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Abstract

This dissertation consists of two essays related to negotiation and renegotiation in
game theory. They investigate the renegotiation-proof equilibria in finitely repeated
games and subgame perfect equilibria in negotiation games, respectively.

The renegotiation-proof equilibria in finitely repeated games with many players are
studied in the first essay. Renegotiation-proof equilibrium requires nct only subgame
perfectness but also subgame efficiency. The main result of Benoit and Krishna (1988)
whoe studied the renegotiation-proof equilibria in two-player finitely repeated games
does not apply to the games with more than two players. One sufficieat condition for
renegotiation-proof equilibria to be Pareto optimal in finitely repeated games with a
sufficient long horizon is provided. An example shows that this sufficient condition
cannot be weakened. The set of payoffs which can be approximated by renegotiation-
proof equilibria in repeated games with a sufficiently long horizon is characterized
such that it must be either Pareto optimal or dimensionally “small”. We also show
by way of an example that renegotiation-proof equilibria may lead to very different
outcomes even in the games whose stage games have identical sets of feasible and
individually rational payoffs as wel! as identical Nash equilibria.

In the standard bargaining game of Rubinstein (1982), the disagreement payoff
is independent of players’ past straiegies. The model of negotiation proposed in the
second essay merges ideas from bargaining theory and the repeated ...mes literature.
If no agreement has been reached in any period, players must play a stage game
in normal form to determine that period payoffs. This model allows us to analyse
the importance of strategic behaviour during periods without an agreement in the
negotiations. The set of all perfect equilibria in the negotiation model is characterized.
Quite generally, many feasible outcomes of the negotiation games can be sustained
as subgame perfect equilibria. Particularly, many Pareto inefficient outcomes are

sustainable even under the presence of perfect information and full rationality.
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Chapter 1

Renegotiation-Proof equilibria in
Finitaly Repeated Games

1.1 Introduction

The results of the folk theorem for repeated games have long been recognized. A
repeated game consists of a sequence of identical stage games such that the stage
game will be played countably many times by the same players. The folk theorem
states that almost all feasible and individually rational outcomes of a stage game
may arise as equilibrium outcomes in the corresponding repeated game. The reason
seems obvious; since the players anticipate playing the stage game in the future, every
deviation by a single player from a proposed equilibrium path will be followed by the
worst possible equilibrium for the deviator for the rest of the game. Each of the other
players is willing to enforce such a punishment equilibrium, since otherwise he will
be punished. Thus no player in the game has any incentives to deviate individually.
It is also possible to construct an equilibrium such that it induces an equilibrium as
well in every subgame. Therefore, the proposed equilibrium satisfies the subgame
perfection criterion given by Selten (1975). In infinitely repeated games, a number of
folk theorems have been developed under different models, such as those in Friedman
(1971), Rubinstein (1979), and Fudenberg and Maskin (1986).

These arguments are valid not only for infinitely repeated games but also for




finitely repeated games in which the stage game will be played many but only a

finite number of times. Since the publications of Friedman (1985) »nd Benoit and
Krishna (1985), it has been recognized that subgame perfect equilibria in finitely
repeated games need not be formed only by the repetitions of one-shot Nash equilibria.
In fact, the concept of subgame perfect equilibrium does not refine that of Nash
equilibrium for a wide class of finitely repeated games. In finitely repeated gamnes,
the perfect folk theorem given by Benoit and Krishna (1985) states that if the set
of feasible and individually rational payoffs of the stage game is full dimensional and
each player has multiple equilibrium payoffs in the stage game, then every feasible
and individually rational payoff of the stage game can be approximated by a subgame
perfect equilibrium in the finitely repeated game with a sufficiently long horizon.
The positive aspect of the perfect folk theorem is that many Pareto optimal out-
comes may arise as subgame perfect equilibria in a repeated game, although they
may not be the equilibria in the stage game. However, the perfect folk theorem is
also criticized for several reasons. First, it demonstrates a lack of predictability of
subgame perfect equilibria in repeated game models. Second, because the players
can cooperate without any binding contracts in a repeated game, we would expect
that the equilibrium outcomes should be more efficient than some of the equilibrium
outcomes. If we assume that players can communicate. then no Pareto dominated
perfect equilibria should be played. Also, Farrell (1983) argued that if there were two
equilibria under a given theory, neither of them should be Pareto dominated by the
other. Lastly, a subgame perfect equilibrium is vulnerable to the possibility of rene-
gotiation, if it is supported by Pareto inefficient punishment equilibria’. Recently,
Osborne (1990) applied a different approach to deal with a similar issue. He argue
that many perfect equilibria in a finitely repeated game are not stable in the sense

that they could be upset by convincing deviations. Therefore, many subgame perfect

1See the example in Benoit and Krishna (1988).




equilibria in finitely repeated games cculd be upset by either convincing deviations
or the possibility of renegotiation.

Among these criticisms, the most serious one would seem to be that a Pareto
dominated outcome can arise as the result of players following perfect equilibrium
strategies. Recently, it has been suggested that if players could communicate in a
game, such a Pareto inefficient outcome would not arise as an equilibrium outcome.
The idea is that, the players called upon to play strategies leading to a Pareto domi-
nated outcome wonld communicate their common interest in renegotiation to achieve
a set of strategies that made all players better off. An equilibrium that is immune to
such suggested revisions is called renegotiation-proof equilibrium. Such equilibria have
be n studied in infinitely repeated games by a number of people, including Farrell and
Maskin (1987), Bernheim and Ray (1987), and van Damme (1989). In their papers, a
perfect equilibrium is said to be renegotiation-proof if every induced perfect equilib-
rium in every subgame is not strictly Pareto dominated by any other induced perfect
equilibrium. Certain difficulties arise in formulating the idea of renegotiation-proof
equilibrium in infinitely repeated games. As Benoit and Krishna (1988) pointed out,
“an acceptable notion of renegotiation-proof equilibria remains elusive” for infinitely
repeated games. Recently, a different approach has been taken by Pearce (1987)
and Abreu, Pearce and Stacchetti (1989). They define a perfect equilibrium to be
renegotiation-proof if the lowest continuation payoff from the perfect equilibrium is
not strictly less than that from any other perfect equilibrium. Bergin and Macleod
(1987) studied renegotiation-proof equilibria in continuous time games.

However, a relatively straightforward notion of renegotiation-proof equilibria in
finitely repeated games is available. As we argued, if the players can communicate
but cannot sign binding contracts, then the equilibria in such a game model must be

both subgame perfect and subgame Pareto efficient. In other words, the equilibrium

should induce a Pareto efficient perfect equilibrium in every subgame. Here, we




should clarify the notions of Pareto efficicnt and Pareto optimal outcomes. A Pareto
efficient [optimal] outcome is an equilibrium [feasible] outcome that is not Pareto
dominated by any other equilibrium [feasible] outcome. A Pareto efficient outcome is
an equilibrium outcome, but a Pareto optimal outcome may not be. A set of outcomes
is said to be Pareto cptimal if every outcome in the set is Pareto optimal. In a stage
game, renegotiation-proof equilibria are simply all Pareto efficient Nash equilibrix. A
formal definition of renegotiation-proof equilibrinm was given by Benoit and Krishna
(1988) for finitely repeated games with two players. They also proved that the set of
payoffs which can be approximated by renegotiation-proof equilibria in a two-player
repeated game is either singleton or weakly Pareto optimal. Thus, the concept of
renegotiation-proof equilibrium leads to a sharp refinement of perfect equilibrium in
two-player finitely repeated games.

This essay studies renegotiation-proof equilibria in finitely repeated games with
many players. Section 1.2 sets up the repeated game model and extends the definition
of renegotiation-proof equilibrium to games with more than two players. Section 1.3
investigates renegotiation-proof equilibria in repeated games. An example is provided
to show that the main resnlt in Benoit and Krishna (1988) does not hold when there
are more than two players in the game. A sufficient condition for tl.e renegotiation-
proof equilibria to be Pareto optimal in finitely repeated games with a sufficiently
long horizon is provided. The example also demonstrates that *he sufficient condition
cannot be weakened. Renegotiation-proof equilibrium outcormes are characterized as
follows: if there exists an equilibrium outcome which is not Pareto optimal, then the
set of payoffs which can be approximated by renegotiation-proof equilibria must be
dimensionally “small”. We also demonstrate by way of an example that renegotiation-
proof equilibria may lead to different outcomes even in games whose stage games have

identical feasible and individually rational outcomes as well as identical Nash equi-

libria. Conclusion is given in Section 1.4.




1.2 The Model and Definitions

An n-player one-shot (stage) game in normal form consists of a set of n players, their

strategy sets and payoff functions,

G = {(Ai, ui(-));ien}

where N = {1,2,...,n} is the set of players, A; is player i’s strategy (action) set?,
and ui(-) : A = x7_;A; — R is his payoff function for i € N. Vi € N, the strategy
set A; is assumed to be compact. The set A, which is compact by our assumptions
on A; for : € N, can be interpreted as the set of outcomes of G. The payoff function
is assumed to be continuous on A. Let u(-) : A — R™ be the function whose i-th
component is u;(-). The feasible set of G is the convex hull of u(A), i.e. Colu(A)]
which is both compact and convex in R". These assumptions can be replaced by
compactness of the set u(A) without affecting the results in this essay. Vi € N, we
decompose every generic element of A, n € A, as a = (a,,a_;), where a; € A, and

a_; € X;2A;. Let m, be player i’s minimaz payoff,
m; = I‘l;lin rr}:a.x ui(a;, a_,-)

and m = (m,,...,m,) be the minimaz vector of the game G. m may not be feasible.
Vz € R", §D(z) and D(z) are the sets whose elements strictly and weakly dominate®

z, respectively.

SD(z) {yeR*|y>=z} (1.1)

D(z) = {yeR |y2z) (1.2)

?In this essay, we study pure strategy equilibria, It is difficult to judge deviations from a mixed
strategy unless the players can observe not only the outcome of the game but also the randomization
of the mixed strategy itseif.

3% 2,y € R", y > z means that y; > z, and y > z means that yi>zi,fori=1,... ,n




Every vector in the set D(m) is individually rational in the game G. The set of both
feasible and individually rational payoffs is, therefore, the intersection of Co[u(A))
and D(m), F = Co[u(A)] N D(m) which is both compact and convex in R™. Finally,
it is assumed that G has at least one Nash equilibrium in pure strategies.

Let G(T) be the finitely repeated game in which G is played successively T times,
where T is a positive integer. An outcome path of G(T) is defined as n(T) =
(a',...,aT) € AT. The total payoff of the players from an outcome path is the

sum of the payoffs from all T periods. It can be written as U(-) : AT — R", where

T
U(x(T)) = Y u(a®). (1.3)
t=1
U (m(T)) is players’ average payoffs from the outcome path =(T).
Player i’s strategy in game G(T) is a functions, f;, which map from the set of all

possible histories into the set of all possible actions,
T

fit): J At — A
t=1

A'"! may be referred to as the set of (t — 1)-period histories in period t whea G
has been played (¢t — 1) times. A° = @ denotes the null history and f,(0) € A,.

Every strategy combination f = (fi,..., f,) induces a unique outcome path n(f) =

(@ (f),...,a7(f)) € AT; that is

al(f) = (fl(o)vafn(e)) and Vi<t<T
a(f) = (hH@'(fy--.a (D)o fala (oo ia () )

The payoff from a strategy combination f is determined by the outcome path induced
by f through (1.3).

For a t-period history h(t) = (a',...,a") € A%, flaq) is the strategy combination
induced by f on the subgame G(T - t) following history A(t). f,|ag(-) = filh(t),-)
fort <T and i € N. U(%(f|n))) is the continuation payoff prescribed by the strat-

egy combination f on the subgame G(T — t) following the history h(t). A strategy




combination f is a subgame perfect equilibrium if fy,) is a Nash equilibrium in the
subgame G(T — t) following the history h(t) for 0 < t < T and for every possible
t-period history h(t). The perfect folk theorem in finitely repeated games given by
Benoit and Krishna (1985) states that every payoff vector in the set F can be approx-
imated by the average payoff vector from a subgame perfect equilibrium of the game
G(T) with a sufficiently large T, if F is full dimensiona! and each player has different
equilibrium payoffs in the game G. In other words, if P(T) is the set of total payoffs
from subgame perfect equilibria of G(T'), then P(T)/T converge to F in Hausdorff
metric as T' goes to infinity.

In the repeated game G(T'), we assume that the players can communicate but
cannot sign binding contracts in every period before they choose their actions for
that period. As we argued, a renegotiation-proof equilibrium is a subgame periect
equilibrium which induces Pareto efficient equilibria in all subgames. Before giving
the formal definition of renegotiation-proof equilibrium, we introduce the strongly
and weakly Pareto efficient frontiers of a set in R®. For a set S C R®, the sets of
strongly and weakly Pareto efficient points of the set S, Ef f(S) and WE ff(S), are
defined as

Eff(S) = {zeS|ByeSst.y>2zrandy#z}
= {ze S| Dx)NS={z}}

WEff(S) = {ze€S|ByeSst.y>z}
= {z€$|SD(z)NnS=0}.

It is obvious that these two operators retain some properties of set S, including
closedness and boundedness. In other words, if S is compact, then both Eff(S) and
WEff(S) are compact. But, if S is convex, then both Eff(S) and WEff(S) are

connected. The definition of renegotiation-proof equilibrium is given as the following,

4See Hildenbrand (1974) for details.




Definition 1.1 A perfect equilibrium f of G(T) is said to be renegotiation-proof if
U(n(f)) € R(T), where R(1) is the set of all Pareto efficient one-shot Nash equilib-
rium payoffs, and for T > 1

Q(T) = {U(x(f) € P(T) |V k(1) € A, U(x(flnn))) € R(T - 1) }
R(T) = Eff(Q(T)).

In the definition, the only additional requirement to that of perfect equilibrium is
that all continuation equilibria are Pareto efficient. In fact, the list (R(1),..., R(T))
is weakly renegotiation-proof under the definition of Farrell and Maskin (1987). No
other weakly renegotiation-proof list in finitely repeated games is less controversial
than (R(1),...,R(T)). Definition 1.1 is the direct generalization of that given by
Benoit and Krishna (1988). Renegotiation-proof equilibria are coalition-proof equi-
libria by Bernheim, Peleg and Whinston (1987) in the repeated games with only two
but not more than two players. In a renegotiation-proof equilibrium in a game with
more than two players, a sub-coalition of the players may improve their payoffs by
changing their own strategies. However, there is no guarantee that coalition-proof
equilibrium exists in games with more than two players. Certainly, the equilibrium
concept given above is weaker than that of coalition-proof equilibrium in finitely
repeated games with more than two players. Due to these considerations, we also as-
sume that every player has veto power for any changes on future equilibrium strategy
profile. This assumption implies that no proper sub-coalition of players can change
the equilibrium outcome by changing their own strategies.

In this essay, we investigate the equilibria by studying the payoffs rather than the
strategies. Since the equilibrium is defined in terms of payoffs, and the equilibrium
strategies can be easily recovered from the equilibrium payoffs. Because R(T)/T is
a compact subset of F' for every finite T, for each player i € N, there is at least
one renegotiation-proof equilibrium in G(T') in which player i’s payoff is less than or

equal to that from any other renegotiation-proof equilibrium in the game G(7T'). Such




an equilibrium is called an optimal punishment equilibrium for player ¢ in the game
G(T). Let w;(T) be player i’s average payoff from his optimal punishment equilibria
in game G(T); Vie Nand T,

w(T) = clin (1.4)

To conclude this section, we give the following proposition which can serve as

an equivalent definition of renegotiation-proof equilibrium. In fact, we will use the

following Proposition 1.1 more frequently than Definition 1.1 itself.
Proposition 1.1 R(1)=Eff(P(1)) and for T > 1;

Q(T) = {u(e)+=s|z€ R(T—1), and Vie N,

max ¥;(aj,a_;) + (T = 1) - wi(T = 1) S ui(a) + z; }

C:EAI

R(T) = Eff(Q(T))

Proof: From Definition 1.1, the subgame perfectness and efficiency. Q.E.D.

