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A B S T R A C T

Sequences of dark, organic-rich sediment layers (sapropels) exist throughout the Neogene of the Mediterranean
Sea sedimentary record. While the mechanisms behind their cyclical deposition are not entirely understood, they
have been found to correspond with precession minima (Northern Hemisphere [NH] insolation maxima). This
causes NH summer monsoon to shift northward and intensify, which increases precipitation over North Africa
and alters Mediterranean freshwater budget, leading to restricted bottom-water ventilation and anoxia. Most
Mediterranean sapropels were deposited during interglacial periods, but sapropel S6 formed during the penul-
timate glaciation of Marine Isotopic Stage 6 (MIS 6; 190–130 ka), during which the Eurasian ice sheet extended
to its maximum size of the Quaternary. Eurasian ice-sheet melting may have provided an additional input of
freshwater to the Mediterranean during S6 deposition. To test this hypothesis, we present a multiproxy paleo-
ecological (planktic foraminifera, calcareous nannofossils, pollen, dinocysts) and geochemical (foraminiferal
δ18O) study of S6 from the Ionian Sea. We confirm that S6 deposition resulted from an interaction of two
different mechanisms of freshwater input to the Mediterranean, in which: (1) local ice-sheet meltwater discharge
preconditioned the basin for stratification; and (2) increased monsoon activity over North Africa caused intense
precipitation and river runoff that exacerbated water-column stratification. Our results provide new evidence for
the prevalence of mild/temperate and humid conditions during S6 deposition, dispelling the notion that this
“glacial” sapropel formed under cold and dry conditions and we document signals of warm (interstadial) and
cold (stadial) conditions within S6 in the eastern Mediterranean basin.

1. Introduction

Mediterranean sapropels are dark sediment layers that contain
higher organic carbon concentrations than surrounding sediments
(Calvert, 1983; Cita et al., 1977; Kidd, 1978; Kullenberg, 1952; Murat
and Got, 1987; Olausson, 1961; Ryan and Cita, 1977; Vergnaud-Grazzini
et al., 1977; Vergnaud-Grazzini, 1985). They occur (quasi) periodically

across the geological archive as far back as ~13.5 Ma during times of
Northern Hemisphere [NH] summer insolation maxima concurrent with
high-amplitude precession cycles (Rossignol-Strick, 1985, 1983; Rossi-
gnol-Strick et al., 1982). This specific orbital configuration increases
both seasonal and land-sea temperature contrasts in the NH, intensifying
NH monsoon systems (Rohling and Hilgen, 1991) as well as expanding
the spatial extent of monsoon activity over north Africa (“green Sahara”
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periods; GSP; Larrasoaña et al., 2013; Tierney et al., 2011, 2017). This
greatly enhanced freshwater drainage from the Nile River and the wider
North African margin into the Mediterranean basin (Grant et al., 2022;
Larrasoaña et al., 2013; Osborne et al., 2008; Rohling et al., 2002).
Consequently, the density structure of the Mediterranean overturning
circulation (MOC) was disturbed, creating intense water column strati-
fication that hampered deep-sea circulation and inhibited bottom water
oxygenation (Cita et al., 1977; Kullenberg, 1952; Rohling, 1994; Rohling
et al., 2015; Rohling and Gieskes, 1989; Ryan, 1972; Stanley et al., 1975;
Thunell et al., 1977). In addition, the enhanced nutrient input into the
basin causes enhanced export production and resultant biological oxy-
gen demand in deep waters (Boyle and Lea, 1989; Calvert, 1983; Calvert
et al., 1992; De Lange and Ten Haven, 1983; Nijenhuis and de Lange,
2000; Rohling, 1994; Rohling and Gieskes, 1989; Rossignol-Strick et al.,
1982; Ten Haven, 1986; van Helmond et al., 2015; Zwiep et al., 2018).
Together, these oceanographic responses to enhanced freshwater influx
caused basin-wide bottom water anoxia in the eastern Mediterranean
Sea and, ultimately, the deposition of sapropel layers (Emeis et al., 2003;
Rohling, 1994; Rohling et al., 2009, 2015). However, the more specific
interplay of mechanisms behind individual sapropel formation remains
debated due to regional variability of sapropels across large spatial
scales, given that individual sapropel episodes vary depending on time,
location, water depth of deposition, and other environmental factors
(Rohling et al., 2015).

Unlike sapropels S6 and S8, which formed during glacial periods,
most sapropels formed during interglacial periods (Bard et al., 2002;
Rossignol-Strick, 1983; Ryan, 1972; Vergnaud-Grazzini et al., 1977).
Because the previously discussed mechanisms underlying sapropel for-
mation are more likely to occur during interglacial climates, it has been
assumed that S6 and S8 formed despite adverse, cold conditions (e.g.,
Castradori, 1993; Emeis et al., 2003; Zirks et al., 2019).

