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ABSTRACT

The classical theory of Multivariate Statistical Analysis is primarily based on
the multivariate normal model. However, in the recent literature several authors
have made studies as to how the conclusions will be affected if the population model
departs from normality. The class of elliptical models shares some intrinsic proper-
ties of the multivariate normal model and has been getting increasing attention by
the researchers in the recent literature.

In the present thesis we restrict the model to a suitable multivariate ¢t-model
which belongs to the class of elliptical models and at the same time accommodates
the multivariate normal model. This model has found applications in the context
of stock market problems. The main results of the thesis are outlined below.

Improved estimators of the scale matrix of the multivariate t-model have been
obtained under a squared error loss function. Similar improved estimators for the
characteristic roots of the scale matrix, trace of the scale matrix and also for the
inverse of the scale matrix have been obtained. Some Improved estimators of the
scale matrix of multivariate t-model have been obtained under the entropy loss
function. Some other related new results are as follows.

An elegant expression has been obtained for the characteristic function of the
multivariate ¢-distribution in terms of the well-known Macdonald function. Also
a limit theorem for the Macdonald function has been obtained. Some identities
involving expectations of the sum of product matrix, based on the multivariate
t-model, have been derived.
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CHAPTER 1

INTRODUCTION

The classical theory of Multivariate Statistical Analysis is based on the as-
sumption that the underlying observation vectors arise from independent multi-
variate normal distributions. The multivariate normal models have indeed played
a predominant role in the historical development of statistical theory, and found
applications in almost all branches of science and technology.

There are two main reasons for using the multivariate normal distribution.
Firstly, functions of multivariate observations are, usually, approximately normally
distributed due to the central limit effect. This is especially true of sample means
and covariance matrices, used extensively in formal inferential procedures. Sec-
ondly, the statistical analysis of multivariate observations is mathematically easily
‘ractable under the assumption of normality.

Still the question arises as to what happens to the inferences when the normality
assumption is violated. There could be several situations:

(i) the functional form of the underlying distribution is not known,
(ii) the underlying distribution is somewhat different from normality,
(iii) the underlying distribution does share some features of normality.

The statistical analysis for the first situation has led to the growth of

distribution-free methods better known as Nonparametric Methods. The second

situation has been considered by numerous statisticians and this area is usually

1



termed as Robustness Studies. However, the situation when the underlying dis-
tribution shares some intrinsic properties of the multivariate normal distribution
has been getting increasing attention in the recent literature. One such property is
that the probability density function has equiprobable surfaces on concentric hyper-
spheres. This property is usually known as spherical symmetry and the related
distributions are known as spherical distributions. A simple linear transforma-
tion (location-scale) leads to equiprobable surfaces on hyper-ellipses. This property
is known as elliptical symmetry and the corresponding distributions are known as
elliptical distributions.

Some notable subclasses of multivariate elliptical distributions are: multivari-
ate stable distributions, contaminated normal distributions and the multivariate
t-distribution. One of the most important multivariate elliptical distribution is the
multivariate ¢-distribution. Since the multivariate t-distribution accommodates the
multivariate normal distribution when the so-called degrees of freedom approaches
infinity, it is a good candidate to check robustness of classical statistical inference.

The present thesis deals with the generalizations of some classical results devel-
oped under normality assumption when in fact the observations have a multivariate
t-distribution. Some of the classical statistical theories have been recently gener-
alized in the general set-up of multivariate elliptical models. It is, therefore, felt
necessary to give a brief account of the reiated works on multivariate elliptical
distributions.

A recent paper by Chmielewski (1981) presents an excellent review of the his-
torical development of elliptical distributions as an attractive generalization of the

multivariate normal distribution.



1.1 Distribution Theory

Earlier papers dealing with spherical distributions are by Bartlett (1934), Hart-
man and Wintner (1940), and Lord (1954).

Box (1952) notes that the usual F-statistic has the same null distribution for all
spherically symmetric distributions. Bennet (1961) also notes that. certain statis-
tics have unchanged null distributions under a multivariate ¢-distribution. Efron
(1969) shows that the Student ¢-distribution remains unchanged if we assume that
the underlying observations to be spherically symmetric instead of normal. The
robustness property of F-statistic has been proved by Thomas (1970) and Kariya

and Eaton (1977) in connection with the study of linear models.

The first organized presentation of elliptical distribution theory is by Kelker
(1970) who studies conditions for the existence of a probability density function, the
marginal distribution, the conditional distribution, distributions of some functions

of norm and quadratic forms etc.

Anderson and Fang (1990) also study the distribution of the sample covariance
matrix, the generalized variance, characteristic roots of the covariance matrix and
null distribution of Hotelling’s T2-statistic for a class of elliptical distributions.
Sutradhar and Ali (1989) find the distribution ¢ ° the covariance matrix for a class
of elliptical distributions. They also specialize the result to the multivariate ¢-

distribution and calculate the moments of the sum of products matrix.

For studies relating to the distribution of correlation coefficient for ellintical
models we refer to Muirhead (1980), Muirhead and Waternaux (1980), Ali and
Joarder (1991) and Joarder and Ali (1992).

Fan (1990) derives the distribution of generalized noncentral ¢, F and T2-
statistics for a class of spherical distributions. Fang and Wu (1990) discuss some
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properties of the distribution of quadratic forms based on a class of elliptical distri-
butions. Anderson and Fang (1987) extend Cochran’s theorem from normal distri-
bution to elliptical distributions.

Fang, Fan and Xu (1990) study the distributions of quadratic forms of random
idempotent matrices with applications to Hotelling’s T2-statistic and Tukey’s test
of nonadditivity. Cacoullos and Koutras (1982) find the distribution of generalized
non-central chi-square statistic. Fan (1990b) finds the distributions of generalized
non-central chi-square statistic and proves the matrix form of the generalized non-

central Cochran’s theorem.

1.2 Characterizations

Several authors such as Bartlett (1934), Hartman and Wintner (1940), Kelker
(1970), Thomas (1970) and Nash and Klamkin (1976) have discussed the following
important characterization of the normal law. If Z,, Z,,..., Zy are independently
and identically distributed random variables, then Z =(2,, Z,, ..., Zn)' is spherically
distributed if and only if Z has a normal distribution.

Kelker (1970) proves several beautiful characterization theorems of character-
istic functions, norms and quadratic forms of a class of elliptical distributions.

Ali (1980) proves that in order that the sample mean Z and sample variance
52 be independent when Z is spherically distributed, it is necessary and sufficient
that Z,,2,,...,Zn be mutually independently normally distributed.

Cambanis, Huang and Simons (1981) present many interesting characteriza-
tions of elliptical distributions through a stochastic representation which follows
from the work of Schoenberg (1938). This representation has been ever increasingly

applied to study many tougher problems (see for example, Fang and Anderson,
1990, Fang, Kotz and Ng, 1990 and Fang and Zhang, 1990).
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Mitchell (1988) as well as Mitchell (1989) studies the geometrical properties
of elliptical distributions both from the viewpoint of robustness and manifolds of
Amari (1985) and Lauritzen (1984).

1.3 Inferential Problems

Chmielewski (1980) as well as Chmielewski (1981a) considers some testing prob-
lems relating to scale matrices, such as, the equality of several matrices, sphericity,
block diagonality and equicorreletedness. He proves that null distributions in these
cases are robust in a class of elliptical distributions. The non-null disiributions for
tests of equality of scale matrices and sphericity of scale matrix are also shown to
be robust.

Kariya (1981) shows that the Hotelling’s T2-test for testing that the location
parameter equals the null vector in the one sample problem is robust against de-
partures from normality. It remains Uniformly Most Powerful Invariant also for a
class of elliptical distributions, and the null distribution is the same as that under
normality. Sutradhar (1988) deals with the linear hypothesis with the multivariate
t-error variable.

Kariya (1981a) gives necessary and sufficient conditions for which the null dis-
tributions of test statistics for most multivariate hypothesis testing problems remain
the same in the class of elliptical distributions. He also shows that in certain spe-
cial cases, the usual Multivariate Analysis of Variance tests remain Uniformly Most
powerful Invariant also in a class of elliptical distributions.

Srivastava and Bilodeau (1989) proves that in a subclass of elliptical distribu-
tions Stein estimators are robust in estimating the mean vector and the regression
parameters in a linear regression model. Singh (1991) studies Stein estimators in a

regression model with errors having a multivariate t-model.
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Anderson and Fang (19902) generalize the theory of maximum likelihood es-
timation and likelihood ratio criteria from normal distributions to elliptical distri-
butions. They also find that many usual likelihood ratio criteria and their null
distributions are the same in the elliptical distributions.

Hsu (1990) develops an invariant test for testing the equality between the mean
vector and a specified vector and its properties for a class of elliptical distributions.
For a class of elliptical distributions Hsu (1990 a) also considers the following prob-
lems: MANOVA, lack of correlation among sets of variables, the equality of covari-
ance matrices, the equality of the correlation coefficient to a given number and the
equality of the multiple correlation coefficient to zero. He develops invariant tests
and their properties for each of the above hypotheses.

Fan (1990a) finds shrinkage estimators and ridge regression estimators of re-
gression parameters in a linear model when the sample comes from a class of ellip-
tical distributions. He presents a class of shrinkage estimators and ridge regression
estimators which dominate the ordinary least squares estimators under quadratic
loss function. The results are also extended to the case when the loss function is a
nondecreasing convex function of quadratic loss function.

Fan and Fang (1990) prove that the sample mean is a minimax estimator of the
location parameter when the loss function is a decreasing function of the quadratic
loss function and the underlying observations have a class of elliptical distributions.
They also consider some sequential minimax properties of the sample mean and the
Stien’s two stage estimators.

Fan and Fang (1990a) again find some minimax estimators of the location
parameter under a loss function when the underlying observations have a class
of elliptical distributions. They also consider inadmissibility of sample regression
coefficients.

T
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Fan and Fang (1990b) also find conditions for minimaxity of an estimator for
a location parameter under a general quadratic loss function when the underlying
observations have a class of spherical distributions.

Quan (1990) proves that many likelihood ratio tests are Uniformly Most Pow-
erful Invariant and unbiased when the observations belong to a class of elliptical
distributions. Quan and Fang (1990) also study unbiasedness of likelihood ratio
tests of some hypotheses regarding location and scale parameters when the under-
lying observations belong to a class of elliptical distributions.

Dey (1988) has developed estimators for the characteristic roots of the covari-
ance matrix of the multivariate normal distribution by shrinking sample characteris-
tic roots towards their geometric mean under a squared error loss function. Similar
techniques have been adopted by Leung (1992) for estimating the characteristic
roots of the scale matrix of a multivariate F-distribution. Dey (1990) estimates

parameters of a scale mixture of normal distributions.

1.4 Moments and Identities

Kelker (1970) finds the mean and covariance of a class of elliptical distributions.
Muirhead (1982) defines the kurtosis parameter of elliptical distributions.

Berkane and Bentier (1986) present an inductive method for computing the
moments of a class of elliptical distributions. They introduce a sequence of new
parameters relating centered higher order to second order moments.

Berkane and Bentler (1987) define new parameters characterizing a class of el-
liptical distributions. They also show that Mardia’s (1970) coefficient of multivariate
kurtosis is essentially one of these parameters. They establish a simple relation be-
tween centered multivariate product moments and second moments of the variables.

Berkane and Bentler (1987a) find asymptotic distribution of marginal sample kur-
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toses and uses it to derive new estimators of the kurtosis parameter of multivariate
elliptical distributions as well as tests for homogeneity of kurtoses. Gang (1990)
expresses moments of a random vector in terms of some operators. He also shows
some applications to a class of elliptical distributions.

Joarder and Ali (1992) generalize the identities of expectations of sum of prod-
uct matrix due to Muirhead (1986) when the observations have a multivariate t-

distribution instead of normal.

1.5 Some Applications of Elliptical Distributions

The class of elliptical distributions has found many applications. Dunnet
and Sobel (1954) encounter the multivariate t-distribution in the context of cer-
tain multiple decision problems while Cornish (1954) discusses the multivariate
t-distribution in connection with a set of normal sample deviates. Bechhofer, Dun-
net and Sobel (1954) encounter the multivariate ¢-distribution for ranking means of
normal populations with a common unknown variance.

There has been a great deal of work about the use of the ¢-distribution in finan-
cial studies. It has been observed by some authors that the empirical distribution
of rates of return of common stock have somewhat thicker tails than that of the
normal distribution. The multivariate t-distribution has fatter tails than that of
the normal distribution and is, therefore, suitable to describe stock market data.
Under the assumption that the errors follow the multivariate ¢t-distribution Zellner
(1976) considers a regression model to study a stock market data for a single stock.
Sutradhar and Ali (1986) generalizes Zellner’s regression model to study the perfor-
mance of stocks of some selected firms relative to overall performance of ail stocks
trading on several stock exchanges under the assumption that the errors have the
multivariate ¢-distribution.
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Chib, Tiwari and Jammalamadaka (1988) study the prediction problem in lin-
ear regression models with elliptical errors. They also extend the results of Zellner
(1976).

Sutradhar (1990) examines the behaviour of Fisher’s linear discrimination cri-
terion for classifying an observation into one of two t-populations.

Browne and Shapiro (1987) derive a test for factor analysis structure of the
covariance matrix under the assumption that the error variates have a class of
elliptical distribution.

The problems studied in the present thesis are presented in the next chapter.



CHAPTER 2

PROBLEMS STUDIED
IN THE PRESENT THESIS

2.1 A Proposed Model

In multivariate statistical analysis we usually draw independent observations
from a multivariate normal distribution. Suppose that the p-dimensional random
variable X; has the multivariate normal distribution given by N,(8, A); then
X, has p-components X,;, X3;,...,X,;, usually known as characteristics. Now
if we draw N independent observations X;, j = 1,2,..., N, then the observations
(X1,X2,...,XN) constitute a random sample of size N. In this case the joint

probability density function of the sample is given by
1 &
f(z1,22,...,2N) = (21)"NP/2 |A|"N/2ezp -3 Y(zi-0A (= -0) ). (21)
i=1

We will call the above joint probability density function the multivariate normal
model . A natural generalization of the above multivariate normal model is to
replace the exponential function by some suitable function g(.) such that

N
f(21,23,...,2n8) = K,(p, N)IA| /%9 (E(z,- - 0YA" (2~ 0)) v (22)
j=1
where K,(p, N) is the normalizing constant, is the joint p.d.f. of (X;,X3,...,Xn).

10
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It is easily seen that the probability density functions given by (2.1) and (2.2)
are constant on the surface of

N
Y (zi-0A Nz -0) =
j=1
for every constant c.

We will call the probability density function given by (2.2) the multivariate
elliptical model. The observations (X;, X3,...,Xx) are identically distributed
but not necessarily independent, although they are uncorreleted. It is well-known
(cf. Kelker, 1970) that the observations of the multivariate elliptical model are
independently distributed with mean 6 and scale matrix A if and only if X;(; =
1,2...,N) is distributed according to the p-variate normal distribution. This, of
course, is a limitation to the generalization of the multivariate normal model by
the multivariate elliptical model. However, the multivariate elliptical model given
by (2.2) has found application in stock market problems (see e.g. Zellner, 1976 and
Sutradhar and Ali, 1986).

The multivariate elliptical model given by (2.2) is too general to obtain specific
results unless the functional form of g(.) is specified. In the recent literature some
subclasses of the multivariate elliptical model considered by statisticians are multi-
variate stable models, contaminated normal models and the multivariate t-model.

In the present thesis we will concentrate on the multivariate t-model given

by
N —(v+Np)/2
f(z1,22,...,28) = K(v,Np) lAl_le (” + 2(-’:' - 0)')\-1(31' - 0)
Jj=1
(2.3)
where the normalizing constant K (v, Np) is given by
»/2
K(v,Np) = LT + Np)/2) (2.4)

nN?/2T(v [2)
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It is well known that

Jj=1 J=1

N ~(v+Np)/2 LN
(1 + ;1; > (zi —0YA " (z; - o)) — ezp (-‘2— D (=zi-0yAN(z; - o))

as v — 00. Thus the multivariate t-model accommodates the multivariate nor-
mal model by letting v — oo.

It can be easily verified by direct integration that the joint density function
of multivariate ¢t-model given by (2.3) can be rewritten as a mixture of density

functions given by:

-] I.,.zAI-N/Z -1 N , _
f(z1,22,...,2N) = /o “@n)VrlE °2P ("2— :/;;(35 - 0)'(r*A) Yz, - 9)) h(r)dr
(2.5)

where

2r—(v+1) -y
M) = s < (55): 29

This means that the multivariate £-model is a scale mixture of multivariate normal
model with location parameter 6 and scale parameter 72A with the mixing scale
parameter 7? where =2 has a gamma distribution G(v/2, 2/v). These representa-
tions have been exploited by Dey (1990) for some estimation problems, and by Singh
(1991) for a linear regression problem with errors having a multivariate ¢-model.

The multivariate t-distribution has been encountered by several authors in
many practical contexts (see e.g. Dunnet and Sobel, 1954, Cornish, 1954, Bechhofer,
Dunnet and Sobel, 1954, Fama, 1965, Blattberg and Gonedes, 1974, Zellner, 1976,
Sutradhar and Ali, 1986 and Sutradhar, 1990)
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2.2 Motivation of the Present Thesis

As mentioned earlier, the theory of multivariate analysis has been developed
primarily under the assumption that the observation vectors are independently nor-
mally distributed. Since the multivariate t-model converges to the multivariate
normal model when the degrees of freedom approaches infinity, it provides a good
basis for checking the sensitivity of classical statistical procedures for departures
from normality. In the present thesis we study some of those procedures when the
observations have actually a multivariate t-model. An outline of the problems is
sketched below.

Fisher and Healy (1956) derive the characteristic function of the univariate
t-distribution when v is odd. Sutradhar (1986) derives a few series representations
of the characteristic function of the multivariate t-distribution. We derive a neater
form of the characteristic function of the multivariate ¢-distribution given by (4.1).

Muirhead (1986) derives some useful identities involving expectations of the
sum of product matrix based on the multivariate normal distribution. We have
generalized those results to the case when the observations follow a multivariate
t-model given by (2.3).

Dey (1988) considerg the problem of estimation of some functions of the scale
matrix of the multivariate normal distribution. Leung (1992) considers the estima-
tion of the characteristic roots of the scale matrix of multivariate F distribution.
We have considered the problem of estimation of the scale matrix of the multivari-
ate t-model given by (4.1) and of some functions of it when the observations follow
the multivariate £-model given by (2.3) under the squared error loss function (cf.
Leung, 1992) given by

L(u(A4), w(A)) = tr(u(A) - w(A))?
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where u(A) is any suitable estimator of w(A) and tr(A) means the trace of the
square matrix A.

Dey and Srinivasan (1985) consider the problem of estimation of the scale
matrix of the multivariate normal distribution under the entropy loss function. Dey
(1990) also considers estimation of the scale parameters of the spherical t-model.
We have considered the problem of estimation of the scale matrix of the multivariate

t-model given by (2.3) under the entropy loss function.

2.3 Some Examples Where the Multivariate
t-Model Arises

The multivariate t-model, as mentioned earlier, is a scale mixture of multi-
variate normal model with location parameter § and scale parameter 72A with the
mixing scale parameter 72 where 72 has a gamma distribution G(v/2, 2/v). Thus
the multivariate t-model fits well in a Bayesian Inference set-up when sampling from
multivariate normal distribution N,(8, r2A) with 7 having p.d.f. given by (2.6).

Dunnet and Sobel (1954) encounter this model in the context of certain multiple
decision problems while Cornish (1954) discusses the model in connection with a
set of normal sample deviates. Bechhofer, Dunnet and Sobel (1954) encounter
multivariate ¢-model when ranking means of normal populations with a common
unknown variance.

The multivariate ¢-model has appeared in financial investigations. It was be-
lieved earlier that the rates of return on common stocks were adequately charac-
terized by the multivariate normal model. It has been observed by several authors
that the empirical distribution of rates of return of common stocks have somewhat
thicker tails (more kurtosis) than that of the normal distribution. The evidence
provided by Mandelbrot (1963) and Fama (1965) suggests that one could explicitly
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account for the observed fat tails by using the symmetric stable models.

The multivariate {-model has also fatter tails and can, therefore, characterize
rates of return on common stocks. Under the assumption of independence of daily
returns, Blattberg and Goenedes (1974) assess the suitability of the multivariate
t-model as compared to the symmetric stable models. Under the assumption that
the errors follow a multivariate -model Zellner (1976) considers a regression model
to study stock market data for a single stock.

Consider the following regression model:

Yij=oi+ Y Birtr + €ij, (2.7)
r=1
for : = 1,2,...,p;5 = 1,2,...,N, the regression parameters of being a; and

Bi1,Bizs - .., Bim, for i = 1,2,...,p. Then under the assumptions that

E(e;;) =0, foralli, j
E(e,?j) = 72);; for all t, J
E(eijexj) =7%Xix for k=1,2...,p, and for all i, j

E(esjerj) =0 for all i, j(#£ i), k;5' = 1,2,..., N.
and that for a given 7, the errors (€1, ¢z,...,en) where ¢; = (€15, €25,...,¢;) (j =
1,2,...,N) are independently and normally distributed as N, (0, 72A) while the
parameter 7 has the p.d.f. given by (2.6), it may be proved that

%o |r2p|~N/2 -1 _
fler,€2,...,en) =/o I—(z—;)lﬁﬁew (7259(7'2/\) ":’) h(r) dr
=1

N —(v+Np)/2
=K (v, Np)|A|~N/? (u + Z e.;-A-‘e,-) (2.8)

=1
where K (v, Np) is given by (2.4). Thus we see that the errors have a multivariate

t-model of the form (2.3).
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Sutradhar and Ali (1986) consider the above set-up to study the performance
of stocks of some selected firms relative to overall performance of all stocks trading
on several stock exchanges. They consider the price change data for the stocks of
four selected firms : 1. General Electric, 2. Standard Oil, 3. I.B.M. and 4. Sears,
trading on the New York Stock Exchange in relation to the performance of New
York Stock Exchange as a whole (or perhaps in conjunction with several other stock
exchanges).

Let Y;; denote the monthly return on a capital of $100 , invested on the i-th
(1 = 1,2,3,4) stock during the j-th (j = 1,2,...,20) month. More specifically,

Yi; = 100{(Qi; — Pi;) + Dij)/ Pyj,

where P,; is the price of the i-th stock at the beginning of the j-th month, Q;; the
price at the end of the j-th month and D;; the dividends earned during the j-th
month. Let z; denote the weighted average of these returns during the j-th month
for the aggregate of all stocks trading on the New York Stock Exchange, called
‘market’ for short. To study the linear regression of the joint monthly returns of
the selected stocks on the corresponding monthly returns of the ‘market’ as a whole,

Sutradhar and Ali (1986) consider the following regression model:

Yij = ai+ fiz; + €; (2.9)
t=12,...,p(=4);j =1,2,...,N(= 20) and estimate the parameters

(a1y B1)s---s(o4, Ba)

on the basis of a stock return data. They also consider the case of r (r=1,2,...,m)
markets in which case the regression model is given by (2.7) and develop theories
for testing regression parameters.

A L
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For further details the reader is referred to Sutradhar and Ali (1986). An-
other application is due to Sutradhar (1990) where he examines the behaviour of
Fisher's linear discrimination criterion for classifying an observation into one of two

t-populations.

2.4 Contributions of the Present Thesis

In the present thesis some characteristic functions, some identities involving

expectations, and some estimation problems have been considered.
Major Contributions of the Present Thesis:

The major original contributions of the thesis are contained in Chapter 6 and

Chapter 7.

1. The scale matrix of the multivariate t-model has been estimated under
a squared error loss function (see sections 6.2, 6.3). The risk functions of the
estimators have been calculated (see Section 6.3). The proposed estimator has been
compared to maximum likelihood estimator analytically and computationally (see
Section 6.4). The result has been specialized to the case of the multivariate normal
model (see Sections 6.6, 6.7, 6.8 and 6.9).

Some functions of the scale matrix of the multivariate t-model e.g. charac-
teristic roots, the trace of the scale matrix and the inverted scale have also been

estimated (see Sections 6.10, 6.11 and 6.12).

2. Some improved estimators of the scale matrix of the multivariate t-model

have also been obtained under the entropy loss function (see Sections 7.2 and 7.3).

Some original but minor contributions of the thesis are as follows.
1. The characteristic function of the multivariate ¢-distribution has been de-
rived in terms of the Macdonald function (see Section 4.3.1). A limit theorem for
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the Macdonald function has also been obtained (see Section 4.8).

2. Some important identities involving expectations of the sum of products
matrix based on the multivariate -model has been obtained (see Chapter 5).

3. A Pearson Type II distribution has been proposed which is closed under
marginal and conditional distributions (see Section 3.4).



CHAPTER 3

ELLIPTICAL DISTRIBUTIONS

3.1 Spherical and Elliptical Distributions

A p-dimensional random variable Z = (2,,22, ... ,Z,) is said to have a

spherical distribution if the probability density function (p.d.f.) is of the form

f(2) = ¢(z'z). (3.1

The density is constant on every concentric spherical surface z'z = ¢? centered
at the fixed point 0 = (0,0, ... ,0)' and hence Z is said to be spherically distributed.

A spherical random variable can also be defined in the following way:

A p-dimensional random variable Z is said to have a spherical distribution if

for every C belonging to the class of orthogonal matrices
cziz (3.2)

where the symbol £ means that the two sides have the same distribution.
A p-dimensional random variable X = (X;,X2, ... X,)' is said to have an
elliptical distribution if the p.d.f. of X is of the form

f(z;6,A) = |A|7*3g((z — 6 A~ (z - 6)). (3.3)

where 0 is a p-component location vector, A is a p x p positive definite scale matrix.

19
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The p.d.f. in (3.3) is constant on every concentric ellipsoidal surface
(z-0)'A"Y(z-0)=¢?

centered at the fixed point 8 = (6,63, ...,6,)' and hence X is said to be elliptically

distributed. A simple linear transformation
Z=A""3X-0)

in (3.3) results in the above p.d.f. in (3.1).
A list of spherical and elliptical distributions are given below:
(i) The Multivariate Normal Distribution N,(8,A)

f(z:6,8) = @) PPN Peep( Sz - ANz —0).  (3.4)

(ii) The Multivariate t-Distribution t,(0,vA;v)
f(z) = K(v, p)(v + (2 — 0Y A~ (z — 9))~(»+P)/2

»/3
where K(”v P) == r'rAPy(t/?)z -

(iii) Contaminated Normal Distributions
f(z) = (1 = e)(2xY/? exp(—2'2/2) + c(27A?) P2 exp(—2'2/2)%),  (3.5)

where 0 < c < 1.

(iv) Scale Mixture of Normal Distributions

00 (.2 Af~1/2
f@= [ e -0 - har G9)

where 7 has a p.d.f. on [0, 00).
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These distributions form a subclass of elliptical distributions with p.d.f. given
by (3.3).
(v) The Uniform Distribution inside Ellipsoid

L(p/2+1)

1@ =+ 2mrn

IT(z) (3.7
where It(z) is the indicator function of the set

T={z:(z—0)A"Y(z-0)<p+2).

(vi) The Pearson Type II Distribution
£(2) = kB, PIRITA(1 ~ (z — Y0~ (z — 6))*P2

where v > p, (z — 8)YQ271(z — 0) < 1 and k(b, p) is the normalizing constant

given by
I'(v/241)
wP/2L(SE + 1)

k(b,p) =

(vii) The Double-exponential Distribution
£2) = S 0)) 1 exp ( 3 s’ |‘/2)
Jj=1

(cf. Bravo and MacGibbon, 1988, p 244)

3.2 Characterizations of Spherical and Elliptical
Distributions

In the following theorem we present geometrical arguments to characterize
spherical distributions. This theorem has been proved by Schoenberg (1938) in the
context of radial symmetry in Hilbert space. The following geometrical proof ie due
to Ali (1989).
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Theorem 3.1(Al, 1989) In order that (Z,,2;,... ,Z,) belong to the class
of spherical distributions, it is necessary and sufficient that joint distribution of
(Z21,22,... ,Z,) can be represented as a mixture of distributions of the following
form:

F(Z,,2,,... ,Z,)=ANG(zl/r,z2/r,... y2p/r)dH(r) (3.8)

where H(r) is any arbitrary distribution function of a non-negative random vari-
able and G(uj;,u3,... ,up) is the distribution function of a random variable
(Uh,Ua,... ,Up) whose unit probability mass is uniformly distributed over the sur-
face (shell) of unit sphere of R?.

Proof. Consider any arbitrary probability distribution function H(r) of a non-
negative one dimensional random variable R i.e., H(r) = 0 for r < 0. Place this
distribution in a Euclidean space R with Cartesian co-ordinates (2, Z,,... , Z,)
along the radial line emanating from the origin 0 = (0,0,... ,0), coinciding this
origin with the origin of R i.e. with R = 0. With R=0 fixed, rotate this radial line
in the whole space R?, and spread the mass dH(r) uniformly over the surface of the

sphere of radius r i.e. over
B+Z+...+28 =1

for every value of r. It is clear that H(r) would generate a spherical distribution.

