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ABSTRACT

This thesis comprises two essays linked by their focus on problems in con-
tracting and by their usage of game theory as the vehicle of analysis.

The first essay addresses the issue of how and why incomplete contracts might
arise endogenously. It provides a model of contract formation that focuses on
the differential bargaining power that is bestowed upon agents by the procedures
imnplied by different contract settings. The model employs a multi-issue bargain-
ing approach, and distinguishes between issue-by-issue bargaining, where issues
are dealt with separately, and single-issue bargaining, where they are combined.
Agents are free to bargain over the form of the equilibrium process. It is shown
that this structure allows for incomplete contracts, in the form of issue-by-issue, or
short-term agreements, to be derived as an equilibrium outcome for some environ-
ments. This is in contrast to much of the literature on incomplete contracts, which
relies on the roles of unobservability or transaction costs in order to justify the
imposition of incomplete contracts as equilibrium contract form by the modeler.

The second essay analyses an alternating offers bargaining game in which
the payoff in every period in which no agreement has been reached is the out-
come of a normal form stage game. Two insights are gained from this model: i)
only disagreement period opportunities available to a player when he makes an
accept/reject decision can increase his game payoffs, and ii) in general such nego-
tiation games have many equilibria which are Pareto inefficient, even though the
game is one of complete information and full rationality. There exist, however,
stage games which lead to a unique efficient outcome if exit weakly dominates

repeated play. An alternative interpretation of this model — relevant to implicit

m




coniracts — is as a repeated game with endogenous exit. In this context the model

points to the restrictions imposed on equilibrium payoffs in potentially infinitely
repeated games by the existence of the possibility of binding exit agreements. The

set of supportable allocations, however, is generally smaller than the Folk Theorem

literature would suggest.
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OVERVIEW

In what follows, the two essays in this thesis will be discussed separately and
disjointly. While the two essays have no direct topical relation to each other, there
do exist unifying aspects between them. One is the use of non-cooperative game
theory as the chosen mode of analysis. Both models employ bargaining theory, and
thus bear intellectual debt to the work of Rubinstein, whose 1982 paper is referred
to extensively and provides the foundation for both models.

The second unifying aspect of the papers is to which problems this technology
is applied. Both papers share a common concern about contracting issues. In
the first paper, entitled Endogenvus Incomplete Contracts, this takes the form of
an explicit analysis of complete versus incomplete contracting procedures. As will
become apparent later, the essay shows that while the intuition that frictions are
necessary for incomplete contracts to arise in equilibrium is correct, the existence
of differential costs in favour of incomplete contracts is not necessary to cause that
outcome. This contradicts apparently widely held beliefs, and serves as a warning
to those modelers who would assunie a particular kind of incomplete contract after
vague reference to “costs”. The model allows agents to chose endogenously between
two methods of allocating a sequence of two surpluses. One method is to treat both
issues as one large allocation problem, and agree at once on an all: cation for both the
current and the future surplus. The alternative method is a piecemeal allocation
rule, whereby first only the first surplus is allocated, and then, once the second
surplus arrives, it in turn is allocated. The model shows that in some environments
one agent may benefit if the issues are separated, and that, although in general

such separate allocations are inefficient, he may probabilistically attain his favoured




outcome in equilibrium.

The second paper, Perfect Equilibria in a Negotiation Model, is not overtly

targeted to the discussion of contracts. It does, however, have implications for

implicit contracts. The model is presented as an alternative to standard bargaining
models, with the innovative part being that the disagreement payoffs of players
are determined endogenously, in contrast to the usual assumption that they are
exogenous and fixed. This is formally modelled by having players play a stage game
each time they have not reached an agreement in an alternating offers bargaining
game. The set of subgame perfect equilibria is characterized, and it is shown that
multiple equilibria can exist, confirming the findings of Fernandez and Glazer (1991)
and Haller and Holden (1990}, who have a similar model. In contrast to their results,
sufficient conditions are provided which guarantee a unique equilibrium.

While presented as a negotiation model, this game can be reinterpreted as a
model of implicit contracts when binding agreements also exist. In this interpreta-
tion the model becomes one of repeated games with endogenous exit, where exit is
valuable, but must be mutually agreed. It differs from the model of Okada (1991)
by having separate frontiers for the implicit contracts and the explicit contracts. In
any case, the model imnplies that the Folk Theorem results may not hold if the time
horizon is endogenous and a valuable outside option exists. Having said this, this

aspect of the model will not be stressed in what follows.




Chapter 1

Endogenous Incomplete
Contracts

When there are two objects to negotiate, the decision to negotiate them
simultaneously or in separate forums at separate times is by no means
neutral to the outcome, particularly if there is a latent extortionate
threat that can be exploited. ... The protection against extortion de-
pends on refusal, unavailability, or inability to negotiate. (Thomas
Schelling, “An Essay on Bargaining”, 1956. Italics added)

1.1 Introduction

Traditionally, economists have assumed that transactions among individuals take
place within the context of a complete set of markets. When idiosyncratic exchange
between individuals is at issue, the assumption has been that the exchange is gov-
erned by a complete contract. Recently, however, attention has turned to situations
in which exchange takes place with less than complete markets and contracts. In
the area of contracts, the focus has been on three issues: the impact that different
forms of incompleteness have on the allocation of goods (see, for instance, Grossman
and Hart (1986), Hart and Moore (1990)), the role that contract renegotiation plays
in situations where contracts are incomplete (see Huberman and Kahn (1988), Hart
and Moore (1988), Ma (1991)), and the impact on the allocation of goods when

agents are unable to commit to long-term contracts (see Crawford (1988), Fuden-
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berg, Holmstromn and Milgrom (1990), Laffont and Tirole (1988)). While dealing
with many diverse aspects of exchange when contracts are incomplete, one feature
that all of this research has in common is the fact that the nature of the contractual
incompleteness is given exogenously. While reference is usually made to various
costs, either of third-party verification or of describing complex states of the world,
which make complete contracts infeasible, no attempt is made to either model these
costs explicitly or to determine their impact on the form of the contract.

Although few would deny the importance of these lines of research, the failure
of these models to account adequately for the existence of incomplete contracts
does pose problems. If, for instance, the cost of writing state contingent contracts
is positive but not “prohibitive”, should one expect to see the sorts of incomplete
contracts posited by these models? If so, in what environments should one expect
them to arise; if not, what form should the contractual incompleteness take (if
contracts are indeed incomplete)? Equally important is the question of how the form
of the equilibrium contract might be expected to vary as the economic environment
varies. It, too, is left unanswered. There is, therefore, no way to test whether these
models are useful descriptions of economic reality.

The purpose of this paper is to provide a model of the transactions process
between individuals in which the structure of the contract which governs transactions
is determined endogenously. Without denying the important role played by the
direct costs of writing “complex” contracts, such costs are not the focus of the model.
Rather, the model focuses on the impact that the selective inclusion of certain items
into contracts has on the ability of an agent to bargain successfully (i.e. to obtain
an agreement favourable to the agent). As will be shown, these indirect cost can

vary across contract forms since different contract structures imply different costs of




“holding out” for a favourable deal. Depending on the characteristics of the agents,

certain types of contracts may in this sense be more costly for one agent than for
another. An agent will seek to implement a contract that is more favourable (less
costly) to that agent, and the interplay between agents seeking the most favourable
deal determines the equilibrium contract structure.

In order to highlight the role played played by these differential bargaining costs,
the model is purposely simple. The model considers a pure exchange economy in
which two agents must decide how to allocate one unit of each of two goods, the
endowment of each good occurring at different points in time. The transactions tech-
nology by which all decisions are made is an offer-counter-offer bargaining process
in the style of Rubinstein (1982). The agents can either adopt a process whereby
the allocation of both goods is determined simultaneously (a process observationaily
equivalent to a complete contract) or employ one in which the allocation of the good
arriving first is determined in a bargaining round separate and sequentially prior to
that determining the allocation of the good arriving later. In this latter procedure,
the success or failure of the later bargain does not affect the implementation of
the earlier agreement. This latter procedure is the observational equivalent of an
incomplete contract. The form that the contract takes (i.e. the bargaining process
adopted) is also determined by an offer-counter-offer bargaining process. Agents are
assumed to know the sizes of the endowments, their arrival dates and each other’s
preferences, and there are no costs to any of the contracting processes other than
costs of delay. In its most simple form, the model assumes identical costs of delay
for all processes and endowments that occur with certainty.

The model points to several features which are key to obtaining the incomplete

contract outcome. First, it is necessary that there be some friction in the transac-




tions process in the sense that delay costs must be positive. If bargaining is friction-
less, then the complete contract is always implemented in equilibrium. Second, it
is not necessarily the case that the complete contract having larger delay costs (be-
ing more costly to implement) than the incomplete contract makes the incomplete
contract a more likely outcome. Finally, it is, on the other hand, not necessary that
the complete contract procedure involve greater frictions (larger delay costs) than
the incomplete contract procedure in order for incomplete contracts to be observed.
Even if each is equally costly, differences in the agents’ preferences regarding the
two goods can produce incomplete contracts. If, for instance, one agent prefers the
first good relative to the second (and vice versa for the other agent), the agent pre-
ferring the first good will seek an incomplete contract because this procedure allows
that agent to extract more of the second good than is possible under a complete
contract procedure. The reason that the agent can obtain more of the second good
is as follows. Under a complete contract efficiency requires relatively more of an
agent’s preferred good to be allocated to him. The agent who prefers the first good
relatively more can obtain more of the second only if he can delay and hold out for it
— but this delays consumption of the first good. This delay is relatively more costly
to him than the other agent since he is allocated a larger share. With the incom-
plete contract, the agent’s consumption of the first good is already determined, and
independent of an agreement on the second good. Therefore, delaying agreement
on the allocation of the second good is less costly to him and he can obtain a larger
share.

Several other authors have also modelled the process by which the structure
of contracts is determined as an equilibrium phenomenon. Dye (1985) considers

a simiple cost model in which additional clauses in a contract result in additional




costs to the contracting parties. He shows that incomplete contracts arise in this

environment. Lipman (1991) has a cost of contracting model in which states can
only be determined at some cost, so that a contract specifying an allocation at some
state is costly to write because the state must first be determined before the contract
can be specified. Lipman shows that, even as these costs of observing states become
arbitrarily small, incomplete contracts still arise in equilibrium. Finally, Allen and
Gale (1990) show that, if agents cannot write contracts contingent on states of
nature (presumably because this is too costly) but only on noisy signals of these
states, then it is possible that the agents will choose noncontingent contracts in
equilibrium. This outcome arises because of both the ability of one of the agents to
manipulate the noisy signal and the existence of incomplete information about this
agent’s type.

Rather than viewing our model as an alternative to these cost models, we see
it as a complementary analysis that suppiements our understanding of the role of
contracting costs in producing incomplete contracts. That is, not only are the direct
costs of writing contracts important but also important are the indirect costs that
various types of contracts impose on agents via their effect on the agents’ ability to
obtain a favourable deal within that framework.

The structure of the paper is as follows. The next section sets out the basic model
and solves for the equilibrium contract in the case in which agents’ preferences
are linear. Section 3 extends the model to more general preferences as well as
to situations in which there are different (exogenous) delay costs for the different
contracts and uncertainty in the endowment process of the second good. Section 4
contains a discussion and concluding remarks, while an Appendix contains proofs

for a number of the results in the text.




1.2 The Contracting Problem: An Example!
1.2.1 The Model

Consider a situation in which there are two agents, 1 and 2, endowed jointly with
a single unit of each of two distinct goods, X and Y. Further, assume that the
endowment process is such that the agents obtain X sequentially prior in time to
Y, with the dates of the endowments’ arrival known with certainty by both agents
and given by tx and ty respectively (£x > 1). Agents determine (by a process to be
specified below) an allocation of X and Y between them, with agent 1’s share of X
given by z and his share of Y given by y (agent 2’s shares being (1 — z) and (1 —y)
respectively). The agents’ preferences over an allocation (z,y) with £ consumed at

date t > tx and y consumed at date > {y are given by the utility functions

U(z.t,y,7) = 6" Vaz 45y (1)

Us(z,t,y,7) = V(1 —2)+ 601 —y) (2)

Here a and b are constants assumed to satisfy the conditions a > 1 and b >
1+ 1/a, while § € (0,1) is the agents’ common discount factor. These functions are
standard time separable utility functions with the restriction to a,b > 1 implying
that, were the agents to consume X and Y at the same time, agent 1’s marginal
utility from X would be larger than from Y (i.e. agent 1 prefers X to Y') while the
opposite would be true for agent 2 (i.e. agent 2 prefers Y to X). The implications
of the stronger restriction that b > 1 + 1/a will become apparent shortly.

All decisions on allocations in this world are assumed to be determined by offer-

counter-offer bargaining processes in the style of Rubinstein (1982). Given that

'This example draws on work by Herrero (1989)




allocations must be determined for an entire endowment stream, there are a num-
ber of possible offer-counter-offer procedures that the players could adopt. From
the structure of the endowment stream two natural procedures arise, however, and
attention is restricted to these two for the purposes of this example. The first pro-
cedure involves bargaining over the allocation of the entire endowment stream at
once. More precisely, an offer under this procedure is a pair (z,y) specifying a divi-
sion of both goods. The two agents make offers and counter-offers of (z,y) until an
agreement is reached, with agent 1 making the initial offer if the period ¢, at which
bargaining begins is odd and agent 2 making the initial offer if ¢ is even. Once agree-
ment is reached, the agreed upon allocations of goods X and Y are implemented.
Should agreement be reached before X or Y arrive, the agreed upon allocation is
implemented once each endowment arrives. No allocations are made until agreement
is reached on the division of both goods. This procedure is labelled the complete
contract (CC) procedure, although, given that there is no uncertainty in this exam-
ple, it is perhaps more aptly referred to as the long-term contract procedure. The
procedure is described by Figure 1.

The second procedure involves a sequentia! determination of allocations, with
the allocation of good X determined in a separate procedure from that determining
the allocation of good Y. Given the structure of the endowment stream, the natural
timing involves the two agents bargaining over the allocation of X first and over the
allocation of Y subsequently. Agent 1 is assigned odd numbered periods to make
his offers, while agent 2 is assigned even numbered periods. Thus, in the second
procedure, if the period in which bargaining begins is odd, then it is assumed that
agent 1 initially makes an offer, z, which agent 2 can either accept or reject. Should

agent 2 reject the offer, then he makes a counter-offer, z’, that agent 1 can either
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accept or reject, and so on (The procedure of offer and counter offer is reversed if
the initial period is even.). Once the agents reach an agreement on an allocation
of X bargaining ends, and the allocation is implemented. Bargaining between the
agents resumes at time ty to determine an allocation of Y (Should agreement on X
be reached at some time t > ty, then bargaining on Y begins immediately.). Again,
agent 1 makes his offers in odd numbered periods while agent 2 makes his offers
in even numbered periods. Bargaining on an allocation of Y proceeds in a fashion
analogous to that for X (with an offer being a value, y € [0,1]) and the allocation
of Y is implemented once an agreement is reached.? This procedure is labelled the
incomplete contract (IC) procedure, although again, given the lack of uncertainty
in this example, it is perhaps more aptly referred to as the short-term-contract
procedure. This procedure is illustrated in Figure 2.

Aithough there are other bargaining procedures one might imagine, CC and IC
capture the essential differences between complete and incomplete contracts and
are sufficient to illustrate the key issues. The first procedure corresponds to a
complete contract in the sense that it requires the agents to commit, within a single
contracting process, to allocations for all possible states of the world (In this example
states of the world are just different times at which allocations arrive with certainty.).
By determining all allocations simultaneously, agents are assured that the allocations
will be efficient (i.e. on the Pareto frontier). However, this simultaneous allocation
procedure also means that agents are not able to separate their attitude regarding
the allocation of any one good from the allocation of the other good. The second

procedure corresponds to an incomplete contract in that the allocations of X and

3Note that the restriction that bargaining on Y begins at ty is innocuous, since there is no cost
to delay before ty .
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t even t+1 odd

Figure 1: the CC procedure
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Figure 2: the IC procedure
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Figure 3: the contract bargain
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Y are made piecemeal, with the allocation of Y determined only after the state
of nature (in this case ty) is deterinined. Because of this piecemeal determination
of allocations, the incomplete contract procedure will generally be ineflicient (i.e.
interior to the Pareto frontier, although not necessarily in this example). However,
this procedure does allow the agents’ attitudes toward any proposed allocation of Y
to be separated from the allocation of X and so potentially alters (relative to the
complete contract) the set of proposals, y, that are acceptable to each player.

Still undetermined, of course, is the means by which one of these two bargaining
processes is adopted by the agents as the process by which allocations of X and
Y are to be decided. Rather than one of the two being imposed exogenously, it
is assumed that which contracting procedure is employed is also something about
which the agents bargain. This bargaining takes place sequentially prior to any
bargaining over allocations of X and Y. An offer in this bargaining round is a
number x € [0,1], where 7 represents the probability that the CC procedure is
emploved. The randomization scheme 7 is assumed contractable, and its outcome

costlessly enforceable. In addition, its outcome is assumed to be known to the

agents prior to entering into bargaining over X and Y.? As with the other bargaining

rounds, it is assumed that the agent making the initial offer is determined by whether
the initial period is odd (1 moves first) or even (2 moves first).

For the purposes of this example, it is assumed that the initial bargaining process
begins at date ¢ = 1 (the first time period) and that ty = 2. Bargaining on
allocations of X and Y begin the period after the bargaining over x is completed.

Figure 3 provides a diagram that summarizes the complete bargaining process. The

3What is envisioned here is a procedure whereby the agents first decide what the subject of a
particular bargaining round will be (i.e. what variables will be bargained over), and then decide
the allocations for the variables in question.
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predicted outcome of this bargaining process is given by the set of subgame perfect
Nash equilibrium strategies for the game described by Figure 3. The outcomes

associated with these strategies are described below.
1.2.2 Equilibrium Outcomes

Consider first the two possible bargaining procedures that determine allocations of
X and Y (the set of potential subgames generated should agreement be reached on
a value of 7). Suppose that the realization of the randomization mechanism is such
that the CC procedure is to be followed and that the current subgame has t = ty.
Then, should agreement be reached in the current period or any subsequent period,
the allocation of both X and Y will be made immediately, and the two agents’

utilities at the time of agreement will be given by

Uy = az+y (3)

Uy = (1-2)+b1-—y) (4)

The set of instantaneous utilities achievable from allocations (z, y) is simply given by
all (U, U;) consistent with (3) and (4) and is depicted in Figure 4 below. Because of
the linearity of the utility functions, the utility frontier has the property that y = 0
for U; < a, while, z = 1 for U; 2 a.

Given that all offers (z,y) have corresponding utility offers (Uy, U;) given by (3)
and (4), bargaining in these subgames can be analyzed in terms of (Uy, Us) offers
drawn from the set depicted in Figure 4. More specifically, bargaining must take
place over (U;,U;) given by the utility frontier U(CC). Letting (U], U}) be an offer

from U(CC) by agent i, an equilibrium offer must satisfy the conditions




Uz
b+ U(CcC)
b
a a+1 Uy
Figure 4: CC utility frontier
U2

Figure 5: IC utility frontiers
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v = sU} (8)

U;

sU2 (6)

Under the assumption that a,b > 1, it can easily be shown that an equilibrium
offer by agent 1 involves z = 1, y > 0, while an equilibrium offer by 2 involves
¥y =0, z < 1. That is, 1's offer lies on U(CC) to the right of the kink while 2’s
offer lies on U(CC) to the left of the kink. Employing these facts in (5) and (6)

yields the equilibrium offers

_ a(l = 8)(b-§)

T = 1, y ab— &§? (7)
v _ OS(M(at1)-6(b+1)) .- _
I - ab_sz ’ y —0 (8)

should agent 1 or agent 2 make the offer, respectively.

