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Abstract

The dissertation represents a critical evaluation of the
major connectionist theories of human cognitive architecture.
The central connectionist thesis that artificial neural
networks (ANNs) can serve as finitary models of human
cognizers is examined and rejected. Connectionist theories,
in contrast to the classical symbol-processing theories of
cognitive architecture, cannot explain the productjvity and
systematicity of mental states. The reason for this is that
ANN-based cognitive architectures cannot maintain
representational states with compositional structure. Chapter
One analyzes the jmplementational connectionism’s solution to
the problem of compositionality. It is shown that neither the
theory of weak nor of strong compositionality can solve this
problem.

Chapter Two criticises the attempt to establish
connectionism as an alternative theory of human cognitive
architecture through the introduction of the symbolic/
subsymbolic distinction. The reasons for the introduction of
this distinction are examined and found to be unconvincing.
Several experimental comparisons between the TDIDT class of
symbolic learning systems and the class of artificial neural
networks using the error backpropagation algorithm are
discussed. It 1is argued that the differences in the

performance of these two classes of learning systems are

insignificant and are not systematic. Such evidence
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contradicts the view that ANNs define a new kind of
"subsymbolic" computation.

Supporters of eliminatjve connectionism have argued for
a pattern association and pattern recognition-based
explanation of cognitive processes. They deny that explicit
rules and symbolic representations play any role in cognition.
Their argument is based to a large extent on Rumelhart and
McClelland’s and MacWhinney and Leinbach’s connectionist
models of 1learning of the past tenses of English verbs.
Chapter Three presents an analysis of an experimental
comparison between these models and the Symbolic Pattern
Associator (SPA) -- a learning system based on the classical
architecture. It is shown that the SPA outperforms the
connectionist models; moreover, the SPA can represent the
acquired knowledge in the form of explicit rules. The analysis
of this comparison leads to the conclusion that symbol-
processing models have a far better chance of explaining
complex cognitive phenomena in terms of rules and symbolic

representations than eliminative connectionism.
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MOTTO

Connectionism has dramatically shifted the mainstream of
opinion in cognitive science, but only because the existing
implementations actually perform nontrivial tasks in ways
unanticipated by recent opinion. If those of the "classical"
school want to resume their hegemony, they will need more than
a persuasive ideology -- they have had that all along -- they
will need some positive results of actual modelling as
striking as those the connectionists have used to attract our

attention.

Daniel Dennett
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INTRODUCTION

The notion of cognitive or functional architecture is one
of the central notions in cognitive science. It has assumed
a particular importance in the debate between the two major
schools of thought in contemporary cognitive science --
classicism and connectionism. Although there is not complete
consensus on its definition, the cognitive or functional
architecture of a computational device can be roughly defined
as the fixed resources that allow the device to operate on
structures for which it is theoretically useful to assume some
semantic interpretation. For example, if a computational
device can take as input the codes for a & (a --> b); (aVc)
& ~a; a & (a -->b) & (¢ =--> 4d) & (~¢c -—> ~b) and output the
codes for b, c, and d respectively, and if it can process a
large number of such codes, we have good reason to assume that
it has a capacity to manipulate the codes of propositional
logic formulas which can receive a semantic interpretation.
Given sufficient time and effort, we can find out exactly
which operations of this computational device underlie its
capacity to manipulate propositional representations. These
operations can be factored into operations that are specific
for this task and into the set of the fixed resources of the
device that <constitute its cognitive or functional
architecture.

As a first approximation, the fixed resources of a

computational device that constitute its cognitive
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architecture include the set of the basic operatjons that
enable the device to manipulate representations. Minimally
this set should include operations for sorting and retrieving
representations, for comparing them, and for treating them
differentially as a function of how they are stored. The fixed
resources of the device determine such processing limitations,
as limited memory and the relative complexity of a given type
of operation vis-a-vis the set of basic operations. The
cognitive architecture includes also the control structure
which matches appropriate operations for different tasks (cf.
Pylyshyn, 1984, pp. 30-31; See also: Newell, 1980; Newell,
Rosenbloom, and Laird, 1989). In short, the cognitive
architecture can be seen as a kind of user manual for a given
computational device in direct analogy with the user manuals
provided for programming languages. And if the mind/ brain can
be viewed as a kind of computational device, the theory of
human cognitive architecture should be able to give us the
basic operations, limitations, and control structures of the
human mind. In this sense the theory of human cognitive
architecture is relevant to all theories that attempt to
uncover the fixed resources of the mind and to outline its
limits. The theory of cognitive architecture is therefore the
cornerstone of any computational theory of the mind.

Until recently, the theory of human cognitive
architecture was not a hotly contested issue in cognitive

science. Most cognitive scientists shared the common view that
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since the mind is best understood as a kind of computational
device, its functional architecture must be similar to the
functional architecture of other, better wunderstood,
computational devices such as the von Neumann computer.
Following Chomsky and Miller (1963), Putnam (1960), and others
it was thought that the functional architecture of the Turing
machine (TM) can serve as the best model of human cognitive
architecture.

Another founding principle in cognitive science has been
that computational devices based on the Turing/ von Neumann
cognitive architecture are symbol manipulating mechanisms.
Because human minds and von Neumann computers can manipulate
codes with semantic interpretations it has been assumed that
these mechanisms can best be described as physical symbol
systems (Newell, 1980; Pylyshyn, 1984). The consensus reached
among the majority of cognitive scientists on both of these
issues was seen as the cornerstone of the computational theory
of the mind and has come to be known as the ‘classical’ or
‘symbol-processing’ approach to cognition.

This peaceful state of affairs was disrupted with the
advent of artificial' neural networks (ANNs). ANNs in the form
of Rosenblatt’s perceptrons (Rosenblatt, 1962) have been
around almost since the beginning of the computer revolution.
But it was not until the early 1980s that ANNs assumed a

central stage in the development of cognitive science. This

period coincided with the development of multilayered
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perceptrons and with significant improvements in their
learning algorithms. The multilayer ANNs were shown to have
some unexpected computational properties in comparison with
their two-layer predecessors. Thus, it was shown that
multilayer ANNs can solve the XOR problem, a problem which is
unsolvable for the two-layer perceptronz. This held out the
promise of a wide range of future applications using
multilayer ANNs.

Interest in the engineering applications of ANNs gave
rise to a new foundational debate and a new movement in
cognitive science and in philosophy of mind -- connectionism.
wWhat is at stake in the debate between the connectionists and
the supporters of the classical symbol processing approach to
cognition is nothing more nor less than the ‘right’
computational model of the mind/ brain or the nature of the
‘right’ human cognitive architecture. Connectionists claim
that the ANN, and not the TM, should be seen as providing the
best model for the mind/ brain and that human cognitive
architecture is entirely ANN-based.

The debate between classicists and connectionists has
centered on several important issues. One issue is the choice
of criteria for selecting either the TM or the ANN as the
basis for human cognitive architecture. In particular, the
answers to three questions are of major significance:

1. What are the adequacy conditions that finitary models

of human cognizers must meet?
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2. What are the computational differences between TMs
and ANNs?
3. How well can the rival theories of cognitive
architecture account for the compositional character of

mental states?

In Chapter One I show that the answer given by the
connectionist theorists to each of these questions is less
than satisfactory. Connectionist research has largely been
confined to the study of the properties of particular
connectionist models designed to simulate some very restricted
cognitive tasks. These simulations have often beea used to
justify the claim that the cognitive architecture of the mind
as a whole is connectionist. It is doubtful, however, that the
performance of these connectionist models can be used to
justify such a theoretical conclusion. The root of the problem
is that ANNs cannot serve as adequate finitary models of human
cognizers. Although one can point to some connectionist models
that have performed relatively well, there are certain
pervasive cognitive phenomena, like productivity and
systematicity, that cannot be explained by connectionist
theories of cognitive architecture.

So far, there has been no attempt to explain how ANN-
based cognitive architectures can account for the phenomenon
of productivity =-- the fact that a native speaker of a

language has the ability to comprehend and produce on
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appropriate occasions an immense number of previously
unencountered sentences. In Chapter One I criticize the
widespread belief that since ANNs can simulate TMs, they can
also serve as models of human cognizers. There are several
formal results which demonstrate that any ANN with a finite
number of ‘heurons’ which are capable of being only in a
finite number of states cannot be computationally universal
and therefore cannot simulate TMs. The only way ANNs can be
shown to be TM-equivalent is if either one of these finitary
restrictions is negated, i.e. if an ANN has either an infinite
number of ‘neurons’, or ‘neurons’ that can be in infinite
number of states. But ANNs with an infinite number of
‘neurons’, or equivalently, with an infinite number of states
cannot serve as finitary models of human cognizers.

Another pervasive cognitive phenomenon is the phenomenon
of systematicity -- the fact that human thoughts and
expressions are systematically related to one another. The
problem at the heart of this issue is how ANN-based cognitive
architectures can support representational states with a
compositional structure. So far the only attempts to explain
systematicity from a connectionist perspective have been
Smolensky’s theories of weak compositionality and of strong
compositionality (Smolensky, 1987, 1991) . However, Smolensky’s
theory of weak compositionality cannot explain how ANNs can
be in representational states that are truly compositional.

The operation of vector addition and vector subtraction that
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underlies the theory of weak compositionality cannot guarantee
the compositionality of connecticnist representations. The
same is true of the theory of strong compositionality, which
relies on the operation of tensor product. The failure of
connectionist theories of cognitive architecture to solve the
problems of productivity and systematicity indicates that on
purely theoretical grounds there is no reason to abandon the
view that the Turing/ von Neumann cognitive architecture
provides the best explanation of both of these pervasive
cognitive phenomena.

Another very important issue that is shaping the debate

between classicists and connectionists concerns the existence

of "subsymbolic" computation, the computation that is supposed
to be the hallmark of "connectionist computation®. If there

is such a new mode of computation -- one that is different in
kind from the classical Turing machine-defined computation -
- then we would have prima facie evidence that the classical
theory of cognitive architecture might be incomplete. However,
the arguments given in support of the existence of a new kind
of subsymbolic computation are defective. In Chapter Two, I
present a detailed critique of these arguments and 1
demonstrate that computational models based entirely on the
classical symbolic architecture are quite capable of
performing ‘subsymbolic" computations, thus showing the

spuriousness of Smolensky’s introduction of this concept

(Smolensky, 1987, 1988). In particular, 1 analyze several
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experimental comparisons between the class of ANNs using the
error backpropagation learning algorithm and the Top-Down
Induction of Decision Trees (TDIDT) class of symbolic learning
systems. This analysis demonstrates that there exists a class
of symbolic systems based on the Turing/ von Neumann cognitive
architecture that, on the same type of learning task, can
perform as well as, if not better than, the class of ANNs.
Therefore, the claim that there exists a special "subsymbolic"
form of computation -~ allegedly characteristic only of ANNs -
- is discredited.

It may be misleading to speak of connectionism as
presenting a single theory of human cognitive architecture.
There exists a deep disagreement in the connectionist camp on
the issue of what constitutes an ANN-based cognitive
architecture and to what an extent ANN-based architectures
can or should implement symbolic-processing architectures.
The majority of connectionists are divided into two schools
of thought -- implementational connectionism and eliminative
connectionism.

The position of the jimplementational connectionism is
that although ANN-based and TM-based cognitive architectures
are strictly speaking incompatible, ANN-based architectures
can implement TM-based symbolic architectures. The position
of the eliminative copnectionism is that instead of trying to
implement symbol-processing architectures, connectionist

theory should demonstrate that there is no need to postulate
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the existence of symbol-processing operations in the human
cognitive architecture.

There are a number of difficulties associated with both
of these views. If ANNs could implement TMs, as the first
school of thought insists, then ANN-based architectures are
either jrrelevant for psychology as ‘mere’ implementations of
the classical symbolic architecture, or jinadeguate as
approximate implementations of the classical architecture.
Even though the supporters of implementational connectionism
claim that they can somehow steer between the horns of this
irrelevance/ inadequacy dilemma, the majority of ‘orthodox’
connectionists regards the attempt to implement in neural
hardware symbol-processing structures as a blind alley. They
believe that ANN-based cognitive architectures leave no place
for symbolic structures like propositions, production rules,
parse trees, part-whole hierarchies, etc. The supporters of
eliminative connectjionism deny that rules and symbolic
representations play any role in cognition and they foresee
their gradual elimination from cognitive science. Eliminative
connectionism implies a total rejection of the classical
cognitive architecture and thus a rejection of the hope that
folk psychology can be successfully reduced by the mature
cognitive science; eliminative connectionism implies the
elimination, rather than the reduction, of the central terms

of folk psychology.
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The arguments in favour of eliminative connectionism have

been almost exclusively based on concrete demonstrations of
connectionist models that try to solve some important
cognitive tasks. Although the majority of these models have
been offered simply as illustrative models, there have been
some connectionist models that try to solve serious nontrivial
cognitive tasks. Two of the most important are Rumelhart and
McClelland’s (1986) and MacWhinney and Leinbach’s (1991)
models of learning the past tenses of English verbs. 1In
Chapter Three I examine critically the most important claims
of eliminative connectionism and I find them t» be unfounded.
In particular, I demonstrate that there are symbolic learning
models that can outperform the existing connectionist models
on the task of learning the past tenses of English verbs;
moreover, these models hold out the promise of actually
outperforming ANN-based models on nontrivial cognitive tasks.
In marked contrast to the connectionist models the ‘Symbolic
Pattern Associator’ can express the acquired knowledge in
explicit form and can point the way to integrating this
knowledge systematically. No corresponding capabilities are
present in the eliminativist models. The existence of such
superior models based on the Turing/ von Neumann architecture
demonstrates the falsity of the argument in favour of

eliminative connectionism.




CHAPTER ONE
Cas i fo] tionism:

tivi stematicit

One of the main aims of cognitive science is to provide
a finitary model of human cognizers with which to explain
cognitive phenomena. The debate in cognitive science between
connectionists and supporters of the so called classical
approach can be put in terms of a simple dilemma:

(1) Classicists: The finitary model of human cognizers

is the Turing Machine (TM).

(2) Connectionists: The finitary model of human cognizers

is the artificial neural network (ANN).
In order to gain an understanding of the nature of the debate
and to be able to judge which position is the correct one we
have to explore three questions:

- What are the adequacy conditions that finitary models

of human cognizers must meet?

- What are the differences between TMs and ANNs?

- How do the cognitive architectures that the different

finitary models specify explain certain essential

properties of mental states?

11
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Productivity
init odels o Cogni s

Any model of human cognizers must meet some minimal
adequacy conditions. Such a model must be powerful encugh to
explain pervasive cognitive phenomena such as productivity and
systematicity and at the same time it must be finitely
specifiable. Let us first examine productivity.

It can be argued that contemporary cognitive science
began with the realization of the productivity or
unboundedness of human cognitive capacities. For example, in
1963 N.Chomsky and G.Miller wrote:

The fundamental fact that must be faced by any

investigation of language and linguistic behaviour is the

following: a native speaker of a language has the ability
to comprehend an immense number of sentences that he has
never previously heard and to produce, on appropriate
occasions, novel utterances that are similarly
understandable to other native speakers (Chomsky and

Miller, 1963, p.271).

The words immense number of sentences should not be taken
lightly: G.Miller has estimated that the number of well-formed
20-word English sentences is on the order of magnitude of the
number of seconds in the history of the universe (cf. Fodor
and Pylyshyn, 1988, p.24).

This fundamental fact has led N.Chomsky and others to

conclude that our capacity to produce and understand language
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is potentially unbounded or productive. No one can utter more
than a finite number of sentences due to finite memory,
limited 1lifespan, and the 1limitations of the mechanisms
underlying speech. But in order to explain language use we
have to introduce the idealization that human 1linguistic
competence is productive. So, an appropriate model of human

language users should reflect both the potential unboundedness

of linguistic competence as well as the finiteness of the
resources that interact with competence to produce actual
linguistic performance. A model of human language users that
reflects these constraints must be able to isolate the finite
productive mechanism responsible for producing and recognizing
a potentially infinite number of well-formed expressions. As
Chomsky and Miller insisted, an automaton that compiles a
simple list of all the grammatical sentences it hears simply
cannot be considered an adegquate model. Such a finite state
automaton can 1learn the potentially infinite set of
grammatical sentences only by adding an infinite number of new
states. This however violates the finiteness restriction on
the model of human language users because the capacity to
produce and understand a potentially infinite number of
sentences must be finitely represented.

In contrast with a model based on a finite state
automaton, a model of human language users based on the Turing
machine clearly meets this finite representability condition.

A TM can serve as a finitary model of human language users
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because its productive capacities are potentially infinite
while being finicely representable. A TM running a finitely
specifiable program can nonetheless operate on an infinite
number of sentences by virtue of having a potentially infinite
tape.

The argument that the productivity of 1lingquistic
capacities extends to human thinking and cognition in general
has been made by Fodor (1975). According to his language of
thought hypothesis, the ability to produce and understand an
unbounded number of sentences is clearly correlated with the
ability to think a potentially unbounded number of thoughts.
Since language and thought are the paradigmatic cognitive
capacities, we hypothesize that human cognition is in_general
productive. But if human cognitive capacities are productive
we have at least one very good reason for maintaining that the
TM is an adequate finitary model of human cognizers. Do we
have comparably good reasons for accepting connectionism? In
order to answer this question we have to look more carefully

into the relation between TMs and ANNs.

Artificial N 1 Net ) 1 Turi Machi

One often reads claims to the ef.ect that ANNs can
simulate TMs or are computationally equivalent to TMs, or that
ANNs can compute the class of Turing~computable functions. For
example Rumelhart and McClelland state that

...0ne can make an arbitrary computational machine out
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of linear threshold units, including, for example, a

machine that can carry out all the operations necessary

for implementing a Turing machine. {(Rumelhart and

McClelland, 1986, p.119.)

In a similar vein Smolensky tells us that "It is well known
that von Neumann machines and connectionist net.orks can
simulate each other" (Smolensky, 1988, p.7).

Such claims are clearly aimed to serve as a premise for
the following argument

1. TMs have been used as models of human cognizers

2. ANNs can simulate TMs.

Therefore, ANNs are at least as good as models of human

cognizers as are TMs.

Indeed, many connectionists (including Smolensky (1988),
Rumelhart and McClelland (1986)) argue for the stronger claim
that ANNs are actually better models than TMs.

Let us begin by examining in greater detail what reasons
there are for supposing that ANNs can simulate TMs. Optimism
on this issue has been fuelled by a growing battery of formal
results that aim to prove that artificial neural networks are
computationally equivalent to Turing machines. There exist
several proofs of this claim using different types of ANN.

But all such proofs have to meet one major obstacle: The

computational power of any ANN with a_finite number of units
{neurons) which are capable of being in only a finite number
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of states does not exceed the power of a finite state
automaton. But then it follows by a wall established result
of automata theory that ANNs with only a finite number of
neurons which are capable of only a finite number of states
cannot be computationally universal, and therefore cannot be
TM-equivalent, i.e. there exist functions that are Turing
computable but that are not computable by any (finite) ANN
(cf. Hartley and Szu, 1987). Thus, all proofs of the Turing
machine equivalence of ANNs have to relax at least one of
these two restrictions. And in fact we do find that all proofs
of TM-equivalence assume either an infinite number of neurons
or neurons with countably or uncountably infinitely many
states, even though the actual details of the proofs may
differ widely.

For example, Goles and Martinez (1990) assume infinitely
many neurons. They prove the computational universality of
ANNs via cellular automata, sumj infini mb.
cells (neurons) in the cell space. Goles and Martinez treat
ANNs as cellular automata whose graphs have a weighted
structure. They prove that ANNs can simulate standard cellular
automata. Then, using the well known proofs of the equivalence
of certain cellular automata having infinitely many cells with
Turing machines, they are able to prove the equivalence of
ANNs with an infinite number of neurons and TMs (Goles and
Martinez, 1990, pp. 20-26). A similar proof, relying on the

postulation of an infinite number of neurons, is given by
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Garzon and Franklin (1989).

A different approach is taken by Siegelman and Sontag
(1991) . They prove the equivalence of TMs to ANNs which have
finitely many neurons each of which is capable of being in
infinitely many states. Siegelman and Sontag prove that it is
possible to construct a network that can simulate a push-down
automaton with two binary stacks. Since it is well known that
a T™ can be simulated by a two stack push-down automaton
(Hopcroft and Ullman, 1979, pp.172-73), it is possible to
construct a network where neurons with infinitely many states
can represent stacks capable of encoding unbounded information
(Siegelman and Sontag, 1991, p. 2). Other proofs relying on
the postulation of neurons with infinitely many states are
given by Giles et al. (1990), and Sun et al. (1991). Thus,
none of these results is really very surprising since allowing
a finite state automaton to become an infinite state automaton
makes it trivially computationally universal.

The question to be asked is how relevant are these
results for the debate between classicists and connectionists.
Two very obvious limitations of these mathematical results
have to do with practical realizability:

(i) There can be no ANN built out of realistic components

that has an infinite number of neurons, and

(ii) There can be no ANN built out of realistic

components whose neurons are capable of being in an

infinite number of states.
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These practical limitations make all the difference in the
world for the computational universality of actual ANNs. They
show that the computational power of any realistic ANNs cannot
exceed the power of finite state automata. So, actual ANNs
cannot be TM-equivalent. Connectionists, however, are adamant
that such finitary restrictions do not in any way undermine
their program. They note that the same finite hardware
restrictions apply to realistic computers and human beings
alike. As Rumelhart and McClelland put it "... one limitation
is that real biological systems cannot be Turing machines
because they have finite hardware"” (Rumelhart and McClelland,
1986, p.119).

Now, the reason why we say that actual finite von Neumann
computers are effectively Turing machines is that we can
always add more registers to their memory -- effectively, this
means that we can expand the tape of the Turing machine. Many
connectionists see a similarity between the finiteness and
potential expandability of von Neumann computers and the
finiteness and potential expandability of real- component
ANNs. The reasoning here is patently analogical, as Siegelman
and Sontag put it "...this potential infinity [unbounded
number of neurons or unbounded number of neuron states] is
analogous to the potentially infinite tape in a Turing
machine"” (Siegelman and Sontag, 1991, p. 2).

It is important to understand this analogy. From a purely

mathematical point of view the two systems are analogous
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because they share a common property -- they can both be in
an infinite number of states and hence they can both be
computationally universal. In other words, the potential
expandability of ANNs -- the possibility of creating realistic
networks with larger and larger numbers of neurons or neuron
states -- 1is thought to be analogous to the potential
expandability of the memory of von Neumann machines, and thus,
to analogous potential expandability of the tape of a TM.
However, from the point of view of cognitive science there is
a deep disanalogy between them: infinite or potentially
unbounded ANNs cannot serve as finitary models of human
cognitive capacities because they are not finitely
representable, whereas TMs can so serve because they are
finitely representable.

TMs are finitely representable because a clear
distinction can be drawn between the finite control unit of
a Turing machine which has a finite description and the memory
tape. The finite control unit of a TM specifies the transition
regularities and the states which the machine can be in, but
the possible extension of the memory tape does not in any way
change its description. This is clearly not so in the case of
ANNs. Every expansion in the memory of an ANN is bound to
affect the structure of the network by adding new neurons and
weights, thus changing its description. Thus, an infinitely

expandable ANN is pot finitely representable. Many researchers

have simply assumed that if ANNs can be proven to be
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computationally universal this is enough to justify their
adoption as an adequate cognitive model. What they have missed
is the patent inability of infinite-state ANNs to serve as
finitary models of human cognizers.

The main reasons for the failure of the TM/ ANN analogy
is that it is not the computational universality of ANNs that
matters but how well ANNs or TMs can serve as finitary models
of human cognitive capacities. This crucial difference can be
missed if one 1looks only at the universality results. As
Pylyshyn puts it

...it isn’t the unboundedness per se that is important

for our purpose, it is the form of organization the

[unboundedness] condition imparts. After all, one could

extend without limit the number of states of a finite

state automaton; yet, without some finitary
characterization of state-transition regularities, we
would be right where we are in the case of an infinite-
axiom system: Such a characterization would not allow us
to understand (or, as Frege puts it, "survey") the
function such a machine is computing....A device
possessing an infinite number of (nonarticulated) states
cannot be given an effective semantic interpretation
because the mapping from states to a semantic model
cannct be specified in a finitary manner. (Pylyshyn,
1984, p.72).