1.3 Renegotiation-Proof Equilibria

Some fundamental properties of renegotiation-proof equilibria a;'e investigated in sec-
tion 1.3.1. In section 1.3.2, an example is provided to show that Theorem 1 in
Benoit and Krishna (1988) cannot be applied directly in the finitely repeated games
with more than two players. Renegotiation-proof equilibrium outcomes are character-
ized in the finitely repeated games with many players in section 1.3.3. Section 1.3.4
demonstrates by an example that renegotiation-proof equilibria may lead to different
outcomes even in games whose stage games have identical sets of feasible and indi-
vidually rational outcomes as well as identical Nash equilibria. Most of the results

are proved by using backward induction.
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1.3.1 Properties

In the definition of renegotiation-proof equilibrium, we eliminate all Pareto inefficient
perfect equilibria. Therefore, not all Pareto optimal outcomes can be approximated
by renegotiation-proof equilibria, because Pareto inefficient punishments are no longer
valid. The next proposition shows that renegotiation-proof equilibria have the follow-
ing periodic property. Furthermore, if there is only one payoff vector can be supported
as renegotiation-proof equilibrium in a repeated game with a fixed horizon, then it is

the only payoff which can be approximated as renegotiation-proof equilibria.

Proposition 1.2 If there erists a finite To such that R(Ty)/T, is singleton, then
Vt20, R(To+t) = R(To) + R(t), and R(T)/T converges to R(Tp)/To in Hausdorff

metric as T goes to infinity.

Proof: We prove the first part by induction. Since R(Tp)/Tj is a singleton set, we

must have

R(To)/To = {w(To)} = { (wi(To), wa(To),---,wa(To)) }
From Proposition 1.1, Vi € N and Ty - w(To) + u(a) € Q(To + 1),

m&x ui(aj,a_;) + To - wi(To) < wui(a) + Ty w(To)

= rpaj(u,-(a:,a_.) < ua)
a, €A,

a € A must be a Nash equilibrium. Therefore, Q(Ty + 1) C R(Tp) + P(1). Also from
Proposition 1.1, R(Tp) + P(1) € Q(To+1). Hence, Q(To+ 1) = R(To) + P(1). Under
R(Tp) is singleton,

R(To+1)=Eff(Q(To + 1)) = Ef f(R(To) + P(1)) = R(To) + R(1)
Suppose we have, for t > 0,

R(To + t) = R(Ts) + R(t) (1.5)
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Since R(Tp) s sin 'cton and (1.5), we have (To+ t)- w,(To+t) =To-wi(To)+t ~w;(t).
From Proposition 1.1, u(a) + z + To - w(To) € Q(To + t + 1) if and only if

mean“ dala))+ (To+t) wi(To+1t) < ui(a)+To- w;(To) + =

ff max ui(al,a_,) +t-w(t) < ule)+x

iff u(a)+z € Q(t+1)

Q(To +t + 1) = R(To) + Q(t + 1). Therefore, (1.5) holds for (t + 1) since R(To) is
singleton. By induction, (1.5) holds for every positive t.
Every positive integer T can be decomposed as T = K -To+t, where 1 <t < To.

Applyi g equation (1.5) repeatedly K times, we have

R(T) = K-R(T,)+ R(2)
RT) _ K-RT) Rl _ RT) R(t)
T =~ K- To+t T To+t/K T

(1.6)

Let d(-,-) : R* x R® = R, be the metric defined on R" as; Vz,yeR"

I y) \IZ(It _yt)2
i=1

Let C be the space of all the closed subset of R*. VS CC and ¢ € R,, define

S+e=J{yeR" | dz,y) < c} = {y€ R Iz €S st d(z,y) < c}
€S

The Hausdorff metric 8(-,-) on C is defined as follows; V S, and S; € C,
5(S1,5;) =inf{c| S CS2+¢c and S; C Si+¢ }
Since the set U,_, R(s) is bounded, 3 ¢ > 0, such that Vi< T

To

R(t) € [JR(s)C {0} +c and {0} € R(t)+c
s=1

—Ri—;:Q C {O}+— and {0} C —

R |
T

"~3|°
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6(5(-1.'1, {0}) < £. Therefore,

t
Tlma(ﬁ;—),m}) =0, ie lim i}tl = {0} (1.7)
. K-R(To) _ . 1 R(T)
also Tll_x.x;no —F = R(To) hl!{':o ot tRK - T (1.8)
From (1.6), (1.7) and (1.8),
. R(T) . Rt), . RT) _ R(Ty) _ R(Ty)
A = = Am p +A1-‘£"ooTo+t/A"{0} To  To

Q.E.D.

Note that, although R(Ty)/Tj is singleton, th> game G(Tp) may still have many
renegotiation-proof equilibrium strategies that result in the same payoffs. Under the
condition, if G is going to be played for more than Ty periods, then no player can
be punished in the last T, periods in the sense that all the equilibria have identical
payoffs. Players should treat the (T, + 1)-th last period in the same way as they treat
the last period and follow the rules to determine the strategies in the earlier periods.
The first part of the proposition follows. Furthermore, since all renegotiation-proof
equilibria result in the same payoff for every 7, periods. the only payoff which caa be
approximated by renegotiation-proof equilibria must be R(Tp)/T5.

Proposition 1.2 implies that renegotiation-proof equilibria do not always result in
Pareto optimal payoffs. For instance, R(T,)/T; is singleton but not Pareto optimal.
Onmne special case is obtained if G has only one Pareto dominant equilibrium, for ex-
ample in the repeated prisoners’ dilemma game, R(T') is a singleton set for every T.
In fact, the only renegotiation-proof equilibrium in every finitely repeated game is
the repetition of the Pareto dominant Nash equilibrium. Therefore, we may only be
interested in the repeated games whose stage games have more than one Pareto dom-
inant equilibria. A repeated game whose stage game has multiple Pareto dominant

Nash equilibria may still have only one equilibrium payoff®.

5Benoit and Krishna (1988) provided Example 2 in the paper such that R(2) is singleton.
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Suppose the sequence of sets { R(T)/T }§., converges to a closed set R in Hausdorff
metric as T goes to infinity. Every payoff vector in R can be approximated by an
equilibrium in the repeated game with a sufficiently long horizon. We restate Theorem

1 of Benoit and Krishna (1988) as the following theorem.

Theorem 1.1 For a two-player finitely repeated game, R is either a singleton set or

a subset of WEf(F)

One goal of this essay is to extend this result to games with more than two players.

We first present some fundamental properties of sets R(T)/T and R.

Proposition 1.3 If both z and y € R(T)/T, then neither z > y nory 2 z. If both

r and y € R, then neither r > y nory > x.

Proof: The first part is from Definition 1.1. Now we prove the second part by

contradiction. Suppose 3 r,y € R C R", such that z >» y, then
€ = ?Elilgl{(-‘fi - ¥i)/3} > 0.

By the definition of R, we have two sequences {z(T)}¥-, and {y(T)}¥-, such that
z(T), y(T) € R(T)/T for every T, and
1!1_!_1;1:(T) =z and 7!1_&1;10‘1,;(7') =y

Forsucha ey >0, 3Tp>0suchthatfor T > Toandi e N

d('t(T)’I) <¢ = III(T) - Itl < €

d(y(T),y)<e = Wi(T)-vyil<e
It follows that Vie N,
2,(T) >z, — ¢ = yi + 30 — 260 > y,(T)

Therefore, V T > Ty, we have r(T') > y(T) which contradicts the first part of the

proposition. Q.E.D.
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Both R(T) and R are, at most, (m — 1) dimensional if F is m dimensional (m <
n). The sufficient condition for the existence of renegotiation-proof equilibrium in
a finitely repeated game is that the stage game has pure strategy Nash equilibria.
From the definition of renegotiation-proof equilibrium, R(1) + R(T - 1) C Q(T) C
R(T — 1) + u(A). Hence, every repetition of pure strategy Nash equilibria of the
stage game is weakly Pareto dominated by some renegotiation-proof equilibria in the

repeated game with a sufficiently long horizon.
Proposition 1.4 V z € Co{R(1)], D(z)N R # 0.

Proof: V r € Co[R(1)], we have a sequence {z'}:2, C R(1) such that
1 T

. it ¢=
Tangch.r I.

From Proposition 1.1, VT. R(1) + R(T — 1) € Q(T). Therefore, there exists a

sequence {y7}$., such that y7 € R(T)/T and
1 T
y? > =3z (1.9)
T t=1

Since F is compact, the sequence {yT}$_, C F has a convergent subsequence. With-
out loss of generality, we assume that limy_. y7 = y € R. Also y € D(r). since

y 2 r from (1.9). Therefore, D(z) N R is not empty. Q.E.D.

Proposition 1.4 is important under the absence of a complete theory on the
renegotiation-proof equilibrium in finitely repeated games. By using Proposition 1.4,
we can study the set R based on the stage game Proposition 1.4 also implies Theo-
rem 2 of Benoit and Krishna (1988). Under the conditions of their Theorem 2, there
are ' # z”, and both &’ and z” € R(1), such that D(Z')ND(z")N F = 8. So R must
not be singleton by Proposition 1.4. Therefore, R C WEf f(F) can be concluded
from Theorem 1.1. Once we have Proposition 1.4, the next two corollaries follow im-

mediately. Corollary 1.1 states that optimal repetitions of one-shot Nash equilibria
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are renegotiation-proof equilibria. The repetition of a Pareto optimal one-shot Nash

equilibrium is the only possible stationary equilibrium in a finitely repeated game.
Corollary 1.1 If B C R(1) and Co[B] C Ef f(F), then Co[B] C R.

Proof: V z € Co[B] C Co[R(1)], D(z)N R # @ by Proposition 1.4. Co[B] € Eff(F)
implies that @ # D(z)N RC D(z)N F = {z}. Hence z € R. Q.E.D.

Using Proposition 1.4, we can determine some payoffs which can be approximated
by renegotiation-proof equilibria. Certainly, we can also determine the payoffs which
cannot be the equilibrium payoffs. Propositions 1.3 and 1.4 imply that an outcome
which is Pareto dominated by a one-shot Nash equilibrium cannot be approximated by
a renegotiation-proof equilibrium. Hence not all one-shot Nash equilibrium outcomes

are in the set R.

Corollary 1.2 For a two-player game, if R(1) is neither singleton nor Pareto opti-
mal, then Co[R(1)) N R = 0.

Proof: Under n = 2, Theorem 1.1 states that R is either singleton or Pareto opti-
mal. In the later case, the result follows since R(1) is not Pareto optimal. If R is
singleton, say R = {z}, = has to dominate every one-shot Nash equilibrium outcome

by Proposition 1.4. Hence, z ¢ R(1), because R(1) is not a singleton set. Q.E.D.

These propositions and corollaries give some predictions for renegotiation-proof
outcomes. Theorem 1.1 captured a key characteristics of renegotiation-proof equilib-
ria in two-player finitely repeated games. Unfortunately, renegotiation-proof equilib-

ria in games with more than two players do not have such a sharp characteristics.

1.3.2 An Example with Three players

Example 1.1: Consider a three-player game in normal form. Player 1 has three

strategies, player 2 has four and player 3 has two. The payoffs are given by the
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following two matrices where player 1 chooses the rows, player 2 the columns and

player 3 the matrices.

(1,1,0°) ] (0,0,0) [ (0,0,0) ] (0,0,0) ] [(0,0.0°) [ (0.0.0) | (0.0.0°} (0.0.0)
(0,0,0) | (3,0,0) | (0,3,0) [ (3,0,0) | { (0,0,0) [ (%, L, 1°)1(0.0.0) [(0.0.0)
(0,0,0) | (0,3,0) | (3,0,0) | (0,0,3) (0.0.0) | (0,0.0) | (0,0.0) | (I.I.1)

F = {z € R}| 2\ + 22 + 23 < 3} is the set of feasible and individually rational
outcomes of this game. There are two Pareto dominant Nash equilibria in the game,
(1,1,0) and (%, %, 1). The set of F and Nash equilibria are illustrated in Figure 1.1.
Because of the perfect folk theorem, every payoff vector in F can be approximated by
the average payoff from a perfect equilibrium in the repeated game with a sufficiently
long horizon. However, not all feasible and individually rational outcomes can be

approximated by renegotiation-proof equilibria. Following the definition, we can prove

that
R() = {(1.1.0).(5.5.)
5(?2_) = {(1,1,0),(%,2.%),(}_;.%.1)}
VT > 3
@ = {(1,1,0),(1-5%,1-;21?,7),(1—%J-%-U}

It follows that R = {(1,1,0),(1,1,1)}. Theorem 1.1 fails in this example, since the
set R is neither singleton nor Pareto optimal. In the example. players 1 and 2 share
a same optimal punishment equilibrium in every finitely repeated game. However, no
Pareto optimal outcomes of the stage game can satisfy both players 1 and 2 at the
same time except (1,1,1). Therefore, renegotiation-proof equilibrium outcomes must
consist of outcomes either (1,1,1) or (1,1,0) in all but a fixed number of periods.
In other words, every payoff other than (1,1,1) and (1,1.0) may appear for only a

fixed number of periods in a renegotiation-proof equilibrium. Hence. the payoff which

can be approximated by a renegotiation-proof equilibrium must be either (1.1,1) or
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(1,1,0). If we replace 3 by 4 in the example, then no renegotiation-proof equilibria

are Pareto optimal.

Us

0,0,3)

U2

1,1,

(3.0,0)
u

Figure 1.1: The Set of F and Nash Equilibria in Example 1.1

1.3.3 Optimality

Example 1.1 demonstrates that, without modifications, Theorem 1.1 cannot be gen-
eralized to repeated games with more than two players . To ensure the optimality
of renegotiation-proof equilibria, we should not have the problem as we had in the
example. Therefore, it should be required that each player can be punished individ-
ually.

Since R is a closed subset of F which is compact, R is compact. Therefore,

Vi€ N, w, = min;epz, is well defined. In fact, w; is the limit of w;(T) as T goes
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to infinity for i € N. w denotes the point in R™ whose i-th coordinate is w,. A
sufficient condition for the set R to be Pareto optimal is SD(w) N R # @. Under this
condition, each player can be punished based on the equilibrium whose payoff is in

the set SD(w) N R.
Theorem 1.2 If RNSD(w) # @, then Eff(F)NSD(w) C R.

Proof: Vy € Eff(F)N SD(w), we need to show that y € R. Under the condition
of RN SD(w) # @, there exists a ¢ € RN SD(w). Because both z and y are in set
SD(w),

€0 = mip{(z: — w)/3, (3 — wi}/3} > 0 (1.10)

Since y € F', there exists a sequence {a'}2, € A such that

1 T
lim TZu(a') =y

T =0 =1
For such a ¢¢ > 0, 3 T; such that for T > T3,

1

T
d(= Y u(a').y) < & (1.11)
=1

|

Since £ € R, there exists a sequence {z(7T)}§-, such that »(T) € R(T)/T and

lim7—o 2(T) = z. Also limr_. wi(T) = w; fori € N. Let

d = max[max u,(a;, a-) — u.(a)],

d is finite since A is compact and u(-) is continuous. For ¢ > 0,3 T; > l}ol’ such that
forT>2T,
d(z(T),z) < ¢ and |wi(T)—w,| <¢ (1.12)

We are going to prove by induction that, VT, 3 2(T> +T) € R(T: + T)/(T: + T)
such that

T
T 2(Tz)+ 3 u(@) S (T +T) (T +T) (1.13)

t=1
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Consider T; - z(T2) + u(a'). Since T; - 2(T2) € R(T2), and V2 € N, due to (1.12),

T; - 2,(T3) — T2 - wi(T2) = T2 - (2:(T2) — wi(T2))

>T 2Ti-d>d> max ui(aj, al;) — ui(a')

Ty - z(T;) + u(a') € Q(T3 + 1). Therefore, 3 z(T; +1) € R(T2 + 1)/(T2 + 1) such that
(1.13) holds for T = 1.

