H] {4} = {0} (8.4)
{8} = (M1 {4} + M {4} = {0} 8.5

Equation (8.5) is a second order differential equation. Together with equation (8.1), the
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equations of motion become an ODE system which is

M) (7| 18, _  (@lagl) {F)
[[Hl [01']{{1}} Uy g (8.6)
where

The most important drawback of this algorithm is the violation of the constraint
cquations resulting from the inaccuracy during the numecrical intcgration process. This
behavior is due to the fact that it integratcs an undamped sccond ordcr system (8.5)
twice and the numerical integration of this system is unstablc. Two mcthods have been
proposed to overcome this problem. Onc is that instcad of intcgrating cquation (8.5),

a new stable second order system is integrated which is

{£} +2a{§} +B2{g} = {0} (8.8)

where a and B are positive constants, and usually chos:n to bc a = B.

With this constraint equation, the equation of motion (8.6) bccomes

M n™ 19}, _ (21{q4}] {F} 49
[[m [01']{{1}} AT 39
where

(Yo} = — (] {¢} - 2a(H] {4} - B {5} (8.10)

Note that in this form the variables ¢ are not independent. The dependence of these
variables is conducted by the constraint equation (8.8). The total unknown variablcs
are {q} and {A}, which has the maximum variables of the system.

If the constraint forces are not of interest in the simulation, equation (8.9) can be
reduced by eliminating the Lagrange’s multipliers {A} for more economic numerical

solution. There are two procedures to eliminate {A}. One is proposed by Wittenburg
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{1977] in which {g}. found from the constraint cquation (8.8), is substituted into

cquation (8.1) for {A}. This lcads to
(A} = (1 M7 T (M Q) + (FD) +19) @.11)
(M1 1§} = (@} + {F} - INT(CH I DY (Y M7 (1Q) + {FD) +19) (8.12)
The other is 10 us¢ the orthogonal complement of the Jacobian matrix (H] to

climinatc {A} [Unda and others 1987]. Since the variables {4} are dependent, an

independent subset {4,} of them can be defined as
{4;} = (B] {q} (8.13)

where [B) is a boolean matrix.

Together with the constraint equation (8.4), there is

i), .. _ 10
[[B]] {4} {{4‘_}) (8.14)
Thus
-1
oo ] 10 {0}
{4} [IBI] figpt = [1s) (R]]{{é.-}} (8.15)
or
{4} = [R] {4;} (8.16)

Matrix [R] is an orthogonal complement of Jacobian matrix of constraint condition,

because

lH] {¢} = {1} [R] {4;} = {0} 3.17)
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Since components in {4;} arc independent. the following holds

(H] (R] = [0] (8.18)

Using this property of matrix [R], one can pre-multiply [R]7 to equation (8.1) and gets
(R1T(M] {4} = (RIT(Q} + (RVT{F} (8.19)

where {A} has been eliminated. So the equations of motion in this form becomes

[m’m] (it = [rm’(m {Fn] (8.20)
[H] T

The numerical solution of equations (8.12) or (8.20) is more cconomical than
equation (8.9). However, somc preparation to eliminatc Lagrangc’s multiplicrs has 1o
be done first, which is the cost for a simpler numerical solution.

Another form of elimination of Lagrange multipliers should be mentioned here
which will be used to verify the equations of motion generated from multibond graphs.
It is the coordinate partitionin- mcthod [Wehage and Haug 1982). In this method,

variables {q} are divided into ‘ndependent subset {g;} and dcpendent one {q,}

{44}
= 8.21
{q} {{q:}} (8.21)
and so
(H] = (H® If) (8.22)

Based on this partitioning, equation (8.1) can be divided into

(M) {4} + IM¥) {4} = 109 + uf (A + (P (8.23)
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. . T
M) {4} + (M9 (G} = {0} + LHY {A} + {F} (8.24)

Since llld] is a nonsingular square matrix for independent constraints, {A} can be

solved from cquation (8.23) and substituted into equation (8.24). This yields

M)+ U 1T I (G + (M + 1T ) ()

= (@'} + {F} + 11T (1@} + (FD) (8.25)
where
(] = - ) (8.26)

Instead of turning the DAE into ODE for numerical solution, the second strategy
to find the numcrical solution of cquations (8.1) and (8.2) is to employ a special
algorithm for the DAE system. Gear [1971] first proposed an algorithm for solving
DAE for clectrical circuits. Orlandea and others [1977] proposed an algorithm for
solving equations (8.1) and (8.2) directly, which is used in the program ADAMS.
Petzold and Gear {1982, 1984 studied the general DAE and the algorithm for its
solution. The strategy in this algorithm is that the algebraic equations are trcated as
stiff differential equaiions and the differential equations are soived by implicit
numerical integration for stiff ordinary differential equations.

This algorithm can be illustrated as follows. Suppose that mixed differential and

algebraic cquations result of the form

{f(y.y.n} = {0} 8.27)

where some components of y may not appear in some of the equations. When none of
the components of y appear in an equation, that equation is an algebraic equation;
otherwise it is a differential equation.

An implicit numerical integration such as the kth-order Gear’s algorithm has the
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form

k-1

yit? —Alb_,y“l— Zaﬁi-j = {0} (8.28)
j=0

where i is the time step, At the time increment and g,’s and b_; arc constants.
The Newton-Raphson formula for solving y and y from cquation (8.27) can be

found as
f’(" A’(I) + f;l) A_y'(l) - _f(l) (8.29)

where superscript / means the iteration step, and

y(1+1) - Ay(')+y”) (8.30)

(I+1) () BN )]
y

= Ay' +y (8-3‘)

According to formula (8.28), the relation betwcen Ay“) and Ay’“) at any time step can

bc found as

(1
Ay = Ath_,

Ay (8.32)
Substitutior of this relation into equation (8.29) results in

) 1 A () _ A
U+ gty M = 7t (8.33)

At each time step, the iteration process of equations (8.30) to (8.33) is continued

until all of the difference Ay“’

are smaller than a specified tolerance Icvel and all y arc
found. Then the algorithm forwards to the next time step until the cnd of the simulation
period.