Sapropel S6 dates from 178.5 to 165.5 ka (Konijnendijk et al., 2014;
Ziegler et al., 2010), which deposited during glacial Marine Isotopic
Stage (MIS) 6 (190–130 ka) (Railsback et al., 2015) when the Riss (lower
latitude) and the Saalian (higher latitude) glaciations of Europe are re-
ported, with arguably the largest Eurasian ice sheet of the Late Pleis-
tocene (Colleoni and Liakka, 2020; Ehlers et al., 2018; Rohling et al.,
2017). However, the growth of this ice sheet was punctuated by
millennial-scale episodes of ice loss, as indicated by 1) accumulation of
detrital material recorded in the NE Atlantic (Boswell et al., 2019;
Eynaud et al., 2007; Toucanne et al., 2009), 2) smaller European ice-
sheet volumes at times of maximum summer insolation (Bintanja and
Van de Wal, 2008), and 3) meltwater inputs to the Black Sea
(Badertscher et al., 2011; Wegwerth et al., 2020, 2019, 2014). At the
same time, (Barker et al., 2019) identified the insolation peak at 173 ka
(coeval with S6) as an incomplete deglaciation. Furthermore, previous
studies on global (Barker et al., 2011; Cheng et al., 2016; Ding et al.,
1999; Hodell et al., 2022; Marino et al., 2013; Obrochta et al., 2014;
Shackleton et al., 2000) and regional (Bard et al., 2002; Bar-Matthews
et al., 2003; de Abreu et al., 2003; Genty et al., 2003; Margari et al.,
2010, 2014; Martrat et al., 2004, 2007; Nehme et al., 2018; Regattieri
et al., 2014, 2021; Rousseau et al., 2020; Sierro and Andersen, 2022;
Wainer et al., 2013; Wegwerth et al., 2020; Wilson et al., 2021) de-
velopments during MIS 6 using pollen, speleothems, alkenone-derived
SSTs, foraminiferal stable isotope and trace element analyses, and ice-
core records indicate pronounced millennial-scale climate variability
during MIS 6 (i.e., interstadial-stadial cycles similar to those in MIS 3;
(Barker et al., 2011). These millennial-scale climatological cycles are
thought to relate to interactions within the ocean-atmosphere-ice sheet
system (bipolar see-saw; Blunier and Brook, 2001; Broecker, 1998;
Marino et al., 2013; Pedro et al., 2018; Stocker and Johnsen, 2003) with
substantial impacts on the North Atlantic and Mediterranean Sea re-
gions. Most recently, (Sierro and Andersen, 2022) (2 produced high-
resolution planktic and benthic foraminiferal δ18O and δ13C records
for the Iberian Margin through the penultimate glacial cycle, detailing
these climate oscillations, where negative planktic foraminiferal δ18O

shifts represent interstadials that align with those in the North Atlantic
(Barker et al., 2011). Using their new reference record for MIS 6
millennial-scale climate variability in the North Atlantic, (Sierro and
Andersen, 2022) briefly proposed that a second freshwater source in
addition to North African discharge played a role in S6 deposition,
namely the meltwater discharge from the Eurasian/Alpine ice-sheet
through the Atlantic inflow and Rhone River inflow into the Western
Mediterranean and from Po River inflow into the Eastern Mediterra-
nean. Meltwater as a freshwater source during sapropel formation has
also been suggested previously for S6 by Emeis et al. (2003); Kallel et al.
(2000); Piva et al. (2008); Schmiedl et al. (1998, 2003); Thunell et al.
(1983), and for other Pleistocene sapropels by Thunell and Williams
(1989); Grimm et al. (2015); Grant et al. (2016); Azibeiro et al. (2021).
Here we aim to 1) assess the environmental responses on the basis of
high-resolution (~350 years) foraminiferal stable isotope (δ18O) and
micropaleontological (foraminifera, calcareous nannofossils, dinocysts,
pollen) investigations through sapropel S6 in Ionian Sea core M25/4–12
(37◦58′N, 18◦11′E; 2467 m water depth), 2) shed light on the mecha-
nisms behind the formation of “glacial” sapropel S6 by exploring the
climatological and oceanographic conditions during formation, and
then contribute to answer the question if meltwater input exert a sub-
stantial control on sapropel S6 deposition.

2. Methods

CoreM25/4–12 was collected in 1993 during R/VMeteor cruise M25
Leg 4 in the Ionian Sea (37◦58′N, 18◦11′E) (Fig. 1), from the Calabrian
slope at 2467 m water depth. The core was described in (Negri et al.,
1999) and contains sapropels S1 – S10 (S2 being a missing sapropel
during glacial MIS2), which span the last 330 ka, interbedded with
normal bioturbated hemipelagic sediments including tephra layers Z-1
to V- 4. This paper focuses on sapropel S6, recorded within core section
IX (section depth 800–900 cm), as well as the surrounding sediments
including the preceding core section VIII (section depth 700–800 cm).
The dark intervals that we ascribe to sapropel S6 is found between 811
and 846 cm core depth and is tripartite in appearance (e.g., Blechsch-
midt et al., 1982; Calvert and Fontugne, 2001; Cita, 1982; Cita et al.,
1977, 1984; Emeis and Party, 1996; Fontugne and Calvert, 1992; Kallel
et al., 2000; Parisi and Cita, 1982; Vergnaud-Grazzini, 1985; Vergnaud-
Grazzini et al., 1977); i.e., it is divided into three sections (here named,
from old to young, S6a, S6b, and S6c) by two interruptions at
826.0–824.5 cm and 821.0–819.0 cm (Interruption I and Interruption II,
respectively) (Fig. 2). At the base of the sapropel in section S6a, two
tephra layers were visually identified (Michael Kraml, pers. comm.) at
844.5–843.5 cm and 842.5–841.5 cm (V-2 and V-0, respectively; (Keller
et al., 1978; Kraml, 1997). Tephra layer V-2 is calc-alkaline and tephritic
in composition with leucite and melilite, which suggests that it relates to
activity in the Roman Comagmatic Province (Narcisi and Vezzoli, 1999)
(See Fig. 2).

For foraminiferal, calcareous nannofossil, and stable isotope ana-
lyses (in planktic foraminifera), samples were collected every 1 cm in-
side the non-bioturbated sapropel and every 10 cm from bioturbated
sediments outside the sapropel. For the analyses of pollen and organic-
walled dinoflagellate cysts (dinocysts), the sapropel interval was
sampled every 1 cm and at coarser resolution above and below it
(Table 1). The sample spacing was chosen to optimize resolution within
the non-bioturbated sapropel, where even the abrupt abundance varia-
tions are preserved.

2.1. Planktic and Benthic Foraminifera

Samples for foraminiferal analyses were dried at 60 ◦C, dry weighed,
and washed through a 63 μm mesh sieve. For each sample, planktic
foraminiferal counts were carried out on subsamples of at least 300 in-
dividuals in the>150 μm size fraction. This size fraction guarantees that
species have reached the adult stage, and identification is most reliable
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(Peeters et al., 1999; Sabbatini et al., 2012). Specimens were hand-
picked, identified to species level, and counted. Some individuals
could only be identified down to genus level (labelled “sp.” after the
genus name). Only total benthic foraminiferal numbers were counted;
they were not taxonomically identified. Raw counts were transformed

into absolute abundances (individual per gram sediment) and relative
abundances (%, relative to total planktic foraminifera counted per
sample). All the data are reported in the supplementary material
Table A.