Now suppose that 3 =(T; + T) € R(T; + T)/(T; + T) such that (1.13) holds for
T. Consider (T; + T) - z(Tz + T) + u(aT*'). Since 2(T> + T) € R(T2 + T)/(Tz + 1),
andVie N,ifT<T) -1,

(T24T) z:(T2+T) — (I2+7T) w(T2+7T)

T
by (1.13) > Tg-a:,-(Tg)+Zu,-(a‘)—(T2+T)-w,-(T2+T)

t=1

T
by (1.12) > T;-(zi —€) + Y ui(a’) = (T2 + T) - (wi + &)
=1

Tz‘(x,—wi—zﬁo)—T'JZTz'Eo—T'CiZ({

v

T+l) T+l)
b

v

max u;(al,a u;(a

al€A,

and if T > T,

(T;+T)-z(T,+T) — (T2+T)- w,(T2+T)

v

by (1.13) Ty -zi(Ta)+ T - Eu(a ) = (T2 +T) wi(T2+7T)

by (1.11) and (1.12)

v

T,-(z,—€)+T- (y.—eo)—(T2+T)-(wi+eo)

v

Ty-(zi —wi —2-€)+T-(yi —wi — 2 €o)

v

(T2+T)COZJ_>_ rpeaj(u‘( ' T+1) ( T+l)

(To+T)-2(T; +T)+u(a™') € Q(T: - T +1). Therefore, (1.13) holds for (T +1). By
induction. there is a sequence {z(T2+T)}¥., in which 2(T;+T) € R(T,+T)/(T2+T)
satisfies (1.13) for all T > 0.

Since F is cornpact in R*, {z(T, +T)}$., has a convergent subsequence. Without
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loss of generality, we assume that limy_o, 5(T; + T) = z. Therefore, - € R C F.
From (1.13), z > y. But y € Eff(F), we must have y = = € R. Q.E.D.

Under RN SD(w) # @, every Pareto optimal outcome which strictly dominates
the vector w can be approximated by a renegotiation-proof equilibrium in finitely

repeated game with a sufficiently long horizon. Proposition 1 in Benoit and Krishna

(1983) holds under RN SD(w) # @, that is
Corollary 1.3 If WEff(F)= Eff(F) and RN SD(w) # 0, then R is connected.

Proof: In fact, under these two conditions, R = Ef f(F)N D(w) = Ef f(F N D(w))

by Theorem 1.2. Hence, R is connected, since F N D(w) is convex. Q.E.D.

Theorem 1.3 If RNSD(w) #08, RCWEff(F)

Proof: V z € R, we prove £ € WEff(F) by contradiction. Suppose that r ¢
WEff(F), then SD(z)N Eff(F) # 0. Therefore, 3y € Eff(F) such *l.at y >
r > w,ie y € SD(w). Theorem 1.2 implies that y € R. Hence, both r and y € R.

However, y > r contradicts Proposition 1.3. Q.E.D.

Example 1.1 also implies that the condition R N SD(w) # @ cannot be relaxed
in Theorems 1.2, 1.3 and Corollary 1.3. The difticulty with the results is that the
condition of R N SD(w) # @ cannot be verified. Applying Propositions 1.3 and 1.4,
however, we are able to develop a condition which can be easily applied.

Renegotiation-proof equilibria of a stage game are all Pareto efficient Nash equi-
libria. Given game G, R(1) = Eff(P(1)) can be easily found. We define w =
(w@y,...,w,) € R" in which

min max Y, for ie N (1.14)
r€Co[R(1)) yeFND(z)

Proposition 1.5 w is well defined, and w < w.
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Proof: Vi € N, w, is well defined, since F N D(z) a compact-valued continuous
correspondence, and the set Co[R(1)] is compact. Vi € N, there exists a x € Co[R(1)}

such that

v; = . 1.15
v yErFl}nag(.t) y ( )

From Proposition 1.4, RN D(x) # 0. Suppose that z € RN D(z). Therefore, Vi € N,

w, < z; < w;. Q.E.D.

Proposition 1.5 proves that w is bounded above by w. Furthermore, since every

renegotiation-proof equilibrium is subgame perfect, w is also bounded below by the

minimax vector of the stage game. Therefore, m < w < w.
Theorem 1.4 If Co[R(1)] N SD(w) # 0, then RN SD(w) # 0.

Proof: Since Co[R(1)] N SD(w) # @, there is a z € Co[R(1)] such that z > w.
With Proposition 1.5, £ 3 w. Proposition 1.4 states that D(z) N R # @. Therefore,
RN SD(w) # 0, since D(z)NRC SD(w)N R. Q.E.D.

Corollary 1.4 If Co[R(1)] N SD(w) # @, then Eff(F)N SD(w) € R and B C
WESf(F).

Proof: From Theorems 1.2, 1.3 and 1.4. Q.E.D.

In finitely repeated games with only two players, if R is not singleton, then at least
one player who has different equilibrium payoffs can be punished. For instance, player
1 can be punished based on an equilibrium. One can construct a renegotiation-proof
equilibrium which consists two phases. The second phase is the equilibrium such that
player 1 can be punished. The first phase consists of a sequence of outcomes in which
player 2 gets the highest payoff in every period. Neither players will deviate in the
second phase, since it is a renegotiation-proof equilibrium. Player 2 has no incentive

to deviate in the first phase. If the second phase is long enough, player 1 will not
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deviate either. These arguments support that these two phases form a renegotiation-
proof equilibrium. When we select such an equilibrium carefully, the condition of
Theorem 1.3 can be satisfied if R is not singleton. But in games with more than
two players, a so-called optimal punishment may punish another player at the same
time. Hence the same conclusion cannot follow. By following similar ideas. however,
we find that if there exists an equilibrium in which at least (n — 1) players could be

punished, then the result of Theorem 1.3 emerges.
Lemma 1.1 Let F be a conver and compact subset of R*. V v € F, define
Gw)={zeD(w)NF | Bye D(v)NE,y > r}

Ifv @ WEff(F), then 31" € G(v), y € F, ¢o > 0 and an open interval O C {0, 1]

such thatV z € B (z") ande € O, a-z,+ (1 —a) -y, >v,+¢€ forj=1,....n.

Proof: Under the conditions, we can select that = € G(v), in which z] = v, and
x>, > v, for some i € N, and y € argmax,er =,, in which y, > v, Let ¢ =
min;z {(z; — v,)/3} > 0. It follows that, V r € B, (z"), r, 2 v, + 2¢, for j # 1.

Since
li_qll[a(w, +2¢)+ (1 —a)y;l =v, + 24

For such a ¢; > 0, 3 a. such that for a € (0.,1}, a{v, +2¢) + (1 —a)y, 2 v, + €. It

turns out that, V = € B,(z") in which € < ¢, for all a € (a., 1], we have
ar,+(l—a)y, 2 v,+e

Let a® = (1 + a.)/2, ¢ = min{e;,ﬁz—: (y, — v,)} and O = (a.,a”). One may verify

that the lemma holds for this ¢, > 0 and the open set O. Q.E.D.

Theorem 1.5 If there erists a z* € R such that z°, » w_, for some i € N, then
RCWEff(F).
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Proof: We prove the theorem by contradiction. Suppose that the result does not

hold. First, w @ WEff(F). For i, 3 a € A such that
ui(a) = max z; and u,(a) > w;

From Lemma 1.1, 3 ¢, > 0 and an open set O such that for z € B,(z*) and a € O

a-r,+ (1l —a) -ula)>wj+e, forj=1.,n (1.16)
Second, RN SD(w) = 0. It impliec that R C G(w). For such a €, 3 Tp such that for
T > To,

—— C Gu) + e (1.17)

It is possible to select Tg such that To-€o > d. Since the open set O contains a fraction,

say wim +T € O where T} > Tp. Conditions imply that 3 2(T}) € B, (z°) N R(T))/T,.

We are going to show, by induction for t < T, 32(Ty +t) € R +t)/(Th +1)

such that
(Ty+t) - s(Th+t) 2T - x(Ty) + t- u(a) (1.18)
For player j # t,

T z,(Th)~Th wj(h) 2Th e 2 d> rpea} u,(a}.a-,) — u,(a)
2,

2

For player 1,
Ty -zi(h) - Th-wi(Th) 20 = max u(a},a-;) — ui(a).

Hence (1.18) holds for t = 1.

Now suppose that we have (1.18) for t < T; — 1. V j # i, if z;,(Ty) 2 u,(a),
then z;(Ty +t) 2 ﬁm,(T,) + T1+T ==u;(a) = w, + 2¢ and, if z,(Th) < u;(a), then
5(Ty+t) > z,(Ty) 2 w, + 2¢o. In either cases, z,(Ty +t) - w,(Ty +t) > €. It follows

that, for player j # ¢

(i +) - [T +t)—w,(Th+t)] =2 (Th +1) €@ 2 d>m e U;(a,,a—J) u,(a)
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for player 1,
(N +t)- [a(Ti+ ) —wi(Th + )] > 0= max u,(a;,e-,) — u,(a)

At the end of induction, together with (1.16), we get, Vi € N

T.
2i(Th) + =——u,(a) > w, + &

z,~T 7)) >
(T +T,) 2 T+ T,

1
T+ T,
which contradicts (1.17). Q.E.D.

Theorem 1.5 and n = 2 imply Theorem 1 in Benoit and Krishna (1988). Renegotia-
tion-proof equilibrium outcomes are characterized by the following theorem. Theorem
1.6 describes that the outcornes which can be approximated by renegotiation-proof
equilibria either are Pareto optimal or form an object whose dimension is less than
(n — 1). In other words, if there exists an equilibrium which is not Pareto optimal,

then the set of payoffs which can be so approximated must be relatively small.
Theorem 1.8 For n-player repeated games, either R C WE ff(F) or dimR < (n-1).

Proof: If R is (n — 1) dimensional, then either Theorem 1.3 or 1.5 holds. Therefore,

RC WEff(F). Q.E.D.

1.3.4 Determination

Subgame perfect equilibria lead to the same outcomes in the repeated games whose
stage games have identical sets of feasible and individually rational outcomes, as
long as every player has multiple equilibrium payoffs in the stage games. We do not
have the same conclusion for renegotiation-proof equilibria. Furthermore, even if the
stage games have identical Nash equilibria, the payoffs which can be approximated
by renegotiation-proof equilibria could be quite different in the repeated games as

time horizon tends to infinity. Example 1.2 demonstrates such a characteristics for

renegotiation-proof equilibrium.
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Example 1.2: Consider a two-player symmetric game G, with parameter ¢ € [0, 6].
Every player in the game G, has six pure strategies, A, = {a;,....a¢} and Az =
{B,...,86}. The payoff functions are given by the following payoff matrix.

N2| B Pa B By | Bs Be

o | (09) | (00) |(4,2°) | (0,0) | (00) | (0,0)
az | (0,0) |(3,3") | (0,0) |(0,0)] (¢0) ] (0,0)
g (214.) (0?0) (0'0) (an) (an) (010)
aq | (0,0) | (0,0) | (0,0) |(0,0){(0,6) | (0,0)
Qs (000) (0’5) (0’0) (690) (0,0\ (0,0)
ag | (0,0) | (0,0) | (0,0) | (0,0){(0,0) | (0,0*)

Let the sets with subscript € be the sets corresponding to the game G,.. For
€ € [1,6], G has identical set of feasible and individually rational outcomes, F =
{(z1,22) € R3.|-1‘1 +z; < 6}. Ve € (0,6}, Gc has a Pareto dominated Nash equilibrium
(ae, %) which leads to the minimax vector m = (0,0). R, is Pareto optimal and
connected by Corollaries 1.3 and 1.4 for € € [0,6]. Also, w, £ (2,2) for game G,.
Therefore, Co[{(4,2),(2.4)}] € R, for all ¢ € {0,6]. Here, we are going to consider
three cases, e = 0,1 and ¢ € {2, 6].

First, for € = 0, game Gy has six Nash equilibria. We have that @ = m = (0,0).

Therefore, w = (0,0) due to m < w < w.
Proposition 1.8 For Gy, w = (0,0) and Ry = Co[{(6,0),(0,6)}].

Proof: From w = (0,0) and Theorem 1.2. Q.E.D.

For ¢ € (0,6], game G, has four Nash equilibria, and @ = (2,2). Therefore, we
have to find the optimal punishments in order to determine the set R, for ¢ € (0,6].

Second, for G|, we have
Proposition 1.7 For G, w = (1,1) and R, = Co[{(5,1),(1,5)}}.

Proof: Since the game is symmetric, we only consider for player 1. We are going

to show that total payoff from the optimal punishment for player 1 in game G,(7T)
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is (T +1). For Gy, Ri(1) = {(2,4),(3,3),(4,2)}. (2.4) is the optimal punishment
equilibrium outcome for player 1. We assume that {(T,5T —6),(T +1,5T - 7)} C
Ry(T —1). (T,5T — 6) is the optimal punishment outcome for player 1 in G,(T —1).
Following the definition, paths (0,6)+ (7 + 1,57 —7) and (2,4) + (T, 5T —6) form two
renegotiation-proof equilibria in game G,(T). Also, path (0,6)+(T.5T —6) cannot be
a renegotiation-proof equilibrium in game G,(T'). Hence, the optimal punishment for
player 1 leads to payoff (T'+1) for player 1 in game G,(T'). By induction, u(T) = I—‘Tﬂ
Therefore, w = (1,1). Theorem 1.3 implies that R, = Co[{(5,1),(1,5)}]. Q.E.D.

Last, for G, with € € [2,6], player 1 can gain ¢ > 2 by deviating from (0,6).
Therefore, player 1 can guarantee himself 2 as average payoff in every renegotiation-
proof equilibrium in repeated game. As we argue, player 1's payoff from the optimal

punishment is less than 2. Therefore, the optimal punishment for player 1 must lead

to him average payoff 2.

Proposition 1.8 For G, with ¢ € [2,6], w = (2,2) and R, = Co[{(4,2),(2,4)}].
Proof: Again, we consider the optimal punishment for player 1 in the repeated game.
In the stage game G, with ¢ € [2,6]. w;(1) = 2. Now suppose that (T — 1)(2,4) is
the optimal punishment outcome for player 1 in game G,(T — 1). Since an outcome
in R(T) has the form z + u(a) where £ € R(T — 1). The only possible outcome

which may lead to player 1's payoff less than 2 is (a4,3s) with payoff (0,6). For
T + u(a) € R(T + 1), the following inequality must be satisfied.

;relaj(‘ul(a,ﬂs) + (T=1)-wny(T-1) < u(aq, 3s) + 1,

>z 2 max uy(a, Fs) — uy(a) + (T = 1) - wy(T - 1)

e+2- (T-1)22-T
By induction, w,(T) = 2 for T > 1. Therefore, the results follow. Q.E.D.

We have seen that R, C R; C Rp. Although stage games Gy and G have

identical sets of feasible and individually rational payoffs as well as identical sets




D ———————————

27

of Nash equilibria, the outcomes which may approximated by renegotiation-proof
equilibria in the repeated games are not the same. Thus, whether an outcome can
be approximated by a renegotiation-proof equilibrium depends on something more
than its feasibility and rationality. One interesting feature of Example 1.2 is that if
we eliminate the dominated strategy for every player in the game, ag and g, then
R. = Eff(F,) for e =0,1 and ¢ € [2,6).