The situation is somewhat different in subgames for which ¢ < ty. In these
subgames, delay in reaching an agreement is only costly in terms of foregone con-
sumption of X. Delay does notl result in foregone consumption of Y because the
endowment of Y is not available until £y. As a consequence, the analysis of equilib-
rium offers in these cases must be slightly modified from the above to account for
the different cost of delay. The modification simply involves a backward induction
process from ty employing conditions analogous to (5) and (6) to determine the
sequence of equilibrium offers and counter offers. This process yields an initial offer
by agent 2 at time ¢t = tx given by

(ty-tx-1)

=6 Y (=& +8&vtxz™, =0 (9)
=0
(ty—tx—2) ,
2=6é Z (—6)' + Sty —tx =1 e , g =0 (10)

1=0
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if ty is even or odd, respectively. (This construction is much the same as that in
Shaked and Sutton (1985).) The pair (z, y) represents the equilibrium allocation
of X and Y under the CC proucedure.

The analysis of the equilibrium allocations for the IC procedure is similar. Con-
sider first the subgames in which an allocation of X has been determined and t > ty.
This case is a simple Rubinstein bargaining problem with the equilibrium allocation,
y] given by the usual Rubinstein solution (i.e. 1/(1 + é) if 1 makes the first offer
and /(1 + é) if 2 makes the first offer). Next, consider those subgames for which
no agreement on an allocation of X has been reached. As with the CC procedure,
this problem can be broken down into two parts: those cases for which t > ty and
those for which ¢t < ty. In the former case, the utility for the two agents should an

agreement be reached on an allocation of X is given by

U; az + 6y; (11)

U = (1-z)+8b1—-y}) (12)

In Figure 5 the set of attainable utilities from bargaining over X are depicted. As
in the case of the CC procedure, delay in reaching agreement on an allocation of X
imposes costs both in terms of foregone consumption of X and of Y when ¢ > ty.
Therefore, equilibrium offers are ones satisfying conditions (5) and (6) above with

the set of possible utility offers drawn from the IC frontier in figure 5. These offers

result in equilibrium allocations of X given by z} = (14 b8 — 6*/a)/(1+ 6) if t is odd

and b< 1+46/a,and 25 =1if b > 1+ §/a. If t is even the respective allocations are
z;'=6(14+6b-1/a)/(1+6)ifb<1+6/aand 27" =b(a~1+6)/aifb>1+6/a.

The initial restriction that b > 1+ 1/a implies that the equilibrium allocations when
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t is either odd or even is given by the latter values, i.e.

;=1 and "= da-1+96)
a

For those cases in which t < ty, the same modification used in the CC procedure
applies. Again, delay in these subgames is only costly in terms of foregone X con-
sumption and not foregone consumption of Y. Therefore, the allocation of X at tx
is determined by the same backward induction process as used in the CC procedure.
This process yields an allocation of X at time tx given by #; = § "5 *~3(-8)" if
ty is even and by £; = § L5 (—=8) — 8v=xU=8) if 1, is odd. The complet

allocation under the IC procedure is then given by

ty—tx—2
o= 6y (-8, =s+6  (13)
=8y (-0 poyass o
1=0

if ty is even or odd, respectively.

At this point, a comparison of the allocations under the two bargaining pro-
cedures may prove informative. Those for the CC procedure are given by one of
(9) or (10) above while for the IC procedure they are given by one of (13) or (14).
Clearly, agent 1 gains under the IC procedure as regards the allocation of Y. This
gain results from the fact that agent 1 has been able to split-off bargaining over
X from bargaining over Y, and do so in a way that implies that delay in reaching
an agreement on an allocation of ¥ is not costly to 1 in terms of consumption of
X (the good that 1 prefers). As a consequence, it pays agent 1 to hold out for a
positive share of Y in the IC procedure whereas such behavior is too costly in terms
of foregone consumption of X under the CC procedure.

As regards the allocation of X, the appropriate comparisons are (9) versus (13)

and (10) versus (14). A comparison of (10) and (14) shows that the value of Z
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(the allocation under the CC procedure) is larger than the value of Z; (the alloca-
tion under the IC procedure) if ty is odd. The reason for this outcome is simple;
specifically, the fact th~* _ent 1 receives more of good Y under the IC procedure
means that it ¢, less costly for agent 2 to delay agreement on X by holding out for

a larger share of X (and correspondingly more costly for agent 1 to delay). As a

conseq ence, agent 2’s share of good X increa._s. A similar force is at work if ty
1 ) a8

is even, tending to make (9) larger than (13). However, countervailing this force is
the fact that, should agent 2 reject 1’s offer at ¢ty — 1 and wait until £y to make a
counter offer, then 2 gives agent 1 the first offer in the good Y bargaining round,
whereas else 2 himself would have the first offer. As Y is the good preferred by
agent 2 such delay is quite costly to agent 2.* Indeed, it is sufficiently costly for
agent 2 that agent 1 actually obtains more of good X (as well as more of Y) than
under the CC procedure.

Of course, the important comparison is in regard to the utilities that the two
agents obtain under each procedure. Clearly, if ty is even agent 1's utility is higher
under the IC procedure while agent 2’s utility is higher under the CC procedure. If
ty is odd, the agents’ preferences are less immediately obvious. Their utilities may
be determined by evaluating equations (1) and (2) at the allocations implied by the
CC and IC procedures. Such an evaluation reveals that, for sufficiently large values
of 6, agent 1’s utility is higher under the IC procedure while agent 2’s utility is higher

under the CC procedure.® The implication of this result is that, for large enough &,

4When ty is odd, then it is costly for 1 to reject 2’s offer in ty — 1, making .t even more costly
for 1 to delay, thereby giving 2 additional bargaining power over X.

5The exact condition on & guaranteeing that agent 1 prefers the IC procedure to the CC
procedure is that §2/(1+ 6) > (1 - 6)((ba— 6a)/(ba — 6)). For agent 2, the condition guaranteeing
that CC is preferred to IC is b/(1 4+ 6) > (1 = 8)/a + (1 = 6)((b — 8)/(ab - 62)).
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agent 1 always prefers an incomplete contract as the means of allocating X and Y
while agent 2 always prefers a complete contract. This conflict in preferences over
contracts means that the bargain over the contract form will be a nontrivial process.

Turning to this bargaining phase and letting U/ and UF represent agent i’s
equilibrium utility levels under the IC and CC procedures respectively, an agent’s

expected utility for any offer = is given by
EU; = nUP + (1 — m)U! (15)

An equilibrium offer is a pair (7°, #**), representing an offer and counter offer by
agents 1 and 2 respectively, such that conditions analogous to (5) and (6) hold either
as equalities if 0 < 7°, 7** < 1 or as a strict inequality (>) for at least one of the
two conditions if either of 7* or 7** equals 0 or 1.

A moment’s reflection on the bargaining process makes it clear that, in fact,
7** equals 1. The reason for this outcome is simple. Both the points UC and U/
are feasible offers in the CC bargaining procedure, as are all linear combinations
of these points (by the convexity of the utility space). The offer UF would be
accepted by agent 1 in the CC bargaining procedure, being at least as good as the
best counter offer 1 could make in the next period. As the set of possible counter
offers in the contract bargaining round is a subset of the set of counter offers in
the CC procedure, 1’s best counter offer here can be no better than that in the CC
procedure. Therefore, 1 will accept an offer of #** = 1.

Given that 7** = 1, it is easy to calculate agent 1’s equilibrium offer, =°. This
offer will be such that agent 2 is just indiflerent between accepting it and waiting

one period and offering 7** = 1 (as long as 7* > 0). This value of 7 is given by the




expression

. SUS(3) - Ul(2)
T T TUFR) - Ul

(16)

where the numbers inside the parentheses indicate the period in which the initial
offer is mad= in the subsequent bargaining procedure. This expression is strictly less
than one for all § < 1. Clearly, for small enough values of § this expression becomes
negative, implying that #* = 0.° In either case, the implication of (16) is that the
IC procedure will be employed with positive probability in equilibrium.

To motivate some intuition about these results and which features of the model
are driving them, it is helpful to consider the model first in the limit as § approaches
1 and then when § is constrained beiow 1. As é approaches 1, the equilibrium
allocation under the CC procedure approaches the point z = 1, y = 0; under the
IC procedure, the allocation approaches the point z = 1, y = 1/2. These points are
depicted in Figure 6, where the CC and IC frontiers are the ones given in Figures 4
and 5 above when 6 = 1. The assumption that b > 1 4+ 1/a guarantees that z = 1
under the IC procedure, and thus the allocation under this procedure lies on the CC
frontier (i.e. the IC allocation is efficient). As a result, the CC and IC allocations
are Pareto non-comparable. It should also be noted that the CC allocation coincides
with the Nash bargaining solution for the case in which the set of feasible utilities

is given by the set of points beneath the CC frontier.” Finally, from (16), as é

SSubstitution of the equilibrium values for z and y into agent 2’s utility function results in a
value of x* of

1 sb(ab - 1) ab 1 S(a+8)  blab+ 82 -2)
o ((ab— F-5) (.,:._az)) [' RGI (a(ab— ) " G-y - 62»)]

if ty is odd [even]. Given the restrictions a,b > 1, b > 1 4+ 1/a, * < 1 for all § < 1. Further,
while it may not be readily apparent, it is possible to construct examples in which & is both large
enough so that agent 1 prefers the 1C procedure while agent 2 prefers the CC procedure yet small
enough that »* = 0.

"The IC allocation will coincide with the Nash bargaining solution given the set of feasible
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approaches 1, * also approaches 1 (recall that #** = 1) so that the CC allocation
z =1, y = 0 is implemented with probability 1.

Several points are noteworthy regarding these results. First, in spite of the dis-
agreement between the agents over the preferred bargaining procedure, the CC pro-
cedure is always implemented in the limit. That is to say, in a world of no frictions,
the alternating offers procedure always produces the complete contract. This result
is intuitively appealing and also serves to confirm that the bargaining procedure, by
itself, is not the source of contract incompleteness. One explanation for this outcome
can be found in the fact that the equilibrium allocation under an alternating offers
procedure converges to the Nash bargaining solution as é approaches 1. Referring
to Figure 6, it is clear that the bargain over 7 converges in the limit to a bargain
over a subset of the CC frontier that includes the Nash bargaining solution for the
frontier. Since the equilibrium outcome of the bargain on 7 must converge to the
Nash bargaining solution for this subset of the frontier, the only possible outcome
is the point z = 1, y = 0, the Nash bargaining solution for the CC frontier.

Of course, with § bounded strictly away from 1, the picture becomes different.
The fact that b > 1 + 1/a continues to guarantee, at least for some range of 4, that
the allocations under the two procedures are Pareto non-comparable. However, the
allocation under the IC procedure may no longer be efficient in the sense that it may
lie in the interior of the space of utilities achievable under the CC procedure. Further,
because bargaining is no longer costless, the IC procedure is implemented with
positive probability. That is, because it is costly for agent 2 to delay implementation

of the contract, 2 sacrifices some utility to 1 by accepting (with positive probability)

utilities is defined by the set of points beneath the IC frontier if & > 241/a. Forb € [14+1/a,2+1/a),
the Nash bargaining solution understates agent 1’s utility and overstates agent 2’s utility. See
Section 3 and the Appendix for a more detailed discussion of this point.
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the incomplete contract outcome. The conflict in preferences over contract form
between the two agents, which proved irrelevant when bargaining was costless, now
leads to the possibility of incomplete contracts being implemented. Moreover, a brief
inspection of the expression for r* (see fn. 6) reveals that, as bargaining becomes
more costly, incomplete contracts become more prevalent (likely). On the other
hand, the expression for 7* also reveals that the incomplete contract becomes more
likely as ty increases. This result also accords with intuition: as the second issue
(Y') becomes less important, the allocations of X under the two contracting regimes
converge. While the agents still have opposing preferences over contracts, the value
to 2 of holding out for a complete contract declines relatively faster as ty increases
than the value to 1 from getting the incompiete contract.

The above example points to two issues that are key to producing incomplete con-
tracts as equilibrium outcomes. One is the requirement that there is disagreement
between the agents over which contract form is preferred. In the above example,
this was guaranteed by the condition that @ > 1 and b > 1 + 1/a. This restriction
made sure that agent 1 sacrificed sufficiently little of good X (the good 1 preferred)
in the IC procedure relative to the CC procedure that the gain in good Y under
the IC procedure left agent 1 better-off overall. Conversely, agent 2 was left worse
off by the IC procedure. The other key feature is the need for a friction in bar-
gaining. This friction was created by the existence of a simple delay cost, §. As

delay costs vanished, the CC procedure was implemented with probability one, even

though the agents still disagreed on the preferred procedure. Thus, opposing pref-

erences over contract type alone are not sufficient to produce incomplete contracts.
In what remains of this paper, we will explore each of these issues in more detail,

seeking to obtain a better understanding of what structure produces these prefer-
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ence differences across contract form, and how various frictions in the transactions
process affect the equilibrium contract outcome. As well, we will explore simple

ways of introducing uncertainty (and thereby contingent contract structures) into

this framework.

1.3 A Generalized Contracting Model

As before, it is assumed that the two agents face an endowment stream of one unit
of good X and one unit of good Y with the endowment of X occurring at time tx
and the endowment of Y occurring at time ty > tx. However, unlike previously, it
is now assumed that the endowment of guod Y occurs only probabilistically, with
the probability of Y arriving at ty given by s € (0,1]. The agents’ preferences
are again assumed to be representable by time separable utility functions; however,

these functions are now assumed to take the general form

EU, = 6 'Wi(z)+ 6 'sWi(y) (17)

EU; = 6'Vy(1 —z)+ 6 1sWy(1 —y) (18)

where EU; is the expected utility of agent i, and, as before, z and y represent agent
1’s allocation of goods X and Y respectively, while the times ¢ and 7 represent the
dates at which each of X and Y are consumed (¢ > tx,r > ty). The functions
Vi(-) and W;(-) are assumed to be increasing, twice continuously differentiable and
concave, and such that V;(0) = W;(0) = 0 while V/(0) = W/(0) = ooc.

Allocations, as in the previous section, are determined through offer-counter-
offer bargaining procedures. In addition to the two procedures available previously,
it is assumed that a third procedure is available involving, first, a bargain over the

allocation of good Y and, once agreement has been reached on this allocation, a
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b CC allocation
U(iC)
IC allocation
a a+i U1
Figure 6: allocations in the limit
Uz
- wo = g(wq)
Vo = f(V1)
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Figure 7: the frontiers for the general case
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bargain over the allocation of X (i.e. an offer consists of a value, y, in the first stage
bargaining and a value, z, in the second stage bargaining). This procedure will
be referred to as 1C2 while the sequential offer procedure of the previous section
will be referred to as IC1. The simultaneous offer procedure will continue to be
referred to as the CC procedure. Which of these bargaining procedures is adopted
is also determined by an alternating offers bargaining process, as before, with an
offer being a pair » = (rc, =), giving the probability that the CC procedure or the
IC1 procedure, respectively, are adopted.

In this section, it is assumed that the length of time between an offer and a
counter offer may vary across bargaining procedures, with this length given by Ac
for the simultaneous offers (CC) procedure and A; for both of the sequential offer
(IC) procedures.® The length of time between offers in the contract bargaining
round is given by A,. This structure is adopted to allow for the possibility that
different bargaining procedures may involve different costs, thereby incorporating,
in a simple way, the notion that the costs of contracting may vary across contract
forms.

Finally, it is assumed, without loss of generality, that the contract bargaining
round (i.e. the bargaining over 7) begins at time tx —A,, defined to be the date t=1.
Also, it is assumed that player 1 makes the initial offer at t=1 and all subsequent
offers alternate between players, as in the previous section. Equilibrium allocations
are given by the set of subgame perfect equilibrium strategies for the two agents.
In what follows, we will examine in turn i) how the structure of preferences affects

the agents’ relative bargaining powers and thereby the allocations that result under

8To maintain consistency with the previous section, it is assumed that all A are drawn from
the set {A, = (2n+1)"1, n=0,1,2,...}. Thus 2 continues to make his offers in all even (integer)
periods, and 1 in all odd (integer) periods.
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different bargaining procedures; i) how different bargaining costs associated with
different contract forms affect the likelihood of any particular contract being ob-
served; and 1ii) how the analysis of the previous section may be extended to the
contingent contract setting, and what role uncertainty plays in determining contract

form.

1.3.1 Preferences and Relative Bargaining Power

In order to isolate the role that the differential bargaining power implied by different
bargaining procedures plays in the determination of contract structure, it is assumed
in this section that Ac = A; = 1 and s = 1. Thus, this section generalizes the
analysis of Section 2 to the extent that it allows for more general utility functions
(and the IC2 bargaining procedure).

As a means of organizing our discussion of the way that the structure of both
agent preferences and the bargaining procedure affects the allocation of goods (and
the agents’ rankings of these allocations), the following definitions will be useful.
Agent 1 will be said to weakly prefer X to Y if, for all allocations (z, y) with
0 <z, y <1 and such that r = y, V{(z) 2 W](y), while agent 1 weakly prefers
Y to X if V{(z) < W{(y). Agent 1 will be said to strictly prefer X to Y if, for all

allocations (z, y) with 0 < z, y < 1 and such that z = y, V/(z) > W{(y), while

agent 1 strictly prefers Y to X if V{(z) < Wj(y). Analogous definitions apply for
agent 2 with z and y replaced by 1 — z and 1 — y. In what follows, the following

assumption will be maintained:

Assumption 1 — Agent 1 weakly prefers X to Y while agent 2 weakly
prefers Y to X.

In the example of the previous section, the stronger assumption of strict preference
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was maintained through the restriction that a,b > 1. The eflect of the weaker
restriction to a, b > 1 will become apparent shortly.
Next define the sets of feasible utility pairs associated with allocations of z and

allocations of y. These sets are defined by the equations

v = Gl =V (o) (19)

wy = Wil =Wy (w))) (20)

respectively, where vy = V(z) and wy, = Wi(y). All offers by the two agents will be
chosen from subsets of these two sets.

Finally, define three particular subsets of the set of all feasible utility pairs (v; +
wy, vz + wy). The first is the set given by the utility pairs on the utility possibility
frontier. This set is defined as all (v; + w;, v, + wy) satisfying (19) and (20) and
the condition V;/Vy = W]/W{. This set will be labelled CC as it corresponds to
the set of utility pairs from which the CC offers are drawn. The other two sets are
the corresponding sets for the ICI and IC2 procedures. The first (IC1) is given by
all (vy + wy, vy + wy) such that v; and v, are determined by (19) while w; and w,
are determined such that W,(w,) ~ w,W]/W{ = 0 (the Nash bargaining solution
for the set given by (20)). The second (IC2) is given by all (v, + wy, v; + w3) such
that w;, and w, are determined by (20) while v, and v; are determined such that
Va(vy) — v VJ/V{ = 0 (the Nash bargaining solution for the set given by (19)).

The fact that this model differs from that in Section 2 only in the specification
of the utility set means that the analysis of the preceding section continues to apply.
Thus, under the CC procedure, equilibrium allocations of X and Y can be thought of

as being determined through a sequence of utility offers that satisfy the analogues of

(5) and (6), and are drawn from the utility possibility frontier (the CC set). Further,
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these equilibrium utility offers must converge to the Nash bargaining solution for
the utility set defined by this frontier as A approaches zero.