Based upon ecological preferences (Rohling et al., 1993; Schiebel

Fig. 1. Location of the M25/4–12 studied and IODP Site U1389 mentioned in this study. Figure made with Ocean Data View (Schlitzer, Reiner, Ocean Data View,
https://odv.awi.de, 2022).

Fig. 2. Tripartite structure of sapropel S6 (S6a, S6b, S6c) including Interruptions I and II, and tephra layers V-2 and V-0, aligned with the original photo of depth 800̶
870 cm within Section IX from core M25/4–12 (Ionian Sea).
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and Hemleben, 2017) we lumped together G. ruber alba (white), G. ruber
ruber (pink), Globigerinoides conglobatus, Globigerinoides elongatus, Trilo-
batus sacculifer, Trilobatus trilobus, G. siphonifera, Globigerinella calida,
Globoturborotalita rubescens, and Orbulina universa as the warm group.
Globorotalia scitula, Neogloboquadrina pachyderma, Neogloboquadrina
incompta, and Turborotalita quinqueloba are lumped together as the cold
group. Lastly, N. dutertrei, Globigerinita glutinata, Globigerina bulloides,
and T. quinqueloba were grouped together as productivity-affiliated
species.

We have applied the modern analogue technique (MAT; Hutson,
1980) to estimate SST variations within our record based on the planktic
foraminiferal assemblage counts. We used the Mediterranean training
set of (Hayes et al., 2005) considering the 10 closest analogues and using
weighted averages. The distance metric was quantified using the square
chord distance. The analoque package (Gavin L. Simpson) of Rstudio
was used to establish the Transfer Function. Bootstrapping was not used.

2.2. Calcareous nannofossils

Each sample was prepared for calculation of calcareous nannofossils
accumulation rates following (Flores and Sierro, 1997). Samples were
assessed with a cross-polarized-light binocular microscope at 1250×
magnification. For the identification we followed the taxonomy of
(Young et al., 2003). At least 500 specimens were counted from random
fields of view. The absolute abundance of each species/group was
determined for each sample following (Flores and Sierro, 1997). Taxa
were grouped into “placoliths” and “upper photic zone (UPZ)” groups
following (Incarbona et al., 2011),”. The placoliths group includes
Gephyrocapsa “small” (specimens whose size is < 3.5 μm) and Emiliania
huxleyi, and is mainly driven by Gephyrocapsa “small”, a taxon prefer-
ential of cold water and high productivity (Gartner et al., 1987). The
UPZ group includes Syracosphaera pulchra, Umbellosphaera spp., Dis-
cosphaera tubifera, Rhabdosphaera clavigera, Rhabdosphaera stilifera,
Oolithotus fragilis, and Umbilicosphaera sibogae. All the data are reported
in the supplementary material Table A.

2.3. Palynology: pollen and dinocysts

A total of 41 samples encompassing S6 was processed for marine and
terrestrial palynology following standard methods in use at Utrecht
University and based on (Wood, 1996). Sediment samples were dried in
an oven at 60 ◦C before palynological processing. After the addition of
two Lycopodium clavatum spore tablets (batch no. 3862, X = 9666, ±
2123 for S6) to an exact amount of dry sediment to determine paly-
nomorph concentrations, samples were decalcified overnight using 10%
hydrochloric acid (HCl). They were then decanted, rinsed with water,

and centrifuged for 5 min at 2200 rotations per minute (rpm). After
decanting, silicates were removed by cold 38% hydrogen fluoride (HF)
addition. Samples were placed on a shaker table for two hours at ~250
rpm to complete the reaction. Samples were then filled with water,
settled overnight, centrifuged for 5 min at 2200 rpm, and decanted the
day after. A surplus of 30% HCl was added to remove silicate gels.
Thereafter, samples were centrifuged for 5 min at 2200 rpm, and dec-
anted. Residues were sieved over a 250-μm mesh to remove the largest
debris particles and over a 10-μm mesh and used for slide preparation
with glycerin water. Two slides were made for every sample. Dinocysts
and pollen and spores were identified to species level, when possible,
using a light microscope at 400× magnification. Dinocyst taxonomy
follows Williams et al. (2017). Pollen taxonomy follows (Beug, 1961;
Reille, 1992). We lumped as “cold species” group Spiniferites elongatus,
Bitectatodinium tepikiense, Ataxiodinium choane, and N. labyrinthus, and
as “productivity-affiliated species group” Bitectatodinium tepikiense and
Brigantedinium spp. following (Sangiorgi et al., 2003, 2002). All the data
are reported in the supplementary material Table A.

2.4. Stable isotopes (δ18O)

Foraminiferal tests of G. ruber (surface dwelling species) and
N. incompta (subsurface dwelling species previously referred to as
N. pachyderma dextral; (Rohling et al., 2004) were picked from the
300–350 and 250–300 μm size fractions, respectively, according to the
methodology in (Grant et al., 2012), and analyzed for δ18O. In samples
where large individuals were not available, the 250–300 μm and
200–250 μm size fractions were utilized for G. ruber and N. incompta,
respectively. Between 10 and 33 specimens (average: 20) were analyzed
per sample, at the Australian National University on a DELTA V mass
spectrometer with Kiel IV individual acid-bath carbonate preparation
line. Standards (NBS-19 and in-house Carrara marble) were run every 17
samples. Values are reported in parts per thousand (‰) relative to the V-
PDB standard, and external precision is better than 0.06‰.