On the other hand, given any spherical distribution of (2,, Z,,... , Z,)', collect
the mass of constant density on each surface of radius r and place the mass at a
distance r from the origin along any arbitrary line, for every value of r, and denote
the resulting distribution function along the radial line by H(r). Indeed,

H(r)=P(|12| <), |1Z|= (2} + 2] + ... + Z2)'/2.
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Hence, H(r) may be thought of as the generator of the spherical distribution and
H(r) completely specifies the spherical distribution.

Thus the members of the class of spherical distributions in R” are in one-to-
one correspondence with the members of generator distributions, which are the one
dimensional probability distributions of non-negative random variables.

The spreading of mass dH(r) at a distance r along the radial line, uniformly
over the sphere of radius r in R?, can be easily accomplished by considering a unit
mass spread over the sphere of radius r in ®” and weighing each point by dH(r).

Now consider a general point (2,, Z,,... ,Z,) in R?. The mass of the spherical
surface, of a sphere of radius r in RP, with the uniform distribution of unit mass

over the sphere of radius r in R?, cut off by
(Z] < zlszz < z,... 9ZP < zp)

is, by a simple dilation argument of bringing the sphere of radius r in R” to that of

radius unity, and by the similarity principle, easily seen to be

G(z1/r,z2/r,... ,2p[T7)
where G has been defined in the statement of the theorem; hence, weighting hy

dH(r), the portion of the mass contained on the sphere of radius r in R? of the

splerical distribution contained in
(Zy€£21,2: € 23,...,2p £ 25)
is
G(z1/r,z2fr,...,2p/r)dH(r)

so that collecting the mass for every sphere of radius r, we have the distribution

function of the spherical distribution

F(z1,23,...,2)) = ‘[ooo G(z1/r,2a/r,...,2[r)dH(r),
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which is the mixture of distribution functions of the uniform distribution over a
sphere of radius r in R? with the mixing distribution function H(r), which is the
distribution function of a non-negative random variable. Hence the theorem is
proved.

By taking the Fourier-Stieltjes transform (characteristic function) of both sides
of (2.9), it readily follows that the characteristic function ¢(ty,¢3,... ,t,) of the

spherical class must have the representation
o0
$z(tr ta,... 1tp) = /o ¥(rts, rta,...,rt,)dH(r) (3.9)

where ¥(t1,12,...,t,) is the characteristic function of a distribution whose unit
mass is uniformly distributed over the surface of a unit sphere in R? with center
at the origin and H(r) is a distribution function with H(r) = 0 for r < 0. This
characterization is due to Schoenberg (1938) who has proved that the above char-
acteristic function is in one-to-one correspondence with the class of positive definite
functions of (¢, ¢,,...,t,) under radial symmetry in the Hilbert space and this class
is completely characterized by the class of distribution functions H(r).

The characteristic function of a spherical distribution can also be found by
direct integration and is given in the following theorem.
Theorem 3.2 A random variable Z is said to have a spherical distribution if and
only if its characteristic function ¢z(t) is a function of ||t|| = (¢'t)}/? in which case
it must be of the form '

ss)=w(iel) = [~ oFs (5 =) g (3.10)

where H(r) is the distribution function of norm R = (2'Z)'/2 and ,F,(a;b;2) is’
the generalized hypergeometric function defined by

. _ = (a)1(a)z...(a) f_:
pFeluib;2) = ,,_22 CROONY (3.11)
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with (a); the Pochammer polynomial defined by

(a); =-I:(—l‘:-(—:-:)-'ﬂ=a(a+l)...(a+j—l). (3.12)

Proof. Let the spherical random variable Z have the p.d.f. given by
f(z) = g(<'2).

Then the characteristic function of Z is given by

éz(t) = ./m exp(it'z) g(2'z) dz.

By making the following orthogonal transformation

Y= (yhyzv---ay’)' =C2

with y; = (¢'2)/||t||, we have

b2(t) = jw ezp(illtlly) 9(v'y) dy.

Now let us make the p-dimensional polar transformation from (y1,y2,...,¥,)

to (r,01,...,0p_1)

k-1
Yr =r (H ainﬂ,) cosly, k=12,...,p-1,

=1
p—2
Yp =T (H ainﬂg) sinf,._,
k=1
where re[0, 00), 0:¢[0,x) for k = 1,2,...,p—2, and 6,_,¢[0, 27) so that the Jacobian
of transformation is given by

r—2
r?-? H (sin)?—*1,

k=3
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Then

b2(t) = / - /‘;o... /.:’:o /. 2'1_0 =1 ezp(ir]|t||cosby)

r—2
X H (.smag)" =1 gr H dby.
k=1 k=]

Integration over 8;,... 0, yields

éz(t) = -\/?ITP((:/—L)I)/-{) jno ‘/' o (8in,)?~2exp(ir||t}|cosd, )d6, dH(r)

where h(r) is the p.d.f. of norm R = (2'Z)!/2 given by

h(r) = Pt g(r?).

oxP/2
l’( / 2)
Now by the use of the following integral (see e.g.,Prudnikov et al., vol.1, 1986,

p 457, formula no. 6)

} 4
/ (sin w)*! ezp(iz cos u) du = V& (2/2)@ V" N(a/2) Jupz-1(z), a>0
0
with a = p— 1,z = r|jt|| and u = 6;, we have

$2) =TG/2) [ (o Iy amslrlll) dE(P)

where Jo(t) is the Bessel function of first kind of arbitrary order a and argument
z (see e.g. Lebedev, 1965, p 102). Then the expression in (3.10) follows by the use

of the following relation
22

oF: (575 = FOX2/ dhoa(e)

with b = p/2 and z = r|j¢||.
Conversely let the characteristic function of any random variable Z be denoted
by ¥(||ti]). Then the characteristic function of a random variable Y = C2Z, where

C is any orthogonal matrix, ‘s given by

Elezp(it'Y)] = Elezp(it'CZ)] = w(IIC"tll) = %(llt|l)
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which shows that the distribution of Z is invariant under orthogonal transforma-
tion and hence by (3.2) Z must have a spherical distribution. Hence the proof is
complete.

The foliowing stochastic representation of a spherical random variable follows

easily from the previous theorem.

Theorem 3.3 Let Z have a spherical distribution with p.d.f. given by (2.1). Then
Z has the stochastic representation given by

Z=RU

where R = (2'Z)'/? is independent of U and the random variable U is uniformly
distributed on the surface of unit sphere in R”.

3.3 Uniform Distributions on or inside Unit
Hyper-sphere

The uniform distributions on or inside hyper-spheres plays a very important
role in statistical analysis of directional data analysis (see e.g. Watson, 1984). They
have been powerful tools in studying spherical and elliptical distributions as well
(cf. Fang and Anderson, 1990). In this section we find characteristic functions and
moments of uniform distributions on or inside hyper-spheres. Most of these results
follow from Cambanis, Huang and Simons (1981) and Fang, Kotz and Ng (1990).

In what follows we will require the following formula of volume V(p, r) and
surface area S(p, r) of a p-dimensional sphere of radius r.

Vip, ry =22 (3.13)
’ (p/2)T(p/2)
S(p, ) = 20717 s (3.14)

“T(p/2)
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3.3.1 The Uniform Distribution on the Surface of Unit
Hyper-Sphere
Let U be uniformly distributed on the surface of unit sphere in R” i.e. the

p.d.f. of U is given
_ Ir(w)
1) =56,

where S(p, 1) is defined in (3.14) and I7(u) is the indicator function of the set
T={u:u'u=1}

In the next theorem we derive that the characteristic function of the uniform
distribution on the surface of unit sphere as an immediate consequence of Theorem

3.2.

Theorem 3.4 Let U be uniformly distributed on the surface of unit sphere in RF.

Then
du(t) = oFy (2 ||t||2) (3.15)
E(U) =0 (3.16)
Cov(U) =p~'I, (3.17)

’
and for any integers m;,m;,...m; with m = ) my, the product moment is given

k=1
by

—n*zz‘n‘.%m—) bt Tk (3.18)

) { Onfatleastonemk(k-l2,...,p)isodd,
if all mjs(k = 1,2,...,p) are even.

E (ﬁ U™

k=1

Proof. Since the distribution of R, as defin o Theorem 3.2, on the surface of

unit sphere is degenerate at r =1 j.e. the p.d{. uf R is given by

f(r)=1, forr=1,
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it readily follows from Theorem 3.2 that the characteristic function of U is given by
(3.15).

It follows from Theorem 3.3 that for any spherical random variable Z

E(Z) = E(lIZINEW) (3.19)

and

Cov(Z) = E(||2][*)Cov(UV). (3-20)

Since the above relations are true for any spherical random variable Z, let Z

have spherical normal distribution N,(0, I) so that ||Z||? is distributed as x,2 and

consequently
E(Z)=0
Cov(Z)=1
and
E(|1ZI1*) = p.

Then the expressions in (3.16) and (3.17) follows from (3.19) and (3.20). It also

follows from Theorem 3.3 that for any spherical random variable Z

P »

E (1‘[ z;"-) =E(R™) E (1‘[ U;"") (3.21)

k=1 k=1

or,
P P
E (]‘[ U;,"-) = (E(R™))™'E (]‘[ z,';'-) .
k=1 k=1

Since this is also true for any random variable Z, let Z have a spherical normal

distribution N,(0, I) so that for any integer [ we have

2720 ((1 + p)/2)
[(p/2)

E(R") =
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and

. 0 if at least one [ is odd,
E(2,) = 5;7;%7-27 if all I’s are even.

Hence the expression in (3.18) follows immediately.
We summarize these results on spherical distributions in the form of the fol-

lowing thecrem.

Theorem 3.5 Let Z have spherical distribution given by (3.1). Then

E(Z)=0, (3.22)
Cov(Z) = (1/p)E(R*)I, (3.23)
P
and for any integers m,;,m3,...,m; with m = ) my, the product moment is given
k=1

by

» 0 if at least one my(k =1,2,...,p) is odd,
E (H zy ') = { E(R"')mz(.':.%’m; [Ti= z;(,m)ﬁ (3.24)
k=1

if all mis(k =1,2,...,p) are even.

where R = (Z'Z)'/? is the norm of Z with p.d.f.

k(r) = S(p, 1) rP2g(r?). (3.25)

The results of the above theorem can be easily extended to the case of elliptical
distributions. Let X have the elliptical distribution given by (3.3). Then X can be

written as

X=04+AY22

where Z is spherically distributed. It then follows that the characteristic function




31

of X is given by
éx(t) =E(ezxp(it' X))

—E [ezp (it + A‘"Z))]
=ezp(it'0) E [e:t:p(it'AI/zZ)]
=ezp(it'0) pz(A/?t)

=ezp(it'6) Y(||A'/*t]])
where 3(-) is given by (3.10).
It follows from Theorem 3.3 that when A is of full rank then we have

A~Y¥(X — 6) = RU,
so that

X =0+ RAV*U.

It then follows from Theorem 3.5 that
E(X)=E@+AY?Z)=9

and

Cov(X) =E(X - 6)(X - 8)'
=E(RA?UU'AV?R)
=E(R*)A'PE(UU' )N/
=E(R)AV 3 (p~ ' I,)A?
=(1/p)E(R*)A

The corresponding results for elliptical distributions are sumunarized in the

form of the following theorem.

Theorem 3.6 Let X have the elliptical distribution with density given by (3.2).
Then
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(i) the characteristic function of X is given by

oo —llrA1/2¢12
x(t) = explitO(IN el = [ esptivd) oFs (B Y by,

(ii)
X =0+ RAVU

where A is of full rank,
(iii)
E(X)=2¢8

and

Cov(X) = (1/p)E(R*)A = —-2¢/%(0)A
where R has the p.df. given by (3.25) and ,F(a;z) is defined in (3.11).
3.3.2 The Uniform Distribution inside Unit Hyper-sphere

Let W Lave a uniform distribution inside a unit sphere having p.d.f.

_ Ir(w)
)= 56,1

where I'r(w)is the indicator function of the set

T={w:v'w<1).

By making a p-dimensional polar transformation from (wy,wz,...,wp) to
(r,61,6,...,0,—1) where re[0,1), Oief0,7), k = 1,2,...,p — 1, and 6,-2¢[0, 27)

followed by integration over 6y,6,,...,0,_; we immediately have the p.df. of R

given by
-1
hr) = gy S(B 1) = G =p Y, ref0,1)

i.e. R is distributed as a beta random variable Beta(p, 1).
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It follows from Theorem 3.3 that W = RU where R is distributed as a beta

random variable Beta(p,1) while U has a uniform distribution on the surface of a

unit hyper-sphere and R and U are independently distributed.

Hence from Theorem 3.2 it follows that the characteristic function of W is

given by

1 legl12
sw®) = [ on (5D 5
A 2 2

By the use of series representation of the generalized hypergeometric function, given

by (3.11), followed by integrating over r, it is readily seen that
II I?
¢w(t)= oF1(p/2+1;

The product moments of the components of W = (W;,1/2,..., W,), for any

P
integers m,,my,...,m, with m = )" my, is given by
k=1

» 0 if at least one m.(k = 1 2 .,p is odd,
E (H Wf") = m+pm(n%;)/_z) E=1 (m./z)'

k=1 if all mis(k = 1,2,...,p) are even

which follows from (3.24) by noting the fact that R is distributed according to
Beta(p,1) so that

E(R™)= —£—.
(R™) m+p



3.4 The Pearson Type II Distribution

Kotz (1975) proposes the multivariate Pearson Type II Distribution as an ex-
tension to the univariate Pearson Type II Distribution. We make a slight modifica-
tion to the form of the density so that the marginal and conditional distributions

are well identified. We consider the following p.d.f.
f(z) = k(b,p) 19"/2 (1 - (z — 0)Q~ (= — 0))* P/ (3.26)

where
(z-0)Q Y (z—-6)<1,
b > p and the normalizing constant k(5, p) is given by

_ T(b/2+1)
Kbr) = Crr -2+ 1)

We will denote the above p.d.f. by PII(8, S222;b). The p.df. of
Z=0"Y}(X -0)

is given by
f(2) = k(b,p)(1 — 2'2)*~P/2 2 < 1. (3.27)

When p=1, the p.d.f. of Z) is given by

f(z1)=B"" (% "—”;—1) 1=V <1851

(cf. Stuart and Ord 1987, vol.1, p 248).
The Distribution of Norm

The distribution of norm R = (Z2'Z)'/? is given by

h(r) = k(b,p) S(p, 1) r*~! (1 - r?)-P/2,
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The m-th moment of R is given by

m l 2m+p b—p+ 2)
E(R™) = 2 ( 5 5 . (3-28)
It then follows from Theorem 3.6 that
E(X)=296
and
Cov(X) = —B (’ : 4 8- Pt 2) A. (3.29)

The product moments of the components of Z having p.d.f. (3.27) follows from
(3.24) and (3.28).

The Characteristic Function

The characteristic function of the univariate Pearson Type II distribution is

given by

! T
$2,(t) = . \/;(l;i(i-;)l/):z/)2) exp(itz;) (1 — z,2)*-V/24z,
V(b +1)/2)
L((6+2)/2) Jiy=o

cos(tz; )(1 — 23)*-V/2gz,

Now by the use of the following integral (see e.g. Prudnikov, et al., 1986, vol.1,
p 389)

/ * (@ = 22 costz dz = -‘g—;(2a/t)°'l/2 I(c) J.-12(at)
0

with a = 1 and ¢ = (b + 1)/2, we have
z,(t) = 22 T(b/2 + 1) |t| /% Ty pa(l8])

where Ji(t) is the Bessel function of first kind.
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Finally by using the celation between generalized hypergeometric function and
the Bessel function of first kind (see Theorem 3.2) we obtain

_I14li2
)

Hence the characteristic function of the multivariate Pearson Type II distribu-
tion having p.d.f. f(z) given by (3.27) is given by
éz(t) = cos t'z f(z)dz.

'2<1

By an orthogonal transformation

Y= (yh!h---:yp)' =C2Z

with y; = t'Z/||t|| followed by integration over y2,¥s, ..., yp, we immediately have

_ 2
$2(t) = dvi(IItll) = ¢z, (IEl) = oF (21;2 'Lt" )

Hence the characteristic function of X = 8 + Q!/2Z is given by

1AL/24(12
ox(t) =czp(it'0) oF1 (6-{2-2’ “A4 t” ) (3.30)

The above characteristic function of X =  + 2!/2Z can also be easily found
by the use of Theorem 3.6. It follows that

oo - 1/24112
éx(t) = /o exp(it') oFy (lé_l_l"ﬁi_ﬂ) h(r)dr

where h(r) is the p.df. of norm r = (z'z)!/2. Then the result (3.30) follows by

integration over r.
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Marginal and Conditional Distributions
Let us partition X, 0,¢ and 2 as follows:
- Xl — 01 — tl — Qu le)
X = (Xg) ’9 - (03) ’t - (tz) ’Q - (921 QZ!

where 62, t2¢R? (¢ < p) and 2, is a ¢ X ¢ positive definite matrix.
Setting t; = 0 in the c.f. of X in (3.30) we immediately have

2
bx,(t) = explith8) oF; ("‘;2; all )

Hence X, ~ PII(8,, S222; b) i.e. X2 has the p.d.f.
£(z2) = k(b,q) |R22| ™2 (1 - (22 — 02)' Q" (22 — 6,))*™7/* (3.31)

where

(22 —82) 37 (22— 02) <1, b>q.

In what follows we will need the following two well-known identities:
19| = |22} [Q11.2] (3.32)

and
Yy =305 12 + (1 — 205 12) Uta (1 — 1295 y2) (3.33)

where Y = X — 6 and
D2 = O — 205, Do

It follows from the identity in (3.33) that

1-y'Qy=1-y222 2 — (11 — 21205 12) Dy 2(n — 1207 2)
=(1 - 13903, 12)

+[1= (1 — 2297 v2) Vit h(n1 — 129057 12)]
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where

Virz = (1 - 1295 12)Q1.2.

Then the joint density of ¥; and ¥; can be written as

f(y1,v2) =k(b,p)| Q2| 1Qu1.2 2 (1 — 1305 1) PP/

x [1 = (1 - 25 1) Virh(n — Q25777 (339)

so that from (3.31) we immediately have

Fflye) =k - q,p — D)IVara| ™2
x [1 = (31 — Q12057 v2) (1 + 12957 v2) " Vit a(11 — 2033 v2)) a-niz

From the relation Y = X — @ we finally have

(X1|Xz = z3) ~ PIIp_y(61.2, §2},.2:5—g)-

where

6,2 = 0, + 01203, (22 — 62)

and

112 = (1 = (22 — 82)'Q3;} (22 — 62))11.3.

Then by the use (3.29) it follows from Theorem 3.6 that
E(X)| X2 =22) =0,

and

b-q+4 b—p+2 o
2 ’ 2 11.2°

1
Cou(XilXs = 21) = B (

A Pearson Type II Model
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A Pearson Type Il model for N p-dimensional observations X,,X;,..., XN
could be given by

N (b—-Np)/2
f(z1,22,...,zn) = kb, Np)|Q}~N/2 (1 -3 (z; - YR (z; - 0))

j=1

where b > Np and k(b, Np) is the normalizing constant. The above model is a

generalization of the Pearson Type 1l distribution given by (3.26) along the line
(2.2).




CHAPTER 4

THE MULTIVARIATE T-DISTRIBUTION

The multivariate ¢t-distribution is a natural generalization of the univariate Stu-
dent t-distribution. The multivariate t-distribution converges to the multivariate
normal distribution when the degrees of freedom of the multivariate ¢-distribution
tends to infinity. As mentioned earlier the multivariate ¢-distributic.. .s a suitable
candidate to check the robustness of statistical techniques developed under normal-
ity against alternatives with fat tails (see e.g. Sutradhar and Ali, 1986)

A p-variate random variable X = (X, X3,...,X,) is said to have a multivari-
ate t-distribution if the p.d.f. of X is given by

f(z) = K(v,p)IA|™*2 (v + (z — 0 A~ (= — 6)) "2 (4.1)

where z ¢ ®”, v > 0 and the normalizing constant K (v, p) is given by

v 0((v + p)/2)

K(Vsp) = r’/zr(ylz)

The parameter 6 is a p-dimensional location parameter, A a p x p positive
definite scale matrix and v is a scalar known as degrees of freedom.

The multivariate ¢-distribution has been studied in various contexts by several
authors. Among them we mention Bechhofer, Dunnet and Sobel (1954), Cornish
(1954), Siotani (1976), Sutradhar and Ali (1986), Sutradhar and Ali (1989) and
Sutradhar (1990).
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In this chapter we derive an elegant expression for the characteristic function
(see section 4.3.1) of the multivariate t-distribution in terms of the Macdonald
function. It is shown in section 4.6 that this representation allows us to demonstrate
with great ease the well-known property that the multivariate ¢-distribution can be
written as a scale mixture of a suitable multivariate normal distribution with the
mixing scale parameter having a suitable chi-square distribution. The characteristic
function leads to a limit theorem (see Section 4.8) for the Macdonald function. Some

applications of these results are also demonstrated.

4.1 The Standard t-Distribution
We first define what we term as a Multivariate Standard t-Distribution.

Definition 4.1 A p-component random vector Z = (2,,2,,...,2,)" will be said
to have a Multivariate Standard t-Distribution with location parameter 0 and

scale parameter I if Z has the p.d.f. (probability density function) given by

(v +9)/2),
f(z) = ﬂ”lzr(f'/Z) \

14 22)"(+P/2 P > 0. (4.2)

For brevity we will denote it by Z ~ ¢,(0,I; v) . In particular, for the univariate

casc we omit the dimension p and refer to (4.2) simply r3 Z ~ #(0,1; v) and in

this case Z has the p.d.f.

_ I'(v +1/2)
vx I(v/2)

The p.d.f. in (4.2) plays a similar role in multivariate !-distribution theory as

f(2) (14222 268 v >0. (4.3)

that played by the standard normal distribution in multivariate normal theory. In
particular, we note that the distribution of Z is spherical. Other t-type distributions
spherical or elliptical with general location and scale parameters can be obtained by
suitable linear transformation of the st. ndard ¢-distribution. Qur aim is to find the
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characteristic function for the multivariate t-distribution. Since the linear transform
of a characteristic function is mathematically easily handled it is enough to derive
the same for the standerd case.

We now introduce location and scale parameters 6 and Q (a p x p positive
definite matrix) respectively in (4.2).

Let X = 6+0Q'/2Z where Z is spherically distributed according to (4.2). Then

the density function of X is given by
flz) = K Q72 (14 (z - Y7 (= — )" **PP%, (4.4)

where

I((v +p)/2)
K=W’ v>0, reR

(cf. Johnson 1987, p 117). The p.d.f. in (4.4) can be denoted by X ~ ,(6,9; v) .

Several forms of the multivariate ¢-distribution have appeared in the literature.
They can be obtained by suitable reparametrization of the model in (4.4). In
particular the case when Q2 = ¢(v)A where {(v) is a suitable function of v in (4.4) is
extensively found in the literature. This is because the multivariate ¢-distribution
is primarily useful as a generalization of the multivariate normal distribution in the
context of robustness studies. Hence it is desirable that the model (4.4) include the
multivariate normal distribution. But the model (4.4) does not in general include
a multivariate normal model (even not necessarily when v — o0). However when
2 = {(v)A where the scalar £(v) = av +b > 0, and a > 0, it is easily verified
by direct computation that the model (4.4) does indeed tend to a multivariate
normal model as ¥ — oc, and hence this parametrization does accommodate the

multivariate normal distribution as a limiting case.
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4.2 Stochastic Representation of the Multivariate
t-Distribution

Let Z ~ ¢t5(0,I; v) . Then it follows from Theorem 3.3 and Theorem 3.5 that
Z has the following stochastic representation Z = LU where L = (Z'Z)"/? has the

p.df.

2
"D = terz )

P=r(1 4 1)~ (v+P)/2
i.e. vL?/p ~ F(p, v).
Again let Y ~ :,(0,vI; v) so that R = (Y'Y)!/2 has the p.d.{. given by

2uv/2

h —= —— p—1 2\—(v+ri/2 .
(r) B2/ rP= (v +r%) (4.5)

i.e. (R?/p) ~ F(p/2,v/2).
It follows from Theorem 3.6 *»at the multivariate t-distribution 2,(8,vA; v)

has the following stochastic representation

X =0+ RAY*U

where R has the p.d.f. given by (4.5).

4.3 The Characteristic Function

The characteristic function of the univariate Student t-distribution for odd
degrees of freedom has been derived by Fisher and Healy (1956). Ifram (1970)
gives a general result for all degrees of freedom but Pestana (1977) points out that
this result is incorrect. A series representation of the characteristic function of the

multivariate Student ¢-distribution has been given by Sutradhar (1986).




4.3.1 The Characteristic Function in Terms of the Macdonald

Function

In this section we derive the characteristic function of the multivariate 2-
distribution for all val'.es of degrees of freedom in terms of the well-known special
function, namely, the Macdonald function (see e.g. Lebedev, 1965). We list below

some standard results on the integral and series representations of the Macdonald

function which will be required in the sequel.
The Macdonald Function

The Macdonald function K,(z), z > 0, aeR admits the following integral
representation (see, for example, Lebedev 1965, p 119):

Ka(z) = % / " ecoshww gy, (4.6)

By the substitution e¥ = 2u/z in the above integral it readily follows that
1/zv> [ _., r?
K.(z) = 3 (5) ./o u exp (-u -~ E) du, z >0, aeR. (4.7)

The integral given by (4.6) can also be rewritten as follows:

1 [ _aiwyimw

Ka(x) =§ / e- 3(¢ +e )cﬂlﬁdw
1 o°° Y .-w
[ ety
1 o°° wy,-w
=§/ (e‘"" + c"'"’) e~ e +e™) gy,
0

Hence it follows that

Ko(z) = K_o(z), forall z >0, aeR.

It then follows from (4.7) that for z > 0, ae®R

Ko(z) = K_a(z) = 1 £) - ./o“ u®~!exp (-—u - :——:) du, >0, aeR (4.8)

2\2




45

(This result will be used in Section 4.5.2.)
Another integral representation of Macdonald function for z > 0 and a > —1/2
(see, for example, Lebedev, 1965, p 140 and Watson, 1958, p 172) is given by

Ku(z) = ( ) M[ (1 + u?)~@+1/2 co5 zu du (4.9)

(This result will be used in course of proving Theorem 4.1).

In particular, we remark that (see, for example, Tranter 1968, p 19)
Kip(z) = V7 (22)'? exp(-z) (4.10)

(This result will be used in Section 4.3.2).
A series representation of the Macdonald function K,(z) where z >0 and a a

nonnegative integer is as follows (see, for example, Lebedev, 1965, pp 107, 110):

a-1
- -1 a-1-Fk) ,,._
K.,,(:z:)=2° lg :( )(k' 4k ) IZk [
=0

+(-—l)° 2—(a+l) i {E(l + k) + {(a +1+ k) - [n(12/4)} zzk+a

(4.11)
o k! (a+ k)! 4%
where £(z) is the digamma function defined by
£(z) = T'(2)/T(2) - (4.12)

For non-int.gral positive values of a, a series representation of K,(z) for z > 0
is given by (see, for example, Spainer and Oldham, 1987, chapter 51):
k—'d 2k+a

Ko(z) =201 Jz.; o (1 —an + 9~ (at1) Z RFPSWT: (4.13)

where (a); is the Pochammer polynomial defined by (3.12).
Finally we remark that the Macdonald function has been referred to by dif-

ferent authors by various names, such as the Basset function, the Modified Hankel
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function, the Modified Bessel function of the third kind and for imaginary values
of the argument as the Bessel function with imaginary argument. Further details
on this topic is to be found in Lebedev (1965, chapter 5) and Spainer and Oldham
(1987, chapter 51).

Theorem 4.1 Let Z be a univariate random variable having p.d.f. in (4.3), i.e.

Z ~ t(0,I; v). Then the cf. of Z is given by

$2(t) = Elexplit2)) = ((t) (4.14)
with
(it = = K, (el (4.15)
W= avimip(y 2) T2 ‘

where K, /2(|t|) is the Macdonald function with order /2 and argument [¢|.

Proof. The cf. of Z is given by

D((v +1)/2)
VFT/2)

Clearly, from the symmetry of the p.df. of Z, the imaginary part of the above

(- -]
E(exp(itZ)) = / (cos tz + i sin tz)(1 4 22)~(»+1) /24,
~o0

integral is zero so that by virtue of (4.9) we immediately have (4.15) and the theorem

is proved.