Pylyshyn’s point is that TMs allow for a clear separation
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between the finitely specifiable resources of the machine (the
finite control unit and its transition table), the finitely
specifiable program that it is running, and the possibly
infinite set of data structures the machine can process. This
allows us to vary the programs and the possible data
structures a given Turing machine can process almost without
limit. But the distinction between machine, program, and data
structures cannot be drawn in the case of ANNs. Changes in
data structures are bound to affect the constitution of any
connectionist network:

In a system such as a Turing machine, where the length
of the tape is not fixed in advance, changes in the
amount of available memory can be affected without
c i t tational structure of t machine;
viz., by making more tape available. By contrast, in a
finite state automaton or a Connectionist machine, adding
to the memory (e.g., by adding units to the network)
alters the connectivity relations among nodes and thus
does affect the machine’s computational structure.
Connectionist cognitive architectures, cannot by their
very nature, support an expandable memory, so they cannot
support productive cognitive capacities. (Fodor and

Pylyshyn, 1988, pp.34-35.)

To summarize: If human cognitive capacities are

productive, connectionist networks cannot offer a finitary
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model of these capacities. So we have no option but to reject

the view that ANNs are satisfactory finitary models of human

cognizers.

Syst ticit
; it Architect i the St ! f R tati ]
States

We saw that if connectionists accept that human cognitive
capacities are productive, then they must reject the view that
the artificial neural network (ANN) can serve as a finitary
model of human cognizers. But since, in order to establish the
productivity or unboundedness of linguistic competence, we
have to rely on a crucial jdealjzation, connectionists are
prepared to deny procductivity. If cognitive competencies are
considered strictly finite, despite all the explanatory
difficulties this limitation would involve, the connectionist
view can still be an alternative to the classical model. But
there is another argument against taking the ANN as an
adequate finitary model of human cognizers. And this argument
does not require the idealization to unbounded cognitive
capacities.

The TM model of cognitive systems implies a particular
theory of the human cognitive architecture. The adoption of
a particular cognitive architecture, in ¢turn, imposes
constraints on the type of representational states the systenm

can be in. So, a particular cognitive model can be tested with
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respect to the type of representational states that it can or
cannot support. If it turns out that a given architecture does
not support the kind of representations necessary to explain
certain pervasive cognitive phenomena, then this architecture
should be rejected as should the cognitive model on which it
is based.

The cognitive or functjonal architecture of a
computational device comprises the fixed resources that allow
it to operate on structures that can be semantically
interpreted. As a first approximation, the theory of these
fixed resources include a specification of the set of basic
operations that enable this device to manipulate
representations. Minimally this set should include operations
for sorting and retrieving representations, comparing them,
treating them differently as a function of how they are
stored, etc. The theory should define the relevant processing
limitations, such as 1limited memory and complexity
limitations; and finally it should specify the control
structure which selects the rules to apply for different tasks
(cf. Pylyshyn, 1984, pp. 30-31; See also: Newell, 1980;
Newell, Rosenbloom, and Laird, 1989). In short, the cognitive
architecture can be seen as a kind of user manual for a given
computational device in direct analogy with the user manuals
provided for programming languages. Cognitive models based on

the TM and on the ANN will specify two sets of very different

basic operations and limitations, and the opposition between
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classicists and connectionists can be reformulated with
respect to the different cognitive architectures that they
envisage. For classicists the human cognitive architecture is
the Turing/ von Neumann cognitive architecture e.g. the basic
operations and limitations provided by the Turing machine,
while for connectionists it is the functional architecture of
the artificial neural network whose basic operations and
limitations are seen as incompatible with those of the TM.

Since the basic operations and limitations of a cognitive
architecture constrain the semantically interpretable states
or representations of the system, the presence or absence of
certain basic operations or limitations in a given functional
architecture will make it possible (or impossible) to process
certain types of representation. For example, the absence of
the basic operation "retrieve from memory" will make it
impossible to process representations not currently available
to the system. In this way we can speak of the functional
architecture as determining the ryapnge of ©possible
representational states of a cognitive system. So, if the
classical and the connectionist cognitive architectures are
incompatible they will specify very different ranges of
possible representational states.

In their influential article ’Connectionism and cognitive
architecture’ Fodor and Pylyshyn (1988) argue that the set of

basic operations ¢1d functions provided by connectionist

architectures is severely limited. These limitations render
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connectionist architectures unable to support or process the
type of representational state that is necessary to explain
human behaviour.

Whether one is willing to accept productivity arguments
or not, Fodor and Pylyshyn (1988) believe that it is fairly
non-controversial that human cognitive capacities (finite or
infinite) are gsystematic. And the best explanation of
systematicity, they argue, is the existence of mental
representations with compositional (combinatorial) structure.
To see why this is so, let’s look again at human language
comprehension and human reasoning.

It is clear that our ability to produce and understand
certain sentences is systematically related to our ability to
produce and understand certain other sentences. The
systematicity of human 1linguistic abilities can best be
brought out if we consider what would be the case if these
abilities were not systematic. If humans were able to learn
to speak a language just by memorizing an enormous phrase book
containing entirely unrelated phrases, the human capacity to
understand language would in a genuine sense be non-
systematic. For example, in order to understand such phrases
as "raining cats and dogs", or "kicked the bucket", it is not
necessary to know the meanings of their constituents; such
phrases can be memorized as units since their meaning is not

a function of their parts. If this were the case with all

sentences of a natural language, then the learning of a
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natural language would be an endless accumulation of unrelated
idioms.

Of course, the phrase book example shows that this is not
what is going on when humans learn to speak a language. As
Fodor and Pylyshyn (1988, p.37) put it, "you can learn any
part of a phrase book without learning the rest". If the
phrase book story were even remotely plausible we could
observe speakers of a language who are able to understand the
sentence

The cat is on the mat.
and at the same time are unable to understand the sentence

The mat is on the cat.

But this is clearly not the case. Any mature native speaker
of English who knows how to say

The girl loves John.
necessarily knows how to say

John loves the girl.

What makes the difference between a native speaker nf English
and a memorizer of a phrase boc s that the native speaker
has a knowledge of English syn.ux and semantics that the
memorizer of the phrase book simply lacks. And given human
memory limitations, we can figure out who is the memorizer

fairly quickly. So if our linguistic capacities are systematic

in this sense then knowledge of a language entails the ability

to be in systematically related mental states. But being in

systematically related mental states means that such mental
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states have constituent parts that are systematically rclated
to one another, i.e. some mental states are functions of

others. So mental representations must have combinatorial

structure. According to Fodor and Pylyshyn, connectionist
mental states do not have combinatorial structure and
therefore, connectionism cannot account for systematicity.

The argument from the systematicity of 1language
understanding can be applied to thinking and reasoning as
well. The ability to think the thought that aRb is
; systematically related to the ability to think the thought
that bRa. In the case of inference, the at'lity to infer A&B
from A&B&C is systematically related to the ability to infer
only A from A&B&C. All this implies that mental
: representations, in general, have combinatorial syntax and
j semantics.

Fodor and Pylyshyn’s argument car therefore be summarised
as follows:

1. Human cognitive capacities are systematic.

2. The best explanation for the phenomenon of
systematicity is to postulate the existence of mental
states with combinatorial structure.

3. Connectionist architecture does not  support

representational states with combinatorial structure;

only the classical architecture does.

Therefore, human cognitive architecture is classical.
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We have seen why the first and second premises must be
true. But what about the third? It is non-controversial tnat
the Turing/ von Neumann cognitive architecture can support
representational states with combinatorial structure. This,
however, 1is not so in the case of the connectionist
architecture. Connectionist networks, if they do not implement
the classical architecture, are incapable of providing many
of the basic operations necessary to process complex
expressions. Here are some of the barriers to the processing
of complex structures by connectionist architectures that have
been widely recodgnized jin the literature:
- Connectionist architectures are unable to provide
consistent part/ whole relationships between hierarchical
data structures (Fodor and Pylyshyn, 1988; Hinton, 1991).
- Connectionist architectures are unable to provide
distal access to data structures (Touretzky, 1991). (This
is also known as the symbol transportability problem.)
- Connectionist architectures are unable to provide the
basic operation of binding a variable (Smolensky, 1991;
Touretzky, 1991).
- Connectionist architectures are incapable of doing

recursion (Fodor and Pylyshyn, 1988; Pollack, 1991).

Taken either Jjointly or separately the above

considerations seem to warrant the belief that connectionist

architecture cannot support representational states with
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combinatorial structure. This, of course, should seal the fate
of connectionism as a viable challenge to the classicaa
approach to cognition. It is therefore understandable that
connectionists have exerted much effort toward undermining the
third premise of the systematicity argument. But would a
successful challenge to this premise constitute a victory for
connectionism?

Connectionism is incompatible with the classical approacn
only in so far as it 1is offered as an alternative
representational theory of the mind, i.e. only in so far as
it is offered as a psychological theory. Yet, it is important
to point out that Fodor and Pylyshyn do not contest the
possibility that connectionist networks could be used to model
nonrepresentational states of an organism; by its very nature
such an account would not have any significance for psychology
because such an account could provide at best only a theory
of the jimplementation of the classical architecture (Fodor and
Pylyshyn, 1988, pp. 10-11). In other words, if connectionism
provides a theory of the nonrepresentational neurological
states of an organism that could be used to explain how the
classical architecture is implemented in neural hardware, such
a theory will not have direct relevance for cognitive
psychology because it will have nothing to say on the gquestion
of which representations determine the behaviour of the

organism. So, if connectionism is merely intended to provide

a theory of the implementation of the Turing/ von Neumann
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cognitive architecture, it is not strictly speaking
incompatible with the classical view; it is simply not a
theory about cognitive architecture.

This poses a very difficult dilemma for connectionism.
If connectionist architecture cannot support complex mental
states, connectionism is clearly inadequate as a psychological
theory; if it can support complex mental states, it merely
provides an implementation theory for the classical
architecture. But then connectionism has no relevance for
cognitive psychology. Connectionism is directly threatened
by this inadequacy/ irrelevance dilemma. If connectionists
succeed in answering the systematicity argument by providing
a theory of the implementation of the classical architecture,
they must forgo any claim to the relevance of connectionism
for psychology. So the task facing connectionism is to show
that connectionist architectures ¢an process representational
states with a combinatorial syntax and semantics. At the same
time, connectionists must show that such architectures are not
"mere" implementations of the Turing/ von Neumann
architecture.

In marked contrast to productivity arguments, most
connectionist openly or tacitly accept that human cognitive
capacities are systematic. At the very least there are no
connectionist arguments to the contrary. Many connectionists

(for example Smolensky, 1987, 1991, Hinton, 1991, Touretzky,

1991, Pollack, 1991) also accept that in the absence of a
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plausible alternative theory, postulating mental
representations with combinatorial structure is the only way
to account for the phenomenon of systematicity. They also
credit Fodor and Pylyshyn’s criticism for pointing out the
importance of <compositional representations for the
representational theory of the mind. Speaking on behalf of
this "silent connectionist majority" Smolensky has admitted
that

Until recently we have not had any systematic ideas about
how to represent complex structures. In fact, it was
Fodor and Pylv .hyn who go’ me think.ing about this, and
ultimately <convinced me [of tre importance ©of
representing complex structures]. (Smolensky, 1987,

P.156.)

But if connectionists accept systematicity as an
explanandum, and if they agree that in order to explain
systematicity one needs mental representations with
combinatorial structure, how can they escape the inadequacy/
implementation dilemma? Not surprisingly, connectionists have
argued that this is a false dilemma. In a series of three
articles Smolensky (1987, 1988, 1991) has tried to present a
connectionist theory of the compositional character of mental
representations that at the same time avoids the charge of

"mere implementationism®.

In order to avoid the "mere implementation" charge
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Smolensky proposes to redefine the notion of an
implementation. He correctly points out that to a large extent
the notion of implementation, as it is used in cognitive
science, is inherited from computer science. In computer
science the implementation of one system by another means
exact simulation of the behaviour of the first system by the
behaviour of the second. As Smolensky puts it:
If there is an account of a computational system at one
level and an account at a lower level, then the lower one
is an jmplementation of the higher one if and only if the
higher description is a complete, precise, algorithmic
account of the behaviour of that system. (Smolensky,

1990, p.203.)

The emphasis on exactness is all important here. Mere
implementationism threatens connectionist theories only if
implementation is taken to mean exact simulation. If on the
contrary, this exactness condition is relaxed, so that
connectionism is taken to provide only an "approximate
implementation" of certain basic characteristics of symbolic
architecture, then it is possible to claim that the roles
should be reversed: rather than being a "mere implementation",
connectionist architecture can be seen as a "refinement" of
the classical architecture. As a result of this reversal, the

Turing/ von Neumann architecture can be claimed to be only a

crude approximation to the "real" cognitive architecture.
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Accordingly, connectionists argue that the true cognitive
level of description lies at the level of micro-features,
activation patterns and connection strengths, rather than at
the symbolic level of the classical architecture. Smolensky
is only too happy to provide historical precedents to this
reversal of roles -- Kepler’s laws vs. Newton’s; Classical
mechanics vs. quantum mechanics =-- in all cases symbolic
theories of cognition are cast into the role of historically
superseded less refined approximations. Thus, instead of
trying to show that connectionism can have some significance
for psychology, Smolensky undermines Fodor and Pylyshyn’s
criticism by simply assuming that connectionism is
psychologically significant, while the classical architecture
is at best only a crude approximation to the connectionist
architecture. But there is a major problem with this shifting
of the burden of proof: Classical architecture was adopted
because it provided an explanation of such cognitive phenomena
as productivity and systematicity. Can the connectionist
"refinement" of the classical architecture do better in
explaining these pervasive facts of cognition? Smolensky
thinks it can and offers two connectionist theories which, he
claims, can better account for the compositionality of
representational states and thus better explain systematicity.
Following Smolensky, we call these theories weak

compositionality and gstrong compositionality.
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We c itio it
According to the theory of weak compositionality,
thoughts must have a composite structure and mental processes
are sensitive to this structure. Smolensky claims that many
of the charges against connectionist architecture are based
on a notion of connectionist representation that is too
narrow. For example in their criticism of connectionism Fodor
and Pylyshyn used as an example a particular network designed
for automated resolution theorem proving (Ballard and Hayes,
1984) where each node of the network is labelled with the name
of a single variable. Smolensky thinks that Fodor and
Pylyshyn’s criticism regarding compositionality is justified
with respect to this specific connectionist model, as well as
other "ultralocal" models in which each individual node is
thought to represent a complete feature. However, Smolensky
claims that the most promising connectionist mod~ls are the
ones that use distributed representations, i.e. networks whose
nodes are labelled with "microfeatures" instead of
"macrofeatures" (Smolensky, 1988).

What is the difference between a macrofeature and a
microfeature, between an ultralocal and distributed
representation? Smolensky does not provide a firm criterion
for distinguishing between them; all he does is to give a few
suggestive examples. The only thing that seems to make one
representation a distributed representation is the fact that

the label of more than one node is considered to be part of
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the representation. For example, a network which has one of
its nodes labelled "coffee" apparently should be considered
as giving an ultralocal representation of coffee, but
according to Smolensky, a distributed representation of
"coffee" might look like the representation in Figure 1.1.
(See Figure 1.1.)

The reason why Smolensky thinks that distributed
representations can be the answer to the systematicity/
compositionality argument is that this distributed
representation of "coffee" was produced by subtracting the
distributed representation of "cup without coffee" in Figure
1.2 from the distributed representation of "cup with coffee"
in Figure 1.3. (See Figure 1.2 and 1.3.)

Smolensky admits that the operations of vector
subtraction and vector addition are unlikely to satisfy the
requirement of strict compositionality which is satisfied by
a "classical" representation of cup__with coffee. Weak
compositionality only a oximatel resembles the
combinatorial structure of mental representations as required
by the classical architecture:

...the compositional structure is there, but it’s “here

in an approximate sense. It’s pot equivalent to taking

a context-independent representation of coffee and a

context-independent representation of cup -- and

certainly not equivalent to taking a context-independent




Figure 1.1

Representation of "coffee".
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Units Microfeatures

(o] upright container

1 hot 1liquid

o] glass contacting wood

0 porcelain curved surface

1 burned odour

1 brown liquid contacting porcelain
0 porcelain curved surface

0 oblong silver object

(o] finger-sized handle

1 brown liquid with curved sides and bottom




Figure 1.2

Representation of "cup without coffee".
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Units Microfeatures

1 upright container

0 hot liquid

0 glass contacting wood

1 porcelain curved surface

0 burned odour

0 brown liquid contacting porcelain
1 porcelain curved surface

o oblong silver object

1 finger-sized handle

0 brown liquid with curved sides and bottom




Figure 1.3

Representation of "cup with coffee".
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Units Microfeatures

1 upric t container

1 hot liquid

0 glass contacting wood

1 porcelain curved surface

1 burned odour

1 brown liquid contacting porcelain
1 porcelain curved surface

0 oblong silver object

1 finger-sized handle

1 brown ligquid with curved sides and bottom
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representation of the relationship in or with - and
sticking them together in a symbolic structure,
concatenating them together to form the kind of syntactic
compositional structure like with(cup, coffee) that Fodor
and Pylyshyn want connectionist nets to implement

(Smolensky, 1990, p. 208).

Smolensky’s own admission shows why weak compositionality
is, 1indeed, too weak to gqualify as a solution to the
compositionality problem for connectionist architectures. As
Fodor and McLaughlin (1990, pp. 193-95) have remarked, the
main problem here is the context-dependency of the distributed
representations. While on the classical account the meaning
of the constituent parts of an expression determines the
meaning of the whole, in Smolensky'’s example CUP, COFFEE and
WITH are not independent constituents whose meaning
contributes to the meaning of the whole. The "constituents"
of the complex of microfeatures CUP-WITH-COFFEE are also
complexes of microfeatures - CUP~-WITHOUT-COFFEE and COFFEE.
But the representation of the meaning of the whole and of the
parts is entirely context-dependent. For example, the
representations of COFFEE produced from the contextual wholes
of, say CAN-WITH-COFFEE or HALF-EMPTY-CAN-WITH-COFFEE, or

HALF~EMPTY~CAN-WITH-COLD-COFFEE will have nothing in common.

Indeed, to show weak compositionality for every possible

coffee context we have to create a new type of distributed
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representation to represent every new context. But there will
be no systematic relationship between the "coffees" in these
different contexts. This is a far cry from the part/ whole
compositionality which, on the classical approach, is required
to explain systematicity.

The context embededness of connectionist representations

is a major obstacle to distal access relationships between

representations. This problem appears to be recognized by
Smolensky as well:
But, one might well argue, the sense in which the vector
encoding the distributed representation of cup with
coffee has constituent vectors representing cup and

coffee is too weak to serve all the uses of coastituent

structure -- in particular, too weak to support formal
inference -- because the vector representing cup cannot

£fill multiple structural roles. (Smolensky, 1990, p.212.)
Thus Smolensky in effect concedes that weak compositionality
cannot be considered a serious contender for the explanation

of systematicity.

Strong Compositionality

Smnlensky’s first attempt to answer the systematicity
argument failed because of the context dependence of "weakly
compositional" representations. He tacitly agrees with such
an assessment when he recognizes that the two main problems

that plague most connectionist architectures are the distal
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access problem and the varijable binding problem (Smolensky,
1991, p. 160). The distal access problem (transportability
problem) arises because of the immovability of the
constituents of connectionist representations -- connectionist
representations are always localized as labels to certain
nodes of a network, and since the nodes cannot move around the
network, connectionist representations are always grounded in
a certain region of a network. In the same way a complex
connectionist representation is just a localised region of the
network that does not have access to the parts of the network
which represent its constituents (cf. Smolensky, 1991, p.163).
These constituents are locked in their corresponding regions
of the network and cannot take part in other complex
representations as required by the principle of
compositionality of mental representations. It is clear that
unless connectionist representations have transportable parts,
connectionist architectures will be unable to meet the
challenge of the systematicity argument. The eventual solution
of this problem has been recognised by many connectionists as
crucial to the success of their program (Touretzky, 1991;
Pollack, 1991).

Closely connected with transportability is the variable
binding problem. In most connectionist simulations the binding
of values to a variable is entirely arbitrary. Certain regions

of a network are sjimply labejled with the name of a variable

and the patterns of activation are thought of as providing
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values for these variables -- for example a certain node can
be labelled as "made of porcelain" and the values can be "yes"
or "no", represented respectively as activation or as absence
of activation of the same node. In this way the label of the
node serves as the variable, while the activation or non-
activation of the node serves as the value of this variable.
But such labelling is not a well defined encoding/ decoding
operation and is in fact entirely arbitrary -- in our example,
we could label the node as "made of wood", "made of metal",
or anything we like; the activations of the node will still
provide the values for these variables; the trouble is that

we cannot be sure which variable the network is representing

a value of. As a result connectionist architectures lack a
well defined operations of binding and unbinding of a value
to a variable (cf. Smolensky, p. 160). This is a severe
limitation on connectionist systems because without the
binding and unbinding operations they cannot create and
maintain representations with constituent structure.

In order to solve the distal access (transportability)
and the variable binding problem, without at the same time

giving in to implementationism, Smolensky introduces a new

class of connectionist representations -- tensor product
representations.
A tensor product representation is constructed in the

following way: The nodes of a network (see Figure 1.4) are

divided in three parts -- "filler" units (units encoding




Figure 1.4
The tensor product representation
for filler/ role bindings.
(Reprinted from Smolensky, 1991.

© 1990 by Elsevier Science Publishers BV, Amsterdan,

The Netherlands. Reproduced with permission.)
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values), "role" units (units encoding functions), and
"binding" units (encoding the function of a given value). The
vectors of positive activations over the set of filler units
represents the "atomic" constituents such as phonemes,
letters, words, etc. The vectors of activations over the role
units represent the roles these constituents can have in more
complex representations such as nasal(phoneme), first(),
second(), etc. (letter in a word), or subject_of(word),
complement_of (word), etc.

The network in question has four fillers -- the letters
H,J,N,0 and four roles First(letter in a 4-letter word),
Second(), Third(), and Fourth(). Each filler and each role are

represented by a four component vector as follows:

H J N 0 First Second Third Fourth
1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

If we want to represent a filler as bound to a role, e.qg.
that the letter J is the first letter of a four letter word,
we simply take the outer product of the vectors f, and r, (we
transpose the second vector and multiply each f,; with each

r”) to produce a matrix W with i rows and j columns:

f2 Xr = Wij =

co.o
0oogo
00O
©00g0

Representation of ‘First(J)’
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Since a vector can be regarded as a tensor of rank one
and a matrix as a tensor of rank two, we can say that J, as
a first letter in a four letter word, is represented by the
tensor (of rank two) W;;+ In the same way we can represent
Second (0), Third(H), and Fourth(N) as outer products of their
corresponding vectors or as tensors of rank two. (Eventually,
more complex representations with tensors of higher rank can
be built.)

According to Smolensky tensor product representations are
best suited for representing arbitrary fillers (values) as
bound to roles (functions). The main advantage of these
connectionist representations lies in their apparent ability
to represent true constituents which may fill different roles
in different complex representations, thus solving the
transportability problem as well.

Smolensky claims several additional advantages for this
new type of connectionist representation: (i) the tensor
product operation is potentially much more powerful than
vector addition and subtraction (used in the account of weak
compositionality). (ii) These new representations can use
continuous as well as discrete activation values. (iii) The
tensor product representations are not context dependent.
According to Smolensky, this is the most notable departure
from weak compositionality (1991, pp.163-64). However, there

are still some very difficult problems with this account of

compositionality. The first has to do with the reversibility
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of binding operations on these connectionist representations.
For example, in order to bind a filler to a role, for example
‘\J’, to ‘First()’, we have to produce the outer product of the
vectors f, and r, (rank two tensor W”). But is there a way to
produce f, from w“?

The problem with tlhe "unbinding" of f, from its outer
product with r, is that this operation is guaranteed to
succeed only as long as the vectors representing the different
roles are linearly independent as in the above example. The
same applies to the vectors representing the fillers. If they
are pot linearly independent there is no guarantee that the
unbinding operation will succeed. For example, from the
representation of First(J) we might end up unbinding the
representation of H, or N, or O. Unlike the classical
architecture where operations on representations are in
principle reversible, tensor product binding of variables does
not guarantee their successful subsequent retrieval in all
cases where fillers and roles are coded by linearly dependent
vectors.