Applying this algorithm to DAE system of equations (8.1) and (8.2), the function
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{f(».y.1)} and variablc y can be
(M1 0 0 - {0} - {F} - 11T (A}
U0l =10 (nof{yt+ -{4} (8.34)
0 090 {g}
{4}
Y= |{q} (8.35)
{A}

Since at each time stcp Newton-Raphson iteration is used, this algorithm is

relatively slow.

8.4 The Equations of Motion Generated from Causal Multibond Graphs

As the multibond graphs of a flexible multibody system have been assigned causal
signs according to the Systematic Causal Assignment Procedure [Karnopp and
Roscnberg, 1975], the inputs and outputs of each bond graph element are determined
by the causal strokes. The equations of all elements can be written in terms of the
inputs, outputs and their constitutive laws. This full set of equations will form the

cquations of motion for the multibody system.

8.4.1 Procedures of Derivation of Equations of Motion

Bascd on the two kinds of multibond graph for constraints discussed in Chapter 7,
the equations gencrated from the multibond graphs have also two forms.

For the first type of multibond graph representation of constraint discussed in
Chapter 7, zero flow source elements will cause derivative causalities in the multibond
graph.

Roscenberg [1971] first proposed a procedure to derive the general state space

cquations from bond graphs with mixed causality at storage elements. In his research,

the equations generated from the bond graph have the form
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Xi=T, (X, Xa U) (8.36)

Xy =T, (X, 0) (8.37)

where X;, X, arc energy variables at the storage elements with intcgral and derivative
causal signs, which represent the independent and dependent variables for the system,
Note that this is a set of differential and algebraic equations.

This procedure to derive a set of differential and algebraic equations is also
advanced to multibond graphs of rigid multibody systems by Bos [ 1986}, which points
out that this procedure needs the least analytical work by hand and so is superior for
computer-aided modeclling and simulation. For details of this r.rocedure, the rcader can
refer to the reference [Bos 1986]. It verifies, with the aid of an cxample, that this set
of differential and algebraic equations from a multibond graph of a multibody system
has the same form as that of cquations of motion derived by the coordinate partitioning
method.

Karnopp [1977] proposed a procedure to derive differential equations from a mixed
causal bond graph based on Lagrange’s equation. This procedure introduccs artificial
flows into the bond graph which represent the independent generalized coordinatcs.
The kinetic and potential encrgies of the system can be first written in terms of encrgy
variables of all storage elements with integral or derivative causal signs. Then, the
relations between these energy variables and the independent gencralized coordinates
are applied to rewrite the energies in terms of the generalized coordinates. Finally the
Lagrange equation can be uscd to achieve the diffcrential cquations of the system.

Similar to this ideca, Allen [1979] chose the energy variablcs at storage clements
with integral causal signs as the independent coordinates and moved other storage
elements with derivative causal signs over to these storage clements with integral
causality. This results in a new bond graph which has all intcgral causaled storage
elements and the differential equations can be casily derived according to the

Systematic Causal Assignment Procedure [Karnopp and Rosenberg, 1975].
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Bascd on Karnopp and Allen, Bos [1986] proposed to use arbitrary independent
coordinates as a “1” junction and move all storage clements to these junctions. This
also results in a new bond graph with all integral causaled storage clements. A set of
diffcrential cquations can be derived from it. However, with the complex systems, this
movement of elements needs complicated mathematical manipulation, and original
physical meanings of each element are lost.

All these bond graph methods to derive pure differential equations from mixed
causal bond graphs are equivalent to analytically eliminating dependent variables from
differcntial/algebraic equations. The difference is that the former docs so by modifying
bond graphs, while the latter does so by manipulating differential/algebraic equations.
Therefore, this thesis will not discuss this method.

For the second type of multibond graph representation of constraints, the artificial
constraint clement CN provides velocity constraint and unknown effort source at the
joint. This cnsurcs that the multibond graphs for each body have integral causalities.
Recalling the equations of motion of a single flexible body, i.e. equation (4.74) in

Chapter 4, the differential equations of motion of the whole system can be written as

M,*) {hy} iwirl [tFg] (a7 .. oL LA
= .. |+ o (8.38)

iM:] {ha} {W,} {Fy} cee o [H {2,}

nm)

The independent constraints in velocity form at each joint form the algebraic equations

which are

(Hyd oo o |[URy)
= {0} (8.39)
o [Hpad | [ {Be}

It will be verified by an cxample that the equations of motion generated from this

type of multibond graph arc deferential/algebraic equations with maximum variables,
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which have the form of equations (8.1) and (8.4).
8.4.2 An Example of a Two-Link Flexible Manipulator

This section is to demonstrate the procedure of the derivation of equations of
motion, by an example for a two-flexible-links manipulator, and verify that they are
the same as those derived from analytical methods.

The example two-flexible-links manipulator is shown in Figure 8-2. The multibond
graphs of the system with two different types of multibond graph representations of
spherical joints are shown in Figurcs 8-4 and 8-5. These multibond graphs have been
marked with causal signs according to the Systematic Causal Assignment Procedure.
In the zero flow source method, two multiport inertia clements corresponding to
translation of two links get derivative causalitics duc to the constraints of two spherical
joints. The multibond graphs using constraint element CN has total integral causal
signs as discussed ecarlier.

The generation of cquations of motion from Figure 8-4 is as follows:

Step 1: Using the constitutive law at inertia clement M) in link 1, extending the
effort sum to the end of each branch. This means

. (16
(Mg 1 (£} = | i) 1D {{..‘}} = e}
' (D) M1 {1} !