Theorem 4.2 Let the random vector Z have the standard p-variate ¢-distribution
as defined in (4.2) i.e. Z ~ ¢,(0,I; v) . Then the c.f. of Z is given by

¢z(t) = E(exp(it'Z)) = ¢ (Iltll) (4.16)

where ¢, (-) is the characteristic function of a univariate ¢-distribution as defined in
(4.15).

Proof. The characteristic function of Z is given by

E(ezp(it'Z)) = /u ) exp(it'z) f(z) dz
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where f(z) is given by (4.2).

An orthogonal transformation
Y=C2
with y; = ﬁ%ﬁ where C is a p x p orthogonal matrix, yields
E(ezp(it'2)) = K(v,p) L eaplilltl )1 +y')" 4P ay,
Thus the characteristic function is a function of the scalar ||¢|] = (¢'t)!/2 i.e.
E(ezp(it'Z)) = H(||tll) (4.17)

for some suitable function H(-).
It follows that the c.f. of the marginal distribution of the first component of Z
i.e. Z, is then given by
E(exp(it1 Z,)) = H(Jt:}{) . (4.18)

On the other hand, successive integration over zp, 2,1, ..., 22 of f(21,22,...,2p),
given by (4.2), shows that Z, is distributed according to the p.d.f. given by (4.3)

and hence from Theorem 4.1 we immediately have
E(exp(it1Z1)) = ¥u(|t1)- (4.19)
Therefore from (4.18) and (4.19) we must have
H(|ta]) = ¥ (Jt1]) for all ¢;.

Hence it follows from (4.17) that

E(exp(it'z)) = H(|I¢ll) = 4. (1ltll)
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and the theorem is proved.

4.3.2 A List of Characteristic Functions of t-Type Distributions
Let X have p.d{. given by (4.4). Then it follows from Theorem 4.2 that the
cf. of X is given by
ox(t) = exp(it'0) v, (||2'/*t])). : (4.20)

The c.f’s of other t-type distributions follow from it. We now give a list of the
various forms of the p.d.f.’s of multivariate t-type distributions along with their
characteristic functions expressed in terms of the Macdonald function. We recall
that the function v,(-) is defined in (4.15).

(i) The Univariate Student t-Distribution

f(z)=KQ+22/v)~ V2 2R v>0,
_ I((v +1)/2)
Vrm)(v/2)’
éx(t) = (Vrit]) .

(ii)) The Spherical Student t-Distribution

f(2)=KQ +2'z/v)" P2 2 eRPy >0,

__T((v+p)/?)
(o) 7PI(v/2) °

ox(t) =vu(Vitl) - (4.21)

(iii) The Multivariate Elliptical Student t-Distribution

f(@) =KIAI7?(1 4 (z = Y (A) (2 = 0)) 492, z e 87, v >0,

__T(w+p)/2)
(vx)=?/2D(v [2)

éx(t) =ezp(it'0) ¥, (lI(vA)/?t]]). (4.22)
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(iv) The Multivariate Cauchy Distribution

f(z) =K7Y+ (z = Y A7z - 6))" V2, z e ®7

T((p + 1)/2)
K=ﬁ;173/—'

éx(t) = exp(it'@)pn (IIA/2¢]])

= exp(it'8) exp(~||A'/*¢|)) by (4.10)
(cf. Press, 1982, p 175).

(v) Mean Variance Representation of the Multivariate t-Distribution

(Sutradhar, 1990).

F(z) =KIAF Y (v = 24 (z — 0 A=Y (z — ) *+P/2 2 ¢ RP b > 2,
=2 + p/2)

- n—P/2T(v/2)
éx(t) =exp(it'8) ¥, (Vv — 2||A?¢|)).

(vi) The Pearson Type VII Distribution (cf. Johnson and Kotz, 1970, p
114)

£(z) =KIAI7/2(8 + (z ~ YA (z = 6)) ™,z e R*,m 2 p/2,8 > 0,
__B™?’T(m/2)
“x-?P2T(m — p/2)’

$x(t) = exp(it'8) Yam—p(V/BIIA'*1]]).

K

(vil) Multivariate t-Type Distributions

f(z) =K|BAI™V* (1 + (z - 6) (BA) (2 — 0))" P2, 2 ¢ ®P, 1,8 >0,
K =L +p)/2)
n—P/2[(v/[2)’

dx(t) = exp(it'8) v, (v/BIIAY2t])).

The parameter § is not necessarily a function of v (¢f. Rao, 1973, pp.
169-170).
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4.4 Series Representation of the Characteristic
Function

We now indicate series representation, based on the Macdonald function, of
the c.f. of the model given by (4.4).

Case (i) positive even v

From (4.20) and (4.11) we have
v/2-1 oo
¢x(t) =ezp(it'd) | 3 Cu(k) |I'Pe]** + " Ca(k) ||Q4/2¢]]+2
k=0 k=0

+ 3 Cak)(= (I 102442

=0

where (=1)E(v/2— 1 - k)!
Cr(k) = (v/2-1) k1 4F °
Co(t) = EQ+E) +E0/2 41+ §) + Ing)
2(vf2— 1) K (v]2 + k)! 4F °
Ca(k) =(2°~2 (/2 - 1)! (v/2 + k)! 4%)71, a
and

£(z) =T'(z)/I(z) .

Case (ii) positive non-even v

From (4.20) and (4.13) it is readily seen that

#x(t) = exp(it'6) 3 [Da(k) [I924][** + Da(k) |j2"/24)|+2¥)
k=0

where
Dy(k) = (k' 4* (1 — v/2))7?
and

Dy(k) = T(=v/2)(2°T(v/2) k! 4*(1 + v/2))?
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where (a); is the Pochammer polynomial defined in (3.12).

4.5 On Moments of the Multivariate t-Distribution

Let X have the multivariate ¢ distribution t,(6, vA; v) given by (4.1). Then it
follows from Theorem 3.6 that
E(X) =9,
vA

v-2

Cov(X) =

We now calculate product moments of the spherical t-distribution ¢,(8,vI; v)
given by (4.21) by three different methods, namely, Series Representation, Integral
Representation of the Macdonald Function and Stochastic Representation.

4.5.1 Calculation of Product Moments by Series Representation

Let Y ~ t,(0,vI; v) so that Y has the spherical ¢-distribution with density
given by (4.21). Then it follows from section 4.4 that the characteristic function of
Y is given by the following series representations:

Case (i) positive even v
v/2—-l oo

oy(t) = E Ci(k) v*(t')* + E Ca(k) v*/2HE (1) /2+E

k=0 k=0
+Cs(k)(=In/u(t't)!/3) vr/2+k(¢'g)v 24k (4.23)

where Ci(k) s(i = 1,2,3) are defined in section 4.4

Case (ii) positive noneven v

dy(t) = i D, (k) vE(t't)* + f: Dy(k) v/3+E(t'g)r/3+E (4.24)
k=0 k=0

where D;(k) s(i = 1,2) are defined in section 4.4.
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To calculate E(Y;?) for positive even v, set t3 =t3 = ... =t, = 0 in (4.23) s0

that we have
v/2~=1
dy(t) = E Ci(kyre3* + z Ca(k) v*/3+Eer+2k
k=0 =0
+C3(k)(-ln\/;tl )Vv/2+kt:+u
Therefore

FE) =337 $v(t10,....Olso
=v [20,(y) +208 Ci(2) +... + "} (v - 3), 17C(v/2 - 1)]
+*12 [(v = 1)2 £772C2(0) + (v)s £1C2(1) + ... ]
+* [{(v = 1)2 £271C3(0) + (v)s #C3(1) + ...}
+{(2v - 1) t!"2C3(0) + v(2v + 3) t}C5(1) +.. .}

+ {(v = 1)2 t§72In(t1)C3(0) + (v)s t] In(t1)C(1) +...}] fey=o-
Now by the use of the fact that, for ¢ > 0

& R In(t;)
hmt In(t)) = l: T
t;!
= 2% —ct; =(c+1)
= lim 2
$ 10 ¢
=0,
we have
~E(Y}) =2vC (1) for v>2.
Hence
2 _ V¥
E(Y,)—y__2 for v > 2. .
By similar routine calculation it follows from (4.23) that for positive even values
of v
4 2 3V2
E(Y})=24v"C\(2) = for v > 4,

(v=2)(v-4)
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E(Y?Y)) =82C(2)= = 2‘)’(2., Yy forv >4

and
BUTYR) = ~487C(0) = g gy forv > 6

When v is positive non-even we have, by differentiating (4.24), the same for-

mulae for product moments as above except that C; is replaced by D,.
In fact, it may be proved that for at least one odd m; (k =1,2,...,p),

E (H ) =0

and for all even m; (k =1,2,...,p) withm = Y }_, ms,

m W—4y m/f2 m m oy
([l - { R () fr it e > )
(m/2)(=ar) Dy(m/2) ([P (mat1)} for positive non-even v(> m),

where C; and D, are given in section 4.4.

k==l

Finally by setting the values of C; and D, we obtain the well-known result for
the product moment of Spherical ¢-Distribution is given by

» 0 if at least one mg(k = l 2 ..,p) is odd,
E (I‘[ Y;"-) ={ ™ 2%%;}52 b1 sy, v > m, (4.25)
k=1

if all m’s (k =1,2,...,p) are even
(cf. Johnson and Kotz, 1972, p 136, Sutradhar, 1986).

4.5.2 Calculation of Product Moments by an Integral

Representation of the Macdonald Function

The moments of the t-distribution are easily computed from the integral repre-
sentation of the Macdonald function given by (4.8). Let the p-dimensional random
variable Y have the p.df. given by (4.21) i.e. Y ~ ¢,(0,v]; v). Then it is easily
checked by virtue of Theorem 4.1 and Theorem 4.2 that

Vi)l
2¢/2=1(v/2)

¢y (t) = Kupp(VYIitl]) -



From (4.8) we have

K_o(z)= -;—(:/2)"’ Io- - u®"! exp(~u — 22 /(4u))du . (4.26)

If then follows from (4.15), (4.21) and (4.26) that the characteristic function of

spherical t-distribution can be written as
IOV 1) B WAV 1L\ Nl nadio vi|¢)?
St =ovrmmirgzy |2\ 2 /,, W exp | —u— =y, ) du

[ o ()]

k=1
Thus
E [f[ Y""] =i~" f[( 2 )m] ¢y (t)le=0
- a t=
k=1 ) k=] atk

<[ () e (G e

where m = m; + m3 +...4+m,.

But exp(—t}/(4u)) is the cf. of N(0, v/(2u)) whose m;-th moment is well-

known to be given by
a\™ —vt}
() (k) e

0 if at leaft one my(t =1,2,...,p) is odd,
== maf2 . ’
%%pm:,—;;;!,lfall m;’s are even (k= 1,2....,p).

Hence it follows for at lcast one odd m; (k = 1,2,...,p) that
EY,™ ;™ ...Y)")=0

and for all even m, (k =1,2,...,p) that

’ (ymm) 2 »
me ) _ mja [ ™3 tegp(—u) my!
E (‘!‘ll Y, ) = y™/3 /o T /2) &I.II (ma/2)! du v>m.
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Hence it follows that the product moment of the Spherical t-Distribution i.e.

Y ~ tp(0, vI; v) is exactly the same as has been obtained in (4.25).

4.5.3 Calculation of Moments through Stochastic Representation

Let Y has spherical ¢t-distribv .on t,(0,vI; v). Then we have from section 4.2
that Y = RU where R = (Y'Y)!/2 has the p.d.f. given by (4.5) and U has a uniform
distribution on the surface of unit sphere in RP.

Since the m-th moment of R is given by
v™/3T((m + p)/2)L((v — m)/2)

L(p/2)T'(v/2) '
it follows from (3.24) that the product moment E([J}., Y,;"") is exactly the same
as has been obtained in (4.25).

E(R™) =

4.6 On Mixture of Normal Representation

We now demonstrate, with the help of the characteristic function, the well-
known representation, already mentioned in (2.5), of the multivariate ¢-distribution
as a suitable scale mixture of the multivariate normal distribution with the mixing
scale parameter having a chi-square or an inverted Gamma distribution.

Let X = (X1,X3,...,X,) have the multivariate t-distribution given by (4.22).
It then follows from (4.16), (4.22) and (4.26) that the characteristic function of the

multivariate ¢-distribution can be written as

1/2411v/2
éx(t) =eaplit0) S s K (16e0) ) (427

li(wA)2¢]]/2
2v/1-1T (1 [2)

1 7 “(VA)‘”t"z
[ Sapraen [ urieny (- MALRAEY |,

=ezp(it'd)

4u
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=ezp(it'6) / wlilesp(—u) (_n(uA)‘/ztu’) i

J I'(v/2) 4u
T w1t lezn(—u
=ezp(it'8) —/o z P(:;’g ) L ezplit'z) (2m)~P/? I-;—‘,}I“”

-1
xXezxp (:2—1(:1: -8y (%) (z - 0)) dudzr.

The last step follows from the identity
/2112
exp (_M_)__ﬁll_) =/ exp(it'z) (2,,.)—1-/2 |'_’ﬁ|—1/2
»r 2u

4y
xezp ("71(3 -8y (%) - (z - a)) dz

which is the c.f. of Np(6, 5A).

Then the substitution u = 4772 yields

qu(t):/ exp(it'z)f,(z)dz (4.28)
»r
where
fe)= [ hute et
r=3=0

Xexrp (:2-1(1 - 8)(r*A) Yz - 0)) dr=? (4.29)

with
-2\v/2-1 =73
h(r7?) = ) SLASETT2 (4.30)

I(v/2)(2/v)*/?
Hence the multivariate t-distribution is the mixture of the multivariate normal
distribution N,(8, r2A) with mixing scale parameter 7? where 7~ has a gamma

distribution given by G(v/2, 2/v).
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4.7 On the Limiting Distribution of the Multivariate
t-Distribution

As is well-known, the multivariate t-distribution approaches the multivariate

normal distribution as v tends to infinity. It follows from (4.29) that

lim f,(z) = / i_o Jim_ h(r=2)(2r) P2 |F2A|71/?
xerp (—‘2—1(:,- - 0) (T2 M) Nz - o)) dr~? (4.31)

But when v -+ oo the characteristic function of =2 is given by

lim ¢,-2(r) =y1in;°E(eJ:p(irT"2))
- lim (1= 25y-vr2

=00 v
={ lim (1 - g;1)-"}'/2
=(exp(—2ir))'/?

&e—tf

which is the characteristic function of a degenerate random variable with all the

non-zero mass at Jhe point unity.

Hence by virtue of one to one correspondence between c.f. and and p.d.f., if

the later exists, it follows that
lim A (r%) =1 for ™2 = 1.
Y=+ 00

Then it follows from (4.29) and (4.31, nat

A2

ylin; fl’(z) = (21‘-)P/2

exp (%l(z -9)'A Yz - 0)) . 4.32)
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4.8 A Limit Theorem for the Macdonald Function

Ismail (1977) establishes a few limit theorems of Macdonald functions. Some

limit theorems of Macdonald functions have found #pplication in Barndorff-Nielsen

and Blaesild (1981) in the context of hyperbolic distributions. We prove a limit

theorem which involves the Macdonald function.

Theorem 4.3 The ratio of K, ;2(v/¥|c|) %o

2v/2-11(v/2)

ot <=/

approaches the limit 1 as v — o9, i.e.

v/ 2

Proof. It follows from (4.28) and (4.32) that

,‘l.“;o éx(t) =/R' ezxp(it'z) lim fu(z)dz
AI=/2

=/ar c:l:p(tt':!:)(2 L
xezp (351(;- — O AV (z - a)) dz

1/24])2
=ezp(it'f) exp (—u) .

Then it follows from (4.27) that

1/2414v/2
i A2

Jim, o, gy Ker(IwA) ) = eap (_ .

Since this is an identity in ||A!/?t||, the theorem is proved.

|IAY24)?

(4.33)
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4.9 On Marginal and Conditional Distributions

The following well-known results follow easily from the representation of the
characteristic function of the multivariate ¢-distribution as given in Theorem 4.2.
Let X have the p.d.f. given by (4.4) i.e. X ~ t,(6,Q; v). Then for any non-singular
matrix M, the c.f. of the linear combination V = MX is given by

E(exp(it'V)) = exp(it' M8) ¥, ((t' MQM't)'/?).

Hence

V =MX ~t,,(M8, MOM').

The marginal and conditional distributions are easily seen to have multivariate ¢-

distributions.
The Marginal Distribution

Let us partition X,6,t and () as

— Xl _ al _ tl _ Qu Q]z)
X= (Xz)' o= (92)’ t= (tz)’ 2= (921 Q22

where 63,2, eR? (¢ < p) and §;; is a ¢ x ¢ positive definite matrix.

Setting t; = 0 in the c.f. of X in (4.20) we immediately have
E(exp(it; X2)) = exp(it362) v, ((t3S022t2)"?) .
Hence X3 ~ t,(02,222; v) with p.d{. given by
f(z2) = K|Q22| 72 (1 4 (22 — 65)'(R22) 7 (22 — 62))" 4972, (4.24)

where 22 ¢ 89, v > 0 and the normalizing constant K is given by

_ (v +9)/2)
72T (v[2)
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The Conditional Distribution

In what follows we will need two well-known identities given by (3.32) and
(3.33).
It follows from the identity given by (3.33) that
Yy =12' 0, w2
+Hun = D203 1) A2 (1 — 12033 v2)
=(1+¥2'03,'y2)
+ [14 (11 — 212953 12) Vi1 5 (11 — 21293, w2)]
where Y = X — 6 and
Virz = (1 + 1295 12)0 2
with
Q1.2 = 1 — D283 Qa1

Then, by the use of the identity in (3.32), the joint density of Y; and Y; can

be written as
T'((v +p)/2) - - 1w
f(y"y?):m [Q22]723|Q11.2) 721 + ¥ Q3 yp )~ HP/2
X [1+ (1 = Q2R 1) Vit o - 00295790] P2 (4.35)

so that from (4.34) we immediately have

(v +5)/2) ]
Slie) =0T + g7y Vel

x[1+ (y1 = 02057 12) Vi o (w1 — Q250 ya)] " C+P/2. (4.36)

Then from the relation Y = X — 6 it is easily verified that

(X1| Xz = z2) ~ ty—g(01.2,97;, 25 v+ ¢)
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where
612 =6, + 01295, (22 — 62)

1.2 =(1 + (z2 — 62)'Q3 (22 — 62)) 1 2.
When Q = vA in (4.4), we have the p.d.f. of the elliptical t-distribution given
by (4.1). In this case
Qix = vAi for i,k =1,2,

so that
612 = 61 + vA12(vA2) " (22 — 62)
and
2 =vALL,
where
A 2 =(1+ (22— 62)'(vA22) " (22 — 62))An12
with

A2 = An - ApAR A

Then it follows from (4.36) that
(X11X2 = 22) ~ tp—g(61.2,vAY,; v +q)

so that
E(X1| X2 =22) = 6,2

and

Cov(X1|X2 = z2) = vAj; /(v + ¢~ 2).




CHAPTER §

IDENTITIES FOR EXPECTATIONS OF
GENERALIZED WISHART MATRIX

In a recent paper Muirhead (1986) derives certain useful identities involving
expectations taken with respect to the usual Wishart distribution. The present work
generalizes the above results by taking expectations with respect to a generalized
version of the Wishart distribution, considered by Sutradhar and Ali (1989), based
on the multivariate t-model given by (2.3). We also generalize the identities to the
case of sum of product matrix based on the multivariate elliptical model given by

(2.2).

Let X,,X>,...,Xn be independently and identically distributed as N,(u, A),
A > 0, N > p each having p-components. Then it is well-known that the p x p
matrix A of sample sum of squares and sum of products given by
N
A=) (X; - X)X; - X)

=1
has the Wishart distribution W(n,A) with the probability density function given

by

|A|n/2|4|(n—p—l)/2 1 -1
w(A) = 2711, (n]2) exp (—-2-tr(A A)) yA>0,n=N-12p (5.1)
where
Ty(a) = x?P=/4 |,| r (a - 1(.' - 1)) , a> p-1 (5.2)
2 2

=1

62
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Sharma and Krishnamoorthy (1986), for the case A = I, proves that the

identity

E{(trA)’trA®} = (np+ 2 + 2a)E{trA tr(A%)}

holds for all & for which the expectation exists. Efron and Morris (1676) obtains

the following identity in the context of decision-theoretic estimation of I:
Ey{tr(A"'A)/trA} = (np - 2)E(1/trA) .

Muirhead (1986) gives a generalized version of the above mentioned identities ob-

tained by Sharma and Krishnamoorthy (1986) and Efron and Morris (1976).

5.1 Identities for Expectations of the Wishart
Matrix Based on the Multivariate t-Model

In this section we consider a generalization of Muirhead’s result by taking ex-
pectation with respect to a generalized Wishart distribution based on the multivari-
ate t-model rather than the usual normality assumption. More precisely, in what
follows, we assume that the p-dimensional random vectors X, X3,..., Xy are iden-
tically distributed having the multivariate t-model given by (2.3). It may be noted
that they are independently disiributed only when v — o0 and in this special case
we have the usual multivariate normal model given by (2.1) where X, X2,...,Xn
are independently and identically distributed according to Np(6, A).

Sutradhar and Ali (1989) show that when X3, X3,..., X~ have a joint distribu-
tion given by (2.3), the sample sum of products matrix A = Z;v: J(X5 = X)X, -Xy

has the density

9(A) = C(v,p,n)|A|~"2|A|*=P=D/2(y 4 tr(A™ 4))~(¥4mP)/2 (5.3
)




for A>0,A>0,n2 p, and

vT{(v + np)/2}
[(v/2)Ty(n/2)

where I',(n/2) is the generalized gamma function defined by (5.2).

(5.4)

C(v,p,n) =

In view of the mixture representation of the multivariate t-model (see (2.5)) it

is immediate that

Alr ~ W(n,1?A)

where =2 ~ G(v/2,2/v).

In this chapter we derive some identities involving expectations with respect to
the density given by (5.3). The main result of this chapter is presented in Theorem
5.1 . But first we have Lemnma 5.1 which was originally proved by direct integration.
The following elegant version of the proof of Lemma 5.1 is based on the mixture

representation of multivariate t-model and has been suggested by Professor M.S.

Srivastava.

Lemma 5.1 Let the sum of products matrix (Wishart matrix) A have the p.d.f.

given by (5.3). Then the rth moment of |A4| is given by
VP T(v/2 = p) Tyln/2+47)

BAN) = =302 T2

|A)

for v > 2rp.
Proof. If A ~ W(n, A), it is well known that

o greTa(/247)
Eu(1Al) = 27~ (A

(Muirhead, 1986).

Hence it follows that for any integer r

E,(14]") =E[E(|A]"I7)]

= r r (n/2+r) 2A1T
E [2' T A ]

=2"£%,"(—/3/';—)') IAI" E(r*").




The proof is then completed by noting that for any integer r

r/2 T(v/2 —r/[2)

E(r") = (%) Te/2) v>r. (5.5)

Theorem 5.1 Suppose that A has the density given by (5.3). Let h(A4) be a real-
valued measurable function of A such that the function ¥(¢, A) = h(t"1A) fort > 0
and ¥'(t, A) = %t/)(t, A) exists at t = 1. Then

h(A) tr(A-1 A) _ ,
E, (v +tr(ATA))/(v +np)| — np E,{h(A)} — 2E,{y'(1, A)} (5.6)

where E, stands for the expectation over the density given by (5.3) provided the

expectations involved exist.

Proof. Fort > 0, consider the function £(¢) given by

£(t) = C(v,p,m)AI™™2 [ R(A)AIP~1/2 g2y 4t tr(AT1 4))(HP/2d4
A>0

(5.7)
It is readily seen that £(1) = E,{h(A)} . Clearly
d
4 e —
£(t) = 7€)
=ClpmiAl™ [ haylae-ror
A>0
x [%_pt(nr—ﬂﬁ(u +1 t’.(A-lA))—(l""'ll’)/2
4+t {_(v + np)/2}(v + tr(A-‘A))-(”"r“’/’tr(A-‘A)] dA .

Differentiation of (5.7) with respect to t is justified by virtue of dominated

convergence theorem. It then follows that

£'(1) = (np/2)E,{h(A)} — {(v + np)/2}C(v,p,n)|A|""/*

/ h(A)trA- A
Ao ¥ +tr(A~1 A)

(v +trA~t Ay~ (v+mP) /244

h(A) tr(A71A)
(v+tr(A-1A))/(v +np)]

= (mp/2E{H(A) - 3 B, | (58)
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The transformation

in (5.7) yields
£(t) = Cv,p, n)| A" / A(t™ B)jt= B|r= )2yl
B>0
x (v + trA~! B)~(v+nP)/3—2(»4+1)/23gp
= C(v,p,n)|A|""/? / ¥(t, B)|B|(»—P~1/?
B>0

x (v +tr(A~' B))~ "+ /24p |

Differentiation on both sides with respect to ¢ gives us

€'(t) = C(v,p,n)|A|™"/? / ¥'(t, B)|B|("?~V/3(y 4 tr(A~2B))~(*+"?)/2gdpB
B>0

(59)
Since B = A for t = 1, it follows from (5.9) that
€)= E,{¥'(1, 4)}. (5.10)

Finally from (5.8) and (5.10) it is readily seen that

E W, 4} = TE, A} - 35,

h(A)tr(A~t A) ]
(v +tr(A-1A))/(v + np)

so that

h(A)tr(A~ 4)
! L(v + tr(A-14))/(v + np)

=np E,{h(A)} - 2E,{¢'(1, A)}

and the theorem is proved.

It has been stated earlier that by letting v — oo, the multivariate ¢-model
given by (2.3) reduces to the multivariate normal model given by (2.1) so that the
generalized density of A based on the multivariate t-model reduces to the usual
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Wishart density in (5.1). Thus, by letting v — o0, in (5.6) we have the following
theorem originally due to Muirhead (1986).

Theorem 5.2 Suppose that A has a density function given by (5.1). Let A(A) be
a real valued measurable function of A such that the function y(t, A) = h(t~! A)
for t > 0 and suppose that ¥'(t, A) = ;%{tl:(t, A)} exists at t = 1. Then

E.{h(A)tr(A™' A)} = npE.{h(A)} - 2E.{¢'(1, A)}

where E,, is the expectation over the usual Wishart density given by (5.1).
Another special case of Theorem 5.1 is presented below in the form of a corol-

lary.

Corollary 5.1 Let W have the p.d.f. given by (5.3). Further for z > 0, let
h(zA) = z'h(A) for some real . Then

E, [ M) = (np + 21)E,{h(4)} . (5.11)

(v + tr(A-TA))/(v + np)
Proof. Using h(zA) = z' k(A) in (5.6), we have y(t; A) = t—'h(A). Now differen-
tiating with respect to t and setting t = 1 we get

¥'(1; 4) = —lh(A) . (5.12)

The identity in (5.11) readily follows from (5.6) and (5.12).
We remark that when v — o0 in (5.11) we obtain the following result originally

due to Muirhead (1986):

Corollary 5.2 Let A has the usual Wishart density given by (5.1). Further for
z >0, let A(zA) = z'h(A) for some real I. Then

E {h(A)r(A"* A)} = (np + 21)E,{h(A)} .
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The identity obtained by Sharma and Krishnamoorthy (1986) follows from
Corollary 5.2 by setting A = I and k(A) = tr(A)tr(A%) so that I = a + 1. Also
the identity used by Efron and Morris (1976) follows from Corollary 5.2 by setting
h(A) = (trA)™! so that | = —1.

5.2 Identities for Expectations of the Wishart
Matrix Based on the Elliptical Model

The identities developed so far involves the sum of product matrix (Wishart
matrix) based on the multivariate t-model given by (2.3). The multivariate t-model
is a member of the multivariate elliptical model given by (2.2). In the following
theorem we generalize Theorem 5.1 for (he multivariate elliptical model.

Theorem 5.3 (Sutradhar and Ali, 1989) Suppose that X;’s j =1,2, ..., N have
the elliptical model given by (2.2). Then the p.d.f of the sum of prrduct matrix
A=Yl (X; - X)X; - X, is given by

f(A) = Cy(p,n)|AI~"?|A[("2=D2g, (tr(A7'4)), n=N-12p, 4>0

Gp.n (f_‘,z;z,-) . jm g (i‘z;.z,) dzn

i=1 j=1

where

and the normalizing constant C,(p,n) is given by
Cy(p,n) = x"2K,y(p, n)/Ty(n/2)

with
} 4
Ty(n/2) = 2?t-VATTI{(n + 1 - i)/2}.

i=1
Theorem 5.4 Consider the p.df. of A given by Theorem 5.3. Let h(A) be a
real-valued measurable function of A such that the function ¥(t, A) = A(t~'A) for
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t > 0 and y'(t, 4) = &{¥(t, A)} exists at t = 1. Then

=20, mIAI [ ANAI I 2 gy er(A A emrdA
A>0 ot
= npEs{h()} - 2E;{¥'(1, A)}
where Ey is the expectation over the generalized Wishart density given by Theorem
5.3 provided the expectations involved exist.