Smolensky is aware of how damaging the unbinding problem

is for strong compositionality. He offers to distinguish

between exact unbinding procedures and self-addressing
unbinding procedures. The first procedure is defined only for

linearly independent cases and is guaranteed to succeed; the
second procedure is defined for all cases but is not

guaranteed to result in correct unbindings. The trouble is
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that exact unbinding comes at a very steep price. as Smolensky
himself admits

In order to guarantee faithfulness of representations,
it will often be necessary to impose the restriction of
linearly independent patterns for the constituents. This
restriction is an expensive one, however, since to have
n linearly independent patterns one needs to have at

least n nodes in the network. (Smolensky, 1991, p. 172.)

It should be obvious that the linearity restrictions for
the exact unbinding procedure are too restrictive. They imply
a rigid upper bound on the complexity of connectionist
representations. But we do not find such artificial bounds in
human cognition. Certainly, it would be absolutely wrong to
suggest that the expansion of our cognitive capacities is
possible only through the addition of more neurons in the
brain.

The unbinding problem is by no means the only problem
that puts in question Smolensky’s tensor product
representations. We saw that strong compositionality was
offered as a possible solution to the context-dependency of
connectionist representations. However, context-dependency is
not entirely overcome with the help of tensor product
representations. Even if we set aside the unbinding problem
for the moment and assume that the binding/ unbinding

operations are unproblematic, it is not difficult to see that
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tensor product representations are still dependent on the
choice of a particular network with a particular capacity to
represent a given number of variables and a given number of
roles. For example, let us suppose that the network in Figure
1.4 can represent the "atomic" constituents H,J,N,0 as well
as the structured "molecu!ar" expressions JOHN, HNJO, JHNO,
etc. This fact however, does not mean that these atomic
constituents can take part in other more complex
representations, like JANEJOHNES for example. In order to
insure this possibility we have to build a new network with
units for three more atomic components -- A,E,S, and six more
role units. But the representations ~ let us say J in the new
network will not have anything in common with the
representation of J in the old network =-- it will be a
completely different tensor. The same is true of any other
larger network. It is clear that the compositionality that
might be exhibited by a tensor product representation is
strictly dependent on a particular choice of roles and
variables. This role/ variable context acts as an external
limit to contacts with other representational structures. In
particular, tensor product representations found in one
filler/ role context cannot be constituents of representations
found in other filler/ role contexts. But it is quite
unreasonable to assume that a network anticipating all
possible contexts can be built. Clearly, the context problem

that undermined the theory of weak compositionality has
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resurfaced again.

In addition to the binding and the context-dependency
problem there is a third major weakness in Smolensky’s account
of strong compositionality. Fodor and McLaughlin (1990, p.199)
point out that a ~omplete solution to the systematicity
problem should be able to account for not only the semantic
interpretability of complex mental representations but also
for their causal roles, including the causal roles of their
constituents.

In classical architectures complex mental representations
are causally sensitive to constituent structure, i.e. their
components can be causally efficacious. This however is not
the case with tensor product representations. As we saw, when
a tensor representing a particular filler/ role binding is
tokened, a particular pattern of activations is present in the
network. It is this tensor (or the corresponding activation
pattern) that alone has a causal role. The constituent tensors
-- the filler and role vectors -- are not tokened, i.e. their
units are not activated. But this means that they are not
causally efficacious. The compositionality of the vector
product representation is, so to say, only in the eye of the
beholder, it is not causally present in these connectionist

representations.
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Conclusion

To summarize: I have argued that the failure of
connectionism as a coynitive theory stems from its inability
to explain the phenomena of productivity and systematicity.
The 1inability of connectionist archi.ectures to support
semantically interpretable states with complex constituent
structure implies that human cognitive architecture cannot be
connectionist. Therefore, connectionist ANNs cannot serve as

finitary models of human cognizers.




CHAPTER TWO

On the Symbolic/ Subsymbeolic Distinction

Introduction

The advent of the new connectionism has sparked a far
reaching debate on the nature of human cognitive architecture.
In a wide ranging attack on the basic tenets of the new
connectionism, Fodor and Pylyshyn (1988) argued that
connectionism cannot offer an alternative to the classical
Turing/ von Neumann cognitive architecture; at Dbest,
connectionist systems can serve as possible models for
implementing the classical architecture in neural hardware.
Paul Smolensky has challenged Fodor and Pylyshyn’s criticisms,
and with his "proper treatment of connectionism" has tried to
establish connectionism as a new "paradigm" in cognitive
science (Smolensky, 1987, 1988). An integral part of
Smolensky’s defence of connectionism is the introduction of
the symbolic/ subsymbolic distinction.

In what follows I will show that there are several
symbolic systems that ar. perfectly capable of _.arrying out
what Smolensky calls "subsymbolic computation®, and that,
therefore, Smolensky’s introduction of this distinction is

entirely spurious.
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The Reasons for the Introduction of the

Symbolic/ Subsymbolic Distinction
Smolensky (1988) has rejected what he calls the symbolic

paradigm in AI, i.e. the view that virtually all cognitive
tasks can be simulated by programs consisting of
linguistically formalized 1rules that are sequentially
interpreted. The main reason for his rejection of the symbolic
paradigm is that it has led to a numbe - of disappointing
results (Smolensky, 1988, p.5):
[(Al] Actual AI systems [based on the symbolic paradigm)
seem too brittle, too inflexible, to model true human
expertise.
[A2] The process of articulating expert knowledge in
rules seems impractical for many important domains (e.g.
commonsense [knowledge]).
(A3] [The symbolic paradigm] has contributed essentially
no insight into how knowledge is represented in the
brain.
Smolensky proposes to replace the symbolic paradigm with what
he calls the subsymbolic paradigm. As a first approximation,
the subsymbolic paradigm is the view that human cognitive
arcnitecture is connectionist and that connectionist cognitive
architecture defines a new subsymbolic level of computation.
But what are the determining properties of this new
subsymbolic level of computation and of the new subsymbolic

paradigm? According to Smolensky,
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The name "subsymbolic paradigm" is intended to suggest
descriptions built up of entities that correspond to
constituents of symbols used in the symbolic paradigm;
these fine-grained constituents could be <called
subsymbols, and they are the activities of individual
processing units in connectionist networks. Entities that
are typically represented in the symbolic paradigm by
symbols are typically represented in the subsymbolic
paradigm by a large number of subsymbols. Along with this
semantic distinction comes a syntactic distinction.
Subsymbols are not operated upon by symbol manipulation:
They participate in numerical - not symbolic -

computation. (Smolensky, 1988, p.3.)

The key to understanding the difference between symbolic
and subsymbolic representation is the difference between
"quasilinguistic represertations" and 'good old-fashioned
numerical vectors" (Smolensky, 1988, p.5). According to
Smolensky only connectionist neural networks can represent
(fine-grained) knowledge with numerical vectors, i.e. vectors
of the form y=<v,,v,,...,v,> where each v, represents a
"microfeature” of one or many "macroconcepts". Symbolic
systems are 1limited to representing knowledge only
quasilinguistically. Accordingly, a symbolic system will be
limited to representing only the individual symbols, and can

represent no microfeatures whatsoever.
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Smolensky claims that connectionist systems that are
capable of using subsymbolic computation can solve the
"hardness" problem (Al) faced by the symbolic systens
(Smolensky, 1987). Since the individual neurons do not encode
concepts, conceptual knowledge is represented by complex
patterns of actijvations over many neurons. The interaction
between these activity patterns is not directly described by
a formal definition, but can be computed only approximately.
Smolensky insists that
...there will generally be no precisely valid, complete,
computable formal principles at the conceptual level;

such principles exist only at the level of individual

units - the subconceptual level (Smolensky, 1988, p.3).

The ability to perform approximate computations and thus
to display "soft" behaviour is, in Smolensky’s opinion, the
real advantage of subsymbolic systems over symbolic systems.
According tc Smolensky, symbolic systems are ‘hard’ and are
in principle unable to display ‘soft’ behaviour. He rejects
the possibility that any kind of softness can emerge out of
the hard rules of symbolic AI systems (Smolensky, 1987,
p.137).

In summary, the subsymbolic paradigm is defined by the
following principal claims:

Bl. Subsymbolic systems -- unlike symbolic systems -- can

represent concepts as sets of subconcepts or
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microfeatures; this is because subsymbolic systems encode
concepts as numerical state vectors.

B2. Subsymbolic systems -- unlike symbolic systems -- are
capable of soft or approximate computations which imply
the ability to handle noisy, incomplete data, and the
ability to display graceful degradation of performance.

B3. Artificial neural networks (ANNs) that carry out
subsymbolic computations -- unlike symbolic systems --

are very much like the brain.

In what follows I will try to show that the proposed
subsymbolic level of computation is entirely spurious. I will
argue that the ability to handle microfeatures and vector
representations is by no means the exclusive property of
connectionist systems. Symbolic systems can make very good use
of vector representations with equally convincing or even
better results. I will show that the symbolic paradigm can
produce systems that are not brittle, that are very flexible,
that can model true human expertise, and that can actually do
better than many human experts. I will show that such systens
can articulate human knowledge in rules in surprisingly many
domains, including what are commonsense domains. In addition,
I will show that connectionist learning algorithms have
contributed essentially no insight into how knowledge is

represented in the brain.
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The Brain-Likeness of Error Backpropagation in ANNs

I will begin in reverse order with an examination of the
brain-likeness of connectionist architecture. There can be no
doubt that the great appeal of the ANNs is largely a result
of their brain-like appearance. But the question of the extent
to which they can be viewed as models of the brain is rarely
addressed.

Smolensky agrees that the invective "Look how the brain
does it and do the same!" is not likely to be very useful in
the near future. He also rejects the idea that connectionist
models are exact models of the brain, but he claims that
connectionist architecture "abstractly models a few of the
most general features of neural networks [of the brain]"
(Smolensky, 1988, p.6).

The phrase "abstractly models" can be abused so that one
can dismiss almost any counterexample as not affecting the
abstract brain-likeness of connectionist systems. In order to
avoid such an evasion I will concentrate on what is undeniably
the main learning algorithm used in most connectionist systems
- error backpropagation (BP).

Backpropagation in ANNs (or the Generalized Delta Rule
(GDR), as this algorithm is also known) is a very interesting
learning algorithm. The task is to learn to associate a set
of input and output patterns, so that after the supervised
training process is completed, the network when given an input

pattern from the set, will produce its corresponding output
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pattern. The training is carried out in the following way:

The ANN (with usually randomized weights) first uses the
input vector which is propagated forward to produce its
own output vector. Then it compares its output with the
target vector (this is the pattern it has to learn). If
the output vector and the target vector are the same,
training stops. If they are different, the difference is
reported as an error signal for each output unit. Then
the error signal is passed backwards to each unit in the
network and the appropriate weight-changes are made. The
forward and backward procedures form one epoch. Such
epochs are repeated until the output vector is identical
with the target vector (or until the difference is
minimized to a desired level). (Cf. Rumelhart, Hinton,

and Williams, 1986, p. 327.)

After an ANN has been trained, it can output the target
pattern when presented with the original one. We then can say
that the network has learned to associate the two patterns.

It should be quite obvious that nothing remotely similar
to error backpropagation is happening in the brain. Actual
biological neurons are not involved in passing of error
messages back to where the stimulation has come from. Patterns
of neural firing do not constitute epochs of forward/ backward
passing of electrical impulses. In any case the "units" whose

weights are changing during backpropagation are not intended
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to model -- even remotely -- real neurons. Most connectionist
researchers would agree with the statement that

These units often have properties similar in some
respects to neurons ... However, their inventors [should]
always be careful to point out that they are not intended
to represent real neurons. Indeed, at this stage of the
game, it would be foolish to attempt to do this. (Crick

and Asanuma, 1986, pp. 396-7.)

This is not to say that BP is a useless algorithm. On the
contrary, it is a very interesting and potentially a very
powerful learning algorithm. My point here is that it has
nothing to do with the actual workings of the brain. The fact
of the matter is that connectionist systems using BP are not
more brain-like than symbolic systems whic.. refuse to
speculate on implementational issues; t si un
the brain. Therefore, B3 is false (at least with respect to
BP) and I think it is only fair to rewrite A3 as

A3*, Connectionist systems, as well as symbolic systems

which make no commitments as to their exact

implementation in the brain, have contributed essentially

no insight into how knowledge is represented in the
brain.
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The Problem of Brittleness

The brittleness of some AI systems has 1long been
identified as one of the main bottlenecks in Al research. A
program may work well for ideal cases but when confronted with
real-world data that are often incomplete or noisy it breaks
down. What ideally we would like to see is an undiminished or
only gracefully degraded level of performance in the presence
of noise. Inflexibility in such cases is obviously a severe
handicap if one tries to model actual human expertise. It is
true that some AI systems are very brittle in this sense. But
what is true of some is not necessarily true of all members
of a class.

There are several learning systems that have quite
successfully overcome both of these problems. For example the
family of symbolic learning systems based on the Top-Down
Induction of Decision Trees (TDIDT) are particularly
interesting for our purposes because several such systems,
most notably ID3 (Quinlan, 1986a), C4 (Quinlan, 1986b), CART
(Breiman, Friedman, Olsen, and Stone, 1984), ASSISTANT
(Cestnik, Kononenko, and Bratko, 1987), have overcome the
problem of brittleness in many respects and compare well with
the family of ANNs learning systems based on BP.

First, I will examine two of the TDIDT systems -- ID3 and
C4 ~- in detail, then I will look at several experimental
tests of ID3 and C4 on real-world induction tasks. I will also

discuss the results of two experiments comparing the




64
performance of ID3 and CART systems with that of ANNs

using BP.

The ID3 Symbolic Learning System
ID3 has been designed by J.R.Quinlan (1979, 1983a). Its

historical predecessor is Hunt and Marin’s Concept Learning
System (CLS). (Hunt, Marin, and Stone, 1966) A new and more
advanced version of 1ID3 is C4 (Quinlan, 1986b). 1ID3 is
suitable for a comparison with the backpropagation algorithm
(ANNs using BP) because both share a set of common features:
- Both are members of the class of supervised learning
systens.
- Both learn from examples.
- Neither is applicatjon specific. Examples of successful
applications for ID3 are chess strategies, weather
prediction, medical diagnosis, voting pattern
predictions, credit card application assessment, etc. BP
has also been used in a wide array of applications.
- Both are able to generalize from training examples that
they have been exposed to during the learning process to

new "unseen" cases.

The difference between ID3 and ANNs using backpropagation

(BP) lies in the form of knowledge representation:

tree. A decision tree can easily be converted into a set
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of production rules. In most cases this form of knowledge
representation is ‘“transparent" to the human observer
i.e. humans are able to understand and use these rules.
- ANNs using BP store the acquired knowledge in their
weights. The knowledge stored in this way is completely

"opaque" to the human observer.

To understand how the decision-tree building algorithm
of ID3 works it is useful to look at a concrete example. ID3
is capable of supervised learning from examples, so ideally
it should be able to acquire expert knowledge by learning from
human experts. Consider the following case: Many newspaper and
radio stations have experts who check the weather forecast for
the day, the current temperature and humidity, and give a
simple piece of advice: e.g. whether the day will be suitable,
or unsuitable, for playing golf. Now, ID3 can be trained by
providing it with a sample of the past decisions of such an
expert and can successfully generalize from the examples it
has been exposed to during learning to future cases.

In order to be trained, ID3 is provided with the same
universe of objects and with the same information that is
taken into consideration by the human expert. For this
learning task, the universe will be the days of the week. Each
day can be described with the following attributes:

outlook: with values, {sunny, overcast, rain}.

temperature: with values, {cool, mild, hot}, or
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{continuous}.
humidity: with values, {high, normal}, or {continuous}.

windy: with values, (true, false}.

For example a particular object, say <Saturday, June 23,

1990> might have the these characteristics:

outlook: overcast
temperature: cool
values: normal
windy: false

Given such a description the expert has tr decide whether
the day will be suitable for playing golf or not. The task is
to classify each object in the universe as belonging to one
or other of two classes which we may call P (play golf) and
N (do not play golf).

Of course, without a training-set of examples of expert
decisions, ID3 will not be able to learn anything. So suppose
we are to provide ID3 with the set of training examples in
Table 2.1 (number 1 to 10) say of saturday mornings in the
past few years together with the decisions of a human expert.
(See Table 2.1.)

It is interesting to note that each object in the
universe can be encoded as a four dimensional state vector,

where each vector component v, of y=<v,,V,,v5,V,> corresponds
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Table 2.1
G at et
No. Attributes Decision
Outlook Temperature Humidity Windy
1 sunny hot high false N
2 sunny hot high true N
3 overcast hot high false P
4 rain mild high false P
5 rain cool normal false P
6 rain cool normal true N
7 overcast cool normal true P
8 sunny mild high false N
9 sunny cool normal false p
10 rain mild rormal false P
11* sunny mild normal true P
12+ overcast mild high true P
13* overcast hot normal false P
14* rain mild high true N

Note. Adapted from "Induction of Decision Trees" by R.

Quinlan, 1986, Machine Learning, Vol. 1, pp.81-106.

to the value of a different attribute. The fact that ID3 can
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operate on knowviedge represented via state vectors will turn
out to be very important when we compare it to the
connectionist systems using BP.

ID3 can extract the exp-'rt knowledge contained in this
data by trying to build a decis.on tree that will classify the
items in the training set (i.e. the first ten items). A simple
tree that does the job can look like the one in Figure 2.1.
(See Figure 2.1.)

ID3 builds the decision tree by employing a divide and
conquer strategy. It first picks an attribute - in this case
the attribute outlook - and checks its values. As it turns out
all objects with value overcast for the attribute ogutlook
belong to the play golf class, so ID3 closes this branch. In
case a value does not classify a subset as belonging to only
one class the search is extended by looking at ancther
attribute and its values, until all subsets of objects are
exhaustively classified.

We can simply check to see that this tree can ccrrectly
classify all training examples. Let’s look at day #1. We start
from the top noude outlook; its value for #1 is suhny, so we
choose to follow the leftmost branch. As a result, we arrive
at the attribute humidity; its value for #1 is high and the
literal under it is N. The decision tree has classified

(orrectly the first item as belonging to the N class. In the



Figure 2.1

Decision tree for predicting weather conditions.
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same way the decision tree can classify all training examples.
But what is more interesting, it can generalize from the seen
cases to the unseen cases # 11-14 and classify them correctly
as well.

It is easy to see that this decision tree can immediately
be converted into a set of production rules just by tracing
all of its branches from the root to the terminal leafs. These
rules will have the same predictive accuracy as the decision
tree itself:

Rules produced from the tree on Fig. 2.1:

Rule 1: If outlook = overcast,
then play golf.

Rule 2: If outlook = sunny and humidity = normal,
then play qgolf.

Rule 3: If outlook = rain and windy = false,
then play golf.

rule 4: If outlook = sunny and humidity = high,
then do not play golf.

Rule 5: If outlook = rain and windy = true,

then do not play golf.

But how does the ID3 choose from which attribute to start
building the decision tree, so that the simplest possible tree
is created? For example, if ID3 chose the initial node to be
the attribute humidity the resulting decision tree would be

much more complex. In a rich domain with many attributes and




72
many values, choosing the wrong attribute can bring with it
unnecessary computational costs. Ideally, the "blind" divide
and conquer strategy has to be supplemented by some useful
heuristics. ID3 uses a heuristic principle similar to Occam’s
razor: it uses an expected information gain criterion that
chooses the "most relevant" attribute as the root of a
(sub)tree, 1.e. the attribute that reduces randomness in the
remaining data as much as possible. This results in trees that
generally branch out from the more informative to the less
informative attributes, thus simplifying the overall tree

structure.

How to Avoid Brittleness
ID3, C4, as well as some other members of the TDIDT

family have to a large degree successfully overcome the
problem of brittleness by augmenting the simple divide and
conquer algorithm they all share. They are capable of dealing
with a wide range of real-world problems, i.e. data sets that
include noisy or partial information.

C4 has several features that enable it to deal with real-
world data. One problem faced by the decision tree algorithms
is that if the data contains contradictory information, i.e.

noise, it may be prohibitive to continue subdividing the

original set and its subsets until all members are classified.
There is a need for a stopping criterion (Kononenko, Bratko,

and Roskar, 1984) that would count n number of exceptions as
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acceptable. This would stop the otherwise useless search. With
different stopping criteria different levels of noise can be
filtered out.

Another problem faced by C4 is the problem of missing

data. A number of techniques have been suggested -~ when an

attribute with a missing value is encountered during the tree
building process there are a number of options: ignore the
case with the missing value, "fill in" the missing value with
the most common value for this attribute, etc. (Quinlan,
1989). The adoption of any of these solutions is likely to
affect slightly the predictive success of the corresponding
decision trees but overall any of these solutions would be
able to deal with the missing data problem. It is remarkable
that similar "filling in" techniques are used by the human
visual system (the blind spot), by the human auditory system
(the phoneme restoration effect), and by human memory (the
phenomenon ~¥ constructive memory).

Table 2.2 summarizes some typical results testifying to
the success of ID3 in solving real-world problems. (See Table

2.2.)




Table 2.2

ID3 Performance on Several

Rea]l-W
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Data set

Number of

attributes

Number of

training/

testing ex.

ID3

accuracy

3651/1824

Mushrooms

5416/2708

Futures

prices

337/169

sks

Task Human
expert
accuracy

classify 54%

stages of

sleep

classify 52%

poisonous

or not

predict 38%

up, down,

or stable

Note. This table summarizes data reported in "Experiments

on the Costs and Benefits of Windowing in ID3" by J.

Wirth, and J. Ca%lett, 1988, J. Laird (Ed.) Proceedings

of the Fifth International Conference on_ Machine

Learning, pp.87-99, San Mateo, CA.
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But probably the best example of the success of the
decision tree algorithms in dealing with noisy, real-world
data comes from several experiments with C4 on medical
diagnosis. In these experiments the training data set came
directly from hospital records. In one of them it consisted
of 2800 hyperthyroidism cases from the Gavran Institute of
Medical Research, Sydney. The data set had typical real-world
characteristics: some of the values of attributes were unknown
(up to 20% in some cases), some conditions such as secondary
hyperthyroidism were represented by very few cases, worst of
all some attril .te values were incorrect. An additional
difficulty was the fact that six of the attributes were
numerically valued (reflecting results of hospital tests).
Despite the presence of contradictory information (noise)
and despite the significant amount of missing data, C4 was
able to induce a decision tree which correctly classified 99%
of the unseen cases! (Quinlan, 1986b). In a later similar
experiment the misclassitied cases (e.g. the errors the
program supposedly made) were submitted for review at the
Gavran Institute. Surprisingly the review process discovered
that in 9 of the 10 "errors" the mistake was actually
committed by the human expert (Quinlan, Compton, Horn, and
Lazarus, 1987, p.167). So, C4 was right after all!
Similar success in dealing with noisy real-world data is
reported for the CART symbolic learning systems. Weiss and

Kapouleas (1989) tested CART on iris classification data - a



76
standard data set used by statisticians. The CART tree was
able to classify correctly 96% of the cases. They also tested
CART on real-life diagnosis of appendicitis on 106 hospital
records. CART performed roughly three times better than the
human experts and diagnosed wrongly only 9.4% of all cases.

Inpressive results nave been reported about the pruned
tree procedure of ASSISTANT. Kononenko, Bratko and Roskar
(1986) tested ASSISTANT on actual cancer patient data and
showed that ASSISTANT’s accuracy was 72% compared with 64% for
the expert physicians.

Such examples should convince even the sceptic that there
exist symbolic systems which can handle noisy and incomplete

information without breaking down. Therefore, Al is false.

cummonsense

Smolensky claims that the process of articulating expert
knowledge in rules seems impractical for many important
domains (e.g. commonsense). <A3>. I think that this is an
erroneous assumption and I will :ry to refute it by offering
some fairly convincing counterexamples.

My example comes from politics. The data is drawn from
the U.S. congressional voting records. The commonsense
learning task is to identify the political affiliation of
every congressman or congresswoman by looking at his or her
voting pattern. C4 has to be able tc learn how to tell a

Democrat from a Republican by identifying the issues they
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stand for or against. A similar learning task is faced by an
adolescent who is to develop even a limited understanding of
political life. So, if C4 successfully learns to distinguish
correctly political affiliations, this surely should count as
acquiring some commonsense knowledge.