For perfect equilibria, subadditivity of the optimal punishments ensures the con-

vergence of the punishment payoffs. However, the optimal punishments in renegotia-
tion-proof equilibria do not have such a nice property. The sum of two subgame
perfect equilibria forms a new subgame perfect equilibrium in the repeated game
with the sum of the periods. However, the sum of two renegotiation-proof equilibria
may not be renegotiation-proof.

Since we are always looking for Pareto efficient payoffs, one might expect that
renegotiation-proof equilibria have a weak monotonicity, i.e. if 3 £ € R(T)/T and

y € R(t)/t, then there is = € R(T +t)/(T + t) such that
(T+t)- z>2T-z+t-y (1.19)

Suppose we have two renegotiation-proof equilibria with average payoffs z and y, for
T and t periods repeated game respectively. When the game G is going to be played
(T +t) times, z could be the average payoff in the last T periods, since T - z is an
equilibrium outcome in the game G(T). y can be the average payoff when the game
G is played t times without a punishment in the last period. With a punishment
threat in ¢, the equilibrium with average payoff y can be played in the first ¢ periods,
if it is still Pareto efficient. This weak monotonicity seems to be true without any

additional restriction. It certainly holds when either T or ¢ is equal to 1. However,

this weak monotonicity of renegotiation-proof equilibria holds only under (1.20).




Proposition 1.9 Suppose r € R(T)/T for some fired T. If x salisfies
(T+¢t) w(T+t)<T -x;+t-w(t) Yie.N andt > 0. (1.20)

and {a'}2, is a renegotiation-proof equilibrium path. i.e. V ¢
t

Y u(a’) € R(t),

s=1

thenVt, 3 (T +t)€e R(T+t)/(T +t) such that
t
(T+t)- :(T+t) 2T -+ _ u(a®) (1.21)
=1
Proof: It is easy to see that such a :(T + 1) exists. Now suppose that (1.21) holds

uptot. Vie N,

t
5?} u!(a:vat—tl - u‘(aH-l) < Z u,(a’) -t wc(t)
[t s=1

by (1.20) < iu,-(a')+T-.r,—(T+t)-w.(T+t)
s=1

by (121) < (T+t)-2(T+t)—(T+1t)-w(T+1),

It implies that there is a (T + ¢) - (T + t) + u(a'*!) € Q(T + t + 1) such that (1.21)
holds for (t + 1). By induction, (1.21) holds for every positive ¢. Q.E.D.

1.4 Conclusion

This essay studies renegotiation-proof equilibria in finitely repeated games. An equi-
librium in finitely repeated games in which the players can communicate but cannot
sign any binding contracts should be both subgame perfect and subgame efficient.
The concept of renegotiation-proof equilibrium provides a sharp refinement for that
of perfect equilibrium in finitely repeated games. Indeed, in generalizing Benoit and

Krishna (1988), we found that either all renegotiation-proof equilibria are Pareto
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optimal, or a good deal of predictability is available, namely, the set of average equi-
librium payoffs is of lower dimension than the Pareto optimal frontier. Optimal
punishment equilibria are the key to understand renegotiation-proof equilibria. Some
intuitively plausible conjectures fail to be correct, and this leads to stand in the way
of smoother progress. Nevertheless, we have proved as well a number of sufficient
conditions for renegotiation-proof equilibria to be Pareto optimal. Unlike subgame
perfect equilibria, an example demonstrates that renegotiation-proof equilibria may
lead to different outcomes even in games whose stage games have identical sets of

feasible and individually rational outcomes as well as Nash equilibria.




Chapter 2

Perfect Equilibria in Negotiation
Games

2.1 Introduction

What features characterize negotiations? Focusing on their outcome, one answer is
that they take time and may never succeed. Short reflection on the experience with
economic negotiation problems, such as takeover or contract negotiations, confirms
this point. Concentrating on the situation faced by the negotiators, features that
are directly related to the question of how to model negotiations come to mind.
Typically, two parties who interact strategically are trying to agree to terms governing
their future behaviour. This involves a change in their relationship, in that any
such agreement must either cover a new relationship or must modify the current
relationship by at least restricting strategic behaviour — otherwise there would not
be an incentive to engage negotiations. Finally, the parties are expected to continue
their original relationship until an agreement is reached (note that this covers the case
where one of the parties may refuse to participate in any activities until agreement is
obtained).

A simple way to capture these realities of negotiations is via a model that has two

parties trying to split a surplus (the returns from agreement) while playing a repeated

game (the current relationship.) Such a model will be presented in this essay. First,
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however, consider why both these elements have to be modeled explicitly.

The issue of ‘surplus splitting’ in a non-cooperative setting has been addressed
very successfully by the bargaining model of Rubinstein (1982). Since a large part of
the interest in negotiations stems from the question of how the available surplus will
be allocated, we will first investigate why the bargaining model may fail to address
negotiations.

The bargaining model makes one key assumption: The two parties involved in
bargaining have no strategic actions other than offers, counter-offers, and rejection.
This implies that there are no strategic payoffs to the parties from their relation-
ship other than a share of the surplus. Thus, the status quo point in bargaining is
stationary and given exogenously, and only the (additional) payoff from agreement
matters to the parties. While this is a reasonable approximation for many situations,
it contradicts a characteristic feature of negotiations: In negotiations the parties are
already in a strategic relationship. They have actions available which will affect the
payoffs they receive concurrently with their efforts to reach an agreement. The status
quo point (and the cost of delay) is therefore a function of the actions taken during
the negotiations and is thus endogenous. This would not be a problem if the solution
of the bargaining problem did not depend on the status quo point and on the fact that
it is exogenous and stationary. Since it does, the standard bargaining model cannot
be used to analyse negotiations, where we observe an endogenous and non-stationary
stalus quo point.

A model that has proven to be successful in analysing repeated strategic interac-
tion between parties is the repeated game model. We will briefly investigate why this
framework alone is not sufficient to analyse negotiations either.

The two-player repeated game model arrives at its results by assuming a fixed time
horizon during which a given relationship exists. This time frame is exogenously given

as either finite or as infinite horizon. Even if one were to ignore the bargaining aspect
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of the negotiation problem, this assumption contradicts one of the main features of
negotiations, namely that the time horizon is inherently endogenous. As a matter
of fact, the time taken to reach an agreement, that is to the end of the current
relationship, is one of the predictions sought from a model. If one were, in order to
circumvent this restriction, to impose different time frames on the model and solve
for each one in turn, one is left without any guidance as to which outcome would
be chosen by rational players in an equilibrium. This leads to the conclusion that
two-player repeated games cannot be used to model the negotiation problems, since
they cannot accommodate the endogenous time horizon natural to the latter.

The discussion sofar points to the difference in the assumptions underlying bar-
gaining models and repeated game models on the one hand, and what one thinks of
the features of negotiations on the other. Define a Negotiation Problem as a situa-
tion where two rational parties are involved in a repeated strategic relationship which
yields periodic payoffs, and where a surplus is available to the parties if they can
agree on how to share it. Agreement ends the repeated relationship. The question
asked about a negotiation problem is what the equilibrium outcomes will be.

In this essay, we propose a model of the negotiation problem. The model merges
ideas from bargaining theory and repeated games, accounting for the strategic be-
haviour and payoffs received during the negotiations, the importance attached to the
agreement sought, and the endogeneity of the decision to abandon the current rela-
tionship in favour of the new agreement. For each player, we will find his worst (or
optimal punishment) equilibrium payoff, and show that this worst payoff can be char-
acterized very simply in terms of the stage game which is the strategic relationship
between the players. Finally, we will characterize all subgame perfect equilibrium
payoffs of the negotiation problem by showing that every feasible payoff of the nego-
tiation game which strictly dominates the punishment payoffls can be supported as

the average payoff from a subgame perfect equilibrium for a large enough discount
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factor.

This chapter is structured as follows: Section 2.2 describes the model and defines
all necessar;, concepts. Section 2.3 presents two examples and derives the main results
of the essay. In section 2.4, we provide a discussion of the model’s contribution to
issues raised in the literature, in particular the question of delay in bargaining and
the question of \he robustness of folk theorems. Section 2.5 offers some concluding

remarks, focusing on areas for further development.

2.2 The Model and Definitions

Consider the following example situation for negotiations: There are two Cournot
duopolists in a market. Both face a relatively large fixed cost. If no side-payments
are possible but the formation of one monopoly is allowed, they could gain by form-
ing a monopoly with only one plant. Negotiations are held over the allocation of the
resulting surplus, but the two still produce and serve the market while these negotia-
tions go on (behaving as Cournot quantity setters). We are interested in the possible
allocations of the surplus and the strategies followed during the negotiations.

We model this situation as follows: There are two players, indexed by i = 1,2.
Time is discrete and indexed by t = 1,2,3,.... The time horizon is infinite. Both
players discount the future, with their (common) discount factor being denoted by
6 € (0,1). In cvery period t in which no agreement has yet been reached, the players
play the following constituent game: At the beginning of each period, one player
makes a offer to the other player. The offer is in terms of a share of the surplus
resulting from agreement. The other player can either agree or disagree with this
offer. Should he agree, both players receive their agreed upon shares of the surplus
from this period onward and their prior strategic relationship (and the game) is over.

Should he not agree, both players play a simultaneous move game in normal form,




34

denoted by G, and receive a payoff from it. Time then advances, and the constituent

game is repeated. A schematic of the game is given in the following Figure 2.1.

‘@l@w ot (G

NG(8): [0
k=k+1{
t=2k41 t=2k 4

14 -

)

Figure 2.1: Diagram of the Negotiation Game

We will now formally define all concepts and variables. First, consider the exit
offer game within each period. We employ Rubinstein’s (1982) method to formulate
the offer and agreement. A proposal by a player is a vector in the unit simplex of R?,
say (b, 1-b), where b is player 1’s share and (1-b) is player 2's share of the surplus. We
will denote a proposal just by its first coordinate, . A player’s response to a proposal
is either rejection or acceptance, indicated by NV and Y, respectively. Players reach
an agreement if one player accepts the other one’s proposal. The negotiation game
ends when an agreement is reached. The players then obtain the same proportion of
the surplus in each of the subsequent periods. In this essay we will only consider the
case in which the two players make proposals alternately, with player 1 proposing in
odd periods and 2 proposing in even periods.

Next, recall some definitions and notation for two-player infinitely repeated games
with discounting.

A two-player one-shot (stage) game in normal form consists of a set of two players,
their strategy (action) sets, and their payoff functions. The stage game is denoted
by G = {A;, Az, ui(-),uz(-)}. Here, A, is player i's strategy (action) set which is

assumed to be compact and u,(-) : A — R is his payoff function which is assumed to

be continuous, where A = A; x A; fori =1,2.
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The set A can also be interpreted as the set of outcomes of the stage game G. A
generic element of the set A is denoted a = (a;,a;). Let u(-) = (u;(-), uz(-)). The set
of feasible payoffs of the stage game G is given by the convex hull of u(A), Co[u(A)],
which is compact by the assumptions. Let mz*, i = 1,2, denote the strategy pair
leading to player i’s minimax payoff. F, the set of feasible and individually rational
payoffs, is the intersection of Co[u(A)] and {v € R?|v, > u;(mz!), vy 2 uy(ma?)}.

In this essay, we will make the following assumption: The players’ strategies in

G are mixed and ~orrelated strategies, and deviations from a mixed or a correlated

strategy by either player are publicly observable. Therefore, the set A; is convex for
2 = 1,2, and for a feasible payoff vector v, 3 a € A such that v = u(a), and the stage
game G has at least one Nash equilibrium.

Let G(6) denote the infinitely repeated game in which the stage game G is played
by the same players for infinitely many periods and the players discount future payoff
by a factor § € (0,1).

An outcome path of G*(6) is defined as = = (a',...,d',...) € A®. The average
payoff function of the players, U,(-) : A* — R, is defined over the set of all outcome

paths and is given by
Uir) = (1-6)Y_6"ui(a'), fori=1,2 (2.1)
t=1

Players’ payoffs in the first period are not discounted. Note that the players’ average
payoffs in G™(8) are of the same scale as those in the first period.

A strategy for player 7 in G*(6) is a function f;(-) which maps from the set of all
possible histories into the set of all possible actions, i.e.

ity s H=JA - A
t=0

where A' may be referred to as the set of all t-period histories in period (t+1) when
G has been played t times. A° = @ denotes the null history, and f,(0) € A;.
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Given a strategy combination f = (fy, f2), n(f) € A® is the unique outcome
path induced by f, where x(f) = (a'(f),...,a'(f),...). The payoffs from a strategy
combination f are calculated from the outcome path induced by f and equation (2.1),
and are given by U(x(f)) = (Ur(x(f)), Ua(x(/))).

In order to simplify the analysis, we normalize the surplus from agreement to be
1 and the stage game G such that u;(mz*') = 0 for { = 1,2. We also assume that
Va € A, u(a)+uzae) <1 which does entail a loss of generality and will be discussed
further in the last section.

We now define the negotiation game NG(6) to be the game where two players
with discount factor é play a sequence of constituent games until agreement, where a
constituent game is an offer game followed by the stage game G after rejection. Let
NC.(6) be the game in which player : makes the proposal in the first period (note
that the first period in NG;(8) is an even period). In this essay, we will present the
results explicitly for only NG,(8). It is not difficult to state the similar results for
NG,(8) by using analogous arguments.

A type I t-period history in the game NG,(8) is a finite sequence denoted by
hy(t) = (8',al,...,b" a*), in which b is the proposal made in period s and a®* € A is
the outcome of G in period s after the proposal b* has been rejected, for s = 1,...,t.
Let k;(0) = 0. A type 1 t-period history can be decomposed as h;(t) = b(t) D a(t)
where

Kt) = (b',...,b') € [0,1]"; a(t) = (d',....a') € A*

A type 2 t-period historyis hy(t) = h,(t) ® b+, indicating that following the type
1 t-period history Ay(t), b'*! has been proposed in period (¢ + 1).

A type 3 t-period history is denoted by hi(t) = hy(t) & {N} indicating that the
proposal b**! has been rejected in period (t + 1). We do not define a path with an

acceptance as a history, since the game ends with acceptance.
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The sets of all possible histories of three types, H,, H, and Hj, can be written as

#o= UB® = Do xay

t=0 t=0

Hz = DHz(t) = G([O,I]H'IXAt)
t=0 t=0

Hy = UHat) = (0,11 x 4'x {N))
t=0 t=0

A strategy combination f = (fy, f;) for the game NG,(6) consists of two functions
which map from the sets of all appropriate histories into the sets of all appropriate

actions, i.e.

fi : H,UH;Uua — [O,I]U{N,Y}UA,- for:=1,2
such that

(fisf2) :+ Hi(t) x Ho(t) = [0,1) x {N,Y} iftiseven
(fi.fa) @ Hat) x Hy(t) = {N,Y} x[0,1] iftis odd
(flvf?) : H3-’ A

The strategy combination f gives players’ instructions how to play the game in
every period, conditional on a history. For example, in an odd period (¢t + 1) after
a type 1 t-period history hy(t), when player 1 will make the proposal , fi(h,(t)) is
player 1’s proposal, fz(hs(t)) is player 2's response to player 1’s proposal 4**! and
( fi(ha(t)), f2(h3(t)) ) is the one-shot play of the stage game G in period (t + 1)
after the proposal b'*! has been rejected. The players’ actions in an even period are
specified also by f analogously.

An outcome path of NGy(8), =(T) = (b',a’,8%,a%,...,b%,{Y}) can be interpreted
to indicate that the proposal b* has been rejected and the stage game outcome a* has
been played in period ¢t for 1 <t < T, and the proposal b7 has been accepted in

period T'. By convention, T is set to be infinity in an outcome path in which the two
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players never reach an agreement. An outcome path of NG,(8) can be decomposed
asr(T)=b6T)®a(T-1)8 {Y}.

The payoff to the players from an outcome path is determined by the payoff from
the stage game in all the periods before the agreement is reached and the agreement

itself. The average payoffs to the players from the outcome path x(T) are given by!