2.5. Uncertainty determination

To determine the accuracy of the assessment of the fractional
abundances for each sample it is important to report the error in relation
to the number of total individuals counted (Patterson and Fishbein,
1989). Error analysis of the individual sample census data (planktic
foraminiferal, pollen, and organic-walled dinoflagellate cyst) of our
study was performed using the standard error (sxi ) equation (eq. 1) re-
ported by (Patterson and Fishbein, 1989), where xi represents species
abundance fraction and N represents total number of individuals. This
equation has been reported to better analyze accuracy than the frac-
tional standard deviation (Patterson and Fishbein, 1989; Wright et al.,
1971). Estimates at the 1σ level were obtained.

sxi = [xi(1 − xi)∕N ]
1 /2 (1)

Probabilistic analysis is performed for the various records based on
uncertainties described above for the planktic foraminiferal, pollen, and
organic-walled dinoflagellate cyst assemblage data and the Mean
Annual Temperature (MAT) reconstructions obtained from planktic
foraminiferal census counts. In addition, the analysis evaluates the un-
certainties in the chronology of core M25/4–12 (see section 4). We
employ a Monte Carlo approach in MATLAB (Marino et al., 2015;
Rodríguez-Sanz et al., 2017; Thirumalai et al., 2016). Input data are
sample ages with their 1σ uncertainties and planktic foraminiferal and
palynological data with their 1σ standard errors. For each time series,
individual data points are separately and randomly sampled 10,000
times within their chronological and proxy uncertainties. The chrono-
logical uncertainties are evaluated by imposing a stratigraphic
constraint (monotonic increase of age with depth, analogous to (Rohling
et al., 2014) to the data that are measured in a stratigraphically coherent

Table 1
The sampling effort of the different proxies used in this study.

Sample Resolution
(years)

Proxy Total
number of
samples

1-cm
intervals

10-cm
intervals

Laboratory

Foraminifera 62 ~350 ~2000
Università
Politecnica delle
Marche

Pollen 41 ~350 NA
Utrecht
University

Dinocysts 41 ~350 NA
Utrecht
University

Calcareous
Nannofossils 54 ~350 ~2500

Università
Politecnica delle
Marche

δ18O
(N. incompta +

G. ruber)
98 ~350 ~2500

Australian
National
University

M. Savannah et al.
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manner along core M25/4–12. This is done by using a random walk
Monte Carlo routine that employs a Metropolis–Hastings approach to
reject steps in the random walk that result in age reversals (Rodríguez-
Sanz et al., 2017). Finally, each of the 10,000 time-series iterations is
linearly interpolated and the probability distribution assessed at each
time step, thereby determining the median (50th percentile) and the
68% (16th–84th percentile) and 95% (2.5th–97.5th percentile) proba-
bility intervals.

3. Age model

We converted depth into age for core M25/4–12 (Table 2; Fig. 3
using tie-points defined by aligning top, bottom, interruption midpoint,
and midpoint depths (following the tie-points of Ziegler et al. (2010)
recorded in the sedimentological core description (based on colour;
Michael Kraml, pers. comm.) to the established ages used for alignment
with eastern Mediterranean sapropels (ODP site 968; (Ziegler et al.,
2010); Table 2). The age for each sample was then determined using
linear interpolation between tie-points. The sedimentation rate for
sapropel S6 in core M25/4–12 is ~2.8 cm/kyr.

Results are presented in abundance /depth plots, while the discus-
sion will refer to time.

1σ age uncertainties were obtained through linear interpolation
using age uncertainties calculated for the oxygen isotope record from
Sanbao cave stalagmites reported by (Wang et al., 2008).

4. Results

Planktic foraminifera (Fig. 4) are more abundant in the middle of the
sapropel layer. They are relatively well preserved in all samples and 35
taxa were identified, withN. dutertrei as the dominant species on average
(0.2–51.4%, mean 22.6%), followed by T. quinqueloba (0.6–51.0%,
mean 20.6%;), N. incompta (2.6–37.9%, mean 13.0%;), and G. glutinata
(0.3–31.9%, mean 9.2%;). The relative abundance of the G. ruber group
reaches its highest before the sapropel between 880.5 and 849.5 cm, is
low throughout the sapropel with some small fluctuations, and then rises
at the end of and after the sapropel (Fig. 4). N. dutertrei (Fig. 4) is absent
before S6 and shows a small peak at the base. Relative abundances then
gradually increase to a major peak between 843.5 and 832.5 cm,
another large peak at Interruption I, and a smaller peak at Interruption
II. Throughout the upper half of the sapropel S6 (828.5–810.5 cm),
N. dutertrei percentages decrease gradually to near-absence after the
sapropel. T. quinqueloba (Fig. 4) does not show a major relative abun-
dance increase until 834.5 cm, from which it continues to increase to an

abundance maximum at ~830.5 cm. Then follows an overall decrease
throughout the rest of the sapropel including a few small peaks, while
abundances are very low after the sapropel. Globoconella inflata per-
centages only show small peaks directly before and after sapropel S6
(Fig. 4). Benthic foraminifera show small peaks only before sapropel S6,
near the interruptions, and immediately after S6.

As for SST, estimates obtained by the MAT range between 10.6 and
13.5 ◦C (12.2 ◦C on average), the average standard deviation is
±0.46 ◦C, and the dissimilarity index (DI) is 0.48 on average.

Calcareous nannofossils are abundant (Fig. 5) and generally well
preserved in all samples. Gephyrocapsa “small” is the dominant taxon
(1.36 × 107–3.74 × 107 N/g, mean 2.85 × 107 N/g;) followed by Flo-
risphaera profunda (1.10 × 106–1.31 × 107 N/g, mean 6.90 × 106 N/g)
and Helicosphaera carteri (4.48 × 105–6.91 × 106 N/g, mean 3.21 × 106

N/g). Coccolithus pelagicus abundance ranges from 1.31 × 105–1.81 ×

106 N/g with an average of 7.24 × 105 N/g. High F. profunda abun-
dances are recorded before the sapropel until a distinct peak at ~842.5
cm, after which a gradual decrease is seen throughout the rest of the
analyzed interval (Fig. 5). H. carteri has lower abundances before sap-
ropel S6 but reaches a large peak at ~843.5 cm, immediately followed
by a decreasing trend with fluctuations of lower values toward the top of
the studied interval (Fig. 5). Finally, C. pelagicus abundances are high
before sapropel S6, reaching a major peak (1.71 × 106 N/g) below the
base of the sapropel at ~848.5 cm and then declining to low but almost
constant values in the studied interval. Placoliths show high abundances
throughout all samples, with small fluctuations. The UPZ group has high
abundances before sapropel S6 and in the lower half of S6a, followed by
a gradual decrease through the rest of the sapropel with some peaks at
~840 and ~ 827.5 cm.