Proof. Fort > 0, consider the function §(¢) given by

£(t) = Cy(p,n)IA|™"/2 / h(A)A"P=D/2 g (¢t tr(ATA))dA . (5.13)
A>0
It is readily seen that ¢(1) = E,{h(A)} . Clearly
£(t) = €@
= CypmIAl™ [ h(ayjafe-ror
A>0

x [n?p"""””y.,»(t tr(A1 4)) + £/ 2

Et-g,,..(t tr(A"A))] dA .

Differentiation of (5.13) with respect to t is justified by virtue of dominated

convergence theorem. It follows that
€(1) = ZFEf{h(4))
+Cylp,m) A" / h(4)| AP0
A>0
a
X {z:0pa(tr(A7* A))}emdA

The transformation
B=tA

in (5.13) yields

&(t) = Cy(p,m)|AI"? /B o h(t™' B)|B|"~?~V/2g, o (tr(A™' A))dB.
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Differentiation on both sides with respect to t and by the use of the fact that

B = Afort =1, we obtain
(1) = Ef{¢'(1, A)} .

The proof is completed by equating two expressions for £'(1).

We remark that when
Gpm(tr(A™1 A)) = (v + tr(A™} A))(+nP)/2
we have Theorem 5.1.

5.3 Some Special Cass

In what follows we assume that a stands for a real number while k¥ and r
stand for positive integers. The identities in this section involves the Pochammer
polynomial symbol defined by (3.12). We also refer to the following result due to
Sutradhar and Ali (1989):

vn

Ey(A) = —A. (5.14)

Case (i). Set h(4) = {tr(A"1A4)}*~! in (5.11), so that ! in (5.11) is given by

I =a—1. We then have

(tr(A~14))° _ L
S [(v+tr(A-'A))/(u+np)]“{"”* 2a - 1)} By [{tr(AT )}*7']. (5.15)

Set a = 1in (5.15). It then follows that

tr(A"14)

E, (v +tr(A-1A4))/(v + np) =np - (8.16)

When we set a = 2 in (5.15) and use (5.14) we readily obtain for v > 2,

{tr(A1A))? _vrp
(v+tr(A-1A))/(v +np)] ~ v -2

E, (np+2). (5.17)
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Letting ¥ — o0 in (5.15), we obtain the recurrence relation
E, [(tr(A"'A))"] = {2(np/2+ a - 1)} E,, [{tr(AT?A)}*"1] . (5.18)

Hence for any integer k > 1, setting a = k,k — 1,...,2 successively in (5.18), we

obtain

E, [(trA™ A)f] = 2k { II (% + i)} E,[tr(A"1A4)] .

i=k-—1

Next setting a = 1 in (5.18) we finally obtain for & > 1,

E, [{tr(A71 4)}*] = 2*(np/2)s (5.19)

(cf. identity (7) of Muirhead, 1986).
The recurrence relation given by (5.18) can be rewritten as

~1/2

Bu [{erA7 )] = (-np/2+1-a)

E, [{tr(A"'A)}°] . (5.20)

Settinga = —k+1,—k+ 2,...,—1 successively in (5.20) it is readily seen that

_ k-1
U2 p, [{tr(A7' )} "]

E, [{tr(A"*A)}*] =
[{er(A= )] 2. (—np/2+ 1)

for all £k > 2.

Finally setting a = 0 in (5.20), we readily obtain for all k¥ < np/2,

_ k
B 0 )] = o (521

(cf. identity (8) of Muirhead, 1986).

Case (ii). Set h(A) = {tr(A71A)}*"1trA in (5.11) so that [ in (5.11) is given by
| = a. We then have

[ {tr(A"1A)}°trA
[

T AT ) = (P 2E, [{tr(AT A} her(4)] . (5.22)
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Putting a = 1 in (5.22) and using (5.14), we obtain for v > 2,

{tr(A"1A)}tr(A) n

v
' [T tr(A14))/(v + 7p) =(np+ 2)u — 2tr(A). (5.23)

Letting v — oo in (5.22), we obtain the recurrence relation
E, [(tr(A7'A))*trA] =2(np/2+ a)E,, [{tr(AT1A)}*"trd] . (5.24)

Setting a = k, k — 1,...,2 successively in (5.24) we obtain for k > 2,
2
E, [{tr(A7* A)} trA] = 25! {H(np/z + i)} E, [(trA~tA))tr4] .
i=k

Setting o = 1 in (5.24) we finally obtain for k > 1,
E, [{tr(A""A)}*trA] =n 2" (np/2+ 1) trA (5.25)

(cf. identity (9) of Muirhead, 1986).
The recurrence relation in (5.24) can also be written as

~1/2

E, [{tr(AT'A)}*"trA] = g S

E, [{tr(A'A)}" tr(4)] . (5.26)

Settinga = -k + 1,—k + 2,..., -1 successively in (5.26) we obtain for k > 1,
(=1/2)*!
n:=k-1(”np/2 + l)
Setting a = 0 in (5.26) we finally have for k < (np + 2)/2,

(=1/2)?
P(=np/2+1)k-y

E, [{tr(A™"A)} " *trA] = Ey [{trA™1A)} 4] .

E, [{trA7'4)}*tra] = (5.27)
Case (iii). Set h(A4) = {tr(A"1A)}>"1tr(A~?) in (5.11) so that ! in (5.11) is given
by I = a — 2. We then have

[ {tr(A"14)}°tr(4~)
?L(v +tr(A-14))/(v + np)

] = 2(np/2 + a = 1) E,[{tr(A" A)}*~ tr(47Y)] .
(5.28)
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Letting v — oo in (5.28), we have the recurrence relation
E [{tr(A1A)}trA™ ') = 2(np/2 4+ a = 1) E,[{tr(A"1A)}*'tr(4A7")] . (5.29)

Setting a = k,k — 1,...,1 successively in the above relation we readily obtain for

valuesof n > p+1andall k > 1,

Eo[{tr(A7' )} tr(A7Y)] = 2! rf"_p/l 2_“p1)" tr(A7") (5.30)

(cf. identity (10) of Muirhead, 1986).
The identity in (5.29) can be written as

-1/2

Eu{{tr(AT* AN er(A7] = s

Eul{tr(AT 4)" tr(A7h)]
(5.31)
Setting a = —k + 1,—k + 2,...,0 successively in the above relation we obtain

forn>p+1and k < (np—2)/2,

(=1/2)
—p—1)(—np/2 + 2)i’

Eu[{tr(A7'A)} " *tra~!] = ” (5.32)

Case (iv). Let h(A) = {tr(A"1A)}*"'tr(AA?) in (5.11) so that [ in (5.11) is
given by [ = a — 2. We then have

{tr(A"1A)}*tr(AA7Y)
! (v +tr(A—2A))/(v + np)

= {np+2(a—2)} E,[{tr(A1A)}* ' tr(AAT")] .
(5.33)

Letting v — oo in (5.33), we have the recurrence relation

E [{tr(AT1A)}otr(AA™Y)]) = 2(np/2 + a — 2)E,[{tr(A"1A)}° Mtr(AA7Y)] .

(5.34)

Setting a = k,k~1,...,1 successively in the above relation we obtain forrn > p+1
and k > 1,

Eul{tr(A~ A)}tr(AA~1)] = 2 27P/2 = L (5.35)

n—-p-1
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(cf. identity (11) of Muirhead, 1986).

The identity in (5.34) can be written as

-1/2

“npl2+2- —Eu[{tr(A7' 4)}" tr(A714)] .

(5.36)

E [{tr(AT'A)}*"Mtr(AA7Y)] =

Setting a = -k +1,—k + 2,...,0 successively in the above relation we obtain

forn > p+1and k < (np—2)/2,

_ k
EJ[{tr(A"YA)} *tr(AA™Y)| = s pf’_ 1()(_1_/:3/2 T (5.37)

Case (v). Set h{A) = {tr A"1A)}*"|A|" in (5.11) so that ! in (5.11) is given by
l = a + pr — 1. We then have

: [ {tr(A"1 A)}elAl" = {np+ 2(a + pr — 1)} E,[{tr(A~* 4)}*|4]").

(v +tr(A-1A))/(v + np)

(5.38)
Setting a = 1 in (5.38) and using Lemma 5.1 we obtain for v > 2pr,
[ {(tr(AT1 4))|A] _ (np+2pr)vP"I(§ — pr)Ty {(n + 2r)/2} AL
' L(v +tr(A=14))/(v + np) [(v/2)T(n/2) '
(5.39)

Letting v — oo in (5.38) we have
E,[{tr(AT'A)}*|Al") = 2(np/2 + a + pr — )E,[{tr(A™' A)}*74|").  (5.40)

etting a = k,k — 1,...,1 successively in the above relation we obtain for k£ > 1,

Ty {(n +2r)/2}
Fp(n/2)

Eu[{tr(AT* A)}* 14" = 2P"** (np/2+ pr) (A" (5.41)

(cf. identity (12) of Muirhead, 1986).

The identity in (5.40) can also be written as

-1/2

Eulltr(A T ) = o T s

aEw[{tr(A"A)}"IAI"]. (5.42)
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Setting a = —k + 1, -k + 2,...,0 successively in the above identity we obtain for
k - pr < np/2,

(=1)* 2P"*[ (n/2+71)

Bulitr(A™ A} IA) = £ a4 1 = o

IAl". (5.43)

Case (vi). Set h(A) = A in (5.11), so that ! in (5.11) is given by | = 1. Then it
follows from (5.11) that

h(A)tr(A=1 A)
' l(v +tr(A-14))/(v + np)

= (np + 2)E,(A).

Then by the use of (5.14) we have for v > 2,

[ Atr(A~1A)
9

v
AT A) (v +np)) ~ vo2"("P+ DA

As v — oo we have

Ey[Atr(A™' A)] = n(np + 2)A.

Case (vii). Let h(4) = A{tr(A~?A)}*)(v + tr(A~' A)). Then it follows from
Theorem 5.1 by trivial induction that for v > 2(k + 1),

V¥4 (np/2)

E, [A{tr(A7'A)}*] = p(v/2—k— 1)y

A

As v — 00, we have

E. [A{tr(ATY A)}*] = p~ (np/2)s A.

Case (viii). Let h(4) = A{tr(A"'A)}~*(v + tr(A~?)). Then it follows from
Theorem 5.1 that for np > 2(k — 1) and v > k,

nA

E, [A{tr(AT )] = {e1(v) + o)} =iy
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where L/2
a(v)=v *T](v +2i)
=1
and

k =12
e (v) = (H(v - 2i)) [Iv +2).

i=0 i=1
It follows that ¢;(v) — 1 and c2(v) — 0 as v — oo and then

nA

E, [A{trA-lA)}_k] = m

Case (ix). Let h(A) = {tr(A~"A)}*tr(A%)(v + tr(A~' A)). Then it follows from
Theorem 5.1 by trivial induction that for v > 2(k + 2),

vE(np/2 + 2)s

/2-k—2) E,[tr(A%)].

E, [{tr(A™* 4)}*tr(4%)] =

where E(trA?) is given by (6.20).

As v — oo we have
Ey [{tr(/\'lA)}"tr(A2 )] = (np/2 + 2)x E,[tr(A?)]

where

E,[tr(A?%)] =n[(n+1) tr(A?) + (tr A)?)

(see Srivastava and Khatri, 1979, p 99).



CHAPTER 6

ESTIMATION OF THE SCALE MATRIX OF
THE MULTIVARIATE T-MODEL UNDER A
SQUARED ERROR LOSS FUNCTION

6.1 Intrcduction and Summary

Consider N p-dimensional (p > 2) random vectors (not necessarily indepen-

dent) X;,X3,...,Xn having a j - it probability density function (p.d.f.) given by

K N N ~(v+Np)/2
f(#1,22. .. 2N) = —|(X_|~_/2ﬂ (v +3 (2~ 0/A Nz, - a)) (6.1)
=1

where z; = (21j,22j,...,%pj)', 6 an unknown vector of location parameters and
A is an unknown positive definite matrix of scale parameters while the scalar v is
assumed to be a known positive constant. The normalizing constant K (v, Np) is

given by
v ((v + Np)/2)

K(v, Np) = NPIiT(y]2)

As mentioned earlier, the model in (6.1) represents the multivariate ¢-model;
it has been considered, among others, by Sutradhar and Ali (1986) in the context
of a stock market problem and also in other contexts by Sutradbar and Ali (19€9),
Dey (1990) and Singh (1991).

We outline below some notations that will be used in this chapter.
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Notations

1. Sample sum of products matrix based on the multivariate ¢-model:

N
A=) (X; - X)X, - X).
i=1

2. Usual estimator of the scale matrix A of the multivariate -model:

-

A= ClA,

c; is any fixed positive constant.

3. Muximum likelihood estimator of A :
Ai=A/(n+1), n=N-1.
4. Unbiased estimator of A :
Az = (v - 2)4/(vn).
5. Proposed estimator of A:
A =c1A - ;)AL

¢ is a fixed positive constant ,

amin{ay,...,app}
|A/P

—0<cp<dp =

The above condition on ¢; guarantees that the diagonal elements of the pro-
posed estimator A are nonnegative.
6. Sample sum of products matrix based on the multivariate normal model

given by (2.1):

N
W =) (X; - X)X, - X).

=1
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7. Usual estimator of the scale matrix ¥ of the multivariate normal model:

-~

Y= C]W,

c) is any fixed positive constant.

8. Maximum likelihood estimator of L:
S1=W/(n+1), n=N-1.
9. Unbiased estimator of X:
£ = W/n.
10. Proposed estimator of L:

=W - c|W|'/?I,

amin{wy,...,wpp}

jWir/p

>0, —co<c<dy =

The above condition on c; guarantees that the diagonal elements of the pro-
posed estimator are nonnegative.

11. Characteristic roots of A:
my,ma,...,mp, (M1 2mz2>...2m,).

12. Characteristic roots of A :

€1,€2,...,6p, (E12622...265).

13. Characteristic roots of W:

hylgy..oslyy (W2l 2...210).
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14. Characteristic roots of :

a),aa,...,0y, (01 2az22...2ap).

In this chapter we consider the problem of the estimation of :iie scale matrix A
for the multivariate t-model given by (6.1). The present work is primarily motivated
by the werk of Dey (1988) dealing with the estimation of some functions of the scale
matrix of the multivariate normal distribution under a squared error loss function
and of Leung (1992) dealing with the scale matrix of the multivariate F distribution
under a squared error loss function.

The scale matrix A is usually estimated, especially in the multivariate normal
case ( a special case of the model in 6.1), by multiples of the sum of products matrix
A. For example, an unbiased estimator of A for the multivariate t-model in (6.1) is
given by A = (v — 2)A/(vn) where n = N — 1 (Anderson and Fang, 1990a, p 208).

The maximum likelihood estimation of A has been studied by Anderson, Fang
and Hsu (1986) when (X, X2,...,Xn) belongs to a class of elliptical distributions.
The maximum likelihood estimator of A for the present case is given by A = A/N
(Anderson and Fang, 1990a, p 208). However, the most desirable optimum prop-
erties of the maximum likelihood estimator are based on the usual assumption of
independence of the component variables X;,X3,...,Xy§. But in the model in
(6.1) the components X, X3,...,Xn are independently and identically distributed
only when ¥ — oo and in that case the components are distributed according to
N,(8,A). For finite values of v the random vectors X;,X3,...,Xn are not in-
dependently distributed (although uncorrelated); therefore the usual properties of
maximum likelihood estimator may not hold for the m.l e. of the scale matrix of

the multivariate -model.
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We develop the estimators of A in the spirit of Dey (1988) and Leung (1992).
As Dey (1988) points out, sample characteristic roots of A tend to be more spread
than those of A. This suggests that one should take care of the sample characteristic
roots by shrinking or expanding them depending on their magnitudes. Dey(1988)
has developed estimators of population characteristic roots ay,a;,...,a, of the
covariance matrix ¥ of the multivariate normal distribution by shrinking sample
characteristic roots ), 13,...,l, towards their geometric mean. He considers esti-

mators of the form
&.- =cll|‘ “62(1112...1’)l/’y i = 1’2s"’9p

under the loss function

L(a,a) = i(&,- - ;).

i=1
This technique has been exploited throughout this chapter in order to estimate

different functions of the scale matrix A of the multivariate t-model.

We now consider an estimator of A of the form

A -"-'CgA - Cz(fﬂﬂﬂz cos m,)'/’I

= A ~ czlAIl/’

(cf. Dey, 1988 and Leung, 1992) in order to improve upon the usual estimator A of
A of the form A = c; A. In section 6.2 we prove that the estimator A dominates the
usual estimator A under certain conditions in the sense of smaller risk as described
below.

Consider the squared error loss function (cf. Dey, 1988 and Leung, 1992) given
by

L(u(A), A) = tr[(u(4) - A)?] (6.2)




82

where u(A) is an estimator of A. In estimating A by u(A), we consider the risk

function

R(u(A), A) = E[L(u(4), A)). (6.3)

An estimator uz(A) of A will be said to dominate another estimator u;(A)
of A if, for all A belonging to the class of positive definite matrices, the following
inequality holds

R(uz2(A), A) < R(u1(4), A),

and the inequality
R(uz(4), A) < R(u1(4), A)

holds for at least one A.
Outlin~ of the Results Obtained in This Chapter

1. In Theorem 6.1 and Theorem 6.2 (Section 6.2) we prove that the proposed
estimator

A =c1A- c;lAi‘/’I

of the scale matrix of the multivariate t-model dominates the usual estimator
A = ¢.i; the risk functions of the estimators have been computed in Theorem
6.3 (Section 6.3). An expression for relative risk function of the estimators has been

found in Theorem 6.4.
2. In Theorem 6.5 (section 6.4) we specialize Theorems 6.2, 6.3 and 6.4 by
choosing ¢; = (n + 1)~). In this case the estimator A = ¢;4 is the maximum

likelihood estimator A; of A and the proposed estimator Ais given by

Ay= — 4 1/»
A;-—n+1A 62|A| I
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Some numerical computations hav. * een performed to compare the proposed

estimator A, with the maximum likelihood estimator A, (see Section 6.4.1). Tables
showing numerical computations have been given at the end of Chapter 6.

3. In Theorem 6.6 (Section 6.5), we specialize Theorems 6.2, 6.3 and 6.4 by
<hoosing ¢; = (v — 2)/(vn). In this case the proposed estimator is given by

v -2

vn

A3=

A—clAPPI

4. In Theorem 6.7 (Section 6.6) we specialize Theorem 6.2 to the case of mul-
tivariate normal distribution Np(8, L) by letting ¥ — co. In this case the proposed
estimator is given by

L=W- c2|W|l/’I;

the risk functions of the estimators 5 and £ have been calculated in Theorem 6.8

(Section 6.7). The relative risk function of the estimators has been given in Theorem

6.9.

5. In Theorem 6.1 (Section 6.8), we specialize Theorems 6.7, 6.8 and 6.9 by
choosing ¢; = 1/(n + 1). In this case the proposed estimator of L is given by

1

El=n+1

W — c|[W|MPI.

6. In Theorem 6.11 (Section 6.9), we specialize Theorems 6.7, 6.8 and 6.9 by
choosing (¢1 = 1/n). In this case the proposed estimator of ¥ is given by

£, = %W — | WM.

7. Consider the vector of the characteristic roots of the scale matrix of the

multivariate t-moael:

§= (b2 1 6p)-
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We propose the estimator

£=(£la£27"',ép)

where

g.- = C1m; —cz(mlmg...m,)‘/’, (l = 1,2,...,1))

and

cymin{m,,mz,...,mp}

- < =
@ > 0, ®©<as do (mlmg . .mP)I/P

In Section 6.10.1, we prove a theorem that the proposed estimator £ of £ dom-

inates the usual estimator £ where

E: (élsé?y"'$£?)

and

fi=cami, ¢ >0, (i=12,...,p).

The results of Section 6.10.1 are specialized in Section 6.10.2 to estimate the

characteristic roots of the scale matrix ¥ of the multivariate normal distribution.
8. In Saction 6.11, we prove a theorem that the estimator bof 6= tr(A) given
by
6 = cytr(A) — cap|A|M?

where

citr(A/p)

dominates the usual estimator § = ¢; A, ¢ > 0 follows from Theorem 6.2.

9. In Section 6.12, we prove that the estimator ¥ of ¥ - A~ given by

V=A™ = c|A|I" T
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where

C]A_l
—00 < ¢z Ldo = TA[-177"

dominates the usual estimator ¥ = ¢ tr(A-!).
Some Useful Results on the Sample Sum of Products Matrix

We now state some important results related to the distribution of the sum of

products matrix A with p.d.f. given by (5.3).
We recall that the expectation of A is given by

vn A
m, v>2 (6.4)

Eq(4) =

(Anderson and Fang, 1990a, p 208).

Lemma 6.1 Consider the p.d.f. of A given by (5.3). Then for any real number k
and any positive number v satisfying the conditions n 4+ 2k > 0 and v > 2(kp + 1),

the following result holds:

E,(JA]* A) = v*?* (n/2 + k) 12, = ;‘2’;‘ 1) r,l(‘:(/: /‘2“)") IAJ*A.
Proof. It is readily verified that for any real number r
Ey(l4ta7) = [ 414" o(A)dA
AD>0 . -
o (2) "ot e

where the p.d.f. g(A) is given by (5.3) while the p.d.f. g*(A) is given by
§°(4) = C(v", p,nJIA"| " /240" 2=1/2 (2 4 gr((A®) 1 4) TP,

where A>0, n*=n+2k2p, v*=v-2kp>0and A* =vA/v*.
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Set n, v and A equal to n*, v* and A* respectively in g(A) given by (5.3).
Then it is readily verified from (6.4) that

vn

v‘—2A

En(a)= [ Ag(aya=

so that from (6.5) we immediately have

On substitution of C(v, p,n) from (5.4), We finally have

v*/?T((v +np)/2)  T(v*/2)Ty(n"/2)
[(v/2)Tp(n/2) (v*)}*/2T((v* + n*p)/2)

o\ ¥ /2 *,*
v g vinT \vA
x[(u) 1Al (u‘—Z) u‘]

VD2 1) (n?/2)Tp(n" /2)
S ZE) T,(n/2)

The proof of the lemma is completed by setting n* = n + 2k and v* = v — 2kp

Ey(lAlkA) =

IA]F A.

in the last expression.

Lemma 6.2 Let A have the p.d.f. given by (5.3). Then forn > p+ 1,

Proof. From (5.3) a straightforward computation shows that the p.d.f. of A~ is

given by
g(A™") = C(u,p, AT/ A™+PHD/2 (4 4 tr(A™* 4)) TH"P2

where C(v,p,n) is given by

v*I’T'((v + np)/2)
L(v/2)Ty(n/2)

C(v,p,n) =
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Hence we have

E(4™Y) = Alg(A™1)dA™?
A-1>0

-1 v 0((v +np)/2) . ._.. n
Jrso ™ TG A A
x (1 +tr(A™1 Afp)) " HmP2 g g1

-1 u'nr/2I‘((U+np)/2) —n/2y g1(nbpH1)/2
/A-1>0A T(v/2)T,(n/2) LV Il V- g

o-(w+np)f2 T . i )
" [r((v+np)/z) u I/ teap (=51 + tr(AT 4/v) du | dA™.
u=0

where U is a random variable having a gamma distribution

c(rxre 2 )
2 T+ (Am)

Then by the use of the transformation A = vU ='W with Jacobian

J(A—l — W-—l) = (V-IU)p(p+1)/2

it is immediately seen that

- -1 [ u*Pezp(—u/2)
E(A l)::ll 1/"2“ 2"/2P(V/2)

_1 AR |(ntpt1)/2 =1 -1 -1
x/w_boW 2T, (n]2) exp 2tr(A W) )dw

=y / ~ of(v) WL f(W = )dw
v=0 wW-150

=v~! E(V) E(W™)

=E(W™1)
=A"1/(n-p-1)

where f(v) is the p.df. of a random variable V having a chi-square distribution

with v degrees of freedom, W is a random matrix having usual Wishart distribution

Wg(n, A) with p.df. f(W), while f(W=1) is the p.df. of W-1,
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The last step is given in most standard texts; see e.g. Muirhead (1982, p97).

Lemma 6.3 Suppose that A has the p.d.f. given by (5.3). Then for any real
pumber k, n+2k>p+1, v > 2(kp+1), and n = N —1 the following result hold:

2vkP-1 T(v/2—-kp+1)Tp(n/2+ k)

ka—-1y _
BlAMA™) = o 5T o) Ty(n/2)

|AJEATL.

Proof. The proof follows by the use of Lemma 6.2 in (6.5) with r = —1.

A shorter version of the proofs of Lemma 6.1, Lemma 6.2 and Lemma 6.3 based
on the mixture representation of the multivariate -model has been suggested by
Professor M.S. Srivastava.

Since A|T ~ Wy(n, 12A) where 7=% ~ G(v/2,2/v), it follows from Dey (1988,
p 140) that for any any real number k

E(|A|*A] =E [E (14]" Alr))]
Ty(n/2+ k)
Fp(n/2)
T'p(n/2 + k) IAJ*A E (r252+2)

T'p(n/2)
Hence the proof of Lemma 6.1 follows by noting (5.5).

=E [2*? (n + 2k) [r2A) (rzA)]

=2*? (n + 2k)

Similarly it also follows from Muirhead (1982, p 97) that
E[A™']| =E [E(a7"|r)]
—E _(I’_'.\)'_']
n—-p-1

__ -
_;1-—_})—_:[ E(T 2).

Thus the proof of Lemma 6.2 is completed by noting that E(7~2) = 1.
It also follows from Dey (1988, p 141) that
E(jA*A7") =E [E(|A*A7r)]

_ 2kr Pp(n/2+ k) -
=F [n+2k_P_ - Pr’(n/2) |72A|k (1'21\) l]
2kr l..)("/2 +k) IAIk (A)-l E (1-2*’—2) .

“n+2k-p—1 T,(n/2)
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Hence the proof of Lemma 6.3 follows by noting (5.5).

6.2 Estimation of the Scale Matrix of the
Multivariate t-Model

Consider the multivariate t-model given by (6.1) with v > 4. Also consider the

following two estimators of A:

usual estimator A =¢;A, (6.6)
proposed estimator A = c;A — ¢z|A'/PI, (6.7)

where
>0, —o<cg<dp= cmin{an, .., gy} (6.8)

[A[i77
In the following theorem we prove that the proposed estimator of the scale

matrix of the multivariate t-model dominates the usual estimator under certain

conditions.

Theorem 6.1 Consider the multivariate t-model given by (6.1) for v > 4. Then

the proposed estimator
A = A - c|APPI,
where c, is a given positive number while c; »atisfies the condition

cimin{ai,...,app}
|AJ3/» !

~0<cp<dp =

dominates the usual estimator A = c; A under the squared error loss function given

by (6.2) for any c; satisfying the conditions stated below:

1. For a given ¢; satisfying




¢, satisfies
d* < c; < 0.
2. For a given c, satisfying
v—-4 p .
c > - np+2 (d >0)'

c; satisfies the following scheme:

(i)0<62Sdo if 0 <dy <d°,

and (i) 0 < c; < d* if d* < dy < 0o

where

& = (cxnp+2 _ v-—4) Ip(n/2+1/p)

v

Proof. Let us consider the following risk functions:
R(A, A) = Eftr(A = A)?}]

and

R(A,A;¢2) = E[tr(A = A)?)

with the Risk Difference

D(A, ¢2) = R(A, A;cz) - R(A, A).

Tp(n/2+2/p)
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(6.9)

(6.10a)

(6.100)

(6.11)

Then in order that the proposed estimator A dominates the usual estimator A it is

necessary and sufficient that D(A, ¢2) < 0.
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A simple calculation shows that
D(A, cz) =Etr(A — A)? — Etr(A — A)?

=Etr [AR2—A?—(A-K)A-A(A - I\)]

.

=Etr [(A® - k%) - 2(A - f\)A]

=Etr [(~2¢;]A|"?R + 2)AP/PT) - 2{—cz|A|’/’I}A]

= — 2¢c1¢7 Etr(|A|'?P A) + 2¢; E(|A|M?)tr(A) + & E(|AP/P)tr(1).

It then follows from Lemma 5.1 and Lemma 6.1 that
2vi(np+2) Ty(n/2+1/p) iAII/'A]
(v=2)(v-4)p Tp(n/2)
2v _Ty(n/2+42/p) 1y
o—2  T,mp) M ’] tr(A)
42 Ip(n/2+2/p)

(e (e oy ol U
_ 4vicp |AJ2/?
T (v = 2)(v — 4) Ty(n/2)

np+2 v—4 tr(A/p)
[ (-a 2 + 22 o2+ 1/m) TR 4 a2 + 219

D(A, ¢2) =—2c1c3 tr

+262 [

Hence
4v%p Tp(n/2+2/p)

DA &) == =8 T,mmy A
ez (c, - tlrz(\ll\’//f)d‘) (6.12)

where d° is given by (6.11).
As stated earlier, in order that A dominates A it is necessary and sufficient that
D(A, c2) < 0. However, D(A, c2) <0 if and only if

tr(A/p) tr(A/p) o
JAT? T

The above conditions involve ¢r(A) and |A| which are unknown quantities. Now

d* <c3<0, or 0<c2 <

let £1,£32,...,€ be the characteristic roots of A. Then

tr(A/p) =61+ €2+...+&)/p
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and
AP = (6162 - E)7.