The IC1 and I1C2 procedures can be analyzed in a sequential fashion analogous
to that employed in the analysis of the IC procedure above. One can show that, as
A approaches 0, the Nash bargaining solution for the utility set defined by the IC1
(IC2) frontier serves as a lower bound on the utility that agent 1 (2) obtains under
the IC1 (IC2) procedure and upper bound on the utility that agent 2(1) obtains.®
This feature of the IC procedures results from the fact that, in the bargaining over
an allocation of z, delay on either of the agents’ parts is costly not just because of
the time cost (the cost captured by the Nash bargaining solution) but also because
the agent that delays loses the opportunity to make the first offer in the subsequent
bargaining round. Because agent 2 is assumed to (at least weakly) prefer ¥ and
agent 1 X, this latter delay cost is more severe to agent 2 (1) under the IC1 (IC2)
procedure than to agent 1(2). As a consequence, agent 1 is able to get at least as
much of X, and so at least as much utility, under the IC! procedure as would be
predicted by the Nash bargaining solution for the IC1 frontier. Similarly 2 is able
to get at least as much of Y under the IC2 procedure as predicted by the Nash
bargaining solution for IC2.

These relationships between the equilibrium allocations under the respective bar-
gaining procedures and the Nash bargaining solutions for the corresponding utility
frontiers proves useful in analyzing the agents’ rankings of the various allocation
procedures. Specifically, should the two agents rank the various Nash bargaining
solution outcomes differently, then, as long as § is close enough to 1, the agents

will also rank the equilibrium allocations from the various bargaining procedures

%A proof of this fact is contained in the Appendix.
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differently. Thus, at least for large é, an analysis of the conditions under which the
two agents disagree on the preferred contracting form can proceed by an analysis of
the conditions under which the agents disagree on the ranking of these three Nash
bargaining solutions. It is to this analysis that we now turn.

To begin, consider a situation in which each agent views X and Y as identical in
the sense that, for all z =y, V/(.) = W/(.), ¢ = 1,2 (note that V} need not equal
V7). In this case, the frontier defined by (19) coincides with that defined by (20),
while the CC frontier is simply a proportional (radial) blow-up of either of these
frontiers. It is not difficult to see that, in this case, the Nash bargaining solutions
for the CC, IC1, and IC2 sets all coincide. Further, because each agent views X
and Y as identical, there is no differential delay cost due to losing the first move
in the bargaining over the next good under IC1 or IC2. Thus, the Nash bargaining
solutions for the IC1 and IC2 frontiers provide exact limits for each agent’s utility
under the IC1 and IC2 procedures, respectively. One can conclude, therefore, that,
in the limit, both agents are indifferent across all contract structures. That is to say,
when goods are identical, agents have, in the limit, no strictly preferred contract
structure.

The situation outside of the limit (i.e. when & is strictly less than 1) can easily
be analyzed by noting that this case is essentially the case of the example in Section
2 with a = b = 1. A comparison of the utilities of each agent under the CC versus
IC1 procedures in this example reveals that agent 1 prefers IC1 to CC when ty is
even (implying agent 2 prefers CC to IC1) and that 1 prefers CC to IC1 when ty is
odd (so that 2 prefers IC1 to CC). That the agents’ rankings of the two procedures
depend on ty results from the already noted fact that, in the ICl procedure, ty

being even implies a cost of delay to agent 2 at ty — 1 resulting from agent 2 losing
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the ability to make the first offer in the bargain over ¥. This additional cost places
agent 1 at an advantage in the bargain over X and so means that 1 prefers IC1 to
CC. When ty is odd, agent 1 bears this delay cost and agent 2 is advantaged so that
1 now prefers CC to IC1. In the limit as 6 approaches 1, this delay cost vanishes
together with the vanishing first mover advantage in the bargain over Y, and so the
agents view the two procedures as equivalent.

Next, suppcse that agent 1 strictly prefers X to Y while agent 2 strictly prefers
Y to X. In this case, the frontiers defined by (19) and (20) appear as in Figure
7. These frontiers have the property that, along any ray from the origin, V;/V{ <
W3 /W] (except, of course, along the rays with zero and infinite slope where V;/V/ =
W;/W7)). Also, let v] and w; be the utilities for agent ¢ under the allocation implied
by the Nash bargaining solution for the CC frontier and v;, w; be the utilities for
agent i under the allocation implied by the Nash bargaining solution for the IC1
frontier. Further, assume that the functions V;(:) and W(-) are scaled such that

vy, wi 2 1. Then, the following can be showa to hold.

Proposition 1— Suppose that agent 1 strictly prefers X io Y while
agent 2 strictly prefers Y to X. Suppose also that v, wi > 1 and that

V' ViV + V' /Vy € —1. Then, {3 +1n > v]+w; while v34+w} > D2 +1d,.

In words, as long as the curvature condition of the Proposition is satisfied, agent
1 will obtain higher utility at the Nash bargaining solution for the IC1 frontier while
agent 2 will obtain higher utility at the Nash bargaining solution for tt "C frontier.
How should this result be interpreted? First, from our precedin inalysis it

can be concluded that, as 6 approaches 1, the allocations of X and Y under the

CC procedure must converge to those implied by the Nash bargaining solution for
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the CC frontier. For the IC1 procedure, the allocation of Y converges to the Nash
bargaining solution for the utility frontier defined by (20) while the allocation of X
converges to a point giving agent 1 at least as much as under the Nash bargaining
solution for the IC1 frontier. Further, the utilities of each agent at £y must converge
to v7 + w] for the CC procedure and have #; + 6w, as a lower bound for agent 1's
utility and 2 + 612 as an upper bound for agent 2’s utility under the IC1 procedure.
As v} > ¥, while w] < ) it can be guaranteed, therefore, that agent 1 prefers the
IC1 procedure to the CC procedure as long as § is close to 1. Agent 2 can be
guaranteed to prefer CC to IC1 under similar circumstances.

As to the derivative condition in the proposition, it has an easy interpretation.
First, one should note that the allocation of Y to agent 1 is larger under the IC1
procedure than the CC procedure (w] < ;). That is, because agent 1 is able to
separate bargaining over X (the good 1 prefers) from bargaining over Y (the good 2
prefers) in the IC] procedure, 1 is able to reduce the cost to himself from a delay in
reaching an agreement on Y (1 has already reached agreement on X and guaranteed
consumption of z). Therefore, 1’s share of Y increases relative to the CC procedure.
In short, the IC1 procedure gives agent 1 a superior bargaining position relative to
the CC procedure in the bargain over Y.

This increased share of Y that 1 obtains under IC1 redures the cost to agent 2
of delaying agreement on X under IC1 (1’s cost is larger) relative to CC. It is this
lower coct for 2 that results in 2’s share of X being larger under the Nash bargaining
solution for IC1 than under that for CC (v§ > ;). Inshort, 1’s bargaining position is
deteriorated relative to CC in the bargain over X. Whether, on net, agent 1 is better-
off under IC1 than CC depends on how badly 1’s bargaining position is deteriorated

in the X bargain. The derivative condition in the proposition dctermines the extent



32

of the deterioration. Put simply, it places a restriction on the percentage rate of

change of the slope of the IC1 frontier.’® If, as is assumed, this number is large

(in absolute value terms), then increases in 2’s utility from increased shares of X
(relative to the share under the CC procedure) become increasingly costly, in terms
of utility loss, to 1. As a consequence, the extra cost of delay to 1 due to a larger
share of Y looms small relative to the gains 1 can obtain from delay in terms of
increased utility. Or, looking at the problem from the other side, if the derivative
condition is met, then the costs to 2 of extracting some extra utility from 1 become
sufficiently large as to quickly offset the reduced delay costs from a smaller share of
Y. Therefore 1’s bargaining position in the bargaining over X is deteriorated only
slightly under the IC1 procedure. As a result 1 is better-off overall. Agent 2, of
course, having lost share of Y and only gained slightly in terms of X is worse-off.
From the above discussion one might suspect that if the percentage rate of change
of the slope of the IC1 frontier is sufficiently small, then agent 1 is worse-off under
the Nash bargaining solution for the IC1 frontier than that for the CC frontier. This

conjecture is, in fact, correct as the next proposition shows.

Proposition 2— Assume that agent 1 sirictly prefers X to Y while
agent 2 strictly prefers Y to X. Let #; be defined such that v{ + w} =
o+ and 5 = Vo(61). If Vi (u7)/W(v]) — Vi(01)/Vi(81) < (v5 +

w3}/ (v} + wi) = (D2 + @)/ (91 + ty), then v + w} > &; + by, i = 1,2,

Obviously, the condition in the above proposition will be satisfied if, for all
v € [in,v3], VJ'/ViV] +V]"/V} is sufficiently small (in absolute terms). In this case,

the cost to agent 1 of delay due to the larger share of Y that 1 obtains under IC1

1%Note here, that the slope of the IC! frontier is only determined by the z share in question.
That is the reason no W terms appear in the condition.
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looms large relative to any increased gains from delay due to the shifting allocation of
X. As a result, 1’s bargaining position is deteriorated sufficiently that 1 is worse-off
under IC1 relative to CC. Interestingly, agent 2 is worse-off as well.

Because the utilities determined by the Nash bargaining solution for the ICI
frontier represent a lower bound on agent 1’s utility under the IC1 procedure and
an upper bound for agent 2's utility, it is not possible to conclude from the above
that both agents are worse-off under the IC1 procedure relative to the CC procedure.
The lower delay cost that agent 1 faces (relative to agent 2) arising from the loss
of the first move in the bargaining over Y may still give 1 sufficient bargaining
power over X to result in 1 being better-off overall under IC1. Nonetheless, the
above proposition is useful in terms of clarifying what may go wrong under the IC1
prccedure and so result in its not being adopted. In essence, what happens in this
case is that the altered bargaining positions under the IC1 procedure are sufficiently
extreme as to allow agent 1 to gain enough of the good that agent 2 prefers (Y)
to make 2 worse-off relative to the CC procedure and to allow 2 to gain enough of
the good that 1 prefers (X') to make 1 worse-off relative to the CC procedure. The
IC1 procedure generally results in an inefficient allocation of the goods if frontiers
are strictly concave. In the case of the second proposition, it misallocates X and Y’
sufficiently badly as to be potentially Pareto dominated by the CC procedure ( at
least for § close to 1).

Not surprisingly, analogous results can be obtained for a comparison of the CC
and IC2 procedures. In this case, the slope restrictions would be on the IC2 frontier
(i.e. on the derivatives of the W; and W; functions). Conditions on these functions
analogous to those in Proposition 1 being satisfied would mean that agent 2 prefers

the Nash bargaining solution associated with 1C2 to that associated with CC while
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agent 1 prefers the Nash bargaining solution associated with CC to that associated
with IC2. Similarly, conditions on W, and W; analogous to those in Proposition 2
would imply that both agents prefer the Nash bargaining solution associated with
CC to that associated with 1C2.

Finally, there is the issue of how these results relate to the results obtained in
Section 2. While the situations are not exactly comparable ( due to the linearity of
the sub-utility frontiers in the example) these results do shed light on the example.
Specifically, because a and b are assumed larger than 1, it is relatively more costly
for agent 1 to give up X to agent 2 than Y, and relatively more costly for 2 to give
up Y to agent 1 than X. As a consequence, the complete contract allocates all of
Y to agent 2 and most (in the limit all) of X to agent 1. The incomplete contract
allows agent 1 to transfer some of Y to himself, making 1 better-off and 2 worse-off.
The fact that a > 1 and b > 1+ 1/a means both that agent 2 still receives “enough”
utility under tiie incomplete contract and that it is sufficiently costly for agent 1
to transfer X to agent 2 that the extra Y agent 1 receives does not deteriorate his

bargaining position sufficiently to make him worse-off (much as in Proposition 1).
1.3.2 Differential Contracting Costs

One of the common explanations for the observation of incomplete contracts is the
existence of cost differentials in constructing complete versus incomplete contracts.
In particular, it is argued that the complexity of a complete contract makes it
sufficiently costly to write as to make it efficient for the contracting parties to write
a simpler, incomplete contract (this would be the explanation offered by Dye (1985)).
This sort of exogenous cost differential between complete and incomplete contracts

is easily incorporated within the current framework. It is done by allowing the
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bargaining costs in the CC procedure, Ac, to differ from those in the IC1 and
IC2 procedures, A;. To capture the notion that complete contracts, being more
complex, are more costly to construct than incomplete contracts, one need only
assume that A¢c > A;. In essence, the time required for the agents to make offers
and counter offers when bargaining over a complete contract is longer than under
an incomplete contract setting. This is assumed to be due to the complexity of the
complete offers. The question, then, is how such a cost differential interacts with
the bargaining cost differentials implied by the different contracting structures, and
whether it has the anticipated effect of producing incomplete contracts with greater
frequency (probability).

To gain some insight into the impact of these exogenous contracting costs on the
likelihood of incomplete contracts, we first consider the equilibrium when preferences
are as specified in Section 2. Further, we assume contracting costs are such that
A, =1 while A; < Ac < 1; that is, bargaining over the structure of tne contract is
the most costly, bargaining over the parameters of the complete contract is next most
costly and bargaining over the parameters of the incomplete contract is least costly.
Finally, we only consider the case in which ty is even. Under these circumstances,
equation (16) exactly specifies the equilibrium value of 7 with the denominator and

numerator of that expression given by

5A1 + 6ty-2 5Ac - 5A051y-2 b&A’
cC_pyl — - ty—2 —
U= = vey - areey T Gy ) @)
a ty -2 _ fAcsty-2 Y,
6U20 _ Uzl - 6 I 4+ 6 Y 6 6 C6 Y + 6‘3"’2( b6 %) — 1 + 6(22)

(1+6831) (1 +64¢) 1+ 687
It is easy to check from equation (21) that as Ac increases the utility differential

between the complete and incomplete contract procedures also increases. The situ-

ation is less clear for equation (22). It is straightforward to show that the change




36

in the utility differential in (22) is smaller than in (21) and that, indeed, the utility
differential may decrease as Ac increases. Should (22) decrease as Ac increases,
then * must decrease; that is, as the complete contract becomes more costly, it is
less likely to be utilized. However, it is also possible that (22) increases (by a smaller
amount than (21)). In this case, the impact on 7 of an increase in Ac is less clear in
the sense that, depending on parameter values, # may either decrease or increase.
In this latter case, even though the complete contract is more costly, it is actually
more likely to be employed.

To understand what drives the above results, it is helpful to consider how the
bargaining equilibrium for the CC procedure is determined in general. For those
subgames for which ¢ > ty, the equilibrium offers are determined by the standard

set of conditions, which for this problem are given by

Vilz®) + Wi(y®) = 8%[W(z") + Wa(y")] (23)

Vi(1-2')+ Wil —y') = §%¢[Va(1 - 2%) + W(1 - y*)] (24)

As is standard in these problems, the utility that agent 2 obtains in equilibrium when
it is his turn to offer (given by the bracketed expression on the right-hand-side of
(24)) increases as Ac increases. Similarly, the utility that 2 obtains in equilibrium
when it is 1's turn to offer (given by the left-hand-side of (24)) decreases as Ac¢
increases. Quite simply, because delay is more costly as Ac¢ increases, agent 2 is
able to extract more z and y from agent 1 when it is 2's turn to offer and conversely
1 is able to ex’ract more when it is 1’s turn to offer. An immediate consequence of
these facts is that, were bargaining on the value of 7 to begin at tx and A, to be
such that ty —tx < A,, then the equilibrium value of = would always be decreasing

in Ac.
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The possibility that 7 may increase as A¢ increases arises when ty is outside of
the period of delay, A,. This possibility arises because of the fact that, over the
period [tx,ty), delay costs are different than after ty. Over this period, delay is
costly in terms of foregone consumption of X but there is no cost in termsof Y as ¥
does not become available until ty. As a consequence, the conditions (23) and (24)
no longer define the equilibrium utilities for the two agents. Rather, equilibrium is

defined recursively such that, if ty is even, the system takes the form

Va(l — 2') + 62Wo(1 —y') = 6%¢Vi(1 —z*) + 82°Wy(1 — y°)
Vi(2?) + 62W (%) = 84Vi(a') + 824 Wi (y")
(25)

Vila?) + 87 W, () = 859V (2)) + 87T Wi (y')

where z., y. is the offer made by agent 2 at ¢y and is defined by the system (23), (24).

An increase in Ac has two effects on the system (25). As previously, an increase
in Ac makes delay more costly thereby Lenefiting the agent whose turn it is to
offer. In the above case, at tx, agent 2 makes the offer and so agent 2’s utility under
the complete contract increases at tx due to this effect. Similarly, should agent 2
delay one period to make a counter offer in the bargaining over m, then the offer in

the complete contract bargaining is turned over to agent 1 and the increase in Ac

decreases agent 2’s utility.

A second effect of an increase in Ac is that it decreases the values z. and y.,
thereby leading to an increase in the initial utility level for agent 2 that defines the
recursive system. The effect of this increase is to reduce the utility that agent 1 can
get in any period in which 1 makes the offer and to increase the utility 2 can get in

any period in which 2 makes the offer. On net then, agent 2's utility at {x under
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the complete contract increases both because of the improved initial condition and
the increased cost to 1 of delay (Equation (21) is increasing in Ac). The change in
the utility that 2 receives under the complete contract should 1 offer is ambiguous,
with the increased delay cost tending to reduce 2's utility but the improved initial
conditions tending to increase it. Should the former effect dominate the latter, then
an increase in A¢ unambiguously decreases 7. Should the latter effect dominate
then the effect of increases in A¢ on 7 is ambiguous.

Obviously, a similar analysis could be performed for the case of ty odd. In this
case, the affect of an increase in Ac on the initial conditions of the recursive system
is to increase agent 1’s utility, thereby leading to an unambiguous reduction in 2's
utility should 1 make the offer. The impact on 2’s utility should 2 make the offer is
now ambiguous with the increased delay costs increasing it and the worsened initial
conditions decreasing it. As long as, on net, 2’s utility when 2 makes the offer either
rises or falls by less than when 1 makes the offer, then 7 decreases as A¢ increases.!!

To sum up, if bargaining were to begin at ¢x (rather than ty — A,) and ty
were sufficiently close to tx in the sense of being within the the period of delay
A,, then an increase in A¢c unambiguously reduces the likelihood of a complete
contract being employed. When ty is farther away from tx, while increases in A¢

may still reduce the likelihood of a complete contract being employed, this result

is not uniformly true. There are cases in which the complete contract being more

costly actually results in an increased likelihood of it being employed. This outcome

11The reader should note that this analysis assumes that both z and y are strictly between 0
and 1 (as must be the case given the utility function restrictions). The example in Section 2 fails
to satisfy this requirement. As a consequence, the equilibrium when ty is odd does not conform
exactly to the analysis here. In particular, the analysis of the complete contract when ty is odd
is the same as that for the ty even case except discounted one less period. This outcome is a
consequence of the fact that y = 0 is part of the equilibrium for this problem.
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occurs because the increased delay costs in bargaining over the parameters of the
complete contract may mitigate the delay costs in bargaining over the contract form

sufficiently as to make the use of a complete contract more likely in equilibrium.
1.3.3 Contingent Contracts

So far, agents have had no uncertainty about the endowment process so that con-
tract choices have been only between complete (long-term) and temporally incom-
plete (short-term) contracts. However, as suggested at the beginning of this section,
the model can be extended to situations in which the agents face an uncertain en-
dowment process and so may wish to utilize complete, contingent contracts. In such

settings, complete contracts provide potential efficiency gains relative to incomplete

contracts by allowing efficient sharing of risk (as well as efficient intertemporal al-
location of consumption.) On the other hand, bargaining considerations of the sort
that arise in the certainty case provide incentives for the agents to prefer various
incomplete contracts. As before, which contract is utilized depends on the relative
magnitudes of these efficiency and bargaining effects. In what follows, the focus of
attention will be the bargaining aspects of contract determination when endowments
are uncertain, and how the nature of the uncertainty alters the bargaining effects.
Risk-sharing considerations will be neutralized by the assumption that agents are
risk neutral. Therefore, any efficiency considerations will enter, as before, only
through the intertemporal allocation of consumption.