{ C(LHY L = 1 D) {9} + (3, ) (A" (my (P} - my {g}) }
= +
= 1G] {f,} - 1K, 00 {0} = 18,0 (") (my 4B} —my {g}])

(341 1A") (my {P,} - my {g})
+ .
{— (®, 1 1A") (my (P} "mz{l})}

(1H1) - 1) {9} myldc) mylda) | o (P} 18)
+ : (A7)

=Gy g} - 1K, 1 Ay} |-my183) -my 1O, (P} - {g}
(8.40)
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Step 2: Using the constitutive law at inertia element [M,] in link 2, extending the

effort sum to the end of each branch. This means
. (2,) 1D,)7} [ {92}
Mg ] {§;) = 2 2 {..}={¢}
W [[021 mz:} {i,} b

{ (Ha] - 11 5]) {R,} + (@) [A®) (my (B} -my {g)) }
- 1Gy) {15} - [K, 5) {n,) - (551 [A™] (my (P} - my (&)

={ (1Ha) - " 3)) {2y} }+[[01 m,;ac21][Am]{{?c,}—{z}}

= 1G,) {My} = [K, 5] {My}] | 10] —my [S)) {P.} - {g}
2 2 q2 2 2192 2 (8.41)
These two equalions can be written into one compact form as
- , SR [ - 0, . (= 10,
) a7 01 101 | g, [Tmle) (AT -mlag 1 TATY)
(D) 1M1 101 101 || Cd| |80 (4% my (@) (A7) {“’c,}} _
01 101 (4, 1Dy)7]] (S} 01 -mlg,) (4| L{Ps)
(LHy) - 1) {9} ~13.,) 1A' —124)) (4")
-G 3 - (K 10 10
_ l,,l{n,} (K4} {n;} . (5,1 (A7) [@,]1[47] ml{g}} 8.42)
([H3] - ")) {Q,} [0 -14.,) (A% m, {8}
- 1G,) {M,} - [K, ) {n,} | 10) (S,] 4% |

Step 3: Expressing velocities of the inertia elements with derivative causality in
tcrms of velocities of the inertia elements with integral causality. This means

that at incrtia element m in link 1, there is
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(4] (R} + 130T 19,) + 1517 (g b

{P.}

- T L,
(A% (1) {9} + (8,1 {4, ) (8.43)
and at inertia element m in link 2, there is

e} = (A ({Ra} + 13.)" (9, + (57 (A1)

(A1 (1A} ({Rn} + (30)T 10,1 + 10,1710, 1) + [3,)” {051 + 18,17 (D)

(%] (13417 19,1 + 10,1742, 1) + 14%1 (L] 19,1 + 15,0740 (8.44)

These two equations can be written into a compact form as

(9,}

{{Pc,}} |41, syt o) 10} {,} ®.45)
et 4% 13,07 1471 10,17 (4% 13,7 140 15,17] | 19!
{9}

Equations (8.42) and (8.45) are ecquations of motion gencratcd from multibond
graphs in Figure 8-4. These are a sct of differential/algebraic equations and have the

form of equations (8.36) and (8.37).

The generation of equations of motion from Figure 8-5 is as follows
Step 1: Writing out the velocity constraints at two CN clements, respectively.

At CN,

(P}
(A" (P} - 130" 19,1 - 15,7 (1} = [;A"’; _gaql";[s,ﬂ]{iﬂ.}} = {0} (8.46)
) i,
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[AZ) (P} - 13,) 10,1 - 1,17 (A} - AP T CHRIY + 1840719} + (0,17 {3y D)
(P}
= [u"’l —liczlr-lszlf] {Q,}|-
{Ry}
(AT} (14" (P} - () - Tag) D) 12y} + (ST - 10,17 {0y (8.47)
= [—Mwl 1421 (13:)" - 1)) (421 (1507 - (9,17 14 ~[iczlr—lszli|{4}
where
[{i'c,},
{(Q,}
M}
gr=4."1 (8.48)
{P.,}
{Q,}
' {n;}’
Thesc two equations can be rearranged as
r{PCl}\
; ; {P.}
14" 101 -14,,] ~1s,7 CEENUNY (9,3
. T
- 1A% (AP (AP (1a) - Laa) D) 14T s (0,10 - 16" - 15,7) | 1)
{£2,}
L {A,)
= [iLg) |L~l]{”d}} = {0) (8.49)
40 TS 44
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where

(L) = (4% (0 ®.50)
o142 a2 )

T

-4, -1s)7 (o (0]

- T - T -
(421 (13, - 141D 142101507 - 19,11 -13.,)" -1S;)

{ {P} }
] (8.52)
(P}

(L] = (8.51)

{44}

Q)
{1}
(Q,}
{1}

{q:}

(8.53)

where {4,} and {4,} are dependant variables and indcpendcent variables.
Since the constraints arc independent, matrix (L,) is nonsingular, cquation (8.49)

can be written as

{da} = - [V ILA {43} = (L1* {4y (8.54)
where
(L1* = - (Lt L)
10 " a1’ s,17 0 0l
=_[1A ] IO]:| -lg,] - 185, oy
1A% (A% 1A% (1) - (@) (AT asT- 10,07 13, ~1S;)
- T T
=_[IA°'] w;] -lq. ] -18,1 (0) | 10}
(A" 1A% | (A7) (13,7 - g1y 1A% (1807 1@, 1) -1Ge ) - 18y)”
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)" uhisyT o o [0}

- ' . 8.55
14”1 1ag)" 1A% 10,17 (A% (G} (A% (S,) ®.3%

Step 2: Writing out constitutive laws at each inertia ¢lement.