In the pollen data, 18 taxa were recorded (Fig. 6). Sapropel S6 is
dominated by pollen originating from trees with a mean of 75.8%, while
herbs are rarer (mean 24.2%). Within the sapropel interval, deciduous
Quercus robur-type is the dominant taxon (18.8–43.0%, mean 31.1%;
Fig. 5), followed by Pinus (9.6–36.7%, mean 23.7%), and evergreen
Quercus (Q. ilex-type and Q. cerris-type) (7.9–27.1%, mean 13.9%).
Within the herb group, Artemisia is the most dominant (Fig. 6), followed
by Caryophyllaceae, Chenopodiaceae, Poaceae and Cyperaceae. Quercus
and Pinus abundances vary in similar ways, with relatively low and
constant values throughout the sapropel. Notably, abundances of the
herb taxon Artemisia, indicative of seasonally dry conditions, increase
toward the top. Both tree and herb pollen abundances are fairly constant
throughout sapropel S6, whereas a major increase occurs in tree taxa
and a large decrease in herb taxa after sapropel S6, although this co-
incides with a large decrease in pollen concentration and count, sug-
gesting a significant preservation bias across this transition.

A total of 20 dinocyst taxa were identified. Fig. 6 shows that, within
the sapropel interval, Spiniferites spp. is the dominant taxon (0–61.8%,
mean 28.6%), followed by Brigantedinium spp. (0–55.2%, mean 19.0%),
Nematosphaeropsis labyrinthus (1.3–41.7%, mean 13.9%), and Impagidi-
nium aculeatum (1.4–17.3%, mean 8.9%). I. aculeatum relative abun-
dances are low and constant throughout sapropel S6, and peak after the
sapropel at 800.5 cm, while absolute abundances are broadly similar but
peak at 822 cm. Lingulodinium machaerophorum (mean 3.4%) absolute
abundance peaks at the base of sapropel S6 at 841.5 cm, followed by a
decrease, and then another peak at 831 cm, after which a gradual
decrease occurs through the rest of sapropel S6 with minor fluctuations
(Fig. 6). Both cold species and productivity-affiliated species groups
show low values in the lower half of the sapropel (845–828.5 cm),
transient peaks around 830 and 820 cm and higher values in the upper
half of the sapropel (828.5–810.5 cm).

As for stable isotopes (Fig. 7), δ18OG. ruber ranges from − 1.15 to
1.95‰ and δ18ON. incompta from − 0.87 to 3.02‰. Both δ18O profiles
follow the same general behavior with more positive values before
sapropel S6 followed by a large negative excursion from ~849 cm that
culminates at ~845 cm and ~ 839.5 ka, respectively. Thereafter, a weak
trend toward positive values persists through the rest of sapropel S6,

Table 2
Depth-Age tie-points for core M25/4–12 (Ionian Sea).

Depth (m) Age model (ka)

Negri et al. (1999) Ziegler et al. (2010)

Coretop 0.00 0
S1 (top) 0.24 6.5
S1 (bottom) 0.36 10.2
S3 (top) 4.16 77.3
S3 (bottom) 4.30 83.9
S4 (top) 5.22 99.6
S4 (bottom) 5.32 104
S5 (top) 6.04 121.4
S5 (bottom) 6.28 129.5
S6 (top) 8.11 165.5
S6 (interruption) 8.23 169.8
S6 (bottom) 8.47 178.5
S7 (top) 8.87 191.9
S7 (bottom) 9.00 198.5
S8 (top) 9.38 209.5
S8 (interruption) 9.45 213
S8 (bottom) 9.61 224.1
S9 (midpoint) 9.97 239
S10 (midpoint) 11.89 331
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with superimposed fluctuations. At the point where the visual appear-
ance of sapropel S6 has ended, there is a particularly prominent
δ18ON. incompta increase.

5. Discussion

Sapropels deposited in response to a high versus low latitude climate
interplay, that pertains to the freshwater input to the basin tied to NH
ice-sheet instability (high latitudes) and NH monsoon intensification
(low latitudes). A mechanism that has been previously suggested to
operate in the Mediterranean region (Colleoni et al., 2012).

Our results indicate that sapropel S6 is characterized by increased
primary productivity in the upper water column relative to non-sapropel
intervals. This is indicated by the high percentages of productivity-
affiliated foraminiferal taxa (Neogloboquadrina dutertrei, Globigerinita
glutinata, Globigerina bulloides, and T. quinqueloba) (Fig. 8). Among
calcareous nannofossil the Deep Chlorophyll Maximum (DCM) indicator
F. profunda (Castradori, 1993; Negri et al., 1999; Fig. 5 and 10) shows a
peak at the very base and then decreases in the remainder of the sapropel
layer, while the increase of H. carteri suggests enhanced river input
(Negri et al., 1999). Higher productivity and the development of the
DCM are common features of the sapropel formation (Castradori, 1993).
These are ascribed to enhanced nutrient supply due to higher, monsoon-
fueled river discharge (Halim et al., 1967). In addition, they represent
the hydrographic responses to buoyancy gain due to a positive shift in
the basin’s freshwater budget (Grelaud et al., 2012; Incarbona et al.,
2022; Myers et al., 1998; Rohling and Gieskes, 1989) which is a typical
characteristic of many studied sapropels (Calvert, 1983; Calvert and
Pedersen, 1993; Castradori, 1993; De Lange et al., 2008; Emeis and
Party, 1996; Rohling, 1994; Rohling et al., 2015; Rohling and Gieskes,
1989, among others). More surprisingly, our data suggest that temper-
atures were relatively mild and/or temperate during sapropel S6
ranging between 10.6 and 13.5 ◦C (12.2 ◦C on average ± 0.46 ◦C stan-
dard deviation), rather than prominently cold as it could be expected
during a glacial period. Notably, warm water planktic foraminiferal
percentages are high, although cold water taxa dominate (Fig. 8) while
alkenone data indicate mean annual temperatures as low as 12 ◦C
(Emeis et al., 2003). In this regard, N. dutertrei is a main faunal