It then follows from the well-known inequality between arithmetic mean and

geometric mean that

tr(A/p)
apse 2

Hence A dominates A if

d*<ec;<0, or 0<cy <d’.

Moreover, in order that the proposed estimator A have all non-negative diagonal

elements we must also have ¢; < do where dj is given by (6.8). We also note that

-4
d* <0 if and only if c1<u—— P ,
v np+2
. . . v—4 p
while d* > 0 if and only if ¢; > e

Hence the proposed estimator A dominates the usual estimator A if c; satisfies
the following conditions:

1. Tor a given ¢, satisfying

o < v—4 p

! v np+2’

c2 satisfies
d*' < c2<0.
2. For a given ¢, satisfying

v—-4 »p

> ’

it v np+2

c; satisfies the following scheme:

(1) 0<ez<dy if0<dp<d®,
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and (ii) 0<cz<d" if d* <dp < 0.
Hence the theorem is proved.

Remark 8.1 We note that for the case when

v—-4 p
v np+2’

=

we have d* = 0. In this case it is seen from (6.12) that D(A,c2) > 0 so that
there exists no proposed estimator A dominating the usual estimator A. However,

D(A, c2) = 0 only if ¢z = 0 in which case the two estimators coincide.
Optimal Value of c;

We now look for narrower range of c2 (compared to the range of c; obtained
in Theorem 6.1) in which the risk of the proposed estimator will be much lower
than that of the usual estimator. It is seen from (6.12) that for given A, the Risk
Difference D(A,cz) is a polynomial of degree 2 in ¢;, and it is minimized at

_tr(A/p) d°
“T AR 3

Now by virtue of the inequality between arithmetic mean and geometric mean of
the characteristic roots of A, it follows that the optimal value of ¢; satisfies the

following conditions:

(i) 2 < %— ifd* <0
and (11) czzgifd‘>0
.. d* .
i.e.(i) —00<e < > ifd <0 (6.13)
and (ii) %— <ecz<dpifd*>0 (6.14).

In the light of the above results we have the following version of Theorem 6.1

narrowing down the range of c;.

L T TN DI T U VO S SR g T ST N T S T AP W PR S
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Theorem 6.2 Consider the multivariate ¢t-model given by (6.1) for v > 4. Then
the proposed estimator

A = c;A - CzlAIlI’I,

where ¢, is a given positive number while ¢, satisfies the condition

cymin{a;,,....a
—00 < cz S do -— {|A|l!/, "}'

dominates the usual estimator A = ¢; A under the squared error loss function given

by (6.2) for any c; satisfying the conditions stated below:

1. For a given ¢, satisfying

v—-4 p
v np+2

c <

(i.e. d* < 0),
¢, satisfies

d'<C2<—

where d* is given by (6.11).
2. For a given ¢, satisfying

v—4 p
v np+2

cyp >

(t.e. d* > 0),

¢ satisfies the following scheme:

(l) Cz=do for 0<do$%,
(i) %-SCQSdo for §<do<d',

(i11) %.—562<d‘ for d* < d,,

where d* is defined by (6.11).
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Proof. For a given ¢, satisfying

v—4 p

a— (i.e. d* < 0),

g <

it follows from (6.9) and (6.13) that the proposed estimator A dominates the usual

estimator A if c; satisfies

L

d* <c; <0and -oo<c2$—2-

i.e.d‘<c25§

where d* is given by (€.11).
It also follows from (6.10a), (6.10b) and (6.14) that for a given c, satisfying

v—-4 p
v np+2

(i.e. d* > 0),

c >

the proposed estimator A dominates the usual estimator A if c; satisfies the following

scheme:
: d*
(')0<62$dowhen0<dos.2—,

and(ii)0<cg$domd%.—$c35dowhen%<do<d‘,

d*

i.e. ?chsdo, when%-:(do<d‘,

while(iii)0<cz<d‘md%ScQSdowhend'Sdo<oo,
d*

ie. —2—5c2<d'whend‘5dg<oo

where d, and d* are given by (6.8) and (6.11) respectively.

In the case (i) above
tr(A/p)
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when 0 < dy < d*/2. Thus the Risk Difference D(A, c2) given by (6.12) is monotone
decreasing over 0 < ¢ £ dp when 0 < dy £ d*/2 so that the best value of c; in the
case (i) of the above scheme is given by ¢z = dp.

Hence the theorem is proved.

Finally, we remark that based on the numerical computations of Risk Difference
and Relative Risk of the estimators given at the end of this chapter i* appears that
a general rule of thumb may be to take c; = .75 d* in all cases except when
0 < do < d*/2 in which case ¢; = dp is of course the best choice for c3.

6.3 Comparison of Risks of the Estimators

In this section we find explicic expressions for the risk functions of the usual
and the proposed estimators of the scale matrix of the multivariate ¢-model and

define a measure of comparing the risk functions.
Risk Function of Usual Estimator
The risk function of the usual estimator A defined by (6.6) is given by
R(A, A) =Etr(ciA — A)?

=c2Etr(A?) + (1 - 2”f‘;') tr(A2)

2ven

v—-2

=clp(A?) + (1 - ) tr(A?), v>4. (6.15)

where

) S P P
(A =Etr(A*) =E Y Y ak| =) E(ah).

i=l k=1 i i=1 k=1

It follows from Sutradhar and Ali (1989) that for v > 4

2
E(auk) (V 2)(!/ 4) [ (Z 6;16&1)

+2 Z‘s 62] + Z(sllskm + slmékl) ] (616)

i=1 I<m




\there A2 = A = ((6i)), a positive definite square root matrix of A.

It is easily seen that

»
2 z 6362, + Z(&':&m + bimbii)?
=1

I<m

P )
= E b + Z HLH
=1

=1

+ ) 6hbim + Y Simbh

I<m {<m

+2 E Sitdkmbim b
I<m

»
= (Z 6468 +2 Z 6i16km6im6kl)

=1 I<m

P
+5° 6385+ S 626k + Y 6260
=1

iI<m I<m
? 2 P »
= (}: 5.'151::) + (Z 5?:) > &
=1 =1 =1

since
P ?
(Z&?\; 252, =(6% + 85 +... + 6L )63 + 6%, + ... + 6%,)
=1 7 1=1
=646% + 646k + ...+ 6?16§p
=6565 + 6565 + ... + 6?2521.
+...

+6?,6§1 + 63,62, +...+ 6,?,6,'*:,

} 4
=Y 6h6h+ Y 656t + Y bl
=1 i<m I<m

Again by virtue of A = A? we have

TN

It then follows from (6.17) and (6.18) that

97

(6.17)

(6.18))
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»
2 Z b + E(&':skm + 8imb)® = A4 + Niidix, v > 4. (6-19).
I=1 I<m

Hence we have from (6.16)

V2ﬂ

(v—-2)(v—-4) [(n + DA% + Xiida).

As v — o0, the result matches with the corresponding result under normality

E(G?k) =

i.e. with E(w?) where W has the usual Wishart distribution Wp(n, A) (see e.g.
Anderson, 1958, p 161).

Finally we have for v > 4

¢(A?) =Etr(A%)

=E (.-’ f:a,?,,)

k=1

il
-

=3 i E(a}%)
e s 2 s
w29 [(" DI A.-.-Au]
=50 ;’;{; myy [0+ 1)t (A%) + era)?] (6.20)

The result in (6.20) can also be proved quickly exploiting the mixture rep-
resentation of the multivariate -model. Since A|r ~ W,(n,7?A) where 7=% ~

G(v/2,2/v), it follows from Srivastava and Khatri (1979, p 99) that
Etr(A?) =E [E [tr(Az)lr]]
=n E[(n+1) tr(72A)? + (tr 1'21\)2]

=E(r%) n [(n +1) tr(A?) + (tr A)?]

vin

T(v-2)v

>y, [(r+1) tr(A?) + (tr A)?].
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Risk Function of Proposed Estimator
In course of proving Theorem 6.1 we have defined
D(A, e2) = R(A, A;c2) — R(A, A)

and found an explicit expression for D(A, c;) in (6.12). The risk function of the
usual estimator A is also calculated in (6.15). Hence a computable form of the risk

function of the proposed estimator A defined by (6.7) follows from
R(A, A;c;) = D(A, ¢2) + R(A, A).
Thus we have proved the following theorem.
Theorem 6.3 The risk functions of the proposed estimator
A = A - o|A]M?I,

where ¢; is a given positive number while ¢, satisfies the condition

camin{ay,...,app}
ape

—00<cp<dy =

and the usual estimator A = ¢, A are given by

- 2.2
R, A) = [1 + :‘j’; (”""V(’i'; D _ 2)] tr(A%) + _"2;(‘:_ 4)(trA)2 (6.21)
and
s AL 42%p ITp(n/2+2/p) tr(A/p)
RA. M) =0 Th  Tm) M (°2 B Wd‘)
veyn fvei(n+1) vicin
+ [1+ v—2 ( v—4 —2)] tr(A%) + (u—2)(lu—4)(trA)2.

We remark that the risk functions of the estimators depend on A only through

4 } 4
Hfi and ZE?

i=1 =1
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where £;,§3,...,§, are the characteristic roots of A.
Measures of Relative Risk

To compare the risk of the two estimators A and A, the usual way is to use the
measure relative risk. Let the relative risk of the two estimators A and A be given

by
R(Aa A; C2)

RR(A : A;cy) = - ,
A:hie)=—p X A

(6.22)

where 0 < RR(;\ : A; ¢2) <1 for the choices of ¢; given by Theorem 6.1.

Following Dey (1988) we define the measure Percentage Improvement in Risk
(PIR) of A relative to A as

(6.23)

PIR(A : A;c2) = 100 (1 - M) _ —100D(A, c2)

R(A,A) R(A, A)

where D(A, c;) is given by (6.12) while R(A, A) is given by Theorem 6.3. Clearly
0 < PIR(A: A;cz) <100

and

PIR(A : A;c;) = 100{1 — RR(A : A; c3)}- (6.24)

Minimum Value of Relative Risk Function (MRR)

Now we find the minimum value of the relative risk function RR(A : A;cs).

Let

tr(A/p)

4%  Tp(n/2+2/p) |AP/?

=G0 =9 Gm/2) RA A)

(6.26)



101

where R(A, A) and d* are given by Theorem 6.3 and (6.11) respectively. The
following theorem deals with the minimum value of the relative risk function with

respect to cz for given A and we denote it by

R(A, A; c?)

MRR(A:A) = min RR(A: Ajcr) = min RGA, A)

Theorem 6.4 Consider the relative risk functions
RR(A:A;c) = M—)
R(A, A)
where the estimators A and A are the proposed and usual estimators defined by

A =1 A - c]AMPI,

where c; is a given positive number while ¢; satisfies the condition

cimin{a;,...,dpp}

-0 <2 <dp = lAll/’
and A =4 respectively.
Then
RRA:A;c)=1-bea+ b3, —s0<e; < dp (6.27)

and for given A, the relative risk function is minimized at

b od
ex(opt) = g = T/D S (6.25)

provided this is admissible, and

MRR(A : A) =min RR(A: A;c3) =1 - Lo
c3 4b2

where dy and d* are given by (6.8) and (6.11) respectively, and b; and b, are defined
by (6.25) and (6.26) respectively.
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Proof. It is readily verified that

D(A, c-;)

RR[\:A; =1 =
(A:hies) =1+ R(A, A)

(6.29)

where D(A, c2) is given by (6.12).
Now it follows from (6.25) and (6.26) that

D(A, c3) = (b3 — bic2)R(A, A).
Then from (6.29) we immediately have
RR(i\ . A; c2)=1~byc2 + bzcg

which is a polynomial of degree 2 in ¢; and for given A the relative risk function is

minimized at
_ b _tr(A/p)d”

2= 2, - AP 2

and the minimum value is given by

. sz by b \?
min RR(A: Ajc2) =1-b, (— + by (Eb;)

Remark 6.2 It may be proved similarly for the estimators A and A defined by (6.6)

and (6.7) respectively that the Percentage Improvement in Risk (PIR) is given by
PIR(A: A;cz) = 100(bicz — bac?), —o0 < ¢z < do

and for given A the PIR maximizes at

b _tr(A/p)d*

c2(opt) = 252 = IAI]/’ 9
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with

.. 2
max PIR(A: A;c;) = 259-1—.
C2 bz

Some Special Cases

(1). For the bivariate case i.e for p = 2, the usual and the proposed estimators

of A are given by
I-\ = ClA,

and
A =cA-— cﬂAll/z
respectively, where ¢; > 0 and

cymin{a1, a2}
‘All/z

—0 <3 <dyg=

It follows from Theorem 6.2 that the proposed estimator dominates the usual
estimator under the squared error loss function given by (6.2) for v > 4 and any c;
satisfying the following conditions:

1. For a given ¢, satisfying

1-4/v

a < e (i.e. &* < 0),
¢z satisfies
d* <c <£:
2S5

2. For a given ¢, satisfying

1-4/v .
> s (i.e. d* > 0),
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cz satisfies the following scheme:

Cz-'=do, for 0((’0522:,

and %5c2$do for ‘-i2-<do<d‘,

while %Scz<d‘ for d* <dp
where
= —{cl(n +1)-1+4/v}.
It follows from Theorem 6.3 and Theorem 6.4 that the relative risk of the
proposed estimator to usual estimator is given by

RR(f\ : A; c2)=1-bea + bzcg, —00 < ¢z < dp

and for given A, the minimum value of the relative risk function is given by

b2
mm RR(A:A;c2) =1 -

4b,
where O + Az2)/2
11 22
=b (A1A22)1/2 d
b, = 2!1 ﬂ(ﬂ—l) A"/\gz
‘T (v-2)0v-49) R, A)
and ( +1)
- vein veiln
R(A,A)=[1+V_‘2( ! )](,\
2,29,
(u _uz)c(l _4)(,\,1 + A22)2.

We remark that in this case the relative risk depends on the characteristic roots

of A only through their ratio.

(2). For the tiivariate case i.e for p = 3, the usual and proposed estimators of
A are given by
A = A,
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and
A = C1A - CglAIllsl

respectively, where ¢, is a fixed positive number and

cymin{a;,az2,a
—00 < ez <dg = {|Allllx'/22 100}

It follows from Theorem 6.2 that the proposed estimator dominates the usual

estimator for v > 4 and any c; satisfying the following conditions:

1. For a given c, satisfying

v—4 3

g < 3Int2

(i.e. d* < 0),

c; satisfies

d‘<¢:g$——.

2. For a given c) satisfying

v—4 3

—>  (ie. d* >0),

>
T B+ 2

cz satisfies the following scheme:

c; =dp for 0<doséz‘—,

where

e (c 3n+2 v- 4) I'(n/2 - 1/6)I\(n/2 + 1/3)I'(n/2 — 2/3)
"\ 3 v ] T(n/2+1/6)[(n/2 —1/3)[\(n/2 + 2/3)’
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It also follows from Theorem 6.4 that the relative risk RR(A : A;cz) of our
proposed estimator A = ¢; A — ¢3JA}1/3] relative to usual estimator A = ;4 is
given by

RR(A:Ajc2)=1-bica + byc3, —00 <z < dyp

and for given A, the minimum value of relative risk function is given by

: - 52
min RR(A:Ajc2)=1— ﬁz-

where

(A1 4+ Ag2 + A3a)/3
(A11X22A33)1/3)
- 12!12 (AnAngg:;)zla
“(v-2)(v-4) R(A, A)
_T(n/2+ 2/3)0(n/2 + 1/6)(n/2 — 1/3)
T(n/2)L(n/2 = 1/2)T(n/2 — 1)

by =b;

d*, (6.30)

bz

(6.31)

R(A, A) = [1 4+ zan (VC1(n +1)

B S — 4 2)] (Af1 + 222 +A33)
+ vicin
-2 -9

So far we have discussed proposed estimator in contrast to usual estimator

(M1 + A2z + Aa3)?.

(multiples of sample sum of products matrix A ). Among the usual estimators

two estimators of greater interest are the maximum likelihood estimator and the

unbiased estimator. The following section specializes the results of sections 6.2 and

6.3 to compare the proposed estimator with the maximum likelihood estimator.

6.4 Proposed Estimator Dominating the Maximum
Likelihood Estimator

The maximum likelihood estimator of A is given by A; = A/(n+1) ( Anderson
and Fang, 1990a, p 208) so that ¢; = (n + 1)~%.
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The following theorem follows from Theorem 6.2, Theorem 6.3 and Theorem

6.4 by setting ¢; = (n+1)"1.

Theorem 6.8 Consider the model given by (6.1) for v > 4. The proposed estimator

Ay = A/(n + 1) - c2|AM?T

where
min{ai,...,ap}

(n+1)lA/? °

—0<Le < do =
dominates m.l.e A, = A/(n + 1) for any c; satisfying the following conditions :

1. For p > 3 and

1 v—-4 p

n+1< — (i.e. d* <0)
¢, satisfies
d*
< —.
d‘(c:_ 2
2. For p> 2 and
1 ,v=2 2 _ (i.a>0)

n+1 > v np+2

c; satisfies the following scheme:

and -dé'<625do forgz‘- do<d',
while %.-5c2<d' for d* < dj

where

- 1 np+2 v-—4\T,(n/2+1/p)
o ( ) T,(n/2+2/p)’

n+l p v
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Also the relative risk function is given by
RR(i\l : 1.\1;62) =1=bca+bc, ~0 <, < dy

and for given A,

MRR(A, : A)) =min RR(A: Ajcz) =1-— -g—
€3 45)
where tr(A/p)
ri/p
bl ‘—‘bzwd.
b =22 Tp(n/2+2/p) AP/
(v=2{v—4) Tp(n/2) R(A, A)
and
- v n v v? n
R(h, 4) = [1 MEEITS (v —a 2)] AN e e Y

Some Special Cases

(1). For the bivariate case i.e for p = 2, the maximum likelihood and the

proposed estimators of A are given by
Al = A/(ﬂ + 1)7

and
Ay = A/(n +1) = 2] AT
respectively, where

min{ai1, an}
(n+1)|A/2 "

It follows from Theorem 6.2 by putting ¢; = (n + 1)™! that in this case the

-0 <cz2<dg =

proposed estimator dominates the m.l.e. under the squared error loss function given

by (6.2) for v > 4 and any c; satisfying the following conditions:
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For a given ¢, satisfying

v—4

- +2 (i.e. d* > 0),

cy >

¢z satisfies the following scheme:

ca =dp for 0<do<d?

and %—<cz$d° for §<d0<d',

while % c2 <d® for d* <d,

where d* = 8/(vn).
It follows from Theorem 6.4 that for the bivariate case i.e for p = 2, the relative

risk RR(f\l s Aqg; ¢;) of our proposed estimator
A= A/(n +1) - &A1
relative to the maximum likelihood estimator A; = A/(n + 1) is given by
RR(Ay : Ayje) =1=bica+ b2, —c0<e2<dp

and for given A,
ugn RR(A] H 51;62) =1- "bi

4b,
Where (An + Aa2)/2
_p (A1 + Az
b =h (A11A22)1/2 <
by = 22 nn-~1) Aquz
T(v-2)(v-4) R(Ax, A)
and

R(A,, A)=[1+ui2n:l (014 )] (A% + 232)

v

T (A1 + A22)%.

(u 2)(v—-4)(n +1
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(2). For the trivariate case namely for p = 3 the maximum likelihood and the
proposed estimators are given by

Ay =A/(n+1)

and

Ay = A/(n +1) — 3] A|'3T

respectively, where

_ min{an, 622,083}
TP e S = T APR

It follows from Theorem 6.2 by putting ¢; = (n + 1)~! that in this case the

proposed estimator dominates the usual estimator for ¥ > 4 and any ¢, satisfying
the following conditions:

1. For v > 12(n +1) (i.e. d* < 0), the value of c; satisfies

d*
d‘(CQS—é'.

2. For v < 12(n +1) (i.e. d* > 0), c; satisfies the following scheme:

¢y =dp for 0<do$i-,

2
and -2—_<_c25do for -‘?-2‘—<do<d‘
while %$c2<d‘ for d* < dp

where

P ( et SN 3) I(n/2~1/6)[(n/2 + 1/3)[(n/2 — 2/3)
“\3n+1) v/ I(n/2+1/6)I(n/2—-1/3)I(n/2 +2/3)

It also follows from Theorem 6.4, by putting ¢; = (n + 1)7!, that for the

trivariate case namely for p = 3, the relative risk RR(A; : A;; ¢;) of our proposed
estimator

A= A/(n+1) - co|AM3T




relative to the maximum likelihood estimator A; = A/(n + 1) is given by
RR([\; :i\x;Cg) =1-=bica + bzcg, —o00 < c2 < dp

and for given A,
b
4b:

min RR(AI : 1-\1;cz) =1-
€3

where b, and b, are given by (6.30) and (6.31) with d* as given above and

- v n v
R =14 72505 (75 -2)| O+ da o)

v? n
e -0 +1

72 (A1 + A2z + Ass)?.

6.4.1 Numerical Computation of Relative Risk Function

Some numerical computations have been performed to compare the proposed

estimator

Ay = A/(n+1) — co|APM?PI

with the maximum likelihood estimator (m.l.e.)
Ay=A/(n+1).

where
miﬂ{au, 022, seey dpp}
(n+1)|AJ/r

We compute the Minimum Relative Risk (MRR)

. . ) L - . R(Ay, A;e3) b2
M : = cAr:er) = .Ii(_g__'_l. =1- 21
RR(A; : Ay) n::nRR(A; Aj;e2) min R(Ar, A) 1 1b;

—-00< ey <dg =

where b; and b, are defined in Theorem 6.5.
For computational purposes we consider mostly the case when the scale matrix

A is diagonal (in which case the diagonal elements are also characteristic roots).
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However the diagonal elements of A are so chosen that they represent a broad spec-
trum of characteristic roots of A. Minimum Relative Risk has also been computed
for a correleted scale matrix A (see Table 6.13 on pages 160-161).

The numerical computations have been summarized in thirteen tables. The
Tables 6.1 to 6.12 are of the same pattern; the first column shows the values of v
and n, the second column shows the values of Minimum Relative Risk (MRR), the
third column shows the values of d* while the fourth column shows the optimum
value of ¢ for different values of ¥ and n. Tables 6.1 to 6.12 on pages 142-159 show

numerical computations of Minimum Relative Risk when A is diagonal.
Graphs Showing Risk Difference

Theorem 6.1 is based on the Risk Difference D(A,c;) of the estimators. We
consider an example to calculate the Risk Difference D(A,c2) given by (6.12) for

p = 3,c1 = (n + 1)~ with the following scale matrix A

94 41 23
A=1]41 26 11 ).
23 11 6

Our aim is to check the behaviour of the Risk Difference between the proposed
estimator A; and the maximum likelihood estimator A; = (n + 1)~ A (see Section
6.4). We plot the Risk Difference

f(c2) =(404.90376)~ ' D(A, cz)
_ 112G
T(v-2)(v -4)
against different values of c; where

= ( -1 5_) I'(n/2 - 1/6)T(n/2 + 1/3)[(n/2 — 2/3)
“\3nr+1)  v)I(n/2+1/6)T(n/2-1/3){n/2 +2/3)

ca(cz — 7.23042814°)

and

¢ = D(n/2+2/3)T(n/2 + 1/6)T(n/2 - 1/3)

T(n/2)T(n/2 - 1/2)T(n/2 - 1)
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Graphs showing f(c3) against c2 for different n and v are shown in Figures 6.1

to 6.7 on pages 162-168.
Graphs Showing Relative Risk
Graphs showing the Relative Risk Function

RR(A; : Arc0) = R(A1, Ajez)

R(Ah A)
where
R(A1,A) = (n+1)"2p(A?%) + 14210 (1 -- i 5 ni’_'l) ,
R(Ay,A) = D(A,c2) + R(A1,A)
and ’
@(A?) == ;’)('; 5 [(n + 1) tr(A?) + (trA)?)
2
=5 ;‘) ('; v [14210 (n + 1) + (126)*]
U™ 114210 n + 30086]
T(v-2)(v-9)

against different values of c; are shown in Figures 6.8 to 6.14 on pages 169-175.
Summary of Numerical Results

We note that the lower the Minimum Relative Risk (MRR), the better the
proposed estimator as compared to the maximum likelihood estimator. Based on
the numerical computation we have the following comments:

Although the proposed estimator always dominates the maximum likelihood
estimator,

1. the higher the value of n, the lower the Minimum Relative Risk,

2. the higher the value of v, the higher the Minimum Relative Risk ,

3. the higher the value of p, the higher the Minimum Relative Risk.
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6.4.2 An Example

Let us have the following observed sum of products matrix

13 -4 2
A=| -4 13 -2
2 -2 10

corresponding to n = 10, v = 5 and p = 3. We calculate the maximum likelihood
estimator and the proposed estimator (A, and A, respectively) defined in section
6.4.

Here we have d* = 0.17143446 (see Table 6.4 on page 148). From the Wishart

matrix we have

do = min{a1, az2,4da3}
o —

(n + 1)]A'7? = (.08017177

so that d, satisfies 0 < dy < d*/2 and consequently
c2 = dyp = 0.08017177

(see Condition 2 of Theorem 6.5). Then it is readily seen that the maximum likeli-

hood estimator A; = A/(n + 1) is given by

-0.36363636 1.18181818 -—0.18181818

: 1.18181818 —0.36363636 0.18181818
A=
0.18181818 —0.18181818 0.90909091

while the proposed estimator A, is given by

—~0.36363636 0.27272728 -0.18181818

A 0.27272728 —0.36363636 0.18181818
A= .
0.18181818 —0.18181818 0.00000000

The following section specializes the results of Section 6.2 and Section 6.3 to

compare the unbiased estimator with the proposed estimator.
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6.5 Proposed Estimator Dominating Unbiased
Estimator

An unbiased estimator of A is given by A; = (v ~ 2)A/(vn) (Anderson and
Fang, 1990a, p 208) so that ¢; = (v — 2)/(vn).

The following theorem follows from Theorem 6.2, Theorem 6.3 and Theorem

6.4 by setting ¢, = (v — 2)/(vn).

Theorem 6.6 The proposed estimator

Ap= Y224 qlapler
vn

where

_(v- 2)min{a1y,...,8pp}
—00 < <dy= un|A|1/P ,

dominates the unbiased estimator A; = (v — 2)A4/(vn) under the squared error loss

function given by (6.2) for ¥ > 4 and any c; satisfying the following conditions:

For a given
::: > n:_’:_z (i.e. d* > 0),
¢z satisfies the following scheme:
c2=dy for 0<dp S%,
and %Sczsdo for 92-‘-<do<d‘,
while -42—.- ez <d* for d* < dp

where

&= (u—2np+2 _ u—4) Tp(n/2+1/p)
vn p v JT(n/2+4+2/p)
Also the relative risk function is given by

RR(A; : Azjez) =1—bicz + back, —c0 <2< do
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and for given A

MRR(A: Az) = mm RR(A2 Az,Cg) =1- ::2
where tr(A/p)
r(A/p) .
b =by——— AT/ —d
b o WP Ty(n/2+2/p) |AP/?
(v—-2)(v—4) Tp(n/2) R(Az, A)
and
- _v+2(n-1)
R(Ra, A) = T (M) + S (trAY.

Some Special Cases

(1). For the bivariate case i.e for p = 2, the unbiased and the proposed estima-

tors of A are given by

Az = ¥ 2449
vn

and

V- 2 1/2

Ay = - 62|A| I
n
respectively, where
—00 < €3 S do = (V - 2)mm{an,a22}

vn|A1/?

It follows from Theorem 6.6 by putting ¢; = (v — 2)/(vn) that the proposed
estimator dominates the unbiased estimator under the squared error loss function

given by (6.2) for v > 4 and any c; satisfying the following conditions:

cy =dp for 0<do$%-,
d* d*
and ?SCQSdﬂ for -2-<do<d‘,
d
2

while <cp <d* for d* < dy,
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where d°* is given by
2
d = m{v + 2(n - 1)}.

It also follows from Theorem 6.6 that when p = 2, the relative risk of the
proposed estimator to the unbiased estimator is given by

RR(A;: Ajicz) =1 —bica+bac}, —c0 <2< do

and for given A, the minimum value of the relative risk function is given by

, - 8
min RR(A2: Az;e2)=1-— i
where O + Az2)/2
b = 11 22 d‘,
1 =bs (A1 Az2)2/2
bz _ 2v2n(n - 1) A11)23
(v - 2)(v — 9) R(A, A)’
with
v+2(n-1) v—2

R(Az, A) = '—(;:14—);‘—(3?1 +A22) + m(lu + Az)’.