At the inertia element [m]) of link 1

omy (B} = m (g} + (A% ({M,} - 14%1 {(A,)

= my {g} + (A" (A} - (A®] {A,} (8.56)

At the inertia clement [M§] of link 1

. n {Q}

(D] [M,]

{ (L= 1) {0} + 13,0 (1A} =~ (A7 (A,)) + [34) 1472) (A} }
- 1G] {4} - (K] {ny} - (5,1 ({A,} = (A7) (A,)) - (@, ) (471 (A}

{ (UH - U D) 19y} } (4.,) ([ad,l-[a,,nu"]] ()
= +

: ! ,

At the inertia elecment [m] of link 2

my{Pc,) = my{g} + 14%1 (1)) (8.58)

At the inertia clement ngl of link 2
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. {Q,}
7,1 (D,)
M = 2 2 . =
(Mg ) {82} [[ 0 2;]{ {nz}} {eg,}

{ (LH2] = S 31) {Q,} + 4] {A,) }
= 1G,) {1} - [K,g5) {My} - 1S,) {A,}

A > A
) { ([H2] - S ;1) {2} }+ 0 Iq,,) {{ ,}} ©.59)
- [Gy) (M} - (K, 00 {ny} ] [10] ~1S,1| {2}

In the same arrangement of equations (8.50) to (8.53), equations (8.56) to (8.59) can

be written into a compact form as

m 1y 101 (01 101 o1 oy | (tPely {0}

.. {0} W
0] my{n: (M [0]1 (O] [0} {P.,} - P
- S— il - Q
(01 (o011, (D" (01 [0} {Q,} ( ll- D iy}
) [ = ("[G|] {Th}“”(,“l{'ll} f

(01 [0];(D, (M) (0] [O] {#,}

01 (01} (01 (01 (Jy) (D)) {gi,} (ARSI
| (0] {01} (01 {01 D] (M, L{ﬁz}‘ - [G,) {1ig) - [K, o) (M)}

01 ) i

[A™] —IAoz] m, (g}

L S . S my {5}

[qcl] (IQJl; - lqcl]) [A ] {ll} {0}

+ { +

-18,1 (15,1 - (@, )) (4] iR} {0} (8.60)
0 g, oy

(0] 4., {0}

| 10] -8,

or in a compact form with matrices corresponding to elcments divided by dashed lines

q LT (2
M o1 | Haal =(w-}!*{l " }}”m’;} (8.61)
oy (M) t4il (3 RN THLETS! {0}
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Both cquations (8.49) and (8.60) or (8.61) are equations of motion of the system
generated from the multibond graph in Figure 8-5. Equation (8.61) is the differential
cquation and equation (8.49) is the algebraic equation. These equations have the form
of equations (8.1) and (8.4).

It has therefore been demonstrated that equations of motion generated from mixed
causal multibond graphs, described carlier, are the same as the form of partitioned
coordinates of equations of motion (8.49) and (8.60) or (8.61).

First, the equations of constraints (8.45) generated from mixed causal multibond
graphs is the coordinate partitioned form of equations of constraints (8.49). This can
be scen from the comparison of equations (8.45) and coordinate partitioned equations
(8.54) and (8.55), which are same.

Sccondly, Eliminating Lagrange multipliers {A} from equations (8.61) following

the coordinate partitioning method, there is

M) () + L1 T M) (G0 = {FY + (L°T (@Y (8.62)
This equation is exactly the same as equation (8.44) that is generated from mixed

causal multibond graph.
8.4.3 Numerical Algorithms

The equations of motion generated from two types of multibond graphs of flexible
multibody systems have been verified to have the forms of maximum variables and
minimum variables. They are all differential/algebraic equations in both types of
multibond graphs. Both types of these DAE systems can be solved by implicit
numcrical intcgration for differential equations as discussed carlier. These equations
can also be converted into differentia! equations, only, by differentiating the velocity
constraint conditions equations (8.45) and (8.49) once. However, this method does not
add value or provide benefits. Because vibration modes are included in the model,

which contains high frequency components, the numerical stability must be ensured by
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either taking very small time steps for an explicit intcgration or adopting an implicit
integration procedure. Therefore, implicit integration mcthods for DAE systems

discussed earlier are more suitable for solving cquations of motion.



- Chapter 9 -

Applications

9.1 Introduction

The purposce of this chapter is to illustrate the validity of the multibond graph
mcthod devcloped in this thesis and the capability of a computer interface for
generating multibond graphs. This will be done by the application of multibond graph
mcthod to cxamples. These examples are:

(1) a ficxible rotating beam,
(2) a crank-rocker mechanism with flexible coupler,
and (3) a flexible robotic manipulator system.

The rotating beam included in this chapter is to show the vibration behavior of a
ficxible body undcrgoing high spced rotation. The example of crank-rocker mechanism
is to demonstraic the procedure of multibond graph modelling for a practical
cngincering problem. it also illustrates the behavior for a flexible coupler in multibody
systems. The dynamic simulation of the flexible robotic manipulator demonstrates

another application arca of the multibond graph technique.
9.2 Computer Program MULBOND

MULBOND is a computer program, designed in SUN workstation and SUNVIEW
graphics uscr interface, which can also be run in X-Window interface. It was developed
to implement the modelling and simulation methods discussed in the previous chapters.
MULBOND is intended 10 assist cngir-c1s in modelling and analyzing the kinematic

and dynamic bechavior of planar and spatial mechanical systems using multibond graph

techniques {He and ElMaraghy, 1992].
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MULBOND uses multibond graphs to model physical systems, and gencrates
equations of motion suitable for solution analysis by the standard simulation language
software ACSL [Mitchell and Gauthier Associates, 1987]. An interactive, graphics-
oriented editor is provided which permits convenient model construction and editing.
This editor provides a standard set of multibond graph clements and other editing
functions for the modelling. The output of this program is a source file written for
ACSL which can be compiled and executed by ACSL for system simulation.

MULBOND uses one main window and several different panels. They are shown in
the following figures (Figure 9-1 to Figure 9-10). In terms of functions, working arcas
are those areas in which models are constructed and results are displaycd. Pancls exist
to support thesc working area operations by making available “point and click™
function execution, and by displaying filecnames and current directories. The details of

this program can be found in its user manual [He and EIMaraghy, 1992].