In this experiment €4 had to process information
organized in such a way as to include votes for each of the
members of the U.S. House of Representatives on the 16 key
issues identified by the Congressional Quarterly Almanac
(Schlimmer, 1987). The CQA lists nine different types of
votes: voted for, paired for, and announced for (these three

simplified to yes), voted against, paired against, and
announced agqainst (these three simplified to no), voted

present, voted present to avoid conflict of interest, and did
not vote or otherwise make a position known (these three

simplified to an unknown disposition).

There are 16 attributes corresponding to the 16 key
issues which can take values {y[es], n{o], u[nknown]} and two
major classes: democrat and republican. (See Table 2.3.) 1In
the actual experiment C4 1looked at 300 voting patterns
creating a decision tree that correctly classifies 97% of the
training examples. (See Figure 2.2.)

It is worth noting how economical this representation is.
Instead of using all 16 attributes, the decision tree is
constructed using only 9 of the most informative attributes.

Horeover, C4 notices that most of the examples can actually
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Votes on S
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Handicapped infants

Water project cost sharing
Adoption of the budget resolution
Physician fee freeze

El salvador aid

Religious groups in schools
Anti satellite test ban

Aid to nicaraguan Contras

MX missiles

Immigration

Synfuels corporation cutbacks
Education spending

Superfund right to sue

Crime

Duty free exports

Export administration act South Africa

Y.
Y,
Y,
Y.
Y,
Y,
Y.
Y,
Y,
Y,
Y,
Y,
Y.
Y,
Y,

Y,

Note. Adapted from "Vote" [Machine-readable data

by J. Schlimmer,b 1987.



Figure 2.2

Decision tree for predicting party affiliations.
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be classified by prur‘ng the original tree to the Physician
fee freeze attribute. The branches of this pruned tree can
successfully classify 95% of the training data. (See Figure
2.3.)

The predictive power of both the overgrown and the pruned
decision trees is quite surprising. When tested on 135 unseen
examples the first tree classified 98.5% and the second 97%
cf all unseen examples. This is an error rate of 1.5% and 3%
respectively! This shows how successful C4 can be in
generalizing from past to future cases.

Of course there is nothing mysterious about the way the
decision trees acquire and represent knowledge. Unlike the
opaque representation of knowledge at the subsymbolic level,
each sequence of branches of a decision tree can be converted
into a production rule. For example one fairly complicated
production rule might be:

physician fee freeze = y & synfuel corp. cutbacks = y &

MX missiles = n & adoption of budget resolution = y

-=-> class: democrat
But even fairly simple production rules like
Rule 1:
physician fee freeze = n
-> class: democrat
Rule 2:
physician fee freeze = y

-> c¢lass: republican




Figure 2.3

Pruned decision tree for predicting party affiliations.
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are able to classify correctly almost all of the unseen cases
with error rates of 1.3% and 5.6% respectively.

If we examine these simple production rules derived from
the pruned tree we can see that they actually represent very
useful rules of thumb which have the typical look and feel of
commonsense knowledge. These rules in effect are
overgeneralizations - e.g. they misclassify a small number of
examples - but so are most commonsense rules of thumb. Both
commonsense rules and production rules from pruned decision
trees share a certain degree of imprecision but they are both
surprisingly useful in many everyday domains.

It is a pity that authors like Smolensky ofter. give Al-
A3 as their standard justification for why we need
connectionist systems. ANNs using BP have enough interesting
features to merit a detailed investigation without such

unhelpful justification.

on the Notion of Subsymbolic Computation

It is one thing to show that many symbolic learning
algorithms do not suffer from the ailments diagnosed by
Smolensky but it is quite another to show that there is no
principled distinction between symbolic and "subsymboiic"
levels of representation, that ANNs are not unique in their
ability to work with "subsymbols", and that there is no
incompatibility between the symbolic and the subsymbolic

paradigms.
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In order to demonstrate the spuriousness of the symbolic/

subsymbolic distinction we have to compare the performance of

ANNs and symbolic systems solvi one and t same problem on
one and the same data. If, contrary to Smolensky’s

predictions, it turns out that there are no systematic
differences in the performance of ANNs and symbolic programs
in solving one and the same learning problem on one and the
same body of data, then we will have a very good reason to
believe that the two systems are pnot fundamentally
incompatible with respect to their learning and generalization
capacities.

Luckily, the AI community has not been idle since the
publication of PTC in 1988 and if at the time Smolensky wrote
his article there were almost no comparative tests of the
computational abilities of ANNs with other systems, now such
experimental studies are widely available.

One very interesting experimental comparison of BP with
ID3 learning algorithms was carried out by Shavlik, Mooney and
Towell (1991). They compared the performance of ID3 and ANN
using BP on five standard data sets drawn from real-world
examples as well as on the data set used by NETtalk - the
famous connectionist text-to-speech conversion system
(Shavlik, Mooney, and Towell, 1991).

All data sets required the use of vector representations
to encode the information. One data set contains 289 examples

of 17 different soybean diseases. Each disease condition is
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described by a distributed representation with 50
microfeatures such as weather, time of year, descriptions of

leave:r and stems, etc. Another data set contains 591 chess

endgame examples belonging to two classes - win and not win -

described with 36 features. The audiology data set consists
of actual clinical cases - 226 examples of 24 categories of
hearing disorders described with 58 features. This data set
also had a large amount of missing information. The heart
disease data set was also drawn from actual clinical examples.
It had 303 examples belonging to two classes, described by 14
features. Six of these features (attributes) were numerically
valued. And finally, the NETtalk training set, slightly
modified, consisted of 4259 examples of parts of words
classified into 115 phoneme/stress categories or outputs. (A
subset of this data set - NETtalk-A - involving only the A
sounds had 444 examples falling into 18 categories.)

ID3, a multilayered ANN using Backpropagation as well as
a one-layered perceptron, were first trained on a subset of
each data set and then were tested on their predictions of the
unseen examples drawn from each data sets. The results of the
experiment are reported in Table 2.4. (See .able 2.4.)

As can be seen from the results of this experiment the
accuracy of predictions on novel examples of both ANN running
BP and ID3 is almost the same. In some cases BP performed
better (soybeans, heart disease and NETtalk-A) while in some

others (chess and NETtalk-full!) ID3 was superior. In only two
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Table 2.4
E . tal ari ¢
ID3 and an ANN Using BP
Data set Accuracy on Difference in ANN training
test data accuracy time as a
--------------- statistically multiple of
ID3 ANN significant ID3 training
using BP (t-test) time
Soybeans 89% 94.1% Yes 50
Chess 97% 96.3% No 1000
Audiology 75.5% 77.7% No 200
Heart disease 71.2% 80.6% Yes 500
NETtalk-A 63.1% 66.4° No 100
NETtalk-full 64.8% 63% No 5

Note. Adapted from "Symbolic and Neural Learning

Algorithms: An Experimental Comparison" by J. Shavlik,
R. Mooney, and G. Towell, 1991, Machine lLearning, vol.

6, PP-111--143,
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cases are the differences in accuracy statistically
significant.

But it is important to note that the relative training
times of ID3 were much better - its average training time was
150 times shorter than the training time required for BP! This
difference between the two algorithms is unlikely to be
affected by using parallel hardware. ID3 is a recursive
divide~and-conquer algorithm which can be implemented in
parallel with significant gains in speed (cf. Shavlik, Mooney,
and Towell, 1991, p. 136).

Similar experimental comparisons have been carried out
by Fisher and McKusick (1989). They confirm that despite the
great differences ANNs using BP and ID3 are able to solve the
problems with only small differences in their degree of
accuracy but with great differences in speed and in the
transparency of the results.

Other symbolic induction systems have been shown to be
very successful 1in processing large scale distributed
representations which Smolensky would consider as belonging
to the domain of subsymbolic computation. Atlas et al. (1990)
compared the performance of a multilayered ANN using BP with
the symbolic classification and regression tree system CART
(Breimen et al., 1984). The real-world problems on which the
two systems were tested included the prediction of the power
consumption load for the Puget Sound Power and Light Company

and predicting the power system security. Another task was
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speaker independent vowel classification. All involved
distributed representations with a great number of attributes
or mjcrofeatures. Table 2.5 presents the results of three
experiments. (See Table 2.5.)

Similar comparative experiments between ANNs using BP
and CART and ASSISTANT have been carried out by Weiss and
Kapouleas (1589). They found that ANN using BP performed
marginally better on the iris and the appendicitis data sets
mentioned earlier but CART and ASSISTANT outperformed ANN
using BP on the cancer data set (Weiss and Kapouleas, 1989,
pp-784-85).

These comparative results explode the myth about the
advantages of subsymbolic systems over symbolic systems. It
turns out that ANNs are not necessarily softer, or more
flexible than symbolic systems, znd that they do not handle
noisy data any better than symbolic systems. They show quite
convincingly that the ability to use (numerical) vector
representations (i.e. distributed representations and

microfeatures) is not unique to ANNs. In this sense both ANNs
and symbolic systems are gubsvmbolic. This term, however, is

misleading because the “"subsymbolic computatjon" carried out
by systems like ID3 is entirely gymbolic.

Despite the fact that systems based on TDIDT and BP can
achieve very similar levels of success, they are by no means

equivalent. The differences in their error rates on the

different data sets reveal that they have different inductive
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Table 2.5
Experimental Comparison of

CART and an ANN using BP

Error rates Statistically
-------------- significant
Problem ANN CART
Power consumption 1.39% 2.86% No
forecasting
Power system security 0.78% 1.46% Yes
prediction
Speaker-independent 52.6% 53.6% No

vowel classification
Note. Adapted from "Performance Comparisons BRetween
Backpropagation Networks and Classification Trees on
Three Real-World Applications" by L. Atlas, R. Cole, J.
Connor, M. El-Sharkawi, R. Marks, Y. Muthasamy, E.
Barnard, 1990, in D. Touretzky (Ed.), Advances in Neural

Information Processing Systems, Vol. 2, San Mateo, CA:
Morgan Kaufmann Inc., pp. 622-29.
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biases and different generalization capacities, i.e. some
problems "naturally" fit t. > inductive bias of one or the
other algorithm. It is not difficult to create artificial data
sets that better fit the inductive bias of ANNs using BP or
of ID3 (Fisher and McKusick, 1989). Such inductive biases,
however, do not appear to follow the hard/ soft distinction
that Smolensky thinks underlies the difference between
symbolic and subsymbolic systems. If symbolic systems like ID3
were naturalily hard systems and if subsymbolic systems were
naturally soft systems one would expect to see BP perform
better than 1ID3 on the allegedly soft NETtalk speech
ceneration task. Actually, the experiments show that the
opposite is true, underlining the fact that there is no
systematic difference in the inductive biases and in the
generalization capacities of ID3 and the ANNs along the hard/
soft distinction.

The important difference between symbolic decision tree
systems and ANNs using BP lies not in the symbolic/subsymbolic
distinction but in the complete gpagueness of the way ANNs
represent acquired knowledge. Whereas a decision tree can
readily be converted into production rules -- a very versatile
knowledge representation format -- no such possibility exists
in the case with ANNs using BP. In fact, the weight matrices
and the activations of the "hidden" units in which the
knowledge acquired by ANNs is stored are usually viewed as a

black box. A potential advantage of induction systems like ID3
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over BP is that they represent explicitly the knowledge that

they have acquired.

Conclusjon
I think I have shown that Smolensky’s symbolic/
subsymbolic distinction is entirely spurious. The differences
between the inductive biases of the ANNs using BP and of other
symbolic algorithms (most notably TDIDT systems) are not
systematic in any respect. They cannot therefore, warrant the
drawing of a principled, theoretically useful distinction

between subsymbolic, subconceptual, soft and symbolic, or hard

systems. In particular I have shown that

Al is false because there are symbolic learning systems
which are not brittle and which can be very flexible.
They can model true human expertise in many areas (e.g.
medicine, agriculture, banking, chess playing, water

management -~ to list just a few).

A2 is false because the process of articulating expert
knowledge in rules does not seem impractica. for many
important domains (e.g. commonsense). In some cases it
is possible to articulate commonsense knowledge in rules

of thumb derived from pruned decision trees.
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A3 is incorrect and B3 is ralse because it reflects the
incorrect assumption that connectionist systems have
contributed essentially more insight into how knowledge
is represented in the brain than symbolic systems. A3 has

to be rewritten as A3%*,

Bl is false. Subsymbolic systems are not unique in their
ability to represent concepts as sets of subconcepts or
microfeatures. Ordinary symbolic systems can encode

concepts as numerical state vectors.

B2 is false. Ordinary symbolic systems in many cases fare
much better than subsymbolic systems in handling noisy,
incomplete data and in displaying graceful degradation
of performance in the presence of noise or incomplete
information. The differences in the inductive biases of
ANNs using BP and TDIDT symbolic systems are not
systematic; these differences do not support the soft/

hard, symbolic/ subsymbolic distinctions.



CHAPTER THREE

Answering the Eliminativist Challenge:
The Importance of Expljcit Representations
Introduction
In cChapter One, we saw that the supporters of the

classical approach to cognition (Fodor and Pylyshyn, 1988;
Pylyshyn, 1984) and implementational connectionists
(Smolensky, 1991; Touretzky, 1991) disagree on two main fronts
-~ the extent to which neural networks can implement symbolic
structures, and the significance of connectionism for
cognitive psychology should it turn out that neural networks
can fully implement the classical Turing/ von Neumann
cognitive architecture. Despite their disagreenents,
implementational connectionists and the supporters of the
classical approach agree on one major issue; they believe that
no cognitive theory can ever hope to be successful unless it
is able to explain such pervasive cognitive phenomena as
gystematicity. So, implementational connectionists do not
doubt the need to implement in neural networks such symbolic
structures as production rules, parse trees, part-whole
hierarchies, etc. that would enable neural networks to process
complex symbolic representations.

Implementational connectionism, however, is by no means
recognized as the ‘orthodox’ connectionist cognitive theory.

The doubts expressed by Fodor and Pylyshyn regarding its

94
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psychological significance are shared by the great majority
of connectionists researchers who do not believe that symbolic
structures of any kind play a role in cognition. The majority
of the connectionists who see artificial neural networks as
providing the basis for explaining human cogni*ive
architecture subscribe to the theory that in a mature
cognitive science there will be no room for any of the
symbolic structures postulated by present-day cognitive
science -- human behaviour will be explained solely in terms
of patterns of activation and weight changes in neural nets.
This theory, aptly named eliminative connectionism (by Pinker
and Prince, 1988), is a much more radical doctrine than
inplementational connectionism. If true, it should force a
major reconceptualization of our current psychological

theories.

Eliminativism
Eliminative connectionism is a species of a more general
view -- eliminativism. Eliminativism is the claim that
some category of entities, processes or properties
exploited in a commonsense or scientific account of the
world do not exist (Ramsey, Stich, and Garon, 1991, p.
201).
Eliminativism with respect to psychology is the claim that our
commonsense notions (of belief, desire, expectation, fear,

etc.) that feature prominently in our ‘folk’ psychological




96
theory of ourselves simply do not refer to anything. This type
of eliminativism with respect to folk psychology is common to
behaviourism (Skinner, 1953, 1957), eliminative materialism
(Churchland, 1988, 1989), and to the syntactic theory of the
mind pioneered by Stich (1983). All of these different
theories of the mind are opposed to any attempt to treat
beliefs, desires or any other of the so called propositional
attitudes as legitimate candidates for possible scientific
reduction. Accordingly, eliminativists of different schools
reject both central state identity materialism (Armstrong,
1968) as well as the functionalist form of materialism
(Putnam, 1960; Fodor, 1975; Pylyshyn, 1984) that hopes to
reduce the beliefs and desires of folk psychology to physio-
chemical or computational states of the brain.

Eliminativism (especially in psychology) relies on one
basic type of argument that is entirely analogical. History
of science has shown us -- the argument goes -- that certain
entities 1like caloric, phlogiston, witches, demonic
possession, etc. postulated by successful scientific or folk
theories, have turned out to be entirely spurious. The case
with the folk psychology is analogous. As later scientific
theories showed that there are no such things as caloric and
phlogiston, future behaviourial, neurophysiological, or
computational theories will show that there are no such things
as beliefs and desires. This patently analogical argument is

usually backed-up with the assertion that folk psychology
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cannot be considered true because there are abundantly many
undisputable cases in which folk psychological explanation

either fails or is vacuous.

But is this argument sufficient to show that beliefs and
desires are spurious entities? It is well known that a theory
may be false or it may fail to explain certain cases even
though its central terms have reference; a theory change need
not always imply the spuriousness of the entities postulated
by the old theory. Although Lavoisier’s oxygen theory showed
the spuriousness of phlogiston and kinetic energy of modern
thermodynamics replaced caloric. But molecular genetics did
not replace the genes postulated by the older genetic theory.
History of science demonstrates that radical theory shifts co-
exist with more gradual, reductionist theory changes in which
the central terms of the old theory are not replaced but are
made more precise by the new successor theory.3 What is the
indication that folk psychology will be eliminated by its
successor theories rather than gradually made more precise as
was the case with molecular genetics? There is nothing the
eliminativist can point t» in order to demonstrate that the
fate awaiting folk psychology is total elimination rather than
gradual reduction -- the historical analogies supporting
elimination are just as numerous as the disanalogies. But if
that is so, eliminativism per se is simply a statement about
what the future of folk psychology might turn out to be:

eliminativism has no evidence on its side to allow us to claim
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that elimination must be the future of folk psychology. The
advent of connectionism changed all that. Connectionism
provides a hope that much needed additional evidence might be
closer than critics and defenders of eliminativism had

previously thought.

Eliminative Connectionism

Eliminative connectionism is a psychological theory that
denies that the entities referred to by the traditional
cognitive psychology -- symbolic structures such as rules,
parse trees, propositions, etc. -- actually exist. Eliminative
connectionism has direct implications for eliminativism with
respect to commonsense psychology. This is so because
traditional cognitive psychology and fclk psychology share a
common basis which Stich (1983) has termed the propositional
modularity view of the mind. For Stich this view amounts to
the claim that

propositional attitudes are unctionally discrete,

semantically interpretable, states that play a causal

role in the production of other propositional attitudes,

and ultimately in the production of behaviour. (Ramsey,

Stich, and Garon, 1991, p.204.)
Eliminative connectionism denies that there are any such
functionally discrete representational states that are even
remotely identifiable with the propositional attitudes of

traditional cognitive psychology. In contrast to the old
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eliminativism, however, the reasons given in defence of
eliminative connectionism are not historical analogies; they
are derived directly from the architectural differences
between connectionist and symbol processing cognitive models.
This would seem to give much needed support to the
eliminativist program in general: if for some nontrivial
cognitive tasks there exist connectionist models that do not
implement explicit rules and symbolic representations and at
the same time there exist no corresponding symbolic models
that can solve the same task, then with the accumulation of
such evidence we will have good reason to accept the
fliminativist view that rules and symbolic representations
have no place in cognition. And if eliminative connectionism
turns out to be right, so too will eliminativism about
propositional attitudes (cf. Ramsey, Stich, and Garon, 1991,
p.200).

There are three connectionist claims that are widely
assumed to bear directly on the eliminativist thesis:

Tl. Connectionist representations are not functionally

discrete.

T2. Connectionist representations are not (directly)

semantically interpretable.

T3. ANNs are primarily pattern associators and pattern

recognizers.

The first claim is based on evidence from those
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connectionist models that employ widely distributed
representations. The crucial assumption here is that ANNs can
be seen to represent information in their connection weights
and in the biases of their units in distributed form, i.e. in
such a way that human interpreters can tell what information
the network is representing as a whole, while they are
incapable of identifying which weights and biases represent
specific parts of this information. This implies that any
attempt to isolate a set of weights and biases as encoding a
given proposition or set of propositions is bound to fail in
the case of genuinely distributed representations. But if the
distributed nature of connectionist representations implies
that they have no functionally separable individual states,
then propositional attitudes can have no causal role. As
Ramsey, Stich, and Garon put it

It simply makes no sense to ask whether or not the
representation of a particular proposition plays a causal
role in the network’s computation. (Ramsey, Stich, and

Garon, 1991, p.212.)

Second, many connectionists (most notably Smolensky,
1988) believe that individual units in multilayer ANNs which
have no obvious symbolic interpretation can be considered as
encoding subsymbeolic representations. The whole pattern of
activation of neural networks can be given a symbolic

interpretation which will be roughly right but imprecise --
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the fine structure of cognition, the structure that is
causally relevant is to be found at the subsymbolic level.
Subsymbolic representations are descriptions built up of
entities that correspond to constjtuents of symbols; these
fine-grained constituents are called subsymbols, and they are
the activities of individual processing units in connectionist
networks. (Smolensky, 1988, p.3). The interaction between
these activity patterns is not directly described by a formal
definition and can be computed only approximately.

The third claim is based on the fact that for many
purposes ANNs can be viewed as pattern associators and pattern
recognizers. But if ANNs can solve typical pattern association
or pattern recognition tasks without explicitly encoding rules
and symbolic representations, then this is prima facie
evidence that symbol structures are redundant from a
connectionist perspective.

Ti, T2, and T3 imply that distributed representations in
ANNs which act as pattern associators and pattern recognizers
are incompatible with symbolic structures like propositions,
rules, parse trees, etc., So, if human cognitive architecture
were based entirely on neural networks with distributed
representations and if the operations of pattern association
and pattern recognition were the basic operations of human
cognitive architecture, then it would seem that we have to
rule out the propositional attitudes of commonsense psychology

as non-entities.
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Let’s suppose that the reasoning so far is correct. We

have established the conditional claim that if eliminative
connectionism turns out to Le right, so too will eliminativism

about propositional attitudes. But we still need to know under

what conditions connectjionism might turn out to be right.

Eliminative connectionism will succeed as a theory of the mind
only if it can be demonstrated that human cognitive
architecture is in fact connectionist and that “he correct
connectionist architecture does not, in fact, implement any
symbolic structures. Only if these two conditions are met can
we conclude that commonsense psychology is a radically false
doctrine and that its central terms are non-referential. But
in order to have a complete argument for the elimination of
folk psychology we need to know whether connesctionist ANNs
that do not implement symbolic structures can serve as a basis
for the human cognitive architecture.

As things stand at the moment, the eliminative
connectionists can only point to several successful
connectionist models which they claim make no explicit use of
symbolic structures like rules and propositions -- models for
which ANNs are used as pattern associators and pattern
recognizers. These eliminative connectionist models can be
divided roughly into two groups -- jillustrative models that
are intended to serve as mere visual aids in illustrating how

neural networks can sclve problems without implementing any

symbolic structures, and more or less serious workindg models
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that try to solve nontrivial cognitive problems without
implementing symbolic structures. In the first group are many
of the models discussed in the philosophical literature (cf.
Churchland, 1989; Ramsey, Stich, and Garon, 1991).

A good illustrative example of how networks can avoid
symbol structures like propositions and still solve cognitive
tasks has been given by Churchland (1989). He has speculated
that cognition can best be explained in terms of prototype
activation. He sees in the current connectionist research the
kernel of a new conception of cognitive activity,

...a conception in which vector coding and vector-to-

vector transformation constitute the basic forms of

representation and computation, rather than sentential
structures and inferences made according tc structure

sensitive rules. (Churchland, 1989, p.209.)

According to this conception pattern recognition is the basic
operation in cognition that underlies human and animal
explanatory understanding. Things as different as desert rats
and rotating plastic objects are understood by human and
animal minds when their perceptual systems activate the
prototype vectors encoding desert rat and rotating plastic
object. (See Figure 3.1.) In Churchland’s opinion

Explanatory understanding consists in the activation of

a specific prototype vector in a well-trained network.

It consists in the apprehension of the problematic case

as an instance of a general type, a tvype for which the




Figure 3.1
Explanatory understanding as the activation of a prototype
vector. a) Ampliative activation of desert rat vector.
b) Ampliative activation of rotating plastic body vector.
(Reprinted from Churchland, 1989,
© 1989 by The MIT Press, Cambridge, MA.

Reproduced with permission.)
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creature has a detajled and a well-informed
representation. (Churchland, 1989, p.210.)

Unfortunately, Churchland gives no estimate of the number
of possible general prototypes and he does not say how they
relate to each other or to the vectors that activate them; he
does not offer any similarity metric or any other gauge with
which to measure when a given pattern does or does not belong
to a given general prototype. This, however is not a mere
detail that could be sorted out later, without an indication
of how an ANN can organise all the patterns it is recognizing
in a systematic way Churchland’s vision of cognition as
pattern association is nothing more than an unsubstantiated
claim.