We remark that in this case the relative risk depends on the characteristic roots

of A only through their ratio.

(2). For the trivariate case i.e for p = 3, the unbiased and proposed estimators

of A are given by

and

Ar = L=24 - qlAPr
vn

respectively, where

(v - 2)min{au, a2, 033}
vn|Ar/?

—0o<cSdy =
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It follows from Theorem 6.6 that for the trivariate case the proposed estimator
dominates the unbiased estimrtor under the squared error loss function given by

(6.2) for v > 4 and for any c; satisfying the following conditions:

c2 = do, for0<doS§,

and %Sc:gdo for %(do(d‘,

while 'd2—.S62<d‘ for d* <dp
where
£ = 20v+3n—-2) T'(n/2-1/6)I'(n/2+1/3)[(n/2 —2/3)

3vn F(n/2+1/6)(n/2-1/3)(n/2+2/3)
It also follows from Theorem 6.6 that for p = 3, the relative risk of the proposed

estimator relative to the unbiased estimator is given by
RR(Az : Ag;Cz) =1-bics + bzcg, -0 < cp <dp

and for given A, the minimum value of relative risk function is given by

. s = b
n::n RR(Az H AQ,CQ) =1- E
where b, and b; are given by (6.30) and (6.31) with d* as given above and

v+2(n-—

- 1 -2
R(Az2, A) = o= dm )(,\3, +2%, 4+ 23) + — n(/\n + A2z + A33)2.

(v~4)

6.6 Estimation of the Scale Matrix (Normal Case)

As mentioned earlier in Chapter 5 that the multivariate t-model converges to
the multivariate normal model N,(6,T) as v — oo and then the distribution of the

sum of products matrix,

N
A=Y (X - X)X, - XY

i=1
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based on the multivariate t-model given by (5.3), approaches the usual Wishart
distribution W,(n, A) given by (5.1). To avoid confusion, we will denote the sum
of products matrix A by W and the scale matrix A by . In this section we want
to estimate the scale matrix X of the multivariate normal distribution N,(6,X). In

doing so we consider the following squared error loss function
L(u(W), Z) = tr[(w(W) - )] (6.32)
where u(W) is any suitable estimator of X. The risk function is defined as usual
R(w(W), T) = E[L(w(W), E)].

In the following theorem we specialize the results of Sections 6.2 and 6.3 by letting
v — oo for the case of the multivariate normal distribution. From the numerical
compulation we observe that the proposed estimator does not have substantial gain

over the mazimum likelshood estimator in the normal case .

Theorem 6.7 Suppose that the p-dimensional (p > 2) random vectors X, X3,...,
XN are independently and identically distributed according to N,(8,X). Consider

the following two estimators of A:
usual estimator £ = ¢, W, (6.33)

proposed estimator £ = ¢; W — ¢,|W|'/?1, (6.34)
where c¢; is a fixed positive number and

cimin{wyy,..., wy,}
|Wr/»

-00< ¢y Sdg =

Then the proposed estimator dominates the usual estimator under the squared
error loss function given by (6.32) for any c; satisfying the following conditions:




120

1. For a given c, satisfying
¢y <p/(np+2) (ie. d* <0),

c2 satisfies
L ]

d < 2 < -,
2. For a given c) satisfying
c1 >p/(np+2) (i.e. & >0),

c; satisfies the following scheme:
d‘
c2 =dp for 0 < dy 5-2—,

and %—SczSdo for d?<do<d‘,

while -‘-i-SC2<d' for d* < dp

2
where
+ 2 Tp(n/2+1/p)
d‘=(c np -1) ’ . 6.35
‘ T,(n/2+2/p) (6:33)
Remark 6.3 In this case it follows from (6.12), by letting v — oo that
_ 4 Tp(n/2+2/p) o2y ( tr(X/p)
D(E, 02) = 4p P,(n/2) |2! c2\C2— |E|lh’ d’ (636)
where d* is given by (6.35).
We also note that when
__»r
@ = np+2

we have d* = 0. It then follows from (6.36) that £ dominates £ unless c; = 0. When

¢z = 0 the two estimators ¥ and £ coincide.
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6.7 Comparison of Risks of the Estimators (Normal
Case)

In this section we calculate the risk functions of the usual and proposed esti-
mators of the sca'e matrix of the multivariate normal distribution. The estimators
are defined by (6.33) and (6.34) respectively.

Computable forms of the risk function of the usual and proposed estimators
follow from Theorem 6.3 by letting v — oco. The following theorem summarizes the

results of the risk functions of the usual and proposed estimators.

Theorem 6.8 The risk function of the usual estimator £ = ¢, W and the proposed

estimator
5 =W - c|W|/?I,
where c; is a fixed positive number and

amin{wi,...,wy}
Wi

—o<cp<dp =
are given by
R(E,T) =1+ ein(ern + ¢3 — 2)] tr(E?) + ¢} n(trE)? (6.37)

and

R(E, Tie2) =tp Fr(;f(zn’/f;)/ﬂ EP/7es (c, _ tf;fx//f) d.)

+1 4+ an(exn + ¢1 = 2)] tr(£?) + &3 (¢rT)%. (6.38)

where d° is given by (6.35).

The measure of relative risk of the estimators defined by (6.33) and (6.34)
respectively can be defined exactly the same way as have discussed in (6.22) and
(6.23). Now we have the following theorem by letting v — oo in Theorem 6.4.
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Theorem 6.9 Consider the relative risk function
RR(E:E;e0) = M
R(Z, T)
where the estimators £ and £ are defined by

=aW - a|W|/I,

where ¢, is a fixed positive number and

cymin{wyy,...,Wpp}
Wi

—00 <3 Sdo =

and £ = ¢;W respectively .
Then
RR(ﬁ : i;cz) =1-bec; +bzc§, ~00< < dy

where r(Z/p)
=p, \=/P)
b =b /e d*

___ 4p Ty(n/2+2/p) |ZP/*
T (v-2)v-4) Ty(n/2) R(Z,T)

and for given T the value of c; which minimizes the relative risk function is given

by

b,

by tr(Z/p)d*

with
in RR(E: E; )-—1-—“
ngn t i) = b,

where d* is given by (6.35).

Remark 6.4 It may be proved similarly that the Percentage Improvement in Risk
(PIR) of the estimator £ relative to the estimator £ is given by

PIR(E : £;¢5) = 100(bycz ~ b2c}), —00 <2 S do
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and for given I, we have
max PIR(E:5;¢;) =25 g:l.
6.8 Proposed Estimator Dominating the Maximum

Likelihood Estimator (Normal Case)

The maximum likelihood estimator of T is given by £; = W/(n+1) (Anderson,
1984, p 63) where W has usual Wishart distribution given by (5.1). We want to
compare the proposed estimator with the m.l.e.

When ¢; = (n+1)! the conditions given by (6.9), (6.10a) and (6.10b) simplifies
to

(!) d*<ec2<0, p>2,
(1) 0<c2<dy, if 0<do<d’, p<2,
(iif) O0<ecpa<d®, if d°<dp<o0, p<2

But we have considered the model (6.1) for p > 2. Thus by putting ¢; =
(n +1)~! and then letting v — oo in Theorems 6.1 , 6.2, 6.3 and 6.4 we have the

following theorem:

Theorem 6.10 Consider the multivariate normal model for p > 2. Then the

proposed estimator
1 = W/(n+1) - c|W|'/?1
where

min{w‘l, csey w”}
(n+ D)Wt/

dominates the m.le. £; = W/(n + 1) under the squared error loss function given
by (6.32) if c; satisfies the following conditions:

-0 < Sdy =

d
< —
d"<e )
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where
___P=2 Ty(n/2+1/p)
(n+1)pTy(rn/242/p)

The relative risk of the proposed estimator

1= W/(n+1) - c|W|'/?I
relative to the m.l.e £, = W/(n + 1) is given by
RR(21 : 21;62) =1-bc2 + bzcg

and for a given I, it minimizes at

L_bh _tEpe
2T 2, |Tp/r 2

with
o #
min RR(Z; : Zy;¢2) =1 - T
where tr(S/p)
_, tr(Z/p) ..
b —bz—lzll/, d°,
Tp(n/2+2/p) |ZP?/?
bz =4 E - b)
PTh,®/2) RE, T)
and
3 2 2
R(E,, £) = T(E) | ntrD) (6.39).

T n+l  (n+1)
Some Special Cases

(1). We note that the m.l.e. ¥; and the proposed estimator £, are identical
in the bivariate case.

(2). For the trivariate case i.e for p = 3, the estimators are given by

Si=W/(n+1)



125

and
£y =W/(n+1) - a|W|'*I
where
.y min{w,, w2z, w3}
_oo<62.\_do-- (n+1)|A|l/3

In this case it follows from Theorem 6.10 that the proposed estimator dominates

the m.l.e if

d‘(c;S?

where d* is given by

_ =1 _T(n/2-1/6)[(n/2+1/3)[(n/2 —2/3)
T 3(n+1)T(n/241/6)T(n/2—-1/3)[(n/2 +2/3)

In this case the relative risk RR(ﬁl : 2.31, ¢3) of our proposed estimator relative

to usual estimator is given by

RR(ﬁl : 21;62) =1-bcz + bzcg, —oo<c<dp

where
_, (o1 +022+033)/3 .,
b =h M ones i
by =12 I(n/2+4+2/3)(n/2 + 1/6)I'(n/2 - 1/3) (0’11022633)2/3
L(n/2)[(n/2 - 1/2)[(n/2 -1) R(E,, T)
and

o}, + 03, + 0%, n(on1 + 022 + 033)°
n+1 (n+1)

R(f:l ' z) =

6.9 Proposed Estimator Dominating the Unbiased
Estimator (Normal Case)

An unbiased estimator of A is given by £, = W/n (Anderson, 1984, p 71) so

that ¢; = n~1.
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The following theorem follows from Theorem 6.7, Theorem 6.8 and Theorem
6.9 by setting c; = n™1.

Theorem 6.11 The proposed estimator

where
min{wy,...,wpp}

n|Wii/e

—00< e <dp=

dominates the unbiased estimator £, = W/n for any c; satisfying the following

conditions : 2
¢z =dy for 0<do<—2-
and %5@5(10 for d2—-<do<d‘,
while %‘_ <cy <d® for d* <dy,
where

11‘,,(11/2 +1/p)
npLp(n/2 +2/p)

The relative risk function of the proposed estimator relative to the unbiased

d* =

estimator is given by
RR(éz : iz;Cg) =1—-bjc; + bzcg, —00 < c3 <dg

and for given ¥

b?

MRR(E; : £) = min RR(E:: £g5e0) =1 - r

where . (2/ |
r P) ;e
b=b T ¢

_yp e(n/2+2/p) ISP

b2 T,/2)  REs D)
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and
R(Z:, ) = n7tr(T?) + (trT)?] (6.40).

Some Special Cases

(1). For the bivariate case i.e for p = 2, the unbiased and the proposed estima-

tors of L are given by

and

respectively,
min{w;, w2}
n|W|1/2

It follows from Theorem 6.11 that the proposed estimator dominates the unbi-

—00 <3 <dy=

ased estimator under the squared error loss function given by (6.32) if c; satisfies

the following conditions on ¢; :

L

Cz=do for 0<dof§i—,

2
and d‘5625do for %<do<d‘,
while <e; <d® for d*° <dy,

2
&
2
where d* is given by d* = 2n~?

It follows from Theorem 6.11 that when p = 2 the relative risk of the proposed

estimator to the unbiased estimator is given by
RR(£; :£2;¢;) =1 —biea + bacl, =0 <z < dp
and for given £, the minimum value of the relative risk function is given by

) . B
min RR(Z; : Dpje2) =1~ I‘Lzl
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where ( + /2
_p 911 + 022
011022
=2n(n - 1) ————
b2 (n ) R(Ez, E)
with

R(iz, Ez) = 2‘"-1(03, + 032 + 0"022).

We remark that in this case the relative risk depends on the characteristic roots of

T only through their ratio.

(2). For the trivariate case i.e for p = 3, the unbiased and proposed estimators

of ¥ are given by

= W
Yp=—
n
and
. w
£ = — — | AIM3T
n
respectively, where
o< o <dy = min{wy;, w2, waz}
2 =40 n|W[/2

It follows from Theorem 6.11 that for the trivariate case the proposed estimator
dominates the unbiased estimator under the squared error loss function given by
(6.32) for any c; satisfying the following conditions :

¢ =dy for 0<do_<_-dz—,

and < ¢y <dg for %—<do<d',

»

while

| & | &

ey <d® for d° <dp

where

I'(n/2-1/6)T'(n/2 +1/3)[(n/2 — 2/3)

2
<=

T(n/2 + 1/6)T(n/2 — 1/3)[(n/2 + 2/3)"
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It also follows from Theorem 6.11 that for p = 3 the relative risk of the proposed

estimator relative to the unbiased estimator is given by
RR(ﬁz : iz;Cz) =1—-bics + bzcg, -0 < c3 £dp

and for given £, the minimum value of relative risk function is given by

rx‘x:in RR():?.: :82500) =1~ Z%
where
_, (011 + 022 +033)/3
b =2 (011022033)1/3) i
by _12(0110’220’33)2/3 T(n/2+2/3)'(n/2+1/6)[(n/2 —1/3)
) T(/2l(n/2— 1720 (2= 1) '
with

R(E3, T) = n~Y (0}, + 03, + 033) + (011 + 022 + 033)*].

6.10 Simultaneous Estimation of Characteristic Roots
of Scale Matrix

In this section we estimate the characteristic roots of the scale matrix A of the

multivariate t-model and of the scale matrix £ of the multivariate normal model.

6.10.1 Simultaneous Estimation of Characteristic Roots of the
Scale Matrix of the Multivariate t-Model

We now prove that the simultaneous estimation of the characteristic roots
£1,€2,...,6p of A under a squared error loss function is similar to the estimation -
of the scale matrix under the loss function given by (6.2) discussed in Theorem 6.1
and 6.2. Let

m = (my,ma,...,mp)
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and

= (flaih‘-'v{,)"

In estimating the characteristic roots £;,(: = 1,2,...,p) we consider the fol-

lowing loss function:
P

L(u(m), £) =Y (u(mi) — &)* (6.41)

i=1
where u(m;),(t = 1,2,...,p) is any estimator of &,(i = 1,2,...,p), u(m) =
(u(m1),u(ma),...,u(m;)), and the risk function is defined as usual by taking ex-

pectation of the loss function i.e.

R(u(m), §) = E[L(u(m), §)]-

Further consider the following estimators of

E"—" (EI’EZQ-"’GP)I :

usual estimator £ = (Ex,fz, .- ,f,)', (6.42)
proposed estimator £ = (é1,£3,...,6,), (6.43)

where

Ei = m,, (" = 1,2,---,"),
é,- =c¢y m; —C2 (mlmg .ee m,)"’, (1 =1,2,... vp)y
¢, is a fixed positive number and

(mimg...my)N/P’

~00< ¢ <dp =

We now piove a theorem that the proposed estimator of the characteristic roots

of A dominates its usual estimator.
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Theorem 6.12 Consider the multivariate ¢-model given by (6.1) for v > 4. Then
the proposed estimator £ (defined by (6.43)) dominates the usual estimator '3 (de-
fined by (6.42)) under the squared error loss function given by (6.41) if c; satisfies

the following conditions (exactly the same as 6.9, 6.10a and 6.10b):

1. For a given c, satisfying

v—-4 p

ca < np+2 (d* <0),
¢ satisfies d* < ¢ < 0.
2. For a given ¢, satisfying
v—-4 p
d’
01 > np + 2 ( > 0)9

c; satisfies the following scheme:
()0<c;<dp if0<dp <d’,

(1) 0<ea<d® if d* <dp <o©

where d* is given by (6.11).

where

_ np+2 v-—4\ I'htin/2+1/p)
""("‘ T ) T, (n/2+2/p)"

Proof. Let us suppose that
D(¢, c2) = R(¢, €) - R(E, ©).

Then ’
D(¢, ) =EY, [(& - 6)* - (& - &]

i=]1

) 4
=E)_ [f? -&-206- fi)fa‘] .

f=x]
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Hence by virtue of
& ={& — cajA/?)?
=£ - 2c,€2|A|? + cj|APP/,
fori=1,2,...,p, we have
P
D(¢, c2) =EZ [—262£?|A|1/' +c3l41'7 + 262|A|l/'€.‘]
i=1 .
= -~ 2cic; Etr(|A|'/? A) + 2c; E(|A['/?)tr(A) + pc} E(|AP/?)

which is exactly the same as that we have found in Theorem 6.1. Hence the rest of
the proof is omitted because of the similarity to that of Theorem 6.1.
In the light of Theorem 6.2 we have the following version of Theorem 6.12.

Theorem 6.13 Consider the multivariate t-model given by (6.1) for v > 4. Then
the proposed estimator ¢ (defined by (6.43)) dominates the usual estimator € (de-
fined by (6.42)) under the squared error loss function given by (6.41) for any c;
satisfying the following conditions :

1. For a given c; satisfying

€ < ":4”‘:2 Gie. d° < 0),
¢ must satisfy
d°
d*<c < °R
2. For a given c, satisfying
a>l=2 2 (e d >0,

v np+2

c; satisfies the following scheme:

'é-’
d* d*
and -Z-SCzSdo for ?<do<d‘,

c2=dy for 0<dy <

while <cp<d® for d° <dp,

2
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where d* is defined by (6.11).

The following section specializes the above theorems to the case of the estima-

tion of characteristic roots of the multivariate normal distribution.

6.10.2 Simultaneous Estimation of Characteristic Roots of the Scale

Matrix of the Multivariate Normal Distribution

Suppose that we want to estimate the characteristic roots of the scale matrix
L of the multivariate normal distribution N,(0,Z). We also suppose that the p-
dimensional vectors X, X3,...,Xn are independently and identically distributed
according to N,(6,L).
Let
l=(,h,...,.0)

and

a=(a1,as,...,a,).

In estimating the characteristic roots a;,(i = 1,2,...,p) we consider the fol-

lowing loss function:

4
L(u(l), a) = (u(k) - a;)? (6.44)

i=1
where u(l;),(i = 1,2,...,p) is any estimator of a;,(i = 1,2,...,p), u(l) =
(u(l1),u(l2),...,u(ly)), and the risk function is defined as usual by taking expec-

tation of the loss function i.e.
R(u(l), a) = E[L(u(l), a)].

Further consider the following estimators of £ = (a1,a2,...,a,) :

usual estimator & = (&,a2,...,&,), (6.45)
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proposed estimator & = (&;,éaa,...,4,), (6.46)

where

ai=al, (i=12,...,p),
&.- =€ ‘.‘ -~ C2 (lllg ”.l’)!/P, (t = 1'2,--- 1?)»
¢; is a fixed positive number and

(hlz... Ly

—00< g <dg =

We now prove a dominance theorem that the proposed estimator £ dominates

the usual estimator £ of £.

Theorem 6.14 Suppose that the p-dimensional vectors X;,X2,...,Xn are in-
dependently and identically distributed according to N,(8,Z). Then the proposed
estimator & (defined by (6.46)) dominates the usual estimator £ (defined by (6.45))
under the squared error loss function given by (6.44) for any ¢, satisfying the fol-

lowing conditions :

1. For a given c; satisfying

P .
e d
Cl<ﬂp+2 (i.e < 0),

¢y satisfies d* < c3 < 0.

2. For a given ¢, satisfying
¢1 > —E— (ie. d* >0),
np+2

c; satisfies the following scheme:

(1) 0<cz<dp for 0 < dy <d*,
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(it) 0<ca <d* for &' < dp
where d* is defined by (6.35).

Remark 6.5 The above theorem becomes similar to Theorem 2.1 of Dey (1988) if
€,c1,¢2,n and d° are replaced by A,¢, b,k and

2d Cp.k+2/p
Cp.k+4/p

respectively.
By the arguments as used in establishing Theorem 6.2 we have the following

stronger version of Theorem 6.14.

Theorem 6.15 Suppose that the p-dimensional vectors X3, X3,...,XnN are in-
dependently and identically distributed according to Ny(0, Z). Then the proposed
estimator & (defined by (6.46)) dominates the usual estimator ¢ (defined by (6.45))
under the squared error loss function given by (6.44) for any c; satisfying the fol-
lowing conditions :

1. For a given ¢, satisfying
c1 <p/(np+2) (ie. d&* <0),

¢y satisfies

d*
< —.
d‘(c;__ )

2. For a given ¢, satisfying

¢y > p/(np+2) (ie. d* >0),

¢ satisfies the following scheme:

ca =dp for 0<h5%,
and %chSdo for -‘;—.<do<d‘,

&
2

while

<¢c3<d® and for d* < dy,
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where d* is defined by (6.35).

6.11 Estimation of the Trace of the Scale Matrix of
the Multivariate t-Model

In this section we propose estimator for the trace of the scale matrix of the
multivariate t-model. Let § = tr(A). In estimating § by an estimator u(A) we

consider the following loss function
L(u(A), 8) = (u(A) - 6)* (6.47)

where u(A) is any estimator of tr(A). The risk function is defined as usual by taking

expectation over the loss function i.e.
R(u(A), 8§) = E[L(u(A), §)].
Furthermore consider the following two estimators of § = trA:
usual estimator § = ¢;tr(A), (6.48)

proposed estimator & = c1tr(A4) — ¢z p|Al'/?, (6.49)

where ¢, is a fixed positive constant and

_atr(A/p)
-&(CzSdu- lAll/' .
We now prove a dominance theorem that the proposed estimator 5 dominates

the usual estimator & of § = tr(A).

Theorem 6.18 Consider the multivariate ¢-model given by (6.1) for v > 4. Then-
the proposed estimator § (defined by (6.49)) dominates over the usual estimator &

(defined by (6.48)) under the squared error loss function given by (6.47) for any c;

satisfying the conditions stated in Theorem 6.1.



137
Proof. Let D(A, ¢2) = R(8, 6;c2) — R(4, 6).
Then it is easy to show that
D(A, &2) =E [(6 - )" - (5 - 8)']
=Eﬁ’~?~aﬁ-5w}
Hence by virtue of
8 =8 - ciplAl'/7y?
=52 — 2c2p8| A|M? + c3p|APP/?
we have
D(A, c3) =E [—262P5|A|l/' + 3p?|A*/? — 2(—c,plAl/? )"(A)]
=p E [—-chczlA['/’tr(A) + EplAP/? + 2¢; IAI‘/’tr(A)]

which is p-times D(A, c;) obtained in course of proving Thuorem 6.1. Hence the
rest of the proof is omitted because of the similarity to that of Theorem 6.1.
By the argument as used in establishing Theorem 6.2 we have the following

theorem from Theorem 6.16.

Theorem 6.17 Consider the multivariate ¢-model given by (6.1) for v > 4. Then
the proposed estimator 3 (defined by (6.49)) dominates over the usual estimator 3
(defined by (6.48)) under the squared error loss function given by (6.47) for any c;
satisfying the following conditions:

1. For a given c,; satisfying

v—-4 p
v np+2

(i.e. d° < 0),

<

¢z satisfies

d* <3 <

il
2



138

2. For a given ¢, satisfying

v—-4 p
v np+2

cy >

(i.e. d* > 0),

c; satisfies the following scheme:

c2 =dp for 0<dosd?,

d* d* .
and -2—$62Sdo for —2—<do<d .
&
2
where d* is defined by (6.11).

while <cp<d® for d* <dp

6.12 Estimation of the Inverted Scale Matrix of the
Multivariate t-Model

In this section we develop estimator for inverted scale matrix i.e. for ¥ = A~!.

To estimate the inverted scale matrix ¥, we consider the following loss function
L(u(A), ¥) = tr{(u(4) - ¥)?] (6.50)
where u(A) is any suitable estimator of ¥. The risk function is defined as usual by
R(u(4), ¥) = Eftr{(u(A) - ¥)*}j.
Further consider the following estimators of ¥:
usual estimator ¥ = c;A™?, (6.51)

proposed estimator ¥ = ¢;A~! - c2|A|7V?P I, (6.52)

where

N
A=) (X; - X)X; - XY,
s=1



¢ is a fixed positive number and

CIA—I

—OO(CgSko=’T4-I—:1—/;.
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We now prove a domin=nce theorem that the proposed estimator ¥ dominates

the usual estimator .

Theorem 6.18 Consider the multivariate t-model given by (6.1). Then under

the loss function given by (6.50), the proposed estimator ¥ (defined by (6.52))

dominates the usual estimator ¥ ( defined by (6.51)) for n > 4 and any c; satisfying

the following conditions:

1. For a given c, satisfying

v
v+2

a< (n-p-1-2/p),

cp satisfies k* < ¢ < 0.

2. For a given c; satisfying

& > ——(n-p-1-2/p),

v+

¢, satisfies the following scheme:
(1)0<eca <k if 0< ko < k*,

(i)0<ecr <k® if k* < kp <00

where

Tp(n/2-1/p)

(4] v

d =4(n—p—1-2/p_ V+2) Ty(n/2-2/p)

Proof. Let

D(A, ¢) = R(¥, ¥) - R(¥, ¥).

(6.53).




140

Then ¥ dominates ¥ if and only if D(A,¢c;) < 0. A simple calculation shows

that
DA, c2) =E ¥ - ¥)? - (¥ - ¥*]

=Etr [§? - 8 - 28 - 9)¥]
Hence by virtue of
V2 ={¥ - cp|A|7V/?1)?
=92 — 2c,0|A|7VPT 4 SB|A|7HPI,

we have

D(A, ¢z) =Etr [—2c2\il|A|"/"I + 2|A|I"PT - 2(-—c2|A|“/’I)\Il]

= —2e102Etr(|A|"YP A1) + GpE(|A]"YP) + 2c: E(JA| VP )tr(0).
It then follows from Lemma 5.1 and Lemma 6.3 that

v+2 Tp(n/2-1/p)
2v(n—p-1-2/p) Tp(n/2)
+cg p [V:;/2 P(ﬂ1{(2n722)/p) IA'—Q/;}
4+2c; [r’(zrll,ﬁn_/zl)/p)lAl"/’] tr(A71)
_v+2 cp Tp(n/2-2/p)
T v 4 I'p(n/2)

g v_ c1 tr(A")+c
v+2 n—p—1-2/p) |A|"V/P T2

=(V+2)p P,(n/2—2/p) |A|—2/pc2 [c‘z _ tr(A_l) ko]

D(A, 62) = — 2¢c3c3 tr IAI-IIP\I’]

Il

4v Tp(n/2) p |A|V/p
_(w+2)p Ty(n/2-2/p) 012/ tr(¥/p) ..

where k* is stated in the theorem.

Clearly D(A, ¢;) < 0 so that ¥ dominates ¥ if and only if

tr(¥/p) .

tr(¥/p) ..
| @) /p

[wp/r <ecp <0, or 0<ez <
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The proof then follows by the use of the inequality between the arithmetic
mean and the geometric mean of the characteristic roots of ¥ (cf. Theorem 6.1)
By the arguments as used in establishing Theorem 6.2 we have the following

theorem from Theorem 6.18.

Theorem 6.19 Consider the multivariate t-model given by (6.1). Then under
the loss function given by (6.52), the proposed estimator ¥ (defined by (6.54))
dominates the usual estimator ¥ ( defined by (6.53)) for n > 4 if c; satisfies the
following conditions:

1. For a given c, satisfying
< ——(n-p-1-2/p)
'Sus2 ’

c; satisfies

k
k‘<02$?.

1 v + 2 !

