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1.1 Introduction

Natural, or free, convection is the buoyancy-induced fluid motion that
results from density variations in the presence of a body force field.
Natural convection is perhaps the most common cause of fluid motion. Free
convective flows span from the large scale motions of weather patterns and
ocean currents to the small scale flows associated with the cooling of man-

made devices.

From an engineering perspective, natural convection is commonly used as
a passive means of rejecting waste heat. This thesis extends the
knowledge of natural convective cooling of isothermal parallel plate
geometries. Early studies of isothermal parallel plates [1] were undertaken
because of the need to predict the cooling of fins. At present there is a
resurgence of interest in heat transfer from parallel plates because of

modern applications to the cooling of electronic and computer equipment.

The intended primary application of the present research is to the air
cooling of printed circuit boards (PCBs). To a large extent, the reliability
of a computer chip depends upon adequate heat removal. The heat removal
problem has been continuously exacerbated in the last twenty years by the
trend toward larger scales of circuit integration. Increasing
miniaturization has made heat transfer considerstions crucial in design of
electronic packaging. Typically, current devices dissipste an order of
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ABSTRACT

A numerical and experimental study has been conducted on two-dimens:ional
laminar natural convection heat transfer in an undivided and divided
vertical isothermal channel. For the divided channel configuration, an
isothermal plate at the same temperature as the channel walls was located
on the -:hannel centre line. The study examined the effect of Rayleigh
numbe:, plate-to-channel length ratio, vertical plate position, and plate
thickness on the heat transfer from the channel walls, the dividing plate

and the channel as a whole.

Solutions to both the full elliptic and parabolic forms of the Navier-Stokes
and energy equations have been obtained for Prandtl number Pr=0.7 (air).
Closed form expressions were derived for the limiting case of fully
developed flow in the divided channel. Experimental measurements were

made in air with a Msch-Zehnder interferometer.

Positioning the plate at the botom of the channel gave the highest average
Nusselt numbers for the dividing plate and the overall channel. At low
Rayleigh number, when the plate is at the bottom of the channel, extending
the channel walls above the plate increased the plate heat transfer by as
much as a factor of four. At higher Rayleigh number, plate average
Nusselt numbers as much as two times the isolated plate Nusselt number

were predicted numerically.

In the fully developed regime, a shurt dividing plate located at the channel

i



inlet reduces the wall average Nusselt number by about a factor of two,
compared with the undivided channel. At moderate and high Rayleigh
number, the wall average Nusselt number was almost independent of both

the vertical plate positios- and the plate-to-channel length ratio.
At low Rayleigh number, increasing the dividing plate thickness caused the
plate and wall average Nusselt numbers to decrease significantly. At high

Rayleigh number the effect of plate thickness was small.

Average Nusselt number correlations are presented for the dividing plate,

the channel wall and the overall channel.

iv
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CHAPTER 1
GENERAL REVIEW

1.1 Introduction

Natural, or free, convection is the buoyancy-induced fluid motion that
results from density variations in the presence of a body force field.
Natural convection is perhaps the most common cause of fluid motion. Free
convective flows span from the large scale motions of weather patterns and
ocean currents to the small scale flows associated with the cooling of man-

made devices.

From an engineering perspective, natural convection is commonly used as
a passive means of rejecting waste heat. This thesis extends the
knowledge of natural convective cooling of isothermal parallel plate
geometries. Early studies of isothermal parallel plates [1] were undertaken
because of the need to predict the cooling of fins. At present there is a
resurgence of interest in heat transfer from parallel plates because of

modern applications to the cooling of electronic and computer equipment.

The intended primary application of the present research is to the air
cooling of printed circuit boards (PCBs). To a large extent, the reliability
of a computer chip depends upon adequate heat removal. The heat removal
problem has been continuously exacerbated in the last twenty years by the
trend toward larger scales of circuit integration. Increasing
miniaturization has made heat transfer considerations crucial in design of

electronic packaging. Typically, current devices dissipate an order of




magnitude more power than the devices of ten years ago. In fact,
adequate heat removal may well be the limiting factor in future

developments of high speed circuits {2]).

Hannemann, Fox (of Digital Equipment Corporation) and Mahalingham (of
Motorola Inc.) [3] state that there are three main concerns in the thermal
design of electronic equipment: i) keeping the temperature of all devices
below some upper limit (typically 85-100°C) as constrained by reliability
factorg, ii) limiting the temperature difference between critical
communicating circuits, and iii) controlling thermally induced stresses; the
most frequent concern is the fatigue failure of soldered jointe during

power cycling [4].

Heat dissipation from an actual PCB array is a tremendously complex
rhenomenon. The heat transfer from the discrete heat dissipating
components on the board is not only influenced by convection to the air,
but also by board conduction and by radiation exchange betwesn the other
components and the surroundings. Clearly, the actual thermal performance

will be dependent upon the specific electronic packaging design.

To make this problem tractable in a general sense, PCB arrays are
commonly approximated by either uniform wall temperature (UWT) or
uniform heat flux (UHF) smooth plates as shown in Fig. 1.1. Indeed, many
such studies of two-dimensional natural convection from smooth parallel
heated plates have been published. From these studies, several practical
correlations have been developed to enable design engineers to predict the

thermal performance of electronic packaging ([5,6,7). In these correlations,



{a) PCB array

9
ol
(b) Smooth plate
model ~b -1-b -
Le I
1;““1‘\'1 L—T; o0 q,
-‘— —— .
4\

Figure 1.1: {a) Printed circuit board array and (b) Smooth
plate model




factors such as edge 2ffects, and the influence of protruding components,

have not been taken into account. However, for many applications, existing
parallel plate correlations can be used to suitably approximate actual PCB

conditions [8,9).

Previous studies have been almost exclusively restricted to considering
vertical parallel plates of equal length (as in Fig. 1.1(b)). The present
study focuses on a more complex circuit board configuration. Figure 1.2
shows a schematic diagram of the model geometry. A short board of
thickness 2t and length L, is positioned on the centre line of a channel
formed by two paralle] boards of length L., spaced 2b apart. The centre
board is positioned a distance L; from the channel inlet. Both the centre
board and the confining walls are heated to temperature T, above the
ambient temperature T,. The objective of the present study is to
determine if significant heat transfer enhancements, particularly for the
centre board, can b¢ obtained from the careful choice of geometric

parameters (L,, Lo by t, L))

Studies with circular cylinders [10,11,12], elliptic cylinders [13] and finned
tubes [14] have demonstrated that the presence of unheated confining walls
can enhance heat transfer because of the "chimney effect". The walls
confine the heated fluid in the plume into a column, thereby increasing the
buoyancy induced flow and heat transfer. The primary motivation of the
present study is to determine the heat transfer enhancement that can be
gained from the relative positioning of adjacent circuit boards, utilizing
this same principle. Emphasis is given to the case where the short

dividing board is located at the entrance of the channel (L‘=O), since this
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Figure 1.2: Model geometry for the present study.




configuration is expected to yield the greatest heat transfer enhancement.

Natural convective cooling of circuit boards is preferred over forced
cooling because of the lower cost, higher reliability, and lack of
electromagnetic and acoustic noise. The two main parameters that govern
the feasibility of natural convective cooling are the maximum chip power
and the board average heat flux [15,16]. Figure 1.3 shows the "envelope"
for the practical applicution of natural convection air cooling using
standard packaging techniques (Adapted from Hannemann [156])). Since a
large portion of the overall thermal resistance in air-cooled electronic
packages is due to convection, any increase in the external convection
coefficient will result in a significant decrease in the component
temperatures. Hence, convection coefficient enhancements achieved through
geometric effects (such as relative board positioning) could be used to

extend the range of applicability for passive cooling.

1.2 Literature Review

The geometry for the present study is a combination of two well studied
geometries: i) the vertical ~hannel, and ii) the gingle vertical flat plate.
For this reason, the literature for natural convection from vertical channels
(§1.2.1) and isolated plates (§1.2.2) will be reviewed. In addition, studies
involving the influence of confining walls on free convective heat transfer

will be reviewed (§1.2.3).

1Fig. 1.3 is presented for illustrative purposes only. The actual limits of
applicability for natural convective cooling will be dependent upon the
specific application.
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1.2.1 Studies of Natural Convective Heat Transfer from Smooth Vertical
Channels.

Studies of free convection from vertical channels have been undertaken
mainly because of the application to the cooling of fins and electronic
equipment. However, there has been additional interest in vertical
channels because of the need to predict the passive solar heating of
buildings via Trombe walls [17,18,19]. A brief review of studies of natural
convection in vertical channels will be given here to provide the
background and terminology associated with the channel geometry. Recent
comprehensive reviews of natural convection in vertical channels are

available in references [20,21].

The pioneering work on natural convection in vertical channels was done
by Elenbaas [1]) in 1942, He performed experiments using symmetrically
heated, square, isothermal pilates open at all edges. Combining the
experimental data with theoretical analysis, Elenbaas derived the following

semi-empirical correlation for the channel average Nusselt number:

h 4
Nu, - : G;P?b(l emp») (1.1)

f

where, Gr is the Grashof number (Gr=g8(T,-T,)b%/v?) based on the half

channel width (b).

Elenbaas was the first to show that the channel average Nusselt number
is essentially independent of the channel aspect ratio (L/b) when
correlated with the modified channel Rayleigh number Ra *=Gr-Pr-b/L,
Also, he showed that for large values of modified Rayleigh number, the




single flat plate solution ie approached (see Fig. 1.4).

The experimental results of Elenbaas are still much-quoted and are
generally accepted as a reference standard. However, Sparrow and
Bahrami [22] have demonstrated that Elenbaas’s data are unreliable at low
Rayleigh number because of variable property effects and very large
corrections for extraneous heat loggses. Using a naphthalene sublimation
technique, Sparrow and Bahrami [22] measured average Nusselt numbers

much higher than Elenbaas for Ra_"<0.625.

Relatively few studies on the vertical channel geometry were conducted in
the twenty years following Elenbaas’s benchmark publication. Then, with
the widespread availability of digital computer facilities, numerical studies

dominated the literature in this area.

Bodoia and Osterle [23] obtained the first numerical solution of developing
laminar natural convection in a symmetrically heated isothermal channel
using the boundary-layer approximations. The boundary-layer form of the
governing equations was solved using an explicit forward marching finite
difference procedure with assumed channel inlet conditions. Bodoia and
Osterle assumed a uniform velocity profile (v=v ), a uniform temperature
profile (T=T,), and ambient pressure at the channel inlet. The overall heat
transfer results were in good agreement with the experimental data of
Elenbaas [1). Also, the numerically predicted flow rates were confirmed in
a later experiment by Currie and Newman [24) (for 0.0365Ra_°s0.35). In
addition, at low Rayleigh number, Bodoia’s and Osterle’s numerical data

asymptotically approach the theoretical fully developed limit of:




M - (1.2)

The boundary-layer equations are parabolic in form. Hence, the forward
marching solutions to the boundary-layer equations are often referred to
as "parabolic solutions”". In contrast, the full equations without the
boundary-layer simplifications, are elliptic in form; solutions of the

complete equations are commonly called full "elliptic solutions".

Because of the success of the original parabolic solution by Bodoia and
Osterle, their basic methodology has been widely used to solve steady
laminar free convective channel flows for various boundary conditions.
With only slight modifications to the numerical method, developing free
convection has been solved for the case of walls with unequal uniform
temperature (UWT) [25,26], unequal uniform heat flux (UHF) [25,27,28], and
one wall UWT/one wall adiabatic [29, 30]). Davis and Perona [31] extended
the solution method to solve axisymmetric free convection in a vertical tube
for UWT and UHF boundary conditions. Similarly, Pollard and Oosthuizen
[32] solved free convection in a vertical tube for parabolic wall
temperature and heat flux distributions. Also, Aihara [33] has used the
forward marching method to study variable property effects for UWT
channels. In each of the above solutions, a uniform inlet velocity profile
is assumed; Aung et al. [25] noted that the uniform inlet velocity
assumption makes this general solution method inaccurate for very wide

channel spacings.

The most significant and widely adopted improvement to the forward

10




marching finite difference method has been to approximate the pressure
drop caused by the fluid acceleration at the channel inlet (Aihara [34)).
In early studies, the pressure at the channel inlet was assumed to be
equal to atmospheric pressure. Aihara [34]) used a more correct inlet
condition for pressure, p-p°=—pv°z/2. In independent studies, Aihara [34],
and Chappidi and Eno ([35] have shown that the assumption of zero
pressure defect results in higher predicted values of local and overall

Nusselt number than those obtained with the pressure defect.

Aihara [34], and Chappidi and Eno [35] have also studied the sensitivity
of the finite difference forward marching solutions to the assumed inlet
velocity profile. Solutions were compared for uniform and parabolic inlet
velocity profiles. At low Rayleigh number, the overall heat transfer resuilts
were insensitive to the inlet conditions. At high Rayleigh number
(Rac'=10‘), the uniform inlet velocity profile gave average Nusselt number

predictions about 5% higher than the parabolic profile.

Figure 1.4 shows a comparison of the numerically predicted channel
average Nusselt number (Aihara [34]) with the experimental data of
Elenbaas {1], Aihara [36] and Kennard [37]. This figure clearly shows the
excellent agreement between the parabolic (boundary-layer) solution and
the experimental data. It is interesting that the isolated plate limit is not
an upper bound; rather, the isolated plate behaviour is approached from
above. For the numerical solution, Aihara obtained channel average Nusselt
values almost 20% higher than for the single isolated plate. Similar high
Rayleigh number behaviour was found by Sparrow and Azevedo [38] for an

asymmetrically heated channel.
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Relatively few numerical solutions to free convection in the vertical channel
have been carried out without using the boundary-layer approximations.
Kettleborough [39] and Nakamura et al. [40] have presented data from finite
difference solutions to the full elliptic problem (for the UWT channel] and
Pr=0.733). Both Kettleborough and Nakamura et al. used the stream
function-vorticity formulation. At the top of the channel the derivatives
of temperature, vorticity, and stream function normal to the outflow
boundary were set to zero. Also, in both solutions the flow domain outside
the channel entrance was modelled and no assumptions were made about
the velocity and temperature profiles at the channel inlet. However, the
results are limited to two values of Rayleigh number (Ra_ "=91.625,
Rac'=0.91625) and are in poor agreement in many aspects. Kettleborough
predicts that for Ra_ '=91.625 (L_/b=10), fluid is drawn into the channe!

from the channel exit. Nakamura et al. does not predict this reverse flow.

Ramanathan et al. [7) have obtained a full elliptic solution to free
convection in a UHF vertical channel for a wide range of channe! aspect
ratios. They found that for L. /b210, the average Nusselt number is
independent of channel aspect ratio and asymptotically approaches the fully
developed limit at low Rayleigh number. However, for L_/b<10, the data are
not independent of aspect ratio at low Rayleigh number. Also, the data are
significantly higher than the fully developed channel Nusselt number.
They concluded that for small channel aspect ratios, vertical conduction at
the channel inlet and outlet cannot be neglected. Hence, boundary-layer-
type solutions will not give accurate results for short channels at low

Rayleigh number.




Aung [41] nas derived the limiting average Nusselt number expressions for
fully developed natural convection in asymmetrically heated channels (UWT
and UHF). The expressions were derived by exact analytical solution of
the boundary-layer equations. As discussed above, these expressions are
only valid for channels with large aspect ratios. A surprising conclusion
of Aung's analysis is that for free convection in channels, the thermal
developing length is shorter than or at most equal to the hydrodynamic

developing length, regardless of the value of the Prandtl number.

Said and Krane [42] have studied the effect of channel blockage on natural
convection from channels. In this combined numerical and interferometric
study, a semi-cylindrical obstruction attached to one channel wall partially
blocks the channel cross-section. Both isothermal (UWT) and uniform heat
flux (UHF) conditions for the wall and semi-cylindrical obstruction were
studied. Channel blockages as high as 67X of the wall spacing were
considered; comparisons were made to the unblocked channel. The results
indicate that an obstruction has much less effect at high Rayleigh number
than low Rayleigh number. For UWT, at Rac'=0.625 the largest obstruction
reduced the channel average Nusselt number by about 40X. In contrast,
at Ra_°=625, the same blockage caused only a 5% reduction in the average

heat transfer.

Heat transfer enhancements produced by adding adiabatic extensions to a
symmetrically heated UWT channel have been studied numerically by
Oosthuizen [43]). In this study, a forward marching finite element method

was used to solve the boundary-layer equations (for Pr=0.7). It was found

that adding adiabatic extensions above the heated section increases the
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induced flow rate and average heat transfer because of the "chimney"
effect. The average heat transfer rate can be increased by as much as

40-50%; however, very long adiabatic sections are required.

Other researchers have examined the possibility of enhancing the natural
convective heat transfer by staggering the channel walls (see Fig. 1.5).
Instead of a continuous smooth channel, the channel walls are divided into
an array of staggered channels. The heat transfer enhancement arises
from the fact that the thermal boundary-layer must reform many times in
a staggered channel. Also, after each stagger, the new boundary-layer is

forming in the cooler centre-line fluid from the channel below.

In an experimental study using a double staggered arrangement of UHNHF
plates, Sobel et al. [44] observed a 38X increase in the average Nusselt
number at moderate Rayleigh number. However, at low Rayleigh number,
no advantage was gained from the staggered arrangement. With decreasing
Rayleigh number, the high skin friction because of the staggered
arrangement become the dominant effect, causing the heat transfer to be

lower than for the continuous channel.

More comprehensive studies of the effect of stagger have been performed
numerically by Sparrow and Prakash [45,46]. Sparrow and Prakash solved
the boundary-layer equations using a standard forward-marching method
for an array of UWT plates. The calculations were restricted to
considering staggered channels formed by plates with no thickness. The
general results are in agreement with the study of Sobel et al. [44). It

was found that heat transfer could be¢ enhanced by stagger for Rac'> ~500,
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Figure 1.5:
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An array of staggered plates
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where the modified Rayleigh number is based on the half channel width for
the non-staggered configuration. Below Ra;-SOO. friction losses dominate.
For high Rayleigh number, their results showed that the maximum
enhancement, relative to the non-staggered case, was about a factor of two;
however, a large number of staggers (~100) were required to achieve this
level of enhancement. As a general rule, the enhancement was increased

by the use of numerous short plates and short total system heights.

1.2.2 Studies of Natural Convective Heat Transfer from a Single Isolated
Vertical Flat Plate

The isolated vertical flat plate is the most fundamental, and perhaps most

studied, heat transfer geometry. Only a brief discussion will be given

here.

In 1938, an approximate solution to the problem of laminar free convection
from an isothermal vertical flat plate was obtained by Squire and Goldstein
[47). Using an integral analysis of the momentum and energy equations,

the following expression for the average Nusselt number was obtained:

1
] i1
Nu‘_ln_:__ o.mpr",a.
(0.952 + Pr)* (1.3)
1
for Pr=0., Nu,-owm'

This approximate solution appears in many undergraduate textbooks.

Exact solutions of the boundary-layer equations, using similarity
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transformations, have been obtained by Ostrach [49), and Sparrow and
Gregg [50)°. Ostrach solved the governing equations strictly for the
isothermal boundary condition (UWT), whereas Sparrow and Gregg solved
the more general problem of nonisothermal plates. Both solutions give the

average Nusselt number for the UWT case as:

Y [

: Nul_cm (1.4)

There is siight disagreement over the value of the constant (C) for air.

Ostrach obtained C=0.515 and Sparrcw and Gregg get C=0.519.

Equation (1.4) with C=0.515 has been used in the present study when
making comparisons to the isolated plate behaviour. Equation (1.4) is valid
up to the laminar to turbulent transition, which occurs at a critical Grashof

number (based on the plate length) of approximately GrL=10°-10' [51].

1.2.3 Studies of the Influence of Confining Walls on Natural Convective
Heat Transfer

There have been relatively few studies of the effect of confining walls on
natural convective heat transfer. Those that do exist consider the effect
of confining wallr on heat transfer from horizontal circular, elliptic, or
finned cylinders. The emphasis on heat transfer from cylinders stems from
heat exchanger applications. The objective of all of these studies was to
determine if the heat transfer from the cylinder could be enhanced because

of the chimney effect. Also, because of the complexity of these geowetries,

2 An even earlier exact similarity solution was obtained by Schmidt
and Beckmann {[48].
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these studies are primarily calorimetric (heat balance) experiments. Table

1.1 summarizes the existing publications on the effect of confining walls.

One of the first studies on the effect of confining walls on natural
convective heat transfer was done by Marsters and Paulus [11]). They
studied the heat transfer from a vertical in-line array of ten heated
horizontal cylinders confined by unheated plywood walls. Air was the test
fluid. The cylinders were heated electrically to provide constant heat flux
conditions, and average Nusselt number data were obtained using a heat
balance method. Wall spacings of four to forty cylinder diameters (4-40D)
were studied. They found that for wall spacings of forty tube diameters,
the heat transfer was almost the same as with no confining walls. With
decreasing wall spacing the heat transfer from the cylinders near the
bottom of the array increased significantly (up to 50% for the bottom
cylinder), while the heat transfer from the cylinders near the top of the
array decreased. As a result, the overall heat transfer was not greatly
affected by the wall spacing; the data showed a slight decrease (less than
10%) in the array average Nusselt number as the ws.l spacing was

decreased from 40D to 4D.

In the above study, Marsters and Paulus [11] also examined the influence
of the radiation properties of the unheated confining walls. Most of their
experiments were done with the confining walls painted black. However,
some experiments were done with the walls covered by a reflective
aluminum sheet. They found that the wall radiation properties had no

discernable effect on the heat transfer from the cylinder array.




Table 1.1: Summary of the experimental studies of the effect of
confining walls on natural convective heat transfer.

Sketch of Confining Wall Cylinder Test
Authors Geometry Conditions Boundary Fluid
Condition
Marsters and Yo I unheated - constant air Prs0.7
Paulus [11), o plywood painted black heat flux
1972 g and reflective coating (UMF)
o (approx. adiabatic)
(o]
(o]
o
(o]
—— o —
10 cylinders
Marsters [10), - unheated aluminum plate | constant air,
1975 (approx. ambient temp.) heat flux freon,
(UHF) water
0.75Prs10
1 cylinder
Tokura et al - [~ unheated, bakelite plates | isothermal | air Prx0.7
{12], 1983 O with reflective coating (UWT)
(approx. adiabatic)
3 & 5§ cylinders
Sparrow et al. - - unheated, insulated isothermal | air Prs0.7
(14), 1986 plywood {UWT at
(spprox. adiabstic) finned
tube root)
1 finned tube —
Yang et al. - unheated - isothe.mal { air Prs0.7
[13], 1988 O polished aluminum, (UWT)
(approx. ambient temp.)
b
2 & 3 elliptic tubes
Sparrow et al., - [" wall with .ylinder - isothermal | air Prs0.7
[52), 1983 heated and isothermal {IWT)
wall without cylinder ~
short unheated, paper
cylinder 4 b
S __

cylinder affixed to
heated wall

R0



After studying the array of cylinders, Marsters [10] simplified the
geometry to consider a single cylinder confined by unheated walls. In this
case, a constant heat flux cylinder was confined by walls constructed of
aluminum plate (presumably at the ambient temperature). For most of the
experiments, the cylinder was located six diameters from the inlet of the
channel formed by the confining walls. Wall spacings ranging from two
cylinder diameters (2D) to the isolated cylinder (no walls) were studied for
10sRa, <5x10°,  Air, freon 113, and water were used as the test fluids.
Marsters found that cylinder heat transfer enhancements as high as 50%
could be achieved because of the presence of the confining walls, An
average Nusselt number correlation wae presented that includes the effects

of wall spacing, channel aspect ratio, and cylinder Rayleigh number (Ra,).

In this same study, Marsters [10] also looked at the effect of the vertical
position of the cylinder. Marsters states that "as long as the heated
cylinder lies within the channel formed by the walls (i.e. is8 not below or

above the walls) its [vertical] location is of no apparent significance.”

Tokura et al. [12] have also studied the heat transfer from a vertical in-
line array of heated horizontal cylinders confined by unheated walls. In
this study, the cylinders were isothermal and the walls were approximately
adiabatic. Their study (for air) was more comprehensive and seems to
have been done more carefully than the previous work of Marsters and
Paulus [11]. Tokura et al. considered the effect of cylinder spacing for
two different cylinder arrays in addition to the effect of wall spacing.
However, the main result of Marsters and Paulus [11] remains essentially

unchanged; the array average Nusselt number is relatively insensitive to
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wall spacing. Tokura et al. found that the array average Nusselt number
fncreasnd slightly (10-15%) for some configurations, while for others the

heat transfer decreased slightly.

In contrast to the results of Marsters [10] for the single cylinder, Tokura
et al. [12] found that positioning the cylinder array closer to the channel
inlet increased the average heat transfer. They suggest that "the reason
may be that the chimney effect is promoted by setting the array in the
bottom . . . because of the increase in the length of the path in which the

hot air flows."

Yang et al. [13] have performed a study similar to the study by Tokura et
al. [12]) using an array of elliptic rather than circular cylinders. They
studied vertical arrays of in-line horizontal isothermal elliptic tubes
confined betwcen walls at near ambient temperature. Air was the test
fluid. Although elliptic tubes give higher heat transfer rates than circular
tubes, the results are qualitatively in agreement with those of results of
Tokura et al. [12). Again, the study confirms that wall spacing does not

strongly influence the total heat transfer from an array of tubes.

Sparrow et al. [14] have studied the heat transfer from a single horizontal
finned tube confined by unheated, essentially adiabatic walls. In this
study, both the walls and the finned tube were constructed to have
moderately high emissivities and no attempt was made to co.rect for
radiation losses. Rather, both the radiative and convective heat transfer
components were reported together. They found that in almost all cases,

in-channel positioning gave higher heat transfer rates than free-space
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positioning (no walls). Heat transfer enhancements as high as 2.5 times the
free-space positioning were observed for some configurations because of
the effect of the confining walls. In general, taller channels and smaller
wall spacings gave larger enhancements. In addition, it was also found
that the vertical positioning of the finned tube strongly influenced the
enhancement due to the confining walls; again, contrary to the results of
Marsters [10] (for a plane cylinder), Sparrow et al. [14] found that placing

the finned tube at the bottom of the channel maximized the heat transfer.

Sparrow et al. [52] have studied a geometry that has several important
similarities to the present research. They performed an experimental study
of free convective heat transfer from a short horizontal cylinder in an
asymmetrically heated chrinel. The cylinder was attached to the heated
wall and partially spanned the channel gap width (see the sketch in Table
1.1). Both the heated wall and the attached cylinder were isothermal and
maintained at the same temperature. They found that the heat transfer
from the cylinder could be enhanced by up to 60X compared to the
external flow situation (cylinder mounted on an isolated vertical UWT plate)

when the cylinder was located near the bottom of the channel. At low

Rayleigh number (based on the cylinder diameter, Ray), the cylinder heat

transfer was lower than the external flow situation when the cylinder was
located at the top of the channel. Also, in general it was found that emall
gap widths (approaching the cylinder length) gave the largest

enhancements.

In this same study, Sparrow et al. [52) also examined the effect of the

radiation properties of the unheated walls. They compared the cylinder




heat transfer for walls with near blackbody properties and for walls with
high reflectivity. Their conclusion does not agree with that of Marsters
and Paulus {11). Sparrow et al. found that black walls improved the heat
transfer from the cylinder compared to reflective walls. Their explanation
is that black walls have higher equilibrium temperatures than reflective
walls. Hence, the elevated temperatures for the "unheated" walls augment

the buoyancy force in the channel.

The above studies have investigated the effect of heated, unheated, and
adiabatic confining surfaces on natural convection from horizontal
cylinders. Many of the studies show that very significant heat transfer
enhancements are possible due to the chimney effect. Also, from these
studies, it is clear that only the most basic interactions for very simple
geometries are understood. In some cases contradictory conclusions have

been drawn.

1.3 Scope of the Research

The literature review shows that there has been a tremendous amount of
research into natural convection from many different vertical channel
geometries. However, to the author’s knowledge, no study exists that
considers the free convective heat transfer from a channel with a dividing
plate. As discussed in section 1.1, this geometry is of significant
engineering interest, especially for the cooling of electronic components.
Hence, the unique contribution of this research is to delineate the laminar
natural convective heat transfer characteristics of a channel, divided on

the centre line by a plate.

24



The purpose of this study is to provide a basic understanding of the
interactions between the dividing plate and the channel over a wide range
of Rayleigh number and geometric parameters. For this reason, the
present study is restricted to equal uniform surface temperatures (UWT)
for the dividing plate and channel walls. Historically, in the heat transfer
literature, UWT boundary conditions are considered first and more realistic

or complex boundary conditions are studied later.

More specifically, this study will be comprised of the following:

i) Detailed comparisons will be made of the full elliptic solution and the
existing boundary-layer (parabolic) solutions to natural convection in a
vertical undivided UWT channel. A new approach for modelling the inlet
boundary conditions will be described.

ii) Closed form expressions will be derived for the average Nusselt numbers
in the divided channel for the fully developed limit (Ra®-0).

iii) Numerical solutions (parabolic and full elliptic} will be obtained to the
developing free convective flow in a divided isothermal channel. The
effects of plate length ratio (Lp/Lc), vertical plate position (L,/L_), and
channel blockage (t/b) will be shown for a wide Rayleigh number range.

iv) Experimental data for the isothermal divided channel will be obtained

using a Mach-Zehnder interferometer for L,/Lc=1/3. The experimental local

and overall Nusselt number data will be compared with the numerical
predictions. Also, qualitative comparisons will be made between the
numerically predicted temperature field and the infinite fringe
interferograms.

v) Average Nusselt number correlation equations for the dividing plate, the

confining walls and the overall channel will be presented.




CHAPTER 2

NUMERICAL SOLUTION METHODS

2.1 Introduction

Natural convection in a divided channel has been solved numerically, both
with and without the boundary-layer approximations for Pr=0.7 (air).
Solution of the boundary-layer (parabolic) equations requires much less
computational resources than the full elliptic problem. Furthermore, in
previous studies of channel geometries, boundary-layer solutions have been
in good agreement with experimental data. However, there is some concern
about the accuracy of boundary-layer solutions, particularly for predicting
local quantities, because of the arbitrary inlet boundary conditions. Also,
the present parabolic solution is restricted to dividing plates with zero
thickness (t=0). For these reasouns, the full elliptic problem has also been

solved.

2.2 Governing Equations

The general partial differential equations that govern the transfer of heat
in a Newtonian fluid are given by Schlichting [53). For the present study,
these equations are simplified by the following assumptions: the flow in
the channel is assumed to be steady, laminar, incompressible, and two-
dimensional. Also, viscous dissipation is neglected and all thermophysical

properties are assumed to be constant, except for density in the buoyancy
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term of the y-momentum equation fe., the Boussinesq approximation!. With
these assumptions, the governing equations become:

The continuity equation:

G

-—f—-ﬂ

ax
The Navier-Stokes equations:
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The energy equation:
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It is customary to define a pressure defect:

P -p-p, (2.5)

where p, is the pressure that would result if the temperature were the

pe, n—

same as the ambient throughout the flow field. In other words, the
pressure defect p’ is the difference between channel and the ambient

pressure at the same elevation.

It is the density variation in the body force term of equation (2.3) that
produces the fluid motion. The density variation can be approximated

using the expansion:

P=P,-P,P(T-T) (2.6)

where B denotes the coefficient of thermal expansion. Noting that

&,/dy=-p 8 the y-momentum equation (2.3) can be written as:

! petailed discussions of the Boussinesq approximation cen be found in
references [55,56]. In particular, Gray and Giorgini [55]) have shown
the conditions under which the approximation is valid for air.
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2.3 Elliptic Solution

Equations (2.1, 2.2, 2.4, 2.7) have been solved without further
approximation. Calculations for Pr=0.7 (air) were carried out using the
finite element code FIDAP (Fluid Dynamics International, [54]). A total of
127 FIDAP runs were made during the course of this research (not
including input file testing). A discussion of the application of the

commercial code FIDAP to the present problem is given in Appendix A.