The model employed to analyze these issues is that of Section 2 with the modi-
fication that good Y arrives at ¢y with probability s € (0,1) and fails to arrive with

probability (1 — s). Both agents are assumed to know the value of 5.'? It is also

12This endowment process is just a speciai case of a more general process in which the amount
of Y that arrives at ty is uncertain.
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assumed that if Y fails to arrive at ty it will not arrive at any ¢t > ty (and this fact
is known by the agents.)

The structure of contracts (bargaining procedures) is modified to allow for con-
tingent contracting. The incomplete contract procedure, IC, consists, as before, of
a bargain over X followed by a bargain over Y only after agreement on z has been
reached. Tke share z is non-contingent. The complete contract procedure, CC, on
the other hand, is a concurrent bargain over the allocation of both goods in both
states of nature. Under this procedure an offer is a triple (Z, (z,y)), giving an allo-
cation of X of (£,(1 — z)) in state 0 when the size of Y is 0, and an allocation of

X of (z,(1 — z)) and an allocation of Y of (y,(1 — y)) in state 1 when the size of Y

is 1.!3 The bargain over contract form continues to be a bargain over = € [0, 1), the

probability that the CC procedure will be used in determining the allocations.

Equilibrium Outcomes

Consider first the bargaining procedures which determine the allocations of X and
Y. Suppose that the agents have adopted the CC procedure and ¢ > ty. Then the
state is known and agents either bargain over X alone or over X and Y together.
The situation in state 1 is unchanged from that in the first section, so that the state

1 allocation is given by

13These procedures are the extreme cases of possible contracts. In particular, there are 2 other
kinds of incomplete contracts. One is incomplete only in the temporal dimension (state contingent
z offers, followed by a bargain over Y, once, and if, available), while the other is incomplete only
in the contingency dimension (a joint bargain over one z and y, independent of state). As it
turns out, the temporally complete but non-contingent contract yields the same utilities as the CC
procedure used here. This is due to the risk-neutrality of the agents, making insurance pointless.
The contingent but temporally incomplete contract, on the other hand, is worse for 1 than the
totally incomplete contract IC since the backward induction starts off a lower expected X share.
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5= 1, = 00020 o
§(b 1)-6(b+1
= Y (21)

depending on whether agent 1 or agent 2 make the offer, respectively. State 0 is a

standard Rubinstein game over z only, so that the state 0 allocation is

1
146

zy ' = —i—
1+6
depending on whether agent 1 or 2 make the offer, respectively.

The situation changes for t < ty. In these periods the state is not known
when shares are offered or the decision to accept or reject is made. Assume for
the moment, however, that the correct allocation can be implemented as soon as
agreement is reached. Then, as previously, delay is costly only in terms of foregone X
consumption and not foregone Y consumption, and offers are derived by a backward
induction argument. The backward induction process yields an allocation of Y of
yc = 0 for both even and odd ty, and an allocation of X of

ty—tx-1
szc+(1=38)ic = & Y (=6)+68v"**(sz;" + (1 - s)z") (28)
ty:T: -2 .
sto+(1=s)ic = & 3 (<8) 487 Koz + (1 o)) + o851 (29)

if ty is even or odd, respectively.!

The analysis for the IC procedure is similar. For ¢ > ty the state is again known

14Risk neutrality on the part of both agents implies that, while expected utility levels are deter-
mined, z and Z are only jointly determined. Consider, for example, the first induction step for ty
even. Agent | wishes to maximize, by choice of (£, (z,y)), his expected utility: s(az+8y)+(1-s)az.
This is subject to 2 accepting such an offer, that is: s( (1 -2)+6b(1 —y) )+ (1 -s)(1 - 2) =
5[s((1-23°)+b)+(1~3)(1-z3°)). The solution to this problemisy = 0 and sz + (1 ~s)z =
1—6+6(sz}" + (1 — 8)z3"), leaving z and £ undetermined.
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and so the agreement for state 1 is
t _ bla—1+46) t _
1= a "= 1+ é (30)
)
2} =1 W= 53 (31)
if ¢ is even or odd, respectively. For state 0 the agreement is
S ) t__1
=T+ =15 (32)

for ¢ even or odd respectively.
For t < ty the state is unknown, and so equilibrium offers for z are determined

by a backward induction on expected utilities. This process yields allocations

3= J‘Y:ﬁ:z(—s)‘ (33)
if ty is even, and
e,:slv._‘é-z(—s)' §v=tx(sz) 4 (1 - 8)z]) — stv-1x 1288 6)’ (34)
1 1

if ty is odd, with y; given by y; and y;, respectively.

It is useful to stop at this point and compare the allocations here with those
in the certainty case (equations (9) and (10) for the CC procedure, and (13) and
(14) for the IC procedure.) For both contract procedures the allocations are of
the same form as before, except that the allocations of X at ty used tc determine
allocations at ty are expected allocations. The logic behind these results is also
quite similar. By splitting off the allocation of Y from that of X, agent 1 reduces
his cost of holding out for larger Y shares, thereby increasing the amount of Y he
can expect to receive. If ty is even, under the IC procedure, agent 2 once again faces

the additional cost of handing the first mover advantage over Y to agent 1 should
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2 reject 1's offer at ty — 1. This cost is severe enough to 2 that the amount of X
2 obtains actually declines in the incomplete contract. If ¢y is odd then, as before,
1’s share of Y increases but only at the expense of a lower share of X.

For the determination of the equilibrium procedure, of course, the utility com-

parison between procedures is what matters. Clearly, agent 1 gets higher expected

utility from the IC procedure if ty is even, while agent 2 looses from the IC proce-

dure. However, agent 1 also gains overall from the IC procedure if ty is odd and 6
is large enough.!® Thus, the bargain over which procedure is to be implemented is
again non-trivial.

Turning to the bargain over contract form, it once again is the case that both
the IC and the CC utility allocations are feasible in the CC procedure, as are all
linear combinations. The expected utility bargain thus must feature an offer by 2
of x** = 1, since in the CC procedure this point is an equilibrium offer for 2, and
thus 1 can not have a better counter offer in the restricted set under consideration
now. Given that 7** = 1, 1’s offer is easy to calculate for § satisfying the restrictions
outlined before. It is that 7" which leaves 2 just indifferent between accepting the
offered “gamble” and rejecting it in favour of getting the CC procedure implemented
for certain — next period. Notice again that not only does the discount factor
affect this decision, but also the cost of "surrendering” the first move in whichever
procedure is to be implemented, since a first mover advantage exists for discounts

strictly less than 1. The equilibrium value of n* is given by

-~ = SEUF(3) — EU;(2)
~ EUf(2) - EU{(2)

(35)

15The exact condition on & guaranteeing that agent 1 prefers the IC procedure over the CC
procedure is precisely the same as before, namely 62/(1 + 8) > (1 — §)}(ab — ab)/(ab — 62). It is
b/(1+8) > (t - 8)/a+ (1 — 8)(b~ 8)/(ab— &%) for agent 2 preferring the CC procedure.
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where numbers in parenthesis indicate the period in which the initial offer is made
in the procedure indicated by the superscript. Once again, this expression is strictly
less than 1 for all é and becomes negative for sufficiently small §, implying =* = 0.

Of interest, of course, is the impact on 7" of changes in s. It is easy to show that

on*
B >0 (36)

that is, the IC procedure becomes more likely the less likely the second surplus
becomes.!'® The reasoning is as follows: A decrease in s causes the second good
to be less important in the overall allocation for both agents, deteriorating agent
2’s overall bargaining power and bringing the X ailocations in the two contracting
procedures closer and cioser (note that dz*/3s > dz}/0s). Therefore 2 has to rely
increasingly on X to provide his utility, and it becomes less worthwhile for him to
hold out for the CC procedure. Agent 1, of course, still benefits from the chance
at some additional utility from Y. Balancing the var‘ous effects, agent 1’s preferred
outcome (IC) accurs more often. Thus, in terms of bargaining effects, increasing the
proba ity of Y failing to arrive makes incomplete contracts a more viable option.
Notice that this effect is suxilar to that obtained by increasing ty in Section 2. Both
have the effect of “shrinking” Y.

Throughout this section it was assumed that the correct allocation of X ceuld
be implemented under the CC procedure as soon as agreement was reached (even if
t < ty). Asa final note to this analysis, the issue as to how such an implementation
might take place is addressed. One possible mechanism would be for the agents to

have available an investment technology whereby agents could invest X at a rate of

(1—46)/¢ until the state ot nature is revealed at ty. The investment would take place

16See appendix
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only after agreement on an allocation of X is determined. This sort of technology

would precisely offset agents’ discounting of consumption, while leaving the cost of
delay in agreement unchanged. An alternative mechanism would b« one that allowed
consumption of an agent’s minimum allocation across states, with the remainder of
X held until the state is revealed. However, without investment opportunities, the
effect of such a scheme is to shrink the effective CC utility frontier (allocations are
inefficient, since time passes before consumption can be finalized), thereby further

increasing the likelihood of the 1C procedure.
1.4 Discussion

In the preceding pages we have provided a simple mod-] of contract formation which
derived incomplete contracts as equilibrium outcome. Its focus was on the differen-
tial bargaining power bestowed upon agents in the various contracting procedures
implied by the contract form. The model has shown that if . locations are arrived at
by offer-counter-offer bargaining under the existence of bargaining frictions (a cost
of delay), then incomplete contracts can arise endogenously if agents’ preferences are
sufficiently “skewed”, in the sense that the agents have different preferences among
issues.

While the main thrust of the paper was towards temporally incomplete contracts
(short-term contracts), it was shown that the framework also allows for an analysis
of contingent contracts.

It is clear, as in any model employing bargaining theory, that the results de-
pend on the assumptions placed on the bargaining processes. While the assumption

on which agent starts the alternating moves process is innocuous!” the alternating

17In the sense that the problem is symmetric, and parametrizations can be found to yield the
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moves structure is important.

Another issue that arises is related to the procedure used in choosing contract
form. There are various procedures one can imagine for this problem. One possi-
bility is that players never formally bargain over the procedure, but instead make
offers or counter-offers consistent with a particular contract form. In particular,
agent 2 could always make complete offers, while agent 1 could simply make incom-
plete offers any time iv is his turn. Such a scheme would abolish the driving force
behind the results. The reason is the following: Incomplete contracts are, in gen-
eral, inefficient. As the results above have shown, this does not imply the existence
of an equilibrium complete contract which Pareto dominates an equilibrium in-
complete contract. However, the equilibrium incomplete contract is chosen from a
restricted set of possible offers. In the paper, agent 2 faced a binding constraint
in the best possible counter-offer he could make under the restriction that his offer
constitute an incomplete contract. This restriction was crucial to the results. Unre-
stricted bargaining is equivalent to complete contract bargaining in this framework,
and the offers by 1 and 2 are known. In particular, although agent 1 was of course
free to make an offer which is equivalent to an incompiete contract, he never chose
to do so. In short, agent 1 can only gain by exploiting the weakening of agent 2’s
bargaining power which is brought about by the restriction on 2's offers due to the
agreed procedure.

Note in this context that law books imply that the agenda is set by the initial

offer and counter-offer.!® If this “rule” were to be amended to count the initial

same results with changed labelling.

18See, for example, Edwards, H, and J. White, The Lawyer as Negotiator: Problems, Readings
and Materials, WestPublishing Co., 1977, 48-58.
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offer only, our results would go through. The law literature also implies that while
collective bargaining does not seem to involve agenda bargaining, agent bargaining
does (the “real” issues bargaining being referred to as “substantive bargaining”.)
The assumption that agenda bargaining precedes the allocation bargain is therefore
not totally implausible.

While our model has attempted to show how incomplete contracts can arise
endogenously without assuming them, we have in effect assumed that agents can

not affect side-payments. As will be recalled, the results depended on the asymmetry

of utility transferability between goods. Consider then, what would happen if both
agents had some initial wealth and could contract on side payments in the bargain
over contract type only. Wealth can, by assumption, be transferred one to one. The
probability =, on the other hand transfers utility, in general, in some other ratio. It
is thus to be expected that if the slope of the line joining the CC and IC equilibrium
allocations is less than —1, both agents would only offer complete contracts, # =1,
but agent 1 would demand a monetary transfer from 2 and would be able to obtain
it. For slopes flatter than —1, on the other hand, it is to be expected that while
2 continues to offer the complete contract, 1 would ask for an incomplete contract

for certain, but offer monetary compensation to 2. Again it can be seen that the

parameterization of the model will play a crucial role.

Overall, then, our analysis points to the following issues: 1) The pure existence of
frictions or costs may not be sufficient to cause incomplete contracts -— and certainly
leaves the form of the incompleteness open to investigation if incompleteness does
occur. 2) Incomplete contracts can arise in environments were complete contracts do
not have a cost disadvantage. 3) The fact that different procedures (contract types)

imply different restrictions on feasible offers and utility transferability can lead to
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different equilibrium allocations under those procedures. If equilibrium allocations

under procedures differ, on the other hand, they may be Pareto non-comparable,

and the agent who prefers a certain procedure may be able to have it implemented

— even if it leads to an inefficient allocation.




Chapter 2

Perfect Equilibria in a
Negotiation Model

2.1 Introduction

The bargaining models of Stahl (1972) and Rubinstein (1982) were the first models,
after Nash’s initial analysis of the bargaining problem (1950, 1953), which took the
dynamic nature of bargaining and the typical structure of proposals and counterpro-
posals one observes into account. While the model of Rubinstein was considerably
more general, the version of it which is most familiar today is the alternating ilers,
infinite horizon with discounting formulation used extensively in the analysis of the
allocation of gains from trade. One of the hallmarks of this particular formulation,
and the reason for its popularity, is the fact that it has a unique subgame perfect
equilibrium which is efficient and features immediate agreement. This feature has,
on the other hand, also been recognized as a limitation of the model, in view of the
fact that many circumstances which are thought to feature bargaining also feature
observable delay before agreement is reached (if it is reached at all.)

Although many writers have analyzed the contribution of incomplete information

to this result,! few have studied the influence of the particular assumptions made

1A very partial list of papers employing incomplete information to generate delay includes
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with respect to the payoff spaces.? While Binmore (1987) relaxes Rubinstein’s orig-
inal assumption of a linear bargaining frontier, recent work by Haller and Holden
(1990) and Fernandez and Glazer (1991) relaxes the assumption of an exogenous
fixed periodic payoff to players if they do not agree. In their model of wage bargain-
ing delay and strike are separated, and the decision to strike in a period of delay
is modelled explicitly. Both papers come to the conclusion that multiple equilibria
can be supported in such a framework.

Bargaining, however, is not the only dynamic model of allocation. There is a
large body of literature concerned with repeated games.> Repeated games feature
the repeated play of some stage game for some (fixed) period of time. In contrast to
bargaining, where players receive their payoffs at the end of the game as a function
of their strategies during the game, in repeated games the payoffs accrue during the
game, with no strategy dependent payoffs at the end of the game (if the game is
finite.) The other difference between the two models is the fixed time of interaction
in repeated games versus the endogenous time horizon in bargaining. It is a well
known feature of repeated games that for large enough discount factors any individ-
ually rational and feasible payoffs can be supported as subgame perfect equilibria,
if the game is infinitely repeated or satisfies a dimensionality condition and is “long
enough”, a fact known as the “Folk Theorem”.

The polar predictions of these two models with regard to the set of equilibrium

outcomes pose the question which of the features of the models cause their respec-

Admati and Perry (1987), Gul and Sonnenschein (1988), Chaterjee and Samuelson (1987), Ausubel
and Deneckere (1989). A survey of related literature can be found in Wilson (1987).

31t is known, of course, that different formulations of bargaining costs affect the outcome —
see, for example, Rubinstein’s original paper (1982)

3See, for example, the surveys by Aumann (1986, 1989) and Mertens (1987).




51

tive results. The example of Haller and Holden (1990) and Fernandez and Glazer
(1991) suggests that the fact that bargaining does not allow for strategic payoffs
during disagreement might be crucial to the uniqueness result of Rubinstein. They
could, on the other hand, not support all payoffs which are feasible and individu-
ally rational in the stage game, suggesting that the Folk Theorems do not apply if
mutually agreed exit is possible. On the other hand, Okada (1991) does not find a
restriction on the Folk Theorems in a repeated game where long run binding agree-
ments can be written, a situation very similar to that addressed here. This paper
provides a general model of bargaining under the presence of strategic disagreement
period payoffs, or, equivalently, a model of repeated games with endogenous exit.
The model sheds further light on the driving forces behind the results of standard
bargaining and repeated game models. In particular, the paper will determine the
extent to which the Folk Theorem results carry over in this general framework,
and to what extent the ability to end the game with mutual consent constrains the
Folk Theorem results. The paper will also investigate the circumstances in which
uniqueness will occur.

The model employed is a general version of that used by Haller and Holden
(1990) and Fernandez and Glazer (1991): Two agents bargain over a surplus of
fixed size via a (possibly infinite) sequence of offers and counter offers. In contrast
to standard Rubinstein bargaining, the players play a stage game in every period
in which no agreement has been reached. The outcome of this stage game is the
disagreement period payoff for that period. As in Rubinstein (1982) and some of
the infinitely repeated game literature (for example Abreu (1988)), players discount
the future.

Although phrased in a bargaining context, the paper utilizes many tools and
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concepts from the repeated game literature. Indeed, one can think of this model
as a repeated game with endogenous exit. In this latter interpretation one can
think of a repeated implicit contract situation which may be abandoned only with a
mutually acceptable final settlement, which is binding. All results presented in the
sequel apply equally to either interpretation.

The outline of the paper is as follows. Section 2 presents the model and defines all
necessary concepts. In Section 3 we consider the model under the assumption that
bargaining agreement yields a surplus over play of the disagreement stage game.
In order to generate some insight into the effects of non-stationary disagreement
payoffs, we first investigate whether an exogenously given sequence of disagreement
payoffs can upset Rubinstein’s uniqueness result. The answer is negative: an arbi-
trary sequence of disagreement payoffs will result in immediate agreement as long
as agreement dominates continued play. The reason is essentially the same as in
the original model by Rubinstein: At each point in time the player making the
accept/reject decision has some maximum future payoff, consisting of what he can
get from his offer next period plus what he can get in the current period as dis-
agreement payoff. He will accept any offer which gives him at least as much as
this. Since agents discount and, by assumption, exit offers a surplus over repeated
play, the player who makes the offer can make an acceptable offer and collect all of
the surplus exit offers over delaying one period. This is true in all periods, and in
particular the first.

Following this, the players’ optimal punishment payoffs for non-trivial stage
games are derived and implemented as subgame perfect equilibria (SPE). Doing

so generates two main insights. For one, the presence of a stage game which endoge-

nously generates disagreement payoffs does in general lead to multiple equilibria,
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but does not guarantee multiplicity (and thus delay). Conditions on the stage
game which guarantee uniqueness can be derived. This analysis also clarifies why
the stage game considered by Haller and Holden (1990) and Fernandez and Glazer
(1991) does generate multiplicity.