¢z satisfies the following scheme:
K
2 b

and %SCgSko for %(ko(k‘,

c2 = ko f0r0<k0_<_

while <ecy <k* for k* <k

2
where k* is defined by (6.53).
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Table 6.1: MRR (Minimum Relative Risk) of proposed estimator A, relative

to m.l.e. A, for p= 2 and A = diag(1,1).

n v MRR d* c2(opt)
5 0.42970298 0.31999999 0.16000000
10 0.78345865 0.16000000 0.08000000
15 0.89152543 0.10666666 0.05333333
20 0.93571429 0.08000000 0.04000000
5 25 0.95767818 0.06400000 0.03200000
30 0.97009346 0.05333333 0.02666667
35 0.97776920 0.04571428 0.02285714
40 0.98283671 0.04000000 0.02000000
45 0.98635394 0.03555555 0.01777778
50 0.98889317 0.03200000 0.01600000
5 0.30664549 0.16000000 0.08000000
10 0.68930102 0.08000000 0.04000000
15 0.83005951 0.05333333 0.02666667
20 0.89406616 0.04000000 0.02000000
10 25 0.92797917 0.03200000 0.01600000
30 0.94796943 0.02666667 0.01333333
35 0.96069745 0.02285714 0.01142857
40 0.96928501 0.02000000 0.01000000
45 0.97534561 0.01777778 0.00888889
50 0.97977904 0.01600000 0.00800000
5 0.25304156 0.10666667 0.05333333
10 0.63549454 0.05333333 0.02666667
15 0.78946287 0.03555556 0.01777778
20 0.86408798 0.02666667 0.01333333
15 25 0.90536825 0.02133333 0.01066667
30 0.93045166 0.01777778 0.00888889
35 0.94678397 0.01523810 0.00761905
40 0.95799344 0.01333333 0.00666667
45 0.96601172 0.01185185 0.00592593
50 0.97194136 0.01066667 0.00533333




Table 6.1 (continued): MRR (Minimum Relative Risk) of proposed estimator

A, relative to m.l.e. A, for p=2 and A = diag(1,1).

n v MRR d c2(opt)

5 0.22263713 0.08000001 0.04000000

10 0.60023855 0.04000000 0.02000000

15 0.76028323 0.02666667 0.01333333

20 0.84118650 0.02000000 0.01000000

20 25 0.88734686 0.01600000 0.00800000
30 0.91605050 0.01333333 0.00666667

35 0.93507356 0.01142857 0.00571429

40 0.94831287 0.01000000 0.00500000

45 0.95788998 0.00888889 0.00444444

50 0.96503797 0.00800000 0.00400000

5 0.20299665 0.06400000 0.03200000

10 0.57528797 0.03200000 0.01600000

15 0.73824343 0.02133333 0.01066667

20 0.82307525 0.01600000 0.00800000

25 25 0.87260932 0.01280000 0.00640000
30 0.90397159 0.01066667 0.00533333

35 0.92505587 0.00914286 0.00457143

40 0.93989998 0.00800000 0.00400000

45 0.95074027 0.00711111 0.00355556

50 0.95889537 0.00640000 0.00320000

5 0.18924950 0.05333334 0.02666667

10 0.55668430 0.02666667 0.01333333

15 0.72099396 0.01777778 0.00888889

20 0.80838118 0.01333333 0.00666667

30 25 0.86032262 0.01066667 0.00533333
30 0.89368642 0.00888889 0.00444444

35 0.91638122 0.00761905 0.00380952

40 0.93251476 0.00666667 0.00333333

45 0.94439252 0.00592593 0.00296296

50 0.95338963 0.00533333 0.00288567
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Table 6.2: MRR (Minimum Relative Risk) of the proposed estimator A, relative
to m.le. A, for p=2 and A = diag(2,1).

n v MRR d* c2(opt)
5 0.47034484 0.31999999 0.16970562
10 0.79550296 0.16000000 0.08485281
15 0.89691275 0.10666666 0.05656854
20 0.93872341 0.08000000 0.04242641
5 25 0.95959076 0.06400000 0.03394112
30 0.97141439 0.05333333 0.02828427
35 0.97873558 0.04571428 0.02424366
40 0.98357414 0.04000000 0.02121320
45 0.98693507 0.03555555 0.01885618
50 0.98936288 0.03200000 0.01697056
5 0.36331308 0.16000000 0.08485281
10 0.71002961 0.08000000 0.04242641
15 0.84003265 €.C5333333 0.02828427
20 0.89978528 0.04000000 0.02121320
10 25 0.93164975 0.03200000 0.01697056
30 0.95051250 0.02666667 0.01414214
35 0.96255856 0.02285714 0.01212183
40 0.97070393 0.02000000 0.01060660
45 0.97646218 0.01777778 0.00942809
50 0.98068007 0.01600000 0.00848528
5 0.31773945 0.10666667 0.05656854
10 0.66228505 0.05333333 0.02828427
15 0.80320083 0.03555556 0.01885618
20 0.87222817 0.02666667 0.01414214
15 25 0.91068608 0.02133333 0.01131371
30 0.93417311 0.01777778 0.00942809
35 0.94952335 0.01523810 0.00808122
40 0.96008909 0.01333333 0.00707107
45 0.96766407 0.01185185 0.00628539
50 0.97327617 0.01066667 0.00565685
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Table 6.2 (continued): MRR (Minimum Relative Risk) of the proposed estima-
tor A; relative to m.l.e. A, for p =2 and A = diag(2,1).

n v MRR d* c2(opt)

5 0.29216473 0.08000001 0.04242641

10 0.63142229 0.04000000 0.02121320

15 0.77708015 0.02666667 0.01414214

20 0.85143617 0.02000000 0.01060660

20 25 0.89416557 0.01600000 0.00848528
30 0.92087819 0.01333333 0.00707107

35 0.93865471 0.01142857 0.00606092

40 0.95106677 0.01000000 0.00530330

45 0.96006910 0.00888889 0.00471405

50 0.96680269 0.00800000 0.00424264

5 0.27574799 0.06400000 0.03394113

10 0.60977854 0.03200000 0.01697056

15 0.75754291 0.02133333 0.01131371

20 0.83514988 0.01600000 0.00848528

25 25 0.88077742 0.01280000 0.00678823
30 0.90982144 0.01066667 0.00565685

35 0.92943051 0.00914286 0.00484873

40 0.94328375 0.00800000 0.00424264

45 0.95342926 0.00711111 0.00377124

50 0.96107992 0.00640000 0.00339411

5 0.26430512 0.05333334 0.02828427

10 0.59374575 0.02666667 0.01414214

15 0.74236581 0.01777778 0.00942809

20 0.82203677 0.01333333 0.00707107

30 25 0.86969853 0.01066667 0.00565685
30 0.90047363 0.00888889 0.00471405

35 0.92149704 0.00761905 0.00404061

40 0.93649529 0.00666667 0.00353553

45 0.94757003 0.00592593 0.00314270

50 0.95598003 0.00533333 0.00282843
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Table 6.3: MRR (Minimum Relative Risk) of proposed estimator A; relative
to m.l.e. A, for p=2 and A = diag(25, 1).

n v MRR a: c2(opt)
5 0.64096928 0.31999999 0.41599999
10 0.85083208 0.16000000 0.20800000
15 0.92256032 0.10666666 0.13866666
20 0.95330058 0.08000000 0.10400000
5 25 0.96894859 0.06400000 0.08320000
30 0.97791842 0.05333333 0.06933333
35 0.98351451 0.04571428 0.05942857
40 0.98723237 0.04000000 0.05200000
45 0.98982474 0.03555555 0.04622222
50 0.99170282 0.03200000 0.04160000
5 0.58791162 0.16000000 0.20800000
10 0.79931522 0.08000000 0.10400000
15 0.88502778 0.05333333 0.06933333
20 0.92631405 0.04000000 0.05200000
10 25 0.94898740 0.03200000 0.04160000
30 0.96267742 0.02666667 0.03466667
35 0.97154435 0.02285714 0.02971429
40 0.97760354 0.02000000 0.02600000
45 0.98192204 0.01777778 0.02311111
50 0.98510587 0.01600000 0.02080000
5 0.56753396 0.10666667 0.13866666
10 0.77336593 0.05333333 0.06933333
15 0.86287127 0.03555556 0.04622222
20 0.90869561 0.02666667 0.03466667
15 25 0.93503234 0.02133333 0.02773333
30 0.95148483 0.01777778 0.02311111
35 0.96242281 0.01523810 0.01980952
40 0.97005235 0.01333333 0.01733333
45 0.97558073 0.01185185 0.01540741
50 0.97971226 0.01066667 0.01386667




147

Table 6.3 (continued): MRR (Minimum Relative Risk) of proposed estimator
A, relative to m.le. A; for p =2 and A = diag(25,1).

n v MRR d° cz2(opt)

5 0.55661791 0.08000001 0.10400001

10 0.75754544 0.04000000 0.05200000

15 0.84807174 0.02666667 0.03466667

20 0.89613734 0.02000000 0.02600000

20 25 0.92460013 0.01600000 0.02080000
30 0.94281015 0.01333333 0.01733333

35 0.95515111 0.01142857 0.01485714

40 0.96389507 0.01000000 0.01300000

45 0.97031361 0.00888889 0.01155556

50 0.97516292 0.00800000 0.01040000

5 0.54979630 0.06400000 0.08320000

10 0.74686511 0.03200000 0.04160000

15 0.83746072 0.02133333 0.02773333

20 0.88671000 0.01600000 0.02080000

25 25 0.91648642 0.01280000 0.01664000
30 0.93587255 0.01066667 0.01386667

35 0.94920361 0.00914286 0.01188571

40 0.95876558 0.00800000 0.01040000

45 0.96585793 0.00711111 0.00924444

50 0.97126422 0.00640000 0.00832000

5 0.54512397 0.05333334 0.06933334

10 0.73916295 0.02666667 0.03466667

15 0.82947366 0.01777778 0.02311111

20 0.87936629 0.01333333 0.01733333

30 25 0.90999013 0.01066667 0.01386667
30 0.93019297 0.00888889 0.01155556

35 0.94424462 0.00761905 0.00990476

40 0.95442271 0.00666667 0.00866667

45 0.96203635 0.00592593 0.00770370

50 0.96788304 0.00533333 0.00693333
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Table 6.4: MRR (Minimum Relative Risk) of proposed estimator A; relative
tom.le. A, for p =3 and A = diag(1,1,1).

n v MRR d’ cz(opt)
5 0.55672033 0.37651530 0.18825765
10 0.86523787 0.17420857 0.08710429
15 0.94428877 0.10677300 0.05338650
20 0.97282673 0.07305521 0.03652760
5 25 0.98547639 0.05282453 0.02641227
30 0.99183642 0.03933742 0.01966871
35 0.99530300 0.02970377 0.01485188
40 0.99729273 0.02247853 0.01123926
45 0.99846982 0.01685889 0.00842945
50 0.99917404 0.01236319 0.00618159
5 0.39966232 0.17143446 0.08571723
10 0.76835727 0.08234253 0.04117127
15 0.88740307 0.05264523 0.02632261
20 0.93691091 0.03779657 0.01889829
10 25 0.96132332 0.02888738 0.01444369
30 0.97481725 0.02294792 0.01147396
35 0.98289880 0.01870545 0.00935272
40 0.98803141 0.01552359 0.00776180
45 0.99143882 0.01304882 0.00652441
50 0.99377962 0.01106900 0.00553450
5 0.32640359 0.11141464 0.05570732
10 0.70763715 0.05421782 0.02710891
15 0.84605410 0.03515221 0.01757611
20 0.90827828 0.02561941 0.01230970
15 25 0.94071221 0.01989973 0.00994986
30 0.95944275 0.01608661 0.00804330
35 0.97108945 0.01336295 0.00668147
40 0.97874382 0.01132020 0.00566010
45 0.98399442 0.00973140 0.00486570
50 0.98772043 0.00846036 0.00423018




149

Table 6.4 (continued): MRR (Minimum Relative Risk) of proposed estimator
A, relative to m.l.e. A; for p =3 and A = diag(1,1,1).

n v MRR d* cz2(opt)

5 0.28305635 0.08258202 0.04129101

10 0.66546503 0.04045516 0.02022758

15 0.81450303 0.02641287 0.01320644

20 0.88507042 0.01939173 0.00969586

20 25 0.92327623 0.01517904 0.00758952
30 0.94600136 0.01237059 0.00618529

35 0.96048053 0.01036454 0.00518227

40 0.97019956 0.00886001 0.00443001

45 0.97699467 0.00768982 0.00384491

50 0.98190308 0.00675367 0.00337684

5 0.25430098 0.06561938 0.03280969

10 0.63440331 0.03227533 0.01613766

15 0.78962374 0.02116065 0.01058032

20 0.86590896 0.01560330 0.00780165

25 25 0.90839653 0.01226890 0.00613445
30 0.93423772 0.01004596 0.00502298

35 0.95100594 0.00845815 0.00422908

40 0.96243820 0.00726729 0.00363365

45 0.97054153 0.00634107 0.00317053

50 0.97646804 0.00560009 0.00280005

5 0.23380615 0.05444283 0.02722142

10 0.61055652 0.02685055 0.01342528

15 0.76949947 0.01765313 0.00882656

20 0.84982915 0.01305441 0.00652721

30 25 0.89556738 0.01029518 0.00514759
30 0.92388180 0.00845570 0.00422785

35 0.94252492 0.00714178 0.00357089

40 0.95539404 0.00615634 0.00307817

45 0.96461510 0.00538989 0.00269494

50 0.97142461 0.00477673 0.00238836
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Table 6.5: MRR (Minimum Relative Risk) of proposed esti ..or A, relative
to A, for p=3 and A = diag(4,2,1).

n v MRR d* cz(opt)
5 0.62141238 0.37651530 0.21963392
10 0.87995912 0.17420857 0.10162167
15 0.94963936 0.10677300 0.06228425
20 0.97526844 0.07305521 0.04261554
5 25 0.98673117 0.05282453 0.03081431
30 0.99252396 0.03933742 0.02294683
35 0.99569164 0.02970377 0.01732720
40 0.99751385 0.02247853 0.01311247
45 0.99859358 0.01685889 0.00983435
50 0.99924033 0.01236319 0.00721186
5 0.50309706 0.17143446 0.10000343
10 0.79961726 0.08234253 0.04803315
15 0.90048577 0.05264523 0.03070972
20 0.94357179 0.03779657 0.02204800
10 25 0.96514803 0.02888738 0.01685097
30 0.97719265 0.02294792 0.01338629
35 0.98445552 0.01870545 0.01091151
40 0.98909115 0.01552359 0.00905543
45 0.99218025 0.01304882 0.00761181
50 0.99430866 0.01106900 0.00645691
5 0.45111036 0.11141464 0.06499187
10 0.75191197 0.05421782 0.03162706
15 0.86629316 0.03515221 0.02050546
20 0.91918941 0.02561941 0.01494466
15 25 0.94726538 0.01989973 0.01160817
30 0.96368146 0.01608661 0.00938385
35 0.97398089 0.01336295 0.00779505
40 0.98079570 0.01132020 0.00660345
45 0.98549508 0.00973140 0.00567665
50 0.98884403 0.00846036 0.00493521
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Table 6.5 (continued): MRR (Minimum Relative Risk) of proposed estimator
A; relative to m.l.e. A, for p=3 and A = diag(4,2,1).

n v MRR d* ca(opt)

5 0.42123025 0.08258202 0.04817284

10 0.71990755 0.04045516 0.02359884

15 0.84103407 0.02641287 0.01540751

20 0.89998640 0.01939173 0.01131184

20 25 0.9325155) 0.01517904 0.0088¢ 444
30 0.95213037 0.01237059 0.00721618

35 0.96475635 0.01036454 0.00604598

40 0.97329890 0.00886001 0.00516834

45 0.97930929 0.00768982 0.00448573

50 0.98367322 0.00875367 0.00393964

5 0.40175442 0.06561938 0.03827797

10 0.69690110 0.03227533 0.01882728

15 0.82160385 0.02116065 0.01234371

20 0.88449653 .L£1560330 0.00910193

25 25 0.92019441 0.01226890 0.00715686
30 0.94221626 0.01004596 0.00586015

35 0.95666343 0.00845815 0.00493392

40 0.96659905 0.00726729 0.00423925

45 0.97369123 0.00634107 0.00369896

50 0.97890843 0.00560009 0.00326672

5 0.38803721 0.05444283 0.03175832

10 0.67955431 0.02685055 0.01566282

15 0.80619177 0.01765313 0.01029766

20 0.87174502 0.01305441 0.00761507

30 25 0.9097¢265 0.01029518 0.00600552
30 0.93363568 0.00845570 0.00493249

35 0.94953293 0.00714178 0.00416604

40 0.96060721 0.00615634 0.00359120

45 0.96860204 0.00538989 0.00314410

50 0.97454322 0.00477673 0.00278642
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Table 6.6: MRR (Minimum Relative Risk) of proposed estimator A, relative
to m.le. A for p =3 and A = diag(25,1,1).

n v MRR d* c2(opt)
5 0.77210436 0.37651530 0.57944889
10 .91970221 0.17420857 0.26810322
15 0.96490918 0.10677300 0.16432133
20 0.98242411 0.07305521 0.11243038
5 25 0.99046399 0.05282453 0.08129582
30 0.99458882 0.03933742 0.06053944
35 0.99686640 0.02970377 0.04571345
40 0.99818538 0.02247853 0.03459396
45 0.99897074 0.01685889 0.02594547
50 0.99944290 0.01236319 9.01902668
5 0.72094168 0.17143446 0.26383392
10 0.87564960 0.08234253 0.12672338
15 0.93480648 0.05264523 0.08101986
20 0.96183063 0.03779657 0.05816811
10 25 0.97593184 0.02888738 0.04445705
30 0.98102152 0.02294792 0.03531635
35 0.98899462 0.01870545 0.02878728
40 0.99221451 0.01552359 0.02389047
45 0.99438393 0.01304882 0.02008185
50 0.99589177 0.01106900 0.01703495
5 0.70149978 0.11141464 0.17146472
10 0.85286671 0.05421782 0.08344005
15 0.91620630 0.03515221 0.05409850
20 0.94749107 0.02561941 0.03942772
15 25 0.96486241 0.01989973 £.03062525
30 0.97535268 0.01608661 0.02475694
35 0.98209464 0.01336295 0.02056529
40 0.98663926 0.01132020 0.01742155
45 0.98981974 0.00973140 0.01497642
50 0.99211359 0.00846036 0.01302032
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Table 6.6 (continued): MRR (Minimum Relative Risk) of proposed estimator
A, relative to m.l.e. A, for p=3 and A = diag(25,1,1).

n v MRR d* ¢2(opt)
5 0.69102895 0.08258202 0.12709194
10 0.83878244 0.04045516 0.06225961
15 0.90354215 0.02641287 0.04064384
20 0.93702043 0.01532173 0.02984345
20 25 0.95633838 0.01517904 0.02336022
30 0.96838758 0.01237059 0.01903806
35 0.97635000 0.01036454 0.01595081
40 0.98185110 0.00886001 0.01363537
45 0.98578798 0.00768982 0.01183447
50 0.98868697 0.00675367 0.01032375
5 0.68445740 0.06561938 0.10098680
10 0.82919573 0.03227533 0.0496. ¢ ;
158 0.89436227 0.02116065 0.03256578
20 0.92905470 0.01560330 0.02401315
25 25 0.94960314 0.01226890 0.01888157
30 0.96271301 0.01004596 0.01546052
35 0.97154885 0.00845815 0.01301691
40 0.97776087 6.00726729 0.01118421
45 0.98227699 0.00634107 0.00975877
50 0.98565077 0.00560009 0.00861842
5 0.67994259 0.05444283 0.08378634
10 0.82224463 0.02685055 0.04132242
15 0.88740242 0.01765313 0.02716778
20 0.92279528 0.01305441 0.02009046
30 25 0.94415553 0.01029518 0.01584407
30 0.95801296 0.00845570 0.01301314
35 0.96749208 0.00714178 0.01099105
40 0.97424515 0.00615634 0.00947448
45 0.97921364 0.00538989 0.00829492
50 0.98296615 0.00477673 0.00735128
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Table 6.7: MRR (Minimum Relative Risk) of proposed estimator A, relative
to m.l.e. A; for p =95 and A = diag(1,1,1,1,1).

n v MRR d* cz(opt)

5 0.51278498 0.19909764 0.09954882

10 0.84135187 0.09226476 0.04613238

15 0.93186338 0.05665380 0.02832690

20 0.96595775 0.03884832 0.01942416

10 25 0.98147861 0.02816503 0.01408252
30 0.98943067 0.02104284 0.01052142

35 0.99382985 0.01595556 0.00797778

40 0.99638784 0.01214010 0.00607005

45 0.99792032 0.00917252 0.00458626

50 0.99884987 0.00679846 0.00339923

5 0.42310014 0.12167796 0.06083398

10 0.78275670 0.05784690 0.02892345

15 0.89647768 0.03656988 0.01828494

20 0.94326172 0.02593137 0.01296568

15 25 0.96608515 0.01954826 0.00977413
30 0.9785468: 0.01529286 0.00764643

35 0.98590407 0.01225328 0.00612664

40 0.99049953 0.00997360 0.00498680

45 0.99349191 0.00820052 0.00410026

50 0.99550187 0.00678205 0.00339103

5 0.36668366 0.08790116 0.04395058

10 0.73888957 0.04232278 0.02116139

15 0.86" 5719 0.02712999 0.01356499

20 0.92349067 0.01953359 0.00976680

20 25 0.95204069 0.01497575 0.00748788
30 0.96819936 0.01193719 0.00596860

35 0.97805€86 0.00976680 0.00488340

40 0.98441331 0.00813900 0.00406950

45 0.98868920 0.00687293 0.00343647

50 0.99166190 0.00586008 0.00293004
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Table 6.8: MRR (Minimum Relative Risk) of proposed estimator A, relative
tom.le. A; for p=>5 and A = diag(5,4,3,2,1).

n v MRR d* c2(opt)
5 0.54403941 0.19909764 0.11463603
10 0.84841159 0.09226476 0.05312401
15 0.93433215 0.05665380 0.03262001
20 0.96704513 0.03884832 0.02236801
10 25 0.98202251 0.02816503 0.01621680
30 0.98972305 0.02104284 0.01211600
35 0.99399310 U.01595556 0.00918686
40 0.99648018 0.0121<01¢C 0.00699000
45 0.99797205 0.00917252 0.00528133
50 0.99887785 0.00679846 0.00391440
5 0.46471353 0.12167796 0.07005948
10 0.79418188 0.05784690 0.03330697
15 0.90091821 0.03656988 0.02105613
20 0.94538349 0.02593137 0.01493071
15 25 0.96723528 0.01954826 0.01125546
30 0.97922311 0.01529286 0.00880529
35 0.98632402 0.01225328 0.00705517
40 0.99077011 0.00997360 0.00574258
45 0.99367059 0.00820052 0.00472168
50 0.99562165 0.00678205 0.00390495
5 0.41558238 0.08790116 0.05061155
10 0.75420498 0.04232278 0.02436852
15 0.87384779 0.02712999 0.01562085
20 0.92671398 0.01953359 0.01124701
20 25 0.95386404 0.01497575 0.00862271
30 0.96931623 0.01193719 0.00687317
35 0.97878045 0.00976680 0.00562351
40 0.98490159 0.00813900 0.00468625
45 0.98902875 0.00687293 0.00395728
50 0.99190339 0.00586008 0.00337410
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Table 6.9: MRR (Minimum Relative Risk) of proposed estimator A, relative
to m.le. A; for p= 5 and A = diag(6,5,3,1,1).

n v MRR d* cz2(opt)
5 0.61042200 0.19909764 0.12952023
10 0.86443548 0.09226476 0.06002157
15 0.94009734 0.05665380 0.03685535
20 0.96962253 0.03884832 0.02527224
10 25 0.98332335 0.02816503 0.01832237
30 0.99042651 0.02104284 0.01368913
35 0.99438755 0.01595556 0.01037967
40 0.99670400 0.01214010 0.00789757
45 0.99809774 0.00917252 0.00596706
50 0.99894596 0.00679846 0.00442264
5 0.55078443 0.12167796 0.07915592
10 0.81940973 0.05784690 0.03763150
15 0.91105273 0.03656988 0.02379003
20 0.95031846 0.02593137 0.01686929
15 25 0.96994280 0.01954826 0.01271685
30 0.98082848 0.01529286 0.00994856
35 0.98732691 0.01225328 0.00797120
40 0.99141925 0.00997360 0.00648819
45 0.99410079 0.00820052 0.00533473
50 0.99591090 0.00678205 0.00441197
5 0.51504258 0.08790116 0.05718289
10 0.78733814 0.04232278 0.02753250
15 0.88820788 0.02712999 0.01764904
20 0.93408978 0.01953359 0.01270731
20 25 0.95809581 0.01497575 0.00974227
30 0.97193448 0.01193719 0.00776558
35 0.98048943 0.00976680 0.00635365
40 0.98606143 0.00813800 0.00529471
45 0.98983900 0.00687293 0.00447109
50 0.99248175 0.00586008 0.00381219
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Table 6.10: MRR (Minimum Relative Risk) of proposed estimator A, relative
tom.le. A, for p=7and A = diag(1,1,1,1,1,1,1).

n v MRR d* c2(opt)
5 0.58699354 0.23987493 0.11993746
10 0.87823455 0.10934228 0.05467114
15 0.95100734 0.06583140 0.03291570
20 0.97696590 0.04407596 0.02203798
10 25 0.98827876 0.03102269 0.01551135
30 0.99382795 0.02232052 0.01116026
35 0.99674892 0.01610468 0.00805234
40 0.99834458 0.01144280 0.00572140
45 0.99922243 0.00781689 0.00390844
50 0.99969087 0.00491616 0.00245808
5 0.49126240 0.13410122 0.06705061
10 0.82491058 0.06308781 0.03154390
15 0.92103821 0.03941667 0.01970834
20 0.95857622 0.02758110 0.01379055
15 25 0.97623150 0.02047976 0.01023988
30 0.98558261 0.01574553 0.00787277
35 0.99094854 0.01236394 0.00618197
40 0.99420463 0.00982775 0.00491387
45 0.99625974 0.00785515 0.00392758
5 0.99759231 0.06627708 0.00313854
5 0.42869051 0.09389402 0.04694701
10 0.78321700 0.04486233 0.02243116
15 0.89544658 0.02851843 0.01425922
20 0.94192327 0.02034648 0.01017324
20 25 0.96477362 0.01544331 0.00772166
30 0.97735541 0.01217454 0.00608727
35 0.98485175 0.00983969 0.00491985
40 0.98958140 0.00808856 0.00404428
45 0.99269598 0.00672657 0.00336328
50 0.99481492 0.00563698 0.00281849
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Table 6.11: MRR (Minimum Relative Risk) of proposed estimator A, relative
to m.l.e. A, for p=Tand A = diag(4,3,3,2,2,1,1).

n v MRR d* cz(opt)
5 0.62747266 0.23987493 0.13478430
10 0.88610333 0.10934228 0.06143878
15 0.95353261 0.06583140 0.03699027
20 0.97800161 0.04407596 0.02476602
10 25 0.98876026 0.03102269 0.01743147
30 0.99406581 0.02232052 0.01254177
35 0.99686841 0.01610468 0.00904912
40 0.99840324 0.01144280 0.0064-.964
45 0.99924919 0.00781689 0.00439226
50 0.99970126 0.00491616 0.00276236
5 0.54854198 0.13410122 0.07535068
10 0.83856126 0.06308781 0.03544867
15 0.92593709 0.03941667 0.02214799
20 0.96078624 0.02758110 0.01549766
15 25 0.97737163 0.02047576 0.01150746
30 0.98622175 0.01574553 0.00884732
35 0.99132615 0.01236394 0.00694723
40 0.99443503 0.00982775 0.00552215
45 0.99640272 0.00785515 0.00441376
50 0.99768141 0.00627708 0.00352705
5 0.49850336 0.09389402 0.05275849
10 0.80236544 0.04486233 0.02520788
15 0.90286122 0.02851843 0.01602434
20 0.94545539 0.02034648 0.01143257
20 25 0.96668726 0.01544331 0.00867751
30 0.97848370 0.01217454 0.00684080
35 0.98555670 0.00983969 0.00552887
40 0.99004014 0.00808856 0.00454491
45 0.99300320 0.00672657 0.00377962
50 0.99502478 0.00563698 0.00316738
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Table 6.12: MRR (Minimum Relative Risk) of proposed estimator A, relative
to m.le. A, for p=7 and A = diag(7,2,1,1,1,1,1).

n v MRR d* cz(opt)
S 0.73746629 0.23987493 0.16453272
10 0.91075629 0.10934228 0.07499901
15 0.96192244 0.06583140 0.04515444
20 0.98154819 0.04407596 0.03023216
10 25 0.99043918 0.03102269 0.02127879
30 0.99490513 0.02232052 0.01530988
35 0.99729361 0.01610468 0.01104637
40 0.99861329 0.01144280 0.00784873
45 0.99934550 0.00781689 0.00536169
50 0.99973880 0.00491616 0.00337205
5 0.69522813 0.13410122 0.09198143
10 0.87891562 0.06308781 0.04327259
15 0.94146190 0.03941667 0.02703631
20 0.96806862 0.02758110 0.01891817
15 25 0.98122206 0.02047976 0.01404728
30 0.98841681 0.01574553 0.01080003
35 0.99263890 0.01236394 0.00848056
40 0.99524338 0.00982775 0.00674096
45 0.99690799 0.00785515 0.00538793
50 0.99799809 0.00627708 0.00430551
5 0.67058005 0.09389402 0.06440289
10 0.85653562 0.04486233 0.03077154
15 0.92545858 0.02851843 0.01956109
20 0.95670996 0.02034648 0.01395587
20 25 0.97296527 0.01544331 0.01059273
30 0.98226180 0.01217454 0.00835064
35 0.98795320 0.00983969 0.00674915
40 0.99161785 0.00808856 0.00554803
45 0.99406951 0.00672657 0.00461382
50 0.99575859 0.00563698 0.00386646
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Table 6.13: MRR (Minimum Relative Risk) of proposed estimator A; relative
to m.le. A; for p =3 and A = ((Aix)) where A\;; = 94,12 = 41, A13 = 23,22 =

26, Az; =11 and Aas = 6.

n v MRR d* ca2(opt)
S5 0.77922797 0.37651515 1.36118281
10 0.92180097 0.17420851 0.62980103
15 0.96575099 0.10677297 0.38600713
20 0.98282689 0.07305519 0.26411012
5 25 0.99067664 0.05282452 0.19097194
30 0.99470735 0.03933741 0.14221315
35 0.99693418 0.02870375 0.10738543
40 0.99822426 0.02247852 0.06§126464
45 0.99899262 0.01685889 0.06094850
50 0.99945468 0.01236318 0.04469556
5 0.73051786 0.17143475 0.61977327
10 0.87935990 0.08234267 0.29768637
15 0.93657935 0.05264532 0.19032410
20 0.96280611 0.03779664 0.13664293
10 25 0.97652066 0.02888743 0.10443424
30 0.98440009 0.02294796 0.08296178
35 0.98924905 0.01870548 0.06762431
40 0.99239111 0.01552362 0.05612121
45 0.99450934 0.01304884 0.04717435
50 0.99598235 0.01106901 0.04001686
o 0.71214372 0.11141477 0.40278825
10 0.85756493 0.05421788 0.19600925
15 0.91866732 0.03515226 0.12708294
20 0.94894052 0.02561944 0.09261977
15 25 0.96578777 0.01989975 0.07194186
30 0.97597837 0.01608662 0.05815659
35 0.98253608 0.01336296 0.04830997
40 0.98696083 0.01132022 0.04092501
45 0.99005997 0.00973141 0.03518115
50 0.99229658 0.00846037 0.03058606




161

Table 6.13 (continued): MRR (Minimum Relative Risk) of proposed estimator
A, relative to m.le. A, for p=3 and A = ((Aix)) where A\j; = 94,)12 =41, M3 =

23, z\zz = 26, 1\23 = 11 and 4\33 = 6.

n v MRR d* c2(opt)
5 0.70228201 0.08258148 0.29854974
10 0.84414595 0.04045489 0.14625311
15 0.90652263 0.02641270 0.09548757
20 0.93885636 0.01939160 0.07010479
20 25 0.95755345 0.01517894 0.05487513
30 0.96923482 0.01237051 0.04472202
35 0.97696453 0.01036448 0.03746980
40 0.98231059 0.00885996 0.03203064
45 0.98613989 0.00768977 0.02780018
50 0.98896188 0.00675363 0.02441581
5 0.69610256 0.06561891 0.23722641
10 0.83503467 0.03227510 0.11668140
15 0.89774430 0.02116050 0.07649972
20 0.93120688 0.01560319 0.05640888
25 25 0.95106554 0.01226881 0.04435438
30 0.96375567 0.01004589 0.03631805
35 0.97231996 0.00845809 0.03057781
40 0.97834772 0.00726724 0.02627263
45 0.98273396 0.00634102 0.02292416
§0 0.98601341 0.00560005 0.02024538
5 0.69185865 0.05444259 0.19682162
10 0.82843810 0.02685043 0.09707006
15 0.89110184 0.01765305 0.06381955
20 0.92520875 0.01305435 0.04719428
30 25 0.94582945 0.01029514 0.03721912
30 0.95922720 0.00845566 0.03056902
35 0.96840376 0.00714175 0.02581895
40 0.97494835 0.00615631 0.02225639
45 0.97976804 0.00538987 0.01948552
50 0.98341119 0.00477671 0.01726882
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CHAPTER 7

ESTIMATION OF THE SCALE MATRIX OF
THE MULTIVARIATE T-MODEL UNDER
THE ENTROPY LOSS FUNCTION

7.1 Estimation under Entropy Loss

Consider the multivariate t-model given by (2.3)

N —(v+Np)/2
921,72, ... 2N) = K(v, Np)AI~N/2 (u + 30X - /AT (X, - 0))

=1

where
v*/2T((v + Np)/2)

K(v,Np) = aNP/20(y [2)

In Chapter 6 we have developed estimators for the scale matrix A which dom-
inate the best multiple estimator based on the sum of products matrix A under
a squared error loss function. In this chapter we develop estimators for the scale

matrix A under the entropy loss function given by
L(u(A), A) = tr(A" u(A)) — InjA"'u(A)| - p (7.1)

where u(A) is any estimator of A based on the sample sum of products matrix A.