The computational domain for the elliptic solution is shown in Fig. 2.1.
Note that for t>0, the dividing plate has rounded leading and trailing
edges with radii equal to the plate half-thickness (t). Rounded edges on
the plate were used to avoid the singularities associated with sharp convex
corners. The corners of the channel walls were not rounded so that direct
comparisons could be made with previous elliptic solutions (with sharp inlet
corners) for the undivided channel (L’=O). The flow was assumed to be
symmetrical about the channel centre line. Hence, only half of the flow
field was solved. In dimensional form, the centre line, plate, wall, and

channel exit boundary conditions are:

oT o
;-E-u-o, Jor -r;sy<L,, x-0 (CD) (2.8)

ar_ov
S 540 for (L+L)<ysl, 20 (EP) (2.9)

T-T, u=v=0, for Lisys(Li+L), 0sxst on the plate (DE)  (2.10)
T=T, u=v=0, for O0sysl, x-b (AG) (2.11)
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Figure 2.1: The heat transfer geometry showing the limits of the
computational domain.




%-a-v-o. Jor b<xgr, y-0 (AD) (2.12)
T _ou o
—_—— e, Osx<d, y=-L (FO) (2.13)
» oy M g

The derivatives of temperature and velocity normal to the channel exit
have been set to gzero at the upper boundary (FG). Although this
condition coul? affect the heat transfer from the channel, it was the best
assumption available short of extending the domain to consider the plume
region outside the channel. Nevertheless, these exit conditions do attempt
to capture the correct physics. For (Gr-Pr)>>1, convection will be much
larger than conduction at the exit plane of the channel. Hence, neglecting
axial conduction at the exit plane is a reasonable upproximation. The
derivative conditions, applied to velocity, cause the streamlines to be
parallel at i.ae exit plane. At low Rayleigh number the flow is fully
developed at the exit and the traverse velocity component is near zero,
consistent with the imposed exit conditions. At higher Rayleigh number,
the surfaces begin to act as isolated plates and boundary-layer flow exists.
For such flows, far from the leading edge the traverse velocity component
is also small. Suitability of the exit boundary conditions will be discussed

further when the results are presented.

In the present study, the channel inlet flow boundary conditions (BC) are
non-trivial and have been given special consideration. The approach
described here is entirely different from that used in previous elliptic
solutions. Kettleborough [39] and Nakamura et al. [40] used boundary
conditions that physically corresponded to fully developed flow entering

a channel with a large sudden expansion. Kageyama and Izumi [57]) used
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a similar approach to solve free convection between non-parallel plates.

Ramanathan et al. [{7] attempted to solve the inlet and outlet boundary
condition problem (for UHF plates) by enclosing the channel in a very
large isothermal enclosure. This approach was only partially successful.
Despite very large computational domains, enclosure effects were not
entirely eliminated and corrections had to be applied for the preheating of
the air entering the channel. Also, presumably because of enclosure

effects, velocity and temperature fields outside the channel were not

presented.

The inlet boundary conditions used in the present case are based on
Jeffrey-Hamel flow as shown in Fig. 2.2. Jeffrey-Hamel flow [58] is a
similarity solution of isothermal flow caused by the presence of a source
or sink at the point of intersection of two walls. Solution details are given
by Millsaps and Pohlhausen [59]. In the present study, converging flow
caused by a sink and a wall half angle of 90° is of specific interest. The

flow is purely radial and in cylindrical co-ordinates (r,0) has the form:
r r

where v, and Ve denote the radial and tangential velocity components.

The radial stress component for Jeffrey-Hame] flow is:

o
o"--p+2p#--p-2uﬂr? (2.16)

At large r (r-e), far from the sink, the pressure approaches the ambient




Figure 2.2: The Jeffrey-Hamel! flow geometry applicable to the
present study.




pressure, v, approaches zero, and the radial stress goes to zero. Hence,
tangential velocity, radial stress, and temperature inlet boundary conditions

can be specified as:

Vy=0,=0, T=T,, asr-= (2.17)

On this physical basis, the above boundary conditions were imposed on a
finite semi-circular boundary (BC). For a sufficiently large inlet domain
radius (r‘), the flow at the boundary (BC) will approach Jeffrey-Hamel flow.
That is, with increasing radius (ri), the channel will indnce flow at the

boundary that asymptotically approaches that produced by a point sink.

Now for the elliptic solution we introduce the following dimensionless

quantities:
x-%, y-%, R"l'; (2.18)
v--. v-.L (2.19)
Uy U,
-g‘_% (2.20)
-
p-PY (2.21)
“Uw

l
where U _&PrGr? and Gr_l’p(r.'T)b’ (2.22j
L 4 b ’ v2

Using the above quantities, the dimensionless governing equations become:

U ¥ (2.23)
X o




2 v oV aP 3 v SV
U2 vy - X L Gr? oy.er
Gr*(U +Va ) 3 +Gr T+(az+az)

o, i, #r IT

X o " ax? a}")

3
GriPr(U

The dimensionless boundary conditions are:

aTr av _ L,
T U=0, for R,sY<b,X-0 (CD)

ar {&L+L) L
e @ oo @ -o' —-—.
U=0, for > <Ys > X-0 (EF)

€&+ L

L
T*=1, U=V=0, for -;'s}'s >

. OsXs-%, on the plate (DE)

L
T-1, U-V-0, forOsYs-;‘. X-1 (AG)

%-u-v-o, for 1<X<R,, Y=0 (AB)

ar U ov L
¥ oy oY 0, for 0<X<1,Y b FG)

oV,
and V,=0, ~P+2— =0, T"=0,
aR
on the semi-circular boundary (BC)
Vs

v
where Voete, Vot
" Uy ' Uy

These boundary conditions are not valid for low Rayleigh number.

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(3.31)

(3.32)

(2.33)

(2.34)

At low

Rayleigh number the fluid moves with very low velocity and becomes

heated by conduction far upstream from the channel inlet. The buoyancy




force affects the flow at the boundary and the isothermal conditions
needed for the existence of Jeffrey-Hamel flow are no longer satisfied.
Based on the examination of stream function and isotherm contours in the
inlet region, & conservative lower limit for which these boundary conditions
are acceptable was found to be Ra *x1.5 for L. /b=24 and L /L =0 (see Fig.

4.5).

The locai heat transfer coefficients and local Nusselt numbers for the wall

and plate are defined as:

oT oT,
kE"" -k E“"“ (2.35)

hw.y- (T.—T.) ’ ”D-!- (T,—T)

h,,b_or hy,b_-or 2.36
e e S i T

wy Tk

where n and N are dimensional and dimensionless unit vectors normal to

the plate surface.

The wall average Nusselt number was calculated by integrating the ‘ocal

Nusselt number distribution:

b l’"ar'
Ne -2 [ 9T ay (2.37)
w Lg A axll-l

Similarly, the average plate Nusselt number was calculated by integrating

over the wetted length of one side of the plate (L ):

p,vet

Nu_ - -2 f LN, (2.38)




where dS is an incremental dimensionless distance around the :-atted
perimeter of the plate. Note that the wetted length of the dividing plate
(L’.,“) is slightly greater than the linear length in the y-direction (L,)
when the plate has finite thickness. For t/b=0.2 and L./b=5.0, the wetted
length of one side of the dividing plate is L, .,./b=5.228.

The overall Nusselt number for the channel (plate and walls combined) was
calculated using two different methods. One method used to compute the

channe]l average Nusselt number (Nuc) was a heat balance:

Nu, [Gr"'Pr( - j v rdx]

[Gr"Pr( ) fV NX]m f—-—!r-o

The ftirst, second, and third integrals in equation (2.39) correspond to the
heat convected out of the top of the channel, the heat convected back into
the channel entrance, and heat conducted out of the channel entrance.
Special care was required to accurately compute the last two integrals of
equation (2.39). These integrals were actually computed along a surface
slightly outside the channel entrance, in order to avoid the singularity at
the inlet corner. These two integrals are largest at low Rayleigh number.
For the lowest Rayleigh number considered (Ra°'=1.458). it was found that
the heat conducted out of channel entrance was equal to the heat
convected back into the channel. Hence, in all cases, Nu,2 was computed

by:

1
M-l Gr“h(L":m) { vral, »




The channel average Nueselt number (Nu_ ) can aleo be calculated by
averaging the wall and plate Nusselt numbers from equations (2.37) and

(2.38) as:
Nu - Nt Lyowe + Nty L, (2.41)

Lywa * L,

The dimensionless half channel flow rate was calculated by:

1
Q- [ f vdx ],_,_.” (2.42)
0

The dimensionless bulk temperature at the channel exit was calculated by:

T, -[ }'V TdX ],_,_J, / [ j"v dX ],_,_J, (2.43)

2.3.1 Grid Tests for the Undivided Channel (Elliptic Solution)

A preliminary study of natural convection in an undivided channel
(L,/Lc=0) was conducted. Figure 2.3(a) shows the entire finite element
mesh for the undivided channel (for Lc/b=24). Figure 2.3(b) is a close-up
view of the mesh in the channel entrance region. The "standard" mesh
contained 2,456 nine node quadrilateral elements (10,033 nodes). Local
interpolation functions for these elements are quadratic for velocity and
temperature, and linear for pressure. The penalty formulation was used
for pressure. Details of the solution method can be found in the FIDAP

theoretical manual [54].

Tests were conducted on several grids to ensure that the results were

independent of both grid density and the size of the inlet computational
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(b)

Figure 2.3: (a) The entire finite element grid for the undivided
channel (L_/b=24), and (b) a close-up view of the
grid in the channel entrance region.




domain (R;). For all cases, the results were most grid sensitive at the
upper limit of Rayleigh number, (Gr=10%, Ra_°=291.7, L_/b=24). Table 2.1
shows partial results from these tests. Note that for cases A, B and C, the
grid density remains roughly constant and only the inlet domain radius R,
changes. In case D, the number of nodes has been increased to test the
dependency of the results on grid density. When the grid density was
increased from 10,033 to 14,369 nodes, the additional nodes were placed
primarily in the entrance region of the channel where the increased grid
density would have the most effect. Other grid tests had shown that the
number of nodes in the upper portion of the channel were sufficient. So,
although t - total number of nodes increased only by about 43 percent,
the grid density at the channel inlet region increased by a much larger
amount. This approach resulted in substantial reductions in computer time,

while still giving an adequate indication of the grid dependence.

Based on the grid test results, the standard grid for L /b=24 had inlet
domain radius of R,=5 and 10,033 nodes (2,456 elements). With this grid,
the dimensionless flow rate (Q,) is grid independent to much better than
1X. For all cases, Nu, computed from equation {2.40) was two to three
percent higher than Nu_, computed using equation (2.41). Nu, shows less
grid dependence than Nu_, (which tends toward Nu, with increasing grid
density). For this reason, Nu, calculated from equation (2.40) was

considered a better estimate of the channel average Nusselt number.

Grid tests also showed that the local quantities, such as local Nusseit
number, were more grid dependent near the channel entrance than the

exit. The local Nusselt number distributions along the channel wall (at




Table 2.1: Partial results from the elhpuc solution ‘gnd tests for the
undivided channel (for Ra‘—291 7, Gr=10%, lé/b=24, Ln/Lc=0).

Case | Number of Inlet Domain Average Nusselt Flow Rate
Nodes Radius Numbers
R, Nu, Nu,, Q,
A 8,465 3 2.4055 2.346 2.084
B 9,249 4 2.4046 2.346 2.076
C 10,033 5 2.4040 2.345 2.073
D 14,369 5 2.4046 2.357 2.073

Table 2.2: Partial results from the elliptxc solutlon grid tests for
the divided channel (for Ra, *=10%, t/b=0, L,/L =0, L /L =1/3

L./b=15).
Average Nusselt Numbers
Case |} # of Inlet Channel wall Plate Flow Rate
Nodes | Radius
Nu_ Nu_, Nu_ Nu, Q,
A 9,003 6.3895 6.2621 5.2568 9,2778 1.5269
B 10,143 6.3856 6.2561 5.2580 9.2503 1.5115
C 14,479 6.3823 6.2336 5.2589 9,1578 1.5109
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Ra*=291.7, L./b=24) for gride with 10,033 and 14,369 nodes (R,=5) had a
maximum difference of about three percent near the leading edge. At the
channel exit the difference became negligible. Despite these slight
differences, the lower grid density was selected for subsequent runs since
it required significantly less computing resources. A typical case with
14,369 nodes took approximately 3.9 CPU-hours on a CDC Cyber-962
mainframe computer; cases with 10,033 nodes took only 1.7 CPU-hours. For
all computations, the convergence criteria were set (in the FIDAP input

file) such that the calculations were carried to four digit accuracy.

It is evident from Fig. 2.3(a) that the elements near the wall in the exit
region of the channel are very elongated. Highly distorted elements can
cause ill-conditioning [60]. Test runs were made with double the number
of nodes in the y-direction for 1/3<y/L_<1 to ensure that the elongated
elements were not causing loss of accuracy. Global parameters (Nu_ Nu_,,
Q,) and local heat transfer results were unchanged to the fifth decimal

place.

2.3.2 Grid Tests for the Divided Channel (Elliptic solution)

After the preliminary study of the undivided channel, the finite element
grid structure was modified to have a dividing plate on the channel centre
line. Calculations were done on the five different grid structures shown
in Fig. 2.4 and Fig. 2.5. For these grids, the plate was located on the
channel centre line and the length ratios were fixed at L_/b=15 and L'/b=5
(L,/Lc=1/3). Figure 2.4 shows the grids with a zero thickness dividing
plate (t/b=0) at the bottom (L /L =0), middle (L,/L_=(1-L /L }/2=1/3) and
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(a) L,/L_=0 (b) L,/L_=1/3 (¢) L,/L_=2/3
14,479 nodes 15,705 nodes 15,567 nodes
3,866 elements 3,831 elements

3,576 elements

Figure 2.4: Finite element grids for the divided channel with a
zero thickness plate (t/b=0, Lp/Lc=1/3, L./b=15).
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{a) t/b=0.1 (b) t/b=0.2 {(c) t/b=0.2
14,461 nodes 14,461 nodes 2,043 nodes
3,558 elements 3,558 elements 562 elements

Figure 2.5: Finite element grids for the divided channel with a
finite thickness plate (Li/LEO’ Lp/Lc=1/3, L /b=15).




top (L,/L_=1-L /L =2/3) of the channel. Figure 2.5 shows the grids for the
finite thickness dividing plate located at the bottom of the channel
(L,/L.=0), with blockage ratios of t/b=0.1, 0.2. In Fig. 2.5(c) the number
of elements has been reduced in order to more clearly show the grid

structure used for finite thickness dividing plates.

Again, the results were most grid dependent ot the upper limit of Rayleigh
number, Ra_"=10%, Unfo:' inately, this causes grid testing to be very
expensive and time consuming, since scveral calculations are required for
each grid structure to get a converged solution at Ra°'=10‘. For this
reason thorough grid testing was conducted only for the grid shown in
Fig. 2.4(a). For this grid, a zero thickness plate (t/b=0) is located at the
bottom of the channel (L,/L_=0). Testing was done on this particular grid
because the plate heat transfer was expected to be the highest for this
geometry and the plate has singularity points at its leading and trailing
edges. The grid dependence of the results from the other finite element

grids (Fig. 2.4(b), (c), Fig. 2.5(a), (b)) will be comparable.

Table 2.2 gshows partial results from the tests for the divided channel.
Note that for cases A and B, the grid density remainse roughly constant
and only the inlet domain radius R, changes. In case C, the number of
nodes is increased to test the dependency of the results on grid density.
The channel and wall average Nusselt numbers for cases A and C differ by
much less than 1%. However, the flow rate and plate average Nusselt
number is somewhat ' .ore grid sensitive; the results from cases A and C

differ by slightly greater than 1X%.
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The local Nusselt number distributiona along the channel wall for cases A
and C had a maximum difference of about 5X near the leading edge; the
plate local Nusselt number distributions had a maximum difference of about

3% near the leading edge. Toward the upper end of the plate and wall,

the differences became negligible.

Based on the above grit1 tes 1g, the finite element grids used for the
divided channel calculations had an inlet domain radius of R;=5 and about
15,000 nodes. To reduce the computation time and the expense for the
divided chennel study, the FIDAP processor module was installed on an
ETA-10P air-cooled supercomputer. Typical runs with 14,461 nodes took
only 18 CPU-minutes. (Previous similar runs on a CDC Cyber-962 took

about 4 CPU-hours). Preprocessing and postprocessing was done on a CDC

Cyber-962.

2.4 Parabolic Solution

The parabolic form of the governing equations is obtained by applying the
boundary-layer approximations to equations (2.1, 2.2, 2.4, 2.7). Specifically,
diffusion of momentum and heat in the streamwise (y) directior are
neglected and the pressure is assumed to depend only on the y-
coordinate (3gp/dx=0). With these simplifications, the governing equations

Lecome:

The continuity equation:

(2.44)

ple
2|®
S




The y-momentum equation:

v _ov. dp' Fv
p( % a) ; SPRT-T)+p—
The energy equation:
ar or, , T
PR Tl W (2.46)
pe,(u-—+v) k

Equations (2.44, 2.45, 2.46) have been solved using 8 forward marching
procedure. The computations start at the channel inlet where uniform
temperature (T=T°) and velocity profiles (v=v o) ar: assumed. For the
parabolic solution, the dividing plate location is specified by a change in
boundary conditions on the charnnel centre line. Thus, the parabolic
solution is restricted to modelling a dividing plate with no thickness (t=0).
A similar technique of changing boundary conditions during the forward
marching procedure has been used successfully by Oosthuizen [43],
Sparrow et al. [45] and Tanda [61] to solve developing free convection in

other channel -~onfigurations.

Because of symmetry about the channel centre line, only half of the flow
field is solved. The boundary conditions are:

Channel inlet:
vev,, =0, T=T  for y=-0, 0<x<b (2.47)
Channel wall:

u=v=0, T=T, forx=b, OsysL, (2.48)
Channel centre line:
ov oT
-5--;-«-0 Jor x=0, 0sy<L,, (L,+L’)<ysL¢ (2.49)
OR

T«T,, u=v=0, forx=0, Lisys(L;+L) (2.50)

48




It is assumed that losses at the inlet are negligible so that the pressure

defect at the inlet is calculated from Bernoulli’s equation:

, -pv;) (2.51)
P =P-P,=—5— Jor y=-0 .
Also, the top of the channel is open to atmosphere, sc the pressure defect

at the exit is assumed to be zero:
P'=p-p,=0 fory-L, (2.52)

Equations (2.44, 2.45, 2.46) are now expressed in terms of the follcwing

dimensionless variables:

x.-X Y.-2 (2.53)
L " bGr
b vbh
v.-2, y.-X . (2.64)
LAY > vGr
T - -1, , (2.55)
’ T:-To
P .-—z'—bz— (2.56)
? pv3Gr?

Subscript "p*"' has been used to distinguish the dimensionless quantities
for the parabolic solution from those of the elliptic solution. Fgquations

(2.44, 2.45, 2.46) become:

L/ A/ (2.57)
ax’. ay’.
' . . &V,
o Ly Ve L Py
ax’- aY’- ”’o ax’.
v, 3—1; sV, o 15T, (2.59)
ax,. or,. FPr ax:.
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Note that in the parabolic form, the results depend upon Gr(b/L_) and
there is no separate dependence on Grashof number and aspect ratio.
Therefore, the solution for a given Rayleigh number (Rac') is independent

of the channel aspect ratio.

The dimensionless boundary conditions for equations (2.57, 2.58, 2.59) are:

Channel inlet:

V,.=¥,, U,.=T.=0 for ¥,.-0, 0<X,.<1 (2.60)
Channel wall:
U,.-V,.=0, T =1 forX,.-1,0sY,.sL, (2.61)

Channel centre line:

v, T,
-—l--—-L-u 0“'0 ﬁ'x,o-o. OSY’0<L‘., (L:"L;)‘Y'Q‘L:

oX,. X, ’ (2.62)
OR
T.-1, U.=V,.=0, for X,.=0, L <Y, .<(L/+L,) (2.63)
Pressure conditions:
P-vfl’OmdPO Y.-L (2.64)
r "7 for ¥,.-0, =0 for Y.-L,

where Lp'. L., L,° are the dimensionless plate, channel, and undivided
inlet lengths for the parabolic solution. The relationship to the dimensional
lengths is given by equation (2.53) as:

. L . L . L,
L-3er %6 Y or (269

2.4.1 Finite Difference Formulation and Method of Solution
An explicit forward marching finite difference procedure, simjlar to that

described by Aung et al. [25]), was used to solve the parabolic form of the
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equations. More sophisticated methods requiring less computing resources
could have been used. However, the computing requirements for this

solution are relatively small and the present method is simple to program.

Consider the finite difference grid for the half-channel flow field shown
in Fig. 2.6. For uniform grid spacing in the X,. direction, equations (2.57,
2.58, 2.59) can be written as the following difference equations:

y-momentum equation:

v Vst‘-‘gl.,u Vlﬂd—vl

-lfel
WV oAy ¥ 2AXx

(2.66)
Verge1 =2V Vorya BP0
ax? ay ¥

Energy equation:

v _ﬁ@"iﬂ,hv ruﬁu'ra-w_l_
v AY W 2AX
(2.67)

i( T =21 gy rl-l,lol,)
Pr axy

Continuity equation:
Vorgr* Vgt =Yy ¥y | Uieryer~
24Y AX

U‘sL‘_‘ -0 (2.68)

The subscript "px" has been dropped in Fig. 2.6 and in the finite

difference equations for clarity.

Also, the integrated velocity profile at each step in the j-direction must

equal the initially prescribed channel flow rate:

v -fv.dx. (2.69)

Equation (2.69) can be written in finite difference form by application of




or T°-1, U-V=-0 - Ax-

j=2

J=1
Jj=0

-1 i2 -3

_V'
T-0, V-V,, U-0, P-—

Figure 2.6: The finite difference grid for the parabolic solution.




the trapezoidal rule:

1 Y ol
Veo—- V.
* n-l( 2 * ?:; ""l)

The forward marching procedure is applied to equations (2.66-2.70) as

follows:

First, the uniform inle¢ velocity (Vo). the starting location of the plate

“‘1." and the plate length (L") are specified. Then, the inlet pressure

can be calculated from equation (2.64). For illustration purposes, consider
the channel entrance to be undivided (Li'>0). Beginning at row j=1, with
the known inlet conditions (for j=0), equations (2.66) and (2.67) are applied
to points i=1, 2, ..., n-1. Equation (2.70) is applied to the entire row. This
givee 2n-1 equations and 2n-1 unknowns that can be solved to give Vp.,
Tp,', and Pp_ at the row j=1. In the present study, the set of the
simultaneous equations at each row was solved using Gaussian elimination
with partial pivoting, modified slightly to take advantage of the sparseness

of the coefficient matrix.

Next, the traverse component of velocity (U ,-) can be computed explicitly
from equation (2.68), starting at either the channel wall or centre line,
where Up, is known (Up,=0). However, applying equation (2.68) from only
one side of the half-channel will not ensure that U =0 at the other side.
To overcome this problem, the traverse component of velocity (Up,) was

found by applying equation (2.68) in both directions, from Miyatake {30]:




[ AX
Uu.n = Um.m + —"2 AY(VUol - Va.;+ Vcouox - Vuu)]x
g (2.71)

[ AX
| Upsga- Z_A—!-'(V"” “VutVerg - Vlol.l)] (1-X)

The first term in equation (2.71) (multiplied by X) was computed starting
from the channe! wall. The second term (multiplied by (1-X)) was computed
starting from the channel centre line. Equation (2.71) satisfies the
boundary conditions at X=0 and X=1, despite the discretization error in the

numerical calculations.

The procedure can now be repeated for j=2, and the solution marches row
by row up the half-channel. When the solution is obtained up to the
desired starting location of the dividing plate (Y,-=L1')n the centre line
boundary conditions (2.62) are changed to boundary conditions (2.63).
Similarly, at the end of the plate, the boundary conditions are changed
back to (2.62). The calculations march in the Yp, direction and are stopped
when the pressure equals the ambient pressure (Pp,=0). Note that, for
some channel configurations, the pressure in the upper portion of the
channel is above ambient pressure (see Fig. 5.20). For these cases the
calculations are continued until the pressure decreases to atmospheric
pressure. Once the calculations are terminated, the dimensionless channel
length is known. Then, the Rayleigh number that corresponds to the
assumed inlet flow rate can be calculated from equation (2.53) as

Ra *=Pr/L"..

Note that neither the exact value of Ra_ ® nor channel length (L) can be

specified directly. For the present study, solutions were required over &
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wide range of Rayleigh number for constant plate length ratios (Lp/Lc).

For each calculation the plate length was fixed and the induced flow rate
had to be adjusted by trial and error to produce the desired value of
Lp/Lc; typically, several complete solutions were reguired to find correct
induced flow rate. For the curves of constant L’/Lc presented in Chapter
5, the induced flow rate was iterated until the corresponding Lp/Lc was
within $1% of the desired value. Also, when resulte were required a
specific value of Rayleigh number, the induced flow rate was adjusted until

a solution was obtained at the desired Rac' within $0.5 percent.

In the Xp, direction, 200 evenly spaced mesh points were used. In the L
direction between 650-1,100 steps were used, depending upon the values
of L /L. and Ra_". A progressively larger step fize (after Aihara [34]) was

used in Yp. direction. The step size was increased by as follows:
AY, - nAY, 2.72)

where gy was a constant. However, the step size was reset to its initial
starting value at the beginning and end of the dividing plate; this gave
high resolution in all regions of rapid change. At the lowest Rayleigh
number (Rac'zo.?..). the flow develops very rapidly, so n=1.03 was used.
The value of n was decreased gradually to =1.005 at the highest Rayleigh
number (Rac'zlo’). For each case, the initial step size AY, was selected so
that there were at least 300 steps (in the Yp, direction) along the length
of the dividing plate. A typical case took about 8 minutes on a Sparc

Station 1 (Sun 4) computer.

Tests were conducted to ensure that the results were independent of the




grid size in both the X, and Ypu directions. Additional calculations were
done with a 50% increase in the number of steps in each direction; this
results in the total number of nodes being more than doubled. Grid tests
were done at the lowest, intermediate and highest values of Rayleigh
number for each value of L /L. and L,/L_ studied. In all cases, the local
and overall Nusselt number data from these calculations differed by less

than 1%.

Using the same definitions as for the elliptic solution, the wall and plate

local Nusselt numbers were calculated as:

h b T, h b -31"| (2.73)

The surface temperature gradients were calculated using second order one-
sided difference expressions. For example, the gradient at the plate

surface was calculated by:

iT..L'I . -37;,*47;.;'7;,1 (2.74)
ax,. 24X,

The average Nusselt numbers for the wall and plate were calculated by

integrating the local Nusselt number distributions:

I.,
| - .
Nu,_ -1 dY. Nu - 2, . dy. (2.5)
f -'1 I 4 f 4 L'. { ax’. 'l'.-O »

The channel average Nusselt number (Nu_) was computed by integrating the

heat convected across the channel exit plane as:
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Nu, - Pr
L+L;

1
f V, T, dx,.] (2.76)
° Y.L,
Aleo, the channel average Nusselt number (Nu_,) was also calculated from
the wall and plate Nusselt numbers as:
L ] o
Nu’ L’ + Nu L

Nu,- = (2.77)

L+ L

However, the Nusselt number Nu_ was less grid dependent than Nu_,. For
this reason, Nu_ calculated from equation (2.76) was considered a better
estimate of the channel average Nusselt number. For the parabolic
solution, Nu_ and Nu_, differed at most by 1.5%; typically, the difference

was much less than 1X%.

There is a special case when the plate is located at the channel inlet
(L‘/Lc=0). For this geometry, the parabolic solution is exactly symmetrical
in the divided portion of the channel. That is, the heat transferred from
the plate equals the heat transferred from the wall until the end of the
plate is reached. Hence, the plate average Nusselt number can also be
calculated by integrating across half of the channel at the end of the plate

as:

(]

0s
dx ] (2.78)
Y.k

Similarly, the wall average Nusselt number was calculated as:




ek

I 4 4 4

0s
[V, T.ax ] V,.r'.dx,.J (2.79)
o 0 Y'.-l,'
The average Nusselt numbers computed from equations (2.78) and (2.79)
differed by less than 1X from those calculated by integrating the local
distributions (equation (2.75)). The integrals in equations (2.75, 2.76, 2.78,

2.79) were calculated numerically using the trapezoidal rule,

Comparisons of average Nusselt number, local Nusselt number, induced flow
rate, exit bulk temperature and pressure were made with the published
results of Aung et al. [25] and Aihara [34]) for the undivided symmetrically
heated UWT channel. In all cases the present calculations gave identical
results. Also, it was checked that calculations for the fully divided
channel (Lp/Lc=1) gave results identical to t' » fully undivided channel
(L’/Lc=0) after rescaling the data to account for the different half channel
width.
* % % %%

Note: To avoid confusion, the results presented in the remainder

of this thesis are given in terms of the dimensionless quantities

used for the elliptic solution (unless otherwise noted). When

comparisons are made between the parabolic and elliptic solutions,

all quantities are given in terms of the elliptic dimensionless

variables.




CHAPTER 3

FULLY DEVELOPED AND ISOLATED

PLATE LIMITS

3.1 Introduction

At very low Rayleigh number, the flow in the channel approaches fully
developed conditions throughout the entire channel. At high Rayleigh
number the channel walls behave as isolated vertical flat plates. In this
chapter, fully developed flow in a divided channel is solved analytically.
Also, existing results in the literature for isolated flat plates are used to
derive an expression for the limiting value of Nusselt number for the
divided channel at high Rayleigh number. Knowledge of the upper and
lower limiting behaviour not only provides insight into the convective

phenomena, but is also useful for correlation purposes.

3.2 Fully Developed Limit (Ra“<0)

Strictly, heat transfer is by pure conduction for Ra®=0, However, for
channels with large aspect ratios (L_/b}, fully developed conditions (v=v(x),
T=T,) exist inside the channel at low Rayleigh number. That is, the
thermal and momentum developing lengths become very short in comparison
with the channel length, and the limiting condition of fully developed flow
is approached. Recently, in a numerical study, Ramanathan et al. (7] have
shown for channels with constant heat flux boundary conditions, that at

low Rayleigh number the "fully developed” channel Nuseselt number is
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approached when L_/b210. For smaller aspect ratios (L_/b<10), vertical
conduction at the channel inlet and outlet cannot be neglected and the
Nusselt number (for Ra®*-0) is higher than the fully developed Nusselt
number. It is reasonable to assume that vertical conduction effects will
also become significant for approximately L. /b<10 with isothermal boundary

conditions.

The model geometry is shown in Fig. 3.1. It is assumed that the flow is
thermally fully developed and the velocity field is fully developed. Also,
it is assumed that the "redeveloping” lengths for the velocity profile at
the beginning and end of the dividing plate are small compared to the

plate and channel lengths, such that:

vev(x) Sfor Osys<l (3.1)
vew(®) for L/ sys(L+ L) (3.2)
vev@®) for (L+L) sysl, (3.3)

With these assumptions and neglecting vertical conduction, the energy

equation, continuity equation, and x-momentum equation give:
T-T, u-0, 0dp/ox=0 (3.4)

g?
The y-momentum equation becomes:
-%*u% +88p(T,-T,)-0 (3.5)

The buoyancy term in equation (3.5) is a constant and dp’/dy can be at
most a constant since v=v(x). Hence, it is evident from equation {3.5) that
the velocity profiles in both the divided and undivided sections are

parabolic. Applying the boundary conditions gives:

v, () - ':':“' _:’_2) (3.6)
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Figure 3.1: The heat transfer geometry showing the fully
developed velocity profiles.




vz(x) - :—G-L(x’-bx-tnb:) (3.7)
o-»

where q is the half channel volume flow rate.