Ramsey, Stich, and Garon have given another example of
how the possible elimination of symbolic structures might
occur in connectionist ANNs. Their model involves learning
and recognizing the truth or falsity of 16 propositions (see
Table 3.1.)

Ramsey, Stich, and Garon trained a three layer ANN to
associate each input pattern with its corresponding value 1
or 0 (true or false). The network was then able to predict the
truth value of proposition #17 which was not in the training
set. Ramsey, Stich, and Garon point out that this network
cannot be regarded as even implicitly encoding such things as

propositions and rules. They compare their network with a
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Table 3.1
-V s

Proposition Input Output
1 Dogs have fur. 1100001100001111 1 true
2 Dogs have paws. 1100001100110011 1 true
3 Dogs have fleas. 1100001100111111 1 true
4 Dogs have legs. 1100001100111100 1 true
5 Cats have fur. 1100110000001111 1 true
6 Cats have paws. 1100110000110011 1 true
7 Cats have fleas. 1100110000111111 1 true
8 Fish have scales. 1111000000110000 1 true
9 Fish have fins. 1111000000001100 1 true
10 Fish have gills. 1111000000000011 1 true
11 Cats have gills. 1100110000000011 0 false
12 Fish have legs. 1111000000111100 0 false
13 Fish have fleas. 1111000000111111 0 false
14 Dogs have scales. 1100001100110000 0 false
15 Dogs have fins. 1100001100001100 0 false
16 Cats have fins. 1100110000001100 0 false
Added Proposjtion:
17 Fish have legs. 1111000011001000 1 true

Note: Adapted from "Connectionism, Eliminativism, and the
Future of Folk Psychology" by W. Ramsey, S. Stich, and
J. Gasron, 1991, Ramsey et al. (Eds.) Philosophy and
Connectionist Theory, pp.199-228, Hillsdale, NJ: Erlbaum.
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traditional semantic network that uses such symbolic
structures as propositions and inheritance relations to
demonstrate how dissimilar they are even though their
performance on this limited classification task is similar.
According to Ramsey, Stich, and Garon this is a reason to
believe that such connectionist networks that work without any
symbolic structures might turn out to be better models of
memory and judgement than inheritance systems which are
committed to using functionally discrete propositions.

The question that hangs over such examples of elimination
of rules and symbolic representations, however, is how
realistic it is to expect that these "toy" models will scale
up so that they will be able to account for serious nontrivial
cognitive tasks. Neither CcChurchland nor Stich address
seriously this question. But this is by no means a secondary
issue. It is not enough just to point out that the brain could
possibly encode “g§ different vectors (Churchland, 1989)
without any indication how this enormous number of encodings
can be organized. We need to see massive evidence that ANNs
can solve nontrivial cognitive tasks and that they can
integrate and further process the results of these solutions.
The models suggested by Churchland and by Ramsey, Stich, and
Garon fall far short of any such serious scrutiny; they are
offered not as serious cognitive models but for purely
illustrative purposes. Such models do not advance the

eliminative cause any further than the historical and
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analogical arguments employed previously. They serve as
examples of what would be the case, were it to turn out that
human cognitive architecture is connectionist.

There are eliminative connectionist models however, that
try to provide successful connectionist accounts of nontrivial
cognitive tasks. One of the most interesting and controversial
areas where such connectionist models have been proposed is
the area of language learning and language processing. I will
examine two of the most influential models in this area of
connectionist research -- Rumelhart and McClelland’s and
MacwWhinney and Leinbach’s models of learning the past tenses
of English verbs. I will demonstrate that those models which
try to solve nontrivial cognitive tasks are seriously flawed
and so cannot be taken as evidence that ANNs as pattern
associators and pattern recognizers can solve nontrivial
cognitive tasks. Ultimately, the analysis of Rumelhart and
McClelland’s and MacWhinney and Leinbacl.’s models should give
us sufficient reason to reject them as examples of successful
elimination of explicit rules and symbolic representations

from cognitive science.

v ionis o

of lLanguage Learning and Languade Processing
Ever since the publication of N. Chomsky’s Syntactic
Structures (Chomsky, 1957) and his subsequent attack on a
behaviourist theory of language (Chomsky, 1959), it has
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generally been assumed that rules and symbolic representations
like parse trees are indispensable for a successful account
of language learning and language processing. But according
to the eliminative connectionists (Rumelhart and McClelland,
1986; McClelland, Rumelhart and Hinton, 1986) it is impossible
to find a principled mapping between the connection strength
matrixes and vectors of activations used in a connectionist
ANN, and symbol structures like parse trees, propositions,
and the rules for their manipulations which one finds in
symbolic models of language processing. At the same time, the
supporters of this approach believe that the resources of
connectionist architectures are sufficient to explain in
principle all psycho-linguistic phenomena without the need to
postulate the existence of explicit rules and symbolic
representations.

Eliminative connectionism has received a great deal of
support from connectionist research on language that directly
challenges the rules and representations accounts of language
learning and language processing. In particular, the task of
learning the past tenses of English verbs has received a great
deal of attention. The first PDP model developed by Rumelhart
and McClelland was, according to its creators, able to learn
the past tenses of English verbs without the use of explicit
rules and symbolic representations (Rumelhart and McClelland,
1986, pp. 216-271). After several critical reviews of this

model by Pinker and Prince (1988), Lachter and Bever (1988)
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and a detailed background analysis of the model by Plunkett
and Marchman (1991), a new revised PDP model was proposed by
MacWhinney and Leinbach (1991). MacWhinney and Leinbach
claimed that their new model meets most of the criticisms
addressed at the earlier eliminativist model of Rumelhart and
McClelland and that it is also able to learn the past tenses
of English verbs without any explicit representation of the
acquired linguistic knowledge. Rumelhart and McClelland as
well as MacWhinney and Leinbach argued that since there was
no comparable symbolic model that can achieve similar results
by using explicit rules and symbolic representations and since
it was difficult to imagine how ‘rigid’ rules could ever
account for the flexibility of human language learning, these
PDP models should be seen as crucial evidence in favour of
eliminative connectionism.

A common feature of both Rumelhart and McClelland’s and
MacWhinney and Leinbach’s models is the treatment of the ANN
as a device that can learn to assocjate arbitrary patterns.
Both models make much use of the fact that a multilayer ANN
using the error-backpropagation algorithm or a perceptron
using the perceptron convergence algorithm can be
"conditioned" to associate pairs of arbitrary patterns. Ii
this process, which is essentially a supervised learning from
exampleg, pairs of input and output patterns are provided by
the human supervisor or "teacher". A properly structured

multilayered ANN can be trained to associate each input
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pattern with each output pattern using the error
backpropagation algorithm in the following way:

The ANN (with usually randomized weights) tirst uses the
input vector (pattern) which is propagated forward to
produce its own output vector (pattern). Then it compares
its output with the target vector (this is the pattern
it has to learn). If the differences between the output
vector and the target vector are similar within a
specified range the training 1is stop,ed. If the
differences are outside of this range, the difference is
reported as an error signal for each output unit. Then
the error signal is passed backwards to each unit in the
network and the appropriate weight-changes are made. The
forward and backward procedures form one epoch. Such
epochs are repeated until the differences between the
input and the target vector are minimized to a desired
level and the human controller terminates the process.
(The perceptron convergence procedure for single layer
ANNs is very similar.) (Cf. Rumelhart, Hinton, and

Williams, 1986, p. 327.)

After an ANN has been trained, if we present it with any

of the input patterns, it can (in many cases) produce the

correct or desired output pattern. Then we can say that
network has learned to associate the two sets of input

output patterns. Moreover, networks trained in such a

the
and

way
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appear able to extract (some) regularities that exist in the
pairings of input and output patterns and sometimes can
respond correctly when presented with input patterns pnot
encountered during training. This suggests that (in some
cases) they exhibit a degree of genuine inductive
generalization abilities.

According to eliminative connectionism the significance
of the ANN as a pattern associator for psychology lies in the
fact that on the one hand ANNs can learn to correlate
arbitrary patterns and to generalize their knowledge to other
"unseen" patterns, but on the other hand, they cannot and need
not represent the acquired knowledge in symbolic form; they
cannot and need not consult any explicit rules during or after
the acquisition of this knowledge. In fact, the
"representation" of knowledge in terms of connection
strengths and patterns of activation is in purely numeric form
and is entirely opaque to the human interpreter. In this way
the ANN as a pattern associator solves the well known problem
of knowledge representation by simply dissolving it. Thus, one
of the main claims of eliminative connectionism is that, with
the development of powerful connectionist models, the whole
of cognition (including 1language 1learning and language
processing) will eventually come to be seen simply as process
of pattern association and pattern recognition. In this way
all reference to rules and symbolic representations will be

eliminated from cognitive science.
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In what follows I will show that these connectionist
models do not offer evidence sufficient to establish the
claims of eliminative connectionism and a fortiori, they do

not establish the claims of general eliminativism either.

me t cC and’s de

Rumelhart and McClelland provided the first step in what
they see as the gradual elimination of the use of rules and
symbolic representations in cognitive psychology by developing
a PDP model that was credited by them with the ability to
learn the past tenses of English verbs. They specifically
addressed the issue of the existence of explicit but
inaccessible rules in language acquisition associated with the
work of N. Chomsky, S. Pinker, and other supporters of the
symbol-processing approach. According to Rumelhart and
McClelland, their PDP model eliminates the need to postulate
the existence of explicit rules in accounting for the human
knowledge of language:

We suggest instead that the implicit knowledge of

language may be stored in connections among simple

processing units organized into networks. While the

behaviour of such networks may be describable (at least

approximately) as conforming to some system of rules, we

suggest that an account of the fine structure of the

phenomena of language use and language acquisition can

best be formulated in models that make reference to the
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characteristics of the underlying networks. (Rumelhart

and McClelland, 1987, p. 196.)

I will not describe in any great detail Rumelhart and
McClelland model since this model is one of the best known
connectionist simulations. I will only note that at the heart
of their model 1is a simple perceptron-based pattern
associator. This pattern associator is connected to an input
encoding network and an output decoding/ binding network. (See
Figure 3.2.)

The encoding network takes as input the phonological
representation of the root form of the verbs and converts it
into a special Wickelfeature representation format. The
Wickelfeature representation of the root form of each verb is
then paired with the Wickelfeature representation of its past
tense in the perceptron pattern associator for the duration
of the training process. The decoding/ binding network is used
to decode the output of the pattern associator from the
Wickelfeature format back into the same phonological format
used at the input of the encoding network.

The Wickelfeature representational format played an
important role in Rumelhart and McClelland’s simulation. It
derives from a scheme proposed by Wickelgren (1969) that
represents each phone in a word as a triple, called a
Wickelphone for short, consisting of the phone itself, its

predecessor, and its successor. A phoneme occurring at a word



Figure 3.2
Rumelhart and McClelland’s network.
(Reprinted from Rumelhart and McClelland, 1986.
© 1986 by The MIT Press, Cambridge, MA.

Reproduced with permission.)
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boundary has a special boundary symbol (#). So the word cat
/kat/ can be represented as the set of Wickelphones (#ka, kat,
at#). However, the direct use of Wickelphones in this
simulation was computationally unfeasible because the number
of possible Wickelphones required the number of connections
in the network to be on the order of 10°! That is why
Rumelhart and McClelland decided to represent each phoneme not
by a single Wickelphone but by a pattern of what they called
Wickelfeatures. Essentially, this format classifies all
phonemes into different types, e.g. interrupted consonants,
continuous consonants, vowels, etc. that are further
subdivided into stops and nasals or fricatives, liquids, etc.
Using this classification each phoneme can be represented by
a unique combination of category features, i.e. as an 1l1-bit
binary vector (including the boundary marker). Then each
Wickelphone can be represented as a 33-bit binary vector.
However, in order to make the decoding of Wickelphones
manageable Rumelhart and McClelland selected only 460 of the
1210 possible Wickelfeatures for the actual experiment. One
particular drawback of this decoding decision was that
sometimes two or more words had to "compete" for one and the
same Wickelfeature representation, i.e. the network produced
two or more past tense forms for one and the same stem. In
such cases Rumelhart and McClelland took the response strength
of each of the alternatives as the indication of the

likelihood that the model would actually cutput the correct
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candidate. If the strength of a response was weaker than 0.2
(on 0 to 1 scale) it was counted as no response.

Rumelhart and McClelland claimed that after two limited
training periods the network was able to learn correctly the
past tenses of both the regular and irregular verbs used for
training and to generalize this knowledge to previously
"unseen" regular and irregular verbs. Mcreover, the errors
made by the model during the training process broadly followed
the U-shaped learning curve in the acquisition of the past
tense exhibited by young children: early -~ correct production
of regulars and irregulars, medium -- incorrectly regularized
irregulars, and late -- correct production of the majority of
regulars and irregulars.

According to Rumelhart and McClellard the success of
their model confirms one of their main predictions -- the
nonexistence of explicit rules and symbolic representations
mediating language acquisition:

We have, we believe, provided a distinct alternative to

the view that children learn the rules of English past-

tense formation in any explicit sense. We have shown that

a reasonable account of the acquisition of past tense can

be provided without recourse to the notion of a "rule"

as anything more than a description of the language. We
have shown that, for this case, there is no jinduction
problem. The child need not figure out what the rules

are, nor even that there are rules. The child need not



120
decide whether a verb is regular or irregular. There is
no question as to whether the inflected form should be
stored directly in the 1lexicon or derived from more
general principles. (Rumelhart and McClelland, 1986, p.

267.)

~ritici £ R lhart ) McClelland’s Model

Rumelhart and McClelland’s model has received extensive
critical attention in the literature. Two of the best known
critical reviews are Pinker and Prince (1988) and Lachter and
Bever (1988). The most important conceptual issues to surface
during the discussion were connected with the support that the
eventual success of Rumelhart and McClelland’s model of
learning the past tenses of English verbs (or similar improved
PDP models) could lend to eliminative connectionism.

The induction problem. Rumelhart and McClelland believe
that one of the major results of their simulation is the
demonstration that in the learning of the past tenses of
English verbs there is po induction problem. But even if their
model had a 0% error rate, such a conclusion is absolutely
unjustifiable. As Pinker and@ Prince, and Lachter and Bever
point out, Rumelhart and McClelland ¢try to model the
acquisition of the production of the past tense considered in
isolation from the rest of the English morphological system.
Rumelhart and McClelland assume that the acquisition process

establishes a direct mapping from the phonetic representation
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of the stem to the phonetic representation of the past tense
form (cf. Pinker and Prince, p. 87-88). This direct mapping
collapses some well established distinctions:

¢ Lexical item vs. phoneme string. The lexical item
combines syntactic, semantic, morphological and
phonological properties whereas the phoneme string
encodes just one of these properties. As the existence
of homophones with different past tense forms (e.dq.
wring/ wrung vs. ring/ rang) indicate, phonetic input
does not entirely control lexical access and there is no
complete overlap betweea purely phonetic representation
and lexical representation; there is still an inductive
step to be made from phonetic information to 1lexical
information.

¢ Morphological category vs. morpheme. There is a huge
inductive step to be made in passing from a simple
morpheme to its morphological category such as ‘past
tense’, ‘present tense’, etc. (Pinker and Prince, p. 86).
This inductive step can remain hidden from us if we are
not aware of the conditions under which supervised
learning from examples takes place. The training process
in this learning task assumes a supervisor who "knows"
the correct classifications to all training examples,
i.e. the supervisor has direct access to category
information. It is only if one forgets about the role of

the supervisor in the training process that one can say
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that for ANNs using backpropagation there is no induction
problem. It should be gquite clear that the system does
not end up inferring the category of past tense from the
training sample. It only learns to associate phonetic
patterns and does not make the inductive step to new

morphological categories.

So even if the model was fully successful in achieving
the desired direct mapping from input phonetic strings to
output phonetic strings, that would not mean that there is no
induction problem in the learning of the past tenses of
English verbs. At least two crucial steps are still required
to go from the phonetic strings to lexical items and then to
morphological categories like ‘present tense’ and ‘past
tense’. It is unclear, however, how a PDP model that acts only
as a pattern associator will be able to learn new category
information. Simply remaining at the 1level of phonetic
patterns, it is impossible to express the new categorial
information necessary for further inductive steps. As Pinker
and Prince put it:

(one of the inherent deficits of the model is that] there

is no such thing as a variable for any stem, regardless

of its phonetic composition, and hence no way for the
model to attain the knowledge that you could add /d/ to

a "stem" to get its past. Rather, all the knowledge of

the model consists of responses trained to the concrete
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features in the training set. (Pinker and Prince, 1988,
p. 124.)
This criticism pinpoints the upper limitations of Rumelhart
and McClelland’s model -- it is not able to acquire knowledge
that can be represented in first-order (function/ variable)
format. The model 1lacks the capacity to express simple
generalizations like this one:
For any verb stem, if it ends at /r/ or /1/, add /d/ to
form its past tense; if it ends at /p/ or (k/, add /t/

to form its past tense.

Representational format. The representational format used

by Rumelhart and McClelland in their model was also subjected
to severe criticism. Lachter and Bever pointed out that the
results the model actually achieved would have been impossible
without the use of several TRICS (The Representations It
Crucially Supposes). One such TRIC was reducing the number of
Wickelfeatures from about 1000 to 260 not randomly but in such
a way as to decrease disproportionally the information
provided by some Wickelfeatures. This selective deletion had
the effect of reducing the information contained in some
Wickelphones and increasing 1. in the "centrally informative"
Wickelphones (Lachter and Bever, 1988, p. 209). This certainly
introduced a bias in the data favourable to the success of the
model. Also, explicitly coding word boundary information in

a completely separate set of 200 Wickelfeatures had the effect
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of giving privileged information status to phonemes in the
beginning and at the end of a word. This "boundary sharpening"
also intrcduced a favourable bias {(Lachter and Bever, 1988,
p. 210). There are further guestions about the linguistic and
psychological justification for using this specific encoding
of Wickelphones in phonetic features and about the use of the
Wickelphone representational format itself. The probabilistic
decoding of two or more candidates for an answer also seems
to be a puzzling feature of the model that is without any
psychological raison d’ etre.

Pinker and Prince note other problems associated with
the representational format chosen by Rumelhart and
McClelland. Wickelphone representations do not always preserve
natural sequential order. For example the word strip can be
represented either as (#st, str, tri, rip, ip#) or as the
unordered (ip#, rip, str, #st, tri) (Pinker and Prince, p.
89). Also, this format cannot encode all possible words
unambiguously. For example, the model would be unable to
distinguish between the words algal and algalgal in the
Australian language Oykangand. This means that with this

format we cannot represent strings of arbitrary lengths.

Performance Results
On purely conceptual grounds I am not convinced that
Rumelhart and McClelland have provided an adequate model of

the learning of the past tenses of English verbs because of
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the inductive limitations built in their model. But when one
louks at the actual performance of the model one is surprised
by Rumelhart and McClelland’s claim that their model comes
close to accomplishing the limited task of learning the set
of specified mappings between phonetic patterns. Despite the
many favourable biases intrcduced in the data with the use of
TRICS, a close analysis of the reported experimental results
shows that the model’s performance is very poor.

Rumelhart and McClelland trained the network with 420
regular and irregular verbs that were specially chosen for the
purpose, i.e. they did pot use random sampling. The actual
training of the network was carried out in two stages. First
it was trained on only 10 high frequency verbs. In the second
stage 410 medium frequency verbs were added. The psychological
justification for this procedure is doubtful (cf. Plunkett
and Marchman, 1991, p. 47). At the end of the training the
network had learned approximately 98% of the regulars and
about 95% of the irregulars (cf. Rumelhart and McClelland p.
246). The ¢testing sample consisted of 86 '"unseen" low
frequency verbs (14 irreqular and 72 regular) also not
randomly chosen. The complete training process was extremely
slow; it took 260 hours of computer time. The testing process
of generating free responses from the network upon
presentations of verb stems took 28 hours of computer time.

The results on the testing sample were: 93% error rate

(!) for the irregulars, i.e. only gne out of 14 irregular past
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tense forms was correctly produced (e.g. the no change
bid --> bid). For two verbs cling and weep, both a correct
and an incorrect past tense candidate was produced. However,
in both cases the incorrect candidates had the highest
likelihoocd. One consolation for this very high error rate
might be that most of the incorrect responses on the
irregulars were regularization mistakes, 1like catch -->
catched or were no change mistakes, like grind --> darind. The
regulars fared better with a 33.3% error rate. Some of the
mistakes there were of the kind that humans almost never make,
like tour --> toureder, or mail --> membled. The overall
errors for the whole testing sample was 37 wrong past tense
forms out of 86 tested or an error rate of 43%°!

What is particularly puzzling is why for 4 regular verbs
the network did not produce any past tense at 211, i.e. all
of the response strengths were under 0.2. As Pinker and Prince
have noted "This suggests that the reason for the model’s
muteness is that it failed to 1learn the relevant
transformations; i.e. to generalize appropriately about the
regular past" (Pinker and Prince, 1988, p. 124). Even more
difficult to explain is why a large number of mistakes on the
regular verbs were not psychologically realistic but were
mistakes that no human learner would make:

squat - squakt

mail - membled

tour -~ toureder
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mate - maded

brown - brawned

shape - shipt

sip - sept.
Another puzzling error that is only rarely committed by humans
was the doubling of past forms.

type - typeded

step - steppeded
snap - snappeded
drip - drippeded

carp - carpeded

smoke - smokeded.

Pinker and Prince believe that the fact that the trained
nodel was producing such unusual or ‘humanly impossible’
errors "...implies that a major induction problem -- latching
onto the productive patterns and bypassing the spurious ones -
- is not being solved successfully" (Pinker and Prince, 1988,
p. 125). I fully agree with such an assessment. The poor
performance of Rumelhart and McClelland’s model 1is not
accidental; it stems from the fact that neural networks used
as pattern assocjators cannot represent or cannot acquire
knowledge in a function/ variable format and therefore are
incapable of learning representations in first-order form.

Unfortunately, in the absence of a symbolic learning
model that can match even the modest results achieved by

Rumelhart and McClelland’s connectionist model, eliminative
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connectionists can dismiss important theoretical objections
by typically claiming that "PDP models may provide more
accurate accounts of human performance than models based on
a set of rules representing human competence" (McClelland,
Rumelhart, and Hinton, 1986, pp. 24-25). I will show that at
least with respect to the learning of the past tenses of
English verbs and in many other learning tasks, this need no

longer be the case.

cWhi and inbach’s Mode

In a paper recently published in Cognition, MacWhinney
and Leinbach (1991) report a new connectionist model of the
learning of tre past tenses of English verbs. They claim that
the results from the new simulation are far superior to
Rumelhart and McClelland’s results and that they can answer
all of Pinker and Prince’s, as well as Lachter and Bever'’s,
criticisms of the earlier model.
Input, Output Representation and the Structure of the Network

MacWhinney and Leinbach’s major departure from Rumelhart
and McClelland’s model is the change of the representational
format. The Wickelphone representational format is replaced
with the UNIBET (MacWhinney, 1990) phoneme representational
system which allows the assignment of a single-letter ASCII
code to each phoneme. In this way the UNIBET format appears
to avoid the context dependence of Wickelphones. However, as

in Rumelhart and McClelland’s model, the phonetic information
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accessible to the network is to some extent context-dependent.
Instead of coding predecessor and successor phonemes as
Wickelphones MacWhinney and Leinbach use special templates
with which to code each phoneme and its position. In their
simulation all input verbs are represented in phonetic form
with the help of a left justified and a right justified
template of the form
cccvveecvveecvveee vvCccce
left justified template right justified template
where C stands for consonant, and V for vowel space holders.
For example, the verb bet is represented in UNIBET format as
/bEt/ and using the template form as
bCCEVtCCVVCCCVVCCC VECCt
In this way all English verbs that have more than three
syllables, more than three consonantal phonemes in a row, or
more than two vocalic phonemes in a row are left out of this
experiment because they fail to fit the chosen template.
Altogether 2062 regular and irregular English verbs were
selected. Of these, 10% of the least frequently occurring
regular verbs and 10% of the least frequently occurring
irreqular verbs, were set aside for testing the predictive
success of the model, while the rest were used for training.
There were 118 irregular past tense forms in the training
sample; this included some of the most frequently occurring
verbs.

The actual input to the network was created by coding the
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individual phonemes as disjoint sets of phonetic features.

There are 8 features for vowels and 10 for consonants.