In estimating A by u(A), we consider the risk function

R(u(A),A) = E{L(u(A), A)].

176
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An estimator uz2(A) of A will be said to dominate another estimator u;(4)
of A if for all A belonging to the class of positive definite matrices the following
inequality holds

R(u2(A),A) < R(u1(A),4A),

and the inequality
R(“?(A)vA) < R(ul(A)a A)v

holds for at least one A.
An estimator is said to be admissible if there exists no other estimator which

dominates it. On the other hand an estimator is said to be inadmissible if it is

dominated by another estimator.
Notations

In what follows we will use the following notations:

1. Sum of products matrix based on multivariate t-model:

N
A= Z(x,- - X)X, - X).
=1

2. Lower triangular decomposition of A:
A=TT,

where T a lower triangular matrix.
3. Characteristic roots of A:
my,ma,...,M, (m; 2 ma 2 oo Z m,).

4. Spectral decomposition of A:

A=RMR,
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where M = Diag(m;,m3,...,m,) is the diagonal matrix with its characteristic
roots as the diagonal elements and R the corresponding - natrix of normalized char-
acteristic vectors (RR' = R'R = I).

5. Unbiased estimator of A:

6. James-Stein Type Estimator of A:

A; =T Diag(d},d},....d;

)T’

where

-1
v . :
d; = (u_z(n+1+p—2z)) sy 1=12,...,p.
7. Improved Estimator of A:
3 = RJ(M)R',

where

#(M) = Diag(dim,,dymy,...,dym,)

with d} (i =1,2,...,p) as given above.

8. Sum of products matrix based on N observations on N,(0,A):

N
w=>(2;-2)z,-Zy.
=1
9. Lower triangular decomposition of W':

W =UU",

where U a lower triangular matrix.
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10. Spectral decomposition of W:
W = RLR',

where L = Diag(ly,!a,...,1,) is the diagonal matrix with its characteristic roots as
the diagonal elements and R the corresponding matrix of normalized characteristic
vectors (RR' = R'R =I).

11. Characteristic roots of W:

’l,lz,...,l, (Il Z lz Z . 2 l’)o

We will consider estimators of A based on (i) multiple. > the sample sum of
products matrix (ii) lower triangular decomposition of the sample sum of products
matrix and (iii) spectral decomposition of the sample sum of products matrix.

In other words we consider

(i) estimators of the type cA, ¢ > 0,

(ii) estimators of the type TAT' where T is an upper triangular matrix such
that A = TT' and A is an arbitrary positive definite diagonal matrix in analogy
with the work, in the context of the multivariate normal distribution, by James and
Stein (1961).

(iii) estimators of the type R¢(M)R' where

¢(M) = Diag(6lmlv62m2’ v ’6’m’)

with positive numbers é; (i = 1,2...,p), once again in analogy with the works of
Stein (1975) and Dey and Srinivasan (1985).
Since we will develop estimators along the lines of Stein Estimation it seems

appropriate to describe briefly what is meant by Stein effect.

Stein Effect
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Suppose that X; ~ N(6;,1) and it is desired to estimate 6; under the squared
error loss function. Then it is well known that the sample mean 6;(X;) = X;
is admissible if the expe - . loss is the criterion. Consider next the problem of
estimating the mean vector @ of p-dimensional normal population N,(6,I). The

usual estimator of 8 = (8,6,,...,6,) is the sample mean
6(X) = (61(X1962(X2)96P(XP)) = (Xlsxh e sxp)"

Stein (1956) proves that the sample mean §(.X) is inadmissible if the following risk
function is the criterion:
?
R(§(X),0) = ) _ Ri(6(X:),6.)
=1
where

Ri(8(X:),6:) = (8:(X:) - 6:)* (i=1,2,...,p), p2 3.

James and Stein (1961) prove that the sample mean §(X) is inadmissible when
p 2> 3 and expected loss is the criterion; They prove that the sample mean §(X) is

dominated by the estimator

§75(x) = (1 - %Xg) X.

In the above problem X;'s are independent and the 6,’s need not be related in
any way. This surprising fact that one could combine unrelated problems to obtain
improved estimators is common!ly called the Stein effect (see, for example, Berger,
1988).

The papers by Stein (1956) and James and Stein (1961) have had a profound
influence on estimation problems in statistics. Stein’s ideas and theories have been

extended in two main directions, namely, to more general loss functions, and to

other distributions with location parameters.
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2 nother important area is the estimation of the scale matrix of the multivariate
normal distribution. James and Stein (1961) consider the estimation of the scale
matrix A of the multivariate normal distribution N,(0, A) under the entropy loss
function given by (7.1). It has been shown that the estimator UDU', where D =
Diag(dy,d2,...,dp), with

di=(n+p+1-2i)"1, for i=1,2,..,p,

and U is the 1 wer triangular matrix such that the Wishart matrix W can be decom-
posed as W = UU', is a minimax estimator for the scale matrix of the multivariate
normal distribution among the class of estimators UAU' where A is an arbitrary
positive definite diagonal matrix.

Later Stein (1975) considers the following class of estimators for the scale ma-

trix of .ie multivariate r.ormal distribution:
Ré(L)R’

where

L = Diag(lh,1a,...,1,),

¢(L) is a diagonal matrix with diagonal elements as some functions of the char-
acteristic roots of W and the Wishart matrix W has the spectral decomposi-
tion given by W = RLR' with R the matrix of normalized characteristic vectors
(RR' = R'R = I). Dey and Srinivasan (1985) develop improved as well as minimax
estimators for the scale matrix A of the multivariate normal distribution along the
line of James and Stein (1961) and Stein (1975).

Some of these results have been extended in the present work to the case
when the underlying observations have the multivariate t-model rather than the

multivariate normal model.




D ————

182

In order to avoid digressions we prove some lemmas that will be needed in what

follows.

Lemma 7.1 For any integern > p > 1,

il (n+p (2:—-1))SO.

i=1

Proof. Consider the arithmetic mean and geometric mean of the numbers n 4+ p—
I,n+p-3,n+p-5,...,n+p—(2p—1). Then from the arithmetic and geometric
mean inequality we have
P 1/p
n> (H{n+p-(2i— 1)}) ,
i=1

or

12ﬁ(n+p-n(2i-1)).

=1

The proof is completed by taking logarithm in both sides of the above inequality.

Lemma 7.2 Consider the multivariate -model given by (2.3) for v > 2. Then the

following result holds:

vn

u—2A

E(A) =
(cf. Sutradhar and Ali, 1989).
Proof. (i) By definition

/oo '1.2AI—N/2

E(A) = /X . Z ;- %x; - %y [ IR

? =1

X ezp ( E(z, - 8)Y(r*A) N z; - o)) h(r) drdX

=1

where X = (X, X3,...,Xn) (see for example, (2.5)).
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Tbx  nder the transformation
Xj = 0+TZJ1 (] = 112s"-7N)

we have

’ T_N'IAl—le

oo N
_ 2 § : .7 Ly
E(A) —./0 /an"' (ZJ Z)(ZJ Z) (2.,r)Np/2

i=1

N
X exp (%1 z;A-'z,-) h(r) TNPdZ dr

i=1

= ( /o ~ rzh(r)dr) /z . f:(Z,- - 2)Z; - 2y

J=1
N
|A|—N',2 -1 ' A—1
x Wczp ?szA Z; dZ.
j=1
Hence by virtue of

v
v—2

E(r?) =

and

E(W)=nA

we finally have
v

E(4) = v—-2

(nA).

Lemma 7.3 Consider the multivariate t-model for v > 2. Then the following two
identities hold:
(i)
Ein(jAl)] = E [In(IW|)] + 2pE(inT) (1.2)

where

N
W =Y (2;-2)2;-2)

j=1
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with 2; ~ N(0,A), (j =1,2,...,N).
(ii) ,
E [In(IAT*AD] = Y E [In(x}41-:)] + 2pE(InT) (7.3)

=1

where 7% has a gamma distribution given by G(v/2,2/v).
Proof. (i) The proof is very analogous to Lemma 7.2.
(ii) It follows from (7.2) that
E[in(A™! A)] =E[In(A)] — In(A)
=E [In(|W])] + 2pE(InT) — In(A).
Since ,
" e
(see e.g. Muirhead, 1982, pp 85, 100) it follows that

E[in(A"1A)) =E [ln (ﬁ xf,_,,,_;)] + 2pE(inT)

i=1

)
= Z E [In (x341-i)] +2pE(InT)

=1

where =2 has a gamma distribution given by G(v/2,2/v).

Lemma 7.4 Consider the triangular decomposition of the sum of products matrix

N
A=Y (X; - X)X;-X) =TT

j=1
where T is a lower triangular matrix and X = (X}, X3, ...,Xn) has the multivariate
t-model. Then for v > 2 the following identities hold:
(3)
Y, (1.4)
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(ii)
E[in(JA"'TAT'))] = E{in(JA"*UAU"))] + 2pElin(7)], (7.5)

where U is a lower triangular matrix such that

N
W=> (2;-2)z;- 2) =UU"'

=1

with Z; ~ Np(0,A) and =2 ~ G(v/2,2/v).

Proof. (i) As in Lemma 7.2 we have

oo |1.2A|-N/2

E[tr(A'TAT')) = / oL

XeRNr

tr(A"'TAT') /
[1]

N
X exp (%1- Z(z_,- —8Y(72A) (x5 — 0)) h(t) drdX.

i=1

Under the transformation X; = 0+12Z;, (j =1,2,...,p), the sum of products

matrix N
(X5 = X)X; - XY =TT’
=1
becomes
N - -
Y (2; - 2)(Z; - Z) = UV’
=1
so that
Eltr(A'TAT")] = / " / E[tr(A~'rUATU")] il [
r “Jo Jzemms e (2m)Nr/2
-1
X exp TZZ;A_lZJ‘ h(r) rN?dZ dr
Jj=1

= (/ooo r’h(r)d‘r) /zeaﬂr tr(AT'UAU")

|A|-N/? -1 -1
X Wczp —2—2:7.;-A Zj dZ
j=1
=VZ 5 Eltr(A'UAU"))
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Hence (7.4) is proved. (ii) The proof for (7.5) runs exactly along the same lines

as above.

Lemma 7.5 Consider the spectral decomposition of the sum of products matrix

N
A=) (X;-X)X; - X) = RMR'

=1

where X = (X;,X3,...,X~) have the multivariate t-model. Then for v > 2 the

following identities hold:

()

} 4
E[ln(A"'R$(M)R')] = _ Elln(x* — n +1 —i)]

=1

) 4
+3°In(d;) + 2pE(Inr), (7.6)

i=1

(ii)

E[tr(A"R¢(M)R’

P
=2F [Z y & L _;’"‘] +(n-—p+1);d; (7.7)

=] t=i+41

where l;’s and m;’s (i = 1,2, ..., p) are the characteristic roots of W and A respec-

tively,

)7'di, (i=1,2,...,p),

-1
. v
_2(ﬂ+p+1-—-2z)) ==

and

&(M) = Diag(d;my,dym,,... »dpniy).




187
Proof. (i) It is easily checked that
E[in(A™'R$(M)R")] =In(|A~"]) + E[In(I¢(M)])] + in(|RR'])
=In(|A"Y)) + In(f[ d;m;)
i=1

P
=In(|A7')) + ) _ In(d]) + E[in(|A]))

=1
P
=E[in(|AT AN} + ) In(d}).
=1
Then by the use of (7.3) we have (7.6).
(ii) We have

E[tr(A~* R$(M)Diag(d}my,djm, . ..,d3m,)R’)]

-1n. * » *® IT2A|—N/2
= Leau’ tT(A Dzag(d}'m;,dzmg, RN ,d'm,,))/o —(—2-"—)7-\,—;72—

N
X exp (—71 E(zj ~ 8)(r3A)" (=, ~ 0)) h(r) drdX.

=1
Under the transformation X; = 0+71Z;, (j =1,2,...,p), the sum of products
matrix

N
R Diag(m;,m,,...,my)R = E(x,- - X)X; - XY

i=1

becomes

N
23 (2 - Z2)(2; - Z) = Rr*Diag(h, ly,... , [,)R’

i=1

so that m; = 2l;, (i =1,2,...,p).
Then as in Lemma 7.2 it is easily verified that
E[tr(A™' RDiag(d;m,,d3ma,...,dym,)R’)]

o0
= (/ r?h(r) d”) / tr(A™! RDiag(dily, d3ls, ..., d}1,)R')
0 ZeRN?

|A|-N/2 -1
chzp —2—22;-1\2,- dz.

j=1
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Now by the use of
E(t®) =

v—2

and

-1
d:.;(V—z di’ (z=1)2s"'1p)

we have
E[tr(A~'RDiag(d;m,,d3ma, ... ,d;m,)R’)]
= / tr(A-lRDiag(dl Il, dzl?, sy d,l’)R')
ZRN»
N
IAl-le -1 ’
m exp TZZ,-AZ,‘ dZ. (78)
=1
We then have from Dey and Srinivasan (1985, p 1583) that

_ |A|-N/2
[an"r tr(A"'R¢(L)R’) W czp( Z Az,)

=1

[ I T A
g [Z LN 423 284E) 264D) , =13 ¢.(L)] (1.9)

i=1t=i41 i=1 =1

where ¢(L) = Diag(¢1(L),d2(L),...,95(L)). Thus the Lemma 7.5 follows from
(7.8) and (7.9) with ¢;(L) = d;l;.

Finally we restate somewhat more precisely the results we shall prove in this
chapter.

1. Among the class of estimators of A, of the form cA, the estimator A} has
the minimum risk under the entropy loss function given by (7.1)(see Theorem 7.1).
This estimator happens ‘o be the unbiased estimator of A.

2. The estimator A} is the minimum risk estimator among the class of estima-
tors of the form TAT' where A is any arbitrary positive definite diagonal matrix
(see Theorem 7.2); Also the estimator A} dominates the estimator A} under the

entropy loss function given by (7.1).
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3. The estimator A] dominates the abovementioned estimator A3 under the

entropy loss function (see Theorem 7.3).

7.2 Estimators Based on Multiples of the Sample
Sum of Products Matrix

As mentioned in Chapter 6, the scale matrix A of the multivariate normal
distribution is usually estimated by ¢W where ¢ > 0 and W is the usual Wishart
matrix. It is well known (see e.g. Muirhead, 1982, p 129) that under the entropy
loss function given by (7.1), the best estimator (smallest risk) of the scale matrix
of the multivariate normal distribution, of the form cW, is given by W/n.

In this section we consider estimators of the form A = cA, where ¢ > 0, for the
scale matrix A of the multivariate t-model and find optimum value of ¢ for which
the risk function of the estimator under the entropy loss function given by (7.1) is
minimized. We will prove that the optimum value of ¢ is given by ¢ = (v — 2)/(vn)

and resulting estimator of the scale matrix is given by

which is also unbiased. We find that the best (smallest risk) estimator of the scale
matrix of the multivariate t-model, of the form A = cA is given by A}.
It may be mentioned that the maximum likelihood estimator of A is given by

1

Ay =
1 n+1l

A

(Anderson and Fang, 1990a, p 208). Since the maximum likelihood estimator of A
belongs to the class cA, it follows that the unbiased estimator A of A dominates

the maximum likelihood estimator A,.
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Theorem 7.1 Consider the multivariate t-model given by (6.1) for v > 2. Then

under the entropy loss function the unbiased estimator of A, ~amely

has the smallest risk among the class of estimators A = cA, for ¢ > 0 and the
corresponding minimum risk is given by '

4
R(A}, A) =p In(n) - ) _ Elin(xa41-)]

=1

4+pin (u = 2) —2p E(In 1) (7.10)

where 7~2 has a gamma distribution G(v/2,2/v).
Proof. The risk function of the estimator cA is given by
R(cA, A) =E[L(cA), A}
=E[tr(A™'cA) — In(|]A"cA|) - p}
=c tr[A"1E(A)] — p In(c) — E[ln (A7 A])] - p.
Then it follows from Lemmas 7.2 and 7.3 that

vn

v—2

R(cA, A) =ctr [A" A] —p In(c)

’
- (Z Elin(x541-)] +2p E(lnr)) -p

i=1
vnp
v—2

»
¢= Y Elin(x341-i)] - p In(c) — p— 2p E(In 7). (7.11)

i=1
Now taking derivatives we have

OR(cA, A) _wvnp p

Oc Ty=-2 ¢’
3R(cA, A) _p
o —a "
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Hence ¢ = (v — 2)/(vn) minimizes the risk function given by (7.11) and the
corresponding estimator is given by A} = (v — 2)A/(vn).

It follows from (7.11), by putting ¢ = (v — 2)/(vn), that the risk function of

the estimator Aj is given by

4
R(A], A)=— Z E[ln(Xﬁ+l-i)] -oln (v;‘z) - 2p E(In 7),

=1

or

| 4
R(A}, A) ==Y E[in(x}341-:) + p In(n)

v
+plin (y — 2) —2p E(In 7).

7.3 Estimators Based on a Triangular

Decomposition of the Sample Sum of Products
Matrix

Following James and Stein (1961) we propose estimators of the form TAT’
where T is a lower triangular matrix such that the sample sum of products matrix
A has the decomposition A = TT' and A an arbitrary positive definite diagonal
matrix. We find the optimum value of A for which the risk function of the estimator
TAT’ under the entropy loss function is minimized and denote it by D*. We will
call the resulting estimator as the James and Stein Type Estimator and denote it
by A3 =TD*T".

Theorem 7.2 Under the entropy loss function given by (7.1), the estimator
A; =TD'T

where T is a lower triangular matrix such that A = TT' and

D* = Diag(d},d3,...,d3)
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with

-1 -1
v . 1 4 .
d,?=(v_2(n+1+p—2¢)) -(.,_z) i i=12..,p (112)

has the smallest risk among the class of estimators TAT' where A belongs to the
class of all positive definite diagonal matrices, and the risk function of the estimator
A3 is given by

P } 4
R(A3, A)=) in(n+1+4p—2) - Y Elln(xis1-i)]

=1 3 |

+pin (y = 2) —2p E(InT) (7.13)

where 72 has a gamma distribution G(v/2,2/v).
Furthermore A dominates the unbiased estimator A} = (v — 2)A/(vn).
Proof. The risk function of the estimator TAT' is given by
R(TAT', A) =E [tr(A"'TAT') - In|AT'TAT’| - p]
=E [tr(AT'TAT')] - E [In(|AT'TAT'])] - p.
Then from Lemma 7.4 we have

v
v—-2
—2p E(Int) — p. (7.14)

R(TAT', A) ==

E[tr(AT'UAU")| - E [in(IATUAU'))]

Then following Muirhead (1982, pp 130-132), it can be proved that the risk
function given by (7.14) does not depend on A and that

R(TAT', A) =~ z 5 2':5.-(1: + 14 p—2i) - 2p E(inT)
(t 31
) 4 »
~ 13 i) + ZE{tn(x:ﬂ-.-)]] - p. (7.15)
i=1 i=1
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This attains its minimum value of

R(A3, A) =-2p E(In7) + ZIn [

i=1

2(n+1+p—2i)]

- EElln(x?m-.-)l

=1

when

-1
(n+l+p—2i)) =d;,(say) i=12,...,p

v
b= (u—2

The risk function of the unbiased estimator A} is given by (7.10) as

P
R(A}, A) =p In(n) = )_ E[In(x341-:)]

i=1

v
+pln (u - 2) - 2p E(In 7).

while the risk of the James-Stien Type Estimator A} is given by

R(A3,A) = —2pE(Int) + Z in [ 2(n +14p- 2i)]

=1

- Z E[’"(X?u-o-l-i)]'

=1

so that

R(A3,A) - R(Af,A) = itn [;—E—z-(n +1+p— 2:')] —pln ( ":‘2)

l=l v

_zl (n+1+P 21)

i=1

Hence it follows from Lemma 7.1 that the estimator A; dominates the unbiased

estimator Aj.
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7.4 Estimators Based on the Spectral
Decomposition of the Sample Sum of Products

Matrix

As mentioned earlier, the sum of products matrix A can be decomposed as
A=RMR.
We consider, following Dey and Srinivasan (1985), estimators of the form

Ré(M)R' where
¢(M) = Diag(¢1(M), $2(M), ..., ¢,(M))

and ¢;(M)(i = 1,2,...,p) is a function of the characteristic roots m,,ma,...m,

satisfying ¢;(M) > 0. We note that if

1 .
¢i(M) = mmii t=1,2,...,p,

then

1
(M) = ;:—IM

and consequently

1 1

which is the maximum likelihood estimator A, of A. We also note that if

(v —2)m,-, ;

$i(M) = = =12,...,p.

then
v-—2
¢(M) = M
vn

and consequently

RIM)R = “L=2rMR = L=24

vn n
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which is the unbiased estimator of A (Anderson and Fang, 1990a, p 208).
In the following theorem we consider an estimator A} of A based on the above
spectral decomposition of the sample sum of products matrix. We prove that this

estimator dominates A} considered in Theorem 7.2.

Theorem 7.3 Let A = R¢(M)R be an estimator for A where A has the spectral
decomposition A = RMR', with

M =Diag(ml’m2s'°"mp)’ m, Z ma 2 '-'12 mp,

and

¢(M) = Diag(dim,,dzm,, ..., dym,)
with d}’s as given by (7.12). Then Aj dominates Aj .
Proof. The risk function of the estimator Aj is given by
R(A3, A) =E [tr(A7'A3 — in|]ATTAS| - p]
=E[tr(A~'R$(M)R')| - Elln(|A-' Ro(M)R'))] - p.
Then it follows from Lemma 7.5 that

R(A3,A) =2E [Z y ‘”' d‘l‘]+(n—p+l)2’:d.~

i=1 t=i41 i=1
?
- (E In(d7) + ) _ Elin(xns1-)] + 2pE[ln(r)]) -p, (7.16)
=1 i=1
where [;’s are the characteristic roots of the Wishart matrix W and d;’s are given
by (7.12). Now
E Z d; l dili — dyle
-1
i=1 t—l+1

B3> ";’_,:" +Y Y @

i=1 t=i41 =1 t=i41
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Butfort =i+1,i+2,...,p; i =1,2,...,p, we have d; < d¢, l; 2 l; so that

l;
———li _ >1

and

We then have

=Y (p-idi (7.17)
Finally by the use of (7.17) in (7.16) we have

RN A) <2 3 (o iV + (0 —p+ 1) D dk

=1 i=1
? »
- (Z In(d;) + Z E [l"(X:n—i)] + 2pE[ln(r)]) -p
i=1 =1

P 4
==Y in(d}) - Y_ Elln(xa41-:)] - 2p Elin(7)]

=1 i=1

=R(A}, A) (see (7.12) and (7.13))
which means that A dominates A3.
Finally we remark that the estimator A dominates the estimator A3, and
the estimator A} dominates the estimator Af. It happens that the estimator A7 is
the unbiased estimator of A. However, the unbiased estimator of A dominates the

maximum likelihood estimator under the entropy loss function (see Section 7.2).



197
7.4.1 An Example

Suppose we have the following observed sum of products matrix

13 -4 2
A= -4 13 -2
2 -2 10

with n = 10, v = 5 and p = 3. We calculate the estimators

«_Vv—2

Ap=——A4,
A} =TD*'T’
and
A = R¢(M)R'
where
D* = Diag(dy, dz,d3)
M = Diag(m,,mz,m3)
and

¢(M) = Diag(d;mh £m27 d;m3)'

It is easy to verify that D* = Diag(.05,.06,.075),

3.60555128  0.00000000 0.00000000
T={ —1.109040039 3.43063125 0.00000000 | ,
0.55470020 —0.40360368 3.08697453

my = 18, my = 9,m3 = 9, M = Diag(18,9,9) and

0.66666667 0.70710678 0.23570226
R =] —0.66666667 0.70710678 —0.23570226
0.33333333 0.00000000 -—0.94280904

so that A=TT', A= RMR' and

0.90000000 0.00000600 0.00000000
é(M) = | 0.00000000 0.54000000 0.00000000 | .
0.00000000 0.05000000 0.67500000
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Hence the unbiased estimator A} = (v — 2)A/(vn) is given by

—0.24000000 0.78000000 —0.12000000
0.12000000 —0.12000000 0.60000000

A;=

(0.78000000 —0.24000000 0.12000000)

and the estimator Aj is given by

—0.20000000 0.76769231 —0.11384615

0.65000000 —0.20000000 0.10000000
A =
0.10000000 —0.11384615 0.73986425

while the estimator A} is given by

—0.16750000 0.70750000 —0.05000000
0.05000000 —0.05000000 0.70000000

(0.70750000 —0.16750000 o.osoooooo)
AL = .
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