The second insight is into what “goes wrong” if one tries to support all feasible
and individually rational payoffs. Recall the structure of repeated game strategies
(e.g. Abreu (1988)). Such strategies consist of an equilibrium path and punishment
paths for each player. A one-shot non-optimal strategy in a particular repetition
of the stage game is made subgame perfect within the repeated game by punishing
a player for a deviation. This is done by starting his punishment path, lowering
his payoff in the future. Repeated games have the feature that there always exists
a future of a known length. In this model the game ends endogenously, however,
and there may not be any future! In particular a player can never be punished for
accepting the “wrong” exit offer, since the game is over after he has done so. But the
player who makes the offer knows that and may make just such an “irresistible” offer
in order to break out of some punishment he is currently facing, thereby limiting

the severity of any punishment he can be made to bear. This is particularly true if

exit offers a surplus over repeated play.

Finally, section 4 changes the assumption on the payoff spaces. We reconsider the
model under the assumption that there do exist stage game payoffs which Pareto
dominate some exit payoffs. In this context we show that all stage game payoffs
which lie outside the bargaining frontier can always be supported. Multiplicity of
equilibria is therefore guaranteed under these circumstances, stressing the impor-
tance of the economic rationale for exit, in the form of an available surplus, in the

previous model, and in the standard bargaining models.




2.2 The Model

Define a Negotiation Problem as a situation where two rational parties who are
involved in an ongoing repeated relationship have a surplus available to them if and
only if they end their present relationship and can agree on an allocation of the
surplus. The questions asked about the negotiation problem are i) what agreements
are possible in equilibrium, ii) how long it will take to reach agreement, and iis)
what the equilibrium value of such a relationship will be to the parties, taking into
account that not only the agreement itself but also the path of play by which it is
achieved yields payoffs.

Consider, for example, the following situation: There are two of possibly many
Cournot firms in a market. Both face a relatively large fixed cost. Assuming that
no side-payments are possible but that a merger into a single firm is allowed, they
could both gain if they were to merge and operate only one plant. Negotiations are
held over the allocation of the resulting surplus. While these negotiations are under
way, however, the two continue to produce and serve the market as separate firms.

This situation is modelled as follows*: There are two players, indexed by i = 1, 2.
Time is discrete and indexed by ¢t = 1,2,3,.... The time horizon is infinite. Both
players discount the future, with their (common) discount factor being denoted by
6 € (0,1). In every period t in which no agreement has yet been reached, the
players play the following constituent game: At the beginning of the period, one
player makes an offer to the other player. The offer is in terms of the players’ shares
of the surplus resulting from agreement. The other player can then either agree or

disagree with this offer. Should he agree, both players receive their share of the

4For a model of similar flavour see Haller and Holden (1990) or Fernandez and Glazer (1991).
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t=2k+1 é t=2k+2 )
k=k+1

Figure 2.1: Schematic of a Negotiation Game

surplus from this period onward forever, and their prior strategic relationship, and
the game, ends. Should he not agree, both players play a simultaneous move game in
normal form, called the stage game and denoted G, the outcome of which determines
the players’ payoffs for this period. Time then advances and the constituent game is
repeated. The paper only analyses the case where the two players make alternating
proposals, with player 1 proposing in odd periods and player 2 proposing in even
periods. A schematic of the game is given in Figure 1. We will now define the
necessary notation.

First, consider the exit share bargain within each period. The offer and agree-
ment are formulated as in Rubinstein (1982). A proposal by a player is a vector in
the unit simplex of R?, say (b,1 — b), where b is player 1’s share of the surplus and
(1—b) is player 2’s share. A proposal is denoted just by its first coordinate, b € [0,1).
A player’s response to a proposal is either rejection or acceptance, indicated by N
and Y, respectively. The players are said to reach agreement if one player accepts
the other one’s proposal. The negotiation game ends when players reach agreement,

and the players obtain the same proportion of the surplus, which is given by the

proposal which was accepted, in each of the subsequent periods.
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Next, consider the stage game which is played after a proposal b has been re-
jected. The stage game is modelled as a two-player one-shot game in normal form.
It consists of a set of two players, their strategy (action) sets, and their payoff
functions, and is given by G = {A,, A3, u1(-),uz(-)}. Here, A; is player i’s strategy
(action) set, assumed compact, and ui(-) : A — R is his payoff function, assumed
continuous, where A = A; x A,.

The set A can also be interpreted as the set of outcomes of the stage game G. A
generic element of the set A is denoted a = (a;1,42). Let u(:) = (ui(-), uz(-)) : A —
R32. The set of feasible payoffs of the stage game G is given by the convex hull of u(A),
Co[u(A)]. Let m‘, ¢ = 1,2, denote the strategy pair leading to player i’s minimax

payoff. The set of feasible and individually rational payoffs is the intersection of

Colu(A)] and {v € R?|v; > uy(m!), vz > uy(m?)}. It is denoted by F.

To simplify the analysis, the following assumptions are made:

A1l: The players’ strategies in G are correlated mixed strategies, and

deviations by either player are publicly observable.

A2: The surplus from agreement is 1 and the stage game GG is normalized

such that ui(m') =0 fori=1,2.

A1 implies that the set A; is convex for i = 1,2; that for any feasible payoff vector
v, 3 a € A such that v = u(a); and that the stage game G has at least oue Nash
equilibrium.® A2 is assumed for convenience only.

One further assumption on the payoff spaces is made. It is that the surplus

from agreement dominates the payoffs from G, giving rise to gains from trade.

$We have chosen not to introduce more notation for the correiated strategies. Formally, we
assume that there exists a publicly observable randomization device which players can condition
on. Since the device is public, deviations can be observed.
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Diagrammatically, this implies that the stage game payoffs are everywhere below

the exit payoff line (see Figure 2). This condition is formally stated as:

A3: Vae A, u(a)+uxa)<1.

Define the negotiation game NG(8) to be the game in which 2 players with
discount factor é play a sequence of constituent games until agreement, where a
constituent game is an offer game followed, after rejection, by the stage game G,
and agreement is the acceptance of a proposal. Let NG;(8) be the game in which
player ¢ 1makes the proposal in the first period (note that by convention the first
period in NG,(6) is an even period). For the sake of brevity, all results will be
proven only for NG,(8), the proof for NG;(6) following in an analogous manner.
Figure 2 gives a diagrammatical representation of the paynff frontiers in a typical
constituent game.

Define a type I t-period historyin the game NG;(6) as a finite sequence denoted
by hy(t) = (b',4d!,..., b a*), in which #* is the proposal made in period s and a* € A
is the outcome of G in period s after proposal b* had been rejected, for s = 1,...,t.
Let h;(0) = 0. A typz 1 t-period history can be decomposed as h,(t) = b(t) & a(t)
where

b(t) = (¥',...,¥") € [0,1)%; a(t) =(d',...,a") € A*

A type 2 t-period history in the game NG;(6) is denoted by hy(t) = h,(t) @ b**?,
indicating that following the type 1 t-period history k(t), b**! has been proposed
in period (¢ + 1).

A type 3 t-period history in the game NG;(6) is denoted by hj(t) = ha(t) & {N},

indicating that the propusal b**! has been rejected in period (¢ + 1).




Bargaining Frontier

Stage Game Frontier
= Co[u(A)]

Figure 2.2: Constituent Game Payoff Frontiers

The sets of all possible histories of all three types, H;, H, and Hj, can be written

in the usual way by taking the appropriate countably infinite unions over time of

the sets of all possible t-period histories. For example for Hy: Hy = U2 Hy(t) =

UiZo([0,1]* x A7)
A strategy combination f = ( fy, f2) for the game NG, () consists of two functions
which map fromn the sets of all appropriate histories to the sets of all appropriate

actions, such that

(i f2) = Hi(t) x H(t) = [0,1]) x [Y, N} iftiseven
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(J1.£2) + Hat) x Hi(t) = {Y, N} x[0,1] iftis odd

(Sifa) : Hi—> A

The strategy combination f gives the players’ instructions on how to play the game
in every period, conditional on history. For example, in the odd period (f + 1) after
the type 1 t-period history h(t), fy(hi(2)) gives player 1’s proposal b'*!, f,(hy(t))
gives player 2’s response to player 1's proposal, and ( f;(h3(2)), f2(ha(t))) is the one-
shot play of the stage game G in period (¢ + 1) after 1’s proposal has been rejected
by 2.

An outcome path of NGy(6), =(T) = (b*,a',0?,a%,....07,{}}), can be inter-
preted to indicate that the proposal b' has been rejected and the stage outcome
a' has been played in period t for 1 <t < T, and that the proposal b7 has been
accepted in period 7. By convention, T is set to infinity in any outcome path in
which the two players never reach agreement. An outcome path of NG, (6) can be
decomposed as 7(T) = b(T) & a(T - 1)+ {Y'}.

The payoff to the players from outcome path #(T) is determined by the stage

game outcomes in all periods before agreement is reached and by the agreement

itself. The average payoffs the players receive from the outcome path n(T') are given

by
T-1 ‘
U(n(T)) = (1-6) 8 Tuy(a’)y+ 6707 (1)
t=1
T-
Uyx(T)) - . —6)215"’u2(a')+ sT-1(1 =T (2)
t=1

Since a strategy combination f induces a unique outcome path in the game NG(8),
tl.e average payoffs from f can be calculated directly from equations (1) and (2} and

the outcome path induced by f.
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2.3 Subgame Perfect Equilibria

In what follows the subgame perfect equilibria (SPE) of the negotiation game
NG, (8) are characterized. In order to generate some intuition on how the game

behav:s, two examples are analyzed first.
2.3.1 Existence and Two Examples

Example 1: Consider the negotiation game which consists of a surplus of size 1

and a stage game G with the following payoff matrix:
1\2 C D

C1{ (4,4 | (-.2,.6)
D |1(6,-.2)| (0,0)

Note that the payoff vector (0,0) is both the minimax and one-shot Nasi. equi-
librium outcome in the stage game G.6 This payoff is also the same as the status
quo payoff in the standard Rubinstein game. The following claim should therefore

come as no surprise.

Claim 1: The negotiation game of Example 1 has a Subgame Perfect Equilibrium

in which player 1’s proposal of 1/(1 + §) is accepted by player 2 in the first period.

The offer-accept /reject part of the strategies implementing this equilibrium are
identical to those implementing the equilibrium in the Rubinstein game. Player 1
proposes 1/(1 + 8) irrespective of the history of the game and rejects any proposal
less than §/(1+ é). Player 2 rejects any proposal larger than 1/(1+ 8) and proposes
5/(1+486) irrespertive of the history of the game. The stage game part of the strategies
is as follows: Should the stage game G be reached in any period, both players play

their Nash equilibrium strategies D, irrespective of history.

%To keep the examples simple, we consider only pure strategies. Since the examples have only
two pure strategies, one of which is strictly dominated, the results will go through for correlated
strategies.
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While we will not formally prove the subgame perfection of these strategies, the
following arguments should be convincing. Consider the stage game. In every period
in which no agreement has been reached the Nash equilibrium of the stage game is
played, irrespective of history. The SPE of the negotiation game is constructed using
the one-shot Nash payoffs in G as the status quo point in every period. Since the
strategies in G are Nash and the proposal/reject strategies are history independent,
both players have no incentive to deviate in G. But then the game effectively
reduces (for those strategies) to a bargaining game with a fixed status quo point, and
subgame perfection of the offers and accept/reject decisions follows. This argument
is made formally in the proof to the next theorem, which asserts existence of SPE

in negotiation games.

Theorem 1 Suppose that a* € A is a Nash equilibrium in the stage game G.
VY 6 € (0,1), NG,(6) has a subgame perfect equilibrium in which player i’s proposal

b; is accepted by player j # 1, where

1 4+ duy(a®) — uz(a®)
1+46

6+ uy(a”) — duy(a®)

b = 146

and b} =

It should be clear that, shouid the stage game hiave more than one Nash equi-
librium outcome, any sequence of one shot Nash equilibrium outcomes can be used
in the stage game part of the strategies. This observation guarantees a multiplicity
of equilibria in negotiation games if the stage game has multiple Nash equilibrium
payoffs. In particular, with just two different Nash equilibrium payoffs in the stage
game, infinitely many SPE result for the associated negotiation game. The argument

is similar to the one before: Every time the stage game is reached, the proposed

strategy is to play one of the Nash equilibria. By definition, a player can not gain
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from a one-shot deviation in the stage game, since the stage game payoff is already
Nash, and future strategies are history independent. Deviations in offers are likewise
not possible, if the offers are computed according to the rule that the other player is
just indifferent between accepting and rejecting. But since there are infinitely many
different sequences of Nash equilibrium payoffs possible, there are infinitely many
different discounted future payoffs which can be supported. The result follows.
The equilibrium of Claim 1 is not the only one in the negotiation game of Ex-
ample 1, however. The next Claim demonstrates that multiplicity of equilibria can

occur even if G has a unique Nash equilibrium.

Claim 2: In the negotiation game NG, (8) of Example 1 the average payoffs

((1—.4)/(148), (6+.4)/(1+6)) can be supported as a subgame perfect equilibrium.

This claim states that player 1 can do considerably worse than the “Rubinstein
payoffs” of Claim 1. In fact, as will be formally shown later, the equilibrium proposed
here yields the worst possible equilibrium payoff for player 1 in the example game.
The strategies that support this equilibrium are as follows:

In an odd period player 1 proposes .6/(1 + §), and player 2 accepts this proposal,
unless player 2 has deviated from the . ,uilibrium strategies at any stage. Any higher
proposal is rejected by 2 and the players play the strategy pair (C, D), yielding a
one period payoff of (-.2,.6). In the following even period, if player 1 has not
deviated from C in the last period, player 2 proposes (.2 + .46%)/6(1 + §) and 1
accepts any proposal at least that big. However, if 1 deviated from C, player 2
proposes .66/(1 + 6) instead, and 1 accepts any proposal at least that big. Should 1
not accept these offers by player 2, they play the strategy pair (D, D) in G, yielding

a one period payoff of (0,0). The strategies then repeat. Finally, should 2 not make

the required offers, or should 2 not accept 1’s equilibrium offer, the players will
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follow the equilibrium strategies of Claim 1 from the next subgame on. Deviations
by 2 in G are ignored.

Interestingly, the average payoffs in Claim 2 are the same as those in a Rubin-
stein bargaining game with a status quo point of (0, .4). Also note that, considering
only the stage game sequence of payoffs, the disagreement period payoff alternates
between (—.2,.6) in odd periods and (0,0) in even periods. Furthermore, player 2
compensates player 1 precisely for not deviating from the not one-shot Nash strate-
gies (C, D), thereby making them subgame perfect. After this compensation 2 is left
with a net payoff of .4. Note that 2 will pay the compensation since if he fails to do
so play reverts to the stratcgies of Claim 1, which yield a lower payoff to him than
following the equilibrium strategies proposed here. Thus the (—.2,.6) stage game
payoff is effectively worth (0, .4) to him, since 1 gets compensated for not deviating
to 0, leaving 2 with .6 — .2. The significance of these observations will be explained
shortly.

Lest it appear that all negotiation games have multiple equilibria, we now present

a courter example. Consider the following negotiation game.

Example 2: The surplus is of size 1, and the stage game G has the following payoff

matrix:

N2 C D
C | (4,4) | (8,8
D (8, -8 (0,0

Claim 3: The negotiation game of Example 2 has a unique subgaine perfect equilib-
rium. It is given by history independent offers of 1/(1 + 6) by player 1 and §/(1+¢)
by player 2, and the play of (D, D) in G in all periods in which an offer has been

rejected.
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In this example strategies analogous to those used in Claim 2 do not lower 1’s
payoff. Notice in particular that the payoffs in G do not allow 2 to receive a higher
one period disagreement payoff than from simply playing the Nash equilibrium, since
any compensation would wipe out his payoffs completely. As indicated before, in a
SPE 2 has to effectively compensate 1 for not playing a one shot best response. He
can not do so in this game while getting a higher payoff since the deviation gain by
1 for every strategy is at least as much as 2's payoff. This causes his future payoffs
(the ones from rejecting a deviating exit proposal} to be 0 in every stage game, and
thus |1 can exit at Rubinstein shares, since 2 will accept any such offer. Notice here
that we can not get 2 not to accept such offers, since we can never punish him for
doing so.

The stage game in this second example has the same structure as that in the first
example, both games being variants of the Prisoners’ Dilemma game. In particular,
both have a unique Nash equilibrium which is also the mutual minimax, and players
have only 2 pure strategies, of which one is strictly dominated in both games. Nev-
ertheless, the equilibrium sets of the associated negotiation games apparently differ
dramatically. In the remainder of the paper we will characterize the equilibrium
set of negotiation games, which will allow us to state conditions which guarantee

uniqueness.
2.3.2 Optimal Punishments

The optimal punishment for player i in NG, () is defined as that SPE in which player
i’s equilibrium payoff is less than or equal to all SPE payoffs of the game. Since the
arguments are analogous for both players, only player 1's optimal punishment will

be derived explicitly.
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The derivation of the optimal punishment will proceed in two steps. First, the
lower bound of player 1’s equilibrium payoffs is computed for the game NG, (§).
Then, a SPE is constructed such that player 1's average equilibrium payoff achieves
this lower bound. It then follows that the equilibrium which has been constructed
is in fact the optimal punishment for player 1.

Consider for a moment the type of strategies used as punishments in repeated
games, in particular the simple penal codes of Abreu (1988). Oue feature of these
punishments is that the punishment of player 1 is enforced by restarting the same
punishment should 1 deviate from it, and by starting a punishment for player 2
should he fail to punish 1. Deviations by more than one player in the same subgame
are ignored. This structure makes the strategies particularly simple. Wc . mploy
strategies of a similar nature here, only complicated by the fact that the game is not
symmetric between even and odd periods, and that it has 3 subgames per period.
Formally, this implies multiple punishment paths for each player, one for every
subgame in odd and even periods. As will be seen later, however, it is sufficient to
specify a path starting in the player’s offer period. This “generic” punishment is then
simply “picked up” in the appropriate subgame, instead of at its literal beginning.
As mentioned in the introduction, there is an additional difference to simple penal
codes, however. While in repeated games there exists a punishment after every
history, in negotiation games player 2 can not be punished for wrongly accepting
a deviating exit offer. Contrary to repeated games, in which there always exists
a future,” a deviating accept decision in negotiations ends the game, precluding

punishment of the deviation. Combined with the fact that exit offers a surplus

TNotice how in finitely repeated games a long enough time span is required, and how the
punishments collapse near the time horizon.
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over continued play, this limits the severity of the punishment which a player can
be made to suffer in negotiation games. This intuition is borne out in the results
which follow. Player 2, for example, will accept any offer which yields at least as
much as punishing 1 in the future, and 1 will therefore want to make such an offer,
since it leaves him better off than delaying by virtue of exit offering a surplus over
continuation (A3). It follows that, while one is only concerned with minimizing the

punished player’s payoffs, subject to the punisher receiving at least as much as in

his own punishment, in repeated games, in negotiatioa games one has to minimize
one player’s payoff while maximizing the other’s at the same time in order for that
player to reject the highest possible exit offers.