:  e/damr)/s imon/ sysbd/paper_axsmples/crank_ Y inkage

[move ) {Quit]
:, [delat] {Toad)jChovse Functiame in Lufl Peww)
add elament] (add bond} [inguir ocess] {rufrech] (clesr)] (save]
(ade wiamant) (add bond} (inguiry) (precees)

Working Area

N . z

Figure 9-1 Environment of MULBOND for multibond graph construction
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Dir: /usr/damr/simon/mult{ibond
File: |
[add oiement] [add bornd} [inguiry) {process) (refresh] Diasnsion: Row < 1Col U1

Elmmant Type:

Figure 9-2 “add element” panel

Spacify Tuo Elamants Using Left Button

Middle or Right Button to Cancel

.

Figure 9-3 *“add bond” panel

damr /s imon/mul ¢ ibond

Fila:

||dd.o%mnt| |wa bond| |iﬂﬁtrﬂ 1Eocnc]

CUN G N

/ulr/l/siuon/nu'lubond
File:
() Ay

Oir: /usr/damr)/simon/mult ibond (move ] (Quit]
File: | delet) (Toad]
{29d element] {add bond) l‘@"!' |Eoccs¢| (rafresh] {clear]) (save)

Figure 9-6 “inquiry” panel
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Dir: /usr/dmmr)/simon/multibond

Save current model to file:
Iusrldwl/sinon/nulubond/.

Cave ) (Cance)

Figurc 9-8 “Save” frame

/usrdwl/smon/mmm fwove } (Quit)
: m  10ad]
(add ol t) (add bond} (inguiry] “f{process) [refresh] [c 83ve

Load mode] from file:

/usr/dwl/siaon/nultibmd/.
((Load Model File J{ Cancel )

Figure 9-9 *load” frame
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Dir:

File: .

A1l unsaved work will be lost.

(Quit J [ Cancel }

Figure 9-10 “Quit” frame

9.3 A Rotating beam

A long slendcr beam built into a rigid shaft is shown in Figure 9-11. The geometric
data of this beam are also shown in the figure. The shaft is driven and rotates about the
vertical z-axis and the beam vibrates in the horizontal x-y plane. This rotating beam
modecl is applicable for helicopter blades, turbine blades, satellite antennae and flexible
robot arms. In such applications, the dynamic stiffening effects due to the presence of
axial ccentrifugal forces have significant influence on the prediction of transverse

vibrations of the beam.

Y
2,4

L=8.0(m)

p = 2766.67 ((kg) /m’)
E = 6859 x 10" (N/m%)
I,, = 82181 x 107 (m*)

P b=3675x10"2(m)

K B8t h=1986x%10"3(m)

-

Figurc 9-11 Rotating beam example
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For a 2-D Euler beam shown in Figure 9-12, non-linear strain formula discusscd in

Chapter 4 can be simplified as follows.

Figure 9-12 2-D Euler beam

Let u, v as the vibrational deformations of a point on the neutral axis of the bcam

along x and y axes, and using the assumed modes method

<t

= o7 (x) {n}, .1

= @[ (x) {n}, ©2)

The deformations of any point in the 2-D beam are

0= u--a—;y 92.3)
v=¥v (9.4)

Vector {6} in equation (4.20) can be simplified accordingly

{6} = {u, u, v, v'y}T

wT T
- oy 0“
u {n}
- 0 [{ }i‘:N,,{n} ©.5)
o’ o |l
. 0 0




138
where
[ T ]
-~ oy t‘b“
T
Ny=|®, 0 (9.6)
o o
L 0 o

In terms of cquations (4.17a) to (4.17f), only two elements in the strain vector are
non-zero, which can also simplified as

{e}, = {,."} .7
xy

By picking up corresponding clements in equation (4.23), the follows are obtained

H° =|1000 9.8
* " lo101 8
1000
110000
H =2 9.9
®“ 20010 ©9
0000
0100
111000
H = 9.10
®" 20001 ©10
0010
Then the strain can be expressed as
{n}"B} {n}
{ﬂb=8&n}+{ T: ©9.11)
{n} B, {n}
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where
B = HN, 9.12)
B, = NfH\N, j=1,4 (9.13)

These matrices are used to calculate stiffncss matrices definded in cquations (4.30) and
(4.31) for 2-D beams.

Since this beam is connected to a rigid shaft, the bond graph for constraints
introduced by Margolis and Karnopp [1979] is used, in which the constraints arc
modelled as artificial springs with high stiffness and cxtra compliance elements are
added in the bond graph. This method is suitable for simple mcchanical sysiems.

Figure 9-13 shows thc multibond graph of the rotating becam in thc window
interactive environment. Since the beam is a slender beam, the shcar dcformation has
been ignored. The first three normal modes of a cantilever beam are sclected as the

assumed modes to model the vibrational deformation of the becam,

MUt FEOOND 0 GO T u E e gt

Dir: /usr/damr)/simon/syshd/paper_examples/blade
File: dlade_nb.bg

" fladd o!m_g {add bond) (inquiry] |Eocns|

Figure 9-13 Multibond graph of the rotating bcam in MULBOND environment
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The natural frequencies of the rotating beam are calculated by assumed modes
mcthod with and without consideration of geometric stiffness as discussed in Chapter
2. The admissible functions for a uniform cantilever which has the same geometry as

the rotating beam arc employed as assumed modes [Craig, 1981]. They are

(cosh (Bzj) + cos (-ﬁi-jx))

0,- = cosh(B-l—jx) —cos(zj) - sinh(—l!x) —sin(Bzj)] (9.14)

sinh (—l—jx) + sin ( —l—jx)

ji=1,..

where [ is the length of the beam and f's are roots of the characteristic equation
cosPcoshB+1 =0 9.15)