T=

U;(W(T)) = (l—&)zlél-lul(at)+6r—lbr (22)
t=1
T-

Uar(T) = (1-8)3 6 un(a’) + 671 = bT) (2.3)

t=1
The payoffs from a strategy combination f can be calculated directly from (2.2) and

(2.3) and the unique outcome path induced by f.

2.3 The Subgame Perfect Equilibria

In this section, we will examine ihe subgame perfect equilibria (SPE) of the nego-
tiation game. The section has four subsections which deal with the three issues at
hand: First we calculate the perfect proposals for every player when the continuation
disagreement payoff path is fixed. A stationary SPE of the negotiation game can be
constructed by using the perfect proposals and a Nash equilibrium of the stage game.
Second, we provide two examples which show two extreme cases respectively; every
feasible and individually rational payoff and only Nash equilibrium payoff of the stage
game can serve as the (average) disagreement payoff of a SPE in negotiation games,
respectively. An optimal punishment equilibrium for each of the players is constructed
in the third section by employing ideas gained from the examples. Lastly, we char-
acterize all SPEs in the negotiation game using the optimal punishment equilibrium

payoffs. Most of the proofs are construrtive.

INote that in general superscript indicates the period to which a variable belongs and not a
power. The exceptions are the discount factor § and strategy sets. The distinction should always be
clear from the context.
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2.3.1 Perfect Proposals

In the negotiation game, the proposals which are made in every period certainly
depend upon players’ payoffs from all the periods thereafter. In the bargaining games,
if the payoffs to the players in the periods without any agreements are fixed but may
not be the same for all the periods, then the bargaining game has a SPE. In the SPE,
players’ proposals are certainly not stationary, and they are the best actions of the
players given the continuation disagreement payoffs. We shall call the proposals in
the SPE of the bargaining game with fixed continuation disagreement payoffs path
as the perfect proposals.

Following Shaked and Sutton (1984), we are able to calculate the perfect proposals
given any continuation disagreement payoff path. Later, we will use these perfect

proposals to construct some SPE in the negotiation game.

Theorem 2.1 In NG,(6), if players’ payoffs are fized to be u(a') in periodt whenever
there is no agreement, then b' is the unique perfect proposal of the player who makes
the proposal and accepting a proposal which is preferred to the perfect proposal by the

player who makes the response is his best response in period t , where

b =+ (1=6) 3 6 [6un(a"*¥*) — ua(a*)] for odd ¢

3:0
b= I‘i‘a +(1-6)3_ 6%[ui(a**?) — bus(a'*?**)]  for even t
=0

Proof: In the negotiation game NG,(6) with the fixed disagreement payoff path
{u(a')}2,, we first suppose that the set of the average payoffs from perfect equilibria
is not empty, and then show that the proposals we find will be the perfect proposals
in the game with fixed continuation disagreement payoff path {u(a’)}{2,. Let Mf
and m! be the supremum and infimum of player i's average equilibrium payoffs in the
subgame that starts from period t in NG;(6), for i = 1,2.

First, consider players’ strategies in an odd period ¢ in which player 1 makes the

proposal and player 2 makes the response. If player 2 rejects the proposal, his payoff
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will be u;(a') in period t and a SPE payoff from period (¢ + 1) on which is bounded

between by mj*! and Mj*'. Therefore, player 2 will always reject a proposal if his

average payoff from the proposal is less than (1-6)u;(a')+6mi*!, and always accept a
proposal if his average payoff is more than (1 —6§)u;(at) +6Mi*t. Subgame perfectness

requires that any proposal made by player 1, b, should satisfy
(1=8)uy(a') + bmi*t! < 1-b < (1—-6)uy(a’) + SM;*H!
which implies that m! and M; satisfy the following inequalities,
1 - (1-8)uz(a’) — SMF* S my < M <1 (1-8)uy(a’) —bmit (24)

Considering players’ strategies in the following even period (¢ + 1), we obtain by

simnilar arguments that
1= (1=8)uy(a*) = M2 <mi < MY < 1 = (1=-8)uy(a'*!) - émit?  (2.5)

(2.4) and (2.5) can be rewritten as

M! < 1= (1=6)uy(at) — 6[1 — (1—8)uy(a'*) — SMI¥?]
mi 2 1= (1-8)uy(a') — 8[1 ~ (1-8)uy(a**') — 6mi*?]
MY < 1= (1-8)uy(at*!) = 81 — (1-8)uz(a'*?) — 6M;*°]
mitt > 11— (1-8)u(a'*!) = 8]l — (1-6)uz(a'*?) — sms*?

Substituting iteratively then yields

< mi

IA

M <b  for oddt

1-6'< my < M} <1-b forevent

where ' is as given in the theorem. Therefore, M{ = m! for : = 1,2. Hence, if
the perfect equilibrium exists in NG(8) with the fixed disagreement payoff path

{u(a*)}s2,, it must be unique in terms of payoff.
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Consider the following strategies in the game NG, (§) with the fixed disagreement
payoff path {u(at)}2,: in period t, the player who makes the proposal will propose
b*, and the player who makes the response will accept all proposals that he weakly
prefers to b and reject all others. After a rejection (which will not occur in the
equilibrium), players’ payoffs are determined by u(at).

These strategies are subgame perfect as the following considerations show. By the
assumption u(a') is fixed for period ¢, the player who makes the response in period
t is just indifferent between accepting the proposal b and waiting to propose b'*! in
the next period, collecting u;(a') in the meantime. Therefore, rejecting the proposals
which are not preferred to &' and accepting those which are is his best response.

This implies that any proposal which is preferred to b' by the player who makes the

proposal will be rejected. Since

b > (1-6)uy(at) + 6b'? for odd ¢

(1-8") > (1-8)uzy(a’) + 6(1-b"*") for even ¢

the proposing player prefers the proposal to deviating and waiting for one period.
We conclude that the strategy profile we offered is a subgame perfect equilibrium in

NG,(6) with the fixed disagreement payoff path {u(a‘)}32,. Q.E.D.

Theorem 2.1 gives the proposals of the players in the unique SPE if the contin-
uation disagreement payoff path is fixed. It also shows that the proposal in a SPE
is uniquely determined by the continuation disagreement payoffs. Let P;(-) denote
player i’s perfect proposal function which maps from the set of all continuation dis-
agreement payoff paths into unit interval [0, 1].

Note that this theorem implies that, with a common discount factor, the non-
stationarity of the status quo point does not affect Rubinstein’s uniqueness result. As

with a stationary status quo point, there exists a unique perfect proposal in every

period which will be accepted. Note also that if a* = a € A for t 2> 1, it follows from
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Theorem 2.1 that player ¢ will propose b; in the SPE, where

_ 1+ éui(a) = uy(a) and b, = 6 + ur(a) — buy(a)

1+46 1446

b

In particular, if uy(a) = uz(a) = 0, then {b,,5,} will be just the Rubinstein solution
in the strategic bargaining game.

The next theorem proves the existence of a subgame perfect equilibrium in the
negotiation game. The equilibrium in the theorem is stationary in the sense that the
disagreement payoffs and proposals made by players are independent of histories. In
the equilibrium, players always play a Nash equilibrium in the stage game whenever

there is no agreement, and the player who makes the proposal will always make his

perfect proposal.

Theorem 2.2 Suppose that a* € A is a Nash equilibrium in the stage game G.
V6 €(0,1), NG;(6) has a perfect equilibrium whose outcome is that player i’s perfect
proposal P,(x*) is accepted by player j # i in the first period of the game. Here

7 = (a*,...,a%,...) and
Pl(‘ﬂ'.) - 1 + 6“1(1(1;-); ug(a‘)
P = St

Proof: Since the disagreement outcome in every period is a Nash equilibrium of
the stage game and all the continuation payoffs are independent of histories, neither
player will deviate from a" individually in the stage game in every period when no
agreement has been reached. Therefore, playing a* are indeed the best strategies of
the players in every period.

The equilibrium strategies in NG,(§) are given as follows. ¥ hy(t) € Hy, ho(t) =
hi(t) ® b'*! € H; and ha(t) € Ha; for an odd period (t + 1),

1 + duy(a”) — uz(a”)
1+46

fHlh(t) =



43

falha()) = {; B < fi(t)

f(h3(t)) = a*€ A

and for an even period (¢ + 1),

¢+ uy(a*) — duz(a”)
1446
{ Y if 8 > fo(ha(2))

fa(hi(t)) =

fitha(t)) = N otherwise
f(ha(t)) = a*€ A

It is not difficult to see that these strategies are indeed a subgame perfect equilibrium

of the negotiation game NG, (§). Q.E.D.

2.3.2 Two Examples

As we discussed in the last section, the proposals in a SPE are determined by the
future disagreement payoff path. If some payoffs of the stage game can serve as the
disagreement payoffs, then it is not difficult to find the SPE which is supported by
these disagreement payoffs. This section considers two extreme examples, in which
every feasible and individually rational payoff of the stage game can be the disagree-
ment payoffs in a SPE of the negotiation game in the first example, but only the Nash
equilibrium payoff in the second example. In both examples, the stage games are pris-
oners’ dilemma games which are different in payoffs. Prisoners’ dilemma games have
a unique Nash equilibrium which is also the minimax strategy combination. For ex-

positional convenience, we will not normalize the negotiation games.

Example 2.1: Consider the negotiation game which consists of a negotiation surplus
(10 + 5¢) with € > 0, and the stage game G with the following payoff matrix.

2] C D
C | (5,5 |(-4%,14)
D [(14,-9)| (0,0
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Both players have a common discount factor § = 2/3.

The payoff vector (0,0) is both the minimax and the Nash equilibrium payoff.
According to Theorem 2.2, (6 + 3¢,4 + 2¢) and (4 + 2¢,6 + 3¢) can be supported
as SPEs in the negotiation games when the Nash equilibrium payoff (0,0) serves as
the disagreement payoff, note that 6 + 3¢ = 1—_}_—6(10 + 5¢) and 4 + 2¢ = I‘SW(IO + S¢).
However, every feasible and individually rational payoff of the stage game in Example
2.1 can serve as the disagreement payoff in a SPE of the negotiation games. The
following proposition shows that the negotiation game has two SPEs in which two very
extraordinary payoffs of the stage game, (0,10) and (10,0), serve as the disagreement
payoffs respectively. These SPEs are illustrated in the following Figure 2.2.

(—4,14) 4

26,104 3¢
( (3¢, 10+ 2¢)

(4 +2€9 6 +3€)

(542¢,5+3¢
(5+3¢,5+2¢)

(6+3€, 4+ 2¢)

3e, 10+ 2¢

( (2¢,10+3¢)

(14, -4)

Figure 2.2: The Subgame Perfect Equilibria in Proposition 2.1
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Proposition 2.1 (3¢, 10+2¢) and (10+3¢,2¢) [ (2¢,10+3¢) and (10+2¢,3¢) | can be

supported as the average payoffs from subgame perfect equilibria in NG, (3) [N Ga(3) ]

Proof: Consider the infinitely repeated game with the stage game G and common
discount factor 8§ = 2/3, G*®(2). The simple strategy profile? o(mo, ™y, 7;) forms a
(renegotiation-proof, see van Damme (1989) ) subgame perfect equilibrium in G=(3),

where
7= (C,C)* ;i m= (C,D)2 ®(C,C)°; m= (D,C)2 & (C,C)>

Let ¢ = (g1,9;) denote the equilibrium strategy functions which are induced by
o(mo, M, m2). ¥ a(t) € A, let 7(gls(yy) be the continuation path induced by strategy
g after a t-period history a(t) in G*(8).

Consider the following strategies in NG1(3). V ki(t) = a(t) ® b(t) € Hy, ho(t) =
hy(t) @ b and hs(t) = ha(t) ® {N} € Ha; for an odd period (t+1),

fi(hi(t)) = Pi(7(gla))

f(ha(t))

g(a(t)) € A

and for an even period (¢ + 1),

f2(hi(t)) = Pax(glany))

1 1
s = {1 SR 20000
f(ha(t)) = g(a(t)) €A

Since the proposals are the perfect proposals, if neither player deviates from ( f1, f2)
individually after every type 3 history in the stage game G, then neither will deviate

from f = (fi, f2) individually. Therefore, the given strategy combination f forms a

2According to Abreu (1988), a simple strategy profile o(%o, 71, ¥2) indicates that path xo will be
played in G®. A deviation by player i from the on going path will be followed by restaring path =;.
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subgame perfect equilibrium in NG;(2/3). The rest of this proof verifies that neither
player will deviate from (fi, f2) individually after every type 3 history.

Let (¢t + 1) be an odd period. ¥ hy(t) = a(t) B b(t + 1) ® {N} and even ¢, there
are three cases that have to be verified:

Case 1: (1, f2)(ha(t)) = (C,C).

If player 1 deviated from (C,C), player 2 would propose 2¢ in period (t + 2),
the perfect proposal associated with the continuation disagreement payoff path =,,
instead of 5 + 2¢, the perfect proposal from the path =g, because =, would be the
continuation payoff path associated with this deviation. Since

(1=8)uy(D, C) + 26¢ = 14;4‘ < 15;45 = (1=86)uwy(C.C) + 6(5+2¢),

player 1 will not deviate from (C,C).

If player 2 deviated from (C,C), player 2 would have tu propose 10 + 2¢, the
perfect proposal for the path =, instead of 5+ 2¢ in period (¢ + 2), because x; would

be the continuation disagreement payoff path. Since

(1=68)u5(C, D) + 36¢ = “;6‘ < 15'3*6‘ = (1-6)u3(C,C) + 6(5+3¢),

player 2 will not deviate from (C, C) either.
Case 2: (f1, f2)(hs(t)) = (C, D).
Player 2 will not deviate from (C, D) individually, since he has the highest payoff

from (C, D) among all the outcomes of the stage game. If player 1 deviated from
(C, D), player 2 would propose 2¢ in period (¢ + 2), which is the perfect proposal
for path r;. But, if player 1 follows the equilibrium strategies, player 2 will at least

propose 2 + 2¢, since the worst possible continuation disagreement payoff path to

player 1 is (C, D) ® (C,C)™. Since

(1-6)uy(D, D) + 26 =

% = (1-8)uy(C, D) + 6(2+2€).

player 1 will not deviate from (C, D).
Case 3: (f1, f2)(hs(t)) = (D,C).
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Player 1 will not deviate from (D, C) individually, since he has the highest payoff
from (D,C) among all the outcomes of the stage game. If player 2 deviated from
(D, C), player 2 would have to propose 10+2¢. But, if player 2 follows the equilibrium
strategies, player 2 will, at most, propose 8 + 2¢, since the worst possible continuation
disagreement payoff path for player 2 is (D,C) @ (C,C)>. Since

(1~6)uz(D, D) + 36¢ = %‘- = (1-8)us(C, D) + §(2+3¢),

player 2 will not deviate from (D, C).
Similar arguments show that neither player will deviate from ( fi, f2)(ka(t)) in
every even period. Therefore, the strategy combination f = (fy, f2) is a subgame

perfect equilibrium in NGy(2), and the strategy profile which is induced by f in

every subgame is also the subgame perfect equilibrium in that subgame.

Consider the following histories given by

hi(1; =19(D,C) ; R =1&(C,C)908(D,C)
hi(1)=1&(C,D) ; h}(2)=18(C,C)30&(C,D)

In Rhi(j), player ¢ is the last deviator in the stage game in period j, player i will be

punished from period (j + 1) on for z,7 = 1,2. Since

2 L2 2
NG\(3) = NGi(Qn@ = NG
g 3 3

NGa(3)

2 2
= NG1(§)|h{(l) = NGl(g)Ih{(x)

the induced strategies f(u1(z) and fly2) [ fla1a) and flaz(q) ] are two subgame perfect
equilibriaof NG, (%) [ NG 1(2) ] whose outcomes are; player 1's [ 2's ] perfect proposals
3c and 10 + 3¢ [ 2¢ and 10 + 2¢ ] are accepted by player 2 [ 1 ] in the first period of
the games. Q.E.D.