component of our sapropel S6 assemblage (Fig. 4 and 8), in agreement
with previous findings (Capotondi et al., 2011; Cita et al., 1977; Corselli
et al., 2002; Parisi et al., 1987; Triantaphyllou et al., 2010; Violanti
et al., 1991). This species is described as able to tolerate temperatures
between 13 ◦C and 33 ◦C under laboratory conditions but in the natural
environment is most frequent in tropical to subtropical waters, and
sometimes is present in temperate waters during summer (Schiebel and
Hemleben, 2017). However, in the modern Mediterranean Sea, the only
higher abundances are recorded in the coldest NW area (Azibeiro et al.,
2023). Also, (Toledo et al., 2007; Triantaphyllou et al., 2010) mention
N. dutertrei as indicative of both high productivity/nutrients and milder
temperatures.

This suggests that sapropel S6 deposition coincided with mild and/or
temperate climate conditions and high upper water column
productivity.

Our pollen record (Fig. 6 and 9) shows a clear dominance of tree taxa
over herb taxa and predominance of deciduous oaks, which corroborates
the existence of warm and relatively humid conditions (Wagner et al.,
2019) rather than cold and arid conditions in the region of the Ionian
Sea, which is further supported by a relatively low abundance of Arte-
misia (an indicator of dry environments (Donders et al., 2021; Fig. 6)
especially in comparison to other glacial and interstadial sapropels
(Rossignol-Strick and Paterne, 1999; Zwiep et al., 2018; Fig. 6).

The strong negative δ18O shift in our record (Fig. 7 and 10) agrees
with the claim of (Emeis et al., 2003) that the onset of sapropel S6
featured among the largest negative δ18O shifts of the entire S1-S10
series, which they attribute to a strong freshwater input to the basin
due to increased African monsoonal rainfall (Vergnaud-Grazzini et al.,
1977). Additional evidence comes from the wider literature. For
example, the speleothem stable isotope record of Soreq Cave (Israel)
(Ayalon et al., 2002). indicates humid conditions throughout MIS 6,
especially between 180 and 178 ka, which the authors linked to a period
of African monsoon intensification (Ayalon et al., 2002). The stalagmite
oxygen isotope record from Argentarola Cave (Italy) similarly indicates
a humid period between 180 and 170 ka (Bard et al., 2002); Fig. 10).
Also, substantially increased precipitation over Corsica is indicated
during MIS6 between ~180–170 ka, by δ18O measurements from a
borehole drilled in the North Tyrrhenian Sea (Toucanne et al., 2015). A

Fig. 3. Depth-to-Age conversion for Core M25/4–12 of the Ionian Sea. S = Sapropel.
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multiproxy speleothem record of the Southern Alps has been used to
infer increased cyclogenesis over the Northern Tyrrhenian Sea at
180–170 ka, resulting in wet conditions, hydrological instability, and
intense precipitation (Regattieri et al., 2021). Fluctuations in tree pop-
ulation extent observed in Mediterranean terrestrial pollen records
suggest cool and wet conditions between 185 and 155 ka (Roucoux
et al., 2011) and reduced summer aridity during MIS 6e (~178–166 ka;
(Margari et al., 2010). Meanwhile, speleothem hiatuses at 182.1 ka –
169.2 ka in the Piani Eterni record (Southern Alps; Columbu et al., 2018)
and at 175–164 ka in the Peqiin record (Northern Israel; Bar-Matthews
et al., 2003) suggest flooding of caves due to increasingly wet conditions
(Regattieri et al., 2021).

The age of the above reported events coincided with an episode of
African Monsoon intensification from ~179 to 165 ka (Fig. 10; Bard
et al., 2002), because NH summer insolation rose toward a maximum
while precession declined toward a minimum (Fig. 8). Lastly, an

increase in winter rainfall and moisture in the northern Mediterranean
region has been recorded in Lake Ohrid (located between North
Macedonia and Eastern Albania) for the duration of sapropel S6 (Wagner
et al., 2019). Together, these observations portray a notable period of
humidity/precipitation increase in the Mediterranean region during MIS
6, and particularly during sapropel S6 formation.

5.1. Two step nature of the sapropels S6 onset

The largest negative δ18O shift in our record marks the onset of
sapropel S6 (Fig. 7 and 10). All Mediterranean sapropels show promi-
nent, negative δ18O shifts at their onset (Calvert, 1983; Cita, 1982; Cita
et al., 1977; Emeis et al., 2003; Emiliani, 1955; Fontugne and Calvert,
1992; Mangini and Schlosser, 1986; Thunell et al., 1983; Thunell and
Williams, 1989; Vergnaud-Grazzini et al., 1977; Williams et al., 1978;
Williams and Thunell, 1979). This feature is commonly attributed to

Fig. 4. Relative distribution (%) patterns of foraminiferal taxa and total planktic and benthic foraminifera expressed as total abudance (n◦/gr) from core M25/4–12.
Light grey bars represent the sapropel according to the dark intervals observed in original photo of Section IX from core M25/4–12. White bars indicate the
Interruption I and II of the sapropel. Dark grey bars represent the tephra layers (V-2 and V-0).
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monsoon-fueled freshwater input (Grant et al., 2022, 2017; Heslop et al.,
2023; Osborne et al., 2008; Rohling et al., 2002; Rossignol-Strick, 1985,
1983; Rossignol-Strick et al., 1982) although the potential role of glacial
meltwater input has also been discussed (Emeis et al., 2003; Kallel et al.,

2000; Piva et al., 2008; Schmiedl et al., 1998, 2003; Thunell et al.,
1983).