Bascd on cquations (3.50), the eigen problems of this rotating beam, with and

without consideration of geometric stiffness, are as follows
K] +Q%((K,] - IMD)] {a} = &’ [M] {a} (9.16)
(K] -2 (M)] {a} = @’ IM] {a} ©.17)

where w’s are the natural frequencies of the rotating beam and matrices (K], [K,] and
[M] arec calculated by equations (3.51) to (3.53)

The lirst two frequencies calculated from equations (9.16) and (9.17) are plotted
in Figurc 9-14. Solid lines show the ecigenvalues of the rotating beam with
consideration of geometric stiffness effects discussed ecarlier in Chapter 3. Dashed
lincs represent the cigenvalucs of the rotating beam without the geometric stiffness
terms. The cigenvalues at zero rotation speed represent the square of natural

frcquencies of a cantilever beam with same geometric data of this rotating beam. It can
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be secn that the cigenvalues calculated with consideration of geometric stiffness
increase as rotation speed gocs up. This is the cffect of geometric stiffness of a rotating
beam. It can also be seen that the eigenvalues calculated without consideration of
geometric stiffness decrease as rotation speed goes up. The first cigenvalue reaches
zero when rotation speed is around the first natural frequency of the cantilever. This
will cause the established model to become an unstable sysiem. Of course, this is not
valid. It indicates that the model without consideration of geometric stiffness of a
rotating beam is incorrect.

The start up of this beam under a specified angular motion of the shaft is simulated. The

angular velocity is assigned as

Qr T, 2®, T
=|t- == sin (= t<
Q, = {T[ T, ] y ©.18)
Q, 12T,

Simulations are carried out with , = 2 and Q, = 4 rad/s and T, = 1Sscconds. The
simulation time is from O to 20 scconds. Tip dcflcctions predicted by the multibond
graph in Figure 9-13 with and without consideration of gcometric stiffncss arc plotied
in Figure 9-15.

These results show that with the incrcase of the rotating speed the gecometric
stiffness becomes more and more significant in prediction of transverse vibration
behavior of a rotating beam. With ﬁ, = 4 which is higher than the first natural
frequency of the cantilever beam, the deflection predicted by the mode! without
considcration of geometric stiffness diverges. This is becausc the modcl has become
unstable.

This example indicates the importance of the consideration of nonlincar gcomctric
stiffness for a flexible member undergoing relatively high speed rotation. Therefore,
when the angular velocities of flexible bodics in a multibody system are not far lower
than the first natural frequencies of these bodies, the geometric stiffness should be

included.
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The First Eigenvalue (1/sec.**2)
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+———— Without geometric stiffness

-20 v
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~ +——¢ With geometric stiffness
- ) +~———+ Without geometric stiffness
§ 800
P
o
=2
4
[~
&
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£
=
0 y v r '
(o] 1 2 3 4 5

Angulor Velocity (1 /sec.)

Figure 9-14 The first two cigenvalues of the rotating beam
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Figure 9-15 Tip deflections of the rotating beam in the rotation planc
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9.4 A Crank-Rocker Mechanism with Flexible Coupler

This example shows another aspect of the effects of nonlinear geometric stiffness
on dynamic behavior of a flexible body in a multibody systems.

This crank-rocker mechanism is a planar four bar mechanism driven by a
scparately excited DC motor, which has been used by Samanta [1990] to illustrate his
method for treating mechanical constraints in bond graphs. For comparison, all
paramcters arc kept the same as in Samanta’s paper.

Figure 9-16 shows the schematic diagram and physical parameters of the system.
The crank and rocker are considered to be rigid bodies. The coupler is considered as a
flexible beam. The multibond graph of this system is in Figure 9-17. Simulations of the
actuator-mcchanism dynamics during start-up are carried out using this multibond
graph and the bond graph developed by Samanta [1990]. For the former, the first two
normal modcs of the coupler corresponding to hinged-hinged boundary condition and
geomcetric stiffness due to the axial forces are considered. For the latter, as done by
Samanta | 1990], the first two normal modes of free-free beam are considered. Both
bond graph models include 0.01 modal damping.

The simulations of the start-up of the system arc implemented under the input
voltage of 60V with these two bond graph models. The transient response is simulated
in 1 second. The simulation results are plotted in Figure 9-18. In this case, most
physical quantities of the system, e¢.g. the currents of the motor armature, the rotational
speeds of the crank and the rocker, the resultant forces at joint 1 and along the
longitudinal axis of the coupler, are almo<t the same. The predictions of the mid-point
transverse deflections of the coupicr by these two bond graphs have some differences.
This is due to the effect of dynamic stiffening and softening on the transverse vibration

causcd by the dynamic axial forces in the coupler.



Mechanism Physical Properties:
a; = 0.102(m), a; = 0.610(m), a, = 0406(m), a, = 0.559 (m)
21e+ motor = (0.00707 +0.565) (Nms®), 1, = 0.01245 (Nms?)

3 = 0.042152 (Nmsz) s h=0010(m), b=10015(m)

Motor Physical Properties:
Kp = 0.678 ((Nm) /a), r, = 0.4(ohms)
L, = 0.05(henrys), D = 0.226 (Nms)

Figure 9-16 Crank-rocker mechanism example
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Figurc 9-18 Transicnt response during start-up of a crank-rocker mechanism
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Figurc 9-18 (Continucd)
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Figurc 9-18 (Continucd)

To further investigate the effect of dynamic stiffening and softening in this
mechanism, the mass and the moment of incrtia of the driven rocker are increascd by
200 times the original onc, and all other paramcters arc kept unchanged. This will
incrcase the axial load to the coupler and so incrcasc the cffcct of stiffening and
softening. The simulation results are piotted in Figure 9-19. An interesting
phcnomenon happens in this case. At about 0.4 sccond from the start, the digital
simulation overflows and all quantities diverge. Checking the plots, after the first
rotation, a very large compressive axial load in the coupler is found which causcs the
buckling of the coupler because the coupler is a simple supporied column in
compression loading. Note that the model can identically predict buckling as the
softening cffcct, duc to compression, is included. This buckling causcd the wholc
dynamic modcl of the system to beccome unstablc and so the digital simulation
overflowed. On the contrary, the bond graph model proposed by Samanta | 1990] cannot
predict this buckling and gives incorrect simulation results, which can be scen clearly

in thesc figures.