Substituting the appropriate velocity profile and integrating equation (3.5)

with respect to y over each section of the channel gives:

3qpni,
bS

-p'(L)- + gBp(T,-T)L,-0 O<ys<L/ (3.8)

12qulL .
p,(L')_Pr(L‘-bL’)—ﬁl + gPp p(T’—T')L’-O L ‘y‘(L‘+L')' (3.9)

3qp(L¢-L,-L,)

p'(L".'L)- b3

+gPe(T,- HDE,-L-L)=-0, (3.10)
&,+L)'sysL,

Note that the pressure is assumed to be equal to the ambient pressure at
the channel inlet (p’(0)=0) and outlet (p’(L.)=0). Also, it is assumed that

P'(L,7)=p(L,*) and p’(Ly+L,)"=p’(L+L,)"

Equations (3.8), (3.3), and (3.10) can now be solved for the half channel

flow rate:
gBe(T,-T)L, ) v Gr, L,
- - (3.11)
L O T A
(b—t)3 bs (b-‘)’ b!

3.2.1 Fully Developed Channel Average Nusselt Number

The total heat transfer from the half channel is:
H.-pqC,(T,-T) (3.12)

Neglecting the small additional area at the leading and trailing edges of the
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dividing plate, the channel average Nusselt number is defined as:
h.b H

Nu - cmm— M h - £ ‘3-13)
<"k “WL)A,-T)

Substituting equation (3.11) and (3.12) into (3.13) gives:

mo
Nu_- =

L b2 L pod L
LY (—) + 4L (—) -(-LYy+
3(4(1")2 (b-:) 4-% (=) (L)2 1

(3.14)
L, b-t )

For LP=0, equation (3.14) gives the well known relation for the undivided
channel: Nuc=Rac'/3. Note that the geometry of Lszc can be considered
either a fully divided channel or two side~-by-side undivided channels with
b corresponding to the channel wall spacing. For Lg=L. and t=0, equation
(3.14) gives an equivalent expression for the undivided channel (with b
corresponding to the wall spacing): Nuc=Rac'/24. Thus, equation (3.14)

agrees with existing expressions for the undivided channel at both limits.

Equation (3.14) can also be written in terms of Rap' as:

L
Ra,'-zl
Nu = I L‘ 7 (3.15)
¢ b S b3
3|42y (<-) + 42 (=2) -(<LP+1
((L‘)’(b_‘h i o (L‘)u]

Equation (3.14) is plotted in Fig. 3.2 to show the effect of L,/Lc and t/b
on the fully developed channel Nusselt number. It can be seen from Fig.
3.2 that for a channel with fixed geometric parameters (Lc, b) and
temperature difference such that Rac' is constant, the undivided
configuration (LP/Lc=0) gives the highest channel Nusselt number. In the

fully developed regime, the dividing plate causes extre viscous resistance
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Figure 3.2: Effect of length ratio LP/L and blockage ratio
t/’b on the fully developed: channel]l average Nusselt
number (equation 3.14).




and does not contribute any additional buoyancy force. Also, the dividing
plate introduces additional surface area. Hence, adding a dividing plate
on the channel centre line causes the Nusselt number to decrease for all
values of L /L. and t/b. For t/b=0, Nu, decreases by a factor of eight
from L /L =0 (undivided channel) to L, /L_=1 (fully divided channel). As
expected, the channel Nusselt number decreases with increasing blockage
(t/b). Note that in the fully developed regime, Nu_ is independent of the

plate location in the channel.

Equation (3.15), shown in Fig. 3.3, has a maximum value in the range
O<LP/LC<1 for every value of fixed plate thickness, 0st/b<l. The value of
LP/LC that maximizes equation (3.15) was determined numerically for several
values of t/b and the locus cf these points is shown in Fig. 3.3.! Note
that for larger plate thicknesses, the maximum occurs at lower values of

LP/LC. For t/b=0, the maximum value was calculated to five decimal plates

as.;
Nu L
[__‘_) =0.04466 at -L-0.57735 (3.16)
Ra’ L
? /o

Consider a channel with fixed spacing (b) and temperature, divided by a

zero thickness plate of fixed finite length (Lp), such that Rap is constant.
Figure 3.3 shows that for this channel, extending the channel walls beyond
LD/Lc=1 to Lp/ch0.58 will give about a seven percent increase in Nu_. The
Nusselt number increases because the longer column of heated fluid
induces a larger fow rate i.e., the chimney effect. Beyond L,/LJO.SB,

viscous resistance and the additional surface area cause Nu_ decrease to

1 A closed form exprescion was obtained using ‘' .ie symbolic manipulation
language MAPLE [62). However, it was too complex to be of practical use.
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zero as L. -», wumerical results from the parabolic solution in the fully
developed regime are also shown in Fig. 3.3 (for Rap'zo.l. t/b=0, L,/b=0).

The numerical data verify the closed form expression (3.15) for t/b=0.

3.2.2 Fully Developed Plate Average Nusselt Number
For fully developed conditions, the plate Nusselt number (Nup) is highly
dependent upon the location of the plate in the channel. For analysis, two

separate cases must be considered:

Case I: L;=0

For L;=0, the flow is divided by the plate starting at the channel inlet.
In this case, half of the total heat transfer will come from the dividing
plate because of symmetry. Practically, since the ithermal developing
length (L;) will always be greater than zero, this implies that the
temperature field must be fully developed at the end of the plate i.e.,

LpaLT. With this assumption, the heat transfer from the plate (Hp) is:
1
L Y - » 7
H’ 2 qu'(T, r) (3.17)

The plate average Nusselt number is defined as:

"k " 1L,a,-T)

Noting that q is given by equation (3.11), and substituting equation (3.17)

into (3.18) gives:




Ra‘L'
Ra; ‘L L +»0
Nu, - L b'3 L L b S’L L:-O (3.19)
64-L(-2)-2+1) 6@-2(<)--2+1
“1.G2 10 4GP

Equation (3.19) is shown in Fig. 3.4. Consider a channel with fixed channel
width (b) and temperature, divided by a plate of fixed finite length (Lp)
such that Ra’ is constant. Figure 3.4 shows that for this channel,
extending the channel walls above the plate (Lp/Lc<1) will significantly
increase the plate Nusselt number because of the chimney effect. In fact,
for t/b=0, in the limit as the walls are extended an infinite distance above
the plate (L,/Lc-O). the plate Nusselt number increases by a factor of 4.
As would be expected, increasing t/b lowers the plate Nusselt number
because of blockage effects. Again, the numerical results from the

parabolic solution validate the analytical expression for t/b=0.

Case 2 L >0

It the flow is thermally iully developed when it reacues th »slate, the plate
Nusselt number will be zero, i.e Nu’--O for L,2L,, where L, denotes the
thermal developing length. This is true for ali values of Rayleigh number.
In the fully developed limit as Rap'-o and Rac'-O, the thermal developing
length also goes to zero. Hence, in the fully developed limit:

Nu,=0 for L, >0 (3.20)

3.2,3 Fully Developed Wall Average Nusselt Number
For fully developed conditions the wall Nusselt number (Nu ) is dependent

upon the location of the plate in the channel. Again, the analysis is done
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Figure 3.4: Effect of length ratio L _/L_ and blockage ratio t/b
on the fully developed plate average Nusselt number
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for two separate cases:

Case I: L;=0

When L=0, half of the heat transferred to the fluid comes from the wall
because of symmetry, provided that the temperature field is fully
developed at the end of the plate (L,!L,). The wall Nusselt number is

defined as:

h b H
Ny e where A »—2— (3.21)
" *"1.00,-T)
Using the same analysis as for the dividing plate gives:
Ra; 2
Ra, L L »0
Nu_- - < ’ (3.22)
* L posL L ps L L-0
6(4-2(-=) --2+1) 6(4-2(==) -=L+1)
L, b-t L, L, b-t L‘.

Equation (3.22) is shown in Fig. 3.5. Consider a channel with fixed channel
width (b) and temperature, divided by a plate of fixed finite length (LP)
such that Rap is constant. Equation (3.22) shows that extending the
channel walls such that Lp/Lc<l causes the fully developed wall Nusselt
number to decrease for all values of plate thickness t/b. Although the
chimney effect increases the channel flow rate and wall heat transfer, the
associated increase in the wall length (L ) is sufficient to reduce the wall

average Nusselt number. Again, the numerical results validate the

analytical expression for t/b=0.

Case 2: L‘>0

As already discussed, if L,>0 the heat transfer from the plate is zero in
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Figure 3.5: Effect of length ratio Lp/L and blockage ratio t/b
on the fully developed wall average Nusselt number
for L,/b=0 (equation 3.22).




the fully developed limit. Hence, all of the heat transferred to the fluid

comes from the wall. Using the same method as used previously gives:

L
. R,;_L
Nu - Ra. 3 - L‘L L 10'(323)
b!
34_.2__ P 34_2_ PG |
‘L‘b’:."‘:.‘b-’z.”

¢ (4 ¢

Equation (3.23) is identical to equation (3.22) except for a factor of two.

The above analysis predicts that the effect of plate thickness (t/b) is large
at low Rayleigh number; even ten percent blockage (t/b=0.1) causes a
significant reduction in heat transfer in the fully developed regime. At
higher Rayleigh number, the influence of blockage will diminish. Hence,
"worst case" estimates of the reduction in heat transfer because of

blockage can be obtained from the above analysis.

3.3 Single Isolated Plate Limit (Ra®-®)

Experimental studies of the isothermal vertical channel [1,36,38] have shown
that at high Rayleigh number (Rac'-), the heat transfer behaviour of the
channel apprsaches that of two isolated flat plates. The similarity solution

by Ostrach [49) for a single isothermal verticai plate gives:

where C=0.515 for a Pranct. number of Pr=0.7. In equation (3.24), the

Nusselt and Grashof numbers are defined as:




AL CB(T--T)"’
N".T' :.""_‘;';—" (3.25)

Changing the characteristic length in the equations (3.24) and (3.25) from

plate length "L" to the plate spacing "b" gives:

w
Nu - Ab _ C(Gr.h-?-) (3.26)
k L
Note that the heat transfer coefficient (h) ie independent of the plate
spacing "b", as must be the case for an isolated plate. Also note that
Nu,-e as L-® in equation (3.24) whereas, using the conventional "channel”

Nusselt number definition in equation (3.26), Nu-0 as L-=.

3.3.1 1Isolated Plate Channel Average Nusselt Number

Now consider a channel with a dividing plate as shown in Fig. 3.1. At high
Rayleigh number (Ra *-e, Rap'-O) the divided channel will behave like three
isolated flat plates: two isolated plates of length L_ and one isolated plate
of length L. Small plate thicknesses (t/b) will have no effect on heat
transfer at high Rayleigh number. Using equation (3.26), the total heat

transfer (Hc) from channel wall and plate in the hsalf channel is:

Hc.fk_(%:l'l (Rn;"'L,ma,‘“‘L) (3.27)
. b . b

where Ra,-Gr,Pr— and Ra,=Gr,Pr— (3.28)
L L,

The channel average Nusselt number is defined as:

hb H
Nu,=—— where

h- c (3.29)
k @, +1)T,-T)




Substituting equation (3.27) into (3.29) gives:

( \

L
(-Ll)”‘+l
Nu,-CRa'" ; (3.30)
_£+l
L

\ e /

Equation (3.30) can be written in terms of Ra.p' aa:

Mo -cra| Lo L (3.31)

Equations (3.30) and (3.31) have been plotted in Fig. 3.6. Equation (3.30)
has a maximum value in the range 0<L’/Lc<1. The value of L,/Lc that
maximizes equation (3.30) was determined analyticaiiy using the symbolic
manipulation language MAPLE [62]. Unfortunately, the resulting expression
was too complex to be of practical use and hence, was evaluated to five

decimal places as:

Nu L
—t_]| -108302 a -2-022998 (3.32)
CRa;™| L

Equation 3.30 shows that for a channel with fixed channel length (Lc) and
temperature difference such that Rac' is constant, the addition of a small
"dividing" plate with L,/Lc =0.23 will produce about an eight percent
increase in the channel average Nusselt number. This maximum value is
caused by the fact that the short plate has a greater average heat
transfer coefficient than the channel walls. Therefore, the channel average

Nusselt number increases.
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Equation (3.31) shows that for a channel with fixed plate length (Lp) and
temperature difference such that Rap' is constant, increasing the channel
wall length (L) causes the channel average heat transfer to decrease. In
the limit as Loch-O, which corresponds to infinitely long channel walls
(L_=®), the channel average Nusselt number is zero (Nu -0). The channel
average Nusselt number approaches zero as L _-® because the wall Nusselt
number approaches zero. Since Nu_ represents an "area averaged" Nusselt
number of the wall and plate (and the wall area is infinite), Nu  also

approaches zero.

3.4 Concluding Remarks

In this chapter, closed form expressions for the channel, wall and plate
average Nusselt numbers at the fully developed and isolated plate limits
have been derived. Although useful in themselves, the primary value of
these expressions is for correlation purposes. When a process varies
smoothly between two well defined limiting solutions, data between these
limits can be correlated easily and accurately using the method of Churchill
and Usagi [63). Correlations utilizing these expressions are presented in

Chapter 8.

74



CHAPTER 4

NUMERICAL RESULTS FOR DEVELOPING

NATURAL CONVECTION IN AN UNDIVIDED CHANNEL

4.1 Introduction

As a preliminary study to the divided channel problem, developing natural
convection in a channe] without a dividing plate has been solved. In this
chapter, the results of a full elliptic solution are presented for Pr=0.7,
I.SSRac'SS,SOO, L./b=10, 17, 24. The parabolic solution (of Aihara [34]) for
the isothermal vertical channel has been reproduced so that detailed
comparisons could be made with the elliptic solution. Comparisons of the
elliptic and approximate boundary-layer results for the undivided channel

show the applicability and limitations of boundary-layer-type solutions.

4.2 Discussion of Results

As discussed in the literature review, there are two elliptic solutions
(using finite difference methods) for the isothermal channel in the
literature: those of Kettleborough [39] and Nakamura et al. [40] (hereafter,
Nakamura)., Each considered only two Grashof numbers (Gr=12.5, 1,250), an
aspect ratio L_/b=10 and a Prandtl number Pr=0.733. The results from
these studies are in poor agreement in many aspects. Table 4.1 shows a
comparison of the present results with these two solutions for Gr=1250.
The present work is in closer agreement with Nakamura than Kettlet srough.

However, the close agreement with the average Nusselt number predicted
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Table 4.1: Compari-..

Gr=1: . t:.0 733, L_/b=10 (Ra_"=91.625).

s major data with other elliptic solutions for

Average Nusselt Flow Rate Exit Bulk
Author Numbers Tempe:;ature
Nuc N“cz Qe Tb
Kettleborough [39], 2.38 2.75 2.079 0.442
(1972)
Nakamura et al. [40] 1.877 1.814 1.358 0.533
(1982)
Present Elliptic 1.867 1.802 1.439 0.501
Solution
Present Parabolic 1.899 1.900 1.478 0.499
Solution
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by Nakamura is somewhat coincidental since the temperature and velocity

profiles are not in close agreement as will be shown later.

Figure 4.1 shows a comparison of the streamwise velocity profiles from the
present elliptic solution with those predicted by Kettleborough and by
Nakamura. Again, the present work is closer to that of Nakamura, although
significant disagreement does exist. Kettleborough predicts reverse flow
in the channel with fluid being drawn deep into the channel from the
channel exit. This was not found in the present study nor in the study

by Nakamura.

A comparison of the developing temperature profiles with those predicted
by Kettleborough and by Nakamura is displayed in Fig. 4.2. The present
work is not in agreement with either of the other two solutions. Although
the agreement with both solutions is fair at the channel inlet, very large
differences exist closer to the exit. It isz likely coincidental that the exit
temperature profile (y/b=10) of the present solution is in close agreement
with Kettleborough’s since the temperature profiles closer to the channel

entrance and the exit velocity profiles are vastly different.

Figure 4.3 shows a comparison of the channel centre line pressure
distributions predicted by the present elliptic and parabolic solutions
compared to the results of Nakamura. For the parabolic solution the inlet
pressure is assumed to be p'=-pv°z/2 s where v  is the assumed uniform
inlet velocity. The present elliptic solution shows fair agreement with the
parabolic pressure distribution; the maximum difference is about 11% am_j

occurs quite close to the location of minimum pressure. The pressure
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Figure 4.2: Comparison of the temperature profiles from the present
elliptic solution with the work of Kettleborough, and
Nakamura et al..
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distribution presented by Nakamura is many times lower than that found
by either of the present methods (note the different axis scales). The
channel inlet pressure (y/b=0.0) is reported by Nakamura to be about five
times lower than that of the parabolic solution, whereas the centre line
inlet pressure found by the present elliptic solution (P=-37.4) is only about
3% different from the parabolic solution (P=-38.6). Nakamura does not
explain the large discrepancy between the obtained inlet pressure and that
predicted by Bernoulli’s equation. Hence, it is likely that the present

elliptic results more closely represent the actual channel pressure.

Figure 4.4 shows a comparison of the present data with the experimental
local Nusselt distribution measured in air by Wirtz and Haag {64]). The
experimental data are for Rac'=3.11 and L_/b=26.25. It should be noted that
the aspect ratio for the elliptic solution is slightly different (Lc/b=24) and
the parabolic results are independent of aspect ratio. Although the
general trend of the local heat transfer distributions are the same, both
of the numerical predictions are much lower than the experimental data,
particularly toward the top of the channel. In fact, the maximum
discrepancy between the results is about 100X at the channel exit. The
difference may be due to the difference in the boundary conditions at the
channel inlet. In Wirtz’s and Haag’'s model the channel walls were formed
by two 6mm thick copper plates. These plates were not bevelled at the
channel inlet, so the air was likely preheated before entering the channel.
It should also be mentioned that the average Nusselt number given by
Wirtz and Haag is about 20% higher than the experimental values given by
Elenbaas [1]. Unfortunately, these were the only experimental local heat

transfer data available in the literature for the symmetrically heated
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isothermal channel.

Figures 4.5 and 4.6 show the elliptic solution streamline and isotherm
contours of the inlet region for Gr=50, 10%, L_/b=24, (Ra_"=1.458, 291.7). At
low Rayleigh number the induced velocities are low and the flow enters the
channel smoothly. Also, due to the low velocities, the non-zero isotherms
extend well outside the channel inlet and preheat the incoming air. At
high Rayleigh number, fluid velocities are sufficiently high that the flow
separates from the wall and there is a small eddy on the channel wall near
the leading edge. A close-up view of the separated flow region is shown
in Fig. 4.7. Dots are shown at each nodal point to illustrate the grid
density in the vicinity of the eddy. The fluid re-attachms:. occurs at
about y/b=0.78, as determined from the wall shear stress distribution. To
the author’s knowledge, flow separation at the inlet has not been predicted

by any previous study of natural convection in vertical channels.

sigure 4.8 shows how the streamwise velocity profile near the centre of the
separation region (y/b=0.24) evolves with Rayleigh number. It is evident
from Fig. 4.8 that the velocity profile evolves slowly over a wide range of
Rayleigh number and the separation eddy strengthens and gets wider with

increasing Rayleigh number.

Additional elliptic solutions were obtained for aspect ratios of L_/b=10, 17
so that the onset of inlet flow separation could be correlated. For L_/b=10,
separation occurs at Gre8,200, Ra_*2570 as determined from the wall shear
stress distribution. For L_/b=17, separation occurs at Grz2,900, Ra_"x120

and for L /b=24, separation occurs at Gr=1,700, Ra_"*50. Fig. 4.9 shows an
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Figure 4.5: Channel inlet streamline and isotherm contours from the
elliptic solution for Gr=50, L/b-24, Pr=0.7, (Ra,_-l 458).
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Figure 4.6: Channel inlet streamline and isotherm contours from the
elliptic solution for Cr=104, L/b=24, Pr=0.7, (Ra;=291.7 ).
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Figure 4.7: Close-up view of the separated flow region for Gr=104,
L/b=24, Pr=0.7,(Ra;=291.7).
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attempt to correlate the onset of separation (dV/a8Xl.,=0) with dimensional
channel flow rate. (Note that dimensional channel flow rate (q) is
proportional to Q.Gr’). Velocity gradients at the wall were taken at several
values of y/b near the channel entrance and the results were insensitive
to the specific location chosen. Data at only one value of y/b (for each
aspect ratio) are shown for clarity. This parameter is quite successful in
predicting separation; separation occurs within a twenty percent range of
Q‘Gr* for all three channel aspect ratios. Buoyancy effects can explain the
slight delay of separation for channels with lower aspect ratios. Low
aspect ratio channels require higher temperatures than large aspect ratio
to obtain the same dimensional flow rate. This higher heating causes
larger buoyancy forces at the wall which act to oppose separation. Hence,
slightly greater flow rates are required to induce separation in short

. nannels.

The behaviour of average Nusselt number (Nuc) with Rayleigh number for
both of the present solutions is displayed in Fig. 4.10. The asymptotic
limits for low and high Rac' are also shown. The parabolic and elliptic
solutions are in excellent agreement at low Rac' and at higher Rac' they
differ by about 3%. As discussed in the literature review (see Fig. 1.4),
the experimental data of Elenbaas [1] and Aihara [36] are in good
agreement with the parabolic solution over the range given in Fig. 4.10.
Hence, the close agreement of the two solutions gives confidence in the

present elliptic results.

A comparison of the parabolic and elliptic channel flow rates is shown in

Fig. 4.11. The results are in good agreement over a wide range of
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Rayleigh number for L_/b=10, 17, 24.

Figures 4.12 and 4.13 show comparisons of the developing velocity and
temperature profiles for Ra°'=2.917 and Rac'=291.7. For the elliptic solution
(L./b=24), the developing velocity profiles outside the channel are also
presented; for the parabolic solution the assumed inlet profiles (y/b=0) are
uniform. In both figures, the parabolic profiles differ substantially from
the elliptic profiles near the entrance. However, these differences diminish
as the flow proceeds toward the channel exit. Exit velocity and
temperature profiles (y/b=24) are in close agreement. Considering the
large differences near the channel entrance, it is somewhat surprising that
the overall heat t-ansfer and induced flow rate are in good agreement.
These figures clearly show how insensitive the parabolic solution is to the
assumed inlet conditions. It is also clear from ihese figures that
derivative boundary conditions used at the channel exit for the elliptic
solution are quite acceptable at Ra_ *=2.917; however, at Ra_ "=291.7 the
velocity and temperature profiles are still developing and these conditions

are less suitable.

There are several features of the developing velocity profiles predicted by
the elliptic solution that have not been seen previously. The velocity
profiles shown in Fig. 4.12 for Rac'=291.7 (L./b=24) show rather an unusual
evolution. The inlet profile (y/b=0) has a maximum velocity near the wall.
At this location, the fluid is being drawn into the channel by the negative
pressure gradient and the maximum velocity is produced by the additional
buoyancy force which acte only close to the wall. The profile at y/b=0.3

clearly shows the reverse flow in the separated region near the wall. Here
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Figure 4.13: Comparison of temperature profiles from the Present elliptic
and parabolic solutions for Ra;=2.917 and Ra.=291.7.




the location of maximum velocity shifts away from the wall because of the
presence of the separated flow. The next profile (y/b=1.0) is beyond the
reattachment point; however, the flow near the wall is still recovering as
evident by the low velocity gradient at the wall. At y/b=1.0, the location
of maximum velocity is almost outside the thermal boundary-layer (see rig.
4.13). The maximum at this location is a remnant from separation and is
not buoyancy induced. Hence, the peak velocity diminishes to compensate
for the buoyancy driven recovery of the flow closer to the wall. At
y/b=4.0 the location of maximum velocity shifts to the centre line due to
this compensation for the increasing flow near the wall. Farther up the
channel (y/b212) the buoyancy driven flow near the wall dominates and the
maximum velocity reappears near the wall. The peak velocity atrengthens
and shifts toward the centre line as the thermal boundary-layer penetrates

farther across the channel.

The channel centre line pressure distributions for various values of
Rayleigh number are displayed in Fig. 4.14. A% low Rayleigh number, the
parabolic and elliptic solutions are in fair agreement throughout the
channel. However, at higher Rayleigh number there is a large difference
near the channel entrance, which is due to entrance flow effects. At high
Ra_ ® the fluid separation at the entrance has a "venturi" effect on the
mainstream flow and causes a local reduction in pressure. Since the
parabolic solution does not detect the inlet flow separation, it predicts
higher pressures. Again, contrary to results presented by Nakamura et
al. [40], it was found that the inlet pressure assumption (p=-pv?/2) used

in the parabolic solution is a reasonable approximation over a wide range

of Rayleigh number.
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Figure 4.14: Comparison of centre line pressure distributions from
the present elliptic and parabolic solutions.
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Figure 4.15: Comparison of local Nusselt number distributions from
the present elliptic and parabolic solutions.




The fluid separation at the channel entrance has a adverse effect on local
heat transfer. Figure 4.15 shows the local Nusselt number (Nu'.y)
distributions in the lower half of the channel fcr various values of
Rayleigh number. At Rac'=2.917. the fluid does not separate, and the local
heat transfer distributions predicted by the parabolic and elliptic solutions
are in good agreement. At higher Rayleigh number, the discrepancy near
the leading edge becomes large due to the fluid separation. The
recirculating eddy predicted by the elliptic solution has an insulating
effect on the channel wall. For Rac'=291.7, the elliptic solution shows a
pronounced local minimum in Nu, , near the entrance. At this location, the
parabolic solution predicts a local Nusselt number that is 65X higher than

the elliptic solution.

4.3 Concluding Remarks

Detailed comparisons of the paraoolic and elliptic solutions show that an
elliptic solution is necessary to get accurate local quantities, such as local
heat transfer, near the channel entrance!. However, global quantities
predicted by the elliptic and parabolic solutions (such as total flow and
average Nusselt number) are in good agreement. Also, the present elliptic
solution is not in agreement with previous elliptic solutions. The close
agreement of the present elliptic and parabolic solutions casts doubt on the

validity of the results of Nakamura et al. [40] and Kettieborough [39).

The results of this chapter have been published as a full paper in the

ASME Journal of Heat Transfer (Nayior et al. [65]).

! Closer agreement with the parabolic solution would be expected for
an elliptic solution with a rounded channel inlet.
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CHAPTER §

NUMERICAL RESULTE FOR DEVELOPING
NATURAL CONVECTION IN A PARTIALLY DIVIDED CHANNEL

5.1 Introduction
Boundary-layer and full elliptic solutione to developing natural convection
in a partially divided isothermal vertical channel have been obtained (for
Pr=0.7). For practical reasons, the numerical calculations were restricted
to the range of variables of most interest. For the parabolic (boundary-
layer) solution, the range of variables considered was as follows:

Channel Rayleigh Number 0.1 < Ra*® s 10*

Plate Length Ratio L /L= 0, 1/10, 1/3, 2/3, 1

Plate Thickness t/b= 0

Vertical Plate Position L,/L = 0, (1-L_/L.}/2, 1-L /L,

The approximate parabolic solution requires much less computing resources
than the full elliptic solution. Also, as shown in Chapter 4, the parabolic
solution gives reasonable predictions for the overall Nusselt number. For
this reason, most of the calculations presented in this chapter were made

[ ]

uging the boundary-layer equations.

The full elliptic solution was obtained using the finite element code FIDAP
(54). From the results presented in Chapter 4, it is clear that a full
elliptic solution is needed in order to get accurate local quantities near the

leading and trailing edges of the plate, as well as near the channel
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entrance. For the full elliptic solution, the range of variables considered
was as follows:

Channel Rayleigh Number 5.0 $ Ra_* s 10*

Plate Length Ratio Lj/L.= 1/3 (with L /b=15, L /b=5)

Plate Thickness t/b= 0, 0.1, 0.2

Vertical Plate Position L,/L.= 0, (1-L/L_)/2, 1-L /L,

The dividing plate was located on the channel centre line for all
calculations. The three vertical locations of the plate, listed above,
correspond to the bottom (L/L_=0), middle (L,/L_=(1-L_/L_}/2), and top
(L;/L=1-L_/L.) of the channel. Most of the calculations were done with
the plate located at the bottom of the channel (L,/L_=0), because this

configuration was expected to give the highest heat transfer.

Initially in this chapter, a channel divided by a plate of zero-thickness
(t/b=0) is studied (§5.2). Of course, any real dividing plate will have a
finite thickness. In Section 5.3, the effect of small plate thicknesses
(t/b<0.2) is incorporated into the general understanding obtained in Section

5.2.

5.2 The Divided Channel with Plate Thickness t/b=0

The results for a zero-thickness plate show the limiting channel behaviour
in the absence of blockage (t/b<0). Data for each vertical plate position
are presented in Sections 5.2.1 and 5.2.2. Then in Section 5.2.3, the

results for each vertical plate position are compared for one fixed plate

length ratio (Lp/Lc=1/3). From the behaviour of the zero-thickness plate,




most of the geometric influences on heat transfer are delineated.

6.2.1 Dividing Plate Located at Bottom of Channel - L,/L =0, (t/b=0)

As will be shown in this chapter, the heat transfer from the dividing plate
and the overall channel is the highest when the plate is located at the
bottom of the channel. For this reason, the data for this geometry are
likely of most practical engineering interest and are presented in the most

detail.

Streamline and isotherm contours from the elliptic solution for a partially
divided channe] with a plate length ratio L,/Lc=1/3 are shown in Fig. 5.1
(L,/L_ =0, t/b=0). The appearance of the streamlines is similar to that of
the undivided channel discussed in Chapter 4. At low Rayleigh number
(Ra_°=5, Fig. 5.1(a)) the flow enters the channel smoothly, whereas
separation occurs at the channel inlet for high Rayleigh number (Rac'=10",
Fig. 5.1(b)). For L /L =1/3, L /b=15, L;/L =0, the elliptic solution predicts
that separation occurs between 100SRa_"5200, as determined from the wall
shear stress distribution. At Rac'=10‘. the thermal boundary-layers look
similar to those of isolated flat plates; however, the boundary-layers merge
well before the channel exit. Also, the adverse effect of separation on the
local heat transfer at the channel inlet can be seen from the isotherm

contours.

Figures 5.2 and 5.3 show comparisons of the developing velocity and
temperature profiles in the partially divided channel at low and high
Rayleigh number: Ra "=10, 10* (L_/L_=1/3, L,/L =0, t/b=0). For the elliptic
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$=1.511.4 1.25

(a) Ra =5 (b) Ra_"=10*

Figure 5.1: Streamline and isotherm contours for the divided channel
with L /L =1/3, t/b=0, and L,/L =0, (a) Ra_ "=5, (b) Ra ‘=10".
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solution, the velocity profiles outside the channel are also presented; for
the parabolic solution the inlet profiles (y/b=0) are assumed to be uniform.
The behaviour is similar to that for the undivided channel presented in
Chapter 4; the parabolic solution differs substantially from the elliptic
solution near the entrance and is in close agreement toward the channel
exit. Note that because of the nature of the parabolic solution, the
velocity and temperature profiles are perfectly symmetrical about the half-
channel centre line, up to the end of the dividing plate (y/b=5). In
contrast, the temperature and velocity profiles from the elliptic solution
show substantial asymmetry at the channel entrance, particularly at high

Rayleigh number because of separation.

The developing velocity profiles for Rac"=10‘l shown in Fig. 5.2 show several
interesting features. Strong reverse flow in the separated Zlow region
near the channel entrance (y/b=0.3) is clearly shown. At the end of the
plate (y/b=5.0), the velocity is a maximum near the plate because of the
locally high buoyancy force in the plate's thermal boundary-layer.
Similarly, near the channel exit, high local buoyancy forces produce a
maximum velocity near the channel wall and a global maximum velocity in

the plume above the plate.

Beyond the channel entrance, the temperature profiles from both solution
methods are in excellent agreement at both high and low Rayleigh number
(see Fig. 5.3). At Ra_ '=10, the temperature field is almost fully developed
(T°=1.0) by the end of the dividing plate (y/b=5). At Ra_"=10% the

temperature profile is still developing at the channel exit plane. In fact,

the temperature of the tiuid near the channel centre line above the plate
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decreases toward the channel exit; heat is transferred from the hot plume

above the plate to the cooler fluid near the centre of the half-channel.