Before we derive the worst punishment payoffs, we present the following Lemma.
It is useful in clarifying the role that disagreement period payoffs play in players’ offer
strategies. The Lemma concerns Rubinstein type bargaining games with exogenous
but time variant status quo points. It upholds Rubinstein’s uniqueness result for

this class of bargaining games, under the condition of common discount factors.

Lemma 1: In a Rubinstein type bargaining game with alternating offers over the
split of a surplus of size 1 in which players have a common discount factor é and
receive the (exogenous) payoff (u)(t), u2(t)) in period t if no agreement has yet been

reached, and where uy(t) + uz(t) < 1, the unique subgame perfect equilibrium is

that the proposal b* is accepted in period t, where b is given as follows:

Ift is odd
B = —— (1= 6) Y 6*[Suy(t + 2k + 1) — ualt + 2K)]
I + 6 k=0
and if t is even
6 [> =]

b= 30~ 6) Y 6% [uy(t + 2k) — Suy(t + 2k + 1))
k=0
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Consider player 1's payoff in an odd period. The Lemma shows that 1's payoff
depends positively on 1's disagreement payoffs in even periods, and negatively on
2’s disagreement payoffs in odd periods. The interesting point the Lemma makes
about equilibrium offers is the fact that only the disagreement payoffs received in
periods in which the player does not make an offer enter into the computation of the
equilibrium offers. A player’s disagreement payoffs in periods in which he himself
makes an offer are totally irrelevant to his equilibrium payoffs. Thus, only payer 1’s
even period payoffs and player 2’s odd period payoffs affect the equilibrium offers.
Therefore, if the choice of the sequence of disagreement payoffs were up to the
modeller, then the Lemma shows that it is necessary to minimize 1’s payoffs in his
accept/reject periods and to maximize 2's payoffs in 1’s offer periods in order to
minimize 1’s game payoff. The question we have to address is therefore how one can
support a sequence of stage game strategies which achieve this as part of a subgame
perfect equilibrium.

In light of this, consider again the strategies outlined for implementing the equi-
librium in Claim 2. The unusual feature of these strategies is that they call for 1
to play C in G in odd periods, a strategy which is not 1-shot optimal in G. In
order to make this strategy subgame perfect, player 1 is compensated in the follow-
ing exit proposal, and his payoff from playing along with the strategy and being
compensated is indeed the same as his payoff from deviating to the 1-shot optimal
strategy D and not being compensated. In Example 1, this strategy choice leads to
a net gain for player 2 in odd periods, since he obtains 0.6 and compensates 1 by
0.2. Player 2’s ‘effective disagreement payoff’ in an odd period is thus 0.4. In even

periods player 1 is minimaxed and receives zero. periods, when he is minimaxed.
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Using these values, u,(even) = 0, u;(odd) = .4, in Lemma 1, we obtain the offer
claimed before.

This provides the motivation for the candidate strategies in 1's punishments. As
Lemma 1 has shown, a higher disagreement payoff for 2 in odd periods will decrease
the exit offer made by 1, while a lower disagreement payoff to 1 in even periods will
also decrease the exit offer. We know that minimaxing 1 in even periods will yield
the worst possible payoff to him in even periods. The remaining question is what
the highest possible ‘effective disagreement payoff’ in odd periods is for player 2,
given any game G. We will now turn our attention to that issue.

As the examples have indicated, a strategy which is not one-shot optimal in
G can nevertheless be supported as part of a SPE strategy profile if the player is
compensated for the foregone deviation gain in the future. Notice here that while
we are unable to force 2 to reject certain offers, we can force him to make an offer
higher than 1’s expected future payoffs, as is necessary if he is to compensate 1, due
to the fact that 1 can reject and punish 2, should he fail to do s0.® Let y; denote

player 2’s highest effective disagreement payoff. It is defined as

v = Tg({uz(a) - (:f’&’i ui(ay, az) — wa(a))}. (3)

For future reference in strategy profiles, also define the strategy combination in G

which achieves y; as®

o = Argmax{ua(a) ~ (msx (e}, az) - wa(a)}. 0

8Notice that the bargaining frontier slope is —1, implying that any equilibrium worse for 1 than
the always existing “play Nash and exit” equilibrium of Theorem I must simultaneously be better
for 2 if it involves exit. Thus, such a punishment for 2 is guaranteed to exist.

*This may, of course, not be unique. Since player 1’s payoff does not affect the exit offer and
exit will occur immediately in equilibrium, any such strategy may be chosen.
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The value y; gives the maximum difference between player 2's payoff and player
I's best deviation gain, over all strategies in G. This is, in fact, the maximum
payoff 2 can effectively obtain from disagreement in odd periods under the candidate
punishment strategies for 1. The value of y; depends only on the structure of G,
and A2 and A3 imply 0 < y; < 1. It remains to be shown that a' can be supported
in equilibrium and leads to the worst payoff for 1. This is done in two steps. The

following theorem derives the lower bounds of player 1’s payoffs in negotiation games.

Theorem 2 Player 1’s average equilibrium payofls in the game NG, (8) [NG,(8)]

are bounded below by 13(1 — y7) [,—%(I - y;)].

The proof derives the infimum of player 1’s equilibrium payofls, which is a mean-
ingful concept due to Theorem 1. In doing so, the restrictions imposed by subgame
perfection and the fact that u;(a) + uz(a) < 1 are exploited.

The next theorem completes the proof of the assertion that a' can be supported
by demonstrating that the lower bound of theorem 2 can be achieved by a subgame
perfect equilibrium of NG,(8) [NG2(6)]. Equilibrium strategies are given in which
player 1’s average equilibrium payoff is ;3z(1 — y7) [l—ig(l -y )] for large enough 6.
Theorems 2 and 3 together directly imply that this constructed SPE is the optimal

punishment equilibrium for player 1 in NG,(8) [NG2(6)).

Theorem 3 There exists a § € (0,1) such that, V6 € (§,1), the average payofl

vector

l—y; 64y o(1 —y7) 1+ by;
146’ 146 146 " 1+6

can be supported by a subgame perfect equilibrium in the game NG, (8) [NG2(8)).
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The strategies implementing these payoffs are defined recursively and given below
for NG,(6). Strategies for NG3(6) are analogous. In the strategies, a” refers to a
Nash equilibrium strategy in G, and a' and m! are as defined previously.!°

In the first period, players’ strategies are

fiha(0)) = 1+ 1-v
_ Y ifb < (1 ~y5)
fil¥) = {N otherwifsf ‘
. 1<
GuflF @ {ND = { :‘ :)ftll:erwnlszs(l )

Thereafter, ¥ ky(t) = a(t) @ b(t) € Hy, hao(t) = a(t) ® b(t+1) € H, and
ha(t) = a(t) ® b(t+1) & {N} € Hj:

For an odd period (¢ + 1)
l,‘_5(1 + buy(a®) — ua(a*)) if either (fi, f2)(ha(t — 1)) = a*

_ or a, = fi(ha(t—1)) and
Silla(t)) = &i # falha(t=1)
’l_l'i( 1-97) otherwise

PETIN]
fa(ha(t)) = {}1\,/ ::tlli;wissef"(hl(t))

a* if either (fy, f2)(hs(t = 1)) = a® or ¥**! < fi(l(t))
(Su. f2)(hs(t)) = or aj = fi(hs(t — 1)} and a3 # fa(ha(t - 1))

1 otherwise

a
and for an even period (¢t + 1)
(133 (6 + ui(a”) — Suz(a®)) if either (f1, f2)(hs(t — 1)) = a®
or aj = fi(hs(t—1)) and

a3 # fa(ha(t—1))

fh(0) = 4 &1 -p) if af # fi(ha(t—1)) and
= fa(ha(t-1))
| 1Zuy(a) + :(zl':ﬂ otherwise

fiha(t)) = {; Lftf.;w iz%fa..(h,(t))

a* if either a} = fi(ha(t — 1)) and @} # fa(hs(t - 1))
(1, J)(halt) = { or B*1 < fo(h(t)), or (fu, fa)(hs(t — 1)) = a”

m! otherwise

19Note that the choice of a* affects the value of § needed.
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Theorems 2 and 3 together have confirmed the intuition denved from Lemma 1:
If y; is positive, then there exist strategies in G’ which can be supported as part of
a SPE that give player 2 an “effective” pavoff of y; it odd period stage games. In
even periods, player 1 is minimaxed and his payoff is 0. The Lemma suggested that
only the payoffs aviilable in periods when a player is called upon to accept or reject
an offer matter to the exit offers consistent with equilibrium for exogenously given
payoffs. What we have shown is that with the strategies proposed, it is as if player 1
were to receive 0 as disagreement value, while player 2 receives y;. The equilibrium
exit offers are thus the same as in a Rubinstein game with the disagreement payoff
(0, y7). Notice, however, that (0, y;) must not lie in the feasible set of the stage
game payoffs, since it is never really played at all.

While complex to write formally, the equilibrium strategies are simple to de-
scribe: Unless player 2 has deviated, player 1 always offers the equilibrium offer.
Should he fail to do so, the players play the stage game and follow the strategies
leading to 2’s highest effective disagreement payoff. Player 2 then offers exit at
the value corresponding to the value to 1 of being minimaxed once and having to
restart the punishment, plus an amount just equal to that foregonc by 1 in the
stage game from not deviating but following the equilibrium. Should 1 deviate in
the stage game this “compensation” is not paid. In any case, should 1 not accept an
equilibrium offer by 2, he is minimaxed once, and the punishment is restarted. Any
deviation by 2 is punished by reverting to the play of some Nash equilibrium in all

future stage games, whick: implies some exit offers consistent with those strategies.

By arguments analogous to those above, and witaout proof, the optimal punish-
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ment for player 2 can be found. Let

z; = Tean{ul(a) - (:ngg uz(a1,a3) — uz(a))} (5)
and
a® == Arg ',',‘ean{un(a) - (J;"&’i uz(ay, a3} — uz(a))} (6)

be player 1’s highest effective disagreement payoff in even periods in player 2’s
punishment, and the strategy combination in G impleraenting it, respectively. As
before, 0 < z5 < 1. The following theorem gives the optimal punishmd. * payoffs for
player 2 as a function of 3.

Theorem 4 There exists a § € (0.1) such that,’ Vé € (§,1), the average payoff

vector

1+ 6r; 8(1 —r7) o6+x; 1 ~25
1467 146 1+6° 146
.an be supported by a subgame perfect equilibrium in the game NG,(8) [NG,(6)].

2.4 Perfect Equilibria in Negotiation Games

In the spirit of the Folk Theorem literature, the characterization of the supportable
equilibrium payoffs is for “large enough” discount factors. Define the following

limiting values are as ¢ vends to 1:

1 . 1 .
g_=§(l-—y,) and g2=§(l-1:2). (7)

The results so far indicate that player i’s equilibriutn payoffs in the negotiation
game NG, (6) are vounded below by v,. The outstanding question =. this point is

if indeed all feasibie payoffs abovc the lower bound v, can be supported as SPE for
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“large enough” discount factors. This question is answered in the affirmative by the

following theorem.

Theorem § For a given feasible payofl vector (v,.v,) in the negotiation game
NG1(8) [NG:(8)] such that (vy,v) > (v1.12). there exists & € (0,1) such that
V& € (81), NGi(8) [NG:(8)] has a subgame perfect equilibrium with average

payoﬂ(vl,vg)-

The equilibrium strategy profiles implementing any such equilibrium are straight
forward. They have a structure similar to the simple penal codes developed by Abreu
(1988). First, an outcome path which leads to the average payoff (v, 1;) is found.
It consists of the agreement players reach in some period 7', and the outcomes of
the stage game G in every period hefore agreement is reached. The outcome path
is, in general, not unique. In order for it to be permissible. both players must have a
future average payoff above their 1espective minimum payoffs at every poiut in the
path. The structure of the game guarantees that there exists at least one outcome
path with that feature for any average payoff above the lower bound. The following
strategies then implement this outcome path.

In every period before the last, the player who makes the proposal demands
the whole value of the surplus for himself. Any other offer will be considered a
deviation on the part of that player, and he will be punished by implementation
of his punishment equilibrium, subject to the fact that the other player accepts a
proposal made hefore the last period if the proposal pays him more than he could
obtain if the other player were punished. In the stage game, players play strategies
leading to the appropriate outcome for the period as specified in the equilibrium
outcome path. If a player deviates from his strategy in the stage game, he is punished

by implementation of Lis punishment equilibrium. Simultaneous deviations by the
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players are ignored. The strategies are formally given in the appendix.

Theorem 5 characterizes all subgame perfect equilibria of negotiation games. It
shows that all payoffs above players’ optimal punishment payoffs can be sup;:orted in
such games. This result is of precisely the same flavour as the Folk Theorems: Any
outcome above some lower bound is supportable. The lower bound is determined by
what a player can be held to under individual ratioaality. In negotiation games this
is determined by a split of the surplus consistent with minimaxing a player while
(in alternating periods) maximizing his punisher’s payoff in the stage game.

The results show that negotiation games can have a multiplicity of equilibria.
While there will be a range of efficient equilibria along the bargaining frontier, this
multiplicity implies, as in Folk Theorems, that Pareto ineflicient outcomes can also
be an equilibrium. Delay, where the parties do not agree to a split of the surplus
right away, can therefore generally be supported in negotiation games. Indeed, in-
finite delay can be supported for some games. This is true even though there is
a surplus over continuation available via exit, and even though players have com-
plete information. The former point contrasts the results in this model from those
of Haller and Holden (1990) and Fernandez and Glazer (1991), where exit did not
necessarily yield a surplus over continuation (since the Nash equilibrium of their
stage game lies on the exit frontier), while the latter contrasts them from the in-
complete information bargaining literature, where delay acts as a signal in a world
of incomplete information.

The model also shows explicitly how the structure of the stage game and the
size of the surplus which agreement yields over continued play of the stage game,
the size of the gains from trade, affect the equilibrium set. In particular, Theorem

5 shows that the pure existence of strategic payoffs in disagreement periods is not
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sufficient to guarantee multiplicity of equilibria. It is necessary to compute r3 and
¥; to determine if multiplicity — and delay — can occur. Only if both are equal
to zero will there be a unique equilibrium and no delay. While not sufficient, this
implies that any Nash equilibria must be mutual minimax. Furthermore, the game
must have the feature that for all strategies a playver’s payoff is less or equal to the

other player’s gain from deviation.

2.5 SPE if A3 is violated

In order to stress the role of the availability of a surplus from exit on the results,
we will now relax assumption 3. Consider, then, the same model when assumption
3 is violated. What this implies, is that while some exit pavoffs may dominate
some repeated game pavofls, there are repeated game payofls which dominate exit.
Diagrammatically. this case is represented in Figure 3.

We will first establish that the strategies presented so far can still be supported.
The only change is that the set of strategies over which the parameters y; and
x5 are determined must be explicitly restricted to those which satisfy assumption
3. Otherwise, for stage game payoffs outside the bargaining frontier, we can not
guarantee that an exit offer will be made, since continuation yields more than exit.
This is borne out by the restrictions assumed in Lemma 1. Lemma I does not hold
if payoffs outside the bargaining set can be achieved. The reason is the same: While
one can still compute the offer which would be accepted by the other player, the
offering player will be better off to make an unacceptable offer, and continue with

the game, rather than to make that acceptable offer.




76

Rargaining Frontier

Stage Game Frontier
= Co[u(A)]

Figure 2.3: Constituent Game Payoff Frontiers, unrestricted

Lemma 2: For a given feasible payoff vector (vy,v2) in the negotiation game NG, ()

[NG2(6)} such that (v1,v2) > (vi,vz), there exists § € (0,1) such that ¥V é € (8,1),

NG, (8) [NG2(8)] has a subgame perfect equilibrium with average payoff (vy,v;).
Here (vy,v,) is as defined before, with the proviso that y; and z} are computed

only over strategies which satisfly u,(a) + uz(a) < 1.

Next, it is established that all repeated game payoffs which strictly dominate
exit can be supported. This result is intuitive. Since exit in this case is dominated
by continued play, all we need to do is to verify that there exist repeated game

punishments for any given payoff which always yield a payoff vector above exit.
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While we can no longer use simple penal codes, the strategies are still fairly simple
and familiar: A player is minimaxed “sufficiently long” to wipe out any deviation

gain, followed by a reward period in which the original payoffs are played again (c.f.

Fudenberg and Maskin (1986)).

Lemma 3: For any v € {ulu,(a) + uz(a) > 1}, there exists a discount factor é < 1
such that for all 6 € (8,1), there exists a subgame perfect equilibrium of NG, (8)

[NG(8)] with average payoffs (v, v;).

One implication of this last lemma is that negotiation games which violate as-
sumption 3 will always have multiple equilibria. Not all individually rational and
feasible payoffs can be supported. however, even then. This is shown in the next

Theorem.

Theorem 6: In the negotiation game NG\ (8) which violates A3, all average equi-
librium payoffs for player 1 which give him at least min|z,, '—'—.—”*—)] can be supported

(144)

as a SPE. Here z) := inf {z,|(zy,712) € F,x\ + 1y > 1},

2.6 Discussion

The previous sections have presented a model of negotiations and characterized its
equilibria. The model built upon two extant models of dynamic allocation, the
bargainiug model of Rubinstein, and the repeated game model. The set of subgame
perfect equilibrium payoffs of the negotiation model was characterized as any payoffs
above the optimal punishment equilibrium payoffs for the players, which in turn were
shown to depend in a simple way on the payoff structure of the stage game played in

disagreement periods. The relevant magnitude is the highest effective disagreement

payoff the punisher can obtain in perio” in which it is his turn to accept or reject
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offers. This was shown to be easily computed as the maximal difference between
the punisher’s payoff and the punishee’s best deviation gain in the stage game.

In the presentation of the model certain assumptions were made for analytical
convenience. While some are minor, the relaxation of others could be the subject
of future work in this area. The assumption of a common discount factor is clearly
minor, since all results require a sufficiently high discount factor beforehand.!! Most
of the cause of bargaining power in this model is furthermore to be suspected in the
stage game, not different time preferences, thus diminishing the case for separate
discount factors.

There were two assumptions made on the payoff spaces. One is the restric-
tion that every payoff in G is dominated by sume exit payoff. This assumption
is econoinically motivated — there are gains from trade in negotiations, not just a
redistribution. The result of delay in equilibrium is also stronger under this assump-
tion, due to the implied inefficiency. Relaxation of this assumption has been shown
to guarantee multiplicity of equilibria.

The second assumption is on the shape of the bargaining frontier, which is here
assumed to be a straight line. This assumption could be relaxed to allow for an
arbitrary bargaining frontier — and in particular for a frontier that coincides with
that of the stage game. This latter possibility is reminiscent of the work by Okada
(1991), although he uses a very different focus and completely different framework
of analysis. It inay, however, provide an alternative approach to the question of

long-term contraciing which he addresses.

111¢ should be noted, however, that Lemma 1 will not hold for sufficiently disparate discount
factors. This is due to the fact that agents may evaluate future payoff paths too differently, and
thus an acceptable offer may not be made.




Appendix I

In order to economize on notation, let the utility frontier defined by equation
(19) in the text be represented by the relationship v; = f(v,) and that defined by
(20) be represented by w2 = g(w,). Then, the Nash b-rgaining solutions for the

utility sets defined by (19) and (20) are given by the conditions

f(w)fv, = —f(v1) (1)

gluy))/wy = —g'(un) (2)

respectively. The Nash bargaining solutions for the utility sets defined by the CC

and IC1 frontiers are given, respectively, by the conditions

f(1y1)+.’](U)1)+(t!,+w])f.' = 0 (3)
Sm)+g(w) +(r+w)gy = 0

and

flo) + g(w)) + (i +wy)fy = 0 (4)

gwi))+wg = 0

Finally, as in the text, the (v, w,) pair solving conditions (3) is denoted by (v, w}),
while the (v;, wy) that solve (1) and (2) are given by #; and w, respectively. The v,
that solves the conditions (4) is given by 7.