Proposition 2.1 also holds for § > 2. The result of Proposition 2.1 implies that
many feasible and individually rational payoffs of the stage game can serve as dis-

agreement payoffs in subgame perfect equilibria of the negotiation games. Unlike
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infinitely repeated games, there may not be the opportunity to punish a player for
infinitely many periods in the negotiation games. However, a player can still be pun-
ished by changing the continuation disagreement payoff path. In the SPEs. making
a non-perfect proposal does not have to be considered as a deviation. The proof of
Proposition 2.1 demonstrates that the perfect proposals are the same as those with
the average payoff of the continuation disagreement payoff path as the disagreement
payoff for every period, when the continuation disagreement payoff path consists of
playing one outcome for a certain number of periods and playing another outcome
thereafter.

However. the n_gotiation game in the next example has a unique SPE which is

given in Theorem 2.2, even the stage game is also a prisoners’ dilemma game.

Example 2.2: Consider the negotiation game which consists of the surplus (10 +¢)

with € > 0 and the following stage game:

2 C D
C | (5.5 |(=10,10)
D [(10,-10) | (0,0)

Both players have a common discount factor § € (0,1).

Like Example 2.1, (0,0) is both the minimax and the unique Nash equilibrium
payol in the stage game. The negotiation game NG,(6) [VG,(é)} has a SPE in
which the Nash equilibrium payoff (0,0) serves as the disagreement payoff. Unlike
Example 2.1, Proposition 2.2 shows that the negotiation game has a unique SPE

given by Theorem 2.2 tor any discount factor. This SPE is illustrated in Figure 2.3.

Proposition 2.2 V 6 € (0,1) and ¢ > 0. the negotiation game NG {4) [ NG2(8) ]
has a unique subgame perfect equilibrium with average payoffs (Tl+3(10+‘)’ l—f—g(lOﬁ—c))

[ (35(14¢), 25(14¢) |-
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(-10,10)

(10, ~10)
Figure 2.3: The Subgame Perfect Equilibrium in Proposition 2.2

Proof: Consider mixed strategies of the stage game, let a and 3 be the probabilities
of players 1 and 2 playing pure strategy C respectively. A mixed strategy combination

is denoted by (a, 3) € [0, 1]2. The payoff functions, therefore, are; for a, € [0, 1],

u1(a,B) = 5af—10a+1043

uz(a, 8) = 5af+10a—-103

From Theorem 2.2, the sets of SPE payoffs in NG,(8) and NG,(§) are not empty.
Let M;(6) and m;(8) be the supremum and the infimum of player i’s average SPE
payoffs in NG;(6) for a given § € (0,1) and ¢ = 1,2.




50

In the first period of NG,(é), suppose that if player 2 rejects player 1’s proposal,
they will play (a, 3) in the stage game in this period and player 2 will propose b(ca, 3)
in the next period. However, player 1 should not deviate from (a. 3) if player 2 does

reject is proposal. Subgame perfectness requires that

(1—6)%1%)("1(0#3)‘*'52'”1(5) = (1-8)108 + 6°my(8)
< (1-6)(5a3—-10a+103) + éb(a, 3)

pe. 8b(a, B) > 6'my(6) — (1-6)(58—-10)a

Also, player 1 will not make a proposal in which player 2’s payoff is more than the
maximum of player 2’s continuation payoffs after player 2 rejects player 1's proposal.

Therefore,

10+ec—my(8) < rg%x[(l—é)uz(a,ﬂ)+5(10+e—b(a,;’3))]

< (104¢)é — 82my(8) + (1—5)!1;?;[“2(0, B)+(53-10)a]

(104€)6 — 6*m,(8) + (1-6) mafgx[Saﬂ+ 10a—103+5a3—10a]

(10+¢€)6 — 86%m,(8) + (1-6) %x[waa-mzi]

(10+€)8 — 62m,(8)

Hence. m(8) > 35(10 + ¢), together with Theorem 2.2. () = (10 +¢). A
similar argument proves that m,(8) = 1-:»_5(10 + ¢). Therefore, the negotiation game
has a unique SPE as given in Theorem 2.2. Q.E.D.

Although both the stage games in Example 2.1 and 2.2 are prisoners’ dilemma
games which are different only in payoffs, the corresponding negotiation games have
very different equilibrium outcomes. They demonstrate that the equilibrium outcomes
of a negotiation game depend on the payoff structure of the stage game. These two
examples are very helpful in finding the optimal punishment equilibrium which will

be done in the next section.
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2.3.3 Optimal Punishments

In this section, we investigate the optimal punishment equilibria for the players. An
optimal punishment equilibrium for player i is a SPE in which player i’s equilibrium
payoff is less than or equal to all SPE payoffs of the game. We will find an optimal
punishment equilibrium for player 1. Similarly, we can then find an optimal punish-
ment equilibrium for player 2. Therefore, we are able to characterize all SPE’s of the
negotiation game in the next section.

From Theorem 2.1, the perfect proposals in SPE of the negotiation games are
determined by the continuation disagreement path. A perfect proposal made by a
player depends only on the disagreement payoffs to the other player in the periods
when he makes the proposals and his disagreement payoff in the periods when the
other player makes the proposal. In an optimal punishment equilibrium of player 1,
players should play minimax strat=gy against player 1 in every even period, and play
an outcome of the stage in every odd period in which the outcome gives player 2 the
highest possible payoft while playing this outcome is still the best for player 1. It

turns out that the highest possible (average) payoff to player 2 in every odd period is
1= - ! 2.6
% r‘flean{ ui(a) + uz(a) :;n&’f ui(ay, az) } (2.6)

y1 has the following interesting interpretation; in every period without an agree-
ment, players may play any outcome in the stage game, say a € A, although each
player has incentive to deviate from this outcome a € A. In SPEs, at least, player 1

should not deviate from a even player 1 can gain
’
max u{ay,az) — us(a
max 1(ay,a2) — uz(a)

Player 2 may change the proposal in the next period such that, if player 1 does not
deviate from a in this period, the proposal in the next period will pay player 1 more

which is equal to what player 1 can gain by deviating from a. Equivalently, player
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2’s payoff becomes
uz(a) — [max uy(a},a2) — uy(a)] = uy(a) + uz(a) — max u,(a}, az)
aj €Ar a] €Ay

Then, the maximum payoff to player 2 when player 1 is fully compensated in the next
proposal is, therefore, equal to y7. In the next two theorems, an optimal punishment
equilibrium for player 1 is constructed. Following the similar idea as from Example
2.2, we find a lower bound of player 1’s equilibrium payoffs in the negotiation game for
a given discount factor. As in Example 2.1, a SPE in which player 1’s payoff reaches
this lower bound is constructed in Theorem 2.4. Therefore, the SPE in Theorem 2.4

is indeed an optimal punishment equilibrium for player 1 in the negotiatic1 game.

Theorem 2.3 In the game NG,(6) [NG2(6)], player 1's average payoff in any sub-

game perfect equilibrium is bounded below by (1 — y7) [5(1 — 7).

Proof: From Theorem 2.2, NG,(6) has, at least, one subgame perfect equilibrium for
6 € (0,1). Since F, the set of feasible and individually rational pavoffs of the stage
game G, is compact, the set of average payoffs of the SPEs in the negotiation game
NG,(8) is not empty and bounded, V6 € (0,1) and : = 1,2.

Given 6 € (0,1), let m,(8) be the infimum of player 1's average equilibrium payoffs
in NG,(6). In NG,(é), since player 1 can guaran.ce himself a payoff of 0 in the
current (even) period and his average payoff from the next period on cannot be less
than m,(8), player 1's average equilibrium payoffs in the game .NG;(6) are bounded
below by ém,(#é).

By the definition of the infimum, Ve > 0, the game NG (6) has a subgame perfect

equilibrium with average payoff (11, y;) such that
my(8) < xy S my(f) +e (2.7)

If this SPE is inefficient, i.e. r, + y; < 1, then it must be the case that player 1’s
proposal is rejected in the first period of NG,(8). Consider a new strategy combina-

tion which is the same as the equilibrium strategy combination which leads to average
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payoff (z},y,) in every subgame except when player 2 rejects player 1’s proposal z, in
the first period. The strategies in that subgame are the same as those in the subgame
where player 2 follows his old strategies to reject player 1's proposal given by the old
strategies. Under these new strategies, when player 1 proposes z,, if player 2 rejects
this proposal, his average payoff will be y; which is less than 1 — z,. Hence, player
2 will accepts player 1's proposal z;. The new strategy combination is, therefore, a
SPE of the negotiation game with average payoff (z;,1 — z,). Hence, we can select

an efficient SPE that satisfies (2.7) and
i+ =1 (2.8)

In a SPE of NG,(é), if player 2 rejects player 1’s proposal in the first period,
players must play one stage game outcome, say a € A, and a SPE’s in NG2(é),
with average payoff (z2(a),y2(a)), where z;(a) + y2(a) < 1. Therefore, if player 2
rejects player 1’s proposal in the first period of NG,(6), player 2's average payoffs
are bounded above by the maximum of all possible continuation payoffs. In any
SPE of NG,(6), player 1 will not propose such that player 2's payoff is more than
his maximum continuation payoffs. Therefore, the equilibrium payoff (z,,y;) should
satisfies

h < itelg{(l—l?)uz(a) + éy,(a)} (2.9)

On the other hand, if player 2 does reject player 1's proposal, player 1 should not

deviate from a € A in the stage game. Subgame perfectness then requires that

(1 —6):}13(1 uy(ay.az) + 6%my(8) < (1-6)uy(a) + 6xy(a)

< (1=-6)uy(a) + 6(1-ys(a))

which implies that

8y2(a) < 6(1-6m,(6)) ~ (l-éS)(J'nea.Axl uy(ay,az)—uy(a)) (2.10)
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Substituting (2.10) into (2.9), with (2.6), we have

n < (1—6)?615{"1(0) + uz(a) - Imax ur(ay,az)} + 6(1-6m(6))
= (1-§) Teajc{u,(a) + uz(a) — max uy(aj, az2)} + 6(1 —ém(8))
= (1=-8)y; + 6(1—émy(8))

with (2.7) and (2.8),

l-m(§) -+ € 1—z =y < (1-8)y] +6(1-6my ()

= my(6) > -

Since € can be chosen arbitrarily small, the last inequality implies that m,(8) is

bounded below by i—i—s(l - ) Q.E.D.

In the following theorem, we construct a subgame perfect equilibrium of NG,{#é)
[NG3(8))] in which player 1’s average equilibrium payoff is gz(1 — y7) [%(1 - ¥7)]
if the discount factor 8 is large enough. From Theorem 2.3 then, this SPE is an
optimal punishment equilibrium for player 1 in NG,(6) [NG2(8)]. In the optimal
punishment equilibrium, the outcome is the same as the SPE when (0,y7) is fixed to
be the disagreement payoffs to the players in every period Refer to Figure 2.4 for

diagrammatic representation.

Theorem 2.4 There ezists a § € (0,1) such that, for 6 € (§,1), the average payoff

1—y7 6+y; §(1-yy) 1+éy;
146’ 146 146 ' 146

can be supported by a subgame perfect equilibrium in the game NGy(6) [ NG2(8) ].

vector
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Figure 2.4: An Optimal Punishment Equilibrium For Player 1

Proof: Note that the payoffs correspond to the perfect offers for a disagreement
path with payoff (0,y7) in every period. If (0,]) is a Nash equilibrium of the stage
game G, then the result follows from Theorem 2.2 and no further proof is necessary.
Therefore, suppose that (0, y7) is not a Nash equilibrium of G. Under this assumption
the proof is lengthy. We will proceed in three steps. First we construct §. Then,
imposing a regularity condition on G which guarantees the existence of the required
disagreement path, we give equilibrium strategies attaining the punishment payoffs.
Finally, we modify the strategies to hold when the regularity condition is relaxed.
Strictly speaking, only the first and third step are required for a complete proof, and
the reader may skip the second step. However, additional insight is generated by the

arguments in the second step, facilitating understanding of the third.




56

Step 1: Suppose a* is a Nash equilibrium in the stage game G. From (2.6), we have
y1 2 uz(a®). Since u;(a*) 2 0 and (0,y}) # u(a*), we must have yi > uz(a*) — uy(a*).
Therefore, ¢ = [y} — ua(a®) + u;{a*)}/3 is strictly positive. From the definition of yj,
3 a' € A such that

T} +y} = uy(a') 4+ uy(a’) and =z} = max uy(a),a}) (2.11)
aj €Ay

Let d = max|u;(a’) — u;(a”)], Va',a" € A and i = 1,2. Since the set u{A) is

compact, d must be finite. Va = (a,,a;) € A and i = 1,2, we have

'tlleeaz u;(a},a-,) —ui(a) £ d

Consider the following four functions of é € (0, 1],
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61(6) = Eom - (1—6)(1

c2(8) = i—%[&(y{—?eo—ug(a‘)) +uy(a”)] — (1-6)d
) = ol ~2eo=ua(a) +8us(a)] — (1-8)d
co(b) = 2€06% — (1=6%)(uz(a')—y;)

Since these four functions are positive and continuous at é = i, there must exist
§ € (0,1) such that, V& € (&.1), the functions ¢1(6), c2(8), c3(6) and c4(6) are all

positive. Equivalently, Vé € (4, 1), the following four inequalities hold

é é .
(1-8)d < ol - 4i +eo] = 65511 — ui] (2.12)
3 14657 = 20) _ L= wmila) +buala)
(1-6)d < §é 143 é Y (2.13)
(1-6)d < 66+i/;--;2co_56-6u|(;1+)6+u2(a) (2.14)
8(y; —2e0) <y — (1-8%)uy(a’) (2.15)

This concludes the derivation of §.

Step 2: For a given é € (8, 1), we now construct a subgame perfect equilibrium under
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the following regularity condition.
Regularity condition: There ezists an outcome a € A such that (z3,y;) is a strictly
convez combination of u(a') and u(a).

Under this regularity condition, 3 T < oo and a? € A such that
¥ — 260 S up(a®) Sy — o and (a},4]) = (1 — 6N )u(a') + 6Tu(a?)  (2.16)

Consider the modified simple strategy profile o(wo,x},n3,7},73) in the infinitely

repeated game G*(§), where my = 7] = {@'}$2, with

a' iftisoddandt<T

mz! if t is even
a* iftisoddandt>T
and n? = {a@'}2, with

mz! if tis odd
a'={ a' iftisevenandt<T
a? iftisevenandt>T

and 7} = n? = (a*)>.
A modified simple strategy profile is defined as follows: At the beginning of the game,
players play the stage game G according to the initial path 7¢. If player : deviates
from the current path in an even (odd) period, then the players will start to play the
stage game according to the path =} (r?) from the next period on, for i = 1,2.

Let g = (g1, 92) be the strategy functions induced by o(mo, 7}, #2, 73, 73). Consider
the following strategies in th. negotiation game NG,(6). Vh,(t) = a(t) & b(t) € H,,
hy(t) = hy(t) @ b € H; and ha(t) = hy(t) @ {N} € Hj; for an odd period (t+1),

fl(hi(t)) = Pl(”(gh(g)))
fa(hy(t)) = {Y if b < fiha(1))

N otherwise

f(ka(t)) = g(a(t))

and for an ever period (t+1),

Sa(hi(2)) = Py(m(glany))
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fulha(t)) = {Y i 0 > fa(ha(1))

N otherwise

f(hs(t)) = g(a(t))

We will now verify subgame perfectness of the strategy profile f. Since all pro-
posals are perfect by construction, f is a perfect equilibrium in NG, (6) if players do
not deviate after every type 3 history. Given hs(t) = a(t) D b(t+1)& {N} € Hj. there

are four cases which have to be considered.