Vowels:

i

I

5 @ Q2 v X o T

3

front

centre, high

front, middle

front, middle, low

front, low

back, round, high

centre, back, round, high
back, round, middle

back, round, low

centre, low

centre, middle

front, back, round, high, low, diphthong
front, back, round, high, middle, diphthong
front, high, low, diphthong
labial

dental

velar

voiced, labial

voiced, dental

voiced, velar

voiced, labial, nasal

voiced, dental, nasal
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N voiced, palatal, velar, nasal

1 voiced, dental, palatal, liquid

r voiced, dental, trill

f labial, dental, fricative

v voiced, labial, dental, fricative
s dental, fricative

b4 voiced, dental, fricative

S palatal, fricative

2 voiced, palatal, fricative

j voiced, palatal, liquid, fricative
h velar, fricative

w labial, liquid, fricative

T dental, fricative, interdental

D voiced, dental, fricative, interdental

Each input and output unit stands for a particular
feature and its activation indicates the presence of this
feature, otherwise the feature is presumed absent. For
example, the vowel U can be represented in the network as a
pattern of activations in the following way:

+ + + - - + -

front centre back high low middle round diphthong
For the consonant Z we will need 10 units to represent the

particular pattern of features corresponding to it:
+ - - + - - - - +

voiced labial dental palatal velar nasal liquid trill fricative interdental
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In this way, for each vowel slot there are 8 dedicated
units of the network and to each consonant slot there are 10
dedicated units, representing the values of different
combinations of phonetic features. Altogether there are 214
feature/ slot input units plus 5 specially dedicated control
units which code morphological category information that could
be used to switch the response of the network to present, past
tense, past participle, present participle, or third person
singular. The output layer has only 168 feature/ slot output
units, reflecting the fact that the output template does not
have a right-justified part.

The network has two layers of 200 "hidden" units fully
connected to adjacent layers. This number was arrived at
through trial and error. As MacWhinney and Leinbach explain,
"the model uses two layers of hidden units, because a model
which had only one layer did not do as well at learning the
training set" (MacWhinney and Leinbach, 1991, p. 143). In a
departure from the standard practice, in similar experiments
Macwhinney and Leinbach’ s network had a special set of
connections that allowed it to copy the 1left-justified
phonological form of the input directly onto the output prior
to learning. This feature allowed the creation of a bias in
the output nodes that could facilitate the learning process,
since in most cases present and past forms of English verbs
differ slightly. The overall structure of the network is shown

in Figure 3.3. (See Figure 3.3.)
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The learning procedure used was the standard form of the
error backpropagation algorithm. The network was trained to
associate the phonetic patterns representing the verb stems

with the corresponding correct form for the past tense.

Results

From MacWhinney and Leinbach’s report one can infer that
they used 1650 verbs for training -- 1532 regular and 118
irregular (cf. MacWhinney and Leinbach, 1991, p. 144).
Training the network took 24,000 epochs. By epoch 16,000, all
of the regular past tenses of the training sample were learned
correctly. However, at the end of epoch 24,000 there were
still 11 errors on the irregular pasts. This represents a 9.3%
error rate in the irregular verbs used for training.
MacWhinney and Leinbach believe that "if we had allowed the
network to run for several additional days and given it
additional hidden unit resources, we probably could have
reached complete convergence" (MacWhinney and Leinbach, p.
151).

Training results per se, however, are meaningless if the
network is not able to generalize from the previously "seen"
exampies to the "unseen" test examples. No matter how well
trained, if the network is not capable of predicting correctly
the past tenses of unseen verbs, there will be no

justification for saying that the network has learned



Figure 3.3
MacWhinney and Leinbach’s network.
(Reprinted from MacWhinney and Leinbach, 1991.
© 1991 by Elsevier Science Publishers BV,

Anmsterdam, The Netherlands. Reproduced with permission.)
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anything. Simply constructing an ANN-like look-up table that
cannot predict the past tense of a new verb does not qualify
as learning. Training a network that cannot predict anything
new is similar to the operation of writing to memory in
conventional computers -- we are as justified in calling the
first operation "learning" as we are in giving that title to
the second. Therefore, testing results on the unseen cases is
crucial for gauging the success or failure of a learning

model.

Surprisingly, despite the importance of test results for

assessing the value of a learning model, MacWhinney and
Leinbach tested the trained network on only 13 unseen
irreqular verbs. The result was that "9 of these untrajned
past tense irregulars were missed" (MacWhinney and Leinbach,
1991, p. 146). This represents 69.2 error rate on the
irregulars. However, for no obvious reason they did not test
their model on any of the unseen reqular verbs:
"Unfortunately, we did not test a similar set of 13 regulars"
(MacWhinney and Leinbach, 1991, p. 151).

There are serious difficulties in estimating the
significance of these results. Because the testing sample is
so small -- only 11% of the irregular verbs in the training
sample and a mere 0.8% of the whole training sample (!), and
because we do not have any results on the unseen regqulars (!),
we are entirely in the dark regarding the gverall error rate.

Thus, despite the reported results we still do not know
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anything truly significant about the inductive capabilities

of MacWhinney and Leinbach’s model.

Criticism of the MacWhinney and Leinbach Model

MacWhinney and Leinbach conclude that in light of the
performance of their model "it is clear that the network
succeeded in its assigned task of learning the English verb
paradigm" (MacWhinney and Leinbach, p. 151) and thus, the
success of their model supports a rule-less cue-based account
of the verb inflection acquisition process (MacWhinney and
Leinbach, p. 123). It is doubtful, however, that this
conclusion is at all supported by MacWhinney and Leinbach’s
model or by the actual experimental results. The problems are
mainly in three areas:

¢ The extent of the psychological reality of the model

¢ The extent to which TRICS have been tacitly used to

bias the model in favour of a correct response

¢ The predictive success of the model

First, it has to be emphasised that MacWhinney and
Leinbach’s PDP model is very similar to the Rumelhart and
McClelland model in that they use an ANN as a pattern
associator in a supervised learning task. Both models share
a common weakness in treating the learning of past tenses of
a language as a totally isolated event. The ANN-based pattern

associator has no access to 1lexical and/ or syntactic
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information, it does not know what a verb is or what a past
tense is. In particular, it is incapable of acquiring or
representing morphological or lexical information in first-
order form. MacWhinney and Leinbach appear to be unaware that
they have provided the crucial categorial information during
the supervised training process -- information which is
otherwise unavailakle in the natural learning environment of
children -- and they misleadingly speak of their model as
learning the past tenses of English verbs when they are at
most justified in claiming that it has learned to associate
phonetic patterns.

Second, a number of features are introduced without any
apparent psychol gical justification. MacWhinney and Leinbach
claim that they have improved the earlier Rumelhart and
McClelland model by getting rid of the Wickelphone/
Wickelfeature representational format and thus have answered
the many criticisms it entailed (cf. Lachter and Bever, 1988;
Pinker and Prince, 1988). However, in MacWhinney and
Leinbach’s model, as with the Wickelphone format phonetic
information accessible to the network is not position
independent. Instead of c¢oding predecessor and successor
phonemes as Wickelphones MacWhinney and Leinbach introduce
special templates with which to code positional i.formation.
This means that the network is learning to associate patterns
of phoneme/ positions within a predetermined consonant/ vowel

pattern. The benefits of using a common consonant/ vowel grid




139
for all verbs are obvious. The network can "expect" to see
only certain mini-patterns at certain places. And if fewer
candidates compete for a certain position, the likelihood of
a correct "guess" increases. It has an additional benefit that
solves some intractable problems created by the Wickelphone/
Wickelfeature format. Thus, the confusions between similar
words like slit - silt, or the impossibility of decoding
correctly certain words -- e.g. the "algalgal" problem
~-=- do not arise with the use of the consonant/ vowel template
and the UNIBET format.

The important question, however, is whether there are
viable psychological reasons for structuring all input and
output with such a consonant/ vowel template. According to
MacWhinney and Leinbach the psychological justification for
using both 1left-justified and right-justified templates
"derives from empirical work on language processing and
acquisition that indicates that both children and adults pay
attention to the beginning and to the end of the words"
(MacWhinney and Leinbach, 1991, p. 142). Unfortunately,
MacWhinney and Leinbach do not mention where the psychological
justification for using the templates themselves derives from.
The fact that it was easier for the network not to confuse
similar sounding verbs using the template format certainly
cannot count as a reason for adopting the format.

Another unjustifiable bias introduced with the choice of

this format is in the types of verbs allowed in or rejected
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from the training and the testing samples. Getting rid of all
English verbs that have more than three syllables, more than
three consonantal phonemes in a row, or more than two vocalic
phonemes in a row, because they do not fit the chosen
template, biases the model in favour of shorter verbs,
predominantly of Anglo-Saxon origin, against longer verbs,
predominantly composite, of Latin and French origin.

The absence of a psychological justification is not
confined only to the selection and representation of data.
Several questions hang over the architecture of the network
itself. First, it is not clear why each unit in the input and
output layers was chosen to represent a single phonetic
feature like front, centre, back, high, etc. What is it that
makes individual neurons capable of representing only phonetic
features, but not phonemes, whole words, or finer grained
"microfeatures"? There is no discussion of the reasons for
this particular choice of coding; MacWhinney and Leinbach
could have used arbitrary binary coding with at least
log,N bits, where N is the number of phonemes. Such varying
of the coding could have shown whether the choice of coding
can introduce favourable biases.

But there is another particularly puzzling architectural
detail in MacWhinney and Leinbach’s model: the set of
identity-mapping connections between the left-justified input
and the output. We saw that this feature obviously facilitates

the learning of the verbs that change from present to past in
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a regqular fashion, i.e. the majority of English verbs.
According to MacWhinney and Leinbach this is an essential
feature of the network, and it is psychologically justifiable:
The network was designed to treat the learning of the
"derived" forms of the verb as modifications of the
phonological form of the "basic" present tense. The idea
is that the child assumes that the past tense is somehow
a modification of the present. This is done by including
a "copy" of the left-justified phonological form of the
input directly onto the output. (MacWhinney and Leinbach,
1991, p. 143.)
It is quite clear that this copying device is a TRIC. The only
thing that is not clear is why the child needs to have this
modification assumption hardwired in his brain, and at the
same time lacks other much more reasonable assumptions, such
as the assumption that most verbs’ past tenses take the verb
stem and add /1d4/, /d/, or /t/ to the end. After all, when it
comes to TRICS, if the second assumption is hardwired in the
network, it will probably achieve better results. We suppose
that the first assumption was chosen over the second which is
by far a more reasonable assumption, because it does not look
like a rule. The appearance, however, can be misleading:
If x is a verb stem, then x is going to be slightly
modified in its past tense form
is a rule, even though it is one that does not capture a

significant generalization.



142

Generally, it is very difficult to assess the actual
performance of PDP models because there are so many parameters
(different initial weights, number of hidden units, number of
hidden layers) that have to be tuned by hand during many
unsuccessful attempts in order to adapt the network for a
specific application. It is unclear, how this methodology can
affect the inductive capacities of the neural networks, since
so many choices -- like MacWhinney and Leinbach’s copying
mechanism, for example ~-- appear to be made specifically for
the purpose of enabling the ANN to overcome a recalcitrant
obstacle. These ad_ hoc choices may (unbeknownst to the
investigators) amount to a complex procedure to create a
network that "fits the data"”. So far, the problem of
distinguishing networks designed to be application-specific
from general-purpose neural networks has not received
sufficient attention in the literature.

But my third and main criticism is directed at the actual
performance of MacWhinney and Leinbach model. A learning model
which has a very poor psychological justification might still
be interesting -- if only from the point of view of
applications -- if, despite its conceptual flaws, it has
managed to achieve good performance results. Unfortunately,
the performance of MacWhinney and Leinbach’s model is at best
very unclear and at worst outright disappointing. A model
without a clearly assigned predictive accuracy is as good as

a model with 0% predictive accuracy. Guessing correctly 4 out
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of 13 test verbs cannot even begin to reveal the realistic
error (success) rate of the model because of the extreme
unreliability of the testing sample which was used to measure
it. As we saw MacWhinney and Leinbach’s testing sample
consists of only 11% of the irregular verbs in the training
sample and only 0.8% of the total training sample. Worse
still, MacWhinney and Leinbach did not test any regular verbs
(cf. MacWhinney and Leinbach, 1991, p. 144, and p. 151). But
one of the main things that we need to know about their
learning model is whether it can learn the past tenses of the
majority of English verbs -~ the regular past forms. Moreover,
the 13 test verbs were not randomly chosen. No attempt was
made to vary the ratio between training and testing samples
in a series of different learning experiments. This indicates
that MacWhinney and Leinbach did not seriously attempt to test
the jinductjve capabilities of their model. Without such a
test, the empirical evidence they report cannot support their
theoretical claims, in fact it cannot support any theoretical
claims.

MacWhinney and Leinbach appear to be unconcerned with the
extremely unreliable testing sample and the low generalization
capacity of the model reported on the basis of this sample.
Their discussion of the main achievements of their model on
pp. 146-53 is based mainly on results obtained from the
training process! They seem to believe that simply because the

network was trained to associate certain phonetic patterns,
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the network has learned to produce the past tenses of English
verbs. For example they write:

Performance on the regular past tense was perfected about

midway through the simulation. By the first test point

[i.e. the first check during the training process on the

training verbs]) it was already over 99% correct. 1In

overall terms, the simulation did very well at its task
of learning the past tense. (MacWhinney and Leinbach,

1991, p. 146.)

MacWhinney and Leinbach are convinced their simulation did
well without actually checking whether it could correctly
produce correctly even a single past of an unseen regular
verb!

This betrays a deep misunderstanding of one of the most
basic principles in traditional machine-learning studies; what
is important in a machine learning experiment, especially one
that is claimed to be relevant for cognitive science, is not
how well the learning program (or the network) is trained,
the crucial measure is how well this program (or network)
performs after it has been trained, i.e. how well it is able
to predict the right answers to problems it has never
previously encountered. Alternatively, MacWhinney and Leinbach
could have used the PAC (Probably Approximately Correct)
learning paradigm (Valiant, 1984) in which ¢training and
testing samples are drawn randomly according to some fixed

distribution over the whole sample space. The passing of any
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such elementary testing procedure makes all the difference
between a learning system that is capable of inductive
generalization and a system that acts as a complicated look-
up table (connectionist or otherwise), and thus "knows" all
the answers to the questions it was designed to answer, but
lacks any generative capacity.

The analysis of MacWhinney and Leinbach’s model leads to
the conclusion that they have failed to provide a successful
model for learning the past tenses of English verbs. There is
no indication that they have produced any results for past
participle, present participle, and 3d person singular, so
their claim that the model has succeeded in 1learning the
English verb paradigm is absolutely unfounded. In many
respects MacWhinney and Leinbach’s model does not represent
an improvement over Rumelhart and McClelland’s model and in
some respects, e.g. in overall error rate and in the openness
of the reporting of the errors of their model, it actually
represents a backward step. It must be rejected as a model of
the competence of native speakers’ acquisition the past tenses
of English verbs for the same reasons that led to the
rejection of Rumelhart and McClelland’s model:

¢ the isolation of the past tense acquisition process

from the overall process of language acquisition,

¢ dissociating of phonetic from lexical and morphological

information,

¢ mistaking the association of chosen phonetic patterns
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with the induction of the category "past tense" and the
rules for its application,
¢ use of psychologically unwarranted TRICS,
¢ failure to represent the acquired phonetic knowledge
in usable/ interpretable form,
¢ extremely poor performance results, i.e. no testing on
regulars, minute test sample, no random sampling, no
estimate of overall error rates, no analysis of typical
mistakes, etc. (In some respects this represents a step
back from Rumelhart and McClelland’s model.)

Given its conceptual shortcomings and its uncertain and poor
performance, this model can hardly serve as an example of how
to eliminate rules and symbolic representations in the

explanation of our knowledge of language.

Is There a Better Symbolic Model?

I entirely agree with MacWhinney and Leinbach when they
say that conceptualizations (theories) should ultimately be
accepted or rejected in view of the success or failure of
their implementations (experimental predictions). I also agree
with them when they say that

If there were some other approach that provided an even

more accurate characterization of the learning process,

we might still be forced to reject the connectionist
approach, despite its successes. The proper way of

debating conceptualizations is by contrasting competitive
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implementations. To do this in the present case, we would
need a symbolic implementation that could be contrasted
with the current implementation. (MacWhinney and

Leinbach, 1991, p.153)

But for the theoretical reasons outlined earlier and
because of the absence of convincing experimental evidence,
I do pot agree that either Rumelhart and McClelland or
MacWhinney and Leinbach have provided an adequate learning
model for the acquisition of the past tenses of English verbs.
They were right in saying that so far there were no rival
symbolic implementations that could achieve even the limited
performance results of the connectionist models. But in a
recent report Ling and Marinov (1992) take up MacWhinney and
Leinbach’s challenge and provide a symbolic learning model
that can learn the past tenses of English verbs much better
than any PDP model so far. I will demonstrate that the success
of Ling and Marinov’s (1992) symbolic learning model should
lead eventually to the reevaluation of most of the evidence
in favour of the elimjpativist approach to language learning

and language processing in general.

The Symbolic Pattern Assocjator
The core of Ling and Marinov’s model is the Symbolic
Pattern Associator (SPA for short). The SPA is a very general

and very efficient symbolic algorithm for associating
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arbitrary patterns which have a finite number of components
with a finite number of discrete values. So far, there is no
evidence to suggest that ANNs have any systematic advantage
over the SPA as pattern associating and pattern recognition
devices. On the contrary, in many respects exactly the

opposite is true.

The Requirements for the Model

It is not difficult to notice that most of the publicity
that connectionist research has achieved is due to the fact
that connectionist systems are capable of supervised learning
from examples. The main connectionist learning algorithm --
the error backpropagation algorithm -- as well as the similar
perceptron convergence algorithm, enable connectionist
networks to learn to associate arbitrary boolean and/ or
numerical vectors (patterns) and in some cases to generalize
successfully to new unseen patterns, i.e. given an input
pattern not encountered during the supervised training to
produce the "correct" or desired output pattern without any
supervision.

One common feature that all connectionist networks share
is that they have great difficulty accounting for knowledge
representation. In connectionist research only the activations
of input and output units receive direct interpretation, the
so called hidden units and the connection strength matrices

that map the input patterns of activation to the output
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patterns cannot be interpreted directly; they are in fact
completely opaque from the point of view of knowledge

representation. This problem has given rise to two general

schools of connectionist thought -- eliminative connectionism

and implementational connectionism. As we saw earlier (in
Chapter Three) eliminative connectionists, like Rumelhart and

McClelland, maintain that human cognition can be explained
without any appeal to explicit inaccessible rules or to
symbolic representations. They believe that the language of
patterns of activation and connection strengths will suffice.
Accordingly, there is no problem about knowledge
representation: cognition can be explained simply as a pattern
association and pattern recognition process; there is
therefore no need to have a direct interpretation of the
associating medium.

There is a problem with this connectionist position. On
the one hand, because of its failure to account for knowledge
representation, eliminative connectionism is a doctrine that
represents a throwback to the old days of associationism and
behaviourism. On the other hand, it is easy to see the
attractiveness of raving a learning system that can learn to
associate arbitrary patterns, and extract whatever
regularities are present in the data. At the same time, a
learning system that is incapable of representing the acquired
knowledge has virtually no value compared with a learning

system that can represent the knowledge it has acquired. That
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is why a symbolic system capable of challenging any
eliminative connectionist model has to meet two conditions:

1. It must be able to match fully the learning
capabilities of neural networks, i.e. it must be capable
of supervised learning from examples.

2. Unlike neural networks, it must be able to represent

the know) 3ige acquired in the learning process.

Many connectionists believe that neural networks possess
some unigue advantage over symbolic systems in that they are
capable of 1learning things that symbolic systems are
inherently incapable of learning. As we saw earlier (in
Chapter Two), it is also quite common to read that symbolic
systems are ‘hard’ and ‘brittle’, while connectionists systems
are ‘soft’ and ‘flexible’, and can account for a wider range
of cognitive phenomena. Such beliefs are widespread because
many people are not aware of the fact that there are several
symbolic 1learning algorithms that can compete quite
successfully with ANNs on a wide range of practical learning
tasks, even with such successful connectioni«t si.aualations
like NETtalk (Atlas et al., 1990; Shavlik, Mooney, and Towell,
1991; Marinov, 1992). One of the most widely stidied of these
systems that can match the learning abilities of ANNs and at
the same time can represent explicitly the acquired knowledge
is ID3 (Quinlan, 1986a) which we described earlier (in Chapter
Iwo) .



151

The Architecture o: the Symbolic Pattern Associator

Although, ID3 and C4, as well as other TDIDT symbolic
Algorithms, have Lk-en very successful in challenging the
learning and the representational capabilities of neural
networks (cf. Chapter Two) they are essentially limited in the
type of learniny tasks that they can perform. If the learning
task is to learn to classify a set of different patterns into
several mutually exclusive categories (as many of the most
successful connectionist simulations actually do) ID3 and C4
have been shown to perform as well as, or even better than
neural networks. However, if the task is to classify a set of
patterns into many possibly partially overlapping patterns,
tne neural networks retain a distinct advantage. " 1e reason
is that these are typical pattern association tasks, tasks to
which ID3 and C4 as exclusive classifiers are not particularly
well-suited. The best ID3 and C4 can do is to treat the
different output patterns as mutually exclusive classes which
usually result in exponential growth and loss of
generalization capacity.

In order to rival fully the learning capabilities of ANNs
the powers of ID3 and C4 and similar TDIDT systems have to be
increased and they have to be turned into general purpose
symbolic pattern associators. Ling and Marinov do this by
combining the power of individual decision trees into a

"forest" or set of trees all of which work together to

a.complish the task of associating two (sets) of arbitrary,
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possibly overlapping, patterns. In their Symbolic Pattern
Associator each tree takes as input the same set of input
patterns that is available to all the other trees; but each
tree is concerned with determining only a portion of the
output pattern, usually the value of only one of 1its
attributes. The set of trees associating the two sets of
patterns can be built serially or in parallel since each tree
is built independently from the others. A ©parallel
implementation can lead to great gains in speed.

In order to understand how this General Purpose SPA
works, let us look at a simple example. Suppose, we want to
associate in a one-to-one fashion two sets of arbitrary
patterns that have n attributes each, where each attribute has
binary values 1,0 (any non-binary discrete values are also
possible). (See Table 3.2.) The general purpose SPA is able
to map all the patt.rns in the first set ( i.e. the input
patterns) one-to-one onto the patterns in the second set
(i.e., the output patterns). After training, given the input
pattern IP,, the SPA will produce the "correct" output pattern
OP,; given the input pattern IP, it will produce the "correct”
output pattern O" , e:c. The way the SPPR achieves this is by
building a tree that takes all input patterns and classifies
them with respect to the values of the first output attribute
Q,, then a second tree takes again all input patterns and

classifies them with respect to the values of the second
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Table 3.2
Binary Patterns to Be Associated by the SPA

Input patterns Output patterns
Pat. Attributes Pat. Attributes
no. I’ 12 Is . o @ ln no. Q1 Qz Q} * @ o Qn
1P, 1 0 1 .o 0 OP, 1 1 o ees 1
IPZ 0 1 0 . 1 DP2 1 1 1 ces o)
IP;, 0 1 0 . 0 O°P; 1 0 1 ... 1
Ipn * . * L] opn L ] L] - -
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output attribute %,, and so on until all output attributes
are exhausted. The resulting trees constitute a joint decision
method (see Figure 3.4) for associating each (training) input
pattern to the correct output pattern with 100% accuracy
unless there is contradictory information in the data, i.e.
unless one and the same input pattern is mapped twice on two
entirely different output patterns. Given what we know about
the TDIDT algorithms, this is not surprising at all.

What is very interesting, however, is that once the SPA
has been trained, i.e. once the set of associating trees has
been built, it can have remarkable predictive accuracy on
"unseen" pairs of patterns. It can extend the knowledge
acquired during the learning process, and it can generalize
from the training examples to unknown examples. Obviously, if
the SPA can accomplish such a high degree of predictive
accuracy, it must be able to extract some of the regularities
‘n the training sample, and then project this knowledge onto
future cases. In effect, the SPA can rival the learning
capabilities of any artificial neural network using a
supervised learning algorithm, and capable of 1learning to
generalize from a set of examples to new "unseen" cases.