The variation of dividing plate average Nusselt number (Nu’) with plate
Rayleigh number (Rap') for several plate length ratios is shown in Fig. 5.4
(t/b=0). The close agreement of the parabolic and elliptic solutions for
Ly/L.=1/3 gives confidence in the accuracy of both numerical results. At
low Rayleigh number, the plate Nusselt number approaches the closed form
expression for the fully developed Nusselt number (equation 3.19). With
increasing Rayleigh number, average Nusselt numbers well above those for
a single isolated plate are predicted. For example, the plate Nusselt
number for Lp/Lc=1/10 is about two times higher than the isolated plate

Nusselt number at Ra"=100.

In Fig. 5.4 it can be seen that the length of the channel walls greatly
influences the heat transfer from the plate. Consider a channel with a
dividing plate of fixed length. For this channel, Fig. 5.4 shows that
extending the channel walls above the plate (decreasing L,/Lc), while
holding Rap' constant, gives substantial heat transfer enhancement for the
plate over the full range of Rayleigh number. For Lp/Lc=1/10, at low
Rayleigh number there is a 300X increase in plate Nusselt number compared
to L /L.=1; at Ra'=10' there is approximately a 55X enhancement for
L/L.=1/10 compared to L /L_=1. Extension of the channel walls beyond
Lp/Lc=1/lo is of little practical significance. However, calculations were

made for L’/Lc=1/100 to confirm that the numerical results approach a fully

developed limit close to that for L’/Lc=0 for small plate length ratios.
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Quantifying the heat transfer enhancement for the dividing plate was a
large part of the motivation for this study. For this reason, additional
calculations were made to clarify the plate average Nusselt number
behaviour. For the parabolic equations, calculations were made holding
Rap' constant and varying the plate length ratio over the range
1/10sL,/L 51 for L;/L. =0, (t/b=0). Calculations were done for Rap'=10", 10?,
10%. The results are shown in Fig. 5.5. Note that the plate Nusselt
number has been normalized by dividing by the Nusselt number when the
plate and channel walls are the same length (L’/Lc=1). Again, consider a
channel with a dividing plate of fixed length. This figure shows that
extending the channel walls above the plate (decreasing LD/LC) causes the
largest chimney effect at low Rayleigh number i.e., at the fully developed
limit. With increasing Rayleigh number, the heat transfer enhancement
caused by the chimney effect diminishes. In the limit as Rap'--, the plate

and confining walls act as isolated plates and there is no enhancement.

Figure 5.6 shows a comparison of the plate local Nusselt number
distributions from the elliptic and parabolic solutions for L,/Lc=l/3 at
several values of Rayleigh number (L,/L =0, t/b=0). At low Rayleigh
number, the distributions predicted by both numerical methods are in
excellent agreement. At high Rayleigh number, the results differ
substantially because of flow separation at the channel inlet. For the
elliptic solution, there is a separated flow region next to the wall at the
channel inlet (see Fig. 5.1(b)). The separated flow reduces the cross-
section for the flow at the entrance, causing the fluid velocity near the
leading edge of the dividing plate to be higher than in the absence of

separation. The higher velocities cause increased heat transfer near the
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leading edge of the plate for the elliptic solution.

Although a minor effect, it is interesting that the elliptic solution predicts
that the plate local Nusselt number increases slightly near the trailing
edge of the plate. The slight increase in heat transfer in this region can
be explained by examining the streamline contours shown in Fig. 5.1. It
can be seen that the streamlines are disturbed by the undivided section
of the channe. upstream of the end of the plate. The streamlines start to
bend toward the channel centre line just before the end of the plate. As
the fluid moves toward the centre line, it brings cool fluid closer to the
plate surface, causing the plate local Nusselt number to increase. The
parabolic solution cannot predict this phenomena; by the nature of the
approximate equations, downstream changes cannot affect the upstream

solution.

Figure 5.7 shows the variation of the average wall Nusselt number with
channel Rayleigh number for several plate length ratios (L,/L_=0, t/b=0).
At high Rayleigh number, the wall Nusselt number is only weakly
dependent upon the plate length ratio. By a small margin, the plate length
ratio L /L.=1 gives the highest Nusselt number at Ra *=10%. The behaviour
is completely opposite at low Rayleigh number; the Nusselt number is
highly dependent upon the plate length ratio and L’/Lc=l gives the lowest
Nusselt number. The wall Nusselt number predicted by the elliptic solution
(for L'/Lc=l/3) is in fair agreement with the parabolic data. Both sets of

data have the same trend; however, the elliptic solution gives wall Nusselt

numbers about ten percent lower than the parabolic solution.
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An important feature shown in Fig. 5.7 is the large decrrase in the wall
Nusselt number for L /L. 21/10 compared to the undivided channel (L /L =0)
at low Rayleigh number. The decrease can be explained as follows: if the
dividing plate length is greater than or equal to the thermal developing
length, then approximately one half of the heet transfer will be contributed
by the dividing plate and the heat transfer from the channel walls will
decrease proportionately. At low Rayleigh number the flow becomes
thermally fully developed within a short distance from the channel inlet.
As a result, even a short dividing plate will cause the wall Nusselt number

to be reduced by about a factor of two at low Rayleigh number.

Figure 5.8 shows a comparison of the wall local Nusselt number
distributions from the elliptic and parabolic solutions for L’/Le=1/3 at
several values of Rayleigh number (L,/L_=0, t/b=0). Again, at low Rayleigh
number the flow does not separate at the inlet and both numerical
predictions are in close agreement. Similar to the undivided channel
(Chapter 4), the flow separation in the partially divided channel has an
adverse effect on the wall local heat transfer. For Ra_°210% there is a
pronounced minimum in the local heat transfer distribution near the
channel inlet. With increasing Rayleigh number, the separated flow gets
stronger and larger causing the local minimum value of Nusselt number to
decrease. At Rac'=10‘. the local Nusselt number is about four times lower

than predicted by the parabolic solution.

In Fig. 5.8, each wall Nusselt number distribution predicted by the
parabolic solution has a discontinuity at the location of the end of the

plate, y/L.=1/3. For L,/L >0, similar discontinuities also occur at the
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Figure 5.8: The wall local Nusselt number distribution for L,/L_=0
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location of the leading edge of the plate (see Fig. 5.17). Several checks,
including hand calculations for low grids, were performed to confirm that
the discontinuity was not caused by a programming error. It was
concluded that the discontinuity is caused by the singularity at the end
of the plate and the nature of the approximate parabolic equations. The
parabolic equations are solved using a forward marching method. Hence,
downstream changes cannot influence the upstream solution. During the
forward marching procedure, when the end of the plate is reached, the
temperature, no-slip, and impermeability boundary conditions on the plate
are changed to symmetry boundary conditicns on the channel centre line.
This instantaneous change in boundary conditions causes the numerical
discontinuity in local heat transfer. For the same reason, an instantaneous
change in pressure gradient also occurs (see Fig. 5.11 and Fig. 5.20).
Within about two steps in the y direction from the end of the plate, the
numerical solution rapidly adjusts for the newly imposed boundary

conditions.

Although the numerical results from the parabolic solution are not accurate
close to the singularity points, the results downatream recover the correct
flow and temperature field characteristics. This is confirmed by the
comparison of the temperature and velocity profiles with the elliptic
solution (Fig. 5.2, Fig. 5.3) and also by the fact that the average Nusselt
numbers are in close agreement with the elliptic solution. Further, it has
been checked by numerical integration that the total fluid momentum and
bulk temperature are continuous at the leading and trailing edge of the
plate for the parabolic solution.
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The variation of the overall channel Nugselt number and induced flow rate
with channel Rayleigh number is shown in Fig. 5.9 and Fig. 5.10 (L,/L_=0,
t/b=0). Again, the numerical data approaches the closed form expressions
for fully developed flow. The fully developed channel Nusselt number and
flow rate are independent of the vertical position of the dividing plate.
At low Rayleigh number, the buoyancy force is maximized because the
dimensionless bulk fluid temperature is approximately T°=1.0 throughout the
char~-el. Hence, the induced flow rate and heat transfer decreases with
increasing L»/Lc because of the higher viscous resistance in the divided
secticn of the channel. Also, the additional surface area of the dividing
plate causes a further reduction in the channel average Nusselt number.
Contrary to the low Rayleigh number behaviour, at Rac'=10‘ the undivided
channel (L'/Lc=0) gives the Jowest Nussgelt number. At high Rayleigh
number, the addition of a dividing plate increases the bulk fluid
temperature in the channel. The higher bulk temperature causes a greater
induced flow rate (see Fig. 5.10) and therefore greater heat transfer. Note
also that the isolated plate Nusselt number for the divided channel is a
function of the plate length ratic and is described by equation (3.30) (see
Chapter 3, Section 3.3). For the specific plate length ratios considered,

L./L.=1/3 gave the highest average channel Nusseit number at Rac'=10‘.

Channel pressure distributions for the elliptic and parabolic solutions are
shown in Fig. 5.11 (for L,/Lc=l/3 L,/L =0, t/b=0). The pressure
distributions have been taken along a line half way between the plate and
the channel wall (x/b=0.5). These pressure distributions are very similar
to those of the undivided channel (see Fig. 4.14). Notice that the parabolic

solution gives a discontinuity in the pressure gradient. For the elliptic
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solution, the flow upstream of the end of the plate senses the change in
boundary conditions 8o that the change in pressure gradient occurs
smoothly. Except at low Rayleigh number, the pressure just inside the
channel entrance is much lower for the elliptic solution. As mentioned in
Chapter 4, at high Ra® the fluid separation at the entrance has a "venturi"
effect on the mainstream flow and causes a local reduction in pressure.
Since the parabolic solution does not detect the inlet flow separation, it
predicts higher pressures near the inlet. With the exception of the
pressure near the separated region, the distributions are in excellent

agreement.

Table 5.1 shows a comparison of the major data from the parabolic and
ellir cic solutions for Lp/Lc=1/3, L,/L_=0, t/b=0. The agreement of the two
solutions is typically within five percent for the plate average Nusselt
number, the channel average Nusselt number and induced flow rate. The
wall average Nuss2]lt numbers predicted by the elliptic solution are about
ten percent lower than those from the parabolic solution; the difference at
high Rayleigh number may, in part, be caused by separation at the inlet
for the elliptic solution; separation reduces the heat transfer near the
channel inlet. A more complete listing of the numerical data is given in

Appendix D.

In summary, the results show that careful consideration must be given to
the Rayleigh number range in order to achieve heat transfer enhancements
from geometric effects. For example, consider adding a dividing plate at
the entrance of a previously undivided channel. As shown in Fig. 5.7 and

Fig. 5.9, at low Rayleigh number the addition of the plate severely reduces
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Table 5.1: Comparison of major data from the parabolic and elliptic

Plate Average Nusselt Number - Nu.

solutions for L,/L.=1/3, L;/L.=0 (bottom), t/b=0, Pr=0.7.

Parabolic Soltn

Elliptic Soltn

Ra® Rap' Nug Nu, % Difference
5 15 0.9792 0.9127 6.8
10 30 1.5350 1.4762 3.8
100 300 3.4006 3.3883 0.36
1,000 1,000 5.6539 5.6531 0.014
5,000 15,000 7.8968 7.9529 -0.71
10,000 30,000 9.0711 9.1578 -0.96

Wall Average Nusselt Number -~ Nu,

Parabolic Soltn

Elliptic Soltn

Ra® Ra * Nu,, Nu, % Difference
5 15 0.3389 0.3008 11.2
10 30 0.5874 0.5316 9.5
100 300 1.8384 1.7248 6.2
1,000 1,000 3.4678 3.1738 8.5
5,000 15,000 5.0523 4.5088 10.7
10,000 30,000 5.9254 5.2589 11.2

Channel Average Nusselt Number - Nu,

Parabolic Soltn

Elliptic Soltn

Ra* Ra * Nu_ Nu_ % Difference
5 15 0.4990 0.4820 3.4
10 30 0.8244 0.8020 2.7
100 300 2.2290 2.1978 1.4
1,000 1,000 4.0145 3.8848 3.2
5,000 15,000 5.7635 5.4975 4.6
10,000 30,000 6.7119 6.3823 4.9

Half Channel Induced Flow Rate (Q'=Q./Gr')

Parabolic Soltn

Elliptic Soltn

Ra® Ra," Q Q, % Difference
5 15 0.13347 0.12887 3.4
10 30 0.11315 0.10866 3.1
100 300 0.44630E-1 9.43516E~1 2.5
1,000 1,000 0.13563E-1 0.13146E~1 3.1
5,000 15,000 0.52745E-2 0.51001E~-2 3.3
10,000 30,000 0.33658E-2 0.32640E~2 3.0
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the heat transfer from the walle and channel as a whole. However, as
shown in Fig. 5.7, above R.ac'=200 the channel wall Nugseelt number is almost
independent of L'/Lc, i.e., the wall heat transfer is independent of the
presence of a dividing plate. So, for Rac'>200, plate average Nusselt
numbers well above the single isolated plate limit can be achieved without

adversely affecting the heat transfer from the confining walls.

5.2.2 Dividing Plate Located in the Middle and Top of the Channel -
L,/L=1-L/L,, L,/L=~(1-L/L.)/2, (t D=0)

The results for the plate in the middle and top of the channel are

presented in less detail than those for the plate in the bottom of the

channel. Average Nusselt number trends are of primary interest. Only the

most illustrative local data are presented graphically. Data not shown are

available from the author upon request.

Figures 5.12 and 5.13 show the variation of .he plate average Nusselt
number (Nu ) with plate Rayleigh number (Rap') for L,/L.~(1-L /L )/2, and
L1/L0=1-LP/LC, (t/b=0). In both figures there is close agreement of the
parabolic and elliptic solutions for LP/Lc=1/3. The plate average Nusselt
number trends are much different from the trends when the plate is
located in the bottom of the channel (see Fig. 5.4). At low Rayleigh
number only the data for L,/Lc=l.0 approaches a limiting fully de‘reloped
asymptote. Also, extending the channel walls, while holding L’ and Ra;
constant, decreases the plate heat transfer at low Ra,'. This rapid
decrease in the plate heat transfer for L'/Lc<1.0 at low Rayleigh number

can be understood by considering the thermal developing length. At low
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Rayleigh number, extending the channel walls causes the flow to be more
thermally developed when it reaches the plate. Eventually, as the walls
are extended further, the flow becomes thermally fully developed before

reaching the leading edge of the plate and the heat transfer from the plate

dropse rapidly to almost zero.

Figure 5.14 shows a comparison of the plate local Nuseelt number
distributions from the elliptic and parabolic solutions for L,/L°=1/3 and
L1/Lc=(l—Lp/Lc)/2. at several values of Rayleigh number (t/b=0). Unlike the
plate local Nusselt data for the case of L,/L =0 (Fig. 5.6), the elliptic and
parabolic solutions are in very close agreement over the entire range of
Rayleigh number. Note that the differences near the leading edge of the
plate are substantially smaller than for L,/L_=0. The plate local Nusselt
number distributions predicted by the elliptic and parabolic solutions were
also in close agreement when the plate was located at the top of the
channel. This supports the supposition that the large differences between
the two solution methods for L,/L_=0 (shown in Fig. 5.6) can be attributed
to the influence flow separation at the inlet. It may be concluded that the
parabolic solution will give accurate predictions of the plate local Nusselt

number provided the plate is not near the channel inlet.

Figures 5.15 and 5.16 show the behaviour of the wall average Nusselt
number (Nu,) with channel Rayleigh number (Rac') for L‘/Lc=(1-L’/Lc)/2,
and L‘/Lc=1-L,/Le. (t/b=0). In both figures, the wall average Nusselt
number predicted by the elliptic solution for L’/Lc=1/3 is in fair agreement
with the parabolic solution. Both sets of data have the same trend;

however, the elliptic solution gives wall Nusselt numbers between five and
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nine percent lower than the parabolic solution. With the plate in either
vertical position, at high Rayleigh number the wall Nusselt number is only
weakly dependent upon the plate length ratio. At Rac'=10‘. L./chl.o gives
& Nusselt number that is only about six percent higher than for L /L =0.0.
At low Rayleigh number the wall Nusselt number is highly dependent upon
the plate length ratio. Again, the wall Nusselt numbers approach the fully
developed limits (equations 3.22, 3.23). Ar interesting feature of the low
Rayleigh number behaviour is the disproportionate reduction in the wall
Nusselt number from L /L =2/3 to L /L_=1.0. This decrease is only partially
caused by viscous resistance and can be explained as follows: at low
Rayleigh number the flow becomes thermally fully developed within a short
distance from the channel inlet. If the dividing plate is much shorter than
the channel length (L <<L.), then the flow will be fully developed before
reaching the plate and the plate heat transfer will be almost gero.
However, in the limit as Ly/L.~1, approximately one half of the heat
transfer will be contributed by the dividing plate. As a result, the heat
transfe- from the plate reduces the wall Nusselt number by approximately

a factor of two.

Figure §5.17 shows a comparison of the wall local Nusselt number
distributions from the elliptic and parabolic solutions for L,/L.=1/3 at
several values of Rayleigh number for the plate in the middle of the
channel (L‘/Lcs(l-L’/Lc)lz, t/b=0). Again, at low Rayleigh number, the
elliptic solution is in close agreement with the parabolic solution, except
that the discontinuities are smoothed. The results show that the wall heat
transfer rises slightly near the location of the leading edge of the plate

and falls slightly near the trailing edge of the plate. The slight variations
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of the wall heat transfer can be explained by considering the traverse (u)
component of velocity. At the leading edge of the plate a momentum
boundary-layer begins to develop on the zero-thickness dividing plate;
accordingly, the x-component of velocity (u) is positive across the entire
channel. This traverse component of velocity brings cooler fluid from the
centre regions of the channel closer to the wall, caugsing the heat transfer
to increase slightly. Similarl;, at the trailing edge of the dividing plate
the traverse component of velocity is negative across the entire channel.
Hence, cooler fluid is pushed away from the wall, causing the wall heat

transfer to decrease slightly.

Figures 8.18 and 5.19 show the variation of the channel average Nu.aelt
number (Nu.) with channel Rayleigh number (Ra ) for L /L =(1-L/L.)/2,
and L‘/Lc'-'l-L,/Lc. (t/b=C). Comparison with the results for the plate in
the bottom of the channel (Fig. 5.9) shows that the general trends of the
data are similar. However, when the plate is located higher in the channel,
curves of fixed plate length ratio (L’/Lc) are slightly lower than when the
plate is located at the channel inlet. This effect is discussed further in

Section 5.2.3.

The channel axial pressure distributions for L'/Lc=1/3 with the plate in the
top of the channel are shown in Fig. §.20. Notice that the pressure
decreases near the leading edge of the plate. Temporary, the high skin
friction at the leading edge causes a negative pressure gradient. It is
also interesting to note that at low Rayleigh number, the pressure in the
upper portion of the channel is above the ambient pressure. At low
Rayleigh number, the dividing plate contributes additional viscous
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Figure 5.18: Variation of the channel average Nusselt number (N.uc) with
Rayleigh number (Ra ") for several plate length ratios
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Table 5.2: Comparison of major data from the parabolic and elliptic
solutions for L,/Lc=1/3, L‘/Lc=(l-Lp/Lc)/2 (middle), t/b=0.

Plate Average Nusselt Number - Nu’

Ra‘

Ra.

Parabolic Solin

Elliptic Soltn

c P Nup Nu’ % Difference
5 15 0.2924 0.2647 9.5
10 30 0.7191 0.6712 6.6
100 300 2.9094 2.8743 1.2
1,000 1,000 5.2828 5.2446 0.72
5,000 15,000 7.3718 7.3983 ~-0.36
10,000 30,000 8.4942 8.5263 -0.38

Wall Average Nusselt Number - Nu

Parabolic Soltn

Elliptic Soltn

Ra® Ra’ Nu, W % Difference
5 15 0.4870 0.4487 7.9
10 30 0.7251 0.6775 6.6
100 300 1.8808 1.7866 5.0
1,000 1,000 3.4328 3.1748 7.5
5,000 15,000 4.9821 4.5270 9.1
10,000 30,000 5.8368 5.2968 9.3

Channel Average Nusselt Number - Nu

Parabolic Soitn

Elliptic Soltn

Ra S~ Rap' Nu_ Nu_ % Difference
5 15 0.4372 0.4256 2.7
10 30 0.7229 0.7058 2.4
100 300 2.1458 2.1154 1.4
1,000 1,000 3.9118 3.7809 3.3
5,000 15,000 5.6217 5.3631 4.6
10,000 30,000 6.5447 6.2369 4.7

Half Channel Induced Flow Rate (Q,=Q,/Gr!)

Parabolic Soltn

Elliptic Soltn

Ra ' Rap' Q, Q, % Difference
5 15 0.11673 0.11365 2.6
10 30 0.97887E-1 0.95391 2.5
100 300 0.40036E-1 0.39104E-1 2.3
1,000 1,000 0.12280E-1 0.11912E-1 3.0
5,000 15,000 0.47301E-2 0.45727E-2 3.3
10,000 30,000 0.29932F-2 0.28989E~2 3.1
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Table 5.3: Comparison of major data from the parabolic and elliptic
solutions for L,/L¢=1/3- L1/Lc=1—L’/Lc (top), t/b=0, Pr=0.7.

Plate Average Nusselt Number - Nu,

Parabolic Soltn | Elliptic Soltn

Ra * Ra° Nu, Nu, % Difference
5 15 0.08946 0.08244 7.8
10 30 0.3194 0.2997 6.2
100 300 2,1635 2.1182 2.1
1,000 1,000 4.5091 4.4952 0.31
5,000 15,000 6.6331 6.5829 -4.0
10,000 30,000 7.7104 7.7049 -0.07

Wall Average Nusselt Number - Nu

Parabolic Soltn | Elliptic Soltn

Ra ® Ra’ Nu, Nu, % Difference
5 15 0.5354 0.4996 6.7
10 30 0.7973 0.7545 5.4
100 300 1.8729 1.7904 4.4
1,000 1,000 3.3234 3.1279 5.9
5,000 15,000 4.9746 4.5124 9.3
10,000 30,000 5.7059 5.2976 7.1

Channel Average Nusselt Number - Nu_

Parabolic Soltn | Elliptic Soltn

Ra® Ra ' Nu,_ Nu,_ % Difference
5 15 0.4217 0.4155 1.5
10 30 0.6762 0.6659 1.5
100 300 1.9464 1.9195 1.4
1,000 1,000 3.6408 3.5462 2.6
5,000 15,000 5.3233 5.1322 3.6
10,000 30,000 6.2300 6.0119 3.5

Half Channel Induced Flow Rate (Q,=Q,/Gr?)

Parabolic Soltn | Elliptic Soltn

Ra* Rap' Q, Q, % Difference
5 15 0.11261 0.11103 1.4
10 30 0.91329E-1 0.89934E~-1 1.5
100 300 0.34713E-1 0.34090E-1 1.8
1,000 1,000 0.10345E~1 0.10093E-1 2.4
5,000 15,000 0.38988E-2 0.37885E-2 2.8
10,000 30,000 0.24448E-2 0.23817E~2 2.6




resistance and almost no additional buoyancy force. Hence, the pressure
must be above the ambient pressure before reaching the plate’s leading

edge in order to push the fluid past the restriction caused by the dividing
plate.

Tables 5.2 and 5.3 show a comparison of major data from the parabolic and
elliptic solutions for L. /L.=1/3, L;/L =(1-L/L;))/2 and L,/L1-L /L,
(t/b=0). The agreement of the two solutions is typically better than five
percent for the plate Nusselt number, the channel Nusselt number and
induced flow rate. The wall Nusselt number agreement is not as close. A

more complete tabular listing of the numerical data is given in Appendix

D.

5.2.3 Effect of Dividing Plate Location, (t/b=0)

Results for the dividing plate in the bottom, middle and top of the channel
have been presented in the Sections 5.2.1 and 5.2.2. However, the results
are given in separate graphs for each plate position, making comparison
difficult. In this section the data are compared for the dividing plate in

each vertical position with one fixed plate length ratio, Lp/Lc=I/3.

Figure 5.21 shows streamline and isotherm contours at low and high
Rayleigh number from the elliptic solution with the plate in the top of
channel for L’/Lc=1/3, (t/b=0). Comparing the streamline patterns for this
configuration with those for the plate located in the bottom of the channel
(Fig. 5.1) shows only minor differences. However. the effect of plate

position on the temperature field can be seen to be quite dramatic.
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Figure 5.21: Streamline and isotherm contours for the divided channel
with L /L =1/3, t/b=0, and L,/L.=1-L /L =2/3, (a) Ra =5,
(b) Ra, =10%




Comparing Fig. 5.1 and Fig. 5.21, it can be seen that the average fluid
temperature at any elevation in the channel is higher when the plate is
located at the bottom of the channel. Hence, simply by inspecting the
isotherm ccntour plots, it could be expected that the buoyancy induced
flow and overall heat transfer will be higher when the plate is in the

bottom of the channel.

Figure 5.22 shows the behaviour of the dimensionless flow rate (Q’) and
exit bulk temperature (Tb') with channel Rayleigh number (Rac') for each
plate position!. At low Rayleigh number, the fully developed induced flow
rate is independent of the plate location. For Ra.*>0, the largest .low rate
occurs when the plate is at the channel entrance (L1/Lc=0), and decreases
as the plate moves from the bottom to the top of the channel. At Rac'=10‘,
the induced flow rate is about thirty seven percent higher when the plate
is in the bottom of the channel than when the plate is at the top. As
previously mentioned, it is evident from the temperature contour plots that
the average fluid temperature in the channel is the highest when the plate
is at the bottom. This implies that the average buoyancy force is the

largest when the plate is at the bottom. The higher average buoyancy

force induces a larger flow rate.

Figure 5.23 shows the variation of the plate average Nusselt number (Nug)
with plate Rayleigh number (Ra") for each plate position. At low Rayleigh
number there is a strong influence of plate position on the plate Nusselt

number. For L,/L>0, the Nusselt number decreases very rapidly with

! Note that the parabolic and elliptic dimensionless flow rates are
related as: Q, = Q,/Grt
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decreasing Rayleigh number because of the shortening thermal developing
length (as discussed in Section 5.2.2). At high Rayleigh number the plate
Nusselt number is much less dependent on the vertical location of the
plate. At Ra"=3x10‘, the Nusselt number for the plate located at the
bottom of the channel (Lxll‘c=°) is about twenty percent higher than for
the plate located at the top of the channel (L‘/Lc=l-Lp/Lc=2/3).

Figure 5.24 shows the variation of the wall average Nusselt number (Nu')
with channel Rayleigh number (Ra.") for each plate position. At low
Rayleigh number the wall Nusselt number for L,/L =0 ig one half the value
for L1/Lc>° for reasons explained in Section 5.2.2. However, the lack of
dependence on plate location at high Rac' is very interesting. Although
the induced flow rate is larger when the plate is in the bottom of the
channel (which would tend to increase the wall heat transfer), the bulk
fluid temperature is higher (which tends to decrease the wall heat
transfer). These effects counteract each other for Rac'>200. causing the

wall Nusselt number to be almost independent of the plate position.

The effect of the plate position on the channel average Nusselt number
(Nu_) is shown in Figure 5.25. Positioning the plate at the bottom of the
channel (Li/Lc=0) produces the greatest heat transfer over the entire
range of Rayleigh number. However, the channel average Nusselt number
is only weakly dependent upon the plate’s vertical position; at Rac'=10‘. the
channel Nusselt number for L,/L_=0 is only seven percent higher than for
L,/L=1-L /L. Since the wall average Nusselt number is almost
independent of the plate position at high Rac', this increase in the channel

average Nusselt number can be attributed solely to the additional heat
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transfer from the plate.

5.3 Effect of Dividing Plate Thickness - t/b20

The previous sections have shown the influence of plate length ratio
(Lp/Lc) and vertical plate position (L;/L_) on the heat transfer from the
channel walls, the dividing plate and the channel as a whole. This section
shows the influence of slight blockage caused by a finite thickness

dividing plate (0st/b<0.2).

Additional cases were run with dividing plate thicknesses of t/bs0.1 and
t/b=0.2 for a fixed plate length ratio (L,/Lc=1/3) and with the plate in the
bottom of the channel (L,/L_=0). The parabolic solution is limited to t/b=0.
Hence, only the full elliptic solutions could be obtained for finite plate

thicknesses.

Figure 5.26 shows streamline and isotherm contours from the elliptic
solution for a partially divided channel with a plate length ratio Lp/Lc=1/3
and thickness t/=0.2, (L,/L_=0). The behaviour is similar to that of the
divided channel with t/b=0 (Fig. 5.1). At low Rayleigh rumber (Rac'=10,
Fig. 5.26(a)), the flow enters the channel smoothly. Separation occurs on
the wall at the channel inlet at higher Rayleigh number (Ra_ "=10%, Fig.
5.26(b)). The elliptic solution predicts that increasing the plate thickness
delays the onset of separation at the channel] inlet. With twenty percent
blockage (t/b=0.2) separation occurs between ZOOSRAC'SSOO, as compared to
IOOSRac'SZOO for zero blockage (t/b=0). This result is not surprising since

blockage reduces the induced flow rate in this range of Rayleigh number;
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(b) Ra_*=10*

Figure 5.26: Streamline and isotherm contours for the divided channel with
t/b-2.2, L /L.=1/3, L,/L =0, (a) Ra_*=5, (b) Ra '=10%




separation has been previously shown to correlate with flow rate (see
Chapter 4). For finite thickness dividing plates, flow separation also
occurs at the top of the dividing plate. For L’/Lc=1/3, Lp/b=5. L,/L_=0,
and t/b=0.2, the elliptic solution predicts that separation occurs between

IOSRac'SZO. as determined from the plate shear stress distribution.

Figures 5.27, 5.28, 5.29 and 5.30 show the variation of flow rate (Q,) and
Nusselt numbers (Nu,, Nu,, Nu ) with Rayleigh number for zero, ten and
twenty percent channel blockage (t/b=0, 0.1, 0.2). As would be expected,
increasing blockage (t/b) causes a reduction in the induced flow rate and
Nusselt numbers at low Rayleigh number. Note that the data from the
elliptic solution (for t/b>0) appear to be approaching the fully developed
asymptotes derived in Chapter 3. At Ra =5, for L /L.=1/3 and L,/L =0,
twenty percent blockage of the channel cross-section (t/b=0.2) causes a
thirty percent reduction in the plate and channel average Nusselt numbers.
In the fully developed limit, the maximum reduction is predicted to be 38.8

percent.

At high Rayleigh number, small plate thicknesses have almost no effect on
the channel’s thermal behaviour since the dividing plate and walls act as
isolated plates. The induced flow rate and Nusselt numbers are almost
independent of the channel half width (b), so small changes in the
effective channel width caused by blockage has very little effect. There
is, however, a small secondary effect to be considered. A dividing plate
with finite plate thicknecs {t/b>0) has a slightly larger wetted length than
a plate of zero-thickness (t/b=0) with the same length ir. the y-direction

(L'/b). The extra wetted length is associated with the rounded leading
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and trailing edges. The plate with thickness t/b=0.1 has 2.3 percent more
wetted length than the zero-thickness plate (for L, /b=5, L, /L =1/3).
Similarly, the plate with thickness t/b=0.2 has 4.6 percent more wetted
length than the zero-thickness plate. Consequently, at high Rayleigh
number, the channel with twenty percent blockage (t/b=0.2) has a slightly
higher induced flow and heat transfer than the channel with t/b=0 and
t/b=0.1 (see Fig. 5.27, 5.28, 5.29, and 5.30). However, the extra wetted
length is a :alatively minor effect for t/b<0.2 and can be neglected for
most practical purposes. For example, at Rac"=10‘, the plate, wall and
overall channel average Nusselt numbers for t/b=0.2 are only about three

to five percent higher than for t/b=0.
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CHAPTER 6

EXDPERIMENTAL APPARATUS, PROCEDURE

AND ANALYSIS

6.1 Introduction

A Mach-Zehnder interferometer was used to visualize and measure the free
convective temperature field in an isothermal divided channel. Using
interferometry, the entire temperature field can be recorded simultaneously
and non-intrusively. From the temperature field, local as well as overall
heat transfer coefficients can be obtain~d for comparison with the
numerical predictions. An additional advantage of interferometry is that
radiation does not influence the fluid temperature measurement when the
heat transfer medium (such as air) is transparent to thermal radiation [66].
Only the convective component of heat transfer is measured and

corrections for radiation are not necessary.