Case 1: (t+1) is odd and f(h;(t)) = a'
If player 1 deviated from a!, according to the strategies above, player 2 would

propose

s —(1 -y

in period (t + 2), since the continuation disagreement payoff path is . However, if

player 1 follows his strategies, player 2 will propose at least

in period (t+2), the perfect proposal for path {a'}7! & {a%}™. Since

82
(1=8)ur(a) + 6Po((glaear)) = (1=8)ur(a) + (1-6)u(a’) + H.?

—_ ] - 62-y; _ - 62
=(1=-6)(z +y1)+1—+6' = (1-8)z +1+6(1 Y1)

= (1-96) r'neaj( uy(al,a}) + 6 —=(1—y;)

1+6

player 1 will not deviate from a'.
Consider player 2 next. If player 2 deviated from @', according to the strategies
above he would have to propose 1—}5(6 + uy(a") — buz(a”)), because the continuation

disagreement payoff path would be r}. Player 2's payoff from such a proposal would

be
1 — uy(a®) + buz(a)
1+6
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However, if player 2 follows his strategies, he will at most propose ;f—6(1 — uy(a?)) in

the next period. Then player 2's payoff will be at least

(14 6us(a))

Inequality (2.13) and uy(a?) > y; — 2¢p imply that

1+8u(a®) 1—uy(a*)+6uy(a”)
bl it A gl '
146

(1 5)[;?;}"‘2 uz(ay,02) — uz(a’)] < (1~8)d < 6 By

Therefore, player 2 will not deviate from a’ either.

Case 2: (t+1) is odd and f(ha(t)) = @?
If player 1 deviated from a?, player 2 would, according to the strategies, propose

;f‘:-(l ~ y;) in period (¢ + 2). If player 1 follows the strategies, however, player 2 will

propose
s 2
m(l — uy(a®))
in period (¢ + 2). Inequality (2.12) and u,(a?) < y; — € imply that
(1-8)[ (a’y,a?) H<(1-86)d < 621 (a?) 62(1 D)
Jnax wi(ay,a3)—u(a”)] < (1-6)d < Trsli—u(e?) - EYited

Therefore, player 1 will not deviate from a2.

If player 2 deviated from a?, as in Case 1, his average payoff from the next period
on would be 2=(1 — uy(a) + Suz(a®)). If player 2 follows the strategies, his payoff
will be 75(146uz(a?)). Inequality (2.13) and uy(a?) > ¥i — 2¢ irply that

1+ 6uy(a?) _ 61 —ui(a*)+8us(a*)
146 146

(1—5)[r'neaj( uz(a},a)—uz(a?)) < (1-6)d < 6
a3€A;
Therefore, player 2 will not deviate from a? either.

Case 3: (t+1) is even and f(hy(t)) = mz!
Player 1 will not deviate, because mz! is t* - minimax strategy against player 1.
If player 2 deviated from mz!, according to the strategies, player 1 would make a

proposal yielding
6 — bux(a”) + ug(a®)

1+¢6
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to player 2 in period (¢ + 2). However, if player 2 follows the strategies, player 1 will

make a proposal yielding, at least,

6 + uy(a®)
1+6

to player 2. Inequality (2.14) and u,(a?) > y} — 2¢o imply that

6+uz(a®) 65—6u,(a‘)+ug(a‘)
1446 1+4

(1—6)[r,neaj( uy(mzy,ap)—uymz') < (1-6)d < 6
al €A,

Therefore, playe - 2 will not deviate from maz!.

Case 4: f(h3(t)) = a*
Since a* is a Nash equilibrium in the stage game, Vi = 1,2, if player i deviates
from a®, his payoff cannot be increased in the current period and his payoff thereafter

may only be decreased. Therefore, player ¢ should not deviate from a* for : = 1,2.

This concludes the proot that (under the regularity condition) f is a subgame
perfect equilibrium strategy profile for the game NG,(6), and that the outcome of
this 2quilibrium is that player 1’s perfect proposal is accepted by player 2 in the first

period, yielding a payoff vector (%(l —u5), og(6 + v1))-

Step 3: In the equilibrium under the regularity condition, however, we never observe
the stage game outcome a?. Therefore, we may construct a payoff equivalent subgame
perfect equilibrium without tle regularity condition.

Consider the following strategies for NG1(8). They are defined recursively. In the

first period, players’ strategies are

f1(9) Ll

1446
Y ifb < (1 - y7)
1 _ S 19 1
f(b') = {N otherwise
, _ [ b <&y
[ o{N}Y) = | @' otherwise

Vhi(t) = a(t)®Y¢) € Hy, hy(t) = a(t)®Yt+1) € H; and hy(t) = a(t)Bb(t+1)B{N} €
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Hj; for an odd period (t+1),

;-:3(1+6u1(a‘)—u2(a‘)) if either f(hs(t-1)) =@a"
Hi(hi(t)) = { or ai = fi(h3(t—1)), a3 # fo(ha(t—1))
—‘13(1 -y otherwise

W RHL
att) = { 3 Seraon
a® if either f(h3(t—1))=a" or b*! < fi(hy(2))
{ or ai = f](h;;(t—l)), a;#fg(’h(t—l))

otherwise

f(ha(t)) =

and for an even period (t+1),

113(6+u1(a‘)—6u2(a‘)) if either f(hs(t—1)) = a*
or @, = fi(ha(t—1)),al # fo(ha(t—1))

flh(®)) = L-y) i a# Alho(t=1)).ah=fo(hs(t~1))
Huy(a') + %%1;- otherwise
) = { ) el
a* if either a} = fi(h3(t—1)); ab # f2(ha(t—1))
f(ha(t)) = { or b*' < fa(hi(t)) or f(ha(t—1)) = a
mz! otherwise

We will now prove the subgame perfectness of the strategy combination f. Since
the proposals are no longer perfect, we have to consider every part of the strategies
for every player in every period.

1 an odd period (t+1), there are two cases to be considered.

Case 1: either af = fi(hs(t—1)), a4 # fa(ha(t=1)); or f(ha(t—1)) = a*: or
b < fi(hi(t))

Player 2 is the last deviator, i e. player 2 either deviated in the stage game or
rejected a proposal which should have been accepted. The disagreement payoff will
be u(a®) for ever after. Since a* is a Nash equilibrium in the stage game, Theorem

2.2 implies that players should nct deviate from f.

Case 2: otherwise, i.¢. not Case 1

f(ha(t)) = a'. If player 1 deviated from a!, according to the strategies, player 2
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would then propose %5(1 — y; ) instead of %ug(a') + ;(-.-';;;(62 — ¥1). Since

2 _ .
(1—6)ul(a‘)+(1—6)uz(a‘)+5——5’l = (1=-6)[ur(a’)+uy(a’ )l+ it

1+6 1+6
62_y1 62
- 1_6 - - 1 - - - "
( )(="+y7) + _~l+5 (1-é)r" + _1+6“ y)

, 6
= (1—6)£gmtnhh-ab-+5———

l+6(1—yi)-

player 1 will not deviate from a’.

If player 2 deviated from a!, player 2 would have to propose s (l —uy(a*)+duy(a*))

instead of % ug(a‘). [nequalities (2.13) and (2.15) imply that
(1-6)[max uz(aj,ay) — uz(a')] € (1-6)d
a;EAz

< 6l+6(y;—‘2eo) _ l=uy(a*)+6uyz(a”)

- 1+6 1+6
6 82 )

= — - —(1- )
1+6+1+6( 2¢9) l+6“ uy(a”)+duz(a”))
S+y; é . .

< T - (=huala!) — ll—u(a) +fuyla’))

Therefore, player 2 will not deviate from a’.
Player 2 will also not deviate from f, in resronding player 1's proposal, because

his payoffs from rejecting the wrong and right proposal are

d+y; é d+yp
o and (1-6)uz(a )*'1+ (1=uy(a”) +buz(a®)) < T—=5

respectively.
Finally, player 1 should not dev'ate from f; in making the proposal. because wrong

proposals will be rejected and player 2 will propose fu,(a') + 8% - y3) in the

1
5(l4<5i(

next period. Since r; + y; < 1,

82—y . . 62— y*
(1=8un(a!) + (1=Huala’) + G = (1=ai+o))+ 58
8 -y 1-y;
<(l- —_— =
<=0+ 375 1+6

Thereforc. player 1 will not deviate. This concludes the checks for an odd period.
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In an even period (t+ 1), when either f(ka(t—1)) = a® or d*' < fy(hy()) or
al = fi(ka(t—1)),a% # fa(ha(t—1)), Theorem 2.2 implies that players should not
deviate, because the disagreement payoff in every period is the Nash equilibrium
payoff u(a®). Otherwise, that is if 2 has not deviated last, there are two cases that
have to be considered.

Case 1: a! # a} and d}, = a}

Player 1 will not deviate from mz!, because mz! is his minimax strategy. If
player 2 deviated from muz!, the disagreement payoff would be u(a®) in every period
thereafter, and player 1 will propose ;}5(6 — éuy(a®) + uz(ax)) to player 2 instee . (

i;%i_ Inequality (2.14) implies that

. S+yy 8—buy(a®)+uy(a®)
B | S 1 - 1 _
(1 6’[:;“;1)(, u(mzry.ay)—ux(mr')] € (1-6)d < 6 Y Y

"Therefore, player 2 will not deviate from muz!.

Player 1 should not deviate from f,(h2(t)), because player 1's payoff is %(1 -y1)
from rejecting player 2's proposal. Player 2 should not deviate from f,(k;(t)). because
wrong proposals will be rejected and player 1 will offer %(6 — éuy(a®) + uz(a*)) to

player 2 in the next period. Since duz(a”) — uy(a”) < uz{a*) — uy(a*) < y;.

56—6u,(a‘)+u2(a') 1—uy{a”}+déuz(a”) 1+y7

(1=6)ua(a”) + 1+6 1+6 1+6

Therefore, player 2 will not deviate from f;(h(t)).

Case 2: a* =d', i.e. not Case |
For the same reasons as in Case 1, players should not deviate from f(h3(t)). Player
1 should only accept an equilibrium proposal. since his payoff from rejecting such a

proposal is equal to %(1 — y;) which is less than ?ug(a') + ﬁ(é2 - y;7) due to
i < ugla') = (1-8)y; < (1-6%)uy(a')
= #(l-y;) < (1-6%)uy(a') + 62 +y;

(6°~yp)

5§ . 1-6
= 'l:—g(l—yl) < —-5—-!12(0 )+

6(1+8)
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Also, since u,(a*) - %u;(a‘) < uy(a®) — uy(a®) < yji. player 1 should reject a wrong

proposal, because his payoff from rejecting a wrong proposal is equal to

&
(1-6)“1(0')+16?(1'*‘5"1(0.)-"2(0')) = m(l—uz(a‘)+%u,(a‘))
é
> m(l‘y;)

Therefore, player 1 will not deviate from f,(h2(t)).

Player 2 should make the equilibrium proposal, because a wrong proposal will be

rejected. and player 2’s payoff will be

) 1
(1—8)uz(a”) + m(5—5ul(ﬂ')+"2(a')) < m(l—ul(a')+5ul(d'))
b+y;  1-6
< e 5 owl)
— 1-46 1 52—.‘lf
= - wle)+ s

Therefore. player 2 will not deviate from f;(h(t)).

We conclude that the strategy profile f constitutes a subgame perfect equilib-
rium of the negotiation game .NG,(6). The equilibrium outcome is that player
1's proposal is accepted by player 2 in the first period. yielding average payoffs of
(35(1 = ¥7). 45(6 + 7). Finally, consider the one period history k(1) = 1% (ay,a})
where @, # aj. fla, ) is a subgame perfect equilibrium of NGy(6)[n,1) which is

NG,(6), and the equilibrium outcome is that plaver 2's proposal is accepted by player

1 in the first period, yielding average payoffs of (ﬁg(l —y7). %ﬁ.(l +6y7))- Q.E.D.

Combining the results of Theorem 2.3 and Theorem 2.4. we may conclude that
equilibria in Theorem 2.4 are the optimal punishment equilibria for player 1 in .V (s{6)
and NG,(6). Player 1's worst punishment payoffs in N(/;(¢) and NG(8) are thus
(1 —y7) and —lf-;s-(l — y}) respectively for & large enough.

By analogous arguments, we can obtain that optimal punishment equilibria for

player 2 exist in NG,(8) and NG,(6) and his punishment equilibrium payoffs are
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25(1 = z3) and %(1 — z3) respectively. Here r; is given by
1= TEan{u,(a) + uz(a) - glea.}(’ uz(ay,a;)} (2.17)
Finally, define
1
w=3(1-y)) and v = %(1 -1 (2.18)

From Theorem 2.3, ¥V § € (0.1), player i's average payoffs in all subgame perfect

equilibrium of NG,(6) are bounded below by v,.

2.3.4 Equilibrium Outcomes

In this section, we characterize the set of subgame perfect equilibrium of the negoti-
ation game as the discount factor gets large. The theorem proves that any feasible
payoff which dominates (v,.1;) can be supported as a SPE outcome in the negotiation

game when the discount factor is large enough.

Theorem 2.5 For a given feasible payoff vector (vi.v:) of the negotiation game
NG;(8) [NG1(8)] such that (vy,v2) > (vy,13), there is é € (0.1) such thatV é € (8,1),

NG\(8) [NG,(6)] has a subgame perfect equilibrium with average payoff (vy,vs).

Before we formally prove the theorem, we first briefly discuss the equilibrium
strategy profile. First, we find an outcome path which leads to the average payoff
(v1,v2). It consists of the agreement players reach in some period T, and the outcomes
of the stage game G they play in every period before the agreement is reached. The
outcome path also has the feature that in every period both players have continuation
average payoffs above their minimum equilibrium payoffs. We then implement the
outcome path by the following strategies. In every period before the last, the player
who makes the proposal demands the whole surplus for himself. Any other offer
will be considered as a deviation by him and he will be punished by his punishment

equilibrium starting from the next period. The other player accepts a proposal made
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before the last period only if the proposal pays him more than he could obtain if the
other player is punished. In the stage game, players play strategies leading to the
appropriate outcome for the period (as specified in the outcome path). If a player
deviates from his strategy in the stage game, he is again punished from the next
period on. As is common, simultaneous deviations by the players will be ignored.

With the above strat«ies, after a player has deviated from the proposed equilib-
rium path, the strategies are subgame perfect, since optimal punishment equilibria
are SPEs. Therefore, we do not need to verify the perfectness of the strategies out
off the equilibrium path. Thus, if neither player can benefit by deviating from the
proposed path, the overall strategies are subgame perfect.

For an outcome path of the negotiation game #(T) = HT) L a(T—-1)3 {Y}, where

WT) = {& T ,and &(T—1) = {a*}=}, the indicator function

ID(:): YU HUHy = {0} U {(i.t)i=1.2: 1 <. = T}

is defined recursively as follows: at the beginning of period 1. the history is the empty
set and the indicator function takes the value 0. i.e. /D(8) = 0. Thereafter. V h,(t) =

hg(t‘-l) %(ai.a'g) € H], hg(t\ = hl(t) i‘bﬂl € H;. and ha(t) = hz(t) = {.\.} € Ha.