Rototional Velocty of Cronk (rod/s)

Anqulor Velocity of Rocker (rod/s)

300.0 v v v
2000%F ) e Samenio’'s model g
e The mode! of this thesis
I g §.
100.0 } ; S £ d
IR I A
l‘ Pt Y ~ 3
“ A ) -
0.0 s . -
0.0 0.2 0.4 0.6 0.8 1.0
Time (sec.)
20.0 v r
10-0 B -
0.0 _/.\
L
-100 F 4
-20.0 . . . :
0.0 0.2 0.4 0.6 0.8 1.0

Time (sec.)

Samenta’s modcl {1990]
The current model

Figure 9-19 Transient response during stait-up of crank-rocker mechanism
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Figure 9-19 (Continued)

9.5 A Flexible Robotic Manipulator System

A flexible manipulator system that consists of two slender flexible links and two
o or links modelled as rigid bodies and which is used on a space shuttle or a space
station is shown in Figure 9-20. Bodies 2 and 3 in the model are flexible tubular beams
with circular cross-section. Each body is connected to its inboard body by a pin joint
with rotation axes along z axes of their local reference frames. Body 1 is connected to
the body of a spacc shuttle or a space station through a rotation base which can only
rotate about the X axis. Body 4 is a payload of mass 200 kg. Inertia propertics of
components of the system, in their undeformed states, arc presented in Table 9-1.

The initial configuration of the manipulator is shown in Figurc 9-20; and gravity

is considcred negligible. Bascd on the discussion in previous chapters, thc multibond
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graph of this system can be created as in Figure 9-21. To avoid derivative causality,
artificial compliant elements are introduced at cach joint. The stiffness of these
artificial compliant clements ar¢ chosen much higher than those of the fiexible

members so that the simulation results are not influenced by the artificial compliance.

Table 9-1 Geometric data of the flexible manipulator system

Body number Mass (kg) Principle moment of incrtia (kg-m?)
Ixx lyy Iz2.
1 50.0 0.00469 0.0195 0.0195
2 30.52 0.06250 40.7300 40.7300
3 38.16 0.07820 79.5300 79.5300
4 200.0 0.00782 0.0834 0.0834




joint 1
zl
= )
N 22 yl X . e 1
6, \\ joint 2
y2
K
\\23 joint 3
y3
. z3 joint 4
6, \_
p-
y3
x3
Length of links:

L1=03m L2=40m
L3=50m L4=05m

Cross-scction of link 2 & 3:

ri=004m
ro=0.05m
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fiexible links

©

Young's modulus and mass density of link 2 &3:

E = 6895*107 N/m>
p = 2699 kg/m’

Figure 9-20 Flexible manipulator system example
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To consider thc vibrations of the flexible links according to the boundary
conditions in this system, the first four normal modes of link 2 and link 3 are employed,
two in the x-y plane and two in the x-z plane of the local reference frame. Due to the
properties of pin joints at joint 2, joint 3, and joint 4, the normal modes of a cantilever
are sclected as the assumed modes in the x-z plane, and the normal modes of a simply

supported beam are sclected as the assumed modes in the x-y plane. They are

(cosh(-pi—jx) + cos(BTix)) B.
[sinh (T’x) — sin (-T’x)] 9.19)

sinh (-l-’x) + sin (zj)

= Iy — xy -
Qj" = cosll(-l-x) cos ( lx)

0.

. B;
ixy = sm(—l—{x) _ 9.20)

Two kinds of motion of this manipulator system are investigated. One is a planar
maneuver, and the other is a 3-D maneuver. Torsional stiffness of the links are included
in 3-D maneuver, but torsional vibrations of the links are ignored.

In the planar mancuvecr, joint 1 is fixed and the other three joints are subjected to

the angular changes about z axes as follows

x T,  2=x

92 = 03 = ﬁ;[t-ﬁs"'(?,‘)] IST‘ 9.21)
x
8,=6;= i T, 9.22)
= T,  2=x
0 = 7:[' *-27,""(-7:')} 1<T, (9.23)
x

94 = i > T‘ 9.24)

where T, is a time constant determined by the duration of the mancuver.

To investigate the influence of the flexibility of links on the mancuver of this
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manipulator system, the ideal trajectory of this manipulator sysicm with all links
considered as rigid links is also calculated under the motion described by ¢quations
(9.21) to (9.24).

For this mancuver, the time constant T, is chosen as 15 seconds. The duration of
simulation for the transient response of the system is chosen as 20 scconds. The ideal
payload tip trajectory and the joint angle movements are plotied in Figure 9-22. The
joint torques required to achicve this movement ar¢ also calculated and ploticd in
Figure 9-23. The positions of this manipulator at different time points during the
maneuver are shown in Figure 9-24.

Under the same mancuver, the motion of the ficxible manipulator is simulated. The
tip deviation and rcquircd joint driving torqucs arc plotted in Figurc 9-23 with
comparison 10 the results from the rigid link manipulator system. From thc comparison,
the influence of the flexible links is very clear. It not only adds deviations to the tip
position, which reduce the precision of the work, but it also changcs the driving joint
torques rcquired to implement this mancuver. This change to the driving torque is a

critical fact for the inverse dynamic control of the manipulator. This can be scen in the

following simulation.