The output of the interferometer is the optically integrated refractive index
field, which can be "calibrated” to give the t.+ oerature field. Since the
interferometer integrates the temperature field in the direction of the light
beam, it is best suited to measurements of two-dimensional fields such as
the present study. However, it should be noted that interferometry can

also be applied to three-dimensional ar.d axisymmetric fields {67,68,69].

This chapter describes the construction details of the test section, the

experimental procedure and the interferometric analysis for the experiment.
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6.2 Test Section Design

A cross-gsctional diagram of the divided channel test section is shown in
Fig. 6.1. The height of the channel was L_=120.00 ¢ 0.05mm. This length
was chosen to be as long as possible without exceeding working height of
the interferometer test beam. With the height of the channel established,
the dividing plate length was selected to give a length ratio of exactly
Lp/Lc=1/3 i.e., Lp=40.00 2 0.05mm. This length ratio coincides with the ratio

ueed in mo:ct of the numerical calculations.

The length of the test section in the direction of the test beam (Z;) i»
crucial design parameter. The considerations in choosing this length were
as follows:

i) The length must be chosen to produce sufficient interference fringes in
the Rayleigh number range of interest. Decreasing the model length in the
direction of the beam will reduce the total fringe shift for a fixed surface-
to-ambient temperature difference.

ii) The test section must be long enough to make end effects small so that
the temwrperature field is essentially two-dimensional.

ili) The length must be kept to a minimum to reduce refraction effects.
iv) A high degree of surface flatness is easier to attain for shorter
models. Improved flatness will allow more accurate alignment of the
interferometer test beam with the model.

v) Thin foil resistance heaters to be used in the dividing plate were
available in a limited number of lengths.

Based on these considerations, a test section length of 2,=26.91 ¢ 0.0lcm

was selected. For this length and air as the test fluid, each fringe shift

corresponds to a temperature difference of about AT=3C°.
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Figure 6.1: Crosssectional siew of the divided channel
test section.




The main component of each wall assembly was a precision machined
aluminum plate. A mechanical drawing of one of the plates is shown in Fig.
6.2. For clarity, only the locations of thermocouple holes are shown. Two
pletes, identical to the one shown in Fig. 6.2, formed the isothermal channel
and were machined from 12.7mm thick aluminum tooling plate. Tooling plate
is much flatter than standard aluminum plate; after machining, both of the

aluminum plates were measured to be flat to within 0.0254mm.

Nine copper-constantan (40 gauge) thermocouples were installed in each
wall of the channel. The thermocouple locations are shown in Fig. 6.2. For
all experiments, the nine thermocouples read the same to within 0.5C°,

which is about 2.4 percent of the overall temperature difference.

The construction of each wall assembly was identical (see Fig. 6.1). The
aluminum plate was insulated on the back surface by a 2.54cm layer of
polystyrene (styrofoam SM™) and a 1.27cm sheet of plywood. The
polystyrene, wood and aluminum plate were held together by six nylon rods
that were threaded into the back surface of the aluminum plate. To
support the assembly, a 37cm length of 5x5x0.48cm angle aluminum was
attached to both ends of each wall. Photographs of the front and back of
one wall assembly are shown in Fig. 6.3. Note that directly above and
below the wall assemb!y, a portion of the angle bracket was removed so
that the flow of air into the channel was not obstructed. Four nylon
threaded rods were used to connect the two wall assemblies at the top and
bottom of each angle bracket. The thread rods held the walls at a fixed

distance apart and allowed the spacing (2b) to be easily adjusted.
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Each wall was heated by four electric strip heaters (manufactured by Minco
Products Inc.). The heaters were affixed to the back surface of the
aluminum plate using aluminum foil tape. Each heater had dimensions
25.5x2x0.04cm and a resistance of about 60 ohms. The location of each

strip heater is shown in Fig. 6.1 (item #11).

Preliminary tests showed that there was gignificant heating of the
horizontal surfaces near the channel inlet. To reduce the pre-heating of
the air entering the channel, small heat exchangers were installed in each
wall assembly to cool the phenolic sheet n:ar the channel inlet (see item
#9 in Fig. 6.1). An 1sometric and cross-sectional drawinyg of one heat
exchanger is shown in Fig. 6.4. The single-pass heat exchangers were
constructed by bending and soldering 0.8mm thick copper sheet. Water at
room temperature was supplied to the heat exchangers. In the operating
Rayleigh number range of the test model, maintaining the horizontal
surfaces at room temperature is almost equivalent to maintaining an

adiabatic condition.

The dividing plate was machined from two pieces of 259.1x40.0x1.59mm
copper plate. Despite somewhat poorer machining properties, copper was
used instead of aluminum because of its higher thermal condu-~tivity.
Figure 6.5 is a mechanical drawing of one side of the copper plate. Only
one side of the dividing plate is shown in Fig. 6.5 because the machining
for both sides was almost identical. Both the top and the bottom of the
plate were machined to have a radius of 1.59mm. Shallow grooves (0.5mm
deep) for thermocouples were machined near each end and in the middle

of one side of the plate. The thin foil heaters installed between the two
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machined plates were slightly thicker at each end because of the wire
connections. To allow for the increased thickness, a small amount of
material was milled from the inside surface at each end of both plates.
Ten flat head screws were used to assemble the two halves of the dividing
plate. Care was taken to ensure that the screws were countersunk below
the surface. After assembly, the plate thickness was measured to be

2t=3.50£0.04mm over the entire surface.

Four thin foil electric heaters (manufactured by Minco Products Inc.) were
installed in the middle of the dividing plate. Each foil resistance heater
had dimensions 26x0.6x0.016cm, was insulated with Kapton™, and had a
resistance of about 50 chms. A photograph of the fully assembled dividing
plate and a single thin foil heater is shown in Fig. 6.6. The lead wires to

the heaters at each end of the plate show the location ¢. each hester.

As shown in Fig. 6.1, the dividing plate was supported in the channel at
each end by a 1.2mm diameter steel music wire. The music wire was
attached to a piece of threaded steel rod so that the plate position could
be finely adjusted. At each end of the channel, fine positioning pins

(0.53mm dia.) were provided on both sides of the plate. These pins

stabilized the lower portion of the plate and enabled the plate to be
accurately positioned in the centre of the channel. Using these
adjustments, the plate could be centrally positioned in the channel within
0.1mm. Holes were drilled in the walls so that the plate could be installed

at both the bottom (L‘/Lc=0) and the top (L‘/Lc=2/3) of the channel.

Nine copper-constantan (24 gauge) thermocouples were installed in the




154

Figure 6.6: The assembied divider plate and one thin
foil heater.

Figure 6.7: The test section in the Mach-Zehnder
interferometer (Li/Lc=0)‘




plate. The thermocouple tips were positioned at the top, middle and bottom
of the thermocouple grooves shown in Fig. 6.5. Care was taken to ensure
that the thermocouple tips were not directly beneath the resistance heating
elements. Thermocouple leads were brought out of the top of the plate and
up the centre line of the channel (see Fig. 6.10). For all experiments, the

plate was isothermal to within 0.4C°.

Undulations and bowing of the dividing plate would reduce the accuracy
of locating the surface on the interferograms. After installing the heating
elements and thermocouples, the flatneas of the plate assembly was
measured on a machinist’s stone. It was found to be flat to within $0.15mm

over its entire length.

The junctions of the fine thermocouples (24 gauge) installed in the dividing
plate were made by scldering the tips under a magnifying glass. Although
these thermocouples are very fragile, this method provided a robust tip
that did not separate during installation. The tips of the 40 gauge
thermocouples used to measure the wall, ambient, and waier temperature

were jointed using a spot welder.

Before assembling the test model, the wall and dividing plate surfaces were
polished using commercially available aluminum and copper cleaners.
Polished surfaces aid in aligning the beam with the test section; also, dust
particles are removed that would scatter light and make the surface
difficult to locate on the interferograms. To a small extent, polishing
reduces the radiative heat exchange by lowering the emissivity, and the

lower heat transfer promotes isothermal conditions.
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Heat conducting paste (Omegatherm 201, Omega Engineering Inc.) was used
in several locations to reduce the therual contact resistance. Each electric
strip heater in the wall and dividing plate assemblies was coated with
paste during installation The holes in the walls and the grooves in the
dividing plate were packed with the heat conducting paste prior to
inserting the thermocouples. Also, paste was spread on the bottom of both
heat exchangers to reduce the air gap between the copper and the

phenolic sheet.

The fully assembled model is shown in the interferometer in Fig. 6.7. In
this photograph, the dividing plate is located at the bottom of the channel
(L,/L_=0). Each end of the test section was sealed off with a 15.2cm
diameter optical window. The windows prevent entrainment of al: into the
gsides of the channel. Both windows were 2.54cm thick, parallel to § arc

seconds and optically flat to within A/16 of helium-neon laser light.

6.3 Experimental Apparatus

The test section and associated instrumentation was integrated with a 20cm
(8 inch) mirror Mach-Zehnder interferometer. A schematic layout of the
experimental apparatus is given in Fig. 6.8. The interferometer was
initially designed by Tarasuk [70] and operated with the test and reference
beams in the same horizontal plane. Recently, using the same optical
components, Papple [71]) has modified the setup cuch that the reference
beam and test beam are in the same vertical plane. Either configuration
would suffice for the present study. For convenience, Papple's [71]

modified setup was used.
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The model surface temperatures, as well as the ambient and cooling water
temperatures were recorded by a Doric Digitrend 220 data logger. The
resolution of the data logger was 0.1C°. The thermocouples were connected
in absolute mode, as opposed to differential mode. Prior to installing the
thermocouples in the test section, they were checked at the ice point and
boiling point of distilled water. All the thermocouples read correctly at the

ice point and about 0.2C° low at the boiling point.

Two shielded thermocouples, located near the channel entrance, were used
to measure the ambient air temperature (To). For all experiments, the two

thermocouples gave the same temperature within 0.1C°.

The power input to each wall of the channel and to the centre plate was
controlled from three separate direct current power supplies. It was not
possible to get each surface at exactly the same average temperature.
Typically, the average temperature of both walls and the dividing plate was
within 0.3C* (= 1.4% of the overall temperature difference). The maximum
difference for all experiments was not greater than 0.5C° (x2.4% of the

oversall temperature difference).

A 15 litre tank supplied cooling water to the heat exchangers installed in
the channel walls. The tank was situated approximately 2 meterr above the
drain so that the required flow (z0.3 litres/min) could be achieved by
gravity. To approximate adiabatic conditions, it w's desired to maintain
the horizontal surfaces near the channel inlet at room temperature. For
this reason, the water supplied from the tank was always within 1C’ of

room temperature.
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Interference fringe patterns were recorded using a Calumet 10cmx12.5cm
view camera with the lens removed. The film used to photograph the
interference patterns was Polaroid 10cmx12.5cm Land film, type 55
{positive/negative). The film negatives were used for analysis purposes
since they have greater resolution (150-160 lines per mm) than the film

positives,

6.4 Interferomeler Alignment
The interferometer rests on three air bags, which partially isolate the
optics from building vibrations. Prior to any test, the interferometer was

levelled by adjusting the pressure in these air bags.

Once level, the interferometer optice were aligned. The first step in the
alignment is to ensure that the expanded beam is collimated when it leaves
parabolic mirror E (see Fig. 6.8). If collimating lenses B and C focus the
laser to a point at small mirror D, beam parallelism results if the small
mirror D is exac:ly at t.ue focal point of the parabolic mirror E. The
technique used to obtain the position of mirror D is illustrated in Fig. 6.9.
With beamsplitter F temporarily removed, mirror G was rotated to be
perpendicular to the beam. Then, mirror D was located by trial and error
such that the light reflecting off mirror G would refocus exactly back at
mirror D. If mirror D was not at the focal point, the returning beam would
focus at a different location on the centre line. Once collimation was
achieved, the focal point was marked so that it could be checked before

all subsequent experiments. The procedure given by Tarasuk [70] was

used for the remainder of the alignment.
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Helium Neon
Laser X = 0.6328 um

B Expanding Lens

C Condensing Lens

~—Small Flat Mirror

) Flat Mirror G

Figure 6.9: Optical setup for obtaining a parallel bean




As an aside, it should be noted that shear plate collimation testers are now
commercially available (from Melles-Griot Corp. [72]). These testers allow
fast, accurate beam collimation without the above procedure. Also, there
is th: added convenience that collimation can be confirmed in seconds,
prior to each new experiment. For this reason, it is recommended to use

a collimation tester in the future, rather than the above method.

When the alignment is completed, visible "finite (wedge) fringes"” appear in
the output of the interferometer. Figure 6.10(a) is a photograph of the
unheated model showing these finite fringes. Note that the shadows of
mirrors D and K appear in the output. Once finite fringes were obtained,
these fringes were spread apart by rotating mirror G to the extent that
the output field was almost entirely light or dark. Complete constructive
or destructive interference of the output beam is called the "infinite
fringe" condition and is a consequence of the nearly perfect parallelism of
the recombining beams at beamsplitter H. A typical infinite fringe
condition with the model unheated is shown in Fig. 6.10(b). Note that the
infinite fringe setting ‘s not perfect; in Fig. 6.10(b), there is about one full
fringe shift over the field of view. Only minor adjustments of the optics

were required to maintain alignment after the initial setup.

8.5 Test Procedure
A total of 12 experiments were performed. The range of variables covered
is summarized below:

L/L,

L,/L, = 0, 2/3

0, 1/3
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(a) Finite fringe condition

) Infinite fringe condition

Figure 6.10: (a) Finite fringe condition for the unheated model.
(b) Infinite fringe condition for ihe unheated model.




81.4 < Ra '’

1A

5,939

0.069 £ t/b < 0.2

4.73 £ L /b £ 13.68
For these experiments, the channel-to-ambient temperature difference was
held roughly constant (T,-T*18 to 25 C°) and Rayleigh number was
increased by widening the channel gap (2b). For each experiment, the
channel wall spacing (2b) was set using a 2.54cm long jig made from
standard aluminum and brass bar stock. Six jigs were used to obtain the
following wall spacings: 2b = 17.4mm, 17.55mm, 25.4mm, 31.95mm, 38.15mm,

50.7mm. Using these jigs, the gap width could be set to within $0.05mm.

The interferometer is very sensitive to building vibrations; high vibration
levels cause poor quality interferograms. The main sources of vibration
seem to be the activities of people in the building and automobile traffic.
For this reason, all interfarograms were taken at night between vhne hours
of 11 pm. and 5 a.m.. During these hours the vibration of the

interferometer output was substantially reduced.

The following procedure was used for each experiment:

Initially, the tank that supplied water to the heat exchangers was filled.
The water temperature was adjusted to be within 1C° of ambient

temperature.

With the optical windows removed, the channel wall spacing (2b) was set

by adjusting the threaded rod spacers at each corner of the model. The

wall spacing was adjusted until it was the same as the appropriate jig over

163




the entire channel area. Once the wall spacing was set, the dividing plate

was centrally located between the channel walle using vernier callipers.

After the wall spacing and plate positioning were set, the optical windows
were placed on the test section. The test section was then positioned near
the centre of the interferometer test beam, and levelled. A plumb bob was
used to set the channel walls parallel to the gravity vector. Alignment of
the test beam with the channel was done by placing a white card in the
beam, just beyond the test section, and rotating mirror 1 such that the
beam and channel were parallel. Misalignment of the beam was easily
detected because of reflect.ons off the polished surfaces. Once alignment
was obtained, the infinite fringe cor.dition was regained by rotating

beamsplitter H and mirror G.

In accordance with a study by Mehta and Black [73]), the camera was
focused at one third the dirtance from the exit plane of the test section
to minimize refraction error. At this time the reference beam was blocked
and a picture (scale photograph) of the unheated channel was taken at a
camera shutter speed of 1/60*" of a second. The film negative was
examined with a travelling microscope to check alignment, uniformity of wall
spacing, dividing plate positioning and scale factor. The test section was

then ready for the experiment

The power supplies for the walls and dividing plate were turned on and
adjusted to heat each surface to T,-T 221C'. A temperature difference of
21C° gives about seven fringe shifts. Generaliy, three or four power

adjustments were required to get all three surfaces to the same average
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temperature. A period of 10 to 15 minutes was allowed for a new steady-
state condition to be reached after each adjustment. Once the
temperatures of the walls and the plate were the same and steady, the

atmospheric pressure was measured using a mercurial barometer.

Next, the cooling water supply to the heat exchangers was turned on to
cool the horizontal surfaces at the channel inlet. Although these surfaces
cooled almost instantly, a time delay of about 5 minutes was allowed before

proceeding with the experiment.

A photograph of the infinite fringe pattern was taken next. Slight rotation
of mirror G was usually required to regain an infinite fringe condition
prior to taking the photograph. The infinite fringe condition was set by
ensuring, as closely as possgible, that the destructive fringe closest to
channe! walls did not intersect the surface. All interferograms were taken

5" of a second.

at a camera shutter speed of 1/12
Immediately after taking the infinite fringe interferogram, the finite fringe
pattern was photographed. It is necessary for analysis that the finite
fringes in the undisturbed field (i.e. in the unheated air near the channel
inlet) be perpendicular to the channel walls. This condition was most

easily achieved by rotating mirror G about the horizor.tal axis.

6.6 Interferogram Analysis
A detailed discussion of the fundamental theory and optical considerations

of interferometry is given by Eckert and Goldstein [66]). A brief

explanation is given here for completeness.
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Interferometry utilizes the wave nature of light. The amplitude (A) of &

monochromatic light wave in a homogeneous medium can be expressed as:
A-A.lin—zf-(ﬂ-z) (6.1)
where A, is the peak amplitude, c the speed of light, v the time, z the

distance and ) the wavelength. Hence, the amplitude of the reference

beam at a fixed point can be expressed as:

2xce (6.2)

A,‘-A.wlin
Similarly, amplitude of the test beam at the same posgition is:

2xct -9) (6.3)

Ane=4,, sin (=%

where ¢ is the phase shift between the two beams because of the
difference in the optical path lengths. Note that the phase shift ¢ is only

a function of the distance (z) and is not a function of time.

Now consider these two beams recombining beyond the second beamsplitter
(H). Since both beamsplitters cause fifty pcrcent of the light to be

transmitted and fifty percent to be reflected it may be assumed that

A A et™A0 test® The amplitude of the interferometer output is given by:
A-A_+A-A,Gin(2EEE _ g)sin 2ECT) (6.4)
- e A A

From equation (6.4) it is evident that constructive interference will occur
when ¢/2n is an integer. Also, complete destructive interference will occur
when (¢/2r)+} is an integer. It is these constructive and destructive
interference fringes that can be calibrated to give the temperature field

in the test beam.
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The Mach-Zehnder interferometer integrates changes in the index of
refraction along the light path. The integrated inaex of refraction (N) is

called the optical path length (PL) and is defined by:

PL(xy) = [ Nery)de (6.5)

where x,y are the traverse coordinates to the light path and z is the
coordinate in the direction of the light beam. The fringe shift €(x,y) is
the difference in the optical path length between the test beam and the
reference beam, expressed in terms of vacuum wavelengths ()). Note that
the refractive index of the teat beam is constant and equal to that of the
reference beam except over the heated length of the test section (Z,).

Therefore, the fringe shift is given by:

z,
P o
0

A
where N(x,y) is the refractive index of the test medium,
N_.¢ is the refractive index of the reference medium,
Z, is the heated length of the test section in the direction
of the light beam (z).
In the present study, the refractive index field is consid:red to be two-
dimensional in the (x,y) plane (neglecting end effects). For this condition,

equation (6.6) becomes:
)~ X (Ns)-N, @)
A

The Lorentz-Lorenz equation [74] relates the index of refraction to density

as follows:
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N1

—=0(3) {6.8)
p(N'-rZ)

where G()\) is the specific refractivity of the test medium for a given
wavelength of light. For air and a helium-neon laser (1=0.6328x10"%m),
G=0.1504x10"3m3/kg. Since air has a refractive index very near unity
(N=1.0002716 at 20°C, 1 atm [74]) equation (6.8) can be simplified to:

2(N-1

-G (6.9)
3p

In this study, the air density (p) was calculate using the ideal gas law:

-P_ 5.10
P R,T (6.10)

Substituting equation (6.10) into (6.9) and solving for N gives:

3GP
2R_ T

+1 (6.11)

Substitution of equation (6.11) into equation (6.7) yields a practical
equation for determining the fringe shift €(x,y) between two known

temperatures:

_SGZ,.pI 1 1
2R, Tixy) T,

«(x) ) (6.12)

Solving equation (6.12) for T(x,y):

Tx.y) Ty
2ec)R AT, (6.13)

+1
3G Z,p

Using equation (6.13), the temperature at any location can be calculated for
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a known fringe shift relative to a known reference temperature. In the
present study, the model surface temperature (T,) was used as the
reference temperature. However, the fractional fringe shift between the
model surface and the first fringe is initially unknown. This fraction
fringe shift was determined by extrapolation using the two constructive

interference fringes closest to the model surface.

Interferograms were analyzed using a digital imaging system developed by
the author. The sole function of the imaging system was to determine the
spacing of destructive interference fringe centres at scans perpendicular
to the model surface. Destructive interference fringes were used because
they appeared narrower than the constructive fringes on the (film
negatives. For all experiments, only one half of the channel was scanned
because of symmetry. A detailed description of the digital imaging system

is given in Appendix B.

6.6.1 Calculatio. . . the Local and Average Wall Nusselt Numbers

Finite fringe interferograms were analyzed to determine the wall local heat
transfer coefficients. Finite fringe interferograms are less sensitive to
vibrational disturbances and give more accurate results than infinite fringe
interferograms. A full discussion of the relative merits of finite versus

infinite fringe interferograms is given by Saidi [75].

Equating the heat transferred by convection to the heat transferred by

conduction at the wall gives an expression for the local heat transfer

coefficient:
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(6.14)

where k,  is the thermal conductivity of air evaluated at the wall
temperature.
The wall local Nusselt number is defined by:
A, b k,%l,_, b (6.15)
" Tk, (T,-T),
where k; is the thermal conductivity of air evaluated at the film

temperature, T,=(T_+T,)/2.

Equation (6.15) was used to calculate the wall local convective coefficients.
The temperature ditferencg (T.-To) was calculated from the difference of
the averaged wall and ambient thermocouples readings. The temperature
gradients at the surface were evaluated by linearly extrapolating the
optically determined temperature profiles obtained from scans perpendicular
to the wall. That is, only the two destructive fringes closest to the wall
were used to estimate the surface gradients. Linear extrapolation is
recommended and has been used successfully by Eckert and Soehngen [76]
for the vertical flat plate geometry. Also, Kuehn and Goldstein [77] have
successfully used linear extrapolation to estimate the surface temperature
gradients on surfaces with large radii of curvature. Typically, higher
order extrapolation methods do not satisfy the condition that d?T/dx%=0 at

the surface.

Local convective coefficientc were measured at about 70-80 locations along

the wall. The distance between measurements was decreased toward the
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channel inlet because of the rapid increase in the local heat transfer.
Unfortunately, it is not possible to get local heat transfer coefficients all
the way up to the leading edge of the channel (y=0). This problem has
also been repor:*d by Showole {78]). No scanning of the interferogram
could be done at the inlet corner, so the leading edge heat transfer had
to he estimated based on linear extrapolation using the twc measurements
clogest to the leading edge. After linearly extrapolating the local Nusselt
number distribution to y=0, the local coefficients were integrated using the
trapezoidal rule to give the wall average Nusselt number. The contribution
of the extrapolated portion of the local heat transfer distribution was
typically about 3% of the total heat transfer from the wall. Hence, this

correction was relatively small,

6.6.2 Calculation of the Local and Average Plate Nusselt Numbers

The plate local Nusselt number is defined by:

dT
k25 b
Nu,, -t b _Tdn (6.16)
k,  T-T)k,
where dT/dnL : the surface temperature gradient normal to the plate

surface.

The interferograms were analyzed in three separate sections to determine
the plate local heat transfer distribution (see Fig. 6.11). The curved
leading edge (AB), the straight middle section (BC) and the upper curved

section (CD, were each scanned separately.

Finite and infinite fringe interferograme were analyzed to determine the
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Figure 6.11. Sketch of the divider plate showing the three
sections scanned, AB, BC, CD.
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plate heat transfer distribution. For the present geometry, the finite
fringes in the undisturbed field (ie. the unheated air at the inlet) must be
perpendicular to the surface to be scanned. Since the finite fringes in the
ambient air were set perpendicular to the channel walls, only the local heat
transfer on the vertical middle section of the plate (BC) could determined
from the firit- “ringe interferograms. Infinite fringe interferograms had
to be use: ! . ; qlzulate the local heat transfer on the curved leading and

trailing edgec. {AB and CD).

For the middle section of the plate (BC), the analysis is the same as for
the channel wall. The local Nusselt number was calculated using linear
extrapolation based on the first two destructive interference fringe

centres.

The bottom curved section of the plate (AP) was scanned at 15 degree
increments for local heat transfer coefficients. However, the bottom section
of the plate had a small radius of curvature, so the surface gradients
(dT/drI.) were obtained using a straight line fit to the first two fringe

temperatures versus the logarithm of radius:

ar, -(T,-T)
o " (6.17)
R, In(-2
ry

where R, = radius of curvature of the bottom of the plate,
T,,T, = temperatures of the first and .econd centres from the plate
surface,

ryr, = first and second fringe radii.

173




Eckert and Soehngen [76] recommend logarithmic extrapolation when the
radius of curvature is low. Since the fluid velocity is low near the
surface the temperature field is conduction dominated, and logarithmic

extrapolation reflects the nature of conduction in a cylindrical layer.

The local heat transfer from the top portion of the plate (CD) was
calculated differently from the bottcm surface (AB). Although the surface
has a low radius of curvature, logarithmic extrapolation was not used
because the fringes were far from the surface and wel. outside the
conduction dominated region (see interferograms, Fig. 7.6 and 7.7).
Instead, lirzar extrapolation based on the first two fringe temperatures was
used. It should be noted that in this region, the local heat transfer is low
and the fringes are widely spaced. The accuracy of the experimental local
coefficients in this region is expected to be very poor. However, the
contribution to the total plate heat transfer is small, so the accuracy of

the plate average Nusselt number is not greatly affected.

Another problem encountered when measuring the local heat transfer on
the top of the plate was the blockage caused by the thermocouple wires
and lack of working beam height (see interferograms, Fig. 7.6 and 7.7).
Where sufficient fringes were visible, the top of the plate was scanned at
15 degree increments. When integrating the local coefficients to get the
plate average Nusselt number, it was assumed that the local heat transfer
veried linearly from the last measured value (usually at 6,,=60° for L,/L =0
and at 8.,,=0° for L,/L_=2/3) to zero at the top of the plate (0,,=90°).
Although this is a crude assumption, the heat transfer in this region is

very low; hence, it does not significantly affect the accuracy of the plate
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average Nusselt number.

With the assumptions mentioned above, the plate average Nusselt number
was calculated by integrating the local coefficients (using the trapezoidal
rule) over the wetted length of one side of the plate. Note that the wetted

length of one side of the plate is L =42.0mm; whereas, the plate length

p,vet

in the y direction is Lp=40.0mm.

6.6.3 Calculation of the Channel Average Nusselt Number
The channel average Nusselt number (Nu ) was calculated using the

experimental wall and plate average Nusselt numbers as follows:

L,.Nu +L N, 420Nu, + 1200Nu,

Ny = L2
T La+L, 1620

(6.18)




PRESENTATION OF EXPERIMENTAL RESULTS

7.1 Introduction

Natural convection experiments were conducted for both the undivided and
the divided isotherm<] channel geometries. A total of twelve finite fringe

and twelve (12) infinite fringe interferograms were used for final analysis.

7.2 Experimental Results for the Undivided Channel

Initially, a single experiment was conducted without the presence of the
dividing plate. This experiment was done for two reasons:

i) Verification of the experimental method prior to introducing the dividing
plate into the channel.

ii) Comparison with the numerical rcsults presented in Chapter 4.

An effort was made to achieve a channel Rayleigh number close to
Rac'=91.625, so that comparisons could be made with the numerical results
of previous investigators [39,40) as well as the present numerical results.
The infinite and finite fringe interferograms for this experiment are shown
in Figure 7.1. The channel aspect ratio is L_/b=13.8 and the Rayleigh
number is Ra_"=92.4. Notice the cooling effect of the heat exchangers on
the horizontal surfaces near the leading edge. In Figure 7.1(a), it can be
seen that the air adjacent to horizontal surface is only slightly preheated

prior to entering the channel. The preheating extends about 1.0cm back
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(b) finite fringe interferogram

Figure 7.1: (a) Infinite fringe and (b) finjte fringe interferograms
of the undivided channel for Ra =92.4, /b 13.8.




from the leading edge and is largely mitigated by the presence of the heat

exchangers.

Figure 7.2 shows a comparison of the experimental developing temperature
profiles with those predicted by Nakamura et al. [40], Kettleborough [39]
and the present elliptic solution. (This graph was previously presented in
Chapter 4 without the experimental data). Near the channel inlet
(y/L_=1.12), the experimental results do not agree with any of the
numerical solutions. This could be expected because of the slight
difference in the temperature boundary conditions of the numerical and
experimental models at the inlet. At y/L_=3.59, the present elliptic solution
agrees very closely with the experimental data; however, farther up the
channel the agreement is not as close. Overall, the present elliptic solution
is in better agreement with the experimental data than other solutions.
Unfortunately, the agreement is not sufficiently close to settle
unequivocally the question of which solution is correct. However, reverse
flow draw into the channel from the channel exit predicted by

Kettleborough was not seen in the experiment.

Figure 7.3 shows the local Nusselt number distribution along the channel
wall compared with the present numerical prediction. The general trend
of the local heat transfer distributions is very similar, but the experimental
data are consistently lower than the elliptic solu.ion, especially near the
leading edge. The average Nusselt numbers compare as follows:

Experiment Nu_=1.684

Elliptic Solution Nu_=1.867 (diff.z10%)

Elliptic Solution Nu _,=1.802 (diff.=7%)
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Figure 7.3: Comparison of the experimental and numerical (ell4ptic)
wall local Nusselt number distributions for the
undivided chanrel.




There are several possible reasons why the experimental data are slightly

lower than the numerical data. First, it is not possible to get local heat
transfer coefficients all the way up to the leading edge of the channel
(y/L_=0) using interferometry. No scanning of the interferogram could be
done at the inlet corner, so the heat transfer had to be estimated by
linear extrapolation (as discussed in Section 6.6.1). This has been
estimated to cause the average Nusselt number to be about 2-3% low;
however, no other reliable method exists. Also, as previously mentioned,
heat exchangers were installed near the leading edge in order to improve
the temperature boundary condition of the horizontal surfaces near the
inlet. Despite the presence of the heat exchangers, the air is still slightly
preheated when it enters the channel. As & result, the local heat transfer
coefficients near the leading edge wili be somewhat reduced. Yet ancoth-=r
factor that could affect the experimental local Nusselt numbers is the
temperature profile extrapolation method. As described in Section 6.6.1,
fringe temperatures were linearly extrapolated at each "y" location to
calculate the local temperature gradient. Although this method is generally
preferred to higher order extrapolation, linear extrapolation will generally
slightly underestimate the surface gradient. Regardless of these problems,
agreement of overall heat transfer within 10% is sufficient for most

engineering purposes.

7.3 Experimental Results for the Divided Channel
For the main set of experiments, interferograms were taken over the

Rayleigh number range 81$Ra_"$5,930, with the dividing plate located in the

bottom (L,/L_=0) and top of the channel (L,/L =1-L/L_=2/3). For these




experiments, the plate length ratio was fixed at LP/LC=1/3.