Our high-resolution δ18OG. ruber record combined with the calcareous
nannofossil data exposes a two-step nature for the negative shift

Fig. 5. Distribution patterns of calcareous nannofossil taxa collected from core M25/4–12 (Ionian Sea; this study). For sapropel legend refer to Fig. 4.

Fig. 6. Distribution patterns of pollen taxa and dinocyst taxa collected from core M25/4–12 (Ionian Sea; this study). For sapropel legend refer to Fig. 4.
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(freshwater input) at the sapropel S6 onset in the Ionian Sea, with a first
step directly before S6 (~178.6± 0.78 ka; arguably with a gradual onset
from~183± 0.85 ka) and a second step at the very onset of the sapropel
(~177.9 ± 0.78 ka; Fig. 5 and 10).

The first step coincides with a peak of cold-water, surface-dwelling
foraminifera (Fig. 10), a prominent abundance peak of the calcareous
nannofossil taxon C. pelagicus (Fig. 5 and 10), which is an indicator of
colder water and high nutrient environments (Cachao and Moita, 2000;
Cita et al., 1977; Negri et al., 2003; Tolderlund, 1971), and a decrease in
estimated SST (Fig. 10). Furthermore, increasing values of Relative Sea
Level (RSL; Grant et al., 2014) are seen before sapropel S6, in contrast to
the relatively stable values recorded at its onset (Fig. 10). This suggests
that the first step may represent a preconditioning freshwater input into
the basin from glacial meltwater. The likely role of alpine meltwater in
the formation of western Mediterranean sapropels provides additional
support for this inference (Rohling et al., 2015).

The second step occurs at the sapropel S6 onset (~177.9 ± 0.78 ka;
Fig. 5 and 10) when C. pelagicus shows an abrupt decrease. The orbital
configuration at this time became typical for times of monsoon inten-
sification when precession reaches its minimum (Fig. 8; Berger and
Loutre, 1991), which explains a large negative shift in Argentarola δ18O
(Bard et al., 2002; Fig. 10). We therefore suggest that the second step in
δ18OG.ruber negative shift (Fig. 7 and 10) at least partly reflects increasing
freshwater input due to African monsoon intensification. Yet, we
consider not only freshwater input, but also temperature changes,
whereby the δ18OG. ruber negative shift could also (partly) indicate sur-
face water warming. We note an absence of cold-water, surface-dwelling
foraminifera at the onset of sapropel S6 (Fig. 10), while we also find an
abundance increase of warmth-indicating pollen taxa (e.g., Quercus)

higher than expected and a coincident abundance decrease of dry, cold-
indicating taxa (e.g., Artemisia) (Fig. 6). Moreover, dinocyst L.
machaerophorum, associated with seasonal stratification (Sangiorgi and
Donders, 2004; Zonneveld et al., 2013) peaks in abundance (Fig. 6)
together with heterotrophic dinocysts indicative of riverine discharge
(Dale, 2009; Limoges et al., 2013; Radi and de Vernal, 2008; Sangiorgi
and Donders, 2004; Zonneveld et al., 2013). The calcareous nannofossil
species, C. pelagicus (Fig. 10), an indicator of colder water and high
nutrient levels (Andruleit, 1997; Baumann, 1995; Cachao and Moita,
2000; McIntyre and Bé, 1967; Okada and McIntyre, 1979; Raffi and Rio,
1981; Winter, 1994), was abundant during the first δ18O step, but
severely decreases in abundance at the second δ18O step (Fig. 10). Also,
in the same figure peaks occur in the abundances of the warm water,
riverine discharge indicator H. carteri, (Andruleit and Rogalla, 2002;
Baumann et al., 2005; Brand, 1994; Cros et al., 2000; Dimiza et al., 2014;
Findlay and Giraudeau, 2002, 2000; Giraudeau, 1992; Negri et al., 1999;
Triantaphyllou et al., 2009; Ziveri et al., 2004, 1995) and the Deep
Chlorophyll Maximum and stratification indicator F. profunda
(Castradori, 1993; Negri et al., 1999) (Fig. 10). and the increased
nutrient and riverine discharge indicating (Fig. 5 k). Similar abundance
peaks have been noted for these calcareous nannofossil taxa in other
cores (Libyan Sea, Triantaphyllou et al., 2010; Ionian/Libyan Sea, Cas-
tradori, 1993). Hence, we argue that the second δ18O step at the sapropel
S6 onset represents both an increase in monsoon freshwater input and
surface water warming.

Overall, we infer a two-step mechanism for the formation of S6,
comprising (1) ice-sheet instability that caused local meltwater events,
which preconditioned the basin for stratification, followed by (2) Afri-
can monsoon intensification that increased precipitation and river
runoff, with concomitant (surface water) warming, which accelerated
water-column stratification.

5.2. Sapropel S6 interruptions

Sapropel interruptions (generally characterized by transient benthic
foraminiferal repopulations) occur not only in sapropel S6 but also in
other sapropels, such as S1, and are related to weakened monsoon in-
fluences and/or cooling (Abu-Zied et al., 2008; Mercone et al., 2001;
Rohling et al., 1993, 2015; Rohling and Pälike, 2005). Also, atmospheric
variability has been demonstrated an integral feature of the system
(Dirksen and Meijer, 2020). The youngest half of sapropel S6, which
contains both interruptions, bears relatively low warm-water forami-
niferal relative abundances and high cold-water foraminiferal (Fig. 8
Fig. 10) and dinocyst abundances (Fig. 9). Together, these features
indicate colder temperatures relative to the older part of sapropel S6, in
apparent agreement with the summer insolation (Fig. 8; Berger and
Loutre, 1991 and RSL decrease (Fig. 10; Grant et al., 2014). Schmiedl
et al. (2003) argued that slight coolings during deposition of the younger
half of sapropel S6 would have sufficed to disrupt water-column strati-
fication, leading to deep-sea ventilation events, in contrast to sustained
stratification during deposition of the older half of the sapropel, which
formed under warmer conditions. Similar to the interruption in S1, the
sapropel S6 interruptions are marked by reappearance of benthic fora-
minifera (Fig. 4) reflecting bottom-water reventilation associated with
the cooling events (Casford et al., 2003; Jorissen, 1999).