If the manipulator is a rigid link system and the joint torques obtaincd in the
simulation plotted as solid lines in Figure 9-23 are input at the joints, the resultant
motion should bc as described by equations (9.21) to (9.24) and Figurc 9-22. Now the
real system has two flexible links. If these samc torqucs arc input to the sysiem, the
simulation results show that unacceptable errors of the position of the manipulator
during the whole mancuver develop. The positions of the flexible manipulator arc far
from the positions expected. These results are plotted as dashed lines in Figure 9-24.
Therefore, the consideration of the flexibility of rcal systems is very critical to position
of dynamic simulation and control of the system.

In the spatial manecuver, the wholc system is undergoing a 3-D motion with an
angle driver in each joint. The relative angular displacements 0, imposcd at joint 2 to
joint 4 are the same as the planar motion. The rotation of the base is imposed along x

axis of body 1 as following
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Figure 9-23 Payload tip deviation v.s. rigid body case and joint torques of the 2-D motion of

the manipulator
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Figure 9-24 Positions of the manipulator during the maneuver
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(9.25)

£
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9. = (‘:i-:)[“z—n&m(r'l)] tsT

K
9 =5 t>T, (9.26)

The tip deviations and jo.ut driving torques of the ficxible manipulator are shown
in Figure 9-25. In this figure, the joint torques required for this mancuver of the rigid
link system arc also shown for comparison. The influence of the fiexible links on tip
position and the driving torques can be secn very clearly in these plots. As in planar
mancuver, these driving torques obtained from the rigid link system arc imposed on the
flexible manipulator. The positions of the flexible manipulator during the mancuver are
simulated and plotied in Figure 9-26. The positions of the fiexible manipulator are in
crror as compared to the positions to be expected. This cxample also shows how
important the consideration of flexibility is in the simulation of the dynamics and
contro! of the flexible manipulator systems.

In this chapter, threce cxamples of flexible multibody systems have been
investigated to demonstrate and validate the multibond graph method developed in this
thesis. It can be scen that the development of multibond graphs of these multibody
systems is quitc straightforward bascd on the gencral multibond graph method
developed in the previous chapters. The significant advantages arc the casc of
modclling, particularly cvident in the case of mixed cncrgy domains. It has been
rcvealed, from the solution of thesc cxample problems, that the gcometric stiffening
and softcning of flecxible bcams undcr large dynamic axial forces have significant
cffccts on the prediction of dynamic behavior and digital simulation of the flexible
systems. It has also shown that the inverse dynamic control to a fliexible multibody
system without consideration of the flexibility of the system would causce unaccepted

errors in position control.
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Tip Deviation of the Flexible Manipulator
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Joint Driving Torques of the Fiexible Manipulator
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- Chapter 10 -

Summary and Conclusions

Until now, bond graph was mostly used to model rigid multibody system
dynamics and two dimensional fiexible bodies. In this thesis, a multibond graph
approach, for the computer-aided modelling and simulation of general flexible
multibody systcm dynamics, has been devcloped. This approach provides an
alternative to current computer-aided modelling and simulation of 3-D flexible
multibody system dynamics with the added significant advantages of casc of modelling
and including mixed cnergy domains.

The non-lincar vibration bchavior of a flexiblc body in a multibody system has
been investigated using partial differential equations and is modelled by non-linecar
strain displacement rclations for multibond graph modclling. The axial forces in a
flcxible o2y duc to overali motion and constraints of connected bodies have
significant influcnce on the numerical simulation of vibration behavior of the flexible
body. It has been demonstrated that ignoring of the geometric stiffening/softening
cffect would lcad to incorrect results, especially for high speed and heavily loaded
flexible multibody systems.

The governing equations of motion of an arbitrary flexible body are derived in a
form which can be represented by existing multibond graph terminology. The
stiffcning and soficning cffects are considered by non-linear strain displacement
rclations for multibond graph modelling. The application of floating frames as body
reference frames is also discussed. The proper use of floating frames can simplify the
governing cquations 1o a certain degree. Based on these equations, general multibond
graphs for a flexible body arc developed. The acceleration coupling between rotation
and vibrations is dcalt with by a summation element. Thesec multibond graphs have a

compatible form with the multibond graphs of a rigid body and can be easily connccted

to multibond graphs of rigid bodies.
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The multibond graphs of commonly used mechanical joints are also developed
using restrictions on relative velocities between connccted bodies provided by the
joints (zero velocity sources). In this thesis, a ncw type of multiport clement
Constraintor is created for the constraints, which provides a mcans to get rid of the
derivative causality and to generate governing cquations in the form equivalent to the
form generated by other analytical computcr-aided modclling mcthods. With
multibond graphs of individual bodics and joints, thc multibond graph of the wholc
flexible multibody system can be obtaincd by assembling them together. The proccdure
is systecmatic.

The diffcrent forms of governing cquations generated from other analytical
computcr-aided modclling mcthods and numecrical algorithms arc reviewed. The
procedures o gencrate governing equations of motion from the multibend graph of the
ficxiblc multibody system arec discussed. It is verilicd by an example that the governing
cquations generated from the multibond graph with zero velocity sources of constraints
have the form of minimum variables, and the governing cquations gencrated from the
multibond graph with Constraintor of constraints have the form of maximum variablcs.
Both forms are all differential/algebraic cquations with index onc and can be
numerically solved by implicit integration methods.

A computer program for sctting up multibond graphs and automatically
gencrating simulation data files for the commercial simulation package ACSL has been
develnrped on the Sun Workstation using the “C” language and SunView graphic uscr
interface. It is an important tool for the “automatic” implementation of the method
developed in the thesis.

Scveral applications in robotics and mechanisms have been implemented in the
thesis. The rotating beam example shows the stiffening cffect on transversc vibrations,
The crank-rocker example illustrates the softening effect. And the flexiblec manipulator
example demonstrates the importance of consideration of flexibility in inverse

dynamic control. These examples prove the validity and capability of the multibond

graph method and the computer program developed and implemented in the thesis.
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