It is important to note that the surface-to-ambient temperature difference
was held roughly constant (T _-T *18 to 25 C°’) and the experimental
Rayleigh number was increased by widening the channel gap (2b). Since
the channel length (L_) and dividing plate thickness (2t) were fixed, the
channe! blockage ratio (t/b) and the channel aspect ratio (L ./b) decrease
with increasing Rayleigh number. The lower limit of Kayleigh number for
the experiments was determined by allowing a maximum blockage of 20%.

The limiting geometries for the experimental model are listed below:

Lowest Rayleigh number: Rac'=81.4. t/b=0.2, L_/b=13.68
Highest Rayleigh number: Rac'=5.930. t/b=0.069, L_/b=4.73

In contrast, the results from the elliptic solution are for fixed geometric
ratios (t/b=0, 0.1, 0.2 and L_/b=15) over the full range of Rayleigh number.
This causes a slight difficulty when making comparisons with the
experimental data. However, the average Nusselt numbers are almost
independent of channel aspect ratio, so aspect ratio differences are not of
much concern. Also, it was predicted numerically in Chapter 5 that
blockage (t/b) has only a weak affect on average Nusselt numbers for
moderate and high Rayleigh number. Hence, except at low Rayleigh
number, slight differences in the channel blockage ratio (t/b) should not
hinder the comparison of the numerical and experimental average Nusselt

number data.

Figure 7.4 shows the comparison of an infinite fringe interferogram and the
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(a) infinite fringe (b) numerical isotherm
interferogram contours (elliptic)

Figure 7.4: Comparison of {a) an infinite tringe interferogram and
(b) a numerical isotherm contour plot for Ra*=97.6, Li/Lc:O’
L/b=13.68, t/b=0.20. ¢
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numerical isotherms at Rac'=97.6, L,/L_=0. For this comparison, a finite
element grid was used with exactly the same channel aspect ratio

(L./b=13.68) and blockage ratio (t/b=0.2) as the experimental model. It can
be seen in Fig. 7.4 that the temperature fields are qualitatively very

similar, although some differences exist in the plume re¢gion above the

plate.

Figures 7.5(a) and 7.5(b) show the comparison of the numerical and
experimental local heat transfer distributions on the plate and channel
walls for the case shown in Figure 7.4. As with the undivided channel
data (see section 7.2), the largest differences occur near the leading edge
of both the wall and plate. At the tip of the plate, the experimental local
Nusselt number is about 20X lower than the numerical prediction. The
average Nusselt numbers comparison is shown in Table 7.1. The overall
heat transfzr results are about 11X lower than the numerical predictions.
Nevertheless, given the similarity of the general shape of the local Nusselt
number distributions, the agreement is sufficiently close for most practical

purposes.

Table 7.1: Experimental and numerical average Nusselt numbers for
Rac'=97.56, L’/Lc=1/3, t/b=0.2, L_/b=13.68.

Experiment Elliptic % diff.
Solution

Wall Nusselt 1.44 1.60 11.1

Number Nu'

Plate Nusselt 3.13 3.48 11,2
Number Nu
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It is interesting that both the numerical and experimental data in Fig.
7.5(b) show a subtle change slope of the wall local Nusselt number at the
end of the dividing plate. At y/L_*1/3, the wall local Nusselt number
decreases at a slightly greater rate as the flow adjusts to the undivided
portion of the channel. This effect was also seen and was discussed in

Chapter 5 for a zero thickness plate (see Fig.s 5.8 and 5.17).

Figures 7.6 and 7.7 are interferograms of the divided channel with the
plate located at the bottom (L,/L_=0) and top (L,/L.=2/3) of the channel.
Figures 7.6(a),(b),(c) and Figures 7.7(a),(b),(c) are infinite fringe
interferograms showing the influence of increasing Rayleigh number on the
temperature field. Figure 7.6(d) is the finite fringe interferogram for the
same experiment as Fig. 7.6(b). Similarly, Fig. 7.7(d) is the finite fringe
interferogram corresponding to Fig. 7.7(b). For L,/L.,=0 the thermal
boundary-layers of the plate and wall merge close to the channel inlet at
low Rayleigh number (see Fig. 7.6(a)). As would be expected, with
increasing Rayleigh number the boundary-layers on the walls and plate
gradually tend toward the appearance of boundary-layers on isolated

plates.

Some of the interferograms shown in Fig.s 7.6 and 7.7 show slight
asymmetry of the fringe patterns about the channel centre line. It should
be noted that such minor asymmetry can easily result from an imperfect
infinite fringe setting and is not necessarily caused by actual asymmetry

in the temperature field.

The influence of dividing plate’s vertical position on the temperature field
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(c) Ra:=5,930 (d) Ra:=874

Figure 7.6: Interferograms showing the effect of increasing
Rayleigh number with the plate located in the bottiom
of the channel, L1/Lc=0,(Lp/Lc=1/3).
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(c) Ra:=5,51o (d) Ra:=888

Figure 7.7: Interferograms showing the effect of increasing
Rayleigh number with the plate located at the top
of the channel, Li/LC=2/3,(Lp/Lc=1/3).
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is most striking at the lowest Rayleigh number. Comparing Figures 7.6(a)
and 7.7(a) shows that the plate heat transfer is reduced when the plate is
in the top of the channel largely because air is warmed by the walls
before reaching the plate. Also, it is evident that the bulk air temperature
in the middle and top portions of the channel ie much higher when the
plate is at the bottom. This, of course, causes an additional heat transfer

enhancement because of the chimney effect.

Figures 7.8(a),(b) and 7.9(a),(b) show some of the experimental plate and
wall local Nusselt number distributions. In general, the distributions are
as expected and have been included primarily for completeness. It is
interesting that when the plate is at the top of the channel (L,/L_=2/3),
there is a local maximum in the wall heat transfer distribution near the
location of the plate’s leading edge, y/L_*2/3 (see Fig. 7.9(b)). The local
maximum is caused by the presence of the plate and is quite pronounced
at the lowest Rac'. In fact, visual inspection of Fig. 7.7(a) shows that the
interference fringes (isotherms) are pushed closer to the wall as the flow
is diverted by the plate. Again, this effect was also seen and discussed

in Chapter 5 for the numerical results with t/b=0 (see Fig. 5.17).

Unfortunately, it was not possible to achieve the experimental conditions
needed to verify the inlet separation that was predicted numerically. High
Rayleigh numbers and large channel aspect ratios cannot be attained
simultaneously using the present experimental apparatus. This is a
limitation of the interferometer, not the test model. Since the working
height of the test beam is about 13cm, the channel length was limited to

L.12cm. With this length fixed, large channel aspect ratios require small
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Figure 7.8: Experimental local Nusselt number distributions for
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gap widths (2b). Consequently, very high temperatures, which are not
compatible with the present interferometric technique, are needed to get
even moderate Rayleigh numbers (since Ra_“wb*). For this reason, it was
not feasible to verify leading edge separation and its effect on local heat

transfer using the current experimental apparatus.’

The average Nusselt number data obtained by integrating the local
distributions are given in Table 7.2. Note that for the interferogram shown
in Figure 7.7 (a), there are insufficient full fringe shifts to determine the
local heat transfer coefficient on the upper portion of the plate and wall.
For these cases, the local distributions were linearly extrapolated (dashed

lines in Fig. 7.9) in order to calculate average Nusselt numbers.

Figures 7.10 and 7.11 show a comparison of the experimental plate and wall
average Nusselt numbers with the numerical predictions. When comparing
the results it is important to realize that the blockage ratic for the
experiments decreases from t/b=0.2 at the lowest Rayleigh number to
t/b=0.069 at the highest Rayleigh number. At low Rayleigh number, the
experimental data can be compared to the numerical data for t/b=0.2. At
high Rayleigh number the effect of blockage is predicted to be small (see
Fig.s 5.27-5.30), so the experimental data can be compared to the numerical

results for t/b=0.

11t would be possible to achieve large channel aspect ratios at high Rayleigh
number if the model was substantially longer than the working beam
height. Such a model would have to be photographed in several sections.
Because of the technical difficulties and reduction in accuracy associated
with repositioning and realigning the model with the test beam, this option
was not taken.
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Table 7.2(a): Experimental average Nusseit number data for L,/Lc=1/3.
L,/L. =0 (bottom).

Ra * Ra * L /b t/b Pr Nu, | Nu | Nu
97.6 293 |13.68 0.200 | 0712 | 3.13| 1.44 | 1.88
395 1185 | 9.45 0.138 | 0713 | 4.43| 2.55 | 3.04
874 2620 | 7.51 0.110 | 0713 | 5.26| 2.89 | 3.50
931 2790 | 17.51 0.110 | 0.713 | 5.43| 2.86 | 3.53
1,890 5660 | 6.29 0.0917 | 0713 | 6.11| 3.48 | 4.16
5,930 17,790 | 4.73 0.0690 | 0.713 | 7.80| 4.79 | 5.57

Table 7.2(b): Experimental average Nusselt number data for Lp/Lc=1/3,
Li/Lc=l—Lp/Lc (top).

Ra ’ Ra * L./b t/b Pr Nu Nu, | Nu
81.4 244 13.68 | 0.200 | 0.713 148 | 144 | 1.45
383 1150 | 9.45 0.138 | 0.713 | 3.23| 2.37 | 2.59
888 2660 | 17.51 0.110 | 0.713 | 4.34{ 2.97 | 3.33

1,690 5670 | 6.29 0.0917 | 0.713 | 5.18] 3.25 [ 3.75

5,610 16,800 | 4.73 0.0690 | 0.713 | 6.82, 4.48 | 5.09




16 I P4t gt it 14 31l ! Lo 3 aiald i
. . .
3
= . -
o 1 n
= ] [
% 1 J Elliptic Solution, L./b= -
] N ! L
0 i )/ — — L/L=0. t/b=0 i
D / -~ L/L=1- L/c /3 t/b=0
= I’ — L/L.=0, t/b=0
D] /I
"6 K Experimentol Dato 0.069¢t/b€0.2
a__ 0.1 3 ;, sasaa |l /L.=0 C
] 0DoD0DO Ln/Lc=1—Lp/Lc=2/3 i
R 3 T Tllll T T HELER] TTI] 1 ) ¥ LS YTT] ]
10 100 . 1000 10000
Ra,
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In Figure 7.10 it can be seen that the experimental plate Nusselt number
trend is very similar to the numerical predictions. When the plate is at
the top of the channel (L,/L =2/3), the data are in excellent agreement with
the numerical results (for t/b=0) at high Rayleigh number. At lower
Rayleigh number the experimental data are slightly below the numerical
results for t/bz0. To some extent, this may be caused by increasing
blockage effects. When the plate is located in the bottom of the channel,
the experimental data are about 10X lower than the numerical data at
lowest Ra_® and about 6X lower at the highest Ra.’. From an engineering
perspective, these differences are quite small; for most practical purposes,
the experimrntal results validate the numerical prediction regarding the
effect of plate position on plate average Nusselt number: positioning the
plate higher in the channel reduces the heat transfer from the plate. This
effect is mosat severe at lower Rayleigh numbers. For L,/Leslla. moving
the plate from the top to the bottom of the channel causes the average

Nusselt number of the plate to approximately double at na,‘zaoo.

Figure 7.11 shows the comparison of numerical and experimental data for
the wall average Nusselt number. Again, the trend of the experimental and
numerical data is in fair agreement. In general, the experimental data are
slightly lower than the numerical results. Nevertheless, the experimental
data verify that the wall average Nusselt number is relatively insensitive
to the plate position above Ra_*%200.

7.4 Reproducibility of the Experimental Data
To get an indication of the reproducibility of the experimental resuits, one

experiment was repeated after a time lapse of several days. For this
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experiment, the plate was located at the bottom of the channel (L,/L_=0)
and the channel aspect ratio was L /b=7.51. Prior to the reproducibiiity

test, the interferometer was realigned and the beam parallelism was

checked. Also, the channel gap width was reset and the dividing plate was

repositioned. The results of these two experiments are shown below:

Experiment #1 Rac:=931. Tu,=2.86 Nu,=5.43
Experiment #2 Ra ="t, Nu_=2.89 Nu’=5.26

Adjusted difference: 2.6% 1.6%

The Rayleigh numbers for the two experiments differ slightly, so the
Nusselt number difference has been adjusted, assuming NusC(Ra")!. As can
be seen from the data presented in the previous section, the local Nusselt
number data typically have an experimental scatter of about $5%. For this
reason, the maximum difference in the local heat transfer values from the
two experiments above was as much as 10X%. However, typical differences
in the local Nusselt numbers were much smaller. A detailed error analysis

is given in Appendix F.




CHAPTER 8

DATA CORRELATION

8.1 Method of Data Correlation

Correlations are often more convenient for practical purposes than
tabulated data. In this chapter, average Nusselt number correlations are
presented for the dividing plate, channel wall and overall channel. These
correlations include the effects of Rayleigh number (Ra®), plate length ratio

(L,/L.), plate position (Li/L.), and plate thickness (t/b).

Often, and in the present study, limiting closed form solutions exist for
small and large values of the independent variable (see Chapter 3).
However, solutions for intermediate values of the independent variable are
not usually available in closed form. Churchill and Usagi [63) have devised
a remarkably successful empirical method for obtaining correlation
equations using the upper and lower limiting solutions. A brief description

of the method is given below,

In the present study, the power of the independent variable (Ra*)
decreases at the higher limit. For so-called "decreasing dependency" of
the Nusselt number on Rayleigh number, Churchill and Usagi propose a

correlation of the following general form:

Nis = [(Nit g, o)™+ Nty pi)™1 * 8.1
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where, Nu,,.;, p,,. i& the closed form expression for fully
developed conditions (Ra®*-<0) and,
Nu;..1. riate i6 the closed form expression for the isolated

plate limit (Ra®-®).

In equation (8.1), the exponent (n) is arbitrary. This exponent is chosen

to best fit experimental and numerical data for intermediate values of Ra°.

8.2 Channel Average Nusselt Number Nu,

The variation of the channel Nusselt number with Rayleigh number is not
ideal for the application of the method of Churchill and Usagi. 1deally, the
second derivative of the Nusselt number with respect to the Rayleigh
number should not change sign. Unfortunately, the numerical results show
that the isolated plate limit is approached from above (see Chapter 5).
Hence, there is a change in the sign of the Bsecond derivative.
Nevertheless, useful correlations sufficiently accurate for most purposes

can be obtained.

There are three separate correlations for the channel Nusselt number: one

for the plate in the bottom L,/L =0, middle L,/L_=(1-L /L. )/2, and top

L,/L;=1-L_/L_ of the channel. Substituting expressions for the upper and

lower asymptotic values (equations (3.14) and (3.30)) into equation (8.1)

gives the general form of the correlations for the channel Nusselt number:




( ( L2 ) )1
R* - (P41
Nu = ¢ |erat——| | &2
3(4(—!)’(—) VL YRRy -(—!) +1) 241
k b-t L, b \ L ] )

Strictly, the constant "C" has the value of about C=0.515 for the isolated
plate limit (Ostrach [49]). However, to compensate for the fact that the
upper asymptotic limit is approached from above, "C" is treated as an
arbitrary constant in equation (8.2). Hence, for each vertical plate
position, both the constant "C" and the exponent "n" were determined

numerically by minimizing the RMS percent error between the correlation

and the data.

Table 8.1 gives tne values of C and n for each vertical plate position and
the correlation statistics. A plot showing the effectiveness of the Nu,
correlation for L,/L =0 is shown in Fig. 8.1. Note that the correlation
(equation (8.2)) is a forty-five degree line in Fig. 8.1. Error limits of £10X
are shown to illustrate the fit of correlatior. to the data. Equation (8.2)
fits all of the numerical and experimental data with a maximum error of

about 212X and a standard deviation of 4.6%.

8.3 Wall Average Nusselt Number Nu

Correlations for the wall average Nusselt number (Nu,) were calculated
using the same method as for the channel average Nusselt number.
Substituting the expressions for the upper and lower asymptotic limits from

Chapter 3 into equation (8.1) gives the general form of the correlations for
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Table 8.1: Constants and statistics for the channel Nusselt number
correlation equation 8.2.

Plate o n Number | Standard Maximum
Position L,/L_ of Data | Deviation Error
0 0.626 | 1.63 116 4.6% $12.1%
(1-L,/L.)/2 0.618 | 1.45 89 4.4% $10.9%
1-L, /L, 0.595 | 1.42 95 5.0% $15.0%

Table 8.2: Constants and statistics for the wall Nusselt number
correlation equation 8.3.

Plate Cc, |C, n Number Standard Maximum
Position L,/L_ of Data Deviation Error
0 0.588 | 6 1.48 84 6.2% £17.0%
(1-Lg/L.)/2 0.595 | 3 1.37 76 6.0% *17.9%
1-L /L, 0.583 | 3 1.53 82 4.9% $13.0%
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Table 8.2 gives the values of C,» C;, and n for each vertical plate position
and the correlation statistics. The lower limiting asymptotic value of Nu
depends upon the plate’s vertical position: C,=6 for L /L =0 (see equation
(3.22)), and C,=3 for L,/L>0 (see equation (3.23)). Note that the
correlation (equation (8.3)) should not be used for plate length ratios much
less than Lp/Lc‘-'l/lO when the plate is at the bottom of the channel
(L ‘/LC=O); as discussed in Chapter 3, the lower limiting value for the wall
Nusselt number (equation (3.22)) is not valid as Lp/Lc-.O. Similarly, the
correlation should not be used for plate length ratios much larger than
Lp/Lc=2/3 when the plate is not at the bottom of the channel (LI/LC>O),
because of the limitations of equation (3.23); as discussed in Chapter 3,

equation (3.23) is not valid as Lp/Lc-l.

A correlation plot showing the Nu, data for L,/L =0 is shown in Fig. 8.2.
Again, error limits of £10% are shown to illustrate the fit of correlation to
the numerical data. It can be seen from Table 8.2 that the Nu, data do not
correlate as well as the Nu_,6 data; equation (8.3) fits the numerical and
experimental data with a maximum error of about 217X and a standard
deviation of 6.2%. The main reason for the poorer correlation statistics is
the slightly larger difference between the parabolic and elliptic data,

especially in the range 0.28Nu_s1.0.
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8.4 Plate Average Nusselt Number Nu’

Data correlation using the method of Churchill and Usagi is only possible
when closed form expressions are available at both the upper and lower
limits of Rayleigh number. When the plate is located at the channel inlet
(L;/L.=0), a closed form expression exists in the limit as Ra "-0 (equation
(3.19)). However, for Lx”«:)o an equation for the lower limiting behaviour
of Nu, is not available. For this reason, a plate Nusselt number correlation
is presented only for L,/L_=0. Fortunately, this is the channel

configuration of most practical interest.

The correlation for the plate average Nusselt number for L,/L =0 is:

Nu, -

o.ssz(zz) Ra'*

4

1
Ra,' -201 L 0189 )20 301
+ (8.4)

L

64(DL) - 22 1)
L bt L
Notice that the upper asymptotic limit has been modified to include the
effect of the plate length ratio L,/Lc- The results presented in Chapter
5 show that the plate average Nusselt number depends strongly on plate
length ratio (L,/Lc) even at highest Rayleigh number considered in this
study (see Fig. 5.4). A best fit power curve to the data from the parabolic

solution at Rap'=10‘ is shown in Fig. 8.3. At Rap'zlo‘ it was found that

Nup-(Lp/Lc)"°"”. Hence, the factor (L’/Lc)"““ was included in the
expression for the upper limiting value in equation (8.4). Again, the
constant C=0.632 and the exponent n=2.01 were determined by minimizing

the RMS percent error between the data and the correlation.

A plot showing the effectiveness of the Nu’ correlation is shown in Fig.
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8.4. Equation (8.4) fits all of the experimental and numerical data with a
maximum error of 13X and a standard deviation of 6.2%. Considering the
wide range of variables, the closeness of the fit is remarkable. The
correlation (equation (8.4)) should not be used for plate length ratios much
less than L_/L_=1/10 because of the limitation on the lower limiting

expression; equation (3.19) is not valid as L,/Lc~0.
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CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

9.1 Summary and Conclusions

A study has been conducted on natural convection in an undivided and
divided vertical isothermal channel. For the divided channel, an isothermal
plate at the same temperature as the channel walls was located on the
channel centre line. Closed form expressions were derived for the limiting
case of fully developed flow in the divided channel. The developing
natural convection has been solved numerically. Solutions to both the full
elliptic and boundary-layer forms of the Navier-Stokes and energy
equations have been obtained for Pr=0.7 (air). For the elliptic solution,
new inlet boundary conditions have been proposed that allow a smaller
computational domain and more realistically represent the entrance flow
than previous methods. To verify the numerical predictions, experimental
local and average Nusselt number data were obtained using a Mach-Zehnder

interferometer.

The study examined the effect of Rayleigh number (Ra,", Ra,"), plate length

ratio (LD/LC), vertical plate position (L,/L.) and plate thickness (t/b) on
the free convective heat transfer from the channel walls, the dividing plate

and the channel as a whole. The salient conclusions are summarized below:

i) Detailed comparisons of the parabolic (bouncary-layer) and elliptic

solutions show that an elliptic solution is necessary to get accurate local

208




quantities, such as local heat transfer, near the channel entrance.
However, global quantities predicted by the elliptic and parabolic solutions
(such as total flow rate and average Nusselt numbers) are in good

agreement.

ii) For the undivided channel (L,=0), the present elliptic solution is not in
agreement with previous elliptic solutions. The close agreement of the
present elliptic and parabolic (boundary-layer) solutions casts doubt on the
validity of the results of Nakamura et al. [40] and Kettleborough [39). The
present study did not find reverse flow drawn in from the channel exit as
did Kettleborough. Also, the pressure distributions presented by Nakamura
are suspect in light of the close agreement between the present elliptic
and parabolic pressure distributions. The inlet pressure approximation
(p'=-pv,%/2) commonly used in parabolic solutions is validated by the

present elliptic solution.

ifi) Yor both the undivided and divided channel geometries, the present
elliptic solution predicts that fluid separation occurs at the channel inlet
for sufficiently high Rayleigh number. The onset of geparation was shown
to correlate approximately with dimensional flow rate. Also, at high
Rayleigh number, fluid separation was found to greatly reduce the local
heat transfer on the channel wall near the channel entrance. To the
author’s knowledge, flow separation at the inlet has not been seen or

predicted by any previous study of natural convection in vertical channels.

iv) The interferometric data validate the numerical predictions. Although

the experimental average Nusselt numbers are slightly lower (typically
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%10%) than the numerical predictions, the data trends are in close
agreement. Also, the agreement of the experimental and numerical local
Nusselt number distributions is close, except near the leading edge of the

dividing plate and channel wall.

The following conclusions relate specifically to the divided channel

;eometry:

‘) For a zero thickness dividing plate (t/b=0), the data from the parabolic
solution verify the equations (derived in Chapter 3) for the fully developed
Nusselt numbers. In all cases, the numerical data (for t/b=0)
asymptotically approach these expressions at low Rayleigh number. Also,
comparison with the data from the elliptic solution indicates that these
expressions give reasonable estimates of the effect of finite plate thickness

for t/b<0.2. For t/b>0.2 the accuracy of these equations is uncertain.

ii) For the divided channel geometry, it was found that the heat transfer
from the dividing plate could be significantly enhanced by the presence
of the confining walls. For example, the experimental and numerical results
show that the plate Nusselt number is about 50X higher than the isolate
plate Nusselt number for L /L=1/3, L;/L=0 at Rap'=300. Also, numerically
it was found that for L,/Lc=1/10 and L,/L_=0, the plate average Nusselt
number was about two times higher than the isolate plate Nusselt number

at Ra;=100.

fii) The length of the confining walls greatly influences the heat transfer

from the dividing plate, especially at low Rayleigh number. At low Rayleigh
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number, when the plate is at the bottom of the channel (L,/L_=0),
extending the channel walls above the plate can increase the plate heat
transfer by as much as a factor of four. At moderate values of Rayleigh

number the enhancement decreases, but is still significant.

iv) Positioning the plate at the bottom of the channel (L,/L_=0) was found
to give the highest average Nusselt number for the plate and channel as
a whole over the full range of parameters studied experimentally and
numerical'y. Lower plate positioning causes a greater chimney effect (i.e.,
more induced flow); this is in qualitative agreement with the findings of
previous studies of natural convection from cylinders between confining

walls [12,14,52].

v) Jhe obverse of the above conclusion is that positioning the plate
higher in the channel reduces the plate and channel average Nusselt
number. In fect, at low Rayleigh number, plate average Nusselt number
decreases to near zero as the plate is positioned higher in the channel.
At high Rayleigh number, the plate Nusselt number is less dependent on
the vertical location of the plate. For example, at Rap'=6000 with Lp/ L.=1/3,
the experimental and numerically predicted Nusselt number for L,/L_=0
(plate at the channel inlet) is only about 20X higher than for

L‘/Lc=l-Lp/Lc=2/3 (plate at the top of the channel).

vi) The wall average Nusselt number is highly dependent upon the vertical
location of the plate at low Rayleigh number. In the fully developed limit,
a short dividing piate located at the channel inlet reduces the wall average

Nusselt number by about a factor of two, compared with the undivided
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channel. With increasing Rayleigh number, the wall average Nusselt
number becomes aimost independent of both the vertical plate position
(L,/L.} and the plate length ratio (L’/Lc). This is a very significant
result: above Rac'SZOO the heat transfer from the dividing plate is
enhanced by the confining walls without reducing the heat transfer from
the walls. Below Rac'zzoo there is a trade-off between the dividing plate

and channel walls.

vii) The effect of blockage caused by a finite thickness dividing plate
(t/b%0.2) is largest at low Rayleigh number and becomes insignificant at
high Rayleigh number. At Ra =5, for L /L.=1/3 and L,/L_=0, twenty
percent blockage of the channel cross-section (t/b=0.2) causes about a

thirty percent reduction in the plate and channel Nusselt numbers.

viii) Average Nusselt number correlations have been obtained for the
dividing plate, the channel wall and the channel] as a whole, These
correlations include the effects of Rayleigh number (Ra®), plate length -atio

(LP/LC), plate position (L,/L_), and plate thickness (t/b).

9.2 Recommendations for Future Research

The following recommendations are made for future studies:

i) The present numerical study predicts that the flow separates at the
channel inlet for sufficiently high Rayleigh number. Flow visualization
needs to be do..2 to verify this phenomenon. Possibly, with the use of a

laser-Doppler velocimeter, the geometric and thermal conditions necessary
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for separation could be determined and compared to the numerical

predictions. In addition, interferometry at the leading edge could be used

to examine the adverse effect of separation on local heat transfer.

ii) The present full elliptic solution imposed derivative boundary conditions
at the channel exit: 3T/dy=gu/dy=av/dy=0. These boundary conditions are
not entirely correct. An improved method of handling the channel exit

boundary conditions needs to be developed.

iii} The present study has shown the thermal behaviour of a divided
channel with equal plate and channel wall temperatures. Uniform heat flux
(UHF) conditions are more realistic for modelling printed circuit board
geometries. For this reason, a similar study with UHF boundary conditions
is needed. Other possible extensions to the present study could include
a variety of boundary conditions. For example, symmetric unequal UHF
conditions or the effect of adiabatic confining walls could be studied. Note
that asymmetric boundary conditions are not compatible with the present
boundary-layer solution method and would require a full elliptic solution

of the flow in the entire channel.

iv) In the present study, the dividing plate location was fixed on the
channel centre line. It would be of interest to see the effect of the

horizontal plate location on the plate, wall and channel heat transfer.

v) In the present numerical studies, the flow in the channel was assumed
to be laminar up to Rac'SIO’. At present, there is almost no information

on the criteria for turbulent transition for natural convection in vertical
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channels. A comprehensive siudy of this problem is needed.

vi) In the literature, studies of the effect of angle of inclination [79] and
surface roughness elements [80,81] have been conducted for the undivided
UWT/UHF channel. Similar studies are logical extensiu..5 to the present

research.




APPENDIX A

APPLICATION OF THE CFD CODE FIDAP

FIDAP [54] is a general purpose computational fluid dynamics (CFD) code
for the simulation of incompressible viscous fluid flow with heat and mass
transfer. FIDAP solves the full elliptic form of the Navier-Stokes and
energy equations using the finite element method. Since the governing
equations for fluid flow and heat transfer are partial differential equations,
they must be first converted into a set of algebraic equations before they
can be solved computationally. In the finite element method, the exact
solution to the continuous problem is approximated within each element by
a combination of interpolation (or trial) functions (usually polynomials).
Element equations are derived using a residual method that is based on
minimizing the residual after the trial solution is substituted into the
governing differential equations. The element equations along with
equations derived from the boundary conditions form a set of simultaneous
equations that can be solved. Detailed description of the method used by

FIDAP is given in the FIDAP Theoretical Manusl [54].

There are many commercial CFD packages on the market. Some of the
others include NEKTNN [82] which uses a spectral element method, FLUENT
[82) which uses a finite difference method, and 3D-FLUID [83] which uses
a finite element method. FIDAP was used for the present study because

of its availability at The University of Western Ontario Computing Centre.
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Like most commercial packeges, FIDAP has three modules: preprocessor,
processor, and postprocessor. The preprocessing module is used first. In
this module the flow characteristics are defined, the boundary conditions
are specified, and the finite element mesh is generated. When
preprocessing is complete, the processor module is used to solve the set
of simultaneous algebraic equations. Finally, the postprocessing module is
used to view the results. Although FIDAP solves the problem in primitive
variables, derived quantities such as stream function contours can be

viewed in the postprocessor.

In FIDAP, the problem is specified using an input file consisting of a list
of commands. A sample FIDAP input file is given in this appendix. The
finite element mesh produced by th.. file is shown in Fig. 2.5(b). In the
input file, the computational domain is specified in both a logical and a
physical plane. The physical plane has dimensionless X and Y coordinates
and the logical plane has i,j indices as coordinates. Figure A.1 shows the

logical and physical planes for the unexpanded mesh with a dividing plate

located at the channel inlet (t/b=0.2, Lp/Lc=1/3, L,/L=0). In the logical

plane, the domain is divided into topological rectangles. "Keypoints" are
defined at the corners of the rectangles in both the logical and physical

planes.

The velocity and temperature field in the channel was initially solved at
low Rayleigh number (Rac’=5). Solutions for higher Rayleigh number were
obtained using the solution vector from a previous calculation (at lower
Rayleigh number) as the starting values for the unknown vector. At low

Rayleigh number, this procedure reduces the number of iterations and cost




of the calculations; at high Rayleigh number it is absolutely neceseary in
order to obtain convergence. In FIDAP, the *EXECUTION(RESTART)
statement is used to specify that the "initial guess”" is to be taken from

a previous solution.

Local and average Nusselt numbers for the channel wall and dividing plate
were obtained from FIDAP using the postprocessor command HEATFLUX.
This command calculates the temperature gradient normal to a specified
surface. These values are alaso used to compute the integrated heat
transfer from the surface. Similarly, the total dimensionless flow rate

through the channel was calculated using the command FLOWRATE.

The channel average Nusselt number (Nu_ ) was calculated by integrating
the tota! heat convected out of the top of the channe] (see equation 2.40).
There was no postprocessor command which would perform this task.
Hence, a user-defined subroutine was written (in Fortran) to integrated the
product (V-T*) at the channel exit using the trapezoidal rule. This
subroutine was linked with the postprocessor module (FIPOST) and was

executed through the postprocessor command LINE.
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Sample FIDAP input file (for Ra_"=100,

/ TITLE CARD

*TITLE

FPIN104 T=0.2 RAC=100 LP-5 BOTTOM LC:=15
*FIMESH(2-D, IMAX=9,JMAX=25)

/EXPANSION OF THE MESH

BXP1

1017023980610 109

BXPJ

10490690 91 0 103 0 117 0 169 0
205 0 217 0 239 0 261 0 313 0 337
/SPECIFICATION OF THE 1,J),K INDICIES AND
JTHE X,Y,Z CO-ORDS OF EACH KEY POINT IN
/THE LOGICAL PLANE.

POINT(CARTESIAN)

/8 1 J K X Y

1 1 1 . 0. ~5.0

2 3 1 1 1.5 -4.7697

3 1 3 1 0. -1.