Two results regarding the relationships among these various Nash bargaining

solutions will prove useful subsequently. These results are given by Lemmas 1 and

2 below.

Lemma 1: If agent 1 strictly prefers X to Y while ag-nt 2 strictly

prefers Y to X, then v; > #; and w] < W,

79
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Proof: The conditions (3) imply that f'(v;) = ¢'(wy). If v] = 9, and w} = uy,
then the conditions (3), (1) and (2) jointly imply that f(v,)/0, = g(w)/w, =
~f'(t1) = —g'(1), a contradiction given the assumption on preferences. Therefore,

it must be either that f(v]) + v{f'(v;) < 0 (implying that g(w}) + wig'(w}) > 0)

or f(v}) + vif'(v;) > 0 (implying that g(w;) + wig’(w;) < 0). Note, however,

that —g'(1y) > —f'(9,), so that if the latter set of inequalities hold Jhen, by the
concavity of f(-) and ¢(-), —¢'(w]) > —f'(v;) (the latter set of inequalities imply
that v] < &;,w] > w;), contradicting the requirement that f'(v;) = ¢’(w}). Thus,

it must be the former set of inequalities that hold, proving the Lemma. ||

Lemma 2: If agent 1 prefers X to Y and agent 2 prefers Y to X then

0, <0 <v;.

Proof: To prove the first part of the inequality, note that —f'(9,) < —¢'(u,). To
see this, suppose to the contrary that — f'(t,) > —g'(w;). Then, f(v;)+v,f'(v;) 20
from the first equation in condition (4); that is, o, < v;. However, as —f'(#y) <
—¢'(1n), concavity of f(-) implies that —f'(9;) < —g¢'(1,). a contradiction. Thus,
—f'(01) < —¢'(1,), implying that o; > 0.

To prove the second part of the inequality, suppose to the contrary that o, = vj.
Then, as w; > w] (from Lemma 1), the first equation in condition (4) cannot be
satisfied. Indeed, the LHS of this condition must be strictly less than zero, irplying
that it cannot be satisfied for any vy > vy. Thus, 6, < v;. ||

In considering the relationship between the various Nash bargaining solutions
and the limiting equilibria of the different bargaining procedures described in the
text, it proves helpful to rewrite some of the equilibrium conditions in terms of the

frontiers f(-) and g(-). Consider the equilibrium conditions for the IC1 procedure
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for subgames in which ¢t > ty — 1. These conditions becone
J(o}) + 6g(w]) = §[f(x}) + bg(u})] (5)
vi+éwd = § [v: + 6w|2]
g(wy) = bg(w)) (6)

2 _ 1
wy = bw,

where the superscript denotes the agent making the offer. By substituting for v? in

the (5) conditions, one obtains a single condition for v} given by
S(v1) + 8g(wi)(1 = 8°) = éf(8v] — wi(1 - &%) (M)

Next, consider a modified version of the IC1 procedure, where the modification
involves agent 2 always making the first offer in the bargaining over Y. Then, for
this procedure and for all subgames in which t > ty — 1, the equilibrium conditions

are (6) above and

f(o}) + 8g(w]) = 8[f(v})+ bg(wd)] (8)

vf + 5w,2 = & [nl' + ﬁwf]

Again, by substituting for v} in the (8) conditions, one obtains a condition for v}
given by

f(v1) + 8g(wi)(1 ~ 6) = 6f(évy — wi(1 - §)) (9)
By arguments analogous to those in Herrero (1989), one can show that the equi-
librium offers defined by (8) and (6) approach the Nash bargaining solution values
4:5ned by (4) above as § approaches 1. Thus, in particular, the value of v} given
by (9) above must converge to v, as § approaches 1.

As to the relationship between the value of v} given by condition (7) and #,

the convergence rcsult above implies that this relatiouship can be determined by a
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comparison of the conditions (7) and (9) in a neighbourhood of § = 1. Because (6)
defines the value of w? in both equations, the conditions differ only in the weight
applied to this offer (and the corresponding utility for agent 2, g(w?)) being (1 — §?)
in the (7) condition and (1 — §) in the (9) condition. Thus, for any é € (0,1), the v}
offer implied by (7) will be the same offer implied by (9), except with the weight on
the utility resulting from Y being larger. Given this fact, one can show the following
relationship exists between the limiting value of each agent’s utility under the IC1

procedure and the values given by the Nash bargaining solution.

Lemma 3: If agent 1 strictly prefers X to Y and agent 2 strictly prefers
Y to X, then o, servers as a lower bound on the value of v} defined by

condition (7) as é approaches 1.

Proof: Consider the condition (9) in a neighbourhood of § = 1. As § approaches
1, w} approaches w; from below. Further, v} approaches ©;. Consider next the
impact on this condition of an increase in the weight applied to w? and g(w?) (i.e.
the move to the (7) condition). This increase increases the LHS at a rate 6g(w?)
and the RHS at a rate —6§f'w]. Because w? approaches w; from below (implying
that g(w?)/w? > —g'(w?)) and, from Lemma 2, ~¢'(1;) > — f'(%1), g(w?) must be
greater_than —f'w? for 6 in a neighbourhood of 1. Therefore, increasing the weight
on w? and g(w}) in a neighbourhood of § = 1 increases the LHS by more than the
the RHS. By the concavity of f(-), the value of v} that restores equality must be
a value larger than that implied by (9). Thus, for § close to 1, the solution to (7)
must be larger than the solution to (9). AS the solution to (9) converges to ¢y, ¥y

must define a lower bound on the solution to (7). ||
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There are two immediate corollaries to this Lemma. The first is:

Corollary 1: When each agent views X and Y as identical (as defined

in the text), then the solution to (7) converges to , as § approaches 1.

The reason for this result is that, with these sorts of preferences, ¢'(w,) = f'(9;),
so that, as 6 approaches 1, an increase in the weight on w? and g(w?) results in equal
increases in the right- and left-hand sides of condition (9). Therefore, if #;, solves

(9) in the limit, it must also solve (7).

Corollary 2: As § approaches 1, agent 1's utility under the ICl
procedure is bounded below by the Nash bargaining solution for the IC]
frontier, while agent 2’s utility is bounded above by the Nash bargaining

solution.

The difference between this result and Lemma 3 is that Lemma 3 only applies
to subgames with ¢t > ty — 1. However, as § approaches 1, any offer at tx that fails
to converge to those defined by (5) and (6) will surely be rejected as both agents
could delay until ¢ty — 1 at almost no cost and be guaranteed these utility levels.
Therefore, as § approaches 1, Lemma 3 implies that agent 1’s utility must be at
least ©; + 1. As gains in agent 1’s utility from X must come at the expense of
agent 2’s utility, agent 2’s utility can be no greater than f(0;) + g(w).

Turning finally to the proofs of propositions 1 and 2, note that the equation
f(v1) + g(wn) + (v1 + wy)f{ = 0 from the (4) condition defines a locus of (vy, wy)
pairs that includes (v§, w;) and (9;, un). Note also that the slope of this locus,

given by

du _ ~(g'(w1) + f'(n))
dw,  2f'(v1) + vi.f"(v)

(10)
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is negative for all w; and strictly grater than —1 at (v}, w}). This latter fact implies
that an increase in w; in a neighbourhood of w] increases agent 1’s total utility
v; +w;. Finally Lemma 1 tells us that w; (the value of w, implied by the conditions
(3)) is less than w, (the value of wy implied by conditions (4)). Therefore, the issue
is whether or not the increase in agent 1's utility that results from an increase in w,;
in a neighbourhood of w} persists as w, is increased to w,. The following Lemma
provides a condition guaranteeing that equation (10) is strictly greater than —1 for

all w, € {w], w,;], thereby guaranteeing that agent 1's utility increases.

Lemma 4: Suppose that, for all v; € [0y, v;], f(1)wi/f'(n) 2> 1.

Then, © + w;, > v] + wy.

Proof: The condition that (10) be greater or equal to 1 can be written as the
condition that f'(v1) = ¢’'(wy) + (vy + wy)f"(vy) < 0. Substituting for w, from
the (4) condition reduces this condition to f'(v,) — f"(v1)f(v1)/f(n) < ¢'(wy) +
S"(v1)g(wy)/ f'(v1). Next, if wy € [w], i), then g(w;) > —g'(wyr )w;. Thus, over the

interval [w}, ], (10) will be greater or equal to —1 if f'(vy) — f*(v1)f(v1)/ f'(n1) <

g (wn)(1 = f"(v1)w,/f'(v1)) (substituting —¢'(w)w, for g(w)). The LHS of this

expression is negative while the RHS will be positive if f"(v;)w,/f (v;) > 1. Because
w; 2 w; and v; must be .u element of the interval [, v]] as w, ranges over the
interval [w}, 1], this inequality holds by the assumptions of the Lemma. Therefore,

(10) is greater or equal to —1 for all w, € [w}, ], and the Lemma is proved. ||

Proof of Proposition 1: Prop™ 1 follows as an immediate corollary of Lemma 4.

As for proposition 2 the proof is almost immediate.
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Proof of Proposition 2: From (3), f(v]) +g(w;)+ (vi +w})f'(v;) = 0. Therefore,
the condition in the proposition reduces to the condition tha* .t vy, f(#,)+g(tiy) +
(01410 ) f'(9)) < 0; or that the solution to (4) results in a value of vy < ©;. Therefore,
agent 1 must be worse off under the Nash bargaining solution for the ICI frontier
than under the Nash bargaining solution for the CC frontier. That agent 2 is worse
off follows from the fact that. for all w € [w], ], and all v, that solve the condition

(4) when w, is in this range, —¢'(uwy) > — f'(v) (see Lemma 1). ||

Proof of dr*/3s > 0: Applying the quotient rule and simplifying equation 36:
2 [6EUS(3) - EUJ(2)] > 9 [EUf(2) - EUJ(2)]
Os 2 1 s 2 1
Since sz¢ + (1 — 8)z. = (szp + (1 — s)z.)/8, where the prime indicates offers by 1

intx +1, 58;6EU20(3) = £EUf(2), and thus the above simplifies to

d d
ES-Euf(z) > ;,)-;EU{(2)

For ty even, this leads to the following sequence of implications:

i 5 B(bla+1)—8(b+1)) o b

ty—tx - ty—tx

d [b+1+6 ab— 67 > 8T
5 [u+obE+n -6+ ] _ &,
T+6 ab— 52 T+6

(146)(bla+1)—6(b+1))—ab+6® < (ab—6%)b

(b=5) < ab(b-§)

Since 1 < ab the assertion is shown. For ty odd the sequence of implications is

similar, but does not simplify as nicely. In the end one obtains the condition that

ab(abb? — 1) > (1 — 5?)(al(ué — i) — é(a — 6))
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which is true for 6 large enough. Note that this condition is related to that for 2 to

prefer the CC contract (see footnote 15), in particular we require

b (1-6)  (1—-6)(b-6)(ab+1)
1+08)~ a (ab — 82)

which is satisfied for é lower tlian those required for 2 to prefer CC. Thus the

assertion is shown. ||
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Proof to Lemma, Section 3.2

Following Shaked and Sutton (1984), the equilibriuin proposals in every period
are derived for the bargaining game with a fixed sequence of disagreement payoffs
{u(t)}i2;-

Assume that the set of equilibrium payoffs in such a game is not empty. Let M}
and m! be the supremum and infimum of player :’s average equilibrium payoffs in
the subgame that starts in period ¢, for i = 1,2 and t > 1.

First, consider players’ strategies in an odd period ¢ in which player 1 makes the
proposal and player 2 makes the response. Player 2’s payoff from rejecting is u2(t)

in period t and a SPE payoff from period (¢ 4+ 1) on which is bounded between m}*!

and M:*!. Therefore, player 2 will always reject i his payoff in the proposal is less

than (1 — §)ux(t) + émi*?, and always accept if his payoff in the proposal is more
than (1 — 8)uy(t) + M}*!. Subgame perfection requires that player 1’s proposal, b,

should satisfy
(1= 8)uz(t) + 6mi* <1 -0 < (1 = S)uy(t) + sM;H!
which implies that m} and M; satisfy the following inequalities

mi 21— (1—8)uy(t) — Mz (1)

M} < 1—(1-8)ug(t)— émit (2)
Considering players’ strategies in the following even period (t + 1), we have

mitt > 1-(1=8u(t+1) - sMj+? (3)
MY < 1= (1 =8)u(t+1) - émit? (4)
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Substituting (4) into (1), (3) into (2), (2) into (3), and (1) into (4), with appropriate

updating, yields

t
M;
t+1

m,

t+1
M,

> 1= (1= 8ug(t) — 6[1 — (1 — 8)uy(t + 1) — mt*? (5)
< 1= (1= 8)ua(t) —8[1 — (1 = &)u(t + 1) — SMH?) (6)
> 1-(1=8uy(t+1) =81 = (1 - &uy(t +2) - smy+e (7
< 1—(1=8u(t+1) =61 = (1 =8ua(t +2)—6M*7) (8)

Recursive substitution on equations (5), (6), (7) and (8) yields, for odd ¢,

m, 2

X
IA

t+1
m,

v

t41
M;

IA

i[l — (1= &)uy(t +2k) = 6]1 = (1 = E)uy(t + 2k + 1)]] (9)
k=0
i [1 = (1 = &)ualt +2k) — 8[1 — (1 = 8)uy(t + 2k + 1)} (10)

k=0

i[l —(1=8uy(t +2k+1)=6[1 — (1 = 8uzt + 2k +2)]] (11)

k=0

i [1 = (1= 8wt +2k+1) =81 = (1 — 8)ua(t + 2k +2)]] (12)
k=0

Furthor simplification then yields that

< mt < M <P if ¢ is odd (13)

1-b0< mb < M) <1-0biftiseven (14)

where b is as given in the Lemma. (13) and (14) imply that the infima and suprema

coincide, and thus if an equilibrium exists in the game, it must be unique in terms

of payoffs.

It remains to be shown that an equilibrium exists for the game. Consider the

following strategies: in period t, the player who makes the proposal wili propose

b', and the player who makes the response will accept all proposals that he weakly

prefers to b' and reject all others.
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By construction of b, the player : who makes the response in period t is just
indifferent between accepting b' and waiting to propose b'*! in the next period, col-
lecting ui(t) in the meantime. Therefore, rejecting proposals which are not preferred
to 8 and accepting those which are is player i’s best strategy. This implies that any

proposal which is preferred to b by the proposing player will be rejected. It then is

easy to show that the assumption that u;(t) + u(t) < 1 implies that

B> (1= 8)uy(t) + b+ if ¢ is odd

(1-9%) > (1 = 8)uy(t) + 6(1 — b))  if t is even

and thus the proposing player prefers the proposal he is to make according to his
equilibrium strategy over deviating and waiting for one period. The strategy profile
is, therefore, a subgame perfect equilibrium of the bargaining game for the given

sequence of disagreement payoffs.

Q.E.D.

Proof to Theorem 1, Section 3.1

The proof will show that the equilibrium claimed in the Theorem is a special
case of the Lemma of Section 3.2. First, note that the disagreement outcome in
every period is a Nash equiiibrium of the stage game and that all proposals are
history independent. Therefore, neither player will deviate in the stage game from
a” individually, since he cannot increase his payoff in the current period or thereafter
by doing so. Thus, a fixed disagreement payoff is given by u(a*) for every period
without agreement. The Lemmia gives the equilibrium proposals in the unique SPE
of a bargaining game with a fixed sequence of disagreement payoffs. These proposals

are uniquely determined by the disagreement payoffs. Here, u;(t) = u;(a*) vt > 1.
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The equilibrium outcome is that player 1’s [2's] proposal

b= 1 4 8uy(a®) — uy(a*) b = 6+ uy(a) - buy(a®)
' 1+6 2 146

is accepted in the first period of the game NG, (8) [NG2(6)].

In equilibrium, player i will always propose b; and only reject proposals which
are not preferred to b; for ; # i. After any rejection, players will play the Nash
equilibrium a® in the stage game. The equilibrium strategies for NG,(8) are given
as follows. V hy(t) € Hy, hy(t) = hy(t) ® b+ € H, and ha(t) € Hy:

for an odd period (t + 1),

filla(®) = 1500+ (") - wa))

Y i < filha(2)
fa(ka(t)) = {N otherwisel

f(hat)) = a"€ A
for an even period (t + 1),

fal(®) = 556+ w(a") ~ buala”))

filka(t)) = { Y if 8 > fo(hy(1)

N otherwise

f(hs(t)) = a"€ A

Q.E.D.

Proof to Theorem 2, Section 3.2

The proof proceeds by deriving the infima of the set of average subgame perfect
equilibrium payoffs, taking assumption A2 and subgame perfection into account.
Theorem 1 states that NG;(8) has, at least, one subgame perfect equilibrium ¥ 6 €
(0,1). Therefore, the set of average payoffs of the SPEs in the negotiation game

NG;(6) is not empty, Vé € (0,1) and ¢ = 1,2. Given é € (0,1), let m,(6) be the
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infimum of player 1's average equilibrium payoffs in NG}(6). In the game NGy($6),
since player 1 can guarantee himself a payoff of 0 in the current period, and his
average payoff from the next period on cannot be less than m,(8), player 1’s average
equilibrium payoffs are bounded below by ém,(§).

By the definition of the infimum, Ve > 0, NG,(é) has a SPE with average payoff
(z1,y:) such that

m(8) <z, <my(é) +e (15)

If z; + y1 < 1, it must be the case that player 1’s proposal is rejected in the first
period of NG;(8). Construct a new SPE whose strategies are the same as those
in the equilibrium with the payoff (z1,3:), but in which player 2 only accepts the
proposal z; in the first period. If player 2 rejects z,, the strategy is the same as
when player 2 rejects player 1’s equilibrium proposal in the equilibrium with payoff
(z3,1). This new SPE is efficient and the average payoff vector is (z;,1 — zy).

Therefore assume without loss of generality that
1+ = 1. (16)

In a SPE of NG,(6), if player 2 rejects player 1’s proposal in the first period,
players must play one stage game outcome, say ¢ € A, and one of the SPEs in
NG;(5), the payoff of which is, say, (2z2(a), yz(a)), where z2(a) + y2(a) < 1. There-
fore, if player 2 rejects player 1's proposal in the first period of NG,(6), player
2’s average payoff is bounded above by the maximum of all possible continuation
payoffs. Subgame perfection implies that 2 will certainly accept a proposal if his
payoff is more than the maximum of his continuation payoffs, and that player 1 will

propose z; in the first period of NG;(8) only if

ns Tef’;z‘{(l — 6)uy(a) + Syz(a)} (17)
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However, if player 2 does reject player 1's proposal, player 1 should not deviate from

a € A in the stage game. Subgame perfection, then, requires that

(1-9) :}‘Ea} wi(a),a2) + 6°mi(8) < (1 = 8uy(a) + bra(a)

< (1 = 8us(a) + &(1 ~ y2(a)),
which implies that
bya(a) < 8(1 — 6my(8)) — (1 - 5)(:{}:_&: ui(ay, az) — ui(a)) (18)
Substituting (18) into (17), and using the definition of y; from the text, one obtains

n < (1- 5)1116&}{"1(“) + uz(a) - max uy(ay, az)} + 6(1 — b, (8))

= (1-=38)y; + (1 —ém,(8))
Together with (15) and (16), this implies

1-m()—¢ < 1=z =y < (1-6)y; +8(1 - dmy(6))

1 -y €
= 8) > — -
ml) 2 T35 T Tow

Since ¢ can be chosen arbitrarily small, the last inequality implies that m(é) is
greater than or equal to 1—1—3(1 — y]). Moreover, player 1's average equilibrium
payoffs in NG;(6) are bounded below by 8m;(8), which is greater than or equal to
51— )
Q.E.D.
Proof to Theorem 3, Section 3.2
Note that the payoffs correspond to the perfect equilibrium for a bargaining game
with the disagreement payoff (0,y]) in every period. If (0,y7) is a Nash equilibrium

outcome of the stage game G, then the result follows from Theorem 1. If (0,y7) is




93

not a Nash equilibrium of G, the proof is lengthy. The necessary § will be derived

first. Then subgame perfection of the given strategy for § > § will be verified.