In addition to these remarkable learning powers, the SPA
has an easy way of representing the knowledge that it has
acquired. The decision tree format is already a useful form
of knowledge representation. Moreover, the SPA can

automatically convert its decision trees into sets of



Figure 3.4

SPA: A joint decision method for associating

arbitrary patterns.
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TREE 1 TREE 2 TREE N
I max I max * * * . I max
Values for output Values for output Values for output
pattern attribute pattern attribute pattern attribute
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production rules. These production rules can be meaningful to

the human observer, if there is a meaningful connection

between the associated patterns.

ANNs

To summarize: The main advantages of the SPA vis-a-vis
using supervised learning algorithms are threefold:

¢ In pattern association tasks, where each pattern
consists of a finite list of features whose values are

finite and discrete, there is absolutely no advantage at

all to using ANNs over SPA in terms of accuracy of
learning of the training examples, inductive
generalization abilities, (correctly predicting new
"unseen" cases) or speed of learning (for serial and/ or
parallel implementation).

¢ The SPA does not use any TRICS and requires no
parameter tuning.

¢ In different learning systems in which everything else
such as accuracy of learning, predictive success, speed
of learning, etc. are equal, the learning systems that
are able to produce explicit representations are
certainly better than the ones which lack this capacity.
Explicit representations allow for the possibility of
further processing of the acquired knowledge and for the
flexible integration of this knowledge in various
domains. It 1is unclear how learning systems that
"represent" knowledge in "black boxes" can coordinate,

combine, or further generalize their knowledge.



158
Experimental Set-Up

Ling and Marinov structured their experiment in such a
way as to guarantee a maximal common basis for comparison.
Since MacWhinney and Leinbach used a much larger set of verbs
than Rumelhart and McClelland, Ling and Marinov borrowed the
list of verbs that MacWhinney and Leinbach used in their
learning experiment. It contained exactly 1404 present tense/
past tense verb form pairs. (Actually, there appears to be a
minor discrepancy between the two lists. According to their
report, MacWhinney and Leinbach used a slightly larger set of
training verbs -- 1650.) Because of the large overlap in the
verb sets used in the two experiments, Ling and Marinov’s
results can be directly compared with MacWhinney and
Leinbach’s results. Even though Rumelhart and McClelland used
altogether only 506 verbs, the overlap between the sets is
still sufficient for a similar comparison.

There are, however, several signif cant changes from
MacWhinney and Leinbach’s, and Rumelhart and McClelland’s,
experimental set up:

First, Ling and Marinov eliminated the psychologically
unijustified template/ feature representational format and used
simple left-to-right phonetic coding in the UNIBET format.
(They also carried out an additional test using the template
format to see if that would change significantly their results
-~ it did not. They recorded only a 2.6% decrease in overall

accuracy due to the use of the templates.) They did not
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attempt to use Wickelphone/ Wickelfeature format since it was
shown to be psychologically and linguistically unjustified by
Pinker and Prince’s and Lachter and Bever’s criticisms. Also,
unlike MacWhinney and Leinbach’s model they did not include
any special purpose copying devjces that would allow for a
verb stem to influence directly the output of their system.

Second, in order to guarantee unbiased samples and a
clear and unambiguous reading of the results, Ling and Marinov
decided to use only randomly drawn mutually disjoint training
and testing samples in several independent training and
testing trials. They used a program that randomly selects a
specified number of verbs and removes them from the original
list. This allowed them, in contrast to MacWhinney and
Leinbach and Rumelhart and McClelland, to vary the relative
sizes of the training and testing samples at different trials,
and thus achieve a robust estimate of the generalization
abilities of the SPA.

Third, Ling and Marinov present their main result in the
form of a basic estimate of the capacity of their model to
learn the past tenses of English as closely as possible to the
level of adult competence. They did not attempt to model the
U-shaped learning curve of the acquisition of the English past
tense. In order to achieve this basic estimate they did not
attempt to present the model with frequency information for
the different verbs. Rumelhart and McClelland’s way of using

frequency information in order to achieve the U-shaped curve
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was discredited by Pinker and Prince’s, Lachter and Bever'’s,
and Plunkett and Marchman’s criticisms. MacWhinney and
Leinbach traced the learning rate for only some limited
periods of epochs and report that although some U-shaped
learning was observed, most of the training time of the
network was spent in error free performance. There is no
question that an early exposure to certain irrequlars,
followed by increased exposure to regular verbhs, would have
created a U-shaped curve in Ling and Marinov’s experiment.
However, the psychologically justifiable rate of supply of
regulars and irregulars during training is still unclear. But
the main reason for presenting every verb to the SPA only once
is that this gives a robust estimate of the systenm,
irrespective of the frequency variations in different
linguistic environments. Linguistic environments for all
natural languages vary, and verbs that are now used frequently
in one English-speaking community may not have been used as
frequently in the past, or in other communities. Yet children
always succeed in 1learning the past tenses of even
infrequently occurring verbs. The goal is to provide a model
of the basjc capacity to acquire inflectional forms.

As it happened the verbs in MacWhinney and Leinbach’s
list were not longer than 10 phonemes so they provided 15
input and output attributes, i.e. the SPA in this particular
experimental set-up could not handle words longer than 15

phonemes, although, if any such words were found the size of
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the input and output patterns could easily be increased. The
values for each attribute ranged over all phonemes in the
UNIBET format. In contrast to MacWhinney and Leinbach who
separated the processing of consonants from the processing of
vowels without any justification, Ling and Marinov make no
additional assumptions that could be classified as TRICS, and
used all phonemes as values for all attributes, even though
the other approach would have simplified significantly the
trees built during learning, and would have increased the
speed of the system.

Each trial consisted of one training and one testing
session. During the training process, the pattern associator
had to look at the set of training examples of correct stem/
past tense verb pairs (see Table 3.3), and then build a set
of trees that associates them in one-to-one fashion with 100%
accuracy. Since there were only 15 attributes in each training
session the SPA produced only 15 trees that were able to
associate all known pairs of verb forms correctly and produce
answers to the "unseen patterns”.

Ling and Marinov observed that the SPA discovered very
easily MacWhinney and Leinbach’s "assumption" that usually
English verbs change very little from present to past tense,
i.e. most of the branches of its trees were inactive, they
just passed the same value of the examined attribute to the

terminal leaf. All trees had a similar overall structure with
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Table 3.3

Present tense form Past tense form
Phoneme attributes Phoneme attributes
I' Iz xs I‘ Is ® & 2 & 000 I‘s Q' Qz Q; Q‘ Qs . » & o & 5 0 Q's
b E t s $oooo'oooco$ b E t s $--o-on-o.o-o- s
p 6 r s i v § $ .. 8 p 6 r s i v 4 § §$ .8
r 3 d $ s-..-oooooo $ r (o] d $ $---o --------- $
I n t E n 4 8§ $..58 I n t En a4 I 4 $.36§
P r E s $ $ ..co00.0. 8 p r E s t $ $ ....... $
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Table 3.3

Pairs of Phonetic Patterns for Training

Present tense form Past tense form

~honeme attributes Phoneme attributes
I, I, I3 I, Tgeeeeeeeoenns I R, 0 O Qgeevevernranns (e}
b E t $ § coiiiiiii, $ b E £t $§ $ ceiiiieinit. $
p 6 r s i v$ §....8 p 6 r s i v & § $
r 34 9% § §$§% °9 . 3 r o d $ $ $ 5 s$...%
I n t E n d$ $....598 I n t En d4a 1 4%$.5%
p r Es $§ $3% 8$....53 p r Es t $8% $§.8
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many identical branches and subbranches. (See Figure 3.5.)
All iranches {on all trees) can broadly be grouped into two
main clusters: identity preserving branches and changing
branches. The changing branches, on the whole formed two
distinguishable subgroups: one group was concerned mainly with
examining these phoneme pesitions vhere a phoneme was followed
with a blank $ sign, the.-+ branches resulted usually in the
assignment of /d/ or /t/ or /Id/ to the output pattern. If
certain vowels were encountered, preceding positions were
checked, and if ‘'exceptional sounding" phonemes were
discovered, the tree bianched further to accommodate the
exceptional irregular for.:s. Thus, most of the trees have a
similar structure with many trees "sharing" isomorphic
branches.

Obviously, the SPA was able to discover which positions
and which phonemes in the verb stems were most relevant for
the production of the correct past tense forms. For example,
it discovered that the phonemes at the end of the verbs
(phonemes followed by a blank $ sign) usually control the
addition of /d/, /t/, or /1d/ in the past tense form. It also
tried to accommodate the numerous exceptions in the formation
of irreqular past tenses. One has to be careful, however, to
note that the informat.on available to the tree is always
position dependent phonetic information. The trees do not have
direct access to categories like "verb stem", "suffix", "past

tense", etc.



Figure 3.5
Typical phonetic decision tree created during

the learning process.
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Qi=c Qi=b Qi=s . o e Qi=d Qi=d Qi=t e s » Qi=°

Identity preserving Suftix adding Exception
branches branches branches
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Performance Of the Symbolic Pattern Associator

Oon_the Past Tense Learning Task

Ling and Marinov obtained from MacWhinney and Leinbach’s
original list 1404 correct present tense/ past tense pairs of
verb forms; these pairs contained 1263 regular, and 141
irregular, past tense forms. They carried out a total of 12
trials with different randomly selected disjoint training and
testing samples of 4 different sizes. Learning of the training
examples was 100% successful. The average rate of correctly
produced past tenses that were not encountered during training
was 78.76% of the testing samples with a top result of 82.7%!
(In all cases past tenses which differed even with a single
phoneme from the correct output were counted as errors. For
the record, Rumelhart and McClelland’s overall correct
prediction rate was only 57%. MacWhinney and Leinbach did not
provide any results that could test the overall generalization
capacity of their model. Note also that the average user time
on a MIPS machine for all 12 trials was only 1:22 min.
compared with the extremely slow connectionist models that
took days, even weeks to complete a single learning trial.
Table 3.4 summarizes Ling and Marinov’s results. (See Table
3.4.)

An important point of contention in the criticism of the
connectionist models concerns the predominant types of errors

the connectionist networks were actually making. Rumelhart and
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Table 3.4

Results of the Performance of the SPA
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Test/
training
sample

(verbs)

Time

(min)

Accuracy
during

training

(%)

Accuracy
during

testing

(%)

- - - - . G ———————— ———————— . D G R A —— v

10
11

12

500/500
500/500
500/500
500/700
500/700
500/700
300/1000
300/1000
300/1000
100/1280
100/1280

100/1280

2:12

100
100
100
100
100
100
100
100
100
100
100

100

76.0
77.2
77.6
78.4
78.0
80.6
82.7
79.3
76.3

78.0

Average

350/870
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McClelland were remarkably open in discussing the incorrect
responses of their model. Unfortunately, MacWhinney and
Leinbach do not provide any information about the types of
errors their model committed, apart from saying that four of
the 13 irregular test verbs were regularized. Thus, we lack
any information about the other errors their model made on the
irregulars and no information whatsoever on the regulars. That
is why Ling and Marinov decided to follow the open approach
of Rumelhart and McClelland and to give full information about
the errors made by the SPA.

Ling and Marinov divided all possible types of incorrect
response into five categories: regularization errors (treating
an irregular past as regqular); no change errors (the regular
or changing irregular verb was treated as a no change
irregular); vowel change errors; consonant change errors
(these apply if there was only one error in the word); and
"impossible errors" (any other errors).

In order to minimize possible biases in the small samples
used in the connectionist models, Ling and Marinov measured
the distribution of errors on a randomly chosen test sample
of 600 verbs. The SPA was trained on another randomly chosen
disjoint sample of 700 verbs. (They again followed the
traditional machine learning approach and they did not use
training verbs in the testing sample.) The results are

summarised in Table 3.5. (See Table 3.5.)
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Table 3.5

Types of Responses

Verb Percent Correct Incorrect (%)

type of (3) ———ommmmmemsermr e
sample Reg. No-chg. V-chg. C-chg. Imp.

Irregular 7.8 27.7 53.2 14.9 2.1 0 2.1

Regqular 92.2 86.8 n/a 4.8 3.2 2.3 2.7

Total 100.0 82.2 4.2 5.6 3.2 2.2 2.6
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As can be seen from Table 3.5, the incorrect responses
were disproportionally concentrated in the irregular verb
subset. This 1is exactly what the traditional rule-based
account leads us to expect, since the system has no access to
morphological or lexical information at this stage and relies
only on phonetic information; indeed, it is surprising that
it managed to predict correctly even 27.7% of the irregqulars.
For the record, the success rate of the SPA on the irregulars
still compares very well with the 7.1% success rate fror
Rumelhart and McClelland’s model but is slightly lower than
the 30.8% success rate of MacWhinney and Leinbach’s model.
Ling and Marinov’s result, however, is much more pr:cise,
since it w3 achieved when they tested a total of 47 randomly
chosen irregulars; by contrast, MacWhinney and Leinbach tested
only 13 specifically chosen irregulars.

One reason for the  arge number of errors on irregular
pasts is that the SPA had no way of distinguishing between
homonyms. In many cases, perfectly good productions like ring
--> ringed (in the sense of encircle) were treated as errors,
e.g. as the mistake on the production ring --> rang (in the
sense of resound). Also, according to the rule-based account
of language acquisition, exception markedness plays a very
important role in learning the irregular pasts. Such
information, however, is not available at the phonetic level.

Of course, Ling and Marinov could have easily coded such

non-phonetic information into their data -- one can always add
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one or two extra attributes that can denote morphological
category, exceptional subgroup, etc. This 1is the approach
taken by MacWwhinney and Leinbach when they want to teach their
network to learn the full verb paradigm of English. Thus,
MacWhinney and Leinbach coded in the input template the
information about whetlLer the network has to produce past
tense, past participle, present participle, or third person
singular. This is an obvious TRIC that lacks any psychological
justification -- the network is receiving additional non-
phonetic categorial information in pseudo~phonetic form. The
human auditory perceptual system certainly does not have
access to such information.® In light of the fact that the
SPA was exposed only to different phoneme patterns during
training, it is remarkable that it was able to predict 27.7%
of the unseen irregulars correctly. This shows that even in
irregular pasts there are certain 1limited recurring
regularities that can be extracted by the SPA.

Much more interesting for this investigation, however,
is the distcibution of the different types of incorrect
responses. It is evident that regularization responses are by
far the major source of error in the case of irregular verbs.
In the absence of additional non-phonetic exceptional
information, the SPA overgeneralizes in favour of the
predominant regular past formation. Compared with the correct
and regularization responses the other types of errors,

especially the "impossible" errors, appear to be
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insignificant.

Ling and Marinov follow Rumelhart and McClelland (but not
MacWhinney and Leinbach) in listing some of the errors on the
irregular and regular verbs drawn at random from the test
sample. They also included some examples of correctly produced
irregulars to demonstrate the difficulty of some of the forms
(i.e. it appears to be relatively easy to produce a no change
correct irregular but it is not so easy to get a correct vowel
change irregqular):

Reqularization errors: (The incorrect forms produced by

the SPA are marked with *; the correct forms as

classified by MacWhinney and Leinbach are shown in
parentheses.)

bid /bid/ -~ *bidded /bidId/; (bid /bid/)

shine /S3n/ -- *shined /S3nd/; (shone /Son/)

flee ffli/ -- *fleed /flid/; (fled /flEd/)

ring /rIN/ -- *ringed /rINd/; (rang /r&N/)

seek /sik/ -- *seeked /sikt/; (sought /sOt/)

No _change errors:
blast /bl&st/ -- #*blast /bl&st/; (blasted /bl&stIld/)

raise frez/ -- *raise /rez/; (raised /rezd/)

absorb /6bsOrb/ -~ *absorb /6bsOrb/; (absorbed /6bsOrbd/)
fold /fold/ -- *fold /fold/; (folded /foldId/)

spring /spriN/ -- *spring /spriN/; (sprang /spr&N/)

* o0



173

Vowe an errors:

say /se/ -- *sayd /sed/; (said /sEd/)

speed /spid/ -- *speded /spEdId/; (speeded /spidId/)
chew /tSu/ -- *chowed /tSod/; (chewed /tSud/)

rumble /rémb6l/ -- *rambled /r&mbé6ld/; rumbled /rémbéld/

jingle /dzINg6l/ =-- +*jung.ed /[d26Ngé6l1d/; (Jjingled
/d2INg61d/)
onant c es:

shy /S3/ -- *shied /S3t/; (shied /S3d/)

lie /13/ -- *lied /13t/; (lied /13d/)

constitute /kanstétut/ -- *constided /kanstétudld/;
(constituted /kanstétutId/)

graduate /gr&d26wét/ -- *graduared /gr&dZéwérld/;
(graduated /gr&dzZewétid/)

interpret /Intérprét/ -- *interprerid /Intérprérid/;

(interpreted /Intérprétld/

ossi e S
prescribe /prIskr3b/ -- *prescry /prIskr3/;
(prescribed /priskr3bd/)
characterize /k&rIktér3z/ -- *charactered /k&rIktérd/;
(characterized /k&rIktér3zd/)
recommend /rEkémEnd/ -- #*recomed /rEkémd/;
(recommended /rEk6mEndId/)

preserve /prlzérv/ -- *preser /prlzér/;
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(preserved /prlzérvd/)
transform /tr&nsfOrm/ -- *transford /tr&nsford/;

(transformed /tr&nsfOrmd/)

correct productions:
find /f3nd/ -- found /flnd/

ride /r3d/ -- rode /rod/
stride /str3d/ -- strode /strod/

sting /stIN/ -- stung /st6N/

fling /f1IN/ flung /f16N/

sweep /swip/ -- swept /swEpt/

sleep /slip/ =-- slept /slEnt/

spread /sprEd/ -- spread /sprEd/

set /sEt/ -- set /sEt/

bet /bEt/ -- bet /bEt/

Most of the "impossible" errors were a result of the
majority default heuristic used in €4 and iucorporated in the
SPA as well: During training if there is no instance falling
under one branch, assign the default class to the literal of
that branch, where the default class is the one with the
maximum number of positive instances. This created a problem
with longer verbs where blanks which become the default class
in the 1last several trees were sometimes inserted, thus

truncating the past tense form of longer verbs. This default

heuristic can be changed to better suit the particularities
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of the verb past tense formation and thus significantly reduce
the number of "impossible"™ mistakes. Such a change, however,
would make the SPA application-specific, and this is not
desirable if we want to observe how a general purpose pattern
associator can perform on this learning task.

It is surprising how good the performance of the SPA is.
Given the fact that during testing, the SPA can use only local
phonetic information (it has no access to 1lexical or
morphological information), it performed exceptionally well,
far surpassing the performance of the c: ‘nectionist models.
A brief look at Table 3.6 which compares results achieved by
the SPA and the results of the other two connectionist models
shows the superior performance of Ling and Marinov’s model.
(See Table 3.6.)

The results presented in Table 3.6 are a convincing proof
that the SPA pattern associator outperforms MacWhinney and
Leinbach’s, as well as Rumelhart and McClelland’s
connectionist models in the task of learning the past tenses
of the English verbs. It would be interesting to see if they
or any other researchers could construct a PDP model that can
match the learning and inductive generalizaticn abilities of
the SPA in the task of learning the past tenses of English
verbs or any other learning task.

However, I do not consider the performance of the SPA
(and by implication of connectionist systems) to be alone

sufficient to explain how children acquire the English past
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ctionist Models

Test sample as percentage
of training sample

Results averaged over

multiple trials

-—— . i T e i . el T . i . e - — —— D G - -

Accuracy on training sample
regulars

irregulars

99.3

100.0

90.7

100

100

100

Accuracy on testing sample
regulars

irrequlars

days/

weeks (?)
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tense. What the SPA does establish is how information about
purely phonetic regularities can be extracted and expressed
in the form of production rules; this opens the possibility
of these rules generalizing and integrating with 1lexical,
morphological, and syntactic rules to form a model of the

competence of the mature speaker.

Explicit Representation and Higher-Level Processing

The SPA successfully met the first of the two adequacy
conditions that we have established for it =-- it was
demonstrated that it can completely match and outperform the
inductive capabilities of neural networks in the task of
learning the past tenses of English verbs. This fact in and
of itself does not entirely undermine the eliminative
connectionist arguments based on the performance results of
Rumelhart and McClelland’s and MacWhinney and Leinbach’s
models. It remains to be shown that unlike neural networks,
the SPA is able to represent explicitly the knowledge acquired
in the learning process in the form of rules.

As we saw, the decision trees produced during the
learning process are a useful symbolic format that lends
itself to an <asy conversion into production rules. This is
done first by automatically pruning the tree of non-
informative branches, i.e. branches that are either empty or
classify very few exceptional cases. (Therefore, the rules

shown below do not account for most irregular verbs.) Then the



value of each terminal leaf is selected as the consequent :.
a single production rule and the values of the attributes on
all branches starting from the root and leading to this leaf
are conjoined together as the body or antecedent of the rule.
In this particular experiment, the production rules resulting
from the conversion of almost all trees <can be classified
into three different groups, corresponding to the three
different types of branches of a "typical" tree in Figure 3.4
-=- identity mapping rules, suffix rules, exceptional changes
rules. The identity rules were most numerous reflecting the
fact that most of the transformations from input phonemes to
output phonemes were identity transformations. Here are some

randomly selected identity rules:

Rules derived from tree #1 (the rules produce the value
of the first output attribute):
If 1, (input attribute #1) = p,
then Q1 (output attribute #1) =p
If 1, = d, then 9, = 4

If I, = n, then 2, = n

If 1, = v, then Q =v

If 1, = h, then 2, =h

Rules derived from tree #4 (the rules produce the value
of fourth output attribute):

If 1, =i, then Q, = i

If I, = p, then Q, = p
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If I, =m, then §, =m

If 1, = s, then Q,

i
0

The picture is essentially similar for all other trees
-- they all produce a great number of identity rules. If we
look at the tree structure of the first three trees, we can
see that they are almost flat, producing mostly identity
rules. This is due to the fact that only a very small number
of verbs actually change in the first 1-3 phonemes. As we
reach the fourth tree and beyond things begin to 1look
different. There is already a sufficient number of verbs which
end, and therefore have to receive a suffix in the past tense
form. So the trees begin to branch out producing respectively
identity rules (for the unchanging phonemes) and suffix-adding
rules for the verbs that are three phonemes long. For example,
some of these suffix-adding rules look like this:

Rules derived from tree #4 (the rules produce the value

of the fourth output attribute):
If Iy =Xk and I, = §, then 9, =

If I;=pand I, = $, then @, =

t

t

If I;=1and I, = §, then 9, = d
d

If 1,

r and I, = §, then @ =
What these rules tell us is the following: look at the
third phoneme of an input verb form and look at the fourth,

if the third is /k/ or /p/ and the fourth is blank, i.e. if
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we are at a verb ending, then add the unvoiced /t/ as the
fourth phoneme to the output form of the verb. Respectively,
if the third input phoneme is /1/ or /r/ and the fourth is
blank /$/, then add the voiced /d/ to the output form. Since
all trees that map input patterns onto the middle portion of
the output patterns have a very similar branch structure, it
is not surprising to find that they all produce very similar
production rules. For example, if we follow the productions
for the same phonemes /1/, /r/, [/k/, /p/ produced by the

fifth, sixth, and seventh tree we will find the following

rules:

Rules derived from tree #5 (the rules produce the values
of the fifth output attribute):

If i, = k and I; = §, then O, = t

If I, = p and Ig = $, then O, = t

If 1, =1 and Iy = $, then O = d

If I, = r and I = $, then Q, = 4

Rules derived from tree #6 (values of tre sixth output
ttribute):

If I =k and I, = §, then , = t

If I = p and I, = $, then 9, = t

If I, =1 and I, = §, then Q, = d

If I = r and I, = §, then 9, = d
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Rules derived from tree #7 (values of the seventh output
attribute):
If 1, =k and I, = §, then Q,

If 1,=p and I, = §, then Q,

If I,=1and 1, = $, then Q, =

i
2 Q ot

If I,=r and I, = §, then @,

These rules demonstrate that the SPA has been able to
distinguish between verbs that receive a voiced or unvoiced
suffix ‘-ed’ in the regqular past tense formation. But is the
SPA able to express the knowledge it has acquired at a higher
level? It is tempting to say yes but such an answer would be
premature. What we have at this stage are rules that apply
over positioned phonemes, i.e. these rules do not apply over
any phoneme irrespective of its place in a verb (phonetic
pattern). There is another inductive step to be made from
these phonetic/ position specific rules to purely phonetic
rules and then to morphological and 1lexical rules that
possibly control the generation of past tense forms in adult
speakers. We have to be very careful not to fall into the trap
that connectionist researchers have fallen into by imagining
that the induction problem of the acquisition of the English
past tense can be solved simply at the phoneme/ position
level. Ling and Marinov do not claim that by producing rules
that are similar to suffix-adding rules of English the SPA has

completely solved this induction problem. What the SPA has
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been able to achieve is the extraction of position relevant
phonetic rules which can be unified at a later stage to
osition irrelevant phonetic rules. These rules can form the
basis for the full inductive step in the acquisition of the
English verb paradigm.