4 3 3 1 0.42426 -1.0

5 H 1 1 1.5 -4.7697

6 7 1 1 3.5355 -3.8355

7 1 5 1 0.0 -0.4

8 3 5 1 0.42426 -0.22426

9 5 3 1 0.42426 -1.0

10 17 3 1 1.0 -1.0

1 9 3 1 3.5355 -3.5355

12 1 7 1 0.0 0.0

13 3 7 1 0.14142 0.058579
14 5 7 1 0.42426 -0.22426
5 17 7 1 1.0 -0.22426

16 9 7 1 4.918333 -0.9

50 § 5 1 0.42426 -0.22426
51 7 5 1 1.0 -0.22426

52 9 5 1 4.918333 -0.9

/ POINT 17 1S A REPF. POINT (DOES NOT
/ EXIST IN THE LOGICAL PLANR)

17 0 0 0 0.0 0.2

18 3 8 1 0.188562 0.13333
19 5 9 1 0.56568 0.0

20 17 9 1 1.0 0.0

21 9 9 1 5.0 0.0

2 3 1 1 0.2 0.2

22 5§ 11 1 0.6 0.2

24 1 11 1 1.0 0.2

25 3 13 1 0.2 2.5

26 5 13 1 0.6 2.5

27 7 13 1 1.0 2.5

28 3 15 1 0.2 4.8

29 § 15 1 0.6 4.8

30 7 15 1 1.0 4.8

31 3 17 1 0.143141 4.94142
a2 5 17 1 0.42426 5.22426
3 7 17 1 1.0 5.22426

4 1 17 1 0.0 5.0

s 1 19 1 0.0 5.4

3 3 19 1 0.42426 5.22426
7 § 2 1 0.42426 6.0

s 1 22 1 1.0 6.0

¥ 1 2 1 0.0 6.0

490 3 21 1 0.42426 6.0

41 5 23 1 0.42426 10.0

42 71 23 1 1.0 10.0

43 1 23 1 0.0 1l0.0

4“4 3 2 1 0.42426 10.0

45 S5 25 1 0.42426 15.0
46 7 25 1 1.0 15.0

47 1 2§ 1 0.0 15.0

448 3 25 1 0.42426 15.0
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/ 49 1S A REP. POINT

49 0 0 0 0 4.8

53 $ 19 1 0.42426 5.22426
S¢ 7 19 1 1.0 5.22426
LINE

/ DEFINE ALL HORIZONTAL LINES

3

910 4 ¢

10 11
50 51
51 82
13 14
14 15
15 16
18 19
19 20
20 21
2 2
23 24
25 26
26 27
28 29
29 30
31 32
32 33
53 54
37 38
39 40
41 42
43
45 46
47 48
/DEPIN
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56 12

11 52 12

16 21 12 2 4

7817

12 13 17

13 18 17

14 1817 2 ¢

18 22 17

1% 23 17

28 31 49

29 32 49

31 34 49

35 36 49

/DEFPINE THE SURFACES

SURPFACE

113

13 32

551 -
10 52

14 33

34 48

15 21

53 46

MERGE

2459

48950

13 8 13 14

10 6 10 11

31 36 31 32

53 37 36 40

37 41 40 44

41 45 44 48

14 15 50 51

15 16 51 52

53 54 32 33

/ SPECIFY TEMPERATURE B.C.'S

BCNODE( TEMPERATURE)

120.0

56 0.0

11 82
16 21
12 13
13 31
31 34
20 33
54 46
/ SPECiFY BOUEVDARY CONDITIONS

/ POR X-COMPONENT OF VELOCITY
BCNODE(UX, CONSTANT)

1213 0.0

13 31 0.0

31 34 0.0

112 0.0

34 47 0.0

20 21 0.0

20 33 0.0

54 46 0.0

{ SPECIFY B.C.'S FOR Y-COMPONENT

/ OF VELOCITY

BCNODE (UY , CONSTANT)

12 13 0.0

13 31 0.0

31 34 0.0

20 21 0.0

20 33 0.0

54 46 0.0

/ ELEMENTS ARE NINE NODE QUADRILATERALS
ELEMENTS(QUAD,NODES: 9,ALL)

.

e s ps e D D
[-N-N-N-N-N-N-J

.
.
.
.
.
.

/BOUNDARY BLEMENTS NEEDED TO SPECIFY

NORMAL
/ AND TANGENTIAL B.C.’S ON CURVED INLET
ELEMENTS ( DOUNDARY ,NODES: 3 ,CRNS ,CRNF )

12
$6

11 52

16 21

/PLOT ELBMENTS

12 13

13 31

31 34

20 33

54 46

47 48

45 46

/ TANGENTIAL COMPONENT OF
/ VELOCITY =0 AT INLET
BCNODE(UX,CONSTANT)

/ NORMAL STRESS=0 AT INLET
N,NODBS:=3)

/ PROBLEM DEFINITION
SPROBLEM(2-D,STEADY ,NONLINEAR,
STRONGLY-CPLD)

/ RHO= GR®*1/2 (SEE SCALING)
*DENSITY(CONSTANT=46.291)
SPRESSURE(PENALTY: 1.E-8,DISCONTINUOUS)
SEXECUTION(RESTART)

/ CONVERGENCE CRITERIA AND

/ QUASI-NEWTON SOLVER
*SOLUTION(Q.N.28,VELCONV:=0.0001,
RESCONV=0.0001)

/THO SUCCESIVE SUBSTITUTION

/ ITERAYIONS PIRSY
SSTRATECY(S.S.:2)
SDATAPRINT (NORMAL , PAGE, NODES=3,
BLEMENTS=1)

PRINTOUT(ALL)

*POSTPROCESS(ALL)

SNODES(FINESH)
SRENUMBER(PROZILE)

/ INITIAL GUESS FOR VELOCITY
=ICNODES( VELOCITY , STOKES)

/ MU=z1 (SEE SCALING)
*VISCOSITY(SET:1,CONSTANT=1.0)
*BODYPORCE (CONSTANT)

0.,1.,0.
*ELEMENTS(GROUP= 1 ,QUADRILATERAL,
NODES:9,FLUID,CONSISTENT,LINEAR,
LOCAL, PIMESH ,MDENS=1,MVISC=1)
SELEMENTS (SLIP,NODES=3,PIMESH)
*=ELEMENTS (SLIP,NODEZS=3, PIMESH)
SELEMENTS(SL1P,NODES:=3,FIMESH)
SELEMENTS(SLIP,NODES=3,PIMESH)
SELEMENTS( PLOT,NODES=3, PIMESH)
SELEMENTS( PLOT,NODES: 3, FINESH)
SELEMINTS( PLOT,NODES=3, FIMESH)
SPLEMENTS(PLOT,NODES=3, PIMESH)
sELEMENTS(PLOT,NODRS=3, FIMESH)
SELEMENTS ( PLOT ,NODES=3,FIMESH)
SELEMENTS(PLOT,NODES= 3, FIMESH)
/ CP=PRANDTL NUMBER (SEE SCALING)
#SPECIFPICHEAT(CONSTANT=0,7)

/ BETA=1 (SEE SCALING)
SYOLUMEXPANSION({ CONSTANT: 1.,
REFTEMP:0,CRAVITY=1,THETA=0.)
SEND
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A DIGITAL IMAGING SYSTEM FOR
INTERFEROGRAM ANALYSIS

B.1 Introduction

Interferometry is widely used to analyze heat transfer and compressed
fluid flows. Photographically recorded interference fringe patterns can be
calibrated to yield the temperature or density fields; given the precise
location of the fringe centres, local gradients of these properties can be
calculated. In the past, interference fringe centres have commonly been
located by eye using a travelling microscope or densitometer. Both of

these methods are time consuming and subject to human error. This

appendix describes the development of an IBM PC-based digital image

processing system for finite and infinite fringe interferogram analysis.
Image scanning to locate and record the centres of destructive interference
fringes has been semi-automated. The present system reduces processing

time and gives greater precision than standard manual methods.

Interferogram analysis by digital image processing has been used recently
by several heat transfer researchers {84,85,86). Problems of poor image
resolution and low reliability/accuracy of the fringe centre detection
algorithms have been reported. Hunter and Collins [85] found varying
background light intensity to be a major problem. However, other "false
fringes" can be produced by surface diffraction, imperfections in the

optics or blemishes on the film. The simple algorithm presented here for
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analyzing interferograms largely overcomes these problems.

B.2 System Hardware

In the present system the interference patterns are recorded
photographically using Polarcid Land Film (4"x5", type 55 positive/
negative). Film negatives are analyzed since they have higher resolution

(160 lines/mm) than the positives.

The image processing system is shown schematically in Fig. B.1. A charged
coupled device (CCD) camera (Cohu model 4815, 754 x 488 pixels) is mounted
onto a variable magnification microscope (Bausch and Lomb MonoZoom-7)
fitted with a 1.5X objective lens. The CCD camers supplies a video signal
to a frame grabber board (Imaging Technology PCVISION) in an expansion
slot of an IBM compatible (80286) personal computer. The digitized image
is displayed on a colour monitor. Rather than capturing the entire
interferogram at once, it is stored as many separate images. Each image
is digitized and stored in 640 x 480 x 8 bit frame memory (256 grey levels).

In this way, excellent image resolution is achieved.

The film negative is accurately positioned under the microscope with a
precision X-Y rotating stage, fitted with micrometer adjustments. The
stage has a 5.08cm diameter circular glass viewing area. A light table
under the stage is used to illuminate the negative. It is worth noting that
it is very easy to under or over illuminate the negative. For example, if
too much light is supplied, the image is "washed out”. That is, most of the

pixel intensities are at their maximum value of 255, and the peaks of the
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destructive fringes are "clipped”. To avoid this problem, all pixels with
value 255 (white) are written to the image display monitor with the colour
blue, rather than white. Similarly pixels with value 0 (black) are displayed
as red on the monitor. In this way, maximum image contrast can be

achieved while ensuring that the image is not being clipped.

The overall scale factor of the system is measured by placing a reticule
under the travelling microscope. The reticule has a scale 10 mm long with
0.1 mm divisions. The scale factors are determined by placing the reticule
in both the horizontal and vertical scanning positions and recording the
number of pixels between a known distance on the reticule. It was found
that the image in frame memory was slightly distorted since the horizontal
and vertical scale factors differ by approximately 1%. However, this
difference does not introduce errors into the results since vertical and
horizontal distances are scaled appropriately in the frirge analysis

software.

In the present heat transfer study, the fringes near the channel inlet were
very closely spaced. In this region the zoom microscope was adjusted to
its maximum magnification; the resviting horizontal scale factor was about
2.2 ym per pixel. Toward the top of the channel, the fringe spacing was
much wider. In order to get sufficient fringes in the field of view, the
magnification had to be reduced. Typically, the horizontal scale factor was

about 4.9um per pixel.
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B.3 FRINGE ANALYSIS ALGORITHM

In an infinite fringe interferogram as shown in Fig. B.2(a), fringe centres
can be calibrated as lines of constant temperature. However, surface
temperature gradients (i.e., local heat transfer coefficients) are of primary
interest in the present study. To measure the surface temperature
gradient, first a temperature profile perpendicular to the model wall is
obtained from the destructive interference fringe centres. The temperature

profile is then extrapolated to the wall to obtain the surface gradient.

Menu-driven in.eractive software (in Microsoft C language) has been
developed by the author that accurately locates the fringe centres in an
image. The procedure is as follows: Initially, the interferogram image is
aligned under the microscope (with the aid of software generated cross
hairs) so that the model surface is vertical on the monitor as shown in Fig.
B.2(a). Once the desired section of the interferogram has been captured
into frame memory, a cursor is used to indicate the horizontal location of
the wall on the interferogram. Then the user selects the start and end
i 1itions for each horizontal scan using the cursor. Figure B.2(b) shows
the image after scanning has taken place at a vertical increment of five
pixels. White lines are displayed at each scan so that thz user can verify
the scanning locations. The complete scan and data processing of one

image takes about 30 seconds after the desired image has been captured.

A typical horizontal pixel intensity profile from frame memory is shown in
Fig. B.3. The three primary peaks represent destructive interference
fringes. The "noise" that is superimposed upon the interference pattern

is produced by surface diffractiori, blemishes on the film, and imperfections
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in the interferometer and digitizing optics. For each horizontal scan the

following algorithm is used to extract the fringe centre locations.

First, the mean pixel intensity (I)) for the scan is calculated. Next, the
width of each peak (A,) is calculated where it crosses the mean intensity
line (see Fig. B.3). Each A, represents a potential fringe. To eliminate the
small noise "spikes" (A, and A, in Fig. B.3) the width of each A, is
compared to the largest spacing (A, ). If A, < 0.2 A_,, the "spike" is

discarded as noise.

Once only valid fringe peaks remain, the intensity data in each A, range
are processed to yield the fringe centres. Two different techniques have

been used:

i) Maximum pixel intensity fringe centre:
In the range A,, the location of maximum pixel intensity is found. If the
data are completely free of noise this is the ideal technique. Measured

fringe spacings would not be in error by more than the width of one pixel.

ii) Integrated intensity fringe centre:
The integrated intensity fringe centre is found by locating the line that
equally divides the area under each valid fringe peak. The area under the
pixel intensity curve for a valid fringe peak is calculated numerically using
the trapezoidal rule:
A= Z(I - 1)) summed over each pixel in the
range A‘.

The fringe centre is taken to be the pixel location that corresponds to A/2.
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This method is a modification of a method used by McKeen and Tarasuk
[87,88] to extract fringe centres from the output of an automated scanning

densitometer.

The mean intensity value fluctuates from one horizontal scan to another
because of noise and changes in the background light intensity across the
image. For this reason the sensitivity of the integrated intensity data to
fluctuations in the mean intensity has been tested. The image shown in
Fig. B.2 was nnalyzed with the mean intensity line arbitrarily shifted by
+ 20%. The maximum change in any measured fringe spacing was 1.7%.

The average difference was 0.18%.

It should also be noted that this algorithm can also be extended to measure
half fringe shifts simply by repeating the analysis for the data under the
mean intensity line. It is clear from Fig. B.3 that the constructive
interference fringe peaks are not as well defined and the measured
spacings will be less accurate. However, the ability to measure half fringe
shifts could be very useful in regions where the fringe spacing is very

large or where insufficient full fringe shifts exist.

B.4 RESULTS AND DISCUSSION

Figure B.4 shows a fringe centre plot of the first two fringes obtained
from scanning the image at five pixel increments (approx 0.018mm) as
shown in Fig. B.2(b). This is a much higher scan frequency than would

be used in most actual applications. However, from this plot it is evident

that the maximum intensity fringe centres exhibit substantially more scatter




than the integrated intensity fringe centres. Also, in general, the maximum
intensity fringe centres appear to be uniformly scattered on both sides of
the integrated intensity centres. Hence, it may be concluded that the
integrated intensity fringe centre detection algorithm is superior for

analyzing "noisy" interferograms.

For the fringe closest to the wall, the large amount of scatter in the
maximum intensity fringe centres is primarily caused by surface diffraction

fringe .. This will always be the case. Hence, even in a high quality

interferogram, in which noise is kept to a minimum, the inpegrated intensity

fringe centre method will likely give more accurate results for the first
fringe. Based on these results, integrated fringe centres were used for

the present heat transfer study.

More sophisticated methods of reducing noise in an image are available
using image processing algorithms (see Baxes [89]). One method is to
apply a low pass filter to the entire image with the appropriate cut-off
frequency. Alternately, high frequency noise could be reduced using a
median filter. However, in the present system, the computing power is
insufficient to implement these imaging techniques. For example, with the
present system (80286 with math co-processor) a median filtering operation
with a 3X3 kernel takes about two to three minutes for each image. Also,
it was found that a 3X3 kernel was insufficient to reduce the noise level
in the image significantly. Much larger kernel sizes requiring greater

computing power are needed.

Ten scans of the same location on an interferogram were made manually




using a travelling microscope by two people experienced at fringe reading.
The same process was then repeated using the imaging system. The

manually measured fringe spacings differed by as much as 3%, whereas the

imaging system gave the same fringe spacing with 0.2X in all cases.

B.5 Concluding Remarks

An IBM PC based digital image processing system has been developed for
analyzing interferograms. An algorithm for detecting interference fringes
has been implemented that is insensitive to noise in the image. Fringe
centre data with a low amount of scatter can be obtained using an

integrated intensity method.




APPENDIX C

Air Properties

With the exception of density (p), the properties of air were considered to
be functions of temperature only. The temperature dependence of dynamic
viscosity (p), thermal conductivity (k) and specific heat was obtained from
a comprehensive compilation of data by the Thermophysical Properties
Research Centre, Purdue University [90,91,92). Recommended values were
given (at standard a* . .spheric pressure) based on the data of many

independent researchers.

C.1 Dynamic Viscosity (n)

The recommended data of Touloukian, Saxena and Hestermans [90] are
shown in Fig. C.1. Linear interpolation between data points was used.
From a scatter plot of data from many sources given in reference [90], the

data are estimated to be accurate to #0.5 percent.

C.2 Thermal Conductivity (k)

The recommended data of Touloukian, Liley and Saxena [91] are shown in
Fig. C.2. Linear interpolation between data points was used. In the
temperature range of the present study, the data are stated to be accurate

to £1.0 percent.

C.3 Specific Heat (C')

A third order best fit polynomial presented by Touloukian and Makita [92]
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was used to calculate specific heat:
C,(J/kg K) = 1044.66 - 3.15967x10"! T
+ 7.07908x10~* T2 - 2,7034E-7 T* (T in °K) (C.1)
Valid over temperature range 260K S T S 610K.
From a scatter plot of data for C’ (at p=1 atm) given in raference [92]), the

data are estimated to be accurate to approximately $0.25 percent.

C.4 Coefficient of Thermal Expansion (B)

The coefficient of thermal expansion for a fluid is defined as:

1,0p
P P (81') ’
In this study, air was considered to behave as an ideal gas.

coefticient of thermal expansion can therefore be evaluated by,

-7

where T is the absolute temperature.

C.5 Index of Refraction (N)
The index of refraction (N) is related to density (p) by the Lorentz-Lorenz

equation [74],

V-1)
—_——=0(1) (C.4)
p(N?+2)

where G()) is called the specific refractivity and is a function of both the
substance and the light wavelength. For air and He-Ne laser
(1:0.6328):10"111), G=0.1504x10"2 m3/kg. Since air has a refractive index

very close to unity, equation (C.4) can be simplified to:
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2N-Y) @ (C.5)
3p

Equation (C.5) is called the Gladstone-Dale equation [74].

C.6 Density (p)
The densgity of air was calculated using the ideal gas law.




APPENDIX D

TABULAR NUMERICAL DATA

1 D.1 Numerical Results from the Elliptic Solution

Table D.1. Numerical regults from the elliptic solution (FIDAP) for the
undivided channel (L’/Lc=0).

Gr, L./b| Pr| Ra' | Ry| Nug, Nu, Q, T," | of node
100 10 0.73 7.33| 5 | 0.8421 0.8833 1.3948| 0.8675 9,753
1,250 10 0.733] 91.62|5 1.8022 1.8671 1.4391{ 0.5006 9,753
7,000 10 0.7 490.0 5 | 2.6397 2.7250 1.2671} 0.3672 9,753
8,000 10 0.7 560.0 { 5 | 2.7203 2.8074 1.2438] 0.3605 9,753
9,000 10 0.7 | 630.0 | 5 | 2.7934 2.8820 1.2223] 0.3550 9,753
10,000 10 0.7 700.0 5 | 2.8604 2.9504 1.2025( 0.3505 9,753
50,000 10 J0.7 |3,500 |5 | 41225 4.2340 0.8604] 0.3144 9,753
100 17 0.7 | 4.118 | 5 | 0.6462 0.6718 1.7387( 0.9384 10,347
1,000 17 0.7 41.18 5 | 1.4840 1.5240 1.9362] 0.6045 10,347
2,000 17 0.7 82.35 5 | 1.7604 1.8060 1.9053 | 0.5147 10,347
3,000 17 0.7 123.5 | 5 | 1.9362 1.9854 1.8704 | 0.4706 10,347
5,000 17 0.7 205.9 | 5 | 2.1766 2.2309 1.8065] 0.4241 10,347
10,000 17 0.7 411.8 5 | 2.5433 2.6053 1.6815] 0.3763 10,347
50 24 0.7 [1.458 |5 | 0.3307 0.3483 1.6967] C.9954 10,033
100 24 0.7 2.917 5 | 0.5358 0.5546 1.9649| 0.9677 14,369
106.7 24 0.7 3.112 5 | 0.5552 0.5763 1,9863 | 0.9629 10,033
200 24 0.7 5.833 5 | 0.7728 0.7970 2.1512| 0.8982 10,033
500 24 0.7 14.58 5 | 1.1036 1.1328 2.2780] 0.7625 10,033
1,000 24 0.7 29.17 5 | 1.3601 1.3902 2.3046 | 0.6540 14,369
2,000 24 0.7 58.33 5 | 1.6204 1.6597 2.2871| 0.5564 17,033
2,500 24 |07 |72.92 |5 | 1.7098 1.7513 2.2726 | 0.5284 10,033
3,000 24 |07 |87.50 |5 | 17851 1.8284 2.2574 | 0.5070 10,033
5,000 24 0.7 145.8 5§ | 2.0080 2.0573 2.1978 | 0.4539 10.033
10,000 24 0.7 {291.7 |5 | 2.3568 2,4046 2.0734 | 0.3976 14,369
Crid Tests (partia] listing)
10,000 24 0.7 | 291.7 3 | 2.346 2.4055 2.084 |0.3958 8,465
10,000 24 0.7 291.7 4 | 2.346 2.4046 2.076 0.3971 9,249
10,000 24 0.7 |291.7 |5 | 2.345 2.4040 2,073 |0.3978 10,033
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Table D.2. Numerical results from the elliptic solution (FIDAP) for the
divided channe], L,/Lc=1/3. no blockage t/b=0.0, L. /b=15,
Pr=0.7, plate at the bottom of the channel L,/L_=0.

Ra,’ Nu_ Nu_, Nu, Nu, Q, Ty ¢ of nodes| R,

$ | 0.4820 | 0.4537 0.3008 | 0.9127 1.3339 0.9975 14,479 5

10 0.8020 | 0.7678 0.5317 1.4762 1.6053 0.9752 14,479 5

20 1.1834 1.1528 0.8454 2.0748 1.8070 0.9116 14,479 5

40 1.6152 { 1.5678 1.2073 2.6492 1.9341 0.8152 14,479 5

100 | 2.1978 | 2.1407 1.7248 | 3.3883 2.0144 0.6736 14,479 5
200 2.6620 | 2.5967 2.1365 3.9771 2.0248 0.5739 14,479 5
500 3.3257 | 3.2469 2.7078 4.8644 1.9866 0.4822 14,479 5
1,000 | 3.8848 | 3.7936 3.1738 | 5.6531 1.9244 0.3940 14,479 5
2,000 4.5155 | 4.4101 3.6933 6.5604 1.8342 0.3398 14,479 5
5,000 5.4978 5.3898 4.5088 7.9529 1.6693 0.2875 14,479 5
10,000 8.3823 <336 5.2589 9.1578 1.5109 0.2607 14,479 5

Grid Tests (partial listing)

10 0.8035 | 0.7691 0.5329 1.477% 1.6091 0.9750 9,003 3

10 0.8018 | 0.7668 0.5310 1.4742 1.6054 0.9752 10,143 5

100 2.2007 | 2.1443 1.7275 3.3947 2.0215 0.6722 9,003 3
1,000 3.8875 3.8012 3.1710 5.6916 1.9340 0.3925 9,003 3
5,000 5.5038 5.3895 4,5046 8.0446 1.6822 0.2856 9,003 3
5,000 5.5000 5.3842 4.5041 8.0245 1.6698 0.2875 10,143 5
10,000 8.3856 6.2561 5.2580 9.2503 1.5115 0.2607 10,143 5
10,000 6.3895 6.2621 5.2568 9.2778 1.5269 0.2584 9,003 3




Table D.3.

Numerical results from the elliptic solution (FIDAP) for the

divided channel, L,/L =1/3, no blockage t/b=0.0, L_/b=15,
Pr=0.7, plate in the middle of the channel,
L,/Lc=(1-LD/Lc)/2=1/3.

Nu

C

Nu,.,

Nu

L4

Nu’

Q,

Ty

0.4256
0.7058
1.0786
1.5097
2.1154
2.5840
3.2353
3.7809
4,3982
5.:331
6.2369

0.4072
0.6760
1.0409
1.4638
2.0586
2.5187
3.1575
3.6922
4,2975
5.2448
6.1042

0.4487
0.6775
0.9674
1.3034
1,7866
2.1709
2.7156
3.1748
3.6969
4.5270
5.2968

0.2647
0./ 12
1.2015
1.9449
2.8743
3.5620
4.4834
5.2446
6.0992
7.3983
8.5263

1.1764
1.3964
1.5811
1.7148
1.8107
1.8296
1.8001
1.7438
1.6582
1.4968
1.3422

0.9989
0.9867
0.9417
0.8595
0.7211
0.6116
0.4963
0.4233
0.3661
0.3127
0.2868

Table D.4.

Numerical results from the elliptic solution (FIDAP) for the
divided channel, L_/L_=1/3, no blockage t/b=0.0, L_/b=15,

Pr=0.7, plate at the top of the channel L,/

L.=1-L /L =2/3.

Nu

c

Nu c2

Nu

L

Nup

Q,

Ty

0.4155
0.6659
0.9921
1.3709
1.9195
2.3644
3.0039
3.5462
4,1630
5.1322
6.0119

0.3953
0.6408
0.9611
1.3333
1.8724
2.3095
2.9374
3.4697
4.0758
5.0300
5.8994

0.4996
0.7545
1.0475
1.3600
1.7904
2.1404
2.6655
3.1279
3.6620
4.5124
5.2975

0.08244
0.2997
0.7017
1.2532
2.1182
2.8167
3.7530
4.4452
5.3171
6.5829
7.7049

1.1493
1.3165
1.4431
1.5265
1.5780
1.5800
1.5391
1.4774
1.3911
1.2401
1.1025

0.9989
0.9881
0.9496
0.8772
0.7514
0.6536
0.5391
0.4688
0.4132
0.3613
0.3367




Table D.5. Numerical results from the elliptic solution (FIDAP) for the
divided channel, Lp/Lc=l/3’ 10X blockage t/b=0.1,
L /b=15, Pr=0.7, plate at the bottom of the channel L,/L_=0.
Ra.® Nu, Nu,, Nu, Nu, Q, Ty
5 0.4050 | 0.3853 0.2457 0.7946 1.1251 0.9992
10 0.7063 | 0.3826 0.4528 1.3566 1.4020 0.9889
20 1.1085 1.0805 0.7606 2.0188 1.6320 0.9428
40 1.5607 1.52843 1.1373 2.6754 1.7902 0.8557
100 2.1887 | 2.1502 1.6891 3.5028 1,9058 0.7129
200 2.6837 | 2.6401 2.1299 4,1365 1.9393 0.6074
500 3.3810 | 3.3291 2.7373 5.0648 1.9293 0.4865
1,000 3.9601 3.9005 3.2255 5.8800 1.8872 0.4119
2,000 4.6051 4.5371 3.7610 6.8135 1.8154 0.3521
5,000 5.5974 5.5186 4,5909 8.2395 1.6701 0.2942
10,000 6.4829 6.3973 5.3505 9.467¢ 1.5215 0.2645
Table D.6. Numerical results from the elliptic solution (FIDAP) for
the divided channel, Lp/Lc=1/3, 20% blockage t/b=0.2,
L./b=15, Pr=0.7, plate at the bottom of the channel Li/cho.
Ra * Nu, Nu_, Nu, Nu, Q, T,
5 0.3245 } 0.3067 0.1812 0.6379 0.9062 0.9997
10 0.5¢03 | 0.5683 0.3665 1.1471 1.1609 0.9967
20 0.9852 | 0.9589 0.6527 1.8372 1.4170 0.9705
40 1.4636 1.4329 1.0350 2.5742 1.6055 0.8998
100 2.1445 | 2.1075 1.6213 3.5027 1.7585 0.7613
200 2.6786 | 2.6365 2.0861 4,1867 1.8166 0.6509
500 3.4205 | 3.3703 2.7490 5.1528 1.8375 0.5197
1,000 4.0287 3.9706 3.2670 5.9891 1.8205 0.4369
2,000 4.6992 4.6319 3.8254 6.9458 1.7753 0.3695
5,000 5.7187 5.6386 4,6750 8.4031 1.6623 0.3037
10,000 6.6187 6.5298 5.4435 9.6465 1.5317 0.2697




D.2 Numerical Results from the Parabolic Solution (t/b=0)

Table D.7. Numerical results from the parabolic solution for the
undivided channcl Lp/Lc=0, Pr=0.7. (Note: the results for
L,/Lc=1 were obtained by rescaling the data for Lp/Lc=0)

Ra Nu, Q, Ty
0.1235 3.975E-2 | 3.220E-1 1.0000
0.2062 6.496E-1 { 3.150E-1 1.0000
0.4023 0.1207 3.000E-1 1.0000
0.5491 0.1592 2.900E-1 1.0000
1.0856 0.2819 2.600E~-1 0.9986
1.5502 0.3698 2.400E~1 0.9939
2.9066 0.5513 2.000E-1 0.9656
4.9658 0.7483 1.650E-1 0.9132
9.6900 0.9958 1.250E-1 0.8222
15.83¢ 1.180% 1.000E-1 0.7455
25.224 1.3582 8.000E-2 0.6731
44.869 1.5848 6.000E-2 0.5887
123.76 2.0366 3.500E-2 0.4702
326.52 2.5587 2.000E-2 0.3918
576.85 2.9132 1.400E-2 0.3607
1115.5 3.3777 9.000E-3 0.3364
1973.5 3.8352 6.000E-3 0.5239
3406.3 4.3305 4.000E-3 0.3178
8349.6 5,2993 2.000E-3 0.3173

10225 5.5469 1.700E-3 0.3191

Table D.8. Numerical results from the paraboi:: solution for the divided
channel (t/b=0), Lp/Lc=2/3 (nominal), Pr=0.7, plate at the
bottom of the channel L,/L_=0.

Ra ' L,/L, Nu Nu Nu Q, Ty

< P w

1.0324 | 0.6626 | 6.6€4E-2{8.315E-2 | 5.560E-2 | 1.077E-1 | 1.0000
2.1210 | 0.6700 | 0.1327 0.1654 0.1108 1.045E-1 | 1.0000
5.3059 | 0.6672 | 0.3089 0.3856 0.2575 9.706E-2 | 1.0000
15.316 | 0.6682 | 0..328 0.9082 0.6155 8.050E-2 | 0.9914
28.289 | 0.6723 | 1.0973 1.3347 0.9376 6.765F-2 | 0.9589
50.828 | 0.6707 | 1.5022 1.7925 1.3075 5.516E-2 | 0.8951
151.11 | 0.6665 | 2.2972 2.6499 2.0621 3.480E-2 | 0.7280
502.92 | 0.6682 | 3.2081 3.6061 2.9422 J33E-2 | 0.5505
2004.0 | 0.6656 | 4.4491 4.9381 4.1236 9,194E-3 | 0.4022
9998.4 | 0.6642 | 6.3558 6.9703 5.9476 l 3.420E-3 | 0.3093




Table D.9. Numerical results from the parabolic solution for the divided
L /L.=1/3 (nominal), Pr=0.7, plate at the

channel (t/b=0),

bottom of the channel L,/L_=0.