(1,8) if a} # a}; a = a and ID(hs3(t—1)) =0
ID(hy(t)) = (2.1) if a} = a}: a} # @} and ID(hy(t-1)) =0
ID(h;3(t—1)) otherwise
(L,t+1) if b* # b and (¢+1) is odd and ID(h,y(1)) = 0
ID(hy(t)) = (2.t+1) if b* £ b and (t+1) is even and /D(h,(1)) =0

« ID(hy(t)) otherwise

(1,t+1) ift+1=T and Tis odd and ID(hy(t)) =0
ID(h3(t)) = (2,t+1) i t+1 =T and T is even and I D(h,(t)) =0
ID(hy(t)) otherwise

The indicator function takes two types of possible values, 0 and (2.t). The value 0
means that no player has deviated from the path #(T'). and (z.t) means that player

i first deviated from the path in period ¢, where 1 <t < T. We now prove Theorem

2.5.
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Proof: We prove the theorem for NG,(6). Let a* be a Nash equilibrium of the stage
game G. Since (vy,v2) > (v1,v2), 3 € = min{vy; — vy.v2 — v12}/2 > 0. According to
Theorem 2.4, 3 § such that, V § € (4, 1), the game NG,(§) has an optimal punishment

equilibrium for player : with strategy f*, and

l-y; 1- ~Y;. . o+y;
. > —— —_ —_ .
vy +€ 2 max{ l+6 1 (1—-8u,(a” )+61 5 i1— (1-8uz(a”) - 61 5 (2.19)
- 1-z3 . 6+.1:
> 2.0 (- oy _gitT
vat+€ 2 max{ l+6 ~duy(e”)+8-——= 175 31— (1—uy(a”) l+ } (2.20)
- 6d < €e@=v,— (v, +¢) for:=1,2 (2.21)

¥ &€ (8,1),3ae A be[0.1] and a positive T (which may or may not be finite),

such that

(v v2) = (1 — 8T)u(a) + 67(h,1 = b) and (b,1 —b) > v > u(a) (2.22)
Consider the outcome path #(T) = b(T) & &(T—1) % {Y} of NG,(§), where
&T-1) = {a}7} € AT and HT)=(1,0,1,0,....H).

Inequality (2.22) implies that players’ average payoffs from the outcome path i (T') are
(v1,12), i.e. U(m(T)) = (v4,v2). Let I1D(-) be the indicator function for the outcome
path 1r(7') as defined before. We decompose a type k t-period history h(t) € H; as
hie(t) = hy(s) @ he(t—s),for k=1,2,3 and s < t.

Consider the following strategies in the game NG;(8). V hy(t) € Hy, hy(t) =
hy(t) ® 8% € Hy, and ha(t) = hy(t) © {N} € Hj: for an odd period (t+1)

(

b if ID(hy(t)) =0and t+1=T"
1 if ID(hy(t)) =0and t+1 < T~
filh(t)) = J N(hy(t—s)) if ID(h:(t)) = (1,8) for even s
! [i¥(hy(t=3)) if ID(hy(t)) = (1,s) for odd s
[ (hy(t~3s)) if ID(hy(t)) = (2,3) for even s
| f3(hy(t—35)) if ID(hy(t)) =(2,s) for odd s




r ,,

J2'(ha(i—3))

§ fR(Ra(t—s))

2 (ha(t—s))

J3(ha(t—s))
N

Ja(ha(t))

and for an even period (t+1),

if t+1 = T and ID(hz(t)) = 0 or if ID(hy(t)) =
(L,¢+1) and 1-b% > (1-8)uz(a) + 5 (6 +y})

if ID(hy(t)) = (1,s) for even s <t
if 1D(hy(t)) = (1,8) for odd s < ¢
if ID(hy(t)) = (2,3) for even s < ¢
if 1D(h(t)) =(2,3) for odd s <'¢
otherwise

It remains to verify that the strategy profile f =

NG, ().
V hi(t) € Hy. if ID(hy(1)

( Y if t+1 =T and ID(hy(t)) = 0 or if ID(h,(2)) =
(2,t+1) and ™ > (1 - 8)uy(a”) + 135(6 + 73)
JIN(Rha(t—s)) if ID(hy(t)) = (1,5) for even s < t
filhao(t)) = 1 J13(ha(t—s)) if ID(hy(t)) = (1 3) for odd s <t
2(hy(t—s)) if ID(hy(t)) = (2,s) for even s < t
F22(ha(t—s)) if ID(ha(t)) = (2, ) for odd s <t
N otherwise
( b if ID(hy(t))=0and t+1=T"
0 if ID(hy(t))=0and t+1<T"
falha(t)) = 4 1t (hy(t—s)) if ID(hy(t)) = (1,s) for even s
an B ;2(h,(t-s) if ID(hy(t)) = (1,s) for odd s
f Yhy(t—s)) if ID(hy(t)) = (2,s) for even s
L f23(hy(t—s)) if ID(Rhi(t)) = (2,s) for odd s
for both odd and even periods (t+1).
( a if ID(hs(t)) =0
a” if ID(h3(t)) = (:.t+1) fori=1,2.
f(ha(t)) = 4 f (ha(t=s)) if ID(hs(t)) = (1,s) for even s < ¢
(As(t)) =\ f12(py(¢—s)) if ID(hs(t)) = (1.5) for odd s < ¢
F2Y(ha(t=8)) if ID(hs(t)) = (2,5) for even s < t
| f2%(hs(t—3)) if ID(hs(t)) = (2.s) for odd s <t
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(f1. f2) constitutes a SPE of

) # 0. the induced strategy profile fla, () is one of the

four subgame perfect equilibrium strategy profiles f'. f'?. f2! or f*2. Therefore, the

strategy profiles given above are subgame perfect if 1D(h,({)|{x(T)) # 0. We now

verify the strategy profiles along the proposed path #(T). i.e. for ID(h,(t)) = 0 and

(t+1) £ T. Due to the symmetry in profiles, we only consider an odd period (t+1)

before period (T +1).
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V hi(t) € H, such that I1D(h,(t)) = 0, player 1 should follow his strategy fi(h1(t))
to propose | in period (t+1) < T and b in period T. If player 1 follows the strategies,

by (2.22) above, his average payoff will be
(1 — 8T Yu(a) + 67 > v,.

However, if player 1 deviates from fi(h;(t)), due to (2.19) his average payoff is either

., 801 —97) . 1 -y
- —_— - <
(1 6)“1((1 )+6 1+6 < (1 6)u|(a )+6 1T+s = n
)
or 1 — (1 =6)uy(a®) - m(6+y;) S u+e < vy

Therefore, player 1 will not deviate from f,(h,(t)).
V ha(t) € Ha. If ID(ho(t)) = (1,t+1), i.e. player 1 has deviated in period (t+1),

player 2's payoff from rejecting player 1's deviating proposal is

(1 = 6)uz(a) + 5%‘% (2.23)

Therefore, player 2 should accept the proposal only if his share is not less than (2.23).
If ID(h;(t)) = 0, plaver 2 should reject the proposal ir period (¢+1) < T, since his
payoff from accepting the proposal is 0 which is certainly less than that from rejecting,
and he should accept the proposal in period T, since his payoff from accepting the

proposal is more than that from rejeciing the proposal. (2.20) and (2.22) imply that

1 —x3

1 —b>vy> (1 —6)uy(a”) +6 %

Therefore, player 2 will not deviate from f,(h;(t)).
V hs(t) € Hs. If ID(ha(t)) = 0, f(hs(t)) = a, and neither players should deviate

from a, since

1-4 , . . 1-6
— :?ea}: ui(ay.az) — uy(a) < —6—d < e = vy~ (v + ¢)
< (1 =8Ny (a)+ 6T - -4

146

and




1-6 \ A 1-6
5 :?3{2"2(“1»0'2)—“2(0) < —é_d < ¢ = vy —(12+¢)

< (- 8T ) 4 67— 2
due to (2.19), (2.21) and (2.22). If ID(hs(t)) # 0, f(ha(t)) = a°, and since a" is
a Nash equilibrium in the stage game, a player cannot increase his payoff in period
(t+1) and thereafter by deviating from a*. Therefore. plavers will not deviate from
f individually.

(v1,v2) is, therefore, supported by the strategy profile f as a subgame perfect
equilibrium payoff from the outcome path #(T) in the negotiation game NG, (6).

Q.E.D.

2.4 Discussion

We have presented a model of negotiations and derived its equilibrium set. The
equilibrium outcomes can be characterized simply in terms of players’ punishment
payoffs — which depend on the payoff structure of the stage game played in periods
when no agreement has been reached. We utilize the value for normal form games
which gives a measure of the maximal payoff of one plaver net of compensation to
the other for not deviating from a strategy which is not best response.

The negotiation model has been introduced as an alternative to the bargaining
model. The difference between the two is to be found in the players’ ability to affect
periodic payoffs during disagreement in the negotiation model. In the introduction,
we have argued that the potential for strategic actions in disagreement periods, which
is an inherent part of ‘real’ negotiations, makes the status quo point endogenous, and
that the bargaining model cannot accommodate such an endogenous status quo point.

As the results and examples show, our assessment was generally correct. Although
Rubinstein is easily adapted to deal with an exogenous non-stationary status quo

point (as shown in Theorem 2.1), Example 2.1 and Theorems 2.4 and 2.5 show that
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endogeneity can affect the equilibrium set significantly. Example 2.2, however, points
to the fact that the mere existence of strategic options during disagreement is not
sufficient to destroy Rubinstein’s results. That is, immediate agreement on Rubinstein
shares is the unique equilibrium outcome.

The existence of strategic opportunities therefore may or may not matter to the
equilibrium set. The essay provides a simple test if it does: If both y; and z3 are 0,
the bargaining game is sufficient to analyse the situation. The negotiation model is
thus a superset of the bargaining model: If the stage game is trivial (i.e. no payoffs
or no actions) or if it is ‘inconsequential’, the model can be simplified to Rubinstein’s
without affecting the equilibrium set.

The negotiation model also has implications for the analysis of delay in negoti-
ations. It is well known that the bargaining model cannot generate delay. Several
extensions have been proposed in the past in order to deal with this ‘failure’ (actually,

Rubinstein was too successful by having a unique equilibrium, a fact that surprised

even himself (p.99).) One approach to explain delay has been to relax the assumption
of perfect and complete information. Models with both one- and two-sided inc-m-
plete information have been brought forward and seem to feature delay. The general
argument of these types of model is that delay (often called strike) is necessary to
separate types, that is, the willingness of a party to incur the cost of delay serves as
a signal of its type, when type is private information.

Recently, a different approach has been forwarded by Haller and Holden (1990),
and by Fernandez and Glazer (1991). Their models derive from the realization that
delay does not imply strike — contrary to popular usage of the terms in the literature.
They model the strike decision explicitly by allowing the union to decide after an offer
has been rejected wheiher to keep working (and to earn income) or whether to strike

(and to get nothing) in that period. Both sets of authors show that multiple equilibria

exist in such a framework and that real delay can be supported.
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The negotiation model provides an even stronger result, in a sense. In both
of the above mentioned models, the payoff point when there is no strike is on the
bargaining frontier. Thus, there is no surplus to be gained from agreement. The
negotiation model, in contrast, supports real delay even though agreement gives access
to a surplus, and allows for infinite delay — no agreement — to be an equilibrium.
Applied to wage negotiations, the negotiation model is also much more general than
either Haller and Holden (1990) or Fernandez and Glazer (1991). In particular, it is
easy to incorporate such labour action as work to rule or the employment of strike
breakers.

The negotiation model is not limited to these types of application, however. To
show this point, we will now consider the links of this model to the repeated games
literature. To a large part, the current investigation derived from an attempt to
endogenize the time horizon of a relationship modeled by a repeated game. The
current model can also be interpreted as a Repeated Game with Ezit.3 One implication
of the model in this context is that a relationship may be inefficient in equilibrium.
In other words, the model explains how parties may continue within a relationship
even if they both could gain by agreeing to end it.

Another implication is for the equilibrium set of repeated games. One interpreta-
tion of the repeated game framework is that of implicit contracts, that is, the question
which allocations can be supported in a non-cooperative framework. The standard
example is the Prisoners’ Dilemma. In a one shot game the unique Nash equilib-
rium is Pareto dominated. This can be interpreted as implying that cooperation in
such situations is ‘not possible’ — with implications for the threat of collusion in

Cournot Duopolies, for example. Since collusion is observed, it has been realized that

3We have a specification of the model in this context in which in each period the stage game is
played first. Then an exit offer is made which, if accepted, starts to determine the payoffs from the
next period onwards. The stream of payments thus stays aligned. The model has precisely the same
features as the one presented, and, but for minor and obvious changes, the equilibrium strategies
and payoffs are the same. The robustness of our results to this change in game form increases our
confidence in the model as a vehicle to modelling dynamic allocation problems of either sort.
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this simplified approach is not sufficient as a model of non-cooperative cooperation.
This realization has spawned the folk theorem literature, and it is now known that
in infinitely repeated games every feasible and individually rational payoff can be
supported. This result also holds for finitely repeated games of sufficient length, if a
dimensionality condition is satisfied.

If one interprets the negotiation model as a model of a repeated game with exit,
our result indicate that the folk theorems collapse if exit is possible. Although for
certain games infinite cooperation can still be supported, the equilibrium set in the
negotiation model is significantly smaller than that of the corresponding repeated
game. In particular, the model implies that a high egree of cooperation may have
to be present for the relationship not to have been abandoned. In other words, if a
duopoly exists even though there are no impediments te its dissolution, it is likely
that the duopolists collude. The results also limit the degree of asymmetry in payoffs
which may be supported in equilibria, ruling out equilibria where one player gets close
to his minimax while the other player has a payoff close to the payoff frontier.

On the other hand, the model reduces the importance of Nash equilibria in the
stage game. In particular, a relationship of finite length may be observed to feature
cooperation even if there are no Nash equilibria in the stage game — an impossible
outcome in finitely repeated game models.

In summary, the negotiation model unifies the bargaining and the repeated game
approaches to allocation in dynamic settings, and both of the latter are special cases
of the former. The negotiation model provides new results in both areas and allows

for the influence of repeated payoffs versus repeated offers to be explored.

2.5 Conclusion

In vhe presentation of the model we have made some assumptions, for analytical

convenience, which entail a loss of generality. While some of these are relatively




minor, some others may be the subject of future work in this area.

The least significant assumption which affects some of our results is that of a
common discount factor. In particular, Theorem 2.1 will not go through as it stands
(the reason is that players may evaluate the future very differently and that a perfect
offer may not be made under such circumstances). The main results in Theorems 2.4
and 2.5, however, have us choose a sufficiently high discount rate beforehand and will
not be affected, although the statement of the offers will become more cumbersome.
Overall, the effect of a common discount factor on the results is minimal.

As indicated in the model section, we made two assumptions on the payoff space
which entail a loss of generality. One is the restriction that every payoff in G is weakly
dominated by tke total surplus. This assumption can be defended by realizing that
the result that the parties may remain in the relationship forever is more surprising
under it. There is an obvious extension, however: The exit payoff could intersect the
stage game payoffs. This will require much further work. In particular, we conjecture
that it will matter greatly if the payoffs to players from punishing a player are still
outside the stage game payoffs or not.

The other assumption on the payoff space is that bargaining is over the unit
simplex. It will be interesting to allow the exit frontier to have an arbitrary shape,
and in particular to have it coincide with the boundary of the stage game payoffs.
This latter assumption is reminiscent of the work by Okada (1986), although he used
a very different framework. Such a1 extension would require a different approach in
proving the results. In particular, we would not be able to construct a path of stage
game payoffs parallel to the exit border (as we do now). The main idea, however, is
that a one period non-best-reply strategy by the punished player in the stage game
can be supported by compensating him sufficiently in the following exit offer, and
that this may yield a ‘surplus’ to the punisher. This type of argument should clearly

also hold for a concave exit frontier. Further work is needed, however, to confirm this
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conjerture.

Mimicking the development of the bargaining model, other averues for future
research are to investigate continuous time versions of the negotiation model and to
introduce incomplete information. Finally, there is the question of non-static payoffs.
It is conceivablc that playvers’ actions during the negotiations r.... only affect current
payoffs but also *he structure of future payoffs (for example the size of the surplus.)
A model incorporating such dynamic payoffs will be another step closer to being a

complete model of dynamic allocation.
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