Suppose a® is a Nash equilibrium in the stage game G. The definition of y}

implies that y; 2> uj(a®). Since uy(a*) > 0 and (0,y}) # u(a®), it must be that

¥} + uy(a*) — uz(a”) > 0. Let a' € A such that

z; +y; = wa’) + uxa’) and z}= max u;(a},al) (19)

Let d = max(u,(a’) — u,(a")], Va',a” € A and i = 1,2. Since the set u(A) is

compact, d must be finite. Consider the following three functions of é € (0, 1],

ald) = ; +6[y1 + buy(a”) — 6%uz(a”)] = (1 ~ 6)[d + uz(a')]

c2(6) [yx + 6uy(a®) — uz(a®)] - " — b)d

1+6
y; — (1 — 6*)ug(a’) - 62u2(a') + 6uy(a”)

c3(é)

Since these three functions are positive and continuous at § = 1, there must exist
6 € (0,1) such that, Vé € (§,1), the functions ¢;(6), c2(6) and c3(6) are pusi.ive.

Equivalently, V4 € (¢, 1), the following three inequalities hold

(1-6)d < %%;—(1—6)u2(a‘)-1+6[l—u,(a)+6u2(a‘)} (20)
(1-8)d = 1;6[ +y 1‘1+.s['5 b (a") + z(a)] (21)
) + i S s ula) - sule) (22)

This concludes the derivation of §.

Consider the strategy for NG(6) which was given in the text. The subgame

perfection of the strategy will be proven by exhaustive consideration of all subgames.

In an odd period (t + 1), there are two cases to be considered.
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Case 1: either f(hs(t—1)) = a"; or a} = fi(hs(t—1)). @} # fa(ha(t=1)); or b+ <
fi(ha(t)).

Player 2 is the last deviator, i.e. he either deviated in the negotiation game before
period (¢ — 1), or in the stage game in period ¢, or rejected a proposal which should
have been accepted in period (¢t + 1). The disagreement payoff will be u(a®) for
cvery period thereafter. Since a® is a Nash equilibrium in the stage game, Theorem
1 implies that the strategy f induces a perfect equilibrium in such a subgame.
Case 2: otherwise

f(ha(t)) = a'. If player | were to deviate from a', according to the strategy, player

2 will propose -l%(l y;) instead of ? ug(a ) +

61(62 — y;) in period (I + 2).

Comparing player 1's payoffs, one obtains

'l__.'- YL
(1 = &)uy(a’) + (1 = §)ux(a’) + £ oui = (1 = &)uy(a’) + ula')] + il

146 1+ 6
= (1 —8)(z; + ‘)+62_y; = {l—-é&)ri+ : 1 -y,
= 1 T 1+ —8)ry l+6( -y
2
= (l—b)‘{né';xlu,(al 112)+l+6(l—y;)

Therefore, player 1 will not deviate from a'.
If player 2 were to deviate from a', player 2 will demand l+6( —uy{a®)+buy(a®))

5447

instead of 05 1=8u,(a') in period (* + 2). Inequality (20) implies that

(1 - 8)[max uz(a,ay) —wp(a’)] < (1-46)d

< ———i.:‘!? - (1= é&)uy(a') - r_‘%-é‘(l ~ uy(a®) + buz(a®))

Therefore, player 2 will not deviate from a.
Player 2 will also not deviate from fz(hg(t)): If player 1 were to deviate from
fi(hi(2)), player 2’s payoff from rejecting will be 44 l+6 Therefore, player 2 will accept

the proposal only if player 1 proposes less than —‘7; On the other hand, if player
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1 follows f,(h;(t)), player 2’s payoff from rejecting will be

(1 — &,uy(a”) + l—-f-_é(l —u{a*) + duy(a*)) = —1—:_—5[6 — duy(a®) + uz(a®)

which is less than -67'%'.-. Therefore, player 2 will not deviate from fp(h3(t)).

Finally, player 1 will not deviate from fy(h;(t)): If player 1 were to make a higher

proposal player 2 will reject and propose :=uy(a') + 6“16)(62—3/;) in period (t+2).

Since z7 + y; < 1 by A2,

F L he . . 62—y'
(l-—6)u|(a')+(l—6)u2(a')+m'!' = (1—-6)z;+y;)+ l+6l
8 —y; 1 -y;
< —_ —— ==
s(1-6+ 146 14+6

Therefore, player 1 will not deviate from f;(h,(t}). This concludes the checks for

an odd period.

In an even period (t+1), when either f(ha(t—1)) = a” or a} = fi(ha{t—1)),a} #
f2(ha(t—1)) or b'*! < f(hi(t)), Theorem 1 implies that the induced trategy forms
a perfect equilibrium in such a subgame, because the disagreement payoff in every
period thereafter is the Nash equilibrium payoff u(a®). Otherwise, if player 2 has

not deviated last, there are two cases that have Lo be considered.

Case 1: af # a] and a} = a}

Player 1 deviated in the stage game in period ¢. Player 1 will not deviate from m!,
because m! is his minimax strategy. If player 2 deviates from m!, the disagreement
payoff will be u(a*) in every period thereafter, and player 1 will propose ﬁ-@(6 -
éuy(a®) + uz(a®)) to player 2 instead of %:—';;-. Inequality (21) and the definition of d

imply that

6 — duy(a®) + uz{a®)
1+6

6+ y;
1446

(1-49) max uz(m},ay) + 6 < (1 = 8)uz{m?) + 6
tlz 2



Therefore, player 2 will not deviate from m'.
Player 1 will not deviate from f,(h,(t)): If player 2 follows his strategy, player
1’s payoff from rejecting will be ﬁg(l — y1)- So, player 1 will accept. If player 2
deviates, player 1's payofl from rejection will be ﬁ+—5)[6 + u;(a®) — duy(a”)], which
is more than Tf-_a(l —y;). Player 1 will therefore not deviate from fy(h,(1)).
Player 2 will not deviate from f,(h(t)) either: If player 2 were to demand more,
player 1 will reject and propose -,‘?(6 —éuy(a®)+u,{a*)) to player 2 in period (¢ +2).

Since duz(a®) — uy(a*) < uzx(a®) — uy(a®) < yy.

6 — buy(a™) + uy(a®) < 1 —uy(a”) + duy(a®) < 1 +y;

1 = &)ug(a”) + 6
(1= 8)uz(a”) + 140 146 Y

Therefore, player 2 will not deviate from f,(h,(t)).
Case 2: o' = d’
For the same reasons as in Case 1, players will not deviate from f(h3(t)) = m!

If player 2 follows his strategy, player 1 will accept, since his payoff from rejecting

is equal to 73;(1 — y7) which is less than uy(at) + 6(1‘”)(62 —y;) due to

y; € wla') = (1-8)y < (1-8)ua')

= &1 -y7) £ (l~62\ug(al)+62—y;

1~6
é

é
= ——(l=-y) <

3 uaa') + (6= 5})

5(1+6)

On the other hand, if player 2 were to demand more, player 1’s payoff from rejecting

is equal to

(1 = B)us(a) + g1 + bur(a) = wala”)) = 1456+ w(a”) = buala”))

which is greater than or equal to 1Z2uy(a') + g—% due t~ (22). Therefore, player 1

will not deviate from f;(h2(t)).




97

Player 2 will follow f2(h,(t)): If player 2 were to demand more, player 1 will
reject and propose i—%(& — buy(a*) + uz(a*)) to player 2 in period (t +2). Player 2’s

payoff then would be

é 1
(1 - 8)uz(a®) + m(é — éuy(a”) + uz(a’)) < m(l — uy/a*) + buy(a®))
b+y; 1-6 ., _ ., 1-86 s _62-—_1/,'
511 +6) 6 uz\a ) = 1 I3 u?(a ) 6(1 +6)

Therefore, player 2 will not deviate from f,(h(?)).

It has been shown that the strategv profile f constitutes a subgame perfect
equilibrium for the negotiation game NG,(6). The equilibrium outcome is that
player 1's proposal is accepted by player 2 in the first period, yielding average
payoffs of (137(1 — ¥7), 755 (6 + v7)).

Finally, consider the one period history k(1) = 1 & (a},a}) where a} # al.
Jla, 1) is a perfect equilibrium of NG(6)|a,(1) which is NG2(6), and the equilibrium
outcome is that player 2's proposal is accepted by player 1 in the first period, yielding
average payoffs of (Ti—s(‘ —y7 ) 743 (1 + 897)). This proves the theorem for the game
NG, (6).

Q.E.D.

Proof to Theorem 5, Section 3.3

The theorem is proven for NG, (8) only, but the arguments can easily be adapted
to prove the theorem for NG;(é). Let a® be a Nash equilibrium of G. Since (vy,v2) >
(v1,v3), 3 €0 = min{v; — v3,v2 — v3}/2 > 0. According to the results in section 3.2,

3 § such that, V é € (§,1), the game NG,(6) has an optimal punishment equilibrium

for player ¢ with strategy f, and
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nt+e 2

max l-_y;"(l 6)u1(a‘)+6 - (1 - é)u. (a)—66 Y (23)
1496’ 1+6 2 146

vy + € 2>

max § 2222, (1 = B)ua(a”) + 62 —22; 1~ (1 - §) 2y (24
1+6’ uane 146 ui{a }( )

1-6

——6——d$co € vi—(vit+e) forz=1,2 (25)

vVée(s1),dacA, b € [0,1] and a positive integer T (which may or may not be

finite), such that
(v1,v2) = (1 — 6T)u(a) + 67(b,1 — b) and (b, 1 —b) > v > u(a) (26)
Consider the outcome path #(T) = b(T) @ (T — 1) @ {Y'} of NG,(6), where
a(T — 1) = {a'}15' € AT™* and K(T)=(1,0,1,0,...,b).

Inequality (26) implies that players’ a-erage payofls from the outcome path =(T') are
(v1,v3). Let ID(-) be the indicator function for the outcome path 7(T') as defined.
Decompose the type k t-period history hi(t) € Hy as hi(t) = hy(s) & hi(t — ), for
k=1,2,3and s <i.

Consider the given strategy profile f = (f1,f2). It remains to verify that f
constitutes a SPE for NG, ($).

V hi(t) € Hh, if I1D(h1(2)) # 0, flan is one of the four strategy profiles
12 2 or f22 which are subgame perfect due to Theorems 3 and 4. There-
fore, the strategy profiles under consideration are subgame perfect if I D(h,(t)) # 0.
It remains to verify the strategy profile along the proposed path #(T), i.e. for
ID(hy(t)) = 0 and (t +1) < T. Due to symmetry, only an odd period (¢ +1) before

period T needs to be considered.
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V hy(t) € H, such that ID(h,(t)) = 0, player 1 will follow the strategy to propose
1 in period (t+1) < T and bin period T. If player 1 follows this strategy his av-.rage

payoff will be, by (26) above,
(1 -6T"Yu(a)+67"'b > v,.

However, if player 1 deviates, according to the strategy and (23), his average payoff

will be either

o 4 80— 37) P Sl 1
(1—6)u,(a)+6-T_;3——<(1 6)u1(a)+61+6 < v

é
or 1—(1—6)u2(a')—m(6+y{) Su+teép < M

Therefore, player 1 will not deviate from f;(k,(?)).
V ha(t) € Hy. If ID(ha(t)) = (1,t + 1), player 1 has deviated from fi(k(t)) in
period (t 4+ 1). Player 2’s payoff from rejecting is

5+ y;
16

(1 —6)uz(a”)+ 6 (27)

Therefore, player 2 will accept a proposal only if his share is not less than (27)
before period T. In period T, (23) and (26) imply that 1 — b is less than (27), so
player 2 will reject if player 1 demands more than b in period T. If ID(k,(t)) = 0,
player 2 will reject in period (¢+1) < T, since his payoff from acceptir.= is 0 which is
certainly less than that from rejecting. In period T, player 2 will accept the proposal
if ID(ho(T — 1)) = 0. Due to (24) and (26), his payoll from rejecting satisfies

1 —z;

(1 = B)ug(a’) + 65—

< v2

which is less than 1 — b. Therefore, player 2 will not deviate from f3(ha(t)).
V hy(t) € Hs. If ID(hs(t)) = 0, f(hs(t)} = @. Neither players will deviate from
a, since

1-6 " .
—5 :'?ean. ui(a}, a2) — ui(a)| < Td < ¢ £ vy — (v +¢€)
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< (1 _ 6T—t—l)ul(&) + 57‘—!-1&_ 1 - '}

146
and
1-6 . . 1-6
5 a?e% uz(ay,a3) - uz(a)] < Td < ¢ < vy —(n2+€)
< (1 — 67’—!-!)“2(&) + 6T—l-—l$_ lT—-_;-;%.‘

due to (23), (25) and (26). If ID(ha(t)) = (5,t + 1), i = 1,2, f(hs(t)) = a”. Since

a° is a Nash equilibrium in the stage game and the continuation payoff is history

independent, no player can increase his payoffs in period (¢t + 1) or thereafter by

deviating from a* individually. Therefore, players will not deviate from f(ha(t)).
(v1,v7) is, therefore, supported by the strategy profile f as a subgame perfect

equilibrium payoff from the outcome path 7(T') in the negotiation game NG, (6).

Q.E.D.

Lemma 2 is an extension of the proof to Theorem 3. The only difference to the
situation in Theorem 3 is that a deviation may leave players outside the bargaining
frontier. This difference is not of any importance, however, since only 1’s gain is

used, and 2's payoff after a deviation by 1 does not enter the equations.

Lemma 3 can be shown by a straight-forward modification of the proof in Fuden-

berg ~nd Maskin (1986) and is not demonstrated here.

Theorem 6: The proof is immediate. We know that min|z, %%i}], where
z; := inf {z;|(z1,22) € F,z; + 7 > 1}, can be supported as a SPE. We now em-
ploy the strategies leading to the minimum as punishment path for player 1, and
play equilibrium strategies as in Theorem 5. A path leading to the appropriate

payoff vector is played, and any deviation by a player is punished by reversion to

that player’s punishment path. Simultaneous deviations are ignored.




Appendix III

This appendix provides the strategies supporting Theorem 5.
Let #(T) = b(T)®&(T — 1) ®{Y'} be the outcome path of the negotiation game,

where §(T) = {b*}T_, and (T — 1) = {a'}1;'. Define the indicator function
ID(:): HHUH,UHy - {0} U {(i,)}i=1,2; 1<t <T}

recursively as follows: at the beginning of period 1, the history is the empty set
and the indicator function takes the value 0, i.e. /D(@) = 0. Thereafter, V hy(2) =

ha(t — 1) @ (at,a8) € Hy, hy(t) = hy(t) @ bt*+1 € Hy, and hs(t) = hy(t) ® {N} € Ha,

(1,t) if a} # a}; @, = a} and ID(h3(t—-1)) =0
ID(hi(t)) = (2,) if a} = a}; a3 # @} and ID(ha(t —1)) =0
ID(ha(t — 1)) otherwise

(1,t +1) if 5+ # b+ and (¢ + 1) is odd and ID(hy(t)) =0
ID(hy(t)) = { (2,t+1) if 5+ # b+ and (t + 1) is even and ID(hy(t)) =0

ID(hy(t)) otherwise

(1,t+1) ift+1=7Tand T isodd and ID(hy(t)) =0
ID(hs(t)) = { (2,t+1) ift+1=7Tand T is even and I D(h2(t)) =0

ID(hz(t)) otherwise

The indicator function takes two types of possible values, 0 and (z,t). The value
0 implies that no player has deviated from the proposed path x(T). The value
(i,t) irzplies that player : first deviated from the proposed path in period t, where
1<t<T.

Let 9 denote the strategy combination in the optimal punishment equilibrium
for player i in the game NG;(8). The strategies implementing the outcome path

#(T)=HT)®a(T - 1) & {Y}, where
a(T - 1) = {a'}7' € AT-! and KT)=(1,0,1,0,...,b),

in NG,(#) for large enough é then are:
v h](t) € H,, hg(t) = h](t) @b+ e H;, and h3(t) = hz(t) (5] {N} € Hj,
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for an odd period (t + 1)

b
1
1t =)
112(h1(t—3))
(’h(t"s))
\ Ji ( l(t-s
( Y

H(k(t) =

.

N
2! (ha(t — 5))
23 (ha(t — s))
3" (ha(t - 5))
| [22(ha(t - 5))

fa(ha(t)) = |

for an even period (t + 1),

Y

N
1 (ha(t - 5))
12(ha(t — 5))
2 (ha(t — 5))
| [E(ha(t — )
' b
0
2 (ha(t — 5))
S22 (ha(t — )
2 (hi(t — 8))
L S22 (ha(t — )

Si(ha(t)) = 5

Ja(hi(2)) =

A
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if ID(h
if ID
if ID

{t))=0and t+1=T"
h(t))=0and t +1 < T"
hy(t)) = (1,s) for even s
if ID(hy(t)) = (1,s)for odd s
if ID(hy(t)) = (2,s) for even s
if ID(hy(2)) = (2,s) for odd s

ift+1 =T and ID(h;(t)) = 0 or if ID(h(t)) =
(1,t+1)and 1= > (l—6)u2(a‘)+l+_6(6+y;)
otherwise

if I1D(hy(t)) = (1,s) for even s < ¢

if ID(hy(t)) = (1,s) for odd s <t

if ID(hy(t)) = (2,s) for even s < ¢

if ID(ha(t)) =(2,s)for odd s <t

f\r‘\/‘\/—\

ift+1 =T and ID(hy(t)) =0 or if I D{hs(t)) =
(2,t + 1) and b*' > (1 = $)y(a”) + 755(8 + 3)
otherwise

if 1D(ha(t)) =(1,s) for even s <t

if I1D(hy(t))=(1,s) for odd s <t

if ID(ha(t)) = (2.s) foreven s <t

if ID(ha(t)) = (2,8) for odd s <t

if ID((t))=0andt+1=T"

if ID(hy(t))=0andt+1<T*
if ID(hy()) = (1,s) for even s
if ID(hy(2)) = (1,8) for odd s
if ID(h,(t)) = (2,s) for even s
if ID(hyi(t)) = (2,s) for odd s

for both odd and even periods (¢t + 1),

a

f(ha(t)) = |

a
S (ha(t - s))
S (ha(t — s))
S (ha(t — )
L f”(h;(t - 3))

if ID(hs(t))=0

if ID(h3(t)) = (%,t + 1)

if ID(hs(t)) = (1,s) for even s < ¢
if ID(h3(t)) = (1,8) for odd s <t
if I1D(hs(t)) = (2,3) for even s < ¢
if ID(h3(t)) = (2,s) for odd s < 't
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