242

Ra " L/L.| Nu, Nu, Nu, Q, T,
0.2017 | 0.3338 | 2.490E-2| 4.975E-2| 1.661E-2| 1.647E-1| 1.0000
1.0279 | 0.3333 | 0.1217 | 0.2435 8.115E-2| 1.579E-1 | 1.0000
2.2251 | 0.3350 | 0.2483 | 0.4945 0.1659 | 1.490E-1 | 1.0000
8.0904 | 0.3324 | 0.7166 | 1.3634 0.5016 | 1.200E-1 | 0.9834
30.335 | 0.3358 | 1.4655 | 2.4408 1.1379 | 7.672E-2 | 0.8479
102.59 | 0.3339 | 2.2458 | 3.4190 1.8540 | 4.409E-2 | 0.6623
405.74 | 0.3334 | 3.2414 | 4.6569 2,7695 | 2.205E-2 | 0.4830
1962.0 | 0.3346 | 4.6823 | 6.5113 4,0701 | 9.270E-3 | 0.3436
6013.7 | 0.3331 | 6.0032 | 8.2003 5.2713 | 4.694E-3 | 0.2835
11788 0.3334 | 6.9404 | 9.3532 6.1360 | 3.011E-3 | 0.2607

Table D.10. Numerical results from the parabolic solution for the divided

channel (t/b=0), L_/L_=1/10 (nominal), Pr=0.7, plate at thc

bottom of the chanhel L /L_=0.

Ra L/L. | Nu, Nu, Nu, Q, Ty
0.1007 | 0.1002 | 2.319E-2| 1,.273E-1| 1.276E-2| 2.533E-1| 1.0000
0.2054 | 0.1000 | 4.679E-2 | 2.573E-1] 2.573E-2| 2.505E-1| 1.0000
1.0333 | 0.1009 | 0.2155 |1.1315 0.1231 | 2.297E-1 | 1.0000
2.1141 | 0.6997 | 0.3963 | 1.8444 0.2520 | 2.068E-1 | 0.9967
5.0577 | 0,0999 | 0.7227 | 2.6857 0.5266 | 1.641E-1 | 0.9580
10,169 | 0.0999 | 1.0358 | 3.3107 0.8086 | 1.271E~1 | 0.8817
21.210 | 0.1000 | 1.2894 | 3.9766 1.1307 | 9.288E-2 | 0.7759
50.135 | 0.0998 | 1.8334 | 4.8485 1.5325 | 6.209E-2 | 0.6478
151,26 | 0.1008 | 2.4865 |6.1628 2.1161 | 3.565E-2 | 0.5076
502.76 | 0.0997 | 2.3456 | 7.9863 2.8827 | 1.871E-2 | 0.3912
2014.4 | 0.1005 | 4.6272 | 10.604 4.0267 | 8.501E-3 | 0.2973
10051 0.1003 | 6.6332 14.468 5.8477 3.124E-3 | 0.2325




Table D.11. Numerical results from the parabolic solution for the divided
channel (t/b=0), Lp/Lc=l/100 (nominal), Pr=0.7, plate at the
bottom of the channel L;/L_=0.

Ra_* L/L, Nu_ Nug Nu, Q, Ty
0.01021 | 0.01005 | 3.264E-3| 0.1640 1.648E-3} 3.230E-1 | 1.0000
0.03118 ] 0.01008 | 9.933E-2]| 0.4974 5.020E-3] 3.218E~1 | 1.0000
0.10319 | 0.01001 | 3.245E-2| 1.4874 1.789E-21 3.176E-1 | 1.0000
0.20148 1 0.01000 | 6.202E-2] 2.3026 3.963E-2| 3.111E-1| 1.0000
1.0265 | 0.01000 } 0.2670 4.5180 0.2244 2.629E-1 | 0.9992
2.1096 | 0.00994 | 0.4585 5.7450 0.4060 2.226E-1 | 0.9861
5.0658 | 0.00999 | 0.7675 7.4230 0.7011 1.665E-1 | 0.9191
10.075 | 0.00998 | 1.0379 8.9198 0.9593 1.258E-1 | 0.8271
21.031 | 0.00991 | 1.3389 10.756 1.2456 9.002E-2 | 0.7143
50.153 | 0.01000 | 1.7177 13.152 1.6034 5.877TE-2 | 0.5886
150.71 | 0.00990 | 2.2701 16.910 2.1252 3.300E-2 | 0.4610
504.80 | 0.00999 | 3.0296 21.624 2.8438 1.662E-2 | 0.3647
1989.1 | 0.00992 | 4.1646 28.308 3.9251 7.272E-3 | 0.2908
10078 0.01000 | 6.0623 38.102 5.7420 2.625E-3 | 0.2315

Table D.12,

Numerical results from the parabolic solution for the divided
channel (t/b=0),

LD/LC=2/3 {nominal), Pr=0.7, plate in the
middle of the channel L,/Lc=(l-Lp/Lc)/2=l/6.

Ra* L/L, Nu,_ Nu, Nu,, Q, Ty
0.2000 | 0.6667 | 1.315E-2| 3.407E-8 | 2.219E-2| 1.096E-1 | 1.0000
1.0001 | 0.6667 | 6.252E-2| 3.934E-3 | 0.1025 | 1.042E-1 | 1.0000
2,1001 | 0.6667 | 0.1246 3.377E-2 | 0.1861 | 9.890E-2 | 1.0000
5.0011 | 0.6668 | 0.2705 0.1668 0.3341 | 9.017E-2 | 1.0000
10.002 | 0.6668 | 0.4845 0.4102 0.5365 | 8.080E-2 | 0.9992
21.004 | 0.6668 | 0.8467 0.8468 0.8517 | 6.818E-2 | 0.9855
50.010 | 0.6668 | 1.4164 1.5215 1.3499 | 5.155E-1 | 0.9158
150.03 | 0.6668 | 2.2170 2.4304 2.0700 | 3.260E-2 | 0.7555
500.11 | 0.6668 | 3.1327 3.4417 2.9231 |1.818E-2 | 0.5742
2000.2 | 0.6667 | 4.3684 4.7541 4.0833 | 8.656E-3 | 0.4205
9998.5 | 0.6666 | 6.2841 6.7907 59191 |3.217E-3 ] 0.3256




Table D.13.

Numerical results from the parabolic solution for the divided

channel (t/b=0), L /L =1/3 (nominal), Pr=0.7, plate in the

middle of the channel L,/L_=(1-L /L )/2=1/3.

Ra* L/L.] Ny, Nu, Nu, Q, Ty
0.2000 | 0.3334 | 2.443E-2 | 1.839E-9] 3.292E-2] 1.628E-1 | 1.0000
1.0002 | 0.3334 | 0.1123 3.748E-3 | 0.1499 1.498E-1 | 1.0000
2.09¢9 | 0.3333 | 0.2155 4.877E-2 ) 0.2726 1.368E~1 | 1.0000
5.0028 | 0.3335 | 0.4372 0.2922 0.4872 1.167E-1 | 0.9988
10.005 | 0.3335 | 0.7229 0.7188 0.7253 9.785E-1 | 0.9846
21.007 | 0.3334 | 1.1273 1.3595 1.0488 7.686E-2 | 0.9310
50.010 | 0.3334 | 1.6783 2.2179 1.4942 5.458E-2 | 0.8199
150.02 | 0.3334 | 2.4280 3.3224 2.1226 3.300E-2 | 0.6539
500.12 | 0.3334 | 3.3203 4.5190 2.9025 1.787E-2 | 0.4952
2000.0 | 0.3333 | 4.5832 6.1137 4.0365 8.279E-3 | 0.3691
9998.6 | 0.3333 | 6.5446 8.4945 5.8366 2.994E-2 | 0.2915

Table D.14. Numerical results from the parabolic solution for the divided
channel (t/b=0), Lp/Lc=1/10 (nominal), Pr=0.7, plate in the
middle of the channel Li/Lc=(1-Lp/Lc)/2=9l20.

Ra_® L/L, Nu_ Nu, Nu, Q, T,
0.2000 | 0.1000 | 4.474E-2| 6.161E-8| 4.977E-2] 2.460E-1] 1.0000
1.0001 | 0.1000 | 0.1947 2.199e-2 | 0.2138 2.142E-1 | 1.0000
2.1007 | 0.1000 | 0.3553 0.2006 0.3725 1.863E-1 | 0.9985
5.0018 | 0.1000 | 0.6502 0.8207 0.6334 1.467E-1 | 0.9746
10.003 | 0.1000 | 0.9547 1.56919 0.8893 1.146E-1 | 0.9163
21.004 | 0.1002 | 1.3229 2.5821 1.1926 8.430E-2 | 0.8218
50.013 | 0.1000 | 1.7933 3.8471 1.56792 5.669E-2 | 0.6957
150.02 | 0.1000 | 2.4509 5.4890 2.1329 3.280E-2 | 0.5479
499.45 | 0.0999 | 3.2872 7.2467 2.8636 1.715E-2 | 0.4220
1999.2 | 0.1000 | 4.5187 9.5370 3.9683 7.679E-3 | 0.3238
9993.6 | 0.0999 | 6.4638 12.856 5.7495 2.730E-3 | 0.2606
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Table D.15.

Numerical results from the parabolic solution for the divided
channel (t/b=0),

L /L_=2/3 (nominal), Pr=0.7, plate in the

top of the channel i‘ch=l—Lp/Lc=1/3.

Ral

C

L,/L,

Nu

C

Nup

Nu

w

Q,

T,

0.1999
0.9997
2.09817
4.9874
10.012
21.006
50.006
150.03
500.09
1999.5
9989.7

0.6668
0.6668
0.6669
0.6675
0.6663
0.6666
0.6666
0.6666
0.6666
0.6668
0.6670

1.315E-2
6.246E-2
0.1233
0.2605
0.4581
0.7866
1.3140
2.0873
2.9942
4.2226
6.1336

8.449-13
2.302E-4
7.349E-3
7.530E-2
0.2456
0.5999
1.2171
2.1357
3.1789
4.5061
6.5404

2.219E-2
0.1050
0.2022
0.3862
0.6020
0.9157
1.3832
2.0537
2.8669
4.0153
5.8401

1.096E-1
1.041E-1
9.791E-2
8.709E-2
7.628E-2
6.311E-2
4.711E-2
2.967E-2
1.653E-2
7.861E-3
2.928E-3

1.0000
1.0000
1.0000
1.0000
0.9994
0.9888
0.9295
0.7815
0.6036
0.4478
0.3496

Table D.16. Numerical results from the parabolic solution for the divided
channel (t/b=0),

Lp/L =1/3 (nominal), Pr=0.7, plate in the
top of the channel LJLC=1—LP/LC=2/3.

Ral

C

L,/L,

Nu

c

Nuy

Nu

w

Q,

Ty

0.2044
0.9974
2.0455
3.0286
5.0051
10.061
21.338
50.540
151.22
503.50
2003.8
10025

0.3335
0.3355
0.3335
0.3337
0.3340
0.3340
0.3321
0.3332
0.3329
0.3301
0.3322
0.3350

2.496E-2
0.1118
0.2096
0.2881
0.4217
0.6780
1.0410
1.5259
2.2157
3.0761
4.2988

6.2286

2.91E-14
7.877E-5
5.250E-3
2.294E-2
8.963E-2
0.3217
0.7815
1.5027
2.5840
3.8140
5.3425
7.6657

3.367E-2
0.1507
0.2803
0.3797
0.5357
0.7992
1.1282
1.5330
2.0925
2.8224
3.9247
5.6972

1.628E-1
1.496E-1
1.367E-1
1.269E-1
1.125E-1
9.109E-2
6.910E-2
4.778E-2
2.834E-2
1.515E-2
6.892E-3

2.441E-3

1.0000
1.0000
1.0000
0.9999
0.9989
0.9872
0.9405
0.8424
0.6891
0.5369
0.4147

0.3398




Table D.17. Numerical results from the parabolic solution for the divided
channel (t/b=0), Lp/L =1/10 (nominal), Pr=0.7, plate in the
top of the channel L‘ch=l-Lp/Lc=9/10.

Ra ® L,/L, Nu, Nu, Nu, Q, Ty
0.2000 | 0.1000 | 4.479E-2]| 3.13E-12| 4.983E-2| 2.463E-1 | 1.0000
1.0000 | 0.1001 | 0.1953 5.858E-4 | 0.2169 2.149E-1 | 1.0000
2.0998 | 0.1001 ] 0.3536 2.430E-2 | 0.3893 1,856E-1 | 0.9984
4.9986 | 0.1003 | 0.6327 0.2403 0.6745 1.429E-1 | 0.9744
9.9948 | 0.1005 } 0.9123 0.6803 0.9370 1.084E-1 | 0.9182
21.000 | 0.1000 | 1.2454 1.4132 1.2276 7.884E-2 | 0.8275
50.019 | 0.0997 | 1.6685 2.5197 1.5793 5.179E-2 | 0.7083
150.10 | 0.0994 | 2.2750 4.1008 2.0867 2.909E-2 | 0.5729
500.11 | 0.0998 | 3.0555 5.6479 2.7835 1.460E-1 | 0.4603
2000.1 | 0.1000 | 4.1869 7.3684 3.8470 6.104E-3 | 0.3772

10001 0.0999 | 6.0317 10.324 5.5766 1,995E~3 | 0.3324




Table D.18. Numerical results from the parabolic solution for the divided

channel (t/b=0). Special calculations made holding Ra *
constant and varying the plate length ratio LD/LC. The

plate is at the bottom of the channel L,/L_=0, and Pr=0.7.

Ra,

L,/L,

Nu

c

Nup

Nu

<

T,

0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000

1.0000
0.9127
0.8099
0.7031
0.5682
0.4532
0.3555
0.2794
0.2078
0.09951

4.161E-3
40247E"3
4.341E-3
4.417E-3
4.457E-3
4.397E-3
4.222E-3
3.953E-3
3.527E-3
2.321E-3

4.161E-3
4.450E-3
4.9850-3
5.350E-3
6.150E-3
7.050E-3
8.050E-3
9.050E-3
1.025E-2
1.282E-2

4.161E~3
4.062E-3
3.928E-3
3.761E-3
3.495E-3
3.195E-3
2.862E-3
2.529E-3
2.130E-3
1.275E-3

8.318E-2
8.900E-2
9.700E-2
1.070E-1
1.230E-1
1.410E-1
1.610E-1
1.810E-1
2.050E-1
2.564E-1

1.0000
1.0000
100000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00

1.0000
0.8693
0.8095
0.7047
0.5980
0.4971
0.4060
0.3103
0.2007
0.09617

1.6650
1,7041
1.7085
1.7055
1.6865
1.6489
1.5923
1.4989
1.3232
1.0120

1.6650
1.8010
1.8597
1.9709
2.0992
2.2397
2.3880
2.5763
2.8640
3.3182

1.6650
1.6199
1.5862
1.5185
1.4396
1.3553
1.2692
1.1645
1.0139
0.7902

3.764E-2
4.200E-2
4.400E-2
4.800E-2
5.300E-2
5.900E-2
6.600E-2
7.600E-2
9.400E-2
1.300E-1

(.8846
0.8725
0.8680
0.8595
0.8503
0.8417
0.8354
0.8327
0.8420
0.8873

10,006
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000

1.0000
0.9142
0.7865
0.6812
0.5947
0.4768
0.3787
0.2989
0.1975
0.09599

5.9369
5.9452
5.9018
5.8382
5.7607
5.6024
5.4010
5.1649
4.7072
3.8920

5.9369
6.0523
6.2169
6.3784
6.5371
6.8082
7.1083
7.4340
8.0509
9.285€

5.9369
5.8472
5.6539
5.4701
5.2990
5.0275
4.7545
4.4866
4.0469
3.3743

3.322E-3
3.600E-3
4.000E-3
404OOE-3
4.800E-3
5.500E-2
6.300E-2
7.200E-3
9.000E-3
1.300E-2

0.3573
0.3458
0.3351
0.3275
0.3218
0.3155
0.3121
0.3117
0.3172
0.3418




APPENDIX E
TABULAR EXPERIMENTAL DATA

Table E.1. Experimental average Nusselt number and associated data
(Lp/Lc=1/3. L.=120.0mm, Lp=40.0mm y L =42.0mm, 2t=3.5mm).

p,vwet
v/u |l T, | T, P,.. J 2b Ra.* | Nu, | Nu, Nu_
(*C)1(¢°C) | (mmHg mm
0 45.7 | 21.1 | 738.0 |17.58 9°5 | 313 ]| 1.44 | 1.88
0 42.4 | 20.5 | 741.9 | 25.40 395 | 4.43 | 2.55 | 3.04
0 40.5 | 21.2 | 738.0 |31.95 874 | 5.26 | 2.89 | 3.50
0 40.4 | 20.2 | 741.4 |31.95 931 | 5.43 | 2.86 | 3.53
0 40.2 | 20.0 | 740.2 | 38.15 | 1,800 |e6.11 | 3.48 | 4.16
0 40.7 | 20.3 | 741.7 |s0.70 | 5,930 | 7.80 | 4.79 | 5.57
2/3 | 40.6 | 20.8 | 737.3 | 17.55 81.4 | 1.48 | 1.44 | 1.45
2/3 {42.8|21.2 | 7137.2 | 25.40 383 | 3.23 | 2.37 | 2.59
273 {409 |21.2 | 737.7 | 31.95 ges | 4.3¢ | 297 | 3.33

2/3 39.7 | 21.3 737.3 | 38.15 1,690 5.18 | 3.25 3.75
2/3 40.7 | 21.1 737.3 | 50.70 5,610 6.82 | 4.48 5.09
x 45.0 | 21.1 738.4 | 17.40 92.4 - 1.68 1.68

¥ Data for the undivided channel




APPENDIX F

EXPERIMENTAL ERROR ANALYSIS

F.1 Introduction

Numerous systematic (bias) and random sources of error are present in the
experimental data. An attempt is made in this appendix to indicate the
major sources of error. Also, uncertainty estimates are made for the

primary measured and calculated quantities.

The single-sample uncertainty analysis of Kline and McClintock (93] has
been used: consider that a result R of an experiment is to be calculated
from n independent variables, x,, x;, ..., x,. Let 6x,, 6x,, ..., 6x be the
random uncertainties in these quantities. The maximum uncertainty can be

expressed as the sum:

OR_, < l—%’-‘-ax,l+%az,l+...+%’-’-ax,l (F.1)

However, because of the random nature of the individual uncertainties,

equation (F.1) will generally greatly overestimate the actual error.

Kline and McClintock [93] recommend calculating the root-sum-square
uncertainty. That is, if the uncertainties in the independent variables are

all given with the same odds, the uncertainty in the result (8R) is:

( bx,)’( x,)’ +(—Gx.)’) (F.2)

Note that the analysis is simplified for cases where R can be written ae a
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product of terms, each raised to some power. If R is given by:

Rex'x). .zt

Then, the relative uncertainty can be calculated as:

R 3
((a—)’ ) PR )’) (F4)
R x) x x,

Equations (F.2) and (F.4) have been used for the present uncertainty

analysis.

F.2 Uncertainty in the Rayleigh Number (Ra°, Ra )

The accuracy of the calculated Rayleigh number depends upon the accuracy
of the fluid properties, thermocouple readings, barometric pressure, and
channel wall spacing. From these quantities, the channel Rayleigh number
was calculated as follows:

g(T,-T)b'p’C,

Ra_ -
] 1}’“&‘&31‘0

The estimated uncertainty in each of the relevant quantities in equation

(F.5) is given in Table F.1. Applying equation (F.4) gives:

3b, 8T,-T)
-{(2—2)’(4 )’((T T))’(‘s Sy

By 2 (""‘)’]
'

Evaluating equation (F.6) gives an uncertainty in the Rayleigh number

(Ra_* or Ra ®) of $2.6%.




Table F.1: Summary of the sources of uncertainty in the Rayleigh numwber

Quantity Absolute Max. Percent
Uncertainty Uncertainty
Barometric Presscure (p) 20.5mmHg 20.07%
Measure Gap Width (2b) $0.05 mm $0,28%
Temperature Difference (T -T,) 0.4 C° $2.0%
Film Temperature T,=(T +T_)/2 $0.4 C° $0.13%
Dynamic Viscosity (u) - $0.5
Specific Heat (CL) - $0.25
Thermal conductivity (k) - 1.0




F.3 Uncertainty in the Heat Transfer Measurements

The interferometric technigque ig complex and has numerous sources of
error. A discussion of the sources of uncertainty is given first. Then,
an uncertainty analysis is performed to show how these errors propagate

into the calculated local Nusselt numbers.

1) Refraction Error: As a ray of light passes through the test section, it
fs bent by density gradients normal to its path. In the present case, light
rays close to the heated model surface are bent away from the surface.
The error caused by this light refraction was minimized by focusing the
camera at one third the distance from the exit plane of the channel, in
accordance with a study by Mehta and Black [73]). Also, Kuehn [94] has
shown that the additional light refraction caused by the optical windows

is negligible.

2) Beam Divergence/Ccnvecrgence Error: Collimation of the test beam was
obtained using the procedure described in cection 6.4. Before each set of
experiments, the optics were examined to ensure collimation was maintained.
For this reason, the error essociated with beam convergence or divergence

has been neglected.

3) End Effect Errors: Optical end effect errors are caused by the fact that
the air is heated beyond the assumed optical length of the test section
(2,=259.1mm). This extra partially heated length causes an additional fringe
shift in the test beam. Hence, end effect errors cause the measured
temperature gradient to be erroneously high. There are two sources of

optical end effect errors in the present experiment:
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i) A fringe shift error is caused by the formation of free convective
boundary-layers on the exterior of optical windows. The external
temperature of the windowr was measured to be about 2C' above the
ambient temperature. Modelling the windows as an isothermal vertical flat
plate, the maximum additional fringe shift was estimat~1 to be about
A€=0.04. This is equivalent to an error in the effective optical length of
about +1.5 mm.

ii) Thin foam pads were mounted on the walls at each end of the model
to protect the optical windows. The foam pads caused the spacing of the
optical windows to be slightly greater than the test section length. The

resulting uncertainty in the optical length was estimated to be about +4mm.

Combining the above errors, the uncertainty in the effective opticr.! length

of the test section was estimated to be Z,=259.l+5.5m|n. This source of

error is always positive and is essentially constant for all experiments, i.e.

a bias error.

4) Fringe Centre Location Error: The uncertainty in the measured fringe
spacing (x,-x,) is a significant source of error in the interfe'ogram
anal*sis. The main source of error in measuring the fringe spacing is the
"noise" in the interferograms. The noise comes from a wide variety of
sources: optical imperfections, vibration, surface diffraction fringes,
imperfections in the film, dirt/scratches on the negsative, and the image
digitizing aystem. For the purpose of the uncertainty analysis, all these
sources of fringe noise will be grouped together. From an examination of
the raw fringe spacing data, the noise level from all the above sources was

about 5%.
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5) Scale Factor Error: The horizontal acale factor for the film negative was
obtained by measuring the channel wall spacing on the negative., The

error in this measurement causes an additional uncertainty in the fringe

spacing of 20.5%.

Given these estimaies of the sourcec of error, an uncertainty analysis can
now be performed for the calculated local Nusselt number. The

experimental local Nusselt numbers are calculated as:

k(rl-Tz)b
} . X (F.7)

Nu, W

In equation (F.7), the locai Nusselt number s given by a product of the
fol'owing terms:

(Tl’Tz’ i the optically measured temperature difference between the

first and second fringes,

(x,-x,)"! is the first and second fringe spacing,

b is the half channel gap width,

('l‘.—To)" is the surface to ambient temperature difference,

k./kf is the conductivity ratio of air at the surface and film

temperatures.

The relative uncertainty in each of these terms is now estimated, so that

the re itive uncertainty in the local Nusselt number can be calculated as:

My (STT), MTTY, Sam), %b_)z)m (F.8)

Nus, T,-T, I,-T, X=X,

The uncertainty in the conductivity ratio (k,/k,) is assumed to be




negligible. As previously given in Table F.1, the maximum uncertainty in
the measured channel width is 8b/b=0.28X and the uncertainty in the
surface-to-ambient temperature difference (from thermocouples) is
6(T,-T /(T T, )=22.0%. Also, as discussed above, the relative uncertainty

in the fringe spacing is 6(x1—xz)/(xl-xz)=ts.5%.

The relative uncertainty in the fringe temperature difference is more
difficult to determine. The optically determined temperature difference

(Tx‘Tz) is calculated as:

T‘T" TJ - Tl
12 2R AT, U tDRLAT, (F.9)
3GZ,p 3GZ,p

Note thzt €, ie the fractional fringe shift between the first fringe and the
wall. It normally has any value between 0<€,<1 from scan to scan. For

algebraic convenience, let €,0. Therefore, equation (F.9) simplifies to:

T,-T,-T, L

P 2RGAT, | (F.10)
——
3IGZyp

The variables in equation (F.10) that are subject to significant uncertainty
are the surface temperature T, (from thermocouples), the optical length of
the model 2y and barometric pressure p. Hence, we differentiate equation

(F.10) and evaluate the following terms for typical experimental conditions:

T,- T(C,T,+2 2R,
) yr  STGTD 7 0004 where C,- o

.y y (F.11)
o, (C,T,+1)

- - 2R
A1) op- C’ﬁ,ap-to.oozc' where C,- -t (F.12)
4 (C,T,+p¥ 3Gz,
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aTl - Tz) 82 -C313
az, d (C,T,+2p

2R
8Z,~ -0.065C° where C"Tc%:' (F.13)

From these calculations it can be seen that the dominant source of error
in the measured fringe temperature difference is due to the uncertainty
in the effective optical length (Z,). Note that this source of uncertainty
ie a bias error. That is, the optically measured fringed temperature
difference will always be higher than the actual temperature difference.
Expressed as a percent of the overall temperature difference (Tl-TzzBC')

the relative error is 6(T3-Tz)/(Tl-Tz)&'—2%.

The dominant random errors in the local Nusselt number are due to the
uncertainty in the fringe spacing and the surface-to-ambient temperature
difference. Combining the uncertainty in each of the terms using equation
(F.8), gives the random uncertainty in the local Nusselt number of about
+6%. In addition, there is a bias error of about 2% due to the uncertainty

in the optical length as discussed above.

The overall Nusselt number is determined by integrating the local Nusselt
numbers. However, it was not posgsible to get local heat transfer
coefficients all the way up to the leading edge of the channel (y/Lc=O)
using interferometry. No scanning of the interferogram could be done at
the inlet corner, so the heat transfer had to be estimated by linear
extrapolation (as discussed in Sectivn 6.6.1). This was estimated to cause
the wall average Nusselt number to be an additional 2% low. The
integration process averages the "ncise" in the local Nusselt number data.

For this reason, the uncertainty in the sverage Nusselt number is likely
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more accurate than the individual local Nusselt number data. As discussed
in section 7.4, the average Nusselt number data were reproducible to within

about 3%.




APPENDIX G

SAMPLE EXPERIMENTAL CALCULATIONS

To clarify the method of analysis used for the experimental data, a sample
calculation is included below for the infinite and finite fringe interferogram

shown in Fig. 7.6(b),(d) (Ra =874, L /L ,=1/3, L,/L=0).

Test Section Specifications:

Channel Length L _= 120.0mm

Dividing Plate Length Lp= 40.0mm

Length in the Test Beam Direction 2Z,= 259.1mm
Channel Wall Spacing 2b= 31.95mm

Plate Thickness 2t= 3.50mm

Primary Test Data:

Atmospneric Pressure P= 738.0mmHg = 98.37kPa
Ambient Temperature T = 21.2°C= 294.35K

Average Surface Temperature T,= 40.5°C= 313.65K
Wall Spacing on the Scale Photo Negative = 20.234mm

Chennel Length on the Scale Photo Negative = 76.888mm

G.1 Calculation of the Rayleigh Number
The channel Rayleigh number is calculated as follows:
b_ 28(T,-T)b*p’C,

Ra'-GrPr 2 (G.1)
¢ . p Lk
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[T —————
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where all the air properties are evaluated at the film temperature,

T¢=(Tg+T,)/2= 30.85°C= 304.0K.

Using the properties for air (in Appendix C) gives:

Ra: - 9.806m/s? (19.3K) (0.015975m)* (1.127kg/m*) 1006J/kg K

- 874
304K (18.718x10kg/ms) 0.12m (0.02643W]mK)

G.2 Calculation of the Wall Local Nusselt Number
The analysis technique used to determine the local Nusselt numbers is
presented in Chapter 6, section 6.6.1. A sample calculation for the wall at

y/L_=0.162 is given below.

First, the horizontal scale factor for the interferogram is calculated from
the ratio of the actual wall spacing to the measured wall spacing on a scale

photo negative:

Horizontal Scale Factor - S1:23™1 _ 1 579
20.234mm

The locations of the destructive fringe centres on the film negative from
a horizontal scan perpendicular to the wall are:
Wall Surface 1** Fringe 2™ Fringe

0.0000 0.012365 0.028594 (inches)

Using the horizontal scale factor, the actual locations of the first and
second destructive fringe centres are:
xl=0.4959mm

xz=1.1468mm
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The fringe temperatures are obtained from equation (6.13):

T

Mxy) - oy
2e5)RuA T,y

3G6Z,p

where T =T.=313.65 K

ref

The fractional fringe shift between the wall and the first fringe ‘51) is

calculated by linear extrapolation as:

X _ 0.4959mm
- - 0.7619
x-x, 0.6509mm

e -

Now the temperature of the first fringe centre (Tx) can be calculated:

- 313.65K - 311.300
2(0.7619) 287 J/kgK (6.328x10 " m) 313.65K _ ,
3 (0.1504x10*m*/kg) 0.2591m (98.37x10°Pa)

Ty

Similarly, noting that €,=€,+1, the temperature of the second fringe is:

2 x
2 (1.7619) 287 J/kgK (6.326x10 "m) 313.65 K .1
3 (0.1504x10*m*/kg) 0.2591m (98.37x10°Pa)

Now, the wall local Nusselt number is calculated using equation (6.15):

dr
b b hghsb
b AT

Using linear extrapolation to calculate the temperature gradient, for

¥/L_=0.162:

. 002713 WimK (3.031K) 0.015975m__, o
™ 0.02643 WImK (0.6509x10°m) 19.3K




G.3 Calculation of the Plate Local Nusselt Number

For the straight section of the plate, the local Nusselt numbers are
caiwculated using the same technique as for the wall. However, at the
leading edge of the plate a slightly different method of analysis is used
because of surface curvature effect (see Chapter 6, section 6.6.2). A

sample calculation for the plate at 9”=30' (y/Lp=0.0218'i) is given below.

The vertical scale factor for the interferogram is calculated from the ratio
of the actual channel lei.gth to the measured channel length on a scale

photo negative:

Vertical Scale Factor - 120.0™™ _ 4 561
76.888 mm

Note that the vertical scale factor is slightly different from the horizontal
scale factor. Hence, the scale factor for a scan at angle 8 is determined

from the horizontal scale factor (HS) and vertical scale factor (VS) as:

Scale Factor=y/(HScosQd)?+(VSsin6)

- V(1.579¢0830°) + (1.5618in30°) - 1.574

The locations of the destructive fringe centres on the film negative from
a scan perpendicular to the plate surface are:
Wall Surface 1** Fringe 2™ Fringe
0.0000 1.5456x10°3 5.8512x1073 (inches)
Hence, the radii of the fringes relative to the centre of curvature of the
plate is:

r,® 1.5456x1072 in. (25.4mm/in) 1.5744 + 1.75mm = 1.812mm

r,= 5.8512x10°% in. (25.4mm/in) 1.5744 + 1.75mm = 1.984mm
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The fractional fringe shift between the wall and the first fringe is

calculated by logarithmic extrapolation as:

r

(L) 1.812
R, _ 1) -
r 1984
% YT

e - 0.384

Now the temperature of the first fringe centre (T,) can be calculated from

equation (6.13) as:

313.65K
T, - -~ - 312.466
2(0.384) 287J/kgK (6.328x10"m) 313.65K

3 (0.1504x10-3m?/kg) 0.2591m (98.37x10°Po)

Noting that €,=€,+1, the temperature of the second fringe is:

313.65K - 300412
2(1.384) 287.’[&K (6.328x10" "m) 313.65K .1
3 (0.1504x10*m’/kg) 0.2591m (98.37x10°Pa)

2

Equation (6.17) gives the temperature gradient at the plate surface:

_ -(312466K-309.412K) _

. 1.984
75210 m In(———
1 » 1.812)

-19222K/m

a
dr =

Now, the plate local Nusselt number is calculated as:

A b LU
o At e . QO2TAW;mK (19222 Kim)0.015975m _, ¢ »

» "k kLT,T) 0.0264W]mK (19.3K)
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