5.3. Millennial-scale climate variability during sapropel S6

(Sierro and Andersen, 2022) provide evidence that millennial-scale
climate variability and associated warming events affected the North
Atlantic, including the Iberian Margin, during sapropel S6 deposition,
and that this also affected the Eastern Mediterranean basin. Unlike the
variability seen in our δ18OG. ruber record (Fig. 7 and 10), our
δ18ON. incompta (subsurface species; Fig. 7 and 10) shows only a general
negative “bell” shape curve, with major shifts only at the onset and the
termination of sapropel S6. Given that δ18ON. incompta changes

Fig. 7. Stable isotope results obtained from G. ruber and N. incompta collected
from core M25/4–12 (Ionian Sea; this study). For sapropel legend refer
to Fig. 4.
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predominantly in a volumetrically attenuated manner from freshwater-
induced surface water δ18O perturbations with some winter-cooling
overprint (Rohling et al., 2014), we infer that the strong δ18OG. ruber
variability (relative to δ18ON. incompta) resulted mainly from super-
imposed surface water temperature changes during the warm season,
with limited impact on winter/subsurface temperatures. We graphically
correlate the three most negative values of δ18OG. ruber from our record
with prominent warming events 6i, 6iii, and 6iv described by (Sierro and
Andersen, 2022) (Fig. 10). Accordingly, the positive shifts of δ18OG. ruber
likely represent cold spells in between the warming events. These tem-
perature fluctuations seem to have been most notable in the warm
seasons (affecting only δ18OG. ruber). However, it cannot be excluded that
these fluctuations can correlate also to salinity changes as the increased
runoff signal (Log Ti/Ca in (Hodell et al., 2015) at the Iberian margin
suggests.

5.4. The end of sapropel S6 and the recovery to oxygenated conditions

The recovery to oxygenated bottom water conditions corresponded a
resumption of deep-water formation and associated basin-wide water
column re‑oxygenation (De Lange et al., 2008; Reed et al., 2011; Reitz
et al., 2006; Van Santvoort et al., 1996). There is a rich literature about
this for S1, using different proxies (De Lange et al., 2008; Filippidi and
De Lange, 2019; Jorissen et al., 1993; Rohling et al., 1997; Schmiedl
et al., 2010; Tachikawa et al., 2015; van Helmond et al., 2015). Our
stable isotope results shed light on this matter for sapropel S6. As dis-
cussed above, δ18ON. incompta (Fig. 10) is more likely to be impacted by
major forcing that could substantially affect the subsurface, which was
dominated by freshwater influences (Rohling et al., 2004). A key feature
detailed by our δ18ON. incompta is the sharp, abrupt increase precisely at
the end of the visible sapropel S6 expression (Fig. 10). This marks the
end of significant freshwater influx (Fontugne and Calvert, 1992; Kallel

Fig. 8. Distribution of placoliths, upper photic zone (UPZ) calcareous nannofossils, N. dutertrei, cold foraminifera taxa, warm foraminifera taxa and productivity
affiliated foraminifera in the studied interval compared with Northern Hemisphere summer insolation (65◦N July; W/m2; red) and precession (Berger and Loutre,
1991), and). Dots represent the recorded relative abundance (%). Shaded areas represent the 95% probability interval. Solid lines represent the probability median
(50%). For sapropel legend refer to Fig. 4. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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et al., 1997, 2000; Rohling et al., 2004; Thunell and Williams, 1989;
Vergnaud-Grazzini et al., 1977) from monsoon activity and/or glacial
meltwater. It also coincides with reappearance of benthic foraminifera
(Fig. 9???) and the planktic species G. inflata (Fig. 4), both indicators of
deep ventilation/mixing (Rohling, 1999; Van Straaten, 1972; Van-
straaten, 1966). Additionally, the orbital configuration conducive of
sapropel deposition gradually changed to conditions less favorable for
sapropel deposition by the end of sapropel S6, which arguably weakened
monsoonal activity, decreasing freshwater influx (Fig. 8). This is further
supported by a concomitant decrease in Asian monsoon activity marked
by an abrupt positive shift in Argentarola speleothem δ18O (Fig. 10; Bard
et al., 2002). Together, these observations imply a reduction in water
column stratification, which facilitated deep convection and consequent
bottom water re‑oxygenation.

6. Conclusion

Glacial sapropels have traditionally received less attention than
those deposited during interglacial periods, which are generally more
intensively developed. We apply a high-resolution, multiproxy approach
to investigate sapropel S6 that deposited during glacial Marine Isotope
Stage 6. Our dataset indicates that sapropel S6 was deposited in response
to a high versus low latitude climate interplay that has been previously
suggested to operate in the Mediterranean region. This interplay per-
tains to the freshwater input to the basin tied to NH ice-sheet instability
(high latitudes) and NHmonsoon intensification (low latitudes). We find
that these processes resulted in two mechanisms that led to S6 forma-
tion: (1) Eurasian/Alpine ice sheet meltwater input that preconditioned
the basin for stratification; followed by (2) increased monsoon runoff
that intensified stratification. We also observe distinct signals of
millennial-scale climate variability in δ18OG. ruber within the Ionian Sea

during the sapropel S6 deposition, which can be related to widespread
stadial-interstadial cycles.

During S6 deposition, the Mediterranean region experienced a mild/
temperate climate with humid conditions, which are contrasted with the
notion glacial periods in this region feature cold and dry climates.
Cooling is apparent through the second half of the sapropel, which helps
to explain the presence of deep water re-ventilation events (sapropel
interruptions). Finally, we observe that the end of the sapropel S6
deposition coincided with a sharp termination of the freshwater inputs
to the basin.
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