Let us be more specific. The SPA cannot generalize from
the position relevant phonetic rules to position irrelevant
ones, e.g. it cannot make the step from propositional phonetic
rules to first-order phonetic rules. But because it is able
to represent its quite limited knowledge in rule form, it is
not difficult to see how this knowledge can be generalized to
first-order form. There are a number of symbolic learning
programs, like GOLEM (Muggleton and Feng, 1990) for example,
that can take all production rules generated by the SPA in an
appropriate format and automatically generalize them, so that
the new rules can become position independent first order
phonetic rules. Such learning programs usually utilize the
least general generalization (LGG) algorithm (Plotkin, 1970).
In order to produce position irrelevant rules GOLEM has to
receive the individual rules derived by the SPA in a form in
which the position indexes can be represented as terms. For
example the "raw" SPA rule

If I, =k and I, = $, then Q, = t
needs to be changed into

If 1(5) = k and I(S(5)) = §, then Q(S(5)) =t

where S(X) is the successor of X. Although the conversion of
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the indexes into terms can be done entirely automatically, the

procedure in this case is strictly application

hence of little explanatory value.

specific and

Once all of SPA’s rules indexes are converted into terms,

they can be generalized by using the LGG algorithm. For

example, the rules from the fifth and from the

If 1(4) = k and 1(S(4)) = $, then Q(S(4))

If 1(5)

k and I(S(5)) $, then Q(S(5))
are sufficient to produce the first-order rule:
For all n, if I(n) = k and 1(S(n)) = §,
then Q(S(n)) =t
In the same way the xules for /p/, /1/.
generalized to first-order form:
For all n, if I(n) = p and I(S(n)) = §,
then Q(S(n)) =t

For all n, if I(n)

1 and I(S(n)) = §,

then Q(n) = 4d

For al’ n, if I(n) r and I1(S(n)) = $,
then Q(S(n)) =d
where n 1is a phoneme position and S

successive phoneme position.

sixth tree:

t

t

and /r/ are

is the next

One feature of the LGG algorithm is that it needs to

generalize on the "right" set of clauses, otherwise it tends

to produce overgeneralized incorrect clauses. Such incorrect

overgeneralizations, however, can be removed completely when
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negative cases are presented by using Shapiro’s backtracking
algorithm (Shapiro, 1981).

What these more general rules essentially tell us is that
if a (verb stem) phonetic pattern ends at /k/ or /p/ we have
to add to it the unvoiced {suffix) /t/ (in order to form the
past tense of the verb); if it ends at /1/ or /r/, we have to
add /d/. Similar rules for other phonemes can be produced.
Note, however, that at this inductive step we still do not
have explicitly represented information about the categories
that are conveniently put in brackets -- ‘verb stem’,
‘suffix’, and ‘past tense’. The rules that we have induced by
generalizing the position relevant phonetic rules are still
purely phonetic. We can easily see that they will aive the
wrong answer if the phonemes over which the), range are part
of an adjective or noun, rather than a verb stem. Clearly, we
need to integrate these phonetic rules with morphological and
lexical information to produce the correct rules for the past-
tense formation in English. Simply observing phonetic
regularities is not enough to complete the full inductive
step.

But since both Rumelhart and McClelland’s and MacWhinney
and Leinbach’s models as well as the SPA have access only to
information regarding phonetic patterns, they cannot be said
to have completed the full inductive step of the learning of
the past tenses of English verbs. This is the reason why the

SPA, even though it achieved much higher learning success
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rates than its connectionist competitors, still failed to
achieve the full accuracy of adult speakers. The major
ditfference between the SPA and the connectionist models,
however, lies in the fact that the SPA provides the basis for
the solution of this inductive problem -- production rules
ranging over phonemes -- whereas the connectionist models do
not even begin to address the full induction problem. At first
glance this contrast between the SPA and the rival
connectionist models may not appear to be a significant one,
but if we take a more global approach and ask how purely
phonetic information is integrated in the overall functioning
of the 1linguistic perceptual/ production system, the
difference between them is obvious. If purely phonetic
information cannot be represented in a form that can be
readily interfaced and integrated with lexical, morphological,
and syntactic information that is available to other language
processing subsystems, it is hard to Jimagine how adult
linguistic competence is developed. The corinectionist models
consider the acquisition of the English past tense as a
totally isolated affair and thus fail to explain how the
knowledge acquired by the networks is interfaced and
integrated with other types of linguistic knowledge. The SPA,
on the contrary, can represent the acquired knowledge as sets
of production rules that can easily be unified into more
general first-order phonetic production rules. These phonetic

rules, in turn, can he used by other subsystems to complete
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the full indvctive step in learning the past tense of English
verbs. The result of this theoretical comparison between the

connectionist models and the SPA are summarized in Table 3.7.

(See Table 3.7.)
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Table 3.7
Inductive Steps in the Learning of the Past Tenses of English
Verbs
Inductive steps to full competence R&M M&L SPA

1. Learning of regularities between

phonetic patterns Yes Yes Yes
2. Representing the acquired

knowledge in propositional

phonetic rules No No Yes
3. Generalizing to first order

phonetic rules No No Yes*
4. Possibility of Integrating

first order phonetic rules with

lexical, morphological,

and syntactic rules No No Yes

* SPA and the LGG algorithm
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Conclusion

To summarize, we have established the following:

First, the eliminative connectionists’s claim that there
are no symbolic models crpable of matching or surpassing the
performance of artificial neural networks in the learning of
the past tenses of English verbs is simply false. The SPA
significantly outperforms Rumelhart and McClelland’s as well
as MacWhinney and Leinbach’s models on this task without the
use of TRICS and parameter tuning.

Second, in pattern association tasks where each pattern
consists of a finite list of features whose values are finite
and discrete, there is absolutely no advantage in the use ANNs
over the SPA in terms of accuracy of learning, inductive
generalizations, and speed of learning.

Third, by contrast with ANNs which are unable to
represent knowledge in explicit form, the SPA can produce
explicit representations in the form of production rules. The
ability to represent knowledge explicitly is indispensable in
solving the full induction problem of learning the past tenses
of the English verbs.

In the light of these findings, we may conclude that
eliminative connectionists’ vision of cognition as pattern
association and pattern recognition without symbolic
representation is deeply flawed. Pattern association as such
need not imply rule-less or cue-based models of language

acquisition, or of human learning in general. If there are any
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regularities in the sets of patterns that the SPA can learn
to associate, they will be extracted and represented in
symbolic form, ready for further processing. In contrast, the
rival connectionist models do not offer any form of knowledge
representation and leave the further processing and
integration of the acquired krowiedge a complete mystery.
Because of this the eliminativist models cannot explain how
mature speakers acquire their knowledge of the language. I
hope that the theoretical and experimental comparison between
the SPA and the rival connectionist models is sufficient to
show that the rule-based symbolic approach stands a far better
chance of explaining language learning, language processing,

and cognition, generally, than eliminative connectionism.



ENDNOTES

1 adopt the qualifier art},icial following the majority
of connectionist researchers who realize that neural networks

are neural or brain-like in a very abstract sense and do not

see any chance at present or in the near future to integrate
connectionist theory with actual neurophysiological findings

(cf. Smolensky, 1988).

’The XOR (Exclusive OR) problem is the following: ANN

has to learn the mapping

11 -->0
10 -->1
01 -->1
00 -->0,

i.e. it has to be able to output {0} when the input is {11}
or {00}, and it has to be able to output {1} when the input
is {10}, or {01}. This mapping turns out to be unlearnable by
the two 1layered perceptron (Minsky and Pappert, 1969). A
multilayer ANN, however, using the error backpropagation
algorithm can learn this mapping, thus solving the XOR
problem. (For some simple multilayer networks it can be
demonstrated that there exists a distribution of weights for
the network that solves the XOR problem without the use of

backpropagation.)
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3some philosophers of science like Feyerabend (1975)

claim that all theory changes are radical but they are able
to do so only at the expense of changing the meaning of theory

change.

“These results are very poor at least with respect to
results produced by the SPA. Rumelhart and McClelland seem to
believe that anything over 50% is a success for their model
because a classic developmental study (Berko, 1958) indicates
that children in early grade-school years produce the correct
past tenses of novel verbs only 51% of the time. But even if
this were so, the conclusion one must draw is that Rumelhart
and McClelland did not provide a model for the mature system.

They do not explain how the adults bridge this 50% gap.

SLing and Marinov carried out several experiments with
the full data set of MacWhinney and Leinbach, i.e. the set
containing past participle, present participle, third person
singular as well as past tense forms. The SPA very easily
separated the four different forms on the basis of the
explicitly coded categorial information and then proceeded to
look for different regularities. The overall error rate
dropped to 14.61%. However, since they consider the coding of
categorial information in pseudophonetic form as entirely
psychologically unjustifiable, Ling and Marinov did not attach

any importance to this result. Also, MacWhinney and Leinbach
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do not report any results on the full data set so there is no
basis for comparison. The result shows, however, the power and

versatility of the SPA.



APPENDIX I
GLOSSARY OF ACRONYMS

ASSISTANT - A diagnostic learning system member of the TDIDT
family of symbolic 1learning systems. See Cestnik,

Kononenko, and Bratko (1987).

ANN - (A]rtificial [N]eural [N)etwork. This term covers all
single-layer and multilayer connectionist networks. A
connectionist network typically consists of units
(neurons) and connections between them. The units can be
binary or real valued and the connections can have real

valued strengths or weights.

BP - The error [Black[P]ropagation algorithm. The BP algorithm
is the major connectionist 1learning algorithm. See
Rumelhart, Hinton, and Williams (1986).

CART - A learning system member of the TDIDT family of
symbolic learning systems. See Breiman, Friedman, Olshen,

and Stone (1984).

€4 - An improved version of ID3. Has features that allow it

to handle noisy data. See Quinlan (1986b).
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ID3 - The most widely known member of the TDIDT family of

symbolic learning systems. It has achieved significant

advances in solving ‘real-world’ 1learning tasks. See

Quinlan (1986a).

LGG - The [L)-2ast [G]leneral [G]eneralization algorithm. See

Plotkin (1970).

PDP - [P]arallel (D]}istributed [P)Jrocessing. A general term

describing the type of processing taking place in ANNs.

SFA ~ [S]ymbolic [P]attern [A]ssociator. A symbolic learning
system member of the TDIDT family specifically designed
to learn to associate sets of arbitrary patterns. It can
solve pattern association tasks similar to the ones

typici.lly solved by ANNs. See Ling and Marinov (1992).

IDIDT - [T)op-[D]Jown [I]nduction of ([Djecision [T)]rees. A
general algorithm for the induction of decision trees
from a set of examples. Originates from the Concept

Learning System (CLS) of Hunt, Marin, and Stone (1966).

T™M - [T)uring (M]achine.



IBLIOGRAPHY

Armstrong, D. (1968). A materialist Theory c¢f the Mind.
London: Routledge and K.Paul.

Atlas, L, Cole, R., Connor, J., El-Sharkawi, M., Marks, R.,
Muthasamy, Y., Barnard, E. (1990) . Performance
comparisons between backpropagation networks and
classification trees on three real-world applications.

In: D. Touretzky, (Ed.), Advances in Neural Information

Processing Systems, vol. 2, (pp. 622-29) San Mateo, CA:
Morgan Kaufmann Inc.

Ballard, D. and Hayes, G. (1984). Parallel logical inference.

In: Proceedings of the Sixth Annual Conference of the

Cognitive Science Society, Rochester, NY.
Berko, J. (1958). The child’s learning of English morphology.

Word, 14, 150-177.

Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J.
(1984). _Classifijcation and Regression Trees, Belmont:
Wadsworth.

Cestnik, B., Kononenko, 1., and Bratko, I. (1987). ASSISTANT
86: A knowledge elicitation tool for sophisticated
users. In: I. Bratko, and N. Lavrac, (Eds.), Progress in
Machine Learning, Wilmslow: Sigma Press.

Chomsky, N. (1959). Review of B. F. Skinner’s Verbal
Behaviour. Language, 35, 26-58.

Chomsky, N. (1957). Syntactic Structures. Gravenhage: Mouton.

195



196

Chomsky, N. and Miller, G. (1963). Introduction to the formal
analysis of natural languages. In: D. Luce, R.Bush, and
E. Galanter, (Eds.), [o1e) matica sycholoqgy,
vol.2, (pp. 269-321). New York, NY: John Wiley.

Churchland, P.M. (1988). Matter and Consciousness. Revised
edition. Cambridge, MA: MIT Press.

Churchland, P.M. (1989). A Neurocomputational Perspective.
Cambridge, MA: MIT Press.

Crick, F. and Asanuma, C. (1986). Certain aspects of the
anatomy of the cerebral cortex. In: D. Rumelhart, J.
McLelland, and the PDP Research Group, Parallel
Distributed Processing: Explorations in the

o u of Cognition, Vol. 2, (pp. 333-371)

Cambridge, MA: MIT Press.

Dennett, D. (1991). Mother nature versus the walking
encyclopedia: A western drama. In: W. Ramsey, S. Stich,
& D. Rumelhart, (Eds.). Philosophy and Connectionist
Theory (pp. 21-30). Hillsdale, NJ: Erlbaum.

Feyerabend, P. (1975). Against Method. London: Humanities
Press.

Fisher, D. & McKusick, K. (1989). An empirical comparison of
ID3 and back-propagation. Proceedings of the Eleventh
Int ¢ 1 Joint Conf Artificial Intelli

(pp. 788-793). Detroit, MI.
Fodor, J. A., (1975). The Language of Thought, New York, NY:

Crowell.



197

Fodor, J. A. and Pylyshyn, Z. (1988). Connectionism and
cognitive architecture: A critical analysis. In: S.
Pinker and J. Mehler, (Eds.), Connections and Symbols,
(pp.3-71). Cambridge, MA: MIT Press.

Fodor, J. A., and McLavghlin (1990). Connectionism and the
problem of systematicity. Cognition, vol.35, 183-204.

Garzon, M. and Franklin, §S., Neural computability. In:
omdivar, O. (Ed.), Progress in Neural Networks, vol. 1,
(Pp. 128-144). Norwood, NJ: Ablex.

Giles, C., Sun, G., Chen, H., Lee, Y., and Chen, D. (1990).
Higher order networks for recurrent and grammatical
inference. In: Touretzky, (Ed.), Advances in Neural

jo ocessij stems, vol. 2, (pp. 380-397).
San Mateo, CA: Morgan Kaufmann.

Goles, E. and Martinez, S. (1990). Neural and Automata

Networks. Dordrecht: Kluwer.

Hartley, R. and Szu, H. (1987). A comparison of the

computational power of neural network models. 1In:
Proceedings of JEEE First International Conference on

Neural Networks, vol.3, 17-22.
Hopcroft, J., and Ullman, J. (1979). Introduction to Automata

Theory, lLangquages, and Computatjon, Reading, MA: Addison-
Wesley.

Hunt, E., Marin, J., & Stone, P. (1966). Experiments in
Induction. New York, NY: Academic Press.

Kononenko, I., Bratko, 1., and Roskar, E. (1984). Experiments



198
in automatic learning of medical diagnostic rules.
Technical Report, Jozef Stefan Institute, Ljubljana,
Slovenia.

Lachter, J. & Bever, T. (1988). The relation between
linguistic structure and associative theories of language
learning -- A constructive critique of some connectionist
learning models. In: S. Pinker & J. Mehler, (Eds.).
Connections and Symbols (pp. 195-247). Cambridge, MA:
MIT Press.

Ling, C. & Marinov, M. (1992). Answ~-ing the connectionist
challenge: A symbolic model of learning the past tenses
of English verbs, (forthcoming).

MacWhinney, B. (1990). oject: ools o
Analyzing Talk. Hillsdale, NJ: Erlbaum.

MacwWwhinney, B. & Leinbach, J. (1991). Implementations are not
conceptualizations: Revising the verb model. Cognition,
40, 121-157.

Marinov, M. (1992). On the spuriousness of the symbolic/
subsymbolic distinction. Minds and Machines,
(forthcoming).

McClelland, J., Rumelhart, D., & Hinton, G. (1986). The appeal
of parallel distributed processing. In: Rumelhart, D.,
McClelland, J. & the PDP Research Group (®ds.). Parallel
Ristributed Processing, Vol. 1 (pp. 3-44). Cambridge, MA:
MIT Press.

Minsky M., & Pappert, S. (1969). Perceptrons. Cambridge, MA:



199

MIT Press.
Muggleton, S. & Feng, C. (1990). Efficient induction of logic
programs. Proceedings Of the First International

Conference on Algorithmic Learning Theory, Tokyo: OHMSHA.
Newell, A., (1980). Physical symbol systems. Cognitive

Science, vol. 4, 135-183.

Newell, A., Rosenbloom, P., and Laird, J. (1989). Symbolic

architectures for cognition. In: Posner, I., (Ed.),
ations o (o] itive Science, (ppP-. 93-132).
Cambridge, MA: MIT Press.

Pinker, S. & Prince, A. (1988). On language and connectionism:
Analysis of a parallel distributed processing model of
language acquisition. In: S. Pinker & J. Mehler, (Eds.).
Connections and Symbols (pp. 73-193). Cambridge, MA : MIT
Press.

Plotkin, G. (1970). A note on inductive generalizations. In:
B. Meltzer & D. Michie, (Eds.). Machine Intelligence,
Vvol. 5, (pp.153-63). New York: North Holland.

Plunkett, K. & Marchman, V. (1991). U-shaped learning and
frequency effects in a multilayered perceptron:
Implications for child language acquisition. Cognition,
38, 43-102.

Pollack, J. (1991). Recursive distributed representations.
In: Hinton, G., (Ed.), Connectionist Symbol Processing,
(pp. 77-106). MIT Press, Cambridge, MA.

Putnam, H. (1960). Minds and machines. In: Hook, S. (Ed.).



200

Dimensions of Mind. New York, NY: New York University

Press.

Pylyshyn, 2. (1984). Co ation and ition: W
Foundation for Cognitive Science, Cambridge, MA: MIT
Press.

Quinlan, R. (1986a). Induction of Decision Trees. Machine
Learning, Vol. 1, 81-106.

Quinlan, R. (1986b). Probabilistic decision trees. 1In:
Kodratoff,Y. and Michalski, R., (Eds.), Machine Learning:
An Artificial Intelligence Approach, vol. 3, (pp. 140-
52). San Mateo, CA: Morgan Kaufmann, Inc.

Quinlan, R. (1989). Unknown attribute values in induction. In:

B. Spatz, (Ed.), Proceedings of the Sixth International
Worksb.p on Machine Learning, (pp.164-68). San Mateo, CA:

Morgan Kaufmann Publishers, Inc.

Quinlan, R., Compton, P., Horn, K., and Lazarus, L. (1987).
Inductive knowledge acquisition: A case study. 1In:
R.Quinlan, (Ed.), Applicatijons of Expert Systems, Sydney:
Turing Institute Press in assoc. with Addison-Wesley
Publishing Co.

Ramsey, W., Stich, S., & Garon, J. (1991). Connectionism,
eliminativism, and the future of folk psychology. In:
Ramsey, W., Stich, 8., and Rumelhart, D. (Eds.)

Philosophy and cConnectionist Theorvy, (pp. 199-228).

Hillsdale, NJ: Erlbaum.

Rosenblatt, F. (1962). Principles of Neurodvnamjce. New York,



201

NY: Spartan.

Rumelhart, D. and McClelland, J. (1986). PDP models and
general issues in cognitive science. In: D. Rumelhart,
J. McLelland, and the PDP Research Group, Parallel
Distrjbuted Processinaq: Explorations in the

Microstructure of cCognition, Veol. 1, (pp. 110-146).
Cambridge, MA : MIT Press.

Rumelhart, D. & McClelland, J. (1986). On learning the past

tenses of English verbs. In: Rumelhart, D., McClelland,

J. & the PDP Research Group (Eds.). istribute
Processing, Vol. 2 (pp. 216-271). Cambridge, MA: MIT
Press.

Rumelhart, D. & McClelland, J. (1987). Learning the past
tenses of English verbs: Implicit rules or parallel
distributed processing? 1In: B. MacWhinney (Ed.).

S uage isition. Hillsdale, NJ:
Erlbaum.

Rumelhart, D., McLelland, J. and the PDP Research Group
(1986) . _Parallel Distributed Processing: Explorations
in the Microstructure of cognition, Vol. 1 & 2,
Cambridge, MA : MIT Press.

Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning
internal representations by error propagation. In: D.
Rumelhart, J. McLelland, and the PDP Research Group,
Microstructure of cCognition, Vol. 1, (pp. 318-362).



202

Cambridge, MA : MIT Press.

Schlimmer, J. (1987)._ "ote [Machine-readable data file],
Adapted from Congressiopal Quarterly Almanac, 98th
Congress, 2nd session 1984, Volume XL: Congressional
Quarterly Inc., Washington, D.C., 1985.

Sejnowski, T. & Rosenberg, C. (1987). Parallel networks that
learn to pronounce English text. Complex Systems, 1, 145-
168.

Shapiro, E. (1981). Inductive inference of theories from
facts. Tech. Rep. No. 192, Dept. of Computer Science,
Yale University.

Shavlik, J., Mooney, R., and Towell, G. (1991). Symbolic and
neural learning algorithms: An experimental comparison.
Machine Learning, vol. 6, 111-143.

Siegelman, H. and Sontag, E. (1991). On the Computational
Power of Neural Nets, Technical Report SYCON-91-11,

Rutgers University.

Skinner, B. (1953). Science and Human Behavior. New York, NY:

Macmillan.

Skinner, B. (1957). Verbal Behavior. New York, NY: Appleton-
Crofts.

Smolensky, P. (1987). The constituent structure of

connectionist mental states: A reply to Fodor and

Pylyshyn. The Southern Journal of Philosophy, vol. 26,
137-161.

Smolensky, P. (1988). On the proper treatment of



203

connectionism. _Behavioral and Brain Sciences, 11, 1-74.

Smolensky, P. (1991) Tensor product variable binding and the
representation of symbolic structures in connectionist
systems. In: Hinton, G., (Ed.), Connectionist Symbol
Processing, (pp. 159-216). Cambridge, MA: MIT Press.

Smolensky, P. (1991a). Connectionism, constituency, and the
language of thought. In: B. Loewer & G. Ray, (Eds.).
Meaning and Mind: Fodor and His Critics (pp.201-228).
Cambridge, MA: Basil Blackwell.

Stich, S. (1983). s o o C itive Sceince.
Cambridge, MA: MIT Press.

Sun, G., Chen, H., Lee, Y., and Giles, C. (1991). Turing

equivalence of neural networks with second order

connection weights. In: Internatjonal Joint Conference
on Neural Nets, Seattle, vol. 2, 357-367.

Touretzky, D. (1991). BoltzCONS: Dynamic symbol structures in

a connectionist network. In: Hinton, G., (Ed.),

o ssing, (pp. 5-46). Cambridge,
MA: MIT Press.

Valiant, L. (1984). A theory of the learnable. Communications
of ACM, 27, 1134-1142.

Wickelgren, W. (1969). Context sensitive coding, associative
memory, and serial order in (speech) behaviour.
Psychological Review, 16, 1-15.

Weiss, S. and Kapouleas, I. (1989). An empirical comparison

of pattern recognition, neural nets, and machine learning



204

classification methods. Proceedings of the Eleventh

International Joint Conference on Artificial
Intelligence, pp. 688-693. Detroit: MI.

Wirth, J. & Catlett, J. (1988). Experiments on the costs and

benefits of windowing in ID3. In: J. Laird, (Ed.),
Proceedings of the Fifth Inte.national Conference on
Machine Learning, (pp.87-99), San Mateo, CA: Morgan

Kaufmann Publishers, Inc.



	Western University
	Scholarship@Western
	1992

	A Critical Examination Of Connectionist Cognitive Architectures
	Marin S. Marinov
	Recommended Citation


	tmp.1410233488.pdf.uhuQf

